
Dissertation

Achieving Dependability of High-Level Robot
Programs by using Belief Management

Clemens Mühlbacher

Graz, 2017

Institute for Software Technology
Graz University of Technology

Supervisor/First reviewer: Univ.-Prof. Dipl.-Ing. Dr. techn. Franz Wotawa
Second reviewer: Univ.-Prof. Gerhard Lakemeyer Ph.D.

Abstract

Mobile robots are getting increasingly deployed in everyday environments. Applications range from
simple vacuum cleaning robots to fleets of transport robots used in warehouse environments. One
can expect that more robots which perform even more complex tasks will get deployed in everyday
environments soon. Even though these robots are very different, each of these robots uses some kind
of belief about the environment to take a decision which action should be performed next to achieve
the task given to the robot. To allow the robot to make a reasonable decision the belief needs to be
continuously updated if the robot changes the environment.
Unfortunately, as the robot is deployed in an everyday environment one cannot assume that every
performed action is executed successfully. Due to this wrong execution, the robot needs to deal with
faults during the execution. Thus, the robot needs to continuously use the observations taken from
the environment to check if the execution yields the desired result. Furthermore, the robot needs to
be able to reason which action was executed incorrectly, if a discrepancy between expected and real
observation occurs.
To reason which action was executed incorrectly, the belief of the robot about the world needs to be
managed. Such a belief management allows the robot to draw reasonable conclusions even in the
presence of faulty action outcomes. Thus, a belief management should be part of a robotic system.
However, to integrate it into a robotic system the method needs to be simple to use and needs to be
incorporated into the high-level control of the robot.
In this thesis, we show how one can simplify the use of such a belief management approach. We
extend an existing approach to reduce the necessarily detailed specification how an action has failed.
Furthermore, we propose a method to reuse common sense from other knowledge bases to allow the
robot to detect a fault faster.
Besides the simplification of the belief management, we also show in this thesis how one can use the
belief of the robot about the environment to draw a safe conclusion which action should be performed
next. This method does not only allow the robot to decide which action to perform next but also to
determine that it lacks the knowledge to make a decision. If the robot is lacking knowledge about the
environment, the robot can use a method presented in this thesis to gather enough knowledge about
the environment to take a decision.
Finally, we show a method in this thesis a method which allows one to automatically derive a reactive
program from a given sequential program, thus increasing the robot’s capability to react to faults
which have occurred. Therefore, leading to a more robust and autonomous robotic system.

i

ii

Kurzfassung

Mobile Roboter werden heutzutage immer mehr im Alltag verwendet. Dies reicht von einfachen
Staubsaugrobotern bis hin zu Robotern, welche in Lagerhallen selbständig ihre Arbeit verrichten.
Durch die technische Entwicklung auf diesem Gebiet und dem erfolgreichen Einsatz bisheriger Roboter
ist davon auszugehen, dass zukünftig im Alltag noch komplexere Robotiksysteme eingesetzt und ent-
wickelt werden. Obwohl diese Roboter auf den ersten Blick sehr unterschiedlich sind, verwenden sie
doch alle eine Art von Wissen über ihre Umgebung. Dieses Wissen ist notwendig, um eine Entschei-
dung darüber treffen zu können, welche Aktion als nächstes durchgeführt werden soll, damit das Ziel,
welches der Roboter verfolgt, erreicht wird. Da die Aktionen des Roboters die Welt beeinflussen,
müssen diese Änderungen auch im Wissen des Roboters über die Welt abgebildet werden.
Leider kann nicht davon ausgegangen werden, dass jede Aktion, welche durch den Roboter ausgeführt
wird, den gewünschten Effekt erzielt. Deswegen muss der Roboter durch entsprechende Sensormes-
sungen das erfolgreiche Ausführen einer Aktion selbständig überprüfen. Weiters muss er auf Grund
der Messungen schließen können, welche Aktion fehlerhaft war, um damit sein Wissen über die Welt
im Einklang mit der Welt zu halten.
Um dies zu ermöglichen, sollte ein Wissensmanagementsystem Teil des Robotiksystems sein, welches
es dem Roboter, auch im Fall einer fehlerhaften Ausführung, erlaubt, sinnvolle Schlüsse über die Welt
zu ziehen. Für die Integration in das Robotiksystem ist es unerlässlich, dass die Verwendung solch
eines Systems einfach ist, sowie dass es nahtlos in der höchsten Ebene der Entscheidungsfindung des
Roboters integriert ist.
In dieser Dissertation wird erläutert, wie ein bestehendes Wissensmanagementsystem erweitert wer-
den kann, damit es einfach zu verwenden ist. Zum einen wird die Notwendigkeit einer genaueren
Spezifikation, welche Effekte eine fehlerhafte Ausführung einer Aktion auf die Welt hat, aufgehoben.
Zum anderen wird alltägliches Wissen über die Umgebung von externen Wissensdatenbanken in das
System integriert, um so das Wissen über die Welt, welches der Roboter besitzt, einfach zu erweitern.
Weiters wird in der gegenständlichen Dissertation eine Methode präsentiert, welche ein Ableiten von
sicherem Wissen aus dem Wissensmanagementsystem erlaubt. Diese Methode erlaubt es dem Roboter
eine Entscheidung zu treffen, welche Aktion als nächstes ausgeführt werden soll. Zudem kann der
Roboter mit Hilfe dieser Methode feststellen, dass es einen Mangel an Wissen über die Welt gibt.
Diese Wissenslücken können anschließend vom Roboter durch geeignete Messungen geschlossen
werden.
Zu guter Letzt wird im Rahmen dieser Dissertation eine Methode präsentiert, welche es erlaubt, aus
einem sequenziellen Programm ein reaktives Programm zu erzeugen. Dadurch ist es für den Roboter
möglich, auf Änderungen des Wissens über die Welt zu reagieren, ohne dabei seinen ursprünglichen
Plan für die Erreichung des Zieles aufzugeben.

iii

iv

Acknowledgement

First of all, I would like to thank Gerald Steinbauer for his support during this thesis. Through the dis-
cussions with him many ideas began to crystallize, and without these discussions, most of the resulting
work would not have been possible. Additionally, his passion for providing a working environment
which allowed to experiment with different methods in theory and in practice allowed me to evolve
my knowledge about robustness in robotic systems.
I would also like to thank my supervisor Franz Wotawa for the discussion about science and his
passion about model based methods. Due to this passion, he inspired me to foster my knowledge
about model based methods to create more robust systems.
Furthermore, I would like to thank Gerhard Lakemeyer for being my external reviewer. His work was
always inspiration how logic can be used to model behavior.
Special thanks go to Michael Reip, Gerald Steinbauer, Stephan Gspandl, Ingo Pill and Alexander
Ferrein who created the basis for this thesis. Without their work, this thesis would not have been
possible.
Moreover, I would like to thank my colleagues for the long discussions about the topic of this thesis,
robotics and the off-topic discussions which allowed me to clear my head.
Additionally, I would like to thank the members of the TEDUSAR team; Konstantin Lassnig, Julia
Nitsch, Johannes Maurer, Alexander Buchegger, Stefan Imlauer and Stefan Loigge, which made it
possible to bring robotic systems to life.
Finally, I would like to thank my sister Claudia Mühlbacher and my colleague Alexander Buchegger
for reviewing an earlier version of this thesis.
Last but not least I would like to thank my family which always supported me. Without them, I would
have never been able to finish my studies or my thesis.

Clemens Mühlbacher in Graz, 2017

v

vi

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly marked all material which has been quoted either
literally or by content from the used sources.

Graz,
Place, Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die an-
gegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am
Ort, Datum Unterschrift

vii

viii

Contents

List of Figures xiii

List of Tables xv

1. Introduction 1
1.1. Background and Motivation . 2
1.2. Research Objectives . 5

1.2.1. Reduce the burden of modeling of the belief management 5
1.2.2. Increase the efficiency of the belief management 5
1.2.3. Integration of the belief management in the high-level control of the robot . . 6
1.2.4. A systematic evaluation of the belief management 6

1.3. Contributions . 6
1.3.1. Belief management without models of action faults 6
1.3.2. Using common sense from external sources 6
1.3.3. Integration of belief management into high-level program execution 6
1.3.4. Active gathering of knowledge . 7
1.3.5. Deriving programs that react . 7
1.3.6. Evaluating the benefit of belief management 7

1.4. Running example . 7
1.5. Outline . 8

2. Preliminaries 9
2.1. Situation Calculus . 10

2.1.1. Basic action theory . 11
2.1.2. Regression . 13
2.1.3. Progression . 14
2.1.4. Sensing . 15
2.1.5. Knowledge . 15

2.2. History-Based Diagnosis . 17
2.3. IndiGolog . 21

3. Related Research 27
3.1. Detecting faulty components . 28
3.2. Detect whether the goal can be reached . 28
3.3. Fault handling in the fluent calculus . 29

ix

Contents

3.4. Fault handling through belief management . 30
3.5. Fault handling in the situation calculus . 31
3.6. Logics for actions and belief . 33
3.7. Uncertainty about fluents instead of possible worlds 35
3.8. Handling faults in the high-level control . 36
3.9. Monitoring the execution of actions . 37

4. Consistency History Based Diagnosis 39
4.1. Preliminaries . 40
4.2. Consistency History Based Diagnosis . 41
4.3. Calculation of Diagnoses using Conflicts . 44
4.4. Using Default Logic to Model the Belief . 48
4.5. Relation to History Based Diagnosis . 49
4.6. Related Research . 51
4.7. Conclusion and Future work . 52

5. Reusing Common Sense Invariants 53
5.1. Some Theoretical Results on History Based Diagnosis 54
5.2. Common Sense knowledge from another Sources 55
5.3. Implementation using Cyc . 57
5.4. Related Research . 58
5.5. Conclusion and Future work . 59

6. Belief-Aware execution of High Level Programs 61
6.1. Definition of Belief for an agent . 62
6.2. Efficient Querying the Belief . 63

6.2.1. Progression for fault based history based diagnosis 68
6.2.2. Progression for consistency based history based diagnosis 70

6.3. Integration into IndiGolog execution . 71
6.4. Formal Relation of Proposed and Original IndiGolog execution 77
6.5. Conclusion and Future Work . 79

7. Active gathering of Knowledge 81
7.1. Definition of the Active Diagnosis Problem for Robots with Belief 82
7.2. Selecting the Optimal Sensing Action . 84
7.3. Using Grounded Sensing Actions to Find the Optimal Action 86
7.4. Using the Alternative Worlds to Find the Optimal Action 87
7.5. Conditions for Active Diagnosis to Yield One Remaining Alternative 89
7.6. Conclusion and Future work . 91

8. Creating Reactive Programs 93
8.1. Generation of Reactive Programs . 94
8.2. Generation of Supervision Sensing Actions . 109
8.3. Related Research . 112
8.4. Conclusion and Future Work . 113

9. Practical Realization 115
9.1. Software Architecture . 115

x

Contents

9.2. Theorem Proving . 116
9.3. Belief of a Robot . 117
9.4. high-level Execution . 118

10. Empirical Evaluation 119
10.1. Comparison of a Robot with and without Belief Management 120

10.1.1. Task and Environment . 120
10.1.2. The compared approaches . 121
10.1.3. Experiments . 125

10.2. The difference between Belief Management and Advanced Belief Management . . . 128
10.2.1. Experiments . 129

10.3. Comparing Belief Management with and without Progression 129
10.3.1. Experiments . 130

10.4. The difference between Consistency and Classical History Based Diagnosis 130
10.4.1. Experiments . 130

10.5. Comparing Linear with Reactive Programs . 131
10.5.1. Experiments . 132

10.6. Impact of common sense . 132
10.6.1. Impact of the domain size . 133
10.6.2. Impact of timeout . 135

10.7. Conclusion and Future Work . 137

11. Conclusion 139
11.1. Summary . 139
11.2. Further research . 140

Bibliography 143

xi

xii

List of Figures

1.1. Environment at the beginning of the deliver task. 4
1.2. Expected environment after the delivery task was performed. 4
1.3. Sensed environment after the delivery task was performed. 4
1.4. Possible explanation how the environment looks like. 5

2.1. Knowledge-Producing Actions and the K relation [120] 16

6.1. Decision tree of a simple high-level control program. 72
6.2. Decision tree for one step transition of a high-level program. Bold leaves depict

states where the agent possesses enough knowledge to decide program progression
safely. Dashed states are those where no safe program progression can be done. . . 76

8.1. The AST of the simple example program if φ then α1 else α2 ; α3 endIf. 95
8.2. The requisite graph of the simple example program if φ then α1 else α2 ; α3 endIf. 100

9.1. Architecture of the implementation for a robotic system with advanced belief man-
agement. 116

10.1. Domain for scenario S2 of the first evaluation. The layout resembles the institute’s
floor plan. 121

10.2. System overview of the evaluation. Both control approaches use the same ROS
interfaces for sending (dashed lines) and executing actions (chain dotted lines). . . 125

10.3. Success-rate of the different approach in relation to the timeout. 136

xiii

xiv

List of Tables

10.1. Number of rooms and objects for the different scenarios of the first evaluation. . . . 121
10.2. Probabilities for fault of actions and the exogenous event. 121
10.3. Performance of the different programs for the delivery task with 20 rooms and 3

objects (scenario 1). 126
10.4. Performance of the different programs in a delivery task with 29 rooms and 3 objects

(scenario 2). 127
10.5. Performance of the different programs in a delivery task with 20 rooms and 9 objects

(scenario 3). 127
10.6. Probabilities for fault of actions. 128
10.7. Performance for the delivery task with 20 rooms and 3 objects with classical and

advanced belief management. 129
10.8. Performance for the delivery task with 20 rooms and 3 objects with and without

progression. 130
10.9. Performance for the delivery task with 20 rooms and 3 objects with the classical

history based diagnosis and the consistency history based diagnosis. 131
10.10. Performance for the delivery task with 20 rooms and 3 objects with a linear, teleo-

reactive and a generated reactive program. 132
10.11. Success rate, timeout rate (TIR) and the average run-time of the approaches to map

common sense for the first evaluation in the first evaluation setup. 134
10.12. Success rate, timeout rate (TIR) and the average run-time of the approaches to map

common sense for the second evaluation in the first evaluation setup. 134
10.13. Success rate, timeout rate (TIR) and the average run-time of the approaches to map

common sense for the third evaluation in the first evaluation setup. 135
10.14. Success-rate, timeout-rate (TIR) and runtime for a timeout of 660 seconds for map-

ping common sense. 135
10.15. Success-rate, timeout-rate (TIR) and runtime for a timeout of 6600 seconds for map-

ping common sense. 136
10.16. Success-rate, timeout-rate (TIR) and runtime for a timeout of 66000 seconds for

mapping common sense. 136

xv

xvi

Chapter 1
Introduction

Robotic systems nowadays are used more and more in daily life. As an example, one could consider a
vacuum cleaning robot [60] which is widely used. Even though these systems comprise only a simple
behavior, they show the first applications of robots which operate in an unknown environment and
react according to sensing information.
Starting from these basic robotics settings more and more complex robotics systems are developed
such as autonomous cars [55], [146] which aim to change how we move between locations. Whereas
such systems are designed to transport people robotics system which transport goods within a ware-
house [155], [53] are already widely used. Those systems allow more flexibility and are cheaper than
traditional conveyor belts.
Even though systems perform complex transportation tasks robots can perform even more complex
tasks in real world settings such as serving as a museum tour guide [144], navigating in a crowded city
center [12], collecting garbage in a city [40] exploring Mars [145] or being used for rescue missions
in earth quake scenarios [62].
All these systems ranging from simple vacuum cleaning to exploring Mars have in common that
they should operate without human intervention. Thus following [73] the demand that a system be
dependable. One meaning of dependability is that the system should be fault tolerant. Thus, one does
not assume the system always works perfectly, instead the system should be able to deal with faults in
such a way that their consequences are negligible. To provide a dependable autonomous system one
can follow the definition of [72]. In [72] dependability is defined as a concept which incorporates two
sub-concepts.
The first concept is robustness in order to deliver a service in contrarious situations. Thus, a system
needs to deal with uncertainty in its environment. Such uncertainty often arises due to the openness
of the environment, e.g. an obstacle blocking the route of the robot or due to the non-determinism of
the environment such as changes in the light conditions during the day.
The second concept is fault tolerance which imposes that a robot performs the task regardless of
faults affecting system resources, e.g. sensor faults. Thus, the second concept strongly relates to the
capability of a robot to deal with its shortcomings during the execution. Using the ISO standard 26262
[135] one can define fault tolerance more accurately. In the standard one distinguishes between a fault,
an error, and a failure. A fault is an abnormal condition that can cause an element or an item to fail.
The error is the discrepancy between the computed, observed or measured value or condition, and the
true, specified, or theoretically correct value or condition. A failure is the termination of the ability of
an element, to perform a function as required. Thus, fault tolerance means that regardless of a fault

1

Chapter 1. Introduction

the robot encounters, the robot does not show a failure.
As robotics systems are complex often these systems are created with the help of different layers.
One very broadly applied version is the three-tier architecture [46]. The architecture uses a high-level
which is responsible for planning which actions the robot should perform to reach a certain goal. This
layer uses a high degree of the actions e.g. “pick up the milk box”. Thus, these actions cannot be
directly executed. To execute such actions properly the middle layer is used. The actions may be
decomposed further into little skills which can be executed directly by the robot. For each skill, the
middle layer ensures that it can be executed on the robot without the interference of another skill.
The result of the middle layer is an action which can be executed by the robot e.g. “move the arm
at position 21 24 1”. The last layer ensures that the robot can execute actions by providing a proper
implementation of the actions e.g. a method to move the arm without collisions in the environment to
a specified location.
Ensuring a high degree of fault tolerance imposes several aspects such as testing, run-time diagnosis,
and adaption during run time. All these problems can be addressed through model based approaches;
such a concept was published in [133]. As the robot consists of several layers, different methods for
testing need to be applied. See the publications [88] and [96] for model-based testing approaches
of robotics systems. Besides model-based testing methods also methods to adapt such models are
important. See the publications [90] and [89] for model adaption methods. Although all these methods
improve the overall fault tolerance of the robot, we will focus on the run-time diagnosis in this thesis.
To have a robust and fault-tolerant and thus dependable robotics system one needs to deal with faults
in a robotics system on all layers of abstraction. Each layer has its demands and possibilities for
robustness and fault-tolerance. As it would not be possible in one thesis to address all these different
layers, we will focus on the high-level of the robot which is responsible for the decision making of the
robot. We refer the interested reader to [71] for a discussion about fault handling in the lower layer,
the basic principles where also published in [131]. In the next section, we will explain in more detail
why the high-level of a robot is of particular interest to guarantee a dependable robotics system.
After we have explained why we address dependability in the high-level of the robot, we will detail the
research objectives which guided the performed work. This section is followed by a section describing
which contributions were made in the thesis to achieve the research objectives. Afterward in Section
1.4 we will discuss a running example which is used throughout the thesis. Finally, we will give an
outline of the thesis.

1.1. Background and Motivation

As we have motivated above robotics systems are becoming a part of our society. Furthermore, these
systems should take decisions in such a way that a task is achieved regardless of the occurrence of
faults. Following the classical three-layer architecture [47] the decision which action should be taken
to achieve a task is taken in the high-level control of the robot. Thus, to achieve a dependable decision
making of the robot the high-level control of the robot, needs to consider dependability as a central
part.
To make a decision, at the high level, the robot uses the knowledge it possesses about the world.
This knowledge comprises which actions are possible and which conditions need to hold so that these
actions can be performed. Additionally, it comprises the knowledge which objects are available in
the environment, where these objects are, and additional information about an object or a property of
the object. Furthermore, the robot needs some knowledge about itself, ranging from its location to
which object it carries. Additionally, not only information about objects is part of the knowledge of

2

1.1. Background and Motivation

the robot but also how objects and their properties relate to other objects and their properties. This
part of the knowledge is the common sense of the robot, e.g. specifying that milk is perishable and
that perishable goods are usually in the fridge.
Using its knowledge the robot can answer questions needed to take a decision, e.g. where should I
store the milk. Besides such questions, it is also of interest that the robot can ask a question about
the future, e.g. where is the milk if I pick it up and drive into the kitchen. Such questions are those
questions which are used to derive a plan to achieve a task. To answer the question how to store the
milk the robot needs to respond to questions about general statements about the world, e.g. where the
milk should be stored, and the future state of the world, e.g. will I be able to put the milk in the fridge
if I drive into the kitchen. Especially the question what is possible after performing a certain action
is essential to find actions which lead to the desired goal, e.g. moving into the kitchen alone does not
allow the robot to put the milk into the fridge as the robot first needs to open the fridge.
To answer a question about the future, the robot needs to be able to reason how the world changes
after an action is performed. However, this reasoning is not only of interest to answer a question
about the future but also about the present. As a robot performs actions during the execution of a task,
the knowledge about the world needs to be properly updated. Thus, the robot needs to change the
knowledge it has about the world after each action execution. Furthermore, the robot does not only
perform actions to modify the world but also often senses the world to gain knowledge how the world
looks like, e.g. sense if the milk is in front of it.
As the robot should continuously answer questions with the help of the reasoning this reasoning
needs to be kept manageable. To maintain the reasoning manageable not every possible outcome is
considered an action may have. Instead, the robot considers only the most likely outcome. Using
only the most likely outcome imposes that the robot only considers a non-faulty action outcome, e.g.
after driving to the kitchen the robot thinks it is in the kitchen. Thus, if a fault in the action execution
occurs the robot’s knowledge about the world and the real world do no longer agree. This discrepancy
can cause further faults during the execution of other actions or even lead to dangerous decisions, e.g.
if the robot thinks it is in the kitchen, it can decide to drive forward but if the robot is in front of the
stairs driving forward is not a preferable decision.
The discrepancy between the real world and the knowledge about the world the robot has can only be
detected through the execution of sensing actions. As the sensing actions measure some property of
the reality, the same properties need to hold in the knowledge the robot has about the world. Thus, if
the sensing information contradicts the knowledge about the world, the real world and the knowledge
about the real world are no longer consistent.
This inconsistency of the real world and the knowledge the robot has about the world lead to an incon-
sistency in the knowledge if the sensing information is just assumed to hold. Due to this inconsistency,
the robot is no longer able to answer a question reasonably. Thus causing the robot to be no longer
able to derive a meaningful plan to achieve a goal. Instead, a robot may take arbitrary actions or don’t
perform actions at all.
As ignoring the inconsistency between the measured real world and the knowledge the robot has is
not an option one needs to consider a different approach. Instead of ignoring the inconsistency the
robot can reason what went wrong to reason how the world may look like.
Let’s consider a simple example outlining this idea. The robot needs to move the folder from room D
to room C. The start state of the environment is depicted in Figure 1.1.
After picking up the folder and moving to room C the robot assumes the environment is as depicted
in Figure 1.2. But instead the robot senses that the calculator is also in the same room as the robot.
Thus, the world seems to be as depicted in Figure 1.3.
As an object does not move on its own the real world cannot have changed from the environment as

3

Chapter 1. Introduction

Figure 1.1.: Environment at the beginning of the deliver task.

Figure 1.2.: Expected environment after the delivery task was performed.

Figure 1.3.: Sensed environment after the delivery task was performed.

it is depicted in Figure 1.1 to the environment depicted in Figure 1.3. Thus, the robot can perform a
reasoning and can conclude that either it drove to room A instead of C or the sensing was faulty and
the calculator is not in the same room. Both cases are depicted in Figure 1.4. Using this information,
the robot can derive a plan to safely navigate to its destination and finish the delivery.
As this kind of reasoning allows the robot to conclude how the world looks like, the robot can detect
and handle faults. In [51] such a reasoning was formally defined. We will use the definition of this
reasoning as a basis for the thesis. We extend the proposed method to derive the secured knowledge the
robot has about the world. In the remainder of the thesis we will call the method to derive explanations
for an inconsistency, together with the method to derive secure knowledge from this approach belief
management. Furthermore, we will extend the approach presented in [51] such that the robot can react
to changes in the belief management. This reaction to changes is necessary as the belief management
may reveal that the secure knowledge invalidates a previously made plan.

4

1.2. Research Objectives

Figure 1.4.: Possible explanation how the environment looks like.

1.2. Research Objectives

In the previous section, we have motivated why we are interested in a belief management, which
ensures that the robot can perform a reasoning even in cases of faulty action executions. Using the
method described in [51] as basis several research objectives guided the work of this thesis, which is
described in this section.

1.2.1. Reduce the burden of modeling of the belief management

To perform the belief management of the robot several aspects of the world need to be properly
modeled to allow an automatic reasoning. To use the belief management, this modeling effort should
be reduced.
The modeling effort consists of two main parts. Firstly, the robot needs to know which faults can occur.
This knowledge allows the robot to draw a definite conclusion of which fault might have occurred.
However, this has the drawback that such a model is often hard to derive and even harder to maintain.
Secondly, to detect inconsistencies the robot uses commonsense knowledge about the environment,
it is operating in. Through this knowledge, the robot can detect if an environment constellation is
physically not plausible, e.g. an object can be only at one place at a time. If the robot has more
knowledge about its environment, a fault can be detected easier. Thus, the broader the commonsense
knowledge is, the better the belief management works. However, the specification of a big, sound and
complete commonsense knowledge base can be complicated.
The research objective is to reduce both modeling efforts. Firstly, reduce the need to model faults
in detail. Secondly, the effort to specify proper commonsense knowledge should be as minimal as
possible.

1.2.2. Increase the efficiency of the belief management

As the robot uses the knowledge about the word to decide which action should be taken next, it is
important that the reasoning used to answer certain questions be as fast as possible. Thus, an efficient
method for the belief management is of interest. To improve the efficiency of the belief management,
an efficient method to derive the possible faulty actions and a method to answer queries using the
information of possible faulty actions, are necessary.

5

Chapter 1. Introduction

1.2.3. Integration of the belief management in the high-level control of the robot

To allow the robot to use the belief management, there is a need to integrate the reasoning method into
the high-level control of the robot. This integration needs to consider whether it is safe to act with the
current knowledge. Additionally, this integration needs to consider whether the robot is confident that
the secure knowledge implies that the plan needs to be aborted. Furthermore, the robot needs to be
able to distinguish cases where knowledge is lacking to make a conclusion about future actions with
those cases where the robot can derive an answer. This distinction also includes how the robot handles
a lack of knowledge.

1.2.4. A systematic evaluation of the belief management

After the integration of the belief management into the high-level control of the robot, an evaluation
is of interest. The evaluation should answer the question if the belief management has the desired
positive effect on the dependability. Furthermore, the evaluation should answer the question which
kind of high-level program can benefit from the belief management most.

1.3. Contributions

In the previous section, we discussed the research objectives which guided the work presented in this
thesis. The performed work resulted in the contributions outlined in this section.

1.3.1. Belief management without models of action faults

To address the problem of modeling every fault of an action a different approach to identify possibly
faultily executed action needs to be used. Instead of modeling the faulty action one follows the idea
of consistency-based diagnosis [113]. The idea is that a faulty action may influence the truth value
of a subset of fluents. Thus, instead of defining all faults, an action has, one only defines which parts
of the environment may be influenced if the action fails. This definition eases the modeling for the
belief management as well as improves the efficiency as one does not need to reason how the action
has failed. Instead, it is sufficient to reason if the action has failed at all. The concept of this method
was published in [94].

1.3.2. Using common sense from external sources

Besides the modeling of faulty actions, the modeling of the commonsense knowledge of the robot is
a cumbersome task. To address this problem, one can reuse the commonsense knowledge which is
already available. Over the last decades big commonsense knowledge bases have been created. Thus,
instead of modeling the same statements again one can reuse this knowledge by incorporating this
knowledge into the knowledge base the robot has. The theoretical concept was published in [132]. In
[93] the impact of the belief management was evaluated.

1.3.3. Integration of belief management into high-level program execution

After the robot has derived which actions are faulty, the robot can derive the knowledge it is certain
about. This knowledge consists of those statements which are valid in all possible explanations. With
the help of this knowledge, the robot can reason which actions are safe to perform. Furthermore, the
robot can reason if it lacks information to proceed safely. This reasoning is achieved by defining the

6

1.4. Running example

execution semantic which is used by the agent to choose its next action. The concept of this integration
was published in [92].

1.3.4. Active gathering of knowledge

As the robot can decide if its knowledge is not enough to safely take a decision, the robot also needs
the capability to react to such a situation. Thus, instead of aborting its mission, the robot can gather
knowledge about the world through the execution of safe sensing actions. This method was published
in [91].

1.3.5. Deriving programs that react

To achieve a certain goal, it is often sufficient to specify a simple imperative program. Such programs
are simple recipes which actions should be performed after each other. Although such simple pro-
grams are often enough to achieve the goal they often fail in case of a fault. This failure is caused by a
fault which may yield a different state of the world as expected by the robot after executing a certain
action. Thus, the robot can no longer follow this simple program to achieve its goal. However, often
it is sufficient to step back in the program and continue the execution from this point. To allow the
robot to step back in its program one needs to change the imperative program into a reactive program.
In this thesis, we will show how one can automatically derive a reactive program from an imperative
program.

1.3.6. Evaluating the benefit of belief management

The belief management is designed to increase the dependability of the robot. As such one can not
only state theoretical properties about the knowledge, the robot possesses during execution. Instead,
an empirical evaluation is of interest, showing the benefit of the belief management in comparison to
other approaches. Such a preliminary evaluation was published in [95].

1.4. Running example

To discuss the different methods in this thesis, we will use a running example. This example will
be utilized as a simple version of a real-world robotics application. Furthermore, we will use this
example during the evaluation for comparing the impact of different belief management methods.
The running example is a simple delivery robot. It can fetch objects and move those objects between
different locations. As such it is an abstract version of any transport robot used already in the industry,
see [155] or [53] for example. A similar example was already used to evaluate the performance of a
robot using another belief management method [52].
The delivery robot can perform three actions. goto(R1) moves the robot from the current room to
room R1. To pick an object O1 the robot can perform the action pick(O1). Additionally, the robot can
perform the action put(O1) to put the object O1 down.
Besides the action to change the world, the robot can perform two different sensing actions. To check
if the robot is holding something in its gripper, it can perform the action senseHolding. Through the
sensing action, senseIsAt(O1) the robot can check if the object O1 is at the same place as the robot.
Both sensing actions yield a simple true or false as a sensing result.
As we consider the robot to fail during the execution of some actions we consider the following faults
the robot may encounter. The goto action can fail such that the robot moves to another place as

7

Chapter 1. Introduction

specified, e.g. the robot ends up in room R2 instead of R1. The action pick can fail such as that the
robot is holding no object at all. Moreover, the action can fail, such it can pick up a wrong object
which is in the same room. Thus, the robot possibly picks up object O2 instead of O1. If the robot
performs the put action it may fail by it still holding the object. Finally, both sensing actions may
produce a wrong result. Thus, instead of yielding true as a result the action yields false as result or
vice versa.
To model further uncertainty in the environment, we consider exogenous events. These events occur
without the knowledge of the robot and change the environment. We consider two different events.
The first event exogMove moves an object from one location to another. The second event snatch
simulates that somebody snatches the object from the robot.
The task of the robot is always a set of objects which need to be delivered. Each object has specified its
target location. Furthermore, we assume the robot has initially complete knowledge about the object’s
location, as well as its location. Additionally, the robot does not hold an object in the initial situation.

1.5. Outline

The remainder of the thesis is structured as follows. The next chapter discusses some preliminaries
necessary for the thesis. In Chapter 3 we discuss research which is related to the different parts pro-
posed in this thesis. Additionally, we discuss related research which tackles belief management for
robotics systems. Please note that a more detailed related research is discussed in every of the remain-
ing chapters which discuss the different contributions. The follow-up chapter discusses how belief
management could be performed without fault modes. Afterwards in Chapter 5 the method to use
common sense from external sources is discussed. The proceeding chapter discusses the integration
of the belief management into the high-level program execution of the robot. This chapter is followed
by a chapter discussing how the agent can actively gather information about the world. In Chapter
8 we discuss how to derive a reactive program from a sequential one. This chapter is proceeded by
the chapter discussing aspects of the practical implementation of the belief management. Afterwards,
we discuss the evaluation of the belief management in comparison to other classical approaches for
a robust high-level control in Chapter 10. Finally, we conclude the paper and point out some future
work.

8

Chapter 2
Preliminaries

In this chapter, we will discuss the theoretical foundations for the remainder of the thesis. Throughout
the thesis, we are interested in modeling a robot which performs actions in an environment. To be
more specific we are interested in the high-level control of such a robot. Thus, we represent the
robotic system on an abstract level, allowing us to talk about actions and discrete states of the world.
The first problem which we need to address is to model the changes an action causes in the world. For
each action one can specify the influence it has on the world, e.g. the goto action changes the location
of the robot. But to ultimately define the impact an action has in the world one also needs to specify
which parts of the world are not changed, e.g. the goto does not alter the color of the robot. As the
number of things which are not changed is arguably infinite, the specification of non-effects cannot
be performed quickly. The problem to address the specification of non-effects is known in artificial
intelligence as the frame problem [82].
The frame problem was first identified by McCarthy and Hayes in [82]. It is one of the well-known
problems which need to be addressed to model an intelligent agent. To address this issue, McCarthy
proposed in [80] to use a form of non-monotonic reasoning called circumscription [79]. To avoid
non-monotonic reasoning, Reiter suggested an alternative solution in [114] which uses the situation
calculus [78] and successor state axioms to deal with the frame problem. We will discuss the situation
calculus and the solution to the frame problem in Section 2.1 in more detail.
Besides the modeling of the effect, an action has one also needs to model the conditions which must
hold to be able to perform the action. The problem of modeling this precondition of an action is
called the qualification problem [81]. The problem arises from the observation that there is a (nearly)
infinite set of conditions which need to hold to perform an action successfully. Let’s consider the
running example. To do the action put(O1) the agent needs to hold the object O1. Furthermore, the
object needs not to be glued to the robot or mounted in another way. Furthermore, the arm of the robot
needs to work properly
To address the qualification problem, McCarthy proposed in [81] to use circumscription with the idea
that the precondition of an action holds unless proven otherwise. We will use a similar approach
to address the problem. We split the precondition of an action into two parts. The first part of the
precondition can be easily modeled with the knowledge the agent has, e.g. for the put we only model
that the agent is holding O1. The second part of the precondition captures all the other conditions
which are needed but cannot easily be modeled, e.g. that the object is glued to the robot’s hand. We
assume that the second part of the precondition holds if no observation is made that the action was not
successfully executed. Thus, we use the idea of McCarthy in a restricted form, as we consider only

9

Chapter 2. Preliminaries

parts of the precondition to be modeled.
The first part of the precondition can be modeled by standard means of the situation calculus and
will be presented in Section 2.1. Whereas the second part of the precondition is modeled using the
history-based diagnosis approach and will be presented in Section 2.2.
After the actions, effects and the precondition of the actions are modeled, one needs to define how
the robot should use the actions to achieve a certain task. We will use the high-level action language
called IndiGolog [20] to specify the actions the robot should perform to achieve a task. In Section 2.3
we will discuss how the language is defined and how the robot decides which action to perform next.

2.1. Situation Calculus

To model the impact an action has the situation calculus [78] is an expressive method. The situation is
a second order logic with three different sorts. Actions (A), objects (O) and situations (S). Situations
are used to model a sequence of executed actions. This is done with the help of the constant S0
representing the initial situation and the function do : A×S → S . Thus, to represent that the robot has
only executed action goto(R1) we have the following situation term do(goto(R1),S0).
Besides modeling the action sequence with the situation calculus, the situation term is also used to
represent the state of the world. This representation is done by so-called fluents F . A fluent is either
a situation dependent predicate, e.g. holding(O1,s). This type of fluent is called relational fluent. Or
a fluent is a situation dependent function, e.g. objectTemperature(O1,s) = 20. Such fluents are called
functional fluent. As such the last argument of a fluent is a situation term. This situation term is used
to specify if the fluent holds after the action sequence was performed. For the sake of simplicity, we
will concentrate on relational fluents only in this thesis.
With the help of the situation term, one can model the sequence of actions performed so far. But to
model, the current state of the world one needs to model the effect an action has. To do so, one can
use so-called effect axioms. Each of these axioms defines a condition which needs to hold such that
the action sets the fluent to true or false after its execution.
The specification of the effect axioms is not sufficient as we argued above. This modeling issue is
called the frame problem and was addressed by Reiter in [114]. The proposed solution of Reiter is
based on the work suggested in [54], [100] and [122]. To solve the frame problem, Reiter offered to
rewrite the effect axioms to so-called successor state axioms by considering some mild assumptions.
First, let’s consider the most general case of an effect axiom. The action α with the precondition Πα

changes the truth value of a situation dependent formula φ under the condition κ.

∀s.Πα(s)∧κ(s)→ φ(do(α,s)) (2.1)

The first assumption made to tackle the frame problem is to restrict the formula φ to F(do(α,s)),
where F is a fluent. Thus, instead of specifying the effect an action has on a formula one specifies the
effect the action has on one fluent F .

∀s.Πα(s)∧κ(s)→ F(do(α,s)) (2.2)

The second assumption made is that every possibility an action can influence a fluent is specified.
This assumption is refereed as completeness assumption. To show the impact of this assumption let’s
consider two actions α1 and α2 influencing F specified as follows.

∀s.Πα1(s)∧κα1(s)→ F(do(α1,s)) (2.3)

10

2.1. Situation Calculus

∀s.Πα2(s)∧κα2(s)→ F(do(α2,s)) (2.4)

If we assume that each action has a unique name, we can now apply the completeness assumption to
rewrite the above equations into.

∀s,α.(α = α1∧Πα1(s)∧κα1(s))∨ (α = α2∧Πα2(s)∧κα2(s))→ F(do(α,s)) (2.5)

We can simplify the notation by grouping the conditions of the effect of action α into one formula
ψ(α,s). Thus, we have the formula.

∀s,α.ψ(α1,s)∨ψ(α2,s)→ F(do(α,s)) (2.6)

If we now consider N actions instead of two we can define the formula Ψ
+
F (α,s) which gathers the

left-hand side of implications for all actions. ∨
i.1≤i≤N

ψ(αi,s) (2.7)

We can do the same transformations steps for those effects setting a fluent value to false instead of
true. We denote the formula which defines all actions and their conditions to set fluent F to false as
Ψ
−
F (α,s). Using this formula, we derive the following two equations for each fluent.

∀s,α.Ψ+
F (α,s)→ F(do(α,s)) (2.8)

∀s,α.Ψ−F (α,s)→¬F(do(α,s)) (2.9)

To avoid situations which cause a contradiction we assume that the action effects do not contradict
each other, thus it needs to hold that:

@s,α.Ψ+
F (α,s)∧Ψ

−
F (α,s) (2.10)

Combining the completeness assumption and assuming no contradicting effects we can conclude from
Equation 2.8 and Equation 2.9 the following.

∀s,α.¬F(s)∧F(do(α,s))→Ψ
+
F (α,s) (2.11)

∀s,α.F(s)∧¬F(do(α,s))→Ψ
−
F (α,s) (2.12)

Combining those two equations into one equation we get the so-called successor state axioms.

∀s,α.F(do(α,s))≡Ψ
+
F (α,s)∨F(s)∧¬Ψ

−
F (α,s) (2.13)

Using the successor state axiom one needs only to define one axiom per fluent instead of 2×|A | ax-
ioms per fluent. Furthermore, the successor state axiom only incorporates actions and their conditions
which change the truth value of the fluent. Thus, the length of the axioms is kept to a minimum.

2.1.1. Basic action theory

With the help of the successor state axiom the frame problem can be solved. But to use the situation
calculus for reasoning purposes one needs to gather several axioms including the successor state
axioms defined above. The combination of these axioms is called basic action theory (BAT) [116].
The BAT defines a second-order logical language with the following alphabet:

11

Chapter 2. Preliminaries

• three distinct sorts: actions A , situations S and objects O.

• a constant SO of type S . The constant defines the initial situation.

• a function do : A × S → S . The function defines a successor relation between two situations.
Thus, situation s′, s′ = do(α,s) is the successor situation of s after performing α. In the remain-
der of the thesis we use do([α1, . . .αn],S0) as an abbreviation for do(αn, . . .do(α1,S0)).

• a binary predicate @: S ×S , we write sv s′ in the remainder of the thesis as an abbreviation of
s @ s′∨ s = s′. The predicate defines the ordering of the situations.

• for each n≥ 0, countable infinite predicates with arity n of the form (A ∪O)n, these predicates
are used to state situation independent relations.

• for each n≥ 0, countable infinite functions with arity n of the form (A ∪O)n→ O, these func-
tions are used to state situation independent functions.

• for each n ≥ 0, finite or countable infinite functions with arity n of the form (A ∪O)n → A ,
these define performed actions. In the remainder of the thesis we will use α with superscripts
to donate actions.

• a binary predicate Poss : A×S , we write in the remainder of the thesis Πα(s) as an abbreviation
of Poss(α,s). The predicate defines the condition which needs to hold such that an action can
be performed.

• for each n≥ 0, finite or countable infinite predicates with arity n of the form (A∪O)n×S , these
are relational fluents.

• for each n≥ 0, finite or countable infinite functions with arity n of the form (A ∪O)n×S → O
, these are functional fluents.

In addition to the above alphabet the language contains the standard alphabet of second order logic
including equality. With the help of the defined language, we can state the different axioms used.
First, we state the axioms used to define a valid situation.

do(α1,s1) = do(α2,s2)⊃ α1 = α2∧ s1 = s2 (2.14)

∀P.[P(S0)∧∀α,s.P(s)⊃ P(do(α,s))]⊃ ∀s.P(s) (2.15)

¬s @ S0 (2.16)

s @ do(s,s′)≡ sv s′ (2.17)

To ensure proper use of situation terms a unique name assumption of situations is defined in Equation
2.14. Equation 2.15 uses an induction axiom to define the successor relation do on the situation.
Furthermore, each situation is rooted in S0. Thus S0 is used as the initial situation. To ensure that S0 is
the initial situation Equation 2.16 is used. Finally, Equation 2.17 defines the ordering relation of the
situations. These axioms form the so-called foundation axioms Σ.
Besides the foundation axioms, we use additional axiom sets. DSS is the set of all successor state
axioms. Thus, for each fluent, we create a successor state axiom as discussed above. To do so, one
needs a unique name assumption for actions which are gathered in the axiom set Duna. In the axiom
set Dap all preconditions of the actions are defined. Thus, a complete definition of the predicate Poss

12

2.1. Situation Calculus

is contained in this set. Finally, we define the axiom set DS0 which defines the values of the fluent in
the initial situation. In this set, only the situation term S0 is used to specify the fluents. Additionally,
no other use of a situation term is allowed in this set.
We can now summarize the axioms of the BAT into the set D as follows:

D = Σ∪DSS∪Duna∪Dap∪DS0 (2.18)

With the help of the BAT, the robot can answer queries about the state of the world after a sequence
of actions is executed. Furthermore, the robot can respond to questions about future states of the
world. The reasoning performed to answer these queries solves the so-called projection problem
[116]. Following [116] the projection problem can be stated as: decide if a logical formula holds after
a given sequence of actions is executed.
Although with the help of the BAT one could solve the projection problem through theorem proving,
it is not feasible in practice to perform such a theorem proving. Instead one can perform two different
methods to solve the projection problem.

2.1.2. Regression

The first method to solve the projection problem is through regression [152]. The idea of regression
in the situation calculus [114] is to start from a given goal formula and move this formula backward in
time. Thus, instead of answering if the formula holds in the current situation, one regresses back the
formula to the initial situation and answers the formula using the initial situation only (DS0 |= R [φ]).
To use only the initial situation to answer a question one regresses the formula back with the help
of DSS and Duna. Thus, the complex reasoning imposed by the second-order induction axiom of the
situation is not necessary.
The idea behind regression in the situation calculus is the following: Let’s assume a formula ψ(s)
which only mentions s as situation term. We call such a formula uniform in s. Furthermore, let’s
assume s is the result of s = do(α,s′). Additionally, let’s assume the successor state axiom of the
fluents have the following form F(x̄,do(α,s′)) ≡ Φ(x̄,α,s′). We now replace all occurrences of the
fluents with their equivalent right-hand side of the successor state axiom. The resulting formula is φ′.
As we have replaced every fluent with the right-hand side, the formulas are equivalent. Furthermore,
as the right-hand side only mentions s′ instead of s the formula φ′ is uniform in s′. Thus, the formula
is closer to S0 as it holds that s′ @ s. One can now perform this replacement until only the situation
term S0 is mentioned.
This simple rewriting method can be used for formulas fulfilling certain restrictions [105]. A formula
is regressable if it is a first order formula, every situation term which is mentioned has the form
do(αn, . . .do(α1,S0)) for some n ≥ 0, the formula does not quantify over situations and for every
mentioned Poss(α,s) in the formula it holds that α is part of the actions defined in A .
To perform the rewriting method to rewrite a formula such that only the initial situation is mentioned
a regression operator is used [105], [116]. The regression operator R is defined for a formula φ as
follows:

• if φ is an atom

– if φ has the form s = s′, where s = [α1, . . .αm] and s′ = [α′1, . . .α
′
n] then the regression is

defined as follows:

∗ if m = n and m = 0 thus s = S0 and s′ = S0 then R [φ] =>
∗ if m 6= n then R [φ] =⊥

13

Chapter 2. Preliminaries

∗ if m = n and m > 0 then R [φ] = R [αm = α′m∧ . . .α1 = α′1]

– if φ has the form s @ s′, where s = [α1, . . .αm] and s′ = [α′1, . . .α
′
n] then the regression is

defined as follows:

∗ if m = 0 and n > 0 then R [φ] =>
∗ if m≥ n then R [φ] =⊥
∗ if m < n and m > 0 then R [φ] = R [αm = α′m∧ . . .α1 = α′1]

– if φ has the from Poss(α,s) then R [φ] = R [Πα(s)]

– if φ is situation independent then R [φ] = φ

– if φ is a term of the form F(t̄,S0), where F is a relation fluent then R [φ] = φ

– if φ is a term of the form f (t̄,S0), where f is a functional fluent then R [φ] = φ

– if φ is a term of the form F(t̄,do(α,s)), where F is a relation fluent and the fluent has the
following successor state axiom F(x̄,do(α,s))≡ΦF(x̄,α,s) then R [φ] = R [ΦF(x̄,α,s)]

– if φ is a term of the form f (t̄,do(α,s)), where f is a functional fluent and the fluent
has the following successor state axiom f (x̄,do(α,s)) = y ≡ φF(x̄,y,α,s) then R [φ] =

R [∃y.φF(x̄,y,α,s)∧φ| f (t̄,do(α,s))
y], where φ|tt ′ donates the replacement of all occurrences of

the term t in φ by the term t ′.

• if φ is not an atom. Please note that the connectives ¬, ∧ and ∃ are sufficient to describe a first
order formula.

– if φ has the form ¬φ′ then R [φ] = ¬R [φ′].

– if φ has the form φ1∧φ2 then R [φ] = R [φ1]∧R [φ2].

– if φ has the form ∃v.φ′ then R [φ] = ∃v.R [φ′].

We refer the interested reader to [105] for a proof of the correctness of the regression operator.

2.1.3. Progression

While regression is proven to be a sound and complete solution to the projection problem under mild
assumptions it has the inherent problem that the efficiency depends on the length of the executed
action sequence. As such regression gets slower the more actions, an agent performs. Thus, if one
assumes a robot which performs several deliveries a day regression may not be suitable for this job.
Instead of rolling the query back to the initial situation one can use the opposite approach. One can
progress [43] the initial situation to reflect the effect an action has. Thus, one updates the initial
database after an action is performed and uses the updated database to answer the query. This method
has two benefits. First, the efficiency of the reasoning does not depend on the length of the executed
actions anymore. Second in most practical cases, one performs several queries before executing an
action. Thus, the effect an action has needs only be considered once for several queries. Due to this
reuse, the computational costs of the progression are amortized over several queries.
Thus, instead of defining a regression operator we use a progression operator P to progress DS0 after
executing α to Dα. After progressing the initial situation, we replace it in the BAT thus creating a new
BAT D ′ = D \DS0 ∪Dα.
Unfortunately, first results of progression for the situation calculus published in [68] indicated it is
not possible in general that progression can be expressed with first-order logic. Later it was shown in
[149] that it is not feasible to perform progression with first-order logic for arbitrary models.

14

2.1. Situation Calculus

As no general method for progression exists several fragments of the BAT were identified which allow
a progression, see for example [68], [69] or [148] for such fragments. An overview of fragments of
the BAT which allow progression can be found in [150]. These fragments all have in common that
they restrict some expressions within the BAT. This restriction can either be the form of the successor
state axioms, the form of the initial situation or a combination of both. We refer the interested reader
to [147] for a detailed description of several progression methods.

2.1.4. Sensing

With the help of regression and progression, one can solve the projection problem efficiently. But
until now we have only discussed how to model actions which change the world. We call this action,
following [116], primitive actions. Whereas in contrast sensing actions are also very important for a
robotic system.
To incorporate the information a sensing action provided in the situation calculus the predicate
SF(α,s) was proposed in [119]. The predicate is used to capture the result of a sensing action if
the product of the sensing action α which was performed in s was > SF(α,s) is asserted. Otherwise
¬SF(α,s) is asserted to hold.
To link the result of a sensing action SF(α,s) to the property which was measured by the sensing
action in the current situation one defines a formula ψα(s) (SF(α,s)≡ψα(s)) for each sensing action.
Considering our running example, the action senseHolding has the sensing formula ∃o.holding(o).
Thus, if the action returns true, it is expected that the robot is holding an object. If the action returns
false, one expects that the robot does not hold any object.
To capture the results of the sensing actions the set {sensed} is added to the BAT [22]. Thus, one
asserts the sensing result to hold. This assertion implies that the sensing formula holds for a particular
situation. Due to the assertion, the theory becomes inconsistent if the sensing information contradicts
the current situation. We will use this observation to detect if the robot’s knowledge about the world
does no longer reflect the real world.
To distinguish the expected sensing result and the measurement the robot has taken we will use the
predicate AO(α,s) in the remainder of the thesis. Instead of asserting SF directly we assert AO and
assert the following formula:

∀α,s.AO(α,s)↔ SF(α,s) (2.19)

Due to this separation into two different predicates, we can later separate expected with received
sensing result. This separation allows us to perform a reasoning on this difference. Additionally, the
predicates allow to remove the binding between expected and real sensing result if necessary. In [51]
a very similar predicate was used to distinguish between expected and actual sensing value. The main
difference is that we not only use the predicate to detect a fault but instead, we use the predicate AO
and a modified version of the formula 2.19 to define that a sensing result should be ignored.
Please note that regression for sensing actions is still possible, we refer to an example how to regress
with sensing formulas [120]. In the case of progression, no general statement is possible as it depends
on the progression method used and the sensing formulas. We will discuss this problem in more detail
in Chapter 6.

2.1.5. Knowledge

The information provided by sensing is closely related to the knowledge the robot possesses. Instead
of just modeling how the world looks the agent is now reasoning about what it knows about the

15

Chapter 2. Preliminaries

Figure 2.1.: Knowledge-Producing Actions and the K relation [120]

world. Furthermore, the robot can reason what it does not know. Thus, it can also detect the lack of
knowledge and perform countermeasures, e.g. perform sensing action.
One method to define knowledge is with the possible world semantic [86]. The idea is that the robot
could be in one of the several worlds. Each world differs in which properties hold. To denote that the
robot does not know which world is the true one the predicate K(s′,s) is used. It states that the robot
could be in situation s′ or s as far as the robot knows. Thus, increasing the knowledge is caused by
ruling out possible situations.
To define that a robot knows a formula φ in situation s one uses the macro ∀s′.K(s′,s)→ φ(s′). Thus,
the robot only knows a formula if it holds in all possible worlds. This reasoning causes that the robot
only knows things if it has the same truth value in each possible world. We will use this reasoning to
ensure that the robot only performs actions which it is certain it can conduct safely.
The semantic of possible worlds was introduced into the situation calculus in [120]. The initial situ-
ation now defines what the agent knows and as such which situations are accessible from the initial
situation. After executing an action, all situations which are accessible are advanced. If the action
is a sensing action, only those situations which are consistent with the sensing result are accessible
for further use. Thus, the agent can gather knowledge about the world through the execution of sens-
ing actions. The relation between accessible situations and performed sensing actions is depicted in
Figure 2.1.
In situation S1 the agent performs the action sense which asserts that Q needs to hold. As Q does not
hold in situation S2, the situation is no longer accessible.
Through the combination of knowledge and sensing action, one can now distinguish sensing and
primitive action by the effect they have on the accessibility relation. Primitive actions do not change
the accessibility relation. Instead, they advance all accessible situations. In contrast to primitive
actions, sensing actions don’t advance the situations. Instead, they change the accessibility relation.
To allow an easy discussion on how the knowledge of the agent changes we assume that an action is
either a primitive or a sensing action and not both.
With the definition of the knowledge of robots, the situation calculus offers all the theoretical foun-
dations necessary to deal with actions and the changes they cause. We refer the interested reader to
[116] for further information about the situation calculus.

16

2.2. History-Based Diagnosis

2.2. History-Based Diagnosis

In the previous section, we have discussed how to tackle the frame problem. Furthermore, we have
defined general conditions which need to hold to perform an action successfully. But as mentioned
above the complete specification of the precondition is not possible due to the qualification problem.
To address the qualification problem, we instead assume that as long as no indication says otherwise
the action was executed successfully. If we make an observation which contradicts our knowledge
about the world we try to detect which action was not successfully performed.
The reasoning about which action was not performed successfully is addressing the question "what
happened" as it was defined in [83]. This method contrasts with other diagnosis methods which try to
answer the question "what is wrong". Let’s consider a simple example to point out the difference.
Let’s consider our running example. The robot needs to deliver object O1 from room R1 to room R2.
After picking up the object and moving to R2 the robot puts down the object. Afterward, the robot
checks if the object is in the room. It discovers that the object O1 is not in room R2. Thus, the sensing
contradicts the knowledge of the robot that the object O1 is in room R2. If we now ask the question
"what is wrong" the answer is simply that object O1 is not allowed to be in this room. But we cannot
further infer where the object could be. If we ask the question "what happened" instead, we can draw
a more detailed conclusion. We can conclude that either the robot was not able to pick up the object,
it failed to put down the object, or somebody has snatched the object during the delivery. Depending
on the case we can conclude that the object is in R1, the robot still holds the object or that the object
is somewhere else. Thus, through asking the question "what happened" we can draw a more detailed
conclusion how the world looks.
To answer this question in the context of the situation calculus [56] proposed the concept of history-
based diagnosis, which was later extended in [51]. As the name of the method implies, the history of
performed actions is diagnosed.
In classical consistency-based diagnosis [113] one uses a predicate AB(x) to indicate that component
x is faulty. If a component is faulty, it can behave arbitrarily. Thus it does not longer define the
relationship which needs to hold between its inputs and outputs. As the output for a faulty component
can be arbitrary, a contradicting observation of the output value can be resolved by searching for a
minimal set of components (diagnosis) which need to be faulty such that no observations contradict
the expected observations.
The classical consistency-based diagnosis approach contrasts with abductive diagnosis [17]. Abduc-
tive diagnosis replaces the behavior of a faulty component by a defined behavior specific for a fault
mode. Thus, instead of an arbitrary behavior, a component can have a particular behavior. This spec-
ification allows a more detailed information about the behavior of the complete system after some
particular fault has occurred. History-based diagnosis follows this approach but instead of replac-
ing components by their faulty counterparts actions are replaced by their faulty counterparts. In the
remainder of the thesis, we use the term history to specify the executed actions and there sensing
outcomes. The term situation is utilized for the performed actions within the definitions.
To specify how the action sequence can be changed history-based diagnosis defines two predicates
Varia and Inser. We slightly adapt the notations of the original paper [56] to have a uniform repre-
sentation throughout the thesis. The first one is used to define when to replace an action by another
action in the history. The second predicate specifies when an action can be inserted into a history.
The variation of an action is defined as.

Varia(α′,α,s)≡Θα (2.20)

The predicate defines that action α′ is a variation of α in situation s if condition Θα holds. Let’s

17

Chapter 2. Preliminaries

consider our running example we could state

Varia(α′,put(o),s)≡ α
′ = putNothing (2.21)

Thus, action put can be replaced by action putNothing in every situation to represent a possible fault.
This specifies that the action has failed to actually put the object down.
The insertion of an action is defined as.

Inser(α,s)≡Θ (2.22)

The predicate defines that action α can be inserted in situation s if condition Θ holds. Let’s consider
our running example we could state

Inser(snatch(o),s)≡ holding(o,s) (2.23)

Thus, action snatch can be inserted into the history of performed actions if the robot is holding an
object.
Using the above predicates one can define how a situation can be changed with the help of the predicate
ExtVariation. Following the definition of [51] and [56] we define the predicate ExtVariation to hold
as follows:

Definition 1.

ExtVariation(S0,S0)
.
=>

ExtVariation(S0,do(α,s)) .
=⊥

ExtVariation(do(α′,s′),S0)
.
=Inser(α′,do(s′,S0))∧ExtVariation(s′,S0)

ExtVariation(do(α′,s′),do(α,s)) .
=[Varia(α′,α,do(s′,S0))∧ExtVariation(s′,s)]∨
[Inser(α′,do(s′,S0))∧ExtVariation(s′,do(α,s))]

The first two equations specify the base cases with an empty history. The third equation specifies the
case of an insertion into an empty history. The last equation specifies that a history can be changed by
either inserting an action or by replacing the action by a variation.
Let’s consider our running example. The robot moves from to room R1, picks up object O1, moves to
room R2 and puts down the object. This results in the following action sequence:

[goto(R1),pick(O1),goto(R2),put(O1)] (2.24)

A possible variation using the definition from above would be:

[goto(R1),pick(O1),goto(R2),putNothing] (2.25)

This variation represents the case that a robot fails to put down the object after picking up the object.
As not every variation of history is possible to be realized in practice one needs to rule out those
variations which can’t be executed. To rule out invalid variations we first define a history of actions to
be executable [116] defined through the predicate executable as follows:

executable(s)≡ ∀a,s∗.do(a,s∗)v s→ Poss(a,s∗) (2.26)

Thus, the definition of the executable history ensures that every action within the history is possible to
be performed. With the help of this definition we can rule out those variations which can’t be executed.
Additionally, we are only interested in variations of the history if the original history contradicts with a
sensing result. We combine both criteria into the definition of an explanatory history-based diagnosis
which is per [51] defined as follows:

18

2.2. History-Based Diagnosis

Definition 2. An explanatory history-based diagnosis for an observation φ and a history s is an
extended variation s′ of s such that s′ is executable and φ holds in the situation after the action
sequence s′, i.e., D ∪{sensed} |= φ[do(s′,S0)].

ExplDiagnosis(s′,φ,s) .
= ExtVariation(s′,s)∧ executable(s′)∧φ[s′]

The definition of the history-based diagnosis was extended in [51] to incorporate commonsense
knowledge about the environment. The commonsense knowledge of the robot is collected a set I
of different invariant i(s). Additionally, the predicate Invaria is used which is the collection of all the
invariant.

Invaria(s)≡
∧
i∈I

i(s) (2.27)

Due to the use of the common-sense knowledge the definition of a valid variation needs to be adapted.
This is achieved by defining a situation to be consistent if the situation does not lead to a contradiction
with the invariants imposed. Following [51] the consistency is defined by the predicate Cons as
follows:

Definition 3. A history s is consistent if and only if D |= Cons(s) with Cons(·) inductively defined as:

1. Cons(S0)
.
= Invaria(S0)

2. Cons(do(α,s)) .
= Cons(s)∧ Invaria(do(α,s))∧ [AO(s̄)↔ SF(α, s̄)]

The definition of the consistency is recursive. The base case defines that the common-sense knowledge
needs to hold for the initial situation. If the situation consists of a sequence of actions the sequence is
recursively checked for consistency. During each check the invariants are checked to hold. Further-
more, with the help of the predicate AO and SF it is checked if the measurement is consistent with the
expected values.
With the help of the definition of a consistent situation we can rule out those variations of a history
which are not possible to be realized. But we do not only want a history which can be realized. Instead
we want a variation of the history which is very likely. To define how likely a variation is, we use a
function val which defines how likely a certain insertion or variation is. The function uses insertions or
variations to define a real value greater zero (R+) for the likelihood of the change. The lower the value
of an insertion or variation is the more likely it is that this insertion or variation has happened. With
the help of this function we can define a function cv defining the likelihood of a complete situation
per [51] as follows:

Definition 4. Let cv : S×S→R+, cv(s′,s)= v with v≥ 0 evaluates the difference between a diagnosis
s′ and a history s. cv is called the change value and is inductively defined as:

1. cv(s′,s′) = 0

2. cv(do(α′,s′),s) = cv(s′,s)+ val(Inser(α′,s′))

3. cv(do(α′,s′),do(α,s)) = cv(s′,s)+ val(Varia(α′,α,s′))

The definition of the likelihood of a variate history is inductively defined. If the history is the same as
the variation the likelihood is very high thus the value is 0. Please note that this case holds at least for
the initial situation S0. If the situations are different the value is increased if the difference is caused

19

Chapter 2. Preliminaries

due to an insertion or variation. The increase of the value is caused by the definition of the function
val.
Combining the definition of an extended variation of a situation with the definition of a consistent
situation with its ranking we can define a diagnosis of a situation with its associated costs. Following
[51] we define a diagnosis for a history as follows:

Definition 5. Let s′ and s be histories. Let Diag(s′,s,v) .
= ExtVariation(s′,s) ∧ executable(s′) ∧

Cons(s′)∧ v = cv(s′,s), denoting that s′ is an extended variation of s that is executable and con-
sistent. s′ is a proper history-based diagnosis (or diagnosis for short) based on s if and only if
D |= Diag(s′,s,v).

The definition states that a diagnosis of a situation is a variation of this situation which is consistent.
Furthermore, the value how likely this variation is, is used in the diagnosis. To capture all possible
diagnoses one would need to treat in the worst case an exponential number of diagnoses [51]. To be
more precise if we assume only finitely many objects there are exponentially many variations of an ac-
tion. Furthermore, if we assume a fixed maximum length of the history, there are exponentially many
variations of the history. Thus, in total one has a double exponential problem under the restricting
assumptions.
As such it is not possible in practice to calculate all these diagnoses. Instead the method in [51] only
calculates a pool of n diagnoses. Thus, regardless of the real number of diagnoses one has a fixed
number of diagnoses to deal with. Each diagnosis is represented in the pool with the help of one tuple.
The tuple is composed of the variate history and its change value.

Definition 6. Let s be a history. Then Pool is defined as

Pool(s) = {〈s′1,v1〉, · · · ,〈s′n,vn〉}
.
=Cons(s)∧ s′1 = s∧ v1 = 0∧·· ·∧ s′n = s∧ vn = 0∨
¬Cons(s)∧Diag(s′1,s,v1)∧·· ·∧Diag(s′n,s,vn)

The definition of the pool states that if the situation is consistent the situation itself is repeated n times
to fill the pool. Otherwise, the pool consists of n diagnoses. Due to this definition, the pool may
include a diagnosis which is very unlikely. Thus, instead, we want to have a pool which has those
diagnoses with the lowest costs. The lower the value, the higher the likelihood of the diagnosis. To
prefer those diagnoses with a lower cost for chances is very common, see for example [25].
To incorporate only the most likely diagnosis into the pool we place the following condition on the
pool:

@〈s′,v′〉∧Diag(s′,s,v′)∧〈s′,v′〉 6∈ Pool(s).∃〈si,vi〉 ∈ Pool(s)v′ < vi (2.28)

With the help of the pool, we have a fixed set of diagnoses which are most likely. One could use
the pool to perform the necessary reasoning for the robot. But instead, the method described in [51]
chooses one diagnosis as the preferred diagnosis and uses this diagnosis for further reasoning.

Definition 7. Let s be a history. The preferred diagnosis prefDiag is defined as:

prefDiag(s) = s′ .=∃s′1,v1, . . . ,s′n,vn.Pool(s) = {〈s′1,v1〉, · · · ,〈s′n,vn〉}∧
[s′ = s′1∧ v1 ≤ v2∧·· ·∧ v1 ≤ vn∨
s′ = s′2∧ v2 ≤ v1∧ v2 ≤ v3∧·· ·∧ v2 ≤ vn∨

...

s′ = sn∧ vn ≤ v1∧·· ·∧ vn ≤ vn−1]

For further information, how the preferred diagnosis can be used in a robotic system we refer the
interested reader to [109].

20

2.3. IndiGolog

2.3. IndiGolog

With the help of the history-based diagnosis, one can address the problem of faulty action execution.
Thus, the robot can recognize a fault during its execution and can conclude what might have happened.
This reasoning allows the robot to answer queries about the current state of the world as well as future
states of the world.
To do work towards a goal the robot needs not only to perform reasoning about how the world looks.
Additionally, the robot needs a method to decide what would be the next action to choose to achieve
the task. One method is the use of a high-level programming language.
Using the situation calculus as a basis, the high-level programming language Golog was proposed in
[67]. The idea is to provide macros which can be extended into logical formulas to allow to write pro-
grams. The programs can have imperative parts such as conditions, loops or sequences. Additionally,
one can use declarative parts in the language such as pick an argument or choose one program branch
to follow further execution. Due to its expansion into a logical formula, one can search for a valid
sequence of actions which need to be executed to achieve the task.
The expressiveness of Golog was furthermore extended in ConGolog [19]. ConGolog added language
elements to deal with interrupts and concurrent executions. Additionally, the semantic was changed
from a macro expansion into a transition semantic. This change has not affected the basic idea to
use logic to derive a valid action sequence. Instead of the macro expansion one now performs the
reasoning on the transition semantic which is defined with the help of logic.
Golog and ConGolog both plan first a whole sequence of actions which need to be executed before
executing the actions. But after the planning step, no further reasoning is applied. Such an approach
cannot just be used in a robotic system as the robot should react to changes in its environment. To
tackle this problem IndiGolog [20] was created.
IndiGolog uses the same language constructs as ConGolog but adds the possibility to decide if only
the next best action to execute should be selected or if the robot should perform a look ahead. This
distinction is realized using the so-called search operator Σ. If the search operator is applied for a
program, IndiGolog searches for an action sequence for the program before it executes an action.
Otherwise, IndiGolog searches only for the next best action to be executed. This distinction allows
switching smoothly between deliberation and reactive behavior [118].
To define a high-level program IndiGolog offers the following programming constructs [20].

• α

primitive action

• φ?
test/wait for condition

• δ1;δ2
sequence

• δ1 | δ2
non-deterministic branch

• πx.δ
non-deterministic choice of arguments

• δ∗

non-deterministic iteration

21

Chapter 2. Preliminaries

• if φ then δ1else δ2 endIf
conditional branching

• while φ do δ endWhile
conditional loop

• δ1 || δ2
concurrent execution with equal priority

• δ1 〉〉 δ2
concurrent execution where δ1 has a higher priority

• δ||

concurrent iteration

• 〈φ→ δ〉
interrupt

• proc P(x) δ endProc
procedure definition

• P(Θ)
procedure call

• Σ(δ)
search operator

To execute an IndiGolog program a transition semantic is used. This transition semantic is defined
through the two predicates Trans and Final. Trans(δ,s,δ′,s′) defines that the program δ in situation
s can be further executed to remaining program δ′ and the resulting situation is s′. Final(δ,s) defines
that program δ can legally terminate in situation s. To define these two predicates, we will use an
additional program construct nil defining the empty program.
We follow the definition in [20] to define the predicate Trans as follows:

• Trans(nil,s,δ′,s′)≡⊥. The empty program cannot lead to any further execution.

• Trans(α,s,δ′,s′) ≡ Poss(α[s],s)∧ δ′ = nil∧ s′ = do(α[s],s). If the action precondition holds
the action can be executed and yield an empty remainder program. Furthermore, the resulting
situation is created by extending the current situation by the executed action.

• Trans(φ?,s,δ′,s′) ≡ φ[s]∧ δ′ = nil∧ s = s′. If the condition holds the program can proceed to
the empty program.

• Trans(δ1;δ2,s,δ′,s′) ≡ ∃δ′′.δ′ = δ′′;δ2 ∧ Trans(δ1,s,δ′′,s′) ∨ Final(δ1,s) ∧ Trans(δ2,s,δ′,s′).
The program performs a transition in δ1 if this is possible. If δ1 can terminate the program
performs a transition according to δ2.

• Trans(δ1 | δ2,s,δ′,s′) ≡ Trans(δ1,s,δ′,s′)∨ Trans(δ2,s,δ′,s′). The program takes either the
transition of δ1 or the transition of δ2.

• Trans(πx.δ,s,δ′,s′) ≡ ∃t.Trans(δ|xt ,s,δ′,s′). The program performs a transition if a valid in-
stance for the parameter x can be found. Please note that δ|xt substitutes every occurrence of x
with t in the program δ.

22

2.3. IndiGolog

• Trans(δ∗,s,δ′,s′) ≡ ∃δ′′.δ′ = δ′′;δ∗ ∧ Trans(δ,s,δ′′,s′). The program performs a transition in
δ to yield δ′′. This program is further executed till it is finished. Afterwards the loop can be
started again. Thus, the loop is unrolled and executed.

• Trans(if φ then δ1else δ2 endIf,s,δ′,s′) ≡ φ[s]∧Trans(δ1,s,δ′,s′)∨¬φ[s]∧Trans(δ2,s,δ′,s′).
If the condition holds δ1 is considered for the transition. If the negation of the condition holds
δ2 is considered for the transition.

• Trans(while φ do δ endWhile,s,δ′,s′) ≡ ∃δ′′.(δ′ = δ′′;while φ do δ endWhile) ∧ φ[s] ∧
Trans(δ,s,δ′′,s′). If the condition holds the transition is proceeds further with the inner pro-
gram. This program is executed till it finishes. Afterwards the loop can be started again. Thus,
like the non-deterministic iteration the loop is unrolled.

• Trans(δ1 || δ2,s,δ′,s′) ≡ ∃δ′′.δ′ = δ′′ || δ2 ∧ Trans(δ1,s,δ′′,s′) ∨ ∃δ′′.δ′ = δ1 || δ′′ ∧
Trans(δ2,s,δ′′,s′). Thus, either a transition is taken for the program δ1 or a transition is taken for
the program δ2. In either cases the remainder of the program is executed further in concurrently
with another program.

• Trans(δ1 〉〉 δ2,s,δ′,s′) ≡ ∃δ′′.δ′ = δ′′ || δ2 ∧ Trans(δ1,s,δ′′,s′) ∨ ∃δ′′.δ′ = δ1 || δ′′ ∧
Trans(δ2,s,δ′′,s′)∧ @δ̄, s̄.Trans(δ1,s, δ̄, s̄). Thus, program δ1 is further progressed if a transi-
tion is possible. Otherwise program δ2 is used for further transitions.

• Trans(δ||,s,δ′,s′)≡ ∃δ′′.δ′ = δ′′ || δ||∧Trans(δ,s,δ′′,s′). Thus, the program performs a transi-
tion by executing δ and running the concurrent loop in further concurrent execution.

Due to the definition of Trans we can decide which transitions the program can take. Please note
that not all program constructs need a separate transition semantic as some of these constructs can be
rewritten. We refer the interested reader to [20] for further information. Beside the predicate Trans
the predicate Final needs to be defined. Following the definition in [20] we define the predicate as
follows:

• Final(nil,s)≡>. The empty program is a legal termination.

• Final(α,s)≡⊥. An action is never considered as a legal termination.

• Final(φ?,s)≡⊥. A condition is never considered as a legal termination.

• Final(δ1;δ2,s)≡ Final(δ1,s)∧Final(δ2,s). The sequence is a legal termination if both parts of
a sequence can terminate legally.

• Final(δ1 | δ2,s) ≡ Final(δ1,s)∨Final(δ2,s). If either of the program can terminate the non-
determinism branch can terminate legally.

• Final(πx.δ,s)≡∃t.Final(δ|xt ,s). The program can terminate if a valid instance for the parameter
x can be found. Please note that δ|xt substitutes every occurrence of x with t in the program δ.

• Final(δ∗,s)≡>. A legal termination is always possible. Thus, the non-deterministic loop can
terminate instead of iterate.

• Final(if φ then δ1else δ2 endIf,s) ≡ φ[s]∧Final(δ1,s)∨¬φ[s]∧Final(δ2,s). If the condition
holds the program can terminate if δ1 can terminate. If the negation of the condition holds δ2 is
used to decide legal termination.

23

Chapter 2. Preliminaries

• Final(while φ do δ endWhile,s) ≡ ¬φ[s]∨Final(δ,s). The loop stops if either the condition
does not hold any longer or the body of the loop can terminate.

• Final(δ1 || δ2,s) ≡ Final(δ1,s)∧Final(δ2,s). The program can only terminate if both concur-
rent branches can terminate.

• Final(δ1 〉〉 δ2,s)≡ Final(δ1,s)∧Final(δ2,s). The program can only terminate if both concur-
rent branches can terminate.

• Final(δ||,s)≡>. The program can always legally terminate thus no execution can be performed
or further parallel executions can be performed.

We gather the the definitions of the predicate Trans and Final together with the program reified as
terms (See [118] for further details) in the set C . Using this set of definitions we can extend the basic
action theory to decide through a reasoning process which action to perform next. We define the
extended basic action theory D∗ as follows:

D∗ = D ∪C ∪{Sensed} (2.29)

Where {Sensed} defines all the sensing results. Additionally the definition of SF is part of the set
{Sensed}. Thus, the extended basic action theory contains the information the robot has about the
world, how the world changes through actions, how to choose the next action and the high-level
program which should be used to achieve the task.
With the help of the extended basic action theory the robot can decide which action to perform next
by following the online execution semantics. Following [20] this semantics decides how to proceed
from a given program δ in each situation s as follows:

1. if D∗ |= Final(δ,s) terminate the program.

2. if D∗ |= Trans(δ,s,δ′,s) proceed with program δ′.

3. if D∗ |= Trans(δ,s,δ′,do(α,s)), execute action α and proceed with program δ′.

As we discussed above IndiGolog also provides the possibility to plan ahead. This is realized through
the search operator Σ(δ). The search operator is defined using the offline execution semantics. This
semantics mimics the behavior of the original Golog language. Following [20] the semantics is defined
with the help of the predicate Do(δ,s,s′) as follows:

Do(δ,s,s′) .
= ∃δ′.Trans∗(δ,s,δ′,s′)∧Final(δ′,s′) (2.30)

Where Trans∗ is the reflexive transitive closure of the transition predicate Trans and is defined as
follows:

Trans∗ .
= ∀T.[· · · → T (δ,s,δ′,s′)] (2.31)

Where . . . is the conjunction of the universal closure of the inductive definition of a possible transition
which is defined as follows:

>→T (δ,s,δ,s)

Trans(δ,s,δ′′,s′′)∧T (δ′′,s′′,δ′,s′)→T (δ,s,δ′,s′)
(2.32)

Thus, the definition states that a program transition is performed with the help of the predicate Trans
till a program δ′ is found with the corresponding situation s′ which can legally terminate.

24

2.3. IndiGolog

Using this definition of the offline execution semantics one can define the transition semantic of the
search operator as follows:

Trans(Σ(δ),s,Σ(δ′),s′)≡ Trans(δ,s,δ′,s′)∧∃s∗.Do(δ′,s′,s∗) (2.33)

Thus, the transition of the search operator performs only a transition if it is possible and leads to a
final state s∗ which allows a legal termination.

25

26

Chapter 3
Related Research

In the introduction, we have motivated why a robot needs to consider that an action may fail in
its reasoning process. During the execution of an action, the action may fail and produce a different
result than expected. If the robot does not consider the different result in the execution, it may perform
wrong or even dangerous actions. Thus, to properly incorporate this awareness into a robotic system
is the main objective of the thesis. But this thesis is not the first attempt to make a robot aware of
faults during its execution. In this chapter, we will discuss related research which addressed some
problems of making a robot aware of its fault. We will focus our attention on related research in the
area of diagnosis of action sequences and action languages. We mainly concentrate on the situation
calculus and the usage of the action languages to serve as the high-level control. Please note that this
chapter discusses the related research which is common to all chapters. Additional related research
specific for each chapter can be found in the following chapters.
This chapter is structured as follows: the next section will discuss methods to detect faulty compo-
nents of a system which can change through actions. As the working of components is not the most
important aspect of a high-level fault detection mechanism we discuss how to detect if a goal can still
be reached in Section 3.2. This section is followed by a section discussing how such approaches can
be incorporated into the fluent calculus. Afterwards in Section 3.4 we will discuss methods which
allow managing the belief of the robot. Following the idea of a managed belief, we show how faulty
actions are handled in the situation calculus and how it leads to a belief management in Section 3.5.
As the situation calculus uses second order axioms to define its semantic one needs to perform the rea-
soning accordingly. To avoid such higher order logic axioms particular logics can be utilized which
allow reasoning about changes of actions and belief natively. We will discuss such approaches in
Section 3.6. The approach discussed so far deals with possible alternative situations or world states.
This is often very complex. To avoid such a complexity one may just define possible alternatives on
the level of fluents. We will discuss the impact of such a fluent based reasoning in Section 3.7. Be-
sides defining how the robot thinks the world looks like one also needs to address how faults are dealt
with in the high-level control. In Section 3.8 we will discuss different methods to deal with faults in
the high-level control. Finally, in Section 3.9 we will discuss how to monitor the execution to detect
faults.

27

Chapter 3. Related Research

3.1. Detecting faulty components

We start our discussion with the work proposed in [85]. The method tackles the problem to detect a
fault in a system which has static constraints as well as undergoes dynamic changes. One has (beside
the description of the system) also a sequence of actions which were performed and which describe
the changes of the system. Furthermore, observations are generated for the system. The observations
are compared to the prediction the system makes according to its description. The system description,
as well as the description how the system changes after an action is performed, is done with the help of
the situation calculus. To describe a fault in the system special predicates are used which indicate if a
part of the system has failed. Initially one assumes that all the system components function correctly.
If an observation is now in contradiction with the expectation, one inserts actions which cause a
component to be faulty. Thus, the changed history explains the observation. This contrasts with our
approach as we diagnose action faults and not component faults. The method we use as a basis for the
reasoning is an extension, as it allows to model action faults but also actions which set components
faulty. Thus, the method proposed in [85] can be integrated into our system easily. To describe not
only the system and how it changes but also the procedure controlling it the method was extended in
[84]. To specify the control procedures, Golog was used. As a faulty component is specified through a
predicate, this predicate can be utilized within the program to perform certain actions if a component
is faulty. This contrasts with our approach as we use the knowledge about the faults in the background
for the reasoning. Thus, the robot does not need to directly reason which action has failed but instead
which conclusion can still be drawn from the current knowledge about the situation.
A similar approach to detect faulty components was proposed in [5]. The method uses a specific
action language to describe system constraints as well as action changing the system. As in the
previous case, one uses a description of a dynamic system which can fail. To describe a fault of
a component specific predicates are used. Furthermore, specific actions are used to specify that a
component became broken. Like [85] a history which explains the observations made is used in [5]
as a diagnosis. Besides this diagnosis, a planning mechanism was described which allows creating a
conditional plan to derive a more detailed diagnosis. The idea is to create a conditional plan which
performs sensing actions and depending on the sensing outcome the plan proceeds with a certain
branch. As sensing actions can rule out certain explanations based on their sensing result, one can use
a sequence of sensing actions to derive a finer grained diagnosis. With the help of the conditional plan,
one can derive a more detailed diagnosis regardless of future sensing results. We will show a similar
mechanism which is performed online to reduce the uncertainty a robot has about its world. As in the
previous case, the method proposed in this thesis is not restricted to diagnose a system component to
be faulty. But instead it addresses the problem of faulty action executions.

3.2. Detect whether the goal can be reached

The above methods have tackled the problem if a component of a system is faulty. But for a robotic
system, the major concern is not which components are faulty but if there is still a chance to reach
the desired goal with a given plan. One way to address this problem was proposed in [34]. The
method uses the current state of the world together with the plan to check if the goal can still be
reached. The plan may only impose a partial order on the action execution, thus allowing the system
to perform different trajectories to reach the goal. Within this context, a diagnosis is defined as a state
which was reached but does not allow the robot to reach its goal. Thus, any further trajectory does
not yield to a goal state. An alternative definition of the same method was proposed in [33]. One

28

3.3. Fault handling in the fluent calculus

definition only considers the history how a state was reached whereas the other definition uses the
state itself. Furthermore, it was shown in [33] that if all histories and states which don’t reach its
goal have the same initial state the two different definitions are equal. Thus, it is sufficient for most
cases just to check if the current state cannot reach the goal any longer, but the previous state could
do so. To perform this test, the method expects that the complete state can be observed. Furthermore,
no dedicated sensing actions were assumed, thus not allowing to model faults in the perception. This
contrasts with the approach presented in this thesis that does neither assume complete observation of
the state nor faultless sensing. Both aspects are important for robotic systems. No one can assume
that the full state can be observed all the time for non-trivial tasks. Furthermore, one needs to consider
that a sensing action may fail, thus yielding a wrong observation.

3.3. Fault handling in the fluent calculus

With the above methods, we have addressed either the problem of a system component to be faulty
or the problem of being in a state that does not allow further reaching the goal. In a robot system,
the major task is to reach a given goal. To do so, actions are performed which may be influenced by
the system components. Thus, if a system component is faulty, an action may not be possible to be
performed. In [142] a method was proposed which tackles this problem. If no contradicting obser-
vation is made, one assumes that the system components are not faulty and thus allow to perform an
action without a fault. Thus, per default, an action is executed successfully. But if a fault of an action
has been observed or an observation indicates a contradiction between expectation and real world one
can state that the system components which were needed for the action were faulty. This is done with
the help of a predicate which specifies that the system components used in the precondition are not
abnormal. In the case of a fault, one uses exogenous actions to set these predicates to false. As in the
case of [85] or [5] the exogenous actions are used to model fault occurrences. Using these actions,
one states that a component is broken till a repair of this component is performed. Additionally, the
method proposed in [142] allows to model faults of one action execution only. Thus, an action can
accidentally fail. This allows to model faults during the action execution which is not caused due to
a permanent problem in the robotic system. To achieve this, a default rule is applied stating that the
action execution is successful if not detected otherwise. Instead of exogenous actions default logic
rules are used to reason about these faults. Summarizing the method presented in [142] allows to
model permanent as well as intermittent faults during the action execution. Both faults are modeled
with the help of default rules. As multiple explanations are possible, these default rules are prioritized,
thus allowing that only a small set of explanations be used during the further reasoning. The proposed
method uses the fluent calculus [138] to perform the reasoning. The difference between the fluent
calculus and the situation calculus, presented above, is that the fluent calculus uses a description of a
state whereas the situation calculus use a description of the history of performed actions to perform
its reasoning. As it was shown in [140] these two representations can be translated into each other
for many interesting cases. With the help of this formal representation the robot high-level control
language FLUX [143] is defined. FLUX allows controlling a robot towards achieving a certain goal.
Thus, FLUX is like Golog which can also be translated into each other as presented in [121]. To incor-
porate the reasoning of failing actions a combination of FLUX and the method presented in [142] was
discussed in [76]. The main difference to the approach presented in this thesis is how the reasoning
which action has failed is integrated into the high-level control of the robot. The method presented
in this thesis allows to distinguish the case where the robot knows that no further execution is pos-
sible from the case where it only lacks the knowledge to make a decision. This furthermore allows

29

Chapter 3. Related Research

gathering knowledge if required. A method to perform this acquisition is also presented in this thesis.
In [41] the fluent calculus [138] and the corresponding action language FLUX [143] was used to-
gether with several extensions to create an intelligent robotic system. The robotic system is com-
prised of several low-level components performing reactive behavior to control the hardware of the
robot. Furthermore, a high-level control manages which actions should be performed by the robot.
The high-level control is realized through FLUX with several extensions. The extensions comprise
the method described in [142] to specify a fault of an action. Additionally, the knowledge of the robot
can be represented with the method described in [141]. The method allows defining the knowledge
of the robot with the help of a possible world semantics. Thus, the robot describes its knowledge by
considering several different worlds which are possible. Through the execution of sensing actions,
different worlds can be ruled out. Finally, the system presented in [41] is also uses fluents with a
time stamp attached to them to remove knowledge which is too old, thus, allowing the robot to forget
old knowledge. To allow the high-level control to react to changes in the environment the approach
simply performs a planning step after receiving new information. Thus, the robot plans each time a
new perception enters the knowledge base, allowing the robot to maximize its success. One difference
to our approach is that the method does not define the knowledge of the agent together with the faulty
action execution, thus distinguishing between the information of the knowledge of the robot and the
effects of faulty action execution. This also leads to the problem that it is not simply possible to deal
with several explanations of an action failure. In contrast, this is a key part of the method presented in
this thesis. This also allows the method presented in this thesis to gather active knowledge if knowl-
edge is lacking which is not simply possible in [41]. Finally, the method presented in this thesis uses
a high-level program to steer the robot behavior. It is left to the programmer of this high-level con-
trol how much freedom the robot has, to choose an action, thus allowing a balance between planning
and simple imperative procedures. To allow a reactive behavior to changes in the environment an
automatic procedure to derive reactive programs from sequential ones is described in this thesis. This
makes it possible that the programmer still has control over which action the robot takes and how
much planning it performs to allow a fast and successful execution.
To incorporate the belief of a robot into the fluent calculus the method presented in [57] can be used.
The method uses a ranking of different possible situations to describe which state of the world the
robot believes to hold. The lower the ranking the more likely the world is to hold. The belief of the
robot is formed by those worlds which have the lowest ranking. Furthermore, as sensing actions are
executed the ranking of the worlds is changed. This is done by reducing the ranking of those worlds
which predict the sensing result and increase the ranking of those worlds which do not predict the
sensing result. Thus, the robot believes those worlds to hold which correspond best to the sensing
results. The major contrast between this approach and the approach presented in this thesis is the
ranking which is used. This thesis represents the likelihood of a fault instead of how likely a particular
world is. This imposes that the method presented in this thesis changes the ranking differently as the
last sensing action may also have failed.

3.4. Fault handling through belief management

The idea to form the belief of the agent according to the fault it experiences was already outlined in
[134]. The idea was to derive a knowledge base per fault and only consider those facts to be true which
hold in all these knowledge bases. Furthermore, the idea also discussed that if no further execution
can be made one should perform active knowledge gathering to allow the robot to execute its program
further. One can see this work as an important source of inspiration for which problem needs to

30

3.5. Fault handling in the situation calculus

be tackled in this thesis. The ideas presented in [134] where formalized in many ways in this thesis.
Furthermore, through this formalization, it was possible to derive theoretical results and methods from
implementing the ideas outlined in [134].
As a first attempt to tackle the ideas presented in [134] the method shown in [51] can be mentioned.
The method calculates a diagnosis according to the executed actions. This diagnosis considers that
an action can fail in particular ways. Each of these diagnoses is ranked according to their likelihood.
The more likely a diagnosis is the lower the ranking. The reasoning is performed, by choosing one
diagnosis which has the lowest ranking. This contrasts with the method presented in this thesis which
uses all the lowest ranked diagnoses to form the belief of the robot. Thus, also allowing to reason
about which actions are safe to be performed and can be used to increase the knowledge of the robot.
The method was later extended in [110] to allow more efficient diagnosis calculation. A summary of
different improvements is described in more detail in [109].

3.5. Fault handling in the situation calculus

As the approach presented in [51] our method is also based on the situation calculus. The situation
calculus offers an easy solution to the frame problem and is often studied to form the belief of robots.
In an early work [119] the robot belief was modeled through the predicate K(s′,s) stating that the robot
could be in situation s′ if it considers s as the current situation. To reason about faulty actions, the first
step was to change this static relation to a relation specifying a ranking among these situations. Such
a method was proposed in [129]. Instead of just stating the relation between situations each situation
has a plausibility value assigned. This value allows distinguishing between more and less plausible
situations. The set of situations with the lowest ranking were used to form the belief of the robot.
Sensing actions are used to change the belief by ruling out those situations which are inconsistent.
Thus, neither action failures nor sensing failures were considered, which were tackled later by other
methods. But it is important to mention that the ranking of a situation is one central part which was
used later to incorporate failing actions into the belief of the robot. Although the approach is not able
to deal with faults it has been applied to a robotic system [99] to deal with imprecise or contradicting
information in the initial situation.
One attempt to represent failing actions using the situation calculus was presented in [3]. The ap-
proach extended the situation calculus such that action can be non-deterministic. Thus, one does not
consider only one successor situation but instead a set of successor situations. This allows modeling
faulty action execution simply. With the help of sensing actions, the situations which were not con-
sistent were ruled out. The approach uses all situations which are not ruled out to form the robot’s
knowledge. Thus, the robot gets either overly cautious or too brave, depending if all faults are mod-
eled as possible successor situations. To address this problem, one can assign a likelihood for each
situation. Afterwards one can incorporate this likelihood into the reasoning process. Later, the work
was extended in [8] to deal with probability distributions which are continuous or discrete, allowing
a variety of probability distributions to be used to model action failures. Furthermore, the extensions
allow using continuous fluents, thus making it possible that an action defines the result of a continuous
function in a probabilistic manner. Although this approach allows to incorporate failing actions and
their likelihood it loses the simplicity of a ranked history which forms the belief of the robot, as one
needs to perform a probabilistic reasoning to answer a query. The approach was later extended in [9]
and in [10] to specify a high-level program semantics. This semantics allows programming the robot
using the reasoning with the probabilistic belief. The main difference to the semantics presented in
this thesis is that the semantics of this thesis ensures proper safe transitions whereas the semantics

31

Chapter 3. Related Research

of [10] only allows querying the belief in the program but does not use this belief for the program
transition.
To address wrong sensing information a simple method based on the ranking of histories was presented
in [127]. As in [129] one assumes the initial situation specifies several situations which determine
different alternatives. Furthermore, each of the situations has a ranking assigned. The belief is formed
by those situations which have the lowest ranking. The ranking is given by the previous value and the
difference between expected and real sensing. To define the difference between expected and actual
sensing two separate predicates are used. To specify the expected sensing the predicate SF is used.
This predicate is defined as discussed in [129]. The second predicate SR defines the sensing result of
the robot. If both predicates have the same truth value, the sensing result is as expected. In such a
case the ranking of the situation is reduced such that the minimum ranked situations are those who
predicted the sensing correctly. Otherwise, the ranking is increased by one, thus indicating a wrong
prediction. This allows that a sensing action can be incorrect as it only reduces the likelihood if the
sensing action is not as expected. But it does not impose that a situation is ruled out completely. A
similar approach was presented in [74] which only differs in the value which is used to increase wrong
sensing results. In contrast to the approach which is used in this thesis the actions performed are not
allowed to fail. Additionally, the ranking is different as the method proposed in this thesis focus on
the failed actions instead of ranking the last sensing action to be predicted by the belief.
Another method to address wrong sensing was presented in [32]. Instead of ranking different alterna-
tives the method uses the following observation: After performing a sensing action, the robot should
believe the sensing action result. If the robot only senses a fluent value, the observations imply that
the robot needs to believe a certain truth value for a fluent. Thus, instead of calculating a complex
belief, one could simply set the value of the fluent to the sensing result. This allows overriding the
expectation with the latest sensor measurement. Although this approach does not perform a belief
management as it was done in the previous case one can argue that the robot uses the most recent
results of the sensing actions. Thus, if the robot performs sensing actions, often enough the belief of
the robot is consistent with the real world. This contrasts with our approach as we do not assume that
the robot needs to perform frequently sensing actions to ensure consistency. Instead, we use a costlier
reasoning with the help of the belief to ensure this consistency.
With the above presented methods, one could address the problem of failing actions. But often one
also needs to consider that the environment is changed by another agent without notification. Thus,
the environment changes and the belief of the robot needs to reflect these changes with the help of
exogenous events properly. In [128] a method was presented which allows dealing with such exoge-
nous events. The method allows a situation to be extended by exogenous events. These extensions
allow that events which were not observed can be inferred if otherwise the situation would be incon-
sistent. To form the belief, one uses a ranking on the possible situations preferring the initial ranking
of possible situations. If the initial ranking is the same, one prefers shorter situations to longer situ-
ations. Thus, only those exogenous actions are considered which are necessary to make the situation
consistent. As in the previous cases, the lowest ranked situations are used to form the belief of the
robot. The main difference to the approach employed in this thesis is that the approach is restricted to
exogenous events only. Thus, the approach does not allow faulty actions, which is also addressed by
the method used in this thesis.
To combine the ability to deal with failing actions together with a simple representation of the belief
the method proposed in [29] can be used. It specifies how a situation can be altered in case the original
situation is inconsistent. To create this alternative one considers fault models of different actions.
Each fault model has associated how it impacts the ranking of the situation. As in the previous cases,
those situations which have the lowest ranking are the most plausible ones. Using the most plausible

32

3.6. Logics for actions and belief

situations, the belief of the robot is formed. Through this specification, the belief of the robot can
be kept consistent but still prefer simple situations to explain inconsistencies. Additionally, through
the execution of sensing action, the belief is changed as those situations which are inconsistent with
the sensing actions are removed. Thus, the robot belief, the sensing result or the sensing action is
considered to be faulty. With the help of the ranking proposed in [29] it is ensured that the latest
sensing result is always believed, thus allowing to show the strong relation of the method to other
belief revision methods. The method was changed in [30] to impose no restrictions on the way the
ranking is created, thus making it possible that the robot does not believe the sensing result after
executing a sensing action. This might be preferable in some situations where the sensing action is
not very reliable, or the other actions are at least as reliable as the sensing action. The main difference
to the approach used in this thesis is that no exogenous events are allowed in [30], whereas the method
applied in this thesis also deals with exogenous events. Additionally, the method used in this thesis
uses invariants of the environment to detect inconsistencies.
In [36] a method was presented to reason about the belief within a multi-robot setting. The belief
is formed with the help of a plausibility ranking of different situations. The plausibility is ranked
according to the plausibility of the previous situation and the performed action. The performed action
has a higher impact on the plausibility than the ranking of the previous situation. This allows to
model faulty actions as usual; a faulty action is not as plausible as a normal action. Thus, one prefers
situations with normal actions instead of faulty ones. If later a sensing action detects a fault the
plausibility ranking is changed, and a faulty action can now become more plausible, than a correctly
executed action. To perform an efficient reasoning, a method to progress the knowledge base was
presented in [37] which builds on the definitions of [36] for an agent’s belief. The method used
forgetting to forget the fluents which are settled by the action. The main difference to the approach
employed in this thesis is that the approach used in this thesis allows dealing with exogenous events.
Thus, allowing other agents to change the environment without notification. Additionally, invariants
which need to hold for the environment are used to detect a fault as early as possible in the method
applied in this thesis.

3.6. Logics for actions and belief

The above methods rely on a representation of the belief of the robot in the situation calculus. Al-
though this allows a sound definition it imposes to use the reasoning associated with the situation
calculus. This implies that one needs to deal with either a second order definition or needs to use
regression or progression to answer queries of the current state. Furthermore, regression and progres-
sion are often not applicable or complex to perform if the belief of the robot is considered. To address
the problem of a complex reasoning, an alternative logic was proposed in [65]. The logic ES defined
in [65] captures most of the expressions of the situation calculus as it was shown in [66]. This is of
special interest as the logic ES defines the knowledge of the robot, thus allowing to perform reasoning
about the knowledge natively in the logic. Later, the logic was extended in [124] to deal with a belief
of the robot which can change over time. The belief of a robot is defined by the set of worlds which
have the lowest ranking. The logic itself defines how to interpret a sentence using the robot beliefs.
As in the case of [129] the ranking is changed in such a way that the robot believes the last sensing
result. Additionally, the logic proposed in [124] also allows defining that a robot only knows a certain
set of beliefs, thus making it possible to simplify the reasoning about what the robot knows and what it
does not know. Finally, the logic allows specifying conditional belief such that one can state the robot
believes ψ if it believes φ. This further simplifies the definition of the belief of the robot. As the logic

33

Chapter 3. Related Research

is designed to perform the reasoning one would need a proper implementation of the logic. To avoid
a separate implementation of the logic and reuse existing automatic logical reasoning mechanisms a
mapping was shown in [125] to first-order logic. First, the formula which is queried is regressed back
to the initial situation. Afterwards, the initial knowledge base together with the query is translated
to first order to answer the query. To do so, one exploits that a robot defines its belief through only
believing a certain set of formulas. Together with the properties of conditional belief, the mapping can
be performed allowing to reuse existing automatic logical reasoning mechanisms. As an important
remark, one needs to consider that regression for the method presented in [129] would not be simply
possible as the belief of the robot is defined by quantifying over situations, thus the standard regres-
sion operator cannot be used. As regression, can get inefficient for long histories of executed actions
a method to perform progression was shown in [126], thus allowing to progress the belief of the robot
and use the progressed belief to answer the query. Through the usage of progression, the efficiency of
a robot using a belief is significantly increased. Thus, we will sketch a method how to perform pro-
gression for the belief of the robot as we define the belief in this thesis. We refer the interested reader
to [123] for further details how the logic proposed in [124] relates to other logical frameworks and
how to perform regression and progression. The major difference to the approach used in this thesis is
how the belief is formed as the method proposed in [124] defines the belief of the robot in the initial
situation only. Afterwards, the belief is revised according to the sensing actions. Thus, neither faulty
actions nor failing sensing actions are addressed. Although the results of regression and progression
are interesting to perform, an efficient reasoning for robots with belief, they cannot be simply carried
over to a belief which is formed by considering failing actions.
One way to incorporate failing actions is through the use of stochastic actions. To define the effect a
stochastic action has on the belief the method of [65] was extended with probabilistic extensions in
[45]. This allows to perform a reasoning as it was presented in [3] with the efficiency of [65]. The
idea is to assign each action a set of actions which can also be the result of the execution. If an action
is executed, one of the associated actions is executed in reality. For each of these actions, one defines
a probability. This allows specifying that it is more likely that the robot performs the correct action,
or a slight mistake, than an entirely wrong action. Additionally to the stochastic action, one uses a
probability distribution about the different worlds which define the knowledge of the robot. After
performing an action, these probability distributions are combined to specify how likely a certain
sentence is, thus allowing to reason how likely it is that a query is true after executing a sequence
of actions. To use this information in the reasoning process of the robot one would need to use a
probabilistic reasoning to answer queries which we want to avoid due to its complexity.
Another logic which can deal with beliefs was proposed in [70]. The idea is that one only performs
reasoning about the belief of a robot with the focus to choose a simple reasoning and a reasoning
yielding all implications which are made by the belief. This is done by defining a belief operator with
a certain level. The reasoning of the belief operator is based on splitting the formulas if these formulas
are not simple clauses. Each of these splitting operations reduces the remaining possible splittings.
Thus, a higher level of the belief operator allows drawing a more implicit conclusion of the belief
as further splittings are allowed. Due to this limitation, the reasoning can be performed efficiently
even if one specifies the belief of a robot. This reasoning was used in a robotic system, by extending
the logic as described in [14] to also incorporate action executions. The reasoning is performed with
the help of a regression operator such that a query can always be answered in the initial situation.
To respond to the query in the initial situation the semantics proposed in [70] is used. Besides the
reasoning also a Golog variant is defined in [14]. The variant uses the belief of the robot to determine
if a formula holds. This allows that the test conditions in the Golog variant are answered by the belief
of the robot. Thus, the robot performs an execution which is belief-aware. As the Golog variant is

34

3.7. Uncertainty about fluents instead of possible worlds

applied to a robot system one uses a dedicated search operator to plan ahead only for those parts of
the program which are necessary. The search operator does not only allow to define which part of the
program should be planned but also specifies how much effort is applied in the reasoning process. As
the belief is defined by different levels, the definition of the reasoning effort in the search operator is
done through the level of the belief used. Thus, one may find a plan with a low-level of the belief
where less effort is spent in the reasoning process. Additionally, if one needs to find a plan one can
define that the search operator uses the highest belief level possible, thus, using the complete inference
of the belief to find the plan. Another variant to use the logic proposed in [70] for a robotic system
was presented in [35]. The method uses progression to change the knowledge base after an action is
executed. This allows answering the query always with the currently progressed database using the
semantics defined in [70]. Although the method presented in [14] as well as in [35] proposes a Golog
variant which uses the belief of the robot to determine the actions the robot should be performed. The
limitation is that the method is based on [70] which specifies the belief through a fixed set of possible
worlds at the initial situation.

3.7. Uncertainty about fluents instead of possible worlds

Besides the use of a specific logic to simplify the reasoning about the belief of a robot one can also
address the problem by defining the belief differently. The above methods used a possible world
semantics [86] to define the belief. This means that one uses different situations to represent different
possible worlds the robot could be in. Each of these worlds is one possibility, and the robot believes
only those things which hold in all of these worlds. Thus, the reasoning needs to consider all these
worlds which cause a complex reasoning task. A different approach to model the belief of the robot
was used in [31]. The idea is instead of defining different worlds for the belief one defines the belief
only on the level of a fluent. Thus, the robot believes a certain truth value of a fluent or not. The belief
of the robot is now formed by the belief for each fluent. To answer a query one replaces the fluents
in the query with their belief counterpart. Thus, the answer is based on the belief of the robot. As the
belief is defined for each fluent, the change of the belief is defined in the successor state axioms of
an action, thus allowing simply to modify the belief through an action. But this imposes a constraint
on the sensing actions as the successor state axiom can only change one fluent value. Thus, one
cannot simply model a disjunctive sensing action. To analyze the restriction imposed by this form of
belief ”Cartesian situations“[101] were proposed in [101]. A Cartesian situation defines a possible
world semantics such that the difference between two possible worlds is only defined by one fluent
term. This poses a strong restriction as only one fluent term can be different between the worlds but
allows to model the belief of the robot on the level of a fluent. To be more precise if one considers
a Cartesian situation, the possible world semantic yields the same results as if one uses only the
belief of a fluent as was also shown in [104]. To preserve this property in the presence of performed
sensing action one needs to restrict sensing actions to conditional sensing of fluents. Additionally,
each fluent used in the condition needs to be sensed by the same action. Thus, the sensing action can
sense a set of fluents which depend on each other in a noncyclic way. Besides the sensing actions
also the action which changes the world needs to be restricted to ensure that the Cartesian situation is
preserved. In [101] different classes of actions where shown which preserve the Cartesian situation.
The restrictions mainly impose that the used variables of a fluent are defined in the arguments of the
action which change the fluent. Additionally, it poses constraints on the condition which allows the
fluent to be changed. As an important effect of this restriction one preserves not only the Cartesian
situation property but one could also perform progression on these theories, thus allowing an efficient

35

Chapter 3. Related Research

implementation of the method. Such an effective implementation was shown in [102] and [103]. Due
to the structure of the Cartesian situation and the progression property, one can use several databases
to represent the belief of the robot. This efficient database implementation allows creating a planning
system on top of it. The planning system can construct a plan which depends on the belief of the
robot. Thus, one can also incorporate sensing actions into the plan and state conditions depending
on the sensing result of the plan. Although the planning system is very powerful and the underlying
belief is changed by the sensing action, the method does not consider failing actions. This imposes
that one can use the planning system to plan ahead for the agent but can’t use the method during
the execution as the belief of the robot would not be adequately changed in case of a faulty action
execution. Additionally, the restriction to Cartesian situations seems very limiting if one considers
failing actions. It is left for future work to see if there exist fragments of failing actions which preserve
Cartesian situations but are still expressive enough to be practically useful.

3.8. Handling faults in the high-level control

Above we have mainly discussed methods to specify the belief of the robot. To deal with faulty action
execution not only the belief is of major concern but also how to deal with this faulty action in the
high-level control of the robot. One method to deal with the possible faulty execution of action was
presented in [49]. The focus of this approach is to allow the robot to create a plan such that the robot is
certain that a specific query holds with a certain likelihood. This is achieved using a nondeterministic
statement which triggers a branch with a certain probability. Thus, one can model a faulty action
by using this non-deterministic statement and specifying that the normal action is an outcome of one
branch and the faulty action is the outcome of another branch. By extending the transition semantic
of Golog one can calculate the probability for a program that a certain query holds. This can be
furthermore used to find a plan, such as that the query holds with a given probability. To model
different initial worlds with different probabilities, a possible world semantics is used. Besides which
situation is a reasonable alternative to the current situation a probability for this alternative is given.
The method was extended in [50] to be used on a robotic system. The extensions define how the
high-level and the low-level of the robot interact. This allows planning for the robotic system, also
considering the reaction the low-level has on a specific high-level request. Additionally, time was
added to the method presented in [49] to the formalism allowing to perform reasoning based on time,
e.g. after 15 seconds the robot has started to paint an object. Due to the use of probabilities, one
can create a more detailed description how the world may look like. But this imposes the cost of
probabilistic reasoning and thus loses the simplicity of the method we use in this thesis. Additionally,
the method proposed in [49] allows querying if a certain formula holds with a certain probability but
does not incorporate the belief in the transition semantics as we do it in this thesis. Our incorporation
in the transition semantics allows the programmer to ignore how the belief looks. The proper usage
of the belief through the robot is ensured with the help of the transition semantics.
To not only plan for a program but to derive a policy to ensure that the program performs best the
method proposed in [130] can be used. The method uses a transition semantics which extends Golog
by incorporating a likelihood for a transition as well as a reward. This allows deriving a policy which
maximizes the reward and the probability of a successful execution. To model the faulty action one
uses a nondeterministic choice of actions. This allows the robot to perform an action and considers
both action outcomes as possible until noticed otherwise later. To determine which action outcome has
occurred one can perform sensing actions. But unlike, the sensing actions modeled like above which
assert a formula, the sensing actions used in [130] use a successor state axiom to set the truth value

36

3.9. Monitoring the execution of actions

of a fluent. Thus, the latest sensing results override any previous knowledge. This is in contrast to
the approach used in this thesis as we use an inconsistency between sensing result and the knowledge
of the robot to check if an action was performed successfully. This allows the approach employed in
this thesis to determine which action may have failed, including sensing actions, and to derive which
indirect effects hold.
A combination of the above two approaches was described in [38]. The Golog derivative described
in [38] allows combining a reasoning which incorporates probabilities for action together with a non-
deterministic choice of actions. Additionally, the planning allows finding a policy which is optimal
concerning a defined reward. Besides the possibilities to deal with faulty action, the method also
incorporates constructs for concurrent execution interrupts and conditions which are checked during
the execution. Although the language offers many features to specify the behavior of the robot special
care was taken to ensure that the reasoning is performed in a fast manner. Thus, as in the previous
approach, the latest sensing result was taken for the reasoning process. The assumption behind this
method is that the sensing action is performed with a ”high“ frequency, thus ruling out wrong sensing
results in a fast way. Due to its efficient reasoning, the proposed method was successfully applied to
different robotics systems. The main difference to the approach used in this thesis is that no reasoning
is performed, which fault has occurred which allows the method applied in this thesis to conclude
indirect effects. We assume that such a reasoning is preferable for many robotic systems even though
it imposes a more complex reasoning.

3.9. Monitoring the execution of actions

Besides the integration of the belief into the execution of the high-level control of a robotic system, one
also needs to consider that during the execution the robot needs to consider to monitor the execution
and react appropriately. The belief of the robot may be changed appropriately but only due to its use
within the high-level execution the execution is monitored, and it is ensured that the robot behaves
properly. Additionally, one needs to react to changes if the monitoring indicates that the current
execution can be performed further. In [24] such a monitoring and reaction method was proposed.
The method uses the transition semantics of Golog to incorporate the monitoring and the reaction.
The method assumes that all external changes which are not caused by the robot can be observed.
Furthermore, no faults are considered. If an external change happens the program is checked to see if
it can still legally terminate with a predefined goal condition. If no such termination exists a program is
searched which allows recovering from the external event. To recover from a fault, a linear sequence
of actions with minimal length is searched, thus preferring simple recoveries over a complex ones.
This simple method was used in [27] to monitor a process management system. The main difference
to the approach presented in this thesis is that we don’t assume to observe external influences, instead
we use a belief which keeps track of such changes. Additionally, in this thesis, we extend the standard
IndiGolog transition semantics to use the belief to check that the robot performs only safe transitions.
Finally, we don’t create a plan to recover from a fault. Instead, we only plan for sensing actions if the
robot is lacking knowledge.
Another approach to monitor the execution of a generated plan was described in [44]. The method
is based on regressing back the formulas used in the plan generation to check if the program can be
further executed successfully. Thus, instead of searching in each iteration if the program can terminate
successfully, one uses regression to pre-calculate which formula needs to hold to allow the program to
terminate successfully. Additionally, the method can be extended to allow monitoring the execution
of an optimal plan. This is done by regressing back the optimal value, allowing to decide at each point

37

Chapter 3. Related Research

during the execution if the robot still uses the best method to achieve its goal. The main difference
to the approach presented in this thesis is that we only use a one-step look ahead to determine if the
program can be performed further. Additionally, in the thesis, we presented a method which uses
regression and the structure of the program to create a reactive program. Thus, we extend the idea
presented in [44] for the high-level program instead of plans.

38

Chapter 4
Consistency History Based Diagnosis

As we have discussed in Chapter 2, to model a robotic system one needs to address the qualification
problem. The problem arises from the fact that it is not feasible to specify every condition which
needs to hold to execute an action successfully. This issue is partly caused by to the complexity
involved to capture all the necessary conditions, e.g. the humidity in the room could influence the
grasp performance of the robot. Thus one would need to model the humidity and how it changes.
However, the problem is also caused as not every condition is known to the program specifying the
conditions for an action, e.g. which influence the color of the object has on the grasp performance.
To address the qualification problem, we have discussed the usage of history based diagnosis. The idea
is to alter the history of performed actions in such a way that it reflects the real execution sequence.
Thus, one replaces executed actions with a faulty counterparts. Additionally, it is checked if these
variations of the original history are consistent with the observations which were made by the robot.
If such a variation is consistent, it can be considered a possible explanation.
Although the approach addresses the qualification problem, it has several drawbacks. Two major
drawbacks are the following: firstly, if the robot acts in an open environment one cannot assume
a finite number of objects. This drawback implies that one cannot assume that a finite number of
faulty versions of an action exist. Thus, the approach can become computationally infeasible if one
considers the world to have an unknown size. The second drawback is that every possibility an action
fails needs to be considered. Thus, one needs not only to model one fault an action can have but all of
them. Additionally, the modeled faults need to ensure a complete description of the faulty behavior.
This modeling effort can become an infeasible problem on its own. This issue can be even stated
more drastically as it is the counterpart to the qualification problem. If one is not able to specify every
condition necessary to perform an action, why should one be able to describe every possibility how
an action may fail.
Let’s consider a simple example to point out the first drawback in more detail. Let’s consider our
running example added with the additional fault that the robot can lose the object during its delivery.
As the robot does not know the exact traversal route, the object could be lost in any room. Thus, if
the robot drives from room R1 to room R2 and loses the object, the robot needs to consider the fault
action variation gotoLostObject(R3), gotoLostObject(R4) . . . gotoLostObject(Rn). Thus if n gets big,
the number of possible alternative actions also becomes large. Furthermore, if there is an unknown
number of rooms which needs to be considered, e.g. the movement was not just within a building but
between buildings or even cities, one cannot calculate all alternatives. Thus, in either case, the number
of alternatives become infinite or at least too large to be handled properly.

39

Chapter 4. Consistency History Based Diagnosis

To point out the second drawback in more detail, let’s consider another example. Let’s consider
our running example, but instead of transporting just one object the robot can also transport a box
with numerous objects. If the robot fails to deliver the box, during the delivery several different
fault outcomes may occur. The robot has dropped the complete box, but the objects are still in the
box. The robot has only ”spilled“ one object from the box but still holds the box with the other
objects. One could imagine that the number of possible faults which may have occurred is
enormous if one considers dropping the box or spilling objects from the box. The modeling of all
these possibilities becomes even more complicated if one needs to consider that the box may have
no fixed upper bound on the number of objects within the box. Thus, one would need to pay extra
attention for the faulty actions as one needs to consider a different number of objects in the box, and
thus different possibilities of faults.
To address both problems at the same time, we propose to use a description of an action influence
instead of an alternative action to specify the impact a faulty action may have. The method, presented
in this chapter to address the drawbacks mentioned above is based on the work presented in [94].
The remainder of the chapter is organized as follows: In the next section, we will briefly discuss some
preliminaries for this chapter. In Section 4.2 we define the approach how to calculate a diagnosis as
well as how the robot can draw a conclusion from this diagnosis. This section is followed by a section
which discusses how to calculate the diagnosis using a conflict driven search. The proceeding section
discusses how one can use default logic to perform the reasoning. Afterward, we discuss the relation
of the proposed method with the classical history based diagnosis procedure in Section 4.5. This
section is followed by a discussion of related research particular to this method. Finally, we conclude
the chapter and point out some future work.

4.1. Preliminaries

History based diagnosis as it was presented in Chapter 2 follows the idea of assigning fault modes to
components. This method is known as abductive diagnosis [17]. As we want to avoid to handle fault
modes of an action we follow a different approach. In consistency based diagnosis [113] one assigns
components to be either faulty or not, thus no fault mode of the components is necessary.
To declare a component C1 to be faulty one uses the predicate AB(C1) in consistency based diagnosis.
Additionally, one uses a formula φC1 to specify the behavior of the component C1. Furthermore, one
uses additional formulas to link the communication between the components and the observations of
the components. To link the AB(C1) with the behavior of the component the following formula is
used:

∀c.¬AB(c)→ φc (4.1)

If the component is assumed to function correctly one asserts that¬AB(C1) holds. In combination with
the definition of φC1 and the formulas linking observations and communication between components,
a logical contradiction is caused if an observation differs from a predicted value from the system.
To resolve such a contradiction one can blame a component as faulty. Due to the formula if the
component is considered to be faulty AB(C1) the implication is trivially true and the formula φC1 does
not need to hold. Thus, one can use this method to retract constraints imposed by the components
which can lead to a resolution of the contradiction.
As one could now blame all components within a system to be faulty to resolve an inconsistency
one follows Occam’s razor. Instead of blaming any set of components to be faulty one tries to find a
minimum set of components to be faulty. We refer the interested reader to [113] and [25] for further
information about consistency based diagnosis.

40

4.2. Consistency History Based Diagnosis

4.2. Consistency History Based Diagnosis

As consistency based diagnosis allows to resolve inconsistencies without the need for fault modes, it
is desirable to resolve the drawbacks which are inherent to classical history based diagnosis.
In classical history based diagnosis one alters the history of performed actions through the usage of
declared alternative actions. Thus, one replaces an inconsistent history with another history which is
consistent. Those histories which have a small cost in their changes are preferred.
As we argued above the problem with this approach is that it is not always feasible to calculate all
(optimal) alternatives. Additionally, one cannot assume to be able to model all fault modes of an
action. Thus, instead of changing the history, we blame a set of actions to be faulty. A faulty action
may have an arbitrary behavior, thus allowing to resolve the observed inconsistencies. This idea
follows closely the idea presented in [117].
To blame an action to be faulty we use the predicate fail(α,s). With the help of the predicate, we state
that action α which was performed in situation s is considered to be faulty. Thus, the action does not
settle its effect in the situation s′ = do(α,s).
To model that an action does not settle its effect as expected we need to define which effect a faulty
action has. We cannot assume in general that a faulty action does not have an effect at all. Additionally,
we cannot assume that an action does change everything, e.g. if the robot fails to move from one room
to another the color of the robot does not change. Thus, we need to model which subset of fluents is
influenced by the action. We model this influence an action has on a fluent F through the predicate
ψF

α(~x,s). This predicate describes the condition under which action α influences fluent F(~x,s) in
situation s.
Instead of modeling an alternative action outcome we need to model the influence an action has on
each fluent. One can argue that this does not resolve the problems we wanted to address. However,
instead of describing in detail every possibility an action may fail we use the predicate to describe
which fluent might be influenced. Thus, the description of the fault is fuzzy which allows an easier
modeling. Furthermore, one does not need to enumerate all the different possibilities how an action
fails instead by declaring an action to be faulty one covers all these possibilities.
One can follow different methods to derive the predicate ψF

α(~x,s).

• ψF
α(~x,s) is a precise formula as the possible faults can be estimated. This can be the case if one

already has a description of the alternative action outcomes. If one can use such a formula, the
precision of the diagnosis result is quite high.

• The formula can also be derived from the successor state axiom if the action only influences
those fluents which are affected in the nominal case. The resulting formula is ψF

α(~x,s) ≡
ϕ+(α,~x,s)∨ϕ−(α,~x,s). This formula also specifies a constraint which needs to be fulfilled
by the formula. At least those fluents are influenced by an action which are influenced by the
action through the successor state axioms. The approach presented in [117] can be represented
using this kind of formulas.

• Sometimes the effect an action may have is not restricted to those fluent instances which are
also affected by its nominal behavior. Instead, the influenced fluents are the same but the argu-
ments of the grounded influenced fluent may differ to the nominal behavior. Thus, the formula
becomes ψF

α(~x,s)≡ ∃~x′.(ϕ+(α,~x′,s)∨ϕ−(α,~x′,s)).

Using the definition of the predicate ψF
α it remains to show how one links this predicate and the

successor state axiom. We do so by following the idea of the so-called guarded successor state axioms
[23]. Instead of using the successor state axiom as it is, the axioms are only applied if a guard condition

41

Chapter 4. Consistency History Based Diagnosis

holds. We use the predicate ψF
α as the guard condition of the successor state axiom. This is done with

the following successor state axiom.

∀α ∈ A .[ψF
α(~x,s)→ (¬fail(α,s)∧Πα(s))]

→[F(~x,do(α,s))↔ ϕ
+(α,~x,s)∨F(~x,s)∧¬ϕ

−(α,~x,s)]
(4.2)

The definition implies that if the action influences the fluent the successor state axiom can only be ap-
plied if the action was not blamed for being faulty and the precondition holds. Because of this formula
if an action fails all fluents’ values which are influenced by this action are no longer determined by
the successor state axiom. Thus, the agent does no longer know the truth value of the fluent after the
action has failed. This allows the method to resolve a conflict between an observation and the effect
an action normally has.
As fluent values are not only influence by successor state axioms but also through the sensing results
we need to change how sensing results are used. Instead of asserting that sensing measurements need
to be the same as expected sensing results for all time we condition this equality. The condition is the
same as for the successor state axioms.

(¬fail(α,s)∧Πα(s))→ (AO(s̄)↔ SF(α, s̄)) (4.3)

Thus, neither the sensing result of an action nor the effect it has due to the successor state axioms
is applied if the action is faulty. This allows use to resolve any inconsistency between expected and
measured sensing result. The only thing which needs to be done is to find a proper set of actions to be
blamed as faulty.
As not every set of faulty actions may lead to a consistent situation we need to define the consistency
of a history considering the effect a faulty action has. As we blame now actions to be faulty we slightly
adapt the definition of a consistent situation as it was presented in Chapter 2.

Definition 8. The consistency of a situation is defined with Cons(·) inductively defined as:

1. Cons(S0)
.
= Invaria(S0)

2. Cons(do(α,s)) .
= Cons(s)∧ Invaria(do(α,s))∧

((¬fail(α,s)∧Πα(s))→ (AO(s̄)↔ SF(α, s̄)))

Thus, the definition of consistency has only changed slightly as we condition that the expected and
the measured sensing result needs only to have the same truth value if the action is not faulty and the
precondition of the action holds. This condition ensures that a faulty sensing action does not lead to a
contradiction.
Using the definition of a consistent history we can now define what a diagnosis is as follows:

Definition 9. A diagnosis δ for a history s is set of faulty actions: δ= {〈α,s〉|fail(α,s)}. Furthermore,
for a diagnosis δ it need to hold: D∗ \Dssa ∪Dssa′ \ {sensed}∪{sensed}′ ∪{fail(α,s)|〈α,s〉 ∈ δ}∪
{¬fail(α,s)|〈α,s〉 6∈ δ} |= Cons(s) Where Dssa′ are the guarded successor state axioms presented in
this chapter and {sensed}′ are the guarded sensing axioms presented in this chapter.

Thus, a diagnosis is a set of actions blamed to be faulty which ensure consistency of the situation.
Please note that the valuation of the fail predicates is defined through the diagnosis set and is added to
the extended basic action theory.
Through the definition of a diagnosis, one ensures consistency with the help of a diagnosis. However,
as in the case of classical history based diagnosis, not every diagnosis is very likely. To use only those
diagnoses which are very likely we follow Occam’s razor. We prefer those diagnoses which have a
lower cardinality. This is stated in the following definition.

42

4.2. Consistency History Based Diagnosis

Definition 10. A diagnosis δ∗ for a history s is a preferred diagnosis if and only if the following holds.
Let ∆ be the set of all diagnoses then it holds that. δ∗ ∈ ∆∧@δ.|δ|< δ∗

After calculating the preferred diagnosis, the robot needs to use these diagnoses to perform the neces-
sary reasoning task. This is done by considering the following action theory (CBAT):

Dcons(δ) = D∗ \Dssa∪Dssa′ \{sensed}∪{sensed}′∪{fail(α,s)|〈α,s〉 ∈ δ}∪{¬fail(α,s)|〈α,s〉 6∈ δ}
(4.4)

Please note that the successor state axioms Dssa are replaced by their modified version. Furthermore,
the sensing axioms are replaced by their altered version. Thus, the robot can only draw those conclu-
sions from Dcons(δ) which are consistent with the specified diagnosis δ.
If we would use just one diagnosis, the agent may only draw a conclusion considering only this
diagnosis. This behavior may lead to a dangerous decision. To avoid such dangerous decisions, we
define the belief of the agent according to all preferred diagnoses.

Definition 11. Let ∆∗ the set of preferred diagnoses for a situation s. A robot believes that a formula
φ holds in s if and only if the following holds: Belief (φ,s) .

= ∀δ∗ ∈ ∆∗.Dcons(δ) |= φ(s)

With the help of the definition of the belief, we ensure that the robot only believes those formulas to
hold which can be concluded considering every diagnosis. Using the definitions so far, we can state
some theoretical properties.
First, we make some assumptions which need to hold to state those properties.

Assumption 1. Actions are only executable if their precondition is believed to hold. Belief (Πα,s)

Assumption 2. We assume that no action has a contradicting effect. Dcons({}) |= ∀α,s.Invaria(s)∧
Invaria(do(α,s))

The first assumption ensures that an action sequence is executable like the definition of an executable
situation defined in [116]. We only assume that the robot believes as that the precondition of the action
holds before it performs the action, thus later sensing results can indicate that the action precondition
does not hold.
The second assumption only ensures that the actions are modeled properly. Otherwise, the robot could
create an inconsistency history of performed actions just by executing actions without ever sensing
the environment.
As a first theoretical result, we can state the following lemma.

Lemma 1. If an action returns with true as result and it does not hold that Dcons({}) |= ¬SF(α,s)
and if an action returns with false as result and it does not hold that Dcons({}) |= SF(α,s) it follows
that the cardinality of the preferred diagnosis is 0.

Proof (Sketch). A direct result of the definition of Cons and the fact that the sensing is not contradict-
ing with the situation.

The lemma states that if the sensing result is not expected otherwise, the cardinality is 0. Thus, the
preferred diagnoses sets are empty till the expected, and the measured sensing results differ.
The second theoretical result we can state is the following lemma.

Lemma 2. The minimum number of faults has as upper bound the number of sensing actions within
the history.

43

Chapter 4. Consistency History Based Diagnosis

Proof (Sketch). This is a direct result of Assumption 2 and the definition of Cons.

The lemma states that one diagnosis is to blame for all sensing actions performed so far. Thus, one
can bound the maximum cardinality of the preferred diagnosis by the number of performed sensing
actions.
Through Lemma 2 we can conclude the following lemma.

Lemma 3. The size of the set of preferred diagnoses is bound by
(|s|

#α∈s∧α∈Asensing

)
.

Proof (Sketch). This is a direct result of Lemma 2

The lemma states that the number of preferred diagnoses is exponentially bounded by the number of
performed actions and the number of sensing actions performed so far. Thus, the number of diagnoses
does not depend on the number of objects in the world. Instead, it depends only on the length of the
history considered for the diagnoses.
This lemma can be strengthened further in the following Theorem.

Theorem 1. The size of the set of preferred diagnoses is bound by
(|s|

#faulty sensing actions

)
. Where

faulty sensing actions is defined as: if an action returns with true as result and Belief (¬SF(α),s)
holds or if an action returns with false as result and Belief (SF(α),s) holds.

Proof (Sketch). Proof by induction
For the base case, we assume no fault has happened, thus through Lemma 1 the theorem holds.
For the induction step, let’s assume we have a history with n faulty sensing actions. The action α is
performed, and the sensing results contradict with the belief of the agent. Thus, it follows that the
minimal extension of any preferred diagnosis is due to a failing α. Since we search for a minimal
diagnosis, this bound must also hold for all new diagnoses thus the theorem follows.

The theorem shows that the number of preferred diagnoses is further bounded. The number is cor-
related with the number of sensing actions which detected a discrepancy between the world and the
robot’s knowledge. As the number of those sensing actions is lower than the number of total per-
formed sensing actions, the bound is drastically reduced.

4.3. Calculation of Diagnoses using Conflicts

The diagnoses can now be calculated in a trial and error fashion. Alternatively, a more focused search
can be performed. One common method to enumerate all diagnoses is by using a conflict driven
approach [113]. The idea is instead of just checking if the theory is consistent and blindly altering the
assumptions made if the theory is inconsistent one uses the information of the inconsistency. One uses
the information which is provided by a conflict set of the inconsistent theory. The conflict set contains
a set of formulas which together can’t be satisfied. One can expect that this set is significantly smaller
than the complete theory. By using the conflict set, it is sufficient to choose the next assumption
to withdraw from those assumptions present in the conflict set, as was shown in [113] for classical
consistency based diagnosis.
Additionally, to focus search of the diagnoses one can use a minimal hitting set algorithm. Thus,
instead of enumerating any diagnoses one uses a minimal hitting set algorithm for the diagnosis cal-
culation. As was shown in [113] the minimal hitting set of the conflict sets are the minimal diagnoses
of a system. Due to this focused search, one can speed up the computation of a diagnosis significantly.
For a comparison of different diagnosis computation methods, we refer the interested reader to [97].

44

4.3. Calculation of Diagnoses using Conflicts

Due to these benefits of such a focused search, we are interested in carrying over such a search to our
diagnosis problem. To do so, we could use a theorem-prover to calculate the conflicts for the complete
theory. Unfortunately, as we discussed in Chapter 2 the usage of a theorem prover to reason about the
action theory is very costly. This cost is mainly caused due to the inductive axiom to define a valid
situation. Thus, instead of using a theorem prover directly, we use the structure of the problem itself
for a conflict driven search.
Using the assumptions mentioned above that the definition of the action is well formed and that the
initial situation is consistent then a conflict can only be caused by a sensing result. This imposes
that if we have an inconsistency one part of the conflict needs to be a formula associated with the
sensing action. Furthermore, we can observe that for any action which is part of the conflict set the
precondition needs to hold to yield the conflict. Thus, any action which supported the precondition of
an action within the conflict set needs to be itself a part of the conflict set.
Before we show how to calculate the conflict set for a general case, we will outline how the approach
works for one sensing action which is in contradiction. Let’s consider a simple example history. Let’s
assume we have performed the following history of actions which is consistent s = [α1,α2,α

S
1,α3]

where α1,α2,α3 are primitive actions and αS
1 is a sensing action. Furthermore, we now perform the

action αS
2 which is in contradiction with the history. As a sensing action asserts a sensing formula SF to

hold the contradiction is caused due to this formula. Thus, the following holds Dcons(/0) |=¬SF(αS
2,s).

This result indicates that the robot expects the opposite sensing result. This indicates that αS
2 is one

part of the conflict. Furthermore, there are only three cases such that the robot concludes that a
formula holds. The first case is that the formula is assumed to hold through a successor state axiom.
The second case is that a previous sensing formula imposes that the formula holds. The third case is
that the formula holds because of the initial situation.
Let’s consider the first possibility how the robot has drawn its conclusion, the successor state axiom.
A conflict with a successor state axiom can occur if the truth value was carried over to the current state
of the world or if the last action α changed the truth value. If the last action α has changed the value,
this action is part of the conflict. One can reason that if the truth value would not have been modified
the contradiction might not have happened. If the last action has not changed the truth value, the
action can only be part of the conflict if it has an influence on the fluent in a faulty case thus ψF

α(x̄,s)
holds.
Considering the second possibility how the robot has drawn its conclusion, the sensing result of a
previous action. This would be the case if the last action α was a sensing action the current sensing
formula SF(αS

2,s) conflicts with the formula SF(α,s). Such a conflict can be derived from the reason-
ing which formulas hold in the current state of the world. To resolve such a conflict one needs to add
the sensing action α to the conflict set.
The final possibility how the robot has drawn its conclusion is through the initial situation. Through
the assumption that the initial situation is not contradictory, no additional action can be added to the
conflict set.
As the robot draws its conclusion from the complete history and not only from the last action the
sensing formula which caused the conflict in the first place SF(αS

2,s) also needs to be considered not
only as the last action in mind. Instead, one can use the regression operator to regress the formula
back in time. Thus, also actions are added to the conflict set which were performed before the last
action but caused the robot to draw a conflicting conclusion.
We can generalize this approach by stepping through the history from the initial situation to the last
situation and always perform the above-outlined calculation. Thus, we gather all conflict sets which
are present in the current situation. This can be done with the help of Algorithm 1.
The algorithm steps through the complete history to find the next conflict set which is not covered

45

Chapter 4. Consistency History Based Diagnosis

Algorithm 1: ComputeAllConflictSets
Data: s . . . a history
Data: δ . . . a diagnosis to consider
Result: C . . . a set of conflict sets

1 begin
2 C = {} ;
3 for s′← do(α,s0) to s do
4 s′ = do(α,s′′) ;
5 if α ∈ ASensing then
6 if Dcons(δ)∪SF(α,s′′) |=⊥ then
7 C = ComputeConflictSet(s′,α,SF(α,s′′),δ)∪ComputeConflictSet(s′,α,¬Πα,δ) ;
8 break ;
9 end

10 end
11 end
12 end

by the current diagnosis. If the last action was a sensing action the algorithm checks if the theory
is still consistent as only a sensing action can cause an inconsistency. If an inconsistency is caused
Algorithm 2 is used to derive the new conflict set. The conflict search is called O(|s|) times in order
to compute all conflicts for a given situation s with length |s|.
The algorithm first adds the action which was used to observe the conflict at first (α) to the conflict
set. Afterwards the algorithm iterates in a backward fashion through the history of performed actions
till the initial situation is reached. In each iteration, the algorithm checks if the formula which was the
reason for the conflict (φ) still causes a contradiction. If the formula still causes a contradiction the
conflict of this contradiction is inspected.
If the conflict is due to a successor state axiom which is influenced by the last performed action α′ we
add this action to the conflict set by a recursive call to the algorithm itself. Please, note that for the
conflicting formula we use the negated precondition, as we also need to incorporate all those actions
which supported the precondition of this action in the conflict set. Thus, every action which is in
contradiction to the negated precondition of action α′ has supported the precondition and is added by
the algorithm.
If the conflict is due to the sensing result of the last action α′ we add this action again by calling the
algorithm recursively. Additionally, we use the negated precondition to find all those actions which
supported the action α′.
Finally, in Line 18 we regress back the formula. This allows us to check for further conflicts of
the formula in the previous parts of the history. As the robot draws its conclusions from experience
the formula needs to consider the complete history of performed actions, not only the last action.
Furthermore, due to the usage of the regression operator, it is guaranteed that the formula is correctly
transformed back in time. The overall complexity of the algorithm is O(|s|) as either a successor stat
axiom is in conflict (if α is a primitive action) or the sensing axiom is in conflict (if α is a sensing
action).
To use the above algorithm in a minimal hitting set calculation to derive all minimal diagnoses we
need to show that the conflicts arising from the algorithm are at least a superset of all minimal conflicts
which would be derived if the complete theory would be used instead. We show this property with the

46

4.3. Calculation of Diagnoses using Conflicts

Algorithm 2: ComputeConflictSet
Data: s . . . a history
Data: α . . . the action imposing φ

Result: φ . . . an inconsistent formula
Data: δ . . . a diagnosis to consider

1 begin
2 C = {α} ;
3 for s′← s to s0 do
4 if s′ = s0 then
5 break ;
6 end
7 〈r,c〉= checkSat(Dcons(δ)∪φ) ;
8 if r = sat then
9 break ;

10 end
11 s′ = do(α′,s′′) ;
12 if successorStatAxiomInConflict(c,α′) then
13 C = C ∪ComputeConflictSet(s′′,α′,¬Π′α,δ)
14 end
15 if sensingAxiomInConflict(c,α′) then
16 C = C ∪ComputeConflictSet(s′′,α′,¬Π′α,δ)
17 end
18 φ = R (φ,α′)

19 end
20 end

following theorem.

Theorem 2. For every minimal conflict set C the Algorithm 1 finds a conflict set C′ such that C ⊆C′.

Proof (Sketch). Proof by contradiction. Let’s assume there exists a minimal conflict set C where the
algorithm produces no correct C′.
As shown in [132] only sensing action can indicate a fault. Thus, a sensing action needs to be part
of C. Furthermore, after a sensing produces an inconsistent theory and the definition of a minimal
conflict only the first sensing action leading to an inconsistency is of interest. Thus, it is sufficient
only to consider s′, which is the situation till the first conflicting sensing action and adding the sensing
action to the conflict set.
By definition of the consistency a sensing action can lead to an inconsistency iff, the precondition
holds for the sensing action and the negation of the sensing action is part of the situation (s′) in which
the action was performed. The precondition of an action holds in a situation iff adding the negation
of the precondition yields to a contradiction in the theory. Thus, what remains to show is that there
exists an action which is not part of the result of Algorithm 2 for a certain formula φ.
We show this by induction. For the base case, the contradiction holds by the definition of the consis-
tency, as it assumes that the initial situation is not contradicting. Thus, no further actions can be in the
conflict set.
The inductive step let’s assume for every formula φ with any situation s′ up to the length N the
contradiction holds. Furthermore, by the definition of regression Line 18 ensures that the formula

47

Chapter 4. Consistency History Based Diagnosis

φ is correctly transformed closer to the initial situation. Thus, any conflicting action is found for s.
Thus, what remains to show is that the action α, such that s = do(α,s′) holds, is the missing one in the
conflict set. By definition of the CBAT, it holds that an action has only influence that a formula holds
if it either is an effect of the action or if it is asserted through a sensing axiom. For the first case, the
action would have been found as the conflict would have been with a successor state axiom. For the
second case, the action would have been considered as the conflict would have been with the sensing
axiom. Thus, there is no action missing in the conflict set. Thus, the theorem follows.

With the help of the above algorithm, we can calculate all conflicts. Using these conflicts and a
minimal hitting set algorithm we can calculate all minimal diagnoses. Afterwards, we can use these
diagnoses to reason which formulas the robot believes to hold.

4.4. Using Default Logic to Model the Belief

The main concern of belief management is not the diagnoses it uses but the formulas which form the
belief. Thus instead of using the diagnoses to form the belief, one can use a more direct approach.
Instead of calculating the minimal diagnoses and using those to derive the belief one can use default
logic as it was proposed in [112] to perform the reasoning on the belief.
To specify a theory with the help of this default logic one uses two parts. First, a set of axioms which
are assumed to hold. These axioms are classical logical axioms as we have used them so far. The
second part is a set of default rules which are applied if they do not yield a contradiction. We use
these default rules to specify that an action is not faulty if it does not lead to a contradiction. The
default rule θ is defined as follows:

: ¬fault(s)
¬fault(s)

(4.5)

The reasoning in default logic now finds the maximum set of default rules which can be applied to
still be consistent. Using this set of rules the default logic performs its reasoning. A formula holds
if cautious reasoning is applied if it holds in every theory which is the result of maximizing the set
of default rules. As we are not using a minimal set of not applied default rules, we need to add an
additional axiom such that the number of not applied default rules is bounded to a specific number.
The number of faulty actions is precisely bounded with the help of Theorem 1. Thus, we can generate
an axiom Γ which imposes that the number of faulty actions is the number of contradicting sensing
actions.
To count the number of faulty actions we can use a simple fluent FaultyActions(n,s). The fluent is set
initially to hold only for n = 0. Thus, we add to the initial situation the following formula.

∀n.FaultyActions(n,S0)↔ n = 0 (4.6)

Furthermore, we specify as a successor state axiosm∗ that a fault increases this number.

FaultyActions(n,do(α,s))≡ (n = n′+1)∧FaultyActions(n′,s)∧ fail(α,s)∨
¬fail(α,s)∧FaultyActions(n,s)

(4.7)

Finally, we can constrain this fluent at the end of the history S to the number of faulty sensing action
k with the help of the following formula.

∀n.FaultyActions(n,S)↔ n = k (4.8)

48

4.5. Relation to History Based Diagnosis

With the set Γ consisting of all the definitions of the fluent FaultyActions we can specify the default
logic theory DD. The theory is defining as follows:

DD = 〈D∗ \Dssa∪Dssa′ \{sensed}∪{sensed}′∪Cons∪Γ;θ〉 (4.9)

Where Dssa′ are the new successor state axioms and {sensed}′ are the new sensing axioms. Further
Cons are the axioms of a consistent situation quantified over all situations.
With the help of this theory, we can now draw the conclusion what the robot knows directly. First, we
can relate the minimal diagnosis to the set of maximum applied default rules. This set is called the
maximum extension (according to [112]) of DD. We state this relation in the following Corollary.

Corollary 1. Every maximal extension E of DD corresponds to a minimal diagnosis δ where δ =
{s|fault(s) ∈ E}

Proof (Sketch). Through the definition of default logic, every maximal extension is a subset minimal
set of faulty actions. Through the cardinality constraint only cardinality minimal diagnoses are al-
lowed. Furthermore, an extension needs to be consistent through the definition of Cons which is part
of the theory.

As we have a direct relation between maximal extensions and minimal diagnosis we can now relate
the reasoning which is performed with this theory and the definition of Belief . This relation is stated
formally in the following lemma.

Lemma 4. A formula φ is believed to hold using the following query DD |=cautious φ[s] iff Belief (φ,s)
holds for the formula.

Proof (Sketch). This directly follows from Corollary 1 and the cautious reasoning used to answer the
query.

4.5. Relation to History Based Diagnosis

We argued in the introduction that the classical history based diagnosis suffers from two drawbacks.
Furthermore, we have argued above that we tackled these two drawbacks with the proposed method.
However, the question arises if we can still draw the same conclusions with this approach (CHBD) as
if we would use classical history based diagnosis (HBD).
As both methods CHBD and HBD have their separate definitions of action faults we need first to
define a linkage between those to perform further comparisons. Let’s assume for a given action α we
have the fault modes αF1 till αFN . We can now define the predicate ψF

α as follows:

ψ
F
α(x̄,s)≡

∨
i.1≤i≤N

∃ȳ.φ+
F (x̄,αFi(ȳ),s)∨∃ȳ.φ−F (x̄,αFi(ȳ),s) (4.10)

Thus, through this definition the fluents which are influenced by the action are those fluents which are
influenced by any of the faulty modes of the actions.
With the help of this definition, we can draw already the first lemma relating the conclusion which
can be drawn if both use the ”same“ diagnosis.

Lemma 5. Given a situation s and a fault mode assignments of action AF , which makes the situation
consistent then it follows that Dcons(δ) |= φ(s)⇒ D |= φ(s′), where δ consist of those actions which
have a fault mode assigned and s′ is the result of replacing all action in s through their fault mode.

49

Chapter 4. Consistency History Based Diagnosis

Proof (Sketch). Proof by contradiction. Let’s assume there exists a φ which is entailed by Dcons(δ)
but not by D then it follows that there exists at least on fluent F which has a truth assignment which
differs in both reasoning systems. As the reasoning is the same for those actions which are not faulty, it
follows that there exists an action α, which is fault, which sets the truth value of the fluent differently.
A faulty action α does not set a truth value to a fluent by definition of the successor state axiom. Thus,
such a φ cannot exist.

The lemma states that if we can draw a conclusion with the help of CHBD from a diagnosis, we can
also draw this conclusion from HBD. Thus, CHBD does not allow to draw more conclusion. The
contrary does not hold.
Let’s consider a simple example to consider this problem. Let’s assume we have one action α which
sets the value of F1 and F2 to true. Furthermore, let’s consider the sensing action αS which senses the
truth value of F1. Thus, the action sequence [α,〈αS,⊥〉] where the robot has performed first α and
afterwards got the sensing result ⊥ from αS

F1
is in contradiction. Let’s additionally assume one fault

mode of the action is α′ which sets F1 to false instead of true. Additionally, we have a second fault
mode α′′ which sets the fluent F2 to false instead of true. Thus, using CHBD both fluents F1 and F2
would have an unknown truth value after a fault of action α. Thus, if we use HBD and consider the
alternative action sequence [α′,〈αS

F1
,⊥〉] which is consistent we would draw the conclusion that F2

needs to hold. Instead of we consider CHBD and the action α to be fault we would not be able to
draw any conclusion on the truth value of F2.
Thus, the robot would draw a more cautious conclusion if the diagnosis is the same if CHDB is
used. To further investigate how the robot can draw a conclusion we need to relate how the different
diagnosis from HBD and CHDB relate to each other. As the set of diagnosis are used to draw the
belief of the robot we need to check if we can draw the ”same“ diagnosis with both methods.

Lemma 6. Given a situation s and a fault mode assignments of action AF , which makes the situa-
tion consistent then it follows that δ consisting of all actions which have a fault mode assigned is a
diagnosis.

Proof (Sketch). This directly follows from Lemma 5. Moreover, the definition of a diagnosis is a set
of actions which blamed to be fault create a consistent situation.

The lemma states that if we create a diagnosis with HBD, we can create the ”same“ diagnosis with
CHBD. Unfortunately, the contrary does not hold. Which is a direct result of the fact that CHBD
causes a more cautious reasoning. Thus, a contradiction may appear if HBD is used but may not
appear if CHBD is used. This results can be extending to state that the minimal sets of HBD and
CHBD may not be the same. As not every diagnosis of CHBD is a diagnosis of HBD, it can be the
case that the minimal diagnosis of CHBD has a lower cardinality as those sets in HBD. Thus, the
two-minimal set may not relate to each other at all.
This also implies that any reasoning performed with the help of the minimal diagnosis of these two
sets will draw different conclusions. To show this impact let’s consider the agent draws its belief
either with the support of CHBD or it uses the minimal diagnosis of HBD to draw its conclusion. If
the HBD is used, we assume the robot beliefs a formula if it holds in every altered situation which is
a minimal diagnosis.
Let’s consider the example from above and add an additional sensing action αS

F2
which senses the truth

value of F2. Additionally, let’s assume that for each sensing action there is a fault mode ᾱS
F1

receptively
ᾱS

F2
which inverts the sensing result. The sequence [α;〈αS

F1
,⊥〉;〈αS

F2
,⊥〉] is now in contradiction. To

resolve the problem, the set of minimal diagnoses for CHBD would be {〈α,S0〉}. If HBD is used

50

4.6. Related Research

instead the set of minimal diagnoses would be {[α;〈ᾱS
F1
,⊥〉;〈ᾱS

F2
,⊥〉]}. Thus, CHBD would conclude

that action α is faulty whereas HBD would conclude that both sensing actions are faulty. Thus, the
robot would conclude ¬F1 and ¬F2 if CHBD would be used whereas HDB would conclude F1 and
F2. Thus, the robot can draw completely different conclusion if HBD or CHBD is used. Thus, when
using CHBD one should consider that it may lead to other conclusion then HDB if the influence an
action may have is big.

4.6. Related Research

Before we conclude the chapter, we will discuss some related research specific to this chapter.
Our work is based on the consistency based diagnosis presented in [113]. Although, as also argued
in the paper itself, the diagnosis method is not restricted to any system description, it was originally
designed for static system. Thus, it was assumed that the formulas of the system do not change over
time. This implied that one does not have to consider a sequence of actions. Instead, only a set of
components was examined. Moreover, the diagnosis was a set of components which is consistent with
the observations taken.
The idea of consistency based diagnosis was later extended in [85] and [5] to consider dynamic sys-
tem. The system consists of components but can also perform actions to change some parameters.
Additionally, observations can be made like sensing actions as we used it within this work. However,
in contrast to our approach, not the actions were considered to be faulty or not. Instead of specific ac-
tions were used which could alter a component from working to faulty. Thus, one does not search for
a set of actions to be faulty. Instead one searches for actions to insert to explain a certain observation.
As such the method still considered a system to be diagnosed and not the changes of the system.
The method of diagnosing a system which can evolve was further investigated in [4]. The approach
was extended to use a possible world semantic to capture the different possible explanations of the
fault. Thus, one does not calculate the diagnosis but use each diagnosis as one possible world. This
follows a similar idea as our definition of a belief of a robot. By using this possible world semantic
one can reason which components are faulty in every diagnosis, in none of the diagnosis or in a subset
of diagnosis. Due to this knowledge, one can plan to repair the system. Alternatively, one can use
the information to plan for sensing action to rule out different diagnosis. We will discuss a similar
planning method which rules out diagnosis for our problem domain in Chapter 7. The main difference
to our approach is still that the diagnosis defines components to be faulty instead of actions.
To deal with the problem that sensing action needs to be forgotten a method was proposed in [108].
The method defines that one can forget a sensing action by removing this sensing action from the
history. Thus, instead of ignoring the result of the sensing action one removes first the sensing action
from the situation term and afterward uses the situation term for the reasoning. This contrasts with
our approach which does not need to modify the situation term to forget the effect a sensing action
has.
In [117] a method based on consistency based diagnosis was presented which diagnosed plans. The
method uses a partially ordered plan and a set of partial observations about the world. If these obser-
vations are in contradiction with the plan a diagnosis is performed. The diagnosis is defined as a set of
actions which are faulty, like our approach. If an action is faulty those truth values of fluent instances
which are influenced by the nominal action are set to be no longer known by the robot. This is a
special case of the formulas ψF

α of our approach as discussed above. This restriction causes that one
cannot cover all cases an action may influence the world if it is executed fault. Let’s consider a robot
is stacking objects on top of each other on a table. If the robot now fails to stack an object, it might

51

Chapter 4. Consistency History Based Diagnosis

influence not only the objects location but also all other object locations. This can be caused as the
robot may collide with all objects on the table. Thus, we had generalized this approach and formalized
the approach using the formal theory of the situation calculus. Additionally, we have shown how the
agent can use the information on the diagnosis to draw a conclusion how the world looks like.
The diagnosis method of [117] was extended in [154]. The extension allowed to calculate the di-
agnosis in a distributed manner, thus, allowing the method to be applied to a multi-agent setting.
Furthermore, the method was extended to find the underlying root cause, e.g. the environment causes
the action to fail. This was used to assign different agents in the world to be guilty of certain faults.
The method still has the same differences to our work as [117].
Finally, it is important to mention that the usage of a guarded successor state axiom is not new. In some
earlier versions of the definition of the successor state axiom presented in [115] the precondition of
an action was used as guard. This is very like our usage of the guard condition. However, instead, we
guard the successor state axiom by the influence formula, the action precondition, and the predicate
to indicate an action fault.
The usage of guarded theories was extended in [118] and [23] to specify guarded sensing results and
action outcomes. This guarded conditions can be considered as the most general case whereas our
guards are only used to propagate the fault an action may have.

4.7. Conclusion and Future work

In this chapter, we have shown a method to tackle two main drawbacks of the classical history based
diagnosis. The first drawback is that the number of possible alternative situations may become infinite
if one needs to consider an infinite number of objects. The second drawback is that it is not always
feasible to describe how an action may fail. We addressed both drawbacks by using a fuzzy description
of the effect an action has.
Due to the usage of this description, it is sufficient only to find a set of actions to be blamed faulty
to restore a consistent history. As we are interested in reasonable explanations, we use those sets of
faulty actions which are minimal in their cardinality. We have shown how such a set can be calculated
efficiently by using a conflict driven search. Additionally, we have demonstrated how the robot can
draw its conclusions from such set of faulty actions. Furthermore, we have shown how to draw the
same conclusions if one uses default logic to avoid the explicit calculation of the set of faulty actions.
Finally, we have shown how the classical history based diagnosis and this approach relate to each
other on a theoretical basis.
It is left for future work to combine the classical approach of history based diagnosis with the approach
outlined in this chapter. This would give rise to the possibility to be specific if possible but still find a
diagnosis if no precise explanation can be given.

52

Chapter 5
Reusing Common Sense Invariants

In the previous chapter, we have discussed how to easy the specification of the faults an action may
encounter. However, in the definition of the history based diagnosis not only the action needs to
be specified. Additionally, a set of invariant is used to define the commonsense knowledge about the
world. This commonsense knowledge is used to draw an additional conclusion which allows detecting
a faulty action outcome.
Let’s consider the running example. Additionally, let’s consider that object O1 is in room R1 and the
robot is moving to room R2. If now the robot scans the room for an object O1 it detects the object
and thus conclude that object O1 is in room R2. However, the object is also in room R1 as this was
the initial knowledge about the object location and the robot has not moved this object. If the initial
knowledge base does not explicitly forbid the object O1 to be in another room, then R1 the robot is
happy to have magically duplicated the object. However, instead, if we use common sense we can
reason that no object can be in two places at once. Thus, the object can either be in R1 or R2 but not
in both rooms at the same time. Thus, if the robot uses common sense, it can detect an inconsistency
where otherwise none would have been detected.
As such it would be desirable to have as much common sense knowledge as possible about the world.
However, the drawback is that one needs to define this commonsense knowledge. This definition can
be a complex task as one needs not only to define a possible hug sets of axioms which hold but one
also needs to ensure that these axioms are consistent. Additionally, this specification may repeatedly
be done for different domains or environments.
Thus, it would be beneficial to reuse common sense knowledge if possible. This reuse becomes
especially interested as one may be able to reuse big commonsense knowledge bases such as Cyc
[77]. Often these knowledge bases are designed to allow a specific reasoning method. Thus, allowing
a fast inference on those knowledge bases. This specific reasoning method often hinders the easy
integration of such knowledge bases into the robotic system.
To address this problem, we follow the idea of ontology mapping, which can be used to construct large
knowledge bases out of smaller ones. We refer the interested reader to [61] for a survey of ontology
mapping methods. We map the knowledge of the robot into concepts used in the commonsense
knowledge base to check if the knowledge is consistent. The mapping allows that the knowledge of
the robot and the commonsense knowledge base use a different set of concepts. Furthermore, the
commonsense knowledge base may also have a different reasoning method than those utilized by the
robot for it is own knowledge base.
In this chapter, we will discuss how such a mapping can be defined. Additionally, how we can use

53

Chapter 5. Reusing Common Sense Invariants

this mapping to derive a method to reuse commonsense knowledge from other sources. The method
discussed in this chapter is based on the results presented in [132] and [93].
The remaining of the chapter is structured as follows. In the next section, we discuss some theoretical
results on the history based diagnosis we use. These results are later exploited to create a proper
implementation of the method. In Section 5.2 the theory how to in co-operating common sense from
other sources is discussed. This section is followed by a section which shows how to implement this
method by using Cyc [77] as an external source for common sense. Before we conclude the chapter,
we discuss some related research peculiar to this chapter in Section 5.4. Finally, we conclude the
chapter and point out some future work.

5.1. Some Theoretical Results on History Based Diagnosis

Before we show how we can map the knowledge of the robot into another knowledge base, we will
first state some theoretical results on the history based diagnosis itself. This results will help us to
derive a method which efficiently uses the external resource.
To state the first property, we make an assumption about the model of the actions. This assumption
does not restrict the effect of the actions. Instead, it only ensures that actions are modeled in such a
way that they do not introduce inconsistencies on there on.

Assumption 3. A primitive action α never contradicts an invariant if executed in a consistent situation
s:
D∗ |= ∀s.(Cons(s)∧ Invaria(do(α,s)))

Through this assumption, it is ensured that through the execution of primitive actions alone we do not
produce an inconsistency. Thus, we ensure that the robot does not perform a diagnosis without any
external evidence of a faulty action.
With the help of this assumption we can state the first lemma.

Lemma 7. The situation do(α,s) resulting from the execution of a primitive action α in a consistent
situation s is always consistent:
D∗ |= ∀s.α ∈ Aprimitive⇒ (Cons(s)⇒Cons(do(α,s))).

Proof. (Sketch). This follows trivially from the Assumption 3 and the observation that a primitive
action is not a sensing action. As such SF(α,s)↔ AO(α,s) per definition of the action.

Where Aprimitive is the subset of all actions which are primitive actions. The lemma states a primitive
action carries over the consistency of a situation. Thus, the robot will not create an inconsistency be
just executing primitive actions if the situation before was consistent.
We can use this lemma to define further when a situation can become inconsistent. First, as no
primitive action can cause an inconsistency, we can trivially conclude that only a sensing action can
cause an inconsistency. That is what one may expect if one considers history based diagnosis. We can
further specify when a sensing action leads to a contradiction with the following lemma.

Lemma 8. A sensing action α is inconsistent with a consistent situation s iff :
SF(α,s) 6≡ AO(α,s)
or
D∗ 6|= Invaria(do(α,s))

Proof (Sketch). This follows trivially from the definition of consistency.

54

5.2. Common Sense knowledge from another Sources

The lemma states that a sensing action can only cause an inconsistency if either the sensing result is
not as the robot expects it our if the commonsense of the robot yield an inconsistency after executing
the sensing action.
We further assume that the initial situation is properly model. This is formally stated through the
following assumption.

Assumption 4. The initial situation S0 never contradicts the invariant:
DS0 |= Invaria(S0)

With the help of assuming that the initial situation is properly model we can further investigate what
can cause an inconsistent situation. This is formally stated in the following theorem.

Theorem 3. A history s = do([α1, ...,α],S0) can only become inconsistent iff it contains a sensing
action:
D∗ |= ¬Cons(s)⇔∃α ∈ [α1, ...,αn].αi ∈ Asensing

Where Asensing is the subset of those actions which are sensing actions.

Proof. Through Assumption 4 we know that Cons(S0) is true. Through Lemma 7 we know that
the consistency will not change if a primitive action is performed. Thus Cons(s) remains true if s
comprises only primitive actions. Thus Cons(s) can only become false through a sensing action.

The theorem states that a situation becomes inconsistent only due to a sensing action. Thus, the robot
will have a consistent history till a sensing action is performed which causes an inconsistency.
We can now combine the results from Lemma 8 and Theorem 3 into the following lemma.

Lemma 9. A situation s = do([α1, ...,αn],S0) becomes inconsistent iff it contains a sensing action
and either there is a contradicting sensing result or the invariant is violated:
D∗ |= ¬Cons(s)⇔∃αi ∈ [α1, ...,αn].α ∈Asensing∧ [SF(α,s) 6≡ AO(α,do(α,s))∨¬Invaria(do(α,s))].

The lemma states that a situation only becomes inconsistent if a sensing action is performed and
the expected sensing result does not coincide with the real sensing result or if the commonsense
knowledge of the robot is in contradiction after the sensing action is executed. We will use this result
later to restrict the calls to the external commonsense knowledge as far as possible.

5.2. Common Sense knowledge from another Sources

As we outlined above in the motivation, we want to check the situation to conform to the common-
sense knowledge of an external source. To do so, we want to map the knowledge of the robot into
external the commonsense knowledge base. Through this limited mapping, we do not need to map
the complete theory of the situation calculus to the other knowledge base. Such a complete mapping
was for example proposed in [140].
To define the mapping between the knowledge of the robot and the commonsense knowledge base
we use two different languages. The language LSC is used to define the language and its associated
reasoning of the situation calculus. This reasoning is used to derive the knowledge the robot has. To
represent the language and the reasoning of the commonsense knowledge base we use LKB. Using
these two definitions, we now define the necessary mapping between the knowledge of the robot and
the commonsense knowledge.

55

Chapter 5. Reusing Common Sense Invariants

Definition 12. Function MLSC ,LK B : LSC ×S→ LK B represents the transformation of a situation and
an extended basic action theory to a theory in LK B .

As one could now use an arbitrary mapping between the two different knowledge bases, we specify
two properties which need to hold. These properties ensure that the result of the mapping can be used
to decide if, in the current situation, the common sense is consistent.
The first property state that used constants has the same semantic meaning in both knowledge bases.
Thus, it is only allowed to map a constant from one representation to another if the same semantics
are used in both representations. For example, the object O1 can only be mapped to an object in the
commonsense knowledge base but, e.g., not to a room.
The second property states that the mapping must maintain the consistency of common sense. Thus,
the mapping ensures that if we specified the knowledge of the commonsense knowledge base as part
of the knowledge of the agent, we would have the same result regarding the consistency. This property
is essential as otherwise, the mapping would not be useful at all. In case of an ontology mapping, a
similar property is used which is called the query property [2].
To define the second property formally, we use the set of invariant I which define the common sense
knowledge we are interested in. Such an invariant could be for example that an object is only at
one place at the same time. Additionally, to the invariant, we specify a certain implementation I
of the invariant. For example, one can use first order to define the invariant that an object is not in
two different rooms at the same time as follows ∀o.@r1,r2.isAt(o,r1)∧ isAt(o,r2)∧ r1 6= r2. With
ISC(I) we specify the implementation of the invariant in the situation calculus. Furthermore, we
specify through IKB(I) the implementation of the invariant in the commonsense knowledge base. It
is important to mention that the implementation of the invariant ensures that the reasoning system
associated with the invariant ensures a proper conclusion of the invariant. Thus, the interpretation for
the implementation I(I) needs to be I regardless of the concrete implementation. Due to the definition
of the implementation of an invariant, we can now state the property which needs to hold for the
knowledge mapping more formally as follows.

Definition 13. The mapping MLSC ,LK B is proper if the transferred situation s together with the com-
mon sense IKB(Invaria(s)) lead to a contradiction if and only if the situation s together with the
original implementation of the commonsense knowledge lead to a contradiction:
IKB(Invaria(s))∪MLSC ,LK B (D∗,s) |=LK B ⊥⇔D∗∪ II(Invaria(s)) |=LSC ⊥

The definition ensures that regardless which reasoning is used the invariant only lead to an inconsis-
tency if also the other representation would have resulted in an inconsistency.
With the mapping defined we can now state the following lemma combining the mapping property
and previously findings.

Lemma 10. A sensing action α which does not lead to a contradiction in the expected and the real
sensing result is inconsistent if the following holds:
IKB(BK)∪MLSC ,LK B (D∗,s) |=LK B ⊥.

Proof (Sketch). This follows directly from Lemma 8 and the Definition 13 of a proper mapping.

The lemma states to check if a sensing action does not lead to a contradiction we can use the external
commonsense knowledge base together with the mapping. Thus, if we have a proper mapping we can
reuse the commonsense knowledge of another source.
To perform an implementation in practice, we place some further restrictions to the mapping. First,
we assume only a finite number objects and fluents in the knowledge base. This is necessary to

56

5.3. Implementation using Cyc

allow a complete mapping of the knowledge base of the robot. Additionally, we assume that the
mapping maps all fluents to a certain truth value. This is done to avoid any different interpretations
between a reasoning system with an open and a closed world assumption. Please note that these
restrictions are not necessary from the theoretical point of view but should be considered to allow a
proper implementation.

5.3. Implementation using Cyc

Following the above definition of a proper mapping, we implement such a mapping between the
knowledge base of the robot and the commonsense knowledge base Cyc[77]. Cyc is a commonsense
knowledge base which includes many other knowledge bases. The reasoning system of Cyc is a based
on higher order logic to allow a complex reasoning. Through this higher order logic, the predicates
and properties used in Cyc can be easily defined. One such property which can be defined for a
predicate is partly uniqueness. This property ensures that if a predicate is specified through constants
except for one variable the variable is uniquely bound to one constant. The predicate defining the
location of the object has this property. Thus, if the object is fixed the room is uniquely defined.
In to perform the mapping so we assume a fixed number n of constants c1, . . . ,cn. Additionally, we
assume a fixed number m of relational fluent terms F1(x̄1,s), ...,Fm(x̄m,s). The set of variables for the
ith fluent is represented with x̄i. The mapping function is defining with the help of two separate func-
tions. The first function maps the constants from the extended basic action theory to Cyc constants.
The second function maps the fluents from the extended basic action theory to Cyc predicates.

Definition 14. For constant symbols {ci} we define a transformation functions RC : ci ∈ LSC → LK B .

Definition 15. For the fluent Fi which is known to be true we define a transformation function RFi :
T |x̄i|→ LK B .
For the fluent Fi which is known to be false we define a transformation function R̄Fi : T |x̄i|→ LK B .
Where T denotes a term.

Using those two function we define a proper mapping form the extended basic action theory to Cyc
as follows.

Definition 16. The mapping MLSC ,LK B (D∗,s) consists of a set of transformed fluents and constants
such that:

MLSC ,LK B (D
∗,s)≡

{RFi(x̄i)|∀i∀x̄i.(D∗,s) |=LSC Fi(x̄i,s)}
⋃
x∈x̄i

RC(x)∪

{R̄Fi(x̄i)|∀i∀x̄i.(D∗,s) |=LSC ¬Fi(x̄i,s)}
⋃
x∈x̄i

RC(x))

Before we show the functions to map the constants and fluent expression it is important to notice
that we are only interested in steady invariant [139]. These invariant holds for all the time in the
environment. In contrast stabilizing invariant [139] hold after some time has elapsed, e.g., a ball
will hit the ground after it has started to fall. As stabilizing invariant are per definition depending on
change in the environment one would need to define how the environment can change to specify such
invariant. Thus, also the dynamics of the environment would need to be mapped. Additionally, one
needs to properly deal with the definition of consistency in such a setting, thus consistency hold after
checking the invariant for 10 seconds, 10 minutes or forever.

57

Chapter 5. Reusing Common Sense Invariants

The function to perform the mapping are defined as follows. We define now the mapping of the
constants from the extended basic action theory to Cyc as specified in Listing 5.1∗.

Listing 5.1: Mapping of the Constants

RC(x)→
(i s a {x} P a r t i a l l y T a n g i b l e)

The mapping of the fluents in the extended basic action theory to predicates in Cyc is specified in
Listing 5.2.

Listing 5.2: Mapping of the Fluents

RFisAt (x,y)→
(i s a s t o r e d A t _ {x} At t achm en tEven t)
(ob j ec tA dhe redTo s t o r e d A t _ {x} {y })
(o b j e c t A t t a c h e d s t o r e d A t _ {x} {x })

R̄FisAt (x,y)→
(i s a s t o r e d A t _ {x} At t achm en tEven t)
(n o t (ob j ec tA dhe redTo s t o r e d A t _ {x} {y }))
(o b j e c t A t t a c h e d s t o r e d A t _ {x} {x })

RFholding(x)→
(i s a robo t sHand Hold ingAnObjec t)

R̄Fholding(x)→
(n o t (i s a robo t sHand Hold ingAnObjec t))

RFcarryAnything →
(i s a robo t sHand Hold ingAnObjec t)

R̄FcarryAnything →
(n o t (i s a robo t sHand Hold ingAnObjec t))

Due to the mapping, we do not longer need to define the invariant of the common sense knowledge.
Instead this invariant is checked by Cyc. Let’s consider a simple example we map the fluent isAt to the
class AttachmentEvent for the predicate storedAt_{x}. This class has the property that it only allows
one object of the class PartiallyTangible to be attached to one location. Otherwise, Cyc reports an
inconsistency.
We can use now the mapping to check if a given situation is consistent. This is done with the help of
Algorithm 3.
The algorithm first checks if the action is a sensing action. If not the action returns true as only sensing
action can lead to an inconsistency following Theorem 3. If the action is a sensing action, it is first
checked if the expected sensing result is consistent with the reported sensing result. If this is not the
case, inconsistency is reported. Otherwise, the algorithm performs the mapping to Cyc and use Cyc
to check for consistency. Thus, by using Lemma 10 we ensure that the algorithm properly detects an
inconsistency if there is one. Furthermore, as we explore Theorem 3 to save unnecessary mappings
and calls to check the consistency.

5.4. Related Research

Before we conclude the chapter, we will discuss some related research which is specific to this chapter.

∗{x} and {y} represent the unique string representation of the related constant in Cyc.

58

5.5. Conclusion and Future work

Algorithm 3: checkConsistency
input : α . . . action to perform in the situation,

s . . . situation before execution action α

output: true iff situation is consistent

1 if α ∈ Asensing then
2 if SF(α,s) 6≡ AO(α,do(α,s)) then
3 return ⊥
4 end
5 s′ = do(α,s)
6 M = MLSC ,LK B (D∗,s′)
7 if ¬checkCycConsistency(M) then
8 return ⊥
9 end

10 end
11 return >

[13] presented a method which makes it possible to reuse the reasoning capabilities from one logic
in another logic. This contrasts with our approach as we do not want to transfer the reasoning capa-
bilities. Instead, we want to use the use an external oracle which verifies if a given situation is valid.
Thus, we can optimize the reasoning system depending on if it should reason about the actions or
common sense.
The method proposed in this chapter does not rely on a certain knowledge representation. Thus, one
could use another method to check the consistency in contrast to Cyc. On such system, which can
perform such a check was proposed in [59] which was extended in [58]. The system uses a simulation
to check physical common sense. With the help of such a simulation on can check if the state of the
world is stable. It would also open the possibilities to check invariant which is not just steady but
stabilizing. In such a setting one would need to define consistency properly.
Finally, we want to mention the system proposed in [64] which used a naive physical simulation to
check if the interaction of a robot with its environment is faulty. This is done by transferring the
knowledge of the current world in the simulation and afterward simulate the action to check if this
action is successful. Although this approach has similarities to check if a situation is consistent, we
have incorporated this check into a diagnosis system. Thus, we can not only detect a faulty execution
but also perform reasoning to find the root cause of the fault. Additionally, one can use this information
to reason how the environment looks like. This enables the robot to react properly.

5.5. Conclusion and Future work

History based diagnosis uses common sense knowledge to detect inconsistencies. The specification
of such a common sense knowledge is a challenging and time-consuming task. The complexity of the
task is caused as the commonsense knowledge base needs to capture all relevant facts without causing
any inconsistencies on its own.
To address this problem, we have shown in this chapter how to use commonsense knowledge from
external sources. We have defined how a mapping can be defined between different knowledge rep-
resentations. Furthermore, we have shown which theoretical properties need to hold for this mapping

59

Chapter 5. Reusing Common Sense Invariants

to allow the usage of this mapping for a consistency check. Additionally, we have shown an imple-
mentation which uses this mapping to test the consistency of a situation. This implementation uses
several theoretical results of the history based diagnosis shown in this chapter to reduce the calls to
the external commonsense knowledge base.
For future work, it is of interest to in co-operating other knowledge bases. One example is [11] which
can be used to define physical systems and their properties. Thus, such an integration could allow
reasoning about the physical system employed by the robot more easily.
Additionally, it is left for future work to perform the mapping in a lazy fashion. Thus, only those parts
are mapped which are currently needed to check the consistency. This would result in a smaller run
time of the mapping approach.

60

Chapter 6
Belief-Aware execution of High Level
Programs

In the previous Chapters, we discussed methods which ease the use of the history based diagnosis.
The robot can use these methods to generate an explanation if a fault has happened. Thus, the robot
can address the qualification problem with the help of history based diagnosis. However, with the
creation of an explanation alone, the robot cannot perform the necessary reasoning to decide which
action should be taken as next.
To address the problem which action should be performed next, the robot needs to use the diagnosed
history of performed actions to generate a belief. This belief needs to represent what the robot knows
for certain. Thus, allowing the robot to draw conclusions which are very likely to be true. With the
help of a series of such conclusion, the robot can decide which action to perform next.
One method to decide which action should be taken next is with the help of the IndiGolog [20]
transition semantic. This semantic uses the high-level program to decide which action to perform
next. This program is interpreted using the current situation of the robot. Thus, several queries on the
current situation are performed before the next action is chosen. These queries only take the current
situation into account and not the current belief of the agent. Thus the robot may make a dangerous
decision. Thus, one needs to link the belief created with the help of the diagnoses of the history
together with the transition semantic provided by IndiGolog.
In this chapter, we will discuss how the robot can create a belief out of the diagnosis of the history.
Furthermore, we will discuss how one needs to adopt the IndiGolog transition semantic to decide the
next action with the help of the belief. The integration of the belief of the robot into its high-level
control presented in this chapter is based on the work presented in [92].
The remaining of the chapter is structured as follows. The next section discusses how the robot can
draw a belief from the result of the history based diagnosis. In Section 6.2 we will discuss how this
belief can be queried efficiently to allow the robot to decide in reasonable time. Afterward, we will
discuss how to change the original transition semantic of IndiGolog to integrate the belief of the robot
proper. This section is followed by a section which discusses briefly the formal relation between the
original transition semantic and the transition semantic proposed in this chapter. Finally, we conclude
the paper and point out some future work.

61

Chapter 6. Belief-Aware execution of High Level Programs

6.1. Definition of Belief for an agent

As all decision, the robot makes to choose the next action it should perform should be anchored
in the belief of the robot we first need to define what the belief of the robot is. To do so, we will
present two definitions of the robot’s belief. The first definition defines the belief if the robot using
the classical history based diagnosis. The second definition is used if the robot uses the diagnosis
approach presented in Chapter 4.
To define the belief of the robot if the classical history based diagnosis is used, we first need to
define the basis which should be used to form the belief. If the robot uses the classical history based
diagnosis, the robot alters the history to create a consistent history. Additionally, each altered history
has a cost assigned to it. This cost represents the likelihood of the changes performed on the situation.
The lower the costs, the more likely the changes are. As presented in Chapter 2 a diagnosis is defined
as follows.

Diag(s′,s,v) (6.1)

Where s′ is the altered version of s. Additionally, s′ is consistent with the observations made so far. v
is the cost imposed by the changes. As we are interested in those diagnoses which are the most likely
one we define the set of minimal diagnosis as those altered situations with the minimal costs.

minDiag(s) .
= {s′|Diag(s′,s,v)∧@s′′,v′′.Diag(s′′,s,v′′)∧ v′′ < v} (6.2)

With the help of the minimal diagnosis, we can define what the robot belief to hold. The robot belief
those formulas to hold which hold in each minimal diagnosis.

Belief (φ,s) .
= ∀s′ ∈ minDiag(s).φ(s′) (6.3)

Through this definition, the robot is cautious as only those formulas are belief which holds in each
altered situation. However, the robot is not too cautious as only those alternative situations are con-
sidered which are equally likely and are the most likely one.
Additionally, we can state that if no fault occurs the robot will draw the same conclusion from the
belief if it would use the situation term only. We state this property more formally in the following
corollary.

Corollary 2. If the belief of the robot is formed according to Equation 6.3 and updated according to
Equation 6.2 and no fault is observed then it holds that Belief (φ,s) if and only if D∗ |= φ(s).

Proof (Sketch). This follow directly from Equation 6.3, Equation 6.2 and the definition of a minimal
diagnosis in classical history based diagnosis.

To define those formulas, the robot believes if the robot uses the consistency history based diagnosis
presented in Chapter 4 one can follow a similar thought. The robot’s belief should be formed by those
formulas which hold considering the most likely explanations. The set of the most likely diagnosis
is defined as ∆∗, according to Chapter 4. Using those diagnoses together with the definition of the
reasoning used for such a diagnosis δ Dcons(δ) we can define the belief of the robot following the
definition presented in Chapter 4 as follow.

Belief (φ,s) .
= ∀δ∗ ∈ ∆

∗.Dcons(δ) |= φ(s) (6.4)

As in the case of classical history based diagnosis the robot performs a cautious reasoning but is not
to cautious.
Again, we can state that if no fault occurs the reasoning with the belief is the same as if it would use
the situation term only. We state this property more formally in the following corollary.

62

6.2. Efficient Querying the Belief

Corollary 3. If the belief of the robot is formed according to Equation 6.4 and no fault is observed
then it holds that D∗ |= Belief (φ,s) if and only if Dcons(/0) |= φ(s).

Proof (Sketch). This follow directly from Equation 6.4 and the definition of a minimal diagnosis in
consistency history based diagnosis.

Regardless of the used history based diagnosis the agent will draw the same conclusion if no fault has
occurred. Thus, the belief of the robot will only be different than the classical reasoning if a fault is
observed. This is stated more formally in the following lemma.

Lemma 11. If the belief of the robot is defined through Equation 6.3 or Equation 6.4 and no fault has
been observed the robot will draw the same conclusion as with the original situation calculus.

Proof. This is a direct result of Corollary 2 and Corollary 3.

6.2. Efficient Querying the Belief

To use the belief of the robot to take a decision which next action should be performed one needs to
ensure that the queering of the belief can be performed efficiently. To address this problem two issues,
need to be tackled. The first issue is the time spent to calculate the explanation itself. Thus, the faster
the diagnosis can be calculated the faster the robot can derive the diagnosis used to answer the queries.
We refer the interested reader to [109] for a discussion of different methods to improve the diagnosis
calculation for classical history based diagnosis. The second issue to address, to perform an efficient
reasoning with the belief, is how the reasoning is done if the explanation is known. This reasoning
is of particular interest as this reasoning is often performed whereas the diagnosis calculation is only
performed if a fault has occurred. Thus, any improvement in the reasoning if a diagnosis is known has
a drastically impact on the overall performance on answering a query with the belief.
To address the issue of efficient answering a query if the explanation of a fault is known we use the
following observations. First, most of the time one performs several queries using the current situation
to make a decision. Second, the impact an action has is most of the time very limited. Whereas the
queries to answer are often spanning over several fluents. Thus, if one needs to answer the queries,
one needs to consider several action effects at the same time. We will exploit both observations by
choosing a reasoning method which trades the costs of propagating the effect of an action against the
costs of performing a query in the current situation.
To perform a reasoning using the current situation three options exists. Either one uses the logical the-
ory to complete this reasoning. Such a reasoning is complex as one needs to consider the second order
inductive axiom to create a valid situation term. To avoid the reasoning using this axiom one can use
regression. As we have discussed in Chapter 2 regression rewrites the formula till the initial situation
such that one can answer the query in the initial situation. To perform this rewriting, regression roles
back the query using the situation term and the successor state axioms. Thus, the time spent to answer
a query depends on the length of the situation. As such the method is very efficient for short situations,
terms are considered but can cause long reasoning times if the situation term becomes long. Thus this
kind of reasoning may become very inefficient if the robot performs many actions. The last method
to perform reasoning is by using progression. As we have discussed in Chapter 2 progression updates
the initial situation such that the effect of the performed action is reflected. Thus, one can always use
the advanced initial situation to answer a query. This advancement implies that the performance on
the query answer does no longer depend on the length of the situation. Instead one trades the cost of

63

Chapter 6. Belief-Aware execution of High Level Programs

advancing the initial situation with the costs of answering the query. As argued above such a tradeoff
is preferable if one considers the two above mentioned observations made on a robotic system.
With the help of progression, one creates a knowledge base which represents the current state of the
world and use this knowledge base to answer the query. Such a reasoning can be simply performed if
no fault has occurred. However, if a fault has occurred, one needs to deal with different possible expla-
nations. Each of this hypothesis represents one current state of the world and needs to be considered
during reasoning. To use the hypothesis for the reasoning, we need to create a knowledge base per
hypothesis. Each of this knowledge bases is advanced separately and afterward used in combination
to answer the query. Using Algorithm 4 the advancement of the knowledge bases is performed. The

Algorithm 4: AdvanceKnowledgeBases
Data: α . . . the current executed action
Data: s . . . the current situation
Data: AO(α,s) . . . the action outcome
Data: DS0 . . . the knowledge base of the original initial situation
Data: W . . . the current set of alternative worlds. Consisting of their hypothesis about the faults

and the resulting state of the world.
Result: W ′ . . . the new set of alternative worlds

1 begin
2 W ′ = {} ;
3 if α ∈ Asensing then
4 foreach 〈h,kb〉 ∈W do
5 if checkIfConsistent(h,α,AO(α,s)) then
6 h′ = addToHypothesis(h,α) ;
7 kb′ = Progress(kb,α,AO(α,s)) ;
8 W ′ =W ′∪{〈h′,kb′〉} ;
9 end

10 end
11 if W ′ = /0 then
12 H ′ = caculateHypothesis(s,α,AO(α,s)) ;
13 foreach h′ ∈ H ′ do
14 kb′ = Progress(DS0 ,do(α,s),h′) ;
15 W ′ =W ′∪{〈h′,kb′〉} ;
16 end
17 end
18 else
19 foreach 〈h,kb〉 ∈W do
20 h′ = addToHypothesis(h,α) ;
21 kb′ = Progress(kb,α) ;
22 W ′ =W ′∪{〈h′,kb′〉} ;
23 end
24 end
25 end

algorithm first checks if the current action is a sensing action. If this is the case, the algorithm exploits
the theoretical results presented in Chapter 5, which states that only a sensing action can lead to a

64

6.2. Efficient Querying the Belief

contradiction. The algorithm exploits this result by first checking which hypothesis of faulty actions
is still consistent with the currently performed action and the sensing result. If the hypothesis is con-
sistent, the algorithm advances the hypothesis by advancing it with the current action. Additionally,
the knowledge base which is associated with the hypothesis is advanced with the current action and
sensing outcome. The advanced hypothesis together with its advanced knowledge base is afterward
added as the new alternative world.
If no hypothesis remains no hypothesis is consistent with the current action. Thus, the algorithm
checks if the alternative world set is empty which is verified in Line 11. In such a case a new set
of hypothesis needs to be generated. For each of this hypothesis, the initial knowledge base needs
to be progressed till the current situation. This progression needs to consider the current hypothesis
to create a new knowledge base which is associated with this new hypothesis. These new alternative
worlds are gathered and returned by the algorithm.
If the current action is not a sensing action, one can exploit the theoretical results presented in Chapter
5. As only a sensing action can lead to inconsistency, the algorithm only advances the hypothesis with
the current action. Additionally, the knowledge bases which are associated with the hypothesis are
advanced. Finally, both the advanced hypothesis and the associated advanced knowledge bases are
gathered as new alternative worlds. The algorithm terminates in O(|H|× |F |) steps, thus the number
of hypothesis should be as small as possible to ensure a fast progression.
To use this algorithm one needs to define what a hypothesis is which defines the world. Additionally,
depending on the hypothesis used the advancement of the hypothesis may look differently. The hy-
pothesis we are considering is those which are either formed by the classical history based diagnosis
or by the consistency history based diagnosis presented in this thesis.
If we consider the classical history based diagnosis the set of hypothesis H for a current situation is
define by the set of alternative situations which form the minimal diagnosis.

H = minDiag(s) (6.5)

Due to this definition, every hypothesis h is a situation term s. Thus, we can advance a hypothesis h
(represented by situation s) by the action α with standard means of the situation calculus as follows.

s′ = do(α,s) (6.6)

Where s′ is the situation which represents the advanced hypothesis h′.
If we consider the consistency history based diagnosis approach presented in this thesis the set of
hypothesis H correspond to the set of minimal diagnosis ∆∗.

H = ∆
∗ (6.7)

Due to this definition, every hypothesis h is a diagnosis δ describing a minimal set of actions which
are considered to be faulty to generate a consistent situation. To advance such a hypothesis h nothing
needs to be changed on the hypothesis h as we consider the action α which should advance as not
faulty. Thus, the diagnosis does not alter. Thus, the advancement results in no change.

h′ = h (6.8)

With the help of Algorithm 4 one can always use the current set of alternative worlds to perform the
reasoning. This reasoning is done by using the different knowledge bases of the alternative worlds to
decide if the agent believes a formula or not. The reasoning is done as follows.

Belief (φ,s) .
= ∀kb.(∃h.〈h,kb〉 ∈W)→ kb |= φ(s) (6.9)

65

Chapter 6. Belief-Aware execution of High Level Programs

The belief is those formulas which can be derived with all the knowledge bases which are within the
current alternative worlds W . Thus, the answering of the query becomes a set of simple reasoning
tasks on a knowledge base instead of a basic action theory.
The advancement of all alternatives can become a complex task, especially if one needs to consider
that the number of hypotheses could be huge. Thus, one would prefer only to advance one knowledge
base which represents the belief of the robot. To do so, we need to make the following assumption.

Assumption 5. The number of hypothesis h is finite

By exploiting the assumption, we can merge the knowledge bases of the robot. This is done by the
following observations due to a finite set of hypothesis one can redefine the belief as follows.

Belief (φ,s) .
=

∨
kb.∃h.〈h,kb〉∈W

|= φ(s) (6.10)

Thus, one can create a knowledge base KB which captures the belief of the robot by creating a dis-
junction of the different knowledge bases which define the alternative worlds.

KB .
=

∨
kb.∃h.〈h,kb〉∈W

kb (6.11)

As we are interested in using only this knowledge base we need to ensure that we can simple progress
this knowledge base instead of each knowledge base separately. Using the assumption from above we
can state the following theorem to show that one needs only to progress KB.

Theorem 4. If a knowledge base KB which consisting of n knowledge bases KB = kb1 ∨ . . .kbn is
advanced by the action α to the knowledge base KB′ then it holds under Assumption 5 and a causal
completeness assumption of actions that KB′ |= F ↔

∨
kb.∃h′.〈h′,kb′〉∈W ′ kb |= F. Where W ′ is the result

of advancing each hypothesis and corresponding knowledge base separately.

Proof (Sketch). Proof by contradiction.
Let’s assume there exists a fluent F such that KB′ |= F but

∨
kb.∃h′.〈h′,kb′〉∈W ′ kb 6|= F . We need to

distinguished two cases of how one can reason that F holds. Either F was true before or caused due
to progression to be true.
In the first case, the fluent was not changed. Thus it needs to holds that the separate progression has
changed the value of the fluent such that ¬F holds in at least one alternative. Thus, there is an effect
axiom θ→¬F . Furthermore at least in one alternative kb needs to hold θ. If it holds in all alternatives,
it does also hold in KB. Thus, the advancement of KB would cause ¬F , which causes that KB′ 6|= F .
Thus, there needs to exist at least one alternative such that θ does not hold. Thus KB contains θ∨¬θ.
This result implies that the effect axiom can be applied but also that the original value can be carried
over. As such F does not hold in the progressed knowledge base KB′.
In the second case, the fluent was changed thus it needs to hold that there exists an effect axiom θ→F .
As F was caused due to progression it holds that KB |= θ. Thus, it further holds that each alternative
knowledge base kb |= θ. Thus, the advancement of each of this knowledge bases needs also to yield
F .
Let’s assume there exists a fluent F such that KB′ 6|= F but

∨
kb.∃h′.〈h′,kb′〉∈W ′ kb |= F . We need to

distinguished two cases of how one can reason that F holds. Either F was true before or caused due
to progression to be true.
In the first case, there needs to exists an effect axiom of the following form axiom θ→ ¬F which
cause the fluent F to be false. This effect axiom either causes that ¬F holds in KB′ or that neither

66

6.2. Efficient Querying the Belief

F nor ¬F holds. If ¬F holds that it follows that KB |= θ holds. Thus ¬F needs also to hold in the
knowledge base which was created by separately progressing each knowledge base. If neither F nor
¬F holds then neither θ nor ¬θ holds in KB. Thus, there exists at least one alternative kb 6|= ¬θ. Thus,
the progression of at least one alternative cannot conclude F .
In the second case, the fluent was changed thus it needs to hold that there exists an effect axiom
θ→ F . As F was caused due to progression it needs to hold that for each alternative it holds that
kb |= θ. Thus, it further holds that KB |= θ. Thus KB′ |= F . This result is also a contradiction to the
assumption.

The theorem states that if one progresses the combined knowledge base one can draw the same con-
clusion as if one would progress the separated knowledge bases if Assumption 5 holds.
With the help of Theorem 4 we can now change Algorithm 4 into Algorithm 5 which uses the com-
bined knowledge base for progression. The algorithm first checks if the current action is a sensing

Algorithm 5: AdvanceKnowledgeBases2
Data: α . . . the current executed action
Data: s . . . the current situation
Data: AO(α,s) . . . the action outcome
Data: DS0 . . . the knowledge base of the original initial situation
Data: KB . . . the current knowledge base of the robot
Result: KB′ . . . the new knowledge base of the robot

1 begin
2 if α ∈ Asensing then
3 if isConsistent(KB,α,AO(α,s)) then
4 KB′ = Progress(KB,α,AO(α,s));
5 else
6 H ′ = caculateHypothesis(s,α,AO(α,s)) ;
7 KB′ =⊥ ;
8 foreach h′ ∈ H ′ do
9 kb′ = Progress(DS0 ,do(α,s),h′) ;

10 KB′ = KB′∨ kb′ ;
11 end
12 end
13 else
14 KB′ = Progress(KB,α);
15 end
16 end

action. If this is the case, the sensing action is checked if it is consistent with the belief of the agent.
Please, not that a sensing action can only be inconsistent with the current belief of the agent if all
hypothesis is inconsistent with the sensing result. This inconsistency is a direct consequence of The-
orem 4. If the sensing action is consistent with the current knowledge base, the knowledge base is
progressed. Otherwise, all hypothesis is calculated, and the knowledge base is created by a disjunction
of all the progressed alternatives. If the action was not a sensing action, the knowledge base is simply
progressed. The algorithm terminates in O(|H|× |F |) steps, thus the number of hypothesis should be
as small as possible to ensure a fast progression.

67

Chapter 6. Belief-Aware execution of High Level Programs

As we also progress the merged knowledge base, not every progression method can be simply applied.
Some of the progression methods need a certain structure of the initial knowledge to be applied. As
the initial knowledge base is the only thing we change due to the merging of the knowledge bases, we
will discuss two progression methods which need a certain structure of the initial knowledge bases.
The progression method was part of the survey of progression methods presented in [147].

Relative complete knowledge base If one performs progression with a relative complete knowl-
edge base, the initial knowledge base needs to have the following structure.

∀~x.F(~x,S0)≡ φ(~x) (6.12)

In the above formula, φ needs to be situation independent. Through this form of initial knowledge,
one can use the successor state axioms to perform the progression. The progression is done by re-
placing the right-hand side of the successor state axiom with the definition of the fluent of the current
knowledge base. This replacement yields a formula with the same structure again.
Unfortunately, due to the disjunction of the knowledge bases, we disrupt this structure. As such the
progression method, can’t be simply applied to progress the combined knowledge base.

Bounded unknowns If one performs progression with bounded unknowns in the initial knowledge
base the initial knowledge base has the following structure.

∃~w.e(~w)∧
∧
Fi

.∀~x.Fi(~x,S0)≡ φ(~x,~w) (6.13)

Where e is situation independent and defines a constrain on the variables ~w which is used in the fluent
terms.
As the core structure of the initial knowledge does not allow disjunctions as it was the case for the pre-
vious progression method, it is not possible to use this progression method with the above mentioned
merged knowledge bases.

6.2.1. Progression for fault based history based diagnosis

Regardless of the algorithm, we use to create the belief of the robot, in either case, one needs to
progress the initial knowledge base for each calculated hypothesis. If we consider the case of the
classical history based diagnosis, we deal with an alternative situation. Thus, one can use standard
progression method to advance the knowledge base as a situation term is known. We refer the inter-
ested reader to [147] for several progression methods.
The only thing which needs to be considered is that the progression operator only considers the effect
an action has. Besides the effect, an action has we also need to deal with the sensing result of this
action. The dealing with the sensing result can be simply done. As a sensing action only asserts a
formula in the current situation we just need to add the following formula to the current knowledge
base to properly progress the knowledge base in case of a sensing action.

AO(α,S0)↔ SF(α,S0) (6.14)

In the above formula, α is the currently performed sensing action. Additionally, we must add either
AO(α,S0) or ¬AO(α,S0) to the knowledge base depending on the action outcome.
Unfortunately, not all sensing action can be combined with ever progression method. Some of the
progression methods demand a certain structure of the initial knowledge base. As such we add the

68

6.2. Efficient Querying the Belief

effect of a sensing action to the initial knowledge base this structure can become disrupted. We will
briefly discuss in the remaining of the subsection two progression method imposing constraints on the
initial situation and their restrictions on sensing actions.

Relative complete knowledge base In case of progression using a relative complete knowledge
base we have the following structure.

∀~x.F(~x,S0)≡ φ(~x) (6.15)

As such we can’t use complex sensing results. Especially any kind of quantification cannot be repre-
sented. Thus, we restrict the sensing result to the following form.

SF(α(~x,s)≡ F(~y,s) µ ψ(~y) (6.16)

Where~y is a subset of variables of~(x). And there are no free variables in ψ. Furthermore µ is a binary
logical operator. Thus, we either need to add F(~t,S0) or ¬F(~t,S0) to the knowledge base where~t is
a vector of constants. This allows us to simple add the sensing formula by either changing the initial
knowledge base to.

∀~x.F(~x,S0)≡ φ(~x)∧~x =~t µ ψ(~x) (6.17)

Respectively.

∀~x.F(~x,S0)≡ φ(~x)∧¬
(
~x =~t µ ψ(~x)

)
(6.18)

Bounded unknowns If one allows progression with bounded unknowns the initial knowledge base
has the following structure.

∃~w.e(~w)∧
∧
Fi

.∀~x.Fi(~x,S0)≡ φ(~x,~w) (6.19)

Through the quantification of the initial knowledge base we can use quantification in the sensing
formulas. For simplicity, we will only present the version with all quantification.

SF(α(~x,s)≡ ∀~z.F(~y,~z,s) µ ψ(~y,~z) (6.20)

Where~y is a subset of variables of~(x). And there are no free variables in ψ. Furthermore µ is a binary
logical operator. Thus, we either need to add ∀~z.F(~t,~z,S0) or ∃~z.¬F(~t,S0) to the knowledge base
where~t is a vector of constants. We can now change the initial knowledge base as follows considering
the index fluent Fk to be mentioned on the right-hand side of the sensing formula.

∃~w.e(~w)∧
∧
i 6=k

.∀~x,~z.Fi(~x,S0)≡ φ(~x,~w)∧∀~z.Fk(~x,S0)≡ φ(~x,~w)∧~x =~t µ ψ(~x,~z,s) (6.21)

Respectively.

∃~w,~z.e(~w)∧
∧
i6=k

.∀~x.Fi(~x,S0)≡ φ(~x,~w)∧Fk(~x,S0)≡ φ(~x,~w)∧¬
(
~x =~t µ ψ(~x,~z,s)

)
(6.22)

69

Chapter 6. Belief-Aware execution of High Level Programs

6.2.2. Progression for consistency based history based diagnosis

If one considers the robot builds its belief with the help of consistency history based diagnosis one
needs to consider how to incorporate the sensing results as well as how to deal with the modified
successor state axioms.
To consider the sensing axioms two cases need to be distinguished. The first case is that the current
action which is performed is deemed to be non-faulty. Thus, the sensing axiom applies as in the previ-
ous case of classical history based diagnosis. Moreover, such the same methods for the integration of
sensing action as discussed in the previous subsection can be used. The second case is that the current
action is considered to be faulty one does not need to consider the sensing axiom at all. Thus, one can
just omit the integration of the sensing axiom.
To perform a progression with the modified successor state axiom of the consistency history based
diagnosis we need to modify the successor state axioms to follow the common form of.

F(~x,do(α,s))↔ ϕ
+(α,~x,s)∨F(x̄,s)∧¬ϕ

−(~x,s) (6.23)

This common form is the basis for most of the progression methods to discuss the restriction which
need to be applied to allow progression. As the successor state axioms of the consistency history based
diagnosis does not follow this common form we need to modify these axioms into the following form.

F(~x,do(α,s))↔ ϕ
+(α,~x,s)∧

[
ψ

F
α(~x,s)→

(
¬
(
∃n. ¯fail(α,n)∧ curN(n,s)

)
∧Πα(s)

)]
∨(

∃n.F̄ ′(~x,n)∧ curN(n,s)
)
∧¬
[
ψ

F
α(~x,s)→

(
¬
(
∃n. ¯fail(α,n)∧ curN(n,s)

)
∧Πα(s)

)]
∨

F(~x,s)∧¬ϕ
−(α,~x,s)∧

[
ψ

F
α(~x,s)→

(
¬
(
∃n. ¯fail(α,n)∧ curN(n,s)

)
∧Πα(s)

)]
∨

F(~x,s)∧¬
(
∃n.F̄ ′(~x,n)∧ curN(n,s)

)
∧

¬
[
ψ

F
α(~x,s)→

(
¬
(
∃n. ¯fail(α,n)∧ curN(n,s)

)
∧Πα(s)

)]
(6.24)

The first case of the successor state axiom covers the case where no action has occurred and the fluent
value is set to true due to some action. The second case of the successor state axiom covers the case
where the action execution failed and the truth value is determined by F ′. The predicate F ′ is used to
decouple the truth value of the fluent from its past. As such this predicate, does not have any successor
state axiom. The last argument of the predicate n is a running number which is used to distinguished
the predicate instances depending on the time the robot has executed an action. The third case of the
successor state axiom covers the case where the action was not faulty and the fluent is influenced by
a negative effect axiom. The last case is by setting the fluent value to false if a fault has occurred and
the truth value of the predicate F ′ is false.
To make the predicate fail, indicating a fault of an action as well as the predicate F ′ used to decouple
the truth value of the fluent with its past situation independent we use a running number. This running
number is defined with the fluent curN. In the initial knowledge base, we state that the value is set to
0.

∀n.curN(n,S0)≡ n = 0 (6.25)

Furthermore, we advance the current number always by one with the following successor state axiom∗.

∀n,α,s.curN(n,do(α,s))≡ n = n′+1∧ curN(n′,s) (6.26)

Due to this special form the fluent curN can be simply progressed by increasing the value n for each
action. Thus, we will not consider this fluent in the remaining of our discussion.
∗We assume a proper axiomatization for the natural numbers.

70

6.3. Integration into IndiGolog execution

The successor state axiom stated in Equation 6.24 can now be used to analyze which restrictions need
to apply to use progression. In the remaining of the subsection, we will discuss several progression
methods presented in [147] which pose some constraints on the successor state axioms.

Strong context-free actions If progression with strong context-free actions is performed one con-
sidered that ϕ+ and ϕ− to be restricted to only contain equality constraints between~x and a vector of
constants. This restriction also implies that no situation depending formulas are allowed. As at least
the fluent curN is situation depended on this progression method cannot be used.
Instead one would need to ”compile“ the successor state axiom such that one replaces the fluent curN
by its only value. Thus, if all the actions effect, the action influence and the precondition of the action
are defined only with the help of equality constraints the method can be applied.

Context-free actions If progression with context-free actions is performed one considered that ϕ+

and ϕ− to be restricted to mention only situation independent predicates. Thus the same problems
occur as with the previous method as at least curN is situation depended. Again, one can use the trick
to ”compile“ the successor state axioms before applying them to use the method.

Local-effect actions If progression with local-effect actions is performed the variable vector ~x of
the fluent needs to be contained in any variable vector ~y of any action mentioned at the right-hand
side. Additionally, all predicates use only those variables referred to in action. Thus, if the action
is executed all variables are either bound, or the expression becomes trivially false due to the unique
name assumption of actions. Thus, this method can be applied if all conditions of the action effect,
the action influence and the precondition of the action using only variables mentioned in ~y. Please
note ¯fail is restricted to have only variables of~y as an action term is used. Additionally, the predicate
F ′ does only mention the variables~x thus this predicates does comply with the restrictions.

Normal actions If progression with normal actions is performed the successor state axioms either
have the local-effect property or they use only fluents which have the local effect property for the
current situation. As in the previous case of local-effect actions the progression method can be applied
if all conditions of the action effect, the action influence and the precondition of the action comply
with the restrictions.

6.3. Integration into IndiGolog execution

Besides the definition of the belief of the robot and how to perform an efficient reasoning with this
belief one needs to consider how to integrate this belief into the high-level control of the robot. As
the integration depends on the high-level control of the robot, we focus on one high-level control.
We focus our attention to IndiGolog. As we have discussed in Chapter 2 IndiGolog allows to mix
declarative and imperative programming. As such it allows different programs ranging from pure
imperative to pure declarative. Thus, covering a wide range of possible high-level control approaches.
To integrate the belief of the robot into IndiGolog on could just use the existing transition semantic of
IndiGolog and replace the queries to the robotic system with queries to the belief. Unfortunately, this
does often not lead to the desired result. Let’s consider a simple example to point out the problem we
are facing. Let’s consider the following program δ = if φ then nill else α endif where nil is the empty
program and α is some action. If we would modify the transition semantic of IndiGolog just to use
the belief of the agent instead of the robot itself the program would have the decision tree depicted in

71

Chapter 6. Belief-Aware execution of High Level Programs

Figure 6.1.: Decision tree of a simple high-level control program.

Figure 6.1. If the robot currently believes the condition φ to hold the if branch is taken and program
finish with success. If the robot currently believes ¬φ the else branch of the program is taken. It the
robot neither belief φ nor ¬φ the robot is not able to decide what to do. One can use a closed world
assumption thus if φ does not hold ¬φ is true. However, this would cause the robot to execute the else
branch even in a case when it does not know if the condition is true or false. Furthermore, if the robot
executes the else branch, it must decide according to the precondition of the action α. The robot can
execute α if the robot believes that the precondition πα holds. If the robot belief that the precondition
does not hold ¬πα the robot cannot execute the action α and thus needs to abort its mission. However,
if the robot cannot decide if the precondition or its negation hold the robot needs to take a decision
what to do. It either can perform the action on chance, which may be dangerous. Alternatively, it can
abort the mission even the action may have been possible to execute. To circumvent this problem,
we want to distinguish the cases where the robot belief that something is not possible in those cases
where the robot has not enough knowledge about the world to take a decision.
To distinguish these two cases, we use two pairs of predicates. The first pair KTrans and KFinal
decide if the robot has enough knowledge about the world to decide if it can take a transition or
needs to terminate. The second pair Trans and Final specify which transition the robot should take.
These two predicates correspond to the original transition semantic where queries to the robot where
replaced to the belief of the robot.
To easy the representation we use the following macro which defines if the robot belief a formula φ or
its negation.

BWhether(φ(s)) .
= Belief (φ,s)∨Belief (¬φ,s) (6.27)

Furthermore, we will only discuss the transition semantic for the non-concurrent part. As the diagnosis
method, which is used to generate the belief does not deal with concurrency explicit, the diagnosis
may be not adequate to capture concurrent programs.
We define now the predicate KTrans as follows.

• KTrans(nil,s) ≡ >. The robot can always decide that the empty program cannot be used for a
transition.

• KTrans(α,s) ≡ BWhether(Πα,s). The robot can decide if an action can be performed or the
mission needs to be aborted if it belief the precondition or the negated precondition.

72

6.3. Integration into IndiGolog execution

• KTrans(φ?,s)≡ BWhether(φ,s). The robot can decide if a test action is fulfilled or should lead
to an abortion of the mission if it belief the test condition or the negated test condition.

• KTrans(δ1;δ2,s) ≡ KTrans(δ1,s)∨Final(δ1,s)∧KTrans(δ2,s). The robot can decide about a
transition of a sequence if either it can decide for the first part of the sequence if it can perform
a transition or the first part is finished and it can decide for the second part the transition.

• KTrans(δ1 | δ2,s) ≡ KTrans(δ1,s)∨KTrans(δ2,s). The robot can decide how to proceed on a
non-deterministic branch if one of the branches can be decided.

• KTrans(πx.δ,s) ≡ ∃t.KTrans(δ|xt ,s). The robot can decide how to proceed on a non-
deterministic argument pick if a variable can be found such that the robot can decide if it can
perform a transition.

• KTrans(δ∗,s) ≡ KTrans(δ,s). The robot can decide if a transition is possible on a non-
deterministic iteration if the robot can decide if a transition is possible for the program within
the loop.

• KTrans(if φ then δ1 else δ2 endif,s) ≡ BWhether(φ,s) ∧ [Belief (φ,s) ∧ KTrans(δ1,s) ∨
Belief (¬φ,s)∧KTrans(δ2,s)]. The robot can decide a transition on a branch if it belief ei-
ther the condition or its negation. Furthermore, depending on the condition the branch needs
also to be decidable to take a transition.

• KTrans(while φ do δ endWhile,s) ≡ BWhether(φ,s) ∧ [Belief (φ,s) ∧ KTrans(δ,s) ∨
Belief (¬φ,s)]. The robot can decide a transition on a while loop if the robot belief the loop
condition or its negation. If the robot belief the loop conditions the program within the loop
needs to be decidable to take a transition as well.

To decide if the robot has enough knowledge about the world to determine if it can terminate with a
success we use the predicate KFinal which is defined as follow.

• KFinal(nil,s)≡>. The robot can always decide termination for the empty program.

• KFinal(α,s)≡>. The robot can always decide termination for one action.

• KFinal(φ?,s)≡>. The robot can always decide termination for a test condition.

• KFinal(δ1;δ2,s) ≡ KFinal(δ1,s)∧KFinal(δ2,s). The robot can decide termination of a se-
quence if it can decide termination of both parts of the sequence.

• KFinal(δ1|δ2,s) ≡ KFinal(δ1,s)∨KFinal(δ2,s). The robot can decide termination of a non-
deterministic branching if one branch can be decided.

• KFinal(πv.δ,s) ≡ ∃xKFinal(δv
x,s). The robot can decide termination of a non-deterministic

choice of variables if there exists a variable such that the robot can decide termination of the
program.

• KFinal(δ∗,s)≡>. The robot can always decide termination for a non-deterministic iteration.

• KFinal(if φ then δ1 else δ2 endif,s) ≡ BWhether(φ,s) ∧ [Belief (φ,s) ∧ KFinal(δ1,s) ∨
Belief (¬φ,s)∧KFinal(δ2,s)]. The robot can decide termination of a condition if the robot
belief the condition or belief the negation of the condition and depending on the condition the
robot can decide termination of the branch.

73

Chapter 6. Belief-Aware execution of High Level Programs

• KFinal(while φ do δ endWhile,s) ≡ BWhether(φ,s) ∧ [Belief (φ,s) ∧ KFinal(δ,s) ∨
Belief (¬φ,s)]. The robot can decide termination of a while loop if the robot belief the loop
condition or belief the negation of the loop condition. If the loop condition holds the robot
furthermore needs to be able to decide for termination of the program within the loop.

With the above defined predicates the robot can decide if it can take a decision. If the robot can take a
decision the robot can progress further to take the decision. To take a decision for a program transition
the robot uses the predicate Trans which is defined as follows.

• Trans(nil,s,δ′,s′)≡⊥. The empty program cannot lead to any further execution.

• Trans(α,s,nil,do(α,s))≡ Belief (Πα,s). If the action precondition is believed the action can be
executed and yield an empty remaining program. Furthermore, the resulting situation is created
by extending the current situation by the executed action.

• Trans(φ?,s,nil,s) ≡ Belief (φ,s). If the condition is believed the program can proceed to the
empty program.

• Trans(δ1;δ2,s,δ′,s′) ≡ ∃δ′′.δ′ = δ′′;δ2 ∧ Trans(δ1,s,δ′′,s′) ∨ Final(δ1,s) ∧ Trans(δ2,s,δ′,s′).
The program either performs a transition in δ1 if this is possible. If δ1 can terminate the program
performs a transition according to δ2.

• Trans(δ1 | δ2,s,δ′,s′) ≡ Trans(δ1,s,δ′,s′)∨ Trans(δ2,s,δ′,s′). The program takes either the
transition of δ1 or the transition of δ2.

• Trans(πx.δ,s,δ′,s′) ≡ ∃t.Trans(δ|xt ,s,δ′,s′). The program performs a transition if a valid in-
stance for the parameter x can be found.

• Trans(δ∗,s,δ′,s′) ≡ ∃δ′′.δ′ = δ′′;δ∗ ∧ Trans(δ,s,δ′′,s′). The program performs a transition in
δ to yield δ′′. This program is further executed till it is finished. Afterwards the loop can be
started again. Thus, the loop is unrolled and executed.

• Trans(if φ then δ1 else δ2 endif,s,δ′,s′) ≡ Belief (φ,s)∧ Trans(δ1,s,δ′,s′)∨ Belief (¬φ,s)∧
Trans(δ2,s,δ′,s′). If the condition is believed δ1 is considered for the transition. If the negation
of the condition believed δ2 is considered for the transition.

• Trans(while φ do δ endWhile,s,δ′,s′) ≡ ∃γ : δ′ = γ;while φ do δ endWhile∧Belief (φ,s)∧
Trans(δ,s,γ,s′). If the condition is believed the transition is process further with the inner
program. This program is executed till it finishes. Afterwards the loop can be started again.
Thus, like the non-deterministic iteration the loop is unrolled.

Additionally, to take a decision to perform a transition the robot can take a decision to terminate safely.
This is done with the predicate Final which is defined as follows.

• Final(nil,s)≡>. The empty program is a legal termination.

• Final(α,s)≡⊥. An action is never considered as a legal termination.

• Final(φ?,s)≡⊥. A condition is never considered as a legal termination.

• Final(δ1;δ2,s)≡ Final(δ1,s)∧Final(δ2,s). The sequence is a legal termination if both parts of
a sequence can terminate legally.

74

6.3. Integration into IndiGolog execution

• Final(δ1 | δ2,s) ≡ Final(δ1,s)∨Final(δ2,s). If either of the program can terminate the non-
determinism branch can terminate legally.

• Final(πx.δ,s)≡∃t.Final(δ|xt ,s). The program can terminate if a valid instance for the parameter
x can be found. Pleas not that δ|xt substitutes ever occurrence of x with t in the program δ.

• Final(δ∗,s)≡>. A legal termination is all way possible. Thus, the non-deterministic loop can
instead of iterate terminate.

• Final(if φ then δ1 else δ2 endif,s)≡ Belief (φ,s)∧Final(δ1,s)∨Belief (¬φ,s)∧Final(δ2,s). If
the condition is believed the program can terminate if δ1 can terminate. If the negation of the
condition believed δ2 is to decide legal termination.

• Final(while φ do δ endWhile,s,δ′,s′)≡ Belief (¬φ,s)∨Final(δ,s). The loop stops if either the
negation of the condition is believed or the body of the loop can terminate.

Through the changed transition semantic the robot decides a transition or a termination according to
the belief it has. There is one difference between the transition semantic specified through the two
predicates Trans and Final compared to the original transition semantic of IndiGolog. This difference
is that the robot does not use the situation term directly to determine the truth value of a query but use
the belief of the robot instead. Thus, as long the agent does not encounter any problem due to a faulty
action the transition semantic will behave as the original transition semantic of IndiGolog.
To use the both parts of the proposed transition semantic, all four predicates need to be properly
combined. This combination should ensure that the robot takes a transition if possible, terminates if it
is allowed or necessary and distinguished those cases where the robot is lacking knowledge to those
where it is certain. This combination is achieved by the following decision tree which is depicted in
Figure 6.2.
If the robot can decide if it is finished it first checks if it can terminate legally. If this is not the case the
and the robot can decide for transition the robot searches for a transition. If no transition is possible
the robot aborts is mission. If a transition is possible the transition is taken. If either the robot is
lacking knowledge about the environment for either the termination or the transition, then the robot
needs to gather knowledge. We can define this behavior more formally as follows.

Definition 17. The on-line execution semantics for a situation s and a remaining program δ behaves
as follows:

1. Terminate with a success if

D∗ |= KFinal(δ,s)∧Final(δ,s)

2. Perform a transition to the new program δ′ without executing an action if

D∗ |= KTrans(δ,s)∧Trans(δ,s,δ′,s)

3. Perform a transition to the new program δ′ and execute the action α if

D∗ |= KTrans(δ,s)∧Trans(δ,s,δ′,do(α,s))

4. Create a program to gather knowledge about the environment δ′ and execute the program δ′ if
one of the following conditions holds:

75

Chapter 6. Belief-Aware execution of High Level Programs

Figure 6.2.: Decision tree for one step transition of a high-level program. Bold leaves depict states
where the agent possesses enough knowledge to decide program progression safely.
Dashed states are those where no safe program progression can be done.

• D∗ 6|= KFinal(δ,s)

• D∗ 6|= KTrans(δ,s)

We will discuss in Chapter 7 how one can create a program to gather knowledge about the environ-
ment.
With the above usage of the transition semantic the robot can decide which action to take next. As
it is sometimes advantageous to plan ahead one needs to extend this transition semantics. This can
be achieved in IndiGolog with the help of the search operator Σ. To use the search operator within
our transition semantic we first define how the robot can search for a plan. This is done by using the
following predicate DoSearch which defines if a program can terminate in the current situation and
how the final situation looks like.

Definition 18.

DoSearch(δ,s,s′) = ∃δ′TransB∗(δ,s,δ′,s′)∧KFinal(δ′,s′)∧Final(δ′,s′)

where TransB∗ is, the reflexive transitive closure of

TransB : TransB∗(δ,s,δ′,s′) = ∀T [...⊃ T (δ,s,δ′,s′)]

where ... stands for the conjunction of the universal closure of

T (δ,s,δ,s)

KTrans(δ,s)∧Trans(δ,s,δ′,s′)∧T (δ′,s′,δ′′,s′′)⊃ T (δ,s,δ′′,s′′)

76

6.4. Formal Relation of Proposed and Original IndiGolog execution

With the help of the definition when a program leads to a legal final termination we can finally define
the transition of the search operator as follows.

•

Trans(Σ(δ),s,δ′,s′) = ∃δ′′,s′′.δ′ = Σ(δ′′)∧KTrans(δ,s)∧
Trans(δ,s,δ′′,s′)∧DoSearch(δ′′,s′,s′′)

The operator searches for the next transition which allows the robot to finally terminate in an accepting
situation.
Beside the actual search the robot needs to decide if a search can be safely performed at all. Thus, we
need to specify the predicate KTrans for the search operator. We define the predicate as follows.

KTrans(Σ(δ),s) =KTrans(δ,s)
∧

[(∃δ′′,s′′.Trans(δ,s,δ′′,s′)∧DoSearch(δ′′,s′,s′′))
∨

(∀δ′′,s′′.¬Trans(δ,s,δ′′,s′)∨Trans(δ,s,δ′′,s′)∧¬DoSearch(δ′′,s′,s′′))]

Through the definition of the predicate, the robot can decide if it can take a transition with the search
operator if either the robot finds a valid plan or if it can determine that there exists no plan. The robot
can determine that there exists no plan if every transition which is possible leads to a dead end. Thus,
the program does not terminate with success instead it leads to a program which needs to be aborted.
The search operator is applied as follows. First, it is checked if it the search can terminate already.
This check is performed by first checking if termination can be decided. The robot can decide on the
termination of the search operator if the program which is used within the search can be decided to be
terminated.

KFinal(Σ(δ),s)≡ KFinal(δ,s)

Additionally, the robot can terminate with the search operator if the program which is used within the
search is ready for termination.

Final(Σ(δ),s)≡ Final(δ,s)

6.4. Formal Relation of Proposed and Original IndiGolog execution

With the above definitions, we have defined how a robot can decide the next action to perform and
how to plan ahead. This transition allows the robot to safely operate in an environment without
getting stuck in situation where the robot is lacking knowledge. We can state this more formally as we
can relate the original IndiGolog semantic with the proposed semantic in this Chapter. The predicates
Trans and Final are the original predicates of IndiGolog where the queries of the formulas are replaced
to queries to the belief. This replacement ensures that as long as no fault occurs, the two predicates
correspond to the original transition semantic. However, as we first need to decide if we can take
a decision we need to ensure that the robot will never be imaging a situation where knowledge is
lacking, but a transition is possible.
The first part of the transition semantic is the predicate to decide the transition. We can state the
following corollary which shows that if a transition exists the robot has enough knowledge about
possible transitions.

Corollary 4. ∀δ,s,δ′,s′ : Trans(δ,s,δ′,s′)→ KTrans(δ,s)

77

Chapter 6. Belief-Aware execution of High Level Programs

Proof (Sketch). Proof by cases over the statements of the program. Most of the cases are the defined
in the same way for Trans and KTrans thus the corolla holds trivially for those cases. In those cases,
which are defined differently Trans is a part of a disjunction with an additional formula in the definition
of KTrans. Thus, the corolla also holds.

Like the above corollary, we can state the following corollary which specifies that if the robot can
terminate the robot has enough knowledge to decide this termination.

Corollary 5. ∀δ,s : Final(δ,s)→ KFinal(δ,s)

Proof (Sketch). Proof by cases over the statements of the program. Most of the cases are the defined
in the same way for Final and KFinal thus the corolla holds trivially for those cases. In those cases,
which are defined differently Final is a part of a disjunction with an additional formula in the definition
of KFinal. Thus, the corolla also holds.

With the help of Corollary 4 and Corollary 5 we can state that the robot will perform a transition or
termination if it would do in case of the original IndiGolog transition semantic. Thus, with the help of
the new transition semantic the robot will only perform additional transition but not less transitions.
Additionally, the robot will only perform a transition if is safe to do so. We can state this property
more formally with the following tow lemmas.

Lemma 12. If no fault has been observed the robot will decide that a transition is possible for a
program δ and s KTrans(δ,s)∧∃δ′,s′Trans(δ,s,δ′,s′) if and only if ∃δ′,s′Trans(δ,s,δ′,s′)

Proof (Sketch). This is direct result of Corollary 4 and Lemma 11 that the robot draws the same
conclusion from the belief as the original situation calculus if no fault occurred.

Lemma 13. If no fault has been observed the robot will decide that it can terminate for a program δ

and s KFinal(δ,s)∧Final(δ,s) if and only if Final(δ,s)

Proof (Sketch). This is direct result of Corollary 5 and Lemma 11 that the robot draws the same
conclusion from the belief as the original situation calculus if no fault occurred.

To point out the difference between proposed transition semantic and an unsafe transition semantic as
it was used in the original history based diagnosis and a transition semantic which does not distinguish
the cases where it lacks knowledge, let’s consider a simple example. The robot needs to bring an
object O from room R1 to room R2, paint the object and afterward bring the object to room R3. To
achieve the task, the robot performs the following sequence of actions [goto(R1),pick(O),goto(R2),
put(O),senseObjectAt(O),pick(O),goto(L3),put(O)]. Now let’s further consider the sensing action
senseObjectAt(O) determines that the object is not in room R2. Thus, the history of performed actions
is now in contradiction. One can consider three simple explanations. First, the robot failed to pick up
the object, the robot failed to put down the object, or the robot performed a wrong sensing.
If the robot would now, consider the first case it would conclude that the object is in room R1 and drive
back to fetch the object. Afterwards the robot would drive to room R2 and deliver the object. At the
end of the sequence the robot will have deliver the object but will have spent time to repair a failing
action which may have not been failed at all. In contrast if the robot considers the third possibility the
robot assumes that the object is correctly delivered and would progress as nothing has happened. The
result would be that the robot may fail to achieve its task as the object was finally not delivered.
If the robot would only use the transition semantic consisting of Trans and Final the robot would
neither belief that the object is in R1 nor in R2 as there are two different possibilities. As such the

78

6.5. Conclusion and Future Work

robot, cannot decide if it can proceed. To be more precis the robot cannot decide which transition it
can take. Thus, the robot is lacking knowledge.
In contrast if the robot performs a step to gather knowledge about the world the robot the robot would
first gather knowledge. After gathering the knowledge about the environment, the robot can decide if
the object is in room R1 or in room R2. Thus, the robot can decide which transition to take next.
Thus, with the help of the proposed transition semantic the robot would neither take unnecessary
actions, perform dangerous action nor will it terminate if is lacking knowledge. Instead the robot will
work towards its goal in a safe and efficient manner.

6.5. Conclusion and Future Work

A robot needs not only be capable to reason if a fault has occurred or what the fault was but it also
need to incorporate this information in its reasoning to decide which action should be performed.
To do so we have defined how the robot can create a belief with the information it has gathered if a
fault has happened. The belief of the robot is formed by those formulas which hold in every alternative
which is considered the world may look like. These alternatives are created through the most likely
explanations of the fault. Thus, the robot draw only conclusion which are safe as but still likely.
To use the belief in the reasoning system of the robot the time to answer a query needs to be short.
Thus, we have proposed a method to allow the robot to progress its belief with the execution of action.
Progression allows the robot to only use one knowledge base to answer a query. This knowledge
base is updated every time an action occurred. As the robot needs only to use one knowledge base to
answer the queries the robot can draw a conclusion in a fast manner.
After defining how the belief can be queried in an efficient manner we have shown how the belief can
be used to decide which action to take next. The method outline in this chapter uses the IndiGolog
transitions semantic as a base. The transition semantic was extended in such a way that only a transi-
tion is taken if the robot belief the transition is safe. Additionally, we extended the transition semantic
in such a way that the robot can decide when it is lacking knowledge about the environment. In such
a case the robot can gather knowledge about the world to allow further execution.
The new transition semantic is restricted to non-concurrent parts only. Thus, it is left for future work
to extend the transition semantic to also incorporate the concurrency parts of IndiGolog. Additionally,
it is left for future work to derive which properties need to hold for the active knowledge gathering
step to be of use.

79

80

Chapter 7
Active gathering of Knowledge

In the previous chapter, we have presented how a robot can decide which action to take next even in
the presence of a faulty action execution. The method uses the belief the robot has about the world
to take this decision. As the belief is formed by those formulas which hold in all alternative worlds
which are very likely the robot is very cautious. This cautious behavior can cause a situation where
the robot cannot decide as it is not certain about a fact. Instead, the fact is true in some alternatives
but is false in others.
To address the problem of lacking knowledge the robot needs to gather knowledge actively. This
gathering of knowledge is done by choosing sensing action which should be performed. With the
help of sensing actions, the robot can rule out those alternatives which do not fit with the sensing
result derived. Thus, the robot reduces the possible alternatives and thus gain knowledge about the
real world. If the robot has ruled out enough of the alternatives the robot can decide the fact which is
needed to take a decision which transition to perform.
As not every sensing action can reduce the uncertainty about the world one needs to choose a sensing
action cleverly. The choice of the sensing action needs to consider that the sensing can be safely
executed. Furthermore, the sensing action should maximize the information gathered about the envi-
ronment. Additionally, the information gain is not allowed to be depending on the expected sensing
outcome as one cannot assume a certain outcome. Instead one needs to choose a sensing action which
gains knowledge about the environment regardless of the sensing result which will be reported.
In this chapter, we will present such an approach. The sensing action will be chosen in such a manner
that these actions are safe to execute and maximize the information gained. Additionally, we will
show under which condition this method will result in a situation where the robot is certain how the
world looks like. Thus, allowing the robot to take a clear decision which action to execute next. The
content presented in this chapter is based on the work presented in [91].
The remaining of the chapter is structured as follows. In the next section, we formally define the
problem at hand to find the optimal sensing action. We call this issue following the idea originating
from the diagnosis community the active diagnosis problem for robots with belief. After this defi-
nition, we will show how to select the optimal sensing action. This selection will consider the two
things simultaneously. The first thing considered is which action can be performed. The second point
considered is which knowledge is gained regardless of the sensing outcome. As this definition of
the optimal sensing action is purely theoretical, we will describe an algorithm to derive this optimal
sensing action in Section 7.3. This first algorithm relies on a finite number of objects and thus cannot
be used in every setting. To circumvent this problem, we propose an alternative algorithm in Section

81

Chapter 7. Active gathering of Knowledge

7.4. After discussing how the optimal sensing action can be found we discuss under which condition
the active diagnosis lead to a single remaining alternative world. Thus, maximizing the knowledge of
the robot. Finally, we conclude the chapter and point out some future work.

7.1. Definition of the Active Diagnosis Problem for Robots with Belief

Before we can define what, the optimal sensing action would be to gather knowledge we first need to
state the problem formally which needs to be addressed by this chapter. To keep the representation
simple, we will only define the problem for the classical history based diagnosis. Please, note that one
can define the problem in an analog fashion for the consistency history based diagnosis.
As the sensing action, should be selected according to the belief we need to recap two definitions.
The first definition defines the minimal diagnosis which are used to create the belief. The minimal
diagnosis is defined as follow.

minDiag(s) .
= {s′|Diag(s′,s,v)∧@s′′,v′′.Diag(s′′,s,v′′)∧ v′′ < v} (7.1)

Please note that the minimal diagnosis is the set of those alternative situations which have the smallest
cost for these changes. Furthermore, note that every situation in the minimal diagnosis set is consistent
with the current observations. Thus, the set represents those alternatives of the current world which
are consistent and very likely. We use this definition in order state which formulas the robot beliefs to
hold.

Belief (φ,s) .
= ∀s′ ∈ minDiag(s).φ(s′) (7.2)

To define which sensing action to take to increase the knowledge, about the world the robot has, we
first will state which impact a sensing action has on the set of minimal diagnosis. As such a change,
can only occur if a faulty version of an action is considered to be less likely as the real action outcome
we state the following assumption which is used in the remaining of the chapter.

Assumption 6. The cost for a faulty action is greater than 0.

∀α,α′,s.val(Varia(α′,α,s))> 0 (7.3)

Additionally, the cost for every insertion is great then 0.

∀α′,s.val(Inser(α′,s))> 0 (7.4)

The set of minimal diagnosis is reduced if a sensing action does not contradict at least one situation
in the set. This is formally stated in the following lemma.

Lemma 14. If a sensing action α is performed in situation s such that the sensing result is not in con-
tradiction with at least one situation in the set minDiag(s) or more formally ∃s′ ∈ minDiag(s).D∗ |=
Cons(do(α,s′)) then the following holds. minDiag(do(α,s))⊆ {do(α,s′)|s′ ∈ minDiag(s)}.

Proof (Sketch). This is a direct result of the definition of minDiag(s) to be the set of those situations
which are consistent and Assumption 6.

The lemma states that the set of minimal diagnosis does not increase if the result of the sensing action
is not in contradiction with at least one alternative world. Thus, the lemma states that a sensing action

82

7.1. Definition of the Active Diagnosis Problem for Robots with Belief

will not increase the number of alternatives we need to consider if at least one alternative is not in
contradiction with the sensing outcome.
Through this lemma, we can conclude that there is a set of sensing action which can be performed
which do not increase the set of alternatives. Furthermore, we can strengthen the lemma into the
following theorem.

Theorem 5. If a sensing action α is performed in situation s such that the sensing result is not in
contradiction with at least one situation in the set minDiag(s) but in contradiction with at least one
situation in the set minDiag(s) or more formally ∃s′ ∈ minDiag(s).D∗ |= Cons(do(α,s′))∧ ∃s′′ ∈
minDiag(s).D∗ 6|= Cons(do(α,s′)) then the following holds. minDiag(do(α,s)) ⊂ {do(α,s′)|s′ ∈
minDiag(s)}.

Proof (Sketch). This is a direct result of the definition of minDiag(s) to be the set of those situations
which are consistent and Assumption 6.

The theorem states that the possible alternatives are reduced if we use a sensing action which is
consistent with at least one alternative but renders at least one alternative inconsistent. Thus, the
problem we need to address is to find such a sensing action to increase the knowledge about the
environment.
But one can raise the question if the reduction of alternatives increases the knowledge of the robot.
Basically, each reduced alternative reduces the uncertainty about how the world looks like. But how
does the performed action impact the belief of the robot. We can link Lemma 14 directly to the belief
by using the definition of the belief. If the agent does not belief the negation of a formula, then there
exists a minimal diagnosis which is consistent with this formula. We can state this property for a
sensing action more formally in the following two corollaries.

Corollary 6. If the robot performs an action α in situation s with sensing outcome > and the robot
does not belief ¬SF(α,s) or more formally ¬Belief (¬SF(α,s),s) then there exists a situation s′ in
minDiag(s) which is consistent with the sensing action or more formally ∃s′ ∈ minDiag(s).D∗ |=
Cons(do(α,s′)).

Proof (Sketch). This is a direct result of the definition of the belief.

Corollary 7. If the robot performs an action α in situation s with sensing outcome ⊥ and the
robot does not belief SF(α,s) or more formally ¬Belief (SF(α,s),s) then there exists a situation s′

in minDiag(s) which is consistent with the sensing action or more formally ∃s′ ∈ minDiag(s).D∗ |=
Cons(do(α,s′)).

Proof (Sketch). This is a direct result of the definition of the belief.

By combining the above corollaries with Lemma 14 we can state the following lemma defining that
through a non-contradicting sensing the robot will not lose knowledge about the world.

Lemma 15. If a robot performs an action α in situation s and the sensing outcome is > and it holds
that ¬Belief (¬SF(α,s),s) or if the sensing outcome is ⊥ and it holds that ¬Belief (SF(α,s),s) then
the following holds. ∀φ.Belief (φ,s)→ Belief (φ,do(α,s))

Proof (Sketch). This is a direct result of Lemma 14, Corollary 6 and Corollary 7.

83

Chapter 7. Active gathering of Knowledge

The lemma states that the robot belief all formulas it has believed before executing a sensing action
which does not contradict the belief. Thus, the robot will not forget knowledge about the world if the
sensing action is not contradicting to the current belief of the robot.
We can further extend this lemma through the following theorem. The theorem states if the robot
neither belief the sensing nor its negation the robot will gain additional knowledge about the environ-
ment.

Theorem 6. If a robot performs an action α in situation s and it holds that ¬Belief (¬SF(α,s),s) and
it holds that ¬Belief (SF(α,s),s) then the following holds. ∀φ.Belief (φ,s)→ Belief (φ,do(α,s)) and
∃φ.¬Belief (φ,s)∧Belief (φ,do(α,s))

Proof (Sketch). This is a direct result of the Lemma 15 and the fact that the robot belief after executing
the sensing action at least the formula imposed by the sensing action which was not believed before.

The theorem states that if the robot does neither belief the sensing action outcome to be true nor to be
false the robot gains knowledge about the environment if it executes this sensing action. Thus, if we
choose a sensing action according to Theorem 5 the condition of the Theorem 6 are also met and the
robot will gain knowledge through this action.
As the robot, should perform actions only if they are safe we need to restrict the set of sensing actions
the robot can choose from to the set of sensing actions which are safe to perform this is defined as
follows.

Definition 19. The set of safe sensing actions ASS(s) is the set of grounded sensing actions which have
a precondition which is believed to hold: ASS(s) = {α|α ∈ Asensing∧Belief (Πα(s),s)}

Using the definition of a safe sensing action we can now define the knowledge gathering step as active
diagnosis for belief management as follows.

Definition 20. The active diagnosis for belief management (ADBM) is defined as: Given a minimal
diagnosis of a situation s minDiag(s) find a safe sensing action α∈ASS(s) such that the set minDiag(s)
is reduced by at least one element regardless of the actual sensing outcome.

7.2. Selecting the Optimal Sensing Action

To find a solution to the ADBM problem we need to fine a sensing action which reduce the minimal
diagnosis set regardless of the sensing outcome. To find such a sensing action we first define two sets
which capture those situations which become inconsistent if the result of the sensing action is false
respectively true.

Definition 21. The set Ωα(s) ⊆ minDiag(s) contains all possible situation which would be removed
from the minimal diagnosis set if false would be measured due to their inconsistency: Ωα(s) = {ω ∈
minDiag(s)|D∗ 6|= Cons(do(α,ω))}.
The set Λα(s)⊆minDiag(s) contains all possible situation which would be removed from the minimal
diagnosis set if true would be measured due to their inconsistency: Λα(s) = {λ ∈ minDiag(s)|D∗ 6|=
Cons(do(α,λ))}.

With the two sets Ωα and Λα we can choose a sensing action such that these sets are not empty. To
be more precise we search for a sensing action α such that these two sets are maximized in such a

84

7.2. Selecting the Optimal Sensing Action

way that half of the situations are in Ωα and the other half is in Λα. As one may want to consider not
every situation to be equally likely and as a sensing action may be executed faulty we need a proper
criterion to find the best sensing action.
To define such a criterion, we follow the idea of [26] and [63]. The idea is to use the mutual informa-
tion as a criterion to choose the next best sensing action. The mutual information chooses the sensing
action which is very likely to discriminate between different alternatives by considering the likely
hood of a wrong measurement. Thus, it fits our need for a criterion to select the sensing action.
We define the mutual information which we use as a criterion which should be maximized as follows.

I(α;minDiag(s)) = H(α)−H(α|minDiag(s)) (7.5)

The first part of the equation is the entropy of the action. Thus, it measures how well the sensing action
divides the set of situations into Ωα and Λα. This measurement is done according to the probability
mass. Thus, if not all situations are considered to be equally likely the set may differ in size to balance
their probability. The second part of the equation defines the impact of the noise the sensing action
has. Thus, the noisier the sensing action, the lower the chance to be selected. Furthermore, this part
of the equation is used to prefer those sensing actions which have a tiny set of situations which are
neither in Ωα nor Λα.
To define the necessary probabilities, we assume for each situation in minDiag(s) a probability ps.
With the definition of this probability we can define the overall probability of the set Ωα and Λα

which is used for the entropy calculation. The probability of the set Ωα is defined through Equation
7.6 and the probability of the set Λα is defined through Equation 7.7.

pΩα
= ∑

ω∈Ωα

pω (7.6)

pΛα
= ∑

λ∈Λα

pλ (7.7)

Both equations accumulate the probabilities of their associated situations. Using the probabilities of
the two sets we can define how the impact of a sensing action is through its entropy. The entropy
H(α) is defined by the following equation.

H(α) =− [pΩα
∗ ld(pΩα

)+ pΛα
∗ ld(pΛα

)] (7.8)

As the entropy is used to check that the chosen sensing action balance the impact it has on the two
sets Ωα and Λα we can state the following two simple corollaries which prove this balance at least for
extreme cases.

Corollary 8. If a sensing action α causes that all situations are either in the set Ωα or Λα the entropy
defined through Equation 7.8 is equal to 0.

Proof (Sketch). If the sensing has all situations in Ωα or Λα the probability of pΩα
is 1 and the proba-

bility of is pΛα
0 or vice versa. Thus Equation 7.8 is 0.

Corollary 9. If all situations are equally likely ∃c.∀s′ ∈ minDiag(s).ps′ = c then the entropy has its
maximum if (|Ωα|= |Λα|)∧ (Ωα∪Λα = minDiag(s))

Proof (Sketch). The maximum of the entropy is reached if pΩα
= 1

2 and pΛα
= 1

2 . If equal likely
situations are assumed this is the case if (|Ωα|= |Λα|)∧ (Ωα∪Λα = minDiag(s)), as both sets have
half of the probability mass.

85

Chapter 7. Active gathering of Knowledge

The first corollary states that if the impact of the sensing action effects only one sensing action then
the entropy is low. Thus, such a sensing action would not very likely be chosen. The second corollary
states that if the probabilities of all situations are equal the maximum of the entropy will be reached
if the two sets Ωα and Λα have the same size. Thus, the entropy meets our expectations in at least the
extreme cases.
To specify the impact of the sensor accuracy we assume that for every sensing action α there is a
probability assigned to it pα which specifies if the action yield the true result. With the help of this
probability we can define the probability of the sensing action to yield > as sensing result in the
current situation. This probability is defined through Equation 7.9. Furthermore, we can define the
probability to yield⊥ as sensing result with Equation 7.10. Please note that we assume that the chance
to yield either> or⊥ in an alternative world which does not specify the sensing result is equally high.

p(α,>|s) =


1
2 , s 6∈Ωα∪Λα

pα, s ∈Ωα

1− pα, s ∈ Λα

 (7.9)

p(α,⊥|s) =


1
2 , s 6∈Ωα∪Λα

1− pα, s ∈Ωα

pα, s ∈ Λα

 (7.10)

With the above probabilities, we can define the conditional entropy of the sensing action for a given
situation. This conditional entropy specifies how likely it is that the sensing action will yield a false
result. The conditional entropy for a given situation is defined as follow.

H(α|s) =− [p(α,>|s)∗ ld(p(α,>|s))+ p(α,⊥|s)∗ ld(p(α,⊥|s))] (7.11)

Finally, we can use Equation 7.11 to calculate the conditional entropy of the sensing action α with all
situations specified in minDiag(s) as follows.

H(α|minDiag(s)) = ∑
s′∈minDiag(s)

(ps ∗H(α|s)) (7.12)

Using the result of Equation 7.8 and Equation 7.12 we can calculate the mutual information
I(α;minDiag(s)). Please note that the calculation of the mutual information depends on the sets
Ωα and Λα if the probability of the sensing action failure is fixed for each sensing action regardless of
its arguments. We will show later how this property can be exploited.

7.3. Using Grounded Sensing Actions to Find the Optimal Action

With the above criteria, we have defined which sensing action should be performed. But it is still
missing how one can find this sensing action. If we can consider only a small set of sensing actions
which are possible we can simply use Algorithm 6.
The algorithm first computes all possible sensing actions. Afterward, it iterates through the sensing
action and calculates the mutual information for each of the sensing actions. The sensing action which
yields the highest value of the mutual information is returned. Thus, this algorithm is a brute force
method to find the sensing action which maximizes the mutual information. This brute force method
also yields to the result that the algorithm is sound and complete as stated in the following theorem.

Theorem 7. Algorithm computeNextSensingAction is sound and complete.

86

7.4. Using the Alternative Worlds to Find the Optimal Action

Algorithm 6: computeNextSensingAction
input : minDiag(s) . . . a set of minimal diagnosis for the situation s
output: a grounded sensing action to perform next or NULL if no grounded sensing action exists

1 begin
2 if ASS = /0 then
3 return NULL
4 end
5 vmax = 0;
6 amax = NULL;
7 for α ∈ ASS do
8 〈Ωα,Λα〉= calculateSplitting(α,minDiag(s)) ;
9 v = I(α;minDiag(s)) ;

10 if v > vmax then
11 vmax = v ;
12 amax = α

13 end
14 end
15 return amax

16 end

Proof. Due to the calculation of the set ASS we know that 1) each element in the set ASS is a safe
sensing action, and 2) all safe sensing actions are in the set ASS. Because we only return a sensing
action which is part of set ASS and has the highest mutual information we can state that the algorithm
is sound and complete.

The run time of the algorithm depends on the number of sensing actions and the number of possi-
ble alternatives to consider. We can state this more formally as O(|ASS| × |minDiag(s)|. Thus, the
algorithm is efficient if the number of sensing actions is tiny.

7.4. Using the Alternative Worlds to Find the Optimal Action

Unfortunately, the Algorithm 6 cannot be used if there is an infinite number of possible sensing ac-
tions. If the number of sensing action is finite but huge, a brute force approach may not yield a result
either. Thus Algorithm 6 cannot be applied in all situations.
Instead of using the set of all possible situation to calculate the best sensing we can exploit the fact
that the mutual information depends on the two sets Ωα and Λα if we fix the probability that a sensing
action fail regardless of its arguments. Thus, instead of calculating the mutual information for each
grounded action term we try to find a grounded action such that a certain splitting is caused. Algorithm
7 performs such a calculation.
The algorithm first calculates all possible splitting together with all possible sensing action with open
arguments. The possible splitting’s, the action with open arguments and the value of the resulting
mutual information is gathered in the set T. In this set the sensing actions with open arguments
Asensing are used. Additionally, we exploit the fact that we can calculate the mutual information if we
have specified the sets Ωα and Λα. After creating this set, the algorithm creates a queue Q which is
created from the set T where the entries are sorted according to the mutual information. Thus, the

87

Chapter 7. Active gathering of Knowledge

Algorithm 7: computeNextSensingAction2
input : minDiag(s) . . . the minimal diagnosis set of a given situation
output: return a grounded sensing action to perform next or NULL if no grounded sensing action

exists
1 begin
2 T = {〈Ω,Λ,α,v〉|(Ω⊆ minDiag(s))∧ (|Ω|> 0)∧ (Λ⊆ minDiag(s))∧ (|Λ|> 0)∧ (Ω∩Λ =

{})∧ (α ∈ Asensing)∧ (v = I(α;minDiag(s)))};
3 Q = Insert(T);
4 while Q 6= /0 do
5 〈Ω,Λ,α,v〉= pop(Q) ;
6 α′ = findGrounding(〈Ω,Λ,α〉) ;
7 if α′ 6= NULL then
8 return α′

9 end
10 end
11 return NULL
12 end

high the value of the mutual information the close the entry is to the begin of the queue. After creating
the queue, the algorithm iterates through the queue and searches for a grounding for the action α with
the function findGrounding.
To allow the algorithm to find a proper sensing action the function findGrounding needs to fulfill
certain properties. These properties ensure that the found grounded version of the sensing action
actual yield the desired splitting and can be executed. The properties which need to be fulfilled by the
function findGrounding are the following.

1. Belief (Πα(s),s). Use only grounded sensing actions which are safe.

2. ∀ω ∈ Ωα : D∗ ∪AO(α,ω) 6|= Cons(do(α,ω)). The grounding results in the specified splitting
for the set Ωα.

3. ∀λ ∈ Λα : D∗ ∪¬AO(α,λ) 6|= Cons(do(α,λ)). The grounding results in the specified splitting
for the set Λα.

To increase the efficiency of the function findGrounding one can collapse the last two condition into
one call to a theorem prover. Thus, one needs only to call first a theorem prover to get a grounding
which can be executed and afterwards check if this grounding causes the desired splitting. The two
last conditions can be collapsed into the following condition.

D∗
⋃

ω∈Ωα

AO(α,ω)
⋃

λ∈Λα

¬AO(α,λ) 6|=
∨

ω∈Ωα

Cons(do(α,ω))
∨

λ∈Λα

Cons(do(α,λ)) (7.13)

Assuming a proper implementation of findGrounding we can prove that the algorithm is sound and
complete with the following theorem.

Theorem 8. The algorithm computeNextSensingAction2 is sound and complete if the search step is
sound and complete.

88

7.5. Conditions for Active Diagnosis to Yield One Remaining Alternative

Proof. The algorithm will only return a grounded sensing action if the search step realized through
findGrounding return a grounded sensing action. Thus, if the search step is sound the algorithm is
sound. As the algorithm will iterate over every possible combination of splitting in the pool and all
possible sensing actions the algorithm is complete if the search step realized through findGrounding
is complete.

Thus, the algorithm allows us to calculate a sensing action which maximizes the mutual information
even if there is a big set of possible sensing actions. To ensure the algorithm to be fast one needs a
proper implementation of the function findGrounding. The implementation needs to derive a ground-
ing for a sensing action fast or can decide that there is no such grounding. Please note that through
the sorting of the mutual information it may often be the case that only a few calls to the function
findGrounding are necessary to find a sensing action. As a final remark, we want to state that in
the worst case the algorithm performs even worse that Algorithm 6 as one needs first to calculate all
splitting’s which is exponential in the number of situation in minDiag(s).

7.5. Conditions for Active Diagnosis to Yield One Remaining Alternative

In this chapter, we have presented two different algorithms to solve the ADBM problem in an online
fashion. As we address the problem online instead of creating a conditional plan, the question arises
if this online execution always results in a single remaining situation. The quick answer is no as there
is also not always a conditional plan to yield only one remaining situation. Thus, we present the
conditions which need to hold such that the question can be answered with yes.
We focus our attention to those situations which have a minimal diagnosis set which can be reduced to
one situation if a conditional plan consisting of sensing actions is used. We call this property complete
active diagnosable. This property is formally defined as follows.

Definition 22. We define a minimal diagnosis set minDiag(s) as complete active diagnosable
(CAD(minDiag(s))) recursively:

• CAD(minDiag(s)) if |minDiag(s)|= 1

• ∃α : [(|Ωα|> 0)∨ (|Λα|> 0)]
∧

CAD(minDiag(s)\Ωα)
∧

CAD(minDiag(s)\Λα)

The definition basically states that if there is a sensing action which yield in one case of the sensing
outcome at least a smaller set of remaining diagnosis the complete set is complete active diagnosable
if the subsets are. Through this definition, it is ensured that there exists at least on conditional plan
which leads to one remaining situation in any case. But as we choose the sensing action online we
cannot perform a backtracking which may be necessary to generate a plan. Instead we generate a
conditional plan in a greedy fashion. In general, such a greedy approach may not yield a plan even
if there is a plan. To discuss the difference which is caused due to a greedy generation we state a
condition which needs to be fulfilled for a greedy generation to work. The condition is called strong
complete active diagnosable. We define a set of minimal diagnosis for a situation as strong complete
active diagnosable as follow.

Definition 23. We define a minimal diagnosis set minDiag(s) as strong complete active diagnosable
(SCAD(minDiag(s))) recursively:

• SCAD(minDiag(s)) if |W(s)|= 1

89

Chapter 7. Active gathering of Knowledge

•

[∃α : (|Ωα|> 0)∧ (|Λα|> 0)]
∧

[∀α.((|Ωα|> 0)∧ (|Λα|> 0))→ SCAD(minDiag(s)\Ωα)∧SCAD(minDiag(s)\Λα)]

The definition of strong complete active diagnosis ensures that regardless of the choice of the sensing
action one will reach a set with only one remaining situation. Thus, a greedy algorithm will yield
a set containing only one situation if the set is a strong complete active diagnosis. However, as the
definition of strong complete active diagnosis seems to be very restricted compared to the definition
of complete active diagnosis, we will show how these two restrictions relate. This relation will allow
us to show under which condition the online execution yield a single remaining situation.
To state this relation, we first need to specify how the set of allowed sensing actions change during
the execution of a sensing action. We can derive the following lemma for this change∗.

Lemma 16. Each set minDiag′(s) of a minimal diagnosis which is the result of executing a sensing
action α which is not in contradiction to the belief result in a super set of possible safe sensing actions
ASS(minDiag′(s))⊇ ASS(minDiag(s)).

Proof. This is a direct result of Theorem 6.

The lemma states after executing a sensing action the set of possible sensing action can only increase.
Thus, we can execute a sensing action without worrying that a plan can no longer be executed. We
can use this result to state the following lemma.

Lemma 17. If a set of minimal diagnosis minDiag(s) fulfill the CAD(minDiag(s)) property also every
minDiag(s)′ which is the result of executing action α which is not contradicting with the belief fulfill
the property CAD(minDiag(s)′).

Proof. As the pool fulfill the CAD(minDiag(s)) property we know there exists a conditional plan
which reduce the pool to cardinality 1. Through Lemma 16 we know that after the execution of a
sensing action which is not in contradiction to the belief at least the same sensing actions are safe to
perform. Thus, we can use the same conditional plan which was retrieved for the set minDiag(s) for
the set minDiag(s)′. Thus, the set minDiag(s)′ also fulfills the property CAD(minDiag(s)′).

The lemma states that the CAD property is preserved if we execute a sensing action which does not
contradict the belief of the robot. We can use this lemma to state that there exists a minimal plan
which can be used to yield only one situation remaining.

Lemma 18. If a minimal set of diagnosis minDiag(s) is CAD(minDiag(s)), then there exists a minimal
plan (concerning the number of transitions) using only sensing action which eliminates in every case
of sensing result at least one possible situation from the pool.

Proof. We prove this lemma by contradiction. Assume there exists a minimal plan which uses a
sensing action α1 which does not eliminate one situation in any case of the sensor result. Thus,
there exists one sensor result which does not change the set. Thus, the set stays the same after the
sensing action is performed and the sensor result was retrieved. As the resulting set needs to be
CAD(minDiag(s)), there must exist a sensing action which changes the pool regardless of the sensing

∗We use the expression of a sensing action α which is not in contradiction to the belief to specify a sensing action which
yields a sensing result which is neither believed nor is the negation of the sensing result is believed

90

7.6. Conclusion and Future work

outcome. Thus, we can remove the sensing action α1 without effect on the minimal set of diagnosis
and would have still a conditional plan. This result is in contradiction to the assumption that this plan
is minimal.

Finally, by combining the above lemmas we can state that the two restrictions are equivalent. This is
formally stated in the following theorem.

Theorem 9. A minimal set of diagnosis minDiag(s) is complete active diagnosable CAD(minDiag(s))
iff the set is strong complete active diagnosable SCAD(minDiag(s)).

Proof. The if direction holds since the condition of the CAD(minDiag(s)) is always true if the condi-
tion of the SCAD(minDiag(s)) is true.
To prove the only if direction we use Lemma 17 and Lemma 18. Through Lemma 18 we know that
if the minimal diagnosis set is CAD(minDiag(s)) there exists a conditional plan which uses sensing
action fulfilling the requirements in SCAD(minDiag(s)). Thus, we need to show if we choose a
sensing action according the requirements for SCAD(minDiag(s)) we will preserve that the set is
CAD(minDiag(s)). To show that CAD(minDiag(s)) is preserved we need to analyze what happens
in one transition of the conditional plan. During one transition of the conditional plan at least one
possible situation from minDiag(s) is eliminated and the remaining possible situations build the set
minDiag(s)′. Thus, the chosen sensing action does not contradict the belief of the robot. Due to
Lemma 17 we know that the CAD(minDiag(s)) property is preserved and thus the Theorem holds.

The theorem states that if a minimal diagnosis fulfills the SCAD(minDiag(s)) property it also fulfills
the CAD(minDiag(s)) property. We can use this result to finally show that the online execution yields
also only one remaining situation if a conditional plan would yield only one remaining situation.

Theorem 10. Solving the ADBM online will result in a minimal diagnosis of cardinality 1 if the
minimal diagnosis fulfills the CAD(minDiag(s)) property.

Proof. The proof is simple as an online execution is a sub tree of a conditional plan which was
produced greedy. A conditional plan which was produced greedy fulfills the SCAD(minDiag(s))
property. Due to Theorem 9 we also known that this property only holds if the CAD(minDiag(s))
property hold. Thus, this theorem holds.

The theorem states that we can solve the ADBM problem online without sacrificing the chance that
only one situation remains. Thus, one can always find the next best sensing action till either the robot
has enough knowledge or only one situation is remaining. If only one situation is remaining the robot
can only gain additional knowledge by performing sensing actions which regardless of the sensing
outcome are not believed by the robot. However, no further guidance can be given. Thus, one may
consider aborting the execution of the plan as the uncertainty of the current situation is not caused due
to the different possible faults.

7.6. Conclusion and Future work

If a robot uses its belief to decide which action to perform next, it can face the problem that it lacks
the knowledge to make a decision. Thus, the robot needs to perform an active knowledge gathering
step. In this chapter, we have shown a method to perform such an active knowledge gathering step.
First, we have shown that the robot gains knowledge about the environment if it performs sensing
action which has an outcome that is not predicted by the robot’s belief. We demonstrated that this
sensing action could further be used to find those sensing actions used for active knowledge gathering.

91

Chapter 7. Active gathering of Knowledge

Using the mutual information of the sensing action and its impact on the robot’s belief we showed
how the robot could decide which sensing action to perform next. Additionally, we have shown two
algorithms to find the sensing action which maximizes the mutual information. The algorithm differs
on how they use the set of sensing actions which can be performed. The first algorithm uses a brute
force search over all sensing action. Thus, the algorithm can only be applied if there is a small number
of sensing actions. The second algorithm first estimates the value of the mutual information and uses
this value to search for a sensing instance which produces this value. Thus, the algorithm can deal
with a significant number of possible sensing actions but has a higher worst case run time than the
first algorithm. Finally, we have shown on a theoretical basis that the online execution of choosing a
sensing action the algorithm yields the same result as if one would create a conditional plan consisting
of sensing actions only.
To not only just gather knowledge about the environment but instead to gather that knowledge which
allows the robot to decide further transition is left for future work. Such a guided sensing could reduce
the time the robot is gathering knowledge. Thus, the robot would faster react to a situation where it
lacks knowledge. Such a method could consider the query which failed due to the lack of knowledge
as a goal which needs to be reached through a conditional plan.

92

Chapter 8
Creating Reactive Programs

In the previous chapters, we have discussed how the robot can use the information of the history
based diagnosis to form a belief about the environment. This belief is used to allow the robot to take
a decision which action should be performed next. Furthermore, we have discussed how the robot
can react to situations where it is missing knowledge about the environment and thus needs to gather
knowledge. All these methods assumed that the high-level program of the robot could react to abrupt
changes of the underlying belief.
Unfortunately, most of the programs which are written are not designed to react to changes in the
belief. Thus, they lack the possibility to specify how the robot should react in a certain situation to
achieve the overall goal. Instead, high level programs are often simple imperative programs describ-
ing how to achieve a task with a set of actions which are executed flawlessly. Such programs only
cover one possible trace how to reach from one situation to the goal situation. The creation of such
programs as simple as one can often come up easily with a sequence of actions to achieve a certain
task. Sometimes it also possible to generate these programs from descriptions found on the internet
[137]. Due to their sequential nature, the robot cannot react to unforeseen changes. The reason for this
restriction is simply caused by the fact that these programs specify how the robot can achieve a task
if everything works as expected. During the creation of this program, one does not, or even cannot
consider all cases an action might fail. Thus, the cases of a failing action are not considered in the
program. In contrast to a simple sequence of action a specification of a reactive behavior allows the
robot to reach the goal from a different situation which may result in a different sequence of action as
it would be specified otherwise.
Besides the lack of proper high-level control programs which can react there is also a software devel-
opment point of view which should be considered. It is often easy to describe which actions the robot
should perform to achieve a task. Furthermore, one can test such a high-level program rigorously to
ensure that all cases of valid initial scenarios are covered. This testing may be time intensive, but it is
feasible if one needs only to consider actions which execute as expected. It is also possible to prove
that the program is correct by using a method for formal verification [21]. However, again, this is only
feasible if one considers non-faulty action outcomes only. This restriction allows to neglect that there
may be different beliefs after an action has been executed, depending on the success of the execution.
Thus, it would be preferable if one would only need to specify an imperative program, but the robot
would still use this program in a reactive manner.
As one specifies only an imperative program but the robot should use this program in a reactive manner
the robot needs first to alter the program such that the reactive behavior is possible. During this change,

93

Chapter 8. Creating Reactive Programs

it is important that the program not behave differently as if the imperative program would be executed
if no fault occurred. Thus, the robot should create a reactive program out of the imperative program
which behaves the same if no action fault occurred. In this chapter of the thesis, we will address this
problem. We will use the program structure to infer a reactive behavior. The method presented in
this chapter ensures that the reactive behavior behaves the same as the sequential program if no fault
occurs.
To allow the robot to react to a fault the robot needs not only a reactive high-level program but it needs
to detect the fault in the first place. As we have discussed in the previous chapters, the robot can only
detect a fault if a sensing action is performed. Thus, the program needs to check the outcome of each
action with the help of sensing actions. As this check depends on the available sensing actions on the
robot a general specification may become complex. Additionally, it is a cumbersome task to add all
the sensing action to the program. Furthermore, through the adding of sensing actions, the program
gets more complex. Last but not least the addition of sensing actions does not change if an action
is executed successfully. Thus, it would be preferable if one can only specify the program without
supervision sensing actions, but the robot performs this sensing actions on its own to check if the
execution is carried out as expected.
In this chapter, we will show an approach which allows the robot to generate the supervision sensing
actions automatically. The method uses the definition of the actions and the sensing action to derive
the super vision actions. Furthermore, the creation of this supervision sensing actions only relies on
standard means of the situation calculus thus allow an easy integration.
The remaining of the chapter is structured as follows. In the next section, we discuss how to generate a
reactive program from a sequential one. The proceeding section discusses how to produce supervision
sensing actions. In Section 8.3 we discuss some related research which is unique to this chapter.
Finally, we conclude the chapter and point out some future work.

8.1. Generation of Reactive Programs

To create a reactive program, from a given imperative program the robot needs first to ”understand“ the
program, before creating a new reactive program. The first step is that the robot parses the program to
retrieve the structure of the program. Furthermore, through the usage of the semantic of the program
and its structure the robot can reason how the different parts of the program depend on each other.
Afterward, the robot can use these dependencies to generate a reactive program.
In the remaining of the chapter, we assume the high-level program is given as an IndiGolog program.
The result of parsing the program is an abstract syntax tree (AST [1]). The AST represents the
program structure. Thus, it relates the different statements of the program to each other according to
the program syntax. We define the AST formally as follows.

Definition 24. An Abstract Syntax Tree (AST) consists of a set of nodes N and a set of edges E ⊆
N ×N . The nodes in the AST represent program statements, and the edges in the AST represent a
parent child relation. The AST has a unique root node N which has no parent but may have children.
Furthermore, all nodes in N are connected through the edges in such a way that the form one tree.
Additional it holds that each node n in N is a tuple consisting of the following elements:

• T . A type of the statement, e.g., While, If

• Con. A condition of the node.

• x. A variable of the node

94

8.1. Generation of Reactive Programs

• α. An action of the node

To show how an AST of a program looks like let’s consider a simple example. Let’s consider the
following program: if φ then α1 else α2 ; α3 endIf. The program is a simple if statement which
causes the execution depending on the formula φ to execute either action α1 or the action sequence α2
and α3. The resulting AST is depicted in Figure 8.1.

Figure 8.1.: The AST of the simple example program if φ then α1 else α2 ; α3 endIf.

To use the AST for further changes on the program we assume a function child : N ↔ N I . The
function returns all the children of a node in a list. Thus, allowing a simple iteration over all children
of this node. Furthermore, we assume that the function preserves the order of the children. Thus, in
the case of a sequence, the first child will always be the first element of the sequence.
The AST of the program only relates the different statements of the program with each other. However,
as the robot needs to ”understand“ the program, we generate a new graph called the requisite graph
(RG) using the information provided by the AST. The graph represents the conditions which need to
hold to execute a certain action. Thus, one can use the graph to execute the complete program. One
just needs to check the condition on the edges of the graph and afterward execute the action mentioned
in the node of the graph. We define the requisite graph formally as follows.

Definition 25. A requisite graph RG consists of a set of nodes N and a set of edges E . Each node
n ∈N can be of one of the following six types:

1. an action node which defines an action to be executed.

2. A nil node which defines an empty statement

3. A variable binding node which defines a variable binding for a specific scope

4. A variable releasing node which defines the end of a scope for a variable

5. A start node which defines the beginning of a program

6. An end node which defines the end of a program

Each edge e ∈ E is defined as a tuple consisting of the following elements:

• A start node ns ∈N

95

Chapter 8. Creating Reactive Programs

• A goal node ng ∈N

• A condition C which needs to hold to use the edge during interpretation.

As we use the RG to specify the execution of the program we will define the execution of a requisite
graph formally with the help of two predicates. The first predicate is transRG(N ,E ,n,τ,s,b,n′,s′,b′)
which specifies given a requisite graph the current node n, τ specifies the type of the current node, the
current situation s and the current variable binding b what the next node in the graph n′ will be and
how the situation changes to s′ additionally the variable binding can be altered to a new binding b′.
The second predicate finalRG(N ,E ,n,τ,s,b) specifies if the program can legally terminate with the
given requisite graph in the current node n with the type τ, in the current situation s with the current
variable binding b.
To specify these two predicates, we assume that the variable binding consists of a set of tuples 〈v, t〉,
such that v is a variable and t is a grounded atom which is a valid substitution for the variable v.
Additionally, we write φ|b to define that each variable v is substituted by t in formula φ.
We define the transition of the requisite graph through the predicate transRG as follows:

1. transRG(N ,E ,n,NIL_NODE,s,b,n′,s′,b′) ≡ ∃c.〈n,n′,c〉 ∈ E .c|b′ [s′]∧ s = s′∧ b = b′. Check
the condition for an outgoing edge. If the condition of the edge is true process further with the
next node.

2. transRG(N ,E ,n,ACTION_NODE,s,b,n′,s′,b′)≡∃c.〈n,n′,c〉 ∈E .c|b′ [s′]∧s′ = do(α,s)∧b =
b′. Execute the associated action α. Add the action to the history of performed actions. Add the
sensing outcome of this action to the knowledge base. Choose non-deterministic one outgoing
edge which has a condition which holds for the new situation.

3. transRG(N ,E ,n,VAR_BINDING_NODE,s,b,n′,s′,b′)≡ ∃c.〈n,n′,c〉 ∈ E .∃t.c|b|vt [s]∧ s = s′∧
b′ = b∪〈v, t〉. Search for a variable binding t such that the condition of one outgoing edge is
fulfilled and the specified condition for the variable v choice is also fulfilled. If such a bind
can be found use the binding to execute the program further. This is done be choosing non-
deterministic one outgoing edge which has a condition which holds for the current situation.

4. transRG(N ,E ,n,VAR_RELEASING_NODE,s,b,n′,s′,b′) ≡ ∃c.〈n,n′,c〉 ∈ E .c|b′ [s′]∧ s = s′∧
b′ = b\{〈v, t〉|〈v, t〉 ∈ b}. Remove any binding t of the specified variable v. Afterwards proceed
by choosing non-deterministic one outgoing edge which has a condition which holds for the
current situation.

5. transRG(N ,E ,n,START_NODE,s,b,n′,s′,b′)≡ ∃c.〈n,n′,c〉 ∈E .c|b′ [s′]∧ s′ = S0∧b′ = /0. Set
the current situation to be the initial situation. Afterwards choose non-deterministic one outgo-
ing edge which has a condition which holds for the current situation.

6. transRG(N ,E ,n,END_NODE,s,b,n′,s′,b′)≡⊥. Terminate the program with a success.

We define the termination condition of the requisite graph through the predicate finalRG as follows:

1. finalRG(N ,E ,n,NIL_NODE,s,b)≡⊥, no termination possible.

2. finalRG(N ,E ,n,ACTION_NODE,s,b)≡⊥, no termination possible.

3. finalRG(N ,E ,n,VAR_BINDING_NODE,s,b)≡⊥, no termination possible.

96

8.1. Generation of Reactive Programs

4. finalRG(N ,E ,n,VAR_RELEASING_NODE,s,b)≡⊥, no termination possible.

5. finalRG(N ,E ,n,START_NODE,s,b)≡⊥, no termination possible.

6. finalRG(N ,E ,n,END_NODE,s,b)≡>, end of program reached terminate with success.

Using the two predicates to specify the execution of the requisite graph RG. One can interpret the
program as follows:

• Terminate with a success if the following holds ∃τ.τ = type(n)∧finalRG(N ,E ,n,τ,s,b), where
n is the current node of the program, s is the current situation, and b is the current variable
binding

• Proceed with the next node n′, the new situation s′ and the new variable binding b′ if the fol-
lowing holds ∃τ.τ = type(n)∧ transRG(N ,E ,n,τ,s,b,n′,s′,b′), where n is the current node of
the program, s is the current situation, and b is the current variable binding

• If neither of the above holds terminate indicating a fault.

Through the execution semantic of the requisite graph above, we have defined how to interpret a
requisite graph. As the high-level program is given as AST, we need to define a transformation
between the AST and a requisite graph. This transformation should ensure that the interpretation
of the requisite graph corresponds to the interpretation of the AST itself.
We define the transformation for an AST given through the tuple 〈N ,E〉 the current node of the AST
n which is considered, τ the type of the current node and the requisite graph represented through the
tuple 〈N ,E with the current start node ns, the current end node ne and the current condition to execute
the start node c. The transformation will ensure that for the AST of the full program the start node
will correspond to a start node in the requisite graph. Furthermore, the end node in the requisite graph
will correspond to an end node in the requisite graph. Additionally, the condition c will be true for the
AST of the full program. The transformation is defined with the help of the predicate TransASTToRG
as follows:

1. TransASTToRG(N ,E ,n,ROOT,N ,E ,ns,ne,c) ≡ ∃n′,N
′
,E ′,ns

′,ne
′,c′,τ.〈n,n′〉 ∈ E ∧ τ =

type(n′) ∧ TransASTToRG(N ,E ,n′,τ,N
′
,E ′,ns

′,ne
′,c′) ∧ N = N

′
∪ {ns,ne} ∧ E = E ′ ∪

{〈ns,ns
′,c′〉,〈ne

′,ne,>〉}∧ type(ns) = START_NODE∧ type(ne) = END_NODE

2. TransASTToRG(N ,E ,n,ACTION,N ,E ,ns,ne,c) ≡ N = {ns,ne} ∧ E = {〈ns,ne,c〉} ∧ c =
πα∧action(ne) = α∧ type(ne) = ACTION_NODE∧ type(ns) = NIL_NODE

3. TransASTToRG(N ,E ,n,TEST,N ,E ,ns,ne,c) ≡ N = {ns,ne} ∧ E = {〈ns,ne,c〉} ∧ c =
COND∧ type(ne) = NIL_NODE∧ type(ns) = NIL_NODE

4. TransASTToRG(N ,E ,n,NIL,N ,E ,ns,ne,c) ≡ N = {ns,ne} ∧ E = {〈ns,ne,c〉} ∧ c = > ∧
type(ne) = NIL_NODE∧ type(ns) = NIL_NODE

5. TransASTToRG(N ,E ,n, IF,N ,E ,ns,ne,c) ≡ ∃n1,n2.n1 = child(n)[1] ∧
n2 = child(n)[2] ∧ ∃N1,E1,ns1,ne1,τ1,c1,N2,E2,ns2,ne2,τ2,c2.τ1 =

type(n1) ∧ τ2 = type(n2) ∧ TransASTToRG(N ,E ,n1,τ1,N1,E1,ns1,ne1,c1) ∧
TransASTToRG(N ,E ,n2,τ2,N2,E2,ns2,ne2,c2) ∧ N = N1 ∪ N2 ∪ {ns,ne} ∧ E =
E1 ∪ E2 ∪ {〈ns,ns1,COND ∧ c1〉,〈ns,ns2,¬COND ∧ c2〉,〈ne1,ne,>〉,〈ne2,ne,>〉} ∧ c =
(COND∧ c1)∨ (¬COND∧ c2)∧ type(ne) = NIL_NODE∧ type(ns) = NIL_NODE

97

Chapter 8. Creating Reactive Programs

6. TransASTToRG(N ,E ,n,WHILE,N ,E ,ns,ne,c) ≡ ∃n′.n′ = child(n)[1] ∧
∃N

′
,E ′,ns

′,ne
′,τ′,c′.τ′ = type(n′) ∧ TransASTToRG(N ,E ,n′,τ′,N

′
,E ′,ns

′,ne
′,c′) ∧

N = N
′
∪ {ns,ne} ∧ E = E ′ ∪ {〈ns,ns

′,COND ∧ c′〉,〈ne,ns,COND ∧
c′〉,〈ns,ne,¬COND〉,〈ne

′,ne,¬COND〉} ∧ c = (COND∧ c′) ∨ ¬COND ∧ type(ne) =
NIL_NODE∧ type(ns) = NIL_NODE

7. TransASTToRG(N ,E ,n,SEQUENCE,N ,E ,ns,ne,c) ≡ ∃n1,n2.n1 =

child(n)[1] ∧ n2 = child(n)[2] ∧ ∃N1,E1,ns1,ne1,τ1,c1,N2,E2,ns2,ne2,τ2,c2.τ1 =

type(n1) ∧ τ2 = type(n2) ∧ TransASTToRG(N ,E ,n1,τ1,N1,E1,ns1,ne1,c1) ∧
TransASTToRG(N ,E ,n2,τ2,N2,E2,ns2,ne2,c2) ∧ N = N1 ∪ N2 ∧ E = E1 ∪ E2 ∪
{〈ne1,ns2,c2〉} ∧ c = c1 ∧ ns = ns1 ∧ ne = ne2. Without loss of generality we assume that
a sequence only consists of two elements.

8. TransASTToRG(N ,E ,n,CHOOSE,N ,E ,ns,ne,c) ≡ ∃n1,n2.n1 = child(n)[1] ∧
n2 = child(n)[2] ∧ ∃N1,E1,ns1,ne1,τ1,c1,N2,E2,ns2,ne2,τ2,c2.τ1 =

type(n1) ∧ τ2 = type(n2) ∧ TransASTToRG(N ,E ,n1,τ1,N1,E1,ns1,ne1,c1) ∧
TransASTToRG(N ,E ,n2,τ2,N2,E2,ns2,ne2,c2) ∧ N = N1 ∪ N2 ∪ {ns,ne} ∧ E =
E1 ∪ E2 ∪ {〈ns,ns1,c1〉,〈ns,ns2,c2〉,〈ne1,ne,>〉,〈ne2,ne,>〉} ∧ c = c1 ∨ c2 ∧ type(ns) =
NIL_NODE∧ type(ne) = NIL_NODE. Without loss of generality we assume that a choice is
made between two elements.

9. TransASTToRG(N ,E ,n,PICK,N ,E ,ns,ne,c) ≡ ∃n′.n′ = child(n)[1] ∧
∃N

′
,E ′,ns

′,ne
′,τ′,c′.τ′ = type(n′) ∧ TransASTToRG(N ,E ,n′,τ′,N

′
,E ′,ns

′,ne
′,c′) ∧

N = N
′
∪ {ns,ne} ∧ E = E ′ ∪ {〈ns,ns

′,c′〉,〈ns,ne,>〉} ∧
[c = ∃variable(n).(COND∧ c′)∨¬COND]∧ type(ne) = VAR_BINDING_NODE∧ type(ns) =
VAR_RELEASING_NODE∧ variable(ns) = variable(n)∧ variable(ne) = variable(n)

With the help of the above transformation, the AST of a program can be transformed into a requisite
graph. This transformation ensures that one can either use the program and executed it according to
the IndiGolog semantics or one can apply the transformation and use the transition semantics of the
requisite graph. We state this property formally in the following theorem.

Theorem 11. Given a IndiGolog program δ and an initial situation S0 any sequence of actions
[α1, . . .αn] which can be executed by the according to δ can also be executed according to the requisite
graph (RG) which was generated from program δ according to the above transformation.

Proof (Sketch). Proof by induction.
For the base case, we only need to consider a simple action. In the case of IndiGolog, this action
would be executed if the precondition of the action holds. The RG consists of three nodes the start
node one action node and the end node. The action node can only be reached if the precondition
holds. The condition of the edge between action node and the end node is true. Thus, if the condition
of the action holds in the initial situation the action is executed and the finale the end node is reached
according to the interpreter defined above.
For the induction step lets’s assume the theorem holds for a program δ with size n. Further, assume
that the program is now a statement which uses in its body a program of size at least n.
Let’s consider this statement is an if. The if branch if branch is executed if the condition holds
per definition. Additionally, the else branch is executed if the negation of the condition holds per
definition. The conversion of the program creates a sub graph representing the if part, which can only

98

8.1. Generation of Reactive Programs

be executed if the condition holds. Additionally, the sub graph representing the else branch can only
be executed if the negation of the condition holds thus the theorem holds for an if statement.
Let’s consider this statement is a while. Per definition of IndiGolog if the condition does not hold the
program terminates. If the condition holds the body is executed once and afterward the loop condition
is rechecked. After conversion of the program, the sub graph representing the loop body is only
executed if the condition holds. Additionally, after the execution of the loop body, the interpreter is
again on the same node as at the beginning of the loop. Thus, performing the same checks for the loop
again. In case the negation of the condition holds the program terminates. Thus, the theorem holds
for a while statement.
Let’s consider this statement is a test. The program can only proceed if the test is passed per definition.
Due to the conversion, the condition is part of the edge leading to the next node and thus needs to hold
for any future execution of the program. Thus, the theorem holds for a test statement.
Let’s consider this statement is a sequence. The first part of the sequence needs to be executed com-
pletely before the second part is executed per definition. Due to the conversion, the second part is
appended to the completion of the first part. Thus, the theorem holds for a sequence statement.
Let’s consider this statement is a nondeterministic choice of branches. One of the branches, which is
possible to be executed, is executed per definition. Due to the conversion one creates several branches
of the start state to the different branches of the statement. Due to the interpretation, only one of the
branches is executed which also can be executed. Thus, the theorem holds for a nondeterministic
choice of branches.
Let’s consider this statement is a nondeterministic choice of arguments. Per definition of IndiGolog
one executes the body with a variable binding which allows the execution. Due to the conversion,
a node is created which searches for a variable binding. Due to the interpretation, the variable bind
ensures that further execution is possible. Thus, the theorem holds for a nondeterministic choice of
arguments.

Before we discuss how we use the requisite graph to construct a reactive program we will shortly
discuss the requisite graph of the example AST. The requisite graph of the example AST is depicted
in Figure 8.2. The graph shows that there are two branches form the start. The first branch leads to the
action α1. We can take this branch if the condition of the if holds and the precondition of the action is
fulfilled. The other branch leads to action α2 which imposes that the negation of the condition holds
together with the precondition of the action. Additionally, we have connection between α2 and α3.
Which can only be taken if the precondition of α3 hold. Finally, the program can terminate after either
action α2 or action α3 was executed.
In Figure 8.2 we have shown a requisite graph of the program pruned to remove NIL nodes. This
pruning allows to handle a smaller graph as well as to ignore NIL nodes in further transformation pro-
cess. To use these benefits for the transformation from an imperative to a reactive program we define
a reduction method which removes NIL nodes from the graph but preserves its execution behavior.
We specify this transformation through the predicate Compress which uses a given requisite graph
defined through the tuple N and E and results in a new requisite graph defined through the tuple N

′

99

Chapter 8. Creating Reactive Programs

Figure 8.2.: The requisite graph of the simple example program if φ then α1 else α2 ; α3 endIf.

and E ′. The predicate is now defined as follows.

Compress(N ,E ,N
′
,E ′)≡[@ns,ne,n,c1,c2.type(n) = NIL_NODE∧〈ns,n,c1〉 ∈ E∧

〈n,ne,c2〉 ∈ E →N
′
= N ∧E ′ = E]

∨
[∃ns,ne,n,c1,c2.type(n) = NIL_NODE∧〈ns,n,c1〉 ∈ E∧

〈n,ne,c2〉 ∈ E → E ′ = E \{〈ns,n,c1〉,〈n,ne,c2〉}∪〈ns,ne,c1∧ c2〉∧

N
′
=
{

n|n ∈N ∧∃n′,c′.〈n,n′,c′〉 ∈ E ∨〈n′,n,c′〉 ∈ E
}
]

With the help of the above predicate, the requisite graph is reduced such that no NIL node remains in
the graph. As we want to use such a reduced graph for the transformation into a reactive program,
we need to ensure that this transformation does not yield a requisite graph which behaves differently.
The following lemma states formally that the execution behavior remains the same regardless if the
requisite graph is compressed or not.

Lemma 19. Any action sequence [α1, . . .αn] which is the result of the execution of a requisite graph
given through N and E can also be the result of the execution of the compressed requisite graph given
through N

′
and E ′, where it holds that Compress(N ,E ,N

′
,E ′).

Proof (Sketch). This holds as the definition of Compress ensures that both conditions to enter a NIL
node and to leave the NIL node to execute any next node after this NIL node. Thus, the same traces
can be executed in the graph if the NIL nodes are removed from that trace.

Above we have formally defined how to generate a requisite graph from a given AST. This trans-
formation definition defines a proper compilation from an AST to a requisite graph. We perform this
compilation only considering those parts of the IndiGolog semantic which are used for non-concurrent
program execution. Additionally, we consider the program does not contain the search operator. To
perform this compilation Algorithm 8 can be used. The algorithm is called with the root node of the
AST and with all other sets empty and the condition to prepend to be true. Thus, the initial call is

100

8.1. Generation of Reactive Programs

as follows ComputeRG(N,{nprogStart},>,{nprogEnd}, /0,Ng,CnewP,N ,E). The algorithm performs the
transformation per TransASTToRG and performs the reduction of the graph per Compress. Thus, the
result of the algorithm is a requisite graph from the given Program which is already reduced not to
contain NIL nodes.

Algorithm 8: ComputeRG
Data: nAST . . . the current node of the AST
Data: Ns . . . a set of start nodes
Data: CP . . . a condition to prepend
Data: N . . . a set of nodes defining the current requisite graph
Data: E . . . a set of edges within the current requisite graph
Result: Ng . . . the current set of goal nodes
Result: CnewP . . . a new condition to prepend
Result: N

′
. . . a set of nodes defining the new requisite graph

Result: E ′ . . . a set of edges within the new requisite graph
1 begin
2 〈T,Co,x,α〉= nAST ;
3 Ch = child(nAST) ;
4 switch T do
5 case If do
6 CRGIF(Ch,Co,Ns,CP,N ,E ,Ng,CnewP,N

′
,E ′) ;

7 end
8 case While do
9 CRGWhile(Ch,Co,Ns,CP,N ,E ,Ng,CnewP,N

′
,E ′) ;

10 end
11 case Sequence do
12 CRGSequence(Ch,Ns,CP,N ,E ,Ng,CnewP,N

′
,E ′) ;

13 end
14 case Choose do
15 CRGChoose(Ch,Ns,CP,N ,E ,Ng,CnewP,N

′
,E ′) ;

16 end
17 case Pick do
18 CRGPick(Ch,Co,x,Ns,CP,N ,E ,Ng,CnewP,N

′
,E ′) ;

19 end
20 case Test do
21 CRGTest(Co,Ns,CP,N ,E ,Ng,CnewP,N

′
,E ′) ;

22 end
23 case Action do
24 CRGAction(α,Ns,CP,N ,E ,Ng,CnewP,N

′
,E ′) ;

25 end
26 end
27 end

To perform the compilation from the AST to the requisite graph the Algorithm 8 uses the typo of the
statement to dispatch the compilation to one of the following Algorithms 9, 10, 11, 12, 13, 14 and

101

Chapter 8. Creating Reactive Programs

15. These algorithm calls Algorithm 8 to resolve child nodes in the AST. The recursion stops with the
depth of the AST. Thus algorithm visits each node in the AST once and terminates in O(|AST|).

Algorithm 9: CRGIF
Data: Children . . . children of the current node of the AST
Data: Cond. . . . condition of the current node of the AST
Data: Ns . . . a set of start nodes
Data: CP . . . a condition to prepend
Data: N . . . a set of nodes defining the current requisite graph
Data: E . . . a set of edges within the current requisite graph
Result: Ng . . . the current set of goal nodes
Result: CnewP . . . a new condition to prepend
Result: N

′
. . . a set of nodes defining the new requisite graph

Result: E ′ . . . a set of edges within the new requisite graph
1 begin
2 C′P =CP∧Cond. ;

3 ComputeRG(Children[0],Ns,C′P,N ,E ,N′g,C
′
newP,N

′′
,E ′′) ;

4 C′′P =CP∧¬Cond. ;

5 ComputeRG(Children[1],Ns,C′′P,N
′′
,E ′′,N′′g ,C′′newP, ,N

′
,E ′) ;

6 Ng = N′g∪N′′g ;
7 CnewP =C′newP∨C′′newP ;
8 end

Algorithm 9 handles an if. This is done by creates two sub graphs. The first sub graph represents the
case when the condition holds. Thus, the condition of the if is imposed on this sub graph. The second
sub graph represents the else branch of the if. Thus, the negation of the condition of the if is imposed
on this sub graph. Finally, the set of both final nodes is composed as the robot is in one of these nodes
during the execution.
Algorithm 10 handles a while. A while is created by creating a sub graph which contains the transfor-
mation of the loop body. This sub graph is connected by imposing the loop condition as a prerequisite.
To allow to continue the execution after the loop is finished the end of the loop body relates to the
beginning of the while. Additionally, the start nodes of the while loop are the only nodes which allow
to end the loop if the condition becomes false.
Algorithm 11 handles a test in the program. It simply adds the test to the condition which needs to
hold to execute the next action.
Algorithm 12 handles a sequence in the program. The algorithm simply concatenates the different
program parts of the sequence one after the other.
Algorithm 13 handles the non-deterministic chose of branches. The algorithm creates a sub graph for
each of the different program branches. Afterwards the termination nodes of the program branches
are combined. Furthermore, all branches use the same start node. Thus, the robot can choose one
branch and afterwards execute this branch. Regardless of the executed branch the robot will end up in
the same set of goal nodes.
Algorithm 14 handles a non-deterministic chose of arguments. The algorithm creates a node indicating
the new creation of a variable x. This node is connected to the sub graph created by the body of the
pick statement. Finally, the goal nodes of the body are connected to a new created node which releases

102

8.1. Generation of Reactive Programs

Algorithm 10: CRGWhile
Data: Children . . . children of the current node of the AST
Data: Cond. . . . condition of the current node of the AST
Data: Ns . . . a set of start nodes
Data: CP . . . a condition to prepend
Data: N . . . a set of nodes defining the current requisite graph
Data: E . . . a set of edges within the current requisite graph
Result: Ng . . . the current set of goal nodes
Result: CnewP . . . a new condition to prepend
Result: N

′
. . . a set of nodes defining the new requisite graph

Result: E ′ . . . a set of edges within the new requisite graph
1 begin
2 C′P =CP∧Cond. ;

3 ComputeRG(Children[0],Ns,C′P,N ,E ,N′g,C
′
newP,N

′
,E ′) ;

4 Ng = Ns ;
5 CnewP =CP∧¬Cond. ;
6 foreach ng ∈ N′g do
7 foreach ns ∈ Ns do
8 E ′ = E ′∪{〈ng,ns,C′newP〉}
9 end

10 end
11 end

Algorithm 11: CRGTest
Data: Cond. . . . condition of the current node of the AST
Data: Ns . . . a set of start nodes
Data: CP . . . a condition to prepend
Data: N . . . a set of nodes defining the current requisite graph
Data: E . . . a set of edges within the current requisite graph
Result: Ng . . . the current set of goal nodes
Result: CnewP . . . a new condition to prepend
Result: N

′
. . . a set of nodes defining the new requisite graph

Result: E ′ . . . a set of edges within the new requisite graph
1 begin
2 CnewP =CP∧Cond. ;
3 Ng = Ns ;
4 end

the variable x.
Finally, Algorithm 15 handles an action. To execute the action, the precondition is added to the edge
condition. Afterwards a node is created which performs the action execution. All start nodes are
afterwards connected to this newly created node. The goal node is the node which representing the
action execution.
The above algorithms convert an AST into a requisite graph. This transformation is done properly

103

Chapter 8. Creating Reactive Programs

Algorithm 12: CRGSequence
Data: Children . . . children of the current node of the AST
Data: Ns . . . a set of start nodes
Data: CP . . . a condition to prepend
Data: N . . . a set of nodes defining the current requisite graph
Data: E . . . a set of edges within the current requisite graph
Result: Ng . . . the current set of goal nodes
Result: CnewP . . . a new condition to prepend
Result: N

′
. . . a set of nodes defining the new requisite graph

Result: E ′ . . . a set of edges within the new requisite graph
1 begin
2 N tmpIn = N ;
3 E tmpIn = E ;
4 for i← 0 to sizeOf (Children) do
5 ComputeRG(Children[i],Ns,CP,N tmpIn,E tmpIn,Ng,CnewP,N tmpOut,E tmpOut) ;
6 CP =CnewP ;
7 Ns = Ng ;
8 N tmpIn = N ;
9 E tmpIn = E ;

10 end
11 N

′
= N tmpOut ;

12 E ′ = E tmpOut ;
13 end

which is state more formally in the following Proposition.

Proposition 1. For any given program, defined through N and E , the result of Algorithm 8
is N

′
and E ′. Furthermore it holds that ∃n,τ,N ,E ,ns,ne,c.n = rootOf (N ,E) ∧ τ = ROOT ∧

TransASTToRG(N ,E ,n,τ,N ,E ,ns,ne,c)∧Compress(N ,E ,N
′
,E ′)

With the help of the above algorithm the AST is transformed into a requisite graph. This graph can
be afterwards used to derive a reactive program. To define a conversion of the program into a reactive
program we first need to define a reactive program.

Definition 26. A reactive program R consists of a goal condition GC and a list of tuples of the
following form:

• C. A condition which needs to hold to execute the action.

• A. An action sequence to execute.

The reactive program is executed till the goal condition holds. In each iteration of the program the
action sequence with the lowest index is executed of those action sequence where the condition is
fulfilled.

We could now convert the complete program into a reactive version. However, this would cause the
robot to reason about the complete reactive program each time an action is executed. Thus, causing a

104

8.1. Generation of Reactive Programs

Algorithm 13: CRGChoose
Data: Children . . . children of the current node of the AST
Data: Ns . . . a set of start nodes
Data: CP . . . a condition to prepend
Data: N . . . a set of nodes defining the current requisite graph
Data: E . . . a set of edges within the current requisite graph
Result: Ng . . . the current set of goal nodes
Result: CnewP . . . a new condition to prepend
Result: N

′
. . . a set of nodes defining the new requisite graph

Result: E ′ . . . a set of edges within the new requisite graph
1 begin
2 CnewP =⊥ ;
3 Ng = {} ;
4 N tmpIn = N ;
5 E tmpIn = E ;
6 foreach c ∈ Children do
7 ComputeRG(c,Ns,CP,N tmpIn,E tmpIn,N′g,C

′
newP,N tmpOut,E tmpOut) ;

8 CnewP =CnewP∨C′newP ;
9 Ng = Ng∪N′g ;

10 N tmpIn = N ;
11 E tmpIn = E ;
12 end
13 N

′
= N tmpOut ;

14 E ′ = E tmpOut ;
15 end

high run time. This great run time is due to a reactive program consisting of L statements would need
to check L statements every time we want to execute the next actions thus we would perform O(L2)
checks just to carry out a simple sequential program.
Instead of converting the complete program we will create a reactive program for each action in the
program together with a local recovery. This local recovery is bounded by a fixed number k allowing
only k actions to step back to perform this recovery. Beside the improvement of a large program, the
local recovery follows a simple idea. If a program is written to achieve a certain task on performs
several actions to prepare an action which is executed next. Thus, it is often the case that the actions
before the current actions can be used to perform a repair. Performing the local recovery, we exploit
this fact.
As a reactive program needs a termination condition to stop its iteration, we need to take care that
the reactive program only terminates if the action we are interested in was executed successfully. To
ensure this, we create a new fluent FinishedAction. The fluent is true if the action is successfully
executed. Please note we assume that every fault mode imposes that this fluent is set to false. Addi-
tionally, the fluent is set to false after any action execution, which is not the currently focused action.
To set the fluent to be false we use the action SetFinishedActionFalse.
With the above-helping action and the created requisite graph we can use Algorithm 16 to create a
reactive program for a certain action α which is defined in the graph by the node n.

105

Chapter 8. Creating Reactive Programs

Algorithm 14: CRGPick
Data: Children . . . children of the current node of the AST
Data: Cond. . . . condition of the current node of the AST
Data: x . . . variable to bind
Data: Ns . . . a set of start nodes
Data: CP . . . a condition to prepend
Data: N . . . a set of nodes defining the current requisite graph
Data: E . . . a set of edges within the current requisite graph
Result: Ng . . . the current set of goal nodes
Result: CnewP . . . a new condition to prepend
Result: N

′
. . . a set of nodes defining the new requisite graph

Result: E ′ . . . a set of edges within the new requisite graph
1 begin
2 N tmpIn = N ;
3 E tmpIn = E ;
4 nbs = createBindVariableNode(x,Cond.) ;
5 N tmpIn = N tmpIn∪nbs ;
6 foreach n ∈ Ns do
7 E tmpIn = E tmpIn∪{〈n,nbs,CP〉} ;
8 end
9 Ns = {nbs} ;

10 ComputeRG(Children[0],Ns,>,N tmpIn,E tmpIn,N′g,C
′
newP,N tmpOut,E tmpOut) ;

11 N
′
= N tmpOut ;

12 E ′ = E tmpOut ;
13 nes = createReleaseVariableNode(x) ;

14 N
′
= N

′
∪nes ;

15 foreach n ∈ N′g do
16 E ′ = E ′∪{〈n,nes,C′newP〉} ;
17 end
18 CnewP => ;
19 Ng = {nes} ;
20 end

The first line sets the termination condition to be the fluent FinishedAction. Afterward, the algorithm
creates a queue Q of nodes from the requisite graph which need to be integrated into the reactive
program. Initially, this queue only contains the action of interested. In each iteration, one element of
the queue is removed.
If this element has an index high, then K it indicates that the backtracking goes too far into the past.
Thus, no further expansion is performed. Additionally, if the node is not an action no further expansion
is performed. There is two reason for this restriction to action nodes. First, this is the case because
only actions can be added to the reactive program. Second, any other node type does not allow a
simple backward reasoning. In the event of a start node, such a reasoning does not make sense as
no node can be before a start node. The end node can never be checked as it cannot be reached by

106

8.1. Generation of Reactive Programs

Algorithm 15: CRGAction
Data: α . . . the action to perform
Data: Ns . . . a set of start nodes
Data: CP . . . a condition to prepend
Data: N . . . a set of nodes defining the current requisite graph
Data: E . . . a set of edges within the current requisite graph
Result: Ng . . . the current set of goal nodes
Result: CnewP . . . a new condition to prepend
Result: N

′
. . . a set of nodes defining the new requisite graph

Result: E ′ . . . a set of edges within the new requisite graph
1 begin
2 N

′
= N ;

3 E ′ = E ;
4 C′P =CP∧Πα ;
5 n = createActionNode(α) ;

6 N
′
= N

′
∪n ;

7 foreach ns ∈ Ns do
8 E ′ = E ′∪{〈ns,n,C′P〉} ;
9 end

10 CnewP => ;
11 Ng = {n} ;
12 end

backward reasoning. The unbinding of a variable cannot be undone as the value of the variable cannot
be inferred reversely. The last case is the creation of a variable binding node. If such a node would
be allowed in the reactive program, the robot may change the variable binding during the execution
of the reactive program. Thus, break the initial intention of the program that a certain set of actions is
executed with the same variable binding to perform a local recovery.
If the removed element should be processed the action is used to regress the condition which was
gathered so far backward in time. The condition is used to specify which condition should be met
after executing the action. Thus, through the regression, we have the condition which needs to hold to
allow a local recover using the action.
Afterward, the algorithm iterates over all ingoing edges of the node. Thus, the algorithm covers every
possibility the action should be invoiced. Within each iteration, the regressed condition is combined
with the condition of the edge. Thus, adding the condition of the action which should be invoiced.
If this condition is not a tautology, the parent node which is connected to this edge is added to the
queue together with its condition. Thus, one creates a new rule to resolve the missing local recoveries
for the focused action. After updating the queue, a rule is added to the reactive program. The rule is
composed of the generated condition together with the action specified in the node. Please note that
also the actions to set the finished fluent to false is used if the action is not the action we are focusing
on.
Let’s consider our example to show how the reactive program looks like which was generated. Let’s
consider we focus our attention to the action α3 the resulting reactive program would be as depicted
in Listing 8.1. Where π′α3

is the regressed formula of πα3 using action α2. The listing shows that the

107

Chapter 8. Creating Reactive Programs

Algorithm 16: GenerateReactive

Data: N . . . a set of nodes defining the requisite graph
Data: E . . . a set of edges within the requisite graph
Data: n . . . the node of seed action in the graph
Data: K . . . the maximum number of back steps to consider
Result: R . . . a list of rules for a reactive program
Result: GC . . . the termination condition of the reactive program

1 begin
2 GC = FinishedAction ;
3 Q = {〈>,>,n,0〉} ;
4 while Q 6= /0 do
5 〈C,First,n, i〉= pop(Q) ;
6 if (i > K)∨¬(n isA action) then
7 continue;
8 end
9 α = actionOf (n) ;

10 C̄ = regress(α,C) ;
11 i′ = i+1 ;
12 ingoingEdge = {〈n′,c〉|〈n′,n,c} ∈ E} ;
13 foreach 〈n′,c〉 ∈ ingoingEdge do
14 C′ = C̄∧ c;
15 if C̄ 6=> then
16 Q = add(Q,〈C′,⊥,n′, i′〉) ;
17 end
18 if First then
19 δ = α

20 else
21 δ = α;SetFinishedActionFalse
22 end
23 R = add(R,〈C′,δ〉) ;
24 end
25 end
26 end

108

8.2. Generation of Supervision Sensing Actions

program would react to a fault of action α3 by executing either α3 again if the precondition holds or
the robot would back step to action α2 if the condition of this action is still fulfilled.

Listing 8.1: Reactive program generated by Algorithm 16 using the requisite graph depicted in Figure
8.2 for action α3

πα3 → α3
π′α3
∧¬φ∧πα1 → α1;SetFinishedActionFalse

By replacing every action in the original program by the reactive program generated by Algorithm 16
we create a program which allows a local recovery. Thus, the robot can react to faults during the action
execution. However, as we argued above the program should behave the same if no fault occurred.
The same behavior should be ensured as this program behavior is well tested or even verified to be
correct. Through the construction of the reactive program using the requisite graph, we can state that
the program does not alter its behavior if it is executed without an action fault. This result is formally
stated in the following lemma.

Lemma 20. If an IndiGolog program δ allows a sequence of actions to be executed after each other
than the same program, where the execution of an action is replaced by the reactive program generated
through Algorithm 16, can perform the same action sequence.

Proof (Sketch). This lemma holds as a direct result of Theorem 4 and the fact that the first rule in the
reactive program is the action which should be executed.

8.2. Generation of Supervision Sensing Actions

Besides a reactive program which allows the robot to react to faults during the action execution, the
robot needs to perform proper sensing actions to detect this faults in the first place. As we argued
above this specification can be cumbersome. Thus, instead of a manual specification of these sensing
actions, we show a method which allows deriving automatically proper sensing actions.
To derive the proper sensing action, one can either use only the specifications which are provided in
the basic action theory. Alternatively, one can use additionally the specification which is provided in
the history based diagnosis. We will show how to derive sensing actions for both cases.
If only be specifications of the basic action theory are used we have only the definition of the precon-
dition of an action, the effect the action has and the formula which is imposed by a sensing action.
We can use this information to derive that a sensing action αs can supervise another action α as fol-
lows. First we construct a new basic action theory DS =D∗\DS0∪D ′S0

∪∃x̄.Παs(do(α(x̄),S0)), where
D ′S0

= Πα(S0). Thus, the basic action theory is used to ensure that the action α can be executed and
afterwards also the sensing action αs. If this basic action theory is inconsistent DS |= ⊥ then the
sensing action cannot be executed after the action α. If the theory is consistent we can perform the
following checks to determine if the sensing action αs is of use. We can use the sensing action if one
of the following conditions hold:

•
DS |= ∃x̄, ȳ.Παs(do(α(x̄),s))∧SF(αs(ȳ),do(α(x̄),S0)) (8.1)

•
DS |= ∃x̄, ȳ.Παs(do(α(x̄),s))∧¬SF(αs(ȳ),do(α(x̄),S0)) (8.2)

109

Chapter 8. Creating Reactive Programs

Through this definition, the action α implies a certain truth value of αs as sensing result. Thus, one
can use the sensing action as supervision action as there is a defined value the sensing result should
have.
Although this method allows deriving supervision actions, it may be too demanding. As it only uses
an action if the truth value of the sensing outcome is predicted by the action only. Thus, the action α

needs to change the fluents utilized in the sensing formula of αs without any assumptions made for the
initial situation. This condition strongly restricts the set of sensing actions to be used as supervision
actions.
To allow more sensing actions to be used we can remove some of these demands. Instead of impos-
ing that the action determines the truth value of the sensing outcome we check if the action changes
the truth value of the sensing outcome. This can be done with the help of the following basic ac-
tion theory. DS2 = D∗ \DS0∪D ′S0

∪∃x̄.Πα(do(αs(x̄),S0))∪∃x̄, ȳ.Παs(do(α(ȳ),do(αs(x̄),S0))), where
D ′S0

= Παs(S0). Thus, the basic action theory asserts that the sensing action can be performed. Addi-
tionally, the action can be performed after the sensing action. And the sensing action can be executed
again after the action. As in the previous case if the basic action theory is inconsistent DS2 |= ⊥ the
sensing action cannot be used. To check if the sensing action can now be used both following needs
to hold:

•

DS2 ∪∃x̄.SF(αs(x̄),S0) |= ∃x̄, ȳ, z̄.Παs(do(α(ȳ),do(αs(x̄),s)))∧SF(αs(x̄),S0)∧
¬SF(αs(z̄),do(α(ȳ),do(αs(x̄),S0)))

•

DS2 ∪∃x̄.¬SF(αs(x̄),S0) |= ∃x̄, ȳ, z̄.Παs(do(α(ȳ),do(αs(x̄),s)))∧¬SF(αs(x̄),S0)∧
SF(αs(z̄),do(α(ȳ),do(αs(x̄),S0)))

The condition states that the action α changes the expected truth value of the sensing action αs. Thus,
if we perform the sensing action before and after the action was executed one can determine if the
action was executed successfully. This allows more sensing actions to be used to supervise the action
executions.
As the supervision actions are used to detect if a fault has occurred the above methods may perform
sensing actions which are not necessary to detect a fault. However, as we have assumed that no
information is provided about the faults an action can have we were not able to restrict the sensing
actions further to those which are useful. If we have a specification of how the action can fail instead,
we can rule out unnecessary sensing actions. We can use the information provided in the history based
diagnosis to specify the action fault. In history based diagnosis we use the predicate Var(α,α′,θ) to
state that action α′ is a variation of action α under the condition θ.
We can use the information provided to determine the sensing actions to be used more closely
with the help of the following basic action theory DS3 = D∗ \DS0 ∪D ′S0

∪∃x̄.Παs(do(α(x̄),S0))∧
Παs(do(α′(x̄),S0)), where D ′S0

= Πα(S0)∧Π′α(S0)∧ θ(S0). The basic action theory states that both
actions α as well as the variation α′ can be executed. Additionally, the condition holds which allow
to replace action α with action α′. Finally, the sensing action αs can be executed regardless if action
α or action α′ was executed. If the basic action theory is inconsistent DS3 |= ⊥ the sensing action
cannot be used. We can now determine if a sensing action can be used to detect the fault if one of the
following conditions hold:

110

8.2. Generation of Supervision Sensing Actions

•
DS3 |= ∃x̄, ȳ.Παs(do(α(x̄),S0))∧Παs(do(α′(x̄),S0))∧θ(SO)∧

SF(αs(ȳ),do(α(x̄),S0))∧¬SF(αs(ȳ),do(α′(x̄),S0))

•
DS3 |= ∃x̄, ȳ.Παs(do(α(x̄),S0))∧Παs(do(α′(x̄),S0))∧θ(SO)∧

¬SF(αs(ȳ),do(α(x̄),S0))∧SF(αs(ȳ),do(α′(x̄),S0))

The condition states that if the truth value of the sensing result is determined to be different depending
on if the fault has happened or not the sensing action is of use. This condition allows that through
the sensing action one can decide if the fault has occurred or not. Such a sensing action is perfectly
suitable to perform a supervision. Unfortunately, we place a high demand on the relation between
action and sensing. The action needs regardless of the initial situation determine the truth value of a
sensing outcome. Thus, one may not expect to find a sensing action for each fault.
We can reduce the demand if we only expect that the change of the expected sensing outcome differs
between the action and a fault. We can find such a sensing action with the help of the following basic
action theory DS4 = D∗ \DS0 ∪D ′S0

∪∃x̄.Πα(do(αs(x̄),S0))∧Πα′(do(αs(x̄),S0))∧θ(do(αs(x̄),S0))∪
∃x̄, ȳ.Παs(do(α(ȳ),do(αs(x̄),S0))) ∧Παs(do(α′(ȳ),do(αs(x̄),S0))) ∧ θ(do(αs(x̄),S0)), where D ′S0

=
Παs(S0), where D ′S0

= Παs(S0). The basic action theory states the sensing action can be performed
in the initial situation and after executing the sensing action the action of interest or its faulty variant
can be executed. Additionally, the condition to exchange these two actions is fulfilled as well as the
sensing action can be executed regardless of the performed actions before. As in the previous cases if
the basic action theory is inconsistent DS4 |=⊥ the sensing action cannot be used. If the basic action
theory is consistent we can determine that the sensing action can be used if both following conditions
hold:

•
DS4 ∪∃x̄.SF(αs(x̄),S0) |= ∃x̄, ȳ, z̄.Παs(do(α(ȳ),do(αs(x̄),s)))∧Παs(do(α′(ȳ),do(αs(x̄),s)))∧

θ(S0)∧SF(αs(x̄),S0)∧
¬SF(αs(z̄),do(α(ȳ),do(αs(x̄),S0)))∧
SF(αs(z̄),do(α′(ȳ),do(αs(x̄),S0)))

•
DS4 ∪∃x̄.¬SF(αs(x̄),S0) |= ∃x̄, ȳ, z̄.Παs(do(α(ȳ),do(αs(x̄),s)))∧Παs(do(α′(ȳ),do(αs(x̄),s)))∧

θ(S0)∧¬SF(αs(x̄),S0)∧
SF(αs(z̄),do(α(ȳ),do(αs(x̄),S0)))∧
¬SF(αs(z̄),do(α′(ȳ),do(αs(x̄),S0)))

The condition states that the action changes the expected sensing outcome whereas the faulty version
of the action does not. Thus, one can detect the fault if one performs the sensing action αs before and
after the action α. This method allows us to use more sensing actions as the previous method but still
allow a detailed detection.
The above condition used the fact that the action has changed the expected sensing outcome but the
faulty version does not. One can also use the opposite direction of imposed change to determine if
a sensing action can be of use. A sensing action can detect a faulty if the both following conditions
hold:

111

Chapter 8. Creating Reactive Programs

•

DS4 ∪∃x̄.SF(αs(x̄),S0) |= ∃x̄, ȳ, z̄.Παs(do(α(ȳ),do(αs(x̄),s)))∧Παs(do(α′(ȳ),do(αs(x̄),s)))∧
θ(S0)∧SF(αs(x̄),S0)∧
SF(αs(z̄),do(α(ȳ),do(αs(x̄),S0)))∧
¬SF(αs(z̄),do(α′(ȳ),do(αs(x̄),S0)))

•

DS4 ∪∃x̄.¬SF(αs(x̄),S0) |= ∃x̄, ȳ, z̄.Παs(do(α(ȳ),do(αs(x̄),s)))∧Παs(do(α′(ȳ),do(αs(x̄),s)))∧
θ(S0)∧¬SF(αs(x̄),S0)∧
¬SF(αs(z̄),do(α(ȳ),do(αs(x̄),S0)))∧
SF(αs(z̄),do(α′(ȳ),do(αs(x̄),S0)))

Thus, this condition makes it possible to use sensing action which detects a faulty outcome directly.
Furthermore, the expected sensing value is only changed if a fault occurs thus this sensing action
would not have been chosen with any other method presented so far. To use the sensing action one
performs the action αs before and after the execution of α. Allowing to detect if the sensing outcome
has changed.

8.3. Related Research

Before we conclude the chapter, we will discuss related research which is specific to this chapter.
To supervise the execution of a generated plan through STRIPS [43] a method was proposed in [42]
which used a so-called triangle table. The table is used to specify for each part of the plan its precon-
dition to achieve the remaining of the plan as well as the effect of this section of the plan. This table
can be used for supervision of the plan. However, it can be furthermore used to react to a plan failure.
The table is constructed in such a way that the columns are used to state the execution of an action and
the rows specify the effect each action has over the execution time. One can now use a rectangular of
the i-th row and column to specify which condition needs to hold such that the execution of the i-th
action will lead to the goal. During the execution, one checks each of this rectangular to determine
which action should be executed next. The order to choose an action for execution is to start checking
backward from the last to the first action. Thus, the robot works towards the goal even in case the
knowledge has changed. One can consider this method as a basis of our method. Through the use of
regression, we have generalized which action can be employed. Thus, we do not restrict the actions
to be STRIPS actions. Furthermore, we have extended the approach to allow conditions within the
programs thus we allow a reactive behavior about a program instead of just a linear plan.
A similar approach to model the program as a graph was presented in [15]. The method use ”charac-
teristic graphs“[15] to represent the program in such a way that it allows a label propagation algorithm
to determine if a temporal logical formula holds. The graph consists of nodes which have no additional
information and edges which are defined through the following pattern π~x : α/φ. Which is interpreted
as follows: find a binding for the variables~x such that φ holds and perform α afterward. Thus, these
graphs are a compact variant to represent a program compared to our requisite graph. We use this
more verbose version of representation as it simplifies the algorithm to create a reactive program,
as regression and checking for a condition can be separated. Furthermore, we can easily determine
when a variable is bound or not. This determination also allows a straightforward interpretation of the
requisite graphs.

112

8.4. Conclusion and Future Work

8.4. Conclusion and Future Work

Robots acting in a real environment need to deal with faulty action execution. As such the robot needs
to incorporate the effect a fault has in its belief. Furthermore, the robot needs to take the decision
which action to perform according to its belief. However, besides the incorporate of the effect a fault
has the robot needs also a reactive program which allows reacting to changes in the belief.
In this chapter, we have presented a method which allows generating a reactive program out of a
sequential program. This generation allows using already defined sequential programs for the robot
control without losing the ability of the robot to react to changes. The method is general enough
that the program can contain conditional branching as well as loops. Also, the programmer can use
nondeterministic branching and non-deterministic choice of arguments in the program. Such construct
can often be found if one programs a robot with the help of IndiGolog or a similar high-level control
language.
Besides a reactive program, the robot also needs to detect the fault in the first place. To perform such
a detection, the robot needs to perform a sensing action which checks if the previously performed
action was successfully executed. In this chapter, we have shown that such sensing actions can be
automatically derived by using the basic action theory. If additionally, the information how an action
fails is reused from the history based diagnosis more accurate sensing actions can be derived.
The presented method to create a reactive program is restricted to sequential execution only. Thus, it
would be of interest to extend the approach to concurrent execution. Additionally, the approach has
not defined how to treat planning within the high-level program. To prolong the approach to deal with
planning would thus be also of interest for future work.
Finally, the derivation of the sensing actions is done without considering the program around the
performed action. If one would use this information one may reduce the sensing actions carried out
to detect a fault. It could also lead to the use of other sensing actions as some sensing actions only
detect a fault if a certain sequence of actions was performed before.

113

114

Chapter 9
Practical Realization

In the previous chapters, we have shown how to create a high-level control for a robotic system which
considers faulty action executions. The extension of the high-level control of the robot in the previous
chapters focused on theoretical definitions and their resulting theoretical properties. Before we discuss
the effect of the proposed methods for the high-level control of the robot in the next chapter using an
evaluation, we will discuss in this chapter some considerations for a practical implementation of the
proposed methods.
The theoretical foundations of the high-level control are based on several definitions using first and
second order logic. Although this definition allows a direct realization of a reasoning system, such as
Prolog [16]∗, One can exploit the structure of the definitions to gain efficiency. To do so, we split the
high-level control into several parts which interact with each other through well-defined interfaces.
Each of this parts tackles one specific problem for the high-level control and exploits the structure of
the specific issue.

9.1. Software Architecture

We split the implementation of the high-level control of a robotic system into four main parts. The
different components and how the different parts are used is depicted in Figure 9.1. The Execution
is concerned with the execution of the high-level program given the current situation. This part of
the system implements the transition semantics described in Chapter 6. To answer queries for the
execution the Belief of the robot is used. The Belief interface allows answering a query for a given
situation. It hides the details how the reasoning is performed to respond to the query for the rest of
the system. A more advanced method to form the belief of the robot is by using a Belief management
component. The Belief management implements the proposed methods in this thesis to manage the
belief of the robot to deal with faulty action execution. As the semantics of the belief management
uses a possible world semantics the Belief management uses itself a Belief component to answer a
query for each situation which is a possible world. Thus, one can exploit the advances for a belief
also in the belief management without additional overhead. Finally, to answer a query the Belief uses
an automatic Theorem prover. The Belief defines how the logical theory is composed. Whereas the
Theorem prover is used to derive the answer for the query after constructing the logical theory. Due
to this splitting, one can simply exchange the automatic Theorem prover with another implementation

∗With some limitations as no full first and second order formulas can be achieved.

115

Chapter 9. Practical Realization

Figure 9.1.: Architecture of the implementation for a robotic system with advanced belief
management.

to exploit advances in automatic theorem proving.

9.2. Theorem Proving

The first part we want to discuss in the practical realization is the automatic theorem prover. The
interface allows specifying a logical theory consisting of first order formulas, as well as, inductive
definitions of data types. The latter is used to define a situation term. It is important to notice that
we only ask queries with a fixed situation term. Thus, one can either use the inductive definition
of situation data type or perform an unrolling of the definition. Additionally, to the specification of
a theory, one can use the automatic theorem prover to check if a query logically follows from the
specified theory or not.
For the practical realization, three aspects need to be considered for the query answering. First, the
queries are first order thus the formulas may contain quantifier which needs to be treated by the solver
efficiently. The second one uses the theory to check if a formula follows. Thus, one is not interested in
the consistency of a theory, but one is interested in the formulas one can logically derive from a given
theory. The focus on logically derived formulas imposes that the solver should consider to answer
the query instead of checking for consistency of the complete, probably big, theory. The third aspect
which needs to be considered is the inductive definition of a situation. This definition imposes that
first one can define the situation properly, which is not possible in first order, and additionally one
needs to be able to perform an efficient reasoning on this inductive definition.
The first theorem prover we consider is based on Prolog [16]. Prolog allows answering a query by
unification and the use of a closed world assumption. Through the unification process, one can simply
represent an inductive definition. However, Prolog does not allow to use first order formula directly.
Instead one can use a quantification which is restricted to a finite domain. This restriction is sufficient
for the most practical application. Although the specification of the theory and the query is simply in
Prolog, it pointed out that for a practical implementation the treatment of quantified variables often
imposes a limit. This limitation was evident if a formula does not hold the implementation based on
Prolog was often slow compared to other methods.
As Prolog has a problem with quantification, one can use a theorem prover designed for first order.
Thus, the second theorem prover we consider is SPASS [153]. SPASS is a first order theorem prover.
Thus, the theorem prover is designed to deal with formulas which use quantification. As the inductive
definition of the situation term cannot be simply defined in first order, one needs to unroll the induc-
tive definition before the theorem prover is used. Although the theorem prover can natively handle
quantified formulas, it pointed out that the query answering is slow compared to another method. The
reason is that due to the unrolling of the inductive definition the theory which needs to be considered

116

9.3. Belief of a Robot

grows significantly and thus makes the reasoning process complex.
To address the problem of quantified formulas as well as an inductive definition the third prover
we consider is IDP3 [18]. IDP3 is a first order theorem prover which allows the native definition
of inductive data types. Thus, the queries, as well as the inductive definition, don’t need special
treatment. Although the theorem prover offers all features which are required it pointed out that the
time to answer a query is slow compared to the last approach.
The last theorem prover we consider is Z3 [28]. Z3 is a sat solver which allows specifying quantified
formulas as well as inductive data types. To answer a query with the help of Z3 one needs to convert
the query problem into a sat problem, and checks afterward for satisfiability to respond if the query
holds. As the theory may contain several parts which are not related to the query but would be verified
during the sat solving one can reduce the theory first only to contain those formulas which specify
predicates which are used within the query or formulas which specify predicates which are used for
other formulas linked to the query indirectly. Thus, one first finds the minimal set of formulas which
contains all predicates defined in the query. Additionally, the set contains all formulas which specify a
predicate within the set. Thus, the reduced theory is equivalent in answering a query if one considers
that the theory is consistent. Although Z3 allows inductive definitions of data types, it pointed out
that the unrolling of the inductive definitions yield better performance. Thus, one first unrolls the
definitions afterward reduce the theory and finally convert the query to a sat problem to answer the
query.

9.3. Belief of a Robot

With the help of the theorem prover, one can answer a query for a given theory. To create the theory
properly the implementation of the belief is used. The first logical representation of the belief used
uses the definition of the situation calculus to define the theory. Although this theory can be simply
created it pointed out that it is slower than the other methods to form a belief.
To address the problem of the situation term, one can replace the situation term through a time point.
Furthermore, one defines for each time point which action is performed. This replacement of the
situation term with a time point is a simple mapping from the situation calculus to a specific case of
the event calculus. Due to this mapping one uses an integer instead of the situation term. Although
this does not have a theoretical benefit, it turned out that the automatic theorem prover can better
handle the integer then the situation term. Thus, through this mapping, the time to answer a query can
be reduced.
The situation calculus using the situation term as well as time points has the problem that the reasoning
process needs to reason backward in time to answer a query. This backward reasoning imposes that
the reasoning process gets slower if the history of performed actions gets longer. To avoid this relation,
one can use progression to have a knowledge base representing the current state of the world. It is
important to notice that for the belief management one still uses a history of performed actions to
answer a query. However, instead of using the history of performed actions to respond the query one
uses the history as an index for the knowledge bases describing the state of the world specified through
the history. If no state is associated with the history used in the query one first steps back in the history
till a saved world state is retrieved. Afterward, one performs progression in step wise manner for each
action and saves the result for future use. This method also allows reusing the knowledge bases
which are created during planning within the execution of the program. To perform the progression a
progression with a relative complete knowledge base is implemented. This progression method allows
using arbitrary successor state axioms. The progression is done by replacing each fluent term at the

117

Chapter 9. Practical Realization

right-hand side by definition in the knowledge base. This replacement creates a new knowledge base
which can be used for the query answering. The important property of a relative complete knowledge
base is that it only contains equality constraints to define a fluent. Thus, by replacing the fluents within
a query and resolving equality constraints, often the query can be simply answered without any call
to the theorem prover. If the theorem prover needs to be invoked one needs only to consider the query
as the theory is already used for the replacement process. This approach allows answering queries in
a timely fashion.
Although through the usage of Z3 and progression acceptable timings could be achieved it is left for
future work to find a better representation to achieve faster query times for the belief. Especially the
inductive definition of a situation may give rise to a more rapid implementation. Also, the structure of
the action effects could be exploited to lead to a faster implementation.

9.4. high-level Execution

The final part we consider in the practical realization is the execution of the high-level programs. The
semantics of the execution is defined through the first order and second order formulas defined in
Chapter 6. The definitions use four predicates to define if a transition is possible or if the program
can be safely terminated. Instead of using these four predicates and perform a reasoning we use the
AST [1] of the program for interpretation. Like the method presented in [75], we execute a program
by traversing its AST. This traversal allows to efficiently decide which program query needs to be
executed to decide for a change or termination. Additionally, many program constructs such as an if
or while statement can be realized by native statement of the programming language thus allow a fast
and sound interpretation.

118

Chapter 10
Empirical Evaluation

In the previous chapters, we have discussed different methods to improve the original belief manage-
ment of a robot. Ranging from methods which make it easier to use the belief management, to the
integration of the belief management into the high-level control of the robot. Throughout these chap-
ters, we have motivated why the presented method improve the overall belief management. However,
for most of the chapters, we have not confirmed this improvement through an evaluation.
To address this, lack of conformance we will show the results of different evaluations indicating
the benefits of the improvements presented in this thesis. Furthermore, as the methods present in this
thesis extends the basic belief management, we will first show the positive impact a belief management
has on a robotic system.
To allow to compare different approaches in the same environment we evaluated a simulation. This
comparison also enabled us to evaluate many different approaches which would be otherwise too
time-consuming. All the performed evaluation uses the running example of the thesis for the task the
robot must perform. Some of the assessment results presented in this chapter were discussed in [95],
[132] and [93].
The remaining of the chapter is structured as follows in the next section we will show an evaluation
comparing a robotic system using the classical belief management with a robotic system which does
not use a belief management approach. As this belief management is the basis for our extensions,
this evaluation shows the basic improvement a robot has through the belief management. All other
assessments in this chapter will show the further improve the robotic system through the methods
presented in this thesis. In Section 10.2 we evaluate the difference between the classical belief man-
agement and the advanced belief management. The advanced belief management uses the integration
of the belief into the high-level program execution as it was discussed in Chapter 6 together with the
method proposed in Chapter 7 to gather knowledge. As we have argued in Chapter 6 that progression
is more efficient in a robotic system than direct reasoning we perform an evaluation which shows this
improvement in Section 10.3. Next, we evaluate the difference between the use of classical history
based diagnosis to consistency based diagnosis for the belief of the robot. This evaluation is discussed
in detail in Section 10.4. The last evaluation shows the impact the generation of a reactive program
has. This evaluation uses the method described in 8 to create a reactive program. Afterward, we
discuss the impact of the use of common sense in Section 10.6. Finally, we will conclude the chapter.

119

Chapter 10. Empirical Evaluation

10.1. Comparison of a Robot with and without Belief Management

The first statement we want to check with the help of evaluation is if the use of a belief management
approach does improve the robot’s performance. As we argued in the introduction and throughout the
thesis, a robot which is aware of the faults during the action execution is more successful. Thus, a
robot which uses a belief management should, therefore, finish a task with a higher success rate than
those which don’t use a belief management. With the evaluation presented in this section, we want to
confirm this hypothesis. The assessment presented in this section is based on the results presented in
[95].
To perform the evaluation, we first state the hypothesis which should be checked through this assess-
ment.

Hypothesis 1. A robotic system using a belief management has a higher success rate in executing a
task than a robotic system which does not use a belief management.

As the evaluation should compare a robotic system with a belief management and one without a belief
management we need to different systems. As a robotic system, which uses a belief management we
use the method presented in [51] which was also used to evaluate a real robotic system [52]. For
the robotic system, which does not use a belief management we use the Cognitive Robot Abstract
Machine (CRAM) [7]. We chose CRAM as it has shown to be capable of performing a non-trivial
task in household environment [6]. Thus, the system has the capabilities to perform reasoning and
planning. Additionally, CRAM uses KnowRob [136] to specify the knowledge of the robot. KnowRob
allows diverse knowledge to be combined into one knowledge base. It also features the possibility to
perform different reasoning methods to derive plans, objects fitting a description or even most likely
locations of objects. Additionally, KnowRob and therefore also CRAM may become a significant
standard method through its integration into the RoboEarth project [151].

10.1.1. Task and Environment

With the hypothesis, we want to check and the two approaches we want to compare outlined we need
to define which task the robot must perform the evaluation. As we use the running example of the
thesis (see 1.4 for further details) the robot carries out a simple delivery task. The robot needs to serve a
set of delivery requests. Each application defines an object which should be delivered and a destination
where the object should be delivered to. As the robot first needs to pick the object, we assume the
robot has complete knowledge of the initial situation. Thus, the robot knows at the beginning where
each object is located. Please note that the knowledge the robot has about the environment can get
inconsistent as the action execution is possibly faulty.
To confirm the hypothesis, we perform an evaluation consisting of three different scenarios. The
number of requests is different for the different scenarios and is either 3 or 9. The robot has finished
the task with success if it has delivered all objects to their destination. Additionally, the number of
rooms and objects differ in each scenario. Through this difference in the scenarios, the evaluation also
gives an inside about how well the different approaches scale. The various scenarios with the number
of rooms used and the number of objects to deliver are depicted in Table 10.1. The environment the
robot is performing the delivery is illustrated in Figure 10.1. Please note that the same nine objects are
always present in the environment, but only a subset of these nine objects may need to be delivered.
As we simulate the robot to not always succeed to execute an action each action has a certain prob-
ability to fail. The probabilities for the different faults which may occur are depicted in Table 10.2.
The probabilities are the same for all three scenarios. Thus, the chance that the robot performs a task

120

10.1. Comparison of a Robot with and without Belief Management

scenario # rooms # objects
S1 20 3
S2 29 3
S3 20 9

Table 10.1.: Number of rooms and objects for the different scenarios of the first evaluation.

Figure 10.1.: Domain for scenario S2 of the first evaluation. The layout resembles the institute’s floor
plan.

for scenario S3 without any fault is highly unlikely. A similar set of faults were also considered in
[87] and in [52] thus one can consider this faults reassemble the behavior of a real robot.

fault probability
goto to wrong location 0.05
pick up wrong object 0.2

pick fails 0.2
put fails 0.3

random movement of object 0.02

Table 10.2.: Probabilities for fault of actions and the exogenous event.

10.1.2. The compared approaches

As we have discussed above briefly, we compare two robot systems performing the delivery task. The
first system does not use a belief management. This system will use CRAM to command the robot.
The second system uses the classic version of the belief management as it was presented in 2.2. In the
following, we will discuss different high-level programs for the first system and afterward the second
system which is used in the evaluation.

Cognitive Robot Abstract Machine (CRAM)

The first robotic system uses CRAM to control the robot. CRAM uses the CRAM Plan Language
(CPL) to define the high-level control program of a robot. CPL allows describing a task through a

121

Chapter 10. Empirical Evaluation

given goal and its parameters. These parameters can be refined for a given task. This refinement is
performed through reasoning on the used knowledge base of the robot. Besides the description of a
task, CPL also allows specifying how a task can be achieved through a program allowing sequential
a parallel execution. Additionally, one can use a dedicated monitoring method [87] to check for the
successful task execution. However, it is important to notice that this monitoring does not perform a
diagnosis to reason about what went wrong thus it can only be used to check if something is wrong.
Due to the flexibility, CPL offers one can use different control programs to achieve the task. Thus, we
will discuss three different control programs. Each differs in the way it deals with the faults which
might occur. Please note that the fault handling was hard coded thus it has only a limited flexibility to
react to a fault. Furthermore, one can assume that it is not feasible for more complex tasks to perform
a fault handling in such a way.
The first program (CRAM 1) we use for the execution with CRAM is depicted in Listing 10.1. The
program performs the main function a simple loop which iterates till all requests are served. For
each request, the subroutine handleRequest is used. The subroutine handleRequest performs a simple
sequential program to deliver the object. The program first moves the robot to the location of the
object. Afterward, it picks the object moves the robot to the destination of the delivery. Finally, it
puts the object down. Thus, this program can be considered as the solution which solves the delivery
problem in the simplest way possible. One can easily check that this program will deliver the objects
successfully if no fault occurs. However, one can consider that the program will fail if an action is
executed in a faulty way. Thus, we consider this program a base line.

Listing 10.1: Simple sequential program (CRAM 1)
main () {

w h i l e (! r e q u e s t s . i sEmpty ()) {
h a n d l e R e q u e s t (r e q u e s t s . pop ())

}
}
h a n d l e R e q u e s t (r e q) {

go to (p l a c e (r e q . o b j e c t))
p i c k (r e q . o b j e c t)
go to (r e q . d e s t i n a t i o n _ p l a c e)
p u t (r e q . o b j e c t)

}

The second program (CRAM 2) is depicted in Listing 10.2. It incorporates a first method to deal with
faults. The program performs in the main routine a loop which iterates till all requests are served. In
each iteration, one request is picked, and the robot tries to serve this request. To serve the request
the robot uses a modified version of the subroutine handleRequest. The subroutine handleRequest
performs the same sequential execution to deliver the object as it was done in the case of CRAM 1.
However, after the object was delivered the subroutine performs several sensing actions to confirm
that the delivery was successful. The result of the sensing can indicate a fault which is reported back
to the main loop. The main loop handles the fault by first trying to put the object down and afterward
performs a search for the object to find the object. This search should ensure that if the object were
not picked up in the first place, the robot would find the object. After performing the search, the robot
has found the object and performs another try to serve the same delivery.

Listing 10.2: Program with error detection and recovery (CRAM 2)
main () {

122

10.1. Comparison of a Robot with and without Belief Management

w h i l e (! r e q u e s t s . i sEmpty ()) {
r e q u e s t = r e q u e s t s . pop ()
do {

c l e a r E r r o r ()
h a n d l e R e q u e s t (r e q u e s t)
i f (e r r o r) {

p u t (r e q u e s t . o b j e c t)
s e a r c h F o r O b j e c t (r e q u e s t . o b j e c t)

}
} w h i l e (e r r o r)

}
}
h a n d l e R e q u e s t (r e q) {

go to (p l a c e (r e q . o b j e c t))
p i c k (r e q . o b j e c t)
go to (r e q . d e s t i n a t i o n _ p l a c e)
p u t (r e q . o b j e c t)
s c a n C a r r y A n y t h i n g ()
s c a n F o r O b j e c t ()
i f (c a r r y _ a n y t h i n g | | o b j e c t _ n o t _ f o u n d)

s e t E r r o r ()
}

The third program (CRAM 3) is depicted in Listing 10.3. The program performs the same main
routine as CRAM 2. This routine also includes the same error recovery method. The difference
between CRAM 2 and CRAM 3 is the subroutine handleRequest. The subroutine in CRAM 3 uses
a Teleo Reactive program [98] to serve the delivery. The program performs an iteration of the set
of rules till the top most rule was executed. In each iteration, the program checks the rule in a top
down fashion. If the condition of the rule is satisfied the rule is triggered, and the associated action is
executed. The program checks with the highest priority if the object was successfully delivered. This
check is done if the object should be at the destination and object is not held. If the object is held, the
robot puts down the object through the next rule. The following rule checks if the robot is still not at
its destination and triggers that the robot moves to the destination place. The forth rule ensures that
the robot picks up the object if it is in the same room and does not hold the object already. The last
rule moves the robot to the object thus allowing all other rules to be applied. To perform the checks
needed to decide if a rule can tiger the robot uses a simple knowledge base. It is updated according
to the performed action. Furthermore, the sensing results override the action outcomes. If the sensing
result is not consistent with the current knowledge, the error flag is set.

Listing 10.3: Teleo-Reactive subroutine to handle requests (CRAM 3)
main () {

w h i l e (! r e q u e s t s . i sEmpty ()) {
r e q u e s t = r e q u e s t s . pop ()
do {

c l e a r E r r o r ()
h a n d l e R e q u e s t (r e q u e s t)
i f (e r r o r) {

p u t (r e q u e s t . o b j e c t)

123

Chapter 10. Empirical Evaluation

s e a r c h F o r O b j e c t (r e q u e s t . o b j e c t)
}

} w h i l e (e r r o r)
}

}
h a n d l e R e q u e s t (r e q)
{

[(p l a c e (r o b o t) == r e q . d e s t i n a t i o n _ p l a c e) &&
(p l a c e (o b j e c t) == r e q . d e s t i n a t i o n _ p l a c e) &&
n o t c a r r y−a n y t h i n g] −−> s c a n F o r O b j e c t ()

[(p l a c e (r o b o t) == r e q . d e s t i n a t i o n _ p l a c e) &&
(p l a c e (o b j e c t) == r e q . d e s t i n a t i o n _ p l a c e)]
−−> { putdown (r e q . o b j e c t)

s c a n C a r r y A n y t h i n g () }
[(p l a c e (r o b o t) == p l a c e (r e q . o b j e c t) && c a r r y _ a n y t h i n g]
−−> go to (r e q . d e s t i n a t i o n _ p l a c e)

[(p l a c e (r o b o t) == p l a c e (r e q . o b j e c t)] −−> p i ck up (r e q . o b j e c t)
[t r u e] −−> go to (p l a c e (r e q . o b j e c t))

}

Classical Belief Management (HBD)

As the second robotic system used in the evaluation, we use the classical belief management. The
belief management uses the classical history based diagnosis to create the belief of the agent. One of
the possible explanations which are very likely is used for further reasoning. To perform the execution
IndiGolog is used which has an extended main loop to make the diagnosis after the execution of an
action. We refer the interested reader to [109] for further details.
The program we use for the classical belief management is (HBD) is depicted in Listing 10.4. The
program uses in the main routine a simple loop which iterates till all requests are served. In the
loop, a request is picked through a nondeterministic choice of arguments from IndiGolog. After
picking a request, the request is served by the same Teleo Reactive program as for CRAM 3. This
program circumvents the problem which arises when the robot needs to adapt its belief due to a fault.
After correcting the belief after a faulty action execution, the program loops again and detects those
conditions which are true and execute the action. This reaction allows the robot to react to changes
and still work towards the goal of delivering the object.

Listing 10.4: Main loop of the HBD program

main () {
w h i l e (∃r : request(r)) {

πr : request(r)
handleRequest(r)

}
}
h a n d l e R e q u e s t (r e q)
{

[(p l a c e (r o b o t) == r e q . d e s t i n a t i o n _ p l a c e) &&
(p l a c e (o b j e c t) == r e q . d e s t i n a t i o n _ p l a c e) &&

124

10.1. Comparison of a Robot with and without Belief Management

domain
simulator

delivery

IndiGolog
interpreter

CRAM
architecture

program
IndiGolog

CPL
program

Action

Sensing

Figure 10.2.: System overview of the evaluation. Both control approaches use the same ROS inter-
faces for sending (dashed lines) and executing actions (chain dotted lines).

n o t c a r r y−a n y t h i n g] −−> s c a n F o r O b j e c t ()
[(p l a c e (r o b o t) == r e q . d e s t i n a t i o n _ p l a c e) &&

(p l a c e (o b j e c t) == r e q . d e s t i n a t i o n _ p l a c e)]
−−> { putdown (r e q . o b j e c t)

s c a n C a r r y A n y t h i n g () }
[(p l a c e (r o b o t) == p l a c e (r e q . o b j e c t) && c a r r y _ a n y t h i n g]
−−> go to (r e q . d e s t i n a t i o n _ p l a c e)

[(p l a c e (r o b o t) == p l a c e (r e q . o b j e c t)] −−> p i ck up (r e q . o b j e c t)
[t r u e] −−> go to (p l a c e (r e q . o b j e c t))

}

Comparison framework

To allow a fair comparison both robotic systems were attached to the same simulation of the robot. An
overview of the used evaluation system is depicted in Figure 10.2. The system consists of one ROS
[107] node which simulates the robot. The simulation takes care of the effect an action has. Further-
more, the simulation performs a faulty action execution according to the specified probability. The
node offers a service interface which is used by both robotic systems. This interface allows command-
ing a high-level action to be performed such as goto(R1). Additionally, the high-level sensing action
can be conducted to retrieve their sensing result. A similar interface was used in [52] for the control
of a real robot. To execute the program HDB we used the interpreter presented in [48] extended as
discussed in [109]. To execute the programs, CRAM 1, CRAM 2 and CRAM 3 we used the public
CRAM∗.

10.1.3. Experiments

We evaluated all three different scenarios with all the four presented high-level control programs†.
For each scenario 30 different delivery tasks were randomly created. Each delivery task was tried five
times with different seed values for the random number generated to trigger the faults. The robot had
3 minutes to execute all deliveries. During the task execution, the success of delivering all objects, the
run time and if the robot execution ran into a timeout was recorded.

∗We use the ROS-based open-source implementation. For details, we refer the interested reader to http://www.ros.
org/wiki/cram_core.

125

http://www.ros.org/wiki/cram_core
http://www.ros.org/wiki/cram_core

Chapter 10. Empirical Evaluation

The results of the first scenario S1 is depicted in Table 10.3. The robot had to deliver 3 objects within
an environment consisting of 20 rooms. The table depicts the percentage of successful task executions.
The run time is given in seconds additionally the percentage of executions which run into a timeout
are given. The best three high level program are marked bold. These programs will be used for the
further scenarios.

program success-rate/% timeouts/% average runtime/s
mean std

CRAM 1 17.33 0 0.23 0.03
CRAM 2 70.67 0 3.32 9.60
CRAM 3 68.46 12.75 23.37 60.08

HBD 78.00 6.67 16.85 43.92

Table 10.3.: Performance of the different programs for the delivery task with 20 rooms and 3 objects
(scenario 1).

The results of the first scenario indicate that the best three high-level programs use some error de-
tection and recovery. These three approaches have a significantly higher success rate than CRAM 1
which does not perform a mistake recovery. The usage of CRAM 1 has the advantage that the ex-
ecution is fast. Thus CRAM 1 would be the best choice if no fault would occur. This observation
also indicates that a robot which performs an error recovery will spend more time to execute a task.
This result is caused partly due to the additional sensing action. However, mostly due to the necessary
reasoning to check for an error and to recover from this mistake.
Regarding the success rate, the best performing program was HBD. Thus, we get a first indication that
through the usage of a belief management the success rate can be increased. The run time of HBD
was higher than CRAM 2 but lower than CRAM 3 indicating that the performed reasoning of a TR
program increases the run time significantly. However, it also shows that due to the focused changed
of the belief of HBD the recovery after an error is faster done as through a TR program.
Finally, one can observe that CRAM 3 has a lower success rate than CRAM 2. This observation is
interesting as both programs use the same error recovery the main reason for this discrepancy is due
to the high run time of CRAM 3. Thus, the additional reasoning performed through a TR program
causes the significant higher run time which is also indicated by the higher time out percentage. This
higher time out percental indicates that a reactive program does not increase the success rate of a robot
if an error recovery is performed.
The results of the second scenario S2 are depicted in Table 10.4. The robot had to deliver 3 objects
within an environment consisting of 29 rooms. The table depicts the percentage of successful task
executions. The run time is given in seconds additionally the percentage of executions which run into
a timeout are given. The best high level program is marked bold. Please note that only the best three
performing programs of S1 are used in the comparison.
The evaluation of the second scenario confirms that HBD is the best performing high-level control
program. Thus, also this scenario indicates that the use of a belief management is preferable. The
increase in run time is moderately stating that the approach scales well with the increasing environ-
ment. As in the first scenario also the second scenario shows that the run time of CRAM 3 is very like
those of HBD. Thus, indicating the higher run time is caused through the reactive program. Finally,
it is important to mention that the same conclusion can be drawn that a TR program alone does not
increase the success rate if the program performs a fault recovery.
The results of the third scenario S3 are depicted in Table 10.5. The robot had to deliver 9 objects

126

10.1. Comparison of a Robot with and without Belief Management

Program success-rate/% timeouts/% average runtime/s
mean std

CRAM 2 86.00 0 1.90 6.35
CRAM 3 82.43 6.76 24.90 90.51

HBD 88.67 2.67 18.84 60.26

Table 10.4.: Performance of the different programs in a delivery task with 29 rooms and 3 objects
(scenario 2).

within an environment consisting of 20 rooms. The table depicts the percentage of successful task
executions. The run time is given in seconds additionally the percentage of executions which run into
a timeout are given. The best high level program is marked bold. Please note that only the best three
performing programs of S1 are used in the comparison.

Program success-rate/% timeout/% average runtime/s
mean std

CRAM 2 32.00 0 15.55 27.55
CRAM 3 20.57 51.77 187.13 179.75

HBD 49.33 27.33 113.97 151.84

Table 10.5.: Performance of the different programs in a delivery task with 20 rooms and 9 objects
(scenario 3).

The third scenario shows that the HBD outperforms the other approaches. Thus, also in this scenario,
a belief management is preferable. This observation is of particular significance as the HBD had a
high time out. Thus, one could expect that the robot would perform even better if it had more time
to recover from a fault. The drastically increased time out ratio is also observable for CRAM 3.
Thus, indicating that a TR program may take significantly longer if faults occur more often. Also, the
reasoning takes longer due to the long history of performed actions. This increase in the reasoning
time is caused as the answering of a query takes longer on a long history. However, it is also caused
as the calculation of the diagnosis takes more time if the action history is longer.
The increase in run time of all three approaches is very interesting. One might expect that the run
time increase by a factor of 3 (3 times more objects to deliver) however, the evaluations show that the
increase is higher. The time increase for CRAM 2 by a factor of 4.68, CRAM 3 has an increase factor
of 8 and for HBD the time increases by a factor of 6.76. Thus, the time increase indicates that a robot
needs to spend significantly more time for the execution of a longer task if one performs the task in an
environment with faults. It is also interesting to observe that the CRAM 3 has a high increase in run
time than HBD although both programs use a TR program for the delivery the focused belief change
of HBD shows a beneficial effect for the run time.
Regardless of the scenario HBD performed best regarding the success rate. Even though it imposes
a higher run time than a hand coded error recovery, it outperforms this error recovery. Thus, we can
confirm Hypothesis 1. A robotic system using a belief management performs better than a robotic
system without belief management. Thus, any further increase in the belief management will result in
a robotic system which is more successful.

127

Chapter 10. Empirical Evaluation

10.2. The difference between Belief Management and Advanced Belief
Management

The second statement we want to check is if the advanced belief management improves the overall
success rate of the robotic system. As we argued in the Chapter 6 an execution which considers the
belief of the robot in its execution has a higher chance to succeed. Especially if an active knowledge
gathering step is performed which was discussed in Chapter 7. The evaluation presented in this section
should confirm this hypothesis. We stated the hypothesis we want to check through this evaluation as
follows.

Hypothesis 2. A robotic system using the advanced believe management has a higher success rate in
executing a task on a robotic system which uses only the classical belief management.

The task the robot is performing in the evaluation is the task of the running example. The robot must
deliver 3 objects within 20 rooms. The environment is the same as in the previous evaluation and is
depicted in Figure 10.1. Several of the actions which are executed may fail. The probabilities for an
action failure is depicted in Table 10.6.

fault probability
pick up wrong object 0.2

pick fails 0.2
put fails 0.3

sense carry anything fails 0.05

Table 10.6.: Probabilities for fault of actions.

To successfully perform the task, the robot needs a proper high-level program for the delivery of an
object. We use the high-level program depicted in Listing 10.5 to execute the deliveries. The high-
level program picks non-deterministic one delivery to perform. Afterward, it uses a reactive program
to do the delivery. To speed up the execution time we use progression instead of a direct reasoning.
This method restricts the sensing action to a sensing which checks if the robot is carrying anything.

Listing 10.5: Main loop of the delivery program

main () {
w h i l e (∃r : request(r)) {

πr : request(r)
handleRequest(r)

}
}
h a n d l e R e q u e s t (r e q)
{

[(p l a c e (r o b o t) == r e q . d e s t i n a t i o n _ p l a c e) &&
(p l a c e (o b j e c t) == r e q . d e s t i n a t i o n _ p l a c e)]
−−> { putdown (r e q . o b j e c t)

s c a n C a r r y A n y t h i n g () }
[(p l a c e (r o b o t) == p l a c e (r e q . o b j e c t) && c a r r y _ a n y t h i n g]
−−> go to (r e q . d e s t i n a t i o n _ p l a c e)

[(p l a c e (r o b o t) == p l a c e (r e q . o b j e c t)] −−> p i ck up (r e q . o b j e c t)

128

10.3. Comparing Belief Management with and without Progression

[t r u e] −−> go to (p l a c e (r e q . o b j e c t))
}

10.2.1. Experiments

To verify the proposed hypothesis, we executed 100 different delivery tasks. For each delivery task
10 retries with different seed values for the random number generator where used. The robot had
3 minutes to execute all three delivery tasks. For the execution, we compared the classical belief
management (CB), proposed in [51] with the advanced belief management (AB) proposed in this
thesis. During the evaluations, the successful execution of the task, the percentage how often the
program ran into a timeout and the run time of the program was recorded. The evaluation results are
depicted in Table 10.7.

program success-rate/% timeouts/% average runtime/s
mean std

CB 87.8 0 6.8 3.65
AB 92.1 0 6.1 3.1

Table 10.7.: Performance for the delivery task with 20 rooms and 3 objects with classical and advanced
belief management.

The result of the evaluation shows that the advanced belief management outperforms the classical
belief management, concerning the success rate. The reason for the higher success-rate is due to the
usage of the belief instead of one diagnosis. If the robot uses only one diagnosis as it was proposed
in the classical belief management the robot might use a situation which is not the current situation.
This focus can cause that the robot decided that delivery is fulfilled even though it is not satisfied in
practices. Furthermore, the choice of the situation can yield to the execution of an action which is
not possible and thus do not yield the expected result. The detection of a not expected result may
take some time. This late detection is indicated by the slightly higher run-time of the classical belief
management. As a consequence of the evaluation, one can state that Hypothesis 2 can be confirmed.
Thus, the usage of the advanced belief management has an advantage compared the classical belief
management.

10.3. Comparing Belief Management with and without Progression

The previous evaluation used progression instead of a direct reasoning. This method was chosen
as progression has a better performance than a direct reasoning. We argued already in Chapter 6 that
progression has a better performance. However, it remains to show that this is the case. In this section,
we perform an evaluation which confirms this argument. The hypothesis we want to confirm through
this assessment is stated as follows.

Hypothesis 3. A robotic system using progression performs a faster reasoning as a robotic system
which uses a direct reasoning approach.

The task the robot is performing in the evaluation is the same deliver task as in the previous section.
The robot must deliver three objects in 20 rooms in the environment depicted in Figure 10.1. The
probabilities for the different actions is illustrated in Table 10.6. For the execution, the robot uses the
program depicted in Listing 10.5.

129

Chapter 10. Empirical Evaluation

10.3.1. Experiments

To verify the proposed hypothesis, we executed 100 different delivery tasks. For each delivery task
10 retries with different seed values for the random number generator where used. The robot had 6
minutes to execute all three delivery tasks. For the execution, we compared the belief management
with progression (WP),and the belief management without progression (NP). During the evaluations,
the successful execution of the task, the percentage of the program executions which ran into a timeout
and the run time of the program was recorded. The evaluation results are depicted in Table 10.8.

program success-rate/% timeouts/% average runtime/s
mean std

NP 49.97 42.90 210.96 87.16
WP 84.70 0 6.60 4.06

Table 10.8.: Performance for the delivery task with 20 rooms and 3 objects with and without
progression.

The evaluation results indicate that the usage of progression results in a faster execution of the pro-
gram. This observation is indicated by the lower execution time as well as, the lower rate of executions
which ran into a timeout. The reason for this faster execution is caused by the effort for progression
is only spent once whereas the answering for a query is done in a fast manner. Additionally, the time
for answering a query stays nearly the same regardless of the history length. This constant time be-
havior contrasts with the direct reasoning which causes the time to respond a query to increase with
the length of the history.

10.4. The difference between Consistency and Classical History Based
Diagnosis

To simplify the specification of the belief management we proposed in Chapter 4 a method which uses
the action influence to calculate the belief of the robot. We have argued that the simpler specification
comes with the costs of a not so fine gained diagnosis. This lake of precision can cause that the robot
has not enough knowledge left to proceed its execution. Thus, we assume that the method proposes
in Chapter 4 has a lower success-rate during its execution. In this section, we perform an evaluation
showing evidence for this statement. We state the hypothesis we check with the help of the evaluation
as follows.

Hypothesis 4. A robotic system using consistency history based diagnosis performs not as success-
fully in finishing a task as a robotic system which uses the classical history based diagnosis.

The task the robot is performing in the evaluation is the same deliver task as in the previous sections.
The robot must deliver three objects in 20 rooms in the environment depicted in Figure 10.1. The
probabilities for the different actions is illustrated in Table 10.6. For the execution, the robot uses the
program depicted in Listing 10.5.

10.4.1. Experiments

To verify the proposed hypothesis, we executed 100 different delivery tasks. For each delivery task 10
retries with different seed values for the random number generator where used. The robot had 3 min-
utes to execute all three delivery tasks. For the execution, we compared the belief management with

130

10.5. Comparing Linear with Reactive Programs

the classical history base diagnosis (HBD),and the belief management with the consistency history
based diagnosis (CHBD). During the evaluations, the successful execution of the task, the percentage
of the program executions which ran into a timeout and the run time of the program was recorded.
The evaluation results are depicted in Table 10.9.

program success-rate/% timeouts/% average runtime/s
mean std

HBD 87.5 0 6.5 2.76
CHBD 55.3 39.7 10.45 7.78

Table 10.9.: Performance for the delivery task with 20 rooms and 3 objects with the classical history
based diagnosis and the consistency history based diagnosis.

The evaluation results show that the classical history based diagnosis performs better than the consis-
tency history based diagnosis. This result is caused as the consistency history based diagnosis causes
the robot often to lose too much knowledge. As only actions are blamed for being faulty the influence
is used to specify the effect on faulty action has the knowledge of the robot gets reduced with each
diagnosis. If multiple diagnoses can yield an explanation of the current discrepancy, the knowledge
of the robot may be reduced drastically. As the robot can only perform one sensing action which
checks if it is holding something, it may not be able to recover from this lack of knowledge. If one
action influence removes the knowledge the robot has about the position of an object, the robot has
no sensing action which can retrieve this information again. This issue also shows that if consistency
history based diagnosis is used one needs to ensure that the sensing actions the robot has can derive
all knowledge which can be lost due to the action influence. Otherwise, the robot may get stuck in
the execution as it lacks knowledge. Another direct result of this evaluation is that we can confirm
Hypothesis 4 which states that the classical history based diagnosis has a higher success rate than with
consistency history based diagnosis.

10.5. Comparing Linear with Reactive Programs

The next evaluation we performed discusses the benefit of the generation of a reactive program as it
was proposed in Chapter 8. We argued that a reactive program be more likely to succeed in executing
a task than a linear program. Thus, we generated a reactive program from a linear program. With
the evaluation, which is performed in this section we will show that a reactive program increases the
success of achieving a goal in case of a faulty action execution. We state this hypothesis as follows.

Hypothesis 5. A robotic system using the reactive program has a higher success rate in executing a
task on a robotic system which uses a linear program.

The task the robot is performing in the evaluation is the same deliver task as in the previous sections.
The robot must deliver three objects in 20 rooms in the environment depicted in Figure 10.1. The
probabilities for the different actions is illustrated in Table 10.6. For the execution, the robot uses
either the linear program depicted in Listing 10.6, the reactive program depicted in Listing 10.5 or
uses the generated program which was derived from method discussed in Chapter 8 from the linear
program.

Listing 10.6: Main loop of the delivery program
main () {

131

Chapter 10. Empirical Evaluation

w h i l e (∃r : request(r)) {
πr : request(r)
handleRequest(r)

}
}
h a n d l e R e q u e s t (r e q) {

go to (p l a c e (r e q . o b j e c t))
p i c k (r e q . o b j e c t)
go to (r e q . d e s t i n a t i o n _ p l a c e)
p u t (r e q . o b j e c t)

}

10.5.1. Experiments

To verify the proposed hypothesis, we executed 100 different delivery tasks. For each delivery task
10 retries with different seed values for the random number generator where used. The robot had 3
minutes to execute all three delivery tasks. For the execution, we compared the linear program (L), the
hand written teleo-reactive program (TR) and the program which was generated through the method
proposed in Chapter 8 (G). This generation was done with a back-stepping limit of four steps. During
the evaluations, the successful execution of the task, the number of the program executions which ran
into a timeout and the run time of the program was recorded. The evaluation results are depicted in
Table 10.10.

program success-rate/% timeouts/% average runtime/s
mean std

L 45.6 0 2.13 1.35
TR 85.6 0 6.49 3.28
G 81.9 0 4.93 2.51

Table 10.10.: Performance for the delivery task with 20 rooms and 3 objects with a linear, teleo-
reactive and a generated reactive program.

The evaluations show that the reactive programs outperform the linear program. The hand written
reactive program is slightly better than the generated program. This discrepancy is partly caused due
to the carefully crafted program which allows triggering at least one action regardless of the fault.
The evaluation shows additionally that the generated program is slightly faster than the hand written
reactive program. This observation is caused as the generated program does not force the execution
to perform a reasoning over several rules if no fault has occurred. Overall one can state that the
evaluation confirms the Hypothesis 5. Thus, the usage of a reactive program should be preferred over
a linear program. Due to the method proposed in Chapter 8 one can specify a linear program for the
task and afterward generate a reactive program which ensures a high success rate to finish the task.

10.6. Impact of common sense

With the previous evaluations, we have shown which impact the belief management, in general, has
on the success rate of the robot. Furthermore, we have shown that the usage of a reactive program

132

10.6. Impact of common sense

increases the success rate. In this evaluation, we will evaluate the impact the use of common sense
has. Especially we will assess the impact of common sense from an external knowledge base which
was mapped according to the method described in Chapter 5.
We perform two evaluations to measure the impact of the usage of external common sense. The first
assessment focus on the implications the domain size has on the approach. The second assessment
concentrate on the impact of the given timeout has on the success of solving a task.
Both evaluations used the implementation of the history based diagnosis approach as it was proposed
in [51] extended with the mapping method described in Chapter 5. The task the robot is performing
in the evaluation is the same deliver task as in the previous sections. The environment depicted in
Figure 10.1 was used for the robot as evaluation setting. The probabilities for the different actions is
illustrated in Table 10.6.
Each experimental setup‡ was carried out with 20 different object settings (different initial locations
and goals for object). Additionally, ever of these 20 runs was tried with five different seeds for the
random number generator. Due to these variations, any advantage of object setting or occurrence of
fault should be ruled out.
During the evaluation, three different methods were used. The first method (HBD 0) does not apply
common sense. Thus, it only checks if a sensing action results in contradiction with the predicted
result. The second method (HBD 1) use common sense which was encoded as invariant within the
extended basic action theory itself. Thus, no mapping was required to perform the consistency check.
The third method (HBD 2) use the proposed mapping to Cyc to check for consistency of the state with
the common sense knowledge.
All the different methods used the same program to perform the delivery task. The program used
a Teleo-Reactive (TR) approach [98] for the deliveries. The same reactive program as in the first
evaluation was used and is depicted in Listing 10.4. Through the usage of a TR program, the robot
can react to changes in the knowledge about the world. This reaction allows the robot to work towards
the goal even in case a fault has occurred.
During the execution of a test the run-time of the execution, the number of successfully delivered
objects as well as if the test was finished before the timeout where recorded.
With the help of this recorded data different hypothesis are checked. In both evaluation setups, we
wanted to check if the following hypothesis holds.

Hypothesis 6. The programs which use the background knowledge have a higher success-rate com-
pared to the program not using background knowledge.

10.6.1. Impact of the domain size

The first evaluation setup evaluated the impact of the domain size. To test the impact of the domain size
different evaluations which differ in the number of rooms and objects were used. For all assessments,
a time out of 12 minutes was used.
The first evaluation performed for this evaluation setup was to deliver three objects in an environment
with 20 rooms. The success rate of delivery all three objects, the percentage of runs resulting in a
timeout (TIR) as well as the run time of the execution is depicted in Table 10.11. Please note that
the run time does omit those cases where the program ran into the timeout. The result of the first
assessment shows that the use of common sense increases drastically the chance to deliver the objects.
This increase is the case as the robot detects a problem which would otherwise be missed. It is also

‡The tests were performed on an Intel quad-core CPU with 2.40 GHz and 4 GB of RAM running 32-bit Ubuntu 12.04.
The ROS version Groovy was used for the evaluation.

133

Chapter 10. Empirical Evaluation

success rate/% TIR/% average run-time/s
mean stdv.

HDB 0 54.11 18.81 3.93 4.03
HDB 1 95.55 1.98 5.95 7.10
HDB 2 79.80 36.63 399.18 153.09

Table 10.11.: Success rate, timeout rate (TIR) and the average run-time of the approaches to map
common sense for the first evaluation in the first evaluation setup.

interesting to notice that the method which does not use common sense has a high time out probability.
This high time out probability is caused by the fact that the robot detects after some time that the object
was not correctly delivered due to a sensing mismatch. However, due to this late detection, the agent
needs to perform a more complex reasoning and repair to deliver the object correctly. As a last result,
it is to mention that the variant which uses the mapping of Cyc has a drastically higher run time. This
result is caused due to the complete transfer of the knowledge into Cyc. Furthermore, the consistency
check in Cyc is more complex as the uses common sense knowledge incorporates more than just
simple invariant about object locations as they are used in the extended basic action theory.
The second evaluation performed in the first evaluation setup was to deliver three objects in an envi-
ronment consisting of 29 rooms. The success rate of delivery all three objects, the percentage of runs
resulting in a timeout (TIR) as well as the run time of the execution is depicted in Table 10.12. Please
note that the run time does omit those cases where the program ran into the timeout. The results again

success rate/% TIR/% average run-time/s
mean stdv.

HDB 0 57.89 14.0 3.64 228.52
HDB 1 95.44 1.0 13.14 65.80
HDB 2 72.98 50.0 560.00 123.99

Table 10.12.: Success rate, timeout rate (TIR) and the average run-time of the approaches to map
common sense for the second evaluation in the first evaluation setup.

indicate that the use of common sense increases the success rate. What is more interesting to observe
is that the time spent to deliver all objects has grown in case of HDB 1 by a factor of 2.33 and in
case of HDB 2 the factor was 1.43. The slower increase of the run time for the method using CYC
is caused as more runs caused to run into a timeout. The growth of HDB is fascinating as it shows
that the checking of the invariant has not scaled in the same way as the environment size. As the
environment size only increases by a factor of 1.45. Thus, if invariant is used to check the consistency
of the current situation one needs to take care that the approach scales well with the domain size.
The final evaluation performed for the first evaluation setup was to deliver nine objects in an envi-
ronment consisting of 20 rooms. The success rate of delivery all nine objects, the percentage of runs
resulting in a timeout (TIR) as well as the run time of the execution is depicted in Table 10.13. Please
note that the run time does omit those cases where the program ran into the timeout. In this assess-
ment, it is important to notice that the mapping to Cyc always run into a timeout. Thus, the robot was
not able to deliver nine objects within 12 minutes. If instead the invariant in the extended basic action
theory were used the robot had only encountered 29% of the cases a timeout. This increase in the time
out of Cyc was to expect as the timeout ratio was 36.63% if only three objects had to deliver. Thus,
an increase by a factor of 3 explains this thigh timeout ratio. It is also interesting to notice that the

134

10.6. Impact of common sense

success rate/% TIR/% average run-time/s
mean stdv.

HDB 0 22.01 32.00 216.30 305.99
HDB 1 73.49 29.00 206.41 291.54
HDB 2 18.23 100 - -

Table 10.13.: Success rate, timeout rate (TIR) and the average run-time of the approaches to map
common sense for the third evaluation in the first evaluation setup.

run time as well as the ratio to run into a timeout is higher if no commonsense knowledge is used. It
is to expect that due to the usage of the commonsense knowledge the faults are discovered early thus
allowing a faster recovery of this fault.
As a final observation to all the evaluation one can state that Hypothesis 6 holds. Thus, the usage of
common sense increases the chance to find a faulty execution. Moreover, thus, directly increase the
success rate to finish a task.

10.6.2. Impact of timeout

The second evaluation evaluated if a higher timeout may positively influence the success rate. During
the assessment, the robot had to deliver three objects. The environment consists of 20 different rooms.
With the help of various time outs, the following two hypotheses should be checked.

Hypothesis 7. With an increasing timeout, the success-rate increases too.

Hypothesis 8. With an increasing timeout, the program which uses the common sense represented in
Cyc shows the same success rate as the program which uses the hand-coded background knowledge.

In this evaluation setup, three different evaluations were performed. Each evaluation had a different
timeout. The first evaluation used a timeout of 660 seconds. The second evaluation used a timeout
of 6600 seconds. The third evaluation used a timeout of 66000 seconds. The results of the first as-
sessment are depicted in Table 10.14. Table 10.15 depicts the result of the second evaluation. Finally,
the results of the third evaluation are depicted in Table 10.14. All their assessment results show the
success rate of delivery all three objects, the percentage of runs resulting in a timeout (TIR) as well as
the run time of the execution is depicted in Table 10.13. Please note that the run time does omit those
cases where the program ran into the timeout.

success-rate TIR average runtime/s
Mean Std

HBD 0 48.47 15.00 9.32 46.20
HBD 1 89.49 7.00 11.79 47.18
HBD 2 66.44 44.00 423.29 141.50

Table 10.14.: Success-rate, timeout-rate (TIR) and runtime for a timeout of 660 seconds for mapping
common sense.

The evaluations show that through the increase of the timeout the run time increases as the robot can
spent more time to deliver the objects. Furthermore, the success rate increases. This can also be seen
in Figure 10.6.2. The figure shows the relation between the timeout time and the success rate. It is

135

Chapter 10. Empirical Evaluation

success-rate TIR average runtime/s
Mean Std

HBD 0 54.92 6.00 132.78 750.37
HBD 1 91.53 2.00 216.85 1188.02
HBD 2 77.29 22.00 903.02 1118.48

Table 10.15.: Success-rate, timeout-rate (TIR) and runtime for a timeout of 6600 seconds for mapping
common sense.

success-rate TIR average runtime/s
Mean Std

HBD 0 46.78 0.0 704.21 2064.03
HBD 1 89.83 0.0 351.36 1513.69
HBD 2 78.31 17.00 2340.75 4789.59

Table 10.16.: Success-rate, timeout-rate (TIR) and runtime for a timeout of 66000 seconds for map-
ping common sense.

important to notice that the success rate of the method (HDB 2) using the mapping to Cyc increase
significantly.
In contrast to the other approach, the method which uses the definition of invariant in the extended
basic action theory (HDB 2) has a small fluctuation around 90 %. Thus, indicating that this is the
maximum value of the success rate which is possible. This result also shows that some deliveries
cannot be successfully executed as the fault either is not detected or the robot has no proper repair. A
similar fluctuation can be seen from the method (HDB 0) which does not use common sense fluctuate
around 50 %. Thus, without the use of common sense, only 50% of the deliveries can be performed
success fully.

Figure 10.3.: Success-rate of the different approach in relation to the timeout.

As a final remark to the performed evaluation one can state that we can verify Hypothesis 8. As
through an increase in the timeout, the method using the mapping (HBD 2) starts to reach the method
which uses the native common sense (HBD 1). However, it also shows that the effort of the mapping
is very high. This high effort is caused as the complete knowledge needs to be mapped. Thus, if we

136

10.7. Conclusion and Future Work

consider m fluents, n objects and the maximum cardinality of a fluent to be k, then the mapping needs
to map O(m×nk) fluent instances.
Hypothesis 7 cannot be verified. As an increase in the timeout time does not directly increase the
success rate. This observation is caused by the reasoning which, if fast enough to cause no time outs,
does not allow to increase the success rate further.

10.7. Conclusion and Future Work

In the previous chapters of this thesis, we have proposed several improvements in the classical belief
management. In these chapters, we have argued why several improvements increase the usability of
the belief management or increase the success rate of a robot using the advanced belief management.
In this chapter, we have shown several evaluations which confirm this statements.
First, we have shown that the usage of a belief management outperforms a robot which does not
use any belief management. The evaluation was performed on a simple delivery task, with different
numbers of objects to deliver and rooms to consider for the delivery. Regardless of the size of the
environment or the number of deliveries robots using a belief management outperforms robots which
don’t use a belief management.
Afterward, we have shown that the incorporation of the belief into the high-level execution as it
was proposed in Chapter 6 together with the knowledge gathering approach presented in Chapter 7
increase the success rate of a robot. The evaluation shows that the advanced belief management as it
was presented in this thesis outperforms the classical belief management, concerning the success of
executing a task. This improvement was achieved without causing any increase in run-time. Thus,
the improvements proposed in this thesis can be considered as advancement of the classical belief
management.
The next evaluation showed that the usage of progression results in a faster execution than if classical
reasoning is used. This evaluation also indicates that the progression method proposed in Chapter 6
should be preferred over a direct reasoning approach.
The proceeding evaluation related the classical history based diagnosis with the consistency history
based diagnosis as it was proposed in Chapter 4. The evaluation shows that the usage of the consis-
tency history based diagnosis results in a robotic system which aborts its mission more often than the
classical approach. This higher rate of abortion is caused by the fact that the knowledge of the robot
is reduced more than it can be expanded by sensing actions. Thus, the evaluation shows that the usage
of the consistency history based diagnosis should be performed carefully as the robot should be able
to perform sensing action to gather enough knowledge regardless of the diagnosis.
The next evaluation showed that the reactive program generated with the method described in Chapter
8 outperforms a simple linear program. Thus, the method allows to specify the behavior of the robot
in a simple linear program, but yield a good chance of success due to the generation of a reactive
version of this program.
Finally, we have performed two different evaluation settings to show the impact of the usage of com-
mon sense. Both evaluations settings confirmed that the use of common sense increase the success
rate to perform a task. It further has shown that the run time of the mapping is much higher than a
native use of the common sense knowledge. Please note that this mapping is still of uses as a bigger
commonsense knowledge base can be integrated into the robotic system.

137

138

Chapter 11
Conclusion

Robots acting in an environment use their belief about the environment to take decisions which actions
should be performed next to achieve a task at hand. If the robot acts in a not idealized environment the
robot may fail to execute a certain action successfully. Thus, an action may not lead to the expected
result, or the action may have other effects. To deal with these faults, the robot needs to manage its
belief to ensure that the belief about the environment coincides with the real environment. Such a
belief management is necessary as it is the only way of ensuring that the robot takes a reasonable
decision about the next action to perform. In this thesis, we have presented several methods for
improving an existing belief management approach. In this chapter, we will first give a summary of
the presented methods and afterwards discuss some future research in the area of belief management
for robots.

11.1. Summary

The ease of use of the belief management and its efficiency is one of the main concerns which need to
be addressed to allow widespread use of belief management for robots.
The first method presented in this thesis addresses the problem of the ease of use as well as the
efficiency of current belief management approaches. The method cost of using the belief management
and thus allows its widespread use. Current approaches use a detailed description of how an action
may fail to derive an explanation what fault has happened. The specification how the action is failing
is used to derive an alternative history of performed actions such that the observations made so far
are consistent with this history. The specification of the faults an action can have in such detail is a
complex task, and sometimes it is merely not possible to specify all faults in advance as it is necessary.
Additionally, considering every possibility how an action can fail one may have the problem that there
may be an infinite number of possible explanations. To address this issue, we proposed in this thesis to
use the influence of actions instead. The action influence only specifies which parts of the environment
might be influenced due to an action failure. This specification eases defining an envelope of the
influence an action has, thus simplifying the definition of a faulty action. Furthermore, the method
ensures that one only needs to consider finitely many alternatives.
The second method presented in this thesis further simplifies the use of the belief management. To
detect a fault earlier, the robot can use common sense knowledge about the environment. The specifi-
cation of this common sense can become a complex task as one needs to specify a big set of properties
which hold in the environment. Furthermore, this specification needs to be consistent. Thus, to eases

139

Chapter 11. Conclusion

this specification, it is desirable to reuse the common sense knowledge which is already specified in
other knowledge bases. The method presented in this thesis can be used to perform such reuse. The
method allows using any arbitrary external source for the common sense of the robot. The exter-
nal source is invoked to check the consistency of the situation only when needed. Furthermore, the
method is not restricted to a certain logic of the external resource. Thus, it increases the possibility to
reuse common sense drastically.
The third method presented in this thesis tackles the problem of integrating the belief of the robot
into the decision cycle of the robot. This integration ensures that the robot uses its current belief
to decide which action to perform next. Furthermore, the approach allows the robot to draw the
conclusion that it lacks knowledge about the environment to make a safe decision. Thus, the agent
can trigger a gathering of knowledge in such a case. Additionally, we have shown that a robot using
this method will only choose actions which the robot can safely assume to be executable. Furthermore,
we demonstrated that the robot never terminates its execution if there is a chance that it can proceed
with its mission. Instead, the method allows the robot to safely but continuously move towards the
achievement of its task.
The fourth method presented in this thesis allows the robot to gather additional knowledge about its
environment if necessary. The method uses the information which explanations are currently used to
describe the state of the environment to choose a proper sensing action. Due to this chosen sensing
action, the robot gains knowledge about the environment. Furthermore, the sensing action is selected
in such a way that the robot can rule out explanations which are not consistent with the real environ-
ment. Additionally, we have shown that even if the method is applied in an online fashion, it yields
the same result as if one would construct a conditional plan. This result allows the robot to gather
knowledge without the need of a very complex planning step.
The fifth method presented in this thesis tackles the problem of specifying a high-level program which
allows the robot to react to faults during the action execution. Often only simple sequential programs
are known to achieve a certain task. Unfortunately, such a simple sequential program often fails to
react to faults. Although the robot can update the belief accordingly, a consistent continuation of
the execution of the program fails as no proper action can be chosen due to the restrictions of the
sequential program. To address this problem, we presented a method which automatically derives a
reactive program from a sequential one. This reactive program allows the robot to react to faults and
achieve its task. The presented method is general enough to deal with branches and even loops in the
specified program. This generality allows an easy conversion of already existing high-level control
programs into reactive programs.
Finally, the thesis has shown in several evaluations that the use of a belief management improves the
overall success rate of a robot to achieve its task. Additionally, several evaluations were performed
which show that the proposed extension to the belief management improve the success rate of the
robot to finish its task further. The assessment presented allows concluding that a robot using the
methods proposed in this thesis will achieve its task with a higher probability than a robot which does
not use the proposed methods.

11.2. Further research

For future research one major point of interest is to improve the efficiency of the proposed belief man-
agement, although different methods have been shown within this thesis to enhance the effectiveness.
Firstly, the calculation of explanations which action failed could be improved. A good starting point
would be a generalization of the method presented in [111] which allows performing some of the

140

11.2. Further research

calculations offline. Thus, the robot can perform some precomputation to allow a faster generation of
the explanations. Furthermore, one could exploit the structure of the history of performed actions and
the observed discrepancy to improve the efficiency.
Secondly one could restrict the number of situations in which an explanation needs to be calculated.
A similar approach was presented in [106] for another belief management method. One could extend
this method to ensure that one only checks for those inconsistencies which are relevant for the robot
during its future execution. Also, one may restrict the generation of explanations to those which are
different with regard to properties of interest. Thus, one could reduce the generated explanations.
Thirdly, the presented belief management was defined in such a way that any effect an action may
have can be used. Due to this general definition, some of the calculations need to be performed very
generally and thus cause a high complexity. Thus, it would be of interest to adapt the approach to
a certain fragment of allowed action effects. This restriction could make it possible to easy some
definitions and thus allow faster methods to be used for the reasoning. One such restricted reasoning
was used to specify the high-level programming language defined in [39].
Besides the improvements in efficiency, one can also extend the approach to be used on a broader
basis. The presented approach focuses on sequential execution of a program. However, many high-
level control programs use parallel execution to simplify the program. Thus, an extension towards a
parallel execution of the actions as well as towards parallel programs would be of interest.
Finally, all the evaluations were performed in simulation. This restriction allowed us to perform
several different assessments, as well as to perform a high number of assessments. It is left for future
work to evaluate a real robot. Furthermore, all evaluations were conducted on a simple delivery task.
It is left for future work to expand the evaluation to other tasks. The usage of other tasks may yield an
insight how the proposed approach depends on the structure of the belief. This insight could yield to
new research questions concerning the effectiveness of the proposed approach.

141

142

Bibliography

[1] AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers, Principles, Techniques. Addison
wesley. (Cited on pages 94 and 118.)

[2] ARENAS, M., BOTOEVA, E., CALVANESE, D., AND RYZHIKOV, V. 2013. Exchanging OWL
2 QL Knowledge Bases. The Computing Research Repository (CoRR) April 2013. (Cited on
page 56.)

[3] BACCHUS, F., HALPERN, J. Y., AND LEVESQUE, H. J. 1999. Reasoning about noisy sensors
and effectors in the situation calculus. Artificial Intelligence 111, 1, 171–208. (Cited on pages 31
and 34.)

[4] BAIER, J., MOMBOURQUETTE, B., AND MCILRAITH, S. A. 2014. Diagnostic problem solving
via planning with ontic and epistemic goals. In Proceedings of the 14th International Conference
on Principles of Knowledge Representation and Reasoning (KR). (Cited on page 51.)

[5] BARAL, C., MCILRAITH, S., AND SON, T. C. 2000. Formulating diagnostic problem solving
using an action language with narratives and sensing. In Proceedings of the Seventh Interna-
tional Conference on Principles of Knowledge Representation and Reasoning. 311–322. (Cited
on pages 28, 29, and 51.)

[6] BEETZ, M., JAIN, D., MÖSENLECHNER, L., AND TENORTH, M. 2010. Towards Performing
Everyday Manipulation Activities. Robotics and Autonomous Systems 58, 9, 1085–1095. (Cited
on page 120.)

[7] BEETZ, M., MÖSENLECHNER, L., AND TENORTH, M. 2010. CRAM - A Cognitive Robot Ab-
stract Machine for everyday manipulation in human environments. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2010. IEEE, 1012–1017. (Cited on page 120.)

[8] BELLE, V. AND LEVESQUE, H. J. 2013. Reasoning about continuous uncertainty in the situ-
ation calculus. In Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence (IJCAI). (Cited on page 31.)

[9] BELLE, V. AND LEVESQUE, H. J. 2014. Prego: An action language for belief-based cognitive
robotics in continuous domains. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence (AAAI). 989–995. (Cited on page 31.)

[10] BELLE, V. AND LEVESQUE, H. J. 2015. Allegro: Belief-based programming in stochastic
dynamical domains. In Proceedings of the 24th International Conference on Artificial Intelligence.
AAAI Press, 2762–2769. (Cited on pages 31 and 32.)

[11] BORST, P., AKKERMANS, J., POS, A., AND TOP, J. 1995. The physsys ontology for physical
systems. In Working Papers of the Ninth International Workshop on Qualitative Reasoning QR.
11–21. (Cited on page 60.)

143

Bibliography

[12] BURGARD, W. AND STACHNISS, C. 2013. Introducing ... Obelix. German Research 35, 3,
6–10. (Cited on page 1.)

[13] CERIOLI, M. AND MESEGUER, J. 1993. May i borrow your logic? In Mathematical Founda-
tions of Computer Science 1993. Springer, 342–351. (Cited on page 59.)

[14] CLASSEN, J. AND LAKEMEYER, G. 2009. Tractable first-order golog with disjunctive knowl-
edge bases. Proc. Commonsense, 27–33. (Cited on pages 34 and 35.)

[15] CLASSEN, J. AND LAKEMEYER, G. 2010. On the verification of very expressive temporal
properties of non-terminating golog programs. In European Conference on Artificial Intelligence
(ECAI). 887–892. (Cited on page 112.)

[16] CLOCKSIN, W. AND MELLISH, C. S. 2003. Programming in PROLOG. Springer Science &
Business Media. (Cited on pages 115 and 116.)

[17] CONSOLE, L., DUPRÉ, D. T., AND TORASSO, P. 1991. On the relationship between abduction
and deduction. Journal of Logic and Computation 1, 5, 661–690. (Cited on pages 17 and 40.)

[18] DE CAT, B., JANSEN, J., AND JANSSENS, G. 2013. Idp3: Combining symbolic and ground
reasoning for model generation. In 2nd Workshop on Grounding and Transformations for Theories
With Variables. 17–24. (Cited on page 117.)

[19] DE GIACOMO, G., LESPÉRANCE, Y., AND LEVESQUE, H. J. 2000. Congolog, a concurrent
programming language based on the situation calculus. Artificial Intelligence 121, 1, 109–169.
(Cited on page 21.)

[20] DE GIACOMO, G., LESPÉRANCE, Y., LEVESQUE, H. J., AND SARDINA, S. 2009. Indigolog:
A high-level programming language for embedded reasoning agents. In Multi-Agent Program-
ming:. Springer, 31–72. (Cited on pages 10, 21, 22, 23, 24, and 61.)

[21] DE GIACOMO, G., LESPÉRANCE, Y., PATRIZI, F., AND SARDINA, S. 2016. Verifying con-
golog programs on bounded situation calculus theories. In Proc. of the 30th AAAI Conf. on Artificial
Intelligence (AAAI). (Cited on page 93.)

[22] DE GIACOMO, G. AND LEVESQUE, H. J. 1999. An incremental interpreter for high-level
programs with sensing. In Logical foundations for cognitive agents. Springer, 86–102. (Cited on
page 15.)

[23] DE GIACOMO, G., LEVESQUE, H. J., AND SARDINA, S. 2001. Incremental execution of
guarded theories. ACM Transactions on Computational Logic (TOCL) 2, 4, 495–525. (Cited on
pages 41 and 52.)

[24] DE GIACOMO, G., REITER, R., AND SOUTCHANSKI, M. 1998. Execution monitoring of high-
level robot programs. In Principles of Knowledge Representation and Reasoning-International
Conference. Morgan Kaufmann Publishers, 453–465. (Cited on page 37.)

[25] DE KLEER, J. AND WILLIAMS, B. C. 1987a. Diagnosing multiple faults. Artificial intelli-
gence 32, 1, 97–130. (Cited on pages 20 and 40.)

[26] DE KLEER, J. AND WILLIAMS, B. C. 1987b. Diagnosing multiple faults. Artificial intelli-
gence 32, 1, 97–130. (Cited on page 85.)

[27] DE LEONI, M., MECELLA, M., AND DE GIACOMO, G. 2007. Highly dynamic adaptation
in process management systems through execution monitoring. In International Conference on
Business Process Management. Springer, 182–197. (Cited on page 37.)

144

Bibliography

[28] DE MOURA, L. AND BJØRNER, N. 2008. Z3: An efficient smt solver. In International con-
ference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 337–340.
(Cited on page 117.)

[29] DELGRANDE, J. P. AND LEVESQUE, H. J. 2012. Belief revision with sensing and fallible
actions. In International Conference on Principles of Knowledge Representation and Reasoning
(KR). Citeseer. (Cited on pages 32 and 33.)

[30] DELGRANDE, J. P. AND LEVESQUE, H. J. 2013. A formal account of nondeterministic and
failed actions. In Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence (IJCAI). (Cited on page 33.)

[31] DEMOLOMBE, R. AND PARRA, M. D. P. P. 2000. A simple and tractable extension of situation
calculus to epistemic logic. In International Symposium on Methodologies for Intelligent Systems.
Springer, 515–524. (Cited on page 35.)

[32] DEMOLOMBE, R. AND PARRA, P. P. 2006. Belief revision in the situation calculus without
plausibility levels. In International Symposium on Methodologies for Intelligent Systems. Springer,
504–513. (Cited on page 32.)

[33] EITER, T., ERDEM, E., AND FABER, W. 2004. Diagnosing plan execution discrepancies in a
logic-based action framework. Tech. Rep. 1843-04-03, Technical Report INFSYS RR-1843-04-03,
Vienna University of Technology. (Cited on pages 28 and 29.)

[34] EITER, T., FINK, M., AND SENKO, J. 2005. Kmonitor–a tool for monitoring plan execution in
action theories. In International Conference on Logic Programming and Nonmonotonic Reasoning.
Springer, 416–421. (Cited on page 28.)

[35] FAN, Y., CAI, M., LI, N., AND LIU, Y. 2012. A first-order interpreter for knowledge-based
golog with sensing based on exact progression and limited reasoning. In Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence (AAAI). (Cited on page 35.)

[36] FANG, L. AND LIU, Y. 2013. Multiagent knowledge and belief change in the situation calcu-
lus. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence. (Cited on
page 33.)

[37] FANG, L., LIU, Y., AND WEN, X. 2015. On the progression of knowledge and belief for non-
deterministic actions in the situation calculus. In Proceedings of the 24th International Conference
on Artificial Intelligence. AAAI Press, 2955–2963. (Cited on page 33.)

[38] FERREIN, A. 2008. Robot controllers for highly dynamic environments with real-time con-
straints. Ph.D. thesis, Knowledge-based Systems Group, RWTH Aachen University, Aachen Ger-
many. (Cited on page 37.)

[39] FERREIN, A., MAIER, C., MÜHLBACHER, C., NIEMUELLER, T., STEINBAUER, G., AND

VASSOS, S. 2015. Controlling logistics robots with the action-based language yagi. In Workshop
on Task Planning for Intelligent Robots in Service and Manufacturing. 13. (Cited on page 141.)

[40] FERRI, G., MANZI, A., SALVINI, P., MAZZOLAI, B., LASCHI, C., AND DARIO, P. 2011.
Dustcart, an autonomous robot for door-to-door garbage collection: From dustbot project to the
experimentation in the small town of peccioli. In IEEE International Conference on Robotics and
Automation (ICRA), 2011. IEEE, 655–660. (Cited on page 1.)

[41] FICHTNER, M., GROSSMANN, A., AND THIELSCHER, M. 2003. Intelligent execution moni-
toring in dynamic environments. Fundamenta Informaticae 57, 2-4, 371–392. (Cited on page 30.)

145

Bibliography

[42] FIKES, R. E., HART, P. E., AND NILSSON, N. J. 1972. Learning and executing generalized
robot plans. Artificial intelligence 3, 251–288. (Cited on page 112.)

[43] FIKES, R. E. AND NILSSON, N. J. 1971. Strips: A new approach to the application of theorem
proving to problem solving. Artificial intelligence 2, 3-4, 189–208. (Cited on pages 14 and 112.)

[44] FRITZ, C. 2009. Monitoring the generation and execution of optimal plans. Ph.D. thesis, Uni-
versity of Toronto. (Cited on pages 37 and 38.)

[45] GABALDON, A. AND LAKEMEYER, G. 2007. Esp: A logic of only-knowing, noisy sensing
and acting. In PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLI-
GENCE. Vol. 22. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 974.
(Cited on page 34.)

[46] GAT, E. ET AL. 1998a. On three-layer architectures. Artificial Intelligence and Mobile
Robots 195, 210. (Cited on page 2.)

[47] GAT, E. ET AL. 1998b. On three-layer architectures. Artificial intelligence and mobile
robots 195, 210. (Cited on page 2.)

[48] GIACOMO, G. D., LESPÉRANCE, Y., LEVESQUE, H. J., AND SARDINA, S. 2009. Multi-Agent
Programming: Languages, Tools and Applications. Springer, Chapter IndiGolog: A High-Level
Programming Language for Embedded Reasoning Agents, 31–72. (Cited on page 125.)

[49] GROSSKREUTZ, H. AND LAKEMEYER, G. 2000. Turning high-level plans into robot programs
in uncertain domains. In Proceedings of the 14th European Conference on Artificial Intelligence
(ECAI). 548–552. (Cited on page 36.)

[50] GROSSKREUTZ, H. AND LAKEMEYER, G. 2001. Belief update in the pgolog framework. In
Annual Conference on Artificial Intelligence. Springer, 213–228. (Cited on page 36.)

[51] GSPANDL, S., PILL, I., REIP, M., STEINBAUER, G., AND FERREIN, A. 2011. Belief Manage-
ment for High-Level Robot Programs. In International Joint Conference on Artificial Intelligence
(IJCAI). Vol. 22. 900–905. (Cited on pages 4, 5, 15, 17, 18, 19, 20, 31, 120, 129, and 133.)

[52] GSPANDL, S., PODESSER, S., REIP, M., STEINBAUER, G., AND WOLFRAM, M. 2012. A
dependable perception-decision-execution cycle for autonomous robots. In IEEE International
Conference on Robotics and Automation (ICRA), 2012. IEEE, 2992–2998. (Cited on pages 7, 120,
121, and 125.)

[53] GUIZZO, E. 2008. Three Engineers, Hundreds of Robots, One Warehouse. Spectrum,
IEEE 45, 7, 26–34. (Cited on pages 1 and 7.)

[54] HAAS, A. R. 1987. The case for domain-specific frame axioms. In The frame problem in artifi-
cial intelligence. Proceedings of the 1987 workshop, F. Brown, Ed. Morgan Kaufmann Publishers,
San Francisco, 343–348. (Cited on page 10.)

[55] IAGNEMMA, K. AND BUEHLER, M. 2006. Editorial Special Issue on the DARPA Grand Chal-
lenge. J. Field Robot. 23, 9, 655–656. (Cited on page 1.)

[56] IWAN, G. 2002. History-based diagnosis templates in the framework of the situation calculus.
AI Communications 15, 1, 31–45. (Cited on pages 17 and 18.)

[57] JIN, Y. AND THIELSCHER, M. 2004. Representing beliefs in the fluent calculus. In Proceed-
ings of the 16th European Conference on Artificial Intelligence (ECAI). Vol. 16. 823. (Cited on
page 30.)

146

Bibliography

[58] JOHNSTON, B. AND WILLIAMS, M.-A. 2009a. Autonomous learning of commonsense simula-
tions. In International Symposium on Logical Formalizations of Commonsense Reasoning. 73–78.
(Cited on page 59.)

[59] JOHNSTON, B. AND WILLIAMS, M.-A. 2009b. Conservative and reward-driven behavior se-
lection in a commonsense reasoning framework. In AAAI Symposium: Multirepresentational Ar-
chitectures for Human-Level Intelligence. 14–19. (Cited on page 59.)

[60] JONES, J. L. 2006. Robots at the tipping point: the road to iRobot Roomba. Robotics Automation
Magazine, IEEE 13, 1, 76–78. (Cited on page 1.)

[61] KALFOGLOU, Y. AND SCHORLEMMER, M. 2003. Ontology mapping: the state of the art. The
knowledge engineering review 18, 1, 1–31. (Cited on page 53.)

[62] KRUIJFF, G.-J. M., PIRRI, F., GIANNI, M., PAPADAKIS, P., PIZZOLI, M., SINHA, A.,
TRETYAKOV, V., LINDER, T., PIANESE, E., CORRAO, S., ET AL. 2012. Rescue robots at
earthquake-hit Mirandola, Italy: A field report. In IEEE International Symposium on Safety, Secu-
rity, and Rescue Robotics (SSRR), 2012. IEEE, 1–8. (Cited on page 1.)

[63] KUHN, L., PRICE, B., DO, M., LIU, J., ZHOU, R., SCHMIDT, T., AND DE KLEER, J. 2010.
Pervasive diagnosis. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans 40, 5, 932–944. (Cited on page 85.)

[64] KÜSTENMACHER, A., AKHTAR, N., PLÖGER, P. G., AND LAKEMEYER, G. 2013. Unexpected
Situations in Service Robot Environment: Classification and Reasoning Using Naive Physics. In
17th annual RoboCup International Symposium. Eindhoven, Netherlands. (Cited on page 59.)

[65] LAKEMEYER, G. AND LEVESQUE, H. J. 2004. Situations, si! situation terms, no! In Inter-
national Conference on Principles of Knowledge Representation and Reasoning (KR). 516–526.
(Cited on pages 33 and 34.)

[66] LAKEMEYER, G. AND LEVESQUE, H. J. 2005. Semantics for a useful fragment of the situa-
tion calculus. In Proceedings of the 19th international joint conference on Artificial intelligence
(IJCAI). 490–496. (Cited on page 33.)

[67] LEVESQUE, H. J., REITER, R., LESPERANCE, Y., LIN, F., AND SCHERL, R. B. 1997. Golog:
A logic programming language for dynamic domains. The Journal of Logic Programming 31, 1,
59–83. (Cited on page 21.)

[68] LIN, F. AND REITER, R. 1997. How to progress a database. Artificial Intelligence 92, 1, 131 –
167. (Cited on pages 14 and 15.)

[69] LIU, Y. AND LAKEMEYER, G. 2009. On first-order definability and computability of pro-
gression for local-effect actions and beyond. In Twenty-First International Joint Conference on
Artificial Intelligence (IJCAI-09). 860–866. (Cited on page 15.)

[70] LIU, Y., LAKEMEYER, G., AND LEVESQUE, H. J. 2004. A logic of limited belief for reasoning
with disjunctive information. In International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR). 587–597. (Cited on pages 34 and 35.)

[71] LOIGGE, S. 2016. Unified and dependable robot control architecture based on ros. M.S. thesis,
Faculty of Computer Science and Biomedical Engineering, Graz University of Technology. (Cited
on page 2.)

147

Bibliography

[72] LUSSIER, B., CHATILA, R., INGRAND, F., KILLIJIAN, M.-O., AND POWELL, D. 2004. On
Fault Tolerance and Robustness in Autonomous Systems. In 3rd IARP - IEEE/RAS - EURON Joint
Workshop on Technical Challenges for Dependable Robots in Human Environments. Manchester,
UK. (Cited on page 1.)

[73] LUSSIER, B., LAMPE, A., CHATILA, R., GUIOCHET, J., INGRAND, F., KILLIJIAN, M.-O.,
AND POWELL, D. 2005. Fault Tolerance in Autonomous Systems: How and How Much? In 4th

IARP - IEEE/RAS - EURON Joint Workshop on Technical Challenges for Dependable Robots in
Human Environments. Nagoya, Japan. (Cited on page 1.)

[74] MA, J., LIU, W., AND MILLER, P. 2012. Belief change with noisy sensing in the situation
calculus. arXiv preprint arXiv:1202.3743. (Cited on page 32.)

[75] MAIER, C. 2015. YAGI - An Easy and Light-Weighted Action-Programming Language for
Education and Research in Artificial Intelligence and Robotics. M.S. thesis, Faculty of Computer
Science, Graz University of Technology. (Cited on page 118.)

[76] MARTIN, Y. AND THIELSCHER, M. 2001. Addressing the qualification problem in flux. In KI
2001: Advances in Artificial Intelligence. Springer, 290–304. (Cited on page 29.)

[77] MATUSZEK, C., CABRAL, J., WITBROCK, M., AND DEOLIVEIRA, J. 2006. An introduction to
the syntax and content of Cyc. In Proceedings of the 2006 AAAI Spring Symposium on Formalizing
and Compiling Background Knowledge and Its Applications to Knowledge Representation and
Question Answering. 44–49. (Cited on pages 53, 54, and 57.)

[78] MCCARTHY, J. 1963. Situations, actions, and causal laws. Tech. Rep. AD0785031, STAN-
FORD UNIV CA DEPT OF COMPUTER SCIENCE. 7. (Cited on pages 9 and 10.)

[79] MCCARTHY, J. 1980. Circumscription - a form of non-monotonic reasoning. Artificial intelli-
gence 13, 1, 27–39. (Cited on page 9.)

[80] MCCARTHY, J. 1986. Applications of circumscription to formalizing common-sense knowl-
edge. Artificial Intelligence 28, 1, 89–116. (Cited on page 9.)

[81] MCCARTHY, J. 1987. Epistemological problems of artificial intelligence. Readings in Artificial
Intelligence, 459. (Cited on page 9.)

[82] MCCARTHY, J. AND HAYES, P. J. 1969. Some philosophical problems from the standpoint of
artificial intelligence. Readings in artificial intelligence, 431–450. (Cited on page 9.)

[83] MCILRAITH, S. A. 1999a. Explanatory diagnosis: Conjecturing actions to explain observa-
tions. In Logical Foundations for Cognitive Agents: Papers in Honour of Ray Reiter. Artificial
Intelligence. Springer, Berlin, Heidelberg, 155–172. (Cited on page 17.)

[84] MCILRAITH, S. A. 1999b. Model-based programming using golog and the situation calculus.
In Proceedings of the Tenth International Workshop on Principles of Diagnosis (DX 99). 184–192.
(Cited on page 28.)

[85] MCLLRAITH, S. A. 1999. Explanatory diagnosis: Conjecturing actions to explain observations.
In Logical Foundations for Cognitive Agents. Springer, 155–172. (Cited on pages 28, 29, and 51.)

[86] MOORE, R. C. 1984. A formal theory of knowledge and action. Tech. Rep. ADA458917, SRI
INTERNATIONAL MENLO PARK CA ARTIFICIAL INTELLIGENCE CENTER. (Cited on
pages 16 and 35.)

148

Bibliography

[87] MÖSENLECHNER, L. AND BEETZ, M. 2009. Using physics- and sensor-based simulation for
high-fidelity temporal projection of realistic robot behavior. In 19th International Conference on
Automated Planning and Scheduling. (Cited on pages 121 and 122.)

[88] MÜHLBACHER, C., GSPANDL, S., REIP, M., AND STEINBAUER, G. 2016. Improving de-
pendability of industrial transport robots using model-based techniques. In IEEE International
Conference on Robotics and Automation (ICRA), 2016. IEEE, 3133–3140. (Cited on page 2.)

[89] MÜHLBACHER, C., GSPANDL, S., REIP, M., AND STEINBAUER, G. 2017a. Adapting edge
weights for optimal paths in a navigation graph. In International Conference on Robotics in Alpe-
Adria Danube Region. Springer, Cham, 372–380. (Cited on page 2.)

[90] MÜHLBACHER, C., GSPANDL, S., REIP, M., AND STEINBAUER, G. 2017b. Estimation of the
traversal time for a fleet of industrial transport robots. In International Conference on Robotics in
Alpe-Adria Danube Region. Springer, Cham, 363–371. (Cited on page 2.)

[91] MÜHLBACHER, C. AND STEINBAUER, G. 2014a. Active diagnosis for agents with belief man-
agement. In 25th International Workshop on Principles of Diagnosis (DX). [online; accessed
13.9.2017]. (Cited on pages 7 and 81.)

[92] MÜHLBACHER, C. AND STEINBAUER, G. 2014b. Knowledge-aware execution of programs in
indigolog. In The 9th International Workshop on Cognitive Robotics. [online; accessed 13.9.2017].
(Cited on pages 7 and 61.)

[93] MÜHLBACHER, C. AND STEINBAUER, G. 2014c. Using common sense invariants in belief
management for autonomous agents. In International Conference on Industrial, Engineering
and Other Applications of Applied Intelligent Systems. Springer International Publishing, 49–59.
(Cited on pages 6, 54, and 119.)

[94] MÜHLBACHER, C. AND STEINBAUER, G. 2016a. Belief management using the action history
and consistency-based-diagnosis. In 27th International Workshop on Principles of Diagnosis (DX).
[online; accessed 13.9.2017]. (Cited on pages 6 and 40.)

[95] MÜHLBACHER, C. AND STEINBAUER, G. 2016b. Diagnosis makes the difference for a success-
ful execution of high-level robot control programs. In Intelligent Autonomous Systems 13. Springer
International Publishing, 1119–1132. (Cited on pages 7, 119, and 120.)

[96] MÜHLBACHER, C., STEINBAUER, G., GSPANDL, S., AND REIP, M. 2017. Model-based test-
ing of an industrial multi-robot navigation system. In Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems. International Foundation for Autonomous Agents
and Multiagent Systems, 1652–1654. (Cited on page 2.)

[97] NICA, I., PILL, I., QUARITSCH, T., AND WOTAWA, F. 2013. The route to success-a perfor-
mance comparison of diagnosis algorithms. In Twenty-Third International Joint Conference on
Artificial Intelligence (IJCAI). Vol. 13. 1039–1045. (Cited on page 44.)

[98] NILSSON, N. J. 1994. Teleo-reactive programs for agent control. Journal of Artificial Intelli-
gence Research 1, 1, 139–158. (Cited on pages 123 and 133.)

[99] PAGNUCCO, M., RAJARATNAM, D., STRASS, H., AND THIELSCHER, M. 2013. Implementing
belief change in the situation calculus and an application. In International Conference on Logic
Programming and Nonmonotonic Reasoning. Springer, 439–451. (Cited on page 31.)

[100] PEDNAULT, E. P. 1989. ADL: Exploring the middle ground between strips and the situa-
tion calculus. In Proceedings of the First International Conference on Principles of Knowledge

149

Bibliography

Representation and Reasoning (KR’89). Morgan Kaufmann Publishers, Inc, 324–332. (Cited on
page 10.)

[101] PETRICK, R. P. 2008. Cartesian situations and knowledge decomposition in the situation
calculus. In Proceedings of the Eleventh International Conference on Principles of Knowledge
Representation and Reasoning. 629–639. (Cited on page 35.)

[102] PETRICK, R. P. AND BACCHUS, F. 2002. A knowledge-based approach to planning with
incomplete information and sensing. In Proceedings of the Sixth International Conference on
Artificial Intelligence Planning Systems (AIPS). 212–222. (Cited on page 36.)

[103] PETRICK, R. P. AND BACCHUS, F. 2004. Extending the knowledge-based approach to plan-
ning with incomplete information and sensing. In International Conference on Principles of Knowl-
edge Representation and Reasoning (KR). 613–622. (Cited on page 36.)

[104] PETRICK, R. P. AND LEVESQUE, H. J. 2002. Knowledge equivalence in combined action
theories. In International Conference on Principles of Knowledge Representation and Reasoning.
303–314. (Cited on page 35.)

[105] PIRRI, F. AND REITER, R. 1999. Some contributions to the metatheory of the situation calcu-
lus. Journal of the ACM (JACM) 46, 3, 325–361. (Cited on pages 13 and 14.)

[106] PODESSER, S., STEINBAUER, G., AND WOTAWA, F. 2012. Selective belief management
for high-level robot programs. In Proceedings of the International Workshop on Principles of
Diagnosis (DX-12). (Cited on page 141.)

[107] QUIGLEY, M., CONLEY, K., GERKEY, B. P., FAUST, J., FOOTE, T., LEIBS, J., WHEELER,
R., AND NG, A. Y. 2009. ROS: an open-source Robot Operating System. In ICRA Workshop on
Open Source Software. (Cited on page 125.)

[108] RAJARATNAM, D., LEVESQUE, H. J., PAGNUCCO, M., AND THIELSCHER, M. 2014. Forget-
ting in action. International Conference on Principles of Knowledge Representation and Reasoning
(KR). (Cited on page 51.)

[109] REIP, M. 2016. Dependable belief management for high-level robot programs. Ph.D. the-
sis, Institute for Software Technology, Graz University of Technology, Graz Austria. (Cited on
pages 20, 31, 63, 124, and 125.)

[110] REIP, M., STEINBAUER, G., AND FERREIN, A. 2012a. Improving belief management for
high-level robot programs by using diagnosis templates. In International Workshop on Principles
of Diagnosis (DX), Great Malvern, UK. (Cited on page 31.)

[111] REIP, M., STEINBAUER, G., AND FERREIN, A. 2012b. Improving belief management for
high-level robot programs by using diagnosis templates. In Proceedings of the International Work-
shop on Principles of Diagnosis (DX-12). (Cited on page 140.)

[112] REITER, R. 1980. A logic for default reasoning. Artificial intelligence 13, 1, 81–132. (Cited
on pages 48 and 49.)

[113] REITER, R. 1987. A theory of diagnosis from first principles. Artificial Intelligence 32, 1
(Apr.), 57–95. (Cited on pages 6, 17, 40, 44, and 51.)

[114] REITER, R. 1991a. Artificial intelligence and mathematical theory of computation. Academic
Press Professional, Inc., San Diego, CA, USA, Chapter The frame problem in situation the calculus:
a simple solution (sometimes) and a completeness result for goal regression, 359–380. (Cited on
pages 9, 10, and 13.)

150

Bibliography

[115] REITER, R. 1991b. The frame problem in the situation calculus: A simple solution (sometimes)
and a completeness result for goal regression. Artificial intelligence and mathematical theory of
computation: papers in honor of John McCarthy 27, 359–380. (Cited on page 52.)

[116] REITER, R. 2001. Knowledge in Action. Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press, Cambridge, Massachusetts. (Cited on pages 11, 13, 15, 16, 18,
and 43.)

[117] ROOS, N. AND WITTEVEEN, C. 2005. Diagnosis of plans and agents. In Multi-Agent Systems
and Applications IV. Springer, 357–366. (Cited on pages 41, 51, and 52.)

[118] SARDINA, S. 2005. Deliberation in agent programming languages. Ph.D. thesis, University of
Toronto. (Cited on pages 21, 24, and 52.)

[119] SCHERL, R. B. AND LEVESQUE, H. J. 1993. The frame problem and knowledge-producing
actions. In In Proceedings of the Eleventh National Conference on Artificial Intelligence. AAAI
Press/The MIT Press, 689–695. (Cited on pages 15 and 31.)

[120] SCHERL, R. B. AND LEVESQUE, H. J. 2003. Knowledge, action, and the frame problem.
Artificial Intelligence 144, 1–2 (Mar.), 1–39. (Cited on pages xiii, 15, and 16.)

[121] SCHIFFEL, S. AND THIELSCHER, M. 2005. Interpreting golog programs in flux. In 7th
International Symposium On Logical Formalizations of Commonsense Reasoning, The. (Cited
on page 29.)

[122] SCHUBERT, L. K. 1990. Monotonic solution of the frame problem in the situation calculus:
An efficient method for worlds with fully specified actions. In Knowledge Representation and
Defeasible Reasoning, H. E. Kyburg, R. P. Loui, and G. N. Carlson, Eds. Vol. Volume 5. Kluwer
Academic Publishers, Dordrecht / Boston / London, 23–67. (Cited on page 10.)

[123] SCHWERING, C. 2016. Conditional beliefs in action. Ph.D. thesis, Ph. D. dissertation, RWTH
Aachen University. (Cited on page 34.)

[124] SCHWERING, C. AND LAKEMEYER, G. 2014. A semantic account of iterated belief revision
in the situation calculus. In Proceedings of the Twenty-first European Conference on Artificial
Intelligence (ECAI). 801–806. (Cited on pages 33 and 34.)

[125] SCHWERING, C. AND LAKEMEYER, G. 2015. Projection in the epistemic situation calcu-
lus with belief conditionals. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI). 1583–1589. (Cited on page 34.)

[126] SCHWERING, C., LAKEMEYER, G., AND PAGNUCCO, M. 2015. Belief revision and progres-
sion of knowledge bases in the epistemic situation calculus. In Proceedings of the 24th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). (Cited on page 34.)

[127] SHAPIRO, S. 2006. Belief change with noisy sensing and introspection. In Belief Change in Ra-
tional Agents: Perspectives from Artificial Intelligence, Philosophy, and Economics, J. Delgrande,
J. Lang, H. Rott, and J.-M. Tallon, Eds. Number 05321 in Dagstuhl Seminar Proceedings. Interna-
tionales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany,
Dagstuhl, Germany. (Cited on page 32.)

[128] SHAPIRO, S. AND PAGNUCCO, M. 2004. Iterated belief change and exogenous actions in
the situation calculus. In Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI). Vol. 16. 878. (Cited on page 32.)

151

Bibliography

[129] SHAPIRO, S., PAGNUCCO, M., LESPÉRANCE, Y., AND LEVESQUE, H. J. 2000. Iterated
belief change in the situation calculus. In International Conference on Principles of Knowledge
Representation and Reasoning (KR). 527–538. (Cited on pages 31, 32, 33, and 34.)

[130] SOUTCHANSKI, M. 2001. An on-line decision-theoretic golog interpreter. In International
Joint Conference on Artificial Intelligence (IJCAI). 19–26. (Cited on page 36.)

[131] STEINBAUER, G., LOIGGE, S., AND MÜHLBACHER, C. 2016. Supervision of hardware,
software and behavior of autonomous industrial transport robots. In IEEE International Conference
on Software Quality, Reliability and Security Companion (QRS-C), 2016. IEEE, 298–300. (Cited
on page 2.)

[132] STEINBAUER, G. AND MÜHLBACHER, C. 2014. Using common sense invariants in belief
management for autonomous agents. In 2014 AAAI Spring Symposium Series. Association for
the Advancement of Artificial Intelligence (www.aaai.org), 63–70. (Cited on pages 6, 47, 54,
and 119.)

[133] STEINBAUER, G. AND MÜHLBACHER, C. 2016. Hands off - a holistic model-based approach
for long-term autonomy. In ICRA 2016 Workshop: AI for Long-term Autonomy. [online; accessed
13.9.2017]. (Cited on page 2.)

[134] STEINBAUER, G. AND WOTAWA, F. 2010. On the way to automated belief repair for au-
tonomous robots. In 21st International Workshop on Principles of Diagnosis (DX-10). (Cited on
pages 30 and 31.)

[135] TECHNICAL COMMITTEE ISO. 2011. ISO 26262 Compliance Achieving Functional Safety
for Automotive E/E Systems. [online; accessed 13.9.2017]. (Cited on page 1.)

[136] TENORTH, M. AND BEETZ, M. 2009. KnowRob - Knowledge Processing for Autonomous
Personal Robots. In IEEE International Conference on Intelligent Robots and Systems. (Cited on
page 120.)

[137] TENORTH, M. AND BEETZ, M. 2013. Knowrob: A knowledge processing infrastructure for
cognition-enabled robots. The International Journal of Robotics Research 32, 5, 566–590. (Cited
on page 93.)

[138] THIELSCHER, M. 1998a. Introduction to the fluent calculus. (Cited on pages 29 and 30.)

[139] THIELSCHER, M. 1998b. Reasoning about actions: Steady versus stabilizing state constraints.
Artificial Intelligence 104, 1, 339–355. (Cited on page 57.)

[140] THIELSCHER, M. 1999. From situation calculus to fluent calculus: State update axioms as
a solution to the inferential frame problem. Artificial intelligence 111, 1, 277–299. (Cited on
pages 29 and 55.)

[141] THIELSCHER, M. 2000. Representing the knowledge of a robot. In International Conference
on Principles of Knowledge Representation and Reasoning (KR). 109–120. (Cited on page 30.)

[142] THIELSCHER, M. 2001. The qualification problem: A solution to the problem of anomalous
models. Artificial Intelligence 131, 1, 1–37. (Cited on pages 29 and 30.)

[143] THIELSCHER, M. 2005. Flux: A logic programming method for reasoning agents. Theory and
Practice of Logic Programming 5, 4-5, 533–565. (Cited on pages 29 and 30.)

152

Bibliography

[144] THRUN, S., BENNEWITZ, M., BURGARD, W., CREMERS, A. B., DELLAERT, F., FOX, D.,
HAHNEL, D., ROSENBERG, C., ROY, N., SCHULTE, J., ET AL. 1999. Minerva: A second-
generation museum tour-guide robot. In IEEE International Conference on Robotics and Automa-
tion (ICRA). Vol. 3. IEEE. (Cited on page 1.)

[145] TREBI-OLLENNU, A. 2006. Special Issue on Robots on the Red Planet. IEEE Robotics &
Automation Magazine 13, 2. (Cited on page 1.)

[146] URMSON, C., BAKER, C., DOLAN, J., RYBSKI, P., SALESKY, B., WHITTAKER, W., FER-
GUSON, D., AND DARMS, M. 2009. Autonomous driving in traffic: Boss and the urban challenge.
AI Magazine 30, 2, 17. (Cited on page 1.)

[147] VASSOS, S. 2009. A reasoning module for long-lived cognitive agents. Ph.D. thesis, University
of Toronto, Toronto, Canada. (Cited on pages 15, 68, and 71.)

[148] VASSOS, S., LAKEMEYER, G., AND LEVESQUE, H. J. 2008. First-order strong progression
for local-effect basic action theories. In Eleventh International Conference on Principles of Knowl-
edge Representation and Reasoning. 662–672. (Cited on page 15.)

[149] VASSOS, S. AND LEVESQUE, H. J. 2013. How to progress a database iii. Artificial Intelli-
gence 195, 203–221. (Cited on page 14.)

[150] VASSOS, S. AND PATRIZI, F. 2013. A classification of first-order progressable action theories
in situation calculus. In Twenty-Third International Joint Conference on Artificial Intelligence
(IJCAI). (Cited on page 15.)

[151] WAIBEL, M., BEETZ, M., CIVERA, J., D’ANDREA, R., ELFRING, J., GALVEZ-LOPEZ, D.,
HAUSSERMANN, K., JANSSEN, R., MONTIEL, J., PERZYLO, A., SCHIESSLE, B., TENORTH,
M., ZWEIGLE, O., AND VAN DE MOLENGRAFT, R. 2011. RoboEarth — A World Wide Web for
Robots. Robotics Automation Magazine, IEEE 18, 2, 69–82. (Cited on page 120.)

[152] WALDINGER, R. 1981. Achieving several goals simultaneously. Readings in artificial intelli-
gence, 250–271. (Cited on page 13.)

[153] WEIDENBACH, C., BRAHM, U., HILLENBRAND, T., KEEN, E., THEOBALD, C., AND TOPIĆ,
D. 2002. Spass version 2.0. In International Conference on Automated Deduction. Springer, 275–
279. (Cited on page 116.)

[154] WITTEVEEN, C., ROOS, N., VAN DER KROGT, R., AND DE WEERDT, M. 2005. Diagnosis
of single and multi-agent plans. In Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems. ACM, 805–812. (Cited on page 52.)

[155] WURMAN, P. R., D’ANDREA, R., AND MOUNTZ, M. 2007. Coordinating hundreds of co-
operative, autonomous vehicles in warehouses. In Proceedings of the 19th national conference on
Innovative applications of artificial intelligence - Volume 2. IAAI’07. AAAI Press, 1752–1759.
(Cited on pages 1 and 7.)

153

	List of Figures
	List of Tables
	1 Introduction
	1.1 Background and Motivation
	1.2 Research Objectives
	1.2.1 Reduce the burden of modeling of the belief management
	1.2.2 Increase the efficiency of the belief management
	1.2.3 Integration of the belief management in the high-level control of the robot
	1.2.4 A systematic evaluation of the belief management

	1.3 Contributions
	1.3.1 Belief management without models of action faults
	1.3.2 Using common sense from external sources
	1.3.3 Integration of belief management into high-level program execution
	1.3.4 Active gathering of knowledge
	1.3.5 Deriving programs that react
	1.3.6 Evaluating the benefit of belief management

	1.4 Running example
	1.5 Outline

	2 Preliminaries
	2.1 Situation Calculus
	2.1.1 Basic action theory
	2.1.2 Regression
	2.1.3 Progression
	2.1.4 Sensing
	2.1.5 Knowledge

	2.2 History-Based Diagnosis
	2.3 IndiGolog

	3 Related Research
	3.1 Detecting faulty components
	3.2 Detect whether the goal can be reached
	3.3 Fault handling in the fluent calculus
	3.4 Fault handling through belief management
	3.5 Fault handling in the situation calculus
	3.6 Logics for actions and belief
	3.7 Uncertainty about fluents instead of possible worlds
	3.8 Handling faults in the high-level control
	3.9 Monitoring the execution of actions

	4 Consistency History Based Diagnosis
	4.1 Preliminaries
	4.2 Consistency History Based Diagnosis
	4.3 Calculation of Diagnoses using Conflicts
	4.4 Using Default Logic to Model the Belief
	4.5 Relation to History Based Diagnosis
	4.6 Related Research
	4.7 Conclusion and Future work

	5 Reusing Common Sense Invariants
	5.1 Some Theoretical Results on History Based Diagnosis
	5.2 Common Sense knowledge from another Sources
	5.3 Implementation using Cyc
	5.4 Related Research
	5.5 Conclusion and Future work

	6 Belief-Aware execution of High Level Programs
	6.1 Definition of Belief for an agent
	6.2 Efficient Querying the Belief
	6.2.1 Progression for fault based history based diagnosis
	6.2.2 Progression for consistency based history based diagnosis

	6.3 Integration into IndiGolog execution
	6.4 Formal Relation of Proposed and Original IndiGolog execution
	6.5 Conclusion and Future Work

	7 Active gathering of Knowledge
	7.1 Definition of the Active Diagnosis Problem for Robots with Belief
	7.2 Selecting the Optimal Sensing Action
	7.3 Using Grounded Sensing Actions to Find the Optimal Action
	7.4 Using the Alternative Worlds to Find the Optimal Action
	7.5 Conditions for Active Diagnosis to Yield One Remaining Alternative
	7.6 Conclusion and Future work

	8 Creating Reactive Programs
	8.1 Generation of Reactive Programs
	8.2 Generation of Supervision Sensing Actions
	8.3 Related Research
	8.4 Conclusion and Future Work

	9 Practical Realization
	9.1 Software Architecture
	9.2 Theorem Proving
	9.3 Belief of a Robot
	9.4 high-level Execution

	10 Empirical Evaluation
	10.1 Comparison of a Robot with and without Belief Management
	10.1.1 Task and Environment
	10.1.2 The compared approaches
	10.1.3 Experiments

	10.2 The difference between Belief Management and Advanced Belief Management
	10.2.1 Experiments

	10.3 Comparing Belief Management with and without Progression
	10.3.1 Experiments

	10.4 The difference between Consistency and Classical History Based Diagnosis
	10.4.1 Experiments

	10.5 Comparing Linear with Reactive Programs
	10.5.1 Experiments

	10.6 Impact of common sense
	10.6.1 Impact of the domain size
	10.6.2 Impact of timeout

	10.7 Conclusion and Future Work

	11 Conclusion
	11.1 Summary
	11.2 Further research

	Bibliography

