
Thorsten Ruprechter, BSc

Increasing Efficiency In Video Transcription

Master’s Thesis
to achieve the university degree of

Master of Science
Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor
Assoc.Prof. Dipl.-Ing. Dr.techn. Christian Gütl

Institute of Interactive Systems and Data Science
Head: Univ.-Prof. Dipl.-Ing. Dr. Stefanie Lindstaedt

Co-Supervisor
Assoc.Prof. MSc Ph.D. Foaad Khosmood

California Polytechnic State University

Graz, October 2018





Thorsten Ruprechter, BSc

Steigerung der Effizienz beim
Transkribieren von Videos

Masterarbeit
zur Erlangung des akademischen Grades

Diplom-Ingenieur
Masterstudium Softwareentwicklung-Wirtschaft

eingereicht an der

Technischen Universität Graz

Betreuer
Assoc.Prof. Dipl.-Ing. Dr.techn. Christian Gütl

Institute of Interactive Systems and Data Science
Leitung: Univ.-Prof. Dipl.-Ing. Dr. Stefanie Lindstaedt

Co-Betreuer
Assoc.Prof. MSc Ph.D. Foaad Khosmood

California Polytechnic State University

Graz, Oktober 2018





Affidavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. The text
document uploaded to TUGRAZonline is identical to the present master‘s thesis.

Date Signature

v





Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, an-
dere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten
Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht
habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden
Masterarbeit identisch.

Datum Unterschrift

vii





Abstract

Legislative and parliamentary proceedings present a rich source of multidimen-
sional information that is crucial to citizens and journalists in a democratic system.
At present, no fully automated solution exists that is capable of capturing all the
necessary information during such proceedings. Even if professional-quality au-
tomated transcriptions existed, other tasks such as speaker identification, entity
disambiguation, and rhetorical position identifications are not fully automatable.
While many governments rely on expensive, manually-produced transcriptions and
annotations, others are left entirely without digital transcriptions.

This thesis focuses on improving and evaluating the transcription software used
by the Digital Democracy initiative, named Transcription Tool. Human transcribers
work to up-level and annotate state legislative proceedings using this tool. Four
phases of UI and functionality improvements are introduced and for each phase,
the resulting change in efficiency is measured and presented. A logging system is
developed to collect data about the transcription process. Research is performed
using over 12,000 individual transcription sessions (2,300 hours of video), where
each session is the record of one bill discussion. A set of about 3,200 sessions
belonging to a single cohort of 20 transcribers who have experienced four versions
of the Transcription Tool is further evaluated.

Through introduction of new features in the tool, human-assisted transcription
efficiency can be improved by 19.4 percent over 4 phases. Furthermore, transcriber
interactions with the tool are investigated. It is discovered that speaker identification,
text correction, splitting and merging of utterances, tool startup, as well as tran-
scriber inactivity are the interaction types transcription time is composed of. Lastly,
more automated transformations are explored based on learning from common
text corrections by transcribers. For example, an average of three name corrections
can be automated per transcript using basic NLP methods. Other improvements
are possible and discussed as future work.

ix





Kurzfassung

Legislative Berichte und parlamentarische Protokolle sind Quellen von wichtigen
multidimensionalen Informationen für Bevölkerung und Medien in einem demokra-
tischen System. Zurzeit existiert keine vollautomatisierte Lösung, um alle in solchen
Protokollen enthaltenen Informationen erfassen zu können. Selbst wenn es möglich
wäre, hochqualitative Transkripte automatisch zu erstellen, müssten Aufgaben wie
Identifikation von Rednern oder Unterscheidung von bestimmten Begriffen und
Fachvokabular manuell durchgeführt werden. Viele Regierungen setzen deswegen
auf teure, manuell erstellte Transkripte und Annotationen. Manche verzichten sogar
völlig auf digitale Transkripte.

Diese Masterarbeit befasst sich mit der Verbesserung und Evaluierung der von
der Digital Democracy Initiative verwendeten Transkribierungs-Software, genannt
Transcription Tool. Menschliche Arbeitskräfte benutzen dieses Programm um Pro-
tokolle von parlamentarischen Anhörungen zu korrigieren und mit zusätzlichen
Informationen zu annotieren. In dieser Arbeit werden Verbesserungen von Be-
nutzeroberfläche und Funktionalität des Tools in vier Phasen durchgeführt. Für
jede Phase wird die resultierende Effizienzänderung gemessen und präsentiert.
Außerdem wird ein Logging-System eingeführt, welches Daten über den Transkri-
bierungsprozess sammelt. Mehr als 12.000 individuelle Transkribierungssitzungen
(2.300 Stunden von Videomaterial) werden untersucht, wobei in jeder Sitzung
eine Diskussion über einen bestimmten Gesetzesentwurf bearbeitet wird. Eine
Sammlung von ungefähr 3.200 Sitzungen, fertiggestellt von einer Gruppe von 20

Arbeitskräften, wird genauer begutachtet. Diese Gruppe hat mit allen vier entwi-
ckelten Versionen des Transcription Tools gearbeitet.

Durch Einführung der neuen Funktionalitäten kann die Effizienz des toolun-
terstützten, halbautomatischen Transkribierungsprozesses um 19,4 Prozent erhöht
werden. Außerdem werden Benutzerinteraktionen mit dem Tool näher begutachtet.
Es wird festgestellt, dass folgende Interaktionstypen existieren: Identifikation von
Rednern, Textkorrektur, Aufteilen und Zusammenfügen von Aussagen, Starten
des Tools sowie Inaktivität von Benutzern. Zuletzt werden Möglichkeiten für au-
tomatische Korrekturen, basierend auf häufig durchgeführten Textänderungen,
untersucht. Beispielsweise können durch das Anwenden von Grundlagen der na-
türlichen Sprachverarbeitung durchschnittlich drei Namen pro Transkript korrigiert
werden. Weitere Verbesserungsmöglichkeiten bestehen und werden konzeptionell
präsentiert.

xi





Acknowledgements

Thank you to my parents for always standing by me during my studies, whether I
was in Austria or California.

I want to gratefully thank Christian Gütl for providing me with the opportunity
to work on my thesis in California. Without his professional connections, this
unique experience would have not been realizable for me.

I also am especially thankful to Foaad Khosmood, who cooperated with Christian
Gütl to make my visit to California Polytechnic State University possible. I greatly
appreciate him warmly welcoming me and always providing helpful advice,
whether about this thesis or with private life in San Luis Obispo.

Furthermore, I want to thank Christine Robertson, Lisa Nunes, and Hans Poschman,
staff of the Institute for Advanced Technology and Public Policy, for always helping
me out when in need of administrative support.

Thank you to my fellow Transcription Tool co-workers, especially Toshihiro
Kuboi and Yiupang Chan, who I intensively collaborated with during my whole
stay. It was always a pleasure working with them.

In addition, thank you to all others working on Digital Democracy for giving me
a home in the project lab, especially Nick Russo, Andrew Rose, Daniel Kauffman,
and Michael Williams.

Without the financial support of the Austrian Marshall Plan Foundation, working
on my thesis at Cal Poly would have not been feasible. I am very thankful for the
support of this revered institution. An excerpt of this thesis is displayed on the
Foundation’s website (Marshall Plan Foundation, 2017).

A poster version of this thesis titled “Gaining Efficiency in Human Assisted
Transcription and Speech Annotation in Legislative Proceedings” was accepted
to the 19th Annual International Conference on Digital Government Research
organized within the European commission program on Interoperability solutions
for public administrations, businesses and citizens (Ruprechter, Khosmood, Kuboi,
Dekhtyar, & Gütl, 2018).

This document was created using the LATEX template provided by Voit (2018).

xiii





Contents

Abstract ix

Acknowledgements xiii

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Background and Related Work 5
2.1. Government Transparency and Open Government . . . . . . . . . . . 5

2.2. State of Government Transparency Around the World . . . . . . . . . 8

2.3. Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1. Word Similarity and Distance Metrics . . . . . . . . . . . . . . 14

2.3.2. Sequence Alignment . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3. Part-Of-Speech Tagging . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4. Named-Entity Recognition . . . . . . . . . . . . . . . . . . . . 17

2.4. Transcription Editing and Annotation Tools . . . . . . . . . . . . . . . 19

2.5. User Interface Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1. Overview of User Interface Evaluation Methods . . . . . . . . 21

2.5.2. Categorization of Evaluation Methods by Data Sources . . . . 21

2.5.3. Log Study and Log Analysis . . . . . . . . . . . . . . . . . . . 24

2.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3. Digital Democracy 29
3.1. Digital Democracy Initiative . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2. Digital Democracy Website . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3. Human-Assisted Transcription Pipeline . . . . . . . . . . . . . . . . . 33

3.4. Digital Democracy Transcription Tool . . . . . . . . . . . . . . . . . . 36

3.4.1. General Functionality . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2. Transcription Screen User Interface . . . . . . . . . . . . . . . 37

3.5. Past Improvement Projects . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1. Video Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.2. Transcription Process Improvements . . . . . . . . . . . . . . . 43

3.5.3. Improvements to Transcription Tool Admin UI . . . . . . . . 46

3.6. Existing Need for Improvements . . . . . . . . . . . . . . . . . . . . . 46

3.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xv



Contents

4. System Design and Requirements 49
4.1. Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2. Transcription Tool State of the Art . . . . . . . . . . . . . . . . . . . . 50

4.2.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2. Tool Technology . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3. New Requirements and Technological Changes . . . . . . . . . . . . 51

4.3.1. Rework of Original Transcription Tool . . . . . . . . . . . . . . 51

4.3.2. Data Collection and Logging System . . . . . . . . . . . . . . 52

4.3.3. New Feature Definitions . . . . . . . . . . . . . . . . . . . . . . 53

4.3.4. Log Analysis and Performance Measurement . . . . . . . . . 55

4.3.5. Release Cycle and Evaluation . . . . . . . . . . . . . . . . . . . 56

4.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5. Implementation 59
5.1. Rework of Original Transcription Tool . . . . . . . . . . . . . . . . . . 59

5.1.1. New Tool Technology . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.2. Backend Code Architecture . . . . . . . . . . . . . . . . . . . . 60

5.2. Logging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3. New Tool Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1. Profile Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.2. Video Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.3. Utterance Navigation . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.4. Incorporation of VFT Analysis Results . . . . . . . . . . . . . 72

5.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6. Experimental Design 77
6.1. Transcription Tool Efficiency . . . . . . . . . . . . . . . . . . . . . . . 77

6.2. Transcriber Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3. Transcription Text Correction . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.1. Common Corrections . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.2. Legislator Name Correction . . . . . . . . . . . . . . . . . . . . 82

6.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7. Findings and Discussion 87
7.1. Transcription Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1.1. Transcription Tool Efficiency . . . . . . . . . . . . . . . . . . . 88

7.1.2. Transcriber Interactions . . . . . . . . . . . . . . . . . . . . . . 88

7.1.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2. Transcription Text Correction . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.1. Common Corrections . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.2. Legislator Name Correction . . . . . . . . . . . . . . . . . . . . 98

7.2.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xvi



Contents

8. Conclusion and Future Work 105
8.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Appendix A. Computation Results for Automatic Name Correction 109

Bibliography 113

xvii





List of Figures

1.1. Interactive Transcript on the Digital Democracy Website . . . . . . . 2

2.1. Search Functionality Comparison . . . . . . . . . . . . . . . . . . . . . 10

2.2. Interactive Hansard of the British Parliament . . . . . . . . . . . . . . 11

2.3. Basic Illustration of A/B Testing . . . . . . . . . . . . . . . . . . . . . 26

2.4. High-Level Illustration of Multivariate Testing . . . . . . . . . . . . . 27

2.5. Basic Concept of Sequential A/B Testing . . . . . . . . . . . . . . . . 27

3.1. Simplified View of the Digital Democracy Processing Pipeline . . . . 31

3.2. Digital Democracy Search and Transcription Display . . . . . . . . . 32

3.3. Human-Assisted Transcription Pipeline . . . . . . . . . . . . . . . . . 34

3.4. Transcription Tool Transcript Editing Interface (October 2017) . . . . 37

3.5. Transcription Tool Utterance Editing Screen . . . . . . . . . . . . . . 39

3.6. Utterance Interface Element . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7. Transcription Tool Import Speaker Screen . . . . . . . . . . . . . . . . 41

4.1. Old Transcription Tool Technology . . . . . . . . . . . . . . . . . . . . 52

4.2. Data Collection For Transcription Tool Logging System . . . . . . . . 53

5.1. New Transcription Tool Technology . . . . . . . . . . . . . . . . . . . 60

5.2. Transcription Tool Code Layering . . . . . . . . . . . . . . . . . . . . . 61

5.3. Transcription Tool Usage Report . . . . . . . . . . . . . . . . . . . . . 68

5.4. Profile Picture Preview for Speaker Selection . . . . . . . . . . . . . . 70

5.5. Profile Picture Preview for Speaker Search and Orator List . . . . . . 70

5.6. New Video Player Features . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7. Utterance Element with Navigation Buttons . . . . . . . . . . . . . . 72

5.8. “Set Time”-Interface and Interactive Error Messages . . . . . . . . . . 73

5.9. Improved Transcription Tool Preprocessing Pipeline . . . . . . . . . . 74

5.10. Speaker Suggestion Dialog in Transcription Tool . . . . . . . . . . . . 75

7.1. Transcription Cost per Version . . . . . . . . . . . . . . . . . . . . . . 89

7.2. Cohort Performance Change . . . . . . . . . . . . . . . . . . . . . . . 89

7.3. Transcription Cost per State and Version . . . . . . . . . . . . . . . . 90

7.4. Average Interaction Ratios For Version 0 . . . . . . . . . . . . . . . . 91

7.5. Average Interaction Ratios by Type . . . . . . . . . . . . . . . . . . . . 92

7.6. Average Interaction Ratios by Version . . . . . . . . . . . . . . . . . . 92

7.7. Filtered Cohort Transcription Cost per Version . . . . . . . . . . . . . 95

7.8. Filtered Cohort Performance Change . . . . . . . . . . . . . . . . . . 95

xix





List of Tables

2.1. Terms Commonly Used in Context of Government Transparency . . 7

2.2. Summarization of Government Transparency Around the World . . 13

2.3. Example Sentence with POS and NER Tags . . . . . . . . . . . . . . . 18

2.4. Overview of User Interface Evaluation Methods . . . . . . . . . . . . 22

2.5. Categorization of UI Evaluation Methods . . . . . . . . . . . . . . . . 24

3.1. Utterance Manipulation Interface Icons . . . . . . . . . . . . . . . . . 40

5.1. Example of Database Log Entries . . . . . . . . . . . . . . . . . . . . . 68

5.2. Transcription Tool Versions . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3. Utterance Navigation Interface Icons . . . . . . . . . . . . . . . . . . . 72

6.1. Relation of Video Duration and Video Speech Time . . . . . . . . . . 78

7.1. Transcriber Cohort Transcription Cost . . . . . . . . . . . . . . . . . . 88

7.2. Transcription Cost per State and Version . . . . . . . . . . . . . . . . 88

7.3. Filtered Cohort Transcription Cost . . . . . . . . . . . . . . . . . . . . 94

7.4. Comparison Between Rovin’s Evaluation and This Study . . . . . . . 96

7.5. Common Transcriber Corrections . . . . . . . . . . . . . . . . . . . . . 99

7.6. Dictionary Replacement Results . . . . . . . . . . . . . . . . . . . . . 100

7.7. Overall Results for Levenshtein Threshold Computations . . . . . . . 101

7.8. Overall Results for Jaro-Winkler Threshold Computations . . . . . . 103

A.1. Complete Results for Levenshtein Threshold Computations . . . . . 110

A.2. Complete Results for Jaro-Winkler Threshold Computations . . . . . 111

xxi





Listings

5.1. Person Entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2. PersonRepository Interface . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3. PersonService Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4. PersonController Specification . . . . . . . . . . . . . . . . . . . . . . 64

5.5. JSON Log Entry Example . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1. Output for difflib-Comparison . . . . . . . . . . . . . . . . . . . . . . 82

7.1. MySQL Query For Retrieving Text Changes . . . . . . . . . . . . . . 97

xxiii





1. Introduction

This chapter explains the motivation behind this thesis. It also defines general
objectives and provides an outline of this work.

1.1. Motivation

In the USA, state legislatures hold a lot of power. Unfortunately, monitoring and
therefore holding them to account is difficult. It can be a time-consuming task for
the general public to gain insight into the workings of state government. Official
records about the content of state legislative hearings are only sparsely available.

Politically speaking, states are situated between federal and local government.
State governments enforce policy and spending mandates on municipalities and
local government while deciding on how budget is used. Under the US federal
system, many important issues touching everyday life of citizens such as welfare,
education, and law enforcement are handled by state legislatures.

Due to the massive amount of laws passed and altered each year, lobbyists
are interested in influencing state legislators. Without a platform offering insight
into the content of legislative hearings, the public is shut out of the process. This
is especially problematic for the news media, since records about debates and
bill discussions are not accessible. It is difficult to discover contents of talks and
negotiations about a bill without proper textual records being created. The position
of people discussing an issue might be hard to guess without knowing details about
the ongoings inside state house or senate.

The Digital Democracy initiative, which was introduced in 2015, attempts to
remove above-mentioned difficulties. It provides an online platform featuring pro-
fessionally produced, searchable transcriptions synced with video content. This
website brings transparency into state legislative hearings and government pro-
ceedings that would otherwise not be accessible to the broader public. Citizens,
journalists, and researchers would not be able to easily gain information about the
content of those hearings and debates.

In addition to giving insight into the proposal of new bills and laws, it also
presents a chance for the general public to monitor lobbyists, lawmakers, and
advocates. All information can be searched and queried, and the results are
high quality thanks to human-assisted transcription. The website is accessible
at www.DigitalDemocracy.org. Figure 1.1 shows how transcripts are displayed on
this platform.

1

www.digitaldemocracy.org


1. Introduction

Figure 1.1.: Interactive transcript on the Digital Democracy website.

Digital Democracy uses a human-assisted approach for generating transcription
texts and metadata. While automatic transcription might be sufficient in other
areas, a legislative setting requires professional and correct transcripts. This is
achieved by human transcribers manually up-leveling automated transcriptions and
performing annotations such as speaker and position identification. Transcribers
use the Transcription Tool, a software developed by the Digital Democracy project
team to enhance transcripts.

However, manual correction of transcription texts and finding speaker assign-
ments is a tedious process. It takes human transcribers a formidable amount of
time to manually go through transcripts. This bottleneck created by the manual
transcription process leads to a considerable obstacle for Digital Democracy, both in
regards of monetary cost as well as time delay before final transcripts are available.
For this reason, improvements to the Transcription Tool are necessary.

1.2. Contributions

The main contribution of this work is the improvement of the Digital Democracy
Transcription Tool as well as the introduction of metrics to measure the impact of

2



1.3. Methodology

said improvements. For this, a system is developed which collects usage information
and enables performance measurements. To scientifically tackle this evaluation
problem, efficiency metrics are defined.

Efficiency of the tool and newly introduced features must be analyzed and quan-
tified. Prior to this work, there has been no reliable way for the Digital Democracy
initiative to measure performance changes that new tool releases cause. However,
workflow disturbances or disruptions in the transcription process introduced by
new releases must be detectable. In addition, it should be possible to derive future
transcription costs from efficiency results.

Another issue is the lack of clarity regarding concrete composition of transcription
time. It is up to debate which aspects of transcription work yield the largest
efficiency gain. To further improve performance, the crucial question of which
transcriber interactions attribute how much to overall transcription time must be
answered.

Lastly, potential for automation of specific aspects of the transcription process
might exist. An investigation into procedures such as automatic text correction is
attempted to explore these improvement possibilities.

1.3. Methodology

Content of this thesis is separated into eight chapters.
Chapter 2 provides background and related work for government transparency,

transparency efforts around the world, natural language processing, transcription
editing tools, and user interface evaluation.

The Digital Democracy initiative and its components are further presented in
Chapter 3. An introduction is given for the official website, automated processes,
the manual transcription process using the Transcription Tool, as well as past
improvement projects.

Chapter 4 explains current system design and defines requirements for new im-
plementations. For this, the main focus lies on the Digital Democracy Transcription
Tool. Research problems addressed by this thesis are also elaborated.

In Chapter 5, technical implementation and tool technology changes are explained
in detail. New Transcription Tool features are presented as four separate tool
versions. Furthermore, implementation of a logging system is described.

Subsequently, Chapter 6 discusses experimental design and defines tool eval-
uation metrics. More precisely, techniques for analyzing transcription time are
elaborated. This includes explanation of approaches to evaluate tool efficiency
and transcriber interaction patterns. In addition, possibilities for automatic text
correction are explored.

Next, Chapter 7 presents results of the analysis performed for the Transcription
Tool, based on previously specified metrics.

Finally, Chapter 8 summarizes this thesis and provides conclusions as well as
suggestions for future work.

3





2. Background and Related Work

In this chapter, literature search findings for various areas are presented. First, an
introduction to government transparency and corresponding terms is given. Second,
existing government transparency efforts and websites that expose legislative
proceedings are listed. Next, automatic processing necessary to prepare raw data
for proper presentation in such transparency services is addressed shortly. For this,
focus lies on natural language processing. Then, tools used to further enrich this
data are introduced. This literature survey concentrates on major tools available
for transcription and annotation purposes similar to those of Digital Democracy.
Lastly, some insights into common user interface evaluation techniques used to
assess performance of such tools are given.

2.1. Government Transparency and Open
Government

In the era of virally spreading information it is sometimes hard for the general
public to distinguish between facts and the so called “fake news”. Confirming
claims made by politicians and actually holding them accountable can be a difficult
task (Blakeslee et al., 2015). Information and data necessary to achieve this is often
unstructured, for example in form of interviews or videos of political debates
(Khosmood, Dekhtyar, Assai, Kurfess, & Snyder, 2014). The solution to simplify
this task for citizens is to provide more transparency (Latner, Dekhtyar, Khosmood,
Angelini, & Voorhees, 2017).

Government transparency is generally describable as “publicizing of incumbent
policy choices” (Fox, 2007). Dawes and Helbig (2010) put it more precisely, when they
state that it means providing possibilities to “hold elected officials and public agencies
accountable for their decisions and actions”. In the era of the Internet, this translates to
making government information easier accessible online (Khosmood et al., 2014).
Discussing usage of information and communication technology (ICT) to achieve
better government transparency brings up numerous recently developed terms:
Open government, E-Democracy (eDemocracy), E-Government (eGovernment),
and civic tech (civic technologies) are some of the most frequently occurring ones
(Khosmood et al., 2014; Blakeslee et al., 2015; Latner et al., 2017; Parliamentary Office
of Science and Technology, 2009; Clift, 2003; Boehner & DiSalvo, 2016). However, it is
sometimes hard to distinguish between them due to varying definitions. Therefore,
an attempt is made to lay out these terms in more detail below.

5



2. Background and Related Work

Open government is a phrase often used in the context of government trans-
parency, sometimes even as a synonym (Meijer, 2015). Wijnhoven, Ehrenhard, and
Kuhn (2015) define it as two dimensions. On the one hand, it should provide access
to information. On the other hand, it should also enable citizens to participate in
decision making. These authors also mention that the idea of open government is
often simplified to collaboration of the public sector with the crowd. According
to Janssen, Charalabidis, and Zuiderwijk (2012), open government should interact
with its environment and act as an open system. Furthermore, the authors agree
with Wijnhoven et al. (2015) that it must allow effective oversight by promoting
transparency and participation. Khosmood et al. (2014) as well as Dawes and Helbig
(2010) also mention the characteristic goals of the open government principles out-
lined by the US government under President Obama: collaboration, participation,
and transparency.

E-Democracy usually describes increasing and enhancing the public’s engage-
ment in politics by using ICT (Parliamentary Office of Science and Technology,
2009; Clift, 2003). Clift (2003) also adds that E-Democracy involves utilizing specific
strategies by democratic actors. According to the authors, this includes political
parties and interest groups as well as the government itself. In addition, indepen-
dent actors like civil society organizations or other initiatives organized by citizens
and voters may also embrace E-Democracy.

The term E-Government is mostly used when talking about better delivery of
government services to citizens utilizing ICT (Parliamentary Office of Science and
Technology, 2009). Those services should be personalized to citizen’s needs, not
those of their provider (Parliamentary Office of Science and Technology, 2009). Fur-
thermore, some authors describe E-Government broadly as “E-Democracy activities
of government institutions” (Clift, 2003). It is arguable that in the context of term
descriptions given here, E-Government can be seen as a sub-topic of E-Democracy.

Civic tech (or civic technologies) is interpretable as the technology and platforms
opening up government (Knight Foundation, 2015). One could say they enable E-
Democracy. According to the Knight Foundation (2015), further goals for civic tech
are: building place-based social capital, increasing civic engagement, promoting de-
liberative democracy, as well as fostering inclusion and diversity. While government
organizations also develop such technologies, they are often initiated by citizen-lead
initiatives to provide transparency services immune to manipulation. Boehner and
DiSalvo (2016) loosely define civic tech as the “design and use of technology to support
both formal and informal aspects of government and public services”.

Table 2.1 summarizes the terms explained in the previous paragraphs and lists
sources for their definitions.

6



2.1. Government Transparency and Open Government

Te
rm

s
D

efi
ni

ti
on

s
So

ur
ce

s

G
ov

er
nm

en
t

Tr
an

sp
ar

en
cy

Pu
bl

ic
iz

in
g

of
in

cu
m

be
nt

po
lic

y
ch

oi
ce

s;
Pr

ov
id

in
g

po
ss

ib
ili

ti
es

to
ho

ld
el

ec
te

d
of

fic
ia

ls
an

d
pu

bl
ic

ag
en

ci
es

ac
co

un
ta

bl
e

fo
r

th
ei

r
de

ci
si

on
s

an
d

ac
ti

on
s

Fo
x

(2
0
0
7
)

D
aw

es
an

d
H

el
bi

g
(2

0
1
0
)

O
pe

n
G

ov
er

nm
en

t

Pr
ov

id
in

g
ac

ce
ss

to
in

fo
rm

at
io

n
an

d
en

ab
lin

g
ci

ti
ze

ns
to

pa
rt

ic
ip

at
e

in
de

ci
si

on
m

ak
in

g;
Sy

no
ny

m
fo

r
G

ov
er

nm
en

t
Tr

an
sp

ar
en

cy
;

G
ov

er
nm

en
t

en
ab

lin
g

ci
ti

ze
n

pa
rt

ic
ip

at
io

n,
co

lla
bo

ra
ti

on
,a

nd
tr

an
sp

ar
en

cy

W
ijn

ho
ve

n,
Eh

re
nh

ar
d,

an
d

K
uh

n
(2

0
1
5
)

Ja
ns

se
n,

C
ha

ra
la

bi
di

s,
an

d
Z

ui
de

rw
ijk

(2
0
1
2

)
M

ei
je

r
(2

0
1
5
)

K
ho

sm
oo

d,
D

ek
ht

ya
r,

A
ss

ai
,K

ur
fe

ss
,a

nd
Sn

yd
er

(2
0
1
4
)

D
aw

es
an

d
H

el
bi

g
(2

0
1
0
)

E-
D

em
oc

ra
cy

(e
D

em
oc

ra
cy

)
In

cr
ea

si
ng

an
d

en
ha

nc
in

g
th

e
pu

bl
ic

’s
en

ga
ge

m
en

t
in

po
lit

ic
s

by
us

in
g

IC
T

Pa
rl

ia
m

en
ta

ry
O

ffi
ce

of
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

(2
0
0
9

)
C

lif
t

(2
0
0
3
)

E-
G

ov
er

nm
en

t
(e

G
ov

er
nm

en
t)

D
el

iv
er

y
of

go
ve

rn
m

en
t

se
rv

ic
es

ut
ili

zi
ng

IC
T;

E-
D

em
oc

ra
cy

ac
ti

vi
ti

es
of

th
e

go
ve

rn
m

en
t

Pa
rl

ia
m

en
ta

ry
O

ffi
ce

of
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

(2
0
0
9

)
C

lif
t

(2
0
0
3
)

C
iv

ic
Te

ch
(C

iv
ic

Te
ch

no
lo

gi
es

)

Te
ch

no
lo

gy
an

d
pl

at
fo

rm
s

op
en

in
g

up
go

ve
rn

m
en

t;
D

es
ig

n
an

d
us

e
of

te
ch

no
lo

gy
to

su
pp

or
t

bo
th

fo
rm

al
an

d
in

fo
rm

al
as

pe
ct

s
of

go
ve

rn
m

en
t

an
d

pu
bl

ic
se

rv
ic

es

K
ni

gh
t

Fo
un

da
ti

on
(2

0
1
5

)
Bo

eh
ne

r
an

d
D

iS
al

vo
(2

0
1
6
)

Ta
bl

e
2

.1
.:

Te
rm

s
co

m
m

on
ly

us
ed

in
co

nt
ex

t
of

go
ve

rn
m

en
t

tr
an

sp
ar

en
cy

.

7



2. Background and Related Work

2.2. State of Government Transparency Around the
World

Government transparency policies and measures vary in different parts of the world.
Below some of the transcription systems which allow monitoring of lawmakers in
the USA, the Commonwealth of Nations, and Europe are investigated.

The situation regarding government transparency in USA state governments
is problematic, as already mentioned in Chapter 1. Exact implementations of
measures ensuring transparency differ from state to state. For this thesis, focus is
laid on explorations regarding the state of California. Rovin (2016) mentions the
F grade given to California by Davis and Baxandall (2014) in a state comparison
of access to online information regarding spending information. In this report
published by the CALPIRG Education Fund, California placed last. Since then,
another investigation mandated by the CALPIRG Education Fund was carried out
by Surka and Ridlington (2016). While other states improved their transparency
policies and websites, California again came in last out off all states and received
an F grade. This further showcased the still existing need for a publicly accessible
platform providing in-depth information about political proceedings.

Until 2018, no improvements to transparency policies were attempted by the
state. Although a recent proposition guarantees availability of videos and closed
captions, these records are severely lacking in quality (Legislative Analyst’s Office,
2016). Some publicly available resources to get insight into hearings exist, but most
of them do not offer rich functionalities like full-text search in transcripts (Rovin,
2016; Khosmood et al., 2014; Blakeslee et al., 2015). For example, The California
Channel (2017) hosts a video on demand archive for hearing videos. However, this
service is not maintained by the state government and receives no state funding.
The archive and corresponding live channel are run by California’s cable television
operators. Furthermore, the State of California (2017c) offers a live stream as well as
a media archive which is searchable in a similar fashion to the California Channel
archive. Detailed information about senate committees is also available. However,
the State of California (2017c) does not create textual transcripts of hearings. In
addition, the State of California (2017a) offers the same information about the
California State Assembly sessions and committees on a separate website. Another
official source of information for citizens is the California State Legislature Website
(State of California, 2017b). It holds information about bills and allows for full-text
search of bill texts. Various information about lobbying can be retrieved from the
websites of the California Secretary of State (2017) and MapLight (2017). Finally,
Open States (2017) provides access to legislator district data.

To solve the problem of missing disclosure in state governments, the Digital
Democracy initiative was instigated (Khosmood et al., 2014). The main goal of this
initiative is to provide full insight and access into US state legislative processes.
Videos of legislative committee hearings are combined together with auxiliary
information such as searchable transcriptions, bills discussed in hearings, and

8



2.2. State of Government Transparency Around the World

identification of participating speakers like legislators, lobbyists, witnesses, and
members of the general public. For legislators, full legislative service history as well
as campaign contributions and gift data are tabulated and presented to the user. The
Digital Democracy initiative created and maintains technologies which link all of
this information together (Khosmood et al., 2014). Practical usage of the website pre-
senting the information can be examined by visiting www.DigitalDemocracy.org.
As of this writing, Digital Democracy processes information for four states: Califor-
nia, Florida, New York, and Texas. Figure 2.1 displays an comparison of the Digital
Democracy search functionality with the video on demand archive of The California
Channel (2017). For more information on Digital Democracy, see Section 3.

Although American state governments do not usually provide searchable tran-
scripts of hearings to the general public, resources are available for congressional
proceedings of the federal government. C-SPAN is a cable TV channel that broad-
casts congressional hearings and creates searchable transcripts which are linked to
the video source (C-SPAN, 2018). Hearing records include vote, bill, and speaker
data. This archive provided by C-SPAN allows for search in federal proceedings
of Congress, the Executive Branch, as well as the Supreme Court. In addition, citi-
zens can access proceedings and debates online through the Congressional Record
website (Library of Congress, 2018).

The British parliament provides official transcripts of parliamentary debates in
a searchable manner. These records, officially called “Hansard”, are accessible to
the public via the parliament’s online presence (Parliament of the United Kingdom,
2018). During a sitting day, an online version of this day’s proceedings is published
gradually, with the full Hansard being available the next morning. Similar to
Digital Democracy, the website provides a search interface which allows to query
transcripts for specific terms. It directly links the search results to the exact position
in both textual transcripts and video recordings. Figure 2.2 shows an example of
the comprehensible search interface provided by the British government. Some of
the Commonwealth countries also implement searchable Hansards. For example,
the Parliament of Australia (2018), the New Zealand Parliament (2018), and the
Parliament of Canada (2018) all offer Hansards on their websites while creating
links between plain text records and corresponding videos. They also integrate
advanced interfaces for multi-purpose search.

The European Union provides online access to debate videos and verbatim
texts (The European Parliament, 2018). However, segments of speech in textual
transcripts of debates are not translated to all languages. This effectively means that
debate transcripts only contain speaker utterances in the original spoken language,
which is mostly not English. Although speeches contained in reports are linked to
video sources and therefore translated audio, no full text search of plenary sittings
is available. On the other hand, agendas, reports, adopted texts, votes, and audio
recordings of debates are made available in all official languages of the EU.

Similar to the EU, the parliament of Switzerland only creates textual transcripts
in the original language of the speaker. However, a searchable official bulletin is
made available which allows users to issue full-text queries on statements of council

9

www.digitaldemocracy.org


2. Background and Related Work

(a) Search Form of the California Channel Video On Demand Service

(b) Digital Democracy Search Functionality

Figure 2.1.: Comparison between the search functionality of the California Channel video on demand
service and the Digital Democracy website using the keyword “gerrymandering”.

10



2.2. State of Government Transparency Around the World

Figure 2.2.: Screenshot of an example search using the interactive Hansard on the British Parliament
website.

members (in their original language) and provides links to transcripts and videos
(The Swiss Parliament, 2018).

In Austria, stenographic protocols of plenary sittings of the parliament are made
available online (The Austrian Parliament, 2018b). The full-text of these records can
be searched using the advanced search functionality provided on the website of the
Austrian parliament, but there is no direct link from found text to video recordings
(The Austrian Parliament, 2018a). Currently, there also exists no permanent video
archive of past parliamentary sittings. However, sittings are streamed live on the
parliamentary website and are stored for seven day on-demand access in the
archive of the Austrian national public service broadcaster (ORF, 2018). Most of the
functionality and information is only available in German. Since the official services
of the parliament in Austria do not keep track of votes, the website Addendum.org
provides this service to the public by manually counting the physical votes of the
representatives attending a sitting (Quo Vadis Veritas Redaktions GmbH, 2018).

Table 2.2 shows an overview and summary of how the aforementioned govern-
ments and parliamentary systems provide information to the public. This overview

11



2. Background and Related Work

makes it obvious that California as a state government lacks official records. Sur-
prisingly, Austria also stands out due to the lack of an extensive media archive and
official vote data. Lastly, it has to be stated that user interface for many parliamen-
tary websites is sub-par. In the case of Switzerland and Austria, the search filter
can only be reached by navigating through various menus.

12



2.2. State of Government Transparency Around the World

G
ov

er
nm

en
t

R
ec

or
ds

Se
ar

ch
Fi

lt
er

/S
co

pe
Tr

an
sc

ri
pt

V
id

eo
s

Li
nk

ed
V

ot
es

Fu
ll

-T
ex

t
Ti

tl
e

D
at

e
Sp

ea
ke

r
Eu

ro
pe

an
U

ni
on

O
L

3
3

3
3

3
3

A
us

tr
al

ia
3

3
3

3
3

3
3

N
ew

Z
ea

la
nd

3
3

3
3

3
3

3

C
an

ad
a

3
3

3
3

3
3

3
3

U
ni

te
d

K
in

gd
om

3
3

3
3

3
3

3
3

Sw
it

ze
rl

an
d

O
L

3
3

3
3

3
3

Fe
de

ra
lG

ov
er

nm
en

t
of

th
e

U
SA

3
3

3
3

3
3

3

St
at

e
of

C
al

if
or

ni
a

3

D
ig

it
al

D
em

oc
ra

cy
(C

A
,F

L,
N

Y,
TX

)
3

3
3

3
3

3
3

3

A
us

tr
ia

3
<

7
da

ys
TP

3
3

3

Ta
bl

e
2

.2
.:

Su
m

m
ar

iz
at

io
n

of
th

e
su

rv
ey

co
nd

u
ct

ed
in

Se
ct

io
n

2
.2

ab
ou

t
go

ve
rn

m
en

t
tr

an
sp

ar
en

cy
ar

ou
nd

th
e

w
or

ld
(O

L
=

on
ly

av
ai

la
bl

e
in

or
ig

in
al

sp
ok

en
la

ng
ua

ge
,T

P
=

th
ir

d-
pa

rt
y

si
te

s)
.

13



2. Background and Related Work

2.3. Natural Language Processing

Section 2.2 introduced government transparency systems providing information
about legislative proceedings. However, data has to be preprocessed before it can
be properly presented on such platforms. More often than not, systems combine
manual and automated processing steps to enrich proceedings (Khosmood et
al., 2014). This is important, since records of political hearings have to be as
immaculate as possible. Automated processes utilize technology such as speech-to-
text algorithms, face recognition and image processing, as well as natural language
processing (NLP) (Kauffman, Williams, Washington, Socher, & Khosmood, 2018;
Budhwar, Kuboi, Dekhtyar, & Khosmood, 2018; Blakeslee et al., 2015). Due to their
relevance for this thesis, specific concepts of NLP are investigated further in the
following subsections.

2.3.1. Word Similarity and Distance Metrics

Many approaches to compare strings exist. Taken from studies by Christen (2006),
Cohen, Ravikumar, and Fienberg (2003), and Snae (2007), a selection of some of the
most commonly used algorithms is collected:

• Levenshtein
• Damerau–Levenshtein
• Jaro–Winkler
• Bag distance
• Guth
• Longest common sub-string (LCS)
• Monge–Elkan
• Jaccard
• TF-IDF
• Soundex
• NYSIIS

Explaining all of these would go beyond the scope of this paper. However, a
closer look at the frequently used Levenshtein and Jaro-Winkler algorithms is taken
in the following sections.

Levenshtein

First introduced by Levenshtein (1966), this distance metric has become a popular
way of measuring differences in words. Superficially, it describes the number of
deletions, insertions, and substitutions of characters needed to convert one word
into another. Each of these operations usually bears a cost of 1. However, some
implementations allow definition of a specific substitution cost, such as in Python’s
Natural Language Toolkit (NLTK) (NLTK Project, 2017b).

14



2.3. Natural Language Processing

A simple distance value like this might not be significant enough on its own.
This is especially relevant for Levenshtein, since word length is not taken into
consideration at all. Therefore, instead of only utilizing distance, a ratio can also be
calculated. The formula for this Levenshtein ratio can be seen in Equation 2.1. This
ratio was modeled after the definitions for normalized edit distances by Marzal
and Vidal (1993). It is computed by dividing the Levenshtein distance of two words
by length of the longer word. The formula basically represents the percentage of
the longer word which has to be changed in order to transform it into the shorter
one, considering the Levenshtein distance.

Lratiow1,w2
=

Ldistance(w1, w2)

max(len(w1), len(w2))
(2.1)

Jaro–Winkler

Another way of comparing strings is the Jaro–Winkler distance (or similarity). It
was first presented by Winkler (1990), based on the work of Jaro (1989).

Jaro (1989) proposed a similarity value which considers matching characters in
two strings and the transpositions necessary to transform one word into another.
Winkler (1990) extended the algorithm so that differences in the beginnings of
strings (prefixes) significantly influence the result. This approach is based on the
idea that words starting with the same few characters tend to be more similar than
those which do not. Yancey (2005) summarizes formulas and provides examples
for calculating string distance metrics.

2.3.2. Sequence Alignment

Some similarity algorithms, such as those mentioned in Section 2.3.1, are mostly
utilized to detect changes while not considering alignment in a given context.
However, in some cases the global and local alignment of sequences might be
relevant. Rovin used the Needleman–Wunsch algorithm as a metric for similarity
in transcription texts (see Section 3.5.2). This algorithm considers alignment of texts
when calculating differences. It is closer elaborated in the section below.

Needleman–Wunsch Algorithm

General This dynamic programming algorithm was first introduced by Needle-
man and Wunsch (1970). Back then, its main purpose was to compare proteins by
their amino acid sequences and find their best possible alignment. This is achieved
by attempting to maximize similarity between sequences. Since proteins are rep-
resented by a number of amino acids which are ordered, they can be depicted
as textual strings. In these strings, each amino acid is represented by one letter.
In addition to its use in bioinformatics, Needleman–Wunsch is well-suited for
comparing words or sentences in NLP.

15



2. Background and Related Work

To compare two sequences (P and Q) represented by strings of letters, a two-
dimensional-array (A) is build. The array has a width of length(p) + 2 and height
of length(q) + 2. In the first row and first column the two sequences are written
down, respectively starting in the third cell. To initialize the array, cell A1,1 is filled
with a zero. Then, cells both below and right are successively decreased by one.

For each cell, three possible cases exist. Needleman and Wunsch defined a
scoring system for these cases. First, the two currently compared letters match (+1).
Second, the letters do not match (-1). Third, a letter is deleted or inserted (-1) – this
defines a gap, sometimes also called spacing. However, the scoring system can be
modified and extended. An example for such an alternative scoring system is given
in Section 2.3.2 below.

When filling a cell with a new value, one has to consider contents of adjacent cells.
In case of a character mismatch, the mismatch score is added to the value in the
top-left cell, while values to the top and left have to be increased by the gap score
(spacing) score. If two letters match, the same scoring policy can be applied to all
adjacent cells. In either case, the value of the currently calculated cell is then chosen
to be the lowest out of the three calculated sums. This procedure is continued from
the array’s top-left to the bottom-right until all cells are filled. It is important to keep
track of which cell was chosen as the source of each new value. This is necessary
for identifying the best possible alignment which maximizes similarity.

Usage by Rovin Rovin (2016) used the Needleman–Wunsch algorithm to compare
transcription texts during evaluation of the improvements introduced by him (see
Section 3.5.2). However, he introduced some changes to the standard approach
described in Section 2.3.2 above. Instead of comparing single letters, the modified
algorithm compares sentences in transcripts. In his version, the first row and column
is made up of full transcription texts. Each word occupies one cell.

In consideration of the usage of full words instead of letters, Rovin adapted a
scoring system with the following four cases and respective scores:

1. Full match (0): Both words match completely.
2. Partial match (1): Words match after removal of non-alphanumeric characters

and conversion to lower-case.
3. Mismatch (5): Words do not match.
4. Space/Gap Insertion (3): Shifting words would result into a cheaper tran-

scription.

In the end, the cheapest path is chosen, thus leading to the optimal alignment
between transcription texts. From this alignment, percentage of matched words is
calculated and chosen as an evaluation metric.

Other Algorithms

Besides the Needleman–Wunsch algorithm described in Section 2.3.2, other se-
quence alignment algorithms exist.

16



2.3. Natural Language Processing

For example, the Smith–Waterman algorithm is a variation of the Needleman–
Wunsch algorithm which strongly focuses on local alignment (Smith & Waterman,
1981).

Hirschberg (1975) implemented a more efficient algorithm for sequence alignment
which utilizes divide and conquer as well as the distance function developed by
Levenshtein (1966).

2.3.3. Part-Of-Speech Tagging

According to Oxford University Press (2017), part-of-speech (POS) is “a category
to which a word is assigned in accordance with its syntactic functions”. Corresponding
categories existing in English grammar are noun, pronoun, adjective, determiner,
verb, adverb, preposition, conjunction, and interjection. In linguistics, part-of-speech
may also be referred to as word class. In computer science, these categories are
often called POS-tags.

Subsequently, the process of automatically applying tags to words in a text is
called POS-tagging. Taggers can be implemented in various ways. Examples for
early solutions to this problem are rule-based, transformation-based, or memory-
based tagging methods (Brill, 1995; Daelemans, Zavrel, Berck, & Gillis, 1996). In
addition, taggers realizing statistical methods and machine learning, for exam-
ple Hidden Markov Models, maximum-entropy approaches, circular dependency
networks, or conditional random fields exist (Brants, 2000; Cutting, Kupiec, Ped-
ersen, & Sibun, 1992; Berger, Pietra, & Pietra, 1996; Toutanova & Manning, 2000;
Toutanova, Klein, Manning, & Singer, 2003; Lafferty, McCallum, & Pereira, 2001).

Practically speaking, some of the easiest accessible POS-taggers are available
through Python’s NLTK (NLTK Project, 2017a), as well as the Stanford POS-tagger
(Stanford Natural Language Processing Group, 2018a) which is based on the work of
Toutanova et al. (2003). These taggers are commonly used for academic research. An
alternative to these implementations is provided by the industrial-level framework
spaCy (Explosion AI, 2018). A resource worth mentioning is SyntaxNet (Google
LLC, 2018). This toolkit for Google’s TensorFlow framework (Martin Abadi et al.,
2015) also offers a parser which is able to perform POS-tagging. Another framework
provided by a major software organization which includes a POS-tagger is Apache
OpenNLP by The Apache Software Foundation (2018a).

2.3.4. Named-Entity Recognition

According to Tjong Kim Sang and De Meulder (2003), named entities are “phrases
that contain the names of persons, organizations and locations”. Nadeau and Sekine (2007)
describe named-entity recognition (NER) as a task to “recognize information units
like names, including person, organization and location names, and numeric expressions
including time, date, money and percent expressions”.

Handcrafting rules for specific languages, areas of applications, or domains and

17



2. Background and Related Work

their corresponding entities is a tedious task. Because of this, most contemporary
NER systems are based on statistics and machine learning (Nadeau & Sekine,
2007). However, even in recent years new rule-based systems for some domains
emerged (Eftimov, Koroušić Seljak, & Korošec, 2017; Alfred, Leong, On, & Anthony,
2014). When talking about NER utilizing machine learning, one can categorize
methods into three topics: supervised, semi-supervised, and unsupervised (Nadeau
& Sekine, 2007).

First, as in classical machine-learning, supervised systems use large annotated
text corpora to learn how entities are recognized. Next, semi-supervised learning
is a commonly mentioned procedure in NER. For this approach, a small degree
of supervision is needed to start off the learning process. Initially, a few either
automatically mined or manually defined seed entities are used in the early phase
of the learning process. Automatically mined data could be pulled from websites,
dictionaries, or other sources. Then, words and phrases occurring in similar contexts
as these well-defined entities are assigned to the same information unit (Nadeau &
Sekine, 2007; McCallum & Li, 2003). This process is sometimes also referred to as
“bootstrapping”. In unsupervised systems, algorithms attempt clustering of entities
which occur in a similar context. Then, labels for these clusters are found. This is
achieved by either accessing lexical resources such as dictionaries or WordNet, web
searches, or by their context itself. For example, if an entity is commonly followed
by “is a city” or “was born in”, then its entity group can be derived from that
information (Nadeau & Sekine, 2007; Ratinov & Roth, 2009).

When looking at implementations of NER systems, similar frameworks to those
listed for POS-tagging above can be mentioned (see Section 2.3.3). NLTK, the
Stanford NER-tagger, spaCy, and Apache OpenNLP all offer capabilities to perform
NER (NLTK Project, 2017a; Stanford Natural Language Processing Group, 2018b;
Explosion AI, 2018; The Apache Software Foundation, 2018a).

Table 2.3 exemplifies POS- and NER-tagging of a sentence. Of course, more
tags than those used in the table exist. However, this example is purposefully
kept simple. Different taggers also tag data in various ways. For example, in the
corresponding sentence some taggers might mark “Thorsten” as an organization,
dependent on the language model. Similarly, “Cal Poly” could also be tagged as a
location when using a different model.

Table 2.3.: Example sentence with POS and NER tags.
Word Thorsten visited Cal Poly in 2018 .
POS-tag NNP VBD NNP NNP IN CD .
POS
Description

Proper
Noun Verb Proper

Noun
Proper
Noun

Adpo-
sition

Cardinal
Number

Punc-
tuation

NER-Tag PER O ORG ORG O DATE O

NER
Description Person

Not-
An-
Entity

Organi-
zation
(Begin)

Organi-
zation
(End)

Not-
An-
Entity

Date
Not-
An-
Entity

18



2.4. Transcription Editing and Annotation Tools

2.4. Transcription Editing and Annotation Tools

Although automatic algorithms nowadays manage to generate reasonable tran-
scripts as well as additional contextual data from digital sources, human-assistance
is still mostly necessary to ensure correctness on a professional level (Blakeslee
et al., 2015). Due to this, tools for both research and commercial use emerged in the
past years. However, transcription software differs strongly from field to field.

Entity tagging or annotation tools such as introduced by Stenetorp et al. (2012),
Papazian, Bossy, and Nédellec (2012), or Widlöcher and Mathet (2012) focus on
linking metadata to plain text. They allow users to create links between existing or
newly created entities as well as their text occurrences. In addition, further details
such as description of relationships can be specified. Although such annotation
tools fulfill a different purpose than transcription tools do overall, both generate
metadata for plain text records. Entity information created by transcription tools can
be used to derive more in-depth information about interactions and relationships
existing in the current setting. Such information could for example be represented
by speaker identification and speaker alignment regarding a currently discussed
issue.

Audio transcription tools must allow the user to pause, rewind, or in any other
way manipulate the currently investigated files while editing transcripts. Even
though audio tracks are a different media type than video, many audio transcription
systems are similar to those handling video in that the initial text presented to the
user is also created by automatic speech recognition (Luz, Masoodian, Rogers, &
Deering, 2008; Burke, Amento, & Isenhour, 2006; Revuelta-Martinez, Rodriguez, &
Garcia-Varea, 2012; Whittaker & Amento, 2004; Basu, Bepari, Nandi, Khan, & Roy,
2013). Some tools provide the option to investigate waveform representation of
played audio, such as the one implemented by Luz et al. (2008). The main difference
between transcription tools developed for audio and video is that the latter could
be used to derive additional information. An example for such information is that
it might be easier to identify speakers based on their physical on-screen appearance
than by voice or text alone.

Software which assists users in transcription of handwriting or ancient texts has
to properly handle display and navigation of texts or still images, in order that
single words and characters can be properly deciphered (Toselli, Vidal, & Casacu-
berta, 2011; Castro-Bleda et al., 2017). These tools use raw transcripts produced by
optical character recognition technologies as their primary source of text. It is also
planned to incorporate image analysis in the preprocessing pipeline of the Digital
Democracy Transcription Tool, where results of automatic face recognition could
help transcribers to identify speakers (see Section 3.3).

The subset of tools most similar to the Digital Democracy Transcription Tool
(see Section 3.4) are those used to create and edit video subtitles, captions, or
transcripts. Although subtitle and caption editors do not belong to the exact
same category as those focusing on transcription texts, they still provide valid
input for user interface decisions and features implemented in a transcription

19



2. Background and Related Work

tool. One of the earliest approaches of providing a software package for creating
and synchronizing video transcripts was introduced by Nivre et al. (1998). The
authors chose to split up the main components into separate tools. TransTool is
used to generate the transcription texts while SyncTool synchronizes transcripts
with video recordings by enabling the user to manually set time codes. Seps
(2013) created NanoTrans, a tool which allows for creation of both textual and
phonetic transcriptions. Besides the usual approach of providing UI panels for both
transcription and video, NanoTrans also includes a panel visualizing the audio track
in waveform. In addition, a button panel is available to insert non-speech event tags
into the transcript. A different approach was taken by Deshpande, Tuna, Subhlok,
and Barker (2014), who developed ICS Caption Editor, a crowd-sourced caption
generator which enables students to collaborate on correction of preprocessed
captions generated from lecture videos. To improve quality of texts, users can
request a review on problematic or complicated sections directly through the
editing interface.

Besides these research-oriented transcription tools, commercial software exists
which provides assistance in editing video transcripts, captions, or subtitles. While
most of these tools share the same functionality, some have unique features or
user interfaces. NowTranscribe Ltd (2017) offers an audio transcription tool which
shows the automatically generated transcripts in light gray. Pressing the tab key
accepts the currently displayed word while pressing any other key allows the user
to modify the text. The automatic transcription services provided by cielo24 (2018)
come with a sophisticated transcription editor. This tool is the one most similar to
the Digital Democracy Transcription Tool functionality-wise. Some of the features
of this editor are: allowing users to navigate between utterances using a button
panel, jumping to specific parts of a video by entering a timestamp, adding speaker
information to utterances, the option of auto-pausing the video player while a user
is typing, hotkeys for navigating the transcript, and shortcuts for adding sound
tags.

To summarize the findings above, one can state that the following categories of
transcription editing and annotation tools exist:

• Entity tagging and linking metadata to text
• Handwriting and ancient text transcription
• Audio transcription
• Subtitle editing
• Caption editing
• Video transcription

However, it may be hard to clearly distinguish between categories in some cases. For
example, software used to transcribe audio may also be useful to create and export
subtitles or video captions. Dependent on exact tool features and requirements,
the same could be said about subtitle, caption, and video transcription editors.
Example use cases for such editors include: records of lectures or educational
videos (Deshpande et al., 2014; Seps, 2013), subtitles and captions for television,

20



2.5. User Interface Evaluation

movies, or presentations (cielo24, 2018), rich transcriptions of legislative hearings
(Rovin, 2016), or any other arbitrary video resource.

2.5. User Interface Evaluation

Developing and evaluating tools such as those introduced in Section 2.4 requires
well-defined processes. For this, user interface (UI) testing and usability evalua-
tion methods have to be applied. Therefore, this section explores some of these
techniques. While an overview of specific UI evaluation methods is given first, a
broader look on the topic is taken afterward to gain better understanding of general
concepts.

2.5.1. Overview of User Interface Evaluation Methods

In the past few decades, many approaches for user interface evaluation emerged.
Ivory and Hearst (2001) present a survey which addresses various methods, some
of them being:

• Thinking-Aloud Protocol
• Log File Analysis
• Cognitive Walkthrough
• Heuristic Evaluation
• Interviews, Surveys, Questionnaires
• Programmable User Models

This list only shows a small number of techniques. Table 2.4, an excerpt of Table 2

in Ivory and Hearst (2001), specifies an extensive list of such methods with a brief
explanation of how they are usually conducted.

As it is visible from this list, a vast amount of different approaches exists. It
would be an excessive task to investigate all of them right away. Due to this reason,
a step back is taken first. A broader classification according to data sources (data
collection) is attempted in Section 2.5.2 below to gain a better idea of this topic first.

2.5.2. Categorization of Evaluation Methods by Data Sources

There are multiple ways of categorizing UI evaluation methods. Some authors, like
Dumais, Jeffries, Russell, Tang, and Teevan (2014), differentiate methods for data
gathering for UI testing into lab studies, field studies, and log studies.

During lab studies, participants are asked to perform specifically designed tasks
in a well-defined set-up. Dumais et al. (2014) argue that while such studies are the
most controlled approach, they might not capture real-world user experience. This
mainly stems from the artificial environment lab studies provide. In contrast to
that, lab studies make it easy to focus on interesting questions researchers want to

21



2. Background and Related Work

Table 2.4.: User interface evaluation methods and their short description. Adapted from Table 2 by
Ivory and Hearst (2001).

Method Name Short Description
Thinking-Aloud Protocol User talks during test
Question-Asking Protocol Tester asks user questions
Shadowing Method Expert explains user actions to tester
Coaching Method User can ask an expert questions
Teaching Method Expert user teaches novice user
Co-discovery Learning Two users collaborate
Performance Measurement Tester records usage data during test
Log File Analysis Tester analyzes usage data
Retrospective Testing Tester reviews videotape with user
Remote Testing Tester and user are not co-located during test
Guideline Review Expert checks guideline conformance
Cognitive Walkthrough Expert simulates user’s problem solving
Pluralistic Walkthrough Multiple people conduct cognitive walkthrough
Heuristic Evaluation Expert identifies violations of heuristics
Perspective-Based Inspection Expert conducts narrowly focused heuristic evaluation
Feature Inspection Expert evaluates product features
Formal Usability Inspection Expert conducts formal heuristic evaluation
Consistency Inspection Expert checks consistency across products
Standards Inspection Expert checks for standards compliance
Contextual Inquiry Interviewer questions users in their environment
Field Observation Interviewer observes system use in users environment
Focus Groups Multiple users participate in a discussion session
Interviews One user participates in a discussion session
Surveys Interviewer asks user specific questions
Questionnaires User provides answers to specific questions
Self-Reporting Logs User records ui operations
Screen Snapshots User captures ui screens
User Feedback User submits comments
GOMS Analysis Predict execution and learning time
UIDE Analysis Conduct goms analysis within a uide
Cognitive Task Analysis Predict usability problems
Task-Environment Analysis Assess mapping of users goals into ui tasks
Knowledge Analysis Predict learnability
Design Analysis Assess design complexity
Programmable User Models Write program that acts like a user
Information Proc. Modeling Mimic user interaction
Petri Net Modeling Mimic user interaction from usage data
Genetic Algorithm Modeling Mimic novice user interaction
Information Scent Modeling Mimic web site navigation

22



2.5. User Interface Evaluation

answer. Also, non-relevant factors are easily controllable. Lastly, due to the direct
interaction, intentions and thoughts of participants can be properly examined.

When conducting a field study, researchers observe participants in their natural
environment. It is less likely to present specifically designed tasks to users during
such a study. Usually, one aims at letting users perform natural tasks. Participants
interact with their environment as they normally would. Field studies are less
controlled than lab studies (Dumais et al., 2014). However, it is still common for
researchers to interact with users. Posing questions when participants are fulfilling
tasks is essential to gain deeper insight into user behavior.

Log study is the third type of behavioral data collection, according to Dumais
et al. (2014). It provides a way of observing natural user behavior uninfluenced
by factors existing in the other two aforementioned study types. No observer is
directly interacting with participants. Users operate their own equipment, mostly
in a remote location. The usual downside of this approach is that barely anything is
known about users and their intentions. Due to not being able to talk to participants,
usage patterns have to be derived merely from log data. While this is a tedious task
which leaves room for interpretation, it also has upsides. No one-on-one interaction
is necessary. Therefore, collecting data scales much better in comparison to other
approaches. Especially when a large number of samples should be investigated,
log studies are ideal. Another point made by Dumais et al. (2014) is that actual,
unsupervised behavior might differ from how participants would behave in the
presence of an observer.

Grimes, Tang, and Russell (2007) take a different approach of categorizing types of
data collection for UI evaluation. The authors of this work combine field study and
lab study into one category. They also mention log study as another category. The
main difference to the categorization described above is the mention of instrumented
panels. Grimes et al. (2007) describe this concept as a periodic study with the same
set of participants, using a specific program or browser application. Although
participants have their actions recorded in a matter similar to log studies, it is also
possible to collect qualitative data. This is done by questions defined beforehand.
Those fixed questions are then posed to the participants directly in the browser.
Vermeeren et al. (2010) also mention a supercategory similar to instrumented panels.
However, they name it “online methods”.

The categorization of data collection for UI evaluation methods established by
Dumais et al. (2014) and Grimes et al. (2007) was merged and summarized in
Table 2.5.

Furthermore, some researchers even propose elaborate taxonomies to differentiate
between different UI evaluation methods in more granularity. Ivory and Hearst
(2001) introduce four dimensions: method class, method type, automation type, and
effort level. Other authors use a number of up to 18 characteristics to distinguish
between methods (Vermeeren et al., 2010; Fernandez, Insfran, & Abrahão, 2011).
However, going into detail about these taxonomies and characteristics would be
beyond the scope of this work. Instead, the following section talks about the user
interface evaluation method most relevant to this thesis, log analysis.

23



2. Background and Related Work

Table 2.5.: Categorization of UI evaluation methods based on definitions by Dumais, Jeffries, Russell,
Tang, and Teevan (2014) and Grimes, Tang, and Russell (2007).

Type Level of
Control

Level of
Detail in
Feedback

Tasks Users Environ-
ment

One-
on-
One

Lab Study High High Artificial <50 Artificial Yes
Field Study Rather High High Arbitrary <50 Natural Yes
Interactive Panels Rather Low Rather Low Natural <1000 Natural No
Log Study Low Low Natural ∞ Natural No

2.5.3. Log Study and Log Analysis

Data collected during log studies can be used for multiple types of analysis. Perfor-
mance measurement (Agosti, Crivellari, & Di Nunzio, 2012), behavior model mining
(Ghezzi, Pezzè, Sama, & Tamburrelli, 2014; Shin, Shafiei, Kim, Jain, & Raghavan,
2018), or other behavioral analysis (Busany & Maoz, 2016; Paganelli & Paternò,
2003) are just some examples of UI evaluation methods log studies render possible.

In the context of this thesis, performing log analysis to compare website versions
is the most relevant use case. Utilizing this analysis, performance measurement is
also possible. After data is collected, results must be analyzed. Then, a decision on
which version is preferable can be made. For this, A/B testing and multivariate
testing is discussed briefly.

Types of Web Logs

Basically, one has to distinguish between two types of Web logs: server-side and
client-side.

Server-side logs are mostly captured automatically by server software, such as
Apache Tomcat (The Apache Software Foundation, 2018c), and saved to log files.
No modification of websites or installation of third-party software is necessary on
user side. However, this only records very basic information about HTTP requests.
Examples for such information are date and time, requested pages (URLs), and
page size. It provides little support for including more information about users
or general context. Utilizing dynamic websites might also lead to HTTP requests
not being the main form of interaction with servers. Default server logs would
lack information about basic user interaction. These concerns are also expressed by
Fenstermacher and Ginsburg (2002), Hong, Heer, Waterson, and Landay (2001) as
well as Ivory and Hearst (2001). Although server-side logs can be enhanced using
techniques such as web beacons, they still lack rich information of client-side logs.

Logs generated on client-side can be tailored to contain more specific information.
A definite downside of generating this log data is the effort necessary to monitor
user activity. Realization of such observing mechanisms is much more complex
than simple usage of server logs. They have to either be included in the browser,
for example through browser widgets, or directly injected as part of website code.

24



2.5. User Interface Evaluation

Either way, incorporating frameworks to monitor user activity for web applications
can be laborious.

Fenstermacher and Ginsburg (2002) outline four goals for client-side monitor-
ing frameworks: no interference of user activity, user-individual data collection,
possibility for developers to define which data is collected and how, as well as ex-
tensibility to other applications. Besides custom implementation of logging systems
for specific use cases, existing frameworks and tools exist. WELFIT (de Santana &
Baranauskas, 2015), WebQuilt (Hong et al., 2001), and WebRemUsine (Paganelli &
Paternò, 2003) are three such tools mentioned in literature. Other examples of cus-
tom frameworks and tools were introduced by Fenstermacher and Ginsburg (2002),
Vasconcelos, Santos, and Baldochi (2016) and Gerken, Bak, Jetter, Klinkhammer,
and Reiterer (2008).

As Section 2.5.2 laid out, authors commonly disagree on the exact classification of
user interface evaluation methods. However, many agree that utilizing log studies
should go hand-in-hand with qualitative studies or interviews (Dumais et al., 2014;
Grimes et al., 2007; Agosti et al., 2012; Vermeeren et al., 2010; Fernandez et al.,
2011; Gerken et al., 2008). For example, according to Agosti et al. (2012) combining
implicitly and explicitly collected data provides better understanding than each
method on its own. They also note that “logs alone give only a partial view of the stream
of information that users produce” (Agosti et al., 2012, p. 17).

Testing Different Versions

For testing of different website versions, A/B testing and multivariate testing is
considered relevant. These methods for comparing performance of software features
are explained well in literature, for example in Kohavi and Longbotham (2017),
Olsson and Bosch (2014) and Kohavi et al. (2013). Such methods and statistical tests
are applicable to many situations. However, websites are seen as the primary test
subject in the elaborations below.

According to Kohavi and Longbotham (2017), in A/B testing users are evenly
distributed into “buckets” (bucket test, split test). Each user is randomly put in a
bucket. One user group is assigned a base version of the website (A). This version is
usually called “control system” and holds no new features. The second user group
is presented with an improved version of the current system when visiting the
website (B). This version is commonly referred to as “treatment system”. Figure 2.3
displays the basic idea of A/B testing according to Kohavi and Longbotham (2017).
If possible, differences between versions should be kept as small as possible. This
minimizes occurrence of false positives, side effects, and random factors. False
positives refer to positive or desirable results which are not actually factual (Kohavi
et al., 2013).

Multivariate testing is very similar to A/B testing. The only difference between
these two methods is that multivariate testing compares multiple versions, while
A/B testing only compares two. In some cases, multivariate testing might be
referred to as A/B/n testing. Kohavi et al. (2013) claim that comparing only two

25



2. Background and Related Work

100 % of Users

Control System (A):
Existing System

Treatment System (B):
Existing System with 

New Feature

50 % of Users 50 % of Users

Data Collection:
Logging

Analysis and 
Comparison

Figure 2.3.: Basic illustration of A/B testing. Adapted from Figure 2 by Kohavi and Longbotham
(2017).

versions is preferable to comparing multiple ones. According to the authors, the
main reason for this is that the risk of false positives occurring is higher in A/B/n
than in A/B tests. Figure 2.4 shows a high-level illustration of the principle of
multivariate testing.

There are two ways of conducting tests in the given context: experimental and
observational (Kohavi et al., 2013). Experimental means that an controlled exper-
iment is conducted. While one user group is presented with the control system,
the other groups are assigned treatment systems. Observational data is collected
when changes are introduced sequentially. Every user is working with the control
system until the treatment system is deployed. Afterwards, analysis is performed.
While multivariate tests naturally have to be conducted in an experimental way,
A/B tests can be performed both experimentally and observationally. Sequential
A/B tests have the upside of being better fitting for classic software release cycles.
Therefore, they are easier to deploy. A negative factor is that they have an increased
risk of higher false positive rates (Kohavi et al., 2013). Furthermore, order in which
users are presented with different versions could change the outcome of tests. The
overlying principle of sequential A/B testing can be seen in Figure 2.5.

For such tests, it is important to correctly define the metrics one wants to measure.
However, there can be many rather insignificant ones. According to Kohavi and
Longbotham (2017) it is essential to define an Overall Evaluation Criterion (OEC).
This criterion should serve as a high-level metric for decision-making. Examples
for an OEC are click-through rate, repeat user visits, or site performance.

After testing is finished, results have to be analyzed to determine the existence of
a difference in performance. One possible approach is to derive the final result for

26



2.5. User Interface Evaluation

100 % of Users

Control System (A):
Existing System

Treatment System (B):
Existing System with 

New Feature 1

% of Users

Data Collection:
Logging

Analysis and 
Comparison

Treatment System (n):
Existing System with 

New Feature n

100
n % of Users100

n % of Users100
n

Figure 2.4.: High-level illustration of the principle of multivariate testing (A/B/n testing).

100 % of Users

Control System (A):
Existing System

Treatment System (B):
Existing System with 

New Feature

Data Collection:
Logging

Analysis and 
Comparison

100 % of Users

Treatment System 
becomes 

New Control System

B better 
than A?

no

Implement New 
Treatment System

yes

Figure 2.5.: Basic concept of sequential A/B testing.

27



2. Background and Related Work

each metric from both versions’ mean (Kohavi & Longbotham, 2017). In addition,
statistical hypothesis testing can be used to determine if the findings are statistically
significant (Kohavi & Longbotham, 2017; Kohavi et al., 2013; Defazio, 2016). Results
would then be represented by a confidence interval. While details about statistical
methods are not explained further, it should be mentioned that hypothesis testing
can be performed using either a frequentist or bayesian approach (Defazio, 2016).

2.6. Summary

Government transparency and its correlated terms have surged up immensely in
the past few years due to the technical possibilities the Internet provides. When
legislative information is presented properly, websites make it easy for the general
public to access proceedings and hold officials accountable for their actions. Up until
now, many governments already implemented measures to enable open government
and E-Democracy. However, not all governmental systems uphold the values of
these principles. Numerous US state governments still shut the general public out
of the lawmaking process. Therefore, need for citizen-instigated initiatives and
platforms providing insight into legislative proceedings is still prevalent.

Before data can be presented to the public, preparations must be carried out.
Automated pipelines preprocess data and information to enrich content. One of the
most common applications for automatic procedures is the conversion of legislative
hearing recordings into transcripts. These processes rely on technologies such as
NLP, image recognition, and speech-to-text algorithms. In NLP, word similarity,
sequence alignment, as well as NER- and POS-tagging are useful tools.

Since proceedings of political hearings contain crucial information, mistakes must
be prevented whenever possible. Therefore, preprocessing is not usually performed
in a completely automated way. Instead, systems frequently rely on human-assisted
correction of automatically generated data. In addition to necessary error correction,
humans annotate additional metadata to further enrich records. This is achieved
by the use of annotation and transcription tools. Tools are available for many use
cases, for example annotation of audio, video, or written data.

When discussing tool development, user interface design and evaluation is an
important topic. Evaluation methods can be classified by how data is gathered:
with lab studies, field studies, or log studies. Log analysis is especially interesting,
since it enables extensive performance measurements in a real-world environment.
It is also feasible to carry out long-term log analysis without significant disruption
of the current workflow. To compare different versions of a system, log studies
can be combined with A/B testing or multivariate testing. If the existing workflow
should not be disrupted, multivariate testing is considered preferable. However,
results could turn out to be inconclusive due to external factors and side effects.

28



3. Digital Democracy

Digital Democracy is a tool that lets you search for issues at the state level as
easily as you might search for something in Google.

— CNN.com, February 7, 2017

There are many components contributing to the Digital Democracy initiative.
The parts most relevant to this thesis are introduced in this chapter. To start, prin-
ciples and history of the Digital Democracy initiative are covered. Afterward, the
initiative’s main tool for making information accessible, the Digital Democracy
website, is presented. Then, the human-assisted pipeline utilized to process tran-
scripts is explained. Lastly, functionality and user interface of the Digital Democracy
Transcription Tool are examined.

3.1. Digital Democracy Initiative

The Digital Democracy initiative is a project instigated by the Institute of Advanced
Technology and Public Policy (IATPP) at California Polytechnic State University
(Cal Poly) in 2014 (California Polytechnic State University, 2014). As already shortly
addressed in Chapter 1 and Section 2.2, the initiative aims at bringing transparency
into the ongoings of US state legislature. This is achieved by developing a website
which makes it easy for the general public to monitor legislative hearings and
proceedings. On this website, fully searchable hearing transcripts are made available
to users. As mentioned in Section 2.2, citizens of some US states would have no
way of properly accessing and searching for information in their state’s legislative
proceedings otherwise. Lawmakers and lobbyists could not be associated with their
own verbal remarks.

In 2015, Digital Democracy’s online platform was first made accessible to the
public. In an official press release issued by the Public Affairs Office of California
Polytechnic State University (2015), former state senator Sam Blakeslee mentioned
that Digital Democracy was developed to “open up government”. He also stated
that there are no transcripts produced by the California Legislature during state
legislative hearings. He further explained that due to this fact the public would
have no way of seeing what really happens in hearings.

Blakeslee’s claim was backed by a poll conducted by the Institute for Advanced
Technology & Public Policy (IATPP) at Cal Poly San Luis Obispo, which he founded.
The results of this survey show that a large number of Californians would highly

29



3. Digital Democracy

approve of changes to the legislature’s transparency (Myers, 2015). Regardless of
party or ideology, citizens demand more insight into politics. Most people find it
especially important to have further access to information about budgeting. The
interviewees were also very interested in being able to access documents and
searchable information online (Myers, 2015).

Although Digital Democracy was initially supposed to only focus on California,
other states are also lacking transparency regarding government proceedings. It
soon became apparent that the ideas which led to founding this project are also
applicable to other states in the USA. Therefore, the initiative integrated hearings
held in New York into the system in early 2017. As of January 2018, the most recent
additions to the selection of states for which Digital Democracy offers searchable
information are Florida and Texas (Robertson, 2018). Digital Democracy therefore
serves data for state legislations representing over 108 million people (United States
Census Bureau, 2017).

Furthermore, there have already been talks with stakeholders from Colorado,
Michigan, Nebraska, and North Carolina to further expand the system into these
states (Robertson, 2018). However, due to an ever-growing amount of data and the
need to keep costs as low as possible, this is a difficult task. At the time of writing
this thesis, scaling the system to cover these states would be an immense challenge.
In addition to scaling issues, some target states assert copyright protection over
its videos of legislative hearings, such as Illinois (Robertson, 2018). This prevents
public reuse of these proceedings and further showcases the need for a platform
like Digital Democracy.

Section 3.2 below introduces the Digital Democracy website. However, presenta-
tion of information on this platform is only a fraction of what the project actually
achieves. Before data can be queried and browsed properly, many preprocessing
steps must be taken to provide correct information to users of the service. Essen-
tially, transcripts have to be generated from videos of legislative hearings and floor
sessions, since most states do not create any written records of hearings. Because of
this, the initiative has technical issues to tackle and tasks that need to be solved.
For example, correctly transcribing videos of hearings and detecting which person
is currently speaking is one of these challenging tasks. Because of the difficulties
caused by this process, the Digital Democracy initiative uses a human-assisted
transcription process with two separate phases (Rovin, 2016). While Figure 3.1
shows a simplified overview of this pipeline, Section 3.3 elaborates on it in more
detail.

3.2. Digital Democracy Website

The website provided by Digital Democracy (www.DigitalDemocracy.org) can be
described as a statehouse accountability platform (Digital Democracy initiative,
2017a). It creates a searchable, verbatim record of all statements, whether they
were made by lawmakers or witnesses during hearings in legislative committees

30

www.digitaldemocracy.org


3.2. Digital Democracy Website

State Legislative Hearings

Video 
Capture State 

Website or 
Database

Video 
Download/Stream and 

Indexing

Auto Length Editing 
(Video Cutting)

Automatic 
Transcription

Diarization and 
Speaker Tagging

Text Enhancement 
Scripts

Transcription Tool – 
Admin Interface

Transcription Tool – 
Human Up-Leveling

Digital 
Democracy 
Database

Bill/Committee 
Information

Show Videos 
on DD-Website

Show Final Data
on DD-Website

Figure 3.1.: Simplified view of the Digital Democracy processing pipeline. Adapted from Figure 1

by Khosmood, Dekhtyar, Assai, Kurfess, and Snyder (2014).

and floor sessions in statehouses. The website opens up legislative proceedings to
everyone. It provides a simple interface to query for specific information in the
full-text of transcripts for all users.

After a successful search request, a list of results is provided. Each entry in the
result list holds the part of the transcription text in which the search term occurred
as well as a direct link to the hearing where it was mentioned. The link takes the
user to the web page of the specific hearing and sets the video to the exact position
where the search term was mentioned. Figure 3.2 shows an example of how Digital
Democracy displays search results and links transcription as well as metadata to
the actual hearing video.

While this simple search interface is the centerpiece of the Digital Democracy
website, one is also able to find additional information about state government
there. Users can browse through information about hearings, bills, committees,
speakers, as well as organizations and lobbyists.

The Digital Democracy website is realized by usage of the content management
system Drupal 8 (Drupal Association, 2018). Development, design, and implemen-
tation for this part of the initiative’s system was not part of this thesis.

31



3. Digital Democracy

Speaker 
District
Information

Interactive 
Transcript

Hearing 
Video

Hearing and 
Committee 
Information

Search 
Filter 
Options Interactive 

Search 
Results

Discussed 
Bills and 
Votes

Figure 3.2.: Search functionality of the Digital Democracy website as well as transcription and
metadata display.

32



3.3. Human-Assisted Transcription Pipeline

3.3. Human-Assisted Transcription Pipeline

Generating data and providing information for the Digital Democracy initiative
is a two-phase process. First, an automated data processing chain utilizing an
automatic speech recognition service transcribes the video of a hearing. However,
this process of converting speech into text is error-prone. Furthermore, speakers
cannot be easily identified automatically. Therefore, a second phase is needed in
which humans manually correct errors of the speech recognition service. They also
add annotations such as information about the current speaker. To ease manual
correction, a web application called Transcription Tool was introduced. While the
human-assisted pipeline is closer investigated in this section, Transcription Tool is
explained in more detail in Section 3.4.

Even outside the pipeline introduced here, automatic scripts add records to the
Digital Democracy Database (DDDB). Depending on state, year, and committee
specific scripts pull data from third-party sites. That metadata is then incorporated
into the DDDB and connected to the rest of the hearing data. Since this thesis mainly
focuses on the improvements made to the Transcription Tool, not much detail will
be given about these exact data sources. For example, additional information for
California hearings and the people speaking in these discussions is extracted from
MapLight, the website of the California Secretary of State, and The California
Channel (Khosmood et al., 2014; Rovin, 2016).

Figure 3.3 visualizes the human-assisted transcription process as an activity
diagram. Most of the automated parts of the pipeline visible in this figure are
beyond the scope of this thesis. However, it may be important for the reader to
understand where and when the information and metadata transcribers use as a
starting point for their work are generated. Therefore, the following few paragraphs
describe Digital Democracy’s human-assisted approach in more detail. This diagram
is modeled after the state of the preprocessing pipeline in spring 2018. As already
mentioned, Digital Democracy is evolving. This leads to parts of the project such
as Transcription Tool and its task generation logic, the preprocessing pipeline, or
auto-correction scripts constantly being updated.

The processing pipeline uses hearing videos which were either recorded from
a live stream or downloaded from a video archive as an input. The actual video
source is dependent on the state. After the video was successfully stored and
indexed in the Digital Democracy video archive, automatic trimming and cutting is
performed. This shortening and partitioning of videos into clips serves multiple
purposes. First, recordings of hearings might contain silent periods at the beginning
and end of a video, which have to be removed. Second, videos are cut into separate
clips with a length of about thirty minutes. This guarantees faster generation of
automated transcripts by the external transcription service.

When trimming and cutting is finished, the hearing appears in the admin interface
of the Transcription Tool. Admins can then review the clips and make adjustments
by manually trimming or cutting it. If everything is in order, they send the video to
an external transcription service via the user interface. Cielo24 (cielo24, 2018) is the

33



3. Digital Democracy

Trimming and
Cutting

Send Video to
Transcription

Service

Video Download
and Indexing

Change Trim and
Cut Parameters

Video Cuts
Appropriate 

no

yes

Transcription Tool
Admin

Trigger Task  
Generation

Bill Tagging

Editor

Human
Transcription 
(Up-Leveling)

Automatic

Text
Enhancement

Merge Scripts

Task Generation

Download
Transcript from

VPS

Store VPS-
Diarization

External
Transcription

Service

Automatic  
Transcription

Video
Processing

Service (VPS)

Diarization  
using Audio

Request
Transcription

Receive
Transcript and

Notify TT

Figure 3.3.: Activity diagram of the human-assisted transcription pipeline.

34



3.3. Human-Assisted Transcription Pipeline

currently used service to generate automated transcripts. In the near future, Digital
Democracy plans to also enable usage of other engines such as Watson (IBM, 2018)
as possible transcription services. The video transcripts returned by the external
services are stored in SubRip subtitle (SRT) files. Each file holds the full transcript
of a single video, fragmented into short intervals of speech, called utterances. In
the context of Digital Democracy, an utterance is defined as one to many sentences
spoken by the same person containing a line of thought.

Submitting a hearing video to an external transcription service also triggers
a diarization process using audio and text. For this diarization of utterances a
toolbox introduced by Rouvier, Gay, Khoury, Merlin, and Meignier (2013), called
“LIUM_SpkDiarization”, is currently used. Speaker diarization describes the process
of identifying which people spoke during which intervals, without knowledge of
their exact identity. Speech data such as parts of audio streams or segments of
texts can then be tagged and linked to an unidentified person. It is also possible
to identify people via facial or lexical features. Digital Democracy only performs
diarization by audio and text, although future projects aim at also including visual
clues such as facial features (Kauffman, Williams, et al., 2018). During this process,
speaker tags (diarization tags) are assigned to separate utterances. They are then
utilized to determine when speaker changes occur and which person spoke when.
Each of the generated tags represents a different, unidentified speaker. Producing
this information is one of the most crucial steps, since work done by human
transcribers is much easier (and therefore faster) with correct speaker tags.

After sending the video to the external service, administrators add more infor-
mation to the hearing using the Transcription Tool. For example, they annotate the
hearing with committee and bill discussion information. Adding this information
is called “Bill Tagging”. In every hearing, multiple bills could be discussed over
different or overlapping periods of time. Creating this data is essential to provide
proper information and correct data for the Digital Democracy initiative as a whole.

As one of the final steps of the preprocessing pipeline, automatic text correction is
executed on the raw transcript. Python scripts remove consecutively occurring white
spaces, capitalize proper nouns, and convert lexical representations of numbers
to numerical ones (Rovin, 2016). If needed, utterances which are too short to
stand alone are merged into longer ones. After this automatic preprocessing of
transcripts has finished, segments of a hearing video for which automatically
generated transcripts are already available are assigned to transcribers. Then,
transcribers correct and enhance transcription data. These segments of video are
called transcription tasks and are automatically generated by the tool, making use
of the previously entered hearing information (Rovin, 2016). A task represents a
short work package which is assigned to a single transcriber. Administrators can
choose to either manually assign specific transcribers to important tasks, or let the
Transcription Tool automatically distribute the workload among them.

The time span and content of tasks generated out of a hearing depend on the
nature of the hearing as well as the aforementioned information added by an
admin. For the sake of completeness, the correlation between hearing, hearing

35



3. Digital Democracy

videos, bill discussions, and tasks is shortly explained. First, a hearing can be
made up of multiple hearing videos. Hearing videos are also split up into multiple
shorter videos (about 30 minutes) to ensure faster processing by the automatic
transcription service. Over the course of a hearing, multiple bills can be discussed.
Bill discussions can continue over different video fragments, while multiple bills
can also be discussed at the same time. Tasks are then generated in such a way
that there is one full bill discussion per task. If bill discussions overlap multiple
videos or multiple bills are discussed at once, a more sophisticated approach is
used. However, describing this approach here would be too much of a technical
detail.

Finally, human transcribers start to enhance the preprocessed transcripts (up-
leveling) by working on the tasks assigned to them. Transcribers do this by using a
software called Transcription Tool, elaborated in Section 3.4 below.

3.4. Digital Democracy Transcription Tool

3.4.1. General Functionality

The Digital Democracy Transcription Tool serves as the main source of semi-
structured data for most of the information and content provided by the Digital
Democracy initiative and its website (Rovin, 2016). It is developed in-house. One
of the tool’s purposes is to handle administrative tasks such as importing hearing
videos, updating hearing metadata, or supervising the transcription process. De-
spite the importance of its administrative features, Transcription Tool is mainly used
by human transcribers to edit automatically generated transcripts in a distributed,
asynchronous way, allowing for workforce flexibility. Due to these different usage
scenarios, two user roles exist: “Admin” and “Editor”. Admins handle administra-
tive tasks while also being able to edit any transcript they want. All transcribers
have the “Editor” role, which limits them to only access transcripts which are
specifically assigned to them.

Transcribers enhance the previously automatically generated transcripts by using
the tool’s transcription user interface. Part of the transcription screen can be seen in
Figure 3.4.

Administrators are mostly staff working for the IATPP. Transcribers are student
workers employed on a short-term basis. Most students are initially not familiar
with the terminology used in a legislative setting as well as the transcription
interface itself. Due to the relatively high turnover of student staff and the cost of
training new transcribers, it is necessary for the tool to work efficiently and provide
an easy and straightforward interface. Transcriber numbers fluctuate over time. In
summer 2017, five transcribers were working full-time with the tool. However, 36

transcribers and four admin users were interacting with the tool on a regular basis
in spring 2018, mostly part-time.

The necessity for human transcribers stems from the fact that the textual tran-

36



3.4. Digital Democracy Transcription Tool

Figure 3.4.: Transcript editing interface in the Transcription Tool as of October 2017.

scripts produced by automatic systems are not high quality enough for professional
and government purposes. In such settings, even slight inaccuracies are highly
problematic. Especially legislative bill information and personal names are not al-
ways correct. To fulfill the professional requirements demanded for proceedings of
legislative hearings, these mistakes have to be corrected. Additionally, transcribers
must identify speakers and decide on their alignment regarding the current issue
discussed in the hearing. Lastly, they work to standardize utterance length by
merging or splitting utterances. This allows for proper presentation of transcripts
on the Digital Democracy website. Transcribers have to make sure no utterances
exist which are too short to stand alone.

3.4.2. Transcription Screen User Interface

The Transcription Tool provides multiple screens and interfaces for both admins
and transcribers. However, only the screen most relevant to this thesis is explained
in more detail here – the transcription screen. Its interface is separated into three

37



3. Digital Democracy

areas, which are explained from top to bottom of the web page.

Task Information Header

First, information about a task is displayed in a header. It provides contextual data
about a transcriber’s current work assignment. Furthermore, this information is
useful to software developers for gathering information during debugging. An
example of this informational header can be seen at the top of Figure 3.5.

The following fields are contained in the header:

• Task Name and FileId

Name of the task, made up of this task’s number in the current hearing, the
hearing and committee name, as well as the hearing date (for example “Task
7 of Senate Standing Committee on Education Hearing on 5/18/2018”). For
debugging reasons, the file ID for the video cut is also displayed.

• Bill

Unique identifier of the bill, especially useful to transcribers. Using this
data, they can look up further information about this bill on state web-
sites. The bill identifier is a combination of state name abbreviation, ses-
sion year, numbered revision of the bill, and official name of the bill
(for example “TX_20170HB3632”). If no bill is discussed in this video,
everything but the state name abbreviation is removed and replaced by
“NO_BILL_DISCUSSED”.

• Video

Number and time interval of the video in the series of videos that make up
this hearing.

• Hearing Date

The date the hearing was held.

• Assigned

The date this task was assigned to a transcriber.

Utterance Editing and Speaker Import

The center part of the transcription interface is organized in two tabs. One screen
holds all information about utterances existent in this transcript (Utterance Editing
Screen). The other screen contains interface elements for importing speaker data
into this task (Import Speaker Screen). Only after importing this data, transcribers
can assign speakers to utterances.

To the right of the tabs which allow the user to switch screens, the person
assignment interface is located. These elements enable transcribers to either set
one person to all utterances of another one (“Swap people”), or assign a person to

38



3.4. Digital Democracy Transcription Tool

Task Information

Utterance Editing 

Person Assignment

Screen Change

Speaker Profile

Hearing Video

Figure 3.5.: Description of elements in the Utterance Editing Screen of the Transcription Tool.

all utterances of a specific diarization tag (“Align person with tag”). The interface
elements described here can be seen in the upper part of Figure 3.5 (“Person
Assignment”).

The Utterance Editing Screen is the most important part of the transcription
interface. It allows transcribers to modify the automatically generated transcript.
Whenever a transcriber edits data, changes are batched and sent to the transcription
server in a 30 second interval. An overview of the utterance list is presented in the
center of Figure 3.5. The utterance currently played in the video is highlighted in
orange. Figure 3.6 shows the utterance interface element in more detail.

The components of this element are:

• Start and End Time

Start and end time of the utterance.

• Speaker or Speaker Tag

Combo box used to assign a speaker to an utterance. The initial selection for
an utterance speaker is the diarization tag (speaker tag) computed during
preprocessing. If the diarization algorithm did not produce a tag for this
utterance, “None” is shown.

• Utterance Type

39



3. Digital Democracy

Combo box for setting the type of an utterance. The utterance type deter-
mines if the contained utterance represents a testimony, author’s presenta-
tion, or committee discussion.

• Utterance Text

The utterance text in an editable text area.

• Speaker Alignment

Combo box to determine how a speaker’s stance aligns with the cur-
rently discussed bill. Possible options for speaker alignment are: Inde-
terminate (IND), For (FOR), For If Amended (FIA), Neutral (NEU), Oppose
If Amended (OIA), and Oppose (OPP). In practice, the most frequently
used options are IND, FOR, and OPP.

• Utterance Manipulation

These icon buttons enable merging and splitting of utterances as well as
creating a new one. First, merging combines an utterance with the previous
one. Start and end time are set according to the timestamps of the merged
utterances. Besides that, utterance texts are merged. All other fields are
set to the values of the previous utterance. Second, splitting separates an
utterance at the current cursor position. The utterance text is split up, while
all other data is copied for both utterances. Lastly, creating a new utterance
leads to cloning of every field of the clicked utterance besides text. See
Table 3.1 for further details on the utterance manipulation icons.

Start and 

End Time

Speaker or 

Speaker Tag

Utterance 

Type

Utterance

Text

Speaker
Alignment

Utterance

Manipulation

Figure 3.6.: Interface element used to edit an utterance.

Table 3.1.: Interface icons for utterance manipulation.

Merge utterance with previous utterance

Split utterance at cursor position

Create new utterance by cloning existing one

40



3.4. Digital Democracy Transcription Tool

As mentioned earlier, upon switching tabs the Import Speaker Screen is displayed
in the center of the transcription screen. This collection of interface elements handles
search, import, and removal of speakers for this task. Figure 3.7 shows this screen.

No person data is imported automatically, because the number of speakers in
a single task is usually rather low. Instead, buttons exist which help mass-import
data. “Import Committee Members” imports data about members of the committee
holding this hearing. “Import Bills Previous Speakers” adds information about
persons who previously testified in a hearing in which this bill (or one of its
revisions) was discussed.

An auto-complete search box is located below the buttons enabling automatic
import. New entries for persons can be created via a form opened using the
“Create”-button. Clicking the “Add”-button adds the selected person information
to the orator list (“Current Orators”) of the current hearing.

The “Current Orators”-list contains all persons whose data was previously
imported into this task. Only persons in this list can be selected as speakers in
utterances. This list also allows deletion of people from this task, if they are not
assigned to any utterances. Clicking a speaker name opens that speaker’s profile
on the Digital Democracy website in a new tab.

Automatic Import

Person Search with 
Speaker Creation 
and Import Button

Orator List

Figure 3.7.: Description of elements in the Import Speaker Screen of the Transcription Tool.

41



3. Digital Democracy

Video Player, Speaker Profile, and Task Tab

The third part of the transcription screen is made up of the video player containing
the hearing video and a tab widget containing two tabs. These tabs serve two
purposes: modifying speaker profiles for this hearing (“Speaker”, see bottom right
of Figure 3.6) and task completion (“Task”).

The speaker profile area is an important part of the transcription screen, since
transcribers must select the correct classification of a speaker. Available speaker
classifications are: “Unknown”, “General Public”, “Legislative Staff”, “Legislative
Analyst Officer”, and “State Agency Representative”. Although “Legislator” and
“Lobbyist” also exist as valid classifications, speakers of these types can not be
created manually. Instead, they are updated periodically by official data pulled from
third-party sources. Depending on the classification, further data has to be added
afterwards. For speakers of the general public and lobbyists, all organizations the
speaker represents in this hearing should be added. State agency representatives
and state constitutional officers must have their corresponding agency or office
assigned to them. Information about which legislator they work for or which
committee they serve has to be included for legislative staff. Legislative analyst
officers is the only role for which no further specifications are necessary.

The last UI element in the speaker profile area is the alignment combo box.
Choosing an alignment using this box automatically sets its value to all of this
speaker’s utterances. In the end, changes to a profile have to be confirmed using
the “Save Profile Button”.

The above-mentioned “Task”-tab contains interface elements relevant to task
completion and error messages. For example, errors about missing speaker profiles
or utterances without speaker selection are displayed here. If there are no error
messages, the “Complete Task” button is shown. This button finalizes a task and
stores all information that was not yet saved in the database. A button for reverting
all changes that happened in the last sixty seconds is also present here.

3.5. Past Improvement Projects

Since Digital Democracy and its software components have been established as a
well-working system, many improvements projects were attempted. Some of the
more recent ones are described below, starting from the earlier adoptions up to the
most recent one.

3.5.1. Video Caching

To establish better management of video clips and resources, Lam (2016) imple-
mented a video caching system called Video Manager. This manager aims at
diminishing necessary disk space on the live servers of the initiative. It also im-
proves overall system performance, since videos do not have to be constantly

42



3.5. Past Improvement Projects

downloaded from a cloud storage system.
Hearing videos are stored via the cloud storage system Amazon S3 (Amazon

Web Services Inc., 2018). They are only loaded into the cache if they have to be
accessed on the initiative’s servers. An example for this is video cutting. Video
Manager introduces an API for accessing videos. If a video is not in the cache, the
manager downloads it from the cloud. The cache utilizes a Least Recently Used
(LRU) algorithm. Lam developed Video Manager using Python and set up the
server using its Web Server Gateway Interface (WSGI).

Although the cache implemented during this project increases scalability in
general, future work might still be necessary. Lam explains that no tools for anal-
ysis were developed and no records of statistics are kept for now. Therefore, no
possibility for measuring performance of the used caching algorithm exists.

3.5.2. Transcription Process Improvements

Rovin (2016) introduced improvements developed during separate projects into
the main transcription process to increase efficiency. The three main changes
integrated by Rovin were improvements to speaker diarization, text correction, and
transcription UI. He also evaluated his changes to measure reduction of overall
transcription cost.

Diarization Improvements

The changes to diarization implemented by Rovin (2016) were mainly directed at
merging consecutive intervals (utterances) spoken by the same person. Usually,
the automatic speaker diarization process would produce utterances too short to
stand alone. Rovin developed Python scripts which would merge short, separate
utterances into longer, more coherent ones.

Correction of Raw Transcriptions

Prior to the manual correction phase, Rovin integrated another automatic correction
step. This change implements improvements regarding bill number correction and
proper noun capitalization.

By default, automatic speech recognition might describe spoken numbers in
lexical form. However, bill numbers in the state legislative system are usually
depicted in numerical format. Numerical representation is also necessary to provide
proper search functionality when querying for specific bills. Rovin integrated a
process which converts specific lexical number representations to numerical ones.
This is achieved by combining a machine learning classifier, parsing, and applying
a grammar.

In addition, Rovin added text correction for capitalization of proper nouns to the
transcription process. This process is automated using simple dictionary look-up.

43



3. Digital Democracy

The dictionary was created based on an online repository and is continuously
expanded whenever new proper nouns occur.

UI Changes

After transcriptions for two legislative sessions were completed, Rovin collected
transcriber feedback. Repetitive tasks and tedious actions mentioned by transcribers
lead to development of UI improvements. As listed by Rovin (2016), Transcription
Tool was enhanced through the following changes:

• Implemented functionality for directly importing committee members into
the speaker list and added a commonly used placeholder for the “Committee
Secretary”.
• Added initialization of speaker profile information during import.
• Automatic assignment of “Alignment” and “Discussion Type” fields for con-

current utterances of the same speaker was implemented.
• All Legislators participating in discussions were automatically assigned the

utterance type “Committee Discussion” while all other speaker classifications
were initially set to “Testimony”.
• Functionality to rewind a video for 5 seconds was set to the tilde key.
• Inserted a check box which enables the “Cascade” option. If this box is

checked, information added to an utterance will also be assigned to the next
nine utterances.
• Implemented functionality of automatically applying alignment status to all

utterances of a non-legislator.
• Added a button to the utterance element used for splitting an utterance.
• Alphabetized content of the speaker drop down in the utterance interface as

well as search results and list of orators.
• Specific conditions were introduced which prevent task completion until they

are met.
• Hyperlinks directing to speaker profiles were added to speaker names.
• Increased utterance text area size to four rows.

Cost Function

Rovin defined a cost function to determine performance of the manual transcription
phase performed by humans. Manual transcription cost was defined as the sum-
marization of “EditingCost” and “MistakeCorrectionCost”. While “EditingCost”
straightforwardly describes the cost of initial editing which has to be performed in
any case, “MistakeCorrectionCost” is more interesting for improvement evaluation
according to the author. Rovin takes six commonly appearing mistake correction
steps into account:

1. Re-opening the tool
2. Correcting misspelled words

44



3.5. Past Improvement Projects

3. Correcting utterance length
4. Correcting wrongly assigned speakers
5. Importing known speakers
6. Identifying and importing unknown speakers

Transcription Tool Versions for Evaluation

To evaluate if changes decreased the overall cost of the manual transcription phase
performed by humans, Rovin provided four different Transcription Tool versions.
Each version included a specific improvement to the one mentioned before. The
versions used for Rovin’s evaluation were:

1. Baseline: No improvements to the previous version.
2. UI Improvements: Improvements as described in section 3.5.2.
3. Text Correction: UI Improvements as described above as well as text correc-

tion features described in section 3.5.2.
4. Diarization: All improvements provided in tool version 2 and 3 as well as the

diarization changes described in section 3.5.2.

Task Selection for Evaluation

The tasks Rovin presented to testers were selected to specifically address the given
changes. Overall, 15 people participated in the experiment. Test users were split
up into two classes: experienced transcribers (6) and beginners (9). Each user had
to transcribe five videos. For this, the videos with parameters closest to average
speaking duration and speaker count over all videos in the database were selected.

Test users were then further split up into four groups and they completed five
transcription rounds. In each round, a task was transcribed via a separate tool
version, while the first round was used for training. Tasks differed from group to
group. In the beginning, transcribers used the baseline version of the tool. After
each round, the tool was upgraded to a better version, as listed in Section 3.5.2.

Definition of Efficiency

Over the course of the past few sections, the terms efficiency and performance
were used to describe how well the transcription process operates. Rovin split up
measurement of transcriber efficiency into four metrics:

• Task Duration: The time it takes to complete one transcription task.
• Text Alignment: Overall number of words in a finished transcription which

match the actual spoken content (control transcription). Rovin used a modified
Needleman-Wunsch algorithm to measure this metric (see Section 2.3.2).
• Speaker Alignment: The percentage of correctly identified speakers (per

name) over all utterances.
• Utterance Length: The percentage of utterances which were cut to an adequate

length (7–385 words).

45



3. Digital Democracy

Results

Evaluation conducted by Rovin showed that changes significantly decreased task
duration. Measured values of other metrics only increased insignificantly. Analysis
was conducted by applying multiple regression as well as examining changes in
averages.

Rovin found that his improvements reduced the average transcription time by
16.89%. The relative ratio of transcription to video time was reduced from 7:37

to 6:19. When attempting an evaluation of the total cost reduction, a decrease of
10.66% was measured. Assuming the labor cost to be $10 per hour, Rovin claims a
cost reduction of $2.71 per video transcription.

3.5.3. Improvements to Transcription Tool Admin UI

Reinman (2016) improved the admin user interface for video cutting and adding
meta information in the Transcription Tool. Some manual tasks were also automated.
For this, Reinman separated the video editing page into two simplified pages.
While the first screen is mainly used for cutting video clips, the second one allows
administrators to edit meta information such as committees, bills discussed, hearing
date, state, and task priority. After an admin finishes video modification and submits
his changes, task creation is triggered.

3.6. Existing Need for Improvements

The Digital Democracy project is subject to constant new developments and im-
provement projects. Some of them were documented in Section 3.5 above. However,
cost of both automatic as well as manual transcription processes are still tremen-
dously high (Rovin, 2016; Robertson, 2018; Digital Democracy initiative, 2017b).

Especially the Transcription Tool operated by human transcribers poses a bottle-
neck for the whole initiative (Rovin, 2016). The software is still considered unstable
by project authorities and considerable room for improvement exists. Due to ad-
dition of new states, processing overhead and necessary human labor is steadily
increasing. Introducing new Transcription Tool improvements is therefore consid-
ered a main priority for the project’s development team. This includes initiating
side projects considering technologies such as speaker recognition, automatic detec-
tion of speaker alignments, and other possible enhancements (Kauffman, Williams,
et al., 2018; Budhwar et al., 2018; Kauffman, Khosmood, Kuboi, & Dekhtyar, 2018).
Especially the advances in multi-modal speaker recognition using voice, face, and
text (VFT) analysis are eligible for inclusion (Kauffman, Williams, et al., 2018).

Furthermore, project authorities currently have no access to metrics measuring
Transcription Tool efficiency and overall time needed to work on hearing transcrip-
tions. Although Rovin (2016) attempted a controlled evaluation (see Section 3.5.2),
there currently is no way of generating and monitoring authentic performance

46



3.7. Summary

values. Supervisors are left in the dark considering transcriber efficiency in a real-
world environment. Due to this information deficit, not even approximate future
projections for workload are possible. Furthermore, this means that a considerable
decrease in tool efficiency is not detectable right away. Such a decrease could for
example stem from newly implemented software code introducing defects into the
Transcription Tool, or a disruption in the automatic preprocessing pipeline.

Finally, the currently existing automatic preprocessing pipeline is not flawless.
Simple NLP analysis could be carried out to gain insight into how common cor-
rections performed by transcribers could be automated. Especially corrections of
proper nouns (e.g. person and company names) could be executed automatically
to further cut down transcription time. Looking into possible modifications might
proof profitable, especially in the latter part of the preprocessing pipeline.

3.7. Summary

Digital Democracy is an initiative instigated by the IATPP at Cal Poly, San Luis
Obispo. It aims at increasing transparency in state governments. The initiative’s
website gives citizens an ability to gain insight into state government proceedings
of California, New York, Florida, and Texas.

Before hearing transcripts can be presented on the website, a human-assisted
preprocessing pipeline must be executed to convert hearing videos into meaningful
transcription data. This pipeline consists of two main phases. First, it utilizes
automatic processes to generate raw transcription texts and basic metadata. Second,
human transcribers enrich existing data by correcting texts, tagging speaker data,
and selecting speaker alignments. In the end, data is saved to the database and
citizens can access it using the Digital Democracy website.

The software developed in-house to perform this human transcription process is
called Transcription Tool. It is mainly used by transcribers to work on transcription
tasks. Furthermore, administrators utilize its admin interface to manage hearing
data and assign tasks to transcribers.

Although Digital Democracy has been subject to multiple improvement projects
over the years, demand for cost reduction still exists. Especially the bottleneck cre-
ated by the human transcription process using the Transcription Tool is problematic.
In addition, no automatic performance and efficiency evaluations of transcription
time are currently possible. Furthermore, investigations into automatic text correc-
tions could reveal possibilities for improvements to specific processing steps in the
human-assisted pipeline.

47





4. System Design and
Requirements

This chapter defines overall goals of the Digital Democracy Transcription Tool and
objectives of this work. In addition, current Transcription Tool requirements and
technology are examined closer. Afterward, new requirements necessary to reach
the introduced goals are set.

All explanations are directed towards redesign and improvement of the Tran-
scription Tool. Other system components of Digital Democracy are not subject to
closer investigation, due to their irrelevance for this thesis.

4.1. Goals

Fundamental goals of the Digital Democracy initiative were already elaborated
in great detail over the past few chapters. The whole purpose of the human-
assisted processing pipeline laid out in Section 3.3 can be summarized as the
approach of converting hearing videos into meaningful, rich transcripts which can
then be presented on the website. Such transcripts do not simply consist of plain
transcription text, but instead hold exact speaker tags and timestamps for every
utterance. This structured data allows for proper indication of information and
enables search mechanisms on the Digital Democracy website.

When talking about the Digital Democracy Transcription Tool, the overall goal can
be named as providing a user-friendly interface to handle transcription processes
and their administration. The tool should be as flawless and efficient as possible.
However, this is currently not the case, as explained in Section 3.6. According to
demands brought up in the previous chapter and requirements defined in this one,
the following major goals can be laid out as the final aim of this work:

• Develop improvements for the Digital Democracy Transcription Tool to in-
crease tool efficiency
• Implement a logging system which allows supervision of Transcription Tool

performance and efficiency as well as general interaction patterns
• Evaluate tool improvements using the logging system
• Prove usability of logs for future research

In the remainder of this section, requirements as well as developments necessary
to achieve these goals are defined elaborately.

49



4. System Design and Requirements

4.2. Transcription Tool State of the Art

The Digital Democracy Transcription Tool has been in use since the initiative’s
founding in 2015. It has undergone some technology and specification changes in
the past. This subsection lays out an overview of past tool requirement definitions
and currently used technologies.

4.2.1. Requirements

During his improvement developments, Rovin (2016) defined two very general
core requirement packages for Transcription Tool. While the first one specified
automated processes and hearing import into the tool in more detail, the second
one defined particular functionalities of the transcription process.

The following points summarize the general data processing and hearing import
requirements as set by Rovin (2016):

• The tool facilitates the association and importation of hearing information
into the database.
• Importing a new hearing requires hearing date, IDs of associated hearing

videos, and corresponding pregenerated transcripts.
• The tool imports information about committees, bills, and bill discussions

automatically.
• Administrators can associate committee, bill, and bill discussion information

with a hearing.

Furthermore, transcription process specifications as of Rovin (2016) can be sum-
marized as follows:

• The tool facilitates correction and annotation of hearing transcriptions.
• It provides an interface for users to modify and annotate words from tran-

scription files.
• It allows users to: create and modify utterances, give utterances time intervals,

and assign speakers to utterances.
• Modifications should be allowed on specific sections of raw transcriptions

(“transcription tasks”).
• Transcription task assignments should typically be 5 to 20 minutes long.
• Tasks are assigned to editors by administrators.
• Transcribers can use the tool to see all tasks assigned to them.
• Finished transcriptions are uploaded to the database by the tool and new

transcription information is linked to corresponding hearing information.

While tool functionality has been expanded recently, these core requirements
are still relevant. Requirements for new features are specified in later parts of this
chapter.

50



4.3. New Requirements and Technological Changes

4.2.2. Tool Technology

Transcription Tool is developed as a web application (Rovin, 2016). The backend uses
the Java based web framework Stripes (Stripes, 2018). Program code is organized
in a classic model, view, controller (MVC) architecture. All data is saved to the
DDDB, which uses MySQL (Oracle Corporation, 2018). Like all Digital Democracy
services, Transcription Tool and DDDB are hosted on an Amazon Web Services
cloud server (Amazon Web Services, Inc., 2018). OrmLite is used as the object-
relational mapping approach (Watson, 2017). HTML generated on server side is
based on JSP (JavaServer Pages Technology, 2017). For the frontend, content is
mainly provided by the template-driven JavaScript library Ractive.js (RactiveJS
contributors, 2017), while also making use of native JavaScript and jQuery (The
jQuery Foundation, 2018). The frontend component framework Foundation offers
further utilities for proper website presentation (ZURB, Inc., 2018). Communication
between client and server is handled via Ajax and JSON (Mozilla and individual
contributors, 2018; JSON, 2018). Maven is used as the build tool for this project’s
code (The Apache Software Foundation, 2018d).

4.3. New Requirements and Technological Changes

The following few sections further specify requirements necessary to reach the
goals defined in Section 4.1.

4.3.1. Rework of Original Transcription Tool

As mentioned in Section 4.2.2, initially Stripes was used for implementing server-
side technologies. However, in spring 2017 the project authorities deemed this
framework outdated and not well-maintained. Therefore, the first step of the
practical work done during this thesis is to migrate the Transcription Tool from
Stripes to the Spring framework (Pivotal Software, 2018c). During this, the current
object-relational mapping approach implemented via OrmLite is replaced with
capabilities Spring provides.

This is a major contribution which the author of this thesis carries out in collabo-
ration with other members of the Digital Democracy project team. It also serves as
a way of getting used to every component of the Transcription Tool and its code.
Figure 4.1 displays current frameworks and technologies of the Transcription Tool,
while also indicating which obsolete parts are going to be replaced.

The tool rework not only concerns components elementary to the transcription
screen. Backend code for all functionality, including admin capabilities, has to be
adapted.

51



4. System Design and Requirements

Fr
on

te
nd

JavaScript

jQuery

Ractive.js

Foundation

B
ac
ke
nd

OrmLite

Stripes

JSP

D
at
ab
as
e

MySQLO
ld

 T
ra

ns
cr

ip
tio

n 
To

ol
 T

ec
hn

ol
og

y
Obsolete

Figure 4.1.: Old Transcription Tool technology. Gray boxes represent obsolete components subject to
replacement.

4.3.2. Data Collection and Logging System

While some students are always working from a dedicated workspace in an office,
others work remotely. Because of this and the students’ unregulated working hours
due to them also being occupied with their studies, it is difficult to monitor the
current progress of transcription tasks. Without keeping track of tool interactions,
no simple way of properly quantifying transcriber productivity and therefore
tool efficiency exists. There is no possibility of estimating workload produced by
incoming transcription tasks.

Therefore, a logging framework must be introduced to enable performance
measurement and detailed analysis. Client-side logs are used for this, because they
allow for collection of richer data (see Section 2.5.3). Implementation should be
carried out in JavaScript and jQuery to prevent overhead and ensure simplicity.
Collected log entries are transferred to the server through the Transcription Tool.
To prevent sending an excessive amount of HTTP requests, log entries should be
collected and sent as batches. Preferred format for structuring and storing logs is
JSON. Working on transcription tasks will produce a separate log file for each task.

Furthermore, automatic Python scripts must be built which insert log entries
stored in JSON-files into the database. Preferably, these daily scripts are run
overnight to not disrupt transcribers’ standard working times. Figure 4.2 shows a
general overview of this data collection approach.

Without looking at the technical realization in too much detail, at least the

52



4.3. New Requirements and Technological Changes

following interactions between user and tool should be captured by logs:

• Opening/Closing the transcription screen
• Editing utterance texts
• Changing speaker assignments
• Clicking utterance manipulation buttons (split/merge/new)
• Video player interaction
• Leaving the website/browser tab and coming back
• Importing, searching, and removing speakers
• Completing tasks
• Keyboard shortcuts

For each of these interactions, the following information should be collected:

• Descriptor/Name of interaction or event
• Exact time the interaction occurred
• Type of website element that user interacted with
• Unique identifier of website element that user interacted with
• Content of element before/after transcriber interacted with it
• Pressed keys or type of mouse click triggering the interaction
• Transcriber who interacted with website
• IP address or identifier to determine if interaction was done in project lab or

from home
• Tool version transcriber worked with

Interaction AJAX/JSON Nightly Scripts

Log Entries JSON-Files

MySQL

MySQL
Database

User working with
Transcription Tool

Tool

Figure 4.2.: Data collection pipeline for the Transcription Tool logging system.

4.3.3. New Feature Definitions

After finalizing the first rework and log system developments, new features which
improve performance and efficiency of the transcription process should be imple-
mented. For this, current problems and possible improvements to Transcription
Tool had to be identified.

This was done by interviewing transcribers as well as talking to administrators.
Interviewing users about basic needs was a requirement set by the author. However,
it was decided that in-detail user interviews are not relevant for performance
evaluation within the scope of this work. Interviews served two specific purposes:

53



4. System Design and Requirements

Understanding current tool issues and making sure no feature is implemented
which would not fit future transcriber needs.

For this, transcribers were first asked which part of working on a transcription
poses the most effort for them. Second, they were questioned if they could think
of any improvements for the tool. Then, results of the conducted interviews were
combined with suggestions made by the project leaders.

Determining Transcriber Needs

In September 2017, five transcribers worked full time for Digital Democracy. An
interview with each of them was conducted, evaluating the old version of the
Transcription Tool.

Effort necessary to identify speakers was named to be one of the main factors
increasing transcription time. In addition, splitting up utterances to achieve correct
length and speaker assignments was identified as an expensive factor. In many
cases, a textual utterance which the diarization scripts determined to be spoken by
one person actually contained sentences by another speaker. In general, utterances
seemed to be too long. The video player was also lacking options, such as enlarging
the video or other more convenient ways to interact with it. Another request
mentioned by the transcribers was that names of speakers in the database could
not be changed via the Transcription Tool. Furthermore, transcribers unanimously
agreed that correcting text is not a major effort. Although names have to be corrected
frequently, ordinary text is generally of high quality. Lastly, transcribers criticized
the long loading time of the tool.

Feature Packages

Based on suggestions by transcribers and project leaders, several possible changes
aiming at improving stability, usability, and efficiency of the Transcription Tool were
found. The following feature packages are deemed first-priority and are chosen to
be implemented:

• Profile Preview

A speaker profile picture preview next to speaker names should be added.
This simplifies identifying people and enhances the search interface of
the Transcription Tool.

• Video Features

Better video player functionalities such as full-screen mode as well as
slowing down and speeding up video are implemented. While in full-
screen, it should be possible for transcribers to interact with other browser
tabs.

• Utterance Navigation

54



4.3. New Requirements and Technological Changes

Due to existing difficulties when navigating a transcript and the corre-
sponding video, additional interface buttons are added. These buttons
set the current video time to the beginning of utterances. Jumping to the
previous or next utterance from the currently played one should also be
enabled using additional UI elements. Lastly, error messages displayed
in the “Task”-tab are made interactive.

• Speaker Recognition using VFT

Other student projects and theses focus on providing better speaker
recognition while combining voice, face, and text analysis (Kauffman,
Williams, et al., 2018). This version introduces an interface for linking
results of these speaker identification algorithms to the tool. For this,
task generation in the human-assisted pipeline introduced in Section 3.3
has to be changed.

Section 5.3 describes the development process and results in more detail, while
further explaining the features listed above.

4.3.4. Log Analysis and Performance Measurement

No exhaustive analysis performed in-person, such as lab or field studies, is con-
ducted for this work. The reasons for refraining from doing such studies for
efficiency analysis are explained below.

First, such studies are usually carried out in a well-controlled environment.
However, as mentioned in Section 4.3.2, many users work on their own computers
or even from home. Besides, work patterns of transcribers might differ when
completing tasks in an unsupervised environment (bathroom breaks, distractions,
browsing the web, etc.). Efficiency analysis should be as closely geared to real-
world experience as possible. Log analysis is the best way to achieve that. Results
of performance and efficiency analyses should be eligible values usable to derive
future workload from the existing task backlog.

Transcription tasks differ vastly and depend on many factors such as video
length, number of speakers, discussed bills, state, transcriber experience, and many
more. Picking an “average task” to evaluate the system represents a profoundly
difficult task. The same can be said about picking an “average transcriber”.

Lastly, sample size can be listed as another reason why log analysis is preferable
to a lab study. The huge amount of gathered logs enables analysis of an arbitrary
number of transcribers and tasks. In contrast to that, Rovin (2016) conducted lab
studies with only 15 transcribers which worked on an overall of five tasks (see
Section 3.5.2).

To properly utilize logs, an automatic system has to be build which facilitates
reading out tool and transcriber efficiency. Efficiency metrics must be formulated
which enable such supervision. Performance changes should also be detectable. If
feasible, project administrators receive access to a simple user interface enabling
observance of these metrics.

55



4. System Design and Requirements

Furthermore, analysis is conducted to identify general interaction patterns and
specify how much time they take up in general (correcting text, identifying speakers,
etc.). This helps classifying which component of the transcription screen causes
high effort. Such knowledge is useful in consideration of future improvements.
Until now, only assumptions could be made about the amount of time specific
transcription processes would take.

So far, supervisors of the Digital Democracy initiative assumed the following
about the manual editing process of transcripts:

• Identifying speakers and their affiliation takes up most of the transcription
time
• Only minor text corrections are necessary, most of the text only has to be

proofread
• Splitting up utterances is a lot more time-consuming than merging

Lastly, data such as text changes can be used to perform basic NLP analysis.
While not main focus of this thesis, a proof of context that advanced research on
log data is possible is carried out.

4.3.5. Release Cycle and Evaluation

Base tool rework, logging system implementation, and four separate improvement
packages were defined in the sections above. The base rework is scheduled to go
live in late October 2017. Afterwards, feature packages are released sequentially
from November 2017 to February 2018 as four different tool versions.

Due to the necessity of publishing improvements as fast as possible to save costs,
sequential A/B testing is used to evaluate changes. It is planned to collect logs for
each version over a period of about two weeks. As an approximate criterion, log
data of at least 500 tasks should be recorded per tool iteration. Since transcriber
working times vary, exact release dates are bound to the amount of work done
by transcribers. If there is not enough data to evaluate performance of a specific
version, release of the next phase will be postponed by a few days. Christmas
break could change the schedule further, since most transcribers are out of town
and might not perform sufficient amount of work from end of December until
beginning of January.

4.4. Summary

Transcription Tool’s goal is to provide a user-friendly interface for carrying out
and administrating the human-assisted process necessary to produce high-quality
transcripts. However, current software is not ideal and can be improved. For this,
changes to the code structure must be made. New features are also necessary to
enable transcribers to perform work more efficiently. At last, measures offering
possibilities to evaluate performance and efficiency must be taken.

56



4.4. Summary

To start, Transcription Tool’s current backend code is refactored. For this, the
obsolete Stripes framework is replaced with the Spring framework. Further code
architecture changes are necessary, such as introduction of a service layer.

The Digital Democracy initiative and its supervisors lack tools to evaluate Tran-
scription Tool performance. To solve this problem, a logging system is implemented.
By using the data this system produces, metrics can be calculated. This allows soft-
ware developers and administrators to monitor values such as transcription time,
tool efficiency, and performance. Measuring transcription time is important to allow
proper planning and estimation of the duration and cost of future transcription
operations. Furthermore, such logs are useful to determine interaction patterns and
how much time they consume. Besides, the huge amount of data produced might
turn out to be useful for advanced research.

In addition, new features for Transcription Tool are necessary. It is decided that
the following feature packages are implemented and released as four separate tool
versions: speaker profile picture preview, new video player features, upgrades to
utterance navigation, and VFT speaker recognition. Tool versions are released in
sequential order.

Lastly, changes introduced by these new feature releases have to be evaluated.
Results of the logging system are used to achieve this.

57





5. Implementation

Section 4.3 gave an overview of how improvements to the Transcription Tool are
planned to be carried out. This chapter describes technical implementation details
further. Measures taken to realize the first rework of the original Transcription
Tool are defined first. Next, realization of the logging system is explained in detail.
Lastly, new tool features are presented as four separate tool versions.

Implementations demonstrated in this chapter lead to completion of the first
two goals defined in Section 4.1: developing Transcription Tool improvements and
implementing a logging system.

5.1. Rework of Original Transcription Tool

This rework replaced the deprecated Stripes framework with Spring. Software
development was performed in collaboration with the Digital Democracy project
team.

5.1.1. New Tool Technology

For easier configuration and project start up, Spring Boot was introduced into the
technology ecosystem (Webb et al., 2018). Over the course of this rework, data access
to the MySQL database was also restructured. OrmLite was phased out and Spring
Data JPA repositories as well as Hibernate were utilized instead (Gierke, Darimont,
Strobl, Paluch, & Bryant, 2018; Red Hat, 2018). Corresponding deprecated code was
replaced with simple JPA repository functionality. Furthermore, basic Spring AOP
concepts were used to measure performance of database queries (Pivotal Software,
2018d). In addition, duplicate code and multiply defined logic in the controller
layer was outsourced into an additional service layer. However, web controller
code was first changed to implement Spring MVC (Pivotal Software, 2018f). Stripes’
templating approach for website fragments was also replaced by Apache Tiles (The
Apache Software Foundation, 2018b).

No major new features were introduced over the course of this rework. Besides
the expected increase in stability and speed, only minor changes such as a dialog
for person creation and editing were realized. Frontend code was not subject
to revisions during this first rework. Figure 5.1 shows newly introduced tool
technology components.

59



5. Implementation

Fr
on

te
nd

JavaScript

jQuery

Ractive.js

Foundation

B
ac

ke
nd

Spring

Apache Tiles

JSP

D
at

ab
as

e

MySQL

Sp
rin

g 
C

om
po

ne
nt

s

Spring Data JPA

Spring MVC

Hibernate

Spring Security

Spring Boot

Spring AOP

N
ew

 T
ra

ns
cr

ip
tio

n 
To

ol
 T

ec
hn

ol
og

y

Figure 5.1.: New Transcription Tool technology. Novel components are marked in green.

5.1.2. Backend Code Architecture

Introduction of new backend components was used as an opportunity to change
code architecture along the way. This aimed at improving maintainability and
simplicity.

Architecture Layers

The project team agreed to try and follow the following layering approach in the
code:

1. Data Access Layer
2. Service Layer
3. Controller Layer
4. View Layer

The Data Access Layer utilizes Spring JPA repositories and entities to access the
underlying database. JPA entities are representations of database tables as Java
classes, enabling object-relational mapping. In the Service Layer, complex business
logic reused by WebControllers, RESTControllers, or other services is located. These
controllers are situated in the Controller Layer, alongside exception handlers and
other components handling communication between views and business logic.
View templates and other components the user directly interacts with are collected
in the View Layer.

Data transfer between layers is performed by either using JPA entities or Data
Transfer Objects (DTOs). Since they match the database structure exactly, passing

60



5.1. Rework of Original Transcription Tool

JPA entities to views through the Controller Layer is not ideal in many cases.
Services, controllers, and views might not always use the exact same fields existing
in a database table. Sometimes more information is necessary, sometimes less.
Therefore, DTOs were introduced to ensure better encapsulation. Data is then
displayed on websites through use of JSP (WebControllers), or passed to the user’s
browser as JSON (RESTControllers).

Figure 5.2 visualizes code architecture layers as described above. A practical
example of this architecture is given in the section below.

View Layer

Controller Layer

Service Layer

Data Access Layer

MySQL
 

User working
in Browser

Tool

JSP/JSON

Entities

Entities

Entities

DTOs

DTOs

Figure 5.2.: Architecture for Transcription Tool code layering.

Layered Architecture in Practice

The following few paragraphs illustrate the process of data passing through archi-
tecture layers by using a concrete example. For this, paragraphs below describe
how information about a person and their classification type is transferred from
database to frontend. Exemplary code snippets were included to provide better
insight and clarity, based on official Spring documentation (Pivotal Software, 2018c,
2018f, 2018a; Gierke et al., 2018; Pivotal Software, 2018e).

In the DDDB, persons of all affiliations are stored in the Person database table.
Using MySQL, a person’s classification type is defined via references to tables such
as Legislator, Lobbyist, GeneralPublic, LegislativeStaff, or others. Although
these tables are represented by entities in the code as well, explanations focus on
Person.

61



5. Implementation

Listing 5.1: Person entity implementing object-relational mapping.
1 @Entity
2 public c l a s s Person {
3 @Id
4 @GeneratedValue ( s t r a t e g y =GenerationType . IDENTITY )
5 private I n t e g e r pid ;
6 private S t r i n g t i t l e ;
7 private S t r i n g f i r s t ;
8 private S t r i n g l a s t ;
9 / / . . .

Listing 5.2: Excerpt of the PersonRepository interface.
1 @Repository
2 public i n t e r f a c e PersonRepository
3 extends JpaRepository <Person , Integer > {
4 / / D e f a u l t JPA Query , a u t o m a t i c a l l y r e s o l v e d i n t o SQL
5 Lis t <Person > findByFirstAndLast ( S t r i n g f i r s t , S t r i n g l a s t ) ;
6

7 / / Custom Query us ing n a t i v e SQL
8 @Query ( value = "SELECT f i r s t , l a s t FROM Person " ,
9 nativeQuery = t rue )

10 Lis t <Object [ ] > findOnlyNames ( ) ;
11 / / . . .

To achieve object-relational mapping for the Person table, multiple steps are
necessary. First, a Java class named Person tagged with the Spring @Entity anno-
tation has to be created. Table columns must be defined as attributes in this class.
Columns representing primary keys have to be labeled with specific annotations
like @Id and @GeneratedValue. Other columns can be annotated with @Column to
modify standard JPA configuration such as default column naming. Listing 5.1
shows an excerpt of the Person entity class.

Next, an interface named PersonRepository, extending Spring’s JpaRepository,
is defined. Spring automatically initiates default JPA repository functionality on
program startup for all such interfaces. This facilitates saving, querying, and delet-
ing rows in the database without writing any further code. To enable this inherent
functionality, the entity a repository handles as well as its primary key type have
to be specified upon interface extension. Assuming the primary key of Person is
Integer, PersonRepository must extend JpaRepository<Person,Integer>. After
this, JPA repositories can perform simple queries by defining methods in written
language, using specific keywords (Pivotal Software, 2018b). For example, a method
named findByFirstAndLast automatically queries the Person table for the first and
last name passed as String parameters. In addition, repositories can perform more
sophisticated queries using the @Query or @NamedNativeQuery annotations. A code
snippet of PersonRepository can be seen in Listing 5.2.

In most cases, DTOs only occur past the Data Access Layer. However, Spring

62



5.1. Rework of Original Transcription Tool

Listing 5.3: Code snippet extracted from PersonService.
1 @Service
2 public c l a s s PersonService {
3 private f i n a l PersonRepository personRepository ;
4

5 @Autowired
6 public PersonService ( PersonRepository personRepository ) {
7 t h i s . personRepository = personRepository ;
8 }
9

10 public C l a s s i f i e d P e r s o n g e t C l a s s i f i e d P e r s o n ( i n t personId ) {
11 / / Use r e p o s i t o r y f u n c t i o n a l i t y t o grab row by ID
12 Person person = personRepository . findOne ( personId ) ;
13 return f i n d C l a s s i f i c a t i o n ( person ) ;
14 }
15

16 / / Complex f u n c t i o n a l i t y t o f i n d c l a s s i f i c a t i o n
17 private C l a s s i f i e d P e r s o n f i n d C l a s s i f i c a t i o n ( Person p ) {
18 / / . . .

repositories allow for direct transformation of entities into DTOs upon returning
rows from the database. For example, basic person data could be directly com-
bined with classification information into a ClassifiedPerson object using a more
sophisticated query and a custom result set mapping.

Further processing of Entities or DTOs is ideally performed in services. Anno-
tating a Java class with @Service registers such a component in Spring. Defining
logic in methods of these classes provides reusability and encapsulation. Although
DTOs may also appear in repositories as mentioned above, transition from entities
to DTOs usually happens in services. To revisit the previous example, a Person
can have multiple classifications. Due to this reason, @PersonService implements
a method which figures out the best-fitting classification for the current context.
It then builds a ClassifiedPerson-DTO out of the newly found information as
well as the original entity and returns it to the caller. Part of this source code is
displayed in Listing 5.3.

An important aspect of Spring is dependency injection, also called “Inversion of
Control” (IoC) (Pivotal Software, 2018a). Elaborating this concept in great detail
would be beyond the scope of the attempted explanations. However, the reader
should be familiar with its basics to understand presented code snippets.

Triggered by @Autowired, all object dependencies tagged with this annotation
are automatically injected by the Spring IoC container. Only specific classes anno-
tated as Spring components can utilize this functionality (@Repository, @Service,
@Controller, etc.). Basically, such objects do not have to be instantiated manu-
ally. Instead, they are created and injected inherently by other components of the
framework.

Controllers, annotated with either @Controller or @RestController, handle

63



5. Implementation

Listing 5.4: Example of mappings specified in PersonController.
1 @RestControl ler
2 public c l a s s PersonContro l ler {
3 private PersonService personService ;
4

5 @Autowired
6 public PersonContro l ler ( PersonService personService ) {
7 t h i s . personService = personService ;
8 }
9

10 @GetMapping ( value = "/person/id /{ personId } " )
11 public C l a s s i f i e d P e r s o n r e t r i e v e C l a s s i f i e d P e r s o n (
12 @PathVariable ( " personId " ) I n t e g e r personId ) {
13 / / Returned o b j e c t i s a u t o m a t i c a l l y c o n v e r t e d t o JSON
14 return personService . g e t C l a s s i f i e d P e r s o n ( personId ) ;
15 }
16 / / . . .

communication between backend logic and frontend views. They match HTTP
requests issued by the client to functionality provided by Java code. Method anno-
tations such as @RequestMapping, @GetMapping, or @PostMapping realize mapping
of URLs to functionality. Through these methods, generation of HTML via JSP is
triggered. They can also directly return data such as JSON entities to the browser.
For example, PersonController maps an HTTP request sent to "person/id/42"
to a method actually calling PersonService.findOneClassified and returning the
ClassfiedPerson which has an id of 42 as JSON. Listing 5.4 shows the controller
code necessary to achieve this exact request mapping.

Views represent the final link between backend functionality and the frontend a
user interacts with. For the Transcription Tool, this layer contains JSP and Apache
Tiles functionality as well as client-server interaction using JSON. A concrete
example of interaction between Controller and View Layer was already given in
the paragraph above.

5.2. Logging System

As elaborated in Section 4.3.2, actions taken by transcribers have to be observable.
To achieve this, interactions between transcribers and the Transcription Tool are
recorded and saved into logs. This not only allows the system to keep track
of the transcription progress of separate videos, but also enables performance
measurements and identification of interaction patterns in a live environment. It
also provides additional information for debugging.

This section starts by listing the information collected for each event. Then,
actually logged events are specified.

To match the requirements defined in Section 4.3.2, up to eight values are recorded

64



5.2. Logging System

for each collected event. This collection of fields is called LogEntry:

• event

String value describing the triggered event. This can either be a standard-
ized JavaScript event, or a custom event defined for our purpose. Events
are explained in more detail below.

• element

Either the tag name of the HTML element for which the event was
recorded, or additional information for custom events.

• tagId

Unique identifier given to this element. This id might contain information
such as the database id of specific entities to enable further analysis.

• value

Text content of the targeted HTML element when the event was triggered.
In case of a custom event, this field is used for providing additional
information about the specific interaction.

• keyPressed

Integer value describing the key pressed to trigger this event. For key-
board interactions, ASCII decimals are used. Left, middle, and right
mouse buttons are represented by values 0, 1, and 2.

• timestamp

UNIX timestamp in milliseconds (UTC).

• editorId

Unique identifier for the current editor.

• ip

IP address, used to detect if a person was working remotely or from the
project lab.

To prevent the system from recording logs too excessively, only specific interac-
tions with HTML elements and interaction patterns relevant to the transcription
workflow are taken into consideration.

The following itemization lists all standard JavaScript events that are recorded. It
also includes short descriptions on when they are triggered, according to Mozilla
and individual contributors (2018):

• focusin

An element gains focus, via mouse click or any other interaction.

• focusout

An element loses focus.

65



5. Implementation

• click

A mouse click is performed on an element.

• change

Upon losing focus, content of an element is different from when it first
gained focus.

• keydown

Any key is pressed down, whether they produce a character value or
not. Specific Transcription Tool shortcuts are also registered and reflected
in the logs using this event (for example triggering video fullscreen,
jumping to next/previous utterance, etc.).

.
Events listed above are collected for the following HTML-elements on the tran-

scription screen:

• Input fields
• Text areas
• Drop-down lists (“select”-tags)
• Links
• Buttons
• Video player and all of its interface elements
• Specific clickable markup elements (some “i” and “span”-tags)

Note that a single element can fire multiple events at once. For example, clicking
on an input field which is not currently focused triggers focusin as well as click
at slightly different times. After changing the content and leaving the field, change
and focusout are both fired. For such standard events, collecting information
is straightforward: LogEntry fields are filled with data grabbed directly from
corresponding JavaScript event objects.

In addition to standardized browser interactions, custom events relevant for
analysis are also included in the recordings:

• load

Transcription screen is loaded or unloaded. Records a LogEntry with
value set to either true or false, dependent on whether the screen is
opened or closed.

• visible

Monitors the visibility of the current window (browser tab). As long
as the tab is at least partially visible in a non-minimized window, it is
considered visible. If the visibility changes, a LogEntry is created with a
value of either false, if the window was hidden, or true, if it became
visible.

66



5.2. Logging System

Listing 5.5: Example of a LogEntry in JSON.
{

" event " : " c l i c k " ,
" element " : "TEXTAREA" ,
" tagId " : " t e x t a r e a −20959669" ,
" value " : "Mr . President , I withdraw

my point of order . " ,
" keyPressed " : 1 ,
" timestamp " : 1512408954042 ,
" e d i t o r I d " : 107 ,
" ip " : " 1 2 3 . 4 5 . 6 . 7 8 9 "

}

• highlight

A user highlights a specific text on the website (person names, un-
known words, etc.). The highlighted text is stored in the value field of a
LogEntry.

• copy, cut, and paste

Records copied, cut, or pasted text and stores it in the value field of a
LogEntry.

• hovering

Using JavaScript’s mouseenter and mouseleave events, hovering specific
elements is registered.

Due to the vast amount of triggered events, LogEntries are batched and only
transmitted to the server every nine seconds. A separate file is created for each
transcription task and contains JSON representations of multiple such entries. Each
log file is marked with the task’s unique id existent in the DDDB. A concrete
example for a single JSON LogEntry describing an event in a log file can be seen in
Listing 5.5.

Although code of the logging system was originally developed for the rework of
the Transcription Tool described in Section 5.1, software code was also ported to be
compatible with the old tool based on Stripes.

Before these logs are analyzed, they are saved to the DDDB. This enables faster
processing and easier data access. Nightly executed Python scripts insert log
information produced during the last day into the database. The corresponding
table is named TT_Log. In addition to the fields existing in a LogEntry, the following
data is also added: information about the current tool version (tversion), last
modification date of the entry (lastTouched), and a hash value of the value field
(valueHash). Each row also holds an auto-incremented id for indexing.

Table 5.1 displays an excerpt of entries in the TT_Log table. In this example, a
user first clicks on a tab. Then, they modify text in an utterance text area. In the
end, they leave the window. Presented rows only show columns most relevant to

67



5. Implementation

user interaction. Since fields such as taskId, editorId, and tversion would be the
same for each entry in the table, they were excluded.

Table 5.1.: Example of log entries as structured in the database.
timestamp tagId element event keyPressed value

1510367848260 quick-edit-tab A focusin 0

1510367848428 quick-edit-tab A click 1

1510367850622 quick-edit-tab A focusout 0 To protect a life of a person.
1510368051694 textarea-4452 TEXTAREA click 1 To protect a life of a person.
1510368052358 textarea-4452 TEXTAREA keydown 8 To protect a life of a person.
1510368052734 textarea-4452 TEXTAREA keydown 84 To protect life of a person.
1510368052958 textarea-4452 TEXTAREA keydown 72 To protect t life of a person.
1510368053190 textarea-4452 TEXTAREA keydown 69 To protect th life of a person.
1510368056571 textarea-4452 TEXTAREA change -1 To protect the life of a person.
1510368056572 textarea-4452 TEXTAREA focusout 0 To protect the life of a person.
1510368079199 window window visible -1 false
1510368079199 window window load -1 false

A basic interface was built which provides a report of primitive transcription
time calculations. This usage report screen helps researchers as well as supervi-
sors of the initiative to visualize overhead of the transcription process. Users can
query for duration by editor, state, and date (via use of a date picker). The screen
produces a list of results containing details about the task transcription process.
This information includes: transcriber, video duration, time for transcription, ratio
of transcription time to video duration, as well as time of first log, last log, and
completion. Figure 5.3 shows the implemented usage report screen. Results can
also be downloaded as comma-separated values (CSV) files. Values displayed in
this report represent crude measurements of tool performance processed in Java.
More accurate calculations using Python scripts are specified in Chapter 6 and
carried out in Chapter 7.

Figure 5.3.: Transcription Tool usage report displaying results of transcription time calculations.

68



5.3. New Tool Features

5.3. New Tool Features

As explained in Section 4.3.5, feature development and tool releases are performed
in a sequential manner. These releases are titled “versions” for the remainder of
this paper. The in Section 5.1 described revamp of the old tool is labeled “Baseline
version”, or version 0. It is similar to the old tool in terms of functionality.

Table 5.2 gives an overview of all released tool versions. The following subsections
describe each new version and their functionality in detail.

Table 5.2.: Transcription Tool versions with feature descriptions.
# Name Description
0 Baseline Rework of old Transcription Tool, no major function-

ality changes
1 Profile Preview Hovering icon near people’s names shows preview

of their profile picture
2 Video Features Fullscreen for video player, UI to change playback

rate of video
3 Utterance Navigation Buttons for directly jumping to utterance in video

and going to next or previous utterance, interactive
error messages, UI for manually setting video time

4 VFT Incorporation of voice, face, and text analysis for
speaker suggestion

5.3.1. Profile Preview

One of the biggest efforts for transcribers was named to be identifying speakers
solely by their appearance on video. Especially new transcribers struggle to identify
people only by picture or voice. Therefore, one of the first improvements imple-
mented for the tool was a speaker profile preview including pictures. Through
JavaScript and jQuery, this profile picture preview was made available next to
speaker names in the utterance speaker selection box, speaker search result list, and
orator list. For this, the speaker search area and result list was redesigned. In all
mentioned UI elements, hovering the icon next to a name now displays the speaker
profile picture. If no picture is available, only the person’s name and classification
are shown (for example legislator, lobbyist, etc.). Figures 5.4 and 5.5 demonstrate
usage of the profile picture preview.

Unfortunately, for most states only pictures of legislators are freely available.
These are the only images which can be retrieved effortlessly from official sites and
do not put Digital Democracy at risk for copyright infringement.

69



5. Implementation

Figure 5.4.: Profile picture preview for speaker selection box.

Figure 5.5.: Profile picture preview for speaker search and orator list.

5.3.2. Video Features

As described in Section 4.3.3, another frequently occurring transcriber complaint
was the lack of options when interacting with the video player. This player is
realized by usage of the Video.js framework (Brightcove, Inc., 2018). Speakers could
sometimes not be identified due to the small size of the player. Therefore, the option
to toggle fullscreen mode was implemented. This fullscreen option is describable as
a “full window mode”, since one of the requirements was to allow interaction with
other browser tabs while the video is maximized. Through this, currently visible
speakers can be compared to people on official websites and third-party platforms.
Fullscreen mode can be toggled by using the video player interface as well as a
keyboard shortcut (Alt+F).

In addition, possibility for transcribers to change video playback rate was enabled.

70



5.3. New Tool Features

Videos can be sped up and slowed down by using player interface elements and
keyboard shortcuts (Shift+"+" and Shift+"-"). On the one hand, this feature
aims at resolving issues with understanding mumbled notions and names. Some
people speak really fast, particularly during routine interactions in House or
Senate. Slowing down video playback helps transcribers to properly understand
problematic audio sequences. On the other hand, some people speak very slowly,
particularly during testimonies. Especially experienced transcribers can increase
video playback rate to speed up their work.

Figure 5.6 shows the enhanced video player interface.

Change Playback Rate

Toggle Fullscreen

Figure 5.6.: Video player with option to change playback rate and toggle fullscreen.

5.3.3. Utterance Navigation

Features introduced in the previous section solve some video player problems.
Improvements described in this section target the issue of transcription video
navigation further. Transcribers face difficulties when trying to jump to specific
utterances or sections in a video. For this, further UI improvements were developed.

Every utterance element in the transcription screen was extended with three icon
buttons. The “Play”-button next to an utterance directly sets the video time to this
utterance’s start time. Next to the currently played utterance, two extra buttons
are displayed. These allow transcribers to seamlessly jump to the previous or next
utterance in the video. Keyboard shortcuts for triggering functionality of these two
buttons are also available (Alt+↑ for previous, Alt+↓ for next utterance). Figure 5.7
shows modifications of the utterance interface element, while Table 5.3 summarizes
the new icons and their functionality.

Furthermore, three input fields were appended below the video player. In these
fields, a timestamp containing hours, minutes, and seconds can be entered. When
pressing the “Set Time”-button, the video time is set to this exact timestamp.

71



5. Implementation

Additionally, error messages displayed in the “Task”-tab of the transcription
screen were made interactive. Transcribers no longer have to manually search the
whole transcript for errors such as missing speaker assignments, invalid times-
tamps, or non-selected alignments. Clicking an interactive error message causes the
utterance list to automatically scroll to the erroneous utterance. In case of missing
information for speaker profiles, the interface switches to the “Speaker”-tab. These
UI changes are visible in Figure 5.8.

Lastly, past tool versions introduced many new keyboard shortcuts. Therefore, a
tab which contains information about all existent shortcuts was added.

Utterance 

Navigation 

Interface

VFT-Interface

(deactivated 

for now)

Utterance

Manipulation

Figure 5.7.: Updated utterance element with navigation buttons introduced in version 3.

Table 5.3.: Utterance navigation interface icons introduced in version 3.

Go to time of previous utterance in video

Set video time to start time of this utterance

Go to time of next utterance in video

5.3.4. Incorporation of VFT Analysis Results

As already mentioned when describing the first improvement iteration in Sec-
tion 5.3.1, identifying speakers is an expensive task for transcribers. This version
links the Transcription Tool to a system developed by Kauffman, Williams, et al.
(2018) which implements voice, face, and text (VFT) analysis.

General VFT Functionality

The VFT algorithm is able to guess with a certain probability which speaker made
an utterance. Due to the lack of data for non-legislators, speaker recognition is only

72



5.3. New Tool Features

Set Video to 
Timestamp

Interactive 
Error
Messages

Figure 5.8.: Interface for setting video time and display of interactive error messages.

efficient for legislators and ex-legislators. Unfortunately, it is not effective for other
speakers, such as the general public.

Speaker analysis is not performed for each utterance on its own. Most of the time,
single utterances are too short for proper analysis. As mentioned in Section 3.3,
speaker tags are created during preprocessing. Each of these tags is assigned to an
arbitrary amount of utterances. At this point, it is not clear which person this tag
represents. VFT enhances the prior diarization approach while utilizing voice, face,
and text analysis to create speaker assignments for tags. It considers all utterances
of a hearing which hold a specific speaker tag and tries to recognize a list of persons
for this tag.

Processing Pipeline Changes

Speaker recognition using VFT is performed on a separate server, not in the
Transcription Tool. In fact, speaker suggestions are not directly calculated when
requested in the tool, but rather already precomputed in the preprocessing pipeline.
Because of this, the human-assisted pipeline had to be changed under considera-
tion of VFT design by Kauffman, Williams, et al. (2018). Figure 5.9 visualizes the
modified preprocessing pipeline in an activity diagram. Changed components in
comparison to the original design include the automatic processes of the Transcrip-
tion Tool and VFT service, both on the far right of the figure.

The VFT algorithm returns a list of suggestions, each having a confidence value
in percent. When the tool receives speaker suggestions during the task generation
process, it saves the recommendations to the DDDB. If the VFT process or com-
munication between servers fail for a transcription task, the system carries out a
fallback to the original diarization.

73



5. Implementation

Trimming and
Cutting

Send Video to
Transcription

Service

Video Download
and Indexing

Change Trim and
Cut Parameters

Video Cuts
Appropriate 

no

yes

Transcription Tool
Admin

Trigger Task  
Generation

Bill Tagging

do VFT?

Editor

Human
Transcription 
(Up-Leveling)

Automatic

Text
Enhancement

Merge Scripts

Task Generation

Download
Transcript from

VPS

Use VFT-
Diarization

Use VPS-
Diarization

VFT
response

valid

yes

Save Speaker
Predictions

Store VFT-
Diarization

no

VFT  
data  
found

yes

no

Store VPS-
Diarization

no

yes

VFT Service

Speaker
Prediction

Diarization  
using Transcript  

And Audio

External
Transcription

Service

Automatic  
Transcription

Video
Processing

Service (VPS)

Diarization  
using Audio

Request
Transcription

Receive
Transcript and

Notify TT

Figure 5.9.: Activity diagram of the modified Transcription Tool preprocessing pipeline. Enables VFT
features and a new diarization approach by Kauffman, Williams, Washington, Socher,
and Khosmood (2018).

74



5.3. New Tool Features

Inclusion in Transcription Tool

To include VFT results in Transcription Tool, an icon (magnifying glass) was placed
in each utterance interface element on the transcription screen. Clicking this icon
brings up a dialog suggesting speakers to the transcriber.

Transcription Tool displays the five highest-confidence speaker suggestions,
assuming their confidence value is greater than 5 percent. Speakers are presented
in descending order, sorted by confidence. Transcribers can then choose one of the
suggestions in the dialog. Selecting a speaker leads to this person being aligned
with all utterances having the same diarization tag as the currently investigated one.
If an utterance already holds a different speaker selection, it is not overwritten. In
the dialog, speaker names are presented as links which open people’s profile pages
on the Digital Democracy website. Displayed profile pictures are also interactive.
Clicking an image opens it in a new tab for closer investigation. If there are no
speaker suggestions for an utterance, the icon triggering the dialog is grayed out.
Figure 5.10 shows an example of the speaker suggestion interface for an utterance.

Figure 5.10.: Screenshot of the VFT feature, displaying the speaker suggestion dialog. The blue icon
indicates the utterance for which the suggestion is currently displayed.

Although VFT analysis is usually not providing suggestions for unknown people,
mistakes can occur. This leads to the currently speaking person not always being
existent in the suggestion list. Administrators can also choose to not trigger VFT
analysis during task generation. If VFT is not used, no speaker suggestions are
available for generated tasks.

75



5. Implementation

5.4. Summary

Previously, Chapter 4 defined requirements and design of new developments for
the Transcription Tool. In this Chapter, actual developments were carried out.

First, Transcription Tool had to be reworked. For this, the backend framework
Stripes was replaced with Spring. Four code architecture layers were introduced:
Data Access Layer, Service Layer, Controller Layer, and View Layer.

In addition to the backend rework, a logging system using JavaScript and jQuery
was implemented for the frontend. It captures transcriber interactions with impor-
tant elements on the transcription screen. Logs are then saved in JSON files on
the transcription server. Through nightly Python scripts, they are inserted into the
DDDB. A user interface was also developed which enables preview of Transcription
Tool performance data.

Then, improvements to the Transcription Tool were developed and sequentially
released as four new versions. First, profile picture preview was implemented
by providing an icon next to speaker names. Hovering this icon shows a pop-
up containing further speaker information and a profile picture. Second, video
player functionality was improved. This update enabled fullscreen mode as well
as slowing down and speeding up video playback rate. These functionalities were
also made available to transcribers through keyboard shortcuts. Next, enhanced
utterance navigation and interactive error messages were included in the tool.
Utterance elements now contain three additional icons, which enable jumping to
the previous, next, or any arbitrary utterance. In addition, error messages displayed
in the “Task”-tab were made interactive to allow faster navigation of a transcript.
Furthermore, simple UI elements were added below the video player which allow
setting the video to a specific timestamp. Lastly, speaker suggestions using results
of VFT analysis, based on work of previous projects and theses, were integrated.
For this, preprocessing pipeline and task generation process had to be modified.
Speaker suggestions are presented to transcribers in a dialog. This dialog can be
triggered for each utterance by clicking a magnifying-glass icon.

76



6. Experimental Design

To fulfill analysis goals laid out in Chapter 4, metrics enabling evaluation of the
Transcription Tool and its separate versions must be defined. This issue is addressed
in this chapter by describing measurement of tool efficiency and transcriber in-
teractions. Possibilities for detecting frequently occurring text corrections are also
elaborated. Furthermore, approaches for automatic replacement of misspelled legis-
lator names are explored. All calculations are performed based on data collected
using the implemented logging system.

6.1. Transcription Tool Efficiency

To measure tool efficiency, a statistical analysis using specific metrics is performed.
These metrics are coined by terms which have a distinctive meaning within the
scope of this paper. They are described over the following few paragraphs.

First, it has to be mentioned that hearing video duration does not represent a
reliable base value for calculation of performance metrics. In some states, videos
are uploaded untrimmed and contain silent periods which do not require any
transcription work. Therefore, the video speech time (VSt) of a task (t), or duration
of video containing speech, was chosen as measurement for its actual length. VSt
is derived from utterance timestamps produced by the automatic transcription
process. As seen in Table 6.1, VSt accounts for only 86.13% of the video time in a
task on average. However, it differs strongly across states. Florida’s videos seem to
be more appropriately cut by default, since ratio of VSt to video duration is higher
(94.03%). All other states hold proportional values below 87%, with New York being
the lowest at 81.6%. For all our calculations, computing values using task averages
is preferable to overall mean. Longer tasks would have a bigger impact on results
than shorter ones when using overall mean.

Transcription time (Tt) is the time needed to complete a specific transcription
task (t), measured in minutes. There are two reasons for measuring metrics in
minutes for this work. First, results of previous research, such as conducted by Rovin
(2016), were also presented in minutes. However, the more practical explanation
is that minutes fit the real-world context better. As explained before, transcribers
work on transcription tasks affecting about 5 to 20 minutes of video. Results of
calculations which aim at estimating effort or efficiency for this process are therefore
better comprehensible when presented in minutes.

Although Tt can be split up into separate transcriber interactions, this section
focuses on calculation of efficiency metrics. Interaction patterns are closer inves-

77



6. Experimental Design

Table 6.1.: Comparison of video duration, video speech time (VSt), and their relation over all states
for tasks completed from October 2017 to March 2018.

State Tasks Duration (h) % of VSt in Video
Video Speech per Task Overall

CA 697 250.26 227.79 86.86 91.02

FL 4091 683.19 645.44 94.03 94.47

NY 924 288.92 262.16 81.6 90.74

TX 6483 1071.05 887.81 82.02 82.89

Average 3045 573.35 505.80 86.13 89.78
All 12195 2293.41 2023.21 86.3 88.22

tigated in Section 6.2. Task transcription time and all metrics connected to it are
calculated under the prerequisite that tasks are completed by single transcribers
working with a specific tool version. Tasks which were completed using multiple
tool versions or by different transcribers are excluded from the results.

Transcription ratio per task (TRt) describes the time in minutes it takes a tran-
scriber to work on a minute of video speech in a specific task (see Equation 6.1).
Subsequently, it is the ratio of Tt to VSt.

Transcriber editing ratio (TERtr) is the average TRt over all tasks of a specific
transcriber (tr), while Ntaskstr describes the number of tasks completed by a single
transcriber (see Equation 6.2). TERtr can be seen as a value depicting how well a
specific transcriber performs the transcription process. The smaller this value, the
more efficient a transcriber is.

TRt =
Tt

VSt
(6.1) TERtr =

Ntaskstr

∑
i=1

TRi

Ntaskstr

(6.2)

The main metric used to measure efficiency of the tool and its separate versions is
called Transcription cost (TC). Lower cost naturally corresponds to higher efficiency.
As seen in Equation 6.3, TC represents the average transcriber editing ratio over
the number of all transcribers (Ntranscribers). Basically, it is the average amount of
time needed to transcribe one minute of video speech.

TC =

Ntr

∑
i=1

TERi

Ntranscribers
(6.3)

All metrics as well as the variables displayed in Equations 6.1, 6.2, and 6.3 can be
calculated over an arbitrary subset of transcription tasks and editors (for example
only for specific tool versions). When diminishing task selection according to a
specific criteria (c), resulting transcription cost is referred to as TCc.

78



6.2. Transcriber Interactions

6.2. Transcriber Interactions

The transcription process can be split up into separate interactions. Therefore, Tt is
the time a transcriber needs to perform these interactions. It includes startup time,
text correction, speaker identification, splitting and merging utterances, as well as
passive interactions.

Equations 6.4 and 6.5 show a summarization of how Tt was defined for this
analysis. Its separate components are closer elaborated below.

Tt = Startupt + TextCorrectiont + SpeakerIdt+

Splitt + Merget + Passivet
(6.4)

Passivet = Proo f readt + Idlet (6.5)

Startup time can be classified as the time span between loading the transcription
screen and first user interaction.

Text correction time is probably the most elementary interaction between tran-
scriber and tool. It records time spent in text areas editing utterance texts.

Time needed for speaker identification includes all activities belonging to speaker
selection, speaker search, and correction of wrongly assigned speakers. More
complex interactions have to also be accounted for, such as leaving the transcription
screen to look up people on other websites.

Splitting and merging utterances are relatively simple operations. However,
counting time necessary to complete them requires some consideration. Clicking
the split or merge button barely takes any time, but deciding whether or not to do
so does. Usually, it is obvious to transcribers which very short utterances should
be merged right away. On the other hand, splitting up utterances requires more
effort. Transcribers must not separate a speaker’s line of thought while making sure
utterance texts are of appropriate length. Due to these reasons, both operations are
given fixed costs. Based on real-world observations, it was decided that merging
accounts for half a second of transcription time, while splitting accounts for one
second.

Besides the distinctive interactions explained up until now, others can not be
measured reliably via log data. Such activities include the transcriber proofreading
text and simply watching the video, or not doing any work at all (being idle). These
passive activities were combined into a single parameter called Passivet, as seen in
Equation 6.5.

Values making up transcriber interaction time in a task can also be collected in a
vector It (see Equation 6.6). Consequently, Iti refers to the time spent for a specific
interaction type (i). Using this representation, Equation 6.4 can be shortened to
Equation 6.7, which shows another definition for Tt.

79



6. Experimental Design

It =


Startupt

TextCorrectiont
SpeakerIdt

Splitt
Merget
Passivet

 (6.6)
Tt = It1 + It2 + It3+

It4 + It5 + It6

(6.7)

Thus far, only time spent on interactions in single tasks was considered. However,
it is more relevant to find out how each interaction affects the time necessary to
complete all transcription tasks. In addition, changes over different tool versions
must be calculated to evaluate new features.

For each tool version, transcription time is split up into separate interactions.
Each of these interactions is represented by a ratio. Changes in interaction patterns
are made detectable this way. These average interaction ratios (AIRvi) are computed
per tool version (v) and interaction. As seen in Equation 6.9, averaging interaction
ratios (IRti) of all tasks in a version leads to this value. To be more precise, IRti
stands for the duration of time spent for given interactions (Iti) in relation to video
speech time of a task. Equation 6.8 visualizes these variables. It can be stated that
AIRvi is a general representation of how time consuming an interaction type was
in a specific version.

IRti =
Iti

VSt
(6.8) AIRvi =

Ntasksv

∑
t=1

IRti

Ntr
(6.9)

To quantify how different interactions attribute to concrete changes in timing,
a parameter αvi was added for each interaction feature. αvi acts as a multiplier
denoting the increase or decrease in time used for an interaction produced in this
version compared to the base version 0. AIRvi is used to calculate this value. Values
less than 1 represent an increase in efficiency, or reduction of cost, compared to
version 0. Equation 6.10 shows how αvi is computed.

αvi =
AIRvi

AIR0i

(6.10)

Consecutive performance changes over multiple versions illustrated by αvi can
be best displayed in a matrix. Each cell contains a concrete value for αvi , with rows
representing different tool versions and columns depicting different interactions.
Interaction columns are labeled in the same order as in It. These matrices are
named interaction transformation matrices, or ITc, with c representing an arbitrary
criteria. This criteria describes how tasks for metric calculations were selected, for
example by transcriber cohort or specific states. Equation 6.11 shows the layout of
such a matrix, for m versions and n interaction types. As already defined above,

80



6.3. Transcription Text Correction

calculations for αvi are carried out for five different versions and six interaction
types. It therefore produces 5x6 matrices.

ITc =

interaction types−−−−−−−−−−−−−−−−→
1 1 · · · 1

α11 α12 · · · α1n
...

... . . . ...
αm1 αm2 · · · αmn


y versions (6.11)

Lastly, another alternative of Tt interpretation is presented. αvi is introduced as
a task-independent variable which is used to measure interaction changes over
different versions. However, it can also be utilized to model Iti with the help of
a variable describing the base effort needed for specific interactions, regardless
of version (βti). This variable can not be fully specified, since it is dependent on
concrete task characteristics such as transcriber, video time, number of speakers,
and others. Still, it can be used to model Tt for arbitrary tool versions and tasks.
This statistically informed model for Tt is shown in Equation 6.12.

Ttv = αv1 · βt1 + αv2 · βt2 + αv3 · βt3 + αv4 · βt4 + αv5 · βt5 + αv6 · βt6 (6.12)

6.3. Transcription Text Correction

Collected log data is useful for measuring metrics such as transcription cost or
transcriber interaction patterns. However, there are other conclusions which can be
drawn from these massive amounts of data.

Changes to transcription texts are documented in detail every time a user presses
a key. Using this data, basic research for detecting common replacements can be
conducted. If frequent corrections are found, they can be automatically carried out
during preprocessing. Furthermore, analyzing logs for this purpose serves as proof
of concept for more sophisticated research. This was a goal laid out in Section 4.1.

6.3.1. Common Corrections

As a first step, common replacements transcribers make must be determined. This is
necessary because no such research was previously performed for the Transcription
Tool.

Parts of the Python library difflib are used to assist with this issue (Python
Software Foundation, 2018). This library implements an improved version of the
gestalt pattern matching algorithm introduced by Ratcliff and Metzener (1988).
It calculates differences in text similar to how a version control system such as
GitHub does (GitHub, Inc., 2018). Listing 6.1 shows example output for processing

81



6. Experimental Design

Listing 6.1: Output for an example sentence comparison using difflib.
−−− We’ re united and form opposi t ion a g a i n s t the L e g i s l a t o r .
+++ We’ re united in firm opposi t ion a g a i n s t the L e g i s l a t u r e .
@@ −4 ,2 +4 ,2 @@
−and
−form
+in
+firm
@@ −9 +9 @@
−L e g i s l a t o r
+ L e g i s l a t u r e

differences in two sentences using difflib.unified_diff. This output must be
postprocessed to render it useful for the previously described purpose.

6.3.2. Legislator Name Correction

Results of the general text replacement analysis will lead to concise findings about
commonly corrected words. Aside from that, misspelled names being produced by
text-to-speech algorithms is a known issue for Digital Democracy. However, there
are no measurements yet for how often names are actually misspelled. Therefore, it
is not obvious if implementing sophisticated name correction mechanisms would
be cost efficient. Analysis has to be carried out that aims at identifying a need for
such improvements.

Although it is possible, deciding if a word actually represents a name in a certain
context is a challenging issue. Therefore, only legislator last names highly probable
to appear in the current task should be considered. This can be achieved by utilizing
a task’s hearing data in the DDDB. Hearings are held by specific committees. Certain
legislators are assigned to committees on a permanent basis during a session year.
By using this information, names of committee members can be investigated for
this initial research.

Dictionary Replacement

One of the easiest ways to correct names is a simple rule-based approach. A
dictionary is built by collecting common correction findings. If a name is frequently
modified in a specific way, adjustments can be performed automatically during
preprocessing.

A dictionary is constructed using words which were replaced by committee
member names. However, not every entry in this dictionary can be seen as relevant.
Due to this, a threshold describing how often corrections for a committee member
must occur to be considered valid is defined (θdic). For now, it is assumed that a
correction has to at least happen twice for a name in a specific committee, leading
to θdic = 2.

82



6.3. Transcription Text Correction

Automatic Name Correction

A dictionary of common name replacements is a reliable correction tool. However,
arguments can be made for attempting more advanced approaches.

When looking at transcriptions completed in the past, it becomes obvious that
small mistakes in legislator last names were not always corrected. For example,
automatic transcription sometimes mistakes legislator “Hertzberg” as “Hetzberg”.
Transcribers seem to overlook such small typos at times. Therefore, it would not
come up in a dictionary of common replacements. Legislators also change on a
regular basis. Each session year could bring a different list of legislators. This would
lead to problems for tasks completed in the beginning of a session year, since
the replacement dictionary would not be up to date yet. Subsequently, automatic
detection of misspelled names has to be performed.

As the simplest approach, all capitalized words coming out of the preprocessing
pipeline can be considered possible candidates for legislator names. However, this
might prove to be too general.

Because of this, more progressive techniques enabling detection of names using
POS- and NER-tagging are established. Stanford taggers as well as the spaCy
framework provide functionality to carry out such tagging. These technologies
were already introduced in Section 2.3. After tagging sentences, two types of
words are subject to investigation: Proper nouns (“NNP”-tag) for POS, persons
(“PERSON”-tag) for NER.

For Stanford taggers, the english-left3words-distsim1 model (POS) and
english.all.3class.distsim.crf.ser2 classifier (NER) are used. Processing with
spaCy is carried out under support of the en_core_web_sm3 model.

After candidate words (wc) are detected using such taggers, an attempt has to be
made to match them to actual legislators being part of the current committee (wl).
For this, Levenshtein and Jaro-Winkler algorithms are used.

For Levenshtein, a combination of distance and ratio (Lratio, see Equation 2.1) is
utilized. The candidate word which can be transformed into a legislator name with
the smallest distance value should be chosen. Substitution cost of letters is set to 2
in the Levenshtein calculation, while overall distance between wc and wl should
not exceed 3. A threshold θLr is also introduced for Levenshtein ratio. If the chosen
transformation has Lratiowc ,wl

≤ θLr, it is considered a match. Although an optimal
value has to be found via concrete test runs, anywhere between 0.23 and 0.27 seems
appropriate as an initial guess for θLr. Using a ratio as well as a substitution cost of
2 aims at preventing premature replacement of short words.

For Jaro-Winkler, thresholds (θJW) between 0.86 and 0.90 are used as a starting
point for investigation. Furthermore, distance of wc and wl must be less than 3 to
be considered a valid replacement.

1https://github.com/stanfordnlp/CoreNLP/blob/master/doc/ner/README.txt
2https://github.com/stanfordnlp/CoreNLP/blob/master/doc/ner/README.txt
3https://spacy.io/models/en#en_core_web_sm

83



6. Experimental Design

Evaluation

Results of automatic correction approaches utilizing dictionary replacement, cap-
italization, POS-tagging, and NER-tagging as described in the previous sections
must be evaluated. For this, prerequisites have to be set first.

For each state, five tasks are selected as a test set. Chosen tasks should concern
hearings of different committees to prevent bias towards specific legislator names.
In addition, tasks should be randomly picked with respect to mean and median of
utterance count and video speech duration of all tasks. The average and median
values for video speech duration are 9.9 and 4.7 minutes. For utterance count,
calculations for mean and median yield 47 and 29. Due to these values, tasks
containing between 30 and 50 utterances and 5 to 10 minutes of video speech are
randomly selected.

In the context of this evaluation, each transcription text goes through four itera-
tions: unedited (u), automatically corrected (c), transcribed (t), and proofread (p).
Unedited texts are directly pulled from the database after they were emitted by
the preprocessing pipeline. Automatically corrected texts are those subjected to
replacement approaches described in this section. Transcribed texts were processed
by transcribers and marked as completed in the database. The proofread phase
was introduced only for this evaluation. All transcribed tasks selected to carry out
this experiment must be manually checked for errors in legislator names. This
manual proofreading step is necessary because an initial investigation revealed that
transcribers seem to frequently miss misspelled names. Without having access to
an immaculate test set, an evaluation is not feasible.

The number of legislator last name differences in texts is represented by ∆i,j,
where i and j mark which text iterations are compared. For example, ∆c,p stands for
the difference between automatically corrected and proofread version of the text.

Multiple factors must be considered when determining effectiveness of attempted
corrections. Values for ∆t,p have to be manually collected during proofreading and
show the amount of misspelled names missed by transcribers.

∆u,c measures the amount of automatically replaced names and provides infor-
mation about correction quantity, including true and false positives.

Erroneous replacements (false positives) are detectable by applying the current
automatic correction approach to proofread text. Then, differences are compared to
those producing ∆u,c to determine the exact error count (ε).

Valid name corrections missed by automatic replacement algorithms (m), or false
negatives, can be captured by investigating ∆u,c and ε.

Ultimately, evaluation must focus on maximization of transcription quality and
therefore keeping ε and m low, while attempting to produce a sufficient number
of replacements (∆u,c). For this, error ratios E = ε/∆u,c can also be utilized as a
comparison tool.

84



6.4. Summary

6.4. Summary

When performing a tool evaluation, clear metrics are necessary. The main goal of
the attempted evaluation is to measure differences in developed tool versions using
log data.

To achieve this, efficiency metrics are defined. The main metric for measuring
tool efficiency is TC, or transcription cost. A decrease in cost equals an increase in
efficiency. TC represents the average amount of time in minutes a transcriber takes
to transcribe one minute of video speech.

Furthermore, transcriber interactions are investigated. Transcription time is split
up into six different interaction types: startup time, text correction, speaker identi-
fication, splitting and merging utterances, as well as passive interactions. Metrics
which enable tracking of changes in interaction patterns over different tool versions
are also described.

Finally, approaches for performing automatic text correction in transcripts are
introduced. Text corrections are analyzed and a common replacement dictionary
is built. In addition, mistakes in legislator last names are found by utilizing capi-
talization or POS- and NER-tagging. Misspelled names are matched to legislators
using Levenshtein or Jaro-Winkler distance algorithms. Erroneous names can then
be replaced by names determined to be valid corrections. To evaluate effectiveness
of replacements, proofread transcription texts must be created and compared to
automatically corrected texts.

85





7. Findings and Discussion

In this chapter, log analysis results are presented. Collected logs were analyzed to
determine results for metrics defined in Chapter 6. All computations were carried
out using Python3, while accessing data stored in the DDDB.

Transcriber working time was inspected by converting log timestamps into
observable data. From this, transcription tool efficiency and transcriber interaction
patterns were derived. Results of these computations are discussed and investigated
below. Besides this analysis of transcription time, possibilities for automatic text
correction are presented.

Findings of this chapter complete the last two goals defined in Section 4.1:
evaluating Transcription Tool improvements and proving usability of logs for future
research.

7.1. Transcription Time Analysis

As seen in Table 6.1, 12,195 transcription tasks were completed between October
2017 and March 2018. This accounts for logs about over 2,293 hours of hearings.
Since the old Transcription Tool technology was still in use through the beginning
of October, only 10,464 tasks were completed with tool versions 0 to 4.

A cohort of 20 transcribers was selected to compute tool efficiency metrics and
transcriber interactions. These students worked with all tool iterations, including
the old tool prior to the rework. This selection aims at reducing effects of external
factors such as transcriber experience. Working with tool versions 0 to 4, this
transcriber cohort completed 3,374 tasks. Furthermore, tasks with 1 < TRt < 12
were excluded from the analysis to reduce effects of outliers. After this, 3,272 tasks
were left, equaling 652 hours of hearing video and 1,605 hours of transcription
work.

Tt was calculated by analyzing timestamps of all entries in the TT_Log table trig-
gered by a focusin, click, focusout, load, or visible event. Whenever possible,
transcriber inactivity was detected by load as well as visible events and excluded
from Tt. To achieve more accurate results, another way of recognizing inactive tran-
scribers was introduced. If no tool interaction occurred for more than 7 minutes, it
was assumed that transcribers stopped working on the task. This concrete inactivity
threshold was defined after discussions with project administrators who know the
transcription process well.

87



7. Findings and Discussion

7.1.1. Transcription Tool Efficiency

Table 7.1 shows a cost reduction of 16.74% from version 0 to version 2 for the
selected transcriber cohort. Although still producing better performance values
than version 0, version 3 caused a cost increase of 7.35% in comparison to version
2. Version 4 again leads to decreasing costs and therefore an overall increase of
efficiency.

Table 7.1.: Transcription cost for the selected transcriber cohort.

Version TC TC Change
To Version 0 To Previous

0 3.935 - -
1 3.626 7.85% 7.85%
2 3.276 16.74% 8.88%
3 3.566 9.38% -7.35%
4 3.172 19.40% 10.01%

Figure 7.1 visualizes results presented in Table 7.1 by comparing TC for each
version and all transcribers in the cohort. Performance changes over different
versions in relation to version 0 can be seen in Figure 7.2.

Not every state which Digital Democracy processes had hearings eligible for
transcription when new versions were released. Therefore, a separate analysis was
performed to compare tool efficiency per state. Table 7.2 presents an overview for
TC per state and version, while Figure 7.3 provides a visualization of these costs.
Looking at this data, New York and California hearings take considerably longer
to transcribe in version 3 than they do otherwise. While values for Florida barely
change over different versions, Texas results show a steady decrease in cost.

Table 7.2.: Transcription cost per state and version for the selected transcriber cohort.

Version State Results
California Florida New York Texas

0 2.410 - 2.438 3.925

1 2.478 3.147 - 3.514

2 - 3.336 2.042 3.447

3 3.176 3.134 3.756 3.292

4 2.645 3.045 3.060 2.933

7.1.2. Transcriber Interactions

Figure 7.4 shows the amount of transcription time each interaction type accounts for,
based on logs generated for version 0. These initial findings confirm assumptions
of administrators about the transcription process mentioned in Section 4.3.4.

88



7.1. Transcription Time Analysis

0 1 2 3 4
Versions

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5
Av

er
ag

e 
Tr

an
sc

rip
tio

n 
Ti

m
e 

in
 M

in
ut

es
 p

er
 M

in
ut

e 
of

 T
as

k
Single Transcriber Editing Ratio
Transcription Cost

Figure 7.1.: Transcription cost per version for the selected transcriber cohort.

1 2 3 4
Versions

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Pe
rfo

rm
an

ce
 in

 R
at

io
 to

 V
er

sio
n 

0

Single Transcriber Editing Ratio Change
Overall Performance Change

Figure 7.2.: Cohort performance change per version in comparison to version 0.

89



7. Findings and Discussion

0 1 2 3 4
Versions

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Tr
an

sc
rip

tio
n 

Co
st

NY
CA
FL
TX

Figure 7.3.: Transcription cost per state and version for the selected transcriber cohort.

As suspected, performing text corrections represented an inexpensive task, taking
up only 15.2% of transcription time. On the contrary, speaker identification con-
sumed 34.6% of a transcriber’s work time and therefore poses a problematic issue.
The amount of time passing until a transcriber first interacts with the Transcription
Tool was surprisingly high. Ratio of this startup time was observed to be 9.5%. Since
timestamps have to be adjusted manually, splitting up utterances is considered
more time-consuming than merging (4.3% versus 0.7%). However, measuring these
two operations proved difficult and the approximation described in Section 6.2 was
used. Passive interactions such as proofreading, watching the video, and inactivity
accounted for 35.6%. The inactivity threshold was set to 7 minutes, same as for the
efficiency analysis described in Section 7.1.1 above.

Figure 7.5 displays interaction analysis results over all versions. It summarizes
how much each interaction type contributed to overall transcription time of all tasks.
For this, results for each interaction type are clustered together. Figure 7.6 shows
the same data, but aggregates interaction ratios by version instead. Both graphs
enable observance of variations in interaction patterns over multiple versions.

One of the striking changes observable in the graphs is the shift in split and
merge operations after version 2. Over the first three versions, merging utterances
took up 0.83% of time on average, while splitting accounted for about 3.8%. For
versions 3 and 4, merging heavily increased to 3% on average, whereas splitting
decreased to 1.7%. Number of text corrections also declined, reaching a 11.5% low
in version 4. Being especially high in version 0 with 9.5%, startup time steadily

90



7.1. Transcription Time Analysis

Figure 7.4.: Average interaction ratios for transcription time in version 0.

decreased to 6.2% in version 4. Speaker identification fluctuated between 35% and
28% over all versions. Versions 0 and 1 produced values around 34%, before version
2 reduced the speaker identification ratio to 28.8%. Version 3 increased it to 33.4%
again, before it fell to 29.8% in version 4.

In Equation 7.1, ITCohort creates a representation of the described cohort results
across all versions. On the other hand, Equation 7.2 displays a matrix for results
exclusively produced by tasks handling Texas hearings (ITCohortTexas). As explained
in Section 6.2, rows in IT matrices stand for different versions, while columns
represent interaction types. From left to right, these interactions are: startup, text
correction, speaker identification, splitting, merging, and passive.

ITCohort =


1 1 1 1 1 1

0.777 0.958 0.983 1.122 0.954 1.097
0.765 0.966 0.831 1.297 0.683 1.274
0.730 0.883 0.966 3.984 0.481 1.157
0.648 0.755 0.861 4.343 0.327 1.347

 (7.1)

Because only 7 tasks concerning Texas legislature were completed with version
4, values in the last row of ITCohortTexas are inconclusive. In contrast to ITCohort,
ITCohortTexas shows a constant decrease for speaker identification time in the third
column. Furthermore, Texas tasks completed with version 3 had significantly higher
splitting and lower merging ratios than tasks of other states. Startup time was also
lower for version 3 in ITCohortTexas.

91



7. Findings and Discussion

Figure 7.5.: Average interaction ratios by interaction type.

Figure 7.6.: Average interaction ratios by tool version.

92



7.1. Transcription Time Analysis

ITCohortTexas =


1 1 1 1 1 1

0.891 0.931 0.926 1.042 0.857 1.177
0.981 0.861 0.923 1.301 0.715 1.202
0.481 1.124 0.747 1.422 1.065 1.388
0.149 0.835 0.476 3.605 0.462 1.998

 (7.2)

7.1.3. Discussion

Overall, it was shown that new features decreased TC for the given transcriber
cohort. However, some discrepancies in efficiency and interaction pattern results
need further investigation. It is especially relevant to research why costs for version
3 increased. For this, a closer look at changes of interaction type ratios over mul-
tiple versions is taken. Discussion about how past tool evaluation methodologies
compare to the log analysis attempted in this thesis is also carried out. Furthermore,
an estimate of monetary savings, resulting from the achieved cost reduction, is
presented. In the end, threats to validity of the analysis and countermeasures taken
to prevent them are elaborated.

Speaker Identification and Passive Interactions

Ratio changes of passive interactions seem to be connected to speaker identification
ratios. When the amount of time used to identify speakers increased, passive time
also decreased in return. This can be explained due to several reasons.

First, determining if transcriber inactivity was actually devoted to identifying a
speaker using another browser window is difficult. Time spent outside the transcrip-
tion screen was only attributed to speaker identification if elements belonging to
speaker selection, speaker search, or profile modification were clicked after coming
back.

Secondly, interaction ratio results are influenced by existence of relevant speaker
profile pictures in the DDDB. If officials participating in a task’s hearing have
pictures assigned to them, they can be viewed using the profile picture preview
introduced in version 1. Opening and closing the preview is observed by logs and
can be attributed to the speaker identification parameter. However, transcribers
must search for speaker names on third-party sites if no pictures exist. This presents
another potential reason for a gain in passive interaction time.

Furthermore, passive interactions were used as a “catch all” parameter to collect
time which could not be attributed to any other interaction type. Results could also
be skewed because of this.

In addition, time necessary for speaker identification is highly dependent on
state. As seen in Figure 7.3, New York tasks are more expensive than others in
version 3. Transcribers might have had problems identifying legislators and persons
unknown to them. New York hearing videos also provide the worst video and
sound quality, further complicating speaker identification.

93



7. Findings and Discussion

Merging, Splitting, and Version 3 Efficiency

Next, the drastic changes in merge and split operations as well as the cost increase
for version 3 was investigated. It was discovered that a configuration change in
the preprocessing pipeline caused these abnormalities. A modified parameter
in a preprocessing script led to generation of shorter utterances in tasks. This
produced an increase in merge and decrease in split operations. The vast amount
of utterances also led to browsers being slowed down by longer tasks, decelerating
the transcription process. These findings can be seen as proof that logs can also be
utilized to detect software defects and unexpected behavior.

On a side note, a decline in splitting operations also led to a decrease in text
corrections. Basically, sentence boundaries must be modified nearly every time an
utterance is split. Therefore, less text correction time can be explained by fewer
splitting operations occurring.

As a result of these findings, another efficiency analysis excluding tasks from
New York and those containing more than 15 minutes of video was performed.
For this analysis of 2,237 tasks (158 hours of video), Table 7.3 shows a 14.80% cost
decrease from first to last version. Figure 7.7 visualizes TC over all versions for this
filtered data. Relation of each version’s performance to that of version 0 can be
observed in Figure 7.8.

Table 7.3.: Transcription cost results for filtered cohort data.

Version TC TC Change
Vs. Version 0 Vs. Previous

0 4.168 - -
1 3.934 5.59% 5.59%
2 3.705 11.11% 5.84%
3 3.604 13.52% 2.71%
4 3.551 14.80% 1.48%

Using these values, assumptions could be confirmed that side effects were pro-
duced by non-ideal preprocessing parameters. Excluding longer tasks also led to an
increase in TC. This could be explained by a number of reasons. First, transcribers
can fast-forward through longer speeches using video features introduced in ver-
sion 2. Secondly, long testimonies and debates between legislators do not influence
factors such as speaker identification. Naturally, speakers only have to be identified
once, no matter how often they appear in a video.

Monetary Savings

As presented in Section 7.1.1, version 0 produced a TC of 3.935 (3 minutes 56

seconds). Using version 4, experienced transcribers managed to achieve a TC of
only 3.172 minutes (3 minutes 10 seconds), reducing costs by 19.4%.

94



7.1. Transcription Time Analysis

0 1 2 3 4
Versions

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5
Av

er
ag

e 
Tr

an
sc

rip
tio

n 
Ti

m
e 

in
 M

in
ut

es
 p

er
 M

in
ut

e 
of

 T
as

k
Single Transcriber Editing Ratio
Transcription Cost

Figure 7.7.: Transcription cost per version for filtered cohort data.

1 2 3 4
Versions

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Pe
rfo

rm
an

ce
 in

 R
at

io
 to

 V
er

sio
n 

0

Single Transcriber Editing Ratio Change
Overall Performance Change

Figure 7.8.: Filtered cohort performance change per version in comparison to version 0.

95



7. Findings and Discussion

Assuming an hourly labor rate of $10, such a reduction equates to cost savings
of $7.63 per hour of video speech. In March 2018, the Digital Democracy initiative
created transcriptions for 545.17 hours of hearing video speech. Applying the
presented estimations, a claim can be made that $4159.65 were saved for this one
month alone. This would result into a yearly benefit of nearly $50,000 for the
initiative, assuming hearing video input would stay similar for all months.

Comparison To Rovin’s Evaluation

In contrast to Rovin’s evaluation of transcription cost mentioned in Section 3.5.2, no
hypothesis regarding transcription quality can be constructed. Log analysis is unfit
to detect mistakes regarding speaker assignments or transcription texts for arbitrary
tasks. Such an evaluation has to be performed in a controlled environment, where
an immaculate test set of tasks is available.

On the other hand, log analysis provides better insight into actual transcription
cost and tool efficiency. While helpful for an initial evaluation, lab tests using a small
number of transcribers and tasks do not capture real-world working conditions.

Due to new developments being implemented after publication of Rovin’s work,
results differ vastly. Back in 2016, Rovin’s improvements led to an average transcrip-
tion time of 6.317 minutes (6 minutes 19 seconds) per minute of video, increasing
efficiency by 16.89% to when he first started his work. Since TC considers video
speech time instead of video length, Rovin’s results are normalized to 5.441 for
a comparison. This value is calculated by using the average proportion of VSt to
video length as presented in Section 6.1 (86.13%).

Table 7.4 shows a short comparison between the characteristics of Rovin’s tool
evaluations and the study conducted for this thesis.

Table 7.4.: Comparison between Rovin’s tool evaluation and the study conducted in this work.
Rovin’s results were normalized using average VSt.

Characteristics Rovin Ruprechter
Transcription Time per Minute of Video Speech 5.441 Minutes 3.935 Minutes
Accomplished Efficiency Improvement 16.89% 19.40%
Number of Transcribers for Evaluation 15 20

Number of Tasks for Evaluation 5 > 3,200

Text Quality Evaluation Yes No
Evaluation Method Lab Study Log Analysis
Date of Data Collection Spring 2016 October 2017 – March 2018

Threats to Validity

The presented analysis can only be considered valid if the majority of interaction
and efficiency changes are indeed caused by tool improvements. Side effects and
non-measurable factors can occur in a real-world testing scenario as featured in this

96



7.2. Transcription Text Correction

Listing 7.1: MySQL query for retrieving changes in text areas.
1 SELECT
2 l . tagId ,
3 GROUP_CONCAT( l . value ORDER BY timestamp SEPARATOR ’|−>|’)
4 AS changes ,
5 l . t askId
6 FROM TT_Log l
7 WHERE l . element = ’TEXTAREA’
8 AND ( l . event = ’ focusin ’ OR l . event = ’ change ’ )
9 GROUP BY l . tagId ;

research. If such factors had major influence on results, validity of the presented
analysis would be threatened.

Minimizing effects of unexpected threats was addressed by choosing a large task
subset to evaluate tool versions. Although tasks are vastly different, analyzing over
3,200 of them aims at compensating for outliers in the data.

A major threat to validity of the analysis could be the different skill levels of
transcribers. Choosing a cohort of 20 experienced transcribers who worked with all
versions of the tool mitigates this. By this selection, it can be assumed that all test
participants possess a similar skill level.

Furthermore, states strongly influence nature of transcription tasks. Although
not directly addressed in the initial analysis in Section 7.1.1, results for separate
states were also computed to confirm this. Another possibility of solving this issue
was presented in Section 7.1.3, where cohort data was filtered to exclude long tasks
and New York hearings.

7.2. Transcription Text Correction

The following few sections describe application of basic NLP techniques to collected
log data as elaborated in Section 6.3.

7.2.1. Common Corrections

In order to calculate common replacements, changes in text areas had to be pulled
from the DDDB. To achieve this, focusin and change events triggered by text
areas were collected from the TT_Log table and then post-processed using Python3.
Listing 7.1 shows the query which fetches changes to text areas from the DDDB. It
separates before and after values by the String sequence |->|.

After processing query results using NLTK, difflib.unified_diff was run to
detect modifications of texts. To properly represent changes, difflib output was
converted into tuples of removed and added text. Finally, replacements were
counted and a readable representation of common corrections was created. This
enables researchers to gain a first overview of the data.

97



7. Findings and Discussion

Table 7.5 displays results of these replacement computations. It lists the most
common corrections and how frequently they occurred.

When looking at the results, it became evident that correction of punctuation
was one of the main types of edits performed by transcribers. Due to the huge
amount of split and merge operations necessary during transcription, this had to
be expected. Automatic algorithms might also wrongly separate sentences when a
person pauses while speaking.

In addition to that, transcribers frequently correct people’s titles. For example,
“Mister” was often replaced by “Mr.” and vice versa. According to project adminis-
trators, using abbreviations is preferable most of the time. Therefore, personal titles
are a candidate for automated correction during preprocessing.

Next, political titles in legislative hearings are often falsely capitalized. Capitaliza-
tion of words such as Chair, Senator, Secretary, or Representative entirely depends
on the context. These words would not necessarily have to be capitalized when
used in a normal sentence, but should be when used as titles.

Besides titles, other capitalization errors during the automatic transcription phase
exist. It seems like some words are always capitalized or even converted to upper
case (e. g. “Learned”, “CAVEAT”). Preprocessing scripts have to be corrected to
properly address this problem.

Furthermore, transcribers have to frequently remove sound tags created by
the automatic transcription service (“[INAUDIBLE]”, “[UNKOWN]”, etc.). Such
corrections seem unautomatable at the current moment.

In some cases, symbols such as dollar, percent, or euro signs are supposed to
be represented by their textual representation instead. Again, corrections like that
depend on the exact context but could still be automated by use of NLP techniques.

One of the most interesting findings is the common replacement of specific
names, especially legislator last names. Some had to be corrected nearly every single
time they occurred, for example “McCarty”, “McGuire”, “Beall”, or “Bettencourt”.
Section 7.2.2 investigates this issue further.

Lastly, the remainder of corrections can be explained due to homophones, wrong
tenses, or other corner cases.

7.2.2. Legislator Name Correction

Proofreading the 20 transcription texts in the task test set confirmed that transcribers
frequently miss misspelled names. While on average only one name was misspelled
for completed Texas tasks, other states show higher values. For California, two
tasks contained three names which were still misspelled. A single Florida task even
showed seven misspelled names. Overall, only two of the twenty test tasks could
be considered immaculate when looking at spelling of names. This proved the
assumption that an experiment for text correction is only feasible using proofread
texts.

Using these proofread texts, results for dictionary replacement as well as NLP

98



7.2. Transcription Text Correction

Table 7.5.: The most common transcriber corrections and their frequency of occurrence.
Added Removed # Added Removed #

, 17280 Aye. 318

, 5890 . The , the 300

. And , and 4179 % percent 300

. ? 4090 $ 299

[ INAUDIBLE ] 3272 . So , so 296

. And and 3182 The the 294

. , 2701 Doctor doctor 292

. 2546 [INAUDIBLE] ... 282

, . 2006 - 281

. But , but 1712 Yeah . 280

. 1654 [UNKNOWN] ... 279

, ? 1482 . We , we 279

$ 1176 secretary Secretary 264

Mr Mr. 1129 ” 263

members Members 1128 of 261

state State 1087 That that 258

[UNKNOWN] 1035 dollars 254

And and 879 Bill bill 253

Thank you. 758 . To to 253

Yes. 733 . That that 253

bill Bill 724 , and . And 249

Committee committee 656 to 241

? . 595 , we . We 240

the 571 and in 238

And 534 . That , that 235

Okay. 520 . Which , which 234

Learned learned 481 Yes. 234

Aye, 457 Mm-hm. 228

because Because 443 ? 227

And 437 , the . The 227

a 436 a 224

the 396 Mister Mr. 223

Reserve reserve 393 . ... 218

substitute Substitute 392 house House 218

Thank you. 381 is ’s 217

and 335 ... 215

that 324 “ 214

Right. 320 So 211

. Because because 318 amendment Amendment 206

99



7. Findings and Discussion

approaches using Levenshtein and Jaro-Winkler distances were computed.

Dictionary Replacement

Because of common correction results presented in Section 7.2.1 above, additions
were made to dictionary prerequisites defined in Section 6.3.2. Corrections of sound
tags (e. g. “[INAUDIBLE]”, “[UNKNOWN]”) were omitted, since they are always
subject to replacement. Attempting to automatically replace such tags would lead
to faulty corrections. Furthermore, the dictionary excludes replacements containing
terms such as “Aye”, “Naye”, “No”, or “Yes”. This vocabulary is frequently used
during votes or roll calls. Such utterances are subject to excessive changes caused
by split and merge operations. Including these would distort dictionary content.

When looking at the results for the common replacement dictionary, it is ob-
servable that only minor corrections were carried out. On average, less than one
replacement could be performed per task. The dictionary had no impact at all for
New York and Texas. For the chosen Florida tasks, 3 replacements could be made on
average. Although correction numbers are low, all of the performed replacements
were correct. Table 7.6 shows dictionary replacement results, averaged over all
states and tasks.

Table 7.6.: Dictionary replacement results.
State ∆u,c ε m c

CA 0.6 0 5.4 0.6
FL 3 0 2.2 3

NY 0 0 4.2 0

TX 0 0 1.6 0

Overall 0.9 0 3.35 0.9

Automatic Name Correction

As explained in Section 6.3.2, evaluation was carried out for replacements using
capitalization as well as POS- and NER-taggers provided by Stanford and spaCy.
Levenshtein and Jaro-Winkler algorithms were used to determine word distance.
Therefore, multiple experiment runs were first carried out to find appropriate
values for θLr and θJW . According to Section 6.3.2, threshold ranges were chosen as
0.23 ≤ θLr ≤ 0.27 and 0.86 ≤ θJW ≤ 0.9. Full results for these experiments can be
observed in Tables A.1 and A.2 in the Appendix.

After evaluating results for different θLr, any value between 0.25 and 0.27 seemed
acceptable. These thresholds all perform equally in consideration of the evaluated
tasks. However, results could prove to be misleading given the relatively small test
set. To prevent possible false corrections for different tasks, θLr = 0.25 should be
considered favorable in contrast to higher values. Table 7.7 lists overall results and
averages for the evaluated θLr threshold range.

100



7.2. Transcription Text Correction

Investigating results of algorithms using Levenshtein distance, the approach
utilizing spaCy’s NER-tagger was the only one producing no false corrections. On
the other hand, it missed 3 misspelled names while correcting about 1.25 names per
task on average. Simple capitalization replacement also performed well, producing
an error ratio of E = 0.034 on average while surprisingly also correctly replacing
1.4 names. This fact combined with ∆u,c = 1.45 for capitalization means it proved
to be the most effective correction algorithm using Levenshtein. Disappointingly,
the approach utilizing Stanford’s NER-tagger produced the worst results for all
metrics.

Table 7.7.: Overall results and averages for Levenshtein threshold computations.

Approaches Metrics Threshold Range
0.27 0.26 0.25 0.24 0.23

Capitalization

∆u,c 1.45 1.45 1.45 1.35 1.35

m 2.85 2.85 2.85 2.95 2.95

ε 0.05 0.05 0.05 0.05 0.05

c 1.4 1.4 1.4 1.3 1.3
E 0.034 0.034 0.034 0.037 0.037

POS Stanford

∆u,c 1.4 1.4 1.4 1.3 1.3
m 2.9 2.9 2.9 3 3

ε 0.05 0.05 0.05 0.05 0.05

c 1.35 1.35 1.35 1.25 1.25

E 0.036 0.036 0.036 0.038 0.038

NER Stanford

∆u,c 1.1 1.1 1.1 1 1

m 3.2 3.2 3.2 3.3 3.3
ε 0.05 0.05 0.05 0.05 0.05

c 1.05 1.05 1.05 0.95 0.95

E 0.045 0.045 0.045 0.05 0.05

POS spaCy

∆u,c 1.25 1.25 1.25 1.15 1.15

m 3.05 3.05 3.05 3.15 3.15

ε 0.05 0.05 0.05 0.05 0.05

c 1.2 1.2 1.2 1.1 1.1
E 0.04 0.04 0.04 0.043 0.043

NER spaCy

∆u,c 1.25 1.25 1.25 1.2 1.2
m 3 3 3 3.05 3.05

ε 0 0 0 0 0

c 1.25 1.25 1.25 1.2 1.2
E 0 0 0 0 0

Average

∆u,c 1.29 1.29 1.29 1.2 1.2
m 3 3 3 3.09 3.09

ε 0.04 0.04 0.04 0.04 0.04

c 1.25 1.25 1.25 1.16 1.16

E 0.031 0.031 0.031 0.034 0.034

101



7. Findings and Discussion

For Jaro-Winkler, θJW = 0.88 was chosen as the best-fitting configuration. Through
all replacement approaches, this threshold performed best considering the observed
parameters. Table 7.8 shows overall results for the investigated Jaro-Winkler thresh-
old range. When using θJW = 0.88, an error rate of 0.026 was produced on average,
while 1.55 misspelled names were missed and 2.7 names were correctly replaced.

Simple capitalization can be considered infeasible using θJW = 0.88, because
E = 0.077 represents a considerably higher value than other approaches having
similar ∆u,c. For the approach utilizing spaCy’s NER-tagger, E reached 0. However,
not as many corrections were made than with other approaches (∆u,c = 2.3). Out
of all algorithms making use of Jaro-Winkler distance, the one using Stanford’s
POS-tagger performed best. It generated nearly 3 correct replacements on average
and missed only 1.3 misspelled names per task, while producing an error rate of
0.017.

7.2.3. Discussion

Multiple conclusions can be drawn from the computed list of common replacements.
After talking to transcribers and project leaders about common corrections as

presented in Section 7.2.1, it became obvious that correction guidelines were not
always well-defined. This led to uncertainty among transcribers which resulted in
faulty text corrections. Specifying clear policies might help to remove these ambi-
guities. In addition, context-dependent capitalization of legislative vocabulary (Bill,
Senator, Member, etc.), abbreviation of people’s titles, and textual representation of
specific symbols might be eligible for automated correction.

When discussing automatic legislator name correction, it can be stated that simple
replacement approaches as presented in Section 7.2.2 only produce a limited number
of corrections. This is explainable due to the conservative choice of threshold values,
which focuses on reducing errors. Although an adjustment to thresholds could
increase ∆u,c and decrease m, it would also increase ε and E and therefore reduce
text quality.

The small task set presents a threat to the validity of the attempted evaluation.
However, there currently exists no effective way of comparing automatic name
replacements in completed task texts without immaculate transcripts.

To conduct an evaluation which has access to more data, A/B/n testing could be
performed. Tasks could be separated into groups, with each replacement algorithm
applied to a different task set. Then, text correction time and word replacements
could be monitored to assess if correction frequency changes. In addition, a smaller
task set could be selected to manually evaluate text quality using ∆t,p.

102



7.2. Transcription Text Correction

Table 7.8.: Overall results and averages for Jaro-Winkler threshold computations.

Approaches Metrics Threshold Range
0.86 0.87 0.88 0.89 0.9

Capitalization

∆u,c 3.4 3.35 3.25 3.2 2.9
m 1.15 1.2 1.25 1.3 1.6
ε 0.3 0.3 0.25 0.25 0.25

c 3.1 3.05 3 2.95 2.65

E 0.088 0.09 0.077 0.078 0.086

POS Stanford

∆u,c 3.1 3.1 3 2.95 2.65

m 1.25 1.25 1.3 1.35 1.65

ε 0.1 0.1 0.05 0.05 0.05

c 3 3 2.95 2.9 2.6
E 0.032 0.032 0.017 0.017 0.019

NER Stanford

∆u,c 2.65 2.65 2.55 2.5 2.25

m 1.7 1.7 1.75 1.8 2.05

ε 0.1 0.1 0.05 0.05 0.05

c 2.55 2.55 2.5 2.45 2.2
E 0.038 0.038 0.02 0.02 0.022

POS spaCy

∆u,c 2.9 2.9 2.8 2.75 2.45

m 1.45 1.45 1.5 1.55 1.85

ε 0.1 0.1 0.05 0.05 0.05

c 2.8 2.8 2.75 2.7 2.4
E 0.034 0.034 0.018 0.018 0.02

NER spaCy

∆u,c 2.35 2.35 2.3 2.3 2.05

m 1.9 1.9 1.95 1.95 2.2
ε 0 0 0 0 0

c 2.35 2.35 2.3 2.3 2.05

E 0 0 0 0 0

Average

∆u,c 2.88 2.87 2.78 2.74 2.46

m 1.49 1.5 1.55 1.59 1.87

ε 0.12 0.12 0.08 0.08 0.08

c 2.76 2.75 2.7 2.66 2.38

E 0.038 0.039 0.026 0.027 0.029

103



7. Findings and Discussion

7.3. Summary

This chapter presented results for metrics defined in Chapter 6, including efficiency
analysis, transcriber interaction patterns, common text corrections, and automatic
name replacements.

An efficiency analysis conducted for a cohort of 20 transcribers which completed
over 3,200 tasks led to conclusion that the implemented tool improvements reduced
TC by 19.4% over four versions. Using version 4, the average time necessary to
transcribe one minute of video speech (TC) was 3.172, in contrast to 3.935 for
baseline version 0. It was further shown that results are strongly influenced by
factors such as state, with New York and California tasks producing higher TC in
version 3.

Interaction analysis proved that assumptions of administrators about composi-
tion of transcription time were mostly correct. Speaker identification and passive
time took up most of a transcriber’s time, while text correction had less of an
influence. In contrast, startup time was surprisingly high. The number of split
and merge operations fluctuated over different versions, with respective values
strongly changing after version 3. This could be backtracked to unexpected results
of preprocessing pipeline adjustments, demonstrating that interaction analysis is
also useful for fault detection.

Next, findings for common replacements performed by transcribers were pre-
sented. The most common sources of text correction were identified as: punctuation
and sentence boundaries, abbreviated titles, capitalization of legislative vocabulary,
transcription service sound tags, symbols, and legislator names.

Lastly, an evaluation of automatic legislator name replacements was carried out.
Through all approaches, only a small number of text corrections was performed.
Although not introducing errors in text, dictionary replacement merely produced
0.9 corrections per task. More sophisticated algorithms based on POS-tagging,
NER-tagging, and capitalization behaved quite similar when compared to each
other. While NLP approaches utilizing Jaro-Winkler distance accomplished 2.95

correct name replacements per task on average, those using Levenshtein distance
only achieved 1.4 replacements. Threshold values could be adjusted to produce
more corrections, but even small changes could negatively impact text quality.

104



8. Conclusion and Future Work

This Chapter summarizes the contributions performed throughout this thesis and
provides an outlook on possible future improvements and research.

8.1. Conclusion

In the absence of fully automated, highly accurate transcription technology, human-
assisted transcription is at present a viable and cost effective option for capturing
speech from legislative proceedings. This thesis focused on building a deeper un-
derstanding of human-assisted transcription systems, how to make them more
efficient, and finally how the human contribution is distributed across various inter-
action types expected from transcribers. Gaining understanding in the transcription
process was achieved by examining results of the implemented logging system. To
further prove usefulness of this work, basic text analysis using natural language
processing was carried out.

In this thesis, the Digital Democracy initiative and the Transcription Tool nec-
essary for the bulk of input data preparation for this project were introduced.
A technology rework and four sets of improvements were implemented for this
tool, which aimed at increasing overall efficiency. Improvements were sequentially
released as four separate tool versions. While baseline version 0 represented the
developed technology rework, versions 1 to 4 introduced new features. Version 1

incorporated speaker profile preview into the tool. In version 2, enhanced video
player functionality was implemented. Version 3 enabled better utterance navigation
and interactivity with the transcription screen. Finally, version 4 connected the
Transcription Tool to an automated speaker identification service implemented in
another student project.

Furthermore, a logging system was developed to allow sophisticated analysis
of the transcription process. This system collected data for over 12,000 transcrip-
tion tasks and about 2,300 hours of video, resulting in roughly 8,000 hours of
transcription work.

Using the collected logs, a study of how tool improvements affected efficiency and
cost of the entire operation was performed. A cohort of 20 transcribers was selected
for this analysis. Transcription cost (TC) was defined as the main metric measuring
tool efficiency. TC stands for the average time it takes a human transcriber to
transcribe one minute of video speech using the Transcription Tool. It was found
that on average a 19.4% decrease in TC, and therefore increase in efficiency, could be
realized over four versions. During this analysis, it was also shown that side effects

105



8. Conclusion and Future Work

and factors such as state, preprocessing parameters, and task duration influence
the transcription process and consequently TC.

To analyze how human transcribers interact with the Transcription Tool, tran-
scription time was split up into six interaction types in this thesis. The following
interaction types were investigated: speaker identification, text correction, tool
startup, splitting and merging utterances, as well as the transcriber being idle (pas-
sive). By utilizing log data, these interactions were quantified to assess their impact
on the overall transcription process. It was confirmed that speaker identification
and passive time accounted for over 65% of combined transcription time in all
versions. Text correction only took up around 12-15% of time on average, meaning
that automatic transcription services produce good-quality texts. Splitting and
merging operations are heavily dependent on preprocessing parameters such as
utterance length. Startup time was higher than expected, reaching close to 10% for
nearly all versions.

Lastly, a proof of concept demonstrating that log data can be used for more ad-
vanced analysis such as NLP was performed. Common transcriber corrections were
collected to gain insight into text modifications. From this, sources of corrections
were classified and improvement possibilities were laid out. One of these sources,
misspelled legislator names, was investigated further. Text analysis utilizing POS-
and NER-tagging as well as Levenshtein and Jaro-Winkler distance algorithms was
carried out. Although only an average of about 3 automated corrections per task
were performed for the selected test set, feasibility of this research was proven.

8.2. Future Work

Nearly all topics explored in this thesis could serve as a basis for future work and
research.

Many possibilities exist for new Transcription Tool features. One of the long-
planned improvements is a widget which enables transcribers to automatically
add profile pictures for the current speaker to the database. Using the present
video frame, transcribers could create snapshots of a person’s face. While such a
tool could slow down the transcription process initially, it should increase both
transcription quality and speed in the long run.

Automatic speaker identification is currently only available for legislators. It
might be relevant to enable speaker suggestions for frequently appearing non-
officials such as lobbyists.

In addition to speaker suggestion implemented for this work, suggestions for
organization affiliation of speakers could be relevant. Although it was not a major
focus of this thesis, identifying which organization a speaker represents is time-
consuming. A more sophisticated organization selection dialog could speed up
organization search and prevent wrong affiliation assignments.

Since splitting utterances is a tedious task, it is important to find preprocessing
parameters which produce utterances of correct length. In this regard, current

106



8.2. Future Work

configuration is still flawed. Transcribers also have to manually adjust utterance
start and end time for every split. If there was a way to estimate the time for which a
split operation was triggered, correction overhead could be decreased. Furthermore,
warning messages could be introduced which indicate if utterances need to be split
or merged. This would reduce need for transcribers to evaluate utterance length
manually.

For text and log analysis, a wide range of possibilities for future research ex-
ists. Log data produced by the implemented system could be utilized for further
analysis, regarding both efficiency metrics and interaction types. In the efficiency
evaluation attempted for this thesis, only experienced transcribers were considered.
In the future, it might be interesting to assess performance of new transcribers.
Comparisons could be attempted regarding learning curves in different tool ver-
sions. As an example, investigating how a transcriber’s speaker identification time
changes over time could indicate time necessary to familiarize with speakers in
specific states and committees. Automatic outlier detection could also be utilized
to detect transcribers abusing the Digital Democracy initiative by not completing
transcription tasks in acceptable time.

Although basic NLP concepts were explored, this thesis refrained from doing
research into neural networks and deep learning approaches. Such advanced tech-
nologies could produce interesting results. Research might prove to be fruitful for
multiple purposes such as spell checking, providing support to human transcribers
during transcription, or prediction of future tool efficiency and defects.

107





Appendix A.

Computation Results for Automatic
Name Correction

109



Appendix A. Computation Results for Automatic Name Correction

Ta
bl

e
A

.1
.:

C
om

pl
et

e
re

su
lt

s
fo

r
Le

ve
ns

ht
ei

n
th

re
sh

ol
d

co
m

pu
ta

ti
on

s.
θ

JW
Ta

sk
Se

t
C

ap
it

al
iz

at
io

n
PO

S
St

an
fo

rd
N

ER
St

an
fo

rd
PO

S
sp

aC
y

N
ER

sp
aC

y
∆

u,
c

m
ε

c
∆

u,
c

m
ε

c
∆

u,
c

m
ε

c
∆

u,
c

m
ε

c
∆

u,
c

m
ε

c
0

.2
7

C
A

2
.8

3
.2

0
2

.8
2
.8

3
.2

0
2
.8

2
4

0
2

2
.4

3
.6

0
2
.4

3
.2

2
.8

0
3

.2
FL

1
.2

4
.2

0
.2

1
1

4
.4

0
.2

0
.8

0
.6

4
.8

0
.2

0
.4

0
.8

4
.6

0
.2

0
.6

0
.4

4
.8

0
0

.4
N

Y
1

.4
2

.8
0

1
.4

1
.4

2
.8

0
1
.4

1
.4

2
.8

0
1

.4
1
.4

2
.8

0
1
.4

1
3

.2
0

1

TX
0

.4
1

.2
0

0
.4

0
.4

1
.2

0
0
.4

0
.4

1
.2

0
0

.4
0
.4

1
.2

0
0
.4

0
.4

1
.2

0
0

.4
O

ve
ra

ll
1

.4
5

2
.8

5
0
.0

5
1

.4
1
.4

2
.9

0
.0

5
1

.3
5

1
.1

3
.2

0
.0

5
1
.0

5
1

.2
5

3
.0

5
0

.0
5

1
.2

1
.2

5
3

0
1

.2
5

0
.2

6
C

A
2

.8
3

.2
0

2
.8

2
.8

3
.2

0
2
.8

2
4

0
2

2
.4

3
.6

0
2
.4

3
.2

2
.8

0
3

.2
FL

1
.2

4
.2

0
.2

1
1

4
.4

0
.2

0
.8

0
.6

4
.8

0
.2

0
.4

0
.8

4
.6

0
.2

0
.6

0
.4

4
.8

0
0

.4
N

Y
1

.4
2

.8
0

1
.4

1
.4

2
.8

0
1
.4

1
.4

2
.8

0
1

.4
1
.4

2
.8

0
1
.4

1
3

.2
0

1

TX
0

.4
1

.2
0

0
.4

0
.4

1
.2

0
0
.4

0
.4

1
.2

0
0

.4
0
.4

1
.2

0
0
.4

0
.4

1
.2

0
0

.4
O

ve
ra

ll
1

.4
5

2
.8

5
0
.0

5
1

.4
1
.4

2
.9

0
.0

5
1

.3
5

1
.1

3
.2

0
.0

5
1
.0

5
1

.2
5

3
.0

5
0

.0
5

1
.2

1
.2

5
3

0
1

.2
5

0
.2

5
C

A
2

.8
3

.2
0

2
.8

2
.8

3
.2

0
2
.8

2
4

0
2

2
.4

3
.6

0
2
.4

3
.2

2
.8

0
3

.2
FL

1
.2

4
.2

0
.2

1
1

4
.4

0
.2

0
.8

0
.6

4
.8

0
.2

0
.4

0
.8

4
.6

0
.2

0
.6

0
.4

4
.8

0
0

.4
N

Y
1

.4
2

.8
0

1
.4

1
.4

2
.8

0
1
.4

1
.4

2
.8

0
1

.4
1
.4

2
.8

0
1
.4

1
3

.2
0

1

TX
0

.4
1

.2
0

0
.4

0
.4

1
.2

0
0
.4

0
.4

1
.2

0
0

.4
0
.4

1
.2

0
0
.4

0
.4

1
.2

0
0

.4
O

ve
ra

ll
1

.4
5

2
.8

5
0
.0

5
1

.4
1
.4

2
.9

0
.0

5
1

.3
5

1
.1

3
.2

0
.0

5
1
.0

5
1

.2
5

3
.0

5
0

.0
5

1
.2

1
.2

5
3

0
1

.2
5

0
.2

4
C

A
2

.8
3

.2
0

2
.8

2
.8

3
.2

0
2
.8

2
4

0
2

2
.4

3
.6

0
2
.4

3
.2

2
.8

0
3

.2
FL

1
.2

4
.2

0
.2

1
1

4
.4

0
.2

0
.8

0
.6

4
.8

0
.2

0
.4

0
.8

4
.6

0
.2

0
.6

0
.4

4
.8

0
0

.4
N

Y
1

3
.2

0
1

1
3

.2
0

1
1

3
.2

0
1

1
3
.2

0
1

0
.8

3
.4

0
0

.8
TX

0
.4

1
.2

0
0

.4
0
.4

1
.2

0
0
.4

0
.4

1
.2

0
0

.4
0
.4

1
.2

0
0
.4

0
.4

1
.2

0
0

.4
O

ve
ra

ll
1

.3
5

2
.9

5
0
.0

5
1

.3
1
.3

3
0
.0

5
1

.2
5

1
3
.3

0
.0

5
0
.9

5
1

.1
5

3
.1

5
0

.0
5

1
.1

1
.2

3
.0

5
0

1
.2

0
.2

3
C

A
2

.8
3

.2
0

2
.8

2
.8

3
.2

0
2
.8

2
4

0
2

2
.4

3
.6

0
2
.4

3
.2

2
.8

0
3

.2
FL

1
.2

4
.2

0
.2

1
1

4
.4

0
.2

0
.8

0
.6

4
.8

0
.2

0
.4

0
.8

4
.6

0
.2

0
.6

0
.4

4
.8

0
0

.4
N

Y
1

3
.2

0
1

1
3

.2
0

1
1

3
.2

0
1

1
3
.2

0
1

0
.8

3
.4

0
0

.8
TX

0
.4

1
.2

0
0

.4
0
.4

1
.2

0
0
.4

0
.4

1
.2

0
0

.4
0
.4

1
.2

0
0
.4

0
.4

1
.2

0
0

.4
O

ve
ra

ll
1

.3
5

2
.9

5
0
.0

5
1

.3
1
.3

3
0
.0

5
1

.2
5

1
3
.3

0
.0

5
0
.9

5
1

.1
5

3
.1

5
0

.0
5

1
.1

1
.2

3
.0

5
0

1
.2

110



Ta
bl

e
A

.2
.:

C
om

pl
et

e
re

su
lt

s
fo

r
Ja

ro
-W

in
kl

er
th

re
sh

ol
d

co
m

pu
ta

ti
on

s.
θ

JW
Ta

sk
Se

t
C

ap
it

al
iz

at
io

n
PO

S
St

an
fo

rd
N

ER
St

an
fo

rd
PO

S
sp

aC
y

N
ER

sp
aC

y
∆

u,
c

m
ε

c
∆

u,
c

m
ε

c
∆

u,
c

m
ε

c
∆

u,
c

m
ε

c
∆

u,
c

m
ε

c
0

.8
6

C
A

5
.4

1
.2

0
.6

4
.8

4
.8

1
.2

0
4
.8

3
.8

2
.2

0
3

.8
4
.2

1
.8

0
4

.2
4

.8
1
.2

0
4
.8

FL
4

.2
1

.2
0

.2
4

3
.8

1
.6

0
.2

3
.6

3
.2

2
.2

0
.2

3
3
.6

1
.8

0
.2

3
.4

1
.8

3
.4

0
1
.8

N
Y

2
.8

1
.8

0
.4

2
.4

2
.6

1
.8

0
.2

2
.4

2
.6

1
.8

0
.2

2
.4

2
.6

1
.8

0
.2

2
.4

1
.8

2
.4

0
1
.8

TX
1

.2
0

.4
0

1
.2

1
.2

0
.4

0
1
.2

1
0

.6
0

1
1
.2

0
.4

0
1

.2
1

0
.6

0
1

O
ve

ra
ll

3
.4

1
.1

5
0

.3
3
.1

3
.1

1
.2

5
0

.1
3

2
.6

5
1

.7
0

.1
2
.5

5
2
.9

1
.4

5
0

.1
2

.8
2
.3

5
1
.9

0
2

.3
5

0
.8

7
C

A
5

.4
1

.2
0

.6
4
.8

4
.8

1
.2

0
4
.8

3
.8

2
.2

0
3

.8
4
.2

1
.8

0
4

.2
4

.8
1
.2

0
4
.8

FL
4

1
.4

0
.2

3
.8

3
.8

1
.6

0
.2

3
.6

3
.2

2
.2

0
.2

3
3
.6

1
.8

0
.2

3
.4

1
.8

3
.4

0
1
.8

N
Y

2
.8

1
.8

0
.4

2
.4

2
.6

1
.8

0
.2

2
.4

2
.6

1
.8

0
.2

2
.4

2
.6

1
.8

0
.2

2
.4

1
.8

2
.4

0
1
.8

TX
1

.2
0

.4
0

1
.2

1
.2

0
.4

0
1
.2

1
0

.6
0

1
1
.2

0
.4

0
1

.2
1

0
.6

0
1

O
ve

ra
ll

3
.3

5
1

.2
0

.3
3

.0
5

3
.1

1
.2

5
0

.1
3

2
.6

5
1

.7
0

.1
2
.5

5
2
.9

1
.4

5
0

.1
2

.8
2
.3

5
1
.9

0
2

.3
5

0
.8

8
C

A
5

.4
1

.2
0

.6
4
.8

4
.8

1
.2

0
4
.8

3
.8

2
.2

0
3

.8
4
.2

1
.8

0
4

.2
4

.8
1
.2

0
4
.8

FL
3

.8
1

.6
0

.2
3
.6

3
.6

1
.8

0
.2

3
.4

3
2

.4
0

.2
2

.8
3
.4

2
0

.2
3

.2
1

.6
3
.6

0
1
.6

N
Y

2
.6

1
.8

0
.2

2
.4

2
.4

1
.8

0
2
.4

2
.4

1
.8

0
2

.4
2
.4

1
.8

0
2

.4
1

.8
2
.4

0
1
.8

TX
1

.2
0

.4
0

1
.2

1
.2

0
.4

0
1
.2

1
0

.6
0

1
1
.2

0
.4

0
1

.2
1

0
.6

0
1

O
ve

ra
ll

3
.2

5
1
.2

5
0
.2

5
3

3
1

.3
0
.0

5
2

.9
5

2
.5

5
1

.7
5

0
.0

5
2

.5
2
.8

1
.5

0
.0

5
2
.7

5
2

.3
1

.9
5

0
2
.3

0
.8

9
C

A
5

.4
1

.2
0

.6
4
.8

4
.8

1
.2

0
4
.8

3
.8

2
.2

0
3

.8
4
.2

1
.8

0
4

.2
4

.8
1
.2

0
4
.8

FL
3

.8
1

.6
0

.2
3
.6

3
.6

1
.8

0
.2

3
.4

3
2

.4
0

.2
2

.8
3
.4

2
0

.2
3

.2
1

.6
3
.6

0
1
.6

N
Y

2
.4

2
0

.2
2
.2

2
.2

2
0

2
.2

2
.2

2
0

2
.2

2
.2

2
0

2
.2

1
.8

2
.4

0
1
.8

TX
1

.2
0

.4
0

1
.2

1
.2

0
.4

0
1
.2

1
0

.6
0

1
1
.2

0
.4

0
1

.2
1

0
.6

0
1

O
ve

ra
ll

3
.2

1
.3

0
.2

5
2

.9
5

2
.9

5
1
.3

5
0
.0

5
2
.9

2
.5

1
.8

0
.0

5
2
.4

5
2

.7
5

1
.5

5
0

.0
5

2
.7

2
.3

1
.9

5
0

2
.3

0
.9

C
A

5
1

.6
0

.6
4
.4

4
.4

1
.6

0
4
.4

3
.4

2
.6

0
3

.4
3
.8

2
.2

0
3

.8
4

.4
1
.6

0
4
.4

FL
3

.8
1

.6
0

.2
3
.6

3
.6

1
.8

0
.2

3
.4

3
2

.4
0

.2
2

.8
3
.4

2
0

.2
3

.2
1

.6
3
.6

0
1
.6

N
Y

2
2

.4
0

.2
1
.8

1
.8

2
.4

0
1
.8

1
.8

2
.4

0
1

.8
1
.8

2
.4

0
1

.8
1

.4
2
.8

0
1
.4

TX
0

.8
0

.8
0

0
.8

0
.8

0
.8

0
0
.8

0
.8

0
.8

0
0

.8
0
.8

0
.8

0
0

.8
0

.8
0
.8

0
0
.8

O
ve

ra
ll

2
.9

1
.6

0
.2

5
2

.6
5

2
.6

5
1
.6

5
0
.0

5
2
.6

2
.2

5
2

.0
5

0
.0

5
2

.2
2

.4
5

1
.8

5
0

.0
5

2
.4

2
.0

5
2
.2

0
2

.0
5

111





Bibliography

Agosti, M., Crivellari, F., & Di Nunzio, G. M. (2012). Web log analysis: a review of a
decade of studies about information acquisition, inspection and interpretation
of user interaction. Data Mining and Knowledge Discovery, 24(3), 663–696.

Alfred, R., Leong, L. C., On, C. K., & Anthony, P. (2014). Malay named entity
recognition based on rule-based approach. International Journal of Machine
Learning and Computing, 4(3), 300–306.

Amazon Web Services Inc. (2018). Amazon Simple Storage Service (S3). Retrieved
April 21, 2018, from aws.amazon.com/s3

Amazon Web Services, Inc. (2018). Amazon web services - cloud computing services.
Retrieved January 15, 2018, from aws.amazon.com

Basu, J., Bepari, M. S., Nandi, S., Khan, S., & Roy, R. (2013, November). SATT: semi-
automatic transcription tool. In 2013 international conference oriental COCOSDA
held jointly with 2013 conference on asian spoken language research and evaluation
(O-COCOSDA/CASLRE) (pp. 1–6). doi:10.1109/ICSDA.2013.6709903

Berger, A. L., Pietra, V. J. D., & Pietra, S. A. D. (1996). A maximum entropy approach
to natural language processing. Computational linguistics, 22(1), 39–71.

Blakeslee, S., Dekhtyar, A., Khosmood, F., Kurfess, F., Kuboi, T., Poschman, H.,
. . . Durst, S. (2015). Digital Democracy project: making government more
transparent one video at a time. Global Digital Humanities.

Boehner, K. & DiSalvo, C. (2016). Data, design and civics: an exploratory study of
civic tech. In Proceedings of the 2016 chi conference on human factors in computing
systems (pp. 2970–2981). CHI ’16. San Jose, California, USA: ACM. doi:10 .
1145/2858036.2858326

Brants, T. (2000). TnT: a statistical part-of-speech tagger. In Proceedings of the sixth
conference on applied natural language processing (pp. 224–231). Association for
Computational Linguistics.

Brightcove, Inc. (2018). Video.js: The Player Framework. Retrieved July 10, 2018,
from videojs.com

Brill, E. (1995). Transformation-based error-driven learning and natural language
processing: a case study in part-of-speech tagging. Computational linguistics,
21(4), 543–565.

Budhwar, A., Kuboi, T., Dekhtyar, A., & Khosmood, F. (2018). Predicting the vote
using legislative speech. In Proceedings of the 19th annual international conference
on digital government research: governance in the data age (p. 35). ACM.

Burke, M., Amento, B., & Isenhour, P. (2006). Error correction of voicemail tran-
scripts in scanmail. In Proceedings of the sigchi conference on human factors in

113

aws.amazon.com/s3
aws.amazon.com
https://dx.doi.org/10.1109/ICSDA.2013.6709903
https://dx.doi.org/10.1145/2858036.2858326
https://dx.doi.org/10.1145/2858036.2858326
videojs.com


Bibliography

computing systems (pp. 339–348). CHI ’06. Montreal, Quebec, Canada: ACM.
doi:10.1145/1124772.1124823

Busany, N. & Maoz, S. (2016). Behavioral log analysis with statistical guarantees. In
Software engineering (icse), 2016 ieee/acm 38th international conference on (pp. 877–
887). IEEE.

California Polytechnic State University. (2014). Projects - IATPP: Digital Democracy.
Retrieved April 25, 2018, from iatpp.calpoly.edu/projects/digitaldemocracy.
asp

California Secretary of State. (2017, July). Cal-access. Retrieved April 25, 2018, from
cal-access.sos.ca.gov

Castro-Bleda, M. J., Vilar, J. M., Llorens, D., Marzal, A., Prat, F., & Zamora-Martinez,
F. (2017). A system for assisted transcription and annotation of ancient docu-
ments. In Proceedings of the 15th international workshop on content-based multime-
dia indexing (37:1–37:5). CBMI ’17. Florence, Italy: ACM. doi:10.1145/3095713.
3095752

Christen, P. (2006). A comparison of personal name matching: techniques and
practical issues. In Data mining workshops, 2006. icdm workshops 2006. sixth ieee
international conference on (pp. 290–294). IEEE.

cielo24. (2018). Cielo24. Retrieved January 10, 2018, from cielo24.com
Clift, S. (2003). E-democracy, e-governance and public net-work. Retrieved July 15,

2018, from publicus.net/articles/edempublicnetwork.html
CNN.com. (2017, February). State politics are the next battleground – and tracking

them just got easier. Retrieved September 25, 2018, from money.cnn.com/2017/
02/07/technology/digital-democracy-new-york-california-transparency

Cohen, W., Ravikumar, P., & Fienberg, S. (2003). A comparison of string metrics
for matching names and records. In Kdd workshop on data cleaning and object
consolidation (Vol. 3, pp. 73–78).

C-SPAN. (2018). Congressional chronicle - members of congress, hearings and more.
Retrieved January 15, 2018, from c-span.org/congress

Cutting, D., Kupiec, J., Pedersen, J., & Sibun, P. (1992). A practical part-of-speech
tagger. In Proceedings of the third conference on applied natural language processing
(pp. 133–140). Association for Computational Linguistics.

Daelemans, W., Zavrel, J., Berck, P., & Gillis, S. (1996). MBT: a memory-based part
of speech tagger-generator. arXiv preprint cmp-lg/9607012.

Davis, B. & Baxandall, P. (2014, April). Following the money 2014. Retrieved April
25, 2018, from calpirgedfund.org/reports/caf/following-money-2014

Dawes, S. S. & Helbig, N. (2010). Information strategies for open government: chal-
lenges and prospects for deriving public value from government transparency.
In International conference on electronic government (pp. 50–60). Springer.

de Santana, V. F. & Baranauskas, M. C. C. (2015). WELFIT: a remote evaluation tool
for identifying web usage patterns through client-side logging. International
Journal of Human-Computer Studies, 76, 40–49.

Defazio, A. (2016). A complete guide to the bayes factor test.

114

https://dx.doi.org/10.1145/1124772.1124823
iatpp.calpoly.edu/projects/digitaldemocracy.asp
iatpp.calpoly.edu/projects/digitaldemocracy.asp
cal-access.sos.ca.gov
https://dx.doi.org/10.1145/3095713.3095752
https://dx.doi.org/10.1145/3095713.3095752
cielo24.com
publicus.net/articles/edempublicnetwork.html
money.cnn.com/2017/02/07/technology/digital-democracy-new-york-california-transparency
money.cnn.com/2017/02/07/technology/digital-democracy-new-york-california-transparency
c-span.org/congress
calpirgedfund.org/reports/caf/following-money-2014


Bibliography

Deshpande, R., Tuna, T., Subhlok, J., & Barker, L. (2014, October). A crowdsourc-
ing caption editor for educational videos. In 2014 IEEE frontiers in education
conference (FIE) proceedings (pp. 1–8). doi:10.1109/FIE.2014.7044040

Digital Democracy initiative. (2017a). Digital Democracy homepage. Retrieved April
20, 2018, from digitaldemocracy.org

Digital Democracy initiative. (2017b, November 18). Digitaldemocracy csc iab
presentation 2017. Retrieved March 5, 2018, from drive.google.com/open?id=
1z-FVDMuSxdCyjqQQSuDb-WutRXrY9AJG

Drupal Association. (2018). Drupal - Open Source CMS. Retrieved June 6, 2018,
from drupal.org

Dumais, S., Jeffries, R., Russell, D. M., Tang, D., & Teevan, J. (2014). Understanding
user behavior through log data and analysis. In Ways of knowing in HCI
(pp. 349–372). Springer.

Eftimov, T., Koroušić Seljak, B., & Korošec, P. (2017, June). A rule-based named-
entity recognition method for knowledge extraction of evidence-based dietary
recommendations. PLOS ONE, 12(6), 1–32. doi:10.1371/journal.pone.0179488

Explosion AI. (2018). spaCy - industrial-strength natural language processing in
python. Retrieved July 1, 2018, from aws.amazon.com

Fenstermacher, K. D. & Ginsburg, M. (2002). Mining client-side activity for person-
alization. In Advanced issues of e-commerce and web-based information systems,
2002.(wecwis 2002). proceedings. fourth ieee international workshop on (pp. 205–
212). IEEE.

Fernandez, A., Insfran, E., & Abrahão, S. (2011). Usability evaluation methods for
the web: a systematic mapping study. Information and Software Technology,
53(8), 789–817.

Fox, J. (2007). Government transparency and policymaking. Public choice, 131(1-2),
23–44.

Gerken, J., Bak, P., Jetter, C., Klinkhammer, D., & Reiterer, H. (2008). How to use
interaction logs effectively for usability evaluation.

Ghezzi, C., Pezzè, M., Sama, M., & Tamburrelli, G. (2014). Mining behavior models
from user-intensive web applications. In Proceedings of the 36th international
conference on software engineering (pp. 277–287). ACM.

Gierke, O., Darimont, T., Strobl, C., Paluch, M., & Bryant, J. (2018, July 26). Spring
Data JPA - reference documentation. Retrieved August 1, 2018, from docs.
spring.io/spring-data/jpa/docs/current/reference/html

GitHub, Inc. (2018). GitHub. Retrieved May 26, 2018, from github.com
Google LLC. (2018). SyntaxNet: Neural Models of Syntax. Retrieved July 20, 2018,

from github.com/tensorflow/models/tree/master/research/syntaxnet
Grimes, C., Tang, D., & Russell, D. M. (2007). Query logs alone are not enough. In

Workshop on query log analysis at www. Citeseer.
Hirschberg, D. S. (1975, June). A linear space algorithm for computing maximal

common subsequences. Communications of the ACM, 18(6), 341–343. doi:10.
1145/360825.360861

115

https://dx.doi.org/10.1109/FIE.2014.7044040
digitaldemocracy.org
drive.google.com/open?id=1z-FVDMuSxdCyjqQQSuDb-WutRXrY9AJG
drive.google.com/open?id=1z-FVDMuSxdCyjqQQSuDb-WutRXrY9AJG
drupal.org
https://dx.doi.org/10.1371/journal.pone.0179488
aws.amazon.com
docs.spring.io/spring-data/jpa/docs/current/reference/html
docs.spring.io/spring-data/jpa/docs/current/reference/html
github.com
github.com/tensorflow/models/tree/master/research/syntaxnet
https://dx.doi.org/10.1145/360825.360861
https://dx.doi.org/10.1145/360825.360861


Bibliography

Hong, J. I., Heer, J., Waterson, S., & Landay, J. A. (2001). WebQuilt: a proxy-based
approach to remote web usability testing. ACM Transactions on Information
Systems, 19(3), 263–285.

IBM. (2018). Watson Speech to Text. Retrieved February 10, 2018, from ibm.com/
watson/services/speech-to-text

Interoperability solutions for public administrations, businesses and citizens. (2018,
May). 19th annual international conference on digital government research.
Retrieved May 14, 2018, from https://ec.europa.eu/isa2/events/19th-annual-
international-conference-digital-government-research_en

Ivory, M. Y. & Hearst, M. A. (2001). The state of the art in automating usability
evaluation of user interfaces. ACM Computing Surveys (CSUR), 33(4), 470–516.

Janssen, M., Charalabidis, Y., & Zuiderwijk, A. (2012). Benefits, adoption barriers
and myths of open data and open government. Information systems management,
29(4), 258–268.

Jaro, M. A. (1989). Advances in record-linkage methodology as applied to matching
the 1985 census of Tampa, Florida. Journal of the American Statistical Association,
84(406), 414–420.

JavaServer Pages Technology. (2017). Oracle. Retrieved April 25, 2018, from ractive.
js.org

JSON. (2018). Introducing JSON. Retrieved July 10, 2018, from json.org
Kauffman, D., Khosmood, F., Kuboi, T., & Dekhtyar, A. (2018). Learning align-

ments from legislative discourse. In Proceedings of the 19th annual international
conference on digital government research: governance in the data age (p. 119). ACM.

Kauffman, D., Williams, M., Washington, C., Socher, G., & Khosmood, F. (2018).
Multimodal speaker identification in legislative discourse. In Proceedings of the
19th annual international conference on digital government research: governance in
the data age (p. 66). ACM.

Khosmood, F., Dekhtyar, A., Assai, H., Kurfess, F., & Snyder, J. (2014, August).
Making California legislative process transparent. California Polytechnic State
University, San Luis Obispo.

Knight Foundation. (2015, March). Assessing civic tech: case studies and resources for
tracking outcomes. Impact Network.

Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., & Pohlmann, N. (2013). Online
controlled experiments at large scale. In Proceedings of the 19th acm sigkdd
international conference on knowledge discovery and data mining (pp. 1168–1176).
ACM.

Kohavi, R. & Longbotham, R. (2017). Online controlled experiments and A/B testing.
In Encyclopedia of machine learning and data mining (pp. 922–929). Springer.

Lafferty, J. D., McCallum, A., & Pereira, F. C. N. (2001). Conditional random fields:
probabilistic models for segmenting and labeling sequence data. In Proceedings
of the eighteenth international conference on machine learning (pp. 282–289). ICML
’01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved
from http://dl.acm.org/citation.cfm?id=645530.655813

116

ibm.com/watson/services/speech-to-text
ibm.com/watson/services/speech-to-text
https://ec.europa.eu/isa2/events/19th-annual-international-conference-digital-government-research_en
https://ec.europa.eu/isa2/events/19th-annual-international-conference-digital-government-research_en
ractive.js.org
ractive.js.org
json.org
http://dl.acm.org/citation.cfm?id=645530.655813


Bibliography

Lam, S. (2016, June). Digital Democracy Video Manager (Master’s thesis, California
Polytechnic State University, San Luis Obispo). Retrieved April 20, 2018, from
digitalcommons.calpoly.edu/cscsp/71

Latner, M., Dekhtyar, A. M., Khosmood, F., Angelini, N., & Voorhees, A. (2017). Mea-
suring legislative behavior: an exploration of digitaldemocracy.org. California
Journal of Politics and Policy, 9(3).

Legislative Analyst’s Office. (2016, November). Proposition 54. Retrieved September
25, 2018, from lao.ca.gov/BallotAnalysis/Proposition?number=54&year=2016

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady (Vol. 10, 8, pp. 707–710).

Library of Congress. (2018). Congressional record. Retrieved January 15, 2018, from
congress.gov/congressional-record

Luz, S., Masoodian, M., Rogers, B., & Deering, C. (2008). Interface design strate-
gies for computer-assisted speech transcription. In Proceedings of the 20th
australasian conference on computer-human interaction: designing for habitus and
habitat (pp. 203–210). OZCHI ’08. Cairns, Australia: ACM. doi:10.1145/1517744.
1517812

MapLight. (2017, July). Maplight - revealing money’s influence on politics. Retrieved
April 25, 2018, from maplight.org

Marshall Plan Foundation. (2017). 2017 scholarship papers. Retrieved September
11, 2018, from marshallplan.at/2017-papers

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, . . . Xiaoqiang Zheng. (2015). TensorFlow: large-scale machine learning
on heterogeneous systems. Software available from tensorflow.org. Retrieved
from tensorflow.org

Marzal, A. & Vidal, E. (1993). Computation of normalized edit distance and ap-
plications. IEEE transactions on pattern analysis and machine intelligence, 15(9),
926–932.

McCallum, A. & Li, W. (2003). Early results for named entity recognition with
conditional random fields, feature induction and web-enhanced lexicons. In
Proceedings of the seventh conference on natural language learning at hlt-naacl
2003-volume 4 (pp. 188–191). Association for Computational Linguistics.

Meijer, A. (2015). Government transparency in historical perspective: from the
ancient regime to open data in the netherlands. International Journal of Public
Administration, 38(3), 189–199. doi:10.1080/01900692.2014.934837

Mozilla and individual contributors. (2018). Ajax - Developer guides. Retrieved July
10, 2018, from developer.mozilla.org/en-US/docs/Web/Guide/AJAX

Mozilla & individual contributors. (2018). MDN web docs - event reference. Re-
trieved January 10, 2018, from developer.mozilla.org/en-US/docs/Web/
Events

Myers, J. (2015, April). Big support in bipartisan poll for a more transparent
california legislature. Retrieved April 25, 2018, from ww2.kqed.org/news/
2015 / 04 / 30 / big - support - in - bipartisan - poll - for - a - more - transparent -
california-legislature

117

digitalcommons.calpoly.edu/cscsp/71
lao.ca.gov/BallotAnalysis/Proposition?number=54&year=2016
congress.gov/congressional-record
https://dx.doi.org/10.1145/1517744.1517812
https://dx.doi.org/10.1145/1517744.1517812
maplight.org
marshallplan.at/2017-papers
tensorflow.org
https://dx.doi.org/10.1080/01900692.2014.934837
developer.mozilla.org/en-US/docs/Web/Guide/AJAX
developer.mozilla.org/en-US/docs/Web/Events
developer.mozilla.org/en-US/docs/Web/Events
ww2.kqed.org/news/2015/04/30/big-support-in-bipartisan-poll-for-a-more-transparent-california-legislature
ww2.kqed.org/news/2015/04/30/big-support-in-bipartisan-poll-for-a-more-transparent-california-legislature
ww2.kqed.org/news/2015/04/30/big-support-in-bipartisan-poll-for-a-more-transparent-california-legislature


Bibliography

Nadeau, D. & Sekine, S. (2007). A survey of named entity recognition and classifi-
cation. Lingvisticae Investigationes, 30(1), 3–26.

Needleman, S. B. & Wunsch, C. D. (1970). A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of
molecular biology, 48(3), 443–453. doi:10.1016/0022-2836(70)90057-4

New Zealand Parliament. (2018). Read Hansard Reports. Retrieved January 15,
2018, from parliament.nz/en/pb/hansard-debates/rhr

Nivre, J., Tullgren, K., Allwood, J., Ahlsén, E., Holm, J., Gronqvist, L., . . . Sofkova, S.
(1998). Towards multimodal spoken language corpora: transtool and synctool.
In Proceedings of the workshop on partially automated techniques for transcribing
naturally occurring continuous speech (pp. 11–23). Transcribe ’98. Montreal,
Quebec, Canada: Association for Computational Linguistics. Retrieved from
http://dl.acm.org/citation.cfm?id=1628291.1628293

NLTK Project. (2017a). Natural Language Toolkit - NLTK 3.3 documentation. Re-
trieved July 20, 2018, from nltk.org

NLTK Project. (2017b). NLTK 3.3 documentation – edit_distance. Retrieved July 25,
2018, from nltk.org/api/nltk.metrics.html#edit_distance

NowTranscribe Ltd. (2017). NowTranscribe audio transcription. Retrieved January
15, 2018, from nowtranscribe.com

Olsson, H. H. & Bosch, J. (2014). From opinions to data-driven software r&d: a multi-
case study on how to close the ’open loop’ problem. In Software engineering
and advanced applications (SEAA), 2014 40th EUROMICRO conference (pp. 9–16).
IEEE.

Open States. (2017, July). Open states: discover politics in your state. Retrieved
April 25, 2018, from openstates.org

Oracle Corporation. (2018). Mysql. Retrieved January 10, 2018, from mysql.com
ORF. (2018). ORF TVthek. Retrieved February 14, 2018, from tvthek.orf.at
Oxford University Press. (2017). Definition of part of speech in English by Oxford

Dictionaries. Retrieved April 25, 2018, from en . oxforddictionaries . com /
definition/part_of_speech

Paganelli, L. & Paternò, F. (2003). Tools for remote usability evaluation of web
applications through browser logs and task models. Behavior Research Methods,
Instruments, & Computers, 35(3), 369–378.

Papazian, F., Bossy, R., & Nédellec, C. (2012). Alvisae: a collaborative web text
annotation editor for knowledge acquisition. In Proceedings of the sixth linguis-
tic annotation workshop (pp. 149–152). LAW VI ’12. Jeju, Republic of Korea:
Association for Computational Linguistics. Retrieved from http://dl.acm.org/
citation.cfm?id=2392747.2392771

Parliament of Australia. (2018). Hansard. Retrieved January 15, 2018, from aph.gov.
au/Parliamentary_Business/Hansard

Parliament of Canada. (2018). Publication search. Retrieved January 15, 2018, from
ourcommons.ca/parliamentarians/en/publicationsearch

Parliament of the United Kingdom. (2018). Hansard Online. Retrieved January 15,
2018, from hansard.parliament.uk

118

https://dx.doi.org/10.1016/0022-2836(70)90057-4
parliament.nz/en/pb/hansard-debates/rhr
http://dl.acm.org/citation.cfm?id=1628291.1628293
nltk.org
nltk.org/api/nltk.metrics.html#edit_distance
nowtranscribe.com
openstates.org
mysql.com
tvthek.orf.at
en.oxforddictionaries.com/definition/part_of_speech
en.oxforddictionaries.com/definition/part_of_speech
http://dl.acm.org/citation.cfm?id=2392747.2392771
http://dl.acm.org/citation.cfm?id=2392747.2392771
aph.gov.au/Parliamentary_Business/Hansard
aph.gov.au/Parliamentary_Business/Hansard
ourcommons.ca/parliamentarians/en/publicationsearch
hansard.parliament.uk


Bibliography

Parliamentary Office of Science and Technology. (2009). E-Democracy, POST PN321.
UK Parliament. Retrieved August 11, 2018, from researchbriefings.parliament.
uk/ResearchBriefing/Summary/POST-PN-321

Pivotal Software. (2018a, July 26). Core technologies. Retrieved August 1, 2018,
from docs.spring.io/spring/docs/current/spring-framework-reference/core.
html

Pivotal Software. (2018b, July 26). JPA Repositories - Query methods. Retrieved
August 1, 2018, from docs.spring.io/spring/docs/current/spring-framework-
reference/core.html

Pivotal Software. (2018c). Spring. Retrieved January 10, 2018, from spring.io
Pivotal Software. (2018d, July 26). Spring AOP APIs. Retrieved August 1, 2018,

from docs.spring.io/spring/docs/current/spring-framework-reference/core.
html#aop-api

Pivotal Software. (2018e). Understanding REST. Retrieved August 1, 2018, from
spring.io/understanding/REST

Pivotal Software. (2018f, July 26). Web on servlet stack. Retrieved August 1, 2018,
from docs.spring.io/spring/docs/current/spring-framework-reference/web.
html

Public Affairs Office of California Polytechnic State University. (2015, May). Lt.
Gov. Newsom and Former State Sen. Blakeslee Trail-blaze Digital Platform
to Transform Government Transparency. Retrieved April 25, 2018, from
digitalcommons.calpoly.edu/pao_pr/4596

Python Software Foundation. (2018). difflib - Helpers for computing deltas. Re-
trieved May 26, 2018, from docs.python.org/3/library/difflib.html

Quo Vadis Veritas Redaktions GmbH. (2018). Addendum – Politometer. Retrieved
February 14, 2018, from http://tvthek.orf.at

RactiveJS contributors. (2017). Ractive.js. Retrieved January 10, 2018, from ractive.js.
org

Ratcliff, J. W. & Metzener, D. E. (1988). Pattern-matching - the gestalt approach. Dr
Dobbs Journal, 13(7), 46.

Ratinov, L. & Roth, D. (2009). Design challenges and misconceptions in named entity
recognition. In Proceedings of the thirteenth conference on computational natural
language learning (pp. 147–155). Association for Computational Linguistics.

Red Hat. (2018). Hibernate. Retrieved January 10, 2018, from hibernate.org
Reinman, A. (2016, June). Improvements to Digital Democracy’s Transcription Tool

(Master’s thesis, California Polytechnic State University, San Luis Obispo).
Retrieved April 20, 2018, from digitalcommons.calpoly.edu/cscsp/96

Revuelta-Martinez, A., Rodriguez, L., & Garcia-Varea, I. (2012). A computer assisted
speech transcription system. In Proceedings of the demonstrations at the 13th
conference of the european chapter of the association for computational linguistics
(pp. 41–45). EACL ’12. Avignon, France: Association for Computational Lin-
guistics. Retrieved from http://dl.acm.org/citation.cfm?id=2380921.2380930

119

researchbriefings.parliament.uk/ResearchBriefing/Summary/POST-PN-321
researchbriefings.parliament.uk/ResearchBriefing/Summary/POST-PN-321
docs.spring.io/spring/docs/current/spring-framework-reference/core.html
docs.spring.io/spring/docs/current/spring-framework-reference/core.html
docs.spring.io/spring/docs/current/spring-framework-reference/core.html
docs.spring.io/spring/docs/current/spring-framework-reference/core.html
spring.io
docs.spring.io/spring/docs/current/spring-framework-reference/core.html#aop-api
docs.spring.io/spring/docs/current/spring-framework-reference/core.html#aop-api
spring.io/understanding/REST
docs.spring.io/spring/docs/current/spring-framework-reference/web.html
docs.spring.io/spring/docs/current/spring-framework-reference/web.html
digitalcommons.calpoly.edu/pao_pr/4596
docs.python.org/3/library/difflib.html
http://tvthek.orf.at
ractive.js.org
ractive.js.org
hibernate.org
digitalcommons.calpoly.edu/cscsp/96
http://dl.acm.org/citation.cfm?id=2380921.2380930


Bibliography

Robertson, C. (2018, March). Why Digital Democracy. California Polytechnic State
University, San Luis Obispo. Retrieved March 5, 2018, from drive.google.com/
open?id=1lPZOblZ10j0M-vUZ0w8wsmsjk9xn15BT

Rouvier, M., Gay, P., Khoury, E., Merlin, T., & Meignier, S. (2013). An open-
source state-of-the-art toolbox for broadcast news diarization. In Proceedings
of interspeech.

Rovin, J. (2016, March). Reducing costs in human assisted speech transcription (Master’s
thesis, California Polytechnic State University, San Luis Obispo). Retrieved
April 20, 2018, from digitalcommons.calpoly.edu/theses/1538

Ruprechter, T., Khosmood, F., Kuboi, T., Dekhtyar, A., & Gütl, C. (2018). Gaining
efficiency in human assisted transcription and speech annotation in legislative
proceedings. In Proceedings of the 19th annual international conference on digital
government research: governance in the data age (117:1–117:2). dg.o ’18. Delft, The
Netherlands: ACM. doi:10.1145/3209281.3209410

Seps, L. (2013). Nanotrans—editor for orthographic and phonetic transcriptions. In
Telecommunications and signal processing (tsp), 2013 36th international conference
on (pp. 479–483). IEEE.

Shin, K., Shafiei, M., Kim, M., Jain, A., & Raghavan, H. (2018). Discovering progres-
sion stages in trillion-scale behavior logs. In Proceedings of the 27th international
conference on world wide web (www). acm, forthcoming (Vol. 1, 1.1, pp. 1–10).

Smith, T. F. & Waterman, M. S. (1981). Identification of common molecular sub-
sequences. Journal of molecular biology, 147(1), 195–197. doi:10 .1016/0022 -
2836(81)90087-5

Snae, C. (2007). A comparison and analysis of name matching algorithms. Interna-
tional Journal of Applied Science, Engineering and Technology, 4(1), 252–257.

Stanford Natural Language Processing Group. (2018a). Stanford log-linear part-of-
speech tagger. Retrieved July 1, 2018, from nlp.stanford.edu/software/tagger.
html

Stanford Natural Language Processing Group. (2018b). Stanford named entity
recognizer (NER). Retrieved July 1, 2018, from nlp.stanford.edu/software/
CRF-NER.html

State of California. (2017a, July). California state assembly website. Retrieved April
25, 2018, from assembly.ca.gov

State of California. (2017b, July). California state legislature website. Retrieved April
25, 2018, from leginfo.legislature.ca.gov

State of California. (2017c, July). California state senate website. Retrieved April 25,
2018, from senate.ca.gov

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., & Tsujii, J. (2012).
BRAT: a web-based tool for NLP-assisted text annotation. In Proceedings of the
demonstrations at the 13th conference of the european chapter of the association for
computational linguistics (pp. 102–107). EACL ’12. Avignon, France: Association
for Computational Linguistics. Retrieved from http://dl.acm.org/citation.
cfm?id=2380921.2380942

120

drive.google.com/open?id=1lPZOblZ10j0M-vUZ0w8wsmsjk9xn15BT
drive.google.com/open?id=1lPZOblZ10j0M-vUZ0w8wsmsjk9xn15BT
digitalcommons.calpoly.edu/theses/1538
https://dx.doi.org/10.1145/3209281.3209410
https://dx.doi.org/10.1016/0022-2836(81)90087-5
https://dx.doi.org/10.1016/0022-2836(81)90087-5
nlp.stanford.edu/software/tagger.html
nlp.stanford.edu/software/tagger.html
nlp.stanford.edu/software/CRF-NER.html
nlp.stanford.edu/software/CRF-NER.html
assembly.ca.gov
leginfo.legislature.ca.gov
senate.ca.gov
http://dl.acm.org/citation.cfm?id=2380921.2380942
http://dl.acm.org/citation.cfm?id=2380921.2380942


Bibliography

Stripes. (2018). Stripes Wiki - Stripes Framework Wiki. Retrieved February 20, 2018,
from stripesframework.org

Surka, M. & Ridlington, E. (2016, April). Following the money 2016. Retrieved April
25, 2018, from calpirg.org/reports/cap/following-money-2016

The Apache Software Foundation. (2018a). Apache OpenNLP. Retrieved July 20,
2018, from opennlp.apache.org

The Apache Software Foundation. (2018b). Apache Tiles. Retrieved April 20, 2018,
from foundation.zurb.com

The Apache Software Foundation. (2018c). Apache Tomcat. Retrieved July 10, 2018,
from tomcat.apache.org

The Apache Software Foundation. (2018d). Maven. Retrieved August 10, 2018, from
maven.apache.org

The Austrian Parliament. (2018a). Erweiterte Suche. Retrieved February 14, 2018,
from parlament.gv.at/SUCH

The Austrian Parliament. (2018b). Stenographische Protokolle. Retrieved February
14, 2018, from parlament.gv.at/PAKT/STPROT

The California Channel. (2017, July). The California Channel - politics and public
affairs that shape California. Retrieved April 25, 2018, from calchannel.com

The European Parliament. (2018). Debates and videos | planary. Retrieved January
15, 2018, from europarl.europa.eu/plenary/en/debates-video.html

The jQuery Foundation. (2018). jQuery. Retrieved January 10, 2018, from jquery.com
The Swiss Parliament. (2018). Search official bulletin. Retrieved January 15, 2018,

from parlament.ch/en/ratsbetrieb/suche-amtliches-bulletin
Tjong Kim Sang, E. F. & De Meulder, F. (2003). Introduction to the CoNLL-2003

shared task: language-independent named entity recognition. In Proceedings
of the seventh conference on natural language learning at hlt-naacl 2003-volume 4
(pp. 142–147). Association for Computational Linguistics.

Toselli, A. H., Vidal, E., & Casacuberta, F. (2011). Computer assisted transcription
of text images. In Multimodal interactive pattern recognition and applications
(pp. 61–98). Springer.

Toutanova, K., Klein, D., Manning, C. D., & Singer, Y. (2003). Feature-rich part-
of-speech tagging with a cyclic dependency network. In Proceedings of the
2003 conference of the north american chapter of the association for computational
linguistics on human language technology-volume 1 (pp. 173–180). Association for
Computational Linguistics.

Toutanova, K. & Manning, C. D. (2000). Enriching the knowledge sources used
in a maximum entropy part-of-speech tagger. In Proceedings of the 2000 joint
sigdat conference on empirical methods in natural language processing and very
large corpora: held in conjunction with the 38th annual meeting of the association for
computational linguistics-volume 13 (pp. 63–70). Association for Computational
Linguistics.

United States Census Bureau. (2017, July). Annual estimates of the resident popula-
tion for the united states, regions, states, and puerto rico: april 1, 2010 to july
1, 2017 (nst-est2017-01). Retrieved June 6, 2018, from https://www.2census.

121

stripesframework.org
calpirg.org/reports/cap/following-money-2016
opennlp.apache.org
foundation.zurb.com
tomcat.apache.org
maven.apache.org
parlament.gv.at/SUCH
parlament.gv.at/PAKT/STPROT
calchannel.com
europarl.europa.eu/plenary/en/debates-video.html
jquery.com
parlament.ch/en/ratsbetrieb/suche-amtliches-bulletin
https://www.2census.gov/programs-surveys/popest/tables/2010-2017/state/totals/nst-est2017-01.xlsx
https://www.2census.gov/programs-surveys/popest/tables/2010-2017/state/totals/nst-est2017-01.xlsx
https://www.2census.gov/programs-surveys/popest/tables/2010-2017/state/totals/nst-est2017-01.xlsx


Bibliography

gov/programs-surveys/popest/tables/2010-2017/state/totals/nst-est2017-
01.xlsx

Vasconcelos, L. G., Santos, R. D., & Baldochi, L. A. (2016). Exploiting client logs to
support the construction of adaptive e-commerce applications. In e-Business
engineering (ICEBE), 2016 IEEE 13th international conference on (pp. 164–169).
IEEE.

Vermeeren, A. P., Law, E. L.-C., Roto, V., Obrist, M., Hoonhout, J., & Väänänen-
Vainio-Mattila, K. (2010). User experience evaluation methods: current state
and development needs. In Proceedings of the 6th nordic conference on human-
computer interaction: extending boundaries (pp. 521–530). ACM.

Voit, K. (2018). LaTeX-KOMA-template. Retrieved August 20, 2018, from github.
com/novoid/LaTeX-KOMA-template

Watson, G. (2017). OrmLite - Lightweight Object Relational Mapping (ORM) Java
Package. Retrieved April 25, 2018, from ormlite.com

Webb, P., Syer, D., Nicoll, J. L. S., Winch, R., Wilkinson, A., Overdijk, M., . . . Bhave,
M. (2018, July 26). Spring Boot Reference Guide. Retrieved August 1, 2018,
from docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/
htmlsingle

Whittaker, S. & Amento, B. (2004). Semantic speech editing. In Proceedings of the
sigchi conference on human factors in computing systems (pp. 527–534). CHI ’04.
Vienna, Austria: ACM. doi:10.1145/985692.985759

Widlöcher, A. & Mathet, Y. (2012). The Glozz platform: a corpus annotation and
mining tool. In Proceedings of the 2012 acm symposium on document engineering
(pp. 171–180). DocEng ’12. Paris, France: ACM. doi:10.1145/2361354.2361394

Wijnhoven, F., Ehrenhard, M., & Kuhn, J. (2015). Open government objectives and
participation motivations. Government information quarterly, 32(1), 30–42.

Winkler, W. E. (1990). String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage. In Proceedings of the section on survey
research.

Yancey, W. E. (2005). Evaluating string comparator performance for record linkage. Bureau
of the Census.

ZURB, Inc. (2018). Foundation. Retrieved August 20, 2018, from foundation.zurb.
com

122

https://www.2census.gov/programs-surveys/popest/tables/2010-2017/state/totals/nst-est2017-01.xlsx
https://www.2census.gov/programs-surveys/popest/tables/2010-2017/state/totals/nst-est2017-01.xlsx
https://www.2census.gov/programs-surveys/popest/tables/2010-2017/state/totals/nst-est2017-01.xlsx
https://www.2census.gov/programs-surveys/popest/tables/2010-2017/state/totals/nst-est2017-01.xlsx
github.com/novoid/LaTeX-KOMA-template
github.com/novoid/LaTeX-KOMA-template
ormlite.com
docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle
docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle
https://dx.doi.org/10.1145/985692.985759
https://dx.doi.org/10.1145/2361354.2361394
foundation.zurb.com
foundation.zurb.com

