
Stefan Ainetter, BSc

Evaluation of Spatiotemporal
GANs

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisors

Pinz, Axel, Ao.Univ.-Prof. Dipl.-Ing. Dr.techn.
Feichtenhofer, Christoph, Dipl.-Ing. Dr.techn. BSc

Institute for Electrical Measurement and Measurement Signal Processing

Graz, October 2018

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

Abstract

Generating high-resolution, photo-realistic images has been a long-standing
goal in machine learning and is a popular field of research nowadays. Us-
ing Generative Adversarial Networks (GANs) for video generation is less
explored, and therefore needs further attention.
We present a spatiotemporal GAN for action recognition which makes it
possible to generate videos for 101 action classes, at a spatial resolution of
227x227px. With this method, we are able to outperform other state-of-the-
art spatiotemporal GANs in terms of spatial resolution and image quality.
We provide a quantitative evaluation of our results, which underlines the
improvement compared to other methods.
Furthermore, using a different approach, we tackle the problem of generat-
ing videos at increased spatial resolution. We use a Progressively growing
GAN, an approach originally developed for image generation, to generate
videos for action recognition at a spatial resolution of 512x512px.
Our approach is able to generate videos with high image quality, which
means that these videos could be used as augmented data in the domain
of action recognition, to boost the performance of state-of-the-art action
recognition classifiers in the future.

iii

Kurzfassung

Die Erzeugung hochauflösender, fotorealistischer Bilder ist seit langem
ein Ziel des maschinellen Lernens und ein beliebtes Forschungsgebiet.
Der Bereich der Videoerzeugung ist weniger erforscht und bedarf deshalb
zusätzlicher Aufmerksamkeit.
Wir präsentieren ein raum-zeitliches ”Generative Adversarial Network”
(GAN) im Bereich der Bewegungsmustererkennung, welches es ermöglicht,
Videos für 101 Bewegnungsarten mit einer räumlichen Auflösung von
227x227px zu erzeugen. Mit dieser Methode sind wir in der Lage, an-
dere moderne raum-zeitliche GANs bezüglich räumlicher Auflösung und
Bildqualität zu übertreffen. Wir bieten eine quantitative Evaluierung unserer
Ergebnisse, welche die Verbesserung im Vergleich zu anderen Methoden
unterstreicht.
Darüber hinaus stellen wir eine Methode vor, die das Problem der Video-
erzeugung mit erhöhter räumlicher Auflösung behebt. Wir verwenden ein
”Progressively growing GAN”, ein ursprünglich für die Bilderzeugung en-
twickeltes neuronales Netzwerk, um Videos mit einer räumlichen Auflösung
von 512x512px zu generieren.
Unsere Methode ist in der Lage, Videos mit hoher Bildqualität zu erzeu-
gen, welche als zusätzliche Trainingsdaten verwendet werden können, um
Methoden der Bewegungsmustererkennung in Zukunft zu verbessern.

iv

Contents

Abstract iii

Kurzfassung iv

1. Introduction 1

2. Related Work 4

3. Preliminaries: Machine Learning 7
3.1. Deep Learning . 7

3.2. Convolutional Neural Networks 7

3.2.1. Structure of CNNs . 9

3.2.2. Upconvolution . 10

3.3. Learning Algorithms, Back-Propagation, Optimizer 11

3.4. Generative Models . 12

3.4.1. Maximum Likelihood Estimation 13

3.4.2. Generative Adversarial Networks 13

3.4.3. Evaluation Techniques for Generative Models 17

4. Generative Adversarial Networks for Video Generation 19
4.1. Spatial Network Architecture 19

4.2. Spatiotemporal Network Structure and Parameter Transfer . . 23

4.3. Loss Function . 25

4.4. Generating Output using Activation Maximization 26

4.5. Condition Networks . 28

4.5.1. LRCN - Long-term Recurrent Convolutional Network 28

4.5.2. C3D - 3D Convolutional Networks 30

4.6. Experimental Results . 31

4.6.1. Fine-tuning our Spatiotemporal GAN using Video Data 31

v

Contents

4.6.2. Video Generation using LRCN as Condition Network 34

4.6.3. Quantitative Evaluation using the Inception Score . . . 40

4.7. Conclusion . 44

5. Generating High Resolution Action Videos 45
5.1. Progressively Growing GAN 45

5.1.1. Network Architecture 45

5.1.2. Loss Function . 46

5.1.3. Regularization Techniques 47

5.2. Experimental Results . 48

5.2.1. Dataset Preprocessing 48

5.2.2. Training Details . 51

5.2.3. One Class Image Generation 52

5.2.4. Video Generation using Latent Space Interpolation . . 54

5.2.5. Evaluation . 54

5.3. Conclusion . 56

6. Discussion and Future Work 58

A. Additional Material 60
A.1. Simplification of the Inception Score 60

A.2. UCF-101 Image Generation . 61

A.3. Long-Sequence Video Generation 64

A.4. Video Generation using C3D as Condition Network 68

A.5. Multi Class Image Generation using Progressively Growing
GAN . 71

A.6. Further Examples of Video Generation using Progressively
Growing GAN . 75

Bibliography 77

vi

1. Introduction

Since their first introduction, Generative Adversarial Networks (GANs) [17]
have been a popular field of research due to their ability to learn percep-
tual representations of images in an unsupervised manner. Especially in
computer vision, this method can be beneficial for a variety of tasks like
clustering, classification, and sample generation. Recently, using GANs for
image generation made a big step forward, resulting in methods which are
able to synthesize images up to a spatial resolution of 2 megapixel [6, 58].
However, using GANs in the field of video generation has not been tackled
with the same intensity, and therefore needs further attention.

This work addresses the generation of videos in the domain of action
recognition. Training a model to generate realistic-looking videos for action
recognition could provide further understanding of how classifiers in this
domain work, and therefore could boost the results of current state-of-the-art
action recognition classifiers. For this purpose, we provide a spatiotemporal
GAN, which is able to generate videos in the domain of action recognition
at a spatial resolution up to 227x227px. Although state-of-the-art GANs
are able to generate images at spatial resolution 1024x1024px, for video
generation in the domain of action recognition, our output resolution is
state-of-the-art. We quantitatively evaluate our results using the Inception
score [45]. We compare our model to state-of-the-art approaches for action
video generation, and are able to outperform them in terms of Inception
score and spatial resolution. Furthermore, we demonstrate that it is possible
to fool the Inception score metric by generating samples that are optimized
to achieve a high score, as claimed by [45]. We show how to use the Incep-
tion score to obtain valid results, by strictly separating the video generation
process and the evaluation.
Additionally, we present a method to further increase the spatial resolution
of generated videos. Using the framework provided by [26], we are able to

1

1. Introduction

generate action videos at a resolution of 512x512px, which is the highest
spatial resolution for action videos at the time of writing, to the best of our
knowledge. Figure 1.1 provides an example of a video in the domain of
action recognition, which is generated with our approach.

Problem Statement

To summarize, this thesis addresses the following issues:

• Implementing a spatiotemporal GAN for action recognition, which
aims to improve the quality of the generated videos, as well as the
spatial resolution, according to state-of-the-art approaches.
• Using quantitative evaluation metrics for generative models, to gain

further insights about our approach and be able to compare it with
other state-of-the-art methods.
• Generating high resolution videos in the domain of action recognition.

To the best of our knowledge, a spatial resolution of 227x227px is
state-of-the-art, which we want to increase.

2

1. Introduction

Figure 1.1.: An example of our generated action videos with a spatial resolution of
512x512px. The sequence shows 16 consecutive frames of playing billiard,
all frames with a spatial resolution of 512x512px.

3

2. Related Work

In this chapter, we briefly discuss the usage of GANs in computer vision
and provide an overview about related work on GANs in image and video
domain. We also give a short overview about popular datasets for action
recognition and discuss methods to quantitatively evaluate generative mod-
els, including the most popular GAN evaluation metrics. Finally, we discuss
state-of-the-art approaches for high resolution image/video generation.

Generative models for image generation. The idea of GANs was first pro-
posed in [17], outperforming other generative models like autoencoders [29,
56] and Boltzmann machines [35, 44] according to image quality. Since
then, GANs have been a popular field of research, and are used in different
domains like image in-painting [22], image-to-image translation [36, 59] and
super resolution [34]. GAN training using the loss function proposed in [17]
is considered as unstable. Therefore, Dosovitskiy and Brox [9] combined the
GAN loss with additional losses in image and feature space, to make the
training more stable. Their loss function proved to be stable during training
and generated realistic-looking images, although their model is more like an
auto-encoder combined with the GAN training, than a GAN itself. Several
attempts [38, 14, 39] used this loss function in combination with activation
maximization [65, 11, 66, 46] to generate class specific images.
Another popular approach is the Wasserstein-GAN [3], which uses the
Earth-Mover or Wasserstein-1 distance as basis for their loss function. Sev-
eral GANs [41, 18, 45, 5, 2] adapted this loss function and were able to
improve quality, stability and variation of the generated images.

Video Generation using GANs. Video recognition and classification re-
ceived a lot of attention in recent past. Therefore, generating videos via
generative models is also drawing much attention. TGAN [43] generates
videos for action recognition using two generators, where one generator

4

2. Related Work

learns to generate images, and the other one models temporal coherence. It
produces frames with the spatial resolution of 64x64px. Vondrick et al. [57]
proposed a model to generate videos with a spatiotemporal convolutional
architecture that separates foreground and background. Spampinato et
al. [50] use a similar approach for video generation, which also untangles
the foreground from the background. Fuchs [14] proposed a model to gen-
erate videos of arbitrary length for autonomous driving.

Action recognition datasets. Using a popular dataset enables opportunities
to compare our performance to other approaches. Therefore, one of the
main points of this work is to evaluate spatiotemporal GANs in the context
of action recognition. The UCF-101 dataset [49] is a widely used dataset for
action recognition, and using it enables us to compare the performance of
our approach to state-of-the-art work. It contains video data of 101 different
sports activities and each video comes at a resolution of 320x240px, and
runs at 25 frames per second.
There are several datasets for action recognition available:

• UCF-101: 13,320 clips from 101 actions
• Kinetics Human Action Video Dataset [27]: at least 400 video clips for

each of the 400 human action classes
• Sports-1M [25]: 1.1M videos from 487 sports classes
• Youtube-8M [1]: more than 8M videos from 4800 classes

Evaluation methods for generative models. Directly comparing the images
of two different generative models, in terms of image quality, is hard to
achieve. Salimans et al. [45] proposed an evaluation metric called the In-
ception score. To achieve a high Inception score, images should contain
meaningful objects and the GAN should generate varied images. This met-
ric is widely used to evaluate the quality of generated images [50, 43, 18].
Another way of GAN evaluation is to measure the variance of the generated
data. This can be achieved using structural similarity [62], and was used as
evaluation metric in [40, 26].
Another popular method is using the Fréchet Inception distance [19], which
is based on the Fréchet distance [10].

GANs for high resolution output. There are several papers [48, 34] which
use GANs in the context of super-resolution to create high resolution out-

5

2. Related Work

put from low resolution input. Denton et al. [7] proposed a framework
that generates images in a coarse-to-fine fashion, combining a conditional
GAN model with a Laplacian pyramid representation. Karras et al. [26]
were able to generate images at a resolution of 1024x1024px using GANs
and a coarse-to-fine structure. For this approach, both the generator and
discriminator grow progressively during training. GANs are also often used
for synthesizing videos. Koltun and Chen [6] and Wang et al. [58] are able
to synthesize videos with a spatial resolution of 2048x1024px, also using
progressively growing network architectures. However, they use semantic
layouts instead of noise as input, which simplifies the process of generating
samples.

6

3. Preliminaries: Machine Learning

This chapter covers the most important preliminaries of machine learning
as well as specific concepts that are important for this work. The focus is
on deep learning, which is a sub category of machine learning. A more
detailed description about deep learning is provided by [16].

3.1. Deep Learning

Deep learning is a specific research area in the field of Artificial Intelligence
(AI) using a hierarchy of concepts, with each concept defined through the
relation to simpler concepts. Therefore, this hierarchy enables computers to
learn complicated concepts from simpler ones. Nowadays more computa-
tional power is available to build deep models, and GPU usage enables us to
highly parallelize operations, so that deep learning can operate in complex
real-world environments. Here, we focus on deep neural networks in the
context of computer vision. These deep neural networks learn the represen-
tation of image and video data using a mathematical function mapping of
raw data to some output values.

3.2. Convolutional Neural Networks

A key component of computer vision with deep neural networks is the
usage of a Convolutional Neural Network (CNN) [16, 33, 32]. CNNs are
specially used to process input data with a grid like topology. This kind of
network is often used for time-series data or image data. One of the main

7

3. Preliminaries: Machine Learning

concepts of CNNs is to use convolution instead of matrix multiplication in
some layers. In general, the convolutional operation is written as

s(t) = (x ∗ w)(t), (3.1)

where x refers to the input sequence and w is the kernel function depending
on time t. The new function s(t) is often called feature map. The convolution
operator ∗ can also be replaced by using an integral

s(t) =
∫

x(τ)w(t− τ)dτ, (3.2)

where τ describes the age of sequential data.

In computer vision, the input is usually a two-dimensional array of in-
put data, and the kernel is a two-dimensional array of parameters to be
learned. In this case, convolution S can be written as

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j− n)K(m, n), (3.3)

where I is the input image, K is the kernel, and m, n, j, i are spatial indices.
In practice, most machine learning libraries use cross-correlation, which is
the same as convolution but without flipping the kernel K:

S(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(i + m, j + n)K(m, n). (3.4)

The main difference between convolution and correlation is that the as-
sociative law only holds for convolution. However, we are not interested
in combining several kernels, but rather want to learn the kernel values
during training. Therefore, using correlation is perfectly fine in the context
of CNNs. Further information about convolution and correlation is provided
by [23].

The motivation behind using CNNs is that they support three important
concepts that help to improve machine learning systems:

Sparse weights mean that not every input unit interacts with each
output unit. This can be achieved by making the kernel w smaller
than the input, which improves both the amount of memory needed
to store parameters and also computing the output requires fewer
operations.

8

3. Preliminaries: Machine Learning

Parameter sharing: By shifting the kernel along the whole input, each
member of the kernel is used at every position. This means that only
one set of parameters has to be learned rather than specific weights
for each input. Parameter sharing therefore reduces the memory re-
quirements.
Equivariant representations: Sharing the weights across one layer
has the additional benefit of equivariance in translation. In images,
convolution creates a 2D feature map as output. When the objects in
the image move, this translation is also observable in the feature map.

3.2.1. Structure of CNNs

CNNs typically contain several convolutional layers which perform convo-
lutions on the input to produce linear activations. The detection layer uses
non-linear activation functions for extracting features. Rectified Linear Units
(ReLUs) are often used as non-linear activation function in this layer. The
ReLU function is described as follows:

f (x) =

{
0 for x < 0
x for x ≥ 0.

(3.5)

Two major benefits of ReLUs are sparsity and a reduced likelihood of van-
ishing gradient. Sparsity of parameters can speed up training. Vanishing
gradients often occur in deep networks, where many back-propagation steps
are performed for training. This means that after some steps the gradient
vanishes which is a major problem for learning. However, because the out-
put of the ReLU has no upper boundary this problem occurs less often.
The pooling layer helps to reduce the complexity by reducing the number of
outputs of the network. A popular pooling function is max pooling, where
the maximum of multiple output values is taken to represent this area. Other
pooling functions use a weighted average or L2 Norm to calculate the output.

More detailed information about CNNs can be found in [16, 33, 32].

9

3. Preliminaries: Machine Learning

3.2.2. Upconvolution

Upconvolution or deconvolution [68] was initially used for visualizing layers
of convolutional neural networks. It describes the process of transposing
the convolution. This leads to a higher resolution in output space after each
layer. Figure 3.1 shows a simple example for upconvolution. Each input
value is elementwise multiplied by a filter, and overlapping output values
are summed up. Furthermore, upconvolution uses the convolutional layer
properties (padding, stride) in the opposite way, which means that padding
is removed from the output rather than added to the input, and stride
results in upsampling rather than downsampling. For generative models,
upconvolutional layers are used to transform a random code vector to an
image. These transposed convolutions help to expand the resolution of data
after each layer, until one arrives at a suitable resolution for image data.
Further information about upconvolution is provided by [67, 68].

Figure 3.1.: Example for upconvolution. Upconvolution is performed on a 2x2 input, using
a 3x3 kernel with stride = 2 and padding = 1. One can see that the overlapping
output values are summed up. The result is a 4x4 output matrix. (Figure
from [13])

10

3. Preliminaries: Machine Learning

3.3. Learning Algorithms, Back-Propagation,
Optimizer

Deep neural networks learn to approximate specific functions during train-
ing. The aim of training is to minimize the loss function J so that the
predictions are as close as possible to the ground truth values. In standard
back-propagation [42], the parameters θ of a neural network are updated
in the negative direction of the gradient of the loss function J to minimize
the error. The update function for a specific network parameter θij looks as
follows:

θnew
ij = θold

ij + ∆θij,

∆θij = −η
∂J

∂θij
.

(3.6)

The parameter η describes the learning rate and θij could either be a weight
or a bias of a neuron. The term back-propagation refers to the concept of
information flowing backward through the network to compute the gradient
with respect to the network parameters. This gradient is afterwards used
by a specific optimization algorithm for parameter update. Implementing
an optimization algorithm in deep neural networks is computationally ex-
pensive, as the number of propagation steps increases with the number of
network layers. Therefore, we decided to use already implemented opti-
mization methods to calculate the gradient and minimize the loss function.

Adam Optimizer. The Adam Optimizer [28] uses adaptive moments to
overcome local minima in the error function. Furthermore, gradient clip-
ping is used to avoid instabilities and large jumps in the parameter space.
Initialization of the moments m and v, as well as the time-step t, looks as
follows:

m0 ← 0,
v0 ← 0,

t← 0.
(3.7)

11

3. Preliminaries: Machine Learning

The update rule for the network parameters θ, with the gradient g and the
adaptive learning rate lrt at time-step t, is described in [28] as:

t← t + 1,

lrt ← α

√
1− βt

2

(1− βt
1)

,

mt ← β1mt−1 + (1− β1)g,

vt ← β2vt−1 + (1− β2)g2,

θt ← θt−1 − lrt
mt

(
√

vt + ε)
.

(3.8)

The default values are as follows: the constant learning rate α = 0.001, the
exponential decay for the first momentum β1 = 0.9 and the exponential
decay for the second momentum β2 = 0.999. The constant parameter ε =
10−8 is used for numerical stability. More details about the implementation
are available online1.

3.4. Generative Models

The general idea of generative models is to take a collection of training
data and form a representation of the probability distribution. This can
be achieved by analyzing a density estimation of the input data and then
fitting a specific known probability density function (e.g. Gaussian dis-
tribution). Another way is to show training data to a model and train it
to generate samples with similar image statistics, rather than learning a
specific distribution function. This section contains an overview about the
most important concepts of generative models. The focus is on Generative
Adversarial Networks (GANs), because they are used for the experiments in
this thesis. More detailed information about generative models is provided
by [15, 16, 17, 45].

1https://www.tensorflow.org/api docs/python/tf/train/AdamOptimizer, last visited:
Aug. 2018

12

https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer

3. Preliminaries: Machine Learning

3.4.1. Maximum Likelihood Estimation

The basic idea of maximum likelihood is to define a model that provides an
estimate of a probability distribution, parameterized by Θ. The likelihood
can be described as

m

∏
i=1

log pmodel(x(i); Θ), (3.9)

which refers to the probability that the model assigns to the training data
containing m training examples x(i). In logarithmic space, the maximum
likelihood estimator ΘML looks as follows

ΘML = arg max
Θ

m

∑
i=1

log pmodel(x; Θ), (3.10)

where pmodel(x; Θ) is the probability distribution that maps any x to a real
number estimating the true probability distribution of the data.

Not every generative model uses the concept of maximum likelihood, how-
ever many of them, like GANs can be made to do so.

3.4.2. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a specific type of generative
models which only focus on the ability to generate samples, and do not learn
an explicit density pmodel(x; Θ). GANs are using an implicit approach that
samples directly from the distribution represented by the model. Typically,
both generator and discriminator are represented by deep neural networks.
This subsection briefly explains the basic GAN structure and describes the
training of GANs. Furthermore, we describe popular evaluation techniques
that are used nowadays to measure the performance of generative models.

Network Structure

The basic idea of GANs is to set up a game between two networks. One of
them is the generator which creates samples that are intended to come from

13

3. Preliminaries: Machine Learning

Figure 3.2.: Basic GAN structure shown in the context of learning to generate handwritten
digits. The generator receives random noise as input, and tries to generate
realistic-looking samples. During training, the discriminator receives fake im-
ages from the generator and real images, and classifies them as real or fake. The
generator uses an upconvolutional structure to transform random code vectors
to images. The discriminator uses convolutional layers and fully-connected
layers to classify the images as real or fake. (Figure from [47])

the same distribution as the training data. The other network is called the
discriminator. The discriminator is trained to classifying data as real or fake.
To achieve this goal, the discriminator uses traditional supervised learning
techniques, classifying inputs into real or fake. The generator is trained
to fool the discriminator. This means that the generator tries to produce
fake samples, which are indistinguishable from real ones. To succeed in this
game, the generator must learn to create samples that are drawn from a
distribution which is as similar as possible to the distribution of the training
data. Figure 3.2 shows an example of the basic GAN structure.
The discriminator uses convolutional layers for feature extraction. These
features serve as input for fully-connected layers, which learn to classify
the input. Fully-connected layers are defined as specific layers in neural
networks, where each input neuron is connected with each output neuron.
The last layer of a discriminator is typically a softmax layer, which uses the
softmax function to represent the probability distribution over the possible
classes (real or fake) (see [16] for more details).

14

3. Preliminaries: Machine Learning

GAN Training

During GAN training, the generator and the discriminator play a so called
minimax game. The objective is to balance both cost functions, which can
be written as

J(G) = −J(D), (3.11)

where J(G) and J(D) are the cost functions of the generator and discriminator
respectively. Although there are many different variations of the cost func-
tions, the basic discriminator cost function, as used in [17], is the standard
cross-entropy error written as

J(D)(Θ(D), Θ(G)) = −1
2

Ex∼pdata [log D(x)]− 1
2

Ez[log(1− D(G(z)))].
(3.12)

In general, E defines the expectation of a function with respect to a specific
probability distribution. D(x) defines the discriminator function that gets
an input vector x and is represented with parameters Θ(D). The generator G
implicitly defines the probability distribution pmodel and is able to generate
samples from a random variable z. The parameters Θ(G) are used to define
G.
The generator loss function is defined as

J(G) = −1
2

Ez[log(D(G(z)))]. (3.13)

The objective of the generator is to maximize the log-probability of the
discriminator being mistaken.

To conclude, the goal of training GANs is to find a unique solution, where
G recovers the distribution of the training data, and D is equal to 1

2 , which
means that the discriminator is not able to differentiate between real and
fake data.

Advantages of GANs

Sample quality. GANs are considered to be the type of generative models
that produce the best samples. However, it is very hard to quantify this, as

15

3. Preliminaries: Machine Learning

there is no way to directly measure the quality.

Generator training not directly dependent on real data. During training,
J(G) does not directly receive any real data. This means that all information
about the training data comes only through the back-propagated gradient
from the discriminator. Therefore, GANs are more resistant to overfitting,
because the generator has no opportunity to directly copy training exam-
ples [63, 17].

No difficulties when sampling data. After training, sample generation
with GANs only requires one forward pass through the generator. Other
generative models, for example Boltzmann machines, need an unknown
number of iterations via a Markov chain to sample data.

Disadvantages of GANs

Non-convergence. GANs require finding the equilibrium to a target, de-
pending on the generator and the discriminator. Therefore, it can be very
hard to balance the training. Even if one network successfully minimizes
its own cost function in one update, it might increase the cost for the other
one. Therefore, it is very important to find the right balance between G and
D to guarantee training progress and to avoid mode collapse.

Mode collapse. Mode collapse is a problem that occurs when the gen-
erator learns to map several different input vectors to the same output point.
It is common that trained GANs are not capturing all dataset statistics,
which means that partial mode collapse occurs. Partial mode collapse refers
to scenarios in which the generator produces multiple images that contain
the same color or texture themes, or multiple images containing different
views of the same object. Full mode collapse results in a generator produc-
ing samples from only one mode, and is therefore a clear failure case.

Results are hard to evaluate. Another disadvantage of GANs is that quanti-
tative evaluation of samples is hard, because no explicit distribution function
is learned. This means that only the generated output can be evaluated.
Further difficulties regarding GAN evaluation are described by [54].

16

3. Preliminaries: Machine Learning

3.4.3. Evaluation Techniques for Generative Models

Evaluation of generative models is non trivial, because one cannot directly
compare the quality of two generated samples in terms of photorealism. In
this subsection, we look at state-of-the-art metrics that are used to evaluate
the performance of generative models in terms of image quality and sam-
ple variance. Further information about evaluation metrics for generative
models is provided by [45, 63, 4, 54].

Inception Score

The Inception Score (IS) was proposed in [45] to directly assess the quality
of generated images. Before the IS was proposed, the quality of generated
images was mainly assessed by human annotators. The task of annotators is
to distinguish between real and fake data. However, these evaluation results
vary depending on the data domain, as well as the annotators themselves.

The IS aims to achieve the following two objectives:

1. The images should contain meaningful data, which means that classi-
fication of the generated images should be possible. In other words,
the conditional label distribution p(y|x) of an image belonging to a
specific class should have low entropy.

2. The generative model should be able to generate images with high
diversity. Formally, this means that the marginal

∫
p(y|x = G(z))dz)

should have a high entropy. In the best case, the generator learned a
uniform distribution of all classes, which means that no mode drop-
ping or mode collapse [17] appears.

By combining these objectives, the Inception score is defined as

ln(IS) = Ex∼pmodel [DKL(p(y|x)||p(y))], (3.14)

where DKL(p(y|x)||p(y)) describes the Kullback-Leibler divergence [31] of
the two probability distributions p(y|x) and p(y). Ex∼pmodel is the expectation
of DKL(p(y|x)||p(y)) with respect to pmodel(x). Simplifications of Equation
3.14 are provided in Appendix A.1.

17

3. Preliminaries: Machine Learning

Salimans et al. [45] were the first who proposed this evaluation metric, using
the Inception model [52] to classify the generated samples.

Structural Similarity

Structural Similarity (SSIM) [62, 61] is a measure for image quality which
aims to measure perceived image quality. This method uses the assumption
that structural information in images is highly important for humans to
perceive vision-based information.
SSIM uses a weighted product of comparison measures for luminance l,
contrast c and structure s which are defined as

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
, (3.15)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
, (3.16)

s(x, y) =
σxy + C3

σxσy + C3
. (3.17)

For two images x and y the parameters µx and σ2
x define the mean and

variance of x, and y respectively. Furthermore, σxy defines the covariance
between x and y. The parameters C1, C2 and C3 are small constants, helping
to avoid numerical instability.

SSIM is then defined as

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ. (3.18)

The parameters α, β and γ are used as weighting to define the importance
of the different components.
Multi-Scale Structural Similarity (MS-SSIM) uses the same calculations to
measure the similarity of images, but uses different scales of the images
x and y for calculation. MS-SSIM can be applied on full spatial image
resolution or on patches of images. SSIM and MS-SSIM are used to evaluate
GAN performances [40, 34], showing that this metric can be used to measure
the variance of generated samples, and therefore gives information about
possible GAN faults like mode collapse.

18

4. Generative Adversarial
Networks for Video Generation

This chapter describes our approach to generate images and videos in the
domain of action recognition using a GAN architecture. First, we describe
the network architecture of our GAN, which is based on [38]. We explain
our composed loss function, which is originally provided by [9] for images,
and extended to work in the spatiotemporal domain by [14]. We explain
how we transferred the network parameters of the spatial GAN to our
spatiotemporal GAN. Then, we focus on the video generation process itself,
and explain how we were able to generate videos for action recognition
using pre-trained action recognition classifier networks. In the end, we
evaluate the generated videos both quantitatively and qualitatively, and
compare the results to other state-of-the-art approaches.

4.1. Spatial Network Architecture

The spatial network structure used in this chapter is provided by [9] and is
used for image generation. This generative model consists of a generator
and a discriminator, with an additional encoder network used for feature
extraction. During training, the extracted features serve as input code vector
z for the generator and the discriminator. All code vectors z belong to a
low-dimensional input space, which we denote as latent space.
Generator. The generator network consists of fully-connected layers, fol-
lowed by convolutional and upconvolutional layers to map a code vector z
to an image. Figure 4.1 shows the network architecture. Upconvolutional
layers make it possible to up-sample the respective layer input so that the

19

4. Generative Adversarial Networks for Video Generation

G_fc8

G_fc7

G_fc6

reshapereshape

G_upconv5

G_conv5

G_upconv4

G_conv4

G_upconv3

G_conv3

G_upconv2

G_upconv1

G_upconv0

Code vector z

Generated
image
G(z)

Figure 4.1.: Network architecture of generator network. The generator consists of three fully-
connected layers, followed by several convolutional and upconvolutional layers.
After G fc6, the output vector is reshaped to match the input dimensionality of
the upconvolutional layer G upconv5. The network performs a mapping from
latent space to image space.

code vector z with dimension 1x4096 maps to an image of 256x256px. RE-
LUs are used as nonlinear activation functions in all layers.
Discriminator. The architecture of the discriminator network consists of
five convolutional layers, followed by a pooling layer to extract features
of the input images. These features are concatenated with a code vector z,
which is extracted from real images by the encoder network. Dropout [51]
is performed on the resulting feature vector before it is further processed by
two fully-connected layers and then classified as real or fake image. Figure
4.2 shows the network architecture of the discriminator.
Encoder network. During training, the encoder network is used as auxiliary
network to extract features from real and generated images. The network ar-
chitecture is AlexNet [30] pre-trained on ImageNet. The network parameters
are frozen during GAN training. Figure 4.3 shows the network architecture
of the encoder.

20

4. Generative Adversarial Networks for Video Generation

D_fc1

D_fc2

D_conv1

D_conv2

D_conv3

D_conv4

D_conv5

D_pool5

dropout

D_fc6

D_fc7

concatenation

Code vector z

real fake

Input
image

Figure 4.2.: Network architecture of the discriminator. The layers D conv1 to D pool5 per-
form feature extraction from input images. These features are then concatenated
with a code vector z, which is extracted from real images using the encoder
network, and further processed by the fully-connected layers D fc1 and D fc2.
Afterwards, a dropout layer and two fully-connected layers are used to classify
the image as real or fake.

21

4. Generative Adversarial Networks for Video Generation

E_conv1

Input
image

E_norm1

E_conv2

E_norm2

E_pool1

E_pool2

E_conv3

E_conv4

E_conv5

E_pool5

E_fc6

Code
vector z

Figure 4.3.: Network architecture of the encoder, which is AlexNet truncated at the fully-
connected layer E fc6. The first and second convolutional layers are followed by
pooling and normalization layers. Afterwards, three additional convolutional
layers E conv3 to E conv5 and one pooling layer E pool5 are used to perform
feature extraction. The last layer E fc6 is fully-connected, and provides the
extracted code vector z.

22

4. Generative Adversarial Networks for Video Generation

4.2. Spatiotemporal Network Structure and
Parameter Transfer

We extended the network structures described in Section 4.1 to generate
videos instead of images. The main idea is to convert the filters from spatial
to spatiotemporal kernels using the approach proposed in [12]. Then, the
parameters of the pre-trained networks provided by [9] are transferred to
the spatiotemporal domain. The new spatiotemporal weights w3D of all
convolutional and upconvolutional layers were initialized layerwise, by
following these steps:

1. The temporal weights for each layer are defined as w2D with the
dimensions [WxHxC], where W and H define the spatial filter size,
and C defines the number of channels. In the first step, the dimensions
of the spatiotemporal weights w3D were defined as [WxHxT′xC],
where T′ describes the temporal filter depth.

2. All spatial weights w2D were then copied to each temporal position t
of the weights ŵ3D. This step can be written as

ŵ3D(t) = w2D, ∀t ∈ [1, T′]. (4.1)

3. The last step is to divide the spatiotemporal weights ŵ3D by the
temporal filter depth T′:

w3D =
ŵ3D

T′
. (4.2)

This step is used to average the weights across time, and therefore
serves as temporal smoothing.

We decided to use a temporal filter depth of T′ = 3 for all our layers. All
biases, and weights from the fully-connected layers are directly copied from
the 2D to the 3D architecture. The only exceptions are the parameters of
the last discriminator layer which are initialized randomly. This is necessary
because in 3D, the last discriminator layer (which classifies videos as real or
fake) accumulates over the full sequence length.

The temporal stride is kept dense throughout all network layers, to en-
sure that the full duration of the sequence is preserved through the whole

23

4. Generative Adversarial Networks for Video Generation

Layer Kernel Padding Stride Output Size
G fc8 / / / 8, 4096

G fc7 / / / 8, 4096

G fc6 / / / 8, 4096

reshape layer / / / 4x4x8, 256

G upconv5 4x4x3 1x1x1 2x2x1 8x8x8, 256

G conv5 3x3x3 1x1x1 1x1x1 8x8x8, 512

G upconv4 4x4x3 1x1x1 2x2x1 16x16x8, 256

G conv4 3x3x3 1x1x1 1x1x1 16x16x8, 256

G upconv3 4x4x3 1x1x1 2x2x1 32x32x8, 128

G conv3 3x3x3 1x1x1 1x1x1 32x32x8, 128

G upconv2 4x4x3 1x1x1 2x2x1 64x64x8, 64

G upconv1 4x4x3 1x1x1 2x2x1 128x128x8, 32

G upconv0 4x4x3 1x1x1 2x2x1 256x256x8, 3

Table 4.1.: Network structure of 3D generator. The spatiotemporal dimensions for kernel,
padding and stride are shown in the order [width x height x time]. The output
size is written as [width x height x time, # channels]. For training, the spatial
duration is set to T = 8 frames.

network. Tables 4.1 and 4.2 show a detailed overview of our network archi-
tectures after parameter transfer for generator and discriminator.

24

4. Generative Adversarial Networks for Video Generation

Layer Kernel Padding Stride Output Size
D conv1 7x7x7 0x0x3 4x4x1 56x56x8, 32

D conv2 5x5x5 0x0x2 1x1x1 52x52x8, 64

D conv3 3x3x3 0x0x2 2x2x1 25x25x8, 128

D conv4 3x3x3 0x0x1 1x1x1 23x23x8, 256

D conv5 3x3x3 0x0x1 2x2x1 11x11x8, 256

D pool5 11x11x1 / / 1x1x8, 256

D fc1 / / / 8, 1024

D fc2 / / / 8, 512

D fc6 / / / 8,512

D fc7 / / / 1,2

Table 4.2.: Network structure of 3D discriminator. The spatiotemporal dimensions for
kernel, padding and stride are shown in the order [width x height x time]. The
output size is written as [width x height x time, # channels]. For training, the
spatial duration is set to T = 8 frames.

4.3. Loss Function

Dosovitskiy and Brox [9] proposed a generator loss function which mini-
mizes distances in image and feature space, additionally to the adversarial
loss. This boosts the invariance with respect to irrelevant transformations,
and the sensitivity to local image statistics, according to [9]. The composition
of these three losses leads to better results in image quality, because the
additional feature loss reflects the perceptual similarity of images. The loss
in image space helps to stabilize the training process, as adversarial training
is known to be unstable and sensitive to hyperparameter selection [17].

Fuchs [14] adapted this composite loss to work in the video domain, which
is defined as:

L = λ f eatL f eat + λadvLadv + λvidLvid, (4.3)

with the Euclidean loss in feature space L f eat, the adversarial loss Ladv
and the Euclidean loss in video space Lvid. All three parts are weighted
with a specific parameter λ. We used this combined loss function L in our
approach, as we want to train our GAN on video data instead of images.

25

4. Generative Adversarial Networks for Video Generation

The loss in video space Lvid is written as

Lvid = ∑
h,w,t
‖G(z)− x‖2

2, (4.4)

where G(z) and x are the generated and real videos, respectively, with the
dimensionality [HxWxTx3], where H and W define the spatial resolution,
and T defines the duration of the RGB video. The indices h, w, t are therefore
the spatiotemporal indices of the video. The loss in video space helps to
stabilize the training process.
The feature loss L f eat is calculated using the pre-trained encoder network E,
and is defined as

L f eat = ∑
h,w,t
‖E(G(z))− E(x)‖2

2. (4.5)

The encoder network E extracts features form real and generated videos.
During GAN training, the network parameters of the encoder E are frozen.
The adversarial loss Ladv is defined as

Ladv = − log D(G(z)). (4.6)

Furthermore, it is also necessary to optimize the discriminator, to suc-
cessfully classify real and fake videos. The generator and discriminator are
trained concurrently, using

Ldiscr = −[log(D(x)) + log(1− D(G(z)))], (4.7)

as the loss function for the discriminator .

4.4. Generating Output using Activation
Maximization

To generate videos for a specific action, we use our spatiotemporal gener-
ator with a technique called Activation Maximization (AM) [11, 66, 46] to
maximize the probability that a generated video belongs to a specific class.

26

4. Generative Adversarial Networks for Video Generation

For this purpose, we use a task specific condition network Φ. This condition
network is a pre-trained classifier, and delivers output probabilities for each
class in the dataset. The goal of this technique is to find a specific code
vector ẑ that maximizes the activation of a neuron h. Formally, the objective
function can be written as

ẑ = arg max
z

(Φh(G(z))− λ|z|), (4.8)

with the parameter λ used for the regularization term. The experimental
setup using our generator in combination with a condition network is shown
in Figure 4.4.
The generator serves as a learned natural image prior, which makes it possi-
ble to synthesize realistic, interpretable videos. Without using the generator
as prior, it would not be possible to generate realistic-looking samples,
because the set of all possible outputs is too vast.

Finding the optimal input ẑ is an iterative process, where the gradient
is back-propagated through both the condition network Φ and the generator
G to the input. In general, the aim is to perform AM until the softmax prob-
ability of the target neuron h is maximized, which means that the softmax
output for this neuron is equal to 1. Figure 4.5 shows the iterative process
of AM, transforming random code vectors to a specific action video. Other
approaches using activation maximization in combination with generative
models can be found in [39, 38, 14].

27

4. Generative Adversarial Networks for Video Generation

Φ

Code
Vector z(t)

3D
Generator

Generated
Video

Condition
Network

Backward
pass

target neuron
h

G

t

Figure 4.4.: Video generation using activation maximization. The 3D generator G uses
a random code vector z(t), which consists of multiple 1x4096 vectors, and
each vector corresponds to one frame of the generate video. This video serves
as input for a pre-trained condition network Φ. The goal is to maximize the
activation for a specific target neuron h, and to back-propagate the gradient
through both networks to adjust the code vector z(t).

4.5. Condition Networks

A condition network is a trained classifier, which helps to perform activation
maximization. Therefore, the generator and the condition network should
operate in a similar domain, using similar datasets for training. As we
want to generate videos for action recognition we were looking for classifier
networks trained on datasets like UCF-101 [49] and Sports-1M [25]. This
section gives a brief overview about the structure of the condition networks
that we used in our experiments.

4.5.1. LRCN - Long-term Recurrent Convolutional Network

The LRCN [8] is a deep convolutional network with additional recurrent
neural networks for visual recognition. The advantage of this network is that
it is able to handle a sequence of images with variable length. This is possible
with the usage of Long Short-Term Memory (LSTM) [20]. LSTM cells are a
special kind of neural networks, designed for processing sequences of data.
The main idea is to share parameters across different parts of the model.
This can be achieved by applying the same parameter update rule to all

28

4. Generative Adversarial Networks for Video Generation

(a) Number of iterations: 0

(b) Number of iterations: 10

(c) Number of iterations: 20

(d) Number of iterations: 30

(e) Number of iterations: 40

(f) Number of iterations: 50

(g) Number of iterations: 60

Figure 4.5.: Visualization of activation maximization for class Billiard using the LRCN
condition network. The Figures 4.5a to 4.5g show the process of activation
maximization applied to 8 frames at different iteration steps. The sequence
of images changes from random patterns at Figure 4.5a to billiard at Figure
4.5g. The videos were generated with our spatiotemporal GAN and the LRCN
condition network. 29

4. Generative Adversarial Networks for Video Generation

Figure 4.6.: Structure of LRCN. In the first stage, CNNs are used to extract features from
the input. Then, LSTM cells are used for sequence learning, and afterwards the
output for a given visual input is predicted. (Figure from [8])

network layers recurrently [16]. LSTM cells have the additional advantage
that self-loops are created in the network where the gradient can flow for a
long duration. This helps remembering information that was gained some
time ago.
This property makes LSTM interesting for processing videos. Figure 4.6
shows the network architecture of LRCN. It takes a sequence of images as
input, where each image is cropped to a spatial resolution of 227x227px.

4.5.2. C3D - 3D Convolutional Networks

The C3D network [55] is another neural network used for classification of
video data. It uses 3D kernels in all convolutional layers with size 3x3x3 in
space and time. These kernels make it possible to extract features not only
spatially, but across frames in time. Therefore, it is a simple and effective way
to achieve video classification for action recognition. C3D takes a sequence

30

4. Generative Adversarial Networks for Video Generation

of 16 images as input, with a spatial resolution of 112x112px. Figure 4.7
shows the network architecture of the C3D network.

Figure 4.7.: Network structure of C3D. The network consists of eight convolutional,five
max-pooling and two fully-connected layers, followed by a softmax output
layer. All 3D convolution kernels are 3x3x3. The number of filters is denoted in
each box. The 3D pooling layers are denoted from pool1 to pool5. All pooling
kernels are 2x2x2, except pool1 which is 1x2x2. Each fully-connected layer has
4096 output units. (Figure from [55])

4.6. Experimental Results

This section summarizes our experiments using our 3D generator combined
with different condition networks to generate videos for action recognition.
First, we explain our approach to fine-tune the spatiotemporal GAN for
action recognition. After training, we combine the 3D generator with the
LRCN condition network, building an end-to-end network to perform
activation maximization. Then, we look at the quantitative results of our
generated videos for action recognition. At last, we quantitatively evaluate
our results using the Inception score.

4.6.1. Fine-tuning our Spatiotemporal GAN using Video
Data

As described in Section 4.2, the network parameters for the spatiotemporal
GAN were transferred from a 2D generator pre-trained on ImageNet. In
this section, we describe our attempt to fine-tune the ST-GAN for action
recognition, using the UCF-101 dataset.

31

4. Generative Adversarial Networks for Video Generation

Data Preprocessing

During fine-tuning on video data, the spatiotemporal GAN takes batches of
8 consecutive images as input, each of them representing a video sequence.
To achieve this, we extract images from each video of the UCF-101 dataset,
at a frame rate of 5fps. The resulting frames are then center cropped to
227x227px and grouped to sequences of 8 frames. Figure 4.8 shows examples
of 8 frame video sequences after preprocessing.

Training Details

During training, we use a mini-batch size of 8, with every mini-batch con-
taining 8 consecutive frames. For optimization, we use the Adam Optimizer
(see Section 3.3) provided by the Caffe framework [24], with the standard
parameters β1 = 0.9, β2 = 0.999 and α = 0.001. The original learning rate
is multiplied by the factor 1

100 , to make sure that the pre-trained weights
will not be destroyed. During training, we follow the example of [9] by
decreasing the learning rate further by the factor 1

2 after the iterations
[10k, 25k, 50k, 70, 90k]. Weight decay is used as regularization, with a regu-
larization parameter λ = 4 · 10−4.
For training the generator, our aim is to minimize the composite loss func-
tion L defined in Equation 4.3. Concurrently, we want to minimize the
discriminator loss Ldiscr, which is defined in Equation 4.7.

To make sure that the training for the generator and discriminator is bal-
anced, we follow [9] and monitor the ratio r. This ratio is defined as r = Ldiscr

Ladv
,

with Ldiscr and Ladv defined in Equation 4.7 and 4.6, respectively. Depending
on the ratio r, we define three different training modes:

mode =


train G and D for 0.1 ≤ r ≤ 10
train G only for r < 0.1
train D only for r > 10.

(4.9)

The training is performed on the GPU, to make the computation feasible.

32

4. Generative Adversarial Networks for Video Generation

(a) First video.

(b) Second video.

Figure 4.8.: Preprocessed UCF-101 training videos. The original data for both videos belong
to the class Billiard. A training video consists of 8 frames, all center cropped
to a spatial resolution of 227x227px.

33

4. Generative Adversarial Networks for Video Generation

From now on, we refer to the fine-tuned version of our spatiotemporal GAN
as STGANuc f . The pre-trained ImageNet version is named STGANImNet.
We make this distinction because we use both versions for qualitative and
quantitative evaluation.

4.6.2. Video Generation using LRCN as Condition Network

This subsection describes our approach to generate videos using our gen-
erator combined with the LRCN condition network using AM. First, we
explain how to combine the generator and the condition network to one
end-to-end network. Then, we evaluate the video quality, and calculate the
Inception score as quantitative evaluation measure.

Combining 3D Generator and LRCN

To be able to use activation maximization to generate videos, we have to
combine our generator and a condition network to one end-to-end network
(see Figure 4.4). We point out all steps which are necessary to combine these
two networks:

Adaptation of layer dimensions. To be able to forward the generated video
to the condition network, the video has to match the spatial and temporal
input format of the LRCN. For the spatial case, we center crop each image
of our generated video to 227x227px. To match the temporal format, we
reshape the LRCN input layer, to be able to dynamically process input
videos up to at most 160 frames.
Calculation of the class probability using LRCN. The videos are then
pushed through the LRCN, which outputs a probability of a video belong-
ing to a specific UCF-101 class.
Back-propagate the gradients through the LRCN. The gradients are cal-
culated for the last LRCN layer, and then back-propagated through the
condition network to the video domain. Back-propagating the gradients in
deep networks can lead to several failure cases, for example exploding and
vanishing gradients [16]. Therefore, it is important to carefully monitor the
gradients, and if necessary to apply gradient clipping or other normalization

34

4. Generative Adversarial Networks for Video Generation

techniques to avoid these problems.
Expand gradients to match output layer dimension of generator. In the
video domain, it is again necessary to match the dimensions of the last out-
put layer for the backward pass. Therefore, the dimension of the gradients
are expanded with zero padding, to match the spatial output format of the
generator, which is 256x256.
Back-propagation through generator and updating the code vector. The
last step is to use the gradient information to update code vector z. To
achieve this, we adapt the update rule from [38] to the spatiotemporal
domain. One important detail is that Gaussian noise N (0, 10−17) is added
to the gradients, which is important to boost the variance of the generated
samples. We perform up to 100 iterations of AM, where the learning rate
for the update function starts at 1.0 and linearly decays to 0.1. Other AM
specific parameters are taken from [38].

Note that we also experimented with other condition networks. We used the
C3D as condition network, following the above mentioned steps to construct
an end-to-end network with our generator. The qualitative results using
C3D are provided in Appendix A.4.
Another attempt was to use [60] as condition network. However, it was not
possible to back-propagate a meaningful gradient, and therefore AM with
this network was not possible.

Evaluating Qualitative Results

The input for the generator is a sequence of random code vectors, each of
them drawn from a Gaussian distribution N (0, 1). We perform AM for each
class in the UCF-101 dataset. We decided to sample videos with a length of
16 frames in all main experiments, to be consistent in our evaluations. The
qualitative results are shown for the classes Apply Lipstick, Baseball Pitch,
Billiard and Clean and Jerk as running examples for all our experiments
in this chapter.

Figure 4.9 shows the results using STGANuc f with LRCN as condition
network. Figure 4.10 shows results using the pre-trained STGANImNet. Ex-
periments with longer sequences can be found in Appendix A.3.

35

4. Generative Adversarial Networks for Video Generation

By comparing the results of Figure 4.9 and Figure 4.10, several things
are striking. Figure 4.9a and Figure 4.10a show results for the class Apply
Lipstick. One can see that both GANs do have problems to generate faces
correctly. This is because our GANs are not able to learn the correct amount
of face parts, like eyes and nose. Similar problems occur for all classes which
focus on human faces. The reason for this problem could be the usage
of max-pooling at some stage of the convolutional neural network, which
makes the representation invariant to small translations of the input. This
means, that the network only focuses on a feature being absent or present,
but not on how many times it occurs (see [16] for more information).
Videos generated for the classes Baseball Pitch (Figure 4.9b and 4.10b) and
Billiard (Figure 4.9c and 4.10c) show results with high image quality. This
means, that the quality for each individual frame is high, and the whole
video shows a reasonable sequence of consecutive frames which represent a
specific action. However, it is not obvious if the fine-tuning of the generator
provides a significant advantage for generating frames with temporal co-
herence. One can also argue that the combination of weight transfer to 3D
and a condition network pre-trained on video action recognition are enough
to generate videos. This is the case for the STGANImNet, which was never
trained on video data, and therefore the information of temporal coherence
has to be provided by the condition network during AM.
Figure 4.9d and Figure 4.10d show samples for the class Clean and Jerk.
Because we use activation maximization, the generated videos indicate what
is most important for the condition network to discriminate different classes.
In this case, the network clearly focuses on the weights. It seems that the
human body is not important for classifying this action, and therefore the
frames contain no human body. This insight could possibly be used to
further understand how convolutional neural networks work, and could
therefore help to improve the quality of a classifier.

It also appears that the video quality is higher if the pre-trained STGANImNet
is used for sampling. This leads to the conclusion that our task specific fine-
tuning does not increase the GAN performance. There are several issues
that possibly lead to the decrease of qualitative performance:

• The UCF-101 dataset is too small. The size of the dataset is crucial

36

4. Generative Adversarial Networks for Video Generation

for training neural networks. A careful selection of hyperparameters
and a suitable optimizer can boost learning, also for small datasets.
However, if the dataset is too small it is not possible to learn anything
meaningful.
• Wrong choice of hyperparameters. Training is highly dependable on

the hyperparameter setup. Especially, the learning rate is crucial for
fine-tuning. Although we decreased the learning rate significantly, as
it is common during fine-tuning, it is still possible that our choice of
hyperparameters is not optimal.
• The difference between datasets for pre-training and fine-tuning is

too big. During training, neural networks typically learn to operate in
a very specific domain, depending on the task and the dataset. When
we try to fine-tune this network afterwards on a different dataset, we
try to learn to operate on a different task. This forces the network
to extrapolate to another manifold (function space), rather than in-
terpolate in the learned space. It seems that our GAN is not able to
do that, which in other words means that the network is not able to
generalize well to other tasks. Yosinski et al. [64] already stated that
the transferability of features decreases as the distance between the
base task and the target task increases.

37

4. Generative Adversarial Networks for Video Generation

(a) Apply Lipstick

(b) Baseball Pitch

(c) Billiard

(d) Clean and Jerk

Figure 4.9.: Visualization of generated videos using the STGANuc f and the LRCN as
condition network. Each video consists of 16 consecutive frames. Results are
shown for the classes Apply Lipstick, Baseball Pitch, Billiard and Clean and
Jerk.

38

4. Generative Adversarial Networks for Video Generation

(a) Apply Lipstick

(b) Baseball Pitch

(c) Billiard

(d) Clean and Jerk

Figure 4.10.: Visualization of generated videos using the STGANImNet and the LRCN as
condition network. Each video consists of 16 consecutive frames. Results are
shown for the classes Apply Lipstick, Baseball Pitch, Billiard and Clean and
Jerk.

39

4. Generative Adversarial Networks for Video Generation

4.6.3. Quantitative Evaluation using the Inception Score

As mentioned in Subsection 3.4.3, a main drawback of GANs is that it
is hard to quantitatively evaluate the results. The dataset distribution is
learned implicitly, which means that only the generated samples can be
evaluated. This subsection describes our approach to quantitatively evaluate
our GAN results using the Inception Score (IS). We compare our results
to other state-of-the-art GANs, which also operate in the field of video
generation for action recognition. We computed the IS following Equation
A.2, see Appendix A.1.

Upper bound for the IS. The upper bound of the IS depends on the number
of classes in the dataset [4]. The UCF-101 dataset contains 101 classes of
different actions, and therefore the maximum possible IS using this dataset
is 101.
Evaluation procedure. In order to compute the Inception score, we generate
10000 videos in each experiment, where all videos are normally distributed
over the whole UCF-101 classes. Afterwards, we use one of the networks de-
scribed in Section 4.5, which are pre-trained to classify UCF-101 videos. The
idea is, that the classifier should be able to correctly classify the generated
videos. The higher the number of correctly classified videos, the higher is
the IS. Another criterion for the IS is the variance in data. In the optimal case,
the generated videos are uniformly distributed over all UCF-101 classes. An
uneven distribution would be an indication for mode dropping.

Additionally, we calculate the IS on the whole UCF-101 dataset. This serves
as a key score, which indicates a real dataset. Table 4.3 shows the IS of our
approaches compared to other state-of-the-art GANs for action recognition.

By analyzing the results in Table 4.3, we gain the following insights:
Fooling the Inception Score is possible. The results show that some of
our methods outperform the recent state-of-the-art video generation GAN
approaches (Video GAN and TGAN), according to the IS. However, a close
look at the scores shows that some results are too good to be true, and
therefore point to a drawback in the IS metric. Especially, if the same net-
work is used as condition network for AM and as classifier, the IS score
can be fooled, because the generated samples are in fact generated to have

40

4. Generative Adversarial Networks for Video Generation

a high probability with a certain condition network. This means that our
experiments prove that it is easily possible to fool the IS.
Generated samples are better than real? Our record IS, using the
STGANImNet with LRCN as condition network and as classifier, is even
higher than the IS calculated for the UCF-101 dataset. As mentioned above,
activation maximization directly optimizes the activation of a certain neuron,
which is one of the properties the IS aims for. Furthermore, as we sample
our videos uniformly distributed over all UCF-101 classes, also the second
criterion for a high IS is satisfied. This results in a very high IS, which is even
higher than the score for real data. However, by comparing the generated
video in Figure 4.10c with real image sequences shown in Figure 4.8, it is
obvious that the image quality of the generated samples is lower. The main
reason why the UCF-101 dataset does not achieve a higher IS is because the
classes are not uniformly distributed in the dataset.
Our GAN outperforms other state-of-the-art approaches. We performed
experiments with different networks for conditioning and classification.
This is, in our point of view, the only valid way to use AM in combination
with the IS as evaluation metric. Using the LRCN as condition network and
the C3D network for evaluation, we achieve an IS of 23.44, which clearly
outperforms the other approaches.
Fine-tuning the GAN does not improve the performance. In all exper-
iments, the fine-tuned STGANuc f performs worse than the pre-trained
STGANImNet, according to the IS. This confirms our suspicion from Sub-
subsection 4.6.2, that fine-tuning does not improve the performance of our
generator.
Not every classifier network is equally suitable as condition network. We
also evaluated the IS using the C3D as condition network. The qualitative
results are provided in Appendix A.4. Table 4.4 shows the IS results of
our generators combined with the C3D as condition net. The results verify
the findings from Table 4.3, that the IS can easily be fooled with activation
maximization.
Furthermore, by directly comparing the IS in Table 4.3 and Table 4.4, one
can see that the achieved results with the C3D as condition network are
considerably lower than with the LRCN for all experiments. Although we
were able to back-propagate the gradient with C3D, and succeeded in maxi-
mizing the activation for each neuron during sampling, the results are worse
than with LRCN. This leads to the assumption that not every classifier is

41

4. Generative Adversarial Networks for Video Generation

(a) BaseballPitch

(b) Clean and Jerk

Figure 4.11.: Adversarial examples generated with the STGANuc f and the C3D. The videos
are maximized for the classes BaseballPitch and Clean and Jerk. The C3D
classifier network is able to correctly classify them, however the samples do
not look like realistic actions.

equally suitable as condition network, even if activation maximization can
be achieved. It seems that the network architecture of the condition network
is highly important for activation maximization.
Directly optimizing the IS leads to adversarial examples. Adversarial ex-
amples [16, 53, 45] are input data for neural networks that cause unexpected
output. In our case, the IS in Table 4.4 with the STGANImNet and the C3D
as condition network and classifier is 66.33. This would suggest that the
generated samples are near photorealism. However, Figure 4.11 shows gen-
erated videos for this method. By analyzing the samples, one can see that
the videos do not contain any real objects, which indicates that these are
adversarial examples. Salimans et al. [45] stated that directly optimizing the
IS would lead to adversarial examples, but did not provide results to prove
this claim.

42

4. Generative Adversarial Networks for Video Generation

Method Condition
Network

Inception Score -
Classifier Network

Inception
Score

Video GAN [57] / C3D 8.18

Conditional TGAN [43] / C3D 15.83

STGANuc f LRCN C3D 17.42
STGANuc f LRCN LRCN 32.15

STGANImNet LRCN C3D 23.44
STGANImNet LRCN LRCN 82.87

UCF-101 dataset / C3D 70.07

Table 4.3.: Comparison of the IS for different models. State-of-the-art approaches (Video
GAN and TGAN) are compared to our approaches using the STGAN with the
LRCN as condition network. Also, the IS for the UCF-101 dataset is stated. The
bold IS scores are achieved by using different networks for conditioning and
classifying, which is in our view the only valid way to calculate a meaningful
IS. By comparing the IS, one can see that our approaches outperform the other
methods according to the IS.

Method Condition
Network

Inception Score -
Classifier Network

Inception
Score

STGANuc f C3D C3D 16.23

STGANuc f C3D LRCN 1.74
STGANImNet C3D C3D 66.33

STGANImNet C3D LRCN 3.97

Table 4.4.: Additional IS results using the C3D as condition network. The IS for all methods
is significantly lower using the C3D as condition network, instead of the LRCN
(see Table 4.3). The bold scores are meaningful (using different networks for
conditioning and classifying), which indicates that the C3D is not suitable as
condition network.

43

4. Generative Adversarial Networks for Video Generation

4.7. Conclusion

This chapter described our approach to generate videos for action recog-
nition, at a spatial resolution of 227x227px. We were able to extend the
generative model proposed by [9] from spatial to spatiotemporal domain,
and used it for video generation. Our approach outperforms other state-of-
the-art methods in terms of resolution and image quality. To back up our
claim of higher image quality, we used the Inception score as quantitative
measure and compared our approach to other methods.
Our evaluation also pointed out that the Inception score can be fooled by
directly optimizing the properties of it, which is the main weakness of this
metric.
According to the network architecture, we can conclude that using our
approach enabled us to generate videos at a fairly high resolution, for a
large number of classes. We achieved this by using a condition network with
activation maximization, where our generator is used as image prior. We
found out, that not every classifier is equally suitable as condition network.
Therefore, further experiments with other condition networks could lead
to information about what makes a classifier a good choice for a condition
network.
Another finding of this chapter is, that fine-tuning our spatiotemporal GAN
for action recognition did not increase the image quality. We believe that
the small size of the UCF-101 dataset is one main reason. Another one
could be that the domains for pre-training and fine-tuning are too different.
Therefore, an interesting experiment would be to train the generator from
scratch for action recognition, using a dataset with a higher number of
training data (for example the Sports-1M dataset [25]).
To conclude, our spatiotemporal GAN enables us to generate videos for a
high number of different action recognition classes. However, there is a still
a long way to go to generate realistic-looking action videos.

44

5. Generating High Resolution
Action Videos

This chapter describes our approach to generate videos with increased
spatial resolution. We use the network structure proposed by [26] as GAN.
We describe how we trained this GAN for action recognition in the image
domain and then explain our approach to generate videos by interpolating
in the latent space of the generator. At last, we quantitatively evaluate the
results by measuring the diversity of the generated images using structural
similarity.

5.1. Progressively Growing GAN

To generate videos with high image resolution, we decided to use the
framework provided by [26], which we refer to as Progressively growing
GAN (PGAN). We briefly discuss the most important aspects of the network
architecture, the loss function and the techniques that are used to make the
training more stable. More details are provided by [26].

5.1.1. Network Architecture

The main advantage of this network architecture is, that both the generator
and discriminator are growing progressively during training. The key idea
is, that the mapping from latent space to high-resolution images is easier
to learn stepwise. Therefore, the network starts with convolutional layers
operating on a spatial resolution of 4x4px, and grows while training pro-
gresses. Figure 5.1 shows the progressively growing network architecture

45

5. Generating High Resolution Action Videos

Figure 5.1.: Progressively growing GAN network architecture. Karras et al. [26] used this
structure to generate images of human faces, at a resolution of 1024x1024px.
As training progresses, the structure of the generator and discriminator grow
progressively. We use the same architecture for our experiments, with the only
difference that we train PGAN to generate images for action recognition at
512x512px. (Figure from [26])

during training.

The benefits of this structure are that early layers converge quickly, and that
there are only a few layers to train from scratch at the same time. This leads
to a significant reduction of training time.

5.1.2. Loss Function

PGAN uses a loss function called WGAN-GP [18]. The objective of this loss
function is to minimize the Earth-Mover (also called Wasserstein-1) distance.
The Wasserstein-1 distance is defined by the minimal cost of transporting
mass in order to transform the distribution p into another distribution q.

46

5. Generating High Resolution Action Videos

“The Wasserstein-1 distance is continuous everywhere and differentiable
almost everywhere, under mild assumptions (that the 1-Lipschitz constraint
holds for the discriminator). A differentiable function is 1-Lipschitz if and
only if it has a gradient with norm at most 1 everywhere.” [18]

WGAN-GP achieves this constraint by using an additional gradient penalty,
which constrains the gradient norm of the output with respect to the in-
put, at the discriminator. The advantage of the loss function is, that mode
collapse occurs less often, and that balancing the discriminator and the
generator is less important. Further information about this loss is provided
by [18].

5.1.3. Regularization Techniques

PGAN uses several techniques to improve variation and quality of the out-
put, as well as training stability:
Increasing variation using minibatch standard deviation. At the end of
the discriminator, a special layer is added which calculates the standard
deviation of a minibatch of images, and adds this information to the fea-
ture vector of each image, which is used for classification. Therefore, the
discriminator does not only look at an individual image, but also obtains
information about the distribution of a set of images. This additional infor-
mation forces the generator to learn a distribution which is similar to the
training data.
Equalized learning rate. This method normalizes the gradient update by its
estimated standard deviation dynamically during training, which ensures
fair competition between generator and discriminator.
Pixelwise feature vector normalization. This normalization technique is
used in the generator. After each convolutional layer, the resulting feature
vectors are normalized to unit length for each pixel. Karras et al. [26] claimed
that this normalization avoids the scenario where the signal magnitudes
in the networks “spiral out of control” due to the competition of both
networks.

47

5. Generating High Resolution Action Videos

5.2. Experimental Results

This section describes our experiments to generate high resolution videos
for action recognition, using the PGAN framework. First, we talk about the
pre-processing of the dataset. Then, we show some results of the trained
generator in the image domain. At last, we explain how we generate videos
for action recognition, by interpolating in the latent space of the trained
generator, and evaluate our results using structural similarity.

5.2.1. Dataset Preprocessing

The PGAN framework grows progressively, starting at a resolution of 4x4px
and doubles until the final resolution is reached, which in our experiments
is 512x512px. This means that we also need training data at different sizes,
to train the network at all resolutions. We refer to the different sizes of the
images as levels of detail. Preprocessing of the dataset is done in two steps:
Increasing the resolution of the training data. To be able to generate frames
at a resolution of 512x512px, our training data have to have at least the
same resolution, or higher. The problem is that there is no action recognition
dataset that contains enough high resolution videos to train a generator
with. Therefore, we decided to use the UCF-101 dataset to be consistent
throughout this thesis, and produce results that are comparable to all our
other experiments. All frames in the UCF-101 dataset have a spatial resolu-
tion of 320x240px. We increased the spatial resolution of all input images
to 682x512px using bicubic interpolation. After resizing to 682x512px, we
center cropped the image to a resolution of 512x512px, where the aspect
ratio is kept the same as in the original image. Figure 5.2 shows the process
of resizing one image. We are aware that bicubic interpolation may not be
the best technique for super resolution and a better method could lead to
better image quality at the end. However, we wanted to focus on video
generation and therefore used a method with low computational costs for
resizing. We leave the improvement of using a better resizing technique for
the future.
Sampling each image at different scales. Each image that is used for train-
ing was then downscaled to each of the levels of detail at which PGAN

48

5. Generating High Resolution Action Videos

operates. The size of each image is reduced by 1
4 , starting from 512x512px

until the smallest resolution of 4x4px is reached. The reduction of resolution
is achieved by using 2x2 average pooling on the full image. Figure 5.3 shows
an example of all levels of detail for one image.

(a) Original Image (320x240px).

(b) Resized Image (682x512px).

(c) Cropped Image (512x512px).

Figure 5.2.: Preprocessing of an input image for PGAN training. The original image is
first resized to 682x512px, and then center cropped to 512x512px. The sample
belongs to the class Billiard.

49

5. Generating High Resolution Action Videos

(a) Resolution: 512x512px. (b) Resolution: 256x256px. (c) Resolution: 128x128px.

(d) Resolution: 64x64px. (e) Resolution: 32x32px. (f) Resolution: 16x16px.

(g) Resolution: 8x8px. (h) Resolution: 4x4px.

Figure 5.3.: Training sample at all levels of detail. Average pooling is used at each level
of detail to reduce the size of the image by 1

4 , until the resolution of 4x4px
is reached, which is the smallest resolution PGAN operates on. The sample
belongs to the class Billiard.

50

5. Generating High Resolution Action Videos

Level of Detail # Real Images
in Thousands

Accumulated
Training Duration

4x4px 300 2m 52s
8x8px 600 14m 04s

16x16px 600 42m 19s
32x32px 600 2h 02m 46s
64x64px 600 5h 06m 10s

128x128px 600 10h 50m 23s
256x256px 600 18h 20m 41s
512x512px 4000 3d 20h 04m

Table 5.1.: PGAN training details for the class Billiard. The accumulated training duration
shows that training at low resolution is fast, whereas training at high resolution
is more expensive.

5.2.2. Training Details

Due to the high computational cost of training the PGAN structure, we
decided to train our generator for one class of the UCF-101 dataset which is
Billiard, to ensure a high image quality and acceptable training duration.
Further experiments with other classes and multi class training are provided
in Appendix A.5.
Before training, we decided to mirror all training images, to double the
amount of data from 42938 to 85876 images, and then shuffled them. During
training, both networks were trained evenly, which means that there was no
further balancing between generator and discriminator. We used the Adam
Optimizer for parameter update, with the parameters β1 = 0.0, β2 = 0.99
and the learning rate α = 0.001.
Table 5.1 shows an overview about how many real images were used for
training at each level of detail, combined with the accumulated training
duration. One can see that training at low resolution is fast, and slows
down at higher levels of detail. We parallelized the training using four
GPUs (NVIDIA GeForce Titan X Pascal) to speed up training. Note that
the number of training images at each level of detail is a multiple of the
training dataset size, which means that the discriminator saw every real
image multiple times at each level of detail.

51

5. Generating High Resolution Action Videos

5.2.3. One Class Image Generation

After training, we generated images using random code vectors as input
for the generator. Each code vector is drawn from a Gaussian distribution
N (0, 1). Figure 5.4 shows generated samples for the class Billiard at a
resolution of 512x512px. The samples show a high diversity, which suggests
that the variation of the training data is captured by the generator. It is
striking that the images contain very specific patterns, like readable text.
Goodfellow et al. [17] stated that GANs are not prone to overfitting, because
the generator update does not directly depend on the training data. However,
by looking at the results, one can at least say that the network architecture
has the capabilities to memorize such patterns and generate them after
training.
Furthermore, compared to our first approach in Section 4.6, it is obvious that
the image quality using PGAN is higher, and also the resolution increased to
512x512px. However, due to the high computational costs, we only trained
PGAN for one class at 512x512px, which is a clear disadvantage to our first
approach.

52

5. Generating High Resolution Action Videos

Figure 5.4.: Generated images for the class Billiard with a spatial resolution of 512x512px.
One can see that the generator is able to generate images from different scenes,
which means that the generator learned to capture the diversity of the dataset.

53

5. Generating High Resolution Action Videos

5.2.4. Video Generation using Latent Space Interpolation

Up to this point, the generator is only able to generate samples in the image
domain. For video generation, we use the fact that the whole latent space
is continuous, which means that every code vector produces a reasonable
output. For video generation, we randomly generated 100 code vectors, and
used these code vectors to generate the corresponding images by pushing
them through the generator. Afterwards, we manually selected two of these
images as start and end frame for the image sequence. Note that our aim is
to select a pair of images which already shows the same scene, because this
leads to a generated video with reasonable temporal coherence. Figure 5.5
shows an example of such frames.
We denote the code vectors for the start and the end frame as z0 and zN−1

respectively, where the index N defines the video length. Each code vector
has the dimensionality [1x512]. We then linearly interpolate between each
feature of the two code vectors by following these steps:

1. First, we calculate the stepsize ηi between each i-th feature of z0 and
zN−1:

ηi =
zN−1

i − z0
i

N − 1
, ∀i ∈ [1, 512]. (5.1)

2. We then use η to calculate the code vector zn for all intermediate
frames with

zn = z0 + n · η, ∀n ∈ [1, N − 2]. (5.2)

This method allows us to generate an arbitrary number of frames between
the start frame and the end frame. Figure 5.6 shows a generated video
with 32 frames, all with a spatial resolution of 512x512px. By analyzing the
image sequence, the temporal coherence is clearly visible.
Further experiments on video generation for other classes are described in
Appendix A.6.

5.2.5. Evaluation

We decided to use the Multi-Scale Structural Similarity (MS-SSIM) (see
Subsection 3.4.3) for quantitative evaluation. We chose this metric, because

54

5. Generating High Resolution Action Videos

(a) Start frame. (b) End frame.

Figure 5.5.: Start frame and end frame for video generation. These two frames were gen-
erated with our PGAN, and their latent vectors serve as starting and ending
point for latent space interpolation.

Figure 5.6.: An example of our generated action videos with a spatial resolution of
512x512px. The sequence shows 32 consecutive frames of playing billiard,
all frames with a spatial resolution of 512x512px. Each frame is generated
using latent space interpolation between the first and the last frame of the
sequence.

55

5. Generating High Resolution Action Videos

MS-SSIM for UCF-101 class Billiard
Method MS-SSIM

PGAN 64x64px 0.35

PGAN 128x128px 0.33

PGAN 256x256px 0.34

PGAN 512x512px 0.31

Training data 0.31

Table 5.2.: MS-SSIM results for the class Billiard. The results of our trained generator at
different levels of detail are similar to the result for the training data. This
indicates that the diversity of generated samples at different scales is similar to
the real data.

we trained our generator for only one class of the UCF-101 dataset, which
means that we are not able to use the IS.
The MS-SSIM has a range between 0 and 1, where higher scores refer to per-
ceptually more similar images. Therefore, a high number of similar images
would lead to a high MS-SSIM score, which would indicate mode collapse.

We calculated the MS-SSIM between 10000 image pairs generated from
our trained PGAN at different resolutions, and also calculated the score for
the training data to be able to compare them. Table 5.2 shows the results for
the class Billiard. The scores for our PGAN at different scales are similar
to the score for the training data, which indicates that the diversity of our
generated samples is similar to the training data. Therefore, we can rule out
mode collapse.

5.3. Conclusion

Chapter 5 described our approach to further increase the spatial resolution
of our action videos to 512x512px. We were able to generate meaningful
videos with increased image quality and spatial resolution, compared to
our first approach. One key component of this GAN is the WGAN-GP [18]
loss function, which has the benefit that the generator is less prone to mode
collapse. By calculating the structural similarity, we additionally added

56

5. Generating High Resolution Action Videos

evidence that no mode collapse appeared.
The image quality of our generated images is very high, also containing
readable text in the images. This leads to the question, if the network really
learns the distribution of the training data, or only memorizes patterns. For
a small dataset, memorizing would certainly be feasible due to the high
number of parameters in the network. However experiments in Appendix
A.5 show that the generator is also capable of generating images for multiple
classes, but with decreased image quality. In my opinion, the high level of
detail in the generated images is a result of the high number of parameters
in the networks, which makes it possible to memorize patterns. However, if
GANs are supposed generate huge amounts of reasonable data to augment
datasets, it is necessary that the image quality is high, also if certain patterns
repeat themselves in the images.
Furthermore, we want to point out that our video generation is only semi-
automatic, because we have to generate a number of images and then
manually select start and end frame, before we are able to interpolate in the
latent space. Making this approach fully automatic is work which we aim
to do in the future. An attempt to solve this problem would probably focus
on conditioning the PGAN during training to force the generation of start
and end frames.
PGAN is able to generate images for action recognition without the usage
of a condition network, which is a clear advantage to our STGAN approach.
One significant drawback of the PGAN is, that the computational costs are
significantly higher compared to the STGAN.

Our experiments also show that a high resolution action recognition dataset
would be required. This could significantly increase image and video quality
of the generated samples. One possibility is to use state-of-the-art super
resolution methods to upscale already existing action recognition datasets.

57

6. Discussion and Future Work

This thesis describes our approaches to generate videos for action recogni-
tion, using GANs. The work focused on two main points:
Our spatiotemporal GAN, proposed in Chapter 4, is able to generate videos
in the domain of action recognition at a spatial resolution up to 227x227px.
These generated videos give additional insights about what is important
for the condition network. By further analyzing this property, it may be
possible find out if state-of-the-art models are over-parameterized, and if a
simpler model could be used for classification.
However, if one wants to use this generator for data augmentation to im-
prove the training for action recognition classifiers, our spatiotemporal GAN
may not suit this task, because the overall video quality seems to be too low.

With the PGAN proposed in Chapter 5, on the other hand, we were able to
generate meaningful high resolution videos. These generated videos may
provide the quality to further improve state-of-the-art classifiers.
According to the video generation process using latent space interpolation,
the most interesting work for the future would certainly be to investigate
how to control the latent space. The fact that simple latent space interpo-
lation led to action videos with temporal coherence shows that analyzing
the latent space could lead to improved sample generation. It would be
interesting to see if one can find explicit features in the latent space, which
would enable us to condition the video generation.

Further information about the latent space would also impact our aim
to make the video generation fully-automatic, without the need to manually
select the first and the last frame for the video.

Another important point is the need for a high resolution action recog-
nition dataset, because the generator is highly dependent on the training set.

58

6. Discussion and Future Work

For this, it may be possible to use state-of-the-art super resolution techniques
to improve the quality of low resolution dataset like UCF-101.

59

Appendix A.

Additional Material

A.1. Simplification of the Inception Score

Simplification of the IS definition in Equation 3.14:

ln(IS) = Ex∼pmodel [DKL(p(y|x)||p(y))] (A.1a)

= ∑
x

pmodel(x)[DKL(p(y|x)||p(y))] (A.1b)

= ∑
x

pmodel(x)∑
i

p(y = i|x) ln
p(y = i|x)
p(y = i)

(A.1c)

= ∑
x

∑
i

p(x, y = i) ln
p(x, y = i)

p(x)p(y = i))
(A.1d)

= ∑
x

∑
i
[p(x, y = i) ln(p(x, y = i))− p(x, y = i) ln(p(x)p(y = i))]. (A.1e)

Equation A.1a is the definition of the IS. In Equation A.1b, we replaced the
expectation Ex∼pmodel with a summation over all samples, with x defining
one sample. The definition of the KL-divergence is used in Equation A.1c
with the summation index i defining one specific class of the dataset . In
Equation A.1d, we use the definition of the conditional probability, which is
defined as P(y|x) = P(y,x)

P(x) . The last step shown in Equation A.1e is to apply
the rules of logarithmic calculation, which provides us with a computation-
ally feasible way to calculate the IS.

60

Appendix A. Additional Material

We decided to take the exponential of the IS in our experiments, which
makes it easier to interpret the score:

IS = exp(∑
x

∑
i
[p(x, y = i) ln(p(x, y = i))− p(x, y = i) ln(p(x)p(y = i))]).

(A.2)

A.2. UCF-101 Image Generation

This section shows the experiments of generating images for action recogni-
tion using the 2D generator provided by [9] combined with our approach
of using the LRCN as condition network. Figure A.1 and A.2 provide the
qualitative results for all classes of the UCF-101 dataset.

61

Appendix A. Additional Material

Figure A.1.: Image generation for action recognition. One can see generated images for
56 UCF-101 classes. The results are achieved by using a 2D GAN architecture
pre-trained on ImageNet. We used the LRCN condition network to generate
images in the context of action recognition.

62

Appendix A. Additional Material

Figure A.2.: Image generation for action recognition cont’d. One can see generated images
for 45 UCF-101 classes. The results are achieved by using a 2D GAN archi-
tecture pre-trained on ImageNet. We used the LRCN condition network to
generate images in the context of action recognition.

63

Appendix A. Additional Material

A.3. Long-Sequence Video Generation

This section shows generated videos with a length of 48 frames. Using the
LRCN as condition network enables us to generate videos up to 160 frames,
but the computational costs also increase with the length of the sequence.
Therefore, we were restricted to generate videos with a maximum length of
48 frames.

Figures A.3 and A.4 show results using our STGANImNet as generator.
Figures A.5 and A.6 show results using STGANuc f , which is fine-tuned on
the UCF-101 dataset.

Figure A.3.: Video generation using the STGANImNet with the LRCN, using activation
maximization for the class Billiards. The sequence contains 48 frames.

64

Appendix A. Additional Material

Figure A.4.: Video generation using the STGANImNet with the LRCN, using activation
maximization for the class Baseball Pitch. The sequence contains 48 frames.

65

Appendix A. Additional Material

Figure A.5.: Video generation using the STGANuc f with the LRCN, using activation maxi-
mization for the class Billiards. The sequence contains 48 frames.

66

Appendix A. Additional Material

Figure A.6.: Video generation using the STGANuc f with the LRCN, using activation maxi-
mization for the class Baseball Pitch. The sequence contains 48 frames.

67

Appendix A. Additional Material

A.4. Video Generation using C3D as Condition
Network

This section provides additional results using the C3D as condition network.
We followed the same steps as described in Subsection 4.6.2 to build an
end-to-end network consisting of our 3D generator and the C3D. We used
the tensorflow [37] implementation of the C3D [21], which is pre-trained
on Sports1M and UCF-101. However, we made one specific adaptation to
use C3D in our experiments. We doubled the spatial stride in the first layer
of the C3D, which enabled us to feed videos with a spatial resolution of
224x224px to the network. This simplifies the matching of the layer dimen-
sions between the two networks.

The qualitative results are shown for the classes Apply Lipstick, Base-
ball Pitch, Billiard and Clean and Jerk. Figure A.7 shows results using
STGANuc f with the C3D as condition network. For comparison, Figure A.8
shows results using the pre-trained STGANImNet.

Note that the image quality using C3D as condition network is consid-
erably lower than with LRCN. As discussed in Subsection 4.6.3, we believe
that the image quality highly depends on the network structure of the
condition network, and how this condition network is trained. Therefore,
not every classifier is equally suitable as condition network.

68

Appendix A. Additional Material

(a) Apply Lipstick

(b) Baseball Pitch

(c) Billiard

(d) Clean and Jerk

Figure A.7.: Visualization of generated videos using STGANuc f and the C3D as condition
network. Each video consists of 16 consecutive frames. Results are shown for
the classes Apply Lipstick, Baseball Pitch, Billiard and Clean and Jerk.

69

Appendix A. Additional Material

(a) Apply Lipstick

(b) Baseball Pitch

(c) Billiard

(d) Clean and Jerk

Figure A.8.: Visualization of generated videos using STGANImNet and the C3D as condition
network. Each video consists of 16 consecutive frames. Results are shown for
the classes Apply Lipstick, Baseball Pitch, Billiard and Clean and Jerk.

70

Appendix A. Additional Material

A.5. Multi Class Image Generation using
Progressively Growing GAN

This section shows results of our approach to train the PGAN framework
for multiple UCF-101 classes concurrently, compared to results for one-class
training. Samples for training the framework only for the class Billiard are
shown in Figure A.9. Figure A.10 shows examples of five different classes.
Figure A.11 shows 16 classes, each of them from the subcategory Body-
Motion Only. More details about the UCF-101 subcategories are available
online1. Note that the generators for these experiments are trained up to
a spatial resolution of 256x256px to speed up training. One can see that
training for more than one class is possible, but the training time increases
significantly (see Table A.1). This encourages the assumption that training
PGAN for all UCF-101 classes at high resolution is possible, if enough
computational power is available.

Classes / Category # Classes Training Duration
Billiard 1 23h 03m 52s

[Apply Eye Makeup, Typing, Skiing,
Band Marching, Hammering] 5 2d 21h 58m

Body-Motion Only 16 5d 07h 50m

Table A.1.: Comparison of training duration for single and multi class training. One can see
that a higher number of training classes leads to an increased training duration.
Note that we did not use a specific stopping criterion for training, but rather
trained until a reasonable image quality was achieved.

1http://crcv.ucf.edu/data/UCF101.php, last visited: Oct. 2018

71

http://crcv.ucf.edu/data/UCF101.php

Appendix A. Additional Material

Figure A.9.: Results from PGAN trained for Billiard. The generator was trained to sample
images at a spatial resolution of 256x256px.

72

Appendix A. Additional Material

Figure A.10.: Results from PGAN trained for five classes. This generator was trained for
the classes Apply Eye Makeup, Typing, Skiing, Band Marching and Ham-
mering. The generator was trained to sample images at a spatial resolution
of 256x256px.

73

Appendix A. Additional Material

Figure A.11.: Results from PGAN trained for 16 classes. This generator was trained for the
classes from the subcategory Body-Motion Only of the UCF-101 dataset. The
generator was trained to sample images at a spatial resolution of 256x256px.

74

Appendix A. Additional Material

A.6. Further Examples of Video Generation using
Progressively Growing GAN

We trained our PGAN for several classes in the UCF-101 dataset (but only
for one class at a time), and tried to generate videos using latent space
interpolation. Figure A.12 shows a generated video for the class Clean and
Jerk, Figure A.13 shows a video for the class Archery. Both examples show
image sequences with clearly visible temporal coherence. Note that the
networks in this section were trained to generate images at a resolution of
256x256px, to speed up training.

Figure A.12.: Generated video for the class Clean and Jerk using PGAN. Each frame has a
spatial resolution of 256x256px. By analyzing the image sequence, it is clear
to see that the clothes of the person change. However, the action itself, which
is lifting the weights, is clearly showing a temporal coherence.

75

Appendix A. Additional Material

Figure A.13.: Generated video for the class Archery using PGAN. Each frame has a spatial
resolution of 256x256px.

76

Bibliography

[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George
Toderici, Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan.
Youtube-8m: A large-scale video classification benchmark. Tech. rep. Google
Research, 2016. [arXiv preprint arXiv:1609.08675].

[2] Martin Arjovsky and Léon Bottou. “Towards principled methods for
training generative adversarial networks.” In: International Conference
on Learning Representations (ICLR). 2017.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein
Generative Adversarial Networks.” In: Proceedings of the 34th Interna-
tional Conference on Machine Learning (ICML). 2017, pp. 214–223.

[4] Shane Barratt and Rishi Sharma. “A Note on the Inception Score.” In:
arXiv preprint arXiv:1801.01973 (2018).

[5] David Berthelot, Thomas Schumm, and Luke Metz. “BEGAN: bound-
ary equilibrium generative adversarial networks.” In: arXiv preprint
arXiv:1703.10717 (2017).

[6] Qifeng Chen and Vladlen Koltun. “Photographic image synthesis with
cascaded refinement networks.” In: The IEEE International Conference
on Computer Vision (ICCV). 2017, pp. 1520–1529.

[7] Emily L Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus.
“Deep Generative Image Models using a Laplacian Pyramid of Adver-
sarial Networks.” In: Advances in Neural Information Processing Systems
(NIPS). 2015, pp. 1486–1494.

[8] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus
Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell.
“Long-term recurrent convolutional networks for visual recognition
and description.” In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2015, pp. 2625–2634.

77

Bibliography

[9] Alexey Dosovitskiy and Thomas Brox. “Generating images with per-
ceptual similarity metrics based on deep networks.” In: Advances in
Neural Information Processing Systems (NIPS). 2016, pp. 658–666.

[10] DC Dowson and BV Landau. “The Fréchet distance between multi-
variate normal distributions.” In: Journal of Multivariate Analysis 12.3
(1982), pp. 450–455.

[11] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent.
Visualizing higher-layer features of a deep network. Tech. rep. University
of Montreal, 2009.

[12] Christoph Feichtenhofer, Axel Pinz, and Richard Wildes. “Spatiotem-
poral residual networks for video action recognition.” In: Advances in
Neural Information Processing Systems (NIPS). 2016, pp. 3468–3476.

[13] Li Fei-Fei, Justin Johnson, and Serena Yeung. Lecture 11: Detection and
Segmentation. http://cs231n.stanford.edu/slides/2017/cs231n_
2017_lecture11.pdf. last visited: Oct 2018. url: http://cs231n.
stanford.edu/slides/2017/cs231n_2017_lecture11.pdf.

[14] Horst Fuchs. “Visualizing and Understanding Deep Driving Models.”
Master’s Thesis at Institute of Electrical Measurement and Measure-
ment Signal Processing, Graz University of Technology. 2017.

[15] Ian Goodfellow. “NIPS 2016 tutorial: Generative adversarial networks.”
In: arXiv preprint arXiv:1701.00160 (2016).

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016.

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
“Generative adversarial nets.” In: Advances in Neural Information Pro-
cessing Systems (NIPS). 2014, pp. 2672–2680.

[18] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron C Courville. “Improved training of Wasserstein GANs.”
In: Advances in Neural Information Processing Systems (NIPS). 2017,
pp. 5767–5777.

78

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

Bibliography

[19] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard
Nessler, and Sepp Hochreiter. “GANs trained by a two time-scale
update rule converge to a local nash equilibrium.” In: Advances in
Neural Information Processing Systems (NIPS). 2017, pp. 6626–6637.

[20] Sepp Hochreiter and Juergen Schmidhuber. “Long short-term mem-
ory.” In: Neural Computation 9.8 (1997), pp. 1735–1780.

[21] HouXin. C3D-tensorflow. https://github.com/hx173149/C3D-tensorflow.
last visited: Sep 2018. 2018.

[22] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. “Globally
and Locally Consistent Image Completion.” In: ACM Transactions on
Graphics (TOG) 36.4 (2017), 107:1–107:14.

[23] David Jacobs. “Correlation and convolution.” In: Class Notes for CMSC
426 (2005). last visited: Oct. 2018. url: http://www.cs.umd.edu/
~djacobs/CMSC426/Convolution.pdf.

[24] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. “Caffe:
Convolutional Architecture for Fast Feature Embedding.” In: arXiv:1408.5093
(2014).

[25] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung,
Rahul Sukthankar, and Li Fei-Fei. “Large-scale video classification
with convolutional neural networks.” In: The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2014, pp. 1725–1732.

[26] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. “Progres-
sive Growing of GANs for Improved Quality, Stability, and Variation.”
In: International Conference on Learning Representations (ICLR). 2018.

[27] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier,
Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back,
Paul Natsev, Mustafa Suleyman, and Andrew Zisserman. “The kinet-
ics human action video dataset.” In: arXiv preprint arXiv:1705.06950
(2017).

[28] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization.” In: International Conference on Learning Representations
(ICLR). 2015.

79

https://github.com/hx173149/C3D-tensorflow
http://www.cs.umd.edu/~djacobs/CMSC426/Convolution.pdf
http://www.cs.umd.edu/~djacobs/CMSC426/Convolution.pdf

Bibliography

[29] Diederik P Kingma and Max Welling. “Auto-encoding variational
bayes.” In: International Conference on Learning Representations (ICLR).
2014.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. “Imagenet
classification with deep convolutional neural networks.” In: Advances
in Neural Information Processing Systems (NIPS). 2012, pp. 1097–1105.

[31] Solomon Kullback and Richard A Leibler. “On information and suf-
ficiency.” In: The Annals of Mathematical Statistics 22.1 (1951), pp. 79–
86.

[32] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.”
In: Nature 521.7553 (2015), pp. 436–444.

[33] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-
based learning applied to document recognition.” In: Proceedings of
the IEEE 86.11 (1998), pp. 2278–2324.

[34] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew
Cunningham, Alejandro Acosta, Andrew P Aitken, Alykhan Tejani,
Johannes Totz, Zehan Wang, and Wenzhe Shi. “Photo-Realistic Single
Image Super-Resolution Using a Generative Adversarial Network.” In:
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2017, pp. 105–114.

[35] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng.
“Convolutional deep belief networks for scalable unsupervised learn-
ing of hierarchical representations.” In: Proceedings of the 26th Interna-
tional Conference on Machine Learning (ICML). 2009, pp. 609–616.

[36] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. “Unsupervised image-
to-image translation networks.” In: Advances in Neural Information
Processing Systems (NIPS). 2017, pp. 700–708.

[37] Martın Abadi et al. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from tensorflow.org. 2015. url:
https://www.tensorflow.org/.

[38] Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and
Jason Yosinski. “Plug & Play Generative Networks: Conditional Itera-
tive Generation of Images in Latent Space.” In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017, pp. 3510–3520.

80

https://www.tensorflow.org/

Bibliography

[39] Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and
Jeff Clune. “Synthesizing the preferred inputs for neurons in neu-
ral networks via deep generator networks.” In: Advances in Neural
Information Processing Systems (NIPS). 2016, pp. 3387–3395.

[40] Augustus Odena, Christopher Olah, and Jonathon Shlens. “Condi-
tional Image Synthesis with Auxiliary Classifier GANs.” In: Proceed-
ings of the 34th International Conference on Machine Learning (ICML).
2017, pp. 2642–2651.

[41] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised
representation learning with deep convolutional generative adversar-
ial networks.” In: International Conference on Learning Representations
(ICLR). 2016.

[42] David E Rumelhart, Geoffrey Hinton, and Ronald J Williams. “Learn-
ing representations by back-propagating errors.” In: Nature 323.6088

(1986), pp. 533–536.

[43] Masaki Saito, Eiichi Matsumoto, and Shunta Saito. “Temporal gen-
erative adversarial nets with singular value clipping.” In: The IEEE
International Conference on Computer Vision (ICCV). 2017, pp. 2849–2858.

[44] Ruslan Salakhutdinov and Hugo Larochelle. “Efficient learning of
deep Boltzmann machines.” In: Proceedings of the 13th International Con-
ference on Artificial Intelligence and Statistics (AISTATS). 2010, pp. 693–
700.

[45] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen. “Improved techniques for training GANs.”
In: Advances in Neural Information Processing Systems (NIPS). 2016,
pp. 2234–2242.

[46] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep
inside convolutional networks: Visualising image classification models
and saliency maps.” In: International Conference on Learning Representa-
tions (ICLR) (2014).

[47] Skymind.ai. A Beginner’s Guide to Generative Adversarial Networks (GANs).
https : / / skymind . ai / wiki / generative - adversarial - network -

gan/. last visited: Sep 2018. url: https://skymind.ai/wiki/generative-
adversarial-network-gan.

81

https://skymind.ai/wiki/generative-adversarial-network-gan/
https://skymind.ai/wiki/generative-adversarial-network-gan/
https://skymind.ai/wiki/generative-adversarial-network-gan
https://skymind.ai/wiki/generative-adversarial-network-gan

Bibliography

[48] Casper Kaae Soenderby, Jose Caballero, Lucas Theis, Wenzhe Shi,
and Ferenc Huszár. “Amortised map inference for image super-
resolution.” In: International Conference on Learning Representations
(ICLR). 2017.

[49] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101:
A dataset of 101 human actions classes from videos in the wild. Tech. rep.
Center for Research in Computer Vision (CRCV), Nov. 2012. [arXiv
preprint arXiv:1212.0402].

[50] Concetto Spampinato, Sergio Palazzo, P D’Oro, Francesca Murabito,
Daniela Giordano, and M Shah. “VOS-GAN: Adversarial Learning
of Visual-Temporal Dynamics for Unsupervised Dense Prediction in
Videos.” In: arXiv preprint arXiv:1803.09092 (2018).

[51] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. “Dropout: a simple way to prevent neural
networks from overfitting.” In: The Journal of Machine Learning Research
(JMLR) 15 (2014), pp. 1929–1958.

[52] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. “Rethinking the inception architecture for computer
vision.” In: The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2016, pp. 2818–2826.

[53] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. “Intriguing prop-
erties of neural networks.” In: International Conference on Learning
Representations (ICLR). 2014.

[54] Lucas Theis, Aäron van den Oord, and Matthias Bethge. “A note on
the evaluation of generative models.” In: International Conference on
Learning Representations (ICLR). 2015.

[55] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and
Manohar Paluri. “Learning spatiotemporal features with 3D con-
volutional networks.” In: The IEEE International Conference on Computer
Vision (ICCV). 2015, pp. 4489–4497.

82

Bibliography

[56] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol. “Extracting and composing robust features with denoising
autoencoders.” In: Proceedings of the 25th International Conference on
Machine Learning (ICML). 2008, pp. 1096–1103.

[57] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. “Generat-
ing videos with scene dynamics.” In: Advances in Neural Information
Processing Systems (NIPS). 2016, pp. 613–621.

[58] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew
Tao, Jan Kautz, and Bryan Catanzaro. “Video-to-Video Synthesis.” In:
Advances in Neural Information Processing Systems (NIPS). 2018.

[59] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz,
and Bryan Catanzaro. “High-Resolution Image Synthesis and Seman-
tic Manipulation With Conditional GANs.” In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2018.

[60] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He.
“Non-local Neural Networks.” In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2018).

[61] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli.
“Image quality assessment: from error visibility to structural simi-
larity.” In: IEEE Transactions on Image Processing 13.4 (2004), pp. 600–
612.

[62] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. “Multiscale struc-
tural similarity for image quality assessment.” In: Asilomar Conference
on Signals, Systems & Computers. Vol. 2. 2003, pp. 1398–1402.

[63] Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse.
“On the quantitative analysis of decoder-based generative models.”
In: International Conference on Learning Representations (ICLR). 2016.

[64] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. “How
transferable are features in deep neural networks?” In: Advances in
Neural Information Processing Systems (NIPS). 2014, pp. 3320–3328.

[65] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lip-
son. “Understanding Neural Networks Through Deep Visualization.”
In: Deep Learning Workshop, International Conference on Machine Learning
(ICML). 2015.

83

Bibliography

[66] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding
convolutional networks.” In: European Conference on Computer Vision
(ECCV). 2014, pp. 818–833.

[67] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus.
“Deconvolutional networks.” In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2010, pp. 2528–2535.

[68] Matthew D Zeiler, Graham W Taylor, and Rob Fergus. “Adaptive
deconvolutional networks for mid and high level feature learning.”
In: The IEEE International Conference on Computer Vision (ICCV). 2011,
pp. 2018–2025.

84

	Abstract
	Kurzfassung
	Introduction
	Related Work
	Preliminaries: Machine Learning
	Deep Learning
	Convolutional Neural Networks
	Structure of CNNs
	Upconvolution

	Learning Algorithms, Back-Propagation, Optimizer
	Generative Models
	Maximum Likelihood Estimation
	Generative Adversarial Networks
	Evaluation Techniques for Generative Models

	Generative Adversarial Networks for Video Generation
	Spatial Network Architecture
	Spatiotemporal Network Structure and Parameter Transfer
	Loss Function
	Generating Output using Activation Maximization
	Condition Networks
	LRCN - Long-term Recurrent Convolutional Network
	C3D - 3D Convolutional Networks

	Experimental Results
	Fine-tuning our Spatiotemporal GAN using Video Data
	Video Generation using LRCN as Condition Network
	Quantitative Evaluation using the Inception Score

	Conclusion

	Generating High Resolution Action Videos
	Progressively Growing GAN
	Network Architecture
	Loss Function
	Regularization Techniques

	Experimental Results
	Dataset Preprocessing
	Training Details
	One Class Image Generation
	Video Generation using Latent Space Interpolation
	Evaluation

	Conclusion

	Discussion and Future Work
	Additional Material
	Simplification of the Inception Score
	UCF-101 Image Generation
	Long-Sequence Video Generation
	Video Generation using C3D as Condition Network
	Multi Class Image Generation using Progressively Growing GAN
	Further Examples of Video Generation using Progressively Growing GAN

	Bibliography

