net:

Das in Figur 3 angedeutete Aufnahmsblatt 1:500 wird mit M.34,W.X,520, 5a bezeichnet. Der Sinn der Zählung der Abschnitte a, b bzw. c, d ist derselbe wie bei der Unterteilung des Triangulierungsblattes.

In den Aufnahmsblättern 1:500 und 1:1000 sind für die vollen Fünfziger-und Hunderter-Meter, in den Aufnahmsblättern 1:2000 und 1:4000 nur für die vollen Hunderter-Meter und endlich in den Aufnahmsblättern im Mass-verhältnisse 1:10.000 nur für die vollen Fünfhunderter-Meter Randmarken ersichtlich zu machen und 4mm lang auszuzeichnen.

Die Koordinaten der Ecken jedes Aufnahmsblattes sind ungekürzt anzuschreiben.

B.) Abstimmen der Längen und Flächen.

Für jedes Aufnahmsblatt sind die durch die winkeltreue Abbildung bewirkten längen-und Flächen-Vergrösserungen der Tabelle I zu entnehmen und die Werte unterhalb des Massverhältnisses auf jedem Blatt anzumerken. Die längenvergrösserung δ_L ergibt sich aus der Formel $\delta_L = \frac{y^2}{2r^2}$. In dieser Formel bedeutet y die Ordinate des Blattmittelpunktes und r den mittleren Krümmungshalbmesser für $\phi = 47^{\circ}$ 45° d.i. für die Mittelbreite des österreichischen Bundesgebietes. Für diesen Bereich ist $\log \frac{1}{2r^2} = 6.089$ 409 - 20.

Die Flächenvergrösserung ist nach der Formel $\delta_F = 2F \cdot \delta_L$ (näherungsweise) zu ermitteln.

In dieser Formel bedeutet F die Fläche des Aufnahmsblattes und $\delta_{\rm L}$ die Längenvergrösserung für den Blatt-

mittelpunkt.

1.Beispiel:

Aufnahmsblatt 1:1000, M.34, W.X, 520,
$$-\frac{11}{7}$$

 $\delta_L = + 0.000 \text{ 115 m} \dots \text{ (Tabelle I, Seite 14)}$
 $\delta_F = 72 \text{ m}^2 \dots \text{ (Tabelle I, Seite 14)}$

2.Beispiel:

Aufnahmsblatt 1:2000, M.34, W.X, 520,
$$-\frac{11,12}{7,8}$$

$$\delta_{L} = + 0.000 \text{ ll5 m} \dots \text{ (Tabelle I, Seite 14)}$$

$$\delta_{F} = 288 \text{ m}^{2} \dots \text{ (Tabelle I, Seite 14)}$$

3.Beispiel:

Aufnahmsblatt 1:4000, M.34, W.X, 520,
$$\frac{9-12}{5-8}$$

$$\delta_{L} = + 0.000 \text{ ll4 m} \dots \text{ (Tabelle I, Seite 14)}$$

$$\delta_{F} = 1138 \text{ m}^{2} \dots \text{ (Tabelle I, Seite 14)}$$

Die gleichartigen Werte für das ausnahmsweise Massverhältnis 1:500 sind durch Berechnung mit Hilfe der angegebenen Formeln und Konstanten zu ermitteln.

Auf. die nach Abzug der Flächenvergrösserung δ_F erhaltene Sollsumme des Aufnahmsblattes (31 ha 24 a 28 m² im Beispiel 1 bzw. 124 ha 97 a 12 m² im Beispiel 2) sind die Flächen der einzelnen Berechnungsgruppen abzustimmen.

Als Flächeninhalte der Grundstücke werden hiernach grund sätzlich die auf den Meeresspiegel zurückgeführten Flächenwerte gegeben.

Werden unmittelbare Längenmessungen an trigonome-

trisch bestimmte Punkte angeschlossen, so ist bei Beurteilung des zulässigen Fehlers zu berücksichtigen:

Erstens die Längenvergrösserung δ_L infolge der Abbildung und zweitens die Längenverkürzung δ_H , die sich durch die Zurückführung der gemessenen Strecken auf den Meeresspiegel ergibt.

Beispiel:

Ein Polygonzug, der zur Gänze in dem Aufnahmsblatt 1:2000, M.34, W.X, 520, $\frac{11,12}{7,8}$ verläuft, sei in einer mittleren Seehöhe von 1200 m gemessen worden. Die Werte L und L'seien mit L = 807.24 m und L'= 807.69 m berechnet und daraus L - L'= -0.45 m gefunden worden. Aus Tabelle I ontnimmt man für das bezeichnete Aufnahmsblatt eine Längenvergrösserung $\delta_{\rm L}$ von 0.000 115 m für l m, somit eine Verbesserung von 0.09 m für L = 807 m. Aus Tabelle II entnimmt man für l m Länge bei 1200 m Medreshöhe eine Höhenverkürzung $\delta_{\rm H}$ von 0.000 188 m, somit eine Verbesserung von 0.15 m für die Länge L'. Der Wert der Längenvergrösserung $\delta_{\rm L}$ ist immer mit n e g a t i v e n Vorzeichen, der Wert der infolge der Höhenlage des Aufnahmsgebietes notwendigen Höhenverkürzung $\delta_{\rm H}$ immer mit p e s i t i v e n Vorzeichen zu L - L' in Rechnung zu stellen.

Es ergibt sich somit:..... L - L'= - 0.45 m Längenvergrösserung ... δ_L .L = - 0.09 m Höhenverkürzung δ_H .L = + 0.15 m

Zusammen: = -0.39 m

(Fehlergrenze = \pm 0.41 m).

Trotzdem also der unmittelbar erhaltene Wert

L - L' grösser ist als die erlaubte Fehlergrenze, liegt
der tatsächliche Längenfehler des Zuges innerhalb der zulässigen Fehlergrenzen.

Arrenative and the data legislatical eternicised and and arthurst two trates

mandatathor a convent and a convent and the second