
Birgit Janko, BSc

Factorization of non-commutative Polynomials
and Testing Fullness of Matrices

MASTER THESIS

written to obtain the academic degree of

Diplom-Ingenieurin

Masterstudium Mathematische Computerwissenschaften

submitted to

Graz University of Technology

Supervisor

Assoc.Prof. Dipl.-Ing. Dr. Franz Lehner

Institute of Discrete Mathematics

Graz, February 2018

2

Affidavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitely marked all material
which has been quotes either literally or by content from the used sources. The text
document uploaded to TUGRAZonline is identical to the present thesis.

Date Signature

Contents

Introduction 7

Notation 9

1 Basics 11
1.1 Definitions and Fundamental Facts . 11
1.2 Linear representations . 13
1.3 Gröbner bases . 20
1.4 Technical Facts and Notation for using FriCAS 25

2 Factorization of non-commutative polynomials 27
2.1 Polynomial Factorization . 27
2.2 Implementation in FriCAS . 30
2.3 Examples . 31

2.3.1 Non-commutative Polynomials of rank 3 32
2.3.2 Non-commutative Polynomials of rank 4 34
2.3.3 Non-commutative Polynomials of rank greater than 4 40

2.4 Observations . 45

3 Testing Fullness of matrices 49
3.1 The main theorem . 49
3.2 Examples . 50
3.3 Implementation in FriCAS . 51
3.4 Observations . 52

Conclusion and Outlook 61

5

6

Introduction

Factorization of commutative polynomials is a rather uniform theory, whereas treat-
ing non-commutative polynomials is not that easy. Here we use the simplest non-
commutative case, factorization in the free associative algebra, which is a similarity
unique factorization domain, i.e., each non-zero element has a unique factorization (up
to similarity and order). A discussion of other types of non-commutative factorization
can be found in [Sme15]. Recently the factorization of non-commutative polynomi-
als became more interesting. Non-commutative polynomials are used for example in
cryptanalysis or in system engineering. An application of non-commutative polyno-
mial factorization to cryptanalysis can be found in [CCT08], in which an attack on
the non-commutative Polly-Crackers is constructed. In [ARJ15] some special cases
of non-commutative polynomial factorization are treated, for example the variable-
disjoint factorization. The variable-disjoint factorization is even unique and can be
computed in polynomial time. An algorithm for the factorization of non-commutative
polynomials is described in [Car10], which uses the relations between the homogeneous
parts.

In this thesis we start with a non-commutative polynomial, represented by an ad-
missible linear system As = v with a linear full square matrix A, i.e., the matrix
entries are linear and the matrix does not have a factorization into rectangular ma-
trices of smaller dimension. We try to find transformation matrices P and Q over
the commutative ground field K, such that PAQ has an upper right block of zeros,
corresponding to a factorization of the represented non-commutative polynomial. We
extract the coefficients of the entries corresponding to the upper right zero block and
get commutative polynomials. Therefore we change the non-commutative problem to
an equation system with commuting variables which we solve with Gröbner bases.

For the factorization of non-commutative polynomials, represented by an admis-
sible linear system, we need full matrices. Let L be a linear square matrix whose
matrix entries are non-commutative polynomials. Similarly to the factorization of
non-commutative polynomials, we use in the test of fullness (of a matrix L) matrices
P and Q to generate upper right zero blocks in the matrix PLQ. The coefficients of the
entries corresponding to an upper right zero block are again commutative polynomials
and generate together with detP − 1 and detQ− 1 an ideal. With the use of Gröbner
basis we check whether this ideal is trivial or non-trivial and therefore whether the
matrix is full or non-full. Testing the fullness of a linear n×n matrix practically due to
(trivial or non-trivial) ideals is rather difficult for n ≥ 5, since more than 50 unknowns
are involved. We test different forms of matrices, also with different term and variable

7

8 Introduction

orders for the Gröbner basis and compare them.

Motivation

Bruno Buchberger introduced the Gröbner basis theory for ideals in a commutative
polynomial ring over a field in his dissertation 1965 (see [Buc65]). A Gröbner basis
(named after his advisor Wolfgang Gröbner) of an ideal is a set of polynomials, such
that every polynomial in the ideal generated by the Gröbner basis has (division) re-
mainder zero. Therefore we can use Gröbner bases to check whether a polynomial is
in the ideal or not. But there are several other applications for Gröbner bases, for
example the problem of Solving Polynomial Equations or other algebraic problems
related to ideals. For more information see for example [CLO15].

Buchberger also developed a terminating algorithm (Buchberger Algorithm) to find
a finite Gröbner basis of an ideal, generated by a finite set of polynomials, with this
finite set and a term order as input. Further details are given in Section 1.3. This
algorithm is implemented in most computer algebra systems, for example Axiom,
Maple, Mathematica or FriCAS. For a short introduction of Gröbner basis in some
computer algebra systems see [CLO15].

Here we use Gröbner bases to describe the ideal as a minimal finite generated set
and then test whether the Gröbner basis is trivial respectively non-trivial.

Outline

In this thesis I deal with the factorization of non-commutative polynomials and testing
the fullness of matrices, i.e., checking whether matrices are invertible over the free field
(the division algebra of the free associative algebra). The implementation is written for
the interpreter in FriCAS, a computer algebra system which is a descendant of Axiom.
For further information about FriCAS please go to the website fricas.sourceforge.

net. The used program code is explained in detail in [Jan18] and will be illustrated
by examples of non-commutative polynomials.

This thesis consists of three chapters which are based on each other. The first chapter
gives an introduction to the basic definitions and properties which are used throughout
the thesis. The second chapter handles the factorization of non-commutative polyno-
mials. After the theory of polynomial factorization is set up, the implementation in
FriCAS is explained and some examples of non-commutative polynomials illustrate
the code. The third chapter considers full matrices, the main theorem for handling
and testing full matrices and some examples. At the end of Chapter 2 and Chapter 3
some observations about the implementation in FriCAS are mentioned. The focus is
especially on the current limits for calculations and some experiments concerning the
runtime.

Notation

X = {x1, . . . , xd} finite alphabet X, in the examples usually X = {x, y, z}.
X∗ free monoid generated by X, for example X∗ = {1, x, y, z, xx, . . . }
K commutative field, for example Q or R
K algebraic closure of K
K[X] set of all commutative polynomials with variables x ∈ X and

coefficients in K
K 〈X〉 free associative algebra, free K-algebra,

K-algebra of non-commutative polynomials

K 〈X〉 free K-algebra over the algebraic closure of the ground field K
K (〈X〉) free field, universal field of fractions of K 〈X〉
K[a, b] K-algebra in the (commutative) variables aij, bij
In identity matrix of size n
πf = (u, A, v) linear representation of f ∈ K (〈X〉) ,

f = uA−1v, u ∈ K1×n, v ∈ Kn×1, A linear and full
V m×n space of all m× n matrices over V
S ⊗ T tensor product of S and T
deg(f) degree of a polynomial f
N natural numbers {1, 2, ...}
N0 natural numbers with 0
Q rational numbers
R real numbers
C complex numbers
Sm symmetric group
. (lower dot) zeros in matrix
DMP lexicographical term order (in FriCAS)
HDMP reverse lexicographical term order (in FriCAS)

9

10

1 Basics

In this chapter we give some definitions and basic properties. In Section 1.2 we give
a short introduction to linear representations and in Section 1.3 an introduction to
Gröbner bases. Technical facts for the calculations in FriCAS and the used computer
environment are described in Section 1.4.

1.1 Definitions and Fundamental Facts

Every element of the free field can be represented as an entry of the inverse of some
full square linear matrix. (See [Coh95, Theorem 6.3.7].) Therefore we consider only
linear matrices.

Definition 1.1.1 ([FR04]). Let K be a commutative field and X = {x1, . . . , xd} a
finite alphabet. A matrix whose entries are of the form a0 + a1x1 + · · ·+ adxd, where
ai ∈ K and xi are (commutative or non-commutative) indeterminates, is called linear
matrix (pencil).

The free monoid X∗, generated byX, is the set of all finite words xi1xi2 · · · xin , n ∈ N
with ik ∈ {1, . . . , d}. A letter is an element of the alphabet, a word is an element of
X∗. The multiplication in X∗ is defined as the concatenation product (xi1xi2 . . . xim) ·
(xj1xj2 . . . xjn) = xi1xi2 . . . ximxj1xj2 . . . xjn , with the neutral element 1, the empty
word. The length of a word w = xi1xi2 . . . xin is n, denoted by |w| = n.

Linear matrices can be considered as matrices over the rational function field
K(y1, . . . , yd) with commuting variables y1, . . . , yd or as matrices over the free field,
the non-commutative analog of the previous one, see [Coh85] or [CR99].

Let X be a finite alphabet and K a commutative field. Then K 〈X〉 denotes the free
K-algebra of non-commutative polynomials over K generated by the non-commuting
variables x ∈ X ∪ {1}. It is also called the free associative algebra.

Definition 1.1.2 ([FR04]). The rational function field in non-commuting variables
x ∈ X, denoted as K (〈X〉) , is called the free field.

Example 1.1.3. For X = {x, y, z} the non-commutative polynomial p = xy−yx+2z
is in K 〈X〉 .

11

12 1 Basics

The free field is the unique (up to isomorphism) field generated by K 〈X〉 . The free
field is characterized by the following property: every full square matrix M over K 〈X〉
becomes invertible over the free field. (See [Coh03, Section 9.3].)

Definition 1.1.4 ([FR04]). A square matrix M is called full if there is no factorization
M = PQ with P ∈ K 〈X〉n×p , Q ∈ K 〈X〉p×n and p < n.

Remark 1.1.5. A nonfull matrix cannot be invertible in any extension field of K 〈X〉,
so the embedding of K 〈X〉 in the free field maximizes the class of invertible matrices
over K 〈X〉, see [CR99].

Definition 1.1.6 ([FR04]). The inner rank of a matrix M ∈ K 〈X〉n×n is the least
r ∈ N, such that M has a factorization M = PQ with P ∈ K 〈X〉n×r and
Q ∈ K 〈X〉r×n .

One result of Cohn asserts, that the inner rank of any matrix over K 〈X〉 is equal
to its rank over the free field, see [Coh85, Section 5.4]. For further discussions about
the inner rank see [FR04].

Definition 1.1.7 ([Coh95]). Two matrices A and B over K 〈X〉 (of the same size) are
called associated over a subring R ⊆ K 〈X〉 if there exist invertible matrices P and Q
over R such that A = PBQ.

Definition 1.1.8 ([CR99]). An n × n matrix is called hollow if it contains a zero
submatrix of size k × l with k + l > n.

Example 1.1.9. The 3× 3 matrix ∗ ∗ ∗0 0 ∗
0 0 ∗

 ,

for arbitrary non-zero entries, is a hollow matrix, since for the 2×2 zero block 2+2 = 4
is greater than 3.

The following results provide the basis for the test of fullness in Chapter 3 (see
Theorem 3.1.1).

Proposition 1.1.10 ([Coh95], Proposition 4.5.4). An n × n matrix with an r × s
block of zeros with r + s > n cannot be full.

Lemma 1.1.11 ([Coh95], Corollary 6.3.6). A linear square matrix over K 〈X〉 which
is not full is associated over K to a linear hollow matrix.

1.2 Linear representations 13

1.2 Linear representations

In this section we introduce linear representations. After some definitions concerning
linear representations we show how to construct admissible linear systems for the
rational operations and some properties of linear representations.

Definition 1.2.1 ([CR94]). A linear representation of f ∈ K (〈X〉) is a triple (u, A, v)
with u ∈ K1×n, A = A0 +

∑d
i=1Ai ⊗ xi, Al ∈ Kn×n and v ∈ Kn×1 such that A is full

and f = uA−1v. The dimension of the linear representation is dim(u, A, v) = n.

Definition 1.2.2 ([CR94]). A linear representation π = (u, A, v) of f is minimal, if
the system matrix A has the smallest possible dimension among all linear representa-
tions of f.

Remark 1.2.3. Not even a minimal linear representation of a polynomial is unique,
since rows and columns can be scaled, see Example 1.2.12.

Definition 1.2.4 ([CR99]). Two linear representations are called equivalent if they
represent the same element in the free field.

If we represent the same element in the free field with two different linear rep-
resentations, the representations are trivially equivalent. If π′ = (u′, A′, v′) and
π′′ = (u′′, A′′, v′′) are both minimal and equivalent, then there exist invertible matrices
W, U ∈ Kn×n, such that u′′ = u′U, A′′ = WA′U, v′′ = Wv′. (See [CR99, Section 1].)
Indeed they represent the same element in the free field, since:

u′′(A′′)−1v′′ = u′UU−1(A′)−1W−1Wv′ = u′(A′)−1v′.

Example 1.2.5. The linear representations of x(1 − yx) and (1 − xy)x, which are
constructed according to the algorithm of Proposition 1.2.18 as the product of x and
(1−yx) respectively the product of (1−xy) and x, are equivalent, since they represent
both the element x− xyx in the free field. For details see Example 1.2.21.

Definition 1.2.6 ([CR94]). Let π be a minimal representation of f ∈ K (〈X〉) . Then
the rank of f is defined as rank f = dimπ.

Definition 1.2.7 ([CR94]). Let π = (u, A, v) be a linear representation of an ele-
ment f in K (〈X〉) of dimension n. The left family is the n-tuple s = (s1, . . . , sn) ⊆
K (〈X〉)n with si = (A−1v)i. The right family is the n-tuple t = (t1, . . . , tn) ⊆ K (〈X〉)n
with tj = (uA−1)j.

Remark 1.2.8. The n-tuple s, respectively t, from Definition 1.2.7 and the solution
vector s, from As = v, respectively the solution vector t, from tA = u, are used
synonymously.

14 1 Basics

Proposition 1.2.9 ([CR94], Proposition 4.7). A representation π = (u, A, v) of an
element f ∈ K (〈X〉) is minimal if and only if both, the left family and the right family
are K-linearly independent.

Remark 1.2.10. Notice, that in a minimal linear representation the left family and
the right family have to be K-linearly independent among themselves, but they are
never K-linearly independent from each other. At least the first component of the left
family and the last component of the right family are K-linearly dependent.

Definition 1.2.11 ([Coh72]). A linear representation π = (u, A, v) of an element
f ∈ K (〈X〉) is called an admissible linear system (for f, denoted f ∼ π), denoted by
As = v, if u = e1 = (1, 0, . . . , 0) . Then f is the first component of the (unique)
solution vector s.

Example 1.2.12. Let f = 1− xy be our polynomial to examine minimal admissible
linear systems of f. Then the following four admissible linear systems are examples of
members of the same equivalence class. 1 −x 1

. 1 −y

. . 1

 s =

 .
.
−1

 , s =

 1− xy
−y
−1

 (1.2.13)

 1 x −1
. 1 −y
. . 1

 s =

 .
.
1

 , s =

 1− xy
y
1

 (1.2.14)

 1 −x −1
. 1 y
. . 1

 s =

 .
.
1

 , s =

 1− xy
−y
1

 (1.2.15)

 1 −3x −1
. 1 1

3
y

. . 1

 s =

 .
.
1

 , s =

 1− xy
−1

3
y

1

 (1.2.16)

There exist transformation matrices W and U to transform one system matrix into the
other. The transformation of the system matrix from (1.2.13) into that from (1.2.14)
is

W =

 1 0 0
. −1 0
. . −1

 , U =

 1 0 0
. −1 0
. . −1

 ,

since the second and third row and the second and third column are multiplied by
(−1). The transformation matrices for the system matrix from (1.2.14) to that from
(1.2.15) are

W =

 1 0 0
. −1 0
. . 1

 , U =

 1 0 0
. −1 0
. . 1

 ,

1.2 Linear representations 15

since we multiply the second row and the second column by (−1). For the transfor-
mation from (1.2.15) to (1.2.16) we need

W =

 1 0 0
. 1

3
0

. . 1

 , U =

 1 0 0
. 3 0
. . 1

 ,

since we multiply the second row by 1
3

and the second column by 3. To transform the
system matrix from (1.2.16) to the system matrix from (1.2.13) we use the transfor-
mation matrices

W =

 1 0 0
. 3 0
. . −1

 , U =

 1 0 0
. 1

3
0

. . −1

 .

Definition 1.2.17 (Admissible Transformations, [Sch17a]). Let π = (u, A, v) be
a linear representation of dimension n of f ∈ K (〈X〉) and T, U ∈ Kn×n invertible
matrices. The transformed representation TπU = (uU, TAU, Tv) is again a linear
representation (of f). If π is an admissible linear system, the transformation (T, U)
is called admissible if the first row of U is e1 = (1, 0, . . . , 0) .

Admissible linear systems can be constructed as follows.

Proposition 1.2.18 ([CR99], Section 1). Let f, g ∈ K (〈X〉) , g 6= 0, be the elements
of the free field given by the admissible linear systems Afsf = vf and Agsg = vg and
let λ ∈ K. Then admissible linear systems for the rational operations are constructed
(denoted as ∼) by:
The scalar multiplication λf is represented by

λf ∼ Afsλf = λvf ,

with solution vector sλf = λsf .
The sum f + g is represented by

f + g ∼
(
Af −Afu>f ug
. Ag

)
sf+g =

(
vf
vg

)
, (1.2.19)

with solution vector sf+g =

(
sf + u>f g

sg

)
.

The product fg is represented by

fg ∼
(
Af −vfug
. Ag

)
sfg =

(
.
vg

)
, (1.2.20)

16 1 Basics

with solution vector sfg =

(
sfg
sg

)
.

The inverse g−1 is represented by

g−1 ∼
(
−vg Ag
. ug

)
sg−1 =

(
.
1

)
,

with solution vector sg−1 =

(
g−1

sgg
−1

)
.

The elements 0 and k ∈ K, k 6= 0 are represented by

0 = (, ,) and k = (1, 1, k)

of rank 0 and 1 respectively.

Example 1.2.21. Let us construct an admissible linear system for p = (1 − xy)x
using the product rule (1.2.20). Minimal admissible linear systems for the factors x
and 1− xy are given by

x ∼
(

1 −x
. 1

)
sx =

(
.
1

)
, sx =

(
x
1

)
and

1− xy ∼

 1 −x −1
. 1 y
. . 1

 s1−xy =

 .
.
1

 , s1−xy =

 1− xy
−y
1

 .

For the product of those two factors we get (from Proposition 1.2.18) the admissible
linear system

1 −x −1 . .
. 1 y . .
. . 1 −1 .
. . . 1 −x
. . . . 1

 s =


.
.
.
.
1

 , s =


(1− xy)x
−yx
x
x
1

 .

Observe that this admissible linear system is not minimal yet, since the left family is
K-linearly dependent. To obtain a minimal system, we proceed as follows: First, we
add column 3 to column 4 with the transformation matrices

W̃ = I5 =


1
. 1 . . .
. . 1 . .
. . . 1 .
. . . . 1

 and Ũ =


1
. 1 . . .
. . 1 1 .
. . . 1 .
. . . . 1



1.2 Linear representations 17

to get 
1 −x −1 −1 .
. 1 y y .
. . 1 0 .
. . . 1 −x
. . . . 1

 s =


.
.
.
.
1

 , s =


(1− xy)x
−yx

0
x
1

 .

Then deleting row 3 and column 3 (since the corresponding entry s3 is zero) in the
system matrix yields the system

1 −x −1 .
. 1 y .
. . 1 −x
. . . 1

 s =


.
.
.
1

 , s =


(1− xy)x
−yx
x
1

 .

Since the left family s and the right family t = (1, x, 1− xy, x− xyx) are both K-
linearly independent, a minimal admissible linear system for p = (1 − xy)x is given
by 

1 −x −1 .
. 1 y .
. . 1 −x
. . . 1

 s =


.
.
.
1

 , s =


(1− xy)x
−yx
x
1

 . (1.2.22)

Recall that p is the first component of the solution vector s.
Similarly we get a minimal admissible linear system for q = x(1− yx),

1 −x . .
. 1 y −1
. . 1 −x
. . . 1

 s =


.
.
.
1

 , s =


x(1− yx)

1− yx
x
1

 . (1.2.23)

With the two invertible matrices

W =


1 . 1 .
. 1 . .
. . 1 .
. . . 1

 , U =


1 . . .
. 1 . −1
. . 1 .
. . . 1


one can easily verify that these two linear representations are equivalent.

Remark 1.2.24. In Example 1.2.21 the matrices W and U represent the row and
column operations respectively, transforming in this case the admissible linear system
of p = (1 − xy)x to q = x(1 − yx), constructed with the product rule (1.2.20). In
general the representations are totally arbitrary. We get the system matrix in (1.2.23),
if we add the second column, after multiplying it with (−1), to the fourth column and
add the third row to the first row in (1.2.22).

18 1 Basics

Remark 1.2.25. Notice that there always exist two invertible transformation matri-
ces for all pairs of minimal admissible linear systems of a polynomial. (See [CR99,
Section 1].) If we use in Example 1.2.21 the same admissible linear system for 1− yx
as for 1− xy only exchanging x with y and y with x in the system matrix, i.e.

(1− xy)x ∼


1 −x −1 .
. 1 y .
. . 1 −x
. . . 1

 s =


.
.
.
1

 , s =


(1− xy)x
−yx
x
1

 and

x(1− yx) ∼


1 −x . .
. 1 −y −1
. . 1 x
. . . 1

 s =


.
.
.
1

 , s =


(1− xy)x

1− yx
−x
1

 ,

then we have the two transformation matrices

W =


1 0 1 0
. 1 0 0
. . −1 0
. . . 1

 and U =


1 0 0 0
. 1 0 −1
. . −1 0
. . . 1

 .

However we cannot assume that the transformation matrices always have the following
form

W =


1 a1,2 . . . a1,n−1 0
. a2,2 . . . a2,n−1 0

. .
. . .

...
...

. . . an−1,n−1 0

. 1

 and U =


1 b1,2 . . . b1,n−1 0
. b2,2 . . . b2,n−1 0

. .
. . .

...
...

. . . bn−1,n−1 0

. 1


with ai,ibi,i = 1 ∀ i ∈ {2, . . . , n − 1}. A counter-example is the anticommutator
xy + yx whose transformation matrices contain permutations which are not upper
triangle matrices. One minimal admissible linear system of the anticommutator is

1 −x −y .
. 1 . −y
. . 1 −x
. . . 1

 s =


.
.
.
1

 , s =


xy + yx

y
x
1

 , (1.2.26)

another minimal admissible linear system is
1 −y −x .
. 1 . −x
. . 1 −y
. . . 1

 s =


.
.
.
1

 , s =


xy + yx

x
y
1

 . (1.2.27)

1.2 Linear representations 19

We get the system matrix in (1.2.27), if we exchange the second row with the third
row and the second column with the third column in (1.2.26). These operations are
done by the transformation matrices

W =


1 0 0 0
. 0 1 0
. 1 0 0
. . . 1

 and U =


1 0 0 0
. 0 1 0
. 1 0 0
. . . 1

 ,

which are not upper triangular matrices any more.

In this thesis only minimal admissible linear systems are considered to simplify the
manipulations. The construction of minimal linear representations is not discussed
here and referred to the illustration in [Sch17b, Section 4] and the overview in [Sch17a,
Section 3].

Factorization of commutative polynomials is a rather uniform theory, whereas the
non-commutative case is not that easy. In this thesis we use the simplest non-
commutative case, factoring in the free associative algebra, which is a (similarity
unique) factorization domain. For further information of non-commutative factor-
ization, see [Sme15].

Definition 1.2.28 ([Coh85], Section 3.2). Let R be a ring and a, b ⊆ R two ideals.
The two ideals are called similar, denoted by a ∼ b, if R/a ∼= R/b as right R-modules.
Two elements p, q ∈ R are called similar, if the right ideals they generate pR and qR
are similar, this means pR ∼ qR.

Definition 1.2.29 ([BS15], Section 2). Let R be a domain and H = R\{0}.

(i) An element p left divides q, denoted by p |l q, if q ∈ pH = {ph | h ∈ H}. Two
elements p, q are called left coprime, if for every h, such that h |l p and h |l q, h
is invertible, this means that h is an element of the group of units.

(ii) An element p right divides q, denoted by p |r q, if q ∈ Hp = {hp | h ∈ H}.
Two elements p, q are called right coprime, if for every h, such that h |r p and
h |r q, h is invertible, this means that h is an element of the group of units.

Definition 1.2.30 ([BS15], Section 2). Let R be a domain and H = R\{0}. An
element p ∈ H\H×, i.e., a non-zero non-unit (in R), is called an atom or irreducible,
if p = q1q2 with q1, q2 ∈ H implies that either q1 ∈ H× or q2 ∈ H×. The (cancellative)
monoid H is called atomic, if every non-unit can be written as a finite product of
atoms of H. The domain R is called atomic, if the monoid R\{0} is atomic.

Example 1.2.31. The atoms in the free monoid X∗ are the letters x ∈ X.

20 1 Basics

Definition 1.2.32 ([Sme15], Definition 4.1). A domain R is called similarity Unique
Factorization Domain, if R is atomic and it satisfies the property that if p1p2 · · · pm =
q1q2 · · · qn for atoms pi, qj ∈ R, then m = n and there exists a permutation σ ∈ Sm

such that pi is similar to qσ(i) for all i ∈ {1, 2, . . . , m}.

Proposition 1.2.33 ([Coh63], Theorem 6.3). The free associative algebra K 〈X〉 is a
similarity Unique Factorization Domain.

Definition 1.2.34 ([CR99]). A linearization of f ∈ K (〈X〉) is a matrix
L = L0 +

∑d
i=1 Li ⊗ xi, with Li ∈ Km×m, of the form

L =

(
c u
v A

)
∈ K 〈X〉m×m

such that A is invertible over the free field and f = c− uA−1v. Recall, that A is a full
matrix.
If c = 0 then L is called a pure linearization.
The size of the linearization is sizeL = m, the dimension is dimL = m− 1.

Remark 1.2.35. Given a linear representation (u, A, v) of f ∈ K (〈X〉) ,

L =

(
. u
−v A

)
is a pure linearization of f.

Corollary 1.2.36 ([CR99], Corollary 1.3). The elements of the free field K (〈X〉) are
given by equivalence classes of pure and linear representations, with the field operations
given by the rational operations in Proposition 1.2.18.

Theorem 1.2.37 ([CR99], Theorem 1.4). If π′ = (u′, A′, v′) and π′′ = (u′′, A′′, v′′)
are equivalent (pure) linear representations, of which the first is minimal, then the
second is isomorphic to a representation (u, A, v) which has the block decomposition

u =
(
∗ u′ .

)
, A =

 ∗ . .
∗ A′ .
∗ ∗ ∗

 and v =

 .
v′

∗

 .

1.3 Gröbner bases

In this section we introduce Gröbner bases and discuss their basic properties. This is
based on the lecture notes [Gil15]. Here Gröbner bases are used to find a factorization
of a non-commutative polynomial (as an element in the free field K (〈X〉)). For more
detailed information about Gröbner bases and their alternative uses see [CLO15].

Notice that in this section we consider commutative polynomials.
Before starting with Gröbner bases we need to define some basics like term orders.

1.3 Gröbner bases 21

Definition 1.3.1. Let X = {ξ1, . . . , ξd} be a finite alphabet. Then T = T (X) =
{ξe11 · . . . · ξ

ed
d | e1, . . . , ed ∈ N0} is the set of terms.

The product of terms is defined as
(
ξe11 · . . . · ξ

ed
d

)
·
(
ξf11 · . . . · ξ

fd
d

)
= ξe1+f11 · . . . · ξed+fdd .

The set of monomials is M = M(X) = {at · t | at ∈ K\{0}, t ∈ T} .
The product of monomials is defined as (a1t1) · (a2t2) = (a1a2)(t1 · t2) and the degree
of a monomial is deg(aξe11 · . . . · ξ

ed
d) = e1 + · · ·+ ed.

The polynomials over K in X are

K[X] =

{∑
t∈S

at · t | at ∈ K\{0}, S ⊂ T, S finite

}
∪ {0}.

The degree of a polynomial is the maximum degree of its monomials.

Definition 1.3.2. Let T be the set of terms in K[X]. A term order is a total order ≤
on T such that

(i) 1 ≤ t ∀ t ∈ T

(ii) If s ≤ t⇒ s · t′ ≤ t · t′ ∀ s, t, t′ ∈ T.

There are several term orders, which result in small differences in the ordering of
terms, but give rise to dramatically different Gröbner bases.

Definition 1.3.3. Let s = ξe11 · . . . · ξ
ed
d and t = ξf11 · . . . · ξ

fd
d be two terms.

The lexicographic term order is the term order <lex if

s <lex t ⇐⇒ ∃ 1 ≤ m ≤ d such that ∀ i < m : ei = fi and em < fm.

The inverse lexicographic term order is the term order <invlex if

s <invlex t ⇐⇒ ∃ 1 ≤ m ≤ d such that ∀ i > m : ei = fi and em < fm.

The graded lexicographic term order is the term order <gradlex if

s <gradlex t ⇐⇒
[
deg(s) < deg(t)

]
or
[
deg(s) = deg(t) and s <lex t

]
.

The graded reverse lexicographic term order is the term order <gradlex if

s <gradrevlex t ⇐⇒
[
deg(s) < deg(t)

]
or
[
deg(s) = deg(t) and t <lex s

]
.

Example 1.3.4. Let X = {ξ1, ξ2, ξ3}. Then ξ21ξ2ξ
3
3 <lex ξ

2
1ξ

4
2ξ3 and ξ21ξ2ξ

3
3 <gradlex

ξ21ξ
4
2ξ3, but ξ21ξ2ξ

3
3 >invlex ξ

2
1ξ

4
2ξ3.

Definition 1.3.5. Let < be a term order on T , 0 6= f =
∑

t∈S at · t ∈ K[X] with
at ∈ K\{0} and S a finite subset of T. Then the set of terms in f , denoted by T (f),
is S. The leading term of f is the maximal term in S with respect to the term order <,
thus lt(f) = max<(S). The leading monomial of f, denoted by lm(f), is lm(f) = at · t
with t = lt(f).

22 1 Basics

Now we can define Gröbner bases.

Definition 1.3.6. Let K be a commutative field, I an ideal in K[X], < the term order
on the set of terms and G ⊆ I finite. Then G is a Gröbner basis of I in K[X] with
respect to the term order <, if

lt(I) = Mult(lt(G)) where

lt(M) = {lt(f) | f ∈M} , for M ⊆ K[X] and
Mult(S) = {t · s | t ∈ T, s ∈ S} , for S ⊆ K[X].

Corollary 1.3.7. Let G be the Gröbner basis of an ideal I ⊂ K[X]. Then G gener-
ates I, i.e., I = Id(G).

Proof. The ideal generated by G is trivially a subset of I.
Now let Id(G) be the ideal generated by G and assume that I\ Id(G) is not empty.

Choose f ∈ I\ Id(G) with minimal leading term with respect to < . According to the
assumption there exists g ∈ G, whose leading term divides the leading term of f. Let
lm(f) = a · s and lm(g) = b · t with a, b ∈ K, s, t ∈ T. It follows that t divides s, say
t · u = s with u ∈ T.

Let h := f − (ab−1u)g 6= 0. (Otherwise f = ab−1ug and therefore f is an element
of the ideal generated by G.) So it holds that lm(h) < lm(f), h ∈ I. Since the leading
term in f is minimal in I\ Id(G), h is in the ideal generated by G. Thus it follows that
f = h+ (ab−1u)g is an element of Id(G), which is a contradiction to our assumption.
Therefore I\ Id(G) is empty and I is the ideal generated by G.

Theorem 1.3.8. For every ideal I ⊂ K[X] and for every term order < on T there
exists a Gröbner basis of I with respect to < .

For the proof of this theorem we use the fact that (T, |) has the Dickson-property.

Definition 1.3.9. Let (M, ≤) be a partial order, that is, ≤ is reflexive, transitive and
antisymmetric. Then (M, ≤) has the Dickson-property, if every non-empty subset N
of M has a finite base. B ⊆ N, is a base of N, if for every a ∈ N there exists a b ∈ B
with b ≤ a.

Proof of Theorem 1.3.8. Let I 6= ∅. Then lt(I) 6= ∅. Let | represent the following
property: ξe11 . . . ξedd | ξ

f1
1 . . . ξfdd ⇔ ei ≤ fi ∀ i ∈ {1, . . . , d}. Let B be the finite

Dickson-base of lt(I) with respect to (T, |), like B = {t1, . . . , tn} ⊆ lt(I). Choose
gi ∈ I with lt(gi) = ti and we claim that G = {g1, . . . , gn} is a Gröbner basis of I
with respect to < . For proving this claim, let 0 6= f ∈ I. Then there exists ti ∈ B
such that ti divides the leading term of f. But this means that the leading term of f
can be written as lt(f) = u · lt(gi) with u ∈ T. So the leading term of f is a multiple
of the leading terms of the Gröbner basis. Therefore we have shown the statement of
the Theorem, since the other direction follows immediately from the fact G ⊂ I.

1.3 Gröbner bases 23

We can construct a Gröbner basis from a given finite polynomial system with the
Buchberger Algorithm. The algorithm is based on the subtraction polynomial and
is shown in Algorithm 1. Before concentrating on the algorithm we need some more
definitions.

Definition 1.3.10. Let f, g, p ∈ K[X], p 6= 0, P ⊆ K[X], < be a term order and
t ∈ T.

(i) f reduces itself to g under elimination of t with respect to P , denoted by
f −−→

P
g[t], if ∃ a ∈ K with a · t ∈M(f), lm(p) = b · s with b ∈ K, s ∈ T, t = u · s

for u ∈ T and g := f − a
b
up.

(ii) f −−→
p
g if there is a t ∈ T (f) with f −−→

p
g[t].

(iii) f −−→
P

g if there exists a p ∈ P with f −−→
p
g.

(iv) f is reducible mod p (mod P), if there is a g ∈ K[X] with f −−→
p
g (respectively

f −−→
P

g).

(v) f is in normal form mod p (mod P), if f is not reducible mod p (mod P).

(vi) f
k−−→
P

g if there exist f0, . . . , fk with f = f0 −−→
P

f1 −−→
P

. . . −−→
P

fk = g.

(vii) f
∗−−→
P

g if there exists a k ∈ N0 such that f
k−−→
P

g.

Example 1.3.11. Let f = 5ξ21ξ
7
2 − ξ31ξ42 + ξ21 − ξ2 + 3, p = 2ξ21ξ2− 1 and < the graded

lexicographical term order. If we consider t = ξ21ξ
7
2 , then

f −−→
p
f − 5

2
ξ62p = −ξ31ξ42 + ξ21 − ξ2 + 3 +

5

2
ξ62 =: g.

Definition 1.3.12. Let s = ξe11 · . . . · ξ
ed
d and t = ξf11 · . . . · ξ

fd
d be two terms. Then the

least common multiple of s and t, denoted by lcm(s, t), is

lcm(s, t) = ξ
max{e1, f1}
1 · . . . · ξmax{ed, fd}

d .

This means that s and t divides lcm(s, t) and if t′ ∈ T with s and t divides t′, then
lcm(s, t) divides t′.

Definition 1.3.13. Let 0 6= f, g ∈ K[X], t′ = lcm(s, t) = u · s = v · t with u, v ∈ T.
Then the subtraction polynomial of f and g is defined as Spol(f, g) = buf − avg.

Theorem 1.3.14. Let G ⊆ K[X] be finite, < term order and 0 /∈ G. Then

G is Gröbner basis with respect to < ⇐⇒ ∀ f, g ∈ G with f 6= g : Spol(f, g)
*−−→
G

0.

24 1 Basics

The proof of Theorem 1.3.14 can be found in [CLO15]. This theorem provides the
main idea of the Buchberger Algorithm to find a Gröbner basis from a finite set of
polynomials.

Algorithm 1 Buchberger Algorithm

Input: F ⊆ K[X] finite, < term order, 0 /∈ F
Output: G ⊆ Id(F) finite, s.t. G is Gröbner basis of Id(F) with respect to < and
F ⊆ G

G := F
B :=

{
{g1, g2} | gi ∈ G, g1 6= g2

}
while B 6= ∅ do

choose {g1, g2} ∈ B
B := B\

{
{g1, g2}

}
h := Spol(g1, g2)
h0 := normal form of h with respect to −−→

G

if h0 6= 0 then
B := B ∪

{
{g, h0} | g ∈ G

}
G := G ∪ {h0}

end if
end while

Proof. For the termination of this algorithm we assume that there exists a finite sub-
set F ⊆ K 〈X〉 , such that the while-loop does not terminate. Then there are in-
finitely many instances of h0 6= 0. Let h0, h1, h2, . . . be these instances of h0 and
G0, G1, G2, . . . be the instances of G after the corresponding while-loop. Therefore
hi ∈ Gi and even {h0, . . . , hi} ⊆ Gi holds. According to the construction hi is in
normal form mod Gi−1 ⊆ Gi. In particular, ti := lt(hi) is in normal form mod Gi−1.
So it follows that ∀ s ∈ lt(Gi−1) s does not divide ti (otherwise ti could be reduced).
Let B′ a finite Dickson basis of {ti | i = 0, 1, 2, . . . } in (T, |). Choose n ∈ N such
that B′ ⊆ {t0, t1, . . . , tn}. Now we can find for tn+1 some ti ∈ B′ such that ti di-
vides tn+1 for i smaller or equal n. So ti ∈ lt(Gi) and tn+1 is in normal form mod Gn,
but ti ∈ lt(Gi) ⊆ lt(Gn). This results in a contradiction, since ti divides tn+1 and
ti ∈ lt(Gn) follow to the reducibility of tn+1 mod Gn.

Concerning the correctness of the algorithm, the following hold before the first loop
run and after each loop run :

(i) F ⊆ G finite, 0 /∈ G, Id(G) = Id(F)

(ii) ∀ g1, g2 ∈ G with g1 6= g2 and {g1, g2} /∈ B : Spol(g1, g2)
∗−−→
G

0

If the algorithm terminates, B is an empty set and therefore ∀ g1, g2 ∈ G with g1 6= g2

1.4 Technical Facts and Notation for using FriCAS 25

Spol(g1, g2)
∗−−→
G

0, since (ii) holds. From Theorem 1.3.14 it follows that G is a Gröbner

basis of Id(G) = Id(F) with respect to <.

Lemma 1.3.15 (Buchberger’s Criterion). Let f, g ∈ K[X] with disjoint leading terms

and < be the term order. Then Spol(f, g)
∗−−−→
{f, g}

0.

We already mentioned the dependence of Gröbner on the term order. In the fol-
lowing example we illustrate the differences between the Gröbner bases in connection
with different term orders.

Example 1.3.16. Let X = {ξ1, ξ2, ξ3} and the system of polynomials F = {f, g, h}
with f = ξ1+1, g = ξ2+1 and h = ξ1ξ2+ξ3. Recall, that we consider here commutative
polynomials!

First of all, we will use the lexicographic term order <lex . Using Buchberger’s Cri-
terion we know that Spol(f, g)

∗−−−→
{f, g}

0. For Spol(f, h) we add a new polynomial

k = −ξ3−1 to the current Gröbner basis. After reducing Spol(g, h), Spol(f, k), Spol(g, k)
and Spol(h, k) to 0, the Buchberger Algorithm results in the Gröbner basisGlex = {ξ1+
1, ξ2 + 1, ξ1ξ2 + ξ3, −ξ3 − 1}.

The inverse lexicographic term order results in the Gröbner basis Ginvlex = {ξ1 +
1, ξ2 + 1, ξ3 + ξ1ξ2}, since all leading terms are pairwise disjoint (Buchberger’s Crite-
rion).

For comparison we also calculate a Gröbner basis with respect to the graded reverse
lexicographic term order. Similarly to the lexicographic case, the Buchberger Algo-
rithm results in the Gröbner basis Ggradrevlex = {ξ1 + 1, ξ2 + 1, ξ1ξ2 + ξ3, −ξ3 + ξ2}.

In conclusion, the Gröbner bases for F = {ξ1 + 1, ξ2 + 1, ξ1ξ2 + ξ3} are, depending
on the term order,

Glex = {ξ1 + 1, ξ2 + 1, ξ1ξ2 + ξ3, −ξ3 − 1}
Ginvlex = {ξ1 + 1, ξ2 + 1, ξ3 + ξ1ξ2}

Ggradrevlex = {ξ1 + 1, ξ2 + 1, ξ1ξ2 + ξ3, −ξ3 + ξ2}.

1.4 Technical Facts and Notation for using FriCAS

In Section 2.4 (for the factorization of non-commutative polynomials) and Section 3.4
(for testing fullness of matrices) we measure the run-time in FriCAS. Therefore we give
some technical facts of FriCAS and the used computer environment in the following
remarks.

Remark 1.4.1. The total run-times were measured with the implemented time func-
tion, started with)time on in FriCAS on a computer with 7 GB of RAM dedicated
to SBCL. In the standard installation SBCL uses only 1 GB, which results in slower

26 1 Basics

run-times and more “Control stack exhausted” errors. The measured run-times are
only samples, for example to show the relative differences between the different term
and/or variable orders.

Remark 1.4.2. Additional information of the used computer:
CPU: Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz: 4 kernels, 6144 KB Cache
RAM: 8GB DDR3-1600 Modul

Concerning the run-time measurement the following three special cases are occurred
in FriCAS and we use the following short cuts.

- CSE represents the system error “Control stack exhausted”, which means that
there is no more space for further function calls. In FriCAS we have the output
Control stack guard page temporarily disabled: proceed with

caution

>> System error:

Control stack exhausted (no more space for function call frames).

This is probably due to heavily nested or infinitely recursive

function calls, or a tail call that SBCL cannot or has not

optimized away.

PROCEED WITH CAUTION.

Another reason for this error may be too large argument lists.

- LDB represents the error “Heap exhausted”. Additionally the time between the
function call and the appearance of the error message on the screen is shown. In
FriCAS we switch to the low-level debugger for the Lisp runtime environment
and get the output
[...]

Heap exhausted, game over.

Welcome to LDB, a low-level debugger for the Lisp runtime

environment.

ldb>

- > n min indicates that the FriCAS process was terminated manually after n min-
utes. In this case we are not able to know the result. Either the run-time with a
result is greater than or equal to the shown minutes, or after that an error (CSE
or LDB) occurs.

2 Factorization of
non-commutative polynomials

In this chapter we consider the factorization of non-commutative polynomials into
irreducible elements. To this end a non-commutative polynomial is represented by
a minimal admissible linear system As = v. For the definition and introduction of
(minimal) admissible linear systems see Section 1.

With an analogue of Theorem 3.1.1 we try to find matrices P and Q, such that PAQ
has an upper right block of zeros, corresponding to a factorization of the represented
non-commutative polynomial. In Section 2.1 we will go into detail.

Factorizing a non-commutative polynomial of rank greater than or equal to three is
very difficult, since the solution variety has non-zero dimension, i.e., there are infinitely
many solutions. Here the problem is that we have too many degrees of freedom.

Remark. There are even examples, for which the solver in FriCAS is not able to find a
solution although it is easily solvable by hand. For the polynomial f = 1 − yx − xy +
xy2x the Gröbner bases for the 2× 2 right upper block is

[a1,4b4,5 + b3,5 − 1, (a1,3 − 1)b4,5 + a1,2b3,5 − a1,2, b23,5 − 2b3,5 + 1, a1,4b3,5 − a1,4,
(a1,3 − 1)b3,5 − a1,3 + 1, b3,4 + a1,4, b2,5 + a1,4, b2,4, a2,4, a2,3 − a1,4,

a21,4, (a1,3 − 1)a1,4, a1,2a1,4 − a1,3 + 1, a21,3 − 2a1,3 + 1].

Consideration of algebraic varieties of positive dimension requires additional tech-
niques and is out of scope of this thesis. Therefore we focus on determining the ranks
of the factors and put the concrete solution of the transformation matrices (for the
factors) last.

In Section 2.2 we comment on the FriCAS code, which is used for the examples
in Section 2.3. Observations about the implementation in FriCAS concerning the
run-time or upper bounds of the rank are discussed in Section 2.4.

2.1 Polynomial Factorization

In this section we give two additional definitions for the factorization and consider
when a factorization of a non-commutative polynomial exists.

27

28 2 Factorization of non-commutative polynomials

Definition 2.1.1. ([Sch17b]) An admissible linear system π = (u, A, v) for a poly-
nomial f ∈ K 〈X〉 with dimension n is called a pre-standard admissible linear system,
if

(i) v = (0, . . . , 0, λ)> for some λ ∈ K and

(ii) aii = 1 for i = 1, 2, . . . , n and aij = 0 for i > j.

A pre-standard admissible linear system is written as π = (1, A, λ) with 1, λ ∈ K.

Definition 2.1.2. An admissible transformation (W, U) for a pre-standard admissible
linear system π is called pre-standard admissible transformation, if the transformed
system WπU is again pre-standard.

Theorem 2.1.3 ([Sch17b]). Let f ∈ K 〈X〉 be given by the minimal pre-standard
admissible linear system π = (1, A, λ) of dimension n = rank(f) ≥ 3. Then f has a
factorization into f = f1f2 with rank(fi) = ni ≥ 2 if and only if there exists a pre-
standard admissible linear transformation (P, Q) such that PAQ has an upper right
block of zeros of size (n1 − 1)× (n2 − 1).

For more details see [Sch17b].

Therefore, if we want to factor a polynomial f into factors f = f1f2 with rank(fi) =
ni ≥ 2 and n = n1 + n2 − 1, we must find transformation matrices of the form

(P, Q) =




1 a1, 2 . . . a1, n−1 0

0
.

...
...

0 0 1 an−2, n−1 0
0 0 0 1 0
0 0 0 0 1

,


1 0 0 0 0
0 1 b2, 3 . . . b2, n

0 0
.

...
0 0 0 1 bn−1, n
0 0 0 0 1



 (2.1.4)

with entries ai,j, bi,j ∈ K, such that PAQ has an appropriate zero block. In practice,
this means that we have to solve a system of algebraic equations.

Remark 2.1.5. The transformation matrices P and Q are upper triangular matrices
with ones on the diagonals, since the system matrix of the polynomial has pre-standard
form. With the ones on the diagonals we have detP = detQ = 1 and therefore these
two matrices are invertible. The transformation matrix Q must not change the first
component in the left family, therefore the first row of Q is the first unit (row) vector.
Since the first component of the left family must not change, also the last component
of the right family must not change. Therefore the last column of the transformation
matrix P is the n-th unit (column) vector or maybe a scalar multiple of it.

2.1 Polynomial Factorization 29

Proposition 2.1.6 ([Sch17b]). Let f ∈ K 〈X〉 be given by the minimal pre-standard
admissible linear system π = (1, A, λ) of dimension n = rank(f) ≥ 3 and let (P, Q)
as in (2.1.4). Fix k ∈ [1, n− 2] and denote by Ik the ideal of K[ai,j, bi,j] which is
generated by the coefficients of each x ∈ X ∪ {1} in the (i, j) entries of the matrix
PAQ for 1 ≤ i ≤ k and n− k ≤ j ≤ n. Then f factors over K 〈X〉 into f = f1f2 with
rank(f1) = k + 1 and rank(f2) = n− k if and only if the ideal Ik is non-trivial.

For illustration, there exist scalar matrices P and Q such that the matrix PAQ has
the form (2.1.7) if and only if f factors over K 〈X〉 into f = f1f2 with rank(f1) = k+1
and rank(f2) = n− k.

k + 1




k + 1︷ ︸︸ ︷
∗ | . . . | ∗ | 0...| | |...|||
∗| . . . | | ∗ | . . . | |∗

∗| ∗| ||...|| ...

* ︸ ︷︷ ︸
n− k

| ∗ | . . . ∗


 n− k

(2.1.7)

with ∗ any linear entry in K 〈X〉 , not all zero.

Remark 2.1.8. Notice that we consider the reducibility over the algebraic closure of
the ground field, denoted by K 〈X〉.

A non-trivial ideal does not guarantee a factorization over K as seen in the following
Example unless the field is algebraic closed.

Example 2.1.9. Let f = x2 − 2 ∈ K 〈X〉 . Then the ideal [b23 + a12, a
2
12 − 2] is

not trivial. For details see Example 2.3.2. If K = Q, then f is irreducible (i.e., if
f = f1f2, then either f1 or f2 is a unit), since

√
2 6∈ Q. If K = R, then there is a pre-

standard admissible transformation (P, Q) and therefore f =
(
x−
√

2
) (
x+
√

2
)

=(
x+
√

2
) (
x−
√

2
)

in R 〈X〉 .

Remark 2.1.10. In Theorem 3.1.1 the matrices P and Q are restricted to have deter-
minant 1. For simplicity we treat the matrices P and Q as upper triangular matrices
with ones on the diagonal in Proposition 2.1.6 (see (2.1.4)) to satisfy invertibility.
Therefore the generation of the ideals is easier. As we can see in Section 2.4 we are
able to check non-commutative reducible polynomials up to rank 17 and irreducible
polynomials up to rank 12. In contrast, testing fullness of matrices of dimension 5
already can defeat the computer.

In Theorem 3.1.1 we use a trivial ideal for determining if a matrix is full, but it
makes no difference whether the matrix is over K 〈X〉 or over K 〈X〉 . Searching for
the factorization of a polynomial it is important, that the polynomial can factor over
K 〈X〉 , but not necessarily over K 〈X〉 .

30 2 Factorization of non-commutative polynomials

Remark 2.1.11. For any polynomial f ∈ K 〈X〉 with rank(f) = n ≥ 2 we can
transform any minimal pre-standard admissible linear system π = (1, A, λ) into an
admissible linear system of the form (1, A′, 1) by dividing the last row by λ and
multiplying the last column by λ.

Example 2.1.12. Let f = x3 − 10x2 + 31x − 30 ∈ K 〈X〉 . A minimal pre-standard
admissible linear system of f is given by

1 −x . 30
31
− x

. 1 −x 10
31
x

. . 1 − 1
31
x

. . . 1

 s =


.
.
.

31

 , s =


f

x2 − 10x
x
31

 . (2.1.13)

As mentioned in Remark 2.1.11 we can transform (2.1.13) into the following admissible
linear system of the form (1, A′, 1) :

1 −x . 30− 31x
. 1 −x 10x
. . 1 −x
. . . 1

 s =


.
.
.
1

 , s =


f

x2 − 10x
x
1

 . (2.1.14)

For univariate polynomials, i.e., polynomials in one variable, the companion matrix
provides a minimal linear representation. Further details about companion matrices
and their usage for the factorization are given in [Sch17b, Section 3].

2.2 Implementation in FriCAS

The program code, which is based on Theorem 2.1.3 and Proposition 2.1.6, is written
in FriCAS, a computer algebra system which is a descendant of Axiom. The pro-
gram is based on several .spad files for the handling of non-commutative polynomials.
Notice that these .spad files are not in the standard installation from FriCAS, but
implemented by Konrad Schrempf who provided me with the files. The program codes
are explained in detail in [Jan18, Section 2] and are used in the following examples of
non-commutative polynomials.

Non-commutative polynomials, for example the polynomial f = xy − 2yx + 3, are
defined in FriCAS with the package ncpoly.spad as follows:

f:NCP := x*y - 2*y*x + 3

Remark 2.2.1. In the package ncpoly.spad the macro NCP stands for
NonCommutativePolynomial(OrderedVariableList,Field) with the ordered vari-
able list OrderedVariableList (in our case X) and the field Field (in our case the

2.3 Examples 31

commutative field K as complex rational numbers). Notice that a non-commutative
polynomial (defined as NCP) is represented by a minimal pre-standard admissible linear
system.

Remark 2.2.2. In FriCAS we have to convert the entries of the system matrix A
of the minimal linear representation π = (u, A, v) to non-commutative polynomials
with commutative polynomials as coefficients. The converted system matrix is denoted
by L.

The function call is Polyfact(f) with f the non-commutative polynomial, repre-
sented by a minimal pre-standard admissible linear system, for testing. Depending on
the rank of the polynomial different procedures are executed.

- Polynomials of rank smaller than 3 are irreducible (by definition) and print an
error message (“Error: rank too small”).

- An irreducible polynomial of rank 3 produces the output“trivial ideal- irreducible
polynomial” and then the trivial Gröbner basis.

- For reducible polynomials of rank 3 the solutions for the transformation variables
are printed and then the Gröbner basis is returned.

- Reducible polynomials of rank 4 have the right upper zero blocks first, then the
solutions for the transformation variables and at the end there is the Gröbner
basis. The output “no solution” means that the handled ideal is trivial.

- Irreducible polynomials of rank greater than 4 produce the output “no solution”
several times and then the Gröbner basis is empty, since all Gröbner bases are
trivial and there do not exist any suitable transformation matrices.

- Irreducible polynomials of rank 4 have the same output as irreducible polynomials
of rank greater than 4, but additionally there is a solution for the transformation
variables. These transformation variables can be chosen arbitrarily, since FriCAS
uses place-holders. In FriCAS place-holders start with % and are automatically
generated variables, for example %E is a place-holder.

- For reducible polynomials of rank greater than 4 the right upper zero blocks are
printed first (maybe sometimes “no solution”) and at the end the Gröbner basis
is returned.

2.3 Examples

In this section we show some examples of non-commutative polynomial factorization
and illustrate the FriCAS code from [Jan18, Section 2].

32 2 Factorization of non-commutative polynomials

2.3.1 Non-commutative Polynomials of rank 3

The following non-commutative polynomials of rank 3 are discussed here.

f1:NCP := 1 - x*y

f2:NCP := y*y - 9

f21:NCP := x*x - 2

f22:NCP := 4*x*x - 9

Example 2.3.1. A minimal admissible linear system for the polynomial f2 := y2 − 9
is  1 −y 9

0 1 −y
0 0 1

 s =

 0
0
1

 , s =

 y2 − 9
y
1

 .

The list of ideals is taken from the upper right corner of the matrix

P · L(f2) ·Q =

 1 a1,2 − y a1,2b2,3 + 9 + (−b2,3 − a1,2) y
0 1 b2,3 − y
0 0 1


with P and Q of the form (2.1.4).

In this case we want to have a 1×1 upper right zero block, so the (1, 3)-entry of the
matrix PL(f2)Q should be zero. Therefore we get from the function listIdealsf the
ideal generated by [[a1,2b2,3 + 9, −b2,3 − a1,2]] . The Gröbner basis of this ideal reads[
b2,3 + a1,2, a

2
1,2 − 9

]
.

If we call the function Polyfact(f2) the output is

[[a1,2 = 3, b2,3 = −3] , [a1,2 = −3, b2,3 = 3]][
b2,3 + a1,2, a

2
1,2 − 9

]
.

The first line gives us the two solutions for our transformation matrices, the second
line shows us the Gröbner basis of this ideal. If we insert these two solutions into the
matrix PL(f2)Q, we receive the following two possible factorizations of the polynomial: 1 3− y 0

. 1 −3− y

. . 1

 or

 1 −3− y 0
. 1 3− y
. . 1

 ,

i.e., f2 := y2 − 9 = (y − 3)(y + 3) = (y + 3)(y − 3).

Example 2.3.2. Considering the polynomial f21 := x2 − 2 we have the minimal
admissible linear system 1 −x 2

0 1 −x
0 0 1

 s =

 0
0
1

 , s =

 x2 − 2
x
1

 .

2.3 Examples 33

Calling the function Polyfact(f21) yields[[
a1,2 = −b2,3, b22,3 − 2 = 0

]][
b2,3 + a1,2, a

2
1,2 − 2

]
.

There is no solution over the field of (complex) rational numbers and this polynomial
is irreducible over Q, but over R we can factor this polynomial into (x −

√
2)(x+

√
2) =

(x+
√

2)(x−
√

2).

Example 2.3.3. The polynomial f1 := 1 − xy with the minimal admissible linear
system  1 −x 1

0 1 −y
0 0 1

 s =

 0
0
−1

 , s =

 1− xy
−y
−1


delivers the output of the function Polyfact(f1)

“trivial ideal- irreducible polynomial”

[1],

which means that f1 is an irreducible polynomial due to a trivial ideal. As the second
line shows, the Gröbner basis is indeed trivial.

Example 2.3.4. The polynomial f22 := 4x2− 9 is represented by the minimal admis-
sible linear system 1 −4x 9

0 1 −x
0 0 1

 s =

 0
0
1

 , s =

 4x2 − 9
x
1

 .

From the matrix

P · L(f22) ·Q =

 1 a1,2 − 4x a1,2b2,3 + 9 + (−4b2,3 − a1,2)x
0 1 b2,3 − x
0 0 1


with the transformation matrices P andQ of the form (2.1.4) the function Polyfact(f22)

produces the following output[[
a1,2 = 6, b2,3 = −3

2

]
,

[
a1,2 = −6, b2,3 =

3

2

]]
[
b2,3 +

1

4
a1,2, a

2
1,2 − 36

]
.

Inserting these solutions in P and Q respectively we get the following two matrices

P1LQ1 =

 1 6− 4x 0
. 1 −3

2
− x

. . 1

 and P2LQ2 =

 1 −6− 4x 0
. 1 3

2
− x

. . 1

 ,

which correspond to the factorizations (4x− 6)
(
x+ 3

2

)
and (4x+ 6)

(
x− 3

2

)
.

34 2 Factorization of non-commutative polynomials

2.3.2 Non-commutative Polynomials of rank 4

In this part we consider the following examples of non-commutative polynomials of
rank 4 :

f31:NCP := x*y*z - 3*x*y + x*z + 2*y*z - 3*x - 6*y + 2*z - 6

f35:NCP := x*x*x - 10*x*x + 31*x - 30

f38:NCP := x - x*y*x

f4:NCP := x*y + y*x

The polynomial f35 is the same as in Example 2.1.12. Here we will investigate it on
the basis of the FriCAS code in [Jan18, Section 2].

Remember that for non-commutative polynomials of rank 4 we first determine the
minimal ranks of the factors and then we solve the system of equations of the ideal
for the variables of the transformation matrices.

Example 2.3.5. The (non-commutative) polynomial f35 := x3 − 10x2 + 31x − 30 is
represented by a minimal admissible linear system

1 −x 0 30
31
− x

0 1 −x 10
31
x

0 0 1 − 1
31
x

0 0 0 1

 s =


0
0
0
31

 , s =


x3 − 10x2 + 31x− 30

x2 − 10x
x
31

 .

To determine the minimal ranks of the factors we investigate the matrix

P · L(f35) ·Q =

1 a1,2 − x a1,2b2,3 + a1,3+ a1,3b3,4 + a1,2b2,4 + 30
31

+

(−b2,3 − a1,2)x
(
−a1,2b3,4 − b2,4 − 1

31
a1,3 + 10

31
a1,2 − 1

)
x

0 1 b2,3 + a2,3 − x a2,3b3,4 + b2,4 +
(
−b3,4 − 1

31
a2,3 + 10

31

)
x

0 0 1 b3,4 − 1
31
x

0 0 0 1


with P and Q of the form (2.1.4).

First of all, we test whether there is a factor of rank 2, i.e., whether the Gröbner
basis of the ideal generated by the coefficients of entries (1, 3) and (1, 4) is non-trivial
(illustrated in (2.3.6)).


∗ ∗ ||?| |?|
∗ ∗ | ∗ | | ∗ |
∗ ∗ | ∗ | | ∗ |
∗ ∗ | ∗ | | ∗ |

 (2.3.6)

2.3 Examples 35

This Gröbner basis
[
b3,4 +

(
1
30
a21,2 − 1

3
a1,2 + 31

30

)
b2,4 + 1

30
a21,2 − 28

93
a1,2 + 661

930
, b2,3 +

a1,2, a1,3−a21,2, a31,2−10a21,2 +31a1,2−30
]

is indeed not trivial, therefore we have found
an 1× 2 right upper zero block and our first factor has rank 2. (Replace in (2.3.6) the
question marks by zeros.)

Now we assume in the second row again a factor of rank 2 and test the Gröbner
basis from before combined with the ideal generated by the entries (1, 4) and (2, 4)
(illustrated in (2.3.7)).


∗ ∗ ||0| ||?|
∗ ∗ | ∗ | ||?|
∗ ∗ | ∗ | || ∗ |
∗ ∗ | ∗ | || ∗ |

 (2.3.7)

This Gröbner basis
[
b3,4 + 1

31
a2,3− 10

31
, b2,4− 1

31
a1,2a2,3 + 1

31
a21,2 + 1, b2,3 + a1,2, a

2
2,3 +

(−a1,2 − 10) a2,3 + a21,2 + 31, a1,3− a21,2, a31,2− 10a21,2 + 31a1,2− 30
]

is again non-trivial,
so we have found the next factor of rank 2 and a further 2× 1 right upper zero block.
For this polynomial we are finished determining the minimal ranks, since we treated
the last possible row. Therefore our factorized block form is


∗ ∗ ||0 ||0|
∗ ∗ |∗ ||0|
∗ ∗ |∗ || ∗ |
∗ ∗ |∗ || ∗ |



With the Gröbner basis from these two right upper zero blocks we can solve for the
variables of the two transformation matrices.

36 2 Factorization of non-commutative polynomials

The function Polyfact(f35) yields the following output

1× 2

2× 1[
a1,2 = 2, a1,3 = 4, a2,3 = 5, b2,3 = −2, b2,4 = −25

31
, b3,4 =

5

31

]
,[

a1,2 = 3, a1,3 = 9, a2,3 = 5, b2,3 = −3, b2,4 = −25

31
, b3,4 =

5

31

]
,[

a1,2 = 2, a1,3 = 4, a2,3 = 7, b2,3 = −2, b2,4 = −21

31
, b3,4 =

3

31

]
,[

a1,2 = 5, a1,3 = 25, a2,3 = 7, b2,3 = −5, b2,4 = −21

31
, b3,4 =

3

31

]
,[

a1,2 = 3, a1,3 = 9, a2,3 = 8, b2,3 = −3, b2,4 = −16

31
, b3,4 =

2

31

]
,[

a1,2 = 5, a1,3 = 25, a2,3 = 8, b2,3 = −5, b2,4 = −16

31
, b3,4 =

2

31

]
[
b3,4 +

1

31
a2,3 −

10

31
, b2,4 −

1

31
a1,2a2,3 +

1

31
a21,2 + 1, b2,3 + a1,2,

a22,3 + (−a1,2 − 10) a2,3 + a21,2 + 31, a1,3 − a21,2, a31,2 − 10a21,2 + 31a1,2 − 30

]
.

The first two lines show us our right upper zero blocks, then the six possible solutions
for the transformation matrices are printed and in the last line the Gröbner basis of
the ideal of the zero blocks is returned.

These six solutions provide the following six factorizations:
1 2− x 0 0
. 1 3− x 0
. . 1 5

31
− 1

31
x

. . . 1

 ,


1 3− x 0 0
. 1 2− x 0
. . 1 5

31
− 1

31
x

. . . 1

 ,


1 2− x 0 0
. 1 5− x 0
. . 1 3

31
− 1

31
x

. . . 1

 ,


1 5− x 0 0
. 1 2− x 0
. . 1 3

31
− 1

31
x

. . . 1

 ,


1 3− x 0 0
. 1 5− x 0
. . 1 2

31
− 1

31
x

. . . 1

 ,


1 5− x 0 0
. 1 3− x 0
. . 1 2

31
− 1

31
x

. . . 1

 .

2.3 Examples 37

Since the admissible linear system of the polynomial f35 := x3 − 10x2 + 31x− 30 is
pre-standard, we have to divide the last row by 31 and multiply the last column by
31 (see Remark 2.1.11) to receive the factorizations of the polynomial. Therefore we
have the following six factorizations of the polynomial f35 := x3 − 10x2 + 31x− 30 :

(x− 2)(x− 3)(x− 5), (x− 3)(x− 2)(x− 5),

(x− 2)(x− 5)(x− 3), (x− 5)(x− 2)(x− 3),

(x− 3)(x− 5)(x− 2), (x− 5)(x− 3)(x− 2).

Notice that we have in each factorization matrix an 1 × 2 and a 2 × 1 right upper
zero block.

Example 2.3.8. A minimal admissible linear system for the polynomial f38 := x−xyx
is given by 

1 −x 0 x
0 1 −y 0
0 0 1 −x
0 0 0 1

 s =


0
0
0
−1

 , s =


x− xyx
−yx
−x
−1

 .

Due to the matrix

P · L(f38) ·Q =
1 a1,2 − x a1,2b2,3 + a1,3 − a1,2y − b2,3x a1,3b3,4 + a1,2b2,4 − a1,2b3,4y+

(−b2,4 − a1,3 + 1)x
0 1 b2,3 + a2,3 − y a2,3b3,4 + b2,4 − b3,4y − a2,3x
0 0 1 b3,4 − x
0 0 0 1


with the transformation matrices P andQ of the form (2.1.4) the output of the function
Polyfact(f38) is

1× 2

“no solution”

[[a1,2 = 0, a1,3 = 0, a2,3 = %E, b2,3 = 0, b2,4 = 1, b3,4 = %F]]

[b2,4 − 1, b2,3, a1,3, a1,2]

Therefore the decomposition of the polynomial f38 := x − xyx has the following
form 

∗ | ∗ || 0 0

| ∗ | | ∗ | ∗| ∗|
∗ || ∗ | ∗ ∗
∗ || ∗ | ∗ ∗

 . (2.3.9)

38 2 Factorization of non-commutative polynomials

In (2.3.9) we can easily see that the first factor of the polynomial has rank 2 and the
second factor has rank 3.

The second line of the output (“no solution”) refers to a trivial ideal of the PLQ-
entries (1, 3), (1, 4) and (2, 4). The solution for the transformation matrices contains
for the variables a2,3 and b3,4 some place-holder (in FriCAS place-holders start with %
and they are automatically generated variables, here %E and %F). In the last line
the Gröbner basis is returned.

With the solution for the transformation matrices we get the factorization
1 −x 0 0
. 1 a2,3 − y a2,3b3,4 + 1− b3,4y − a2,3x
. . 1 b3,4 − x
. . . 1

 .

Let a2,3 = b3,4 = 0. Then the matrix PLQ is
1 −x 0 0
. 1 −y 1
. . 1 −x
. . . 1


and we have the factorization x(1 − yx). If we insert any number for a2,3 and b3,4 we
also get the second factor (1− yx), since

a2,3b3,4 + 1− b3,4y − a2,3x− (a2,3 − y)(b3,4 − x) = 1− yx.

Example 2.3.10. The polynomial f31 := xyz − 3xy + xz + 2yz − 3x− 6y + 2z − 6 is
represented by the minimal admissible linear system

1 −x −2y 3− z + 3y + 3
2
x

0 1 −y −1
2
z + 3

2
y

0 0 1 −1
2
z

0 0 0 1

 s =


0
0
0
2


with the solution vector

s =


xyz − 3xy + xz + 2yz − 3x− 6y + 2z − 6

z − 3y + yz
z
2

 .

2.3 Examples 39

The function Polyfact(f31) returns

1× 2

2× 1[[
a1,2 = −2, a1,3 = 0, a2,3 = −1, b2,3 = 0, b2,4 =

3

2
, b3,4 =

3

2

]]
[
b3,4 −

3

2
, b2,4 −

3

2
, b2,3, a2,3 + 1, a1,3, a1,2 + 2

]
,

so the factorized block form is 
∗ ∗ 0 0

∗ |∗ ∗| 0
∗ |∗ ∗| ∗
∗ ∗ ∗ ∗

 ,

i.e., three factors of rank 2 each.
If we now substitute this solution of the transformation matrices (of the form (2.1.4))

into the matrix
P · L(f31) ·Q =

1 a1,2 − x a1,2b2,3 + a1,3+ a1,3b3,4 + a1,2b2,4 + 3+

(−a1,2 − 2) y − b2,3x
(
−1

2
a1,3 − 1

2
a1,2 − 1

)
z+(

(−a1,2 − 2) b3,4 + 3
2
a1,2 + 3

)
y +

(
−b2,4 + 3

2

)
x

0 1 b2,3 + a2,3 − y a2,3b3,4 + b2,4 +
(
−1

2
a2,3 − 1

2

)
z +

(
−b3,4 + 3

2

)
y

0 0 1 b3,4 − 1
2
z

0 0 0 1


we get the system matrix

1 −2− x 0 0
0 1 −1− y 0
0 0 1 3

2
− 1

2
z

0 0 0 1

 .

Remember that this matrix corresponds to the factorization

(x− 2)(y − 1)(z − 3),

since we have to divide the last row by 2 and multiply the last column by 2 (see
Remark 2.1.11).

40 2 Factorization of non-commutative polynomials

Example 2.3.11. The polynomial f4 := xy+yx has rank 4 and a minimal admissible
linear system is

1 −x −y 0
0 1 0 −y
0 0 1 −x
0 0 0 1

 s =


0
0
0
1

 , s =


xy + yx

y
x
1

 .

The function Polyfact(f4) has the output

“no solution”

“no solution”

[[a1,2 = %L, a1,3 = %K, a2,3 = %J, b2,3 = %I, b2,4 = %H, b3,4 = %G]]

[] .

The first two lines correspond to non-trivial ideals, hence this non-commutative poly-
nomial is irreducible.

Inserting the solution for the transformation matrices gives us the factorization
matrix

PLQ =


1 a1,2 − x a1,2b2,3 + a1,3 − y − b2,3x a1,3b3,4 − a1,2b2,4+

(−b3,4 − a1,2) y + (b2,4 − a1,3)x
0 1 b2,3 + a2,3 a2,3b3,4 + b2,4 − y − a2,3x
0 0 1 b3,4 − x
0 0 0 1

 .

Similarly as in Section 2.3.2 in the example polynomial f38 (see Example 2.3.8) we
can show that these operations do not change irreducibility.

2.3.3 Non-commutative Polynomials of rank greater than 4

For polynomials of rank greater than 4 we are only able to determine the minimal
ranks of the factors, since the solution variety has positive dimension. In this section
we investigate the following examples of non-commutative polynomials of rank greater
than 4 :

f5:NCP := 1 - 1*y*x - x*y + x*y^2*x

p1:NCP := 3*x - 2*x*y*x - x*y*x*y*x

q1:NCP := 9 - 9*x*y - x*y*x*y + x*y*x*y*x*y

g:NCP := 1 - x*y*z*y*x*z

2.3 Examples 41

Determining the minimal ranks of the factors works the same way as for polynomials
of rank 4 (see Section 2.3.2). Starting with a factor of rank 2, we check the ideal of the
coefficients of the PLQ-entries (1, 3), (1, 4), . . . , (1, n) with n the order of the matrix.

- If it is non-trivial, we found the first factor of minimal rank 2 and start in
the second row again with a factor of rank 2, checking the ideal of entries
(2, 4), . . . , (2, n) combined with the previous ideal.

- If the ideal is trivial, we assume a factor of rank 3 and check the ideal generated
by the coefficients of the PLQ-entries (1, 4), . . . , (1, n), (2, 4), . . . , (2, n).

This will be repeated until we handled the (n− 2)-row.

Example 2.3.12. The polynomial f5 := 1− yx− xy + xy2x of rank 5 is represented
by the following minimal admissible linear system


1 −x 0 y −1
0 1 −y 0 y
0 0 1 −y 0
0 0 0 1 −x
0 0 0 0 1

 s =


0
0
0
0
1

 , s =


1− yx− xy + xy2x

−y + y2x
yx
x
1

 .

In the function Polyfact(f5) we use the matrix PL(f5)Q =



1 a1,2 − x a1,2b2,3 + a1,3− a1,3b3,4 + a1,2b2,4 + a1,4+ a1,4b4,5 + a1,3b3,5+
a1,2y − b2,3x (−a1,2b3,4 − a1,3 + 1) y− a1,2b2,5 − 1+

b2,4x (−a1,3 + 1) b4,5y+
(−a1,2b3,5 + a1,2) y+

(−b2,5 − a1,4)x
0 1 b2,3 + a2,3 − y a2,3b3,4 + b2,4 + a2,4+ a2,4b4,5 + a2,3b3,5 + b2,5+

(−b3,4 − a2,3) y (−a2,3b4,5 − b3,5 + 1) y−
a2,4x

0 0 1 b3,4 + a3,4 − y a3,4b4,5 + b3,5−
b4,5y − a3,4x

0 0 0 1 b4,5 − x
0 0 0 0 1


with the transformation matrices P and Q of the form (2.1.4) to determine the ideals
and therefore finding the minimal ranks of the factors. With Polyfact(f5) we get

42 2 Factorization of non-commutative polynomials

the output

“no solution”

2× 2

“no solution”

[a1,4b4,5 + b3,5 − 1, (a1,3 − 1) b4,5 + a12b3,5 − a1,2, b23,5 − 2b3,5 + 1, a1,4b3,5 − a1,4,
(a1,3 − 1) b3,5 − a1,3 + 1, b3,4 + a1,4, b2,5 + a1,4, b2,4, a2,4, a2,3 − a1,4, a21,4, (a1,3 − 1) a1,4,

a1,2a1,4 − a1,3 + 1, a21,3 − 2a1,3 + 1].

Therefore we see that the first and third treated ideal, which concern the entries
(1, 3), (1, 4), (1, 5) respectively (1, 4), (1, 5), (2, 4), (2, 5), (3, 5), are trivial (“no solu-
tion”).

The decomposition of the non-commutative polynomial f5 := 1 − yx − xy + xy2x
into two factors of rank 3 looks like

∗| ∗| | ∗ | 0 0
∗| ∗| | ∗ | 0 0

∗| ∗| | ∗ | |∗ |∗
∗| ∗| | ∗ | |∗ |∗
∗| ∗| | ∗ | |∗ |∗

 .

Indeed 1− yx− xy+ xy2x = (1− xy)(1− yx) has two irreducible factors of rank 3.

Example 2.3.13. The following minimal admissible linear system represents the non-
commutative polynomial p1 := 3x− 2xyx− xyxyx of rank 6

1 −2x 0 0 0 3x

0 1 −y 0 0 0

0 0 1 −1
2
x 0 −x

0 0 0 1 −y 0

0 0 0 0 1 −x
0 0 0 0 0 1


s =



0
0
0
0
0
0
−1


with solution vector

s =



3x− 2xyx− xyxyx
−yx− 1

2
yxyx

−x− 1
2
xyx

−yx
−x
−1


.

2.3 Examples 43

For this polynomial the function Polyfact(p1) produces the following output

1× 4

“no solution”

3× 2

“no solution”[
b5,6 +

(
−4

3
a2,4 +

4

3

)
b3,6, b4,6 + 2a2,4 + 2, b4,5, b3,5 + a2,4, b2,6 −

3

2
,

b2,5, b2,4, b2,3, a3,5 − a2,4, a3,4, a2,5 − a2,3a2,4, a22,4 + a2,4 −
3

4
, a1,5, a1,4, a1,3, a1,2

]
.

The ideals corresponding to the first two factors to be of rank 2 and the ideal with
the last factor rank 2 are trivial. The Gröbner basis concerning the zero blocks is non-
trivial, so the non-commutative polynomial is reducible. The “form” of the system
matrix which shows the decomposition of the polynomial is

| ∗ | | ∗ | 0 0 0 0

| ∗ | | ∗ | ∗| | ∗ | 0 0

| ∗ | | ∗ | ∗| | ∗ | 0 0

| ∗ | | ∗ | ∗| | ∗ | |∗ |∗
| ∗ | ∗| ∗| | ∗ | |∗ |∗
| ∗ | ∗| ∗| | ∗ | |∗ |∗


,

in which we can see a factor of rank 2 and two factors of rank 3.

Indeed the non-commutative polynomial p1 := 3x− 2xyx− xyxyx of rank 6 factors
into x(1− yx)(3 + yx). Therefore the first factor has rank 2, the second and the third
have rank 3.

Example 2.3.14. A minimal admissible linear system for the non-commutative poly-
nomial q1 := 9− 9xy − xyxy + xyxyxy of rank 7 is

1 −9x 0 0 0 0 −9

0 1 −1
9
y 0 0 0 y

0 0 1 −x 0 0 0

0 0 0 1 −y 0 y

0 0 0 0 1 −x 0

0 0 0 0 0 1 −y
0 0 0 0 0 0 1


s =



0
0
0
0
0
0
1



44 2 Factorization of non-commutative polynomials

with

s =



9− 9xy − xyxy + xyxyxy

−y − 1
9
yxy + 1

9
yxyxy

−xy + xyxy

−y + yxy

xy

y

1


.

The output of the function Polyfact(q1) is

“no solution”

2× 4

“no solution”

4× 2

“no solution”[
b6,7 + (−a3,5 + 1) b2,7, b5,7 + a3,5 − 1, b5,6, b4,7 +

(
a1,3a3,5 − a21,3 + 9

)
b2,7,

b4,6 + a3,5, b4,5 +
(
−a21,3 + a1,3 + 9

)
b2,5, b3,7 − a1,3a3,5 + a21,3 − 9, b3,6, b3,5 + a1,3,

b3,4, b2,6 −
1

9
a1,3a3,5 +

1

9
a21,3, b2,4 +

1

9
a1,3, a4,6 − a3,5, a4,5, a3,6 − a3,4a3,5,

a23,5 + (−a1,3 − 1) a3,5 + a21,3 − 9, a2,6 −
1

9
a21,3, a2,5, a2,4 −

1

9
a1,3, a2,3,

a1,6 −
1

9
a1,2a

2
1,3, a1,5 − a21,3, a1,4 −

1

9
a1,2a1,3, a

3
1,3 − a21,3 − 9a1,3 + 9

]
.

The system matrix of this non-commutative polynomial has the form

∗| ∗| | ∗ | 0 0 0 0
∗| ∗| | ∗ | 0 0 0 0

∗| ∗| | ∗ | |∗ | ∗ | 0 0

∗| ∗| | ∗ | |∗ | ∗ | 0 0

∗| ∗| | ∗ | |∗ | ∗ | ∗| ∗|
∗| ∗| | ∗ | |∗ | ∗ | ∗| ∗|
∗| ∗| | ∗ | |∗ | ∗ | ∗| ∗|


,

so there are three factors of rank 3.
Indeed the non-commutative polynomial q1 := 9−9xy−xyxy+xyxyxy factors into

(1− xy)(3− xy)(3 + xy). So we have three factors of rank 3, which we can see in the
decomposition.

2.4 Observations 45

Example 2.3.15. For the irreducible non-commutative polynomial g := 1 − xyzyxz
the function Polyfact(g) yields

“no solution”

“no solution”

“no solution”

“no solution”

“no solution”

[].

This output shows us that all ideals are trivial and therefore this polynomial is
irreducible.

2.4 Observations

With the program code in FriCAS, which is explained in detail in [Jan18, Section 2], we
are able to handle reducible non-commutative polynomials up to rank 17 to determine
the minimal ranks of their factors. For non-commutative polynomials of rank 2 and
3 we are able to give explicit solution(s) of the factorization of the polynomials, for
non-commutative polynomials of rank greater than 3 we determine the minimal ranks
of the factors. Giving explicit solutions of the factorization is out of scope.

A polynomial of rank 18 leads to an error “Control stack exhausted“, i.e., there is
no more place for function calls (see Section 1.4). For irreducible non-commutative
polynomials of rank 12 we get a solution of irreducibility, whereas an irreducible non-
commutative polynomial of rank 13 produces an error “Control stack exhausted“.

Remark 2.4.1. Our treated non-commutative polynomials consists of factors of rank
at most 3, i.e., the factor has the form (a± bc) with a ∈ Z and b, c ∈ X.

Remark 2.4.2. In the program code for determining the minimal ranks of the factors
in [Jan18, Section 2] we add in each step the previous Gröbner basis of the coefficients
to the current Gröbner basis of the coefficients. If we add the original generating set of
the previous ideal instead of the previous Gröbner basis to the current Gröbner basis,
we are only able to handle reducible non-commutative polynomials up to rank 14 and
irreducible non-commutative polynomials up to rank 11 without any error.

The run-time adding the previous ideal does not differ from the run-time adding the
previous Gröbner basis for reducible non-commutative polynomials until rank 10 and
for irreducible non-commutative polynomials until rank 11. Afterwards the run-time
adding the previous ideal is increasing rapidly.

Example 2.4.3. The reducible non-commutative polynomial f10 = (1−xy)(2+yx)(3−
yz)(2−zy)(1−xz) of rank 11 needs approximately one second as total run-time (adding

46 2 Factorization of non-commutative polynomials

the previous Gröbner basis), whereas the total run-time adding the previous ideal is
approximately 3 seconds.

Example 2.4.4. The run-time (adding the previous ideal) of the reducible non-
commutative polynomial f13 = (1 − xy)(2 + yx)(3 − yz)(2 − zy)(1 − xz)(3 + zx)x
of rank 14 is already about 6 minutes, whereas sensing the previous Gröbner basis
reduces the run-time to approximately 10 seconds.

The run-time of irreducible non-commutative polynomials is not sensitive on adding
the previous ideal or the previous Gröbner basis.

Non-commutative polynomials of rank less than or equal to 10 have (for calculating
the factorization respectively determining the minimal ranks of the factors) a total
runtime of less than one second.

Example 2.4.5. The reducible non-commutative polynomial f14 = (1−xy)(2+yx)(3−
yz)(2 − zy)(1 − xz)(3 + zx)xz of rank 15 has total run-time of about 22 seconds,
whereas the polynomial f15 = f14 ∗y of rank 16 needs already about 4 minutes as total
run-time. The total run-time of the polynomial f16 = f15 ∗ (1 − x) of rank 17, our
current rank limit for determining the minimal ranks of the factors without an error,
is approximately 37 minutes.

If we increase the rank of the factors, we observe different run-times.

Example 2.4.6. The non-commutative polynomial h2 = (1−xyz)(1−zyx)(3+yxz)y
of rank 11 has total run-time of about 12 seconds, whereas the polynomial f10 from
Example 2.4.3 (also rank 11) needs approximately one second.

But there are even differences in the total run-time of one polynomial depending on
the construction of the minimal admissible system of the polynomial.

Example 2.4.7. The polynomial q1 := 9−9xy−xyxy+xyxyxy of rank 7, constructed
with the sum rule (1.2.19), has total run-time 0.22 seconds. The same polynomial,
according to the product rule (1.2.20), q := (1−xy)(3−xy)(3+xy) needs 0.06 seconds.

Remark 2.4.8. If we consider in each step the time which is needed only for the
calculation of the Gröbner basis of an ideal, we discover that trivial Gröbner bases
are calculated very quickly. As soon as we find the first factor of the polynomial the
calculation time of the Gröbner basis is increasing. The calculation time of the Gröbner
basis is always increasing, when finding a factor of the polynomial, but the first factor
requires the major calculation time. This observation occurs for polynomials of rank
greater than or equal to 7.

2.4 Observations 47

Example 2.4.9. For the reducible non-commutative polynomial h2 = (1 − xyz)(1 −
zyx)(3+yxz)y we see in Table 2.1 the times which are needed to calculate the Gröbner
bases of the corresponding zero block. If the Gröbner basis is non-trivial, we see the
size of the zero block. Therefore we observe Remark 2.4.8.

calculation time of Gröbner basis row × column of the zero block
0.009 0× 0
0.028 0× 0

12.005 3× 7
0.058 0× 0
0.066 0× 0
0.222 6× 4
0.076 7× 3
0.037 0× 0
0.018 0× 0

Table 2.1: Calculation times of the Gröbner bases for the polynomial h2 in seconds

3 Testing Fullness of matrices

Recall that a full matrix has no factorization into rectangular matrices of smaller di-
mension and is invertible over the free field. Full matrices are for example used to solve
the word problem in the free field (see [Sch17a]) or are part of a linear representation
of an element of the free field.

The main theorem in this chapter is Theorem 3.1.1, which characterizes full matrices
and indicates an algorithm for testing. An analogue of this theorem is used for the
factorization of non-commutative polynomials in Chapter 2 (see Theorem 2.1.3 and
Proposition 2.1.6).

In Section 3.2 we explain some examples of full and non-full matrices and in Sec-
tion 3.3 we describe the implementation in FriCAS. In Section 3.4 we collect some
observations concerning the implementation in FriCAS and the FriCAS code, which
is explained in detail in [Jan18, Section 3].

3.1 The main theorem

Deciding whether a linear square matrix over K 〈X〉 is full or not is possible with the
following theorem. Let L be such a matrix, i.e. L = L1 +

∑
x∈X Lx ⊗ x with L1 and

Lx matrices over K. Furthermore let P and Q be matrices of order n whose entries
are commutative variables aij respectively bij. Denote K[a, b] as the corresponding
K-algebra in the variables aij, bij.

Theorem 3.1.1 ([CR99], Theorem 4.1). For each r ∈ {1, . . . , n}, denote by Ir the
ideal of K[a, b] generated by the polynomials det(P)−1, det(Q)−1 and the coefficients
of each x ∈ X ∪ {1} in the (i, j) entries of the matrix PLQ for 1 ≤ i ≤ r, r ≤ j ≤ n.
Then the linear matrix L is full if and only if for all r ∈ {1, . . . , n} the ideal Ir is
trivial.

Remark 3.1.2. Due to a misprint, in [CR99] the coefficients of L1 are omitted!

Proof. Let K be the algebraic closure of K. Consider the embedding K 〈X〉 → K 〈X〉 .
From [CR99, Theorem 6.4.6] it follows that L is full if and only if L (considered
as an element of K 〈X〉n×n) is full. By Lemma 1.1.11, L is not full, if and only if
it is associated over K to a hollow matrix, i.e., if for some r ∈ {1, . . . , n}, there
exist invertible matrices P and Q (with determinant 1) over K such that PLQ has a
r × (n + 1 − r) zero submatrix in the upper right corner. This is equivalent to the

49

50 3 Testing Fullness of matrices

ideal Ir being non-trivial over K. So L is full if and only if for each r, the ideal Ir (in
K[a, b]) is trivial, i.e., hence Ir contains 1. But therefore L is full if and only if the
ideal Ir in K[a, b] is trivial for all r.

Remark 3.1.3. Notice that in our case the entries of the matrix L are non-commutative
polynomials. In contrast, the ideal Ir consists of polynomials in commuting variables
aij and bij.

Therefore we can test if 1 belongs to the ideal of (commutative) polynomials given
by a finite number of generators to decide whether the matrix is full or not. One
possibility is the use of Gröbner bases.

3.2 Examples

In this section we comment on some examples of full and non-full matrices.

Example 3.2.1. Considering the matrix

R1 :=

 1 0 0
−x 0 0
y x z


we indeed get the following result for testing the ideals in Theorem 3.1.1

[[1], [a1,1, (a1,2a2,3 − a1,3a2,2) a3,1 − 1, a2,1, (b1,2b2,3 − b1,3b2,2) b3,1 − 1, b3,2, b3,3], [1]]

and the second ideal is not trivial. Additionally, the matrix is hollow and by Proposi-
tion 1.1.10 a 3 × 3 matrix cannot be full, if it contains a 2 × 2 zero submatrix, since
2 + 2 > 3.

A non-full matrix factors into two matrices P̃ ∈ K 〈X〉n×p and Q̃ ∈ K 〈X〉p×n with
p < n such that M = P̃ Q̃. In the present example the matrices

P̃ =

 1 0
−x 0
0 1

 and Q̃ =

(
1 0 0
y x z

)
do the trick.

Example 3.2.2. The matrix

N1 :=


1 x 0 0
0 1 x −y
0 0 1 x
0 0 0 1


is full, since the ideals from Theorem 3.1.1 are trivial (Output: [[1], [1], [1], [1]]).

3.3 Implementation in FriCAS 51

Example 3.2.3. The matrix

N2 :=


1 −x −y 0
0 1 0 −x
−z 0 −x 0
0 −z 0 0


results in the four Gröbner bases

[[1], [1], [1], [1]].

Therefore all relevant ideals are trivial and the matrix is full.

3.3 Implementation in FriCAS

In the implementation in FriCAS of the fullness test, which is based on Theorem 3.1.1,
the matrices P and Q have the following form

P =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
. . .

...
an−1,1 an−1,2 . . . an−1,n
an,1 an,2 . . . an,n

 , Q =


b1,1 b1,2 . . . b1,n
b2,1 b2,2 . . . b2,n

...
. . .

...
bn−1,1 bn−1,2 . . . bn−1,n
bn,1 bn,2 . . . bn,n

 .

(3.3.1)

We compute Gröbner bases of the ideals of the commutative polynomials of the
coefficients in the matrix PLQ in Theorem 3.1.1. The complexity depends on the
term order used.

We use the functions full?, fullHDMP?, fullQP? and fullQPHDMP?.

Remark. The function call is full?(L) with L the matrix for testing. In FriCAS for
functions with one argument sometimes parentheses may be omitted. In this case we
also can call the function with full? L. Analogously for the other functions. Notice
that the function name includes the “?” and “?” is a legal letter for function name.

The functions full? and fullQP? use the lexicographical term order, the functions
fullHDMP? and fullQPHDMP? use the reverse lexicographical term order. The functions
full? and fullHDMP? for testing the fullness of a matrix are explained in detail in
[Jan18, Section 3]. The function fullQP? (respectively fullQPHDMP?) is similar to
the function full? (respectively fullHDMP?), it uses only a different term order.
Therefore we only have to exchange P and Q in line 87 (respectively line 114) in
[Jan18, Section 3].

52 3 Testing Fullness of matrices

Testing matrices for fullness depends, among other things, on the choice of the term
order and on the order of the variables. We are not even able to guarantee a result
with a certain term order up to a special dimension for matrices testing the fullness of
the matrix. First of all, successful termination of the algorithm (instead of errors, see
Section 1.4) depends on the values of the matrix entries and on the number of zero
entries. Secondly, the size of intermediate results in the Gröbner bases computation
is highly sensitive on the chosen term order. Another reason is the used order of the
variables, which influences the output of the function and the run-time. The functions
full? and fullHDMP? uses the order of the variables

(
(ai,j)i,j , (bi,j)i,j

)
for i = 1, . . . , n

and j = 1, . . . , n, whereas the functions fullQP? and fullQPHDMP? use the order of
the variables

(
(bi,j)i,j , (ai,j)i,j

)
for i = 1, . . . , n and j = 1, . . . , n.

3.4 Observations

There are full matrices of rank 5 which result in a“Control stack exhausted”error using
the (reverse) lexicographical term order, but there are also successful terminations of
full matrices of rank 5 with the (reverse) lexicographical term order. Non-full matrices
of dimension 5 may also result in a“Control stack exhausted”error. On the other hand
there are non-full matrices of dimension 7 which terminate with the lexicographical
term order in approximately 30 seconds. Testing a matrix of dimension higher or
equal 5 will result in a “Control stack exhausted” error or will take sometimes much
time. We conjecture that full matrices of rank 6 never terminate successfully in the
current computing environment.

Example 3.4.1. Testing the matrix

M1 :=


1 x 0 0 0 0
0 1 x 0 0 0
0 0 1 x 0 0
0 0 0 1 x 0
0 0 0 0 1 x
0 0 0 0 0 1

 ,

returns for the lexicographical term order (with function full?) as well as for the
reverse lexicographical term order (with function fullHDMP?) a “Control stack ex-
hausted” error. The matrix

M2 :=


1 x 0 0 0
0 1 x 0 0
0 0 1 x 0
0 0 0 1 x
0 0 0 0 1



3.4 Observations 53

of rank 5 returns the trivial Gröbner bases with the lexicographical term order (with
function full?) in approximately 18 minutes and with the reverse lexicographical
term order (with function fullHDMP?) also a “Control stack exhausted” error.

Remark 3.4.2. In this Section we are talking about the dimension of a matrix, which
may differ from the rank of the matrix. Especially for non-full matrices the dimension
is greater or equal than the rank of the matrix. (For more information about the rank
of a matrix see [FR04].)

In the following we experiment with different types of matrices and compare between
different term and variable orders respectively to determine up to which dimension of
the matrix calculations are feasible. We define ∗ as non-trivial matrix entries, i.e., the
matrix entries are not all scalar and not all zero entries of the alphabet.

Example 3.4.3. A matrix of the form (3.4.4) with non-trivial first row and the other
rows consisting of zeros is non-full. This matrix has rank 1 and the dimension is n.


n︷ ︸︸ ︷

∗ ∗ . . . ∗
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


 n (3.4.4)

In Table 3.1 the runtime for matrices of dimension 5, 6 and 7 with the lexicographical
and the reverse lexicographical term order are shown. Remember that the functions
full? and fullHDMP? use the order of the variables

(
(ai,j)i,j , (bi,j)i,j

)
for i = 1, . . . , n

and j = 1, . . . , n, whereas the functions fullQP? and fullQPHDMP? use the order of
the variables

(
(bi,j)i,j , (ai,j)i,j

)
for i = 1, . . . , n and j = 1, . . . , n.

Observations (in Example 3.4.3 in dimension 7). Testing such a matrix of dimension
7

- with the lexicographical term order and variable order
(
(ai,j)i,j , (bi,j)i,j

)
for i =

1, . . . , n and j = 1, . . . , n results after approximately half a minute in non-trivial
ideals, whereas

- with the reverse lexicographical term order the runtime is greater than 40 minutes
(after 40 minutes it was cancelled by hand).

- The reverse lexicographical term order with variable order
(
(bi,j)i,j , (ai,j)i,j

)
for

i = 1, . . . , n and j = 1, . . . , n has total run-time of about 11 minutes, whereas

- for the same variable order but the lexicographical term order FriCAS turns into
LDB.

54 3 Testing Fullness of matrices

Observations (in Example 3.4.3 in dimension 6). For such a matrix of dimension 6
the order of the variables is very sensitive concerning the run-time. Using the or-
der of the variables

(
(ai,j)i,j , (bi,j)i,j

)
for i = 1, . . . , n and j = 1, . . . , n we get a

total run-time below one second, whereas only changing the order of variables to(
(bi,j)i,j , (ai,j)i,j

)
for i = 1, . . . , n and j = 1, . . . , n increases the run-time to more

than 1.5 minutes.

dimension full? fullHDMP? fullQP? fullQPHDMP?

n = 5 0.12 0.77 0.63 0.21
n = 6 0.87 299.12 101.62 7.11
n = 7 27.2 > 40 min ∼ 20 min LDB 650.46

Table 3.1: Runtime for the matrix of the form (3.4.4) in seconds

Example 3.4.5. A matrix of the form

M =


a1,1 a1,2 . . . a1,n
2a1,1 2a1,2 . . . 2a1,n

...
...

...
...

na1,1 na1,2 . . . na1,n

 (3.4.6)

with a1,i, i = 1, . . . , n and n = dimM, non-trivial entries of the alphabet is non-full.
The rank of the matrix M is 1, the dimension is n.

Observation (in Example 3.4.5 in dimension 7). Testing the fullness of the matrix M
of dimension 7 with the lexicographical term order and variable order

(
(ai,j)i,j , (bi,j)i,j

)
for i = 1, . . . , n and j = 1, . . . , n gives in approximately half an hour a result, whereas
the others are cancelled by hand after several minutes.

Observations (in Example 3.4.5). In Table 3.2 we see that for this matrix form
independent from the dimension the lexicographical term order (function full?) with
variable order

(
(ai,j)i,j , (bi,j)i,j

)
for i = 1, . . . , n and j = 1, . . . , n is the best choice

for a low total run-time. The function fullQP? with lexicographical term order and
variable order

(
(bi,j)i,j , (ai,j)i,j

)
for i = 1, . . . , n and j = 1, . . . , n has the major

total run-time and the two functions with the reverse lexicographical term order are
in between.

3.4 Observations 55

dimension full? fullHDMP? fullQP? fullQPHDMP?

n = 5 0.29 1.74 5.18 0.82
n = 6 9.19 526.94 948.78 76.92
n = 7 1450.78 > 45 min > 40 min > 30 min

Table 3.2: Runtime for matrices of the form (3.4.6) in seconds

Example 3.4.7. A matrix of the form

a1,1 . . . a1,5 0 . . . 0
2a1,1 . . . 2a1,5 0 . . . 0

...
...

...
...

5a1,1 . . . 5a1,5 0 . . . 0

0 . . . 0 0
... 0

...
...

...
...

0 . . . 0 0 . . . 0


(3.4.8)

with a1,i, i = 1, . . . , 5 non-trivial entries of the alphabet has dimension n, but its rank
is 1. Matrices of this form of dimension 7 do not guarantee a result as seen in Table 3.3.

Observations (in Example 3.4.7 in dimension 5 and 6). For matrices of dimen-
sion 5 and 6 we observe that the lexicographical term order with variable order(
(ai,j)i,j , (bi,j)i,j

)
for i = 1, . . . , n and j = 1, . . . , n has the lowest run-time. Switch-

ing the variable order to
(
(bi,j)i,j , (ai,j)i,j

)
for i = 1, . . . , n and j = 1, . . . , n results

in this case in the highest run-time. The reverse lexicographical term orders lie in
between, but the variable order

(
(ai,j)i,j , (bi,j)i,j

)
for i = 1, . . . , n and j = 1, . . . , n is

“faster” than the variable order
(
(bi,j)i,j , (ai,j)i,j

)
for i = 1, . . . , n and j = 1, . . . , n.

dimension full? fullHDMP? fullQP? fullQPHDMP?

n = 5 0.29 1.74 5.18 0.82
n = 6 5.88 324.64 651.35 41.95
n = 7 479.84 CSE ∼ 48 min LDB > 40 min

Table 3.3: Runtime for matrices of the form (3.4.8) in seconds

Example 3.4.9. A matrix of the form (3.4.10) with the last row a zero row and the
second to the (n− 1)-th row shifting the previous row of one place to the left (σi for

56 3 Testing Fullness of matrices

i = 1, . . . , n− 2 is a cyclic permutation of one place to the left)
a1,1 . . . a1,n

σ1(a1,1) . . . σ1(a1,n)
...

...
σn−2(a1,1) . . . σn−2(a1,n)

0 . . . 0

 (3.4.10)

has dimension n and rank 1. This matrix with ai,j non-zero entries of the alphabet
only has zeros in the last row. Therefore it raises an error of type CSE for dimension 5.

Observations (in Example 3.4.9). The lexicographical term order with different
variable orders and the reverse lexicographical term order with variable term order(
(ai,j)i,j , (bi,j)i,j

)
for i = 1, . . . , n and j = 1, . . . , n have almost the same total run-

time (see Table 3.4). The minimal total run-time of approximately one second corre-
sponds to the reverse lexicographical term order with variable order

(
(bi,j)i,j , (ai,j)i,j

)
for i = 1, . . . , n and j = 1, . . . , n.

dimension full? fullHDMP? fullQP? fullQPHDMP?

n = 4 4.71 4.06 5.64 1.24
n = 5 CSE CSE CSE CSE
n = 6 CSE CSE CSE CSE

Table 3.4: Runtime for matrices of the form (3.4.10) in seconds

Example 3.4.11. Testing the (non-full) matrix of the form (3.4.12) with non-trivial
first row and non-trivial last column gives a result for matrix dimension 5.


n︷ ︸︸ ︷

∗ ∗ . . . ∗
0 . . . 0 ∗
...

. . .
...

...
0 . . . 0 ∗


 n (3.4.12)

Observations (in Example 3.4.11). Testing a matrix of this form of dimension 6 or
dimension 7 leads to an error CSE. For a matrix of dimension 5 the lexicographical term
order (independent from the variable order) is “faster” than the reverse lexicographical
term order. Table 3.5 shows the total run-time of the FriCAS codes from [Jan18,
Section 3].

3.4 Observations 57

dimension full? fullHDMP? fullQP? fullQPHDMP?

n = 5 142 198.39 137.47 158.34
n = 6 CSE CSE CSE CSE
n = 7 CSE CSE CSE CSE

Table 3.5: Runtime for the matrix of the form (3.4.12) in seconds

Example 3.4.13. Testing a matrix of the form (3.4.14)


n︷ ︸︸ ︷

∗ 0 . . . 0
...

...
. . .

...
∗ 0 . . . 0
∗ ∗ . . . ∗


 n (3.4.14)

with non-trivial first column and last row has for dimension 5 a total run-time of at
most one minute. The lexicographical term order (independent of the variable order)
and the reverse lexicographical term order with variable order

(
(bi,j)i,j , (ai,j)i,j

)
for

i = 1, . . . , n and j = 1, . . . , n are even under 30 seconds of total run-time. Matrices of
this form of dimension 6 already lead to runtime exceeding one hour. (See Table 3.6.)

dimension full? fullHDMP? fullQP? fullQPHDMP?

n = 5 24.69 26.78 22.34 66.47
n = 6 > 60 min > 30 min > 90 min > 30 min
n = 7 > 40 min > 30 min ∼ 28 min LDB > 130 min

Table 3.6: Runtime for the matrix of the form (3.4.14) in seconds

The following examples show that the lexicographical term order can be “faster”
than the reverse lexicographical term order and vice versa, and show that the order of
variables may lead to a large difference between the total run-times.

Example 3.4.15. The (non-full) matrix

M6 :=


1 x 0 0 0
0 1 y 0 0
−z 0 0 0 z
−x 0 0 2 x
y 0 0 0 −y


results in non-trivial ideals with the reverse lexicographical term order of both variable
orders, whereas the lexicographical term order only gives a result with the order of

58 3 Testing Fullness of matrices

full? fullHDMP? fullQP? fullQPHDMP?

CSE 207.45 196.57 144.97

Table 3.7: Runtime for the matrix M6 in seconds

variables
(
(bi,j)i,j , (ai,j)i,j

)
for i = 1, . . . , 5 and j = 1, . . . , 5. The lexicographical

term order with variable order
(
(ai,j)i,j , (bi,j)i,j

)
for i = 1, . . . , 5 and j = 1, . . . , 5

returns a “Control stack exhausted” error. For more details see Table 3.7.

Example 3.4.16. The (full) matrix

M4 :=


1 x 0 0 0
0 z + 2x 0 0 1
0 0 −z 0 z
y 0 0 x x
0 0 −y + x 0 −y


only results in trivial ideals with the lexicographical term order and the variable order(
(ai,j)i,j , (bi,j)i,j

)
for i = 1, . . . , 5 and j = 1, . . . , 5. All other combinations return a

“Control stack exhausted” error. In Table 3.8 the run-time is shown.

full? fullHDMP? fullQP? fullQPHDMP?

362.96 CSE CSE CSE

Table 3.8: Runtime for the matrix M4 in seconds

Example 3.4.17. The total run-times for the non-full matrix

N3 :=


1 x 0 0
0 1 0 −y
0 0 0 z
0 0 0 1


do not depend on the choice of the variable order and the choice of the term order. In
Table 3.9 the total run-times are shown.

full? fullHDMP? fullQP? fullQPHDMP?

0.23 0.19 0.22 0.18

Table 3.9: Runtime for the matrix N3 in seconds

3.4 Observations 59

Example 3.4.18. The result of the full matrix

N2 :=


1 −x −y 0
0 1 0 −x
−z 0 −x 0
0 −z 0 0


with the reverse lexicographical term order is faster than with the lexicographical
term order (independent from the variable order). The variable order does not really
influence the reverse lexicographical term order, but in the lexicographical term order
the variable order

(
(bi,j)i,j , (ai,j)i,j

)
for i = 1, . . . , 4 and j = 1, . . . , 4 is faster than

the variable order
(
(ai,j)i,j , (bi,j)i,j

)
for i = 1, . . . , 4 and j = 1, . . . , 4. In Table 3.10

the total run-times are shown.

full? fullHDMP? fullQP? fullQPHDMP?

1.99 1.14 1.57 1.24

Table 3.10: Runtime for the matrix N2 in seconds

Example 3.4.19. The full matrix

M8 :=


1 x 0 0 0
0 1 y 0 0
0 0 0 0 z
0 0 0 2 x
0 0 x 0 −y


results with the reverse lexicographical term order faster than with the lexicograph-
ical term order independently of the variable order. In this case the best choice
is the reverse lexicographical term order with variable order

(
(bi,j)i,j , (ai,j)i,j

)
for

i = 1, . . . , 5 and j = 1, . . . , 5 to receive a result in approximately one minute. In
contrast, in approximately two minutes the lexicographical term order with variable
order

(
(ai,j)i,j , (bi,j)i,j

)
for i = 1, . . . , 5 and j = 1, . . . , 5 results in trivial ideal to

determine the matrix as full matrix. Table 3.11 includes the exactly total run-times.

full? fullHDMP? fullQP? fullQPHDMP?

77.75 71.34 121.81 65.96

Table 3.11: Runtime for the matrix M8 in seconds

Conclusion. We were not able to find a general rule for the choice of a specific term
order or variable order for minimizing the total run-time. The best choice of term
order and variable order depends on the specific example. Under consideration there
are several other possibilities of variable orders which may result in lower run-time.

Conclusion and Outlook

In this thesis we are able to handle (for the factorization) non-commutative polyno-
mials, represented by a minimal admissible linear system As = v,

- up to rank 4 if they are reducible polynomials and we give explicit solution(s) of
the factorization of the polynomials.

- up to rank 17 if they are reducible polynomials and we determine the minimal
ranks of their factors.

- up to rank 12 if they are irreducible polynomials.

Special cases like variable disjoint factorization are not treated here. In [ARJ15]
the uniqueness of the variable disjoint factorization is shown and it is computable in
polynomial time.

For the factorization of a non-commutative polynomial we must find transformation
matrices of the form

(P, Q) =




1 a1, 2 . . . a1, n−1 0

0
.

...
...

0 0 1 an−2, n−1 0
0 0 0 1 0
0 0 0 0 1

,


1 0 0 0 0
0 1 b2, 3 . . . b2, n

0 0
.

...
0 0 0 1 bn−1, n
0 0 0 0 1




with entries ai,j, bi,j ∈ K, such that PAQ has an appropriate zero block.

In contrast to that, testing the fullness of matrices we have matrices over K of the
form

P =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
. . .

...
an−1,1 an−1,2 . . . an−1,n
an,1 an,2 . . . an,n

 , Q =


b1,1 b1,2 . . . b1,n
b2,1 b2,2 . . . b2,n

...
. . .

...
bn−1,1 bn−1,2 . . . bn−1,n
bn,1 bn,2 . . . bn,n

 .

In the treated ideal for testing fullness we additionally impose invertibility of these
two matrices by requiring detP = 1 and detQ = 1, whereas in the factorization our
transformation matrices are invertible by construction. Therefore the generation of

61

62 Conclusion and Outlook

the ideals in the factorization is much easier than in the test of fullness, since the
latter already fails for lack of space/time resources.

Future work in testing fullness of matrices could focus on the construction of the
matrices respectively reducing the “difficulties” of the determinants in the ideal.

Here the ideals are represented by Gröbner bases which depend on term and vari-
able order. Testing the fullness of matrices we focus on the lexicographical and re-
verse lexicographical term order and the variable orders

(
(ai,j)i,j , (bi,j)i,j

)
respectively(

(bi,j)i,j , (ai,j)i,j
)

for i = 1, . . . , n and j = 1, . . . , n. There are several other possibil-
ities of term or variable orders which may result in lower run-time. For future work
here are some other possibilities for variable orders:

- Random permutations of the whole variable list

- Random permutations among ai,j’s or bi,j’s

- Partitioning our variables into one partition V1 of variables being part of the
Gröbner basis and another partition V2 of the remaining variables. The variable
order consists of (V1, V2), i.e., first the variables used in the Gröbner basis, then
the remaining variables.

Bibliography

[ARJ15] V. Arvind, G. Rattan, and P. Joglekar. “On the complexity of noncommu-
tative polynomial factorization”. In: Mathematical foundations of computer
science 2015. Part II. Vol. 9235. Lecture Notes in Comput. Sci. Springer,
Heidelberg, 2015, pp. 38–49. doi: 10.1007/978-3-662-48054-0_4. url:
http://dx.doi.org/10.1007/978-3-662-48054-0_4.

[BS15] N. R. Baeth and D. Smertnig. “Factorization theory: from commutative to
noncommutative settings”. In: J. Algebra 441 (2015), pp. 475–551. issn:
0021-8693. doi: 10.1016/j.jalgebra.2015.06.007. url: http://dx.
doi.org/10.1016/j.jalgebra.2015.06.007.

[Buc65] B. Buchberger. “Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal”. PhD the-
sis. Universität Innsbruck, Österreich, 1965.

[Car10] F. Caruso. “Factorization of Non-Commutative Polynomials”. In: ArXiv e-
prints (Feb. 2010). arXiv: 1002.3180 [cs.MS].

[CCT08] Fabrizio Caruso, Pasqualina Conti, and Carlo Traverso. “Non-commutative
factorisation and GCD with applications to public key cryptography”. In:
Proceedings of Differential Algebra and Related Computer Algebra. 2008,
pp. 37–39.

[Coh63] P. M. Cohn. “Noncommutative unique factorization domains”. In: Trans.
Amer. Math. Soc. 109 (1963), pp. 313–331. issn: 0002-9947.

[Coh72] P. M. Cohn. “Generalized rational identities”. In: Ring theory (Proc. Conf.,
Park City, Utah, 1971). Academic Press, New York, 1972, pp. 107–115.

[Coh85] P. M. Cohn. Free rings and their relations. Second. Vol. 19. London Math-
ematical Society Monographs. Academic Press, Inc. [Harcourt Brace Jo-
vanovich, Publishers], London, 1985, pp. xxii+588. isbn: 0-12-179152-1.

[Coh95] P. M. Cohn. Skew fields. Vol. 57. Encyclopedia of Mathematics and its
Applications. Theory of general division rings. Cambridge University Press,
Cambridge, 1995, pp. xvi+500. isbn: 0-521-43217-0. url: http://dx.doi.
org/10.1017/CBO9781139087193.

[Coh03] P. M. Cohn. Further algebra and applications. Springer-Verlag London, Ltd.,
London, 2003, pp. xii+451. isbn: 1-85233-667-6. doi: 10.1007/978-1-
4471-0039-3. url: http://dx.doi.org/10.1007/978-1-4471-0039-3.

63

64 Bibliography

[CR94] P. M. Cohn and C. Reutenauer. “A normal form in free fields”. In: Canad.
J. Math. 46.3 (1994), pp. 517–531. issn: 0008-414X. doi: 10.4153/CJM-
1994-027-4. url: http://dx.doi.org/10.4153/CJM-1994-027-4.

[CR99] P. M. Cohn and C. Reutenauer. “On the construction of the free field”.
In: Internat. J. Algebra Comput. 9.3-4 (1999). Dedicated to the mem-
ory of Marcel-Paul Schützenberger, pp. 307–323. issn: 0218-1967. doi:
10.1142/S0218196799000205. url: http://dx.doi.org/10.1142/

S0218196799000205.

[CLO15] D. A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms.
Fourth. Undergraduate Texts in Mathematics. An introduction to com-
putational algebraic geometry and commutative algebra. Springer, Cham,
2015, pp. xvi+646. isbn: 978-3-319-16720-6; 978-3-319-16721-3. doi: 10.
1007/978-3-319-16721-3. url: http://dx.doi.org/10.1007/978-3-
319-16721-3.

[FR04] M. Fortin and C. Reutenauer. “Commutative/noncommutative rank of lin-
ear matrices and subspaces of matrices of low rank”. In: Sém. Lothar. Com-
bin. 52 (2004), Art. B52f, 12 pp. (electronic). issn: 1286-4889.

[Gil15] L. A. Gilch. “Symbolic Computation”. In: Vorlesungsmitschrift, TU Graz
(SS 2015).

[Jan18] B. Janko. “Factorization of non-commutative Polynomials and Testing Full
Matrices”. In: Projektarbeit, TU Graz (WS 2017/18).

[Sch17a] K. Schrempf. “Linearizing the Word Problem in (some) Free Fields”. In:
ArXiv e-prints (Jan. 2017). arXiv: 1701.03378 [math.RA].

[Sch17b] K. Schrempf. “On the Factorization of Non-Commutative Polynomials (in
Free Associative Algebras)”. In: ArXiv e-prints (June 2017). arXiv: 1706.
01806 [math.RA].

[Sme15] D. Smertnig. “Factorizations of Elements in Noncommutative Rings: A Sur-
vey”. In: ArXiv e-prints (July 2015). arXiv: 1507.07487 [math.RA].

