
Christian Paier, BSc

Implementing and Analysing Interactive
Recommender Interfaces

Master’s Thesis

to achieve the university degree of
Master of Science

submitted to
Graz University of Technology

Supervisor
Assoc. Prof. Dipl.-Ing. Dr.techn. Denis Helic

Co-Supervisor
Dipl-Ing. Lukas Eberhard, Bsc

Institute of Interactive Systems and Data Science

Graz, September 2018

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe. Das in tugrazonline hochgeladene
Textdokument ist mit der vorliegenden Dissertation identisch.

Datum Unterschrift

ii

Abstract

Recommender systems help users to cope with information overload and
therefore are important for nowadays web and e-commerce applications.
Virtual assistance systems offer a companion for the daily life to fulfill
certain tasks. Either in the form of (text-based) chatbots, which can be
found all over the web for entertainment purposes or to support users in a
more direct way, or voice based virtual assistance systems which are more
targeted at command-based tasks.

The aim of this thesis is to connect those concepts and investigate the way
users interact with different interfaces for recommender systems.

The first part gives a short overview of recommender system’s history and
algorithms with focus on collaborative filtering, followed by the chatbot’s
history and techniques. Finally the history of voice based assistance systems
and an explanation of speech recognition is given.

The next chapter describes the implementation of a webform, a chatbot
and an Skill for Amazon’s Alexa followed by their evaluation with a user
study.

Finally the results of the user study discuss that the chatbot was not as
well received as the Alexa Skill and the webform, and conclude that this
is mainly because the chatbot is not capable of free conversations but was
expected to by the users.

The outlook suggests machine learning as one solution for this problem, as
it is inevitable for chatbots to support an open conversation to improve the
user’s experience with them.

iii

Kurzfassung

Empfehlungsdienste unterstützen Benutzer mit einer Flut an Informationen
zurecht zu kommen und sind daher wichtig für heutige Webanwendungen
oder für den Onlinehandel. Virtuelle Assistenzsysteme bieten dabei einen
Begleiter für das tägliche Leben um gewisse vordefinierte Aufgaben zu
erfüllen. Dafür gibt es (text-basierende) Chatbots die Unterhaltung oder
Kundenbetreuung bieten, oder sprachgesteuerte virtuelle Assistenzsysteme
die darauf ausgelegt sind direkte Befehle auszuführen.

Das Ziel dieser Arbeit ist es diese Konzepte zu verknüpfen und die Un-
terschiede wie verschiedene Interfaces eines Empfehlungsdiensts benutzt
werden, zu untersuchen.

Der erste Teil bietet eine kurze Übersicht der Geschichte und Algorithmen
von Empfehlungsdiensten, wobei der Fokus auf kollaboratives Filtern liegt,
gefolgt von der Geschichte und Techniken von Chatbots. Schlussendlich
wird die Geschichte von sprachgesteuerten virtuellen Assistenzsystemen
beschrieben, sowie Sprachsteuerung erklärt.

Das nächste Kapitel beschreibt die Umsetzung eines Webformulars, eines
Chatbots, und eines Skills für Amazons Alexa gefolgt von einer Evaluierung
mittels Benutzerstudie.

Schlussendlich wird diskutiert warum der Chatbot in der Benutzerstudie
nicht so gut angenommen wird wie der Skill oder das Formular. Benutzer
erwarten eine offene Kommunikation, die der Chatbot nicht bieten kann.

Der Ausblick schlägt als Lösung vor, Techniken des maschinellen Lernens
zu verwenden um dieses Problem zu lösen. Es ist unverzichtbar, dass
ein Chatbot offen kommunizieren kann, wenn das Erlebnis des Benutzers
verbessert werden soll.

iv

Acknowledgements

First I would like to thank my supervisors Denis Helic and Lukas Eberhard
for patience, guidance and for reviewing drafts of this thesis.

I also want to thank my parents, Josefa and Anton, my siblings Thomas
and Petra for supporting me all those years and encouraging to pursue my
studies.

I would especially like to thank my partner and companion Karin for
helping, supporting and encouraging me throughout the years of study and
discussing late at night many of my (non-)technical questions.

I owe a special thank you to my colleagues at DiCube, especially Thomas
who gave me freedom in scheduling work and university but also the chance
to develop further when working on many innovate projects.

v

Contents

Abstract iii

1. Introduction 1
1.1. Motivation . 2

1.2. Contributions . 3

2. Background 5
2.1. Web . 5

2.2. Recommender Systems . 7

2.2.1. Overview . 7

2.2.2. Content-Based Recommendations 8

2.2.3. Collaborative Filtering 9

2.2.4. The Big Picture . 15

2.3. Chatbot . 15

2.3.1. Introduction . 15

2.3.2. Classical Chatbots . 17

2.3.3. AIML based chatbots 19

2.3.4. Jabberwacky/Cleverbot 20

2.3.5. Chatbots as a Service . 22

2.3.6. Advanced Techniques 25

2.4. Speech Recognition based Assistance Systems 27

2.4.1. Understanding Voice . 31

2.4.2. The Big Picture . 32

3. Implementation 35
3.1. Webform . 36

3.1.1. UI . 37

3.1.2. React and Redux . 40

3.1.3. Application Code Structure 45

vii

Contents

3.2. API . 47

3.2.1. API Code Structure . 49

3.2.2. Recommender Engine Format 55

3.2.3. CORS . 56

3.2.4. Server . 57

3.2.5. Daemon . 57

3.3. Database . 57

3.3.1. Preprocessing the Data: Ranking 59

3.4. Chatbot . 60

3.4.1. RiveScript . 61

3.4.2. Code Structure . 64

3.5. Alexa Skill . 66

3.5.1. Code Structure . 72

4. Evaluation 77
4.1. System Usability Scale . 77

4.1.1. Likert Scale . 78

4.1.2. Implementation . 78

4.1.3. Results of SUS . 79

4.1.4. Interpreting the Score 80

4.2. User Study . 81

4.2.1. Setup . 82

4.2.2. Tasks . 83

4.2.3. Survey . 83

5. Results 85
5.1. User Study Participants . 85

5.2. Comparison by Interface . 86

5.2.1. Detailed System Usability Scores 88

6. Discussion 93
6.1. Participants . 93

6.2. Webform . 94

6.3. Chatbot . 95

6.4. Alexa . 96

7. Conclusions and Future Work 99

viii

Contents

A. Appendix: Implementation 103

B. Appendix: User Study 117

Bibliography 125

ix

List of Figures

2.1. User-Rating Matrix . 10

2.2. Simple example for kNN, Source: [73] 12

2.3. Conversation of a user (U) with ELIZA (E) (2018-08-17) 18

2.4. Chat example Mitsuku (2018-08-17) 21

2.5. Chat example between Cleverbot (in blue) and a user (black)
(2018-08-23) . 23

2.6. Simple example of a neural network 26

2.7. Examples of conversations between a human and a machine
with a neural network based chatbot [95] 28

2.8. Example conversation of a neural network based cleverbot [25] 28

2.9. Simple example of a Markov Model 31

3.1. Simplified Architecture . 35

3.2. Webform with the default layout of three columns 37

3.3. Webform with selected items 38

3.4. Webform with recommended items 39

3.5. Logging control . 41

3.6. React button component . 42

3.7. Redux Structure . 43

3.8. Redux action example . 43

3.9. Redux reducer example . 44

3.10. Redux pass data to component example 44

3.11. Webform directory structure 45

3.12. API directory . 48

3.13. Simplified initialization of a Flask App 49

3.14. ItemList JSON . 50

3.15. Example of the implementation of a basic API route 51

3.16. Handling standard arguments 51

3.17. Base routes on the API . 52

xi

List of Figures

3.18. Chatbot routes on the API . 53

3.19. Register webhook for Telegram 53

3.20. Using flask-cors to enable cross-domain AJAX requests 56

3.21. Calculating the rank of a movie (SQL) 59

3.22. Calculating the rank of a person 60

3.23. Calculating the rank of a person (SQL) 60

3.24. Simple RiveScript example . 61

3.25. Advanced RiveScript example 62

3.26. RiveScript begin.rive example 63

3.27. RiveScript object example . 63

3.28. Extract of starting RiveScript 64

3.29. The order in which RiveScript evaluates the rules 65

3.30. Commands and object calls for the chatbot 67

3.31. Example Telegram Chat Page 1 68

3.32. Example Telegram Chat Page 2 69

3.33. Alexa JSON Configuration File 71

3.34. Implementation of an Alexa Skill 72

3.35. Example Alexa Chat Page . 75

4.1. Comparing SUS with Adjective Rating, Source: [14] 80

5.1. Participants by gender . 85

5.2. Participants by age . 85

5.3. Participants by education . 86

5.4. Participants by knowledge . 86

5.5. Participants with prior chatbot experience 87

5.6. Participants with prior speech recognition experience 87

5.7. Overall comparison of all interfaces 88

5.8. SUS by Gender . 89

5.9. SUS by Age . 89

5.10. SUS by Education . 90

5.11. SUS by Computer Knowledge 91

5.12. SUS by previous usage . 91

5.13. The detailed SUS results in the format: (minimum) average
(maximum), including the outliers 92

A.1. Database structure of the IMDb database 104

xii

List of Figures

A.2. Database structure of the cpaier database, Part 1 105

A.3. Database structure of the cpaier database, Part 2 106

A.4. Initiate telegram chatbot . 107

A.5. Incoming Telegram Message 108

A.6. Sending messages for Telegram with Python 108

A.7. Facebook: setting a webhook 109

A.8. Incoming message Facebook Messenger 110

A.9. Replying to Facebook Messenger 111

A.10.Facebook: messenger setting 112

A.11.Files and directories for the chatbot 113

A.12.Alexa Skill Console - Modify an Intent 114

A.13.Basic uwsgi config . 114

A.14.Basic nginx config . 115

B.1. Calculate SUS with python . 118

B.2. Invitation to participate in the user study, Alexa version . . . 119

B.3. Invitation to participate in the user study, Chatbot version . . 120

B.4. Survey First Page . 121

B.5. Survey Interface Page . 122

B.6. Survey Interface Page (cont) . 123

xiii

1. Introduction

Machines that are capable to communicate with humans in a sophisticated
way are subject of many books, the ones able to imitate human are still
subject of science fiction. Active research on “intelligent” machines is done
since the early days of computing when Alan Turing invented the idea of a
test to distinguish “real” from artificial intelligence [92].

Being able to communicate with a machine in an elaborated way changes the
way how to interact with it drastically. This leads to a focus shift in computer
science not only on the algorithms behind such an artificial intelligence, but
also to human-computer-interaction, as the machine’s purpose is not based
solely on executing lightning-fast calculations any longer.

Those machines are able to cope with the huge amount of information avail-
able through the Internet but humans are often left lost and overstrained.
Recommender systems are therefore used to help with that. They guide by
filtering and ranking news for us, or give recommendations where to eat or
what to watch on TV.

Helping humans in nearly every aspect of their life is a reoccurring topic all
over science. Virtual assistance systems with speech recognition combine
all of the mentioned methods as they are able to communicate in a human-
like way and have to be careful when ranking and filtering information as
humans are not able to cope with a lot of information at once solely by
listening. While such systems have been subject of science fiction literature
for a very long time, just think of “HAL 9000” from the movie “2001: A
Space Odyssey”1, they had a major breakthrough with Apple2 releasing Siri3

in 2010.

1https://www.imdb.com/title/tt0062622/
2https://apple.com
3https://apple.com/ios/siri/

1

https://www.imdb.com/title/tt0062622/
https://apple.com
https://apple.com/ios/siri/

1. Introduction

This master’s thesis wants to combine the topics of recommender systems
with chatbots and virtual assistance systems by analyzing how users can
interact with a recommender system. This thesis is based on a bot that
recommends movies to users on the social media platform Reddit4. The
bot and the recommendation framework are part of a project at the In-
stitute of Interactive Systems and Data Science (ISDS)5, at Graz University of
Technology6.

The user’s interaction is tested with three different interfaces: a classic ap-
proach with webforms first, followed by chatbots and voice based intelligent
personal assistance is discussed, implemented and analyzed in the next
sections.

1.1. Motivation

The success of a recommender system mainly depends on two aspects: the
quality of the recommendation itself and the usability of the interface. In
the early days user interaction on the Web was not possible at all as the
available pages consisted of only static resources. This changed in 2005

when Tim O’Reilly coined the term “Web 2.0” [102] which built a basis
for the personal web as it is known today. Nowadays, many web pages
are interactive and provide some possibilities for the users to leave their
personal mark, from small sections for comments up to big social networks
where users can present themselves and connect with each other.

E-commerce web pages were one of the first to implement this personal web
approach because their users had to cope with the so-called “Information
Overload” [15] where they could not find the right item among the huge
amount of other items. Therefore recommendation systems were suggested
to provide a set of items that the user might like and therefore to help
with this overload of information to reduce work and improve the user’s
satisfaction [64].

4https://reddit.com
5https://isds.tugraz.at
6https://tugraz.at

2

https://reddit.com
https://isds.tugraz.at
https://tugraz.at

1.2. Contributions

Nowadays, such systems can be found all over the Internet: Amazon7, Spotify8

and Netflix9 are only three companies who make heavy use of recommenda-
tions.

The Web grows to be a more personal place, and it can be see that vir-
tual assistance systems are currently under heavy development. There are
mainly two flavours deployed so far: text only software often in combination
with instant messaging or chat applications called chatbots, and speech
recognition software that gets used either on mobile devices like Siri from
Apple or come bundled with special hardware like Amazon’s Echo Dot10

devices with the virtual assistant software Alexa11.

The focus of this thesis is to implement and compare three ways of interac-
tion with a recommender system, based on the recommendation framework
developed at the ISDS: the classic web page form that can be accessed
by every standard browser, implementation described in Section 3.1 the
background in Section 2.1, a chatbot provided on Telegram12 and Facebook13

Messenger14. See Section 2.3 for the theory and Section 3.4 for the implemen-
tation and finally a so-called Skill is developed for Amazon’s Alexa as one
example of a virtual assistant with speech recognition, in Section 2.4 and
Section 3.5.

A short introduction of general ways recommendations can be generated is
described in Section 2.2.

1.2. Contributions

This project consists of multiple parts of various sources, so we first have
to clarify the source of each of those parts. For this thesis a webform

7https://amazon.com
8https://spotify.com
9https://netflix.com

10https://www.amazon.com/echodot
11https://developer.amazon.com/alexa
12https://telegram.com
13https://facebook.com
14https://messenger.com

3

https://amazon.com
https://spotify.com
https://netflix.com
https://www.amazon.com/echodot
https://developer.amazon.com/alexa
https://telegram.com
https://facebook.com
https://messenger.com

1. Introduction

(Section 3.1), a chatbot (Section 3.4), an Alexa Skill (Section 3.5), and the API
(Section 3.2) that connects them to a database (Section 3.3) are implemented.
Additionally, the database storing data specifically for this API (Figure A.2)
is created, but the IMDb15 dataset (all movies, persons, genre, for more see
Figure A.1) has been provided by the ISDS. A script to preprocess those
data (description in Subsection 3.3.1) is written explicitly for this thesis as
well. The recommender framework and its bot language, that should be
generated by the API, have been provided.

15https://imdb.com

4

https://imdb.com

2. Background

This chapter describes the history, theory and algorithms behind each of the
implemented parts. We start with the Web’s history and its techniques in
Section 2.1, followed by a rough overview of recommendation techniques
in Section 2.2 Section 2.3 discusses the theory of chatbots and Section 2.4
discusses voice based personal assistant systems.

2.1. Web

Since Tim Berners-Lee proposed and implemented the Hypertext Transfer
Protocol (HTTP) in 1989 at CERN1, and therefore invented the World Wide
Web [52], it has changed radically [36]. The main focus at that time was
to exchange and link static information over a network [52]. For this the
HTTP method GET was defined to fetch a resource from a server via a
TCP/IP connection to a host by domain name or IP address. The server was
determined to respond with a document of HTML2 formatted text, which gets
interpreted by a special application—called “browser” [87]. The first browser,
first called “WorldWideWeb”, later renamed to Nexus, was developed in
1990, and was able to edit documents as Tim Berners Lee mentions in [89].
The first accessible web page, also from 1990, is still available [86]. In 1994 the
W3C3, an organisation to standardize the Web, was founded by Tim-Berners
Lee. He is still head of it as of today.

Amongst others, the W3C defines the various HTML standards, such as HTML

5.2, the most current from December 2017 [50].

1https://home.cern/
2Hypertext Markup Language
3https://w3.org

5

https://home.cern/
https://w3.org

2. Background

While in the early days it was sufficient to provide static information, the
Web evolved very fast over the years with more active user participation. The
first peak was reached with the dotcom bubble starting in the mid-nineties
and bursting in 2000. Back then many companies were built that provided
services on the Internet for the first time and therefore formed the Web to
be a more interactive space [71, 84]. The first major e-commerce companies
were founded in those years like Amazon in 1994, or search engines were
established like Google4 founded in 1998.

Tim O’Reilly coined the term “Web 2.0” in 2005 [102] to name this new,
user centralized and interactive approach where users can generate content
by themselves. From a technical perspective JavaScript got very popular in
that time with the invention of big libraries and frameworks like jQuery5 or
MooTools6. The most important push forward was done with the develop-
ment of AJAX7 where data could be fetched from a server in the background
of a web page without needing a complete reload [42].

With HTML5 in 2014 [49] a new approach for web technologies was stan-
dardized by combining HTML with JavaScript and CSS. So not only the
HTML elements got refurbished, but also new elements with their own
API were defined like the canvas element where one can draw on it using
JavaScript.

The latest development of the Web besides HTML5 is the use of full front-
end web application frameworks like Google’s AngularJS8, or Facebook’s
React9. They shift the focus of the Web from not only content providing
simple web pages to complete (single-page) web applications. They combine
JavaScript with more complex design patterns like model-view-controller
(MVC) and are primarily focused on partially re-rendering the shown page
for any user interaction.

As part of this thesis, the web application is described in Section 3.1. It
provides a form for a recommender system and presents the recommender’s

4https://google.com
5https://jquery.com
6https://mootools.net
7Asynchronous JavaScript and XML
8https://github.com/angular/angular.js
9https://reactjs.org/

6

https://google.com
https://jquery.com
https://mootools.net
https://github.com/angular/angular.js
https://reactjs.org/

2.2. Recommender Systems

results. The following section gives a rough overview of recommenders and
how recommendations can be generated.

2.2. Recommender Systems

For getting a basic idea of the underlying service the recommender frame-
work from the ISDS provide, a look at what a recommender is and how
the techniques needed for such systems is needed. A short and basic intro-
duction into the theoretical concept was done in my bachelor thesis [73],
from where the following sections are largely taken and more details can be
found.

2.2.1. Overview

There are three main principles for automatically generating recommenda-
tions from a set of items [21, 58, 78].

Content-based: Metadata of the items to pick those which are similar to
items the user has previously liked are used to recommend items of
similar type (e.g., same genre).

Collaborative Filtering: Recommendations are based on finding similar
users (or items) based on their ratings. So for any unrated item of a
user there might exist a rating from another user from a set of users
who had a similar rating behaviour. The idea is that any two users who
agreed on certain items in the past are very likely to have similar taste
in the future. In reality, however, this assumption is not completely
true as users tend to change their taste frequently and quickly. In
comparison to content-based recommenders no further knowledge
about users or items are needed, besides the given ratings.

Hybrid Recommender: A hybrid recommender mixes those techniques to-
gether. They can vary by the combined algorithms but also by the way
the results are combined. Those combinations are discussed in [21].
For example, one can add up the results of the various recommenders

7

2. Background

with weight, or mix the results so that every second item has been
generated by a different technique.

Additionally one could use more advanced approaches from machine learn-
ing or data science, or combine them with above methods. For example,
recommendations can be generated using neural networks, classification, or
support vector machines.

All of those techniques use either explicit user feedback, like an upvote, or
implicit feedback [78]. For implicit data one has to take the user’s behaviour
into account, for example, to deduct that a user disliked a movie because
it was turned off after watching it for only a few minutes. However, this
is nowadays a preferred way to do, mainly because users tend not to give
feedback frequently. Collecting implicit feedback means that much more
data as basis for the recommendations are available.

2.2.2. Content-Based Recommendations

Using content-based recommendation comes with a big drawback: metadata
about all items are needed. As an example one has to record genre, duration,
participating actors and cast, language and countries, but also technical
specifications like the aspect ratio or color could be useful for a movie
recommender. The former engineering director at Netflix stated in 2013 that
more than 40 people were needed for hand-tagging their movies [94].

TF-IDF

The term TF-IDF stands for term frequency–inverse document frequency.
It is used to determine the importance of a word within a document and
to describe a document that way. When using TF-IDF a document gets
represented as a vector in an n-dimensional space, where each dimension
represents one keyword and consists of two components [58, 78]:

Term Frequency (TF) denotes the relative frequency of a keyword as fea-
ture i within a document j, as shown in Equation 2.1. It consists of
the absolute value of occurrences of a keyword within the document

8

2.2. Recommender Systems

normalized by the maximum occurrence of all the other keywords
within this document.

TF(i, j) =
f req(i, j)

maxOthers(i, j)
(2.1)

Inverse Document Frequency (IDF) given in Equation 2.2, measures the
importance of a term within the set of all documents. Here N denotes
the amount of documents and n(i) the number of documents with
this keyword.

IDF(i) = log
N

n(i)
(2.2)

To receive a complete measurement for a word within a document one has
to combine TF and IDF as seen in Equation 2.3. This value than can than be
used as basis for a recommendation based on the similarity of the TF-IDF
values.

TF− IDF(i, j) = TF(i, j) · IDF(i) (2.3)

2.2.3. Collaborative Filtering

In 1992 the mail system “Tapestry”[44] was presented and showed the
principle of collaborative filtering for the first time. It provided a possibility
to annotate mails to state whether the mail was liked or disliked by the user
and generated—out of this feedback—an individual list of mails. This was
used for improving the search of huge amounts of mails.

The idea of Tapestry was expanded in 1994 by the GroupLens research
group10 (University of Minnesota11). They developed a usenet client where
filters are automatically generated based on the user’s and other user’s
history [77].

When the first big Internet companies were founded in the mid-nineties,
recommender systems became adopted widely. Some of those successful
companies of that time are:

10https://grouplens.org
11https://umn.edu/

9

https://grouplens.org
https://umn.edu/

2. Background

M =

3. 1. 2. 3. · · · 3.
4. 0. 4. 3. · · · 5.
3. 3. 0. 5. · · · 4.
...

...
...

...
1. 5. 5. 2. · · · 1.

 (2.4)

Figure 2.1.: User-Rating Matrix

MovieLens12: A spin-off of the already mentioned GroupLens project that
created the first movie recommender.

Alexa13: They provided a browser toolbar that analyzed the web pages a
user visited and recommended pages that could be of interest. Nowa-
days the Alexa Ranking still exits, but has been acquired by Amazon.

Firefly: Was the first big music recommender, acquired by Microsoft14 in
1998 and shut down in 1999 [68, 40].

Amazon: Is One of the very big players for recommender systems. They
patented item-based collaborative filtering in 1998 [57].

Netflix: Started as a company that remotely rented movies by sending them
as DVD to the user. Nowadays they are one of the biggest company
for video-on-demand and movie streaming services.
They have been for sure one of the biggest supporter in the research of
collaborative filtering, especially since they started the Netflix Prize15

in 2006 where they offered one million dollar for recommending
movies significantly better than the system they had in use at that
time. The research group “BellKor’s Pragmatic Chaos” won the price
in 2009 by building a hybrid recommender [16]. A complete write-up
of the solution can be found in [83, 88, 85].

The next sections in this chapter will give a rough overview of algorithms
that can be used for collaborative filtering. Especially clustering with k-
nearest neighbors (kNN) with Pearson correlation and matrix factorization
are discussed. The main difference between those two techniques is that

12https://movielens.org
13https://alexa.com
14https://microsoft.com
15https://netflixprize.com

10

https://movielens.org
https://alexa.com
https://microsoft.com
https://netflixprize.com

2.2. Recommender Systems

kNN holds the data needed for the recommendation in memory and is
therefore called “memory-based”. For example a user-rating matrix as
shown in Figure 2.1 with rows representing a user and columns representing
a movie. In contrast, matrix factorization precalculates a model by training
with existing data and is therefore called “model-based”.

k-Nearest Neighbours

There are two ways in recommending items when using a neighbourhood-
based recommender: either the recommendations are based on finding k
similar users (user-based neighbourhood) or k similar items (item-based
neighbourhood). The first one has the disadvantage that users change their
taste quite frequently. Figure 2.2 (taken from [73]) shows the kNN for two
movies and nine users. There are multiple users shown together with their
ratings for “Movie 1” on the x-axis, and their ratings for “Movie 2” on the
y-axis. By using kNN one can spot that the users shown as a circle are
closest to the star-shaped user. Recommending movies for a star-shaped
user would therefore include all the ratings of the circle shaped users while
the ratings coming from the remaining triangle shaped users would not be
taken into account.

The disadvantage of k-nearest neighbours is the huge amount of memory
that has to be available because the complete matrix of user ratings has to
be present in memory during computation. The advantage is the relative
easy implementation and the quality of the results. Runtime and quality
of the predictions depend mainly on the amount of neighbours k, a higher
number of neighbours increases the computation time.

As the kNN algorithm basically consists of calculating a distance between all
data points and selecting the k-“nearest” ones for the specific requested data
point, one has to decide on a distance on a good measurement technique
first. The choice of the measurement does not influence the quality of the
prediction significantly [61], so it is sufficient to use an easy or common
one, like the Pearson correlation which became a de facto standard for
user-based collaborative filtering.

11

2. Background

Figure 2.2.: Simple example for kNN with nine users, two movies and k = 3 neighbours.
The x and y axis are each representing movie ratings, the star, triangles and cir-
cles denotes users who rated those movies. All circles are taken into account for
the kNN as selected neighbours for the star whereas triangles not. Source: [73]

Pearson Correlation

Equation 2.5 shows how the Pearson correlation can be used to calculate
the similarity of two rating vectors a and b by dividing the covariance of
the two vectors with the cross product of their standard deviation. ai, bi are
used for a single rating, and ā, b̄ for the average of the rating vector.

sim(a, b) =
cov(a, b)
σa × σb

=
∑i(ai − ā)(bi − b̄)√

∑i (ai − ā)2
√

∑i (bi − b̄)2
(2.5)

Calculate Predictions

Equation 2.6 shows how to calculate the prediction of a rating for one user
u combining the user’s neighbours which rated that item (v ∈ Ni(u)) and
the similarity wuv between them and the user. Here each of the neighbour’s
ratings gets normalized by subtracting their mean before they get multi-
plied by the similarity to give more similar users a higher influence. The

12

2.2. Recommender Systems

summation of that for all users divided by the aggregated similarity gives a
prediction for a rating, Finally it has to be normalized again by adding the
user’s mean rating.

r̂ui = r̄u +
∑v∈Ni(u) wuv · (rvi − r̄v)

∑v∈Ni(u) |wuv|
(2.6)

Normalizing in both cases is necessary as different users have different
views, for example, what is “good” or “excellent”: one might hardly give
the highest rating, while another user does that frequently. Therefore nor-
malization assures that the ratings are not biased.

Matrix Factorization

A more advanced technique that is be presented here is matrix factoriza-
tion [58, 78, 104]. The idea is that the user-rating matrix M, with rows
representing users and columns representing movies (see Figure 2.1) can be
generated by a matrix multiplication M = UV. U is a matrix consisting of all
user factor vectors u and V is a matrix of all item factor vectors v. A vector
u consists of the weight of features — like a movie’s genre, actors, or any
other metadata — a user might like or dislike, and the item vector v consists
of values for features the movie might or might not have, both denoted by a
positive or negative number. The problem lies in the fact that many of those
features are latent, therefore hidden and often are abstract combination of
multiple real-world features (like movie’s genres) and cannot be defined
manually.

The main approach for matrix factorization, here the UV decomposition, is
to find the matrices U and V whose multiplication approximates the given
user-rating matrix M.

A typical algorithm finding a good approximation is similar to the algorithm
gradient descent:

1. initialize: pick random values for U and V
2. calculate the error of UV = M′ by comparing M′ to the original M
3. change either U or V

13

2. Background

4. repeat steps 2 and 3 until the error gets sufficiently small.

This algorithm gives for any user-rating matrix M with empty fields indicat-
ing items that should be recommended, a new matrix M′ = UV. In general,
M ≈ M′ but the empty items from M are now filled with predictions for a
rating.

This above described algorithm suffers from the same problem as gradient
decent, as they are very related. Therefore, a good step width has be chosen
for changing the values of the matrix. The change should not be too small,
as this might never come close to a minimum value, but also not too big
to jump over it and overshoot. A good threshold for termination has to be
defined, so that the algorithms get a good result, meaning that the error of
the approximation UV = M′ ≈ M is sufficiently small, but does not waste
(computation-)time. However there is no guarantee to find the best solution
(i.e. to find a global minimum), but for approximation a local minimum
should be good enough. Additionally the implementation has to care about
overfitting where the error gets very small on the given data, but does not
reflect future data, and might therefore lead to wrong recommendations.

General best practices to avoid most of the common pitfalls from above
are:

• Execute the algorithm multiple times with random initializations of U
and V and calculating the average over all resulting M′.
• Use adaptive step width, to find a minimum very quickly but avoid

the danger of over jumping it. Additionally, it decreases computation
time by avoiding too small steps.

Calculating the Root Mean Squared Error

A typical measurement for calculating the error is the root mean squared
error [78, 73], shown in Equation 2.7, where the square root of the average
squares of the given rating rui and the predicted rating r̂ui is calculated.

RMSE =

√
1
n ∑

u,i∈N
(r̂ui − rui)

2 (2.7)

14

2.3. Chatbot

2.2.4. The Big Picture

Putting it all together, a recommender system takes data that represents the
user’s likeness/dislikeness of a certain item which has to be recorded via an
interface. For this thesis three input methods are implemented in Chapter 3.
The recommender itself is independent of this interface, waits for any input
and generates an output based on it. Whatever recommendation algorithm
is implemented, a ranked list of items is generated that ultimately should
be presented to the user. It is very common to explain why a specific item
was recommended, for example to write “You might like item A because
you liked item B in the past”. This makes users aware of the way those
recommendations work and therefore often increase their satisfaction in the
recommended items [58].

As a short overview of the Web is already given, where recommender
systems are usually implemented, the following sections will present more
unusual interfaces for recommender systems, starting with the history
and theory of chatbots, followed by speech recognition based assistance
systems.

2.3. Chatbot

2.3.1. Introduction

The Oxford Dictionaries16 defines “chatbot” as “a computer program de-
signed to simulate conversation with human users, especially over the Inter-
net” [30]. There the origin of this term is dated in the 1990s — however in
1994 Michael Mauldin introduced the term “ChatterBot” for an autonomous
player in the multi-user dungeon computer game “TinyMud” [66]. This
player is based on ELIZA which is described in Subsection 2.3.2

Being able to talk with machines has been an urge for much longer. In
1950 Alan Turing introduced the Turing test (called the “imitation game”),
where an interrogator has to decide the gender of two players A and B by

16https://oxforddictionaries.com

15

https://oxforddictionaries.com

2. Background

evaluating their responses to the interrogator’s questions. Player A has the
task to cause the interrogator to falsely identify the players, whereas player
B tries to help finding the solution. The main question of the imitation
game is the interrogator’s performance when player A gets exchanged
by a machine. Turing assumed that “in about fifty years’ time it will be
possible to program computers [. . .] to make them play the imitation game
so well that an average interrogator will not have more than 70 per cent
chance of making the right identification after five minutes of questioning.”
Further “[. . .] the problem is mainly one of programming”. Today’s general
interpretation of the Turing test is that the interrogators simply determine if
the entity they communicate with is a human or a machine [75].

This chapter gives an overview of software programmed to pass the Turing
test. However it has to be mentioned that the test itself has been criticised a
lot, mainly because only functionality gets tested and not the presence of
intelligence (e.g., John Searle in [80]).

Since 1991 the Loebner Prize17 is one real-life application of the Turing test,
where the most human-like program gets awarded [48, 63]. This test also
recieves a lot of criticism, especially from Marvin Minsky, who stated that
the Loebner Prize is an “obnoxious and unproductive annual publicity
campaign” [65].

However, Turing more or less laid the foundation for natural language
processing (NLP) and artificial intelligence (AI) in general. As NLP consists
of mainly two topics: generating and understanding human language, it is
the basis for every chatbot. Here mainly the ways a chatbot understands
language are discussed, beginning with pattern matching in Subsection 2.3.2
up to more advanced techniques coming from the field of machine learning
in Subsection 2.3.6.

This chapter describes the historical background and theory of open domain
chatbots that can talk more or less freely, opposed to the chatbot imple-
mentation of this master’s thesis in Section 3.4, which restricts itself to a
conversation that leads to movie recommendations. However it should be
clear that the theory behind those are the same, as the difference is for closed
domain chatbots the possible restricted in- and output to a certain topic.

17http://www.aisb.org.uk/events/loebner-prize

16

http://www.aisb.org.uk/events/loebner-prize

2.3. Chatbot

Additionally it should be mentioned, that the described chatbots mainly
communicate in a written form, an extension of chatbots that understands
spoken words is discussed in Section 2.4.

2.3.2. Classical Chatbots

ELIZA

In 1966 Joseph Weizenbaum programmed ELIZA, the first program that was
able to keep a conversation in natural language [99] and was therefore the
first to target the Turing test. ELIZA was implemented to mimic dialogues
with a psychotherapist. This approach was chosen to be able to rephrase any
input and hide that the program itself has no real intelligence. So ELIZA
would respond to the statement “I went for a long boat ride.” with “Tell me
about boats.”, and—as Weizenbaum states—the user would assume that a
psychotherapist uses this mechanism to direct the following conversation in
a certain direction.

However, ELIZA was said to have passed the Turing test by some people
because they really believed that the answers given by ELIZA were human
made. As an example a group of psychiatrists saw the program to be the
beginning of an automatic form of psychotherapy [98]. An example of a
simple conversation with ELIZA is given in Figure 2.3.

Although ELIZA was originally written in the programming language
MAD-SLIP [99], an online reimplementation can be found at [34].

PARRY

In 1972 Kenneth Colby reimplemented the ideas of ELIZA and published
PARRY, who imitated a person with paranoid schizophrenia [26]. It was
considered to be a step forward in regards of ELIZA simply because the
chatbot itself seemed to have personality, and could not only rephrase the
input sentences, but also changing into new topics, telling small stories and
admitting something not to know [66]. It was rather successful as 23 out of
25 psychiatrists considered the bot at that time to be “paranoid” and only

17

2. Background

U: Hi, how are you?

E: How do you do? What brings you to see me?

U: My master thesis

E: Why do you say your master thesis?

U: Because I write about chatbots

E: Is it because you write about chatbots that you came to me?

U: yes!

E: I see... Well, what makes you believe this is so?

Figure 2.3.: Conversation of a user (U) with ELIZA (E) (2018-08-17)

two to be “brain-damaged” as they thought that the used language was too
simple-minded [26].

A conversation between PARRY and ELIZA can be found at [33].

Pattern Matching

The main technique used for these classic chatbots—which is still popular
today—is called pattern matching. Here mainly the input is searched for a
keyword (or a sequence of keywords). If such a keyword has been found the
corresponding pattern keeps a rule to construct an answer. An example for
pattern matching is given by a user saying to ELIZA “It seems you hate me”.
Assuming ELIZA has a pattern (0 YOU 0 ME) this input would be matched,
as a the number zero is a place holder for an arbitrary amount of words,
for example here between the words YOU and ME and at the beginning. A
number greater than zero is a placeholder for a fixed amount of words.

Therefore the input will be split into various parts:

(1) It seems that (2) you (3) hate (4) me

Assuming the corresponding rule for this pattern is (WHAT MAKES YOU THINK

I 3 YOU), the answer ELIZA gives will be WHAT MAKES YOU THINK I HATE

YOU, because the 3 is a placeholder for the third component of the split
input.

18

2.3. Chatbot

In a case where it is possible that multiple pattern match the input it has to
be decided which pattern to choose: Any input is parsed from left to right
and if a word matches a keyword only those patterns having that keyword
(at that position) are taken into consideration [99]. This procedure is not only
called pattern matching but can also be described by “stimulus-response”
where the pattern represents a stimulus and the corresponding rule as the
response and little to no memory of the previous communication [43].

2.3.3. AIML based chatbots

A.L.I.C.E.

Inspired by ELIZA, Richard Wallace released the chatbot A.L.I.C.E.18 [97,
46, 96]. A.L.I.C.E. still followed the pattern matching approach, however the
patterns and transformation rules were implemented by using AIML19, a
XML dialect that was specified by Richard Wallace in 2001 as well.

AIML was intended to be simple and that—if many people write bots with
it—these files might get merged to a single so-called “Superbot [4]. An
advantage of using AIML is the use of recursive matching with the <srai>

element and the use of more specialized wildcards instead of ELIZA’s
numerical placeholders [97]. A detailed insight into AIML is given in [96]
the specification of the current version 2 can be found in [7].

A.L.I.C.E. can be described by the terms “case-based reasoning” or “nearest
neighbour classification”: it generates answers by storing the predefined
AIML patterns in a tree and tries to match those with the given input with
respect to a given category. Richard Wallace states that A.L.I.C.E. is as simple
as ELIZA [4]. However, other than ELIZA, A.L.I.C.E. can recall the last input
with the AIML element <that>.

Another advantage of A.L.I.C.E. is, that—with the help of the web—10,000

most likely questions were collected, where A.L.I.C.E.’s replies were targeted
at.

18Artificial Linguistic Internet Computer Entity
19Artificial Intelligence Markup Language

19

2. Background

The chatbot A.L.I.C.E. itself is not directly accessible any more, however it
can be used as a library, together with AIML and the successor Mitsuku20

on Pandorabots21 [74].

Mitsuku

Mitsuku is based—like A.L.I.C.E.—on AIML and was written by Steve
Worswick in 2012. In contrast to A.L.I.C.E., Mitsuku can reason within
specific objects. For example a “tree” can have many properties like “colour:
green and brown”, or “has: leaves, branches”. So if one asks if a tree can be
eaten, Mitsuku evaluates the values of “made from” which has the value
“wood”, and as “wood” has the property saved that it is not eat able, the bot
answers exactly this [54].

An example of a conversation with Mitsuku can be found in Figure 2.4.

Both, A.L.I.C.E. and Mitsuku won the Loebner Prize three times (2000, 2001,
2004 and 2013, 2016, 2017 [48, 63]).

A similar approach, separating patterns and rules within an own language
has been done by Bruce Wilcox with “ChatScript”22, the basis for his chatbots
Suzette, Rosette and Rose who won the Loebner Prize four times as well (2010,
2011, 2014 and 2015 [48, 63]).

2.3.4. Jabberwacky/Cleverbot

In 1997 Jabberwacky23, a chatbot implemented by Rollo Carpenter was pub-
lished on the web [5]. In 2006 Jabberwacky was renamed to Cleverbot24 [24].

Cleverbot generates replies to any input solely by using contextual pattern
matching, therefore every unknown sentence is stored in a database, The
next time Cleverbot uses this unknown sentence the user’s answer is stored

20https://mitsuku
21https://pandorabots.com
22https://github.com/bwilcox-1234/ChatScript
23http://www.jabberwacky.com
24https://cleverbot.com

20

https://mitsuku
https://pandorabots.com
https://github.com/bwilcox-1234/ChatScript
http://www.jabberwacky.com
https://cleverbot.com

2.3. Chatbot

Figure 2.4.: Chat example Mitsuku (2018-08-17)

21

2. Background

as a possible one. This procedure has one big advantage as there are no
hard rules to be implemented, and the bot is even able to “learn” foreign
languages [22, 56, 24].

Existor25, the company that built Cleverbot gives an example for this proce-
dure in [24], beginning with an empty database: The first thing a user will
input, will be a simple “Hello”. However as Cleverbot does not know this
input yet, it is stored in the database. Next, as the chatbot wants to reply,
there is only one dataset available, so the answer will be “Hello” as well.
Here the user might go on with “how are you?” where Cleverbot learns, that
this is a good thing to reply on the initial greeting “Hello” and stores this in
the database. In theory, such a bot could store every possible conversation
(if storage is infinitely large, and runtime isn’t a problem either).

Nevertheless, the quality depends heavily on the available data, for Clever-
bot 4-7 million interactions happen per day. To generate a response, 279

million interactions are needed, what they achieve by using large hardware
and many optimizations [24].

Even Jabberwacky, which had significantly smaller data available, was able
to learn foreign languages although it is not considered to have passed the
Turing test, as the responses were often unexpected or senseless.

Jabberwacky won the Loebner Prize twice (2005, 2006 [48]), an example of a
conversation with Cleverbot can be found in Figure 2.5.

2.3.5. Chatbots as a Service

With the growth of the Internet, more complex applications moved from
installations on local computers to centralized software that gets used and
distributed by the Internet. A famous example for this principle, called
“Software as a Service” (SaaS), is Microsoft’s Office 36526, where applica-
tions like Word27 or Excel28 are available online via a monthly paid cloud
solution [101].

25https://existor.com
26https://office.com
27https://products.office.com/en/word
28https://products.office.com/en/excel

22

https://existor.com
https://office.com
https://products.office.com/en/word
https://products.office.com/en/excel

2.3. Chatbot

Figure 2.5.: Chat example between Cleverbot (in blue) and a user (black) (2018-08-23)

23

2. Background

Chatbots are no exception of this trend, so nowadays there are many avail-
able online services where one can start to build a chatbot, and many of
those also support voice input, which will be subject of Section 2.4. A few
of those are:

Pandorabots has already been mentioned in Subsection 2.3.3. Offers mainly
AIML based chatbot support [74].

Watson29 IBM30 built a dedicated computer system (hard- and software!)
for artificial intelligence. While Watson (named after IBM’s founder
Thomas Watson) was not explicitly build for chatbots, one of the main
reasons for building it was to create a program that can compete with
humans in a real-time Jeopardy!31 quiz game. A requirement was that
the system does not use live web search results but stores everything
locally [39].
Watson’s architecture (called DeepQA) is based on “more than 100 dif-
ferent techniques for analyzing natural language, identifying sources,
finding and generating hypotheses, finding and scoring evidence and
merging and ranking hypotheses” [39]. So in general Watson interprets
the input, executes many parallel algorithms with various interpreta-
tions of that input. The results of this executions are than combined
and ranked into one final result [39].
The first public appearance was in 2011 (video in [59]), where Watson
won a three day Jeopardy! contest against two opponents.
At the end of 2013 IBM published an API that allowed developers
to use an even more generalized and extended version—not only re-
stricted to Jeopardy!—of Watson in their own application [51]. As the
primary task (generating answers to questions) is rather similar to the
principles of a chatbot, there is now the possibility to explicitly gen-
erate chatbots. They state to support speech-to-text, natural language
classifier amongst other techniques [28].
In 2016 Ashok Goel from Georgia Institute of Technology32 used IBM’s
Watson as a basis for the chatbot “Jill Watson” for one of his classes.
He did not tell the students that Jill Watson was a human but told

29https://www.ibm.com/watson/
30https://ibm.com
31https://www.jeopardy.com/
32https://gatech.edu

24

https://www.ibm.com/watson/
https://ibm.com
https://www.jeopardy.com/
https://gatech.edu

2.3. Chatbot

them she was hired as a teaching assistant who is going to answer the
students’ questions online. However the chatbot was only allowed to
answer a question if the system was 97% sure how to answer it. The
students did not recognize that Jill Watson was a computer until it
was revealed at the final exam [100].

api.ai / Dialogflow33 api.ai was acquired by Google at the end of 2016 [11]
and later renamed to Dialogflow [55]. It runs on Google Cloud34 and in-
cludes speech recognition, text-to-speech, and offers various languages
and machine learning techniques to improve the natural language un-
derstanding of the system [31]. As the basis of the system relies on
pattern matching, without machine learning they state that only exact
matches for the rules are matched. Additionally to the training data
they already include, one can include own training data for the algo-
rithm as well [32]. However Google does not reveal what algorithm or
combination of algorithms they use.

The advantage of using those services are mainly due to the simplicity of
the offered SDK or API and that they often include multiple languages, big
databases and more advanced techniques in the field of machine learning or
neural networks. However those techniques use more computation power
when the chatbot has to create a response so those services often force the
user to the cloud environment of the service provider, which is on one hand
an advantage as no separate server has to be acquired, but on the other
hand also a disadvantage when thinking of privacy, because communication
might include private details like religious beliefs or sexual preferences.

2.3.6. Advanced Techniques

Nowadays chatbots do not consist of only one algorithm but a whole set
of algorithms. However most of the new generation chatbot plattforms are
closed source so little detail is known what techniques are used or how they
are connected to each other. A popular choice is to include additional web
search capabilities or databases with huge amount of data to extend the

33https://dialogflow.com
34https://cloud.google.com

25

https://dialogflow.com
https://cloud.google.com

2. Background

HiddenInput Output

Figure 2.6.: Simple example of a neural network

knowledge base of a chatbot. Like IBM’s Watson which uses “ a wide range
of encyclopedias, dictionaries, thesauri, news articles, literary works” [39].

However, the used algorithms can be any thinkable ones from the field of
artificial intelligence, expert systems, machine learning, data mining. This
section discusses neural networks as representation of one of those.

Neural Networks

Neural networks are constructed by imitating how the human brain works.
They consist of three layers of tiny computational units—called neurons:
first the input layer that gets input from outside into the neural network, an
output layer that returns the computed values and a finally a layer consisting
of a set of hidden neurons who are only used within this network. Each
of the used neurons itself has at least in- and output connections and an
activation function that determines the output based on the input. Those
neurons are highly connected and although each one of them executes
only a simple task, due to their connectivity complex calculations can be
executed [60]. Figure 2.6 gives a simple visual representation of a neural
network, with the input neurons with red stripes, the output neurons with
blue dots, and the hidden layers in gray.

Oriol Vinyals and Queoc V.Le (both from Google) describe how to bulild
a chatbot with the help of neural networks [95]. They let a neural network
map a sequence of words to another sequence and by this they are creating
a conversation. In one scenario they used a database with existing chat

26

2.4. Speech Recognition based Assistance Systems

sessions from an IT help desk, for another scenario movie subtitles. An
excerpt of such conversations can be found in Figure 2.7

Another example for the neural networks in chatbots is the parent company
of Cleverbot, Existor. They describe their experience building such a chatbot
in a post on their company’s blog [25], describing a neural network trained
with data from previous conversations with Cleverbot. They are optimistic
to use neural networks for future implementations. An example of such
conversation is shown in Figure 2.8.

2.4. Speech Recognition based Assistance
Systems

Virtual assistance systems can be seen to be similar to chatbots: they have
to be able to hold conversations but mainly to fulfil a certain task. A very
famous example for a virtual assistance system is HAL 9000 from Stanley
Kubrick’s science fiction movie “2001: A Space Odyssey” from 1968

35.
Although only represented by a red dot, the computer system HAL is
capable of speaking, playing chess and understanding humans. Within the
movie HAL is mainly used for steering and maintaining the ship, and also
for recreational purposes.

When Apple released Siri in 2010 those science fiction story seemed to have
become reality, as it was one of the first (speech based) virtual assistance
systems that was available to a broader mass of people.

The challenges of virtual assistance systems and chatbots are nearly the
same, the only big difference lies in the voice based input. Subsection 2.4.1
describes how a computer can translate spoken words to a written form.
That written form can than be passed on to a chatbot engine as described
in Section 2.3. A virtual assistance system normally has to fulfil a certain
task, for example to give information about the weather or to create an entry
in the user’s calendar, therefore the chatbot engine can be considered as

35https://www.imdb.com/title/tt0062622/

27

https://www.imdb.com/title/tt0062622/

2. Background

Machine: hi

Human: hi

Machine: could you please let me know what is

the operating system you are using ?

Human: linux

Machine: ok this is the issue with the system performance , nasser , tools .

Human: what is that?

Machine: is it a windows machine?

Machine: we have linux on your machine.

Machine: is it windows xp or windows 7?

Human: i am using linux

[...]

Human: can a cat fly?

Machine: no.

Human: how many legs does a cat have?

Machine: four, i think.

Human: how many legs does a spider have?

Machine: three, i think.

[...]

Human: how much is two plus two?

Machine: four.

Human: how much is ten minus two?

Machine: seventy-two.

Figure 2.7.: Examples of conversations between a human and a machine with a neural
network based chatbot [95]

User: how are you today?

RNN: good.

User: does life have meaning to you?

RNN: sometimes.

User: give me an example.

RNN: example of what?

User: of life the universe or anything.

RNN: me.

Figure 2.8.: Example conversation of a neural network based cleverbot [25]

28

2.4. Speech Recognition based Assistance Systems

closed-domain because free communication is not possible with most of
those systems.

In comparison to chatbots virtual assistants are often controlled by voice
input and they can speak by themselves as well. Usually a simple web
search is executed to answer specific questions. Many virtual assistance
systems come with own devices or are designed specifically for a device
and some offeran API to extend the functionality or an SDK for portability
to other devices. Examples for such systems are:

Siri36 Apple was the first one to release a virtual assistant system for the
broader audience in 2011 together with the iPhone 4s [90].
The process of developing Siri was initiated by DARPA37, an American
governmental agency to research new technology for the US military
and it was developed by SRI International38 as the largest AI project
at that time. A spin-off startup for that technology was acquired by
Apple in 2010 [90, 81].
With SiriKit39 Apple released an API for developers to extend Siri with
individual features.
Meanwhile Apple has released an designated virtual assistance device,
named HomePod40 in 2018 [12].

Alexa41 Alexa is a virtual assistant explicitly developed for Amazon’s Echo
and Echo Dot devices and was released in 2014 [9]. Additionally to
the chatting functionality Alexa can be used to listen to music, or shop
on Amazon or for home automation systems, as due to its popularity
many manufacturers are supported [8, 103].
There is an API (Skills Kit) available to extend Alexa’s features [19].

Cortana42 Cortana has been released by Microsoft in 2014 for their phone
and desktop operating systems [38].
It has been criticized that Cortana uses Microsoft’s search engine,

36https://https://www.apple.com/ios/siri/
37Defense Advanced Research Projects Agency https://darpa.mil
38https://sri.com
39https://developer.apple.com/sirikit/
40https://www.apple.com/homepod/
41https://developer.amazon.com/alexa
42https://www.microsoft.com/en-us/cortana/

29

https://https://www.apple.com/ios/siri/
https://darpa.mil
https://sri.com
https://developer.apple.com/sirikit/
https://www.apple.com/homepod/
https://developer.amazon.com/alexa
https://www.microsoft.com/en-us/cortana/

2. Background

Bing43 and forces links to be opened with Edge44, Microsoft’s web
browser [69].
To learn a user’s behaviour, Cortana stores personal information in a
“Notebook” file, where users have control of [70].
Developers can extend Cortana by building own skills for it [27], and
with the help of a SDK it can be integrated to other devices or systems
as well [53].

Google Assistant45 Google released Google Assistant in May 2016 as part
of Google Home46, their own smart speaker system. It can be seen as
a successor of Google Now47, which was able to extend a user’s web
search with more information, while Google Assistant is said to be
able to converse with a user. It can be used either via written text input
or spoken words, Google Search48 is used as a search engine [45].
Google Assistant can be extended by using Actions on Google [6].

While the basic functionality of the underlying technology is the same for
virtual assistance systems as for chatbots as they are often both based on
pattern matching that might get combined with machine learning techniques
as described in Section 2.3. The main difference is, however, that virtual
assistance systems fit seamlessly into human’s daily life, especially as they
are controllable by voice. This opens a privacy question because speech
based virtual assistants have to listen to their surroundings all the time. This
has been proven to be a problem in some instances, for example when a
privately held conversation was recorded by Amazon’s Alexa and sent to
another user.[10].

Letting a technical device speak is a rather simple task, the spoken text gets
divided into small chunks and for every chunk a certain audio file gets
played. For example, Susan Bennet, the voice of Siri, describes this process
from a speaker’s point of view in an article on cnn.com [1].

43https://bing.com
44https://www.microsoft.com/en-us/windows/microsoft-edge
45https://assistant.google.com/
46https://store.google.com/product/google_home
47https://google.com/search/about/
48https://google.com

30

https://bing.com
https://www.microsoft.com/en-us/windows/microsoft-edge
https://assistant.google.com/
https://store.google.com/product/google_home
https://google.com/search/about/
https://google.com

2.4. Speech Recognition based Assistance Systems

a

b

c

0.6

0.4

0.3

0.5

0.1

0.2

0.5
0.4

Figure 2.9.: Simple example of a Markov Model

From a technical point of view the more interesting point is how a computer
understands voice.

2.4.1. Understanding Voice

This section is based on two different paper on hidden markov models in
speech recognition ([41], [76]).

A Markov Model describes a (memory-less) stochastic process in which
every possible state depends only on the present state and not on any other
in past or future as Equation 2.8 shows.

P(Xn+1 = x|Xn = xn, . . . , X1 = x1) = P(Xn+1 = x|Xn = xn) (2.8)

Here X1, . . . , Xn−1 describe random variables of states that have occurred in
the past, Xn the random variable of the present and Xn+1 of the future.

It can be drawn as a graph with the vertices representing the states and the
edges the transition probabilities between those. The sum of the probabilities
of the outgoing edges of one vertex has to be 1. Figure 2.9 is an example for
the graphical representation of a simple Markov Model.

To transform voice to text an extension of this model, called Hidden Markov
Models (HMM), is often used. The stochastic process in this model hidden

31

2. Background

and therefore not observable. However the (hidden) state values can be
guessed by evaluating other observations. For example, having two unfair
coins with uneven probability distribution for the outcome of a coin toss,
such a observation could be the result of a coin toss. The hidden states are
the information what coin was used for the flip. By evaluating the results it
may be possible to estimate which one of the coins was used.

First the audio wave gets split into many tiny fractions and combined into
vectors. Those vectors are the observations used in the Hidden Markov
Model which should find a sequence of words that corresponds to this
vectors, as Equation 2.9 states

ŵ = arg max{P(w|Y)} (2.9)

Here P(w|Y) is the probability that the sequence of words w has been used
to generate the observation vector Y (the audio sequence). Using the Bayes
rule this can be converted to:

ŵ = arg max
{

P(Y|w)P(w)

P(Y)

}
(2.10)

Now an acoustic model which consists of various sub-samples (phones)49 is
used to evaluate the likelihood P(Y|w). Every phone is a HMM where this
likelihood is generated and the parameters for this HMM are generated by
using training data of existing sets of voice and text inputs. The maximum
likelihood is then evaluated to generate a text unit representation of the
phones by using constraints of words based on words from a dictionary. If
necessary a syntactic analysis is performed to generate meaningful sentences
as well.

2.4.2. The Big Picture

In the last two sections chatbots and virtual assistance and the underlying
algorithms were discussed. It is obvious that those two concepts related to
each other as a virtual assistance can on one hand be seen as an extension of
chatbots, as speech recognition and generation and interactive web search

49The English language consists of 40 phones

32

2.4. Speech Recognition based Assistance Systems

are a core part of it, and on the other hand has cutbacks, as chatbots are
designed to communicate freely and virtual assistance systems should only
fulfill a certain task.

The next chapter (Chapter 3) describes how to implement such a chatbot
and how to add an Alexa Skill. It starts with the description of the imple-
mentation of a webform, as that will be the basis for comparing the user’s
behaviour of those interfaces in Chapter 4.

33

3. Implementation

This chapter describes the implementation of the webform, the chatbot, an
Alexa Skill and an API for this thesis. The main focus of this work is to
compare various interfaces for a given movie recommender framework and
therefore three different concepts are implemented: The implementation
of the webform is described in Section 3.1, of the interactive chatbot in
Section 3.4 and of the Amazon Alexa Skill in Section 3.5.

These interfaces are evaluated and compared in Chapter 4. The fourth part
that is implemented is an API, described in Section 3.2. It handles all the
incoming requests from those interfaces and connects them to a database
(Section 3.3). An outline of the general architecture and how the various
parts are connected is given in Figure 3.1.

The recommender framework itself is part of a project at the Institute of
Interactive Systems and Data Science (ISDS), at Graz University of Tech-
nology The API implemented for this thesis converts the user’s input into
a format that the recommender framework can handle. This format has
already been developed at the ISDS and is described in Subsection 3.2.2. Any
data that can be searched or recommended by using one of the interfaces
has been scraped from the IMDb1 by another project for the recommender

Webform

Chatbot

Alexa

...

API DB Recommender Framework

Figure 3.1.: Simplified Architecture

1https://imdb.com

35

https://imdb.com

3. Implementation

framework.

The following sections are discussing the details and techniques used for
each of the implemented units, beginning by the webform Section 3.1, fol-
lowed by the description of the API in Section 3.2 and with the database
in Section 3.3. Finally, the implementation of the chatbot (Section 3.4) and
a Skill for the virtual assistant system Amazon Alexa (Section 3.5) is de-
scribed.

3.1. Webform

A classic way to exchange information between server and user on the Web
is by using a webform. Many web pages have a contact form, where one
can input a message that should be sent to the web page owner. However
webforms are also used for more interactive user experiences like login
forms or shopping carts. Nowadays, as web pages are built with more
interactivity in mind, this approach gets replaced by full web applications
with additional possibilities for the user [71].

The webform for this thesis is built with such a new approach in mind.
Therefore, implementation is done by using Facebook’s JavaScript frame-
work React2 combined with the library Redux3 to make manipulating and
replaying application states easier. To get any data (e.g., movies, actors,from
the server the implemented API is requested via the JavaScript fetch API4

which is used in a Redux middleware (described in Subsection 3.1.2) to
send AJAX calls. The detailed routes to the API are described in Section 3.2.
Any AJAX call in this section will be shortened for simplicity to the path of
the URI, so http://api.recsys.cpaier.com/v1/genres will be referred as
/genres.

2https://github.com/facebook/react
3https.//github.com/reactjs/redux
4https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

36

http://api.recsys.cpaier.com/v1/genres
https://github.com/facebook/react
https.//github.com/reactjs/redux
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

3.1. Webform

Figure 3.2.: Webform with the default layout of three columns

3.1.1. UI

The visualization of the webform, see Figure 3.2, is organized in three
columns, each one with a separate purpose in mind:

• the first third of the screen is used for searching the database
• the second one represents the selected items
• the last one represents the results of the recommendation

When a user accesses the web page a basic set of the most important movies
are already displayed on the first section while the other two are empty.

At the very top of the first section a search bar is given. When entering
anything an AJAX call is executed that fetches any movie, person or genre
from /items that fits the input, and updates the displayed item list in the
search section. Items are color coded throughout the complete application,
therefore genres are displayed with yellow labels, movies are shown in blue,
persons in red, keywords in white, and years in blue.

Below the search box there are four buttons (i.e., “Genre”, “Movie”, “Actor”
and “Keyword”,) to filter the search results accordingly. Additionally, an
item might have one or two buttons: “right arrow”, that selects an item and
moves it into the selected items list (second column of the web page), and a
button, with the IMDb logo on it, that appears only for movies. It provides
a link to the IMDb entry of the movie.

37

3. Implementation

Figure 3.3.: Webform with selected items

At the bottom of the page there is the possibility to navigate through the
additional search results. At most there are only twenty search results
displayed at once.

The webform after selecting some items is shown in Figure 3.3.

Each item on the item list can be removed by clicking on the remove icon
that is displayed at the end of every item. Additionally, it is possible to set a
desired or undesired property which will refine the results the recommender
returns on an item basis. Any item with the “minus” sign is undesired by
the user and any item with a “plus” sign is desired. In Figure 3.3, the second
movie “The Dark Knight Rises” is undesired by the user. Per default any
selected item will be seen as a desired one.

Furthermore the second column has buttons to help selecting genres or
a year. When moving the mouse over those buttons a popup opens with
either a toggle button for each genre, or a range selector to select the range
of years the recommended movies were produced. The genres displayed
here are fetched from /genres on the first load of the application.

To start the recommendation process the user first has to select a few items,
then an additional (green) “Recommend” button is displayed on the top of
the second column.

When clicking on the button an AJAX call to /rec/add is sent to the server
to store all the selected items in the database. Then a unique id refer-
ring to exactly this set of selected items is generated and returned. This
unique id is sent back to the React application which relocates to a URL
referencing this recommendation session. An example for such an URL

38

3.1. Webform

Figure 3.4.: Webform with recommended items

is https://recsys.cpaier.com/a4beb63a-2f67-4187-a148-e1f3d0c5a4c6,
with a4beb63a-2f67-4187-a148-e1f3d0c5a4c6 as the unique id. When a
user revisits such a page the occurrence of such an id enforces that the set
of selected items and recommendation results are automatically fetched
from the server if available.

To get recommendation results from the server, the webform tries to poll
these from the recommender framework every few seconds (/rec) until a
valid result is returned. The interval for this polling has to be set to a low
value, as a user needs to be informed of the results as soon as possible, but
cannot be too low as many AJAX requests will slow down both the user’s
browser and the server. While waiting for results, any interaction with the
selected items and the “Recommend” button are blocked until the results
are available.

Just like for the search section, a pagination that enables navigating through
all those items that cannot be displayed is provided for the selected items
column.

Figure 3.4 shows the webform when the results of the recommendation
process are available with the possibility to up- or downvote every rec-
ommended movie, where AJAX calls are sent to /vote/store/up and
/vote/store/down. When displaying the results the votes for each movie are
fetched by calling /vote/get and the corresponding icon is highlighted.

Finally, the recommended movies provide an IMDb link to get more infor-
mation about them. This URL is wrapped by another URL for improving

39

https://recsys.cpaier.com/a4beb63a-2f67-4187-a148-e1f3d0c5a4c6

3. Implementation

the results of the recommender, logging what results attracted the user’s
attention.

To have a complete picture of how a user interacts with the webform
every session is recorded. Therefore, a new internal unique session id is
generated from the server and fetched by the webform sending a request
to /log/add. While using the webform every state change (including every
action, see Subsection 3.1.2 for a detailed description of React actions and
states) gets recorded and stored on the server by sending an AJAX call to
/log/save. As changes might occur very often and too many of those calls
might significantly slow down the user’s computer they, are collected before
sending them combined with the maximum of every two seconds.

When visiting the /log path of the webform a popup opens with the
possibility to select a previous recorded session id. After selecting one of
those sessions additional controls to replay the recommendation process
are shown (see Figure 3.5). The control popup consists of the previously
mentioned select box for the session ids and a timeline for a selected session.
One can step through the individual state changes with a “next” and
“previous” button. Additionally there is a “play” button to automatically
walk through the session. The timeline itself shows the position of the
current state in respect to every recorded item and can be used to directly
address a specific state. Every change of the state in the control popup is
directly reflected by the web interface. Above the timeline the timestamp of
the currently visible step is show. Below, the completely stored state change
is displayed for further inspection.

3.1.2. React and Redux

React is one of three popular choices5 nowadays to create large scaled web
applications and is used by big companies like Spotify or Amazon since it
was established by Facebook in 2005 [3].

React components are written in JavaScript together with JSX6, which is a
XML-like syntax, to reference a component. A React application consists of

5others being angular js (https://angularjs.org/) and vue.js (https://vuejs.org)
6JavaScript Syntax eXtension

40

https://angularjs.org/
https://vuejs.org

3.1. Webform

Figure 3.5.: Logging control

various components which all have their own set of immutable properties
(called props) and states. Figure 3.6 is a minimal example that shows a
button component with the button text as property and a counter that
counts all clicks on this button as a state. There are three methods within
this component:

• constructor: creating the component itself and setting an initial state
• render: returns the JSX that should be rendered
• handleClick: called by the button’s onClick event

For handleClick, the arrow function syntax, for example ()=>{....}, is
used so that it gets automatically bound to the correct this value, which
then references the current class as one would expect. onClick itself just sets
a new state by using the setState method. Arrow functions are described
by Mozilla in [35] in more detail.

Finally, such a component can be used by importing the button component
import Button from "./Button" and using the JSX
<Button text="mytext" /> somewhere in the other components render-

41

3. Implementation

class Button extends React Component {

constructor(props) {

super(props)

this.state = {

clicked: 0

}

}

onClick = () => {

this.setState(prevState => ({

clicked: prevState.clicked + 1

}))

}

render () {

return (

<div >

<button onClick ={this.onClick} text={this.

props.text} />

</div >

)

}

}

Figure 3.6.: React button component

ing function. So it can be seen that properties are passed from outside a
component and state is used to handle the component’s state.

Handling of all states within an application gets more complicated for
bigger projects. Therefore Redux is often used to separate these states from
the components and centralizes the access to it. Therefore, it gives the way
information flows in the app a fixed structure. Figure 3.7 shows the base
structure of a Redux app: the store keeps an (initial) state that is passed
to the components and influences their rendering. A component can then
call an action, for example, after handling an “onClick” event like in the

42

3.1. Webform

Store

Component

Reducer

Action

Figure 3.7.: Redux Structure

export const count = (data) => ({

type: "COUNT",

data

})

Figure 3.8.: Redux action example

minimum example Figure 3.6.

The called action gets dispatched and sent to the reducer which updates
the state within the store. An action consists of a type and often additional
data like in example Figure 3.8. An action count is given that uses the type
COUNT and takes a parameter data. It can be called from a component by
using dispatch(setLoading). The function dispatch is a special function
passed as property. An example reducer is shown in Figure 3.9. If an action
with the action type COUNT was dispatched, a new state is returned with a
different data field.

Now it has to be shown how a new state gets passed into a component.
Therefore the Redux function connect is used to connect a component with
the mapStateToProps function which sets a props field for a wanted state
field, as shown in Figure 3.10

Since a browser needs some form of HTML page to render anything the
React application has to be combined with HTML code. It needs a basic
index.html providing some meta data with an empty <div id="root"></div>

and a script tag to include the React app. For creating this base structure
including a tool-chain to merge and minify all the JavaScript one can (and

43

3. Implementation

const myReducer = (state = [], action) => {

switch (action.type) {

case "COUNT":

return {

...state ,

data: action.data ,

}

default:

return state

}

}

Figure 3.9.: Redux reducer example

// [.. Button Component ..]

const mapStateToProps = (state) => ({

data: state.data ,

})

export default connect(

mapStateToProps ,

)(Button)

Figure 3.10.: Redux pass data to component example

should) use create-react-app7. It provides, among other things, those basic
files and the commands yarn start to run the application in development
mode, and yarn build to compile, minimize, and optimize the application
in production mode8.

7https://github.com/facebook/create-react-app
8More information on Yarn at https://yarnpkg.com

44

https://github.com/facebook/create-react-app
https://yarnpkg.com

3.1. Webform

build

package.json

public

src

actions

components

styles

constants

containers

styles

index.js

middleware

reducers

store

styles

Figure 3.11.: Webform directory structure

3.1.3. Application Code Structure

The basic directory structure for the webform was created by the previously
mentioned create-react-app with a modified src/ directory, shown in
Figure 3.11. The main script is package.json, which is the main file that
yarn needs, to know all the dependencies for the application and various
commands that shall be provided. yarn build writes the output into the
build directory and the basic HTML file and some publicly accessible files
are located in the public folder.

The src directory is the most important one as it holds all the application
specific source code. It contains the folders action, reducers, and store to
separate the individual parts for Redux. The components are split into two
different folders: (i) components which contains React components without
access to the application state like simple buttons, headlines, and (ii) the
folder containers with components having access to the application state.
Both folders have a subfolder styles for individual component CSS files.
Such a directory is also present in the src directory itself. In constants

45

3. Implementation

every constant such as the server URL for the AJAX calls but also the
action ids, are stored, and the files in middleware are used for background
activities, such as handling the AJAX requests to and from the server, and
recording and replaying the recorded user log session.

The index.js file is the entry point for the application. It configures a
new store by using store/configureStore.js and starts the playback
mechanism (by using startListeningForPlayback(store) from the file
middleware/playback.js), and connects the HTML div element with the id
root with the applications Root component. This component uses react-

router-dom 9 to switch between the main application in the App component
and the Log component which is displayed when accessing the previously
described logging interface (Subsection 3.1.1). Therefore, the Log compo-
nent is just a wrapper of the App component and adds the popup and the
complete playback logic and mechanism.

The App component itself builds the main structure as it includes the
SearchPanel, SelectedPanel, RecommendationPanel components which are
themselves responsible for one of the three sections of the interface. Ad-
ditionally, all the error or warning messages are generated in this compo-
nent.

In the componentWillMount method of the App component the session id is
set. Therefore, dispatch(getSessionId()) is called, which calls the corre-
sponding getSessionId action from one of the files of the actions directory.
This specific action checks if there is already a session id stored in the local

storage10. If not, a new one is fetched by the server. For fetching such a
new session id the fetchSessionId function from the middleware/api file
is used. Finally, as described in Subsection 3.1.2, for both actions a simple
action object is dispatched to the reducer which returns a new state.

Here, the action consists of only the SESSION ID constant from the constants
file as type and the session id, and the reducer therefore solely sets this
session id. This state gets inserted as a new prop into one of the components
in the container folder. In the case that the sessionid is not present, a default

9https://reacttraining.com/react-router/web/guides/philosophy
10https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API

46

https://reacttraining.com/react-router/web/guides/philosophy
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API

3.2. API

value is used by the defaultProps function which sets each inserted prop
to the corresponding default value from reducers/defaults.js.

The same procedure is executed for each property of the components in
the container folder. For example, when fetching the search results for a
specific input the items property of the SearchPanel component fetches
its data like this. In the component itself the items property is used in the
rendering method as it gets passed to the ItemList component, which itself
loops through the fetched items list and creates an Item component for each
of the list entries. The Item component is responsible to properly display
the data as shown in Subsection 3.1.1. Both the Item and the ItemList

component are in the components folder because they do not need direct
access to the application state. All the data are solely passed as props.

3.2. API

The API is written in Python 2.711 and uses the Flask12 framework which
is a microframework that can easily be extended but has a robust core
that includes basic functionality for web applications [47]. Additionally
mysqlclient13 is used to access the database.

The directory structure of the API is shown in Figure 3.12. The main appli-
cation is located in the recsys folder with the files init .py, apiv1.py
building the core of the API. These files initialize Flask and provide a
function for every incoming HTTP route. dbase.py provides access to the
database via predefined functions. The file core.py only provides some
helping functions, and settings.py is used to store certain constant val-
ues.

alexa.py is needed by Amazon Echo which is described in Section 3.5. The
files bot.py and the subdirectory brain in the recsys directory are used
for the chatbot, as well as daemon.sh and recsys.service. See Section 3.4

11https://python.org
12https://flask.pocoo.org
13https://github.com/PyMySQL/mysqlclient-python

47

https://python.org
https://flask.pocoo.org
https://github.com/PyMySQL/mysqlclient-python

3. Implementation

daemon.sh

recsys

alexa.py

apiv1.py

bot.py

brain

...

core.py

dbase.py

__init__.py

settings.py

recsys.service

test

...

wsgi.py

Figure 3.12.: API directory

for more information about the chatbot and Subsection 3.2.5 for the de-
scription of the daemon for the chatbot interface where the daemon.sh and
recsys.service files are described.

On the same level as the recsys folder is the test folder which contains
unit tests. Currently they are only needed for evaluating the inputs of the
chatbot’s replies.

Furthermore there is the file wsgi.py which is needed as an entry point
for the web server. More information can be found in the description in
Subsection 3.2.4.

The Python setup is based on virtualenv14 to create an isolated environment
with a fixed setup of Python and Python libraries. Python’s corresponding
pip command15 is used for installing all the needed requirements which are
specified in the requirements.txt. Installation can be done by executing
pip install -r requirements.txt

14https://virtualenv.pypa.io
15https://pip.pypa.io

48

https://virtualenv.pypa.io
https://pip.pypa.io

3.2. API

def create_api ():

app = Flask(__name__)

app.errorhandler (404)(on_404)

app.register_blueprint(recsys.apiv1.bp ,

url_prefix=’/v1’)

return app

Figure 3.13.: Simplified initialization of a Flask App

3.2.1. API Code Structure

The first step when using a Flask application is initialization. A new Flask ob-
ject has to be created and error handler and blueprints have to be registered.
An example of a simplified version of this can be seen in Figure 3.13.

The error handlers are used to react to any invalid request that might
raise errors, or exceptions that might be caused by the application itself.
Blueprints are used to keep the application more structured by assigning a
URL prefix. For this implementation, every request with the URL having the
prefix /v1 gets redirected to the apiv1.py file, requests with the prefix /bot

to the bot.py file, and requests containing /alexa to the file alexa.py.

In addition to the simple initialization a function is registered that gets
executed for every incoming request. This function is solely used to create
the connection to the database. As this implementation uses two databases
(the need for this is described in Section 3.3), there are two connections
created and stored within the flask.g object, a global parameter that should
be used especially for such purposes. So g.data db holds the connection to
the IMDb database and g.api db to the applications database.

After this the HTTP CORS header are set. Those are described in Subsec-
tion 3.2.3.

Additionally two functions are prepared: bot and bot cron. They are an-
notated by @app.cli.command so they can solely be used via the Flask
command line interface. The bot function provides a possibility to interact

49

3. Implementation

[{

"id":23,

"type":"genre"

"name":"Action",

"title":"Action",

"link":"",

"rank":1000000 ,

},{

"id":3953016 ,

"type":"movie"

"name":"The Matrix (1999)",

"title":"The Matrix (1999)",

"link":"https :// imdb.com/title/tt0133093",

"rank":11100921 ,

}]

Figure 3.14.: ItemList JSON

with the chatbot interface over the command line. The bot cron is needed
for a cronjob (see Subsection 3.2.5 for more information).

For the HTTP interface the routes are implemented within the blueprint
files. Each possible request to the API expects data to be given either as
HTTP GET parameter or as a JSON16 formatted string as the body of a POST
request. The returned payload is a valid JSON string. Figure 3.14 shows a
formated JSON string of two items in a list, one genre and one movie. With
the fields id and type one can uniquely address any item that could be
returned. id is the primary key of the database entry and type one of movie,
genre, actor, year or keyword. The fields name, title, link are needed for
displaying purposes and rank is a numeric value defining how important an
item is. More important items get a higher rank value and should therefore
be displayed above items with a lower rank. The calculation of the rank is
discussed in Subsection 3.3.1

An example for the implementation of such a route is given in Figure 3.15.

16JavaScript Object Notation

50

3.2. API

@bp.route(’/genres ’, methods =["GET"])

def get_genres ():

args = handle_standard_args(request.args)

return jsonify(fetch_genres(args))

Figure 3.15.: Example of the implementation of a basic API route

def handle_standard_args(args):

return {

"filter": args.get("filter", None , type=str),

"offset": args.get("offset", 0, type=int),

"limit": args.get("limit", 0, type=int)

}

Figure 3.16.: Handling standard arguments

Here the parameters of an HTTP GET request, which was sent by a user
via one of the interfaces, are handled by the handle standard args function
which can be seen in Figure 3.16. It handles a standardized set of input
parameters and is used on multiple occasions. Then the set of request pa-
rameters are passed into a database function (here: fetch genres) which
executes a SQL17 query. The resulting data might then get handled accord-
ingly and returned to the routing function. This result is then translated
into the JSON format using the Flask function jsonify which already sets
the correct HTTP headers and returns the result to the user.

The following sections describe the various routes of the API within their
blueprint.

The /v1 Blueprint

In Figure 3.17 all the routes with the v1 prefix are listed together with
examples of the incoming and outgoing messages. The route / is used
for basic testing and returns the version number. A generic search that is

17Structured Query Language, a language to query databases

51

3. Implementation

Route HTTP
/ GET
/years GET
/genres GET
/items GET
/rec GET
/rec/add POST
/log GET
/log/add POST

Figure 3.17.: Base routes on the API

capable of returning every item type is given on the /items route, while
/genres, /movies or /actors are only returning items with the specific
type.

The route /rec/add is used to add a new set of selected items to the items
list and /rec is used to fetch a set of items and recommendation results.

The routes /log/add, /log/save, /log/fetch are needed for recording and
replaying the user sessions in the webform. With /log/add one creates a
new session, /log/save is used to add new recorded state changes, and
/log/fetch is used to fetch the log entries before replaying them. To get a
complete collection of available sessions /log/get is used.

As the interfaces give the user the opportunity to up- or downvote the
recommended movies, the route /vote/store/up is used to store upvotes,
and /vote/store/down to store downvotes. With /vote/get the voting rate
for all the movies of one recommendation session are requested.

The /bot Blueprint

The routes for the chatbot are only used by chatbot interface providers like
Facebook or Telegram. As the incoming messages depend on the provider,
each of those need at least one separate incoming route to extract the
incoming message and user. All currently available routes can be seen in
Figure 3.18. At the moment there are only two providers enabled: Facebook

52

3.2. API

Route HTTP
/facebook POST
/facebook GET
/telegram POST

Figure 3.18.: Chatbot routes on the API

curl -F "url=https://api.recsys.cpaier.com/v1/telegram" \

https://api.telegram.org/bot<TOKEN>/setWebhook

Figure 3.19.: Register webhook for Telegram

Messenger via the /facebook route, and Telegram over the /telegram route.
The Facebook Messenger Platform needs a second route for registering the
webhook.

Telegram To create a new Telegram bot one has to talk to the already ex-
isting bot @BotFather18 and initiate the creation with the command /newbot.
A complete interaction with @BotFather can be found in Figure A.4.

When creating the bot an access token is generated. This token has to be
used to register a server URL as webhook where all the incoming messenges
are forwarded to. This registration can be done on the command line via
curl19. An example for that is given in Figure 3.19, where <TOKEN> has to be
replaced by the previously recieved token.

After registering this webhook the basis communication is finished and
incoming messages are already received on the API. An example for such
an incoming message is given in Figure A.5. For this thesis only the fields
for the user’s first name (message.from.first name), the unique chat id
(message.chat.id) and the inputted text (message.text) are used.

As reply one has to send an HTTP POST request to
https://api.telegram.org/bot<TOKEN>/sendMessage with chat id to ref-

18https://telegram.me/botfather
19https://curl.haxx.se/docs/manpage.html

53

https://telegram.me/botfather
https://curl.haxx.se/docs/manpage.html

3. Implementation

erence the same chat, and text, the bot’s answer as payload of the request.
Figure A.6 shows how such an request can be generated with Python.

Facebook Messenger A Facebook Messenger bot can only be used to-
gether with a Facebook page. For this thesis I created the temporary CPREC
facebook page20. For the chatbot itself one has first to register as a Facebook
developer by accessing http://developers.facebook.com and logging in
with an already existing user. Then a new app has to be created on the
“Apps” page21. These apps can use various products that are prepared by
Facebook. Chatbot apps have at least be assigned to the “messsenger” and
“webhook” products while creating the app. For the webhook the API URL
has to be set. This dialog can be seen in Figure A.7 and can be found in the
App builder’s “Webhooks” product page.

For the “Messenger” product page one has to generate a new key, assign
that webhook and add pages messaging to the used API. All these val-
ues are assigned to the Facebook page, an example of this is shown in
Figure A.10

22.

A more detailed tutorial for creating a messenger bot can be found in
the Facebook Developer Documentation [67]. When the app is configured
correctly all messages for this bot are forwarded to the API server. However,
until publishing only developers that are assigned to this app are able to
communicate with the bot. To make it available for everyone it has to pass a
review by Facebook before publishing.

An example message that the API receives from the Facebook Messenger is
shown in Figure A.8. For this application only the fields
entry.messaging.message.text that contains the incoming message,
entry.messaging.sender.id for referencing the correct user, and
entry.messaging.recipient.id to be able to send a reply to the correct
chat, are used.

20https://www.facebook.com/CPREC-174771719834215/
21https://developers.facebook.com/apps/
22The key is not shown in this screenshot because it gets displayed only once when

generated

54

http://developers.facebook.com
https://www.facebook.com/CPREC-174771719834215/
https://developers.facebook.com/apps/

3.2. API

A reply is done by sending an HTTP POST request back to Facebook,
containing the user and the answer. Figure A.9 gives an example for this
process in Python. A request is executed to https://graph.facebook.com/

v2.6/me/messages with the content type “application/json” and a JSON
formatted set of the recipient id and message. Additionally, access token

has to be set to the key hat was generated when creating the Facebook
App.

The /alexa Blueprint

The implementation for the Alexa Skills for the Alexa is done with the Flask
extension Flask-Ask23, the HTTP routes where an answer should be given
(called intent) are described in Section 3.5

3.2.2. Recommender Engine Format

The recommender engine uses its own syntax for handling user inputs.
Therefore every input that gets forwarded to the recommender engine has
to be translated to this format. Generally, this happens only when the user
calls the recommendation engine, for example, by pushing the “Recommend”
button in the web interface.

The bot handles any item as a desired one when it is enwrapped with two
stars (e.g., **Titanic**) and, as undesired, with one star (e.g., *Titanic*).
The type of an item can explicitly set when prefixing the term with a label
and a colon. Following prefixes are available:

• m: for movies
• g: for genres
• a: for any actor or person
• k: for keywords
• y: for years

23https://github.com/johnwheeler/flask-ask

55

https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://github.com/johnwheeler/flask-ask

3. Implementation

cors = CORS(app , resources ={r’/*’: {"origins": ’*’}})

Figure 3.20.: Using flask-cors to enable cross-domain AJAX requests

So *m:Titanic* will explicitly for the bot to handle “Titanic” as an undesired
movie.

When adding a year constraint one can use > to state that movies later than
a certain year should be recommended and < to include years earlier than
the given one. So y:>2008 would include the years after 2008.

If no type is given, the engine tries to guess the type by matching it in a fixed
order with the corresponding data: genres, movies, actors and keywords.
So the recommender engine tries to find a genre with that same input, and
if there are no results the movie titles are evaluated, and so on.

3.2.3. CORS

Cross-origin resource sharing (CORS) is a standard by the W3C and WhatWG24

that specifies the behaviour of web resources when requested from a dif-
ferent domain as the initial one. For example, AJAX requests are blocked
by that mechanism when sending a request from domain A to B. However,
this API should be accessible by different providers, such as Telegram or
Facebook and therefore, it is necessary to disable CORS. This can be done by
setting specific HTTP header. For Flask, the extension flask-cors provides
possibilities to control that in a simple way. An example implementation in
enabling AJAX cross domains is given in Figure 3.20.

24https://fetch.spec.whatwg.org/

56

https://fetch.spec.whatwg.org/

3.3. Database

3.2.4. Server

For the live setup Nginx25 as server software together with uWSGI26, and
SSL certificates provided by Let’s Encrypt27 to access the Python application
via the Internet, are used. An example configuration for uWSGI can be
found in Figure A.13, for Nginx in Figure A.14.

3.2.5. Daemon

For the chatbot implementation a cronjob-like daemon is needed that checks
the database every second for a new recommendation result, and updates
the corresponding chat. A simple Bash script is used that calls the bot cron

function implemented within the Flask API as additional command line
interface. This Bash script can be found in the API root folder as daemon.sh.
To ensure that this script gets started when the system boots, and restarted
when it may crash, the system and service manager systemd28 is used. There-
fore, the file recsys.service has to be in a folder accessible by systemd, for
example /etc/systemd/system.

3.3. Database

The relational database system MySQL29 is used, which is not only a com-
mon choice but also because the already existing recommendation uses
one.

The implementation uses two different databases: one for data from the
IMDb that were created by another project at the Institute of Interactive
Systems and Data Science (ISDS), at Graz University of Technology. The
most important tables this database are explained further below. The other

25https://nginx.com/
26https://uwsgi-docs.readthedocs.io/en/latest/
27https://letsencrypt.org/
28https://freedesktop.org/wiki/Software/systemd/
29https://www.mysql.com

57

https://nginx.com/
https://uwsgi-docs.readthedocs.io/en/latest/
https://letsencrypt.org/
https://freedesktop.org/wiki/Software/systemd/
https://www.mysql.com

3. Implementation

database has been created solely for this application and is used by the
API to store data from any of the interfaces, and the results from the
recommendation process itself.

A detailed outline of the used tables and columns for the imdb database
can be seen in Figure A.1, and for the api database in Figure A.2 and
Figure A.3.

The imdb database is merely used for the movies and data that were scraped
from the website IMDb.com. Mainly, the following tables are used:

• genre: keeps all the genre data
• person: provides every actor, director, or other person in any of the

movies
• movie person: connects those persons with the movies
• movie matched: containing the data for movies with more than 1000

votes
• movie matched alternative title: containing alternative titles for

movies

There are currently30 exactly 31 genres, 5.224.003 persons, and 11.578 movies
in those tables.

The api database is the core of this implementation and consists of the
tables:

• recommendations: stores all the selected items. The recommendation
process takes those items and stores its results in the recommendation

field of this table
• log: used for recording the user’s session from the webform
• bot: used for recording the user’s session when using a chatbot
• person: extends the person’s data from the imdb database by a rank
• alternative genres: extends the genres from the imdb database with

alternative names
• vote log: stores every single up- or downvote for a recommended

movie together with the IP address and session id
• votes: the cumulative amount of votes for every movie

30
2018-04-03 02:26

58

3.3. Database

SELECT

FLOOR(

COALESCE(m.rating_votes , 0)*

COALESCE(m.rating_rank , 0)

) as rank

FROM movie__matched m

Figure 3.21.: Calculating the rank of a movie (SQL)

3.3.1. Preprocessing the Data: Ranking

The interfaces need to display persons, genres and movies in one consecutive
list, so a ranking has to be defined where specific items are placed. For
genres, this task is rather simple: there are currently only 31 different genres
that should be placed at the very top of the list. Therefore, they get assigned
a very high constant rank value of 1,000,000.

For movies, the rank considers the amount of ratings with their total rating
value. A movie with very high rating value but only few ratings might have
to be ranked lower than one where the average rating is slightly lower but
the amount of ratings is very high. Hence, the actual rank is a multiplication
of the fields “rating votes” with ”rating rank”. This calculation can be done
ad-hoc for each request as it does not decrease the time such a query needs
for execution significantly. Figure 3.21 shows how the rank of a movie can
be calculated by using a SQL query.

For ranking persons in a rudimentary way the average ranking of all the
movies they have participated is considered. This simple approach however
comes with a big flaw as those persons who participated in only one movie
which was rated with a very good rating will be pushed to a higher rank
compared to an actor with many assigned movies. Therefore, a normal-
ization factor is used. The equation for the rank of a person can be seen
in Figure 3.22, where n is the amount of movies assigned to this person,
votes are the total amount of votes, and vrank is the average vote (of the
range of 1-10 from the IMDb) of one movie.

For this factor, an average person is assumed to have been part of the cast

59

3. Implementation

rank =

(
1
n

n

∑
k=1

votesn ∗ vrankn

)
· n

50

Figure 3.22.: Calculating the rank of a person

SELECT FLOOR(

AVG(

COALESCE(m.rating_votes , 0) *

COALESCE(m.rating_rank , 0)

) * (COUNT (1) /50)) as rank

FROM movie_person mp,

person p, movie__matched m

Figure 3.23.: Calculating the rank of a person (SQL)

or crew in fifty movies. Now the before mentioned average of their movie
ratings gets multiplied by the amount of movies they participated divided
by this normalization factor. So a person with less than the assumed average
movies assigned gets a lower ranking, but one with much more movies gets
pushed a little bit.

An implementation in SQL can be seen in Figure 3.23. As this calculation
is very time-consuming this data needs to be preprocessed by calculat-
ing the rank for every actor in the imdb.person table with movies from
imdb.movie matched. The result gets stored in the api.person table.

3.4. Chatbot

The chatbot is implemented with RiveScript31. Python is used as RiveScript
interpreter32 because the logic of the bot can be combined within the API to
keep the interfaces for the bots separated from the logic.

31https://www.rivescript.com/
32https://github.com/aichaos/rivescript-python

60

https://www.rivescript.com/
https://github.com/aichaos/rivescript-python

3.4. Chatbot

+ my name i s ∗
− Hi <s t a r >!

Figure 3.24.: Simple RiveScript example

The multiple bot interfaces and their individual routes are handled by
the Flask framework which handles the different message formats and
restructures them to one common base. This gets passed into the logic
component of the implementation which is the same for all the bot service
provider.

3.4.1. RiveScript

Language Overview

RiveScript is a scripting language supporting various languages like Go33

and Python. The advantage of RiveScript in comparison to its competitors
is that the language is dynamic and easy to learn as, for example, AIML34

which uses XML, that gets rather complicated and not as dynamic for bigger
projects. Another advantage is that no additional running service is needed
(like for ChatScript35 [23]).

An in-depth reference can be found in [79]. The syntax is simple and mainly
consists of stating input and output messages. One example can be found in
Figure 3.24, where it can be seen that any input (marked with the “+” sign)
that starts with “my name is” gets matched as “*” which denotes a wild
card. As <star> gets replaced by whatever was matched in the previous
line, the bot would answer to the message “my name is joe” with the reply
“Hi joe!”.

Of course the language offers more possibilities than this example: such
as surrounding parts by square brackets defining optional statements, so

33https://golang.org
34https://www.pandorabots.com/docs/aiml/aiml-basics.html
35https://github.com/bwilcox-1234/ChatScript

61

https://golang.org
https://www.pandorabots.com/docs/aiml/aiml-basics.html
https://github.com/bwilcox-1234/ChatScript

3. Implementation

+ do you l i k e (c a r s | b i c y c l e s) {weight =20}
− Yes !

+ [∗] l i k e (c a r s | b i c y c l e s) {weight =10}
− Ok .

Figure 3.25.: Advanced RiveScript example

a statement “I like [pink] elephants” would match both “I like pink ele-
phants” and “I like elephants”. When having multiple choices that should
be matched one can use parentheses with a vertical bar to separate the
various choices. So “I like (ice cream|broccoli)” would match “I like ice
cream” and “I like broccoli”.

A more advanced example of RiveScript is shown in Figure 3.25. There are
two different sets of in- and outputs. For both input statements a weight is
set. The first has assigned a weight of twenty, the second of ten. A statement
with a higher weight gets evaluated before a lower one. So the question “Do
you like cars?” would be matched by the first statement and the bot answers
with “Yes!” and never be matched by the second statement.

The file begin.rive is the entry point of the interpreter and should be used
to handle global variables. Arrays of words, substitutions of words and
other functions could be set. for the RiveScript interpreter. In Figure 3.26,
one basic example for a begin file is given. The version for the RiveScript
interpreter is set and the debug flag is set to true, so that one can investigate
how every input gets matched. In productive setups it is set to false. Then
a word substitution, which replaces the input i’m to i am, is defined by
using the keyword sub, and finally an array of words is defined. Such an
array can be used for synonyms, so that one can use @like instead of the
before mentioned syntax from the advanced example (Figure 3.25). If a line
starts with ^ it is a concatenation of the line before. One can define that
the lines should be concatenated with a newline by using the command
! local concat = newline. Alternative values are space where lines are
concatenated by adding a simple space character or none where nothing
gets added.

62

3.4. Chatbot

! vers ion = 2 . 0

! g loba l debug = true
! sub i ’m = i am
! array l i k e = l i k e | love | enjoy
ˆ d e s i r e |want

Figure 3.26.: RiveScript begin.rive example

> o b j e c t sum python
return i n t (args [0]) + i n t (args [1])

< o b j e c t

+ what i s # + #
− <c a l l >sum <s tar1> <s tar2></c a l l >

Figure 3.27.: RiveScript object example

As RiveScript’s purpose is to give the opportunity to parse incoming mes-
sages, match them to a set of rules, and create an answer message, it is not
capable of executing more complex calculations. For this purpose, one has
to use object macros which are written in a full programming language like
Python or Perl36. Figure 3.27 gives an example for an object call of a Python
function sum which adds two numbers. The two numbers are extracted from
the incoming message by using <star1> and <star2>, and passed into the
object function as argument vector.

To make implementation easier, object calls can be excluded in a Python file.
This function gets two parameters: the RiveScript interpreter instance, and
the argument vector. Additionally, one has to call set soubroutine for each
of the functions to register them beforehand when starting RiveScript from
Python (Subsection 3.4.2 for more information).

36https://www.perl.org/

63

https://www.perl.org/

3. Implementation

bot = RiveScript(utf8=True)

bot.unicode_punctuation = re.compile(r’[!?.:] ’)

bot.load_directory("./ recsys/brain")

def search_movies(rs, args):

[...]

def get_reply(user , message):

return bot.reply(str(user), message)

def init(user , username , recipient , provider , style):

[...]

bot.set_subroutine("movie", search_movies)

[...]

Figure 3.28.: Extract of starting RiveScript

3.4.2. Code Structure

The listing of the necessary files and the brain directory for this implementa-
tion can be seen in Figure A.11. The main center is the bot.py file where the
incoming HTTP requests are handled as described in Subsubsection 3.2.1.
Additionally, RiveScript gets initialized there. The basic lines for this initial-
ization from the actual implementation can be seen in Figure 3.28.

There RiveScript itself gets initialized and set which punctuation characters
should be ignored when evaluating an incoming message. Then the brain

directory is loaded where all the RiveScript files are located. For any in-
coming message the init method is called, and sets variables in RiveScript
by using set uservar if not already present from a previous session. As
indicator to separate the various incoming, user a user id or a chat id

from the provider is used. RiveScript keeps track of the following infor-
mation for every user: the user’s name and its id to address them directly,
a recipient and provider to be be able to write responses via the cronjob,
the amount of items that should be displayed at once, and the style since

64

3.4. Chatbot

different interfaces allow different ways of formatting messages.

As last step, the replay method has to be called with the user’s identification
and its incoming message. This causes RiveScript to start the matching
process for the best fitting answer. If an object call is made, this call gets
redirected back to the bot.py file, since all these methods are implemented
there and registered by using set subroutine. This registration is shown
above by the example search movies.

The RiveScript brain files for the interpreter are structured in a way that
each file has a specific atomic purpose. So the file year.rive handles all the
inputs with one of the possible “year” inputs.

Each file consists of a collection of rules for this purpose where each rule has
an assigned weight consisting of 4 digits. This weight ensures the correct
order of matching. The first digit denotes the group the rule belongs to (for
example every rule in the “year” file has to be between 8000 and 8999).

This ensures that the statements get matched exactly in the order as de-
scribed in Figure 3.29

pos weight file items
1 9000-9999 base.rive base commands
2 9500-9699 select.rive select, deselect
3 9000-9700 help.rive help
4 8000-8999 actor.rive actors
5 6000-6999 keyword.rive keywords
6 5000-5999 actor.rive actors
7 4000-4999 genre.rive genres
8 3000-3999 vote.rive vote
9 2000-2999 movie.rive movie

10 1000-1999 item.rive item

Figure 3.29.: The order in which RiveScript evaluates the rules

The second digit differs between negative (1) and positive (0) statements.
It is important that negative statements are matched first, otherwise, for
example, sentences with “not like” would be matched by the wrong category

65

3. Implementation

when using rules similar to “[*] like”. The rest of the digits is to keep a
certain order of rules within the same file.

Each of the rules is mapped to one base command (for example likemovie

*) which is just a wrapper for the object calls to a Python function. This func-
tion handles the connection to the database for this input. For example, it
searches for movies for the likemovie function or stores the selected results
when calling the recommend function. The base commands are implemented
in the brain/functions.rive file and the implementation of the object calls
in bot.py. A complete list of all available base commands and object calls is
given in Figure 3.30. Any object call that searches for an item receives a plus
(+) or a minus (-) sign to denote if an item is desired or undesired by the
user. Every object call gets a number for debugging purposes assigned to
identify which rule matched the input sequence. For any of the commands
this number gets passed the list of matched words from the input as <star>
tag.

Finally, any of the bot’s answers is either placed directly in the brain files,
or generated by the object calls.

A full interaction with the chatbot can be found in Figure 3.31 and Fig-
ure 3.32.

3.5. Alexa Skill

Alexa Skills are tiny applications written explicitly for Amazon’s voice
service Alexa. A detailed reference can be found at the online Amazon
Alexa Documentation [20]. To create a skill it is necessary to register and
login via the Amazon developer web page37 and to create a new empty skill
at the Alexa Skill Console38.

A skill consists of an Invocation Name and a collection of Intents with Ut-
terances and Slots. The Invocation Name should consist of more than one
word, as it is easier for Alexa to recognize it, and is needed to refer the input

37https://developer.amazon.com
38https://developer.amazon.com/alexa/console/ask/

66

https://developer.amazon.com
https://developer.amazon.com/alexa/console/ask/

3.5. Alexa Skill

command object call purpose
[*] dislikegenre * genres selects an undesired genre
[*] likegenre * genres selects a desired genre
[*] dislikeactor * actor selects an undesired actor
[*] likeactor * actor selects a desired actor
[*] dislikeyear * year selects an undesired year
[*] likeyear * year selects a desired year
[*] dislikekeyword * keyword selects an undesired keyword
[*] likekeyword * keyword selects a desired keyword
[*] dislikemovie * movie selects an undesired movie
[*] likemovie * movie selects a desired movie
[*] dislikeitem * dislikeitem selects an undesired item
[*] likeitem * likeitem selects a desired item
show @select * select select item from list
show @selected * selected show selected items
recommend * recommend start the recommendation process
pageup * pageup call the next page
pagedown * pagedown call the previous page
upvotemovie * upvote upvote a movie
downvotemovie * downvote downvote a movie

Figure 3.30.: Commands and object calls for the chatbot

67

3. Implementation

Figure 3.31.: Example Telegram Chat Page 1

68

3.5. Alexa Skill

Figure 3.32.: Example Telegram Chat Page 2

69

3. Implementation

to the correct Skill application. Setting movie recommender as an invocation
name means that sentences similar to “Alexa, tell the movie recommender
that I like Inception” will match to open this skill. The part of the sentence
after the invocation name will be handled by the skill itself. Intents are used
to match the second part of the sentence. An Intent consists of a unique
name and at least one sample Utterances. An Utterance is an sample of
input that should be matched. For the above example the utterance “I like
Inception” will match the input.

To match “I like Forrest Gump” with the same intent it is preferred to mark
the movie title as Slot. Slots are marked by surrounded braces ({}). An
example for an utterance with a slot would be “I like {Movie}”. However
Alexa needs a type dedicated to each slot. Amazon delivers many predefined
and very specialized types like AMAZON.AT CITY which will match every city
in Austria, but also custom types are possible. For this implementation most
of the slots have the type AMAZON.SearchQuery as this setting will guarantee
that every input will be matched, but also AMAZON.FOUR DIGIT NUMBER is
used for year numbers and AMAZON.NUMBER for numbers in general. The last
one is especially important as Alexa otherwise might interpret the word
“three” as “free”, which is — of course — not a number. The interface for
creating an intent, its utterances and its slots on the Amazon Alexa Console
can be seen in Figure A.12.

The complete configuration with all intents, utterances, slots and the invo-
cation name can also be uploaded (or downloaded) as JSON file. A short
example for this file is given in Figure 3.33. There, the invocation name is
set to movie recommender and a sample intent LikeMovieIntent is set with
one slot (Movie) with the type AMAZON.SearchQuery. Additionally, there are
two samples given for this intent.

To connect the Alexa Skill to a server one sets the link in the “Endpoint”
section of the Builder39. Please note that only HTTPS is supported and the
application has to be prepared to receive JSON POST requests.

When every intent has been set up correctly, pushing the “Build Model”
button generates the Skill for usage. After building it, the Skill can be tested,

39Only Web services are used for custom skills

70

3.5. Alexa Skill

{

"interactionModel": {

"languageModel": {

"invocationName": "movie recommender",

"intents": [{

"name": "LikeMovieIntent",

"slots": [{

"name": "Movie",

"type": "AMAZON.SearchQuery",

}

],

"samples": [

"I like the movie {Movie}",

"Add the movie {Movie}"

]

}],

"types": []

}

}

}

Figure 3.33.: Alexa JSON Configuration File

71

3. Implementation

@ask.intent(’LikeMovieIntent ’, mapping ={’data’: ’

Movie’})

def like_movie(data):

speech = "my answer"

return statement(speech).simple_card(’Hi’, speech

)

Figure 3.34.: Implementation of an Alexa Skill

either via voice or text commands in the Alexa Simulator or directly on an
Amazon Echo or Echo Dot device.

3.5.1. Code Structure

For connecting the API to the Alexa Skill Flask-Ask40, a Flask extension is
used, which is capable handling the complete communication between the
Alexa Skill and the API. The main implementation for this task is done in
the recsys/alexa.py file with one function for each Intent. With flask-ask it
is easy to connect a function with an intent, seen in Figure 3.34.

A function is connected to an intent by annotating it with @ask.intent

and stating the intent name. If there are any data passed from the function
an additional mapping has to be defined. Then, the function expects a
parameter of the same name.

Now, the function should return either statement or question together with
the answer string. A question can also wait for the user’s input by using the
reprompt function, heavily used in the Alexa Skill implementation for this
thesis. So the user does not have to start from the beginning and has to say
“Alexa” together with the Skill’s Invocation name for each statement.

Additionally, simple card has to be called. This provides a visual feedback
on the Alexa App of every executed Intent.

40https://github.com/johnwheeler/flask-ask

72

https://github.com/johnwheeler/flask-ask

3.5. Alexa Skill

For this implementation the Skill’s session is used to get the user id and
to store the user’s current page when scrolling through the result pages.
Sessions are globally available via a session object that can be imported
from flask-ask. One has to use the dict session.attributes[MYKEY] = MYVAL

to store MYVAL into the MYKEY session.

When a user only says the invocation name a special launch function is
called. This has to be annotated by using @ask_launch. For this implemen-
tation, every function as well as the launch function calls the init function
from the bot.py file which initializes the RiveScript interpreter as described
in Subsection 3.4.2. Therefore, any response is generated by the API the
same way as it generates responses for chatbots.

The only differences for the implementation between Alexa and a chatbot
are that the given answers have to be shorter, without links, less items
on one page and can be formatted by using Speech Synthesis Markup
Language (SSML)[82]. SSML is a markup language designed to provide
meta information on text to improve the quality of it when spoken. For this
implementation, <emphasis> to emphasize a phrase, <break> to add pauses
and <s> to separate sentences, are used for example, after each item in a list.
A sentence using SSML has to be surrounded by <speak>.

To enable that the bot returns a text prepared for Alexa, the style parameter
(discussed in Subsection 3.4.2) has to be set to the value speech and the
bot’s logic takes care of the rest.

As RiveScript needs any statement from the user (e.g., “I like the movie
Skyfall”) but the Alexa Skill is only capable of returning the content of a Slot
(“Skyfall” in this example), an artificially created statement has to be created.
So for each intent the basic RiveScript command from Figure 3.30 together
with a numeric value (needed for debugging purposes) is appended by the
content of the Slot.

A big difference to the other interfaces is the restriction that every Skill
has to reply within eight seconds, otherwise the execution of the Skill is
stopped immediately. Unfortunately, there isn’t a push notification API
publicly available yet. However, this will be better in future as the closed
developer preview has been published in November 2017 [37]. Using the

73

3. Implementation

Alexa Interface the user has to request the results manually by saying
results or Give me the results.

A transcript of how to use the Alexa Skill is the output of the Amazon Alexa
Simulator available in Figure 3.35.

74

3.5. Alexa Skill

Figure 3.35.: Example Alexa Chat Page

75

4. Evaluation

This chapter describes the process of the evaluation of the three recom-
mender interfaces implemented in Chapter 3. A user study with 16 users
was performed with the aim to get insights on the users’ overall satisfactions
when interacting with the interfaces and measure the system’s usability by
using their feedback.

The U.S. Department of Health and Human Services1 defines usability as:
“how effectively, efficiently and satisfactorily a user can interact with a user
interface.” [93].

To measure usability, after letting the users try out and compare each
interface, a survey was used to collect the user’s impressions. This was
evaluated with the System Usability Scale (SUS), described in Section 4.1,
the results with detailed plots illustrating the users’ inputs can be found in
Chapter 5, in Chapter 6 the results are examined and discussed.

4.1. System Usability Scale

The System Usability Scale (SUS) was proposed in “SUS-A quick and dirty
usability scale.” by John Brooke in [17] as a “quick and dirty” method to
measure usability and is based on the Likert Scale.

1https://hhs.gov

77

https://hhs.gov

4. Evaluation

4.1.1. Likert Scale

The Likert Scale is a classical measurement in the field of sociology to
value the attitude of a person towards a subject and was introduced in the
year 1932 [62]. It basically consists of statements where a user has to state
whether he agrees or disagrees. Each statement is either clearly negative or
positive.

The granularity of the steps between “agree” and “disagree” are freely
definable, five are very commonly used. Having an even numbered set of
choices forces the user to decide for one of the two scale’s sides, when having
an uneven number of choices on the scales gives the user to not decide
whether they agree or not. This is a permanently discussed subject, however
it Robert Armstrong shows in [13] that neither of the two choices have a
statistically significant impact. Additionally John Dawes shows additionally
that any of the scales with in incremental step size of 5, 7 or 10 proved to
result in roughly the same mean result [29].

4.1.2. Implementation

The SUS is a Likert Scale, explicitly created for measuring usability. It
uses ten statements, five positive and five negative in alternating order.
These should be rated by the user within a scale from one to five where
a one denotes they strongly disagree with the sentence and five that they
strongly agree with the meaning of this sentence. The alternating order was
introduced to ensure that users use their full attention to correctly agree or
disagree [18].

The ten statements used for the System Usability Score of the user study,
first introduced in [17], are as follows:

1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical person to be able

to use this system.
5. I found the various functions in this system were well integrated.

78

4.1. System Usability Scale

6. I thought there was too much inconsistency in this system.
7. I would imagine that most people would learn to use this system very

quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this
system.

The advantage of the System Usability Score is that it is cheap and easy
to implement and interpret. For users the advantage lies in being a fast,
easy and uncomplicated method to give feedback. The disadvantage is
that only a single score, the overall feedback for the evaluated system can
be determined. The possible individual faults within a system cannot be
determined directly, because the score reflects only the easiness in the
system’s use and therefore showing the user’s overall satisfaction.

4.1.3. Results of SUS

The System Usability Score is calculated as follows:

• For all positive statements (sentence 1,3,5,7 and 9) the user’s input (a
number between 1 and 5) gets decremented by one.
• For the negative statements (2,4,6,8 and 10) the user’s input gets

subtracted from five.
• Those numbers are summed and then multiplied by 2.5.

An example implementation in Python can be seen in Figure B.1, where a
function sus score takes an array with the input values reflecting the user’s
input.

The resulting score lies in between a minimum value of 0 and a maximum
value of 100. The inventor of SUS, John Brooke, explains the reasons for
setting the interval between 0 and 100, which causes a slightly more complex
calculation of the score, to be simply marketing reasons [18]. The result-
ing caveat is that it could been seen as a percentage value, as the range
might indicate. However the score can only be used to compare SUS tested
systems.

79

4. Evaluation

Figure 4.1.: Comparing SUS with Adjective Rating, Source: [14]

The overall number combines all the feedback gained from the user into
one single score, without any additional information. The SUS can only be
interpreted as a combined result so it is not possible to rely on the feedback
of only one of the ten statements.

4.1.4. Interpreting the Score

While the original definition of the SUS did only state that a higher value
means a higher satisfaction and therefore a higher usability of the tested
system, a specific meaning of the resulting score was not added until
Aaron Bangor in 2008 [14]. Another set of statements to a SUS survey was
added, so-called “adjective ratings” instead of the numeric scale were used.
Users were asked to choose one of the labels “Worst Imaginabel”, “Awful”,
“Poor”, “OK”, “Good”, “Excellent” or “ Best Imaginable”, presented in that
order. Then they compared the results to the ones of the standard SUS. The
connection between SUS and those labels, that are far more achievable for
humans, is shown in Figure 4.1.

80

4.2. User Study

The System Usability Score should never be interpreted as a percentage
value, as the 50th percentile is around the scale of 68 meaning that this is
the average result for the SUS [18].

When seeing up a SUS evaluated user study, it is important to not choose
overly difficult tasks as that might influence the score negatively. On the
other hand it has been shown that SUS gives reliable results even when the
user had only a very short period of time to familiarize themselves with
the system under test. The score of users who used the evaluated system
for only five seconds has been shown to only differ by three points in the
overall average from those who did not get a time restriction [2]. This means
that the first impression of a system does not differ that much from the
experience a user reports later [18].

Thomas Tullis states that the SUS gives good results even when evaluating
with a small set of participants [91]. They conclude that the scores for eight
participants are already quite good with an accuracy of 75%, but for twelve
they are nearly indistinguishable from the survey of the full dataset with an
accuracy of 90-100%.

In summary, the System Usability Scale is a well-researched tool for evalu-
ating the usability of user interfaces. Even the constraints, such as a short
system testing time and having a small number of participants, does not
necessarily influence the results negatively. Therefore, the System Usability
Scale is an ideal reliable measurement for the user study of the different
movie recommender interfaces to reflect the user’s satisfaction. The results
for this study are shown in Chapter 5.

4.2. User Study

The user study took place between 12
th April 2018 and 21

st April 2018 with
sixteen participants, 22 invitations were sent.

The study consisted of a separate task for each tested movie recommender
interface and a concluding questionnaire. Each user had to test at least the
webform and the chatbot interface. The third, the virtual assistance system
implemented by an Alexa Skill, was optional as the participants were not

81

4. Evaluation

expected to own an Alexa enabled device like the Echo Dot—which is
necessary for testing the Alexa Skill. They were given the chance to test it
with a provided device. Ten out of the sixteen participants agreed on testing
and evaluating the third interface as well.

The users could either evaluate the interfaces remotely in their own home
with their preferred choice of devices or take the user study in a specifically
set up space Subsection 4.2.1.

All participants got an introduction, either via a document or locally, into
the general topic and the purpose of the user study, reminding them that the
usability of the interfaces and not the individual user and their knowledge
or performance was being evaluated. Additionally they were asked not the
evaluate the results of the recommender itself, as this is not the focus of this
study.

The instructions for those who tested the Alexa Skill can be found in
Figure B.2, while the version for the minimal test setup is Figure B.3, each
containing an adjusted survey and description.

4.2.1. Setup

A distinct lab setup, especially for participants of the Alexa interface was
provided. They could choose between an Archlinux2 desktop computer or a
MacBook Pro 2015. Google’s Chrome3, Chromium4 or Firefox5 as web browser
were available as well as a test account for the Facebook Messenger Chat
and for Telegram. The Alexa interface was tested by using an Amazon Echo
Dot 2nd Generation provided by the Institute of Interactive Systems and
and Data Science.

Participants testing only the webform and the chatbot interface could use
their preferred device or browser. However, due to the restrictions on the

2https://archlinux.org
3https://www.google.at/chrome/
4https://chromium
5https://firefox.com

82

https://archlinux.org
https://www.google.at/chrome/
https://chromium
https://firefox.com

4.2. User Study

Facebook Messenger6 login data for a Facebook test account were provided
when a user wanted to use Facebook Messenger.

4.2.2. Tasks

The underlying goal of the user study was to let the participants familiarize
with each interface and capture their feedback on the usability.

The given tasks were meant as a possibility to get an outline of all provided
features so that the participants got a guideline to follow through. The list
of the tasks can be found in the invitation (Figure B.2 for Alexa testers and
Figure B.3 for webform/chatbot only testers). The tasks provided were the
same for each interface for better comparison of the evaluation results.

4.2.3. Survey

Two different surveys were prepared, one for the minimal test set of webform
and chatbot and one for those testing the Alexa Skill. The survey itself was
done with Google Forms7.

First the participants had to fill in a set of basic data about themselves
such as, gender, age, highest education, and the self estimation of their
computer knowledge ranging from “Never used a computer” to “Expert”
level. Additionally, they were asked about previous experiences with the
technologies used for the different recommender interfaces. They could
state if they ever used a chatbot or a speech recognition software (for Alexa
testers only).

After that, for each tested interface they had to state the used device followed
by the statements for the System Usability Score and completed by a free
input field letting the participants input any additional remarks.

6a user has to have an active developer account
7https://forms.google.com

83

https://forms.google.com

4. Evaluation

A screenshot of the first page of the survey is shown in Figure B.4, while
Figure B.5 and Figure B.6 display the survey page for the webform with the
questions for the System Usability Score.

This chapter first discussed the System Usability Score and concluded that
it is a reliable tool for measuring the overall satisfaction of a user interface.
Then the executed user study to get the user’s feedback was described. The
following chapter shows and examines the results of the study.

84

5. Results

In the previous chapter the theoretical background and implementation of
three different interfaces for a movie recommender and the basic principles
of a user study were discussed. Insights into the users’ impressions were
gained with a survey that followed their evaluation of the available interfaces.
These results are described in this chapter.

5.1. User Study Participants

22 persons were invited to participate in this user study. 16 of them agreed
to participate.

Male

68.75% (11)

Female
31.25% (5)

Figure 5.1.: Participants by gender

18-29 50.00% (8)

30-49
37.50% (6)

50-64

12.50% (2)

Figure 5.2.: Participants by age

Figure 5.1 shows that the ratio between female and male participation is
about one to three and Figure 5.2 shows that half of the participants were

85

5. Results

between the age of 18 to 29, only two participants between the age of 50

and 64, and the remaining were between 30 and 49 years old.

Figure 5.3 reflects the participants’ highest level of education. More than 43%
of them had a degree of a university while a bit more than 37% had finished
High School. Only three participants (18.75%) had finished other types
of education like an apprenticeship. Users were asked to self assess their
level of confidence with technology. Nearly two third described themselves
as competent and one fourth considered themselves to be experts. Two
participants thought of themselves to be at a beginner level.

University
43.75% (7)

High School

37.50% (6)

Other

18.75% (3)

Figure 5.3.: Participants by education

Beginner

12.50% (2)

Competent

62.50% (10)

Expert

25.00% (4)

Figure 5.4.: Participants by knowledge

In this study four users (25%) had already used a chatbot (see Figure 5.5),
but only half of that amount, two users, had used Alexa, Siri or other voice
command based systems before (see Figure 5.6).

The next section analyses the questions from the survey resulting in the
System Usability Score in more detail.

5.2. Comparison by Interface

The original goal of this thesis was to find out more about the usability
of recommender interfaces. In Figure 5.7 the final System Usability Score,

86

5.2. Comparison by Interface

Yes

25.00% (4)

No

75.00% (12)

Figure 5.5.: Participants with prior
chatbot experience

Yes

20.00% (2)

No

80.00% (8)

Figure 5.6.: Participants with prior speech
recognition experience

rounded to the next full number, for each interface is displayed. The web-
form reaches an average score of 64 out of 100, which is almost near the
average rating for the scale, as discussed in Section 4.1,. The webform’s
highest score given from one user is 92 and the lowest 32. Therefore the
Adjective Rating of the webform would be considered as “Good”, but also
already seen as “Best Imaginable” by some users.

The chatbot interface got a score ranging from 5 to 82, therefore some
users considered it to be “Excellent” while others could not use it at all
and thought of its status as “Worst Imaginable”. The average score for the
chatbot interface is 44 which is clearly lower than the score for the webform.
This would give the second interface the label “OK” on the Adjective Rating
scale.

The third evaluated interface, voice recognition with Alexa, has a slightly
higher average score than the chatbot interface, with 53 which is still lower
than the webform. The minimum score given is 22 (“Awful”) which is still
higher than the minimum of the chatbot. Alexa’s maximum is 87, therefore
labelling the Alexa interface even as “Excellent” in the eyes of some users.

87

5. Results

Webform Chatbot Alexa

20

40

60

80

System Usability Scale

Figure 5.7.: Overall comparison of all interfaces

5.2.1. Detailed System Usability Scores

An immediately rising question when looking at the range of results is, if
there are any significant differences in the usability one could attribute to
differences of gender, age, prior knowledge or understanding of comput-
ers.

In Figure 5.8 the System Usability Score is split by gender. While for the
webform both groups seem to agree, both chatbot and Alexa were quite
different, males preferred Alexa, and females preferred the chatbot.

The System Usability Score of the interfaces separated by age can be seen
in Figure 5.9. It is noticeable that the older participants (older than 50

years) were displeased with the webform and the Alexa Skill, but had an
above-average rating for the chatbot interface.

In Figure 5.10 the System Usability Score is split by the user’s education.
Here, it can be observed that participants with an university degree really
liked the webform.

88

5.2. Comparison by Interface

Male

Fem
ale

20

40

60

80

Webform

Male

Fem
ale

Chatbot

Male

Fem
ale

Alexa

Figure 5.8.: SUS by Gender

18
-29

30
-49

50
-64

20

40

60

80

Webform

18
-29

30
-49

50
-64

Chatbot

18
-29

30
-49

50
-64

Alexa

Figure 5.9.: SUS by Age

89

5. Results

Univ
ers

ity

High
 Sc

ho
ol

Othe
r

20

40

60

80

Webform

Univ
ers

ity

High
 Sc

ho
ol

Othe
r

Chatbot

Univ
ers

ity

High
 Sc

ho
ol

Othe
r

Alexa

Figure 5.10.: SUS by Education

When separating the data by the participant’s computer knowledge level it
is visible that experts liked the webform and beginner did not like working
with the Echo Dot.

The complete set of results, with all data, can be seen in Figure 5.13, with the
minimum, average, and maximum System Usability Score for each tested
interface.

90

5.2. Comparison by Interface

Beg
inn

er

Com
pe

ten
t

Ex
pe

rt

20

40

60

80

Webform

Beg
inn

er

Com
pe

ten
t

Ex
pe

rt

Chatbot

Beg
inn

er

Com
pe

ten
t

Ex
pe

rt

Alexa

Figure 5.11.: SUS by Computer Knowledge

Ye
s No

10

20

30

40

50

60

70

80

Chatbot

Ye
s No

Alexa

Figure 5.12.: SUS by previous usage

91

5. Results

Webform Chatbot Alexa
TOTAL

(92) 64 (32) (82) 44 (5) (88) 53 (23)

By Gender
male (93) 65 (33) (83) 39 (5) (88) 59 (23)
female (83) 63 (38) (80) 56 (27) (58) 46 (38)

By Age
18-29 (88) 63 (33) (83) 51 (28) (88) 65 (23)
30-49 (93) 73 (48) (70) 32 (5) (63) 55 (38)
50-64 (45) 41 (38) (80) 54 (28) (38) 30 (23)

By Education
University (88) 74 (48) (70) 44 (13) (88) 58 (43)
High School (80) 56 (33) (83) 50 (30) (83) 61 (38)
Other (93) 59 (38) (80) 38 (5) (63) 41 (23)

By Knowledge
Beginner (68) 53 (38) (80) 54 (28) (43) 40 (38)
Competent (93) 61 (33) (83) 40 (5) (83) 55 (23)
Expert (88) 79 (75) (70) 51 (30) (88) 61 (38)

By Previous Chatbot Usage
yes — (83) 56 (13) —
no — (80) 41 (5) —

By Previous Alexa Usage
yes — — (83) 56 (30)
no — — (80) 50 (5)

Figure 5.13.: The detailed SUS results in the format: (minimum) average (maximum),
including the outliers

92

6. Discussion

The participants of the user study preferred the web interface over voice
recognition over the chatbot interface as shown in Chapter 5. The following
sections are going to investigate possible reasons for that, followed by a
detailed discussion of the results by interfaces with the user’s feedback
(Section 6.2 for the webform, Section 6.3 for the chatbot and Section 6.4 for
the Alexa Skill). Possible changes for each interface are discussed to enhance
the user experience by improving the usability.

6.1. Participants

For more representative results Figure 5.2 shows that younger participants
should be included and more senior participants—older than 50 years—
should be included too, to reflect the average population more realistically.
Likewise, as there are more than 50% females in Austria1 [72], they are
underrepresented in this user study as Figure 5.1 shows.

The educational statistics of Austria shows that 18.2% were registered in
2018 having a tertiary education. Therefore, with 43% of the participants
having an academic degree, they are over represented in this study at the
expense of users who are not that well educated. The same holds true for
their denoted knowledge of computers as only two are seeing themselves to
be a beginner.

The numbers of the participants who already used a chatbot or a speech
recognition system prior to the user study, shown in Figure 5.5 and Figure 5.6
was quite expectable as chats have been around for a longer time than voice

1where this study took place

93

6. Discussion

recognition systems, which were established in the customer’s households
in 2010 when Apple released Siri. As of today, eight years later, they are still
not that commonly used.

6.2. Webform

The System Usability Score of the webform was quite expected with three
exceptions: (i) older people were not satisfied, (ii) users with a lower edu-
cation tend not to be that satisfied with the webform than people with a
higher degree and (iii) the higher the user’s computer knowledge the higher
the average SUS.

Evaluating the survey’s free feedback field for the webform shows that the
overall rating for the web interface could have been better when changing
two things: adding a button that, when pushed, deletes all the previously
entered data and restarts the web application. Second, the “plus”/“minus”
buttons stating the user likes or dislikes for an already selected item were
not that obvious. One idea could be to modify the “Select” button from the
search column to explicitly give the opportunity to “like” or “dislike” an
item when selecting it.

Another good feedback given was that the search itself is rather weak, as it
returns only items with a title that matches the searched word. Here it was
expected that the search returns movies fitting the input in a broader way
by evaluating meta data as well. For example a search for “Julia Roberts”
should not only include her as an actor, but also all of the movies she acted
in. Currently only genres, actors, and movies containing the word “Julia
Roberts” would be returned.

The buttons to support selecting the genre or year span in the selected items
column of the webform were confusing for some participants as well as they
were mentioned to be “misleading” or “unintuitive”. One user stated that
they were not sure why those buttons are not in the search column.

Some users explicitly mentioned that refining the searched items with the
buttons from the search column was a great idea and that using the webform
was “easy” or “OK”.

94

6.3. Chatbot

It is not surprising that the webform got a rather good rating, as many
people are used to this type of web service. In the end, the SUS reflected
the testers’ feedback as they were rather satisfied with using this interface.
Minor bugs have to be fixed so that the users are really satisfied, especially
users who are older or less proficient when using a computer.

6.3. Chatbot

Overall, using the chatbot interface was considered to be more displeasing.
However, looking at the complete set of data it seems that users either liked
or hated this system, because the scores range from 5 to 82 which fills nearly
every possible value in the scale.

Female participants were more satisfied with the chatbot interface than
males, but not significantly. The differences between the various age groups,
education and knowledge level are not remarkable as they reflect the overall
trend.

However, looking at the System Usability Score for users who did already
use a chatbot versus those who didn’t, gives an interesting insight: they
were satisfied using the bot, as their score is higher than the SUS’s average
while those who never used such a system showed the same score as the
overall statistics.

There might be two reasons for this: for many users it seemed rather com-
plicated that the webform’s visual separation in three columns (searched,
selected, recommended) are not directly visible. Further, most of the prob-
lems the users had were caused by the limited communication and the
structure of the commands.

Communication was mentioned to be “complicated”, one user explicitly
remarked. Another user added that having only a limited range of words or
interaction possibilities of the chatbot is both good and bad at the same time.
One simply says “Couldn’t really work with it”. For example, it was often
not understood by the participants that the commands “upvote” or “select”
need a valid numerical index from an item of a previous printed list. This
should have been clearer communicated by the bot, as any input that not

95

6. Discussion

matched any of the commands were used to search for any items (movie,
genre, actor) with similar name. This was done as a user were expected just
to write, for example, a movie title, but was a drawback in this scenario.

Users who were used to chatbots might therefore have been used to a limited
language and specific sentence structure in order to achieve valid input.
A possible improvement idea for that is to either completely restrict the
language to some predefined commands, or to implement a more advanced
and intelligent conversating chatbot and combine the output of multiple
possible outcomes. For the example above the bot could say that upvoting
the specific input is not possible but some items were found matching the
user’s input.

In general, users wished that the chatbot gives more information and is
more transparent with the internal state of, for example, the selected items.
On the other hand the feedback the bot gave was considered to be too long
for some users. Additionally, the good help functionality was emphasized
by some users. It can be seen that communication with a chatbot has to be
carefully designed in terms of what information is given at what specific
point of time during a conversation.

To summarize, the chatbot interface was either liked or hated by the users
which can be seen from the System Usability Score and is confirmed by the
users’ remarks. A lot of work has to be done to make the chatbot interface
user friendly, mainly improving the communication itself, for example, by
replacing pattern matching by more advanced techniques.

6.4. Alexa

Using the Alexa interface led to more satisfaction than the chatbot interface.
At first this seems to be counter intuitive as the Alexa interface’s implemen-
tation uses the chatbot’s logic in the background. However, there are certain
factors that might have caused this shift. First, Alexa was tested after the
chatbot, so the user already knew how to formulate certain commands. Sec-
ond, the act of speaking to a computer was new to most of the participants

96

6.4. Alexa

and the curiosity for new gadgets might cause the users to overlook some
problems with this interface.

The main problem was, due to the nature of the device, that no complete
reference for the implemented commands is available. So it was added to the
introduction for the participants, additionally, the help command could have
been used. The participants often tended to forget the mentioned commands.
Another relevant problem with Alexa is however the sensibility of the voice
recognition. It has been observed that even the invocation name “Movie
Recommender” has often not been detected correctly by the system, even
with a very clear pronunciation. On the other hand some users could start
the movie recommender on the Echo Dot without any problems even with
mispronunciations. A flaw that occurs when Alexa does not understand the
user correctly is that the system seems to guess what was said. This leads
sometimes to awkward and wrong results.

Another problem is that Alexa enforces a fast reaction. The Alexa Skill will
stop when there was no interaction for more than eight seconds. This led to
a lot of frustration as than the user had to start again with the trigger word
for Alexa and the invocation name “Movie Recommender”. Generally users
noted that there was no thinking pause allowed, and they felt pressured or
overstrained to give a command in that short time.

It can be assumed that the chatbot interface was not that user friendly as a
free conversation is not possible due to pattern matching, but this was what
most of the users expected.

The Alexa Skill clearly is rule based and therefore the commands are clearly
defined contrary to the chatbot. This might have been one of the reasons of
the higher System Usability Score for the Alexa Skill.

To improve the satisfaction the main work here has to be done by Amazon
as their voice recognition often gives unexpected results. Amazon should
also provide a push notification system, so that the users do not have to ask
Alexa for the results themselves. The other improvements that should be im-
plemented are mainly the same as with the other tasks: improving the search
by allowing requests for metadata and improving the communication.

97

7. Conclusions and Future Work

This thesis evaluates three different recommender interfaces: webform,
chatbot and virtual assistant. A user study is described that was executed
with 16 persons with the overall result, that users preferred the webform
over voice recognition and over the chatbot.

This shows that much work has to be done to establish chatbots for a broader
audience. However, those users who had used chatbots previously had a
higher acceptance for that interface as those who don’t. This shows that
although chatbots are available all over the Internet, users are still rather
unfamiliar with them.

For virtual assistance systems users showed that the main problem has
been in the system’s understanding of the spoken words. Although the
overall quality has been quite good with Alexa, sometimes the system could
not understand a clear and good pronunciation while it could sometimes
understand mumbled words with a heavy dialect. When eliminating those
problems the acceptance of Alexa would clearly be much higher.

The implemented chatbot has one drawback, as a natural conversation is not
possible due to the nature of pattern matching. So for communication users
have to use a more commanding style with a fixed task in mind instead of
talking freely. This approach turned out to be too limited on many occasions
while for the virtual assistance system Alexa, this approach comes naturally.
Users obvious expect to give commands to such a system and therefore the
overall satisfaction was quite higher.

This effect of being used to a certain way of communication is it why the
overall satisfaction of the webform is so much higher than with the other
interfaces, as webforms are all over the Internet for many years while the
other technologies, especially the virtual assistance systems are not that
widespread yet.

99

7. Conclusions and Future Work

Future work could include a more rich-text chatbot behaviour, so that the
chatbot does not only communicate by text, but also can use advanced
widgets that might significantly improve the quality.

Another more general idea is to extend the search for movies, actors etc in
a more contextual sense, so not to include only direct results of the user’s
input, but also items that are related to the input. So a search for “Brad Pitt”
should not only deliver the actor “Brad Pitt” or any movie where the title
includes his name, but also all the movies where he acted in.

The main research however will be to include machine learning or other
more advanced techniques to chatbots and voice based assistance systems.
The results of the user study show, that chatbots that are solely based on pat-
tern matching are not good enough to really satisfy users, therefore research
has to be done to enable a more open-domain approach for communication.
Here machine learning techniques including neural networks are an obvious
but also a very promising idea that should be investigated.

100

Appendix

101

Appendix A.

Appendix: Implementation

103

Appendix A. Appendix: Implementation

genre :
+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+
| F i e l d | Type | Null | Key | Default | Extra |
+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+
| id | i n t (1 0) unsigned | NO | PRI | NULL | auto increment |
| genrename | varchar (4 5) | NO | UNI | NULL | |
+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+

movie matched :
+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+
| F i e l d | Type | Null | Key | Defaul t | Extra |
+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+
id	i n t (1 0) unsigned	NO	PRI	NULL	
t t i d	varchar (1 0)	NO	UNI	NULL	
t i t l e	varchar (1 9 1)	YES	UNI	NULL	
p l o t	t e x t	YES		NULL	
r a t i n g v o t e s	i n t (1 1)	YES		NULL	
r a t i n g r a n k	decimal (4 , 2)	YES		NULL	
r a t i n g d i s t r i b u t i o n	varchar (1 1)	YES		NULL	
year	i n t (1 1)	YES		NULL	
running time	i n t (1 1)	YES		NULL	
+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+

m o v i e m a t c h e d a l t e r n a t i v e t i t l e
+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+
| F i e l d | Type | Null | Key | Defaul t | Extra |
+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+
movie id	i n t (1 0) unsigned	NO	MUL	NULL	
a l t e r n a t i v e t i t l e	varchar (6 0 0)	NO	UNI	NULL	
i n f o	t e x t	YES		NULL	
+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+

movie person
+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+
| F i e l d | Type | Null | Key | Default | Extra |
+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+
movie id	i n t (1 1) unsigned	NO	PRI	NULL	
r o l e i d	i n t (1 1) unsigned	NO	PRI	NULL	
person id	i n t (1 1) unsigned	NO	PRI	NULL	
+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+

person
+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+
| F i e l d | Type | Null | Key | Defaul t | Extra |
+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+
id	i n t (1 0) unsigned	NO	PRI	NULL	auto increment
f i r s t n a m e	varchar (4 5)	YES	MUL	NULL	
last name	varchar (4 5)	YES		NULL	
nr	varchar (4 5)	YES		NULL	
gender	varchar (2)	YES		NULL	
biography	t e x t	YES		NULL	
dob	date	YES		NULL	
dod	date	YES		NULL	
l o c a t i o n b i r t h i d	i n t (1 0) unsigned	YES	MUL	NULL	
l o c a t i o n d e a t h i d	i n t (1 0) unsigned	YES	MUL	NULL	
+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+

Figure A.1.: Database structure of the IMDb database

104

a l t e r n a t i v e g e n r e :
+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+
| F i e l d | Type | Null | Key | Defaul t | Extra |
+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+
id	i n t (1 1)	NO	PRI	NULL	auto increment
a l ternat ive name	varchar (4 5)	YES		NULL	
o r i g i d	i n t (1 1)	YES		NULL	
orig name	varchar (4 5)	YES		NULL	
+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+

bot :
+−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+
| F i e l d | Type | Null | Key | Defaul t | Extra |
+−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+
user	varchar (2 5 5)	NO	PRI		
search	mediumtext	YES		NULL	
s e l e c t e d	mediumtext	YES		NULL	
page	i n t (1 1)	YES		NULL	
timestamp	datetime	YES		NULL	
+−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+

b o t l o g :
+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+
| F i e l d | Type | Null | Key | Default | Extra |
+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+
id	i n t (1 0) unsigned	NO	PRI	NULL	auto increment
user	varchar (2 5 5)	YES		NULL	
provider	varchar (2 5 5)	YES		NULL	
request	t e x t	YES		NULL	
reply	t e x t	YES		NULL	
timestamp	datetime	YES		NULL	
+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+

log :
+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+
| F i e l d | Type | Null | Key | Default | Extra |
+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+
id	i n t (1 0) unsigned	NO	PRI	NULL	auto increment
s e s s i o n	char (3 6)	YES		NULL	
c l i e n t	varchar (2 5 5)	YES		NULL	
data	l o n g t e x t	YES		NULL	
timestamp	datetime	YES		NULL	
+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+

person :
+−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+
| F i e l d | Type | Null | Key | Defaul t | Extra |
+−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+
id	i n t (1 0) unsigned	NO	PRI	NULL	
rank	i n t (1 1)	YES		NULL	
f i r s t n a m e	varchar (4 5)	YES		NULL	
last name	varchar (4 5)	YES		NULL	
name	varchar (2 5 5)	YES		NULL	
+−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+

recommendations :
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+
| F i e l d | Type | Null | Key | Default | Extra |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+
id	i n t (1 0) unsigned	NO	PRI	NULL	auto increment
c l i e n t	varchar (2 5 5)	YES		NULL	
s e s s i o n	varchar (2 5 5)	YES		NULL	
uuid	varchar (2 5 5)	YES		NULL	
i tems	mediumtext	YES		NULL	
items raw	mediumtext	YES		NULL	
recommendation	mediumtext	YES		NULL	
crea ted	datetime	YES		NULL	
r e c l o g t a b l e i d	i n t (1 0)	YES		NULL	
t imes tamp star t	timestamp	YES		NULL	
t i m e s t a m p s t a r t p r o c e s s i n g	timestamp	YES		NULL	
timestamp end	timestamp	YES		NULL	
bot user	varchar (2 5 5)	YES		NULL	
s e n t t o b o t	t i n y i n t (1)	YES		NULL	
bot provider	varchar (1 0 0)	YES		NULL	
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+

Figure A.2.: Database structure of the cpaier database, Part 1

105

Appendix A. Appendix: Implementation

v ot e l og :
+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+
| F i e l d | Type | Null | Key | Defaul t | Extra |
+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+
ip	varchar (1 5)	NO	PRI		
movie id	i n t (1 1)	NO	PRI	0	
s e s s i o n	char (3 6)	YES		NULL	
c l i e n t	varchar (2 5 5)	YES		NULL	
d i r e c t i o n	varchar (4)	YES		NULL	
r e c s y s s e s s i o n	varchar (2 5 5)	YES		NULL	
timestamp	datetime	YES		NULL	
+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+

vote :
+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+
| F i e l d | Type | Null | Key | Defaul t | Extra |
+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+
| movie id | i n t (1 0) unsigned | NO | PRI | NULL | |
| voting | i n t (1 1) | YES | | NULL | |
+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−+

Figure A.3.: Database structure of the cpaier database, Part 2

106

Figure A.4.: Initiate telegram chatbot

107

Appendix A. Appendix: Implementation

{ ’ message ’ : {
’ date ’ : 1523639599 ,
’ t e x t ’ : ’ hi ’ ,
’ from ’ : {

’ f i r s t name ’ : ’ Chr is t ian ’ ,
’ i s b o t ’ : False ,
’ id ’ : 155534818 ,
’ language code ’ : ’ de−AT’

} ,
’ message id ’ : 2039 ,
’ chat ’ : {

’ f i r s t name ’ : ’ Chr is t ian ’ ,
’ type ’ : ’ pr ivate ’ ,
’ id ’ : 155534818

}
} , ’ update id ’ : 716293453}

Figure A.5.: Incoming Telegram Message

data = {

"chat_id": chatid ,

"text": answer_message

}

url = "https :// api.telegram.org/bot"+TOKEN+"/

sendMessage"

requests.post(url , data=data)

Figure A.6.: Sending messages for Telegram with Python

108

Figure A.7.: Facebook: setting a webhook

109

Appendix A. Appendix: Implementation

{” entry ” : [{
”messaging ” : [
{

”timestamp ” : 1523827339183 ,
”message ” : {

” t e x t ” : ” hi ” ,
”mid ” : ”mid . $cAADEB−YKsQNo HU3r1iyy17wuvk8 ” ,
” seq ” : 2054

} ,
” r e c i p i e n t ” : {

” id ” : ”174771719834215”
} ,
” sender ” : {

” id ” : ”2044173955599901”
}

}
] ,
” id ” : ”174771719834215” ,
” time ” : 1523827339457

}] ,
” o b j e c t ” : ”page”

}

Figure A.8.: Incoming message Facebook Messenger

110

def facebook_answer(key , sender_id , answer):

params = { "access_token": key }

headers = { "Content -Type": "application/json"}

data = json.dumps ({

"recipient": {

"id": sender_id

},

"message": {

"text": answer

}

})

url="https :// graph.facebook.com/v2.6/me/messages"

requests.post(url , params=params , headers=headers

, data=data)

Figure A.9.: Replying to Facebook Messenger

111

Appendix A. Appendix: Implementation

Figure A.10.: Facebook: messenger setting

112

recsys

...

bot.py

brain

actor.rive

base.rive

begin.rive

functions.rive

genre.rive

help.rive

item.rive

keyword.rive

movie.rive

select.rive

vote.rive

year.rive

...

...

Figure A.11.: Files and directories for the chatbot

113

Appendix A. Appendix: Implementation

Figure A.12.: Alexa Skill Console - Modify an Intent

[uwsgi]
plugins = python2

chdir = /srv/www/api . re csy s . c p a i e r . com/
socket = /var/run/uwsgi/ r e c s y s a p i . sock
master = true
sharedarea = 4

processes = 4

vhost = true
chmod−socket = 777

chown−socket = c p a i e r
uid = c p a i e r
gid = c p a i e r
logto = /tmp/uwsgi recsys . log
venv = /srv/www/api . re cs ys . c p a i e r . com/venv
c a l l a b l e = app
wsgi−f i l e = wsgi . py

Figure A.13.: Basic uwsgi config

114

upstream r e c s y s a p i {
server unix :/ var/run/uwsgi/ r e c s y s a p i . sock ;

}

server {
l i s t e n 443 s s l ;
server name api . r ec sy s . c p a i e r . com ;
root /srv/www/api . r ecs ys . c p a i e r . com/r ec sys ;
a c c e s s l o g /var/log/nginx/api . r ec sy s . c p a i e r . com . a c c e s s . log ;
e r r o r l o g /var/log/nginx/api . re csy s . c p a i e r . com . e r r o r . log ;

s s l c e r t i f i c a t e / e t c / l e t s e n c r y p t / l i v e /api . re cs ys . c p a i e r . com/ f u l l c h a i n . pem ;
s s l c e r t i f i c a t e k e y / e t c / l e t s e n c r y p t / l i v e /api . re cs ys . c p a i e r . com/privkey . pem ;

l o c a t i o n / {
inc lude uwsgi params ;
uwsgi pass r e c s y s a p i ;
uwsgi param UWSGI SCHEME ht tps ;

}
}

Figure A.14.: Basic nginx config

115

Appendix B.

Appendix: User Study

117

Appendix B. Appendix: User Study

def sus_score(items):

score = 0

for index in range(0, len(items)):

pos = index + 1

rating = int(items[index])

if pos % 2 == 1:

score += rating - 1

else:

score += 5 - rating

return score * 2.5

Figure B.1.: Calculate SUS with python

118

Thank you f o r p a r t i c i p a t i n g in t h i s user study . This w i l l take about 30−45 minutes .

For my master t h e s i s I want to compare various i n t e r f a c e s f o r recommender systems . Recommender systems are
used nowadays a l l over the I n t e r n e t , f o r example a t S p o t i f y or N e t f l i x to show you music or movies you
might l i k e or a t Amazon where items are (not only) recommended by your past shopping behaviour .

With t h i s t h e s i s , a l t e r n a t i v e approaches to use such systems should be i n v e s t i g a t e d f o r t h e i r u s a b i l i t y . You
are going to use a movie recommender on three ways : a webform (Task 1) , a chatbot (task 2) and by using
voice commands with Alexa (Task 3) . The q u a l i t y of the recommended movies should not be evaluated , as those
are not part of t h i s work . F i n a l l y I ask you to f i l l out a q u e s t i o n a i r e to get your feedback . Please note
t h a t any data t h a t you e x p l i c i t l y put i n t o any of the i n t e r f a c e s w i l l be recorded together with a sesson
token . Beyond that , no data , and e x p l i c i t l y no s e n s i t i v e data , i s rec ieved or s tored .

TASKS For each i n t e r f a c e please t r y the fol lowing t a s k s :
TASK 1 :
− Choose a t l e a s t two movies and s e l e c t them
− Click , i f a v a i l a b l e , on the IMDB l i n k on one of the movies
− Remove one of the s e l e c t e d movies
− S t a r t the recommender and wait f o r the r e s u l t s

TASK 2 :
− Search and add a movie without the complete name (e . g . ”dark” to get the movie ”The Dark Knight ”)
− Add one or more genres
− Add at l e a s t one person by searching the exac t name (e . g . ”Brad P i t t ”)
− S t a r t the recommender and wait f o r the r e s u l t s

Task 3 :
− Add any movie , genre or person you l i k e
− Add any movie , genre or person you do not l i k e
− Add a keyword
− S t a r t the recommender and wait f o r the r e s u l t s

Task 4 :
− Add any item you l i k e
− R e s t r i c t your search by s e l e c t i n g a year or a time frame
− Mark at l e a s t one item as undesired
− S t a r t the recommender and wait f o r the r e s u l t s
− Upvote or downvote a t l e a s t one movie

1 . WEBFORM
V i s i t h t tps :// re cs ys . c p a i e r . com with any browser l i k e Google Chrome or Mozil la F i r e f o x . The webform t h a t
you see i s s t r u c t u r e d in three p ar t s : f i r s t the search area where you can search an item and where you can
pick your movies from , the centered panel with the already s e l e c t e d movies and the t h i r d panel t h a t d isp lays
the recommended movies . You can choose whether you l i k e or d i s l i k e a movie in the second panel and in the
l a s t panel you can up or downvote the r e s u l t s . Addi t ional ly each movie has a l i n k to i t s IMDB entry .

2 . CHATBOT
You can e i t h e r do t h i s task with Telegram Messenger or Facebook . Each i n t e r f a c e leads to the same r e s u l t . The
chatbot i s capable of having some kind of conversat ion with you . You can s t a r t by t e l l i n g what movie you l i k e
or do not l i k e or you might simply say ” hi ” . Be aware t h a t the chatbot i s only capable of understanding
simple sentences . I f you are l o s t you can always use the command ” help ” or ” help a l l ” to get an overview
of i t s c a p a b i l i t i e s .

SETUP INSTRUCTIONS TELEGRAM
V i s i t the URL http :// telegram .me/ r e c s y s c p b o t with your telegram enabled device or search f o r
r e c s y s c p b o t and add i t to your c o n t a c t s . Press the ” S t a r t ” button below to s t a r t the conversat ion .

SETUP INSTRUCTIONS FACEBOOK
Come back to me f o r log in c r e d e n t i a l s , v i s i t h t tps ://m.me/174771719834215 and s t a r t a
conversat ion with t h i s bot

3 . VOICE COMMANDS
You can t r y ”Alexa , movie recommender” to s t a t e t h a t you want to use the recommender i n t e r f a c e . P lease be
aware t h a t s t a t i n g t h a t command you are in the movie recommender u n t i l the LED i s going of . I f you have
v o l u n t a r i l y (f o r example , by using the command ”Alexa stop ”) or unvoluntar i ly ended the s e s s i o n you can
s t a r t r i g h t where your l a s t one ended . You can a l s o append one of the commands below to the ”Alexa , [t e l l the]
movie recommender” as well . You can t e l l Alexa i f you l i k e or hate a movie , genre , person , keyword or year
e . g . by s t a t i n g ” I l i k e the movie S k y f a l l ” or ” I l i k e crime ” . I f there i s a l i s t of mult ip le r e s u l t s you
can say ”more” to get more r e s u l t s or previous to jump one page back . You can use the s e l e c t , remove , up and
downvote f u n c t i o n s by mentioning the number of the movie , l i k e f o r the chatbot . For example ” S e l e c t one” w i l l
s e l e c t the f i r s t movie of the search r e s u l t s . F i n a l l y the command ”recommend” w i l l c a l c u l a t e the recommended
items . You can ask f o r the r e s u l t by saying ” Resul t s ” , or ”Do you have r e s u l t s ?” By the way : in most cases
Alexa i s not capable of l i s t e n i n g to you while ta lk ing , so wait u n t i l i t ’ s your turn !

SURVEY
Please f i l l out the survey at : h t tps ://goo . g l/aMQkE7

Figure B.2.: Invitation to participate in the user study, Alexa version

119

Appendix B. Appendix: User Study

Thank you f o r p a r t i c i p a t i n g in t h i s user study . This w i l l take about 30−45 minutes .

For my master t h e s i s I want to compare various i n t e r f a c e s f o r recommender systems . Recommender systems are
used nowadays a l l over the I n t e r n e t , f o r example a t S p o t i f y or N e t f l i x to show you music or movies you
might l i k e or a t Amazon where items are (not only) recommended by your past shopping behaviour .

With t h i s t h e s i s , a l t e r n a t i v e approaches to use such systems should be i n v e s t i g a t e d f o r t h e i r u s a b i l i t y . You
are going to use a movie recommender on two ways : a webform (Task 1) , a chatbot (task 2) .
The q u a l i t y of the recommended movies should not be evaluated , as those
are not part of t h i s work . F i n a l l y I ask you to f i l l out a q u e s t i o n a i r e to get your feedback . Please note
t h a t any data t h a t you e x p l i c i t l y put i n t o any of the i n t e r f a c e s w i l l be recorded together with a sesson
token . Beyond that , no data , and e x p l i c i t l y no s e n s i t i v e data , i s rec ieved or s tored .

TASKS For each i n t e r f a c e please t r y the fol lowing t a s k s :
TASK 1 :
− Choose a t l e a s t two movies and s e l e c t them
− Click , i f a v a i l a b l e , on the IMDB l i n k on one of the movies
− Remove one of the s e l e c t e d movies
− S t a r t the recommender and wait f o r the r e s u l t s

TASK 2 :
− Search and add a movie without the complete name (e . g . ”dark” to get the movie ”The Dark Knight ”)
− Add one or more genres
− Add at l e a s t one person by searching the exac t name (e . g . ”Brad P i t t ”)
− S t a r t the recommender and wait f o r the r e s u l t s

Task 3 :
− Add any movie , genre or person you l i k e
− Add any movie , genre or person you do not l i k e
− Add a keyword
− S t a r t the recommender and wait f o r the r e s u l t s

Task 4 :
− Add any item you l i k e
− R e s t r i c t your search by s e l e c t i n g a year or a time frame
− Mark at l e a s t one item as undesired
− S t a r t the recommender and wait f o r the r e s u l t s
− Upvote or downvote a t l e a s t one movie

1 . WEBFORM
V i s i t h t tps :// re cs ys . c p a i e r . com with any browser l i k e Google Chrome or Mozil la F i r e f o x . The webform t h a t
you see i s s t r u c t u r e d in three p a r t s : f i r s t the search area where you can search an item and where you can
pick your movies from , the centered panel with the already s e l e c t e d movies and the t h i r d panel t h a t d isp lays
the recommended movies . You can choose whether you l i k e or d i s l i k e a movie in the second panel and in the
l a s t panel you can up or downvote the r e s u l t s . Addi t ional ly each movie has a l i n k to i t s IMDB entry .

2 . CHATBOT

SURVEY
Please f i l l out the survey at : h t tps ://goo . g l/mZgsrV

Figure B.3.: Invitation to participate in the user study, Chatbot version

120

Figure B.4.: Survey First Page

121

Appendix B. Appendix: User Study

Figure B.5.: Survey Interface Page

122

Figure B.6.: Survey Interface Page (cont)

123

Bibliography

[1] ’I’m the original voice of Siri’. url: https : / / edition . cnn . com /

2013/10/04/tech/mobile/bennett-siri-iphone-voice (visited
on 09/03/2018) (cit. on p. 30).

[2] 5 SECOND USABILITY TESTS. url: https://measuringu.com/five-
second-tests/ (visited on 04/24/2018) (cit. on p. 81).

[3] A short Story about React Native. url: https://jobninja.com/blog/
short-story-react-native/ (visited on 04/06/2018) (cit. on p. 40).

[4] A.L.I.C.E. and AIML Documentation. url: https://sourceforge.net/
projects/alicebot/files/Documentation/Don_t%20Read%20Me/

dont.html/download (visited on 08/15/2018) (cit. on p. 19).

[5] About the Jabberwacky AI. url: http : / / www . jabberwacky . com /

j2about (visited on 08/15/2018) (cit. on p. 20).

[6] Actions on Google. url: https://developers.google.com/actions/
extending-the-assistant (visited on 09/03/2018) (cit. on p. 30).

[7] AIML V2 Working Draft. url: https://docs.google.com/document/
d/1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub (visited
on 08/12/2018) (cit. on p. 19).

[8] Alexa Feature Help. url: https : / / www . amazon . com / gp / help /

customer/display.html?nodeId=G201952240 (visited on 09/03/2018)
(cit. on p. 29).

[9] Amazon Echo Is A £199 Connected Speaker Packing An Always-On Siri-
Style Assistant. url: https://techcrunch.com/2014/11/06/amazon-
echo/ (visited on 09/03/2018) (cit. on p. 29).

125

https://edition.cnn.com/2013/10/04/tech/mobile/bennett-siri-iphone-voice
https://edition.cnn.com/2013/10/04/tech/mobile/bennett-siri-iphone-voice
https://measuringu.com/five-second-tests/
https://measuringu.com/five-second-tests/
https://jobninja.com/blog/short-story-react-native/
https://jobninja.com/blog/short-story-react-native/
https://sourceforge.net/projects/alicebot/files/Documentation/Don_t%20Read%20Me/dont.html/download
https://sourceforge.net/projects/alicebot/files/Documentation/Don_t%20Read%20Me/dont.html/download
https://sourceforge.net/projects/alicebot/files/Documentation/Don_t%20Read%20Me/dont.html/download
http://www.jabberwacky.com/j2about
http://www.jabberwacky.com/j2about
https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant
https://docs.google.com/document/d/1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub
https://docs.google.com/document/d/1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub
https://www.amazon.com/gp/help/customer/display.html?nodeId=G201952240
https://www.amazon.com/gp/help/customer/display.html?nodeId=G201952240
https://techcrunch.com/2014/11/06/amazon-echo/
https://techcrunch.com/2014/11/06/amazon-echo/

Bibliography

[10] Amazon explains how Alexa recorded a private conversation and sent it
to another user. url: https : / / www . theverge . com / 2018 / 5 / 24 /

17391898/amazon-alexa-private-conversation-recording-explanation

(visited on 09/04/2018) (cit. on p. 30).

[11] API.AI is joining Google! url: https://blog.dialogflow.com/post/
joining-google/ (visited on 08/26/2018) (cit. on p. 25).

[12] Apple will release its £349 HomePod speaker on February 9th. url: https:
/ / www . theverge . com / 2018 / 1 / 23 / 16922682 / apple - homepod -

release-date-announced-preorders (visited on 09/03/2018) (cit.
on p. 29).

[13] Robert L. Armstrong. “The Midpoint on a Five-Point Likert-Type
Scale.” In: Perceptual and Motor Skills 64.2 (1987), pp. 359–362. doi:
10.2466/pms.1987.64.2.359. url: https://doi.org/10.2466/pms.
1987.64.2.359 (cit. on p. 78).

[14] Aaron Bangor, Philip Kortum, and James Miller. “Determining What
Individual SUS Scores Mean: Adding an Adjective Rating Scale.” In:
J. Usability Studies 4.3 (May 2009), pp. 114–123. issn: 1931-3357. url:
http://dl.acm.org/citation.cfm?id=2835587.2835589 (cit. on
p. 80).

[15] Jordi Mongay Batalla and Maria Ledzińska. “ON REDUCING THE
DETRIMENTAL INFORMATION FLOOD IN THE USE OF INTER-
NET.” In: Problems of Education in the 21st Century 28 (Apr. 2011). issn:
1822-7864. url: http://journals.indexcopernicus.com/abstract.
php?icid=939901 (cit. on p. 2).

[16] Bellkor’s pragmatic chaos wins 1 million Netflix prize by mere minutes.
url: https://www.wired.com/2009/09/bellkors- pragmatic-
chaos-wins-1-million-netflix-prize/ (visited on 04/21/2018)
(cit. on p. 10).

[17] John Brooke. ”SUS-A quick and dirty usability scale.” Usability evalu-
ation in industry. ISBN: 9780748404605. CRC Press, June 1996. url:
https://www.crcpress.com/product/isbn/9780748404605 (cit. on
pp. 77, 78).

126

https://www.theverge.com/2018/5/24/17391898/amazon-alexa-private-conversation-recording-explanation
https://www.theverge.com/2018/5/24/17391898/amazon-alexa-private-conversation-recording-explanation
https://blog.dialogflow.com/post/joining-google/
https://blog.dialogflow.com/post/joining-google/
https://www.theverge.com/2018/1/23/16922682/apple-homepod-release-date-announced-preorders
https://www.theverge.com/2018/1/23/16922682/apple-homepod-release-date-announced-preorders
https://www.theverge.com/2018/1/23/16922682/apple-homepod-release-date-announced-preorders
https://doi.org/10.2466/pms.1987.64.2.359
https://doi.org/10.2466/pms.1987.64.2.359
https://doi.org/10.2466/pms.1987.64.2.359
http://dl.acm.org/citation.cfm?id=2835587.2835589
http://journals.indexcopernicus.com/abstract.php?icid=939901
http://journals.indexcopernicus.com/abstract.php?icid=939901
https://www.wired.com/2009/09/bellkors-pragmatic-chaos-wins-1-million-netflix-prize/
https://www.wired.com/2009/09/bellkors-pragmatic-chaos-wins-1-million-netflix-prize/
https://www.crcpress.com/product/isbn/9780748404605

Bibliography

[18] John Brooke. “SUS: A Retrospective.” In: J. Usability Studies 8.2 (Feb.
2013), pp. 29–40. issn: 1931-3357. url: http://dl.acm.org/citation.
cfm?id=2817912.2817913 (cit. on pp. 78, 79, 81).

[19] Build Skills with the Alexa Skills Kit. url: https://developer.amazon.
com/docs/ask-overviews/build-skills-with-the-alexa-skills-

kit.html (visited on 09/03/2018) (cit. on p. 29).

[20] Build Skills with the Alexa Skills Kit. url: https://developer.amazon.
com/docs/ask-overviews/build-skills-with-the-alexa-skills-

kit.html (visited on 04/16/2018) (cit. on p. 66).

[21] Robin Burke. “Hybrid Recommender Systems: Survey and Exper-
iments.” In: User Modeling and User-Adapted Interaction 12.4 (Nov.
2002), pp. 331–370. issn: 1573-1391. doi: 10.1023/A:1021240730564.
url: https://doi.org/10.1023/A:1021240730564 (cit. on p. 7).

[22] Rollo Carpenter and Jonathan Freeman. “Computing machinery and
the individual: the personal Turing test.” In: (July 2005), p. 4. url:
http://www.jabberwacky.com/s/PTT100605.pdf (cit. on p. 22).

[23] ChatScript README Github Repository. url: https://github.com/
bwilcox-1234/ChatScript (visited on 08/08/2018) (cit. on p. 61).

[24] Cleverbot Data for Machine Learning. url: https://www.existor.com/
products/cleverbot- data- for- machine- learning/ (visited on
08/15/2018) (cit. on pp. 20, 22).

[25] Cleverbot data for machine learning. url: https://www.existor.com/
products/cleverbot- data- for- machine- learning/ (visited on
08/20/2018) (cit. on pp. 27, 28).

[26] Kenneth Mark Colby, Sylvia Weber, and Franklin Dennis Hilf. “Arti-
ficial Paranoia.” In: Artif. Intell. 2.1 (Jan. 1971), pp. 1–25. issn: 0004-
3702. doi: 10.1016/0004-3702(71)90002-6. url: http://dx.doi.
org/10.1016/0004-3702(71)90002-6 (cit. on pp. 17, 18).

[27] Cortana’s got skills. url: https://developer.microsoft.com/en-
us/cortana (visited on 09/03/2018) (cit. on p. 30).

[28] Creating a chatbot with cognitive technologies. url: https://developer.
ibm.com/code/topics/chatbot/ (visited on 08/27/2018) (cit. on
p. 24).

127

http://dl.acm.org/citation.cfm?id=2817912.2817913
http://dl.acm.org/citation.cfm?id=2817912.2817913
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://doi.org/10.1023/A:1021240730564
https://doi.org/10.1023/A:1021240730564
http://www.jabberwacky.com/s/PTT100605.pdf
https://github.com/bwilcox-1234/ChatScript
https://github.com/bwilcox-1234/ChatScript
https://www.existor.com/products/cleverbot-data-for-machine-learning/
https://www.existor.com/products/cleverbot-data-for-machine-learning/
https://www.existor.com/products/cleverbot-data-for-machine-learning/
https://www.existor.com/products/cleverbot-data-for-machine-learning/
https://doi.org/10.1016/0004-3702(71)90002-6
http://dx.doi.org/10.1016/0004-3702(71)90002-6
http://dx.doi.org/10.1016/0004-3702(71)90002-6
https://developer.microsoft.com/en-us/cortana
https://developer.microsoft.com/en-us/cortana
https://developer.ibm.com/code/topics/chatbot/
https://developer.ibm.com/code/topics/chatbot/

Bibliography

[29] John Dawes. “Do Data Characteristics Change According to the
Number of Scale Points Used? An Experiment Using 5-Point, 7-
Point and 10-Point Scales.” In: International Journal of Market Research
50.1 (Jan. 2008), pp. 61–104. doi: 10.1177/147078530805000106. url:
http://dx.doi.org/10.1177/147078530805000106 (cit. on p. 78).

[30] Definition of chatbot in English. url: https://en.oxforddictionaries.
com/definition/chatbot (visited on 08/10/2018) (cit. on p. 15).

[31] Dialogflow Documentation. url: https://dialogflow.com/docs (vis-
ited on 08/26/2018) (cit. on p. 25).

[32] Dialogflow Documentation Machine Learning. url: https://dialogflow.
com/docs/machine-learning (visited on 08/26/2018) (cit. on p. 25).

[33] Dialogs with colorful personalities of early ai. url: https://web.stanford.
edu/group/SHR/4-2/text/dialogues.html (visited on 08/14/2018)
(cit. on p. 18).

[34] ELIZA chatbot online. url: https://www.masswerk.at/elizabot/
(visited on 08/13/2018) (cit. on p. 17).

[35] ES6 In Depth: Arrow functions. url: https://hacks.mozilla.org/
2015/06/es6-in-depth-arrow-functions/ (visited on 04/07/2018)
(cit. on p. 41).

[36] Evolution of the web. url: http://www.evolutionoftheweb.com (vis-
ited on 08/07/2018) (cit. on p. 5).

[37] Expanded Developer Preview of Notifications for Alexa. url: https://
developer.amazon.com/blogs/alexa/post/833b9af4-26e6-47d2-

a13d-bdbd9a257512/expanded-developer-preview-of-notifications-

for-alexa-skills (visited on 04/16/2018) (cit. on p. 73).

[38] Extending platform commonality through universal Windows apps. url:
https://blogs.windows.com/buildingapps/2014/04/02/extending-

platform-commonality-through-universal-windows-apps/ (vis-
ited on 09/03/2018) (cit. on p. 29).

[39] David A. Ferrucci et al. “Building Watson: An Overview of the
DeepQA Project.” In: AI Magazine 31.3 (2010), pp. 59–79. url: http://
dblp.uni-trier.de/db/journals/aim/aim31.html#FerrucciBCFGKLMNPSW10

(cit. on pp. 24, 26).

128

https://doi.org/10.1177/147078530805000106
http://dx.doi.org/10.1177/147078530805000106
https://en.oxforddictionaries.com/definition/chatbot
https://en.oxforddictionaries.com/definition/chatbot
https://dialogflow.com/docs
https://dialogflow.com/docs/machine-learning
https://dialogflow.com/docs/machine-learning
https://web.stanford.edu/group/SHR/4-2/text/dialogues.html
https://web.stanford.edu/group/SHR/4-2/text/dialogues.html
https://www.masswerk.at/elizabot/
https://hacks.mozilla.org/2015/06/es6-in-depth-arrow-functions/
https://hacks.mozilla.org/2015/06/es6-in-depth-arrow-functions/
http://www.evolutionoftheweb.com
https://developer.amazon.com/blogs/alexa/post/833b9af4-26e6-47d2-a13d-bdbd9a257512/expanded-developer-preview-of-notifications-for-alexa-skills
https://developer.amazon.com/blogs/alexa/post/833b9af4-26e6-47d2-a13d-bdbd9a257512/expanded-developer-preview-of-notifications-for-alexa-skills
https://developer.amazon.com/blogs/alexa/post/833b9af4-26e6-47d2-a13d-bdbd9a257512/expanded-developer-preview-of-notifications-for-alexa-skills
https://developer.amazon.com/blogs/alexa/post/833b9af4-26e6-47d2-a13d-bdbd9a257512/expanded-developer-preview-of-notifications-for-alexa-skills
https://blogs.windows.com/buildingapps/2014/04/02/extending-platform-commonality-through-universal-windows-apps/
https://blogs.windows.com/buildingapps/2014/04/02/extending-platform-commonality-through-universal-windows-apps/
http://dblp.uni-trier.de/db/journals/aim/aim31.html#FerrucciBCFGKLMNPSW10
http://dblp.uni-trier.de/db/journals/aim/aim31.html#FerrucciBCFGKLMNPSW10

Bibliography

[40] Firefly’s dim light snuffed out. url: https://www.wired.com/1999/08/
fireflys-dim-light-snuffed-out/ (visited on 04/21/2018) (cit. on
p. 10).

[41] Mark Gales and Steve Young. “The Application of Hidden Markov
Models in Speech Recognition.” In: Found. Trends Signal Process. 1.3
(Jan. 2007), pp. 195–304. issn: 1932-8346. doi: 10.1561/2000000004.
url: http://dx.doi.org/10.1561/2000000004 (cit. on p. 31).

[42] Jesse James Garrett. Ajax, A New Approach to Web Applications. url:
http : / / adaptivepath . org / ideas / ajax - new - approach - web -

applications/ (visited on 08/08/2018) (cit. on p. 6).

[43] Stefan Göbel et al., eds. Technologies for Interactive Digital Storytelling
and Entertainment. TIDSE 2003 Proceedings, March 24-26, 2003. Vol. 9.
Computer Graphik Edition. Stuttgart, Germany. Darmstadt, Ger-
many: Fraunhofer IRB Verlag, 2003. url: http : / / www . verlag .

fraunhofer.de/bookshop/artikel.jsp?v=217489&local=en (cit.
on p. 19).

[44] David Goldberg et al. “Using Collaborative Filtering to Weave an
Information Tapestry.” In: Commun. ACM 35.12 (Dec. 1992), pp. 61–
70. issn: 0001-0782. doi: 10.1145/138859.138867. url: http://doi.
acm.org/10.1145/138859.138867 (cit. on p. 9).

[45] Google unveils Google Assistant, a virtual assistant that’s a big upgrade
to Google Now. url: https://techcrunch.com/2016/05/18/google-
unveils - google - assistant - a - big - upgrade - to - google - now/

(visited on 09/03/2018) (cit. on p. 30).

[46] Maria das Graças Bruno Marietto et al. “Artificial Intelligence MArkup
Language: A Brief Tutorial.” In: CoRR abs/1307.3091 (2013). arXiv:
1307.3091. url: http://arxiv.org/abs/1307.3091 (cit. on p. 19).

[47] Miguel Grinberg. Flask Web Development: Developing Web Applications
with Python. 1st. O’Reilly Media, Inc., 2014. isbn: 9781449372620 (cit.
on p. 47).

[48] Home Page of The Loebner Prize in Artificial Intelligence. url: https://
web.archive.org/web/20140321191350/http://www.loebner.net:

80/Prizef/loebner-prize.html (visited on 08/24/2018) (cit. on
pp. 16, 20, 22).

129

https://www.wired.com/1999/08/fireflys-dim-light-snuffed-out/
https://www.wired.com/1999/08/fireflys-dim-light-snuffed-out/
https://doi.org/10.1561/2000000004
http://dx.doi.org/10.1561/2000000004
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://www.verlag.fraunhofer.de/bookshop/artikel.jsp?v=217489&local=en
http://www.verlag.fraunhofer.de/bookshop/artikel.jsp?v=217489&local=en
https://doi.org/10.1145/138859.138867
http://doi.acm.org/10.1145/138859.138867
http://doi.acm.org/10.1145/138859.138867
https://techcrunch.com/2016/05/18/google-unveils-google-assistant-a-big-upgrade-to-google-now/
https://techcrunch.com/2016/05/18/google-unveils-google-assistant-a-big-upgrade-to-google-now/
https://arxiv.org/abs/1307.3091
http://arxiv.org/abs/1307.3091
https://web.archive.org/web/20140321191350/http://www.loebner.net:80/Prizef/loebner-prize.html
https://web.archive.org/web/20140321191350/http://www.loebner.net:80/Prizef/loebner-prize.html
https://web.archive.org/web/20140321191350/http://www.loebner.net:80/Prizef/loebner-prize.html

Bibliography

[49] HTML 5, A vocabulary and associated APIs for HTML and XHTML.
url: https://www.w3.org/TR/html50/ (visited on 04/20/2018)
(cit. on p. 6).

[50] HTML 5.2, W3C Recommendation, 14 Dezember 2017. url: https://
www.w3.org/TR/html/ (visited on 04/20/2018) (cit. on p. 5).

[51] IBM Opens Up Its Watson Cognitive Computer For Developers Every-
where. url: https://www.forbes.com/sites/bruceupbin/2013/
11/14/ibm- opens- up- watson- as- a- web- service/ (visited on
08/27/2018) (cit. on p. 24).

[52] Information Management: A Proposal. url: https://www.w3.org/
History/1989/proposal.html (visited on 04/20/2018) (cit. on p. 5).

[53] Integrate Cortana today. url: https://developer.microsoft.com/en-
us/cortana/devices (visited on 09/03/2018) (cit. on p. 30).

[54] Interview with Steve Worswick. url: http://aidreams.co.uk/forum/
index.php?page=Steve_Worswick_Interview_- _Loebner_2013_

winner (visited on 08/17/2018) (cit. on p. 20).

[55] Introducing Dialogflow, the name for API.AI. url: https : / / blog .

dialogflow.com/post/apiai-new-name-dialogflow-new-features/

(visited on 08/26/2018) (cit. on p. 25).

[56] Jabberwacky Chatbot. url: http://www.jabberwacky.com (visited on
08/15/2018) (cit. on p. 22).

[57] Eric A. Jacobi Jennifer A; Benson. “Use of electronic shopping carts to
generate personal recommendations.” Patent US 6317722 (US). Nov.
2001. url: https://www.lens.org/lens/patent/US_6317722_B1
(cit. on p. 10).

[58] Dietmar Jannach et al. Recommender Systems: An Introduction. 1st.
New York, NY, USA: Cambridge University Press, 2010. isbn: 9780521493369

(cit. on pp. 7, 8, 13, 15).

[59] Jeopardy! The IBM Challenge (16.02.2011) Day 3. url: https://www.
youtube.com/watch?v=ByLbUOr574Q (visited on 08/26/2018) (cit. on
p. 24).

130

https://www.w3.org/TR/html50/
https://www.w3.org/TR/html/
https://www.w3.org/TR/html/
https://www.forbes.com/sites/bruceupbin/2013/11/14/ibm-opens-up-watson-as-a-web-service/
https://www.forbes.com/sites/bruceupbin/2013/11/14/ibm-opens-up-watson-as-a-web-service/
https://www.w3.org/History/1989/proposal.html
https://www.w3.org/History/1989/proposal.html
https://developer.microsoft.com/en-us/cortana/devices
https://developer.microsoft.com/en-us/cortana/devices
http://aidreams.co.uk/forum/index.php?page=Steve_Worswick_Interview_-_Loebner_2013_winner
http://aidreams.co.uk/forum/index.php?page=Steve_Worswick_Interview_-_Loebner_2013_winner
http://aidreams.co.uk/forum/index.php?page=Steve_Worswick_Interview_-_Loebner_2013_winner
https://blog.dialogflow.com/post/apiai-new-name-dialogflow-new-features/
https://blog.dialogflow.com/post/apiai-new-name-dialogflow-new-features/
http://www.jabberwacky.com
https://www.lens.org/lens/patent/US_6317722_B1
https://www.youtube.com/watch?v=ByLbUOr574Q
https://www.youtube.com/watch?v=ByLbUOr574Q

Bibliography

[60] Ben J. A. Kröse and Patrick P. van der Smagt. An Introduction to Neural
Networks. Fourth. Amsterdam, The Netherlands: The University of
Amsterdam, 1991 (cit. on p. 26).

[61] Neal Lathia, Stephen Hailes, and Licia Capra. “The Effect of Correla-
tion Coefficients on Communities of Recommenders.” In: Proceedings
of the 2008 ACM Symposium on Applied Computing. SAC ’08. Fortaleza,
Ceara, Brazil: ACM, 2008, pp. 2000–2005. isbn: 978-1-59593-753-7.
doi: 10.1145/1363686.1364172. url: http://doi.acm.org/10.
1145/1363686.1364172 (cit. on p. 11).

[62] R. Likert. A Technique for the Measurement of Attitudes. A Technique for
the Measurement of Attitudes Nr. 136-165. publisher not identified,
1932. url: https://books.google.at/books?id=9rotAAAAYAAJ (cit.
on p. 78).

[63] Loebner Prize. url: https://www.aisb.org.uk/events/loebner-
prize (visited on 08/24/2018) (cit. on pp. 16, 20).

[64] Pattie Maes. “Agents That Reduce Work and Information Overload.”
In: Commun. ACM 37.7 (July 1994), pp. 30–40. issn: 0001-0782. doi:
10.1145/176789.176792. url: http://doi.acm.org/10.1145/
176789.176792 (cit. on p. 2).

[65] Marvin Minsky in comp.ai: Annual Minsky Loebner Prize Revocation
Prize 1995 Announcement. url: https://groups.google.com/d/
msg/comp.ai/dZtU8vDD_bk/06d5alLQRo0J (visited on 08/13/2018)
(cit. on p. 16).

[66] Michael L. Mauldin. “ChatterBots, TinyMuds, and the Turing Test:
Entering the Loebner Prize Competition.” In: Proceedings of the Twelfth
National Conference on Artificial Intelligence (Vol. 1). AAAI ’94. Seattle,
Washington, USA: American Association for Artificial Intelligence,
1994, pp. 16–21. isbn: 0-262-61102-3. url: http://dl.acm.org/
citation.cfm?id=199288.199285 (cit. on pp. 15, 17).

[67] Messenger-Plattform Documentation. url: https://developers.facebook.
com/docs/messenger- platform (visited on 04/16/2018) (cit. on
p. 54).

131

https://doi.org/10.1145/1363686.1364172
http://doi.acm.org/10.1145/1363686.1364172
http://doi.acm.org/10.1145/1363686.1364172
https://books.google.at/books?id=9rotAAAAYAAJ
https://www.aisb.org.uk/events/loebner-prize
https://www.aisb.org.uk/events/loebner-prize
https://doi.org/10.1145/176789.176792
http://doi.acm.org/10.1145/176789.176792
http://doi.acm.org/10.1145/176789.176792
https://groups.google.com/d/msg/comp.ai/dZtU8vDD_bk/06d5alLQRo0J
https://groups.google.com/d/msg/comp.ai/dZtU8vDD_bk/06d5alLQRo0J
http://dl.acm.org/citation.cfm?id=199288.199285
http://dl.acm.org/citation.cfm?id=199288.199285
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform

Bibliography

[68] Microsoft Joins Debate Over On-Line Privacy by Acquiring Firefly. url:
http : / / www . nytimes . com / 1998 / 04 / 10 / business (visited on
04/21/2018) (cit. on p. 10).

[69] Microsoft limits the Cortana search box in Windows 10 to Bing and Edge
only. url: https://venturebeat.com/2016/04/28/microsoft-
limits-the-cortana-search-box-in-windows-10-to-bing-and-

edge-only/ (visited on 09/03/2018) (cit. on p. 30).

[70] Microsoft’s Cortana digital assistant guards user privacy with ’Notebook’.
url: https://www.pcworld.com/article/2099943/microsofts-
cortana-digital-assistant-guards-user-privacy-with-notebook.

html (visited on 09/03/2018) (cit. on p. 30).

[71] K. Nath, S. Dhar, and S. Basishtha. “Web 1.0 to Web 3.0 - Evolution of
the Web and its various challenges.” In: 2014 International Conference
on Reliability Optimization and Information Technology (ICROIT). Feb.
2014, pp. 86–89. doi: 10.1109/ICROIT.2014.6798297 (cit. on pp. 6,
36).

[72] Österreich Zahlen Daten Fakten. 13th. Statistik Austria, 2018. isbn: 978-
3-903106-66-6. url: http://www.statistik.at/web_de/services/
oesterreich_zahlen_daten_fakten/index.html (visited on 04/25/2018)
(cit. on p. 93).

[73] Christian Paier. “Cheating in Recommender Systems.” Bachelor’s
Thesis. Graz University of Technology, 2017. url: https://cpaier.
com/2017-09-15_bakk_cpaier.pdf (cit. on pp. 7, 11, 12, 14).

[74] Pandorabots: Frequently Asked Questions. url: https://pandorabots.
com/docs/content/faq.html (visited on 08/17/2018) (cit. on pp. 20,
24).

[75] Ayse Pinar Saygin, Ilyas Cicekli, and Varol Akman. “Turing Test:
50 Years Later.” In: Minds and Machines 10.4 (Nov. 2000), pp. 463–
518. issn: 1572-8641. doi: 10.1023/A:1011288000451. url: https:
//doi.org/10.1023/A:1011288000451 (cit. on p. 16).

[76] Lawrence R. Rabiner. “Readings in Speech Recognition.” In: ed.
by Alex Waibel and Kai-Fu Lee. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1990. Chap. A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recognition, pp. 267–

132

http://www.nytimes.com/1998/04/10/business
https://venturebeat.com/2016/04/28/microsoft-limits-the-cortana-search-box-in-windows-10-to-bing-and-edge-only/
https://venturebeat.com/2016/04/28/microsoft-limits-the-cortana-search-box-in-windows-10-to-bing-and-edge-only/
https://venturebeat.com/2016/04/28/microsoft-limits-the-cortana-search-box-in-windows-10-to-bing-and-edge-only/
https://www.pcworld.com/article/2099943/microsofts-cortana-digital-assistant-guards-user-privacy-with-notebook.html
https://www.pcworld.com/article/2099943/microsofts-cortana-digital-assistant-guards-user-privacy-with-notebook.html
https://www.pcworld.com/article/2099943/microsofts-cortana-digital-assistant-guards-user-privacy-with-notebook.html
https://doi.org/10.1109/ICROIT.2014.6798297
http://www.statistik.at/web_de/services/oesterreich_zahlen_daten_fakten/index.html
http://www.statistik.at/web_de/services/oesterreich_zahlen_daten_fakten/index.html
https://cpaier.com/2017-09-15_bakk_cpaier.pdf
https://cpaier.com/2017-09-15_bakk_cpaier.pdf
https://pandorabots.com/docs/content/faq.html
https://pandorabots.com/docs/content/faq.html
https://doi.org/10.1023/A:1011288000451
https://doi.org/10.1023/A:1011288000451
https://doi.org/10.1023/A:1011288000451

Bibliography

296. isbn: 1-55860-124-4. url: http://dl.acm.org/citation.cfm?
id=108235.108253 (cit. on p. 31).

[77] Paul Resnick et al. “GroupLens: An Open Architecture for Collabo-
rative Filtering of Netnews.” In: Proceedings of the 1994 ACM Confer-
ence on Computer Supported Cooperative Work. CSCW ’94. Chapel Hill,
North Carolina, USA: ACM, 1994, pp. 175–186. isbn: 0-89791-689-1.
doi: 10.1145/192844.192905. url: http://doi.acm.org/10.1145/
192844.192905 (cit. on p. 9).

[78] Francesco Ricci et al., eds. Recommender Systems Handbook. Springer
US, 2011. doi: 10.1007/978-0-387-85820-3. url: https://doi.
org/10.1007/978-0-387-85820-3 (cit. on pp. 7, 8, 13, 14).

[79] RiveScript Tutorial. url: https://www.rivescript.com/docs/tutorial
(visited on 04/16/2018) (cit. on p. 61).

[80] John R. Searle. “Minds, brains, and programs.” In: Behavioral and
Brain Sciences 3 (1980), pp. 417–424 (cit. on p. 16).

[81] SIRI RISING: The Inside Story Of Siri’s Origins — And Why She Could
Overshadow The iPhone. url: https://www.huffingtonpost.com/
2013/01/22/siri- do- engine- apple- iphone_n_2499165.html

(visited on 09/03/2018) (cit. on p. 29).

[82] Speech Synthesis Markup Language (SSML) Reference. url: https://
developer.amazon.com/docs/custom-skills/speech-synthesis-

markup-language-ssml-reference.html (visited on 04/16/2018)
(cit. on p. 73).

[83] The BellKor Solution to the Netflix Grand Prize. url: http : / / www .

netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf (vis-
ited on 04/21/2018) (cit. on p. 10).

[84] The Big Internet Brands Of The ’90s — Where Are They Now? url:
https://www.npr.org/sections/alltechconsidered/2016/07/

25/487097344/the-big-internet-brands-of-the-90s-where-are-

they-now (visited on 08/07/2018) (cit. on p. 6).

[85] The BigChaos Solution to the Netflix Grand Prize. url: http://www.
netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf

(visited on 04/21/2018) (cit. on p. 10).

133

http://dl.acm.org/citation.cfm?id=108235.108253
http://dl.acm.org/citation.cfm?id=108235.108253
https://doi.org/10.1145/192844.192905
http://doi.acm.org/10.1145/192844.192905
http://doi.acm.org/10.1145/192844.192905
https://doi.org/10.1007/978-0-387-85820-3
https://doi.org/10.1007/978-0-387-85820-3
https://doi.org/10.1007/978-0-387-85820-3
https://www.rivescript.com/docs/tutorial
https://www.huffingtonpost.com/2013/01/22/siri-do-engine-apple-iphone_n_2499165.html
https://www.huffingtonpost.com/2013/01/22/siri-do-engine-apple-iphone_n_2499165.html
https://developer.amazon.com/docs/custom-skills/speech-synthesis-markup-language-ssml-reference.html
https://developer.amazon.com/docs/custom-skills/speech-synthesis-markup-language-ssml-reference.html
https://developer.amazon.com/docs/custom-skills/speech-synthesis-markup-language-ssml-reference.html
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
https://www.npr.org/sections/alltechconsidered/2016/07/25/487097344/the-big-internet-brands-of-the-90s-where-are-they-now
https://www.npr.org/sections/alltechconsidered/2016/07/25/487097344/the-big-internet-brands-of-the-90s-where-are-they-now
https://www.npr.org/sections/alltechconsidered/2016/07/25/487097344/the-big-internet-brands-of-the-90s-where-are-they-now
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf

Bibliography

[86] The first webpage. url: http : / / info . cern . ch / hypertext / WWW /

TheProject.html (visited on 04/20/2018) (cit. on p. 5).

[87] The Original HTTP as defined in 1991. url: https://www.w3.org/
Protocols/HTTP/AsImplemented.html (visited on 04/20/2018) (cit.
on p. 5).

[88] The Pragmatic Theory solution to the Netflix Grand Prize. url: http://
netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.

pdf (visited on 04/21/2018) (cit. on p. 10).

[89] The WOrldWideWeb browser. url: https://www.w3.org/People/
Berners-Lee/WorldWideWeb.html (visited on 04/26/2018) (cit. on
p. 5).

[90] Today in Apple history: Siri debuts on iPhone 4s. url: https://www.
cultofmac.com/447783/today-in-apple-history-siri-makes-

its-public-debut-on-iphone-4s/ (visited on 09/03/2018) (cit. on
p. 29).

[91] Thomas Tullis and Jacqueline N Stetson. “A Comparison of Ques-
tionnaires for Assessing Website Usability.” In: (June 2006) (cit. on
p. 81).

[92] Alan M. Turing. “Computing Machinery and Intelligence.” In: Pars-
ing the Turing Test: Philosophical and Methodological Issues in the Quest
for the Thinking Computer. Ed. by Robert Epstein, Gary Roberts, and
Grace Beber. Dordrecht: Springer Netherlands, 2009, pp. 23–65. isbn:
978-1-4020-6710-5. doi: 10.1007/978-1-4020-6710-5_3. url: https:
//doi.org/10.1007/978-1-4020-6710-5_3 (cit. on p. 1).

[93] Usability.gov: Glossry. url: https://www.usability.gov/what-and-
why/glossary/u/index.html (visited on 04/25/2018) (cit. on p. 77).

[94] Tom Vanderbilt. The science behind the Netflix algorithms that decide
what you’ll watch next. 2013. url: http://www.wired.com/2013/08/
qq_netflix-%20algorithm/ (visited on 04/21/2018) (cit. on p. 8).

[95] Oriol Vinyals and Quoc V. Le. “A Neural Conversational Model.” In:
CoRR abs/1506.05869 (2015). arXiv: 1506.05869. url: http://arxiv.
org/abs/1506.05869 (cit. on pp. 26, 28).

[96] Richard Wallace. The elements of AIML style. ALICE AI Foundation.
2004 (cit. on p. 19).

134

http://info.cern.ch/hypertext/WWW/TheProject.html
http://info.cern.ch/hypertext/WWW/TheProject.html
https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://www.w3.org/Protocols/HTTP/AsImplemented.html
http://netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf
http://netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf
http://netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf
https://www.w3.org/People/Berners-Lee/WorldWideWeb.html
https://www.w3.org/People/Berners-Lee/WorldWideWeb.html
https://www.cultofmac.com/447783/today-in-apple-history-siri-makes-its-public-debut-on-iphone-4s/
https://www.cultofmac.com/447783/today-in-apple-history-siri-makes-its-public-debut-on-iphone-4s/
https://www.cultofmac.com/447783/today-in-apple-history-siri-makes-its-public-debut-on-iphone-4s/
https://doi.org/10.1007/978-1-4020-6710-5_3
https://doi.org/10.1007/978-1-4020-6710-5_3
https://doi.org/10.1007/978-1-4020-6710-5_3
https://www.usability.gov/what-and-why/glossary/u/index.html
https://www.usability.gov/what-and-why/glossary/u/index.html
http://www.wired.com/2013/08/qq_netflix-%20algorithm/
http://www.wired.com/2013/08/qq_netflix-%20algorithm/
https://arxiv.org/abs/1506.05869
http://arxiv.org/abs/1506.05869
http://arxiv.org/abs/1506.05869

Bibliography

[97] Richard S. Wallace. “The Anatomy of A.L.I.C.E.” In: Parsing the
Turing Test: Philosophical and Methodological Issues in the Quest for the
Thinking Computer. Ed. by Robert Epstein, Gary Roberts, and Grace
Beber. Dordrecht: Springer Netherlands, 2009, pp. 181–210. isbn:
978-1-4020-6710-5. doi: 10.1007/978- 1- 4020- 6710- 5_13. url:
https://doi.org/10.1007/978-1-4020-6710-5_13 (cit. on p. 19).

[98] Joseph Weizenbaum. Computer Power and Human Reason: From Judg-
ment to Calculation. New York: W. H. Freeman & Co., 1976. isbn:
0-7167-0463-3 (cit. on p. 17).

[99] Joseph Weizenbaum. “ELIZA&Mdash;a Computer Program for the
Study of Natural Language Communication Between Man and Ma-
chine.” In: Commun. ACM 9.1 (Jan. 1966), pp. 36–45. issn: 0001-0782.
doi: 10.1145/365153.365168. url: http://doi.acm.org/10.1145/
365153.365168 (cit. on pp. 17, 19).

[100] What happened when a professor built a chatbot to be his teaching assis-
tant. url: https://www.washingtonpost.com/news/innovations/
wp/2016/05/11/this-professor-stunned-his-students-when-he-

revealed-the-secret-identity-of-his-teaching-assistant/

?noredirect=on&utm_term=.8f0c88ad7b5b (visited on 08/26/2018)
(cit. on p. 25).

[101] What is SaaS? url: https://azure.microsoft.com/en-us/overview/
what-is-saas/ (visited on 08/28/2018) (cit. on p. 22).

[102] What is Web 2.0. url: http: //www .oreilly. com/ pub/a /web2/

archive/what-is-web-20.html (visited on 04/20/2018) (cit. on
pp. 2, 6).

[103] Works with Alexa Certification Program. url: https : / / developer .

amazon.com/alexa/smart-home/launch/works-with-alexa (vis-
ited on 09/03/2018) (cit. on p. 29).

[104] M. Wu. “Collaborative Filtering via Ensembles of Matrix Factoriza-
tions.” In: KDD Cup and Workshop 2007. Max-Planck-Gesellschaft.
Aug. 2007, pp. 43–47 (cit. on p. 13).

135

https://doi.org/10.1007/978-1-4020-6710-5_13
https://doi.org/10.1007/978-1-4020-6710-5_13
https://doi.org/10.1145/365153.365168
http://doi.acm.org/10.1145/365153.365168
http://doi.acm.org/10.1145/365153.365168
https://www.washingtonpost.com/news/innovations/wp/2016/05/11/this-professor-stunned-his-students-when-he-revealed-the-secret-identity-of-his-teaching-assistant/?noredirect=on&utm_term=.8f0c88ad7b5b
https://www.washingtonpost.com/news/innovations/wp/2016/05/11/this-professor-stunned-his-students-when-he-revealed-the-secret-identity-of-his-teaching-assistant/?noredirect=on&utm_term=.8f0c88ad7b5b
https://www.washingtonpost.com/news/innovations/wp/2016/05/11/this-professor-stunned-his-students-when-he-revealed-the-secret-identity-of-his-teaching-assistant/?noredirect=on&utm_term=.8f0c88ad7b5b
https://www.washingtonpost.com/news/innovations/wp/2016/05/11/this-professor-stunned-his-students-when-he-revealed-the-secret-identity-of-his-teaching-assistant/?noredirect=on&utm_term=.8f0c88ad7b5b
https://azure.microsoft.com/en-us/overview/what-is-saas/
https://azure.microsoft.com/en-us/overview/what-is-saas/
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
https://developer.amazon.com/alexa/smart-home/launch/works-with-alexa
https://developer.amazon.com/alexa/smart-home/launch/works-with-alexa

