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Abstract

One of the most significant current discussions in the technology sector is advanced driver-assistance

systems and autonomous driving. Every day, there are new innovations in this field and almost

every big company is doing a lot of research in this area. Recently, there has been renewed interest

in functional safety in self driving cars to minimize possible accidents in future. Any accident

resulting from such systems is too much, because it would effect a lower the acceptance of the

population and further slow down the progress of this technology.

Due to this fact testing such components is highly important. It is impossible to develop components

that work flawlessly on public roads and have thought of all sorts of situations. For this reason a

tool is needed to detect critical situations in an urban environment. In order to obtain a common

understanding of critical situations within vehicles, norms were published. In this thesis a theoretical

background of related norms with main focus on ISO 26262 and suggested tools are given.

The main challenge to be able to find critical situations, is a suitable test environment on the one

hand and suitable risk assessment methods on the other hand. This thesis develops a simulation

environment, based on the procedure of the V-Model and the presented modelling process. It

also shows how it is possible to integrate the behaviour of the components under test into this

environment. With the help of hazard level methods, integrated in this simulation, the developed

system is able to do a risk assessment of all situations in real time and find critical situations.

Finally, the results of the various hazard level functions are presented and compared. It is shown

that this kind of simulation works quite well and can be used as an addition to classic tests. In order

to completely replace classic tests, the application still has to be extended with features, discussed

at the end of this thesis.
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1 Introduction

Autonomous driving on public roads sounds like science fiction. Nevertheless, there is currently a

real hype about this technology and it is not fitting to say that research on self driving cars is in

its infancy. The first experiments were done in the 1920s. Recently, there are leverage’s in this area

around-the-clock. Autonomous driving is coming closer and closer and it is now important to check

any systems for their reliability and safety. Introducing autonomous driving at once would be far

too dangerous and simply impossible, because of the extensive research work. For this reason, for

some years several car manufacturers have started to release their assistance systems step by step

for road traffic. Through this gradual approach, systems can be tested in the real environment. By

analysing the functionality of this components, potential developmental errors are revealed and,

more importantly, cases which were not considered are often found. In this thesis an approach to

find critical cases like this in a more safety and more cost-effective way is introduced. Next, a more

detailed account of the current development status is given and it shows how this this thesis was

proceeded.

1.1 Background and Motivation

As mentioned above, advanced driver-assistance systems (ADAS) and autonomous driving(AD) is

one of the most significant current discussions in the technology sector. There are many big players

doing research on this topic, such as Google with Waymo, Uber and Tesla to mention only a few. At

least since the start of self-driving cars on the streets of California, everyone talks about the topic,

among technicians, as well as politicians right to the normal population.

ADAS may be defined as a systematic development process, which consists of six different stages:

Level 0 means that the vehicle has no automation, stage 1 is controlled by the driver supported with

1



1 Introduction

Figure 1.1: Standardized classes of autonomy [1].

some driver assist features. Also level 2 is steered by a human, even though there are automated

components like lane keep systems. Meanwhile, almost every manufacturer has cars with level

2 functionalities in his assortment. Big players, like Uber or Tesla have cars in level 3, so called

conditional automation. At this level the driver is not required any more, just ready to take control

in critical situations at all times. The last stage before full automation is called high automation.

The vehicle does not need the driver any more, but can be controlled manually if desired. At the

end, level 5 reaches the full automation and the vehicle is able to perform all driving functions.

In October 2016, SAE International published the standard SAE J3016 [23] to officially define this

different classes of autonomy, see 1.1.

All over the world work is being carried out on the further development. New innovations in this

area will greatly affect the number of accidents. Statistics show that the main factor of the road

accidents are human errors, like distraction, speed, or risk awareness [16]. Humans are responsible

for approximately 90 percent of road accidents, or at least jointly responsible. Other main accident

causes are environment factors, such as road designs, weather, etc. with a quote of 30 percent. In

Addition to these factors there are about 10 percent of vehicle accident causes, see figure 1.2. A

report from Jerry Albright calculates for 2040 a decrease in accidents in urban environments of 80%.

The main reason for this prediction is the higher level of automation on the streets. Advanced driver

assistant systems, which are providing automated safety features, are build to minimize the human

2



1.1 Background and Motivation

Figure 1.2: Main accident causes in Europe.

error. Additional, adaptive features like lane centring, cruise control, automate lighting etc. enable a

human error close to zero.

The acceptance of the population towards self driving cars depends on the comfort on one side and

the safety on the other side. For this reason, the most important part in the development process

of such systems is safety. To ensure a consistent understanding of the term security worldwide,

earlier the standard IEC 61508 was used to cover the electric components in vehicles. Due to the

increasing number of assistant components in the last years, it became clear that this general norm

for functional safety is no longer sufficient. The ISO 26262 was published in 2011, which covers the

functional safety of electronic and electrical components in vehicles. The standard is important in

the development process of ADAS, and plays a key role in this thesis.

Based on this standard, a V-Model has been developed to ensure that all requirements of functional

safety are met. There are different safety requirements for the development of components. If a

malfunction of the component is not dangerous, such as an air conditioning system, the safety

requirements are accordingly low. In the contrast, when the component the functional safety

influences very much, the safety requirements in the development process will accordingly high.

ISO 26262 provides the Automotive Safety Integrity Level (ASIL) to calculate this risk level of the

system. Currently, this ASIL is manually determined by decision matrix. This type of calculation

3



1 Introduction

is therefore dependent on human perception and respectively on the qualification and experience

of the deciding person. There are only a few studies that deal with a systematic calculation of an

ASIL. This paper attempts to show that an scientific way to detect critical malfunctions components,

whether conscious or not.

With the help of the developed risk assessment based on a simulation environment it is possible to

find critical situations. Conscious malfunctions can simulated in a simulated environment and their

effect can analysed using the assessed hazard level. If the impact of the malfunction is very negative

on the hazard level, the ASIL must be badly valued and the development of the component must

meet very high security requirements.

In order to have almost error-free ADAS systems, they need to be tested sufficiently. The method,

presented in this thesis, can not replace traditional testing and it is advisable to use risk assessment

in addition to classic testing. This approach can be used, at the end of the development chain, to

find mistakes in the development or to find unconscious situations.

This section has introduced the causes of advanced driver assistant systems and has argued that

functional safety is an important factor for acceptance in the population. The next part of this paper

will represent the main objectives of this thesis and how it is possible to develop risk assessment

based on a simulation environment.

1.2 Research Scope

1.2.1 Role of ISO 26262

As was pointed out in the introduction to this paper, functional safety is quite important for

acceptance of self driving cars. To reach a high level of safety it’s important to have knowledge

about the used standards in the field of autonomous vehicles. Due to this fact, the thesis will give a

short overview of the most important standard. The emerging role of ISO 26262 in the context of

functional safety of advanced driver assistant systems will covered. Additionally, similar standards

and safety methods are listed and contrasted to each other. In this context, the ASIL is discussed in

more detail to get an basic understanding of the requirements of the V-Model provided by the ISO

26262.

4



1.2 Research Scope

1.2.2 Development using the V-Model

Due to the importance of the V-Model, the derived model is considered in more detail. At each

stage the importance of safety should be shown and how the process changes according to ASIL.

Additionally, with the help of the standard and the V-Model the need of testing should be demon-

strated. In order to have almost error-free ADAS systems, they need to be tested sufficiently.

For this reason, there has been renewed interest in test areas for autonomous driving vehicles to

minimize possible accidents in the future and get more knowledge of various scenarios. However,

the costs of testing with real environment is enormous and of course always associated with a

certain risk. Due to this fact simulation of self driving cars in an virtual urban environment becomes

more and more important.

1.2.3 Importance of Modelling and Simulation

This thesis should explain the term simulation in more detail and demonstrate the different kinds

of models. It would go beyond the scope of this thesis, only a short overview of the modelling

process will provided. It goes into a bit more detail on how to evaluate an already existing system

and possibly adapt it to your own needs. This background knowledge shows how a simulation

environment was selected. In this context, different simulators are checked for their characteristics

and compared. The last two decades have seen a growing trend towards developing realistic

simulation environment to readjust robust sensors like radar, lidar or camera and test as close to

reality as possible. Recently, a considerable literature has grown up around the theme of gaming

engine as a simulation environment, because of their realistic scenario building possibilities. More

details will be given to Carla simulator, as it is best suited for this task. It is pointed to the benefits

and how was built on this simulator.

1.2.4 Support the development of ADAS

The main aim of this study is to develop a risk assessment software based on a simulation

environment. This risk assessment should be able to identify the lack of identified test scenarios. The

main research question is: How it is possible to detect critical situations in an urban environment?

5



1 Introduction

Figure 1.3: Role of simulation paradigm.

With a automatic tool to find critical situations it should be possible to find situations which have

not been considered before. These cases would greatly advance the development of self driving

cars. It is shown that the determination of such a situation is not easy. Defining a collision with a

critical situation would be too easy and not enough. Thus, various parameters are introduced to

treat a situation as critical even before a collision will happen.

In the course of the thesis different methods for the identification of such a situation are worked

out. Two important cases should be evaluated and discussed for each method. The first test case

is a street crossing pedestrian without other risk relevant influences, see 1.4a. In figure 1.4b the

second situation is shown. This case provides a crowd of people going along a sidewalk without

crossing the street. This situation is not critical and should also not be detected by the hazard level

functions.

1.2.5 Improve the way of testing

Additionally, this study aims to contribute to improve the way of testing. The V-Model demonstrates

the importance of testing. The considerations of risk assessment should not replace classical testing,

this software should serve as support to them. The ISO 26262 expects a lot of testing, which is

currently partially met by real-time testing in urban environment. Since this type of testing is very

6



1.3 Outline

(a) Test case 1.

(b) Test case 2.

Figure 1.4: Detection of critical situation in test case.

expensive, the new approach based on simulation should serve many resources as a preliminary

test and show many problems in advance.

1.3 Outline

This thesis begins by an introduction to give some motivation why this thesis is so important for

the development of safe self-driving cars and why functional safety is important for the acceptance

of the population. It will then go into more detail in the functional safety standards. This will

introduce the necessary background knowledge including the general norm IEC 61508 and then

more details to the functional safety norm ISO 26262. In Addition to the norms the Automotive

Safety Integrity Level (ASIL) will provided and how it will determined.

Chapter 3 explains the theoretical dimensions of the research, and reveals how ISO 26262 deviate the

requirements within the V-Model. The structure of the V-Model will discussed in more detail and

the requirements of the different phases depending on the ASIL will provided. Next the methods

of risk assessment, including the used parameters and algorithms for computing the hazard level,

will specified. Additionally to this, the Modelling Process will explained in more detail. A quick

overview of the different validation techniques and different model and implementation types will

7
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be shown.

The fourth section presents the findings of the research by using the research methods in a case study.

Therefore, the system design and requirements will specified by using the software requirement

specification proposed by the V-Model. Next, a simulation environment will be selected and the

chosen simulator will discussed in more detail. A quick overview of those features and the possibility

to adjust the simulation environment at own requirements will provided. In the course of this a risk

assessment based on the selected simulator will be developed.

Chapter Five analyses the results of the Case Study. The different hazard level function will be

compared. Additionally it will show the correlation between the findings and the automotive safety

integrity level.

Finally, the conclusion will discuss the results and findings of the thesis and will give a review to

challenges for further work.

8



2 Functional Safety Standards

In the introduction, we have explained why paying attention to functional safety in driver assistance

systems is so important. ADAS can play an important role in the prevention of traffic accidents.

Systems, like Collision Avoidance Systems or Lane Departure Warning Systems, provide a warning

signal for the driver to minimize human error. More complex assistance systems, such Lane Keep

Assistant or Autonomous Cruise Control, control the vehicle continuously. This achieves the level of

autonomous driving without the need of a human driver, which will be the safest way of driving

[16]. With the growing amount of features, it is highly important to detect functional failures in an

early development step to minimize fatal accidents and costs. This is the purpose of the international

standard IEC 61508, entitled “Functional safety of Electrical/Electronic/Programmable Electronic

Safety-related Systems”, which was published by the International Electrotechnical Commission in

1998.

2.1 IEC 61508

Therefore IEC 61508 [14], tries to define procedures to produce products, which meet the current

state of the art related to safety conditions. It describes the most important key points of the

complete safety life cycle. The design stage is taken into account, as well as the market launch and

usage until the disposal of the product.

IEC 61508 covers all safety-related systems including one or more electrical or electronic or pro-

grammable electronic devices. Some classic examples are emergency shut-down systems, railway

signalling systems, information-based decision support tool and many more. It takes care about

possible hazards and possible effects in case of malfunction and prepares various safety precautions

based on risk assessment. The higher the risk level of the product is rated, the more demands are

9



2 Functional Safety Standards

Figure 2.1: Most important derived adaptations of IEC 61508.

within the development process.

The standard finds usage in liability cases. In serious cases, the manufacturer is at least partly

responsible, even if the error is in a part produced by a sub company. To avoid this liability, the

manufacturer must be able to demonstrate reliable product development with the help of the

established risk assessment.

For this reason, many companies require a certificate from their component suppliers, which proves

that their products are valid for IEC 61508. However, it is not mandatory, it’s only a recommenda-

tion.

Due to the fact that IEC 61508 is a general and no harmonized standard, its fulfilment is not enough.

However, it can be taken as a basis for more specific standards, see figure 2.1. The following list

contains the most important derived adaptations:

• IEC 61511: Functional safety - Safety instrumented systems for the process industry sector

• IEC 62279: Railway applications - Communication, signalling and processing systems - Soft-

ware for railway control and protection systems

• ISO 26262: Road vehicles – Functional safety

10



2.2 ISO 26262

• IEC 61513: Nuclear power plants - Instrumentation and control important to safety - General

requirements for systems

• DO 178C: Software Considerations in Airborne Systems and Equipment Certification

• IEC 62061: Safety of machinery: Functional safety of electrical, electronic and programmable

electronic control systems

In the following pages, I will present the adaptation ISO 26262, entitled Road vehicles – Functional

safety, which is an important norm for advanced driver assistance systems.

2.2 ISO 26262

As discussed above, there is a highly increasing number of electronic components in vehicles. As

advanced driver assistance systems become more and more complex, the risk of a malfunction

increases. To guarantee, that the functional safety is up to date, the standard ISO 26262 was

introduced by the International Organization of Standardization in 2011 [15]. This standard is

mainly used by the automotive industry and its suppliers to ensure a high safety standard. For

legal security an external audit office can be engaged to test the product according to ISO 26262.

ISO 25252 suggests a product life cycle including management, development, production, operation,

service and decommissioning phase, see figure 2.2. Therefore it covers the earliest concept steps up

to the disposal of the product. The main focus of this thesis is the development phase, because in

this phase the software design, development and testing is done.

This product life cycle is also reflected in the structure of the standard, which consists of 9 parts

and the guideline. Part one explains the terms and abbreviations used in the following pages of the

document.

The second part, Management of function safety, gives a overview of the required safety manage-

ment during the concept phase right up to the decommissioning of the product. The amount of

management, which is required to fulfil the claims, is defined by the automotive safety integrity

level (ASIL) of the embedded product.

The concept phase is responsible for hazard analysis and risk assessment. Firstly the related hazards

have to be analysed. With the help of a specified classification concept, the ASIL can be defined. To
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Figure 2.2: Product life cycle defined by ISO 26262.

do this, every identified hazard is analysed on severity, exposure and controllability of the situation.

A given table helps to assign the hazard situation to the relevant level, more details in section 2.3.

Parts four to six cover the development phase of the product life cycle and is divided by system,

hardware and software product development. All these parts contain working steps similar to the V-

Model. There are methods listed, which, depending on the ASIL, must be committed, recommended

or implemented as an option. In section 3.1 the V-Model used in ISO 26262 is described in more

detail. Part seven is responsible for the production and operation phases and declares demands to

the safety conditions in these steps.

The next part, called supporting processes, contains interfaces within distributed developments,

specification and management of safety requirements, configuration and change management,

verification, documentation and assessments tools for software and hardware components. Almost

arrived at the end, the rules of ASIL decomposition and criticality analysis are given.

Last but not least, there is a guideline on ISO 26262, how to use the standard and some examples

are listed.

In the following pages, Part 6, Product development at the software level will be specified in more

detail. ISO 26262-6 consists of 7 clauses, starting with number 5 and ending with 11. More details
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about these clauses are listed bellow.

Clause 5: Initiation of software development investigates the type and tools used within the

development process of the software. In this phase the development plan will be created with

decisions like using model-based development or not, or which languages will be used.

Clause 6: Safety requirements specification identifies the hazard functions of the software. Dangers

can happen directly by a desired cause, such as loss of traction during braking, or indirectly by

malfunctions. For these hazards the safety requirements have to be specified, including connections

within the components.

Clause 7: Architectural design declares a high level architecture for each software component. This

phase again consists of 18 requirements. First of all the notations and the principle architectural

design have to be done, like design considerations, identification of software units, component

categorization, just to name a few requirements. The important part of this clause is the allocation of

ASIL level and the safety analysis as well as defining safety mechanism and error handling. Finally

it is important to do some verification of the architectural design.

Clause 8: Software unit design and implementation provide a list of requirements to design and

implement each subsystem on it’s own. At the end of this phase, there is a unit verification to

guarantee safety.

Clause 9: Unit testing is responsible for testing the small components on a flawless function. ISO

26262 [15] lists following requirements: safety-related components, test planning and execution,

unit testing methods, test cast generation and test coverage metrics.

Clause 10: Integration testing provides a requirement list for testing connected components. If no

errors are found in unit testing, it is still possible to find errors with the help of integration testing,

because of failures within interfaces and communication between the components. So the list of

requirements is similar to unit testing, but one level above it.

Clause 11: Safety requirements verification obtain the correct functionality on the target environ-

ment. To do this, the first proposed requirement is to verify the planning and execution. After that

test the environments and target hardware. Finally the evaluation of the results is very important.
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Overall, this standard highlights the importance of funcional safety and lists some prepared tools

and how to use it. However, risk assessment is not a one-time process, it has to be done more often

in the development phase. In the next section the evaluation of the ASIL will be shown.

2.3 Automotive Safety Integrity Level

Automotive Safety Integrity Level is a type of risk assessment method and a key concept of ISO

26262 [15]. It is a risk based approach to classify the examined component in different levels. There

are four standard ASILs. The lowest risk level is indicated by ASIL A and ASIL D indicates the

highest one, with ASIL B and ASIL C in-between. If there is no risk associated, the assigned level is

set to quality management (QM) with no relevant risk measure.

2.3.1 Hazard Analysis and Risk Assessment

This approach uses three identifiers called Severity (S), Exposure (E) and Controllability (C).

• Severity indicates the expected severity of injuries in the event of the malfunction and can be

divided by S0 (No Injuries) up to S3 (Fatal Injuries).

• Exposure defines the probability of occurring an injury. The Classification starts with E0

(Incredibly unlikely) up to E4 (High probability).

• Controllability defines the probability that the driver can prevent the injury. It is divided into

four levels starting with C0 (Easy to Control) up to C3 (Uncontrollable).

Once these identifiers are declared, the ASIL can be assigned with the help of the ISO 26262 ASIL

allocation table, see 2.1.

Below is an example helps to get a basic understanding of the ASIL calculation.

First the malfunction must be defined, for example a failure with the ABS system. The next task is

to analyse the possible hazards, like losing the stability. Now the identifiers Severity, Exposure and

Controllability have to be defined. For example if S2, C2 and E3 are identified, the resulting ASIL is

ASIL A.
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Table 2.1: The ISO 26262 ASIL Allocation table (Source ISO 26262-3 [15])

Exposure
Controllability

C1 C2 C3

Severity

S1

E1 QM QM QM

E2 QM QM QM

E3 QM QM A

E4 QM A B

S2

E1 QM QM QM

E2 QM QM A

E3 QM A B

E4 A B C

S3

E1 QM QM A

E2 QM A B

E3 A B C

E4 B C D

2.3.2 Comparison with other Hazard Level Standards

The way other hazard level standards assess risk is comparable to the ASIL way of ISO 26262.

There is a quick comparison in table 2.2. What stands out in the table is that IEC 61508 uses the

Safety Integrity Level (SIL), a reliability valuation method, instead of ASIL. It provides a acceptable

number of failures per time. First IEC 61508 is divided in three different modes, low demand, high

demand, or continuous mode. With the help of these modes and the specified limits of probability

failures it is possible to assign a SIL between 1 and 4. For example a subsystem in a low demand

mode and an assigned SIL 3 is required to have a probability failure limit smaller than 10−4. In

summery, ISO 26262 evaluates the level using 3 parameters, severity, exposure and controllability

and IEC 61508 only use one value, the probability of failure on demand.

The Design Assurance Levels (DAL) defined by ARP 4754 [22] is comparable to ASIL. DAL provides

five levels from E to A, which is similar with QM to ASIL D. Components with rating QM or DAL-E

do not need additional functional safety arrangements. Otherwise ASIL D and DAL-A require the

highest attention in the area of functional safety.
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Table 2.2: Comparison with similar standards.

Safety Level

General (IEC 61508) - SIL-1 SIL-2 SIL-3 SIL-4

Automotive (ISO 26262) QM ASIL A ASIL B/C ASIL C/D -

Aviation (DO 178C) DAL-E DAL-D DAL-C DAL-B DAL-A

Railway (IEC 62279) - SIL-1 SIL-2 SIL-3 SIL-4

2.3.3 Benefit of Automotive Safety Integrity Level

With the help of the ASIL it is possible to assign the required tools and methods, which should be

used in the software development process. The higher the level the more requirements have to be

met.

For each clause a table exists with tools classified by the ASIL and a specific value, named highly

recommended, recommended and no recommendation, for each tool.

• No Recommendation (o): The technique is optional and can be used if required, but there is

no recommendation.

• Recommended (+): The method should be used, but it is not obligatory.

• Highly Recommended (++): The method is mandatory and has be used.
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This chapter discusses the impact of ISO 26262, on the development of software components. Part

6, product development at the software level, provides approaches on how to develop functional

safety within software components. The V-Model will be the main focus and it is explained in more

detail in section 3.1. There will always be cross-references to ISO 26262 and the V-Model will be

presented by this area of application.

Gradually it will become apparent that defining critical situations is very important to ISO 26262

and it’s V-Model. Due to this fact section 3.2 will demonstrate different ways on how to define

hazardous phases in traffic of an urban environment. It explains why the question, ”What is a

critical situation in an urban environment?”, is not easy to answer.

The second objective of this thesis is to represent a software in a loop model. For this reason,

modelling and simulation will be discussed in section 3.3. Different types of ”in a Loop”-models

are shown and their advantages and disadvantages are reviewed in more detail.

3.1 V-Model

The V-Model is a standard proceed model to organize the project to minimize development errors

in all process steps. The main objectives can be listed as follows: Minimize the project risks, improve

the guarantee and quality, minimize system life circle methods and improving the communication

between the related components as well as the involved developers [20].

Like every method, the V-Model also has advantages and disadvantages [2]. The model is fits good

for restricted projects. Due to the fact of the clear defined procedure, the model is very popular

in projects with a clear deadline and defined milestones. It provides a simple and easy usage and
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Figure 3.1: V-Model of software product development.

the planning activity as well as designing test cases happens well before implementation phase.

For this reason it is ideal for time management projects. The active defect tracing detects possible

malfunctions in a early stage and avoids a downward flow of the mistakes.

The most problematic disadvantage of the V-Model is the missing extendibility of software systems

in a later development stage. Software design and requirements are defined in an early phase

and can not be changed later. Additionally, there is no early prototype developed. The first

software development is done in the implementation phase, which maybe is to late for indicating

forgotten functions. The model works quite fine for small components, because of this reason it is

recommended to divide a complex system in smaller units, like it is done in ADAS [9].

As stated above, the V-Model is used as the basic approach in software development of ISO 26262.

In figure 3.1 the derived V-Model is presented. The figure is structured in a design phase on the

left and a test phase on the right side of the V. The items within this model are nearly the same

like the clauses in ISO 26262-6. As figure 3.1 shows, the four design steps on the left side, are

system design, specification of software safety requirements, software architectural design and

software unit design and implementation. The test phases consist of software unit testing, software

integration and testing, verification of software safety requirements and item integration and testing.

Each individual step will be discussed in more detail below.
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3.1.1 System Design

The main goal of the system design is to create a general view to develop a clear structured and well

defined software component. Firstly the client and contractor perform a requirement engineering to

declare all functional and non functional requirements and create a product requirement document.

Defining clear structured requirements is not easy for humans. Due to this fact Cimatti at al.

defined a list of conditions [7]. Each requirement is classified to a specific categories using specific

conditions. Table 3.1 represent the conditions and their categories. This classification helps to get a

better overview of the domain and should clarify which tools are used to represent each of them.

Table 3.1: Conditions of the functional requirement defined by Cimatti et al. [7].

Category Condition

Glossary requirement Does the text fragment define a specific concept of the domain?

Architecture requirement Does the requirement introduce some system’s modules and

describe how they interact?

State requirement Does the requirement describe the steps a particular module

performs or the states where a module might be in?

Communication requirement Does the requirement describe messages modules exchange?

Property requirement Does the requirement describe expected properties of the

domain or constraints of the system-to-be?

User requirement Does the requirement describe actions or constraints which have

to be considered, satisfied or performed by the user?

Safety requirement Does the requirement describe necessary safety constraints?

Annotation Is the text fragment a note that does not add any information

about the ontology or the behavior of the specified system?

Once this document has been created, an overview of the function should be given and an assign-

ment by ASIL should be possible.

Table 3.2 shows the impact of the specified ASIL on the prescribed techniques. As can be seen from

the table the usage of defensive implementation techniques is hgihly recommended on ASIL C & D,

but there is no recommendation on ASIL A. As expected, there is no attribute for QM.

19



3 Background Information

Table 3.2: Coding and modelling guideline by ISO 26262-6

ASIL

A B C D

Enforcement of low complexity ++ ++ ++ ++

Use of language subsets ++ ++ ++ ++

Enforcement of strong typing ++ ++ ++ ++

Use of defensive implementation techniques o + ++ ++

Use of established design principles + + + ++

Use of unambiguous graphical representation + ++ ++ ++

Use of style guides + ++ ++ ++

Use of naming conventions ++ ++ ++ ++

Now with the help of the suggested tools a concept including program structure, programming

techniques and algorithms can be created.

3.1.2 Specification of Software Safety Requirements

The specification of Software Safety Requirements critically examines all functions which could lead

to a hazardous situation. It specifies the functional safety requirements and extends the interfaces

between software and an other component. In terms of the specifications, limits must be taken into

account to avoid problems later.

One of the most well-known methods to find safety requirements is the iterative Hazard analysis

and risk assessment process [29]. Figure 3.2 shows a quick overview of the method and how to find

a safety goal.

The first step in this process is to define a preliminary feature description, which specifies the drivers

benefit and known limitations. The next step is to perform the situation analysis with the help of a

generic operational situation tree, where all possible situations will be divided in levels like a tree.

After defining the tree a specific critical situation will defined and the hazard identification can be

done to specify all possible reasons of possible failures. Once all possible hazards are specified, the

dimensioning of hazard situations with the ASIL method can be done followed by the function
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refinement process to break down hazardous events and summarize it’s safety requirement goals.

Due to the fact that the system design phase needs ASIL specification this phase overlaps with the

design phase.

The advantage of defining trees is to have a structured knowledge. It is easy to expand with new

findings and helps to set the focus on the important facts. The disadvantage of doing it manually

is the coverage. It’s difficult to find all possible hazardous situations manually and set a limit of

possible situations. To date, only a limited number of methods to find critical situations are available.

Therefore, this thesis discusses how to find critical situations automatically and helps to fill the tree

without a knowledge gap.

Figure 3.2: Iterative HA&RA and function refinement process [29].

3.1.3 Software Architectural Design

The Architectural Design phase states as the name indicates the high level architecture of the

software as well as evaluation and verification of it. The software architecture describes the interfaces

between the software components, the act in combination, dynamic aspects, like the work-flow

of the processes. Additionally, it defines the functional and non-functional safety requirements,

such support, function, usage and so on. This architecture clarifies the complexity and helps in

the understanding of the whole software system. As mentioned above, there are also proposals

for the methods related to ASIL. One table defines suggestions for notations, the others describes
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principles and recommendations for mechanisms of error detection of the software component.

Table 3.3 provides an overview of the recommendations to mechanisms for error detection at the

software architecture level. For example an external monitoring facility is not compulsory in ASIL

A, but highly recommended in ASIS D.

Table 3.3: Mechanisms for error detection by ISO 26262-6

ASIL

A B C D

Range checks of input and output data ++ ++ ++ ++

Plausibility check + + + ++

Detection of data errors + + + +

External monitoring facility o + + ++

Control flow monitoring o + ++ ++

Diverse software design o o + ++

3.1.4 Software Unit Design and Implementation

The main objective in this phase of the V-Model is to specify the software units with the help of

the software architecture. The following implementation of each component should be done with

the help of the prepared design. The final stage of this phase verifies the implementation using

static analytic methods. The goal of this analysis is to find runtime errors, memory errors and get a

general understanding of code as well as the complexity.

3.1.5 Software Unit Testing

The software unit testing step is the first one in the test phase of the V-Model of software product

development, shown in figure 3.1. When this step is finished the low-level components should be

free of unwanted functionality. Before starting the testing, a software verification plan must created.

The unit test has to fulfil the defined requirements of the software design, robustness and should

show that there is no unintended functionality.
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Figure 3.3 illustrates some test methods and test-case generation steps for unit and integration

testing. On the left side of the figure the software unit testing steps are presented.

Figure 3.3: Software testing methods and metrics [19].

Software units are the smallest sub-system in software development.Testing these units makes

it easier to find failures, detect the reason for it and solve it. Testing the whole system at once

leads to great complexity and becomes very confusing very quickly. As can be seen from the

table 3.4, the recommended requirements becomes more extensive when the ASIL gets higher. The

upper part of the table 3.4 provides the suggestions for methods to test the sub components, like

recommendation for interface test or a resource usage test. The lower part of the table represents the

test-case generation methods, which should be used. For example the requirement analysis from

the phases before should be definitely used.
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Table 3.4: Recommendations of software unit testing methods and unit test-case generation methods by ISO 26262-6.

ASIL

A B C D

Unit testing methods

Requirements-based test ++ ++ ++ ++

Interface test ++ ++ ++ ++

Fault injection test + + + ++

Resource usage test + + + ++

Back-to-back test + + ++ ++

Unit test-case generation

Requirements analysis ++ ++ ++ ++

Equivalence classes ++ ++ ++ ++

Boundary values + + + ++

Error guessing + + + ++

3.1.6 Software Integration and Testing

The following stage is the software integration and testing. The first goal is to integrate and connect

the software units in a whole system. The integration can be done with the help of simulation and

a ”In a Loop”-concept, like ”Software in a Loop” or ”Hardware in a Loop”, see section 3.3 or in

reality with a prototype or a test bench approach.

On completion of integration the testing can be started. A flawless and mature unit testing does

not mean that the integration testing has no errors. Due to new connections, interfaces and

communications between the components new errors can occur. For this reason Integration testing

is very similar to the unit testing, see figure 3.3 and compare the right, integration testing side with

the left side of the unit testing. From this the table 3.4 is identical for the integration test.
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3.1.7 Verification of Software Safety Requirements

The main task of verification of software safety requirements is to proove the fulfilment of the

requirements specification provided in the design document. This task has to be done on the target

hardware to test under real conditions.

Table 3.5: Software safety verification requirements by ISO 26262-6.

ASIL

A B C D

Verification planning and execution ++ ++ ++ ++

Test environments + + ++ ++

Target hardware + ++ ++ ++

Evaluation of results + ++ ++ ++

3.1.8 Item Integration and Testing

The last phase in the V-Model integrates the components to the highest level of the system,

respectively to the end-system, hardware and software, which provides the function for the vehicle.

At the end of this stage the integrated system has to be tested for the defined safety requirement

found in the design phase. One way to validate the defined requirements is acceptance testing

defined by Cimperman [8]. Each requirement defined in the software design should have at least

one test case. At the end all test cases have to be successful to finish the project.

3.2 Risk Assessment

As discussed in the previous chapters, functional safety is very important for ADAS systems. To

achieve this the ISO 26262 requirements must be respected. Most of it concerns testing the system.

To fulfil SO 26262 the product must be tested in a real urban environment, but this approach has

too many disadvantages. To avoid going beyond the scope of this thesis, only a few reasons are

mentioned below. First of all, it would be too dangerous for the driver in the vehicle as well as all
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other road users. Next, it would be too cost intensive and in addition not allowed, due to the law.

These points are all very important, but just testing on real roads alone would not lead to a good

result. The reason is very simple. Roads in the urban environment including all traffic participants

and obstacles contains an extremely large amount of data. To test all different situations based on

this dataset, infinite resources are needed. In order to obtain the most reliable result, you would

have to test every innovation for a very long time on the road and that would take too much time

and cost to complete.

For these reasons simulation becomes more and more important and reduces the cost factors by a

multiple of its value. Unfortunately, it is also not possible to test all sorts of situations in a simulation,

because it would cost too much resources, because of the hight amount of test data. Due to this fact

the number of test-cases must be restricted. In order to guarantee a certain degree of security, all

situations must nevertheless be covered by the restricted number of test cases. This will work with

so-called extreme cases, in particular critical situation.

The specification of a critical situation is the key topic of this thesis. It can be determined by spatial

or temporal proximity. A collision with another road participant or static object is also critical, but

the situation starts already before this crash and is therefore not sufficient as a definition. Some

possible indicators for the detection would be ”Deceleration to avoid Crash”, ”Collision Probability”

or ”Time To Collision (TTC)”.

3.2.1 Time To Collision

In this thesis the focus is on the method of Time To Collision and how to handle traffic in an urban

environment. Time to Collision is a well known method and was first introduced by John Hayward

with the words ”the time required for two vehicles to collide if they continue at their present speed

and on the same path” [12]. Hayward mentioned the shorter the TTC the more serious the situation

and this approach is still valid. Figure 3.4a shows a collision of two vehicles with different velocities

and different start location. Now it is possible, based on these parameters, to find an abstract TTC

solution for this situation. The velocity v and the start location s0 from equation 3.1 is known for

both cars. To find the time where both vehicles are on the same point s the formulas must be

equated, see equation 3.2. The received time is equal to the time to collision. In this simplified form

of calculation, many factors, such as changeable speed, size and shape of the vehicle, etc., have been
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neglected. More detailed algorithms can be found in section 3.2.2 where the different used methods

and approaches are explained.

s = v ∗ t + s0 (3.1)

v1 ∗ t + s1,0 = v2 ∗ t + s2,0 ⇒ t =
s2,0 − s1,0

v1 − v2
(3.2)

(a) Collision with stable velocity.

(b) Collision due to unexpected velocity change.

Figure 3.4: Collision of two Vehicles.

The predicament gets more dangerous the closer the vehicles come together or the faster they

drive. These factors are also covered by the time to collision. However, as mentioned above, the

speed and rotation of the vehicles may also change. An extension of the formula above, will also

include this change, but taking the acceleration into the account of TTC is not enough. It’s quite

possible that another traffic participant will accelerate unexpectedly. This can be for example, a

change of direction or braking because there is an obstacle in front of the other vehicle. Figure 3.4b
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represents a standard situation with a vehicle followed by another one. Without expectation an

obstacle appears in front of the car ahead and it has to slow down extremely fast. Due to this fact a

critical situation appears, because the following vehicle does not react on the brake event and might

will crash. Situations like this can constantly crop up and should be taken into account of the risk

level. With the help of a predefined probability distribution, the change of the forward speed and

rotation, can be included.

By using a weighting function, see 3.2.2, concerning TTC, forward acceleration and rotation change,

a certain risk value can now be determined with respect to one other vehicle.

3.2.2 Algorithms for computing the Time To Collision

As mentioned in the previous section, determining the time to collision is one way to get a value of

danger. As explained earlier, the smaller the TTC the more dangerous the situation becomes. The

difficulty is to calculate this in real time. The first task is to check if there is a collision between the

vehicle to be checked and the object within a certain time. In order to do this and to accelerate the

calculation process, a distinction is made between the object classes. They are classified in static

objects, speed limit signs, traffic lights and dynamic objects, such as pedestrians and vehicles. An

exception is the road line intersection, which will be included in the hazard level of the situation.

Before proceeding to examine the risk level for the specific objects, it is important to give a short

introduction of the used calculation methods, introduced by Jia Hou, George F. List and Xiucheng

Guo [13]. We assume that all parameters, like position, velocity, acceleration and dimensions of the

objects are given for these calculation methods.

Circle Method

This method is the simplest and fastest approach. Figure 3.6a represents the circle method with

two colliding cars. An overlap of the two circles corresponds to a collision and happens when the

distance of the two vehicles is less than the sum of the radii. A glance at the right of the formula

3.3 shows the squared sum of the radii (ri, rj). With the help of the pythagoras a collision can now

be determined. The first part of the left side represents the squared distance on the x-axis of the

vehicles to each other depending on the time t. The second part is responsible for the y-axis. xi, xj,
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yi and yj are the center-coordinates (x&y-axis) of the vehicles at time t equals the start time zero.

vx,i, vx,j, vy,i, and vy,j corresponds to the velocities of the vehicles and ax,i, ax,j, ay,i and ay,j are the

uniform acceleration of the vehicles. At the end, if there is a valid time t, then there is a collision of

the vehicles and time t is equal to the time to collision ttc.

[xi + vx,i ∗ t +
1
2
∗ ax,i ∗ t2 − xj − vx,j −

1
2
∗ ax,j ∗ t2]

2
+

[yi + vy,i ∗ t +
1
2
∗ ay,i ∗ t2 − yj − vy,j −

1
2
∗ ay,j ∗ t2]

2

= (ri + rj)
2

(3.3)

Ellipse Method

There are some differences compared to the previous methods. As the name suggests, an ellipse is

used instead of a circle, see figure 3.6b. Due to this fact the angle αi of the car is important for the

calculation, see equation 3.4. Additionally, to check an object on a collision, every point of the object

must be checked separately. For this reason this method is much slower than the circle method,

but in some cases it’s important to check each detected point. The advantage of this approach is

the included buffer. In some cases it’s useful to pay more attention on the longitudinal than to the

transversal direction of the vehicle. The major semi-axis ai is recommended to define with the half

length of the vehicle multiplied with the factor 1.3. The minor semi-axis bi can be defined with the

width of the car time 1.1. Equation 3.4 obtains if the point with coordinates xj, yj is on the ellipse

with the centroid coordinate xi, y, i.

1
a2

i
∗ [(xj − xi) ∗ cosαi + (yj − yi) ∗ sinαi]

2+

1
b2

i
∗ [(yj − yi) ∗ cosαi − (xj − xi) ∗ sinαi]

2

= 1

(3.4)
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Ellipse-Rectangle Method

The most complex and accurate method for calculating the TTC is the ellipse-rectangle method.

Figure 3.6c demonstrates this method and shows that there is one vehicle surrounded by a ellipse

and one vehicle surrounded by a more detailed dimensioned rectangle. This method uses the ellipse

approach and extends it with a rectangle instead of determining a single point.

To speed up the algorithm, the calculation is split in several steps. First the ellipse is divided into

nine regions, see on the left of figure 3.5. In addition, each side of the rectangle is considered on it’s

own. The second step is a validation of line intersections. To check for intersection possibilities the

start and the endpoint of a line is important. The rectangle overlaps with the ellipse if both points

are in the ellipse, one point is in the ellipse or if the points are on the opposite of the ellipse to each

other. If both endpoints of the rectangle are on the same side, for example both are over the highest

point of the ellipse, there is no overlap. A further review is needed if one point is on the side of the

ellipse and the other one is above or under the ellipse, for example the start point is on the left side

of the ellipse and the end point is on the top right region.

Figure 3.5: Detection of a intersection between the ellipse and a line segment of the rectangle [13].

Next, the further review is similar to the formula 3.4 where each point on the line of the rectangle is

tested separately. If there is a side of the rectangle with an overlap an collision exists.

This approach is a very detailed method with many process steps. In some cases the calculation is

very fast, however there are some cases where a further review is needed and then the approach is

a slow one and should only be used in exceptional cases.
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(a) Collision detection with the help of the

circle method.

(b) Collision detection with the help of the

ellipse method.

(c) Collision detection with the help of the

ellipse-rectangle method.

Figure 3.6: Collision of two vehicles with various calculation methods.

3.2.3 Object Classification

In general, a situation consists of several influencing factors and not just two vehicles. The influences

are classified in static, dynamic and hybrid objects. Static objects have a fixed position and therefore

no velocity or acceleration change. Some static objects are listed below:

• Buildings

• Fences

• Poles

• (Roads)

• Sidewalks

• Vegetation

• Walls

• others
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To determine the risk level for these objects calculating with TTC can be done again. Due to the

fact that the position does not change all the time and the assumption that we know our speed and

acceleration, we are not required to handle a probability distribution. All parameters are known

and the risk level is equal to the TTC and it’s weighting.

The next class provided in the following list includes dynamic objects:

• Pedestrians

• Vehicles

• Animals

• others

The risk level of all these dynamic objects can be calculated with the help of the vehicle calculating

technique. The difference between this object is only the probability distribution and the weighting.

For example, an animal will change its direction or speed much more likely than a car. Therefore,

the expected value of a rough change of direction of an animal must be much grater than the value

of a car.

The next class are some atypical cases like traffic lights, road lines or speed limit signs. A traffic

light for example has a fixed position, but sometimes the status is green, which equals ready to go

and can be ignored. In the other case the traffic light is on the same position and the status is red,

which equals don’t go ahead and can be taken into account like a static object with a virtual line

over the road. In contrast, speed limit signs always have an impact. The speed should not be greater

than the speed limit valid from the position of the sign. There is a so-called scope of validity.

3.2.4 Hazard Level Functions

As stated above, it is possible to calculate a risk level for all individual objects. In order to evaluate

a situation in the whole it is important to bring the different evaluations to a common denominator.

This section provides three different techniques to determine a hazardous level to find critical

situations, which are deployed in the case study.

Summed Function: The first approach sums up the individual levels of the objects. Additionally,

the different objects will be weighted in a different level. With the help of this weighting the Severity

of damage from ASIL will included into the risk assessment of the situation. Equation 3.5 illustrates
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a possible calculation including the different classified objects. wx identifies the weights and riskx

the determined risks. The main advantage of this method is that at any time all dangerous objects

can be found in the calculated level. Using equation 3.6 the value can be restricted between 0 and

100 where B is equal to the risk level where the hazard level should be 50.

risk =wstaticobjects ∗ riskstaticobjects + wvehicles ∗ riskvehicles+

wpedestrians ∗ riskpedestrians + wspeedlimitsigns ∗ riskspeedlimitsigns+

wtra f f iclights ∗ risktra f f iclights + wroadintersections ∗ riskroadintersections

(3.5)

hazardlevel = 100 ∗ (1− 2
erisk/B + 1

) (3.6)

Highest Value Function: The major disadvantage of the ”Summed Function” is how to handle

cases with a low and a large number of traffic participants with the same parameters at once. For

example, if a group of persons go on the side of a road, this method calculation leads to a more

dangerous situation than a street crossing person. The reason is that the small risk levels of the

individuals added may yield to a greater value than the crossing person. To solve this kind of

problem the ”Highest value function” was introduced, see equation 3.7. With the help of searching

the maximum risk level of all objects the hazard level is defined. The disadvantage of this method is

that only the largest risk factor is represented in this level.

hazardlevel = max
k∈objects

(wk ∗ riskk) (3.7)

Top Average Function: To combine the advantages of the previous methods the ”Top Average

Function” was developed. The first step is to determine the average value of the risk, defined in 3.5.

The following step is to select all objects with a risk level higher than the average one. With the help

of this the small values, like those from the group of persons, can filtered out. Now, it’s possible

to calculate the ”Summed function” with the related risk values again. This form of calculation

method has now the advantages of both method. It has information to all relevant object and there

is a higher chance of receiving a qualitative hazard value.
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3.3 Modelling and Simulation

As mentioned in the introduction, experimenting in the real world is quite expensive. Due to this

fact, the idea of modelling and simulation (M&S) with the help of computers is a cheaper and

safer way of testing. Computer based simulation dates back to the second world war to get a basic

understanding of the behaviour of neurons. Louis G. Birta and Gilbert Arbez introduced modelling

and simulation with the following words: ”Modelling and simulation is a tool that provides support

both for the planning, design and evaluation of dynamic systems as well as the evaluation of

strategies for system transformation and change” [17].

Today M&S is often used as a replacement of the physical experiments. To do this, first the model

have to be designed. Decisions have to be made in what depth the mathematical and physical

laws will be included to get a sufficiently good model to represent the real system. If the system

is sufficiently defined, it can be simulated and displayed with the help of computers. Now, the

behaviour of the system can be studied more easily and inexpensively without taking the risk of

physical experiments into account.

3.3.1 Modelling Process

To develop a simulation environment the type of simulation model must be specified. Sargent R.

defined in ”Types of Models”[4] four main model types. There is the mathematical model, which

formulate the system by using mathematical expressions, relations and logistics. Mathematical

models consists out of one or more equations which simulate a deviation of the real world. The

analog model determines out of some analog input characteristics a system of interest. Graphical

Model is the next model type and represent the word objectives in scope of graphs. The graphs

often have directed edges to connect the nodes, so called directed graphs. The last model type is the

iconic model, which looks like the real system and take usage of physical laws. Example systems

are a wind tunnel for testing air plains or testing the behaviour of vehicles in a urban environment

with real physic laws.

The development process, illustrated in figure 3.7, starts with a requirement analysis to define the

goal objectivities of the project. This is important to compare existing components to be honest not

to start from scratch [6]. Testing ADAS will need a virtualization of many traffic scenarios. There
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3.3 Modelling and Simulation

are already many different approaches with a lot of know how. To re-implement these would mean

a great deal of work and it is often easier to incorporate parts of these simulations. To define the

software design the requirements are important to decide which existing components can be used

and which components must be developed.

Figure 3.7: Development and Modelling a Simulation System.

To clarify whether existing components can be used or not the model should be verified and

validated. The Modelling and Simulation life circle must be modular and structured to make the

project successfully [18]. Figure 3.8 demonstrates a simplified verification modelling process. On the

top of the figure is the problem entity, the real word with the idea specified by the requirements.

Next the conceptual model is defined as the mathematical, logical reconstruct of the problem entity.

At the end the computerized model is the implementation of the conceptual model.

Sargent [25] defines the process to develop the conceptual model as Analysis and Modelling. Develop

the computerized model can be done through computer programming and implementation. Next

the experimentation process checks with the help of tests and experiments the relation to the

problem and checks the deviations from the problem entity.

When these components are defined, the new or already existing components can verified and

validated. The conceptual model validation obtains the accuracy and differences between the

problem entity and the conceptual model. The computerized model verification observes the

implementation of the computerized model. At the end the operational validation monitors the

result of the computerized model and compares the output with the real system.
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Next the the modeling and simulation process in more detail will be descripted adapted from

Benjamin M. [5]. The starting point is the real system or problem entity. The first step is to establish

the goal objectives and the scope of the environment, which can be done with the help of the

requirement analysis. The next task is to formulate the conceptual model. After defining the

model, the data should be analysed and acquired using the conceptual model validation. Next the

implementation of the computerized model can be done with a final verification. The last step in

the developing process circle is the design and execution of experiments. At the end of the process a

decision must be made if the simulation is good enough. If the simulation is not good enough, the

whole process must restarted from the beginning. If the simulation is good a documentation must

be written. It can be seen, that this process is very close to the simplified validation and verification

modelling process of Sargent.

Figure 3.8: Simplified validation and verification modelling process [24].
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3.3.2 Validation Techniques

What follows is a brief description of validation techniques to check the accuracy of the computerized

model an relation to the problem entity. This methods can used in the simplified modelling process

and provided by Sargent [25].

• Animation: The behaviour is displayed graphically.

• Comparison to Other Models: Results can compared with other models.

• Degenerate Tests: The model behaviour is tested with the help of specific values and compared

with expected outputs.

• Event Validity: Event triggered actions will be tested based on specific events.

• Extreme Condition Tests: Model behaviour is tested by extreme conditions of one or more

levels.

• Face Validity: Knowledge of individual behaviour of the model will asked.

• Historical Data Validation: The results of the model will tested with historical data of other

sources.

• Internal Validity: Several stochastic test runs with known results of individual components

will tested.

• Multi-stage Validation: A combined method of the historical methods is used.

• Operational Graphics: Important values will shown in form of graphical output to compare

the behaviour more easier.

• Predictive Validation: A forecast of the systems behaviour is used and compared with the

model.

• Turing Tests: Knowledgeable persons are asked to check accuracy.

3.3.3 In the Loop

M&S is used in a variety of areas in the economy as well as in research. Some example domains are

medical, research, military, gaming as well as in industrial usage.

Car manufacturers are using simulations more and more. On the mechanical side simulations

can be applied for example to develop better driving behaviour, getting a better traction with or

without a spoiler. By arising software supported components in vehicles modelling and simulation
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of such systems becomes more and more important. For this reason and the increasing number

of advanced assistance systems, simulating a system for vehicles and their components is a big

development field. In order to simulate the system, the system itself as well as its environment and

their influences must interacting in the simulation. This is named ”In the Loop”-Modelling and

Simulation. There are three different kinds of ”In the Loop” approaches.

Human in the Loop: The main goal of this simulation is to train people. Applications are for

example: air plane, military, emergency management, traffic control simulations and many others.

The system is designed to interact with the human in it and simulate his actions in the system. The

human should see the result of its interactions to learn with the help of a virtual system. With the

help of these systems its easy to evaluate the performance of the human and the system, when

interacting together.

Hardware in the Loop is used to test and verify the function of hardware systems under simulated

input values. The system is designed to provide the specific hardware system with a nearly realistic

input and take care of the output of the hardware again to react on possible influences. For example

a vehicle with ADAS systems can operate with simulated input values. Objectives of this kind of

simulation is the operational testing and evaluation of hardware components.

Software in the Loop: The software system will run under a simulated environment to provide

inputs, like sensor signals. This simulation environment is interacting with the software system and

acts on it’s output. A Lane Keeping Assistant (LKA) for example is providing the needed steering

to keep in the lane of the road. The simulated environment has to react on this new steering value

and provide a sensor signal with a new distance from the center line. Now again the LKA can react

on the new distance value of the simulated sensor signal. This order will be processed until the end

of the simulation, see figure 3.9. At the end the verification of the LKA in a simulation environment

can be done and the question on the functionality can be answered right now. In practice the LKA

needs much more sensor signals and needs to provide more output values.

Section 4.6.1 provides more detail to the implementation of a Software in the Loop system using

Model.CONNECT. Model.CONNECT, developed by AVL List GmBH [3], is a tool to combine

different tools together. With drag and drop options it’s easy to define a large system out of small

components from different tools.
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Figure 3.9: Software in the Loop Modelling and Simulation of Lane Keeping Assistant (LKA).

3.3.4 Agent-Based Simulation

Important to test ADAS is the interacting behaviour of different dynamic objects, for example other

vehicles, pedestrians, animals and others, see figure 3.10.

Agent-based modelling and simulation (ABMS) is one approach to test this interactions [30].

Dynamic objects are represented as agents, which interacting with the system. A agent is a software

part which executes tasks and decision making on it’s own. Agents can communicate with other

agents or humans and should designed predictable and within a set of constraints. A ABMS

consinsts out of one or more agents to determine and analyse the interacting between the agents

and the rest of the environment.

To build a agent-based simulation some questions must be answered. Important questions defined

by Whitaker [30]: ”What real-world characteristics or behaviors will the agents need to represent

in the simulated world?” and ”What are the characteristics or attributes of each agent (or class
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Figure 3.10: Interactions of Agents and vehicle controlled by ADAS.

of agents)?”. Also good to know is which input values and which output values are available for

agents. Based on this questions and other requirements agents can developed or if existed integrated

in the simulation environment.
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This part of this thesis describes in greater detail the practical part. Regarding to the V-Model,

discussed in section 3.1, this chapter focuses on the testing phase.

With the developed algorithms its possible to find and create new test cases as well as testing

some new software components of a vehicle. Finding new test cases, or better finding critical

situations is also the main task of this work. The main objective is to find these situations in an

urban environment when driving with a more or less ADAS supported vehicle.

To implement this, the Software in the Loop method, described in section 3.3, is used. In order

to validate ADAS, very high demands are put on a simulation environment. In section 4.2 the

requirements are listed and some simulators are compared to each other. To anticipate it, the CARLA

simulator is used, because this simulator meets the requirements best. The structure and function of

CARLA will be explained in the section 4.3.

As far as section 3.2 is concerned, it’s not easy to find critical situations. These considerations

have been adapted to the environment in this thesis. To get a hazard value, first the risk for each

individual object has to be calculated. In order to achieve this, it must be checked whether the objects

meet certain conditions. Additionally, the Time To Collision (TTC) must be determined. With the

help of some extensions and algorithms, like ”circle method”, ”ellipse method” or ”ellipse-rectangle

method” this concept is implemented in the practical work, refer to section 3.2.2.

At the end of this chapter, some use cases will be demonstrated with the focus on critical situations.
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Figure 4.1: Business Use Case Diagram.

4.1 System Design & Requirements

With regard to the V-Model, software design is one of the first steps in a project and was done before

the implementation of the software. Below the procedure is explained on the basis of a general

overview of each component.

4.1.1 Business Use Case Diagram

In order to identify all needed features, a Business Use Case diagram, see figure ?? was created to

understand the needed functionality. The tables below describes the use cases in more detail. This

Business Use Case diagram was the start and of course has changed in the course of work.

4.1.2 Requirement Analysis

Based on these use cases, an requirement analysis can be performed. The goal of these analysis is to

understand the requirements of the customer to the system to be developed. Next with the help
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Table 4.1: Use Case Description for the activity Run

Run

Description Starts the simulation.

Actors • Software engineer

• Software tester
Preconditions Simulation not running.

Basic Flow of events Start Simulation using the initial parameters

Result Simulation is started

Table 4.2: Use Case Description for the activity Stop

Stop

Description Stops the simulation.

Actors • Software engineer

• Software tester

• Software Developer

Preconditions Simulation is still running

Basic Flow of events Press Abort Button

Result Simulation is stopped

Table 4.3: Use Case Description for the activity Analyse

Analyse

Description Analysing the simulation.

Actors • Software engineer

• Software tester
Preconditions Simulation is running

Basic Flow of events With help of the Debug Window on the right side of the window the

user will be able to analyse the simulation

Result
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Table 4.4: Use Case Description for the activity Edit Initial Conditions

Edit Initial Conditions

Description Change the Initial state and it’s parameters

Actors • Software engineer

• Software tester
Preconditions Simulation not running.

Basic Flow of events Open the Configuration windows and edit the initial conditions.

Result Changed Starting Condition.

Table 4.5: Use Case Description for the activity Edit Goal Conditions

Edit Goal Conditions

Description Change the hazard level limit value to detect critical situations

Actors • Software engineer

• Software tester
Preconditions Simulation not running.

Basic Flow of events Open the Configuration window and edit the goal conditions.

Result Changed Hazard Condition.

Table 4.6: Use Case Description for the activity Configure Sensors

Configure Sensors

Description Enable or disable object classes to take these into account of the hazard

level or not.

Actors • Software engineer

• Software tester
Preconditions Simulation not running.

Basic Flow of events Open the Configuration window and edit the object sensor settings.

Result Object sensor effects changed.
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of the pattern of [21] the most important requirements are listed. Clear defined requirements are

important to get an basic understanding of it and with these it is possible to develop the first test

cases for testing the software.

Functional requirements

4.1.1. Road traffic variations: The software must be able to simulate different road traffic variations

based on Unreal Engine 4.

4.1.2. Interaction: The software must be able to interact with the ADAS/AD system of AVL List

GmBH.

4.1.3. Control: The software is required to simulate a car controlled by ADAS/AD system of AVL

List GmBH.

4.1.4. Start: The user shall be able to start the simulation with one click.

4.1.5. Stop: The user shall be able to stop the simulation with one click at any time during simulation

is running.

4.1.6. Transparency: The user shall see the current hazard levels in the right part of the window.

4.1.7. Sensors: The software is required to provide simulated sensor values for ADAS/AD compo-

nents, when requested from ADAS/AD system.

4.1.8. Actors: The software is responsible for executing the corresponding commands, see sec-

tion 4.1.2, given by the ADAS/AD system.

4.1.9. Traceability: The user should be able to reconstruct the simulation found critical situations

with the help of a logging protocol.

4.1.10. Notifications: The user shall be notified in the event of an accident.

4.1.11. Performance: The software shall be able to work with a environment with minimum require-

ments defined in section 4.1.2.

Actor Commands

4.1.1. Throttle: The software is required to provide an interface for receiving the throttle value.

4.1.2. Braking: The software is required to provide an interface for receiving the braking value.

4.1.3. Steering: The software is required to provide an interface for receiving the steer value.
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Performance requirements

4.1.1. CPU: The software will be able to work with Intel Core i5 3470 @ 3.2GHz (4 CPUs) / AMD

X8 FX-8350 @ 4GHz (8 CPUs) or higher.

4.1.2. RAM: The software will be able to work with 8 GB or more.

4.1.3. OS: The software will be able to work with Windows 10 64 Bit

4.1.4. Video card: The software will be able to work with NVIDIA GTX 660 2GB / AMD HD 7870

2GB or better

4.1.5. Sound card The software will be able to work with DirectX 10 compatible

4.1.6. Disk space The software will be able to work with minimum 72 GB free disk space

4.1.3 Prototype of Graphical Interface of Launcher

Before starting to develop, the prototype of the graphical User Interface of the launcher has to be

defined. This interface should be be simple and intuitive. Figure 4.2 represents the prototype of the

graphical user interface. Figure 4.2b shows the configuration properties like resolution, start point

or number of agents. The other figure 4.2a demonstrates the risk assessment parameters. With help

of these parameters the observed object can be enabled or disabled, the hazard level properties can

be set and if wished a autopilot can enabled.

With help of this prototype and above defined requirements the development of the software can be

started.

4.2 Environments

There are a variety of simulation environments in the world of car simulation, so the following

lines list and compare the most important simulators. The table 4.7 illustrates some of the main

characteristics of the different analysed simulators.

The left column of the table is classified in the specified requirements. The idea of using a simulator

based on a gaming engine was created because of the slight expansion of the world. A gaming

engine like the Unreal Engine 4 is a very effective graphical engine, which provides a physically
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(a) Risk Assesment

(b) Properties

Figure 4.2: Graphical User Interface of the Launcher
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realistic three dimensional world. In addition, there is a large community which is developing

and extend new maps, for example urban environment. An application interface is important for

implementing algorithms to use ADAS and find critical situations in the simulation environment is

clearly, which makes a communication possible.

The next requirement is the three dimensional virtualization to simulate optimal or realistic sensor

signals, like a depth camera or LIDAR. Every accuracy of a sensor depends on several factors like

fog, rain, brightness etc. For this reason the next requirement is a controllable weather.

Another important point is the virtualization of agents. To test ADAS it’s important to have a

realistic scenario. So it’s important to have other vehicles and pedestrians on the road. It would be

optimal if it’s able to take control over pedestrians.

Other requirements listed in the table are a ”nice to have” and are also important to develop a

risk assessment for ADAS based on a simulation environment. An autopilot simplifies the work

of testing the risk assessment by driving an optimally driven car. The next ”nice to have” is that

the simulator supports more operating systems, like Linux and Windows as well as work as and

”Client-Server” application for better usage of resources. There are many additional features, which

are important for an optimal simulation environment. However, a list of these points would go

beyond the scope of this thesis.

What is interesting about the data in this table is that the commercial simulator environments are

often not based on a gaming engine.

Virtual Test Drive (VTD), developed by Vires ([28]), is a simulation tool chain for road traffic and

provides sample maps with the possibility to extend it. All data can be exported and imported by

using the OpenDrive [28] or the OpenCRG [27] format. With the help of a few mouse clicks it’s

possible to configure the virtual world and maybe define pedestrians or add other events.

Similar to VTD, more simulators, like monoDrive [27], rFPro [27]), Tass PreScan [27] exist with or

without configuration possibilities.

Very often games have a large environment, but coding interfaces are often not available or only

very limited. Grand Theft Auto V [27] for example does not have an officially supported interface

(open for modifications), however, using it as a training environment for self driving cars is not

desired.

The most interesting environments are at the end of the table. The AirSim Car Simulator, [26],

developed from Microsoft, based on the Unreal Engine 4 (UE4) have the advantage of an easy
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customization environment without further restrictions. For this reason and the real physics, it is

possible to develop real behaviour sensors and actors simulation. Similar to AirSim there is Udacity

[26], which is based on the Unity Engine. Both simulators have the disadvantage of not having

agent interaction implemented.

The most interesting simulator is CARLA: An Open Urban Driving Simulator [11] based on UE4 as

open source and developed to support Autonomous urban driving systems. CARLA provides a

variety of environment settings, including weather and time of day within an urban world. The

driving simulator is structured as a client-server system. With the help of the server the scene will

be rendered and simulated. In the server application pedestrian and car agents are integrated. It

receives commands from the client api and returns sensor values, position and so on. The Client

API is used for interaction and is implemented via Python and sockets. A more detailed account of

CARLA is discussed in the following section.

4.3 CARLA

CARLA [11] is an open source simulation environment developed for learning, testing and veri-

fication of advanced driver assistance systems. CARLA: An Open Urban Driving Simulator was

developed from a cooperation between Intel Labs, Toyota Research Institute and the Computer

Vision Center of Barcelona.

As already mentioned above, the simulator is constructed with a client-server architecture. This

allows separation between the simulated environment and the software being developed. Due to

the modular architecture it’s possible to develop separately without having knowledge of progress

or changes from the other one.

The server application is written in C++ with the help of some external libraries. The world is

modelled using the Unreal Engine 4. Two standard worlds are included in the CARLA download

package. However, the worlds can be expanded or changed as required, or a completely new one

can be designed. Additionally, there is a big community which are providing different worlds partly

free of charge and sometimes with costs. CARLA also provides digital assets of vehicles, objects,

buildings, vegetation objects and many others to create a realistic scenario.

By using the C++ language some intelligence has been added to the world. Agents, like pedestrians,

49



4 System Design and Implementation

V
TD

Tass
PreScan

rFPro
A

utoV
i-Sim

G
TA

V
A

irSim
C

ar
C

A
R

LA
U

dacity

G
am

ing
Engine

√
√

√
√

A
PI

√
√

√
√

√
√

√
√

Freew
are

√
√

√

3D
V

irtualization
√

√
√

√
√

√
√

√

Ecosystem
√

√
√

√
√

√
√

W
eather

C
ontrol

√
√

√
√

√
√

√

A
utopilot

√
√

√

A
gents

√
√

√
√

√
√

C
ontrollable

A
gents

√
√

√
√

M
ap

C
ustom

ization
√

√
√

√
√

√

Linux
system

√
√

√
√

√
√

W
indow

s
System

√
√

√
√

√
√

√
√

Server/C
lient

Support
√

√
√

√
√

Table
4.

7:A
nalysed

Sim
ulators:U

sed
ecosystem

,interface,price
and

agents.

50



4.3 CARLA

Figure 4.3: Scene in a street of town 2 from CARLA Simulator with four different weather conditions [11].

motorbikes and cars are implemented using an autopilot moving around the world. The weather

conditions provided by the unreal engine are connected and many different weather scenarios are

implemented. Furthermore, traffic signs, speed limit signs, traffic lights and other traffic important

features were covered with the intelligence. In figure 4.3 the effects of the different weather condi-

tions and other CARLA features are shown.

The next big topic in the server application are the integrated cameras and sensors. Four different

types of sensors are implemented from scratch: The Scene final Camera, Depth map Camera,

Semantic Segmentation Camera and the Ray-cast based Lidar Camera. All these camera interfaces

using different properties for example its possible to add some noise, or change the range of the

camera. As well as these parameters the cameras and sensors can be located on any area of the

vehicle and connected with whose location to also change the position when the vehicle is moving.

The most important external library is the Protobuf library from Google. It is used for the communi-

cation between the server and the client. To do so, the measurements and sensors and cameras value

were structured with the help of XML and defined in the library and sent by using the transmission

control protocol (TCP). This library provides a smaller and faster serial communication between

the two applications. Through the TCP communication it’s possible to run the server application
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Figure 4.4: Concept of the communication between client and server [10].

on another computer or even Server and work with their resources. As can be seen in figure 4.4,

the communication is divided between two different servers, a world server and a server for the

agent interaction. The server for the world is a bidirectional one with the standard port 2000. The

agent server uses the following two ports. The first one is used to provide the measurements to the

client application. The second port is the so called ”Control Thread” which is used to receive the

control commands from the client application. The code written in the C language is on the top

of the tree is. This controls and manages the whole communication and interacts with the Unreal

Engine, which presents the simulated scenario.

The client application has no predefined language. The most important functionality for the client
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is the Protobuf library again, because of the communication between server and client. CARLA

prepared some example clients in the Python language. Due to this fact Python is the recommended

language and is well accepted. CARLA provides a client library in Python, including utilities for

sensor signal, transforming images, sending and receiving messages from the server like agent

controls or player informations. After creating a client object from this library it’s easy to establish a

connection between the client application and the server. For example it’s possible to define the

number of vehicle or pedestrian agents, or define the weather conditions. In addition, the various

sensors can be defined and positioned on the vehicle. If the client is started, it can be communicated

using the selected TCP ports. So, it’s possible to get the measurement values for each time step,

process it and send control commands to the server again.

Of course it is possible to extend the functionality, sensors, communication between the client and

server, and so on due to the used open source code.

4.4 Software Architectural Design

Figure 4.5 gives a short overview of the software architecture. As mentioned above, CARLA is

divided in a server application and client application. In this section the architecture of the client

will described in more detail. CARLA provides a Python library to create a TCP connection to

receive the sent server informations, highlighted with the dark brown color.

The main class of the client, as the name indicates, is the client. The Client is the central node point

and create a connection to the server with the help of the CARLA library. In the risk interpreter the

whole intelligence of the risk assessment is implemented by using the risk assessment methods and

the algorithms to find the time to collision, described in the section 3.2.

Each object class uses different methods to find the time to collision. By separating these methods

in own classes, it is possible to connect each object with specified time to collision methods. Section

4.5 describes the different usage of these algorithms.

When the interpreter detects a critical situation, the client should be able to save the whole scene.

The class recording provides this functionality. Once a critical situation is detected, the positions

of the agents in the near past will saved in a list, as well as the positions of the player vehicle.

Additionally this class saves the sensor data of the enabled camera sensors.
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Figure 4.5: Software Architecture of the Client Interface.

Last but not least the rendering is important to give a graphical impact to the users. The rendered

video shows the vehicle, it’s actions and the environment in specified field of view range.

4.5 Implemented Methods for Risk Assessment

4.5.1 Used algorithms for different object classes

Not every method is suitable for every object class. In this thesis all methods are used. In the case of

a detected object in the near range the ellipse method is used, because static objects, like vegetations

or fences, must not have a defined shape to overlap them with a circle or rectangle. Testing every

detecting point is the only way to find a time to collision.

In contrast to the static objects, the circle and the ellipse-rectangle methods are used to detect TTC

for vehicles. Both techniques have advantages. We can use the simple and fast circle method to limit

the time period of a collision and by using these restrictions the ellipse-rectangle method can be

used. Figure 4.6 shows a combined method to find a TTC including both methods. For calculation
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Figure 4.6: Combined method to find time to collision including Circle and ellipse-rectangle method.

the process is divided into several steps. First with the help of the circle method, a circle with a

big radius will check if there is a collision in range or not. By using a small circle it’s able to limit

the time in most cases. So if there is a collision found with the circle method with a small radius

the ellipse-rectangle method can be used and is limited within a collision time between the time

of the big and the small circle method. This helps to speed up the algorithm and a valid TTC will

be detected for sure. If there is no intersection with the small circle method the ellipse-rectangle

method should be used in a wide range of time possibilities up to the time of the circle method

with the big radius. It’s possible to not find a collision, because the shapes are smaller than in the

first detected big circle method. The result of the combined method is very exact and quite fast.

The used TTC detection methods for speed limit signs and traffic lights are the circle method and a

line intersection calculation. First the circle method is used to filter out unaffected signs or lights. It

is assumed that each sign or light approximately in the right angle to the car is shown. Due to this

fact and by calculating the path of the car, a line intersection of path and a line in a right angle to

the signs or lights will detect the next sign and it’s TTC.
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4.5.2 Various Accelerations

The vehicle is simulated with an ideal trajectory, known velocity and the acceleration of the

own vehicle. Because static objects always stay in their place, we also know their velocities and

accelerations, they are zero all the time. It is more difficult to define the accelerations of dynamic

objects. We assume that we know the speed through ideal sensors. It is not possible to define a with

100% certainty correct acceleration. For this reason in this thesis a probability distribution is used. A

Gaussian bell curve is used to define the forward acceleration with mean value 0 and a Gaussian

bell curve for the rotation with mean value 0 again. These curves support to evaluate the occurrence

of the change in the behaviour of the other vehicle or pedestrians. It is for example not very likely

that a car drives on the opposite lane, but more likely that this car may slow down and keep the

direction.

4.5.3 Risk Interpretation

By using these approaches all values for determining the current hazard value are given. In section

3.2 the risk assessment methods are presented. Each single risk value will be determined depending

on the classified object.

By application of equation 4.1 the risk value for each detected static point in the near surrounding

will be determined and the point with the highest risk will be used for determining the hazard

level. The baseline time tbaseline is equal to the stopping distance of the vehicle multiplied by a free

selectable factor.

riskstatic = 100 ∗ (1− TTC
tbaseline

) (4.1)

To determine the risk value of dynamic objects the TTC is important as well as the used acceleration

for collision finding. In the thesis, the accelerations for each vehicle is varying and the acceleration

with the highest risk value will be chosen and reused later in the risk assessment of the situation.

Hybrid object classes uses the TTC as an risk factor again. However, for each class, like speed limit

sign a proper function will be used. For example calculating the risk value for speed limit sign will
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be calculated applying equation 4.2. The first part will be determining the risk, that driving too fast

in the next speed restriction and the second is determining the risk of driving to fast in the current

location. The maximum value is defined with 100.

riskspeedlimitsigns =(Velocity−VelocitySpeedLimit) ∗ (1−
TTC

tbaseline
)+

(Velocity−VelocitySpeedLimitNext) ∗ 3.6
(4.2)

Calculating the risk value of a traffic light, see 4.3, depends on the TTC time again and a factor T.

The factor T is zero if the state of the traffic light is green, 50 if the state is yellow and T is 100 if the

state of the traffic light is red. Thus, there is no danger from a green traffic light.

risktra f f iclight = T ∗ (1− TTC
tbaseline

) (4.3)

Now, the hazard level can be calculated with one of the provided methods using the determined risk

values for each object. In the following chapter the advantages and disadvantages will discussed in

more detail.

4.6 Critical Situations

With the help of this hazard level it’s possible to define a critical situation. There are different

types of critical situations. The ”Highest Value”-function finds the situations, where exactly one

dangerous object is, quite often. It’s easy to define a good threshold for this function. In contrast,

the top average function can be used to find a more general dangerous situation. It’s possible to

have a critical situation due to the heavy traffic density. With the summed function or top average

function it’s able to find it, but it’s difficult to define a threshold.

Figure 4.7c demonstrates the output value of the different hazard level functions using the example

controller. Due to the fact that the controller intelligence is the not well programmed the curve goes

up and down, because of the bad dimensioned throttle values. The red, blue and grey coloured

curves and bars in the figure 4.7 illustrates the main hazards level function, the ”Summed Function
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(a) Small ”highest risk”-value with bigger ”summed risk”-

value.
(b) High risk to collide with pedestrians.

(c) Measured values of the hazard level functions within a test-run.

Figure 4.7: Measurements of test run with example controller.

(red)”, the ”Top Average Function (blue) and the ”Highest Value Function (grey)”. As shown in

figure 4.7a it’s possible to have a situation with a high risk without having one potentially risky

object. Figure 4.7b shows a critical situation with a high risk to collide with the pedestrians. More

details of these situations are explained in the chapter below.

4.6.1 Software in the Loop - Model.CONNECT

Figure 4.8 shows the software in the Loop concept of this thesis. With the help of the tool

Model.CONNECT from AVL List GmBH [3] and the including ICOS interface, a software in

the loop can be provided. On the left side of the figure the Python client interface is modelled.
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Figure 4.8: Software in the Loop Concept using AVLs Model.CONNECT and its ICOS interface.

In this python application the communication with the CARLA server is managed and the risk

assessment is done. The Controller shows an example ADAS application, which takes control over

the throttle and the brake. In this example the controller gives a throttle value of 0.8/1 if there is no

risk, 0.4/1 if there is a hazard level higher than 30 and 0/1 if the risk is higher than 50. In the next

section the results of using a controller like this will be shown and the different risk assessment

methods will be presented.
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A summary of the main findings and results, together with the hazard level functions, is provided in

this chapter. As mentioned in the previous chapters, in section 5.1 the three different cost functions

are faced together. The structure and the results will be explained in more detail. A more detailed

account of ASIL is given in section 5.2. In the section 5.2 the interrelation of critical situations, test

cases and ASIL will be argued. The last part of this chapter describes in greater detail the problems

and findings within modelling and simulation.

5.1 Comparison of Hazard Level Functions

Figure 5.1 compares the hazard level functions based on various situations. The most interesting

aspect of the hazard level bars on the right of the figure are the different level values.

What stands out in a classic hazard situation of figure 5.1a is that the ”Highest Value”-function is

very high because of the potential colliding car highlighted in the blue circle. Also the level of the

summed function is very high. In contrast, the top-average level is relatively low. The reason for

it is, that there is only the other vehicle above the average risk limit and therefore included in the

hazard level of the top-average function. The risk values of the static objects, the speeding and other

risk values are ignored. In this situation all functions has detected the critical situation and a value

higher than 75.

Next figure 5.1b on the right shows a similar situation with a crossing pedestrian. The highest

value with the red highlighted circle pedestrian, is low in contrast to the other levels of the hazard

functions. The levels of the other functions are higher, because of the car behind the pedestrian,
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the static objects, like the street lamp and in addition for the summed value function the other

pedestrians.

Turning now to the figure 5.1c the value of the summed function is again high. In this situation

the level is too high because there is no real hazard. The reason for this is the high number of

pedestrians in the near range of the vehicle. Every pedestrian is at a low risk, which adds up to

a high value. Due to this fact the value of the summed function is too high. In comparison the

top-average function has a much lower risk value, because of the filtering. Most of the pedestrians

are too far away and their risk is too low to be included in the hazard level. Again the pedestrian

within the red circle is the one with the highest risk value.

Figure 5.1d demonstrates that the highest value function does not detect every hazard function in

an early stage. In this situation the crossing pedestrian has a risk value of about 55. The problem

in this situation is the high amount of risky objects. This high number of other road users will

make it difficult to prevent the accident. The only way is to slow down or endanger others. With the

help of the top-average function this critical situation will be detected again as well as the summed

function.

To confirm this experiences many test trial with defined parameters were simulated. Each parameter

set was simulated 50 times for five minutes to receive a balanced data set.

In table 5.1, the average hazard level values over these 50 test runs are provided. The left two

columns represents the defined number of vehicles and pedestrians. In order to get better results,

the ”stop time” (time where velocity of the player is zero) of the was filtered out. The reason for

this is that there is no danger in this time by the own driving behaviour. This filtered data set was

used to calculate the average velocity of the players car. In the right half of the table the average and

the maximum hazard level of the three different function types are described. Closer inspection of

the table shows the average velocity decreases with an increasing number of vehicles. The autopilot

of CARLA is driving with 10 km/h slower than the speed limit. Due to that reason the average

velocity of 7 km/h is quite okay and the decreasing speed is because of the higher traffic density.

Figure 5.2a demonstrates the the rising average hazard level when the number of vehicles gets

higher. The maximum hazard level of the ”Summed Value” and the ”Top Average” function is

nearly constant. In contrast to it, the hazard level of the ”Highest Value” function is falling with a

higher number of vehicles. This result is somewhat counterintuitive. The reason is that the player
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5.1 Comparison of Hazard Level Functions

(a) Critical situation detected by all hazard level functions. (b) Critical situation with a high summed function.

(c) No critical situation detected by the a high summed func-

tion.

(d) Critical situation not detected by the highest value func-

tion.

Figure 5.1: Hazard level measurements with highest value (grey), top-average (blue) and summed (red) function.
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vehicle drives automatically slower on a danger situation. As a result, the car reaches speeds less

frequently, which leads to a high risk situation.

In the sense of this, an increasing number of pedestrians causes no traffic jam behaviour. Figure

5.2b represents the average hazard level depending on the number of pedestrians, which is nearly

constant. Interestingly, the level of the ”Summed Value” function is not increasing. As expected, the

average hazard level of this function would have had to increase with the number of pedestrians,

because of the case described above, see figure 5.1c. After further analysis, it was found that

a situation like this rarely occurred in the simulation test runs. The pedestrians are randomly

generated and also move randomly, although on the pavement but rarely together in groups. The

rising maximum value of the ”Highest Value” function was expected because of the more often

crossing pedestrians, which causes a high risk value.

For the sake of completeness figure 5.2c represents the hazard level of the different function types

with various additional throttle. 50 pedestrians and 50 vehicle agents are set in these runs. In

contrast to a modified number of agents the throttle value of the autopilot was changed. When the

player vehicle is moving 10%, 20% or 30% was added to the throttle value of the autopilot in this

test runs. The braking system and when the autopilot stops or the throttle value is about zero, no

additional throttle was added. With the help of this settings the behaviour of a bad car driver could

be simulated. The average hazard level of all function types are very high, and increasing with the

additional throttle value. The results data is able in table 5.2c.

In all figures the hazard level of the ”Top Average” function is lower than the ”Summed Value”

function. This is in fact of the filtered low risk objects. Unfortunately, due to the lack of grouped of

pedestrians, it was not possible to prove the strength of the ”Top Average” function, but you can

see that this function is constantly delivering good results.

Table 5.3 provides the summary statistics for the different test runs and found critical situations.

The table is separated in the three classes of hazard level functions. Next the number of critical

situations depending on the number of agents and the defined level presented. Each row of the

table represents the average values of 50 test runs. The calculation of the hazard level is done after

0.05 seconds. Due to this fact one critical situation listed in the columns often counts more than one.

The single most striking observation to emerge from the data comparison was that the number of

critical situation are decreasing with a higher number of agents. As discussed above, this is due to

the traffic density and of course, a small factor is the greater computational effort delayed or less
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(a) Various number of Vehicles.

(b) Various number of Vehicles.

(c) Various additional throttle values during driving.

Figure 5.2: Average and maximum hazard level values depending on the number of agents and type of hazard level

function.
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Table 5.1: Average and maximum hazard level values depending on the number of agents and type of hazard level

function.

Vehicle Pedestrian Velocity Highest Summed Top Average

# # ∅ km/h ∅ Max ∅ Max ∅ Max

30 50 7.02 3.43 80.56 3.59 80.29 3.54 79.18

50 50 6.57 3.62 77.89 3.91 79.87 3.81 78.50

70 50 6.52 4.05 73.17 4.48 81.44 4.34 79.59

90 50 6.69 4.47 70.45 5.07 80.75 4.87 79.53

110 50 6.23 4.66 66.65 5.39 84.08 5.13 80.16

50 30 6.54 3.82 72.84 4.06 81.73 3.97 79.56

50 70 6.54 3.97 77.65 4.25 79.07 4.12 76.33

50 90 6.57 3.69 80.98 3.97 82.15 3.83 79.57

50 110 6.44 3.83 86.60 4.18 82.67 4.02 79.46

computation steps.

Table 5.4 represents similar simulation runs using different additional throttle values with fixed

number of agents, 50 pedestrians and 50 vehicles. As expected increases the number of found

critical situations with the increasing forward acceleration of the player vehicle.

5.2 In a Loop Testing and relation to ASIL

As explained in section 3.2, it is clear that a critical situation is a good test case. The results from

the section above, show that a well defined hazard level function is the first step to a well defined

test case. With the help of a buffer and the sensor signal the last 50 time steps of the simulation are

saved. When a triggered value reaches a value, for example if the top-average level is higher than 75,

then the buffer will be saved. Figure 5.3a provides a short overview of the last 50 positions of the

player position, the vehicles and pedestrians before the critical situation starts. The figures below

5.3b and 5.3c shows the rgb camera pictures 15 time steps before and when the critical situation

was detected. In Addition all relevant information, like risk values of each object class or player

position will saved.
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(a) Last 50 positions of vehicles and pedestrians before the critical situation.

(b) 15 time steps before critical situation was detected.
(c) Detected critical situation (Collision with waiting vehicle

& too fast).

Figure 5.3: Saved sensor data and measurements of a simulation run.
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Table 5.2: Average and maximum hazard level values depending on various additional throttle values and type of hazard

level function.

Additional Throttle Velocity Highest Summed Top Average

% ∅ ∅ Max ∅ Max ∅ Max

10 6.74 3.81 80.30 4.08 79.52 3.98 78.02

20 7.14 5.50 76.89 5.94 80.01 5.78 78.62

30 7.05 6.26 78.95 6.73 82.94 6.51 79.86

40 7.27 4.91 78.13 5.31 79.74 5.15 78.91

By using this informations it’s easy to create a test case. All relevant information to rerun the same

situation exists or can be calculated, for example velocity and throttle value can be readjusted

without much costs. Now every imaginable test case can be adjusted. Thus, the ASIL requirements

are met and tested. If, the severity S of the ASIL will be included in the weights of the hazard level

function, for example weight an accident with a pedestrian with 0.7 and a collision with a static

object only with 0.2, then it can be roughly looked for critical situations on the basis of ASIL. The

calculation with the help of the hazard levels corresponds to the probability of an accident and the

weights corresponds the severity.

As was pointed out in the previous chapter testing advanced driver-assistance systems is possible

with the software in the loop method, discussed in section 4.6.1. The loop is designed using

Model.CONNECT, like the example shown in figure 4.8. In loops like this the interaction between

vehicle controller and environment can simulated quite well. Figure 4.7 shows the results of a loop

with an example controller. Closer inspection of the figure shows the step wise increasing and

decreasing hazard levels. The reason for this behaviour is the bad controller which gives more

throttle when less risk exists and visa versa. Normally the risk level should only be used for the

purpose of controlling and not serve as an aid to the controller. A future controller should only use

sensor measurements and calculate an independent control mechanism.
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Table 5.3: Number of found critical situations depending on the level threshold, number of agents and hazard level

function.

Function Type Vehicle Pedestrian # Critical Situation

- # # >40 >50 >60 >70 >80

Highest Value 30 50 38.52 22.90 13.70 7.78 1.78

Highest Value 50 50 26.90 13.84 7.26 4.06 1.44

Highest Value 70 50 24.30 10.92 4.64 2.46 0.72

Highest Value 90 50 21.26 8.56 3.82 1.78 0.30

Highest Value 110 50 24.10 8.78 3.44 2.14 1.36

Highest Value 50 30 32.04 15.84 7.74 3.84 0.90

Highest Value 50 70 28.21 13.26 6.03 3.06 1.53

Highest Value 50 90 24.48 11.66 6.30 3.70 1.72

Highest Value 50 110 17.93 6.63 1.93 0.93 0.30

Summed Value 30 50 45.02 27.36 17.76 11.02 2.14

Summed Value 50 50 36.08 21.58 12.48 7.28 1.70

Summed Value 70 50 35.10 20.54 12.22 6.76 2.04

Summed Value 90 50 32.78 19.60 11.18 5.94 1.80

Summed Value 110 50 39.98 22.56 12.48 6.88 2.12

Summed Value 50 30 39.92 23.20 12.70 7.24 1.70

Summed Value 50 70 36.38 20.71 11.26 6.12 1.26

Summed Value 50 90 33.04 18.50 11.12 6.56 1.70

Summed Value 50 110 28.93 17.22 9.59 5.04 2.00

Top Average 30 50 43.74 25.80 16.76 10.58 2.02

Top Average 50 50 34.12 19.60 11.42 6.56 1.36

Top Average 70 50 32.50 18.14 10.82 5.70 1.46

Top Average 90 50 29.64 16.76 9.56 5.16 1.56

Top Average 110 50 25.63 13.89 7.52 3.78 1.33

Top Average 50 30 37.84 21.00 11.56 6.54 1.34

Top Average 50 70 33.53 17.50 9.35 5.15 0.74

Top Average 50 90 29.94 16.06 9.46 5.82 1.18

Top Average 50 110 34.28 19.60 13.02 8.22 1.86
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Table 5.4: Number of found critical situations depending on the level threshold, various additional throttle value and

hazard level function.

Function Type Additional Throttle # Critical Situation

- % >40 >50 >60 >70 >80

Highest Value 10 28.50 15.00 7.52 4.04 1.30

Highest Value 20 37.14 17.66 7.34 3.68 1.10

Highest Value 30 40.02 18.78 9.16 4.66 1.50

Highest Value 40 34.90 18.06 8.44 5.32 2.78

Summed Value 10 37.20 21.20 12.22 7.46 1.94

Summed Value 20 50.48 27.56 11.88 6.54 1.08

Summed Value 30 53.30 30.14 15.26 8.34 2.28

Summed Value 40 46.08 26.18 12.64 7.94 1.84

Top Average 10 34.98 19.12 11.04 6.72 1.52

Top Average 20 46.84 25.16 10.38 6.04 0.92

Top Average 30 48.36 26.52 13.28 7.28 1.64

Top Average 40 42.76 23.66 11.58 7.22 1.64
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In the introduction the importance of the safety factor in the development of self driving car was

motivated. It shows how necessary a basic understanding of functional safety of assistance system

components is. With the help of the functional safety standards and the described V-Model the

thesis gives enough background information to understand the requirement specified by the ISO

26262 to develop a safe assistance system for vehicles. In addition to the safety requirements, the

advantages of a simulation environment are described. The aim of the presented research to the

V-Model and the simulation was to examine the modelling of a test environment for ADAS. The

discussed modelling process provides a guideline for the development of such a test system based

on a simulation. In the practical part of the work, the V-Model was applied and a system was

created based on this modelling process. It was developed step by step according to this model.

First, it was important to define the requirements to filter out the correct environment using the

defined validation options. Gradually, it has become clear that this approach has greatly simplified

the development of the test system. The simulation environment based on CARLA is working quite

fine for the purpose of this thesis.

The initial objective of the project was to identify critical situations to support the development of

advanced driver-assistance systems.

In this study critical situations were found with so called hazard level functions. The previous

chapters have shown some differences between the different hazard level functions. Three different

cost functions are provided to define the hazard level. First the ”Highest Value”-function selects

the object with the highest risk value. Contrary to exceptions, this study did not find a significant

scenario where the hazard level of the ”Highest value”-function is totally wrong. The most obvious

finding to emerge from the results is that the risk value is too low if there are many traffic

participants. For example when there is a crowd of people going along the sidewalk, the risk should

often be higher than with the function, because the probability of unexpected behaviour of at least
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one of the people is very high.

In contrast the ”Summed Value”-function sums up all the risk values of all objects. This leads as

expected to huge value differences. By applying equation 3.6 it is possible to limit these values

between 0 and 100. However, the definition of the parameter B and the hazard limit value is difficult

to define. Previous case for example leads to a high value because of the sum of many traffic

participants. Therefore, the value quickly becomes too high. On the other hand if the parameter is

defined for situations like this, the hazard value for other situations, like a crossing pedestrian is

too low. Due to this fact using this function should only be used carefully in special situations.

The difference between the levels of the ”Summed Value” and the ”Top Average”-functions was

significant. By filtering out the smallest risks, the value gap between the situations becomes smaller.

This in turn leads to a simpler definition of the factor B of 3.6. Therefore, the examples above can

handle both. A group of people along a sidewalk can be better processed. Only the most dangerous

people from this group will be handled and this leads to a good result. When evaluating the

situation of the crossing pedestrian the ”Top Average”-function will lead to a value which is good

again.

Taken together, these results suggest that the ”Top Average”-function is working quite well in all

situations.

With the help of the implemented ”Software in the Loop” concept, it is possible to run the complete

functionality of a real vehicle, including all assistance components in the simulation. The developed

system is able to run a nearly realistic simulation of a urban environment with the ADAS vehicle

as the main actor. Today, the vehicle is using a near perfect autopilot, provided by CARLA, to

find critical situations, which can replaced with ADAS technology if wanted. Already, the risk

assessment methods were able to detect a set of critical situations, which were recorded and maybe

will saved in the future for developing new or better assistant system for vehicles.

The investigation of finding test cases to fulfil the ASIL recommended testing parts is doing quite

well. With the software in the loop method the simulation is able to test ADAS until the requirements

are reached. However, these test cases alone are not sufficient to meet all the requirements based on

ISO 26262 of the system. They can only be used as an accessory or for finding additional cases for

unit or integration testing. If the debate is to be moved forward, the adjustment of the found test

cases has to be developed. To achieve this, the agent must be controlled by the saved trajectories

and started at a specific point. At some point, it may be possible to replace certain classic tests with
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this method and raise risk assessment based on a simulation environment to the level of safety that

fulfil the requirements of ISO 26262.

Despite these promising results, questions remain. An issue that was not addressed in this study

was the inaccuracies of the sensor measurements as well as the positions. This is an important

issue for future research and with the help of the CARLA simulator it should possible to solve

this and simulate more realistic sensor data. In future investigations, it might be possible to use

”not ideal”-driving agents instead of using a probability distribution within hazard level functions.

Whether this approach also produces good or even better results has to be checked on the basis of

further studies.

Although this study focuses on real time risk assessment. It can be used for machine learning

as well. On the one hand the hazard level can be included in learning a complete computational

intelligence to drive an autonomous vehicle. On the other hand the properties and parameters, like

time to collision can be used as input parameters for a computational intelligence which defines

again a hazard value, for example for a warning signal to the driver if there is a critical situation.
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[20] Stephan Höppner Reinhard Höhn. Das V-Modell XT: Grundlagen, Methodik und Anwendungen.

2008 (cit. on p. 17).

[21] Chris Rupp and SOPHISTen. Requirements- Engineering und -Management. 2014 (cit. on p. 45).

[22] SAE International. ARP4754: Aerospace Recommended Practice (ARP) - Guidelines For Development

Of Civil Aircraft and Systems. 2010 (cit. on p. 15).

76

https://carla.readthedocs.io/en/stable/carla%7B%5C_%7Dserver/
https://carla.readthedocs.io/en/stable/carla%7B%5C_%7Dserver/
https://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
https://doi.org/TTSC 7115
https://doi.org/10.1155/2014/761047
http://www.volvogroup.com/content/dam/volvo/volvo-group/markets/global/en-en/about-us/traffic-safety/Safety-report-2017-0505.pdf
http://www.volvogroup.com/content/dam/volvo/volvo-group/markets/global/en-en/about-us/traffic-safety/Safety-report-2017-0505.pdf
http://www.volvogroup.com/content/dam/volvo/volvo-group/markets/global/en-en/about-us/traffic-safety/Safety-report-2017-0505.pdf
https://doi.org/10.1016/S0304-3800(96)01916-3
http://linkinghub.elsevier.com/retrieve/pii/S0304380096019163
http://linkinghub.elsevier.com/retrieve/pii/S0304380096019163


Bibliography

[23] SAE International. “U.S. Department of Transportation’s New Policy on Automated Vehicles

Adopts SAE International’s Levels of Automation for Defining Driving Automation in On-

Road Motor Vehicles.” In: SAE international (2016), p. 1. doi: P141661. url: https://www.sae.

org/news/3544/ (cit. on p. 2).

[24] R. G. Sargent. An Assessment Procedure and a Set of Criteria for Use in the Evaluation of Computer-

ized Models and Computer-Based Modeling Tools. Tech. rep. 1981 (cit. on p. 36).

[25] Robert G. Sargent. “Verification and validation of simulation models.” In: Proceedings of the

2011 Winter Simulation Conference (2011), pp. 2194–2205. issn: 08917736. doi: 10.1109/WSC.

2011.6148117. arXiv: arXiv:1105.4823v1 (cit. on pp. 35, 37).

[26] Shital Shah et al. “AirSim: High-Fidelity Visual and Physical Simulation for Autonomous

Vehicles.” In: (2017), pp. 1–14. issn: 1938-7228. doi: 10.1007/978-3-319-67361-5_40. arXiv:

1705.05065. url: http://arxiv.org/abs/1705.05065 (cit. on pp. 48, 49).

[27] VIRES Simulationstechnologie GmbH. OpenCRG. url: www.opencrg.org (visited on 09/04/2018)

(cit. on p. 48).

[28] VIRES Simulationstechnologie GmbH. Virtual Test Drive - Complete tool-chain for driving simula-

tion applications. url: http://www.mscsoftware.com/product/virtual-test-drive (visited

on 09/04/2018) (cit. on p. 48).

[29] Fredrik Warg and Viacheslav Izosimov. “Computer Safety, Reliability, and Security.” In:

9923.September 2016 (2016). doi: 10.1007/978-3-319-45480-1. url: http://link.springer.

com/10.1007/978-3-319-45480-1 (cit. on pp. 20, 21).

[30] Elizabeth T. Whitaker. “Agent-Based Simulation.” In: Modeling and Simulation in the Systems

Engineering Life Cycle, Simulation Foundations, Methods and Applications (2015) (cit. on p. 39).

77

https://doi.org/P141661
https://www.sae.org/news/3544/
https://www.sae.org/news/3544/
https://doi.org/10.1109/WSC.2011.6148117
https://doi.org/10.1109/WSC.2011.6148117
https://arxiv.org/abs/arXiv:1105.4823v1
https://doi.org/10.1007/978-3-319-67361-5_40
https://arxiv.org/abs/1705.05065
http://arxiv.org/abs/1705.05065
www.opencrg.org
http://www.mscsoftware.com/product/virtual-test-drive
https://doi.org/10.1007/978-3-319-45480-1
http://link.springer.com/10.1007/978-3-319-45480-1
http://link.springer.com/10.1007/978-3-319-45480-1

	Abstract
	Introduction
	Background and Motivation
	Research Scope
	Role of ISO 26262
	Development using the V-Model
	Importance of Modelling and Simulation
	Support the development of ADAS
	Improve the way of testing

	Outline

	Functional Safety Standards
	IEC 61508
	ISO 26262
	Automotive Safety Integrity Level
	Hazard Analysis and Risk Assessment
	Comparison with other Hazard Level Standards
	Benefit of Automotive Safety Integrity Level


	Background Information
	V-Model
	System Design
	Specification of Software Safety Requirements
	Software Architectural Design
	Software Unit Design and Implementation
	Software Unit Testing
	Software Integration and Testing
	Verification of Software Safety Requirements
	Item Integration and Testing

	Risk Assessment
	Time To Collision
	Algorithms for computing the Time To Collision
	Object Classification
	Hazard Level Functions

	Modelling and Simulation
	Modelling Process
	Validation Techniques
	In the Loop
	Agent-Based Simulation


	System Design and Implementation
	System Design & Requirements
	Business Use Case Diagram
	Requirement Analysis
	Prototype of Graphical Interface of Launcher

	Environments
	CARLA
	Software Architectural Design
	Implemented Methods for Risk Assessment
	Used algorithms for different object classes
	Various Accelerations
	Risk Interpretation

	Critical Situations
	Software in the Loop - Model.CONNECT


	Data analysis and Results
	Comparison of Hazard Level Functions
	In a Loop Testing and relation to ASIL

	Conclusion
	Bibliography

