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Abstract

Recommender systems are necessary to filter desired items from undesired
items. This thesis deals with the domain of board games and addresses the
top-k recommendation task by building and evaluating a recommendation
framework in Python.

For crawling and preprocessing, the largest board game collaboration web-
site boardgamegeek.com is used as a data basis. The framework itself ac-
cepts desired and undesired board games as well as optional board-game-
specific constraints as input. Four different approaches, of which two are
collaborative-based and the others are content-based, create recommenda-
tions for board games and form the main components of the framework.

For evaluation, real-user search queries and community-approved recom-
mendations are extracted manually from a board game message board on
reddit.com. The performance of the framework is evaluated on a test set and
compared against a most-popular baseline with the help of classification
accuracy metrics such as precision, recall and f1-score.

To further improve the accuracy, the framework is extended by a sequential-
ensemble recommendation approach. The top-k recommendations from
each approach are reordered by a post-filtering technique which utilizes
different board game specific attributes. Each post-filter is provided with an
optimized weight from a training phase and the performance gets evaluated
and compared on the test set.
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1 Introduction

More and more data gets produced every year. This data is composed of
emails, websites, file transfers and more modern accesses such as social
media, instant messaging or streaming services.

A study of Berkley (2003) estimated that the amount of data created in 2003

was 530 petabytes. Eight years later, a study from IBM (2011) estimated
that around 2.5 quintillion bytes of data were generated every day, meaning
2 500 petabytes only in one day.

This means that the amount of data produced during the whole year 2003,
was produced within just five hours in 2011.

Recommender systems nowadays have the goal to filter, select and process
desired information from undesired information for a user. As the avail-
ability of items steadily increased the need for recommendations evolved,
particularly in e-commerce systems.

The problem is also known as the long tail phenomenon (Rajaraman and
Ullman, 2011) and expresses the more items are available, the more difficult
it is to select proper items for a user. Especially unpopular items, with a
low conversion rate, are located in the so-called long tail. A recommender
system can help to explore the long tail properly and efficiently.

The steps to get recommendable knowledge from data can be explained on
the basis of the Knowledge Discovery Process initially defined by Fayyad,
G Piatetsky-Shapiro, and Smyth (1996).

This thesis tries to address the recommendation demand for board games.
Especially because the domain of board games is not a frequent subject of
scientific research, as opposed to other domains, such as movies.
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1 Introduction

The following research questions were derived:

1. In the domain of board games, how well are standard recommendation
approaches performing when applied to real-user search queries?

2. Can content-based approaches be particularly advantageous over
collaborative-based ones?

3. What improvements can be achieved by reordering the top recommen-
dations of the respective approach?

The largest online board game platform boardgamegeek.com was crawled,
preprocessed and used as data basis. A recommendation framework with
four different approaches recommends board games based on user requests
from the discussion website reddit.com.

The recommended items are evaluated using accuracy metrics towards the
community approved items. In addition, a sequential-ensemble approach,
called post-filtering, is used to further improve the accuracy by re-ranking
the recommended items.

2



2 Background

This chapter gives a theoretical background about recommender systems.
First of all, frequently used terms will be defined followed by task and
goals, basic models and evaluation techniques of recommender systems.
Additionally, related work regarding board games and the data basis,
boardgamegeek.com, will be presented.

2.1 Recommender Systems Overview

Recommender systems assist in “making choices without sufficient personal
experience of the alternatives” (Resnick and Varian, 1997). This means based
on preferences of a user, recommendations are made.

A wide diversity of applications for recommender systems exist. Rajaraman
and Ullman (2011) classify applications into three major groups which are
product recommendations, movie recommendations and news articles.

Nowadays, several other recommendation domains have evolved. To name
a few popular ones, Facebook.com recommends friends, posts, comments and
similar, Tripadvisor.com recommends hotels and restaurants and Netflix.com
recommends movies and series.

2.2 Terminology

A recommender system works with data that can be classified into three
groups, items, users and transactions (Ricci et al., 2011).

3



2 Background

2.2.1 Items

Items are the objects which get recommended. They have different features
and properties which are often domain specific. For instance, a board game
is assigned to a certain “boardgamecategory” and usually has a certain
description.

2.2.2 Users

Users interact with the recommender system. Different properties of a
user may be of interest for different kinds of recommender systems. For a
collaborative model (see Subsection 2.4.1), user ratings play a significant
role whereas for a demographic system (see Subsection 2.4.4), demographic
attributes of a user, such as age and gender, are more important.

2.2.3 Transactions

Transactions are interactions between a user and the recommender system.
They can occur as search queries for a certain item or in a more direct form
as ratings. A rating represents an association between a user and an item.

Schafer, Frankowski, et al. (2007) define the following types of ratings:

• Scalar Ratings consist of a discrete set of ordered numbers or prefer-
ences. The set can consist of either numerical ratings such as 1,2,3,4,5,
where 5 represents a strong like and 1 a strong dislike, or ordinal
ratings presenting the user’s level of interest such as Like, Neutral,
Disagree. These ratings can also be unbalanced meaning the number
of positively classified elements predominates. If a neutral element
is missing it is also referred to as a “forced choice rating system”
(Charu C. Aggarwal, 2016).
• Binary Ratings are ratings with exactly two possibilities, whereas one

is positive and the other one is negative. For example, good/bad or
like/dislike.

4



2 Background

• Unary Ratings only give usable information if they are specified. For
example, a user purchased an item and therefore a unary rating is set.
If there is no rating, no information can be inferred.

Ratings can be collected either implicitly or explicitly (Schafer, Frankowski,
et al., 2007). Implicit means that the rating is inferred from the action of
a user, for example he added an item to his shopping cart. Where on the
contrary, explicit ratings require the user to rate an item intentionally.

2.3 Tasks and Goals

Different definitions exist for the tasks and goals of a recommender system.
Ricci et al. (2011) declared that the goals of a recommender system depend
on the perspective of the system stakeholders, with the most important ones,
being end-user and (service) providers.

Herlocker et al. (2004) identify eleven domain-independent tasks of a rec-
ommender system from an end-user perspective.

Ricci et al. (2011) define several goals of a recommender system but from
the provider perspective.

Some of them include:

• Increase the conversion rate: In order to maximize profit.
• Provide diversity: Without a recommender system, it could happen that

a user is always stuck at popular items.
• Satisfy, tie and understand the user: The user should find the recom-

mendations appropriate and interesting. This, in turn, unconsciously
ties the user more and more to the provider. Getting a deeper insight
in what the user wants, may also help the provider with strategic
decisions, for example adapting its stock and production.

A good example how to understand and tie the user is enforced by Net-
flix.com. They go a step further by showing the user why a certain movie
or series gets recommended to them, raising the so-called “Personalization
Awareness” (Netflix, 2012). This is also suggested by Pu et al. (2011) in order
to raise the trust of the user.

5



2 Background

According to Charu C. Aggarwal (2016), there are two primary models, how
the recommendation goal can be achieved. The first model is to predict the
rating value for a user-item combination.

The other model does not express any ratings, as it just outputs the top-k
items. This is also known as the top-k recommendation task or top-N recommen-
dation task (Cremonesi, Koren, and Turrin, 2010).

Especially in commercial systems, the absolute values of the ratings are
more negligible for a consumer and not applied in popular e-commerce
applications (Schafer, Konstan, and Riedl, 1999; Linden, Smith, and York,
2003).

2.3.1 Top-K Recommendation Task

In top-k recommendation models, the proper value of k has to be selected.
Values for k are not only application dependent, the optimal amount of
items further depends on usability considerations. Pu et al. (2011) claimed
that the usual list length ranges from 5 to 20 and concluded in one of their
guidelines:

“Displaying more products and ranking them in a natural order is likely to
increase users’ sense of control and confidence.”

However, simply increasing the recommendation list length, results in an
increased recall and decreased precision (Shani and Gunawardana, 2011).
Some popular examples of applications with different top-k values are:

The movie platform IMDb presents 12 movies, distributed on two pages,
which a user may like. Amazon.com displays different amount of items
depending on the screen resolution and user agent of the visiting browser.
Google.com also varies the amount of advertised links depending on the
screen resolution.

6



2 Background

2.4 Basic Models of Recommender Systems

Models of a recommender system can roughly be categorized by the kind of
data used (Charu C. Aggarwal, 2016). A model which uses transactions, such
as ratings or behavior patterns, falls into the category of collaborative filtering
approaches. On the contrary, models which make use of item properties or
features can be classified as content-based recommender systems.

Ratings are presented by a so-called rating matrix where the columns
usually represent the items and the rows represent the users. A content-
based recommender system may also use the ratings of the rating matrix
but only for a single user (Charu C. Aggarwal, 2016).

Charu C. Aggarwal (2016) names five different models which occur in the
literature and real world applications.

2.4.1 Collaborative Filtering

Schafer, Frankowski, et al. (2007) define it as the process of “filtering or
evaluating items using the opinions of other people”. A rating matrix is
usually rather sparse, meaning most users have only rated a small portion
of the items available. Such ratings are called specified or observed, whereas
entries in a rating matrix which do not have a value are called unspecified
or missing. The idea behind collaborative filtering (CF) is, based on the
ratings of similar users or items, to infer the missing ratings for a user on
an item.

Breese, Heckerman, and Kadie (1998) distinguish the following two variants
of collaborative filtering:

2.4.1.1 Memory-based

Memory-based or also often referred as neighborhood-based methods consider
the neighborhood of users or items. In particular, missing entries are inferred
by looking at the neighborhood of most similar users (user-based CF) or items

7



2 Background

(item-based CF). User-based CF starts by taking the k most similar users to a
target user, for whom missing ratings of items are computed.

Different methods exist to address the disparate rating habits of users. One
method used for similarity calculation is the Pearson correlation coefficient
which was initially mentioned, in the context of recommender systems, by
Resnick, Iacovou, et al. (1994) for their famous GroupLens recommender
project. Other similarity functions, such as the raw cosine similarity, exist
but the Pearson correlation has the advantage of taking into account the
different levels of generosity of a user (Charu C. Aggarwal, 2016).

Usually, the top-k users with the highest similarity score are used, as a
so-called peer group, to predict the missing rating for an item.

Item-based CF uses the k most similar items as peer groups instead of users.
Prediction functions such as the weighted sum (Sarwar et al., 2001) use the
observed ratings of the target user from the most similar item’s peer group
to estimate the missing rating.

According to Charu C. Aggarwal (2016), item-based CF often provide more
relevant recommendations because ratings of the target user are incorpo-
rated into the estimated rating. In addition, an application can directly
explain why a certain recommendation was selected and thereby raising
Personalization Awareness. This is difficult to nearly impossible for user-based
CF, primarily due to anonymization of user data.

2.4.1.2 Model-based

In model-based CF, a built up model of the data is created in advance, by
using supervised or unsupervised learning methods. The model building
phase is thereby clearly separated from the prediction phase.

Popular machine learning methods of model-based CF include decision
trees, rule-based methods, Bayes Classifiers and latent factor models such
as Principal Component Analysis (PCA) and Singular Value Decomposition
(SVD). Matrix factorization approaches such as SVD decompose the origi-
nal rating matrix and create low-rank approximations which are used for
estimating unspecified entries.

8



2 Background

2.4.1.3 Cold-Start Problem

One of the challenges of CF is the so-called cold-start problem where the
initial amount of ratings is very low. It occurs due to new users as well as
new items. Knowledge-based or content-based systems can better cope with
such sparsity.

2.4.2 Content-Based

Content-based recommender systems use attributes of items to make rec-
ommendations. A user profile is usually built from the user’s feedback
about several items. This feedback may be either implicit, which may be
derived by the user’s actions, or explicit which may be defined by the user’s
ratings.

The steps of a content-based recommender system can be divided into three
main processes which are preprocessing and feature extraction, learning of user
profiles and filtering and recommendation (Charu C. Aggarwal, 2016).

The first two steps are often executed offline, meaning the necessary actions
can be pre-calculated and therefore done before a recommendation is re-
quested. This allows the last step, which is executed online, with the actual
recommendation to be executed much faster.

Depending on the domain, different feature selecting and preprocessing
steps may be applied. In the domain of board games, the official description
could be a comprehensive source for features. The conversion of textual
representation into significant features is achieved by so-called feature
selection and feature weighting methods. Bags of words are extracted from
the textual representation and further extraction steps are done to reduce
features which are less descriptive.

One simple form of feature cleaning, called Stop Words Removal, is achieved
by removing common or not domain-specific words such as articles, con-
junctions and so on from the preliminary feature space. Stop Words Removal
belongs to the unsupervised feature selections methods as the user’s ratings

9



2 Background

are not taken into account, for defining the significance of a feature (Charu
C. Aggarwal, 2016).

Different methods can be applied when learning user profiles. Unlabeled
entries, which are unrated items, of a certain user can be estimated by a
classification model. One well-known and easy to implement classifier is
the Nearest Neighbor Classifier, also called kNN classifier.

The top-k nearest neighbors are fetched and ordered descending with the
nearest one first by using a similarity or distance measure between the
query item and an item from the group. kNN is a so-called lazy learner
or instance-based learner and does not explicitly build a model beforehand,
so classifying unseen items is rather expensive as it will be done on the
classification step (Amatriain et al., 2011).

Content-based systems can be superior over collaborative filtering when no
rating or too less rating information is available. In particular, new items
with few ratings may benefit from this methodology.

However, according to Charu C. Aggarwal (2016), the two quality measures
diversity and novelty may suffer as the recommended items may be more
obvious to the user. This is due to the nature of similarities between the
attributes.

2.4.3 Knowledge-Based

In knowledge-based systems, items get recommended by their “usefulness”
for a certain user. There is no relying on historical rating data as compared to
collaborative or content-based approaches. This can be beneficial in certain
cases. For example, a user’s high rating on a car model may derive from a
combination of specific attributes such as exterior design, engine, price and
so on. An updated version of the same car may not necessarily result in the
same preference.

Knowledge-based systems can be distinguished into two types, case-based
and constraint-based (Charu C. Aggarwal, 2016). In Case-based recommender
systems, the user can specify cases containing preferred items or item
features. These cases are then matched against item features and ordered
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2 Background

using domain-specific similarity metrics (Burke, 2000). This is also referred
as similarity-based retrieval technique (Bridge et al., 2005).

Constraint-based systems use requirements or constraints specified by the
user to recommend matching items. They require the explicit definition of
questions, product properties and constraints to define a recommender knowledge
base (Felfernig and Burke, 2008).

In the domain of board games, a user question or requirement could be
whether a game is suitable for parties and a filter constraint would connect
this requirement with certain board game properties such as amount of
players and playing time.

Content-Based and Knowledge-Based systems are closely related and both use
attributes of the items in order to make recommendations. The following
distinction is used by Charu C. Aggarwal (2016):

• Content-based systems usually use a learning-based approach based on
historical ratings.
• Knowledge-Based systems support the explicit specification of user re-

quirements and therefore provide additional interactivity.

2.4.4 Demographic-Based

Demographic-based recommender systems “aim to categorize the user based
on personal attributes“ (Burke, 2002) in order make recommendations from
demographic groups. Examples for personal or demographic attributes are
age and gender. Charu C Aggarwal, Sun, and Philip (1998) present the
generation of a rule-based classifier which relates a demographic profile to
a certain buying behavior.

Standard classifier and regression techniques can also be applied by defining
attributes from the demographic profile as features and, for example, the
ratings as target values.

11
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2.4.5 Hybrid Systems

Hybrid-recommender systems are a combination of the above mentioned
techniques and therefore can overcome certain shortcomings. Charu C.
Aggarwal (2016) defines three primary ways of creating such systems.

In ensemble systems, different predictions from different approaches are
used to create a single result. Ensemble systems can be sequential, meaning
the output of one approach is the input of another, or parallel, meaning the
results of several approaches are merged.

An example for a parallel design would be predicted ratings, of a collabo-
rative filtering approach and content-based filtering approach, which get
transformed into a single output by creating the weighted average.

Monolithic systems consist of an “integrated recommendation algorithm”
which can be a combination of different approaches. For example, the
results of stages in a content-based system can be used as the input for a
collaborative filtering one.

Mixed systems present results from several recommender systems to the
user without any attempts of combining them.

Figure 2.1 shows an abstract classification of hybrid-recommender systems
by Charu C. Aggarwal (2016).

2.5 Evaluation

The success of a recommender system and of the underlying approach
must be objectively measurable. Especially when multiple algorithms and
approaches are available, the most appropriate one must be chosen.

In the literature, three different evaluation kinds are defined which are
offline evaluation, user studies and online evaluation (Shani and Gunawardana,
2011).
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Hybrid Systems

Monolithic Ensembles Mixed

Sequential Parallel
Feature 

Combination

Meta-Level

Feature 
Augmentation

Cascade Weighted Switching

Figure 2.1: Classification of hybrid systems into three primary categories including further
subdivisions, defined by Charu C. Aggarwal (2016). Adapted by permission
from Springer Nature: Charu C. Aggarwal, 2016.
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In online evaluations, real users interact on an already deployed system. A
likely metric for measuring the effectiveness of a recommender system
would be the conversion rate.

In order to compare two approaches, A/B testing can be executed (Charu C.
Aggarwal, 2016). Thereby, users are split into two groups, A and B, and
each group gets a different approach. At the end, the conversion rate gets
compared. Shani and Gunawardana (2011) identified the risk that if the
test users get too many improper recommendations, they may dislike the
system as a whole.

In user studies, users are actively selected and directed to interact with the
system. The most important feedback, after the user interacted with the
system, is about the quality of the recommendations. Besides, information
about how the user navigates through system may be collected. A risk
could be that users may be biased due to the artificial situation (Charu C.
Aggarwal, 2016).

Offline evaluations use historical data such as ratings or other forms of feed-
back. The underlying assumption is that the user behavior of the historical
data will be similar to the user behavior when the system is in use (Shani
and Gunawardana, 2011). More precisely, because no explicit interaction is
needed and different algorithms can be compared with little effort, offline
evaluations might be more preferable.

As a downside, the assumption about the mentioned user behavior might
be inappropriate as data may have evolved. In the above mentioned car
example, it could happen that a user’s feedback on a certain car model
might have changed on the updated version. Popular examples of data sets
are the data set from the netflix prize, by Koren (2009), or the MovieLens
data set from GroupLens (2008).

Besides the primary goal of finding the most accurate prediction possible,
several secondary goals exist, which contribute to the user experience. One
secondary goal, Scalability 2.5.2, will be highlighted in more detail as it
received special attention in Chapter 3.
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2.5.1 Accuracy

Accuracy is one of the most important goals when evaluating recommender
systems. The accuracy metric can be defined as the accuracy of an estimated
rating or the accuracy of a predicted top-k ranking.

Breese, Heckerman, and Kadie (1998) made use of both accuracy variants,
estimated rating and predicted top-k ranking, on evaluating collaborative
filtering approaches on three data sets by using a hold-out method.

In order to estimate the overall generalization performance, which is the
performance of the built model on unseen data, the evaluation data set is
usually split into a training and a test segment (Charu C. Aggarwal, 2016).
By doing so, a model will be built by using the training set and evaluated
on the test set.

The main idea is that the model still performs well on unseen data and
therefore generalizes well. As shown in Figure 2.2, it is also possible to further
split the training set and obtaining a third set called validation set. This is
usually used for model selection and parameter tuning (Charu C. Aggarwal,
2016).

Tuning parameters or hyperparameters are parameters which have to be defined
a priori before a model is created and are not directly learned from data. In
a memory-based collaborative filtering approach such as k-Nearest Neighbor, the
parameter k, which is the amount of the nearest neighbors, has to be tuned
and could be selected by evaluating on the validation set.

In practice, the following two methods for segmentation are often used:

2.5.1.1 Hold-out method

The hold-out method uses a portion of the original data for training and the
remaining data set for testing. A 80/20 split is a frequent choice and means
that 80 percent of the whole data set is used for training and the remaining
20 percent is used for testing.

As a general guideline, over 2/3 should be used for the training set (Amatri-
ain et al., 2011). The segmentation of entries from the original data set can be
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Ratings Matrix

Training Entries Testing Entries

Training Without 
Validation Set

Validation Set

Divide 
Using Hold-Out 

Or Cross-Validation

Divide 
Using Hold-Out 

Or Cross-Validation

Figure 2.2: Segmentation of a rating matrix into training and test segments by Charu C.
Aggarwal (2016). The training segment can be further split into training-without-
validation and validation sets. Adapted by permission from Springer Nature:
Charu C. Aggarwal, 2016.
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done in different ways and depend on the properties of the recommendation
model.

Agarwal and Chen (2015) define the following four variants, to be applied
on a rating matrix:

1. Random splitting randomly chooses a certain percentage p from the
observed entries of a rating matrix for the training set and 100− p
percent for the test set. This could be done either row-wise, for users,
or column-wise, for items.

2. Time-based splitting divides the overall data set by a certain time point
with older entries in the training set and newer ones in the test set.

3. User-based splitting divides the data set user-wise and considers p per-
cent of users and their ratings as the training set and 100− p percent
as the test set.

4. Item-based splitting is similar to user-based splitting but only makes the
split item-wise.

2.5.1.2 Cross validation

Cross validation divides a data set of size N into k equal segments. There
exist several cross validation techniques such as k-fold cross validation and
repeated random sub-sampling (Amatriain et al., 2011).

In k-fold cross validation, k − 1 segments are used as training set and the
remaining segment is used as test set. This form of segmentation, also
known as sampling without replacement, is repeated k times and the average
performance metric across all k folds is then reported.

For example, in a 5-fold cross validation with a data set of n = 500 entries,
five different models will be built on the training set with 400 entries and
the performance will be evaluated on the remaining 100 entries.

There is also a special case of k-fold cross validation called leave-one-out
validation when k equals n. Each single entry is then used exactly once as a
test entry with the remaining n− 1 entries as training data. The segmentation
of sets shown in Figure 2.2 can therefore be also seen as a single phase of
the cross validation method.
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In repeated random sub-sampling, the k segments are not disjoint and not all
entries of the whole data set must occur in the segments.

As mentioned before, offline evaluation can be performed by measuring the
accuracy of estimated rating values or ranked recommendation items.

Herlocker et al. (2004) further describe the term accuracy in more detail and
identify three classes of evaluation metrics:

2.5.1.3 Predictive Accuracy Metrics

Predictive Accuracy Metrics measure the accuracy between the estimated
rating r̂ij, from user i to item j, and the actual rating rij. In the following
equations, T is referred as the test set consisting of (i, j) entries.

The Root Mean Squared Error (RMSE), Equation 2.1, measures the average
error and is defined as the square root of the average squared differences
between the estimated and the actual rating.

RMSE =

√
1
|T| ∑

i,j∈T

(
r̂ij − rij

)2
(2.1)

r̂ij − rij is often referred to as entry-specific error eij.

Another alternative and popular metric is the Mean Absolute Error (MAE) as
seen in Equation 2.2. The main difference between MAE and RMSE is that
the former penalizes large errors more due to its squared term (Herlocker
et al., 2004).

MAE =
1
|T| ∑

i,j∈T
|r̂ij − rij| (2.2)
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2.5.1.4 Classification Accuracy Metrics

Classification Accuracy Metrics measure how well a system recommends
items. They can be used on top-k recommendation algorithms as predicted
ratings are not of interest as long as they do not lead to classification errors
(Herlocker et al., 2004). From the field of information retrieval systems, two
popular metrics, called precision and recall, are frequently used to measure
classification performance.

Table 2.1 defines the relation between relevant and irrelevant items and
whether they were selected or not. The following notations will be used
in the Equations 2.3, 2.4 and in the Table 2.1. Nrs stands for relevant and
selected items whereas Nrn comprises relevant but not selected items.

Analogous to this, Nis is the set of irrelevant and selected items and Nin
the set of irrelevant and unselected items. Other terminologies for Nrs, Nrn,
Nis and Nin are true positives, false negatives, false positives and true negatives,
respectively.

Precision (Equation 2.3) is defined as the fraction of relevant and selected
items to selected items in general.

Precision =
Nrs

Ns
(2.3)

Recall (Equation 2.4) is the fraction of relevant and selected items to relevant
items in general.

Recall =
Nrs

Nr
(2.4)

In an offline evaluation scenario, a user could be selected as a test user,
some of his rated items would be hidden and the recommender tries to
predict these hidden items as good as possible. Items which are selected but
are not relevant, because they did not occur in the feedback from the user,
may lead to an overestimation of the number of false positives (Shani and
Gunawardana, 2011). For example, a user may like the recommended item
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Selected Not Selected Total
Relevant Nrs Nrn Nr
Irrelevant Nis Nin Ni
Total Ns Nn N

Table 2.1: Table by Herlocker et al. (2004) showing the classification of relevant and irrele-
vant items which are selected or unselected.

but was simply unaware of its existence and therefore it was not considered
relevant.

It is important to note that the recommendation list length has a direct
impact on precision and recall. If the recommendation list length is too
small the amount of false negatives rises and recall decreases. If the recom-
mendation list length is too large, false positives may rise and precision is
getting smaller (Shani and Gunawardana, 2011).

According to Gunawardana and Shani (2009), in top-k recommender sys-
tems, a higher precision is more preferable than a higher recall. Different
methods for summarizing the relation between precision and recall exist.

Precision-recall curves present the trade-off between precision and recall
graphically. Other measures that summarizes the precision-recall relation
can be used to compare different algorithms (Shani and Gunawardana,
2011).

For example, the f1-score, originally introduced by Rijsbergen (1979), trans-
forms precision and recall into a single comparable metric. The metric is
defined by the harmonic mean between them, as shown in Equation 2.5. P
and R depict the precision and recall, respectively.

F1-Score =
2 ∗ RP
R + P

(2.5)
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2.5.1.5 Rank Accuracy Metrics

Rank accuracy metrics measure how well the ordering of the recommendation
list matches the ordering from the user. Therefore, they can distinguish
between very good and not so good, but still relevant, items.

Herlocker et al. (2004) mention correlation metrics, a half-life utility metric
and the normalized distance-based performance measure (NDPM). Correlation
metrics, such as the Spearman rank correlation coefficient (Spearman, 1904) or
Kendall’s Tau (Kendall, 1938), measure the correlation between two variables.
The correlation requires to precompute the ranking of the recommendation
list and the ranking of the user, also called the ground truth. A higher
correlation is to be preferred.

The half-life utility metric is applicable for tasks where a user is presented
with a ranked recommendation list and it is likely that he will only consider
the first results (Breese, Heckerman, and Kadie, 1998).

NDPM, originally introduced by Yao (1995), is similar to Spearman and
Kendall’s tau coefficient but does not “penalize” the recommender system
for tied user ranks, meaning the ground truth contains equally ranked items
(Herlocker et al., 2004).

Cremonesi, Koren, and Turrin (2010) show in their empirical study that
for top-k recommendation tasks, error metrics such as Root Mean Squared
Error (RMSE) (Equation 2.1) and Mean Absolute Error (MAE) (Equation 2.2)
may be inferior towards accuracy metrics.

2.5.2 Scalability

As items, users and ratings increasingly grow, a recommender system
should still act efficiently. Charu C. Aggarwal (2016) defines training time,
prediction time and memory requirements as the three measures for determining
scalability.

Prediction time, which is the time it takes from requesting to retrieving
items, contributes primarily to the user experience. Training time, which
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is the time the recommender system takes during the training phase, and
memory requirements are more system related.

2.6 Domain Description

Board games are usually played on a table or other flat surfaces with
one or several players. They typically consist of one or several categories,
however there exist much more subdivisions and attributes. Some attributes
are generally applicable to board games and others, such as complexity
classifications, are board game specific. In this thesis, the term board game
is continuously used as collective term for card games, dice games and
similar.

2.6.1 Boardgamegeek.com

Boardgamegeek.com, also known as BGG, is one of the largest online board
game databases and was founded in 2000. At the time of data extraction
(April 2017) over 88 000 board games were present, including not yet re-
leased games. Boardgamegeek.com contains thousands of board games
including reviews, ratings, comments, images, videos and user-generated
content. Besides, a message board for user interaction and a board game
marketplace exist.

The website uses three rating kinds which are user rating, average rating
and BGG rating (FAQ, 2018). The BGG rating, also known as Geek rating, is
basically based on the average rating but with some alternations. It is used
to better reflect the popularity for games with few user ratings.

The operators behind BGG also link to videogamegeek.com and rpggeek.com
where video games and role-playing games are listed, see Figure 2.3.

The detail page of the currently top-ranked board game, Pandemic Legacy:
Season 1, can be seen in Figure 2.4. Figure 2.5 and Figure 2.6 show a profile
overview of a user and a user-written review about a board game.
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Figure 2.3: Start page of Boardgamegeek.com with the three main components on top,
“Board Games”, “RPGs” and “Video Games”.
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Figure 2.4: Detail Page on boardgamegeek.com showing one of the most popular board
games: “Pandemic Legacy: Season 1”.
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Figure 2.5: Overview of a user profile on boardgamegeek.com. The page shows the ratings
and comments of the user as well as collection memberships for different board
games.
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Figure 2.6: A user-written review on boardgamegeek.com about the board game “Pandemic
Legacy: Season 1”.
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2.7 Related Work

The domain of board games is rather rare as a scientific target domain.
However, some scientific research has been done in this domain and most
of the time, BGG was used as the data basis.

In 2007, Aranda et al. created a social network-based recommender system by
using relations between users from BGG, called GeekBuddies. They incorpo-
rated this friend-relation information into a probabilistic matrix factorization
approach, as a third matrix.

In one of his experimental setups, Mei (2008) constructed a Bayesian network
from a subset of the BGG data. He evaluated the model by using RMSE
and cross validation and compared the accuracy against a linear regression
approach and a constant prediction baseline. Mei and Shelton (2012) also built
a Bayesian network and used a subset of the BGG data set in their evaluation
process.

Faryal et al. (2015) selected BGG as data source as well and used collabo-
rative and content-based filtering approaches to recommend board games.
For evaluation, they selected information retrieval metrics, such as precision,
recall and f1-score.

In the field of Personalizing Web Augmentation Applications, Wischenbart
et al. (2015) demonstrated a novel framework for modifying a website of
an end-user based on their personal preferences. They presented a concrete
example based on the detail page of a board game on BGG, where a custom
rating for a board game was created and presented to the user.

Additional contextual information can be incorporated in a recommenda-
tion request. This field is called Context-aware Recommender Systems and
contextual information could be time, location or social data (Adomavicius
and Tuzhilin, 2011). As an example, the location of a user could be used to
narrow and improve recommendations.

The evaluation and experimental setup explained in Section 3.4, follows
a specific form of context-aware recommender systems called Narrative-
driven Recommender Systems (NDR). This specific field, introduced by Bogers
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and Koolen (2017), was created to meet the requirements of more complex
real-user search queries.

Bogers and Koolen coined the term narrative requests which consists of
information about user preferences and a narrative description of what is de-
sired by the user. A concrete example for a narrative request could contain
desired and undesired board games (user preferences) and a textual descrip-
tion with several sentences about what the user is looking for (narrative
description).
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2.8 Knowledge Discovery Process

The term Knowledge Discovery in Databases (KDD) or also known as Knowl-
edge Discovery Process (KDP) was first mentioned by Gregory Piatetsky-
Shapiro (1991) and further defined by Fayyad, G Piatetsky-Shapiro, and
Smyth (1996). It can be described as the process of finding appropriate pat-
terns in data or knowledge and was partially used for extracting knowledge
from BGG. The exact process definition is as follows:

“Knowledge discovery in databases is the non-trivial process of identifying
valid, novel, potentially useful, and ultimately understandable patterns in

data.”

The Process, consisting of nine steps, can be reduced to five major steps. It
may be necessary to iterate and make decisions in each step to get the most
appropriate results.

1. Selection: Developing an understanding of the application domain
and selecting a target data set.

2. Preprocessing: Classifying and removing noise, as well as handling
missing data fields.

3. Transformation: Finding appropriate features depending on the goal
of the task.

4. Data Mining: Choosing data mining algorithms including models and
parameters.

5. Interpretation/Evaluation: Interpreting the mined patterns.

In the following Chapter 3, several steps of the KDD will be applied.
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The following chapter first describes how board games were extracted from
boardgamegeek.com (BGG) and stored in a MySql database for faster querying.
A framework with four approaches was created where, among other options,
desired and undesired board games can be specified as input.

Submission requests for board games were taken from a subreddit of red-
dit.com and used for evaluation. To improve accuracy, post-filtering was
applied to the returned recommendation list of each algorithm. The submis-
sions were split into training and test sets by using a time-based holdout
method.

3.1 Development Platform

In order to execute the necessary tasks, starting by preprocessing until
evaluation, a local machine as well as a separate server instance was used.
The preprocessing stages, including crawling from BGG, were executed
on a local machine. Rating matrix related tasks as well as the evaluation
were performed on the more powerful server instance. The development
environment used is further described in Table 3.1.

3.2 Selection and Preprocessing

As highlighted in Subsection 2.6.1, BBG was used as the data basis for the
knowledge extraction. No data dumps were available so the board games
and related information had to be gathered manually.
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OS Ubuntu 14.04.5 LTS
Python Version 3.4.3

Libraries

Lxml (3.3.3)
Matplotlib (2.1.0)
Networkx (2.1)
NumPy(1.8.2)
Pandas (0.19.2)
PyQt (4.11.4)
SciPy (1.0.0)
SkLearn (0.19.1)

MySql DB Version 5.5.58

Disk Space 3.33TB
CPU Intel Xeon E5-2620 v3, 24 Cores
RAM 256GB

Table 3.1: Overview of the development environment provided by the server instance.

In the following paragraphs, the term board game also includes board game
expansions. A board game expansion is an enhancement to an already
existing board game.

BGG provides an application programming interface (API) for fetching all
board game related data by making HTTP requests with certain parameters.
However, as each API request requires a board game ID, the first step, before
using it, was crawling the board game overview pages and extracting the
board game IDs.

For crawling the overview pages, the python packages BeautifulSoup and
urllib were used. The process was executed sequential with 100 board games
at once and a delay of 2 seconds between the requests.

All in all, 88 564 unique board games and board game expansion IDs were
extracted. The lowest board game ID was 1 from the board game “Die
Macher” and the highest ID 219 708 was from “Professor Evil and The
Citadel of Time”.

The board game ID list was not numbered consecutively. Reasons for this
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were that either the item was removed or it was not a board game but a
video or role-playing game (RPG). The operators of BGG seem to use the
same database in which all items share a unique and continuous ID.

3.2.1 BGG API

The next step was exploring the available API calls, their differences and
their parameters. The BGG API in version 2 (API2, 2018) provides eleven
different API calls and returns a custom XML file on success. In error
cases an HTTP error (in case of too frequent requests in a short time) or
a malformed XML file was returned. Lxml was used as the XML parsing
library.

3.2.1.1 Board games

In order to fetch the board games, a thing request with certain parameters
was made. A thing can be a board game or video game. As it was an
optional parameter for the API request, it was omitted. The only mandatory
parameter was the unique item ID or a list of item IDs.

To not overload the BGG servers, only 50 board games were fetched at once.
The following shows a sample request for the board game Catan with the
unique board game ID 13.

https://www.boardgamegeek.com/xmlapi2/thing?id=13&versions=1

&videos=1&stats=1&historical=1&ratingcomments=1}

Many properties such as alternate names or user poll results are contained by
default, in the returned XML file. Additionally, several options can be passed
in the request to further extend the amount of information returned.

For example, the options comments and ratingcomments return all comments
about an item (including ratings if applicable) and all ratings of an item
(including comments if applicable). However, it is not supported to specify
both options at the same time in a request. As an item can have a rating, or
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a comment or both from the same user, two crawling runs were necessary in
order to get all rating and comment information. Afterwards, the resulting
XML data sets had to be merged accordingly.

3.2.1.2 Reviews

In the BGG forums, users can write their own reviews on board games or
comment on existing reviews. The vast majority of the reviews is written in
English and different kinds and scopes exist. A review may consist of only
text and be very precise or contains a hundred of words, including images,
drawings or videos about the game. Usually, more popular or older board
games tend to have a higher amount of reviews. For example, for the board
game Catan, over 150 reviews exist, with many of them having replies from
other users.

In order to fetch the reviews, three types of API calls were used. First of all,
a forumlist call was made for a specific board game. This call returned a list
of available forum types, in which one had the title “Reviews” including
a unique ID. With this review ID, a forum request was done returning all
the thread IDs, which were the IDs of the actual reviews. The last API
request, of type thread, returned the actual review including all its follow-up
replies.

3.2.1.3 Collections

A user can also rate or comment an item and add it to its own collec-
tions. However, it is not mandatory to specify a collection when rating or
commenting an item. The following self-explaining collections exist:

1. Own
2. Previously Owned
3. For Trade
4. Want in Trade
5. Want To Play
6. Want To Buy
7. Preordered
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8. Wishlist

The collection Wishlist is the only one with further subdivisions starting
from 1 “Must have” to 5 “Don’t buy this”.

For retrieving collection data, a collection API call was made. The only
mandatory parameter was the unique user name.

There was a bug in the initial thing API request which ignored the stats pa-
rameter which is necessary for retrieving ranking information. The collection
requests were therefore also used to fill such missing information.

3.2.1.4 Challenges

Some difficulties have arisen during the request process. Although the BGG
“terms of use” for the API did not mention any restrictions, the requests
were made with an initial delay of two seconds. However, too frequent
calls by the same IP address resulted in HTTP errors with error code 500,
“Internal Server Error”, and 503, “Service unavailable”.

The first mitigation technique was an exponentially increasing delay between
the requests in case an error occurred and a reset to the initial delay in
case the request was successful. Despite this kind of congestion control, the
errors still occurred so the assumption was made that there was some kind
of “penalization” involved. Therefore, for the board game and review item
requests, rotating proxy IP addresses were successfully used.

For time reasons, the user collections scrapping process was implemented
multi-threaded. Five threads, each with a random IP address and user agent
for every request, fetched the collection data simultaneously. This reduced
the estimated scrapping time of two to three weeks to some days. Especially,
as each request took five to fifteen seconds.

Other difficulties were more related to the returned XML files. Some re-
quests returned malformed XML, for example, due to improperly escaped
characters. In rare cases, the recovery option offered by Lxml was not suffi-
cient. As an example, there was a case, where a user comment contained two
sequential null bytes which is not allowed according to the RTF specification
(W3C, 2008).
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3.2.2 Database Import

In order to store the board games, a relational database management system
(RDBMS) was used. The requirements were fast retrieval of data, making use
of a structured query language (SQL) and making use of an object-relational
mapping (ORM) framework in Python. The selected RDBMS was MySql,
as it is very popular and freely available, and peewee as a lightweight ORM
framework (Leifer, 2017). Figure 3.2 summarizes the process of getting the
BGG data into the relational database.

3.2.2.1 Database Schema

First of all, a database schema was designed. The main requirements were
that the schema stores all the data correctly and allows efficient retrieval.
Figure 3.1 shows the created schema with eleven relations. For each table,
the storage engine innoDB and collation utf8-bin was used.

Each relation uses an automatically incremented artificial primary key,
named ID, to store its instances. The reason for this was that it was not
known beforehand which IDs and fields of the objects can be considered
unique. For example, the field value id used in the relation board game link types
occurred several times in the XML files with different values and types.
Another reason was that peewee prefers to use artificial keys instead of
compound ones.

For performance reasons, several SQL indexes were created. To achieve
efficient join operations, they were created on the respective foreign keys.
Additionally, to handle the initial board game name matching faster, indexes
were created on the primary name and bg id fields of board games as well as
on the name field of board game alternate names.

The relations board game comments, board game user collections, board game review replies,
board game to link types and board game version to link type ensure many-to-
many associations between the actual objects by holding the respective
foreign keys. After the relations were created, the peewee model generator
was used to generate python class models from the relations.
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board_game_alternate_names

id MEDIUMINT(9)

bg_id MEDIUMINT(9)

name VARCHAR(255)

Indexes

board_game_comments

id INT(11)

bg_id MEDIUMINT(9)

user_id INT(11)

rating FLOAT

comment MEDIUMTEXT

Indexes

board_game_link_types

id INT(11)

type ENUM(...)

value VARCHAR(255)

value_id MEDIUMINT(9)

Indexes

board_game_polls

id INT(11)

bg_id MEDIUMINT(9)

poll_type ENUM(...)

value VARCHAR(10)

num_votes MEDIUMINT(9)

Indexes

board_game_review_replies

id INT(11)

article_id INT(11)

user_id INT(11)

postdate DATETIME

editdate DATETIME

subject TEXT

body MEDIUMTEXT

is_main_review BIT(1)

bg_id MEDIUMINT(9)

thread_id INT(11)

forum_id MEDIUMINT(9)

Indexes

board_game_to_link_types

id INT(11)

bg_id MEDIUMINT(9)

link_type_id INT(11)

Indexes
board_game_user_collections

id INT(11)

bg_id MEDIUMINT(9)

user_id INT(11)

numplays INT(11)

own BIT(1)

prev_owned BIT(1)

for_trade BIT(1)

want_in_trade BIT(1)

want_to_play BIT(1)

want_to_buy BIT(1)

wish_list BIT(3)

preordered BIT(1)

Indexes

board_game_version_to_link_type

id INT(11)

bg_version_id INT(11)

link_type_id INT(11)

Indexes

board_game_versions

id INT(11)

version_id INT(11)

bg_id MEDIUMINT(9)

name VARCHAR(255)

year_published VARCHAR(45)

productcode VARCHAR(45)

Indexes

board_games

id MEDIUMINT(9)

bg_id MEDIUMINT(9)

type ENUM(...)

primary_name VARCHAR(255)

description MEDIUMTEXT

year_published SMALLINT(6)

min_players SMALLINT(6)

max_players SMALLINT(6)

playing_time MEDIUMINT(9)

min_play_time MEDIUMINT(9)

max_play_time MEDIUMINT(9)

min_age TINYINT(4)

total_comments MEDIUMINT(9)

geek_rank MEDIUMINT(9)

geek_rating_bayes FLOAT

avg_rating FLOAT

num_ratings MEDIUMINT(9)

IMPORT_TIMESTAMP DATETIME

Indexes

users

id INT(11)

user_name VARCHAR(25)

Indexes

Figure 3.1: Overview of the used MySql database schema with eleven relations, each with
an artificial primary key named id.

36



3 Materials and Methods

# Total Board Games 88 564
# Board Games Which Are Expansions 13 224
# Board Games (#Ratings >= 1) 64 498
# Alternate Board Game Names 44 088
# Comments Only 782 444
# Ratings Only 8 300 463
# Comments with Ratings 2 411 975
# Users 207 572
# Users (#Ratings >= 1) 197 979
# Reviews 63 195
# Replies including Reviews 459 443

Table 3.2: Selected key data collected after the database import.

The final time stamp of the imported board games was April 2017. Table 3.2
shows selected key data after the import. 64 498 board games have at least
one rating and 197 979 users have at least rated one board game. There exist
also users who have never rated a board game but commented on it. The
amount of 459 443 replies also include the actual reviews, therefore 396 248
comments on main reviews exist.

For comparison, when Aranda et al. crawled data from BGG in 2007, they
received about 30 000 board games, with at least one rating, and about
40 000 users, who made at least one rating.
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BGG XML API2  BGG XML API2  

MySql DBMySql DB

XML FilesXML Files

Figure 3.2: Process showing the three steps of fetching data and importing it into the
database. HTTP requests are made to the BGG API, the returned XML files are
saved locally and are then imported into the MySql database.
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3.2.2.2 Challenges

As mentioned above, it was not always clear what the unique fields of the
data were. Therefore, importing the data was partly an iterative process,
adapting unique constraints on the database schema. Additionally, pro-
grammatically assertions in the code as well as database update and insert
triggers ensured data integrity. As soon as erroneous states were detected,
the import process was aborted and the database transaction was rolled
back.

Some data had to be omitted or transformed before they were inserted
into the database. For example, usually the ratings for a board game range
from one to ten. However, in some cases there existed floating point ratings,
which seemed to be a bug as they are not available on BGG. Therefore, such
ratings were rounded up or down.

In rare cases, some board games had invalid field values. For example, the
XML file of the board game with the ID 12 238 had the invalid published
year 636 295. It also occurred that some users had two different ratings for
a board game, which should not be possible. In such cases, the latter one
was taken.

3.3 Framework and Methods

The goal was to develop a fast and easy extendable recommendation frame-
work which takes user queries in form of desired and undesired board
games and return a top-k recommendation list, with k being arbitrarily
configurable. Similar to the input of constraint-based systems (see Subsec-
tion 2.4.3) additional command line arguments, as seen in Table 3.3, can be
added to further constrain and assist the recommendation framework.

3.3.1 Overview

Four different approaches were implemented. Two approaches, defined
as Collaborative Filtering and Matrix Factorization rely on similarities in the
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Positive Board Game Name List -pbg <NAME> [<NAME> ...]

Negative Board Game Name List -nbg <NAME> [<NAME> ...]

Positive Board Game ID List -pbgids <pbgids> [<pbgids> ...]

Negative Board Game ID List -nbgids <bgids> [<bgids> ...]

Approach to Use -a {<all available approaches>}
Amount of Recommendations -l <listlength>

Minimum Amount of Players -minpl <minplayer>

Maximum Amount of Players -maxpl <maxplayer>

Minimum Playing Time -mintime <minutes>

Maximum Playing Time -maxtime <minutes>

Minimum Playing Age -minage <minage>

Published Year from -yf -4000to4000

Published Year to -yt -4000to4000

Positive Categories -cp {<all available categories>}
Negative Categories -cn {<all available categories>}

Table 3.3: Selected command line options for the recommendation framework.

historical rating data of BGG, whereas the other two approaches, defined as
Term Frequency – Inverse Document Frequency and Two-mode Network, utilize
content attributes.

The expandability of the framework was ensured by calling the respective
approach at runtime. In order to create a new approach, only the implemen-
tation had to be added as a method.

Getting fast recommendations from the framework, addressing the scalabil-
ity requirement (see Subsection 2.5.2), was achieved by various techniques.
Two stages, offline and online, can be identified. Whereas the Collaborative
Filtering and Two-mode Network approaches calculate their recommenda-
tions solely at runtime (online), the Matrix Factorization and Term Frequency
– Inverse Document Frequency approaches use a pre-calculated model (of-
fline) which gets loaded at runtime and therefore allows efficient and fast
recommendations.

To further improve performance, the Two-mode Network approach used a
prefetch mechanism which preloads peewee’s internal object representation
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with other fully loaded objects that are specified and related by foreign keys.
This technique is very common in ORM frameworks and avoids so-called
n+1 behavior where otherwise separate SQL queries would be performed on
a related object.

Additionally, the rating matrix was always saved and operated in compressed
row storage (CSR) mode and operations from the scipy packages, which are
compatible with CSR, were used.

The correctness was ensured by using well-established frameworks, unit
tests and conducting manual tests. For evaluation, a global in-memory
cache was used to ensure fast reordering of already executed approaches
for submissions.

3.3.2 Input Matching

As the framework allows to also input board game names or terms, an input
matching strategy was implemented. The following five steps are applied
consecutively. When no match is found the next step tries to find a match.
At each step, the term is first matched against the primary name of the
board game and only if there is no hit, it will be matched against all possible
alternate names.

1. Tries an exact match, case-sensitive.
2. Tries an exact match but case-insensitive.
3. Applies a wildcard match to the end of the term, similar to “term*”.

Operates case-insensitive.
4. Similar to Step 3, but with an additional wildcard match at the begin-

ning of the term, similar to “*term*”.
5. In addition to Step 4, all non-alphanumeric characters are replaced by

wildcard symbol.

Compared with the search functionality of BGG, this approach differs in the
way that it tries a “wildcard end match” first and stops on success, whereas
at BGG a “contains” search will be triggered first, even if the exact primary
name or alternate name was given.
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3.3.3 Collaborative Filtering

An item-based collaborative filtering approach (see Subsection 2.4.1.1) was
used for predicting the top-k recommendations. Contrary to the usual off-
the-shelf methods, this naive variant simply relies on the similarity between
the ratings of items, meaning no rating prediction was done.

The used rating matrix R (shown in Equation 3.1) has 197 979 users and
64 498 board games, denoted m and n respectively. In total, R contains
10 712 438 ratings. Most of the entries ri,j are unobserved which means no
rating from user i to board game j exist.

The unobserved-to-observed ratio, referred as sparsity level by Sarwar et al.
(2000), of a rating matrix is defined by SL = 1− nonzero entries

total entries . For R, the
sparsity level is calculated by SL = 1− 10 712 438

197 979∗64 498 resulting in 0.99916
which means R is very sparse.

Rm,n =


r1,1 r1,2 · · · r1,n
r2,1 r2,2 · · · r2,n

...
... . . . ...

rm,1 rm,2 · · · rm,n

 (3.1)

The cosine similarity was used as similarity metric. It presents the cosine
of the angle between two board games and ranges from −1 expressing
dissimilarity up to 1 for equality. Sarwar et al. (2000) also used that metric
when comparing the item-based collaborative filtering performance on the
MovieLens data set.

The metric is defined by the dot product of the two item vectors divided
by their euclidean lengths. Equation 3.2 shows the cosine similarity with bi
being the column vector for board game i and bj being the column vector
for board game j.

cosineSim(bi, bj) =
~bi · ~bj

||~bi|| · ||~bj||
(3.2)
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Algorithm 1 describes the used recommendation approach in detail. First
of all, the rating matrix and the input board games which either express
preference, positive, or disfavor, negative, are passed. The similarities pCos
between the positive input board games and the non-input board games are
calculated and aggregated. The same applies for the negative input board
games nCos.

In order to avoid a too strong influence of the negative similarities on the
positives ones, a weighting procedure was applied. As shown in Procedure
2, the negative similarity score was scaled down by its ranking position,
denoted by rank(item).

Finally, the weighted negative similarities were subtracted from the positive
similarities. The similarities were sorted in descending order and the k most
similar board games returned.

Algorithm 1 Item Similarity Calculation
1: Initialize:
2: R← rating matrix
3: pbgs← positive input board games
4: nbgs← negative input board games
5: pCos← empty positive cosine similarities
6: nCos← empty negative cosine similarities
7: For each i of pbgs
8: For each j of non-input board games :
9: pCos[j]← pCos[j] + cosineSim(R[:, i], R[:, j])

10: For each i of nbgs
11: For each j of non-input board games :
12: nCos[j]← nCos[j] + cosineSim(R[:, i], R[:, j])
13: allCos← pCos -= weightedNegative(nCos)
14: Sort allCos descending
15: return k most similar board games based on allCos
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Algorithm 2 Weighted Negative Calculation
1: procedure weightedNegative(nCos)
2: For each j of non-input board games
3: nCos(j)← nCos(j) ∗ (1− rank(j)

recommendationListLength )

4: return nCos

3.3.3.1 Centralized Version

In order to counteract possible systematic tendencies, an additional adjustment
was applied to the rating matrix and labeled as separate approach. These
tendencies may occur because of users who give higher ratings than others
or items which receive higher ratings, for example due to popularity.

Equation 3.3 shows the adjusted rating for user i to item j entry. It gets
calculated by subtracting the global average µ as well as the user bi and
item bj bias. The global average µ is thereby the average over all observed
entries and the user and analogously item bias is calculated by averaging
over the corresponding entries as well.

This adjustment was inspired by Koren (2008) who also used parts of this
item-user baseline to additionally adjust his latent factor model.

r′ij = rij − µ− bi − bj (3.3)
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3.3.4 Matrix Factorization

The idea behind latent factor models is that a significant amount of rows and
columns of the rating matrix are correlated and therefore missing values can
be estimated by a low-rank approximation of the original matrix (Charu C.
Aggarwal, 2016). This means that a fully specified low-rank approximation
can be created even though the original matrix has missing entries.

For the matrix factorization approach, a UV-decomposition or unconstrained
Matrix Factorization (Charu C. Aggarwal, 2016) was chosen. This decompo-
sition divides the rating matrix Rmn into two matrices Pmk and Qnk with k
being the amount of factors or concepts.

The ith row pi of P, called user factors, and the jth row qj of Q, called
item factors, represent the affinity of user i and item j towards the k con-
cepts. Equation 3.4 shows the decomposition R̂ = PQT, with R̂ being the
approximation.

R̂m,n =


p1,1 p1,2 · · · p1,k
p2,1 p2,2 · · · p2,k

...
... . . . ...

pm,1 pm,2 · · · pm,k

 ∗


q1,1 q1,2 · · · q1,n
q2,1 q2,2 · · · q2,n

...
... . . . ...

qk,1 qk,2 · · · qk,n

 (3.4)

The used objective function is defined as the sum of the squared error
which is the difference between the estimated and the specified rating. It
is shown in Equation 3.5 with S being the set of specified entries, S = {rij :
rij is specified}.

Minimize J = ∑
ri,j∈S

(rij − pT
i qj)

2 (3.5)

The objective function was minimized using stochastic gradient-descent (SGD).
Equation 3.6 shows the iteratively applied update, during SGD, of the
respective pi and qj factors with learning rate α.
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pi ← pi + α((rij − qT
j pi) ∗ qj)

qj ← qj + α((rij − pT
i qj) ∗ pi)

(3.6)

For the matrix factorization approach, the learning rate α was chosen to be
0.01 and the factor k was arbitrarily set to 100.

The idea behind the item similarity calculation was the same as in the Col-
laborative Filtering approach, see Subsection 3.3.3. However, the application
of the cosine similarity slightly varied in the way that it was calculated
between the input board game and the q∗ factors.

Additional variations of the matrix factorization such as Pure SVD and
SVD++ exist. Pure SVD, as denoted by Cremonesi, Koren, and Turrin
(2010), uses an additional diagonal matrix of singular values and SVD++,
introduced by Koren (2008), additionally incorporates implicit feedback.

3.3.5 Term Frequency – Inverse Document Frequency

The following approach combined several information sources of board
games to create so-called document units and calculate the Term Frequency -
Inverse Document Frequency (TF-IDF) for each term of a document unit. The
resulting term frequency matrix, mapping board games (seen as documents)
to terms, was then used to find similar board games. As no historical
ratings are used, the applied approach can be categorized into content-
based recommender systems.

3.3.5.1 Vector Space Model

A Vector Space Model, introduced by Salton (1988), is a model in which a set
of text documents is represented as vectors of terms. Each dimension of a
vector belongs to a different term and each term corresponds to an axis. A
term can be a word, keyword or several words combined, for example word
n-grams with n > 1.
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TF-IDF

Different methods exist for calculating term weights. Simple counting of
term occurrences in the document, referred as Term Frequency (TF), does
not reflect the actual significance of each term. For example, when viewing
documents about board games, the term board game will probably appear
too often and not be equal significant as a term which occurs less often.

Therefore, a so-called inverted document frequency (see Equation 3.7) is
used. It will be high if a term occurs less and low if a term occurs too
frequently. DFj denotes the Document Frequency of term j, representing in
how many documents the term occurs, and N denotes the total number
of documents. Additionally, the sub-linear log function has a “smoothing
effect” (Management Association, 2012).

IDFj = log

(
N

DFj

)
(3.7)

Equation (3.8) combines TF and IDF results in the TF-IDF weighting. The
TF-IDF score for a given term j in a document i will be highest if the
term occurs many times in few documents and lower if it occurs in fewer
documents (low TF) or in too many documents (low IDF).

TF-IDFi,j = TFi,j ∗ IDFj (3.8)

Document Similarity

As each document is represented by its document vector with its terms as
components, the similarity between them can be measured. When the vector
space model is used, the cosine similarity (Equation 3.9) can be preferable to
other similarity functions such as euclidean distance, as it recognizes similar
topics better (Pazzani and Billsus, 2007).
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cosineSim(di, dj) =
~di · ~dj

||~di|| · ||~dj||
(3.9)

Van Meteren and Van Someren (2000) also used the vector space model
representation and cosine similarity for building their personalized recom-
mender system called PRES. However, they built and iteratively updated
a user profile vector beforehand and then calculated the cosine similarity
between the profile vector and the document vector.

3.3.5.2 Implementation

The idea was that users might prefer items that overlap in their content
information. In terms of board games, the content information that was
considered suitable and decisive consisted of three parts. The description,
reviews (including all replies) and user comments of a board game have been
combined into one document unit.

As seen in Table 3.4, the length of the descriptions varied from no de-
scription at all to the longest one with 15 292 characters. The board game
“Carcassonne” had the highest amount of comments with 13 659 and the
board game “Dominion” had the most reviews with 219. The vast majority
of content was written in English.

In order to create the TF-IDF matrix, the TfidfVectorizer from scikit-learn,
with default settings, was used. It combines several transformation steps
such as tokenization, occurrence counting and TF-IDF weighting. As the
result is by default L2 normalized, it was sufficient to multiply the result
matrix by its transpose for calculating the cosine similarities.

Additionally, a default stop list, containing over 1 000 stop words, was
used to remove words with low information gain such as conjunctions,
prepositions and similar. No explicit tokenizer was used and the default
extraction mode was word by word. The resulting TF-IDF matrix had 88 564
board games and 1 049 787 terms.

The similarity calculation for positive and negative board games was similar
to the calculation in the Collaborative Filtering approach, see Algorithm 1.
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Max. Description Length (characters) 15 292
Avg. Description Length (characters) 801
# Board Games with [1− 9] comments 37 553
# Board Games with [10− 99] comments 16 444
# Board Games with [100− 999] comments 4499
# Board Games with >= 1000 comments 565
# Board Games < 5 reviews 13 488
# Board Games [5− 9] reviews 1696
# Board Games [10− 99] reviews 1290
# Board Games >= 100 reviews 19

Table 3.4: Selected descriptive statistics of the three data sources used for the TF-IDF
calculation.

The similarities between the positive input board games and the non-input
board games were accumulated. The same was applied for the negative
board games and then the result was subtracted from the similarities of the
positive ones.

Contrary to the Collaborative Filtering approach, no negative weighting was
done. The final similarities were ordered descending and the k most similar
board games returned.
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3.3.6 Two-mode Network

For the following recommendation approach a so-called two-mode network
of board games and persons was created. The terms two-node network and
one-mode were initially introduced by Wasserman and Faust (1994) in the
context of social network analysis. They defined a social network as ”a set
or set of actors and the relation or relations defined on them”.

The difference between a one-mode and two-mode network is that the
former require that all nodes are of one “type” or group whereas the latter
consists of two different types and edges are only possible among them. In
graph theory, two-mode networks are also known as bipartite graph and the
different type sets are also referred as top nodes > and bottom nodes ⊥.

In order to use traditional graph analysis notions, a two-mode network can
be also transformed into two one-mode networks called top projection and
bottom projection.

3.3.6.1 Implementation

First of all, a two-mode network, from board games and persons/organizations
connected by unweighted, undirected edges, was constructed. Persons were
defined to be of type boardgamedesigner, boardgamepublisher or boardgameartist
and meant to be uniquely identifiable by their name and type.

A person can also occur as a boardgamedesigner and boardgameartist or
even as boardgamepublisher at the same time. However, for the so-called
person weight calculation described below, the name of the person was
the only identification. For example, “Rob Fisher” is the designer, artist
and publisher of the board game “Monkey Dash” but the person weight
calculation would be only for the name “Rob Fisher”.

The implementation behind the approach is described in Algorithm 3. The
approach gets called with the input board game list (positive and negative
board games) and tries to find similar ones.

Each, from the input list different, board game gets assigned a board game
score bgs which increases, the more matching and relevant persons it has
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with the positive input(s) and decreases, the more matches it has with the
negative input(s). The notion of matching and relevant persons is denoted
by the term person weight pw. Of course, they can also overlap within the
input board games.

Finally, the k most similar board games are returned. Board games with
persons that did not match with the input at all, will not be recommended.
This means the resulting board game list can be less than the desired
recommendation list length.

Algorithm 3 Network Weight Calculation
1: Initialize:
2: pw← person weights
3: bgs← board game scores
4: pbgs← positive input board games
5: nbgs← negative input board games
6: For each pbg of pbgs
7: For each person name pname of pbg :
8: pw[pname]← pw[pname] + personCount(pbg, pname)
9: For each nbg of nbgs

10: For each person name pname of nbg :
11: pw[pname]← pw[pname]− personCount(nbg, pname)
12: For each bg of relevant non-input board games
13: For each person name pname of bg :
14: bgs[bg]← bgs[bg] + pw[pname]
15: Sort bgs descending
16: return k most similar board games based on bgs with bgs score > 0.0

Algorithm 4 Person Count Calculation
1: procedure personCount(bg, pname)
2: count← 0.0
3: For each person in bg
4: if← pname == person.name
5: count← count + 1.0
6: return count
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Latapy, Magnien, and Del Vecchio (2008) elaborated and extended basic no-
tions for analyzing large two mode networks, as an alternative to analyzing
one-mode projections of two-mode networks.

Table 3.5 gives an overview of the created two-mode network including the
largest connected component (LCC). The bipartite density is defined by the
fraction of existing links m to possible links n> ∗ n⊥ and is 0.00007624289
for the whole network. Introduced by Latapy, Magnien, and Del Vecchio
(2008), the bipartite clustering coefficient cc(u) (Equation 3.10) of a node u
measures the local density in the bipartite context.

The bipartite clustering coefficient makes use of a “neighborhood overlap
function” cc(u, v) defined between two nodes u and v to be the fraction of
actual neighbors to possible neighbors, |N(u)∩N(v)|

|N(u)∪N(v)| , with N as neighborhood
function.

cc(u) = ∑ v ∈ N(N(u))cc(u, v)
N(N(u))

(3.10)

If u and v share the exact same neighborhood, the clustering coefficient
would be 1, contrary if they share fewer neighbors it moves towards 0. The
average clustering coefficient of the LCC is 0.2784314722566027.

Figure 3.3 shows the second largest connected component of the two-mode
network of BGG with 22 board games on the left side and 18 persons on
the right side.
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# Connected Components 4 711
# Connected Components with #nodes < 5 3 712
# Connected Components with #nodes [5− 14] 555
# Connected Components with #nodes >= 15 16
#Nodes of Largest Connected Component (LCC) 122 521
#Edges of LCC 263 366
#Nodes of Board Games (top nodes) 43 982
#Nodes of Persons (bottom nodes) 78 539
Bipartite Density of LCC 0.0000762
Avg. Bipartite Clustering Coefficient of LCC 0.278

Highest Degree regarding Board Games (LCC)
“Magic: The Gathering”
degree 510

Highest Degree regarding Persons (LCC)
Designer “(Uncredited)”
degree 18448

Table 3.5: Overview of the generated two-mode network.

3.3.7 Post-Filtering

To further improve the results, a re-ranking of the recommended board
games for each approach was done. This process was named post-filtering
as it was applied on the returned board game recommendation list for
each approach1. Post-filtering can be classified as a sequential-ensemble recom-
mender system which is a particular type of hybrid recommender systems, see
Subsection 2.4.5.

The underlying idea was based on the fact that each board game has
additional identifying attributes such as, to which category it belongs, which
game mechanic (mechanism) it uses or of which family it is a part of.

Such attributes were used to find similar board games between the positive
input board games and the board games from the recommendation list. A

1Co-supervisor Lukas Eberhard made the suggestion to look into post-filtering tech-
niques.
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Figure 3.3: Visual representation of the second largest component of the two-mode network
of BGG with 22 board games on the left side and 18 persons on the right side.
The prefixes A , D and P represent Artist, Designer and Publisher respectively.
The graph is connected through 97 edges. The publisher “Splotter Spellen” has
the highest degree of 22.
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Board game category score (bgcs), a Board game mechanic score (bgms) and a
Board game family score (bg f s) were defined to reflect the similarity between
two board games.

In particular, the more overlapping attributes an input board game has, the
higher its similarity gets. The respective bg*scores between all positive input
board games and the result board game (from the recommendation list of
the approach) are normalized to 1.

All bg*scores, including the normalized recommendation score rcs, are then
weighted and accumulated, as seen in Equation 3.12. The final scores of
each result board game get resorted in descending order for the updated
recommendation list.

The optimal weight factors ∗Weight, representing the influence of a certain
score, are determined in the evaluation step. For similarity calculation
between attributes of two board games, the Jaccard similarity, as shown in
Equation 3.11, was used.

jaccardSim(BGa, BGb) =
|BGa ∩ BGb|
|BGa ∪ BGb|

(3.11)

updatedScore(resultBg, PIBG) = rcs(resultBg) ∗ recWeight +

bgcs(resultBg, PIBG) ∗ catWeight +

bgms(resultBg, PIBG) ∗mecWeight +

bg f s(resultBg, PIBG) ∗ f amWeight
(3.12)

Example

Considering “Catan” and “1989: Dawn of Freedom” to be the positive input
board games PIBG and “Twilight Struggle” to be the first board game of the
recommendation result list, denoted resultBg. Table 3.6 shows the attributes
in more detail.
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Board game Categories Mechanics Families

Catan Negotiation

Dice Rolling
Hand Management
Modular Board
Route/Network
Trading

Catan
Promotional Board Games

1989: Dawn of Freedom Political

Area Control/Influence
Campaign
Dice Rolling
Hand Management

Country: Czech Republic
Country: Germany
Country: Hungary
Country: Poland
Country: Romania
Country: Slovakia
Theme: Cold War

Twilight Struggle
Modern Warfare
Political
Wargame

Area Control/Influence
Campaign
Dice Rolling
Hand Management
Simult. Action Selection

Country: Soviet Union
Country: USA
Historical Figures: Fidel Castro
Theme: Cold War

Table 3.6: Attributes of board games “Catan”, “1989: Dawn of Freedom” and “Twilight
Struggle”.

Then the bgcs({TwilightStruggle}, {Catan, 1989 : Dawno f Freedom}) is 1
3 =

0.33 because only “Twilight Struggle” and “1989: Dawn of Freedom” have
one category in common.

The bgms({TwilightStruggle}, {Catan, 1989 : Dawno f Freedom}) is 4
5 +

2
8 =

1.08 and the bg f s({TwilightStruggle}, {Catan, 1989 : Dawno f Freedom}) is
1

10 = 0.1.

Assuming full weights are applied to the scores, the updated final score
for the top-ranked game is then given by 1.0 ∗ 1.0 + 0.33 ∗ 1.0 + 1.08 ∗ 1.0 +
0.1 ∗ 1.0 = 2.51.

When re-ranking the results, the amount of board games which should
be considered from the result recommendation list, denoted as reorder list
length, must be defined. Properties such as reorder list length as well as the
respective weights ∗Weight must be set before the recommendation run.
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3 Materials and Methods

Those properties were considered as hyperparameters and extracted and
evaluated using a time-based holdout method, see Subsection 3.4.2.

Ziegler et al. (2005) also re-ranged recommendations in their offline exper-
iment. They used the results from item-based CF and user-based CF and
applied a diversification algorithm to both cases, altering a diversification
factor from 10% to 90%.

3.4 Evaluation

For evaluating the respective recommendation approaches, real-user board
game requests including community-approved recommendations were used
as ground truth. The board game requests with the recommendations were
taken from reddit.com where a separate forum, a subreddit2, exists for board
games.

3.4.1 Reddit.com Submissions

On the board games subreddit, specially prefixed threads exist where users
can request recommendations for board games based on ones they liked or
did not like. Such threads have titles with “What should I Get” or “[WSIG]”
prepended. They consist of the actual request and comments from other
users discussing or recommending possibly matching board games.

In general, requests and comments consist of an author, a community
voted score (which is initially 1.0) and the actual content. The author or
community members can express like or dislike by “up voting” or “down
voting” them.

Besides desired or undesired board games, a submission request may con-
tain additional constraints, similar to a constraint-based recommender (see
Subsection 2.4.3) such as minimum amount of players or maximum playing
time. Such constraints have also been extracted and passed as additional

2www.reddit.com/r/boardgames/
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3 Materials and Methods

input to the recommendation framework. As mentioned in Section 2.7, the
board game request can therefore be considered as a narrative request.

Based on a reddit.com data dump with entries from 2011 to 1016, 150 WSIG
submissions, from September 2016 to the end of December 2016, have been
manually extracted. The only requirements for a request to be accepted as
ground truth were that each submission request had at least ten approved
recommendations and the request itself had a positive score.

A comment (with recommendations) was considered approved when it had
a score greater than 1 (community approved) or the author responded on it
and expressed favors (author approved).

Figure 3.4 shows the, with pyQt4 developed, GUI and parts of an extracted
submission with its comments. The submission request was created by the
user “ApolloN0ir” who tries to find further board games to play by him
and his wife. He specifies ten board games he liked, stated that two players
and more are preferable and that his wife does not like violent games.

Therefore, when extracting this request, the ten board games, the minimum
amount of players and the negative category “wargame” were set. The given
constraints only act as a prefilter for the recommendation framework. This
means that the approaches skip board games which would not match the
desired restrictions.

Table 3.7 shows selected key data from the extracted submissions and
recommendations.

3.4.1.1 Accuracy Calculation

As classification accuracy metrics (see Paragraph 2.5.1.4), precision, recall
and f1-score was selected to be appropriate. Rank accuracy metrics have
not been used as the recommendations from the comments did not imply a
certain ordering.

The f1-score between the recommendations of the approach and the recom-
mendations from the submission were calculated, as shown exemplary in
3.8.
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Figure 3.4: Overview of a submission (highlighted) and its comments. On double-click, an
additional pop-up window opens to specify additional constraints (on submis-
sions) or the actual recommendations (on comments).
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#Submissions: 150
Avg. Submission Score: 8.22
Avg. #Positive BGs (per Submission) 4.28
Avg. #Negative BGs (per Submission) 0.29
#Submissions with no filter: 40
#Submissions with amount players: 96
#Submissions with playing time: 47
#Submissions with minimum age: 1
#Submissions with year: 0
#Submissions #categories >= 1: 26
#Recommendations: 2 628
#Unique Recommendations (UR): 838
#Recommendations which are expansions: 55
Avg. #Recommendations (per Submission): 17.52
#Recommendations in Top 10 85
#Recommendations in Top 50 408
Most frequent board game (test set) “Codenames”(8)
Most frequent board game (training set) “Carcassonne”(25)

Table 3.7: Selected key data of the extracted submissions.

BGIDs from the result recommendation (per approach): 1, 4, 6, 9
BGIDs from the reddit submissions (ground truth): 4, 9, 10, 20, 21
Precision: 2

4 = 0.5
Recall: 2

5 = 0.4
F1-Score: 0.44

Table 3.8: Example calculation of the accuracy for evaluation.

60



3 Materials and Methods

3.4.2 Experimental Setup

The performance of each approach was reported as the average over all
f1-scores of each submission. The returned amount of recommendations
from the framework was fixed by list length 10 as it seemed to be most
appropriate and is a typical choice, see Subsection 2.3.1. This procedure
was partially similar to the experimental setup of Sarwar et al. (2000) who
also used a fixed list length of 10 and reported an average f1-score as
performance metric.

For the f1-score calculation of each approach, a time-based split (see Para-
graph 2.5.1.1) was done. The latest 20 percent of the 150 submissions were
used for reporting the f1-score accuracy. A train or test split was omitted as
the approaches operated on unseen data and had no model parameters to
learn.

In contrast, the weights of the post-filtering scores as well as the opti-
mal reorder list length at which re-ranking should be done, had to be se-
lected. Therefore, a manual grid search with alternating score weights from
{0, 20, 40, 60, 80, 100} percent had been executed on the oldest 120 submis-
sions, considered as training set, and validated on the latest 30 submissions
(test set). Additionally, the reorder list length was varied between 50, 100 and
200 for all approaches and the reorder list length yielding the best results
was selected.
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3 Materials and Methods

1. Pandemic Legacy: Season 1 8.47
2. Through the Ages: A New Story of Civilization 8.31
3. Twilight Struggle 8.22
4. Terra Mystica 8.15
5. Star Wars: Rebellion 8.14
6. Scythe 8.08
7. 7 Wonders Duel 8.03
8. Caverna: The Cave Farmers 8.02
9. The Castles of Burgundy 7.99
10. Puerto Rico 7.99

Table 3.9: Top ten board games with their geek rating on the right side.

3.4.3 Baseline

For relative performance comparison, a naive baseline of most-popular board
games has been chosen. The board games are ordered descending according
to their geek rating. The first top ten games are shown in Table 3.9 with
“Pandemic Legacy: Season 1” being on top.
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4 Results

This chapter presents the results of the applied recommendation approaches
and post-filtering method described in Chapter 3. First of all, the recommen-
dation approaches are used to recommend 10 board games and are applied
and evaluated on the latest 30 submissions including their recommenda-
tions. As described in Subsection 3.4.2, these 30 submissions represent the
test set for reporting the f1-scores.

Improvements are achieved by further restricting the recommendation re-
sults to not include board game expansions which are related to the input
board games. Finally, the results on optimizing the post-filtering weights on
the training set and the accuracy results on the test set are shown.

For more clarity, the following notations were introduced:

• NW −→ Network approach
• TF-IDF −→ Term Frequency – Inverse Document Frequency approach
• MF −→ Matrix Factorization approach
• CF −→ Collaborative Filtering approach
• CFcentr −→ Centralized Version of Collaborative Filtering approach
• Baseline −→ Baseline approach
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4 Results

4.1 Default Run

Figure 4.1 and Table 4.1 show the average f1-score of the test set. The run has
been referred to as Default Run as no additional restrictions were made.
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Figure 4.1: Barplot of the average f1-score for each approach on recommending 10 board
games.

NW TF-IDF MF CF CFcentr Baseline
F1-Score @10 0.045 0.046 0.021 0.089 0.056 0.033
Max F1-Score @ LL 0.053@22 0.051@24 0.043@34 0.119@44 0.079@21 0.079@73
Std. Error ± 0.012 0.009 0.01 0.016 0.013 0.01

Table 4.1: Table showing the average f1-score at list length 10, the highest f1-score and the
standard error of the mean. LL denotes the list length and shows at which length
the highest f1-score occurred.

64



4 Results

4.2 Ignore Expansions Run

4.2.1 F1-Score per Approach at List Length 10

Figure 4.2 and Table 4.2 show the average f1-score of the test set. The run
has been referred to as Ignore Expansions Run as board games which are
expansions of the input board games have been skipped.
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Figure 4.2: Barplot of the average f1-score for each approach on recommending 10 board
games.

NW TF-IDF MF CF CFcentr Baseline
F1-Score @10 0.052 0.046 0.03 0.092 0.067 0.033
Std. Error ± 0.013 0.009 0.011 0.016 0.013 0.01

Table 4.2: Table showing the average f1-score at list length 10 and the standard error of the
mean.
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4.2.2 F1-Score per Approach

Figure 4.3 and Table 4.3 show the average f1-score of the test set for different
recommendation list lengths varying from 1 to 100.

100 101 102

List Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

F1
-S

co
re

Average F1-Score per Approach
NW
TF-IDF
MF
CF
CFcentr

Baseline

Figure 4.3: The plot shows the average f1-score for each approach for different recommen-
dation list lengths.

NW TF-IDF MF CF CFcentr Baseline
Max F1-Score @ LL 0.058@16 0.051@24 0.047@45 0.123@44 0.089@26 0.079@73

Table 4.3: Table showing the maximum f1-score at different list lengths (LL).
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4.2.3 Precision per Approach

Figure 4.4 and Table 4.4 show the average precision of the test set for
different recommendation list lengths varying from 1 to 100.
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Figure 4.4: The plot shows the average precision for each approach for different recommen-
dation list lengths.

NW TF-IDF MF CF CFcentr Baseline
Max Precision @ LL 0.1@1 0.1@1 0.067@1 0.2@1 0.116@2 0.058@11

Table 4.4: Table showing the maximum precision at different list lengths (LL).

67



4 Results

4.2.4 Recall per Approach

Figure 4.5 and Table 4.5 show the average recall of the test set for different
recommendation list lengths varying from 1 to 100.
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Figure 4.5: The plot shows the average recall for each approach for different recommenda-
tion list lengths.

NW TF-IDF MF CF CFcentr Baseline
Max Recall @ LL 0.123@98 0.15@100 0.118@100 0.282@99 0.193@98 0.222@99

Table 4.5: Table showing the maximum recall at different list lengths (LL).
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4.2.5 Amount of Submissions Used

Figure 4.6 shows how many submissions were taken into account to achieve
the desired requested recommendation list length.
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Figure 4.6: Overview showing how many submissions were taken into account for evalua-
tion at different list lengths. All approaches except the network approach used
all 30 submissions at all list lengths. At list length 41 onwards, the network
approach skipped 1 submission as it was not able to provide more than 41
recommendations for this submission.
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4.3 Post-Filtering

4.3.1 F1-Score per Approach at List Length 10

Figure 4.7 and Table 4.6 show the average f1-score of the test set after post-
filtering has been applied. The run has been referred to as Grid Search 200
Run as the reorder list length was set to 200.
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Figure 4.7: The plot shows two bars each representing a run with the average f1-score at
list length 10. The left bar shows the scores without post-filtering and the right
bar with post-filtering applied.

NW TF-IDF MF CF CFcentr Baseline
F1-Score @10 (left) 0.052 0.046 0.03 0.092 0.067 0.033
F1-Score @10 (right) 0.042 0.046 0.028 0.093 0.069 0.033
Std. Error ± 0.01 0.009 0.011 0.015 0.013 0.01

Table 4.6: Table showing the average f1-score at list length 10 and the standard error of the
mean.
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4.3.2 Grid Search Weights

Figure 4.8 shows the obtained grid search weights from the grid search on
the training set.
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Figure 4.8: Overview of the obtained grid search weights for each approach.

NW TF-IDF MF CF CFcentr
0.8|0.2|0.2|0 1.0|0|0|0 1.0|0.2|0|0 1.0|0.2|0.2|0 0.6|0|0.2|0

Table 4.7: The obtained grid search weights presented in the form <recommendation
weight> | <mechanic weight> | <category weight> | <family weight> .
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4.3.3 F1-Score per Approach

Figure 4.9 and Table 4.8 show the average f1-score of the test set for different
recommendation list lengths varying from 1 to 100.
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Figure 4.9: The plot shows the average f1-score for each approach for different recommen-
dation list lengths.

NW TF-IDF MF CF CFcentr Baseline
Max F1-Score @ LL 0.053@19 0.051@24 0.043@32 0.113@24 0.079@41 0.079@73

Table 4.8: Table showing the maximum f1-score at different list lengths (LL).
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4.3.4 Precision per Approach

Figure 4.10 and Table 4.9 show the average precision of the test set for
different recommendation list lengths varying from 1 to 100.
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Figure 4.10: The plot shows the average precision for each approach for different recom-
mendation list lengths.

NW TF-IDF MF CF CFcentr Baseline
Max Precision @ LL 0.12@4 0.1@1 0.067@1 0.16@5 0.12@5 0.058@11

Table 4.9: Table showing the maximum precision at different list lengths (LL).
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4.3.5 Recall per Approach

Figure 4.11 and Table 4.10 shows the Figure and Table shows the Figure and
Table shows the
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Figure 4.11: The plot shows the average recall for each approach for different recommenda-
tion list lengths.

NW TF-IDF MF CF CFcentr Baseline
Max Recall @ LL 0.174@194 0.197@196 0.171@199 0.37@199 0.245@194 0.359@198

Table 4.10: Table showing the maximum recall at different list lengths (LL).
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5 Discussion

This chapter discusses the evaluation results presented in Chapter 4 answer-
ing the research questions defined in Chapter 1.

1. In the domain of board games, how well are standard recommendation ap-
proaches performing when applied to real-user search queries?

Figure 4.1 and Table 4.1 show that the average f1-score of almost all ap-
proaches perform better than the baseline. The average f1-score of the CF
approach is almost three times as high as the one of the baseline. However,
the MF approach has a lower f1-score than the baseline. One of the reasons
for this might be that the MF approach has no regularization term which
could reduce overfitting towards the training set.

The centralized version of the collaborative filtering approach did not result
in the expected accuracy gain. The suggested integration of user and item
biases as well as the global average might be too much correction.

An improved run on almost all approaches was achieved by skipping board
games from the recommendation list which are expansions of any input
board game. This run was denoted as Ignore Expansions Run. Figure 4.2
and Table 4.2 show the accuracy gain with the CFcentr approach having the
highest improvement by 19 percent.

Figure 4.3 and Table 4.3 show that a higher accuracy score could be achieved
by taking a longer recommendation list length. The respective precision
(Figure 4.4) and recall (Figure 4.5) graphs also confirm the relationship
between the recommendation list length and precision/recall which is also
mentioned by Shani and Gunawardana (2011).
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2. Can content-based approaches be particularly advantageous over collaborative-
based ones?

As described in Chapter 3, the approaches MF, CF and CFcentr are considered
collaborative-based whereas the approaches TF-IDF and NW are considered
content-based.

With the exception of the MF approach, the CF and CFcentr and therefore
collaborative-based approaches performed better than the TF-IDF and NW
approach. This assumption also stays valid at higher recommendation list
lengths as Figure 4.3 and Table 4.3 show.

However, a general advantage of the content-based approaches could be in
an item cold-start scenario. When a new item with few ratings occurs as
input, the TF-IDF and NW approaches could have an advantage.

Figure 4.6 also shows the limitation of the network approach which was not
able to provide more than 41 recommendations for a specific submission.
This restriction is not as much present in the other approaches due to the
underlying workings of the NW approach.

3. What improvements can be achieved by reordering the top recommendations
of the respective approach?

The grid search reorder list length was varied between 50, 100 and 200
during the grid search on the training set. However, the grid search reorder
list length at 200, as seen in Figure 4.7, was selected and presented as it was
the only one with minor improvements.

The CF approach as well as the CFcentr had minor improvements compared
to the run without post-filtering. The NW and MF approaches performed
worse and the TF-IDF approach had the best results with no bg*Scores
meaning no post-filtering was done.

As seen in Table 4.7, the general influence of the obtained bg*Scores is very
low. The bgFamilyScore did not play any role at all meaning the highest
f1-scores were achieved by omitting it. The NW, MF and CF approaches
had the highest mechanicWeight (mecWeight) with 20 percent. Additionally,
NW and CF had a categoryWeight (catWeight) of also 20 percent. The CFcentr
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approach was the only one where the original recommendation score from
the approach was only incorporated with 60 percent.

Although all of the selected weights achieved an enhancement on the training
set, this result could not be fully reproduced on the test set. One reason
for this might be that the weights are too much tailored to the training
set, meaning overfitting occurred. As the post-filtering method prioritizes
board games with similar attributes, it could also be that the approved
recommendations from the submissions of the test set are more diverse than
the ones of the training set.

For future recommendation requests, the highest performing CF approach
with 20 percent of the bgMechanicScore and bgCategoryScore would be se-
lected.
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6 Conclusion

This thesis presented different recommendation approaches applied in the
domain of board games and evaluated on real-user search queries.

Chapter 1 showed the need for a recommender system in the domain of
board games. The three research questions

1. In the domain of board games, how well are standard recommendation
approaches performing when applied to real-user search queries?

2. Can content-based approaches be particularly advantageous over
collaborative-based ones?

3. What improvements can be achieved by reordering the top recommen-
dations of the respective approach?

were introduced as well as methods to answer them.

The theoretical background for the approaches and evaluation methods
was provided in Chapter 2. First of all, an introduction to recommender
systems including their terminology, tasks and goals was given. Basic models
of recommender systems as well as evaluation methods were presented.
The domain description and the data basis boardgamegeek.com (BGG) was
highlighted, as well as related work particularly in the domain of board
games. Finally, the Knowledge Discovery Process was shown as steps of it
were used for the extraction process.

Chapter 3 gave an overview about the development platform and explained
how board games have been extracted from BGG and stored in the re-
lational database management system. It has been shown how the four
recommendation approaches, of which two are collaborative-based and
two are content-based, were incorporated into the created recommendation
framework.
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Additionally, a post-filtering method was implemented as sequential-ensemble
recommendation approach. Finally, the steps of the evaluation which in-
cluded the manual submission extraction from reddit.com and the experi-
mental setup were presented.

The evaluation results of the approaches were shown in Chapter 4. Accuracy
scores of a Default Run, without any additional configurations, and an
improved Ignore Expansions Run were presented. Finally, accuracy results
as well as optimal weights of the post-filtering method, obtained from the
training set, were shown.

The discussion about the obtained evaluation results was covered in Chap-
ter 5. Almost all recommendation approaches could surpass the baseline,
except the Matrix Factorization approach. The results for the two best per-
forming approaches CF and CFcentr have been further improved by using
post-filtering, even if only minimally. The highest performing CF approach
with 20 percent of the bgMechanicScore and bgCategoryScore would be preset
for unseen recommendation requests.

Future work can be done in optimizing the hyperparameters of the re-
spective approaches and adding new approaches. An additional matrix
factorization approach which incorporates implicit feedback could be im-
plemented, similar to SVD++ (Koren, 2008). Therefore, the collections of
the BGG users could be used as a source of implicit feedback. Furthermore,
additional scores for the post-filtering approach could be examined.

Generally, a larger data basis for evaluation would be beneficial. This could
be achieved by automating the reddit submission extracting process.

One possibility would be to enforce predefined templates for board game
requests on reddit, similar to an online evaluation. Another possibility,
with its own research field called Natural Language Processing, would be to
automatically detect the semantics behind the submissions and therefore
being able to process unstructured requests. This would also allow to use
historical submission data.
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