
Gernot Erich Riegler

Deep Learning for 2.5D and 3D

DOCTORAL THESIS

to achieve the university degree of

Doktor der technischen Wissenschaften

submitted to

Graz University of Technology

Supervisor

Prof. Dr. Horst Bischof

Institute for Computer Graphics and Vision

Graz Universtiy of Technology

Dr. Andreas Geiger

Autonomous Vision Group

Max Planck Institute for Intelligent Systems Tübingen

Graz, Austria, Sep. 2017

To Christina, Severin and Adrian

If people never did silly things
nothing intelligent would ever get done.

Ludwig Wittgenstein (1889 - 1951)

v

Abstract

Deep learning based method are revolutionizing many fields in computer science, especially

in computer vision, speech recognition and natural language processing. These methods

have in common that they learn a hierarchy of non-linear feature extractors together with

a classifier, or regressor in an end-to-end fashion. Although the underlying concepts, es-

pecially artificial neural networks and the backpropagation algorithm, are several decades

old, they came to new importance mainly due to today’s sheer amount of available data

and parallel compute power, i.e. GPGPUs. The applications in computer vision mainly

focus on recognition tasks on natural images which are 2D projections of the world. In

contrast, in this thesis we propose methods that investigate deep learning specifically for

2.5D and 3D data.

2.5D data can be understood as a 2D image that has a depth value associated with

each pixel. There exists now a wide range of sensor technologies that enables the fast and

cheap recording of such depth maps. However, most of those recordings are influenced

by noise and have a low spatial resolution. We propose a novel technique that combines

deep convolutional networks with a variational model to tackle this depth super-resolution

problem, i.e. a method that increases the spatial resolution and simultaneously reduces

the influence of the noise. As it is difficult to obtain high-resolution, high-quality depth

maps as training data for this task, we optimize our joint model in an end-to-end fashion

on a large corpus of synthetically generated data. In an extensive evaluation on three

benchmark datasets, we validate our method that significantly outperforms state-of-the-

art methods.

Deep learning on volumetric 3D data faces one crucial problem that is independent of

its application: The memory consumption increases cubically with respect to the input

resolution, whereas the memory of GPGPUs is limited. We propose in this thesis a drop-in

solution based on an efficient space partitioning data structure. Instead of a regular voxel

grid, we utilize an octree within the network to focus memory and computation on more

relevant regions of the input. With this new technique, we are able to increase the input

vii

viii

resolution by at least a factor of ×64 without losing the representational power of the

convolutional network. Further, we show a series of tasks where a detailed representation

of the 3D input is absolutely beneficial, i.e. the performance increases simply by increasing

the input resolution.

An alleged drawback of this method might be that the space partitioning has to be

known in advance. Hence, we also show in this thesis how we can learn the splitting

of the octree along with a volumetric 3D reconstruction to circumvent the problem. We

subsequently utilize this method for volumetric depth fusion and volumetric depth comple-

tion. For the former, our method outperforms established baselines, especially on difficult

settings where we have only a low number of input views, or severe input noise. For

the latter, i.e. predicting the whole 3D scene from a single depth input, we achieve new

state-of-the-art results.

Kurzfassung

Methoden, die auf Deep Learning (auf Deutsch etwa tiefgehendes Lernen) basieren,

revolutionieren viele Bereiche in der Informatik, vor allem im maschinellen Sehen, der

Spracherkennung und der Computerlinguistik. Die Gemeinsamkeit dieser Methoden

ist, dass sie eine Hierarchie von nicht-linearen Merkmalsextraktoren zusammen mit

einem Klassifikator oder Regressor lernen. Obwohl die zugrunde liegenden Konzepte,

allen voran künstliche neuronale Netze und der Backpropagation-Algorithmus,

mehrere Jahrzehnte alt sind, kamen sie vor allem aufgrund der heutigen Fülle an

verfügbaren Daten und der massiven parallelen Rechenleistung, i.e. GPGPUs, zur neuen

Bedeutung. Die Anwendungen im maschinellen Sehen konzentrieren sich vor allem auf

Erkennungsaufgaben in natürlichen Bildern, die eine 2D-Projektion der Welt sind. Im

Gegensatz dazu präsentieren wir in dieser Arbeit Methoden, die Deep Learning speziell

auf 2.5D und 3D Daten anwenden.

2.5D Daten können als 2D Bilder verstanden werden, die jedem Bildpunkt einen Tiefen-

wert zuordnen. Es gibt bereits jetzt eine breite Palette an Sensoren, die die schnelle und

kostengünstige Erfassung solcher Tiefenbilder ermöglichen. Allerdings sind die meisten

dieser Aufnahmen von Rauschen beeinflusst und haben eine geringe Bildauflösung. Wir

schlagen eine neuartige Methodik vor, die Deep Convolutional Networks (auf Deutsch etwa

tiefgehende Faltungsnetzwerke) mit einem Variationsmodell kombiniert, um das Prob-

lem der geringen Auflösung und des Rauschens zu verbessern. Da das Aufzeichnen von

hochauflösenden, hochqualitativen Tiefendaten ein Hindernis ist, optimieren wir unser

kombiniertes Modell auf einem großen Korpus von synthetisch erzeugten Daten. In einer

umfangreichen Evaluierung auf drei Standard-Datensätzen bestätigen wir die Genauigkeit

unserer Methode, welche den aktuellen Stand der Technik deutlich übertrifft.

Deep Learning auf volumetrischen 3D Daten hat ein entscheidendes Problem, welches

unabhängig von der Anwendung ist: Der Speicherverbrauch steigt kubisch in Bezug auf

die Auflösung des 3D Volumens an, während der Speicher von GPGPUs begrenzt ist. Wir

präsentieren in dieser Arbeit eine Lösung basierend auf einer Datenstruktur, welche das

ix

x

3D Volumen effizient unterteilt. Anstelle eines dichten Voxelgitters verwenden wir einen

Octree in der Netzwerkarchitektur um den Speicher und die Berechnungen auf spezielle

Teilbereiche des Volumens zu fokussieren. Mit dieser neuen Methodik sind wir in der Lage,

die Auflösung des Eingangsvolumens um mindestens einen Faktor von ×64 zu erhöhen,

ohne das die Genauigkeit des Faltungsnetzes abnimmt. Darüber hinaus zeigen wir in

einer Reihe von Anwendungen, dass eine detaillierte Darstellung der 3D Daten absolut

vorteilhaft ist, i.e. die Genauigkeit steigt einfach durch die Erhöhung der Auflösung des

Eingangsvolumens.

Ein vermeintlicher Nachteil dieser Technik ist, dass die Aufteilung des 3D Raums im

Voraus bekannt sein muss. Daher zeigen wir in dieser Arbeit auch wie die Octree Daten-

struktur zusammen mit einer volumetrischen 3D-Rekonstruktion gelernt werden kann.

Wir verwenden diese Technik anschließend für die volumetrische Fusionierung von Tiefen-

bildern, sowie für die komplette 3D Rekonstruktion einer Szene von einem einzigen Tiefen-

bild. Unsere Methode übertrifft für beide Anwendungen andere etablierte Verfahren. Vor

allem bei schwierigen Szenarien, wie einer geringen Anzahl von Tiefenbildern oder einem

hohen Anteil an Rauschen, zeichnet sich unsere Methodik aus.

Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present doctoral

thesis.

Date Signature

Acknowledgments

This thesis would not have been imaginable without the great help and backing of so many

people, who supported me throughout this whole process called Ph.D. studies.

First of all, I want to thank my supervisor Horst Bischof. Already back in my bachelor

and master studies, he aroused my interest in computer vision and machine learning in

his lectures that now culminated in this thesis. He gave me the freedom to pursue topics

that fitted my research interests. I am forever grateful for this experience. I also want to

thank Andreas Geiger for being my second supervisor, but also for the marvelous time I

spent in Tübingen. It was an amazing experience to visit the MPI and to have the fruitful

ongoing collaborations.

Great thanks are also due to the fascinating people of ICG. It was an honor to work, talk

and party with so many interesting people here; memories that shall never be forgotten.

Especially, I want to thank the people with whom I had the fortune to collaborate more

closely. First, Matthias Rüther, the leader of the Robot Vision group. He took me on board

on my first project in collaboration with Infineon Technologies Austria that started my

Ph.D. studies and led to my first publications. A token of thanks also to David Ferstl, who

was an invaluable support throughout my work here. We did not only share and discuss

a lot of fascinating scientific ideas but also developed a friendship that I do not want to

miss. I am also very grateful to have worked with René Ranftl and Samuel Schulter, who

taught me a great deal about scientific work in the fast-paced world of computer vision.

Thanks also to my other co-authors Ali Osman Ulusoy, Christian Reinbacher, Thomas

Pock, Markus Oberweger, Paul Wohlhart, Vincent Lepetit, Martin Urschler and Darko

Stern for the wonderful collaborations that led to publications.

My office mates throughout this journey deserve also a great round of applause: Chris-

tian Reinbacher, David Ferstl, Ludwig Mohr, and Fabian Schenk. You contributed a big

deal to making this adventure so funny and enjoyable.

Finally, I want to thank my family. My mum, dad, and grandfather were always eager

that I can enjoy a good education and supported me in my decisions. I thank you so

much! Last but not least, I want to thank my wife Christina and my sons, Severin and

Adrian. Your love makes life better every day!

xiii

Contents

Abstract vii

Kurzfassung ix

Affidavit xi

Acknowledgments xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Outline and Contributions . 5

2 Convex Optimization in Imaging and Deep Learning 7

2.1 Notation and Definitions . 8

2.2 Convex Optimization . 13

2.2.1 Convex Analysis . 13

2.2.2 Convex Optimization Algorithms . 20

2.2.3 Convex Optimization for Imaging . 24

2.3 Deep Learning . 30

2.3.1 Supervised Learning . 33

2.3.2 Feed-Forward Networks . 36

2.3.3 Network Optimization . 39

2.3.4 Backpropagation . 42

2.3.5 Convolutional Networks . 44

2.3.6 Losses and Regularization . 48

2.4 Summary . 51

xv

xvi CONTENTS

3 Deep Learning for 2.5D 53

3.1 Introduction . 53

3.2 Related Work . 56

3.2.1 Super-Resolution . 56

3.2.2 Depth Super-Resolution . 58

3.2.3 Joint Network Training and Energy Minimization 60

3.2.4 Datasets with Ground-Truth Depth 61

3.3 Deep Learning Meets Variational Methods 61

3.3.1 Implicit Differentiation . 63

3.3.2 Unrolling Optimization Scheme . 66

3.3.3 Training Data . 69

3.4 Evaluation . 70

3.4.1 Super-Resolution Network . 71

3.4.2 Training Loss . 76

3.4.3 Variational Model . 76

3.4.4 Variational Network Training . 79

3.4.5 Depth Super-Resolution . 79

3.4.6 Guided Depth Super-Resolution . 96

3.5 Summary & Discussion . 99

4 Deep Learning for 3D 103

4.1 Introduction . 103

4.2 Related Work . 106

4.2.1 Dense Models . 107

4.2.2 Sparse Models . 109

4.2.3 Space Partitioning Functions . 110

4.2.4 Volumetric Fusion . 110

4.2.5 Shape Completion . 111

4.3 Deep Learning for High-Resolution 3D . 113

4.3.1 OctNet . 113

4.3.2 Dynamic OctNet . 120

4.4 Evaluation . 122

4.4.1 3D Shape Classification . 123

4.4.2 3D Orientation Estimation . 127

4.4.3 3D Point Cloud Segmentation . 132

4.4.4 Depth Fusion and Completion . 136

4.5 Summary & Discussion . 155

5 Conclusion and Outlook 159

5.1 Conclusion . 159

5.1.1 Deep Learning for 2.5D . 159

CONTENTS xvii

5.1.2 Deep Learning for 3D . 161

5.2 Outlook . 162

A List of Publications 163

A.1 2017 . 163

A.2 2016 . 164

A.3 2015 . 166

A.4 2014 . 168

B Proofs 171

Bibliography 177

List of Figures

1.1 Depth super-resolution problem . 2

1.2 2.5D vs. 3D . 3

1.3 Volumetric depth fusion problem . 5

2.1 Unit norm balls for different p-norms . 10

2.2 Examples of convex and non-convex sets . 14

2.3 The epigraph of a function . 14

2.4 Example of a convex function . 15

2.5 The convex conjugtate and bi-conjugate of a function 17

2.6 Example of a sub-gradient . 17

2.7 Tikhonov denoising example . 26

2.8 ROF denoising example . 27

2.9 Huber denoising example . 29

2.10 TGV denoising example . 31

2.11 Influence of regularization terms on depth maps 32

2.12 Under- and over-fitting and bias-variance decomposition 36

2.13 Computational graph of a function with corresponding differential graph . . 43

2.14 Convolution and pooling operation . 45

3.1 Variational methods improve the network’s high-resolution estimate 55

3.2 Computation graph of the unrolled primal-dual optimization scheme 66

3.3 Non-local neighborhood for regularization term 68

3.4 Synthethic generated training data . 70

3.5 Pixel shuffle . 73

3.6 Network architectures . 74

3.7 Qualitative results for the Middlebury disparity map Cones, ×4 81

3.8 Qualitative results for the Middlebury disparity map Tsukuba, ×4 82

xix

xx LIST OF FIGURES

3.9 Qualitative results for the Middlebury disparity map Venus, ×4 83

3.10 Qualitative results for the Noisy Middlebury disparity map Art, ×4 87

3.11 Qualitative results for the Noisy Middlebury disparity map Books, ×4 . . . 88

3.12 Qualitative results for the Noisy Middlebury disparity map Moebius, ×4 . . 89

3.13 Qualitative results for the Noisy Middlebury disparity map Art, ×16 90

3.14 Qualitative results for the Noisy Middlebury disparity map Books, ×16 . . . 91

3.15 Qualitative results for the Noisy Middlebury disparity map Moebius, ×16 . 92

3.16 Qualitative results for the ToFMark image Books 93

3.17 Qualitative results for the ToFMark image Devil 94

3.18 Qualitative results for the ToFMark image Shark 95

3.19 Guided network architectures . 98

4.1 Sparse activations of a 3D convolutional network 105

4.2 2D pixel grid vs. 3D voxel grid . 107

4.3 Sparsity of 3D data . 108

4.4 Hybrid grid-octree data structure . 113

4.5 Shallow octree bit representation . 115

4.6 Data index computation example . 116

4.7 Octree convolution . 118

4.8 Efficient octree convolution implementation 119

4.9 Octree pooling . 119

4.10 Octree unpooling . 121

4.11 OctNet structure module . 121

4.12 Octree splitting . 122

4.13 OctNet ResNet for different input resolutions 124

4.14 Memory consumption of standard voxel grids compared to hybrid grid-octrees125

4.15 Memory consumption of a 3D convolutional network on voxel grids and

hybrid grid-octrees . 125

4.16 Runtime of a 3D convolutional network on voxel grids and hybrid grid-octrees126

4.17 Classification accuracy for ModelNet10 and ModelNet40 126

4.18 Confusion matrices of the ModelNet10 classification results 127

4.19 ModelNet ambiguities . 128

4.20 Quantitative orientation estimation results on ModelNet10 129

4.21 Qualitative orientation estimation results on ModelNet10 130

4.22 Quantitative orientation estiamtion results on the head pose dataset 132

4.23 Qualitative orientation estimation results on the head pose dataset 133

4.24 U-shaped semantic segmentation network 134

4.25 Quantitative results on the VarCity dataset 135

4.26 Qualitative results on the VarCity dataset 137

4.27 OctNetFusion coarse-to-fine network architecture 138

4.28 Encoder-Decoder module . 138

LIST OF FIGURES xxi

4.29 Volumetric depth fusion set-up . 141

4.30 Qualitative volumetric depth fusion results for different output resolutions . 149

4.31 Qualitative volumetric depth fusion results wrt. number of input views . . . 150

4.32 Qualitative volumetric depth fusion results wrt. input noise 151

4.33 Qualitative volumetric depth completion results on the Kinect object scans 153

4.34 Qualitative volumetric depth completion results on the tabletop dataset . . 156

List of Tables

3.1 Evaluation of the network architectures . 75

3.2 Evaluation of the training losses . 77

3.3 Evaluation of the variational models . 78

3.5 Evaluation of the variational network training 80

3.6 Evaluation of unguided depth super-resolution on the noise-free Middlebury

dataset . 84

3.7 Evaluation of unguided depth super-resolution on the noisy Middlebury

dataset . 86

3.8 Evaluation of unguided depth super-resolution on ToFMark dataset 96

3.9 Evaluation of the guidance networks . 97

3.10 Evaluation of guided depth super-resolution on the noisy Middlebury dataset100

3.11 Evaluation of guided depth super-resolution on ToFMark dataset 101

4.1 Shallow octree trade-off . 114

4.2 Quantitative volumetric depth fusion results of different input encodings . . 143

4.4 Quantitative volumetric depth fusion results wrt. number of input views . . 144

4.6 Quantitative volumetric depth fusion results wrt. input noise 145

4.8 Quantitative volumetric depth fusion results wrt.. seen vs. unseen categories 146

4.10 Evaluation on Kinect object scans . 152

4.12 Qunatitative volumetric depth completion results on the tabletop dataset . 154

xxiii

CHAPTER 1

Introduction

1.1 Motivation

We as humans live in a world with three spatial dimensions (3D). Equipped with a pair

of eyes we, like most mammals, are able to perceive stereoscopic depth (2.5D), i.e. given

the images from two slightly displaced positions, we compute the offset of objects in

the two images which is inversely proportional to its depth. However, we know from

experiments [241] that this metric perception of depth is actually rather poor in humans.

Still, we are able to perceive 3D objects and their relations accurately and interact with

them. That is the case because we heavily rely on other clues that we derive from higher

level knowledge and reasoning about objects [82] and motion [193, 194].

Most of this knowledge is learned and motivated already the seminal work by

Roberts [191] in 1963. In his thesis Roberts developed a system that infers the 3D

geometry of a scene from a single image of it. His approach was by today’s standards

pretty simple: He used a dataset of known objects, computed the edges of the images

and fitted the 3D objects to the edges. However, this technique is especially interesting,

because it is able to recover the geometry of the non-visible surface, i.e. occluded and

back-facing segments.

Despite its visionary work even decades afterwards we have still not solved the problem

such that it works on arbitrary images and scenes, but we are getting closer. There

is in particular one main ingredient that recently fueled a lot of major progress in the

field of computer vision [132], but also in speech recognition [11, 105], natural language

processing [227] and many others: deep learning. If we talk about deep learning we usually

refer to artificial neural networks whose foundations already date back several decades [74,

104, 156, 196, 199]. What changed is the availability of massive parallel computational

1

2 Chapter 1. Introduction

(a) Input, 174× 139 (b) Ground-Truth, 1392×1112 (c) Estimate, 1392× 1112

Figure 1.1: The depth super-resolution problem. Given a noisy, low-resolution depth map as
input (a), the goal is to recover a plausible high-resolution estimate (b)-(c). The problem is ill-
posed because infinitely many high-resolution depth maps can map the noisy, low-resolution input.

power provided by modern general-purpose graphics processing units (GPGPUs) and large

annotated datasets like ImageNet [51], which combined with recent advances in network

training [117, 162] enabled the training of ever deeper and hence more expressive networks.

Nowadays deep learning based methods are state-of-the-art in all image based recognition

tasks, like image classification [102, 132, 220, 228], object detection [85, 86, 147, 178, 179,

180], and semantic segmentation [6, 34, 35, 81, 148, 267].

In this thesis, we focus on domains that are not yet fully exploited by the success of deep

learning, i.e. 2.5D and 3D. 2.5D data generally describes 2D projections like images, but

instead of color values per pixel, each location encodes the depth to the first surface along

the viewing ray. Formally, a depth map can be described as a function d(u, v) : R2 → R≥0

that maps each pixel location u, v of the image domain Ω to a depth value. This value

is the distance to the first surface along the viewing direction. By applying the inverse

camera matrix K to compute the viewing rays and multiplying those by the distance

(x, y, z)T = d(u, v)K−1(u, v, 1)T we can observe that a depth map is equivalent to a 3D

point cloud of an object, or scene viewed from a single viewpoint [100]. An important

difference to a full 3D representation is that information about the structure behind this

first surface is lost in the projection. In contrast, 3D commonly refers to a mathematical

representation of the whole 3D surface of an object, or scene. There exist many equivalent

mathematical representations for this. One used in this thesis is the signed distance

function s(x, y, z) : R3 → R that assigns each 3D point (x, y, z) the distance to the closest

surface boundary. The distance is negative, if the point lies inside an object, and positive

otherwise. In addition, the surface is the zero level-set {(x, y, z) : s(x, y, z) = 0} of the

signed distance function. See Figure 1.2 for a visualization.

Naturally, 2.5D and 3D are closely related and with the advent of low-cost depth sensors

like Microsoft Kinect V2, Intel DepthSense, Creative Senz3D, or PMD Flexx a new range

of exciting applications was enabled: For example in human pose estimation [87, 243],

head pose estimation [64, 183, 208, 229], hand pose estimation [167, 168, 182, 230, 244],

object detection [95], or real-time 3D reconstruction [165]. Those sensors can be produced

1.1. Motivation 3

(a) 3D object

(b) 2.5D depth maps

(c) Points from depth map projected onto 3D object

Figure 1.2: 2.5D vs. 3D. The 3D object in (a) is defined by a mathematical representation of
its 3D surface. In contrast, 2.5D depth maps as in (b) contain only a subset of points that lie on
this 3D surface, see (c). A depth map only encodes the first surface it hits along the viewing ray
and the remaining information is lost due to the projection to 2D, i.e. everything behind the first
surface.1

in a small package size and have a small energy footprint which makes them also applicable

in mobile applications. However, the depth maps are also affected by degenerations due

to noise, quantization and missing values and moreover, they typically have a low lateral

resolution. The estimation of the high-resolution depth map that corresponds to the noisy

low-resolution input is an ill-posed problem as there exists no unique solution. This makes

the depth super-resolution problem a challenging task as depicted in Figure 1.1

The problem is related to the single image super-resolution problem on natural images,

with the difference that depth maps do not exhibit any texture, lighting, or shading and

mostly contain piece-wise affine surface with sharp depth discontinuities. This knowledge

13D model taken from https://www.turbosquid.com/FullPreview/Index.cfm/ID/878305, last ac-
cessed on October 26, 2017.

https://www.turbosquid.com/FullPreview/Index.cfm/ID/878305

4 Chapter 1. Introduction

can be incorporated into priors of global energy minimization models to tackle this prob-

lem [52, 67]. But we have also observed that on natural images that deep learning based

methods [55, 126, 152, 215] outperform other methods by a large margin. Hence, moti-

vated by the success of those methods on single image super-resolution for color images

we propose in this thesis a method to combine best of both worlds. Unlike as for color

images, we can not collect the necessary training data from the web in large quantities.

However, we demonstrate that we can obtain state-of-the-art results by training a deep

convolutional network on carefully generated synthetic depth maps. Interestingly, we ob-

serve that a post-processing step with a variational model further improves the accuracy

of the high-resolution estimate. Therefore, we additionally propose the tight integration

of such a variational model on top of the deep network to train both models end-to-end

which further pushes the accuracy of our model.

As long as we process 2.5D data we can apply deep networks on the common 2D pixel

grid. The situation changes with 3D data, where an additional dimension is needed to

represent the input and depending on the application for the output, too. The typical

approach is to elevate the input representation from a 2D pixel grid to a 3D voxel grid [41,

154, 176, 259]. While 3D data can be represented in various ways, the 3D voxel grid is the

natural choice for convolutional networks: First, we can simply define all the useful network

operations on a 2D pixel grid in a similar way on a 3D voxel grid, for example, convolution,

pooling, and normalization. Second, this further enables the reuse of established 2D

network architectures for the corresponding problems in 3D. Finally, we can not only

represent the object surface with signed distance functions in the 3D voxel grid, but we

can also incorporate supplementary information in additional feature channels of the grid,

e.g. surface normals, or color. One major drawback of this approach, however, is the cubic

increase of memory with respect to the input resolution. This limits the model complexity

that fits on a single GPGPU.

Based on the assumption that 3D data is usually sparse, we propose in this thesis the

utilization of an efficient space-partitioning data structure within the network to tackle

this memory problem. More specifically, we use a hybrid grid-octree representation where

we focus memory and computation on interesting segments of the 3D volume, i.e. near

the surface, and summarize the other parts of the volume in larger octree cells. We define

the most common network operations on this special data structure and therefore, our

method can be used as a drop-in replacement for 3D networks on regular voxel grids,

allowing the training on higher-resolution inputs. In fact, we show that our method can

handle an input resolution that is at least larger by a factor of ×64 without changing the

architecture, or training setting.

A limitation of this method is that the space-partitioning has to be known in advance.

This is no problem for tasks like shape classification and orientation estimation, or semantic

segmentation, where the output is either a 1D vector or has the same structure as the input,

respectively. For 3D reconstruction tasks, e.g. volumetric depth fusion, or volumetric depth

fusion, as visualized in Figure 1.3 the input structure is different to the output structure

1.2. Outline and Contributions 5

(a) 3D Volumetric Depth Fusion Set-Up

(b) 2.5D depth maps

Figure 1.3: Volumetric depth fusion problem. Each camera in (a) records a depth map of the
3D object. Given those depth maps as depicted in (b), the goal of volumetric depth fusion is to
recover the 3D object.2

and not known a priori. Therefore, we further extend our method such that it can output

a reconstruction and jointly computes the supporting octree structure of the output. We

enable this by introducing a structure split module that derives an octree split mask given

an intermediate reconstruction. Embedded in a coarse-to-fine architecture we demonstrate

superior 3D volumetric depth fusion and volumetric depth fusion results.

1.2 Outline and Contributions

The thesis is organized as follows: In Chapter 2 we first introduce the mathematical

notation and definitions used throughout this work. Additionally, we overview the ba-

sic concepts of convex analysis, e.g. convex sets, convex functions and how they can be

23D models are taken from https://www.turbosquid.com/FullPreview/Index.cfm/ID/933905 and
https://www.turbosquid.com/FullPreview/Index.cfm/ID/1138743, last accessed on October 26, 2017.

https://www.turbosquid.com/FullPreview/Index.cfm/ID/933905
https://www.turbosquid.com/FullPreview/Index.cfm/ID/1138743

6 Chapter 1. Introduction

efficiently optimized. These concepts are then applied to solve variational models for

imaging problems, a core building block of our depth super-resolution method that we

will encounter later. Finally, the chapter introduces the basic concepts of supervised ma-

chine learning and then goes into detail on deep learning and convolutional networks, the

main ingredient of this thesis.

Chapter 3 is dedicated to deep learning on 2.5D data. More specifically, we propose

a novel method to tackle the depth super-resolution problem by combining a deep con-

volutional network and a variational method in an end-to-end framework. The network

gets a single low-resolution depth map as input along with an optional high-resolution

guidance image and outputs a highly accurate high-resolution estimate. We demonstrate

that training the joint model on a large corpus of synthetic data we are able to outperform

current state-of-the-art methods by a large margin.

In Chapter 4 we address deep learning on 3D data. The major problem with 3D

data in the context of deep learning is the quadratic increase of memory that quickly

exceeds the available GPGPU memory. We propose a technique based on an efficient

space partitioning data structure to focus memory and computation on interesting parts

of the input volume, i.e. the surface of a 3D shape, and share them on other parts of

the volume. Our method drastically decreases the memory footprint and enables faster

learning, but is at the same time as expressive as convolutional networks operating on an

equivalent regular voxel grid. Further, we show how this method can then be used for

volumetric depth fusion and volumetric depth completion in an end-to-end fashion. The

clue is that we can learn the space partitioning for this task along with the reconstruction.

The thesis is based on the research that was presented in the publications [181, 184,

185, 187, 188]. A full list of (co-)authored publications along with the abstracts is listed

in Appendix A.

CHAPTER 2

Convex Optimization in Imaging and Deep Learning

Contents

2.1 Notation and Definitions . 8

2.2 Convex Optimization . 13

2.2.1 Convex Analysis . 13

2.2.2 Convex Optimization Algorithms . 20

2.2.3 Convex Optimization for Imaging . 24

2.3 Deep Learning . 30

2.3.1 Supervised Learning . 33

2.3.2 Feed-Forward Networks . 36

2.3.3 Network Optimization . 39

2.3.4 Backpropagation . 42

2.3.5 Convolutional Networks . 44

2.3.6 Losses and Regularization . 48

2.4 Summary . 51

In this thesis, we present novel deep learning methods for 2.5 and 3D data. This

chapter first introduces the basic notation and definitions used throughout the thesis.

Then, we give an overview on the broad topic of convex optimization in computer vision.

Finally, we introduce the basics of supervised learning and more specifically deep learning

with convolutional networks. Those methods and algorithms build the foundation of our

work.

7

8 Chapter 2. Convex Optimization in Imaging and Deep Learning

2.1 Notation and Definitions

This section introduces the notation and definitions which are used throughout this thesis.

We mostly stick to a notation that is common in modern scientific literature. Scalar values

are written in lower-case Latin or Greek letters, e.g. x, λ. For vectors, we use lower-case

and bold letters x = (x1, . . . , xN)T . Further, if not otherwise stated we assume that a

vector x is an element of a real vector space RN , i.e. x ∈ RN . To denote matrices we use

an upper-case bold letter like A. Again, we assume that the entries aij of the matrix are

real numbers, hence A ∈ RM×N with i ∈ {1, . . .M} and j ∈ {1, . . . N} denoting the row

and column indices, respectively.

First, we need to define a space on which we can further define operations.

Definition 2.1 (Vector Space). Let X be a set. We call X a vector space iff the following

8 conditions for x,y, z ∈ X and λ, µ ∈ R hold.

x + y = y + x (commutativity) (2.1)

(x + y) + z = x + (y + z) (associativity) (2.2)

0 + x = x (additive identity) (2.3)

x + (−x) = 0 (additive inverse) (2.4)

(λ+ µ)x = λx + µx (scalar distributivity) (2.5)

λ(x + y) = λy + λx (vector distributivity) (2.6)

1x = x (scalar multiplication identity) (2.7)

Simply put, a vector space is a mathematical structure in which linear combinations of

elements make sense.

The vector space lacks the notation of a scalar quantity that can be geometrically

interpreted as an angle between two vectors. Therefore, an inner product space is a vector

space with an extra structure, the inner product, such that the notion of angles to make

sense.

Definition 2.2 (Inner Product). Let X be a vector space, and x,y, z ∈ X. An inner

product is any function 〈·, ·〉 : X ×X → R that satisfies the following conditions.

〈x,y〉 = 〈y,x〉 (symmetry) (2.8)

〈λx + y, z〉 = λ 〈x, z〉+ 〈y, z〉 (linearity in the first argument) (2.9)

〈x,x〉 ≥ 0 with 〈x,x〉 = 0⇔ x = 0 (positive-definiteness) (2.10)

There are many contexts where we want to measure how close two mathematical

objects are. What is a reasonable distance? It should be always greater or equal than 0

and the distance should from a point x to another point y be the same as from y to x.

2.1. Notation and Definitions 9

Lastly, we want to have that the direct distance between two points is less or equal than

the distance via an intermediate point. This yields the following definition.

Definition 2.3 (Metric). Let X be a vector space and x,y, z ∈ X. A function d :

X ×X → R is a metric iff

d(x,y) ≥ 0 with d(x,y) = 0⇔ x = y (non-negativity) (2.11)

d(x,y) = d(y,x) (symmetry) (2.12)

d(x, z) ≤ d(x,y) + d(y, z) (triangle inequality) (2.13)

If a set X is combined with a metric d it is called a metric space (X, d).

If a metric is translation invariant, i.e. d(x + u,y + u) = d(x,y), then by setting

x = −u it follows that d(x,y) = d(0,y− x). This implies if we know the distance from 0,

we know all distances. If we further assume that d(0, λx) = |λ| d(0,x), then we can write

‖x‖ = d(0,x) and call ‖·‖ a norm.

Definition 2.4 (Norm). Let X be a vector space and x,y ∈ X. We call ‖·‖ a norm iff

‖x‖ ≥ 0 with ‖x‖ = 0⇔ x = 0 (non-negativity) (2.14)

‖λx‖ = |λ| ‖x‖ (absolute scalability) (2.15)

‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality) (2.16)

A vector space equipped with a norm defined on it is called a normed space.

Any function that fulfills the properties above is called a norm. A fundamental class

of norms is the `p-norms defined as

`p(x) =

(
N∑
i=1

|xi|p
) 1

p

with p ≥ 1 . (2.17)

The `p-norm includes the Euclidean norm (`2-norm) and Manhatten norm (`1-norm) as

special cases, whereas the Euclidean norm corresponds to our natural intuition about

distances. An additional special case is the maximum norm

`∞(x) = lim
p→∞

`p(x) = max {|x1| , · · · , |xN |} , (2.18)

which is obtained for the limit p → ∞. Further, the p-norms satisfy the following rela-

tionship

`p2(x) ≤ `p1(x) for p1 < p2 , (2.19)

which means that for example the values of the `2 norm are bounded by the `1 norm. In

Figure 2.1 we show the unit norm balls of different p-norms in R2.

10 Chapter 2. Convex Optimization in Imaging and Deep Learning

x1

x2

(a) `1(x) = 1

x1

x2

(b) `2(x) = 1

x1

x2

(c) `4(x) = 1

x1

x2

(d) `∞(x) = 1

x1

x2

(e) `0.5(x) = 1

Figure 2.1: The unit norm ball for different p-norms in R2. Note that `0.5(x) depicted in (e)
defines no valid norm.

Another important norm from the field of robust statistics is the so-called Huber

norm [115]. It is defined as the combination of an `1 and a squared `2 norm and denoted

as ‖·‖ε

‖x‖ε =
N∑
i=1

{
x2i
2ε if |xi| ≤ ε
|xi| − ε

2 else
. (2.20)

The parameter ε ∈ R≥0 controls the approximation accuracy to the `1-norm and the

smoothness of the norm. We observe that |x| − ε
2 ≤ ‖x‖ε ≤ |x|. Hence, we derive the

approximation accuracy limε←0 ‖x‖ε = ‖x‖1. To show the smoothness we can simply

bound the second derivative, i.e. the curvature, with d2

dx2
‖x‖ε ≤ 1

ε .

Later in this chapter, we will often encounter quantities which are given as vectors per

element, e.g. a vector per image pixel. For those quantities, we will use an inner and an

outer norm. The former is applied to each component vector and the latter to the resulting

vector. For example, let x ∈ RC×N with C being the vector length per component then

‖x‖p,q =

∥∥∥∥∥∥∥
‖x1‖p

...

‖xC‖p

∥∥∥∥∥∥∥
q

, (2.21)

where ‖·‖p is the inner norm, and ‖·‖q is the outer norm. If not otherwise stated, we will

always assume an `2 norm as the inner norm. Then, for the example above, the `1 norm

is given by

‖x‖2,1 =
N∑
i=1

√√√√ C∑
c=1

|xc,i|2 . (2.22)

A last important definition regarding norms is the dual norm which arises frequently

in convex analysis and optimization.

2.1. Notation and Definitions 11

Definition 2.5. Let ‖·‖ be a norm, then its dual norm ‖x‖∗ is defined as

‖x‖∗ = sup
‖z‖≤1

zTx . (2.23)

For p-norms one can show that the following relationship holds

`p∗(x) = `q(x) with
1

p
+

1

q
= 1 . (2.24)

This implies that the dual norm of the `2-norm is the `2-norm itself and the dual norm of

the `1-norm is the maximum norm `∞, and vice versa.

One important concept that is heavily used throughout this thesis is the one of differ-

entiation. Given a function f : R → R and a point x, one wants to find the best linear

approximation of f at a in a certain range h. Let g(x) = f(a) +m(x−a) be the linear ap-

proximation. By using the substitute x = a+h, we can rewrite this as g(a+h) = f(a)+mh.

Then, the goal is to derive an m such that the error ε(a) = f(a+ h)− f(a)−mh is small

compared to h. This gives rise to the following definition of the derivative operator.

Definition 2.6 (Differential Operator). Let f be a function f : R → R. We call f

differentiable at a if the following limit is satisfied

lim
h→0

f(a+ h)− f(a)−Df(a)h

h
= 0 . (2.25)

We call D the differential operator. This is equivalent to

Df(a) = lim
h→0

f(a+ h)− f(a)

h
. (2.26)

Sometimes it is also convenient to write the differential operator in Leibniz’s notation

Df(x) ≡ df
dx . The definition of the differential operator can also be extended to multivari-

ate functions f : RN → R by introducing the gradient ∇f(x) : R→ RN operator

Df(x) = ∇f(x) =

(
∂f

∂x1
, · · · , ∂f

∂xN

)T
. (2.27)

We further define the divergence operator div g(x) : RN → R as adjoint to the gradient

operator. In particular, we have −div = ∇T defined by the following equation

〈∇f(x),p〉 = −〈f(x),div p〉 , (2.28)

with p ∈ RN . Next, given a general function f : RN → RM , we can define the Jacobian

12 Chapter 2. Convex Optimization in Imaging and Deep Learning

matrix

Df(x) = J(f(x)) =

 (∇f1(x))T

...

(∇fM (x))T

 =

∂f1
∂x1

· · · ∂f1
∂xN

...
. . .

...
∂fM
∂x1

· · · ∂fM
∂xN

 . (2.29)

Finally, the differential operator can be applied multiple times, especially, given a function

f : RN → R, the result of applying the differential operator twice is called the Hessian

H ∈ RN×N and defined as

D2f(x) = H(f(x)) = ∇2f(x) =

∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xN

∂2f
∂x2∂x1

∂2f
∂x22

· · · ∂2f
∂x2∂xN

...
...

. . .
...

∂2f
∂xN∂x1

∂2f
∂xN∂x2

· · · ∂2f
∂x2N

 . (2.30)

The last fundamental definition is the one of an image itself and operations on it. An

image is usually defined on a regular Cartesian pixel grid Ω of size H ×W

Ω =
{

(x, y) ∈ N2|1 ≤ x ≤W, 1 ≤ y ≤ H
}
. (2.31)

Then we can define the image I((h,w)) as a two-dimensional scalar field on Ω, i.e. the

following map

I((x, y)) : Ω→ R . (2.32)

Using the gradient definition from above, the gradient operator on the image space becomes

∇I : Ω→ R2×W×H (2.33)

∇I((x, y)) =

(
∂
∂xI((x, y))
∂
∂y I((x, y))

)
=

(
∇xI((x, y))

∇yI((x, y))

)
, (2.34)

which defines the gradient in x- and y-direction of the Cartesian pixel grid. In the discrete

setting of the image space, the gradient operators∇x and∇y are approximated by forward-

differences with Neumann boundary conditions as follows

∇xI((x, y)) =

{
I((x+ 1, y))− I(x, y) if x < W

0 if x = W
(2.35)

∇yI((x, y)) =

{
I((x, y + 1))− I(x, y) if y < H

0 if y = H
. (2.36)

Similarly, the discrete adjoint gradient operator ∇T can be approximated with nega-

2.2. Convex Optimization 13

tive backward differences using Dirichlet boundary conditions. Given that P((x, y)) =

∇I((x, y)) ∈ R2×W×H , then we have

∇TP((x, y)) = ∇TxPx((x, y)) +∇Ty Py((x, y)) (2.37)

∇TxPx((x, y)) =

Px(x, y) if x = 1

Px(x, y)−Px(x− 1, y) if 1 < x < W

−Px(x− 1, y) if x = W

(2.38)

∇Ty Py((x, y)) =

Py(x, y) if y = 1

Py(x, y)−Py(x, y − 1) if 1 < y < H

−Py(x, y − 1) if y = H

. (2.39)

2.2 Convex Optimization

This section is intended to give a rough overview of the broad field of convex analysis

and optimization. It builds the foundation to efficiently solve optimization problems that

arise in variational methods for image processing, a topic that we will present in the next

section, but convex optimization is also widely adopted in other areas. It provides strong

bounds on the number of iterations, the quality of the solutions, and they are very efficient

in praxis. The more interested reader is referred to the excellent works dedicated to this

topic [17, 164, 192].

2.2.1 Convex Analysis

Convex analysis is a specific branch of mathematics that deals with convex sets and convex

functions. It forms the theoretical basis of convex optimization problems and is therefore

of significant importance to introduce those basic concepts.

2.2.1.1 Convex Sets

Given two points x1,x2 ∈ X in a vector space, e.g. X = RN , a line is simply defined by a

linear combination of those two points

y = λx1 + (1− λ)x2 , (2.40)

with λ ∈ R. Further, the line segment is the subset of points y for which λ ∈ [0, 1].

With the notion of a line segment, we can define the convex set.

Definition 2.7 (Convex Set). Let X be a vector space. X is called a convex set, iff for

any two vectors x1,x2 ∈ X and λ ∈ [0, 1] the following relation holds

λx1 + (1− λ)x2 ∈ X . (2.41)

14 Chapter 2. Convex Optimization in Imaging and Deep Learning

x1

x2

(a)

x1

x2

(b)

x1

x2

(c)

x1

x2

(d)

Figure 2.2: Examples of convex sets (a), (b) and non-convex sets (c), (d), respectively.

f(x)

epif

x

Figure 2.3: The epigraph of a function f(x) is the set of points that lie on, or above its graph.

The definition has a nice geometrically interpretation: X is convex, if and only if all

points on the line segment between x1 and x2 are also in X, or in other words, if you can

see from one vector x1 all other vectors of the set. See Figure 2.2 for some visual examples.

Further, we note that the empty set ∅, as well as the real numbers of any dimension RN

are convex sets, as is any given line segment in RN . Another important subclass of convex

sets are cones. X is called a convex cone, iff it is a convex set and for any x1,x2 ∈ X,

λ1, λ2 ∈ R≥0 the following relation holds

λ1x1 + λ2x2 ∈ X . (2.42)

There exists also several operators that preserve the convexity of sets. One such

operation is the intersection of two convex sets. If X1 and X2 are convex sets, then also

the intersection of both X1∩X2 is a convex set. Proof in Appendix B.1. Another operation

that preserves the convexity of a set is an affine transformation Ax+b, where A is a linear

transformation in X and x,b ∈ X. Proof in Appendix B.2. From this, it is easy to show

that the Minkowski sum of two convex sets X1 +X2 = {x1 + x2|x1 ∈ X1,x2 ∈ X2} is also

a convex set by using the affine transformation A = (1 1
1 1) ,b = 0.

2.2. Convex Optimization 15

x0

f(x0)

x1

f(x1)

λf
(x0

) +
(1
− λ

)f
(x1

)

Figure 2.4: For every convex function any line segment from (x0, f(x0)) to (x1, f(x1)) has to be
on, or above the graph of f(x).

2.2.1.2 Convex Functions

As a primer to this section, we will first introduce the epigraph of a function. A visual

example is depicted in Figure 2.3.

Definition 2.8 (Epigraph). Given a function f : RN → R, we call the set of points that

lie on, or above its graph the epigraph of f

epi f =
{

(x, xN+1)|x ∈ RN , xN+1 ∈ R, xN+1 ≥ f(x)
}
. (2.43)

This brings us to the most central definition of the section.

Definition 2.9 (Convex Function). Given a convex set X, we call a function f : X → R
convex, if the following relation holds for every x1,x2 ∈ X and λ ∈ [0, 1]

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) . (2.44)

This inequality extends to arbitrary sums with λ1, · · · , λN ≥ 0 and
∑N

i=1 λi = 1 and is

also called Jensen’s inequality in other contexts. We call f strictly convex iff

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2) , (2.45)

and a function f is called (strictly) concave, iff −f is (strictly) convex.

One of the fundamental properties of convex functions is that every minimizer is a

global minimizer. Proof in Appendix B.3.

The definition of convex functions has also a nice geometrical interpretation. It implies

that every line segment from (x1, f(x1)) to (x2, f(x2)) lies on, or above the graph of f . See

16 Chapter 2. Convex Optimization in Imaging and Deep Learning

Figure 2.4 for a visual example of this interpretation. The epigraph of f establishes the link

between convex functions and convex sets. A function f is only convex, iff epi f is a convex

set, and vice versa. Note, that it is common in convex optimization to extend convex

functions to cover all of RN , if the dom f ⊂ RN by setting the function value to∞ outside

of dom f . Hence, we usually consider the extended-value extension f̃ : RN → R ∪ {∞} of

f if not otherwise noted

f̃(x) =

{
f(x) if x ∈ dom f

∞ else
. (2.46)

One interesting property of convex functions is, that the first-order approximation of

f is a global under-estimator of the function. We can prove, that for differentiable convex

functions the following relation is satisfied

f(y) ≥ f(x) + 〈∇f(x),y − x〉 . (2.47)

Proof in Appendix B.4.

From this equivalent definition of convex functions, we can conclude that the gradient

of convex functions is monotone, i.e. for scalar functions is non-decreasing. Proof in

Appendix B.5. Further, we can show from this definition of convexity that ∇f(x∗) = 0 is

a necessary and sufficient condition for x to be a global optimizer. Proof in Appendix B.6.

There exists also a second-order condition for convex function. It can be shown by

using the Taylor expansion of a twice-differentiable function f : X → R that f is convex

and only if

∇2f(x) � 0 , (2.48)

which means that the Hessian matrix H of f(x) has to be positive semi-definite, i.e.

∀x : xTHx ≥ 0.

Equivalently to convex sets, there also exist certain operations for convex functions

that preserve convexity. A trivial operation is the weighted sum of convex functions. If

f1, and f2 are convex functions and w1, w2 > 0, then f = w1f + w2f is also convex.

Proof in Appendix B.7. The affine transformation of the argument g(x) = f(Ax + b) is

another operation under which convexity is kept, if f is convex. This is simply given by

the fact that the affine transformation of dom f is again a convex set, cf. previous section

on convex sets. Similarly to the weighted sum of convex functions, also the pointwise

maximum of convex functions is again convex. Hence, if f1 and f2 are convex, then

f(x) = max {f1(x), f2(x)} is also a convex function. Proof in Appendix B.8.

2.2. Convex Optimization 17

x0

f(x0)

x1

f(x1)

x2

f(x2)

x3
f(x3) x4

f(x4)

(a)

yx
0 −

f(x
0)yx

1 −
f(x

1)

yx2 − f(x2)

yx3
− f(x

3
)

yx
4
−
f(
x 4
)

f∗(y)

(b)

f(x)
f∗∗(x)

(c)

Figure 2.5: In (a) we show a non-convex function f(x) and (b) shows the corresponding convex
conjugate f∗(y). We show some affine functions xy − f(x) to illustrate the point-wise supremum.
In (c) we show the function f(x) with its bi-conjugate f∗∗(x) which is the convex envelope of the
function.

f(x)

x0

f(x0) +−0.3x0

f(x0) +−0.15x0

f(x0) + 0x0

f(x0) +−0.15x0

f(x0) +
0.3x0

(a)

∂f(x)1

−1

x0

(b)

Figure 2.6: In (a) we visualize the function f(x) = |x| and some subgradients at x0 = 0. In (b)
we depict the subgradient ∂f(x) over the full domain.

2.2.1.3 Convex Conjugate

The definition of the convex conjugate, also called Legendre-Fenchel transform for differ-

entiable functions, allows characterizing functions by their slopes and intersections.

Definition 2.10 (Convex Conjugate). For a function f : X → R the convex conjugate is

defined as

f∗(y) = sup
x∈dom f

{〈x,y〉 − f(x)} . (2.49)

As the name suggests, the convex conjugate of an arbitrary function is convex. This

can be easily observed, as it is the point-wise supremum of a set of affine, hence convex

functions in y. We can further define the bi-conjugate of a function.

Definition 2.11 (Bi-Conjugate). For a function f : X → R the bi-conjugate is defined as

f∗∗(x) = sup
y∈dom f∗

{〈y,x〉 − f∗(y)} . (2.50)

18 Chapter 2. Convex Optimization in Imaging and Deep Learning

Note, that the bi-conjugate f∗∗(x) is the convex envelope of f(x). Hence, we have

f∗∗(x) ≤ f(x) for any function f(x). Further, if f(x) is convex and closed (epi f is

a closed set), then the identity f(x) = f∗∗(x) holds, i.e. the bi-conjugate is the function

itself again. A visual example of a convex conjugate and bi-conjugate is given in Figure 2.5.

From the definition of the convex conjugate, we can further deduce the Fenchel inequality

(also called Fenchel-Young inequality for differentiable functions)

f(x) + f∗(y) ≥ 〈x,y〉 . (2.51)

An important example is the conjugate of a norm f(x) = ‖x‖, which is given by the

indicator function of the dual norm unit ball

f∗(y) =

{
0 if ‖y‖∗ ≤ 1

+∞ else
. (2.52)

Proof in Appendix B.9.

2.2.1.4 Subgradient and Subdifferential

We have shown earlier in this section in Equation (B.9) that the first-order approximation

of a convex function f is a global under-estimator of the function. This is a very useful

property if we want to optimize a convex function, but it requires the function to be differ-

entiable on the whole domain. However, we can generalize the notation of the differential

operator using Equation (B.9) to handle non-smooth functions.

Definition 2.12 (Subgradient and Subdifferential). Let f be a convex function. We call

a vector g the subgradient of f at x0 if

f(x) ≥ f(x0) + 〈g,x− x0〉 , (2.53)

holds for any x ∈ dom f . Further, the set of all subgradients of f at x0, ∂f(x0) is called

the subdifferential of the function f at x0. Note that if f is a smooth function, then

the subgradient of f contains only one element, which is the gradient of f itself, i.e.

∂f(x) = {∇f(x)}. From the definition it also directly follows that x∗ is a minimum of f ,

iff 0 ∈ ∂f(x).

The canonical example to show the subdifferential is the absolute value function f(x) =

|x|. It is trivial to show that f is convex and the subdifferential is given by

∂f(x) =

−1 if x < 0

+1 if x > 0

[−1, 1] if x = 0

. (2.54)

2.2. Convex Optimization 19

A visual illustration is given in Figure 2.6. It also shows the geometrical interpretation of

the subgradient: The graph of the affine function h(g) = f(x0)+〈g,x− x0〉 is a supporting

hyperplane to the convex set epi f at (x0, f(x0)).

There exists a close relationship between conjugate functions and the subdifferential.

Given that g ∈ ∂f(x0) we have

f(x) ≥ f(x0) + 〈g,x− x0〉 f(x0) + 〈g,x〉 ≤ f(x) + 〈g,x0〉 . (2.55)

Hence, we can derive the convex conjugate as

f∗(g) = sup
x
{〈g,x〉 − f(x)} = 〈g,x0〉 − f(x0) . (2.56)

Finally, by a simple transformation it follows that f∗(g) + f(x0) = 〈g,x0〉.

2.2.1.5 Proximal Mapping

A final important concept in convex optimization is the proximal mapping, also known

as resolvent, or proximity operator. It is a main building block in proximal algorithms to

efficiently solve convex optimization problems as shown in the next section.

Definition 2.13 (Proximal Mapping). Let f : RN → R∪ {∞} be a closed proper convex

function. Hence, epi f is a closed convex set. The proximal operator proxλf : RN → RN

of f is given by

proxλf (y) = arg min
x

{
f(x) +

1

2λ
‖x− y‖22

}
. (2.57)

Note that f(x) + 1
2λ ‖x− y‖22 is a strongly convex function and further, not everywhere

infinite. This implies that it has a unique minimizer x∗ for every y. We can express the

proximal mapping also in terms of the optimality condition

0 ∈ ∂f(x) + x− y (2.58)

y ∈ (I + ∂f)x (2.59)

x = (I + ∂f)−1(y) = proxf (y) . (2.60)

An important property of the proximal mapping is that x∗ is the minimizer of f , iff x

is a fixed point of proxf

x∗ = proxf (x∗) . (2.61)

Proof in Appendix B.10. Another property that is heavily used in convex optimization for

images is the separability of the proximal mapping. If f : RN → R is a separable function,

20 Chapter 2. Convex Optimization in Imaging and Deep Learning

i.e. f(x) =
∑

i fi(xi), then we have that

proxf (y)i = proxfi(yi) . (2.62)

The proximal mapping is also related to the convex conjugate by the Moreau decom-

position that states

x = proxf (x) + prox∗f (x) . (2.63)

Proof in Appendix B.11.

Finally, we give an overview of some relevant proximal operators

• If f is an indicator IC function of a convex set X

IC(x) =

{
0 if x ∈ X
∞ else

, (2.64)

then the proximal mapping is given by the orthogonal projection projX(y) onto X

proxf (y) = projX(y) = arg min
x∈X

{
1

2
‖x− y‖22

}
. (2.65)

• If f is the indicator function of the maximum-norm unit ball I‖·‖∞≤1, then the

proximal mapping is given by the following point-wise projection

proxf (x)i =
xi

max(1, |xi|)
. (2.66)

• If f is the `1-norm ‖x‖1, then the proximal operator is given by the soft-shrinkage

function

proxλf (y)i = sgn(xi) max(0, (|xi| − λ)) . (2.67)

2.2.2 Convex Optimization Algorithms

In the last few sections, we introduced the basics of convex analysis. Those definitions

will be used in this section, where we are concerned with the problem of the following

canonical form

min
x∈dom f

f(x) , (2.68)

where f is a convex function, i.e. the goal is to minimize convex functions. As discussed

previously, convex functions have several attractive properties. Most importantly, every

local minimum is a global minimum. This property can be exploited to built highly

2.2. Convex Optimization 21

Algorithm 1 Gradient Descent

Given an initial point x(0) ∈ dom f
1: while not converged do
2: x(i+1) = x(i) − η(i)∇f(x(i))
3: end while

efficient optimization algorithms. In fact, for the class of optimization problems that we

consider in this thesis, we can state bounds for the convergence rates and demonstrate

optimal algorithms. Assume that f is a convex function, x∗ is the optimum for f , and i

is the iteration index, then we define the convergence rate O
(

1
g(i)

)
as

f(xi)− f(x∗) ≤ c

g(i)
∈ O

(
1

g(i)

)
, (2.69)

where g is a monotonic increasing function on i, and c is a positive constant. Hence,

the convergence rate defines how fast the error decreases with respect to the number of

iterations.

Another important definition to derive optimal optimization algorithms is the notion

of Lipschitz-continuous functions. A function f is said to be Lipschitz continuous with

parameter L > 0, iff

∀x,y ∈ dom f : ‖f(x)− f(y)‖2 ≤ L ‖x− y‖2 . (2.70)

The interpretation is that the distance between two points is at maximum only L-times

larger than the difference of the function values at those points. This notation generalizes

to gradients. Hence, the gradient of f is Lipschitz continuous with parameter L > 0, iff

∀x,y ∈ dom f : ‖∇f(x)−∇f(y)‖2 ≤ L ‖x− y‖2 . (2.71)

In the following, we will show first-order optimization methods for two classes of convex

functions. First, for smooth convex functions, i.e. functions for which ∂f(x) = {∇f(x)}
for all x ∈ dom f . In the second part we will discuss efficient optimization algorithms for

non-smooth convex functions.

2.2.2.1 Smooth Convex Optimization

In this section we present two standard optimization algorithms for the problem in Equa-

tion (2.68) with f being a smooth convex function. It can be shown that if f has an

L-Lipschitz gradient, then the optimal convergence rate that can be obtained by any

optimization algorithm is O
(

1
i2

)
[164].

The simplest algorithm for this class of functions is gradient decent as stated in Algo-

rithm 1. Gradient descent minimizes the function f strictly to the optimality condition

22 Chapter 2. Convex Optimization in Imaging and Deep Learning

Algorithm 2 Nesterov’s Accelerated Gradient Descent

Given an initial point x(0) ∈ dom f
1: t(0) = 1,y(1) = x(0)

2: while not converged do
3: x(i) = y(i) − 1

L∇f(y(i))

4: t(i+1) = 1+
√

1+4t(i)
2

2

5: y(i+1) = x(i+1) + t(i)−1
t(i+1) (x(i) − x(i−1))

6: end while

∇f(x) = 0. An important choice for this algorithm is the step size η(i). It can be shown

that gradient descent converges for a constant step size η(i) ∈ (0, 2
L) for all i with O

(
1
i

)
.

This is obviously worse than the theoretical optimal convergence rate.

An optimal algorithm in terms of convergence rate has been proposed by Nesterov [163].

See Algorithm 2 for the scheme. The algorithm stores a moving sum of all previous

gradients and uses it for an extrapolation step. This doubles the memory requirements of

the algorithm, which is in practice seldom problematic. However, the convergence rate can

be shown to be optimal. An important note is that the algorithm does not monotonically

decrease the function value f in contrast to gradient descent. Hence, it shows periodic

phases of increase and decrease in f .

2.2.2.2 Non-Smooth Convex Optimization

We can even consider a broader class of convex functions of the minimization problem

in Equation (2.68) if we allow f to be non-smooth, i.e. there exists at least one point

x ∈ dom f for which |∂f(x)| > 1. The best general convergence rate that can be obtained

on this class of functions is O(1√
i
) [164]. A simple modification of gradient descent yields

the sub-gradient descent scheme as listed in Algorithm 3, where the gradient computation

is replaced with the computation of the sub-gradient. Interestingly, this method can be

shown to be already optimal in terms of the convergence rate [164].

The question is then if we can do better if we assume any additional structure of

the problem. In fact, many problems in computer vision can be modeled as a sum of two

convex functions f(x) = g(x)+h(x), such that the optimization problem of Equation (2.68)

becomes

min
x∈dom f

f(x) ≡ g(x) + h(x) . (2.72)

If we now assume that h has an L-Lipschitz continuous gradient and h is possible non-

smooth. Further, if we can smooth h by utilizing the proximal operator, then this gives rise

to the proximal gradient descent algorithm as listed in Algorithm 4. Using the same time

steps as argued for gradient descent, it can be shown to obtain also the same convergence

rate, i.e. O
(

1
i

)
, if the proximal operator of h is inexpensive to compute.

2.2. Convex Optimization 23

Algorithm 3 Sub-Gradient Descent

Given an initial point x(0) ∈ dom f
1: while not converged do
2: g(i) ∈ ∂f(x(i))
3: x(i+1) = x(i) − η(i)g(i)

4: end while

Algorithm 4 Proximal Gradient Decent

Given an initial point x(0) ∈ dom f
1: while not converged do
2: x(i+1) = proxη(i)h(x(i) − η(i)∇g(x(i)))
3: end while

Algorithm 5 Fast Iterative Shrinkage Thresholding Algorithm (FISTA)

Given an initial point x(0) ∈ dom f
1: t(0) = 1,y(1) = x(0)

2: while not converged do
3: x(i) = prox 1

Lg
(y(i) − 1

L∇h(y(i)))

4: t(i+1) = 1+
√

1+4t(i)
2

2

5: y(i+1) = x(i) + t(i)−1
t(i+1) (x(i) − x(i−1))

6: end while

Similarly, the method can be accelerated by keeping a sum of update directions. The

resulting method is the fast iterative shrinkage thresholding algorithm (FISTA) [10] and

is listed in Algorithm 5. The authors show that the convergence rate of this algorithm is

O(1
i2

). This is the same rate as the optimal rate for smooth convex optimization problems

and therefore also optimal for this class of problems.

To motivate the last optimization algorithm let us consider a more general optimization

problem, which fits many imaging applications

min
x∈dom f

g(Kx) + h(x) , (2.73)

where g and h are proper, convex and lower-semicontinuous and K is a linear operator,

e.g. K ∈ RM×N . We explicitly do not assume that g, or h are smooth. If we now replace

g(Kx) with its bi-conjugate, which is as shown before equivalent for convex function, we

yield the following convex-concave saddle-point problem

min
x∈domh

max
y∈dom g∗

〈Kx,y〉+ h(x)− g∗(y) . (2.74)

The above problem is also called the primal-dual formulation. The primal problem of

24 Chapter 2. Convex Optimization in Imaging and Deep Learning

Algorithm 6 Primal-Dual Algorithm

Given an initial point x(0) ∈ dom f
1: x̄(0) = x(0),y(0) ∈ dom f∗

2: while not converged do
3: y(i+1) = proxσg∗(y

(i) + σKx̄(i))

4: x(i+1) = proxτh(x(i) − τK∗y(i+1))
5: x̄(i+1) = x(i+1) + θ(x(i+1) − x(i))
6: end while

Equation (2.73) has also the equivalent dual problem

max
y∈dom g∗

−(h∗(−K∗y) + g∗(y)) , (2.75)

where K∗ is the adjoint operator to K such that 〈Kx,y〉 = 〈x,K∗y〉 is fulfilled, e.g. for

K ∈ RM×N it is simply KT . The primal-dual algorithm [27] operates directly on the

primal-dual formulation of Equation (2.74) and is listed in Algorithm 6. It consists of a

proximal gradient ascent step in the dual variable y and a proximal gradient descent step

in the primal variable x. Additionally, it adds an over-relaxation step. The algorithm is

guaranteed to converge with O
(

1
i

)
if the parameters step sizes σ and τ fulfill στ ‖K‖22 < 1

and over-relaxation parameter θ = 1.

The authors of [27] further show that the primal-dual algorithm can be accelerated if

either g∗ or h have an L-Lipschitz continuous gradient. Let us assume that this is the

case for h, and set γ = 1
L . Then we can proof an O

(
1
i2

)
convergence rate, if we set

σ(0)τ (0) ‖K‖22 < 1 and update the step sizes as well as the over-relaxation parameter in

each iteration according to θ(i) = 1√
1+2γτ (i)

, τ (i+1) = θ(i)τ (i), and σ(i+1) = σ(i)

θ(i)
.

2.2.3 Convex Optimization for Imaging

In the last two sections we have introduced the basic mathematical preliminaries, concepts

of convex analysis and optimization. This last section on convex optimization is devoted

to its application in imaging. In computer vision we generally deal with inverse problems:

We are given an observation f , e.g. an image, or a sequence of images, and are interested

in what caused this observation f . In general, we can write that f is the result of a

forward process, f = G(u). Hence, the objective of the inverse problem is to find the

model parameter u that best describe our observations. A classical example in imaging is

denoising, where we observe a noisy image f that is the result of adding some noise ε to a

clean image u, i.e. f = u+ε. In this case, the inverse problem is to recover the clean image

u from the noisy observation f . However, this is an ill-posed problem, because infinitely

many u can produce f as we do not know ε. A remedy to this dilemma is to utilize

prior information to regularize the problem. In the case of image denoising, a reasonable

assumption is that natural images are smooth.

2.2. Convex Optimization 25

We can formulate this high-level description with the following optimization problem

u∗ = arg min
u

Γ(u) + λΨ(u, f) , (2.76)

where f is our observation and u is the minimizer of our model. Ψ(·, ·) is the data fidelity

term and ensures that the minimizer is the best explanation for our observation f . Back

to our denoising example, u∗ should not deviate too much from the observation f with

respect to a certain norm. Hence, a reasonable choice for the data fidelity term could

be Ψ(u, f) = 1
2 ‖u− f‖22. The second term in the optimization problem above is the

regularization term Γ(·) which encodes prior information about the domain. For problems

in computer vision, where we want to recover images, this regularization term usually

enforces smooth results. Finally, the parameter λ > 0 controls the trade-off between the

deviation from the observation f and the regularization of the minimizer u∗.

To use an uncluttered notation within this section, all quantities, i.e. images, are

stacked into vectors. For example, an image I of size H × W is stacked into a vector

u = (I(1, 1), · · · , I(1,W), I(2, 1), · · · , I(H,W))T ∈ RHW . Hence, the gradient operator

∇ ∈ R2HW×HW is a sparse matrix that computes the forward differences according to

Equation (2.36). In the remainder of this section, we will discuss various choices of the

regularization term Γ(·) and how to efficiently find the minimizer u∗ of the resulting

optimization problems.

2.2.3.1 Tikhonov Regularization

A reasonable assumption for natural images [245], but also for depth maps, is that they

are mostly smooth with large gradients only occurring near edges. That means that a

regularizer should add a penalty on the image gradients. The Tikhonov [238] model is

a simple model for denoising that incorporates this idea and is given as the following

optimization problem

min
u
‖∇u‖22 + λ ‖u− f‖22 . (2.77)

The regularization term Γ(u) = ‖∇u‖22 ensures that the gradients in the minimizer u∗ are

low. The nice property of this energy is that it is smooth, convex and the gradient can be

easily computed

2(∇T∇u + λ(u− f)) . (2.78)

Given the gradient, we can use an accelerated optimization algorithm for smooth convex

problems, e.g. Algorithm 2. However, plugging the above gradient into the optimality

condition of convex problems, we can also obtain a closed form solution

u∗ =

(
1

λ
∇T∇+ I

)−1

f . (2.79)

26 Chapter 2. Convex Optimization in Imaging and Deep Learning

(a) Ground-Truth (b) Input (c) λ = 0.1

(d) λ = 1 (e) λ = 10 (f) λ = 25

Figure 2.7: Results of Tikhonov denoising on a natural image with Gaussian noise. Figure (a)
shows the target image and (b) the noisy input (Gaussian noise with zero mean and standard
deviation σ = 0.05). Figures (c) to (f) depict the result of the Tikhonov model for varying λ.

In Figure 2.7 we show the result of Tikhonov denoising with varying λ parameter. The

model is able to reduce the noise for λ ≤ 1, but also smooths over edges which yields a

blurry result. This stems from the choice of the regularization term, which does not allow

discontinuities in the solution.

2.2.3.2 Total Variation Regularization

To prevent smoothing over edges we can replace the squared `2-norm of the Tikhonov

regularization term with a robust norm that also allows discontinuities. A very popular

choice is the discrete Total Variation Γ(u) = TV(u) = ‖∇u‖1. By plugging the discrete

TV-norm into our denoising model we obtain the famous objective of Rudin, Osher, and

Fatemi (ROF) [198]

min
u
‖∇u‖1 +

λ

2
‖u− f‖22 . (2.80)

Note that the ROF model is still convex, as it is a sum of two valid norms, but is

not smooth anymore. Therefore, we have to apply an appropriate optimization algorithm

as the ones presented in Section 2.2.2.2. A suitable method that we will explain in more

detail is Algorithm 6. We start by deriving the convex-concave saddle-point formulation

of Equation (2.85) by using the bi-conjugate of the `1-norm

min
u

max
p

〈
u,∇Tp

〉
+
λ

2
‖u− f‖22 − δP (p) , (2.81)

2.2. Convex Optimization 27

(a) Ground-Truth (b) Input (c) λ = 1

(d) λ = 10 (e) λ = 25 (f) λ = 50

Figure 2.8: Results of ROF denoising on a natural image with Gaussian noise. Figure (a) shows
the target image and (b) the noisy input (Gaussian noise with zero mean and standard deviation
σ = 0.05). Figures (c) to (f) depict the result of the ROF model for varying λ.

where p is the dual variable and the convex set P of the indicator function δP is given by

P = {p| ‖p‖∞ ≤ 1} . (2.82)

The only thing left to apply Algorithm 6 is to derive the proximal operators. The proxi-

mal operator of the above indicator function is the simple point-wise projection onto the

Euclidean unit norm ball

proxg∗(p̃)x,y =
p̃x,y

max(1, ‖p̃x,y‖2)
. (2.83)

Additionally, the proximal mapping of the squared `2-norm for the data term is given by

the following point-wise expression

proxh(ũ)x,y =
ũx,y + τλfx,y

1 + τλ
. (2.84)

In Figure 2.8 we show denoising results of the ROF model. We can observe that with

stronger regularization, i.e. smaller λ, the noise is successfully removed while maintaining

strong image edges. However, by decreasing the λ value we also remove finer image details.

One drawback of the TV regularization is that it enforces piece-wise constant solutions

which results in a staircasing effect, see for example Figure 2.8d This is especially undesired

for depth maps.

28 Chapter 2. Convex Optimization in Imaging and Deep Learning

2.2.3.3 Huber Regularization

One way to reduce the staircasing is to replace the TV norm with the Huber norm intro-

duced in Equation (2.20). The Huber norm introduces a trade-off between `1 and squared

`2 regularization. Hence, with an appropriate choice of the trade-off parameter ε it results

in smooth results in areas of vanishing gradients while still preserving edges. The primal

optimization problem with Huber regularization is given as

min
u
‖∇u‖ε +

λ

2
‖u− f‖22 . (2.85)

This optimization problem can be efficiently solved with the primal-dual algorithm as the

ROF model before. The corresponding convex-concave saddle-point problem is given by

replacing the conjugate g∗(p) = δP (p) with g∗(p) = δP (p) + ε
2 ‖p‖

2
2, yielding

min
u

max
p

〈
u,∇Tp

〉
+
λ

2
‖u− f‖22 − δP (p)− ε

2
‖p‖22 . (2.86)

Therefore, the proximal mapping for h(·) is the same as in the ROF model, and the

proximal mapping for the changed g∗(·) is given by the following point-wise projection

proxg∗(p̃)x,y =

p̃x,y
1+σε

max(1,
∥∥∥ p̃x,y

1+σε

∥∥∥
2
)
. (2.87)

In Figure 2.9 we show the result of the Huber model on image denoising for λ = 10 and

varying values of ε. Note that in the limit ε→ 0 the Huber model yields the ROF model.

Therefore, for small ε values the staircasing is still visible and gets less pronounced for

bigger values of ε. However, if the parameter gets too large we approximate the Tikhonov

model, which results in less noise suppression, or blurred edges.

2.2.3.4 Total Generalized Variation Regularization

A more elaborate regularization term to prevent piece-wise constant solutions is the Total

Generalized Variation (TGV) [20]. As the name suggests it is a non-trivial generalization

of the Total Variation that measures not only jumps but also higher-order variations, e.g.

kinks. In this thesis we are especially interested in the TGV of second order1. In the

discrete setting, the TGV of second order is given by

TGV (u) = min
u
α1 ‖∇u− v‖1 + α0 ‖∇v‖1 , (2.88)

1TGV of the first order is equivalent to TV.

2.2. Convex Optimization 29

(a) Ground-Truth (b) Input (c) ε = 0.0001

(d) ε = 0.001 (e) ε = 0.01 (f) ε = 0.1

Figure 2.9: Results of Huber denoising on a natural image with Gaussian noise. Figure (a) shows
the target image and (b) the noisy input (Gaussian noise with zero mean and standard deviation
σ = 0.05). Figures (c) to (f) depict the result of the Huber model for varying ε and λ = 10.

where α1 and α0 are user defined trade-off parameters and ∇ is the discrete Jacobian

operator

∇v =

(
∇v1

∇v2

)
. (2.89)

The interpretation of the second order TGV is that the gradient of the solution ∇u should

only deviate on a sparse set of points from the vector field v. Additionally, the vector

field v should itself only have a sparse set of gradients. This avoids the staircasing effect

in affine parts of an image but still enables sharp edges.

Note that the TGV is itself an optimization problem, but is still convex. Hence, the

optimization problem for denoising becomes

min
u

TGV(u) +
λ

2
‖u− f‖22 ⇔ min

u,v
α1 ‖∇u− v‖1 + α0 ‖∇v‖1 +

λ

2
‖u− f‖22 . (2.90)

We can again utilize Algorithm 6 to efficiently minimize the above problem. First, by using

the bi-conjugate of the `1 norms of the regularization term we derive the corresponding

convex-concave saddle-point problem

min
u,v

max
p,q

α1 〈∇u− v,p〉+ α0 〈∇v,q〉+
λ

2
‖u− f‖22 − δP (p)− δQ(q) . (2.91)

30 Chapter 2. Convex Optimization in Imaging and Deep Learning

The convex sets of the indicator functions δP and δQ are given by

P = {p| ‖p‖∞ ≤ 1} (2.92)

Q = {q| ‖q‖∞ ≤ 1} . (2.93)

If we now set g∗((p,q)) = g∗1(p) + g∗2(q) with g∗1(p) = δP (p) and g∗2(q) = δP (q) and the

operator K to

K =

(
α1∇ −α1I

0 α0∇

)
, (2.94)

we can obtain the canonical form for the primal-dual algorithm

min
u,v

max
p,q

〈
K

(
u

v

)
,

(
p

q

)〉
+
λ

2
‖u− f‖22 − g∗((p,q)) . (2.95)

From this canonical form it is now simple to derive the steps for the primal-dual algorithm.

As the proximal operator are all defined point-wise, we can obtain the following iteration

schema

p(i+1) = proxg∗1 (p(i) + σ(∇ū(i) − v̄(i)))

q(i+1) = proxg∗2 (q(i) + σ∇v̄(i))

u(i+1) = proxh(u(i) − τ∇Tp(i+1))

v(i+1) = v(i) − τ(∇Tq(i+1) − p(i+1))

ū(i+1) = 2u(i+1) − u(i)

v̄(i+1) = 2v(i+1) − v(i)

. (2.96)

In Figure 2.10 we visualize results of the TGV model for denoising. We vary the ratio

of α1 to α0. A higher ratio leads to smoother results, whereas a lower ratio yields results

similar to the ROF-model. The difference between the individual regularization terms is

also nicely visible in 3D, i.e. the input image is interpreted as a depth map. Figure 2.11

shows the influence of the different regularization terms on a step-like function, where we

fix λ = 10. We can observe how the ROF model produces the staircasing effect and in

contrast, the very smooth result of the TGV model.

2.3 Deep Learning

In the following section we introduce the basic concepts of machine learning in general, and

of deep learning specifically. The term of machine learning dates back at least to the late

1950s when Arthur L. Samuel [200] trained a computer to play the game of checkers. In

the work, he states that coding all the rules is a cumbersome task and that “Programming

2.3. Deep Learning 31

(a) Ground-Truth (b) Input (c) α1 = 0.2

(d) α1 = 0.35 (e) α1 = 0.65 (f) α1 = 1.0

Figure 2.10: Results of TGV denoising on a natural image with Gaussian noise. Figure (a) shows
the target image and (b) the noisy input (Gaussian noise with zero mean and standard deviation
σ = 0.05). Figures (c) to (f) depict the result of the TGV model for varying α1, constant α0 = 1
and λ = 10.

computers to learn from experience should eventually eliminate the need for much of this

detailed programming effort”. He is further often attributed with the following statement:

“machine learning is the field of study that gives computers the ability to learn without

being explicitly programmed”. This is a very broad definition of machine learning, but

already emphasizes an important aspect, namely that we do not, or are not able to hand-

craft rules for highly complex systems. Another definition by David Barber [8] emphasizes

the data-driven aspect: “Machine Learning is the study of data-driven methods capable of

mimicking, understanding and aiding human and biological information processing tasks”.

Further, Keven P. Murphy [161] highlights the ability to generalize to future events: “The

goal of machine learning is to develop methods that can automatically detect patterns in

data and then to use the uncovered patterns to predict future data or other outcomes of

interest”. This is related to the common problem of over-fitting, which we will discuss

later in this section. One of the most formal definitions is given by Tom M. Mitchell [159]:

“A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P , if its performance at tasks in T , as measured by P ,

improves with experience E”.

In the following section, we will go into more detail on the three points: experiences

E, tasks T , and performance measures P . However, the field of machine learning and

deep learning presents an almost endless amount of literature and covering all aspects

is beyond the scope of this thesis. We refer the interested reader to some of the great

available textbooks [8, 13, 58, 159, 161] for a more detailed overview on machine learning

and to [92] specifically for deep learning.

32 Chapter 2. Convex Optimization in Imaging and Deep Learning

(a) Ground-Truth (b) Input

(c) Tikhonov (d) ROF

(e) Huber, ε = 0.01 (f) TGV, α1 = 0.75, α0 = 1

Figure 2.11: Influence of the regularization term on depth map denoising. The original depth
map in (a) has values between 0 and 1. We apply additive Gaussian noise with zero mean and
standard deviation σ = 0.025 to generate the noisy input in (a). The Figures (c) to (f) show the
influence of the regularization term on the denoising result. We fixed λ = 10.

2.3. Deep Learning 33

2.3.1 Supervised Learning

From the definitions above one can obviously conclude that the field of machine learning is

very broad. Depending on the task T , we can roughly divide the field into supervised and

unsupervised learning, whereas we are especially interested in the former within this thesis.

In supervised learning we are given a training dataset of K samples with corresponding

target labels, i.e. D = {(sk, tk)}Kk=1, which corresponds to the experience E of Mitchell’s

definition. The samples sk are from a defined input, or data space sk ∈ X . We usually

have X ⊆ RN , X ⊆ RH×W , or X ⊆ RD×H×W , if we handle vectors, images/depth maps,

or volumetric inputs, respectively. However, in other scenarios, it is also possible to have

categorical, or missing inputs. The label space Y is dependent on the given task. For

example, in classification, we want to assign each sample s a unique category, or class.

Hence, we have Y = {1, · · · , C}, where C is the number of overall categories to consider.

Another common supervised learning task is regression in which we want to assign each

sample s a real-valued vector. In this case the label space would be Y ⊆ RN .

The goal of supervised learning can now be defined as finding a mapping f : X → Y
given a dataset D such that for a new pair (s∗, t∗) /∈ D the mapping is accurate, i.e.

L(f(s∗), t∗) → min. The loss L : Y × Y → R is a scalar-valued function that measures

the accuracy of the prediction and is the last piece P of Mitchell’s definition. A more

accurate definition can be given if we assume an infinite large training dataset, i.e. D∞
is the data generating distribution that covers all possible samples. Then objective of

supervised learning is to find f∗ ∈ F that minimizes the expected loss

f∗ = arg min
f∈F

E(s,t)∼D∞L(f(s), t) , (2.97)

where F is the set of functions which we consider for this task. Unfortunately, the opti-

mization problem in Equation (2.97) is in practice intractable, as we do not have access to

the full data generating distribution D∞. However, if we assume that our training dataset

D is independent and identically distributed, then we can approximate the expected loss

by the empirical loss

f∗ ≈ arg min
f∈F

1

K

K∑
k=1

L(f(sk), tk) . (2.98)

Although the minimization problem in Equation (2.97) and Equation (2.3.1) look quite

similar, the latter poses the problem of generalization and over-fitting. This can be demon-

strated by a very simple example: Assume that D∞ contains all the points on a simple

hyperplane, i.e. D∞ = {(s, t)|t = 〈a, s〉+ b} for an arbitrary a 6= 0 and b, and that the

34 Chapter 2. Convex Optimization in Imaging and Deep Learning

training dataset contains a finite number of samples K. Then the function

f(s) =

{
tk if s ∈ D = {(sk, tk)}Ki=1

0 else
, (2.99)

would be an optimal function according to Equation (2.3.1). However, it is trivial to verify

that this function fails on all samples outside the training dataset. A visual example of

under- and over-fitting is visualized in Figure 2.12.

From this admittedly constructed example, one can already observe the key problem

regarding over-fitting. Over-fitting occurs if the function space F is not restricted enough.

Given the previous example, if we restrict F to only the function that model a hyperplane,

then the optimization problem reduces to finding (a, b). However, if F is defined too

restrictive, then we have the problem of under-fitting, i.e. if F contains only constant

functions.

Formally, the restriction on the function space F can be enforced by adding a regular-

ization term Γ(f) to

f∗ ≈ arg min
f∈F

1

K

K∑
k=1

L(f(sk), tk) + Γ(f) . (2.100)

The regularization term Γ : F → R is a scalar valued function that encodes the preferences

for some functions over others, or available prior knowledge. This formulation follows

Occam’s razor, which states: “Given two explanations for an occurrence, the simpler one

is usually the better”. The choice of Γ obviously depends on the function space F . In

Section 2.3.6 we will discuss some possibilities specifically for deep networks.

There exists also a whole field regarding the statistical learning theory [15, 252, 253,

251] that is concerned with ways of how to quantify the capacity of F . The best known

is the Vapnik-Chervonenkis dimension, or VC-dimension, which defines the capacity of

a binary classifier. Assume a binary classifier, then the VC-dimension is the maximum

number m, for which a training set D with m training samples exists, such that the

classifier can arbitrarily label them. For example, if the classifier is a line in 2D, then the

VC-dimension is 3, as this is the maximum number of points a line can arbitrarily divide.

Further, a nearest neighbor classifier has a VC-dimension of ∞.

The problem of the generalization error, i.e. the difference between the expected loss

and the empirical loss, is also addressed in the bias-variance decomposition, or bias-

variance trade-off. We want our model to generalize to unseen data, but also to capture

the complexity of the training data. Unfortunately, it is often not possible to jointly

achieve both goals and hence, we have to make a trade-off. But we can decompose the

generalization error into three parts to investigate this dilemma: an irreducible error σ2, a

bias error, and a variance error. The irreducible error can not be avoided, independently

of the function space F . This type of noise can, for example, originate from label noise

2.3. Deep Learning 35

in D. The bias error originates from the simplifying assumptions taken for the function

space, i.e. a high bias indicates that the function space is not expressive enough to fit data

(under-fitting). The variance error is the change of the error by using different training

data, i.e. a high variance indicates over-fitting. This already indicates that by the selection

of the function space F one can trade-off the bias and variance in the error.

Let us have a look at an example: Assume we want to approximate a function f̂ having

a dataset with tk = f̂(sk) + ε, where ε ∼ N (0, σ2). Further, P (D) is the distribution over

all possible training datasets and we define the loss L for this example as the squared

difference between the estimate f(s) and the target t

L(f(s), t) =

N∑
i=1

(f(s)i − ti)2 = ‖f(s)i − t‖22 , (2.101)

where f(s) is the minimizer of Equation (2.100) trained on a dataset D ∼ P (D). Then,

the expected error for a previously unseen pair (s, t) can be decomposed as follows

E {L(f, t)} = E
{
‖f − t‖22

}
(2.102)

= E
{∥∥∥f − f̂ + f̂ − t

∥∥∥2

2

}
(2.103)

= E
{∥∥∥f − f̂∥∥∥2

2
+ 2

〈
f − f̂ , f̂ − t

〉
+
∥∥∥f̂ − t

∥∥∥2

2

}
(2.104)

= E
{∥∥∥f − f̂∥∥∥2

2

}
+ 2E

{〈
f − f̂ , f̂ − t

〉}
+ E

{∥∥∥f̂ − t
∥∥∥2

2

}
, (2.105)

where f̂(s) and f(s) are abbreviated as f̂ and f , respectively, and ED∼P (D) {·} is short-

ened as E {·}. Now, we can see that the last expectation term is E
{∥∥∥f̂ − t

∥∥∥2

2

}
=

E
{
‖ε‖22

}
= σ2 and corresponds to the irreducible noise. The second term can be shown to

be 2E
{〈
f − f̂ , f̂ − t

〉}
= 0 by expansion and by E

{
f̂
}

= f̂ as f̂ is constant. Therefore,

we can further decompose the first term as follows

E
{∥∥∥f − f̂∥∥∥2

2

}
= E

{∥∥∥f − E {f}+ E {f} − f̂
∥∥∥2

2

}
(2.106)

= E
{
‖f − E {f}‖22

}
+ E

{∥∥∥E {f} − f̂∥∥∥2

2

}
︸ ︷︷ ︸

=‖E{f}−f̂‖2
2

+ 2
〈
f − E {f} ,E {f} − f̂

〉
︸ ︷︷ ︸

=0

.

(2.107)

36 Chapter 2. Convex Optimization in Imaging and Deep Learning

−3 −2 −1 0 1 2 3 4

x

−4

−2

0

2

4

6

8

y

(a) Polynomial Fits k = 2

−3 −2 −1 0 1 2 3 4

x

−4

−2

0

2

4

6

8

y

(b) Polynomial Fits k = 4

−3 −2 −1 0 1 2 3 4

x

−4

−2

0

2

4

6

8

y

(c) Polynomial Fits k = 8

0 1 2 3 4 5 6 7 8

Polynomial Degree k

0

1

2

3

4

E
rr

or

E{||f − f̂ ||22}
bias(f)2

variance(f)

(d) Error Decomposition

Figure 2.12: Figures (a) to (c) depict several polynomial fits (light colors) to an unknown function
(dark color). For each fit, we sample a different dataset (depicted as light points). The polynomial
of degree k = 1 is not expressive enough to fit the data, i.e. under-fitting, whereas the polynomial
of degree k = 8 fit the noise in the training datasets, i.e. over-fitting. Figure (d) depicts the
bias-variance decomposition over the sampled training datasets. We can observe that with more
expressive polynomials the bias decreases. The variance increases up to a point, reaches a minimum
at the right polynomial and then increases again.

Hence, the final decomposition is given by

E {L(f, t)} = E
{
‖f − E {f}‖22

}
︸ ︷︷ ︸

variance(f)

+
∥∥∥E {f} − f̂∥∥∥2

2︸ ︷︷ ︸
bias(f)2

+σ2 . (2.108)

We show an example of a bias-variance decomposition for a polynomial function space in

Figure 2.12.

2.3.2 Feed-Forward Networks

In the previous section, we introduced supervised learning and some theoretical insights

for the abstract learning problem. However, we did not mention any concrete function

spaces and their corresponding learning algorithms, i.e. how to solve Equation (2.100) for

2.3. Deep Learning 37

a given function space F . Over the last couple of decades, several learning algorithms

have been proposed. Some popular ones are k-nearest neighbour [3], classification and

regression trees [22], random forests [23], or support vector machines [44]. An extensive

overview is beyond the scope of this thesis and we refer the interested reader therefore to

[8, 13, 58, 159, 161] for more information.

In this section, we focus on a special kind of machine learning model, i.e. deep networks,

where the basic ideas are already quite old. However, they have only recently been gained a

lot of popularity with the drastic improvements shown on public benchmarks, most notable

on image classification [132]. Since, this major success deep networks are transforming the

field, not only in computer vision, but also in natural language processing [227], speech

recognition [11, 105], and also starts getting used in bio-informatics [37].

To introduce the methods behind deep learning it might be useful to start with its

most basic origin, linear regression. Linear regression was independently discovered by

Legendre [139] and Gauss [78] to fit the orbits of bodies to astronomical observations,

i.e. a supervised learning task. In its simplest form, we fit an affine function minimizing

squared differences loss: Given a dataset D, the minimization problem is

min
W,b

1

2K

K∑
k=1

‖(Wsk + b)− tk‖22 . (2.109)

Note that this minimization problem is equivalent to the one in Equation (2.3.1)

with the loss function defined in Equation (2.101) and the function space

F =
{
f(s) = Ws + b|W ∈ RM×N ,b ∈ RN

}
, given that s ∈ RN , t ∈ RM . The nice thing

about this simple linear regression problem is that it admits a closed-form solution

W̃ = TST (STS)−1 = arg min
W,b

1

2K

K∑
k=1

‖(Wsk + b)− tk‖22 . (2.110)

where W̃ = (W|b) and S and T are matrices formed by stacking all K samples and

targets

S =

(
s1 · · · sK
1 · · · 1

)
, T =

(
t1 · · · tK

)
. (2.111)

The drawback of this simple regression model is that it can only model linear relation-

ships between the input samples and the targets. To model also non-linear relationships

we can resort to basis functions φl(s), i.e. the input samples are fed through L fixed non-

linear transformations. The optimization can still be solved as in Equation (2.110), but

38 Chapter 2. Convex Optimization in Imaging and Deep Learning

instead of directly using the samples matrix S, we substitute it with the feature matrix Φ

Φ =

φ1(s1) φ1(s2) · · · φ1(sK)

φ2(s2) φ2(s2) · · · φ2(sK)

.
.

φL(s2) φL(s2) · · · φL(sK)

 . (2.112)

Hence, we replace each input sample with a feature vector φ(s) = (φ1(s), · · · , φL(s))T .

The basis functions can be polynomials, sine functions, wavelets, radial basis functions,

etc.. If the basis function is the identity mapping, i.e. φ(s) = s, we are back to simple

linear regression.

This kind of regression model has still the drawback that the basis functions are fixed

and have to be selected in advance. However, we can use parametrised basis functions

σW,b(s) = σ(Ws + b) and rewrite Equation (2.109)

min
W,b

1

2K

K∑
k=1

∥∥∥σW,b(sk)− tk

∥∥∥2

2
. (2.113)

In this case the basis function σ is a non-linear function and its input is a linear combination

of the input sample s and the adaptive parameters W,b that belong to the basis function.

If we now composite a series of parametrised basis functions, i.e. σW,b = σWL,bL
L ◦ · · · ◦

σW1,b1
1 , we derive multi-layer feed-forward neural networks [199]. The function σ(Ws+b)

is sometimes called hidden layer, and a single output σ(wT
i s + bi) is denoted as neuron,

or unit.

One of the earliest formulations of this kind was the perceptron by Frank Rosen-

blatt [196]. Although it did not use the concatenation of a series of basis functions, it was

the first model that could learn the parameters from data. As basis functions, it used the

step function

σ(s) =

{
1 if Ws + b > 0

0 else
. (2.114)

It is apparent from the equation above that it learns a separating hyperplane and it was

used for binary classification.

Nowadays, different basis functions, in the context of neural networks also called

activation functions, are used. Popular ones are the sigmoid function σ(s)i = (1 +

exp(−si))−1, the tangens hyperbolicus σ(s)i = tanh(si), and the rectified linear unit

σ(s)i = max(0, si) [162]. In contrast to the step function, we can compute for each of the

latter functions a gradient or at least a sub-gradient. We will see in the next chapters why

this is important for network training.

2.3. Deep Learning 39

Algorithm 7 Mini-batch (Sub-)Gradient Descent

Given a training dataset D
Given a mini-batch size B
Given an initial parameter vector Θ(0) ∈ dom g
Given a step size η > 0

1: while not converged do
2: Sample a mini-batch Bi from D with |B(i)| = B
3: Compute sub-gradient using ∂Θ(i)g(Θ(i)) ≈ ∂Θ(i)

1
B

∑
(s,t)∈B(i) L(f(s,Θ(i)), t)

4: Compute parameter update ∆Θ(i) = −η∂Θ(i)g(Θ(i))

5: Update parameters Θ(i+1) = Θ(i) + ∆Θ(i)

6: end while

2.3.3 Network Optimization

In the last chapter we derived the formulation of a feed-forward neural network as a

composite of parametrized functions, i.e. f = σWL,bL
L ◦ · · · ◦ σW1,b1

1 . The task is now to

optimize Equation (2.100) given a training dataset D.

Let us first restrict the function space F by fixing the network structure.

This means that we do not change the number of basis functions or the

size of them in the optimization procedure. Therefore, the function space is

F =
{
σWL,bL
L ◦ · · · ◦ σW1,b1

1 |Wl ∈ RMl×Nl ,bl ∈ RMl

}
. For the sake of notational brevity,

we will summarize all parameters Wl,bl in a single parameter vector Θ and denote

the feed-forward network applied on a sample s as f(s,Θ). Now, we can rewrite the

empirical loss from Equation (2.100) with g(Θ) = 1
K

∑K
k=1 L(f(sk,Θ), tk) as

arg min
Θ

g(Θ) + Γ(Θ) . (2.115)

Derivative-free Optimization Note that in the general case this learning problem is

not convex. Hence, the optimization techniques presented in Section 2.2 are not applicable.

However, we can evaluate g(Θ) for any Θ. So, one approach to optimize Equation (2.115)

is to use stochastic hill-climbing, or some of its variants [171]. This is basically a guess-

and-check algorithm. One starts with an arbitrary Θ and changes one, or a set of random

parameters and checks if g(Θ) has improved. In general, as the optimization problem

is not convex, the method might get stuck in local minimas. However, recent research

suggests that local minimas are less problematic in deep networks on high dimensional

data [40, 48, 123]. The major drawback specifically of such derivative-free optimization

techniques is the large number of parameters of modern deep architectures with more

than a million or even billion parameters and that this method requires a single network

evaluation to update a single parameter, or a subset of parameters.

40 Chapter 2. Convex Optimization in Imaging and Deep Learning

First-Order Optimization Methods We can improve the optimization efficiency

if we further restrict the function space F to functions for which we can compute a

(sub-)gradient. Let us denote the sub-gradient of g(Θ) as ∂Θg, then we can use a

sub-gradient descent scheme similar to the one in Algorithm 3. The key difference in

network training is that we usually do not compute the gradient over the whole dataset

D, but only on a random subset of samples. This subset is called the mini-batch, and

hence, the optimization procedure is commonly called mini-batch gradient descent. The

scheme is outlined in Algorithm 7. The algorithm requires a training dataset and three

parameters in its vanilla form. First, the mini-batch size B controls how many samples

are used to estimate the sub-gradient ∂Θg(Θ). This is a trade-off between noisy gradients

for too small mini-batches and too high memory and computation requirements for too

large mini-batches. It is further dependent on the problem at hand and can be tuned

using cross-validation. The second parameter of the algorithm is the initial parameter

vector Θ ∈ dom g. We will outline efficient strategies for initialization in Section 2.3.6.

Finally, we have to choose a step size η, i.e. learning rate, of the parameter update. This

is an important choice, as a too large η will make the optimization diverge, and a too

small η increases training time. In practice, one can use a simple heuristic to select the

initial learning rate. Start with a large learning rate for which the optimization diverges

and divide the learning rate by a factor >1 until no divergence occurs. Further, the

learning rate is usually annealed during the end of the training procedure.

We are still missing the information on how to efficiently compute the sub-gradient

estimate on line 3. This will be discussed in the next section. To conclude this section, we

will outline some advanced first-order optimization techniques that can be used to improve

the parameter update on line 4 and boost convergence.

One problem with vanilla gradient-descent, in general, is related to the curvature of

the loss surface. If the parameters lie in a valley, i.e. an area where the loss surface is more

steeply in one dimension than in another, the updates will only slowly improve the loss. A

solution to overcome this problem is to add a short-term-memory to the gradient update,

i.e. a momentum term [91, 174], that encourages progress along small but consistent

gradient directions. We define an intermediate variable v(i) = βv(i−1) + ∂Θ(i)g(Θ(i)) with

v(0) = 0 and replace the parameter update on line 4 of Algorithm 7 with ∆Θ(i) = −ηv.

The parameter β > 0 controls how far back the gradient memory reaches. If we set

β = 0 we are back to vanilla gradient descent, but usually we set it to a value near 1, e.g.

β = 0.99.

An additional improvement to the momentum term that works optimal for convex

problems [163], but also works very well for network optimization [226] is the Nesterov

accelerated gradient. The core idea is that we already have an estimate of the next

parameter vector through the momentum term. Hence, we can look ahead for the gradient

update on line 3 of Algorithm 7 by evaluating ∂Θ(i)g(Θ(i) − βv(i−1)). Hence, the running

sum of the momentum term becomes v(i) = βv(i−1) +∂Θ(i)g(Θ(i)−βv(i−1)). In the normal

momentum algorithm, we first make a step in the direction of the current gradient estimate

2.3. Deep Learning 41

and add a big step in the momentum direction. In contrast, in the Nesterov gradient, we

make first a big step in the momentum direction and then add a correction step to this

extrapolated direction. Note that this is very similar to Algorithm 2 with the difference

in the step sizes and the stochasticity for network training.

The methods presented so far use a global learning rate for all components of the pa-

rameter vector Θ. However, there is progress towards methods that compute an adaptive

learning rate per component, and therefore, try to reduce the burden of learning rate op-

timization. One of the first methods proposed to adapt a different learning rate to each

component of Θ is Adagrad [57]. The core idea is to reduce the effective learning rate

for components that have a large gradient and increase it for components with a small

gradient. Therefore, we keep a running sum of the squared gradients in Adagrad, i.e.

r(i) = r(i−1) +∂Θ(i)g(Θ(i))�∂Θ(i)g(Θ(i)), where � denotes the component-wise multiplica-

tion and r(0) = 0. Then, the parameter update on line 4 of Algorithm 7 is replaced with

∆Θ(i) = −η ∂Θ(i)g(Θ
(i))

√
r(i)+ε

, where the fraction and square root are component-wise and ε is a

small constant to prevent divisions by 0, e.g. ε = 10−6.

The downside of Adagrad is the monotonic decrease of the learning rate, due to the

running sum of the gradients. This decrease is often too aggressive to train deep networks.

A way to counter this behavior is proposed in RMSProp [237].Instead of using a straight-

forward sum of squared gradients to normalize the gradients, we can use an exponentially

decaying average of the form r(i) = βr(i−1) + (1 − β)∂Θ(i)g(Θ(i)) � ∂Θ(i)g(Θ(i)), with β

typically set to 0.99.

Finally, one can combine the momentum idea with the adaptive learning rate of RM-

SProp. This is the intuition behind Adam [128]. In Adam, we compute the first and

second moments of the running gradient, i.e. v(i) = β1v
(i−1) + (1 − β1)∂Θ(i)g(Θ(i)) and

r(i) = β2r
(i−1) + (1 − β2)∂Θ(i)g(Θ(i)) � ∂Θ(i)g(Θ(i)), where the authors propose β1 = 0.9

and β2 = 0.999 as default values. The initial values v0 and r0 are set to 0, but this

might introduce a bias. To counteract this bias, both moments are bias corrected by

ṽ(i) = v(i)

1−β1 and r̃(i) = r(i)

1−β2 . Then, the update rule on line 4 of Algorithm 7 becomes

∆Θ(i) = −η ṽ(i)
√

r̃(i)+ε
. Although Adam requires twice the memory for the gradient update,

it is currently recommended as the default algorithm for network optimization.

Second-Order Optimization Methods In principle we could also use second-order

methods for network optimization, i.e. using second-order information of g(Θ). This could

be achieved by explicitly computing the Hessian matrix of g(Θ) in each iteration as it is

done in Newton’s method. However, this would require computing and storing a large

matrix for each parameter update, e.g. for a deep network with 106 parameters it would

require to store a matrix with 1012 values, assuming a float with 4byte we would need

4 terabytes to store the Hessian. Even if we would use a method like L-BFGS [145]

that approximates the inverse Hessian and never explicitly computes it, it still has to be

computed over the entire training dataset. However, this could consist of several million

42 Chapter 2. Convex Optimization in Imaging and Deep Learning

training pairs and using L-BFGS in a stochastic setting is not trivial. Therefore, it is

currently common practice to use first-order methods for network optimization.

Initialization A final important aspect of network optimization is the initialization of

the network parameters Θ(0). As already discussed, the loss surface of neural networks is

non-convex. Hence, it may converge to different local minimas depending on the initial

choice of the Θ(0) and different local minimas might have drastically different loss values.

First, we should keep in mind what are really bad initializations. Of course setting

Θ(0) = 0 is not a good idea, especially for vanilla feed-forward neural networks. The

network output would be always 0, and no gradient information could flow through the

network. However, setting Θ(0) = c to any constant c is also not advised. This would

lead to the effect that every unit in the same computational node would compute the

same output and therefore, would receive the same gradient for the parameter update. In

general, we want to avoid any symmetry in the initialization

A simple approach to break the symmetry of the units with high probability is setting

them randomly according to some probability distribution. A common choice is to sample

them from a normal distribution N (µ, σ2) with µ = 0 and a small standard deviation,

e.g. σ = 0.01. However, a drawback with this parameter initialization scheme is that the

variance of the unit output grows with the number of inputs.

This can be circumvented by normalizing the initialization by the number of inputs

for each output unit. Such an approach has already been proposed in [137], where the

parameters are initialized by a uniform distribution of the form U(−
√

3
nin
,
√

3
nin

), where

nin is the number of inputs of the output unit for a given weight. A similar initialization

scheme has also been proposed by [89], where the also consider the number of output units

nout. According to their scheme the weights are initialized by sampling fromN (0, 2
nin+nout

).

A specific initialization for units followed by ReLUs as activation function is derived

in [103]. They propose to initialize the weight parameters by sampling fromN (0, 2
nin

). This

scheme provides a unit variance of the output units after a ReLU activation, independent

of the number of input units. It is currently the most widely used scheme to initialize

Θ(0).

Finally, it is also possible to ensure the orthogonality of the weights by first initializing

the weights randomly according to a scheme above and perform afterward a singular-value

decomposition or QR decomposition [202].

2.3.4 Backpropagation

In the last section, we have discussed several methods that can be used to optimize net-

works given that the (sub-)gradient of the network can be computed. The question this

section is concerned is how do we compute ∂Θg(Θ)? We will introduce two techniques:

The numeric gradient computation, and the analytic gradient computation.

2.3. Deep Learning 43

f4(x;w)
= wx

f3(x1, x2)
= x1 + x2

f2(x;w)
= wx

f1(x;w)
= wx

s

w1 w2

w3

x
x

w
w

w

x1

x2

x

f(s;Θ)

(a)

∂L
∂f4

∂L
∂f3

∂L
∂f2

∂L
∂f1

∂L
∂s

∂L
∂w1

∂L
∂w2

∂L
∂w3

∂f1
∂x = w

∂f2
∂x = w

∂f1
∂w = x

∂f2
∂w = x

∂f4
∂w = x

∂f3
∂x1

= 1

∂f3
∂x2

= 1

∂f4
∂x = w

∂L
∂f4

(b)

Figure 2.13: Computational graph of the function f(s, θ) = w3(w1s + w2s) in (a) and its cor-
responding differential graph in (b). Light orange circles, dark orange squares and red squares
denote computation nodes, parameters, and inputs, respectively.

Numeric Gradient Computation A simple way to compute the (sub-)gradient

∂Θg(Θ) is by finite differences. If we look back at the definition of the differential

operation in Equation (2.26) we can approximate each component of ∂Θg(Θ) by

∂Θig(Θ) ≈ g(Θ + εei)− g(Θ)

ε
, (2.116)

where ei is the unit vector with the component at i equal to 1 and all others being 0, and

ε is a small value. Recall, if ε→∞ we are back at the exact differential. Using the Taylor

expansion we can derive that the error of this approximation decreases linearly in ε, i.e.∣∣∣g(Θ+εei)−g(Θ)
ε − ∂Θig(Θ)i

∣∣∣ = O(ε). We can improve this approximation by using central

differences

∂Θig(Θ) ≈ g(Θ + εei)− g(Θ− εei)
2ε

. (2.117)

By using central differences the error of the gradient approximation decreases by O(ε2).

The huge drawback of the numeric approach is that we have to evaluate g(Θ) once,

or twice for a single component update. Therefore, it scales linearly with the number of

parameters of the network. For modern architectures with millions of parameters this is

not feasible to compute, even for a single computation of ∂Θg(Θ). However, due to its

simplicity and its easy implementation, it is still a great tool for debugging.

Analytic Gradient Computation Computing the (sub-)gradient numerically is easy

to implement, but is only an approximation and slow in practice. The second way to

44 Chapter 2. Convex Optimization in Imaging and Deep Learning

compute the (sub-)gradient of g(Θ) is analytically by utilizing basic Calculus. In fact, as

the network is only a composite of various functions, we just have to recursively apply the

chain rule. This yields the famous Backpropagation algorithm for network training [199],

which has its roots in automatic differentiation [143, 144].

Before we will introduce the Backpropagation algorithm in more detail, we shall gen-

eralize the notation of neural networks. So far, we have denoted a feed-forward neural

network as a list of successive parametrized basis functions. However, it makes sense to

think about more general neural networks as computational graphs, where inputs s and

parameters Θ flow through a directed acyclic graph (DAG) to compute an output f(s; Θ).

To illustrate this concept, let us have a look at the example f(s, θ) = w3(w1s+ w2s).

This corresponds to the computational graph depicted in Figure 2.13a. Given that we

evaluated a loss function L(f(s, θ), t), the partial derivative of this loss function with re-

spect to the parameter w1 is ∂L
∂w1

= ∂L
∂f4

∂f4
∂f3

∂f3
∂f1

∂f1
∂w1

according to the chain rule. Similarly,

the partial derivative of the loss function with respect to w2 is ∂L
∂w2

= ∂L
∂f4

∂f4
∂f3

∂f3
∂f2

∂f2
∂w2

. We

observe that the term ∂L
∂f4

∂f4
∂f3

is common in both partial derivatives. Hence, to compute
∂L
∂w1

and ∂L
∂w2

we only need to evaluate ∂L
∂f4

∂f4
∂f3

once. This is the key behind the Backprop-

agation algorithm. We can build a backward graph that can be efficiently evaluated. See

Figure 2.13b for the backward graph of the given example. A simple breadth-first search

algorithm can be used on this graph to compute the derivatives of all parameters.

This approach is also called reverse-mode differentiation, in contrast to forward-mode

differentiation. The price we have to pay for the computational efficiency is memory

consumption. We have to keep all intermediated results of the forward pass in memory.

In both cases, we have to compute the (sub-)gradient of the individual functions of the

composite. However, the basic building blocks of neural networks are rather simple and

the (sub-)gradient can be quickly computed. For example, for the in Section 2.3.2 intro-

duced activation functions we have the following (sub-)gradients: For the sigmoid function

σ(s)i = (1 + exp(−si))−1 the gradient is ∂σ
∂si

= σ(si)(1 − σ(si)), for the tangens hyper-

bolicus σ(s)i = tanh(si) the gradient is ∂σ
∂si

= 4
(exp(−si)+exp(si))2

, and of the rectified linear

unit σ(s)i = max(0, si) the sub-gradient is ∂σ
∂si

= [si > 0]. Finally, for the parametriza-

tion f(x; W,b) = Wx + b with W ∈ RM×N and x,b ∈ RN the partial derivatives are
∂f
∂wi,j

= xj ,
∂f
∂xj

=
∑M

i=1wij , and ∂f
∂bj

= 1.

2.3.5 Convolutional Networks

In the last few sections, we introduced feed-forward neural networks, generalized them to

parametrized computational graphs, showed how backpropagation can be used on these

graphs to efficiently compute derivatives, which then can be used in adaptive optimization

algorithms to learn the parameters. Further, we described non-linear activation functions

that together with the parametrized affine transformation can approximate non-linear

functions. Indeed, it has been proven in [46, 140] that a feed-forward neural network with

two parametrized basis functions and sufficient many units can arbitrary approximate any

2.3. Deep Learning 45

I

W ∗ I

(a) Example of a convolution operation on
a 2D input with C = 3. The different colors
indicate the evaluation of the weight kernel
on different spatial locations.

I

(b) Example of a pooling operation on a 2D
input with C = 3. The different colors in-
dicate the different non-overlapping pooling
regions.

Figure 2.14: Convolution and pooling operation.

continuous function on a closed and bounded subset of RN . Hence, neural networks are

also called universal approximators.

The theorem provides us the nice property that neural networks can represent arbitrary

functions, but does not state that we are actually able to learn them from data. First of all,

an optimization algorithm might get stuck in a poor local minimum, or the network over-

fits the training data. Further, the theorem does not state how many units we actually

need. Finally, we know that the human brain uses a deep hierarchy of neurons to process

information.

In fact, the seminal work of Hubel and Wiesel [112, 113, 114] inspired one of the

currently most successful methods in computer vision, the convolutional network [136,

137], also known as convolutional neural network (CNN), or ConvNet. Hubel and Wiesel

discovered the existence of a hierarchy within the primary visual cortex where simple

cells respond to oriented edges at specific locations, and complex cells respond to oriented

edges but have a degree of spatial invariance. Similarly, a convolutional network utilizes

the principles of sparse interactions, parameter sharing, and equivariant representation,

as well as spatial invariance by introducing convolution and pooling operations into the

network graph.

Convolution Operation The convolution is a well-understood operation in signal pro-

cessing. Given two discrete functions f and g it is defined as the following sum of point-wise

multiplications

(f ? g)(n) =

∞∑
m=−∞

f(m)g(m− n) =

∞∑
m=−∞

f(m− n)g(m) , (2.118)

46 Chapter 2. Convex Optimization in Imaging and Deep Learning

where the n and m are integers. If we know that g has a bounded support, e.g. it is

g(n) 6= 0 for n ∈ {M, · · · , N}, then we can rewrite the equation as

(f ? g)(n) =
∑

m∈supp(g)

f(m− n)g(m) . (2.119)

Similarly, we can define the cross-correlation between two discrete functions f and g as

(f ∗ g)(n) =
∑

m∈supp(g)

f(m+ n)g(m) . (2.120)

In the literature of convolutional networks the convolutional usually refers to what is in

fact a cross-correlation. We will follow this notation also in this thesis to reduce confusion.

We can now further extend this definition of the convolution two 2D. Let I be a

tensor of RH×W×C , e.g. a color image of height H, width W and C = 3 color channels.

Additionally, W is a weight kernel of RKH×KW×C . Then, the 2D convolution operation

f(I; W) over C channels is given by

f(I; W)h,w =
C∑
c=1

KH∑
kh=1

Kw∑
kw=1

Wkh,kw,cIh′,w′,c , (2.121)

with h′ = h−kh+ bKH2 c and w′ = w−kw + bKW2 c. We also define Ih,w,c = 0 for h /∈ [1, H]

and w /∈ [1,W] to handle the border cases. The convolutional can now be understood as

applying the same learnable filter to all spatial locations of I. A visual example of this

concept is depicted in Figure 2.14a. Note that we can write the convolution operation

also as a matrix-vector multiplication of the form f̂(I; W) = Ŵx, where I is vectorized

as x = (0, · · · , 0, I1,1,1, I1,1,2, · · · , Ii,j,c, · · · , IH,W,C , 0, · · · , 0)T 2 and Ŵ is a Toeplitz matrix

of the following form

Ŵ =

W1,1,1 · · · W1,1,C W1,2,1 · · · WKH ,KW ,C 0 0 · · · 0

0 W1,1,1 · · · W1,1,CW1,2,1 · · · WKH ,KW ,C 0 · · · 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 · · · 0 W1,1,1 · · · W1,1,C W1,2,1 · · · WKH ,KW ,C 0

0 0 · · · 0 W1,1,1 · · · W1,1,C W1,2,1 · · · WKH ,KW ,C

 .

(2.122)

Given this form we can already utilize it in the computational graph introduced in the

last section. Further, from this Toeplitz matrix representation we can also observe the key

properties of this operation. First, units are sparsely connected: Each output unit is only

connected to KH ·KW · C units of the input, instead of interacting with each input unit.

This follows the principle of locality, i.e. it allows us to detect local features such us edges

2Adding the zeros to handle the border.

2.3. Deep Learning 47

and corners. Further, it drastically improves the performance. Another related property

is the sharing of parameters. The same set of filter parameters are used to compute the

output on different locations. Therefore, the weights receive more gradient information

from the backward pass and it reduces the storage requirements of the model. Finally,

the model is equivariant, i.e. if the input changes the output changes in the same way.

For example, if we translate the input of the convolution operator, then also the output

is translated by the same amount.

The formulation of the convolution operation as a matrix product further enables the

simple definition of another heavily used operation, the transposed convolution also known

as deconvolution operation in the context of deep learning. As the name suggests it is

defined as f̂(I; W) = ŴTx and in principle exchanges the forward and the backward pass

of the two operations. This is especially interesting in the context of strided convolutions,

where the loop variables of Equation (2.121) are incremented by an integer factor >1.

In that case, the convolution operation decreases the spatial size of the output by the

striding factor. Conversely, for the transposed convolution operation increases the spatial

resolution of the output by the striding factor.

Pooling Operation Another important operation in convolutional networks is pool-

ing. It allows us to make a convolutional network to some degree translation invariant.

Hence, we care more about that a certain feature is present than exactly localizing it.

The operation is again defined on a local neighborhood on which we compute summary

statistics. The output for this local neighborhood is then this statistics and if we compute

it in non-overlapping regions, the effective spatial resolution is decreased.

A common setting is to down-sample the input by a factor of 2. Therefore, we use

a 2 × 2 neighborhood that is shifted by 2 pixels. See Figure 2.14b for a visualization of

this example. In general, let us call the neighborhood size PH × PW and the shift, also

called stride, SH and SW , respectively. Then we define the average-pooling avg pool and

max-pooling max pool as

avg pool(I)h,w,c =
1

PHPW

PH∑
ph=1

PW∑
pw=1

I(h−1)·SH+ph,(w−1)·SW+pw,c (2.123)

max pool(I)h,w,c = max
1≤ph≤PH ,1≤pw≤Pw

I(h−1)·SH+ph,(w−1)·SW+pw,c . (2.124)

Despite the invariance to small translation, pooling has two additional benefits if in-

corporated into the network graph. First, subsequent operations are performed on an

intermediate representation of reduced resolution. Hence, those operations will require

less memory and computational time, making the overall network faster to train and eval-

uate. Second, it increases the receptive field of subsequent convolutional operations. If

we would apply only a list of convolutional operations, then the receptive field would only

grow linearly. However, after a pooling operation that halves the resolution, the effective

receptive field of the following convolutions is doubled with respect to the input.

48 Chapter 2. Convex Optimization in Imaging and Deep Learning

2.3.6 Losses and Regularization

In this last chapter we will discuss some choices for the loss function L and network

regularization Γ of the empirical risk function, see Equation (2.100).

Loss In the examples from the previous sections, we have already introduced and used

the squared differences, also known as Euclidean loss. The loss is usually used for regression

tasks, i.e. estimating continuous values, and is the maximum likelihood estimator assuming

Gaussian noise [13]. However, in practice, the estimates of models trained with this loss

tend to regress towards the mean. Therefore, we will often use an `p-norm with p < 2,

most commonly the `1-norm, which can be defined as

L`1(f(s), t) =
N∑
i=1

|f(s)i − ti| = ‖f(s)− t‖1 . (2.125)

The gradient of the Euclidean loss function with respect to the input is simply given as the

difference between estimate and target, i.e. s− t. In contrast, the gradient of the `1-loss

function is [|xi| 6= 0] xi|xi| . Therefore, the gradient is −1, or 1 if the estimate and target

differ, independently on how much they differ. This makes this loss robust to outliers. A

compromise between squared differences and the `1-norm as loss function is utilizing the

Huber norm as introduced in Equation (2.20). This loss function is also robust to outliers,

but additionally, treats differences between estimate and target different in the ε interval.

If the task at hand is not a regression problem, then we have other choices for the loss

function. For two-class classification, we can utilize the cross-entropy loss. Assume that

the output of a network is ok for a sample sk and is further in the interval of [0, 1]. It

can, therefore, be interpreted as a probability output. This can be achieved by using a

sigmoid activation function on the output. Additionally, we have for each sample a target

tk ∈ {0, 1}. Then we can write the likelihood function using a Bernoulli distribution as

p(t1, · · · , tK |Θ) =
K∏
k=1

otkk (1− ok)1−tk , (2.126)

that we want to maximize. Taking the negative logarithm

− ln p(t1, · · · , tK |Θ) = −
K∑
k=1

tkok + (1− tk)(1− ok) , (2.127)

we derive the cross-entropy loss function LBCE for independent binary distributed outputs

LBCE(f(s), t) = −
N∑
i=1

tif(s)i + (1− ti)(1− f(s)i) . (2.128)

2.3. Deep Learning 49

Similarly, we can define a cross-entropy loss for multi-class classification. First, we

assume that the output of the network is a valid probability distribution, i.e. f(sk) ∈ [0, 1]

and
∑N

i=1 f(sk)i = 1. This can be achieved by using a softmax function softmax(x) as the

output activation function

softmax(x) =
exp(xi)∑N
j=1 exp(xj)

. (2.129)

Additionally, we assume that the target vectors are probability vectors. Then, we can

write the likelihood function as

p(t1, · · · , tK |Θ) =

K∏
k=1

N∏
i=1

f(sk)
tk,i
i . (2.130)

If we take the negative logarithm we derive

− ln p(t1, · · · , tK |Θ) = −
K∑
k=1

N∑
i=1

tk,i ln f(sk)i . (2.131)

From this we obtain the cross-entropy loss function for multi-class classification LMCE as

LMCE(f(s), t) = −
N∑
i=1

ti ln f(s)i . (2.132)

Regularization So far we have totally neglected the regularization term Γ in Equa-

tion (2.100). However, this term plays a crucial role to reduce over-fitting and therefore,

minimizing the generalization error. We will now review a few strategies for the regular-

ization of deep networks.

One simple way to constrain the model complexity of neural networks is to restrict the

value range of its parameters Θ. If we assume a zero-mean Gaussian prior on the model

parameters [13], then we can derive the squared `2 penalty

Γ(Θ) = λ ‖Θ‖22 , (2.133)

where λ is a trade-off parameter with respect to the empirical loss over the training dataset

and related to the standard deviation of the Gaussian prior. This regularization term is

also known as weight decay, as it pushes the individual weight parameters towards zero.

A similar effect can be obtained with different norms. If we would instead add an `1-norm

on the parameters

Γ`1(Θ) = λ ‖Θ‖1 , (2.134)

it would push some weight parameters towards zero, but not all. Hence, the parameters

would become sparse.

50 Chapter 2. Convex Optimization in Imaging and Deep Learning

Another common technique to prevent over-fitting, that is not restricted to neural

networks, is dataset augmentation. A machine learning model will generalize better if

more training data is available. However, training data is limited as it is often cumbersome

to acquire large amounts of labeled data. A trick is therefore to augment the existing

training data. For image data, this can include flipping and rotation of the images, or

even slightly alter the colors via principal component analysis [132]. Those augmentations

are dependent on the task, and one has to take care that the augmentations do not mess

with the targets, e.g. rotating and flipping might produce different target labels. Also, the

injection of small noise on the input [218] can be used to augment the training dataset.

If we train a large network, we often observe that the training error steadily decreases

with the number of iterations. However, if we also monitor an additional error on some

hold-out validation set, which the model never sees during training, we normally notice

that this error decreases up to a certain point and increases then again. This is the

point at which the network starts to over-fit to the training data. If we have access to

such a validation set, we can stop the training at the point, where the validation error

does not further decrease and take the parameters with the lowest validation error. This

regularization technique is called early stopping. It can be seen as a regularization on the

number of iteration steps, which is in fact also a hyper-parameter.

A quite recent technique to prevent over-fitting in deep networks is Dropout [105, 223].

The intuition behind this method is to train an ensemble of networks, like bagging [21]

in random forests [23]. An ensemble of classifiers, where each classifier is trained on a

subset of the training data typically improves the generalization performance. However,

it comes with the cost of expensive training of several networks for one task. The trick

in Dropout is to train an exponential number of networks by randomly dropping units,

i.e. set their output to zero. For example, if we have an operation like f(x; W) = Wx in

our network graph and call the output y, then to apply Dropout we multiply y point-wise

with a Bernoulli distributed random vector b, i.e. p(bi = 0) = 1 − p(bi = 1). We call

p(bi = 0) the Dropout probability and it is usually set around 0.5. In classic bagging, we

would then evaluate all models and compute the arithmetic mean to form a prediction.

This is not feasible with the exponential number of implicit models that were trained with

Dropout. Instead, we approximate the geometric mean by evaluating the model only once

with all units, but scaling all weights by the probability that the corresponding unit has

been dropped during training, i.e. p(bi = 0). Another interpretation of the weight scaling

is that all units get the same expected total input during training and evaluation.

All the presented regularization methods are not mutually exclusive. In fact, most of

these regularization techniques are used simultaneously in modern deep network optimiza-

tion.

2.4. Summary 51

2.4 Summary

In Section 2.1 of this chapter we first introduced the basic notation and definitions that

we will use throughout this thesis. This included normed and metric vector spaces and

the operations defined on these spaces. Further, we defined the differential operator and

its discretization on the 2D image space.

Those basics were necessary to give an self-contained presentation on convex optimiza-

tion in Section 2.2 and its use in image processing in Section 2.2.3. Convex functions are

a special class of functions with the nice property that each local minimum is a global

minimum. This means that the optimization procedure cannot get stuck in a poor local

minimum. Further, we have shown the optimal convergence rates of convex optimiza-

tion schemes for smooth and non-smooth problems and stated concrete algorithms that

achieve those rates. In low-level image processing, convex optimization can be utilized for

efficiently solving variational energy functionals. In this chapter, we showed the applica-

tion to denoising problems as we will rely on this formulation in the next chapter on depth

super-resolution.

Finally, we introduced the field of supervised machine learning in Section 2.3 with an

emphasize on deep learning. As the title of this thesis suggests, those topics are at the

core of this work. In supervised machine learning, we assume that we have given a set of

training examples with inputs and target outputs. The goal is then to find a function that

can map previously unseen inputs to the target outputs. As we have shown, this is a non-

trivial problem, where we have to deal with over- and under-fitting. However, one very

successful class of methods are based on deep learning, e.g. learning deep artificial neural

networks. We demonstrated the basic building blocks of deep networks as a non-linear

generalization of linear regression. Further, we showed the section the extension to deep

convolutional networks and how those can be optimized by stochastic gradient descent.

The last topic was devoted to the regularization of deep networks.

CHAPTER 3

Deep Learning for 2.5D

Contents

3.1 Introduction . 53

3.2 Related Work . 56

3.3 Deep Learning Meets Variational Methods 61

3.4 Evaluation . 70

3.5 Summary & Discussion . 99

The perception of depth or 2.5D information is important for a wide range of com-

puter vision applications. However, due to physical constraints and the small package size

required for mobile applications, depth sensors like the ones based on the Time-of-Flight

principle have a low lateral resolution and are affected by high acquisition noise. Based on

the techniques presented in the last chapter, we will introduce novel methods that com-

bine traditional variational approaches with modern deep learning to increase the lateral

resolution and the quality of depth maps.

3.1 Introduction

The perception of depth is a valuable clue for humans and animals to form an idea of

distances and sizes. It helps them to safely navigate the world and avoiding dangers.

This is one of the reasons why computing depth information is a fundamental problem in

computer vision. The traditional approach is stereo: Given two images and the parameters

of the camera set-up, i.e. rotation and translation between the two camera viewpoints, as

well as the intrinsic parameters of the camera, we first find correspondences in the two

images and then triangulate those points to infer depth. The crucial part is finding the

53

54 Chapter 3. Deep Learning for 2.5D

correspondences in the two images which relies on textured regions and is time-consuming

in a dense setting.

However, the problem can be simplified with active stereo approaches by projection

additional information into the scene. One set-up to get high accuracy depth maps is by

using structured light [206]. A beamer sequentially projects vertical and horizontal stripes

with different sizes into the scene, which are then utilized as features to ease the corre-

spondence problem. A faster approach is to project only one random speckle pattern and

utilize it in the matching as done in the Kinect [217]. Although these approaches enable a

more accurate and faster depth acquisition, they still rely on searching correspondences.

Depth sensors that avoid this completely are based on the Time-of-Flight principle, i.e.

measuring the time difference between emitting a modulated light beam and receiving it

on a sensor by computing the phase shift [99].

In the last decade depth sensors that are based on the latter two principles have been

introduced to the mass market, e.g. Microsoft Kinect V2, Intel DepthSense, Creative

Senz3D, or PMD Flexx. This elevated research towards the development of different

applications that are based on this 2.5D information. Those active sensors enabled novel

computer vision applications such as robot navigation [2], human pose estimation [87,

216, 243], and hand pose estimation [168, 167, 182, 230, 244]. Not only are those sensors

comparable cheap, but they are also available in small package sizes and have low energy

consumption. This makes them very attractive for mobile applications, such as the Google

Tango project1. However, current sensors are limited by physical and manufacturing

constraints. Hence, depth map outputs are affected by degenerations due to acquisition

noise, quantization, and missing values, and typically have a low lateral resolution. Even

very recent Time-of-Flight sensors, such as the PMD Flexx, or PMD Monstar have only

a resolution of 224×171 pixels and 352×287 pixels, respectively2.

The task of computing a high-resolution image from a low-resolution input is known as

the super-resolution problem in computer vision. If we denote the high-resolution image

as d(hr) and the low-resolution image as d(lr), then we can relate those two quantities the

image formation process

d(lr) = f(d(hr)) + n(d(hr)) , (3.1)

where f describes the transformation from high-resolution space to low-resolution space.

This includes a blur, as well as a down-sampling operation. Further, n describes the noise

that is inherent of the acquisition process. If we assume a constant blur kernel and that

the noise is independent of the image, then we can rewrite the equation in the following

linear form

d(lr) = DBd(lr) + n , (3.2)

1https://get.google.com/tango, last accessed on October 26, 2017
2http://pmdtec.com/picofamily, last accessed on October 26, 2017

https://get.google.com/tango
http://pmdtec.com/picofamily

3.1. Introduction 55

(a) Network Output (b) Network Output Post-Processed

Figure 3.1: (a) A deep convolutional network is already able to produce very accurate depth map
estimates for an up-sampling factor of ×4. (b) Post-processing the network output by optimizing an
appropriate energy functional further smooths the output. Left images show the depth estimates,
right images the differences to the ground-truth.

where B is the blur matrix and D the down-sampling matrix. In this linear form, it can

be easily observed that the problem is inherently ill-posed, as one low-resolution image

can map to several high-resolution images.

The traditional approach to solve such problems is to regularize the solution space by

incorporating prior knowledge [73, 232, 250]. In the domain of depth maps an additional

data source is often utilized to constrain the solution space: Several of the available depth

sensors are accompanied by high-resolution intensity or color cameras. Hence, it is common

is to utilize this additional information from the high-resolution intensity images to guide

the super-resolution process [52, 172, 266]. These approaches build upon the observation

that depth discontinuities often occur at high-intensity variations and that homogeneous

areas in intensity images are also more likely to represent homogeneous areas in depth.

In other practical scenarios, however, the depth sensor is not always accompanied by an

additional camera. Additionally, another drawback of those methods is, that the depth

map has to be projected to the guidance image, which might be also problematic due to

noisy depth measurements. Therefore, approaches that solely rely on the depth input for

super-resolution are becoming popular [5, 70, 106].

The unguided approach to depth super-resolution bears similarities with the well-

established field of single image super-resolution for natural images, where machine learn-

ing based methods [55, 207, 240, 239] are advancing rapidly and achieve impressive re-

sults on standard benchmarks. Those methods learn a mapping from a low-resolution

input space to a plausible and visually pleasing high-resolution output space. How-

ever, while training data for natural images are abundant, this is not the case for depth

data. This might be one of the reasons why only recently a concurrent deep learning

based method [116] has been proposed for depth map super-resolution, where the au-

thors used synthetic depth maps from the Sintel dataset [26] and disparity maps from

Middlebury [205, 203] for training.

In this chapter, we present a novel method to increase the lateral resolution of the

depth maps and jointly enhance the quality of them with respect to noise and other

56 Chapter 3. Deep Learning for 2.5D

degrading influences. It builds upon the recent success of deep learning methods applied

to single image super-resolution for natural images [55, 126, 152]. We demonstrate how

deep convolutional networks can be used for single depth map super-resolution and how

the networks can be extended to incorporate high-resolution intensity images as additional

guidance. However, in contrast to natural images, depth maps contain no textures and

can be well characterized by affine surfaces with sharp depth discontinuities. This prior

knowledge about depth maps can be formulated in an energy functional. In Figure 3.1

we show how the minimizer of such an energy functional can further improve the already

good result of a deep network. We show in this chapter, how the optimization scheme can

be incorporated into a deep network and trained end-to-end, leading to superior results.

Finally, to train such deep network architectures we need sufficient training data. We

tackle this problem by generating highly realistic synthetic data in a semi-automatic way

by using a physically based renderer [119]. This enables us to produce depth maps along

with intensity images that are pixel aligned and even contain artifacts such as shading.

The remainder of this chapter is organized as follows: We present a novel method that

combines a deep fully convolutional network and a non-local primal-dual network that is

trained end-to-end in Section 3.3. Hence, we map a noisy, low-resolution depth map along

with an optional high-resolution guidance image to an accurate high-resolution estimate.

We propose a framework based on the physically based renderer to automatically generate

high-quality depth maps with corresponding color images in large quantities which are

used to train our model in Section 3.3.3. Our evaluations in Section 3.4 demonstrate the

effectiveness of our method by outperforming state-of-the-art results on a set of standard

synthetic and real-world benchmarks.

3.2 Related Work

In this section, we review the related literature on image super-resolution in general, and

on depth super-resolution in general. Additionally, we include an overview of methods

that propose to learn deep networks and energy minimization methods in an end-to-end

fashion.

3.2.1 Super-Resolution

The research area on image super-resolution can be roughly divided into two branches

regarding the input. First, there exist super-resolution methods that rely on multiple-

camera set-up, or on a video sequence [66, 213]. Those approaches mostly rely on a sub-

pixel accurate alignment of the images to infer the missing values of the high-resolution

image. However, the accurate alignment of the images is a difficult problem in itself, where

one has to deal with moving objects, occlusions and other ambiguities. The performance

degrades rapidly if the upscaling factor increases and the number of low-resolution images

is insufficient to constrain the problem. In this work, we focus on the second branch,

3.2. Related Work 57

namely single image super-resolution. Single image super-resolution methods try to recover

the high-resolution image from a single low-resolution input image. To handle the ill-posed

nature of this problem, those methods rely either on some sort of image prior or on a

mapping from low-resolution domain to high-resolution domain.

Early works on single image super-resolution utilized prior information, i.e. smoothness

assumption of natural images. Tappen et al. [232] used the observation that gradients in

natural images are sparse and can be approximated by a Laplace distribution. They

formulated a Markov random field with a Laplace distribution on the image gradients

as prior and the super-resolution is performed as inference in this graphical model. A

variational method with Huber norm as image prior was used by Unger et al. [250]. The

authors argued that the Huber norm favors strong edges, similar to the Total Variation,

but smooths over gray values.

Instead of using a fixed prior in an energy minimization framework, other approaches

rely on a mapping from low-resolution to high-resolution patches. The mapping can either

be learned or can be established by searching in a candidate set. The latter approach was

proposed by Freeman et al. [73], where the authors utilized synthetic scenes to learn a

graphical model that associates low-resolution with high-resolution patches. However,

the candidate high-resolution patches do not have to stem from an external database.

Glasner et al. [88] showed in their seminal work that the same patch often occurs on

different scales within the same image. Therefore, the authors proposed to search for

high-resolution patch candidates within the same image and used those candidates to

super-resolve the low-resolution image. This technique has been recently improved by

Huang et al. [109]. The authors proposed to extend the internal patch search space by

including affine transformation on the candidate patches. Neighbour embedding methods

are also a popular approach to single image super-resolution. Those methods assume

that the high-resolution images and its low-resolution counterparts lie on a non-linear

manifold with similar geometry. Chang et al. [31] utilized this observation by using the

Locally Linear Embedding [197] method to project the low-resolution test patches and

high-resolution training patches to a non-linear manifold. The high-resolution test patches

are then reconstructed by a weighted average of the high-resolution training patches that

are in the local neighborhood of the manifold. A drawback of this method is that the

dictionary of training patches needed for the reconstruction increases with the number of

training patches. Therefore, Yang et al. [263] proposed a sparse coding based approach

to learn a compact dictionary of sparse signal representations. The authors proposed to

jointly learn the sparse dictionaries of the low- and high-resolution patches, such that a

given low-resolution patch has a similar sparse representation as a high-resolution patch.

The learned dictionaries have a fixed size, but the reconstruction of the super-resolved

images now involves a time-consuming optimization procedure. Zeyde et al. [270] improved

upon this work by using a more efficient dictionary learning approach [1], as well as

Orthogonal Matching Pursuit [246] for the sparse coding step. The optimization step in the

sparse coding approaches is still very time-consuming. Timofte et al. [240] addressed this

58 Chapter 3. Deep Learning for 2.5D

problem by replacing the `1 norm with an `2 norm, and substituted the big single dictionary

with several smaller ones. Hence, the optimization problem can be solved in closed form,

resulting in significant speed improvements. The same authors further improved their

method in [239] yielding an even faster inference speed and better accuracy. Another

approach has been investigated by Schulter et al. [207]. The authors formulated the task

as a locally linear regression problem, where the low-resolution patches are mapped to a

regression matrix, which is then applied to yield the high-resolution patch estimate. The

mapping from low-resolution patch to regression matrix is learned by a Random Forest.

Currently, the most powerful single image super-resolution methods are based on deep

convolutional networks. Dong et al. [55] proposed one of the first deep networks for this

task. In their work, the authors also show the parallels to sparse coding approaches.

Interestingly, they showed in their experiments that a three-layer network performs better

than slightly deeper networks on this problem. Another drawback of the method is that it

requires a pre-processing step, where the low-resolution image is up-sampled via bicubic

interpolation to a so-called mid-resolution input. This problem was addressed by Shi et

al. [215] by presenting a sub-pixel convolutional network. The authors proposed to apply

two convolutional layers on the low-resolution input and a final convolution outputs ρs

feature maps, where ρ is the up-sampling factor. Then, the feature maps are combined

to form a high-resolution estimate. This operation that combines the feature maps is also

called pixel-shuffle in other works. Kim et al. [126] demonstrated how deeper networks

can be trained on this problem and significantly improved performance. A key technique

was to train on the residual output instead on the high-resolution target, whereas the

residual output is the difference between mid-resolution input and high-resolution target.

The same authors presented a concurrent technique to train deep network on the super-

resolution problem. In [127] they proposed to apply a convolutional layer recursively

and reconstructing the high-resolution image after each iteration. The final estimate is

then the average of all intermediate reconstructions. One of the currently best-performing

networks it the one by Mao et al. [152]. The authors proposed a 30 layer encoder-decoder

network, where the output encoder convolutional layers are added to the inputs of the

decoder convolutional layers.

3.2.2 Depth Super-Resolution

Similar to the related work on single image super-resolution for natural images can be

divided by the input, the same is true for depth super-resolution. The first branch of ap-

proaches uses several depth maps from various viewpoints to increase the lateral resolution

and enhance the depth quality. In contrast to natural images, the pose estimation problem

is easier given depth maps than from color images. Schuon et al. [209, 210] formulated

this fusion problem from multiple viewpoints as a Markov Random Field. Related to this

problem is the fusion of multiple depth maps in a 3D volume. Curless and Levoy [45] for-

mulated the integration of truncated signed distance functions in a predefined 3D volume

3.2. Related Work 59

to get a dense reconstruction. This approach has been extended in the seminal KinectFu-

sion work by Izadi et al. [118], where the authors track the camera viewpoint in real-time

and integrate the depth maps in such a truncated signed distance volume.

Several applications, however, need a very low latency to retrieve the enhanced depth

map, like in pose estimation tasks. For those applications, super-resolution methods that

only take a single depth map as input are more relevant. This branch of depth super-

resolution methods can be further divided into methods that use an additional high-

resolution intensity image as guidance, and methods that only use the low-resolution

depth map as input.

Guided Depth Super-Resolution Guided depth super-resolution methods use an ad-

ditional high-resolution intensity image as input, assuming that most depth sensors are

accompanied by an intensity or color camera. Those methods rely on the statistical co-

occurrence of gradients in natural images and depth discontinuities in depth maps. There-

fore, strong gradients in a high-resolution depth map most likely occur if there exists also

a gradient in the high-resolution guidance image.

One of the first works in this direction was by Diebel and Thrun [52]. They utilized

a Markov Random Field for the up-sampling task and their smoothness term is weighted

according to the gradients of the guidance image. Similarly, Kopf et al. [130] proposed a

method that leverages a joint bilateral filter [242] for the guided depth super-resolution

problem. They apply a Gaussian filter to smooth the up-sampled depth map, whereas

the filter is dependent on the additional high-resolution intensity image such that the

smoothing does not blur over edges. Yang et al. [266] also proposed an approach based on

a bilateral filter that is iteratively applied to estimate a high-resolution output depth map.

An additional guided filter for the guided depth super-resolution problem was proposed by

Shen et al. [214], where they take the mutual structure of the intensity image and depth

map into account to avoid false depth edges. Park et al. [172] presented a least-squares-

based method that incorporates an edge-aware weighting schemes in the regularization

term of their formulation. A variational formulation for guided depth super-resolution was

proposed by Ferstl et al. [67]. The low-resolution depth map is up-sampled to produce a

sparse high-resolution depth map and then interpolated using a weighted Total Generalized

Variation prior [20]. Yang et al. [264] showed that auto-regressive models can be efficiently

applied to this problem. The bilateral solver proposed by Barron and Poole [9] is a

generalization of the bilateral filter. The authors showed that it can be implemented very

efficiently while producing comparable results on this task.

Unguided Depth Super-Resolution Recently, there is an increased interest in depth

super-resolution methods that do not rely on an additional high-resolution guidance im-

age. Those methods share a lot of similarities with single image super-resolution methods

for natural images. They either rely on an external database to search for candidate

patches [5], search similar high-resolution patches within the depth map itself [106], or

learn a mapping from low- to high-resolution depth maps [70, 116, 134].

60 Chapter 3. Deep Learning for 2.5D

Aodha et al. [5] formulated a Markov Random Field framework similar to [73] by

using an external database to search candidate high-resolution patches. Additionally,

they introduced a depth normalization step that smoothes the overlap between estimated

high-resolution patches. Instead of an external database, Hornáček et al. [106] searched

for high-resolution patch candidates within the low-resolution depth map in the spirit

of [88]. Further, the patch candidates are not simply searched as 2D image patches, but

as patches containing 3D points that can be translated and rotated in 3D. Ferstl et al. [70]

introduced a learning-based approach to depth super-resolution. The authors used sparse

coding with dictionaries trained on the 31 synthetic depth maps of [5] to predict the depth

discontinuities in the high-resolution domain from the low-resolution depth data. Those

edge estimates are then used in an anisotropic diffusion tensor of their regularization term

within a variational framework. A direct mapping from low- to high-resolution depth

patches was trained by Kwon et al. [134]. They trained a multi-scale sparse coding ap-

proach to up-sample the low-resolution depth map step-wise, whereas the training data

was obtained by recording scenes with KinectFusion [118]. Hui et al. [116] trained a con-

volutional network on this problem. They used the small number of Middlebury disparity

maps [205, 203] and synthetic depth maps from the Sintel dataset [26] as ground-truth.

3.2.3 Joint Network Training and Energy Minimization

Energy minimization methods, such as Markov Random Fields, or variational methods

as described in Section 2.2.3 have a wide range of applications in computer vision. Even

for deep convolutional networks, those energy minimization based methods are a popular

post-processing tool, e.g. for semantic segmentation [34], or stereo [269]. Simply put, they

consist of unary terms, for example, the class likelihood of a pixel for semantic segmenta-

tion, or the depth value in depth super-resolution, and pairwise terms, which encourage

the smoothness between neighboring pixels. Recently, the integration of those models

into deep networks gained a lot of attention, as deep networks jointly trained with en-

ergy minimization methods achieve excellent results. For example, Tompson et al. [243]

proposed the joint training of a convolutional network and a Markov Random Field for

human pose estimation. The Markov Random Field is realized by very large convolutional

filters to model the pairwise interactions between joints and can be interpreted as one iter-

ation of loopy belief propagation. Baltrušaitis et al. [7] used a perceptron to parametrize

the potential of a Gaussian Random Field which is used as patch-expert in subsequent

applications. Given the simple Gaussian form of the Random Field, the single-layer net-

work can be learned by gradient-based log-likelihood maximization. In [36, 211, 261] the

authors showed how to compute the derivative with respect to the mean field approxi-

mation [131] in Markov Random Fields. This allows end-to-end learning and improves

results for instance in semantic segmentation. Similarly, Zheng et al. [273] showed that

the computation steps of the mean field approximation can be modeled by operations of

a convolutional network and unrolled those iterations on top of their network. The latter

3.3. Deep Learning Meets Variational Methods 61

approach is very related to automatic differentiation with reverse accumulation [144, 143],

where the Backpropagation algorithm [199] presented in Section 2.3.4 is a special case of.

Prior to the deep learning area Tappen [231] and Domke [53, 54] proposed an automatic

differentiation method to learn the model parameters of a Markov Random Field for Mean

Field and Tree-Reweighted Belief Propagation.

While the latter approaches are designed for a discrete label space, the variational

approach by Ranftl and Pock [177] has a continuous output space. They showed that

the gradient of a loss function can be backpropagated through the energy functional of

a variational method by implicit differentiation, given that functional is smooth enough.

Recently, Ochs et al. [169, 170] proposed a technique that enables the backpropagation

through non-smooth energy functionals. The method is also very related to automatic

differentiation, with the contrast that the optimization algorithm of the variational energy

functional can be smoothed using Bregman proximity functions [28]. This allows a memory

efficient implementation of the gradient computations.

3.2.4 Datasets with Ground-Truth Depth

An important factor to train deep networks is the amount of training data with annotated

ground-truth. For methods that tackle low-level vision problems on natural images such

as presented in Section 3.2.1, training data can be easily obtained. High-quality images

that can serve as ground-truth are massively available on the internet, and the input data

is then generated by applying the easier forward problem, i.e. down-sample the image.

This is unfortunately not the case for depth images. While there exist also datasets that

contain depth along color images such as the NYU Depth Dataset v2 [219], SceneNN [108],

or the KITTI dataset [79, 80], the depth data in those datasets is mainly used to serve as

auxiliary input for other tasks and can not be used as ground-truth because it is either

too noisy, or too sparse. However, there appeared also large synthetic datasets recently

for the same tasks [76, 96, 155, 195] that might be interesting for training.

3.3 Deep Learning Meets Variational Methods

In this section we formulate the depth super-resolution problem as supervised learning

task. As described in Section 2.3.1 we assume that we have given a training dataset

D = {(sk, tk)}Kk=1 with K training samples. A sample sk consists either of a single low-

resolution depth map sk = d
(lr)
k , or a low-resolution depth map in combination with an

associated high-resolution guidance image, sk = (d
(lr)
k ,gk). The targets correspond to the

high-resolution depth maps, i.e. tk = d
(hr)
k . The goal of the supervised learning problem

is then to find a function f∗ ∈ F that minimizes the empirical loss

f∗ = arg min
f∈F

1

|D|
K∑

(sk,tk)∈D

L(f(sk), tk) , (3.3)

62 Chapter 3. Deep Learning for 2.5D

where L is a suitable loss function that penalizes deviates of the high-resolution depth

estimate f(sk) from the ground-truth target tk. We could apply the deep learning tech-

niques described at length in Section 2.3. However, as described in the introduction of

this chapter and shown in Figure 3.1 a simple variational method could further improve

the network’s estimate. More specifically, assume that u∗k is the minimizer of a variational

functional

u∗ = arg min
u

Γ(u) + λΨ(u, f∗(s)) , (3.4)

with a proper regularization term Γ(·) and data term Ψ(·, ·). Then, we can observe that

L(u∗, tk) ≤ L(f∗(s), t) , (3.5)

holds for most of the test samples (s, t).

Our motivation is now to integrate the variational method on top of a deep network for

two main reasons. First, this enables the network to adapt its output to the subsequent

variational functional minimization that produces better results with respect to the loss

function. And second, if the variational method is incorporated into supervised learning

scheme, then we can also train hyper-parameters of that model, like the trade-off parameter

λ, or step sizes of the optimization algorithm.

A principled way to train both quantities, the deep network and the variational model,

in a joint framework is to formulate it as a bi-level optimization problem [177, 184]. We

define Θn as the network parameters, i.e. weights and biases of the network f , Θv as the

parameters of a variational model E and Θ = {Θn,Θv}. Then the bi-level optimization

problem is given by

min
Θ

1

|D|
∑

(sk,tk)∈D

L(u∗(f(sk; Θn)), tk) (HL)

s.t. u∗(f(sk)) = arg min
u

E(u; f(sk; Θn)) . (LL)

We call (HL) the higher-level problem and (LL) the lower-level problem. This formulation

of the training problem has the following intuitive interpretation: The task of the training

procedure is to find parameters Θ for the energy E(u; f(sk; Θn)), such that the minimizer

u∗(f(sk; Θn)) of the energy yields low training loss L(u∗(f(sk; Θn), tk)). Note that if the

(LL) problem is assumed to be of the form

E(u, f(sk; Θn)) = Γ(u, fr(sk; Θn)) + exp(λ)Ψ(u, fd(s; Θn)) , (3.6)

where the network f = (fr, fd) may influence the regularization term and the data term,

and exp(λ) with λ ∈ Θv ensures a positive trade-off parameter and hence, the convexity

of (LL).

3.3. Deep Learning Meets Variational Methods 63

In the remainder of this section, we will present two methods to tackle the bi-level

optimization problem. First, we will discuss a more theoretically grounded approach using

implicit differentiation in Section 3.3.1. Then, we will show a more practical method in

Section 3.3.2 that we will use in the evaluation to show state-of-the-art results.

3.3.1 Implicit Differentiation

Bi-level optimization problems are very challenging in practice due to their highly non-

convex nature [50]. However, if we constrain the regularization and data term, an efficient

optimization is possible. The following proposition provides conditions which will allow

us to compute gradients of the (HL) problem, and simultaneously satisfy the constraint

given by the (LL) problem, even for large-scale problems.

Proposition 1. Let E(u; f(sk; Θn)) be strongly convex and twice differentiable with

respect to u. Further, let E(u; f(sk; Θn)) be differentiable with respect to f and let

f(sk; Θn) be differentiable with respect to Θn. Then, the gradient of a differentiable loss

L with respect to the parameters Θn is well-defined and is given by

∂L
∂Θ

= −
∑

(sk,tk)∈D

([(
∇2

uE
)−1 ∂L

∂uk

]T ∂2E

∂u∂Θ

)∣∣∣∣
uk=u∗k

. (3.7)

Proof. The bi-level problem (HL)-(LL) can equivalently be rewritten in terms of the op-

timality conditions of the lower-level problem

min
Θ

1

|D|
∑

(sk,tk)∈D

L(uk, tk)

s.t. ∇ukE(uk; f(sk; Θn)) = 0 .

(3.8)

Note that we will omit the explicit dependence of E(uk; f(sk; Θn)) on the parametrization

f(sk; Θn) for the rest of the proof in order to facilitate an uncluttered notation.

Problem (3.8) is an optimization problem with non-linear equality constraints. The

Lagrangian of this function is given by

L(u,Θ, γ) =
1

|D|
∑

(sk,tk)∈D

L(uk, tk) + γk(∇uE(uk)). (3.9)

The stationary points of the Lagrangian are characterized by the optimality conditions:

∂L

∂uk
=

∂L
∂uk

+ γk∇2
uE(uk) = 0 (C1)

∂L

∂Θn
=

∑
(sk,tk)∈D

γTk
∂2E(uk)

∂uk∂Θn
= 0 (C2)

64 Chapter 3. Deep Learning for 2.5D

∂L

∂γk
= ∇uE(uk) = 0 . (C3)

By substituting the minimizer of the lower-level problem u∗k(f(sk; Θn)) for uk, condition

(C3) can be eliminated, since it is fulfilled by definition. From strong convexity of the

energy E(u), it follows that ∇2
uE(u) � 0. Thus, the Lagrange multipliers γk can be

explicitly computed from (C1), which results in

γk = −(∇2
uE)−1 ∂L

∂uk
. (3.10)

Substituting (3.10) into (C2) finally yields the gradient (3.7).

Remark 1. Note that

∂2E(uk)

∂uk∂Θn
=
∂2E(uk; f(sk; Θn))

∂uk∂f

∂f(sk; Θn)

∂Θn
, (3.11)

which shows that a necessary condition for the computation of the gradient (3.7) is differ-

entiability with respect to the parametrization f(sk; Θn).

An interesting property of this scheme is that it can be interpreted as a step in the

backpropagation algorithm: If the parametrization is a deep network, then the gradient

for a single training example can be computed, by backpropagating the quantity

∆E = −
([(
∇2

uE
)−1 ∂L

∂uk

]T ∂2E

∂uk∂f

)∣∣∣∣
uk=u∗k

. (3.12)

This enables the implementation of the variational model as a single additional layer in

the network.

To use this framework for depth super-resolution we have to define the variational

model. If we assume that the network already produces a reasonable high-resolution

depth estimate fd(sk; Θn), then we can use simple squared differences as data term that

penalizes deviations from this initial estimate, i.e. Ψ(u, fd(s; Θn)) = 1
2 ‖u− fd(sk; Θn)‖22.

The regularization term should smooth depth values within depth discontinuities, but

should not smooth over them. Further, to use the regularization term within the implicit

differentiation framework we have to fulfill the constraints of Proposition 1. Therefore, we

define the regularization term as

Γ(u, fr(s; Θn)) = ‖fr(s; Θn)∇u‖s . (3.13)

The network output fr guides the regularization term where it should be more strongly

enforced (smooth regions) and where it should be neglected (depth discontinuities), and

‖·‖ is a smooth norm function. One option is the Charbonnier approximation ‖·‖1s [32]

3.3. Deep Learning Meets Variational Methods 65

to the `1 norm

‖x‖1s =
∑
i

√
x2
i + ε2 . (3.14)

Another option is the twice-differentiable smooth approximation to the Huber norm [133]

that avoids the stair-casing effect

‖x‖εs =
∑
i

{
− 1

8ε3
x4
i + 3

4εx
2
i + 3ε

8 if |xi| ≤ ε
|xi| else

. (3.15)

The lower-level energy functional is then given by

E(u; f(sk; Θn)) = ‖fr(s; Θn)∇u‖s +
exp(λ)

2
‖u− fd(s; Θn)‖22 . (3.16)

In order to conveniently derive the gradient computations, we reformulate the energy

functional in Equation (3.16) using a matrix-vector notation. Therefore, we define W and

f to correspond to fr(s; Θn) and fd(s; Θn), respectively. Further, for ease of notation we

set γ(·) = ‖·‖s such that finally the regularization term can be written as

γ(W∇u) = ‖fr(s; Θn)∇)u‖s . (3.17)

Using this notation, Equation (3.16) is equivalent to

E(u; f(sk; Θn)) = γ(W∇u) +
exp(λ)

2
(u− f)T (u− f) , (3.18)

and the gradients with respect to E are given by

∇uE(u) = W∇D′ + exp(λ)(u− f) (3.19)

∇2
uE(u) = ∇TWD′′W∇+ exp(λ)I (3.20)

∂2E(u)

∂u∂λ
= exp(λ)(u− f) (3.21)

∂2E(u)

∂u∂f
= − exp(λ) (3.22)

∂2E(u)

∂u∂W
= D′∇+ diag(∇u)D′′W∇ , (3.23)

with

D′ = (γ′((W∇u)1), . . . , γ′((W∇u)M))T (3.24)

D′′ = diag(γ′′((W∇u)1), . . . , γ′′((W∇u)M)) . (3.25)

66 Chapter 3. Deep Learning for 2.5D

Network
f(sk,Θn)

Parametrization Ψ
fd(sk,Θn)

Parametrization Γ
fr(sk,Θn)

Dual Update
p(1) = proxσg∗ (p(0) + σKū(0))

Primal Update
u(1) = proxτh(u(0) − τK∗p(1))

Over Relaxation
ū(1) = u(1) + θ(u(1) − u(0))

Iteration 1

Dual Update
p(2) = proxσg∗ (p(1) + σKū(1))

Primal Update
u(2) = proxτh(u(1) − τK∗p(2))

Over Relaxation
ū(2) = u(2) + θ(u(2) − u(1))

Iteration 2

...

Iterations 3 to n + 1

Output
uk

Figure 3.2: Computation Graph of the Unrolled Optimization Algorithm 6. The input to the op-
timization algorithm is a first high-resolution estimate from the convolutional network fd(sk; Θn),
as well as a parametrization of the regularization term fr(sk; Θn).

3.3.2 Unrolling Optimization Scheme

In the previous section, we presented an approach to solve the bi-level optimization prob-

lem (HL)-(LL) by implicit differentiation of the lower-level problem. While this yields

a nice mathematically founded solution, it has a few practical shortcomings. First, the

energy functional has to satisfy the assumptions in Proposition 1. Most of them are un-

problematic, like a differentiable loss function, or a differentiable parametrization. Those

assumptions will be satisfied by design, as otherwise, the training of the deep network

parametrization will not be possible at all. However, it also assumes a smooth energy

functional. For this purpose, we presented smooth approximations to two common regu-

larization terms, but it would be even better to use stronger terms that are non-smooth,

like the Total Generalized Variation [20]. Another drawback of this method is slightly hid-

den. In the derivation of the gradient with respect to the energy functional, we assumed

that we are able to compute the exact minimizer u∗. While it is possible to utilize the

optimization algorithms presented in Section 2.2.2.1 and Section 2.2.2.2, the solutions are

still not exactly u∗. Especially, if one uses a fixed number of iterations. This introduces

noise into the gradients and slows down training [184].

In this section, we present a different approach that is based on automatic differentia-

tion [143, 144]. Instead of defining the gradient with respect to the energy functional, we

can also compute the gradient with respect to the individual operations of an optimization

algorithm. More specifically, we can unroll the steps of the optimization algorithm, i.e. as

individual layers of a deep network to compute the forward solution and then backprop-

agate through these operations similar as in deep network. See Figure 3.2 for a visual

depiction of the concept.

Therefore, we rewrite the bi-level optimization problem (HL)-(LL) as

min
Θ

1

|D|
∑

(sk,tk)∈D

L(uk, tk)

s.t. uk = P(i+1)(f(sk; Θn)) ,

(3.26)

where P(i+1)(f(sk; Θn)) is a suitable iterative optimization algorithm for the energy func-

tional E(u; f(sk; Θn)). More precisely, it is the output of the optimization algorithm after

3.3. Deep Learning Meets Variational Methods 67

running i+ 1 iterations. We do not assume that the optimization algorithm is converged

after i+ 1 iterations, but that the high-resolution estimate has improved with respect to

the loss L. Further, the network f will adapt during the joint training to the optimiza-

tion algorithm. In addition, we are able to also train all hyper-parameters of the energy

functional and optimization algorithm.

In the remainder of the section, we assume that the optimization algorithm P is given

by the primal-dual algorithm presented in Algorithm 6. Despite the initialization, the

algorithm consists of three steps: (1) update of the dual variables (DU), (2) update of the

primal variables (PU), and (3) an over-relaxation step (OR).

p(i+1) = proxσg∗(p
(i) + σKū(i)) (DU)

u(i+1) = proxτh(u(i) − τK∗p(i+1)) (PU)

ū(i+1) = u(i+1) + θ(u(i+1) − u(i)) . (OR)

To solve the optimization problem in Equation (3.26) we need to compute the gradient

of the loss with respect to the parameters ∂L
∂Θn

. Using the chain rule we can rewrite the

derivative as

∂L
∂Θn

=
∂L

∂P(i+1)

∂P(i+1)

∂P(i)

∂P(i)

∂P(i−1)
· · · ∂P

(2)

∂P(1)

∂P(1)

∂f

∂f

∂Θn
, (3.27)

which shows the applicability of the backpropagation algorithm to train the network with

the optimization algorithm on top. For the primal-dual scheme the gradient of a single

iteration ∂P(i)

∂P(i−1) can be further expanded

∂P(i)

∂P(i−1)
=
∂P(i)

∂ū(i)

∂ū(i)

∂u(i)

∂u(i)

∂p(i)

∂p(i)

∂P(i−1)
, (3.28)

which reveals the nice property that each update step can be realized as a special layer in

a neural network. Those network layers can also be equipped with learnable parameters,

like the step sizes σ, τ , the over-relaxation parameter θ, or the trade-off parameter λ of

the energy functional.

In Section 2.2.3 we already presented several convex energy functionals that are now

directly applicable to train on top of a deep neural network for depth super-resolution.

To complete this section we will introduce another energy functional with a non-local

regularization term [83], i.e. the regularization term is evaluated in a larger neighborhood.

The non-local Huber regularization term [255] can be formulated as

min
u

∑
i

∑
j>i

w(i, j) |ui − uj |ε +
λ

2
||u− f ||22 , (3.29)

where the sum variables i, j run over the whole discrete image domain. The term w(i, j)

68 Chapter 3. Deep Learning for 2.5D

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

(a) Local

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

(b) Non-local 3× 3

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

(c) Non-local 5× 5

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

(d) Non-local 7× 7

Figure 3.3: Construction of a discrete non-local neighborhood regularization term. Figure (a)
shows the standard local neighborhood, whereas Figures (b) to (d) show non-local neighborhoods
in increasing patch-sizes, from 3×3 to 7×7. The edges are only present in the bottom patch plane
to prevent double counting.

are non-negative support weights that allow to incorporate additional prior information

into the regularization term, i.e. the network output fr(sk; Θn). A more basic weighting

term is given by the inverse proximity with exponential decay

w(i, j) =
1

Z
exp

(
−‖xi − xj‖2

σp

)
, (3.30)

where Z is the partition function, xi,xj are the pixel positions of ui, uj , and σp controls

the proximity of the non-local term. Note that the proximity parameter has also practical

implications: If the proximity covers large areas the model quickly becomes intractable.

Typical non-local models are depicted in Figure 3.3.

Usually, we want to emphasize the regularization term in homogeneous regions and

deactivate it near depth discontinuities. We can facilitate an additional network out-

put fr(sk; Θn) to weight the regularization term accordingly. Then, the weighting term

becomes

wf (i, j) =
1

Z
exp

(
−fr(sk; Θn)ij

σc

)
exp

(
−‖xi − xj‖2

σp

)
, (3.31)

where σc is a control parameter that tunes the influence of the network weight term on

the regularization. To formulate the complete energy functional in its primal form, we

first introduce a generalized nabla operator ∇N . N = {n1, · · · ,nN} defines the set of

edges in the non-local neighborhood, i.e. the neighborhood which should be considered

in the regularization term. For the example presented in Figure 3.3b the set is N =

{(1, 0), (−1, 1), (0, 1), (1, 1)}. The generalized nabla operator can then be defined as

∇Nu =

∇n1u

. . .

∇nNu

 with (∇nu)i =

{
ui − uj if xj = xi + n ∈ Ω

0 else
. (3.32)

3.3. Deep Learning Meets Variational Methods 69

Now, if we define Wf as block matrix such that

‖Wf∇Nu‖ε =
∑
i

∑
j>i

wf (i, j) |ui − uj |ε , (3.33)

then we can compactly write the primal form of the energy functional as

min
u
‖Wf∇Nu‖ε +

λ

2
||u− fd(sk; Θn)||22 . (3.34)

To employ the fast primal-dual optimization scheme we need to state the corresponding

convex-concave saddle-point problem, which is given by

min
u

max
p
〈Wf∇Nu,p〉+

λ

2
‖u− fd(sk; Θn)‖22 − δP (p)− ε

2
‖p‖22 . (3.35)

Finally, one iteration of the primal-dual algorithm can then be written as
p(i+1) = proxg∗(p

(i) + σ(Wf∇N ū(i)))

u(i+1) =
u(i)−τ(Wf∇N)Tp(i+1)+τλfd(sk;Θn)

1+τλ

ū(i+1) = u(i+1) + θ(u(i+1) − u(i))

. (3.36)

3.3.3 Training Data

This section is devoted to the automatic generation of the training data. As stated in

the introduction of the method we assume that we are given a training dataset D =

{(sk, tk)}Kk=1 with K training samples. Each training sample sk consists either of a single

low-resolution depth map sk = d
(lr)
k , or a low-resolution depth map in combination with

a high-resolution guidance image, sk = (d
(lr)
k ,g) depending on the task, i.e. guided vs.

unguided depth super-resolution. As deep neural networks are mainly data-driven, we

need high-quality training samples in large quantities. We circumvent this problem by

generating a synthetic, still physically plausible training dataset.

Therefore, we utilize the open source Mitsuba Renderer [119]. In this physically based

renderer, a scene is defined by placing objects, light sources, and sensors freely in an envi-

ronment defined by a configuration file. Using this file, the renderer generates an intensity-

and a depth-map of the scene in adjustable quality and size by using sophisticated ray-

tracing algorithms.

In our case, the automatic dataset generation is scripted by randomly placing different

objects in varying dimensions in the scene. The objects vary from simple primitives such as

cubes, spheres, and planes, too complicated 3D shapes from the ModelNet dataset [259].

Further, the objects are randomly textured using samples from the publicly available

Describable Textures dataset [43]. Finally, the light intensity and position are also slightly

varied with each generated scene. We depict two such generated samples in Figure 3.4.

The output intensity image is used as high-resolution guidance image g, the clean depth

70 Chapter 3. Deep Learning for 2.5D

(a) Ground truth depth tk = d
(hr)
k . (b) High-resolution guidance image g.

Figure 3.4: Synthetic generated training data using the physically based Mitsuba Renderer [119].

output defines the high-resolution target depth tk, and by down-sampling tk and adding

noise we generate the low-resolution depth input d(lr).

3.4 Evaluation

In this section, we show an exhaustive quantitative and qualitative evaluation of our

proposed method for depth super-resolution. We divided the evaluation in various different

aspects. First, we evaluate the influence of the super-resolution convolutional network on

the high-resolution estimates in Section 3.4.1. We evaluate a number of state-of-the-

art networks for natural images and propose a new architecture for this task. Then, in

Section 3.4.2 we show the influence of different loss functions on the network estimates.

Section 3.4.3 is denoted to the choice of the variational model on top of the deep network,

but also shows the influence of the number of iterations of the optimization algorithm on

the super-resolution performance. In addition, we evaluate different ways of implementing

the optimization steps of the variational model as network layers in Section 3.4.4. Finally,

we demonstrate the performance of our method in comparison to state-of-the-art methods

on three different benchmark datasets, for unguided depth super-resolution (Section 3.4.5)

and guided depth super-resolution (Section 3.4.6).

3.4. Evaluation 71

3.4.1 Super-Resolution Network

Recently, deep convolutional networks have become the state-of-the-art on single image

super-resolution for natural images. In this section, we will evaluate different of the pro-

posed architectures for unguided depth super-resolution and propose an own architecture

to achieve state-of-the-art performance. However, first, we will introduce the evaluation

metrics used throughout the evaluation section. The training set-up that is equivalent for

all network architectures if not stated differently.

Metrics To evaluate the various different models and architectures quantitatively, we

need to define evaluation metrics that measure the accuracy. The most common metric for

regression tasks in general and for super-resolution methods specifically is the root mean

squared error (RMSE) defined as

RMSE(f , t) =

√√√√ 1

N

N∑
i=1

(fi − ti)2 , (3.37)

where f is the estimated output and t is the ground-truth target. The RMSE measures

the mean deviation from the ground-truth. Another related metric is the mean absolute

error (MAE) defined as

MAE(f , t) =
1

N

N∑
i=1

|fi − ti| . (3.38)

In contrast to the RMSE the MAE measures the mean of the absolute differences instead of

the squared differences. This implies that the RMSE puts more weights on large deviations

from the ground-truth than the MAE and has a greater sensitivity to a small number

outliers. To get a better sense of the source of the error we use another metric that

describes the percentage of pixels that are above a certain threshold x. This outlier metric

(OL>x) is defined as

OL>x(f , t) =
1

N

N∑
i=1

[|fi − ti| > x] . (3.39)

We will use the RMSE, MAE and the outlier metric OL>x for various thresholds x for all

our quantitative evaluations of this chapter.

Experimental Set-Up To evaluate the different choices of our method we use the

Middlebury 2005 datasets Art, Books and Moebius [204] as benchmark images as proposed

by Park et al. [172]. Small holes in the disparity maps are inpainted and the disparity

maps serve as the high-resolution ground-truth. The low-resolution depth map inputs are

generated by bicubic down-sampling (×4) and adding depth-dependent Gaussian noise.

72 Chapter 3. Deep Learning for 2.5D

The mean over the three datasets will be denoted by the column test for the various

metrics. In addition, we prepared an independent validation set of 25 depth maps that

are generated as described in Section 3.3.3. This validation set is used for model selection,

i.e. we select the network epoch that yields the lowest error on the validation set. We will

report the mean over the validation set for each metric in the column val.

The network training is also unified for all the experiments presented in this chapter.

Using the technique described in Section 3.3.3 we generated 750 high-resolution depth

maps of size 622 × 810pixels, with additional color guidance images. The input low-

resolution depth maps are generated in the same way the input for the benchmarks is

generated. For network training, we extract 4 random patches of size 128 × 128 pixels

from each training depth map per epoch. This yields 3, 000 different training samples

per training epoch, whereas we use a batch size of 32. Hence, a training epoch involves

93 optimization steps with full batch size. The depth maps are further scaled to have a

value range of [0, 1] for the network training only. We use Adam [128] as optimization

method with a constant learning rate of 0.001 and default momentum parameters β1 =

0.9, β2 = 0.999. The network weights are initialized by an orthogonal scheme [202], and

the bias terms are set to 0. In this first experiment, we use a mean squared error loss LE
for network training

LE(f , t) =
1

N

N∑
i=1

(fi − ti)2 . (3.40)

Network Architectures The first deep network considered in this evaluation was also

the first full-convolutional network presented for single-image super-resolution [55]. It

consists of three convolutional layers, whereas the first two convolutional layers are followed

by a rectified linear unit. The low-resolution input is up-sampled via bicubic interpolation

to the target resolution prior as a pre-processing step. A graphical depiction is given in

Figure 3.6a. We will denote this network as SRCNN in the evaluation.

The bicubic up-sampling step means that all convolutions have to be performed on

the high-resolution of the target. We can circumvent this by up-sampling the result only

at the end of the convolutional layers as presented in [215]. Instead of an interpolation

scheme for the up-sampling, a pixelshuffle operation is utilized as depicted in Figure 3.5.

This operation combines sh · sw feature maps to generate a single new feature map, where

sh, sw are the scaling factors in height and width. While the original formulation of the

architecture only includes 3 convolutions before the output, we evaluate this architecture

with a varying number of convolutions. The architecture is visualized in Figure 3.6b and

is denoted as ESPCNN(n), where n is the number of convolution layers. Additionally, we

can provide a bicubic up-sampled input depth map. Then, the network only has to learn

the residual to this mid-resolution input. This variant of the network will be denoted as

ESPCNN(n, r) in the evaluations.

3.4. Evaluation 73

pixelshuffle

Figure 3.5: The pixel shuffle operation increases the spatial resolution of the feature maps by
combining sh · sw feature maps into one feature map.

The idea of a residual connection to a mid-resolution input was introduced by [126]

to enable the training of very deep networks with up to 20 convolutional layers. Each

convolutional layer has a filter size of 3×3pixel and the same number of feature maps, i.e.

64. A visual depiction of the architecture is given in Figure 3.6c. We denote this network

as VDSRCNN(n) in our experiments, where n is the number of convolutional layers.

One of the currently best-performing single image super-resolution networks is the

residual encoder-decoder network by [152]. The idea is to introduce skip connections be-

tween encoder and decoder modules to improve the gradient flow similar to ResNets [102].

Encoder modules consist of two convolutional layers, and the decoder modules of two de-

convolutional layers, respectively. The architecture is visualized in Figure 3.6d. We denote

this network as RED(n) in our experiments, where n denotes the number of convolutional

and deconvolutional layer pairs.

While the former networks were all proposed for the super-resolution of natural images

there exists also a simple architecture specifically for depth maps by [116]. As shown in

Figure 3.6e it consists of one convolutional and deconvolutional layer per up-sampling

step. We denote this network as MSNET in our evaluation.

Finally, we propose a new network variant that combines the advantages of the existing

architectures. Similar to MSNET we use a step-wise architecture, where we add a number

of convolutions plus one up-sampling layer per doubling of the output resolution. Addi-

tionally, we add a residual connection to the mid-resolution input. We name this network

MSRCNN(n, [p|d], r) in our evaluations, where n is the number of convolution layers per

up-sampling module. p indicates that we use a pixelshuffle layer for the up-sampling, see

Figure 3.6f, and d stands for a deconvolutional layer, see Figure 3.6g. If an r is in the

brackets, it indicates that the residual connection to the mid-resolution input is used.

Results We present the results of the network architecture evaluations in Table 3.1. The

first observation is that there is a non-trivial difference between the individual network

architectures on all metrics. For example, the MAE of SRCNN is almost a complete dis-

parity value worse compared to MSRCNN(5,d,3 on the validation set. There are also more

than 20% fewer pixels in the depth maps where the error is larger than 1 disparity value

and only halve the pixels have an error larger than 10 disparity values. This is equivalently

74 Chapter 3. Deep Learning for 2.5D

In
p
u
t

d
(
lr
)

U
p
sam

p
le

s
h ×

s
w

C
o
n
v

1
,
6
4
,
9×

9
,
1

C
o
n
v

6
4
,
3
2
,
1×

1
,
1

C
o
n
v

3
2
,
1
,
5×

5
,
1

O
u
tp
u
t

f
d
(s

k
)

(a) SRCNN

In
p

u
t

d
(
lr
)

C
on

v
1
,
6
4
,
5×

5
,
1

C
o
n
v

6
4
,
6
4
,
3×

3
,
1

C
o
n
v

6
4
,
3
2
,
3×

3
,
1

C
o
n
v

3
2
,
s
h
s
w
,
3×

3
,
1

S
h
u

ffl
e

O
u

tp
u

t
f
d
(s

k
)

(b) ESPCNN

In
p
u
t

d
(
lr
)

U
p
sa
m
p
le

s
h ×

s
w

C
on

v
1
,
6
4
,
3×

3
,
1

C
o
n
v

6
4
,
6
4
,
3×

3
,
1

...

C
o
n
v

6
4
,
6
4
,
3×

3
,
1

C
o
n
v

6
4
,
1
,
3×

3
,
1

A
d
d

O
u
tp
u
t

f
d
(s

k
)

(c) VDSRCNN

In
p
u
t

d
(
lr
)

U
p
sa
m
p
le

s
h ×

s
w

C
on

v
1
,
1
2
8
,
3×

3
,
1

C
on

v
1
2
8
,
1
2
8
,
3×

3
,
1

C
on

v
1
2
8
,
1
2
8
,
3×

3
,
1

C
o
n
v

1
2
8
,
1
2
8
,
3×

3
,
1

...

A
d
d

D
eco

n
v

1
2
8
,
1
2
8
,
3×

3
,
1

D
econ

v
1
2
8
,
1
,
3×

3
,
1

A
d
d

D
eco

n
v

1
2
8
,
1
2
8
,
3×

3
,
1

D
econ

v
1
2
8
,
1
,
3×

3
,
1

O
u
tp
u
t

f
d
(s

k
)

(d) RED

In
p
u
t

d
(
lr
)

C
o
n
v

1
,
6
4
,
5×

5
,
1

D
eco

n
v

6
4
,
3
2
,
5×

5
,
2

...

D
econ

v
3
2
,
3
2
,
5×

5
,
2

C
on

v
3
2
,
3
2
,
1×

1
,
1

O
u
tp
u
t

f
d
(s

k
)

(e) MSNET

In
p

u
t

d
(
lr
)

C
o
n
v

1
,
6
4
,
3×

3
,
1

C
on

v
6
4
,
6
4
,
3×

3
,
1

C
on

v
6
4
,
6
4
·
2
2
,
3×

3
,
1

S
h
u

ffl
e

...

C
o
n
v

6
4
,
6
4
,
3×

3
,
1

C
on

v
6
4
,
6
4
,
3×

3
,
1

C
on

v
6
4
,
6
4
·
2
2
,
3×

3
,
1

S
h
u

ffl
e

C
o
n
v

6
4
,
6
4
,
3×

3
,
1

C
o
n
v

6
4
,
6
4
,
3×

3
,
1

C
on

v
6
4
,
1
,
3×

3
,
1

U
p

sa
m

p
le

s
h ×

s
w

A
d

d

O
u

tp
u

t
f
d
(s

k
)

(f) MSRCNN(p)

In
p
u
t

d
(
lr
)

C
on

v
1
,
6
4
,
3×

3
,
1

C
on

v
6
4
,
6
4
,
3×

3
,
1

C
on

v
6
4
,
6
4
,
3×

3
,
1

D
econ

v
6
4
,
3
2
,
4×

4
,
2

...

C
on

v
6
4
,
6
4
,
3×

3
,
1

C
on

v
6
4
,
6
4
,
3×

3
,
1

C
on

v
6
4
,
6
4
,
3×

3
,
1

D
econ

v
6
4
,
3
2
,
4×

4
,
2

C
o
n
v

6
4
,
6
4
,
3×

3
,
1

C
on

v
6
4
,
6
4
,
3×

3
,
1

C
on

v
6
4
,
1
,
3×

3
,
1

U
p
sam

p
le

s
h ×

s
w

A
d
d

O
u
tp
u
t

f
d
(s

k
)

(g) MSRCNN(d)

Figure 3.6: Network architectures used in the evaluation. The different network operations
are color-coded and the parameters of the operations are given beneath the operation name. A
non-linearity is applied after each hidden convolutional layer.

3.4. Evaluation 75

Table 3.1: Evaluation of the network architectures on the synthetic validation set and the noisy
Middlebury test set for an up-sampling factor of ×4. The RMSE and MAE values are in pixel
disparities and the OL>x values are percentages. The best entries are highlighted in orange, the
second best in yellow.

RMSE MAE OL>1 OL>5 OL>10

val test val test val test val test val test

SRCNN 4.228 2.882 1.956 1.784 53.148 57.247 6.770 5.302 1.902 0.966
MSNET 4.030 2.620 1.760 1.539 48.788 50.958 5.019 3.762 1.817 0.919
VDSRCNN(5) 3.949 2.771 1.805 1.684 51.771 55.358 5.336 4.357 1.524 0.910
VDSRCNN(10) 3.537 2.382 1.426 1.338 41.490 45.537 3.170 2.599 1.116 0.672
VDSRCNN(15) 3.366 2.296 1.313 1.247 38.424 42.518 2.689 2.250 0.999 0.611
VDSRCNN(20) 3.403 2.306 1.301 1.242 37.178 41.911 2.760 2.298 1.010 0.605
ESPCNN(4) 4.053 2.523 1.648 1.413 43.311 46.165 4.824 3.309 1.949 0.902
ESPCNN(8) 3.550 2.280 1.351 1.193 36.547 38.691 3.485 2.508 1.332 0.668
ESPCNN(16) 3.541 2.253 1.368 1.166 37.576 37.642 3.514 2.420 1.332 0.646
ESPCNN(4,r) 3.632 2.317 1.409 1.230 37.216 40.115 3.859 2.760 1.496 0.753
ESPCNN(8,r) 3.216 2.093 1.155 1.041 33.084 33.979 2.744 1.890 1.055 0.554
ESPCNN(16,r) 3.358 2.184 1.222 1.090 31.640 35.118 3.284 2.292 1.164 0.609
RED(20) 3.412 2.308 1.286 1.233 36.127 41.244 2.820 2.333 0.999 0.620
RED(30) 3.370 2.241 1.320 1.181 38.894 39.822 2.525 2.032 1.028 0.600
MSRCNN(3,p) 3.352 2.285 1.281 1.210 36.482 39.693 2.925 2.473 1.035 0.633
MSRCNN(5,p) 3.473 2.402 1.378 1.340 40.617 45.139 3.169 2.822 1.146 0.702
MSRCNN(3,p,r) 3.186 2.152 1.140 1.085 33.952 34.775 2.310 1.900 0.896 0.538
MSRCNN(5,p,r) 3.102 2.108 1.102 1.060 33.314 36.906 2.570 2.123 0.966 0.564
MSRCNN(7,p,r) 3.172 2.132 1.126 1.055 30.209 33.836 2.370 1.690 0.890 0.518
MSRCNN(3,d) 3.384 2.334 1.326 1.285 39.006 43.886 2.979 2.501 1.084 0.640
MSRCNN(5,d) 3.415 2.332 1.333 1.259 38.063 41.557 3.303 2.808 1.192 0.744
MSRCNN(3,d,r) 3.126 2.131 1.136 1.077 36.307 37.215 2.303 1.927 0.908 0.549
MSRCNN(5,d,r) 3.102 2.073 1.098 1.015 32.702 33.488 2.337 1.766 0.890 0.519
MSRCNN(7,d,r) 3.184 2.179 1.161 1.129 32.123 37.615 2.360 1.864 0.918 0.539

true for the test set. We can further observe that with increasing network depth the re-

sults get usually better. The networks that have the least number of parametrized layers,

i.e. SRCNN, MSNET, VDSRCNN(5) and ESPCNN(4), perform worst with respect to the

evaluation metrics. But also for individual architectures, we can see that by increasing

the number of parametrized layers the accuracy increases up to a saturation point, e.g.

MSRCNN. Another clear benefit is learning the residual to a mid-resolution depth map.

For all architectures and all metrics, the performance gets better by adding this simple

connection. In the remainder of this evaluation section we will use MSRCNN(5,d,r) as

base architecture as it yields the best results on most of the metrics. Further, it has the

additional benefit that it is also fast, as only a fraction of the convolutions are performed

on the high output resolution. Next, we will have a look on the influence of the training

loss on the evaluation metrics.

76 Chapter 3. Deep Learning for 2.5D

3.4.2 Training Loss

In this evaluation we want to investigate the influence of the loss function on the evaluation

metrics.

Losses In general, the loss for network training should be closely related to the evaluation

metric of interest. For the previous experiment we used the mean squared error MSE

as loss, see Equation (3.40), which is closely correlated to the root mean squared error.

Alternatively, we evaluate the use of the mean absolute error MAE as loss function defined

as

L1(f , t) =
1

N

N∑
i=1

|fi − ti| . (3.41)

This loss function is ideal if the mean of absolute error is also the metric of interest. Fur-

ther, it exhibits a simple sub-gradient, that is either ±1 for a difference between estimate

and target, or 0 otherwise. Finally, we consider also the Huber loss Huber with different

ε thresholds in our evaluation. The loss is defined as

Lε(f , t) =
1

N

N∑
i=1

{ |fi−ti|2
2ε if |fi − ti| < ε

|fi − ti| − ε
2 else

, (3.42)

where a squared loss is used for smaller than ε errors and an absolute loss for larger ones.

We use ε ∈ {0.004, 0.008, 0.016} in our evaluation.

Results The results of the various loss functions with respect to the evaluation metrics

are summarized in Table 3.2. As expected, we observe that network training with a MSE

loss yields the best RMSE value on the validation and test set. However, the other metrics

like MAE and percentage of outliers for different thresholds is much worse than for the

other loss functions. To our surprise the MAE loss did not obtain the best metrics on the

MAE metric on the validation set, as the Huber loss with ε = 0.004 is slightly better. But

this could also just be an artifact of the random initializations of the different networks,

as the MAE on the test set is almost identical and both losses yield very similar results on

the other metrics. According to this evaluation, both loss functions would be a suitable

choice for the network training with respect to the mean absolute error and the percentage

of outliers. In the end, we decided to use the Huber loss with ε = 0.004.

3.4.3 Variational Model

In Section 2.2.3 and Section 3.3.2 we introduced different variational models that can be

used on top of a deep network for post-processing. In this evaluation we compare the

different models on two aspects: (i) Which energy functional yields the most improvement

3.4. Evaluation 77

Table 3.2: Evaluation of the training losses on the synthetic validation set and the noisy Middle-
bury test set for an up-sampling factor of ×4. The RMSE and MAE values are in pixel disparities
and the OL>x values are percentages. The best entries are highlighted in orange, the second best
in yellow.

RMSE MAE OL>1 OL>5 OL>10

val test val test val test val test val test

MSE 3.102 2.073 1.098 1.015 32.702 33.488 2.337 1.766 0.890 0.519
AE 3.313 2.117 0.930 0.860 23.905 23.763 1.324 1.103 0.598 0.447
Huberε=0.004 3.280 2.093 0.910 0.867 21.712 24.394 1.433 1.108 0.609 0.437
Huberε=0.008 3.297 2.135 0.922 0.883 22.736 25.446 1.378 1.059 0.604 0.453
Huberε=0.016 3.266 2.114 0.960 0.911 25.349 27.587 1.329 1.087 0.582 0.441

over the network estimate and (ii) what are the detriments with respect to the accuracy

by using a fixed number of optimization iterations.

Energy Functionals The first variational model that we consider in the evaluation is

the TV-L2 with the primal optimization problem defined as

min
u
‖Wf∇u‖1 +

λ

2
||u− fd(sk)||22 . (3.43)

Additionally, we also evaluate a non-local variation of the model denoted as NLTVn-L2,

where n denotes the extend of the non-local neighborhood N . The energy functional is

given by

min
u
‖Wf∇Nu‖1 +

λ

2
||u− fd(sk)||22 . (3.44)

Instead the `1 norm in the regularization term, we can also utilize the Huber norm. We

denote this model as Huber-L2 in our evaluation and it is defined as

min
u
‖Wf∇u‖ε +

λ

2
||u− fd(sk)||22 . (3.45)

As presented in Section 3.3.2 we can formulate also non-local variant of the energy func-

tional that is defined as

min
u
‖Wf∇Nu‖ε +

λ

2
||u− fd(sk)||22 . (3.46)

We denote this variational model as NLHubern-L2 in our evaluation, where n denotes the

extend of the non-local neighborhood N . Finally, we include the TGV-L2 model, where

the Total Generalized Variation is used as regularization term. The primal optimization

problem is given as

min
u
α1 ‖Wf∇u− v‖1 + α0 ‖∇v‖1 +

λ

2
||u− fd(sk)||22 . (3.47)

78 Chapter 3. Deep Learning for 2.5D

T
a
b

le
3
.3

:
E

valu
a
tion

o
f

th
e

va
ria

tion
a
l

m
o
d

els
o
n

th
e

sy
n
th

etic
va

lid
a
tio

n
set

a
n

d
th

e
n

o
isy

M
id

d
leb

u
ry

test
set

for
an

u
p

-sam
p

lin
g

factor
of×

4.
T

h
e

R
M

S
E

a
n
d

M
A

E
va

lu
es

are
in

p
ix

el
d

isp
a
rities

a
n

d
th

e
O

L
>
x

va
lu

es
a
re

p
ercen

tages.
T

h
e

b
est

en
tries

are
h

igh
ligh

ted
in

o
ra

n
g
e
,

th
e

seco
n

d
b

est
in

y
e
llo

w
.

(a
)

V
a
lid

a
tio

n
S

et

R
M

S
E

M
A

E
O

L
>
1

O
L
>
5

O
L
>
1
0

1
0

2
0

3
0

1
0
0

1
0

2
0

3
0

1
0
0

1
0

2
0

3
0

1
0
0

1
0

2
0

3
0

1
0
0

1
0

2
0

3
0

1
0
0

T
V

-L
2

3
.2

7
7

3
.2

6
3

3
.2

2
7

3
.2

1
6

0
.9

1
0

0
.8

8
6

0
.8

6
9

0
.8

5
1

2
1
.7

1
7

2
0
.5

3
2

1
9
.7

7
6

1
8
.8

3
2

1
.4

3
9

1
.4

0
9

1
.4

2
7

1
.4

5
0

0
.6

0
9

0
.6

0
7

0
.6

1
4

0
.6

1
9

N
L
T

V
3
-L

2
3
.2

3
8

3
.2

2
1

3
.2

0
8

3
.2

1
3

0
.8

8
0

0
.8

7
3

0
.8

6
6

0
.8

5
4

2
0
.2

4
9

1
9
.8

3
6

1
9
.4

3
5

1
8
.8

2
6

1
.4

2
9

1
.4

6
4

1
.5

0
2

1
.4

7
3

0
.6

1
1

0
.6

1
7

0
.6

2
5

0
.6

1
9

N
L
T

V
5
-L

2
3
.2

8
0

3
.2

8
0

3
.2

2
2

3
.2

1
1

0
.9

1
0

0
.9

1
0

0
.8

6
2

0
.8

5
7

2
1
.7

1
2

2
1
.7

1
2

1
9
.1

8
2

1
8
.7

7
4

1
.4

3
3

1
.4

3
3

1
.4

9
6

1
.5

5
0

0
.6

0
9

0
.6

0
9

0
.6

1
8

0
.6

2
4

N
L
T

V
7
-L

2
3
.2

3
6

3
.2

8
0

3
.2

2
2

3
.1

9
5

0
.8

7
2

0
.9

1
0

0
.8

6
3

0
.8

5
6

1
9
.6

5
8

2
1
.7

1
2

1
9
.0

3
3

1
8
.6

5
5

1
.4

8
3

1
.4

3
3

1
.5

4
1

1
.5

8
5

0
.6

1
4

0
.6

0
9

0
.6

2
0

0
.6

3
6

N
L
T

V
9
-L

2
3
.2

3
3

3
.2

3
5

3
.2

2
5

3
.1

9
8

0
.8

8
1

0
.8

9
1

0
.8

6
6

0
.8

6
2

2
0
.0

8
0

2
0
.7

0
8

1
9
.1

3
0

1
8
.8

6
6

1
.4

9
7

1
.4

5
9

1
.5

5
8

1
.6

0
8

0
.6

1
6

0
.6

1
1

0
.6

2
1

0
.6

3
4

H
u

b
er-L

2
3
.2

7
7

3
.2

3
0

3
.2

5
1

3
.2

4
4

0
.9

1
0

0
.8

7
5

0
.8

7
6

0
.8

6
5

2
1
.7

1
7

2
0
.0

3
1

2
0
.0

6
3

1
9
.4

9
1

1
.4

3
9

1
.4

2
5

1
.4

0
1

1
.4

0
0

0
.6

0
9

0
.6

1
2

0
.6

0
7

0
.6

0
8

N
L

H
u

b
er

3
-L

2
3
.2

5
9

3
.2

8
0

3
.2

1
0

3
.2

0
7

0
.8

8
7

0
.9

1
0

0
.8

6
4

0
.8

5
2

2
0
.5

4
7

2
1
.7

1
2

1
9
.3

7
8

1
8
.7

2
3

1
.4

1
7

1
.4

3
3

1
.4

9
3

1
.4

9
9

0
.6

0
8

0
.6

0
9

0
.6

2
2

0
.6

2
3

N
L

H
u

b
er

5
-L

2
3
.2

3
6

3
.2

4
2

3
.2

3
5

3
.2

1
1

0
.8

7
5

0
.8

7
2

0
.8

6
7

0
.8

5
7

1
9
.8

8
2

1
9
.7

1
8

1
9
.4

3
3

1
8
.7

7
6

1
.4

5
9

1
.4

4
6

1
.4

5
6

1
.5

4
9

0
.6

1
3

0
.6

1
1

0
.6

1
2

0
.6

2
4

N
L

H
u

b
er

7
-L

2
3
.2

8
0

3
.2

2
9

3
.2

2
2

3
.1

9
5

0
.9

1
0

0
.8

6
4

0
.8

6
2

0
.8

5
6

2
1
.7

1
2

1
9
.2

2
8

1
8
.9

9
1

1
8
.6

5
9

1
.4

3
3

1
.5

0
9

1
.5

4
0

1
.5

8
5

0
.6

0
9

0
.6

1
7

0
.6

2
0

0
.6

3
6

N
L

H
u

b
er

9
-L

2
3
.2

8
0

3
.2

3
2

3
.2

8
0

3
.2

2
9

0
.9

1
0

0
.8

7
0

0
.9

1
0

0
.8

6
5

2
1
.7

1
2

1
9
.4

6
8

2
1
.7

1
2

1
9
.0

8
5

1
.4

3
3

1
.5

1
0

1
.4

3
3

1
.5

4
3

0
.6

0
9

0
.6

1
6

0
.6

0
9

0
.6

1
9

T
G

V
-L

2
3
.2

6
2

3
.2

6
0

3
.2

4
6

3
.2

4
6

0
.9

0
9

0
.9

0
6

0
.8

9
8

0
.8

8
4

2
1
.6

3
8

2
1
.4

4
3

2
1
.0

2
5

2
0
.4

5
1

1
.4

6
0

1
.4

6
2

1
.4

7
7

1
.4

1
5

0
.6

1
1

0
.6

1
0

0
.6

1
3

0
.6

0
7

(b
)

T
est

S
et

R
M

S
E

M
A

E
O

L
>
1

O
L
>
5

O
L
>
1
0

1
0

2
0

3
0

1
0
0

1
0

2
0

3
0

1
0
0

1
0

2
0

3
0

1
0
0

1
0

2
0

3
0

1
0
0

1
0

2
0

3
0

1
0
0

T
V

-L
2

2
.0

9
1

2
.0

7
6

2
.0

5
3

2
.0

3
6

0
.8

6
7

0
.8

4
8

0
.8

4
1

0
.8

1
6

2
4
.3

9
5

2
3
.1

8
0

2
2
.6

4
2

2
1
.0

0
7

1
.1

0
9

1
.1

0
0

1
.1

1
8

1
.1

2
5

0
.4

3
6

0
.4

3
5

0
.4

3
2

0
.4

3
3

N
L
T

V
3
-L

2
2
.0

5
8

2
.0

4
4

2
.0

3
1

2
.0

2
8

0
.8

4
7

0
.8

4
2

0
.8

3
2

0
.8

1
5

2
3
.1

1
7

2
2
.6

6
5

2
2
.0

0
4

2
0
.8

6
2

1
.1

1
7

1
.1

4
1

1
.1

5
6

1
.1

4
4

0
.4

3
2

0
.4

3
1

0
.4

3
1

0
.4

3
1

N
L
T

V
5
-L

2
2
.0

9
3

2
.0

9
3

2
.0

3
5

2
.0

2
2

0
.8

6
7

0
.8

6
7

0
.8

2
4

0
.8

1
5

2
4
.3

9
4

2
4
.3

9
4

2
1
.4

5
7

2
0
.6

6
5

1
.1

0
8

1
.1

0
8

1
.1

4
6

1
.1

7
4

0
.4

3
7

0
.4

3
7

0
.4

2
8

0
.4

2
7

N
L
T

V
7
-L

2
2
.0

4
9

2
.0

9
3

2
.0

3
1

2
.0

1
2

0
.8

3
4

0
.8

6
7

0
.8

2
0

0
.8

1
2

2
2
.1

1
9

2
4
.3

9
4

2
1
.0

2
8

2
0
.5

2
7

1
.1

3
5

1
.1

0
8

1
.1

6
4

1
.1

8
8

0
.4

2
9

0
.4

3
7

0
.4

2
7

0
.4

3
1

N
L
T

V
9
-L

2
2
.0

4
8

2
.0

5
8

2
.0

3
2

2
.0

1
3

0
.8

4
3

0
.8

5
5

0
.8

2
1

0
.8

1
7

2
2
.7

2
1

2
3
.5

8
8

2
1
.0

5
4

2
0
.8

0
9

1
.1

3
9

1
.1

3
0

1
.1

7
0

1
.1

9
9

0
.4

2
9

0
.4

3
0

0
.4

2
6

0
.4

2
9

H
u

b
er-L

2
2
.0

9
1

2
.0

5
7

2
.0

6
7

2
.0

5
8

0
.8

6
7

0
.8

4
6

0
.8

4
1

0
.8

2
8

2
4
.3

9
5

2
2
.9

9
7

2
2
.7

5
2

2
1
.8

9
7

1
.1

0
9

1
.1

1
9

1
.0

9
9

1
.1

0
0

0
.4

3
7

0
.4

3
2

0
.4

3
4

0
.4

3
3

N
L

H
u

b
er

3
-L

2
2
.0

7
3

2
.0

9
3

2
.0

3
2

2
.0

2
3

0
.8

4
9

0
.8

6
7

0
.8

3
0

0
.8

1
3

2
3
.2

1
7

2
4
.3

9
4

2
1
.8

8
1

2
0
.6

9
9

1
.1

0
4

1
.1

0
8

1
.1

5
3

1
.1

5
8

0
.4

3
4

0
.4

3
7

0
.4

3
1

0
.4

3
0

N
L

H
u

b
er

5
-L

2
2
.0

5
1

2
.0

5
4

2
.0

4
7

2
.0

2
2

0
.8

3
9

0
.8

3
4

0
.8

2
8

0
.8

1
5

2
2
.5

3
2

2
2
.1

8
5

2
1
.7

6
6

2
0
.6

7
0

1
.1

2
7

1
.1

1
8

1
.1

2
4

1
.1

7
4

0
.4

3
0

0
.4

3
2

0
.4

3
0

0
.4

2
7

N
L

H
u

b
er

7
-L

2
2
.0

9
3

2
.0

4
1

2
.0

3
2

2
.0

1
2

0
.8

6
7

0
.8

2
5

0
.8

1
9

0
.8

1
2

2
4
.3

9
4

2
1
.4

1
8

2
0
.9

4
5

2
0
.5

2
8

1
.1

0
8

1
.1

4
9

1
.1

6
4

1
.1

8
8

0
.4

3
7

0
.4

2
8

0
.4

2
7

0
.4

3
1

N
L

H
u

b
er

9
-L

2
2
.0

9
3

2
.0

4
2

2
.0

9
3

2
.0

3
6

0
.8

6
7

0
.8

2
9

0
.8

6
7

0
.8

2
0

2
4
.3

9
4

2
1
.7

0
9

2
4
.3

9
4

2
0
.9

5
9

1
.1

0
8

1
.1

4
6

1
.1

0
8

1
.1

6
4

0
.4

3
7

0
.4

2
8

0
.4

3
7

0
.4

2
7

T
G

V
-L

2
2
.0

7
7

2
.0

7
8

2
.0

6
9

2
.0

6
7

0
.8

6
6

0
.8

6
3

0
.8

5
8

0
.8

5
2

2
4
.3

2
7

2
4
.1

6
5

2
3
.7

9
1

2
3
.3

3
6

1
.1

2
2

1
.1

1
7

1
.1

1
9

1
.1

1
4

0
.4

3
3

0
.4

3
1

0
.4

3
2

0
.4

3
0

3.4. Evaluation 79

Results The results of our evaluation are presented in Table 3.3. We evaluate the various

variational methods as post-processing step with a different number of iterations of the

optimization algorithm. Note that we used a stochastic hill-climbing approach to set the

hyper-parameters of the variational models on a subset of the validation set (K = 10).

We can observe that for the best models the percentage of pixels with an error in depth

of >1 disparity values decrease by ∼3% for the validation set and ∼4% for the test set

in comparison to the network output, respectively. Further, the non-local models yield

usually better performance than their local counterparts, i.e. Huber-L2 with 30 iterations

has OL>1 = 22.752% on the test set, whereas NLHuber7-L2 has only OL>1 = 20.945%

with the same number of iterations. Regarding iterations, we can see that the performance

is almost saturated after 30 optimization iterations. For the remainder of the evaluation

section, we use the NLHuber7-L2 model and unrolling 30 optimization steps.

3.4.4 Variational Network Training

In the previous evaluation we used the variational method only as a post-processing step.

However, by unrolling the iterations of the optimization scheme on top of the network we

are able to train the network and the variational model in an end-to-end fashion.

Experimental Set-Up Combining the pre-trained network MSRCNN(5,d,r) and the

variational model NLHuber7-L2 we jointly train the whole model end-to-end. We eval-

uate three different strategies. (i) We only train the network parameters and keep the

parameters of the variational model and its optimization algorithm fixed, i.e. the trade-off

parameter λ and the step sizes σ, τ . This strategy is denoted as Net only. (ii) We only

optimize the hyper-parameters of the variational model, as well as the parameters of the

optimization algorithm, but keep the pre-trained network parameters fixed. This strategy

is denoted as Var only. (iii) We train both, the network parameters and all parameters of

the variational model. This strategy is denoted as Both.

Results The results of this evaluation are summarized in Table 3.5. Interestingly, train-

ing only the parameters of the variational model did not improve the performance on the

validation and test set, but had to some degree the opposite effect. In contrast, train-

ing only the network parameters with the variational model on top did already improve

the results. However, the best performance is obtained by training all parameters simul-

taneously. These results suggest, that the adaption of the network to the subsequent

variational model is more important than tuning the parameters of it.

3.4.5 Depth Super-Resolution

The previous evaluations served the purpose to justify the model choices of our method.

This section is now devoted to the comparison of the presented unguided depth super-

resolution method to other state-of-the-art approaches on three different benchmarks.

80 Chapter 3. Deep Learning for 2.5D

Table 3.5: Evaluation of the variational network training on the synthetic validation set and the
noisy Middlebury test set for an up-sampling factor of ×4. The RMSE and MAE values are in
pixel disparities and the OL>x values are percentages. The best entries are highlighted in orange,
the second best in yellow.

RMSE MAE OL>1 OL>5 OL>10

val test val test val test val test val test

Net only 3.295 2.038 0.833 0.793 17.873 20.168 1.303 0.995 0.609 0.432
Var only 3.237 2.046 0.864 0.824 19.241 21.483 1.474 1.129 0.613 0.429
Both 3.234 2.050 0.819 0.768 18.194 18.574 1.195 0.975 0.585 0.437

3.4.5.1 Noise-Free Middlebury

The first benchmark in our state-of-the-art evaluation is the noise-free Middlebury dataset

as used in [5, 70, 106]. The disparity maps of Teddy, Cones, Tsukuba and Venus are

interpreted as depth ground-truth. To generate the input, the high-resolution disparity

maps are down-sampled using nearest neighbor interpolation (×2, ×4).

Methods In this state-of-the-art evaluation we first include two simple interpolation

techniques as baseline, i.e. Nearest Neighbor and Bicubic. We also assess two sparse coding

approaches, the one by Timofte et al. [240] and the one by Zeyde et al. [270], whereas the

dictionaries for this task were learned as described in [70]. A pure variational approach

presented in this evaluation is by Unger et al. [250], as well as the Markov Random Field

based methods by Aodha et al. [5] and Hornáček et al. [106]. The method by Ferstl et

al. [70] combines sparse coding based super-resolution with a variational method and is

therefore closely related to our method. Finally, we include the two convolutional network

based approaches by Hui et al. [116], where one network is using an additional high-

resolution intensity image as guidance. It should be noted, that Hui et al. [116] used

bicubic down-sampling of the ground-truth to generate the input. Hence, making the

problem a bit easier. The result of our network only estimates is denoted as Net, and as

Net+PD if a variational method was used for post-processing. Our final results, where we

trained the network and the variational method end-to-end is denoted as PD-Net.

Results The quantitative results of our state-of-the-art evaluation on the noise-free Mid-

dlebury dataset are shown in Table 3.6. Qualitative results for a subset of the depth maps

and an up-sampling factor of ×4 are visualized in Figures 3.7-3.9. Our proposed convo-

lutional network for unguided depth super-resolution outperforms all other methods that

do not utilize an additional high-resolution guidance images for all up-sampling factors.

Only the guided network by Hui et al. [116] yields a slightly better MAE for a factor of

×2. Interestingly, applying a variational model on top of the network does not (×2), or

only marginally (×4) improve the results. However, the model that jointly trains both

parts yields on all metrics and up-sampling factors the best performance. It even yields

better results than the guided network by Hui et al. [116] on all up-sampling factors.

3.4. Evaluation 81

(a) Bicubic (b) [Timofte et al.]

(c) [Unger et al.] (d) [Aodha et al.]

(e) [Hornáček et al.] (f) [Ferstl et al.]

(g) [Hui et al.] (h) [Hui et al.]∗

(i) Net (j) PD-Net

Figure 3.7: Qualitative results for the Middlebury dataset disparity map Cones and an up-
sampling factor of ×4. The first, colored image shows the high-resolution estimate and the second
image shows the error of this estimate with respect to the ground-truth.

82 Chapter 3. Deep Learning for 2.5D

(a) Bicubic (b) [Timofte et al.]

(c) [Unger et al.] (d) [Aodha et al.]

(e) [Hornáček et al.] (f) [Ferstl et al.]

(g) [Hui et al.] (h) [Hui et al.]∗

(i) Net (j) PD-Net

Figure 3.8: Qualitative results for the Middlebury dataset disparity map Tsukuba and an up-
sampling factor of ×4. The first, colored image shows the high-resolution estimate and the second
image shows the error of this estimate with respect to the ground-truth.

3.4. Evaluation 83

(a) Bicubic (b) [Timofte et al.]

(c) [Unger et al.] (d) [Aodha et al.]

(e) [Hornáček et al.] (f) [Ferstl et al.]

(g) [Hui et al.] (h) [Hui et al.]∗

(i) Net (j) PD-Net

Figure 3.9: Qualitative results for the Middlebury dataset disparity map Venus and an up-
sampling factor of ×4. The first, colored image shows the high-resolution estimate and the second
image shows the error of this estimate with respect to the ground-truth.

84 Chapter 3. Deep Learning for 2.5D

Table 3.6: Evaluation of unguided depth super-resolution on the noise-free Middlebury dataset
for different up-sampling factors. The RMSE and MAE values are in pixel disparities and the OL>x

values are percentages. The best entries are highlighted in orange, the second best in yellow.
Methods that use an additional high-resolution intensity image as guidance are marked with an
asterisk ∗.

×2 ×4

RMSE MAE OL>1 OL>5 OL>10 RMSE MAE OL>1 OL>5 OL>10

Nearest Neighbour 4.631 0.579 2.448 1.416 1.136 6.648 1.168 5.028 3.307 2.444
Bicubic 3.975 0.825 7.946 3.156 1.734 5.452 1.463 13.323 5.918 3.193
[Timofte et al.] 4.702 0.991 9.017 3.592 2.021 6.724 2.271 22.370 9.491 4.937
[Zeyde et al.] 4.530 0.893 7.848 3.102 1.798 5.939 1.737 15.905 6.529 3.668
[Unger et al.] 4.904 0.721 5.035 1.679 1.202 6.875 1.627 15.003 4.916 2.924
[Aodha et al.] 4.731 0.804 5.619 2.434 1.643 6.645 1.560 10.791 5.257 3.344
[Hornáček et al.] 4.357 0.629 3.195 1.767 1.279 6.385 1.300 6.561 4.500 3.491
[Ferstl et al.] 3.224 0.692 7.081 2.851 1.509 4.863 1.402 12.943 6.485 3.286
[Hui et al.] 1.163 0.269 3.704 0.735 0.235 2.430 0.582 7.125 2.046 0.916
[Hui et al.]∗ 0.902 0.167 2.233 0.409 0.111 2.180 0.482 6.085 1.618 0.669

Net 0.860 0.180 1.649 0.274 0.089 2.119 0.421 4.838 1.062 0.553
Net+PD 0.860 0.180 1.649 0.274 0.089 2.103 0.417 4.521 1.046 0.551
PD-Net 0.825 0.157 1.426 0.257 0.085 2.081 0.405 3.950 0.934 0.517

3.4.5.2 Noisy Middlebury

In the second state-of-the-art evaluation we evaluate on the noisy Middlebury dataset

as proposed by [172]. This evaluation consists of the disparity maps Art, Books, and

Moebius as ground-truth data, where the occlusions have been manually inpainted. The

input data is generated by down-sampling the high-resolution disparity map using bicubic

interpolation (×2, ×4, ×8, and ×16) and then adding noise. The noise apparent in Time-

of-Flight depth maps is simulated with a simple conditional Gaussian noise

dn = dc(1 +N (µ, σ2)) , (3.48)

where dc is the noise-free disparity map and dn the noisy input, respectively. N (µ, σ) is

the normal distribution with mean µ = 0 and variance σ2 = 0.012.

Methods As in the previous evaluation we include two simple interpolation techniques,

i.e. Nearest Neighbor and Bilinear, as baselines. The other state-of-the-art methods in

this evaluation all require an additional high-resolution image as guidance input. This

might be due to the input noise and the rather high up-sampling factors. The first set

of methods we compare to are based on a Markov Random Field formulation, like Diebel

and Thrun [52], Park et al. [172], and Lu and Forsyth [150]. The methods mainly differ

in the formulation of the energy functional and the inference method. The second larger

set of methods in this evaluation is related to bilateral image filtering, or guided image

filtering. That includes Yang et al. [266], Chan et al. [29], He et al. [101], Shen et al. [214],

3.4. Evaluation 85

and Yang [265]. In addition, we include the variational model by Ferstl et al. [67], the

autoregressive method by Yang et al. [264], and the recently proposed bilateral solver

by [9]. The results of convolutional network are denoted as Net, and as Net+PD if a

variational method was used for post-processing. Our final results, where we trained the

network and the variational method end-to-end is denoted as PD-Net.

Results The quantitative results of our state-of-the-art evaluation on the noisy Middle-

bury dataset are shown in Table 3.7. Qualitative results for up-sampling factors of ×4

and ×16 are visualized in Figures 3.10-3.15. We can again observe that our convolutional

network already performs comparable to state-of-the-art methods, despite not using a

high-resolution intensity image as additional guidance. In terms of MAE and percent-

age of outliers the variational post-processing non-trivially increases the accuracy of the

network, whereas the best MAE over all up-sampling factors is obtained by end-to-end

training. This also yields new state-of-the-art results on this benchmark. Note, how the

jointly trained PD-Net decreases the OL>1 metric by a minimum of 4% over Net only.

3.4.5.3 ToFMark

In a third evaluation we test our method on the challenging Time-of-Flight dataset ToF-

Mark [67]. The dataset consists of three different scenes and for each scene, it provides a

noisy, low-resolution Time-of-Flight depth map and a high-resolution intensity image that

serve as input, as well as a high-resolution depth map as ground-truth which was acquired

by an industrial structured light scanner. The ground-truth depth and the intensity guid-

ance image are in the same coordinate system, but the low-resolution depth map input

is in a different one. Therefore, the low-resolution depth-pixels are first mapped to the

high-resolution coordinate system via the provided projection matrices.

Methods Despite the simple Bicubic interpolation, we include in this evaluation the

moving least squares filter by Bose and Ahuja [16] and the generalized guided filter by

Lu et al. [151]. Further, we compare to the state-of-the-art variational model by Ferstl

et al. [67] and the autoregressive model by Yang [265]. The results of our convolutional

network are denoted as Net, and as Net+PD if a variational method was used for post-

processing. Our final results, where we trained the network and the variational method

end-to-end is denoted as PD-Net.

Results The quantitative results of our state-of-the-art evaluation on the ToFMark

dataset are shown in Table 3.8. Qualitative results are visualized in Figures 3.16-3.18.

Even on this very challenging Time-of-Flight dataset, our convolutional network obtains

already very competitive results and similar to the previous evaluation, the joint train-

ing of the network and the network achieves new state-of-the-art results, especially with

respect to the MAE. We can further observe, both quantitatively and qualitatively, that

the number of large outliers OL>10 is drastically reduced by our method.

86 Chapter 3. Deep Learning for 2.5D

Table 3.7: Evaluation of unguided depth super-resolution on the noisy Middlebury dataset for
different up-sampling factors. The RMSE and MAE values are in pixel disparities and the OL>x

values are percentages. The best entries are highlighted in orange, the second best in yellow.
Methods that use an additional high-resolution intensity image as guidance are marked with an
asterisk ∗.

×2 ×4

RMSE MAE OL>1 OL>5 OL>10 RMSE MAE OL>1 OL>5 OL>10

Nearest Neighbour 6.434 4.776 77.842 32.823 9.436 6.858 4.966 78.345 33.867 10.262
Bilinear 4.243 3.070 65.927 15.201 2.258 4.832 3.384 67.561 17.971 3.697
[Diebel and Thrun]∗ 2.560 1.475 34.643 2.094 0.718 3.540 2.304 53.549 7.281 1.400
[Yang et al.]∗ 2.265 1.243 26.157 1.940 0.628 2.941 1.679 38.363 3.461 1.059
[Chan et al.]∗ 2.535 1.409 29.201 3.291 0.974 3.332 1.845 36.608 6.305 1.928
[He et al.]∗ 2.800 1.765 42.582 3.642 0.811 3.327 2.080 48.216 5.686 1.384
[Park et al.]∗ 2.553 1.087 19.223 1.499 0.691 3.226 1.578 33.566 3.136 1.036
[Lu and Forsyth]∗ 2.879 1.397 28.692 2.451 1.069 3.473 1.646 32.943 3.774 1.553
[Zhang et al.]∗ 2.737 1.059 32.672 1.431 0.722 2.973 1.485 50.401 2.343 0.921
[Shen et al.]∗ 2.973 1.566 46.851 4.992 2.161 3.808 2.268 63.547 8.449 2.904
[Yang]∗ 2.546 1.501 50.148 3.410 0.743 3.107 1.757 56.033 4.594 1.129
[Ferstl et al.]∗ 2.062 0.637 7.166 1.264 0.640 2.768 0.981 14.012 2.326 1.041
[Yang et al.]∗ 1.825 0.564 5.771 0.650 0.315 2.156 0.811 11.561 1.477 0.637
[Barron and Poole]∗ 2.009 0.991 29.739 1.743 0.758 2.591 1.337 40.841 3.245 1.253

Net 1.350 0.604 13.521 0.480 0.208 2.124 0.884 25.325 1.141 0.447
Net+PD 1.290 0.548 10.477 0.493 0.195 2.037 0.838 22.413 1.175 0.435
PD-Net 1.292 0.521 9.096 0.446 0.207 2.046 0.762 18.305 0.981 0.437

×8 ×16

RMSE MAE OL>1 OL>5 OL>10 RMSE MAE OL>1 OL>5 OL>10

Nearest Neighbour 7.546 5.287 78.731 35.328 11.794 8.767 5.991 80.172 38.718 14.809
Bilinear 5.576 3.787 69.073 20.870 5.676 6.842 4.540 71.792 25.942 8.971
[Diebel and Thrun]∗ 4.873 3.267 64.514 15.996 4.045 6.560 4.350 70.718 24.490 8.270
[Yang et al.]∗ 3.617 2.105 47.499 5.720 1.494 5.510 3.549 65.685 17.863 4.633
[Chan et al.]∗ 4.590 2.679 48.021 12.557 4.348 6.567 4.006 60.265 22.378 9.051
[He et al.]∗ 4.239 2.744 58.210 11.026 2.726 5.869 3.825 66.807 20.067 6.305
[Park et al.]∗ 4.152 2.270 48.252 6.939 1.922 6.217 3.507 62.203 15.577 5.044
[Lu and Forsyth]∗ 4.327 2.134 41.249 6.353 2.418 5.595 3.077 54.996 12.916 4.538
[Zhang et al.]∗ 3.888 2.414 67.968 9.425 1.978 5.976 4.043 79.970 26.333 7.073
[Shen et al.]∗ 5.021 3.291 75.230 18.464 4.951 6.678 4.532 81.649 30.298 9.745
[Yang]∗ 3.948 2.246 63.147 8.147 2.119 5.455 3.211 72.121 16.069 4.508
[Ferstl et al.]∗ 3.376 1.530 27.237 4.278 1.830 4.904 2.534 44.916 9.381 3.604
[Yang et al.]∗ 3.114 1.335 23.058 3.444 1.414 4.854 2.261 40.012 7.242 3.227
[Barron and Poole]∗ 3.375 1.855 52.477 6.230 2.203 4.736 2.809 66.191 13.057 4.338

Net 3.107 1.349 39.759 2.879 1.007 4.812 2.372 58.436 9.263 3.037
Net+PD 3.017 1.306 37.760 2.904 1.032 4.715 2.312 56.562 9.136 3.055
PD-Net 3.124 1.231 34.590 2.397 1.008 4.819 2.215 53.831 8.037 2.991

3.4. Evaluation 87

(a) Bilinear (b) [Diebel and Thrun]∗

(c) [Yang et al.]∗ (d) [Chan et al.]∗

(e) [He et al.]∗ (f) [Park et al.]∗

(g) [Ferstl et al.]∗ (h) [Yang et al.]∗

(i) PD-Net (j) PD-Net∗

Figure 3.10: Qualitative results for the Noisy Middlebury dataset disparity map Art and an
up-sampling factor of ×4. The first, colored image shows the high-resolution estimate and the
second image shows the error of this estimate with respect to the ground-truth.

88 Chapter 3. Deep Learning for 2.5D

(a) Bilinear (b) [Diebel and Thrun]∗

(c) [Yang et al.]∗ (d) [Chan et al.]∗

(e) [He et al.]∗ (f) [Park et al.]∗

(g) [Ferstl et al.]∗ (h) [Yang et al.]∗

(i) PD-Net (j) PD-Net∗

Figure 3.11: Qualitative results for the Noisy Middlebury dataset disparity map Books and an
up-sampling factor of ×4. The first, colored image shows the high-resolution estimate and the
second image shows the error of this estimate with respect to the ground-truth.

3.4. Evaluation 89

(a) Bilinear (b) [Diebel and Thrun]∗

(c) [Yang et al.]∗ (d) [Chan et al.]∗

(e) [He et al.]∗ (f) [Park et al.]∗

(g) [Ferstl et al.]∗ (h) [Yang et al.]∗

(i) PD-Net (j) PD-Net∗

Figure 3.12: Qualitative results for the Noisy Middlebury dataset disparity map Moebius and
an up-sampling factor of ×4. The first, colored image shows the high-resolution estimate and the
second image shows the error of this estimate with respect to the ground-truth.

90 Chapter 3. Deep Learning for 2.5D

(a) Bilinear (b) [Diebel and Thrun]∗

(c) [Yang et al.]∗ (d) [Chan et al.]∗

(e) [He et al.]∗ (f) [Park et al.]∗

(g) [Ferstl et al.]∗ (h) [Yang et al.]∗

(i) PD-Net (j) PD-Net∗

Figure 3.13: Qualitative results for the Noisy Middlebury dataset disparity map Art and an
up-sampling factor of ×16. The first, colored image shows the high-resolution estimate and the
second image shows the error of this estimate with respect to the ground-truth.

3.4. Evaluation 91

(a) Bilinear (b) [Diebel and Thrun]∗

(c) [Yang et al.]∗ (d) [Chan et al.]∗

(e) [He et al.]∗ (f) [Park et al.]∗

(g) [Ferstl et al.]∗ (h) [Yang et al.]∗

(i) PD-Net (j) PD-Net∗

Figure 3.14: Qualitative results for the Noisy Middlebury dataset disparity map Books and an
up-sampling factor of ×16. The first, colored image shows the high-resolution estimate and the
second image shows the error of this estimate with respect to the ground-truth.

92 Chapter 3. Deep Learning for 2.5D

(a) Bilinear (b) [Diebel and Thrun]∗

(c) [Yang et al.]∗ (d) [Chan et al.]∗

(e) [He et al.]∗ (f) [Park et al.]∗

(g) [Ferstl et al.]∗ (h) [Yang et al.]∗

(i) PD-Net (j) PD-Net∗

Figure 3.15: Qualitative results for the Noisy Middlebury dataset disparity map Moebius and
an up-sampling factor of ×16. The first, colored image shows the high-resolution estimate and the
second image shows the error of this estimate with respect to the ground-truth.

3.4. Evaluation 93

(a) Bicubic (b) [Bose and Ahuja]∗

(c) [Lu et al.]∗ (d) [Ferstl et al.]∗

(e) [Yang et al.]∗ (f) Net

(g) PD-Net (h) Net∗

(i) PD-Net∗

Figure 3.16: Qualitative results for the ToFMark image Books.

94 Chapter 3. Deep Learning for 2.5D

(a) Bicubic (b) [Bose and Ahuja]∗

(c) [Lu et al.]∗ (d) [Ferstl et al.]∗

(e) [Yang et al.]∗ (f) Net

(g) PD-Net (h) Net∗

(i) PD-Net∗

Figure 3.17: Qualitative results for the ToFMark image Devil.

3.4. Evaluation 95

(a) Bicubic (b) [Bose and Ahuja]∗

(c) [Lu et al.]∗ (d) [Ferstl et al.]∗

(e) [Yang et al.]∗ (f) Net

(g) PD-Net (h) Net∗

(i) PD-Net∗

Figure 3.18: Qualitative results for the ToFMark image Shark.

96 Chapter 3. Deep Learning for 2.5D

Table 3.8: Evaluation of unguided depth super-resolution on the ToFMark dataset for different
up-sampling factors. The RMSE and MAE values are in mm and the OL>x values are percentages.
The best entries are highlighted in orange, the second best in yellow. Methods that use an
additional high-resolution intensity image as guidance are marked with an asterisk ∗.

RMSE MAE OL>1 OL>5 OL>10

Bicubic 28.570 18.374 95.366 77.237 57.084
[Bose and Ahuja]∗ 28.914 16.596 94.215 71.870 49.444
[Lu et al.]∗ 26.157 15.791 94.046 71.261 48.412
[Ferstl et al.]∗ 25.693 14.066 93.759 69.149 41.220
[Yang et al.]∗ 26.314 14.877 91.944 67.131 43.581

Net 25.598 13.760 92.526 66.135 41.701
Net+PD 25.141 13.721 92.699 66.370 41.521
PD-Net 25.653 13.406 92.303 64.358 39.368

3.4.6 Guided Depth Super-Resolution

In the last section we evaluated our method for unguided depth super-resolution. How-

ever, in situations where an additional high-resolution image is available, it provides valu-

able, additional information about possible depth discontinuities. Hence, we first show in

Section 3.4.4 two alternatives on how we can incorporate this additional input into our

network architecture and analyze them. Then, we evaluate our guided method with the

jointly trained variational method on top on the noisy Middlebury dataset (Section 3.4.6.2)

and the ToFMark dataset (Section 3.4.6.3).

3.4.6.1 Guided Network

For the unguided depth super-resolution experiments in the previous evaluations we used

the architecture MSRCNN(d,5,r) as depicted in Figure 3.6g. The question is, how can we

incorporate an additional high-resolution intensity image as guidance? A simple concate-

nation of the input is not possible, as the low-resolution depth d(lr) and the high-resolution

guidance g have different resolutions. Hence, we propose two variants on how the guidance

g can be incorporated without loss of information.

Guided Network Architectures One way to include the high-resolution guidance

information in the convolutional network is by concatenating it with the last feature stage

of our architecture. Prior to concatenation, the guidance image can be first processed by a

small convolutional network. This architecture is depicted in Figure 3.19a and denoted as

Guided Stage Net(n), where n is the number of convolutional layers of the guidance network

part. The special case n = 0 denotes a direct concatenation of the intensity values with the

features of the last stage of the depth network part. The drawback of this incorporation

is that the first stages of the depth network part cannot build upon guidance features.

We circumvent this by adding pooling layers to the guidance network and concatenating

guidance features and depth features on all resolutions. The architecture is visualized

3.4. Evaluation 97

Table 3.9: Evaluation of the guidance networks on the synthetic validation set and the noisy
Middlebury test set for an up-sampling factor of ×4. The RMSE and MAE values are in pixel
disparities and the OL>x values are percentages. The best entries are highlighted in orange, the
second best in yellow.

RMSE MAE OL>1 OL>5 OL>10

val test val test val test val test val test

Unguided Net 3.280 2.093 0.910 0.867 21.712 24.394 1.433 1.108 0.609 0.437
Guided Stage Net(0) 2.613 2.128 0.843 0.879 22.565 25.315 1.096 1.071 0.414 0.435
Guided Stage Net(3) 2.537 2.227 0.884 0.935 24.683 27.475 1.148 1.285 0.382 0.457
Guided Inverse Net(1) 2.519 2.136 0.822 0.856 22.594 24.472 0.942 0.921 0.349 0.418
Guided Inverse Net(3) 2.423 2.158 0.792 0.845 21.720 23.427 0.846 0.947 0.324 0.424
Guided Inverse Net(5) 2.287 2.115 0.789 0.889 22.030 26.748 0.811 0.944 0.300 0.431

in Figure 3.19b and denoted as Guided Inverse Net(n) in our evaluation, where n is the

number of convolutional layers per guidance stage.

Results The quantitative results of the guidance networks are presented in Table 3.9.

We observe that the Guided Stage Net(n) architecture with n ∈ {0, 3} actually performs

worse than the unguided network with respect to the MAE and OL>1 on the test set.

It is further interesting that the architecture with n = 3 performs even worse than the

one with n = 0. The incorporation of the guidance features in the last stage might

therefore not be sufficient to improve the performance. In contrast, the Guided Inverse

Net(n) architecture yields a better MAE with n ∈ {1, 3}, but larger guidance networks,

i.e. n = 5, again decrease in performance. Therefore, we use the Guided Inverse Net(3) in

all our following guided evaluations.

3.4.6.2 Noisy Middlebury

The goal of this evaluation is to assess the influence of the guided architecture on the

results on the noisy Middlebury dataset as proposed by [172]. For more details on the

dataset refer to Section 3.4.5.2.

Methods We include the same baseline and state-of-the-art methods in this evaluation

as in the evaluation of our unguided depth super-resolution method. Additionally, we

evaluate our guided network architecture as presented in the last section denoted as Net∗.

We further evaluate the guided network with a variational model as post-processing step

named Net+PD∗ and our final guided method, where we trained the network and the

variational method end-to-end is denoted as PD-Net∗

Results The quantitative results of the evaluation are summarized in Table 3.10. Qual-

itative results for up-sampling factors of ×4 and ×16 are visualized in Figures 3.10-3.15.

First, we note that the small errors, i.e. OL>1, are least affected by the guided architec-

ture and are the only metric where our method does not outperform previous methods.

98 Chapter 3. Deep Learning for 2.5D

Input
d

(lr)

Conv
1,64,3×3,1

Conv
64,64,3×3,1

Conv
64,64,3×3,1

Deconv
64,32,4×4,2

...

Conv
64,64,3×3,1

Conv
64,64,3×3,1

Conv
64,64,3×3,1

Deconv
64,32,4×4,2

Concat

Conv
128,64,3×3,1

Conv
64,64,3×3,1

Conv
64,1,3×3,1

Upsample
sh×sw

Add

Output
fd(sk)

Input
g

Conv
1, 64, 3×3, 1

...

Conv
64, 64, 3×3, 1

(a
)

G
u

id
ed

S
ta

g
e

N
et

Input
d

(lr)

Concat

Conv
65,64,3×3,1

Conv
64,64,3×3,1

Conv
64,64,3×3,1

Deconv
64,32,4×4,2

...

Concat

Conv
128,64,3×3,1

Conv
64,64,3×3,1

Conv
64,64,3×3,1

Deconv
64,32,4×4,2

Concat

Conv
128,64,3×3,1

Conv
64,64,3×3,1

Conv
64,1,3×3,1

Upsample
sh×sw

Add

Output
fd(sk)

Input
g

Conv
1, 64, 3×3, 1

...

Conv
64, 64, 3×3, 1

Pool
2×2, 2

Conv
64, 64, 3×3, 1

...
Conv

64, 64, 3×3, 1

...

Pool
2×2, 2

Conv
64, 64, 3×3, 1

...

Conv
64, 64, 3×3, 1

(b
)

G
u

id
ed

In
v
erse

N
et

F
ig

u
re

3
.1

9
:

G
u

id
ed

n
etw

ork
a
rch

itectu
res

u
sed

in
th

e
eva

lu
a
tio

n
.

T
h

e
d

iff
eren

t
n

etw
o
rk

op
eration

s
are

color-co
d

ed
an

d
th

e
p

aram
eters

of
th

e
o
p

eratio
n

s
a
re

g
iven

b
en

eath
th

e
op

era
tion

n
a
m

e.
A

n
o
n

-lin
ea

rity
is

a
p

p
lied

a
fter

ea
ch

h
id

d
en

con
volu

tion
al

lay
er.

3.5. Summary & Discussion 99

However, we see that the guided network Net∗ improves the MAE over the unguided net-

work over all up-sampling factors. Second, our guided joint model PD-Net∗ yields the

best overall results on all up-sampling rates in terms of MAE. While the improvement of

the guided model over the unguided model is small for low up-sampling factors, it is more

pronounced for higher up-sampling factors, i.e. ×8 and ×16. Finally, most of the reduction

of error seems to stem from reducing large errors, as OL>5 and OL>10 most significantly

decreased by the guided model. This is in accordance with our intuition. For those more

difficult scenarios, the high-resolution guidance helps resolving ambiguities, especially for

thin objects. This is also supported by the qualitative results.

3.4.6.3 ToFMark

In our final evaluation we test our guided model on the challenging Time-of-Flight dataset

ToFMark [67]. Details on the dataset can be found in Section 3.4.5.3.

Methods We include the same baseline and state-of-the-art methods as in the evaluation

of our unguided depth super-resolution method. Additionally, we evaluate our guided

network architecture as presented in the last section denoted as Net∗. We further evaluate

the guided network with a variational model as post-processing step named Net+PD∗. Our

final guided method, where we trained the network and the variational method end-to-end

is denoted as PD-Net∗

Results The quantitative results of our guided depth super-resolution evaluation on

the ToFMark dataset are shown in Table 3.11. Qualitative results are visualized in Fig-

ures 3.16-3.18. As in the previous evaluation, our guided models clearly improve the

MAE over the unguided models and obtain new state-of-the-art results. However, we

also improve on OL>1 in addition to OL>5 and OL>10. Those improvements are also

clearly visible in the qualitative results, where the guided architecture mostly affects thin

structures and sharp depth discontinuities.

3.5 Summary & Discussion

In this chapter, we presented a new method for depth super-resolution. Depth maps can

be understood as a 2.5D representation, where each pixel encodes the distance to the first

surface along the viewing ray. Nowadays there exist a broad range of active sensors that

can capture this information directly, e.g. by using the time-of-flight principle. However,

those depth maps usually have a low spatial resolution and are degraded for example

by depth-dependent noise. The depth super-resolution problem is to increase the spatial

resolution of the 2.5D depth maps while simultaneously reducing the noise effects such

that the super-resolved output is as close as possible to the high-resolution projection of

the scene.

100 Chapter 3. Deep Learning for 2.5D

Table 3.10: Evaluation of guided depth super-resolution on the noisy Middlebury dataset for
different up-sampling factors. The RMSE and MAE values are in pixel disparities and the OL>x

values are percentages. The best entries are highlighted in orange, the second best in yellow.
Methods that use an additional high-resolution intensity image as guidance are marked with an
asterisk ∗.

×2 ×4

RMSE MAE OL>1 OL>5 OL>10 RMSE MAE OL>1 OL>5 OL>10

Nearest Neighbour 6.434 4.776 77.842 32.823 9.436 6.858 4.966 78.345 33.867 10.262
Bilinear 4.243 3.070 65.927 15.201 2.258 4.832 3.384 67.561 17.971 3.697
[Diebel and Thrun]∗ 2.560 1.475 34.643 2.094 0.718 3.540 2.304 53.549 7.281 1.400
[Yang et al.]∗ 2.265 1.243 26.157 1.940 0.628 2.941 1.679 38.363 3.461 1.059
[Chan et al.]∗ 2.535 1.409 29.201 3.291 0.974 3.332 1.845 36.608 6.305 1.928
[He et al.]∗ 2.800 1.765 42.582 3.642 0.811 3.327 2.080 48.216 5.686 1.384
[Park et al.]∗ 2.553 1.087 19.223 1.499 0.691 3.226 1.578 33.566 3.136 1.036
[Lu and Forsyth]∗ 2.879 1.397 28.692 2.451 1.069 3.473 1.646 32.943 3.774 1.553
[Zhang et al.]∗ 2.737 1.059 32.672 1.431 0.722 2.973 1.485 50.401 2.343 0.921
[Shen et al.]∗ 2.973 1.566 46.851 4.992 2.161 3.808 2.268 63.547 8.449 2.904
[Yang]∗ 2.546 1.501 50.148 3.410 0.743 3.107 1.757 56.033 4.594 1.129
[Ferstl et al.]∗ 2.062 0.637 7.166 1.264 0.640 2.768 0.981 14.012 2.326 1.041
[Yang et al.]∗ 1.825 0.564 5.771 0.650 0.315 2.156 0.811 11.561 1.477 0.637
[Barron and Poole]∗ 2.009 0.991 29.739 1.743 0.758 2.591 1.337 40.841 3.245 1.253

Net 1.350 0.604 13.521 0.480 0.208 2.124 0.884 25.325 1.141 0.447
Net+PD 1.290 0.548 10.477 0.493 0.195 2.037 0.838 22.413 1.175 0.435
PD-Net 1.292 0.521 9.096 0.446 0.207 2.046 0.762 18.305 0.981 0.437

Net∗ 1.380 0.603 13.412 0.495 0.223 2.158 0.845 23.427 0.947 0.424
Net+PD∗ 1.326 0.550 10.399 0.510 0.213 2.068 0.786 19.637 0.954 0.408
PD-Net∗ 1.336 0.514 8.500 0.486 0.232 2.062 0.757 18.563 0.835 0.427

×8 ×16

RMSE MAE OL>1 OL>5 OL>10 RMSE MAE OL>1 OL>5 OL>10

Nearest Neighbour 7.546 5.287 78.731 35.328 11.794 8.767 5.991 80.172 38.718 14.809
Bilinear 5.576 3.787 69.073 20.870 5.676 6.842 4.540 71.792 25.942 8.971
[Diebel and Thrun]∗ 4.873 3.267 64.514 15.996 4.045 6.560 4.350 70.718 24.490 8.270
[Yang et al.]∗ 3.617 2.105 47.499 5.720 1.494 5.510 3.549 65.685 17.863 4.633
[Chan et al.]∗ 4.590 2.679 48.021 12.557 4.348 6.567 4.006 60.265 22.378 9.051
[He et al.]∗ 4.239 2.744 58.210 11.026 2.726 5.869 3.825 66.807 20.067 6.305
[Park et al.]∗ 4.152 2.270 48.252 6.939 1.922 6.217 3.507 62.203 15.577 5.044
[Lu and Forsyth]∗ 4.327 2.134 41.249 6.353 2.418 5.595 3.077 54.996 12.916 4.538
[Zhang et al.]∗ 3.888 2.414 67.968 9.425 1.978 5.976 4.043 79.970 26.333 7.073
[Shen et al.]∗ 5.021 3.291 75.230 18.464 4.951 6.678 4.532 81.649 30.298 9.745
[Yang]∗ 3.948 2.246 63.147 8.147 2.119 5.455 3.211 72.121 16.069 4.508
[Ferstl et al.]∗ 3.376 1.530 27.237 4.278 1.830 4.904 2.534 44.916 9.381 3.604
[Yang et al.]∗ 3.114 1.335 23.058 3.444 1.414 4.854 2.261 40.012 7.242 3.227
[Barron and Poole]∗ 3.375 1.855 52.477 6.230 2.203 4.736 2.809 66.191 13.057 4.338

Net 3.107 1.349 39.759 2.879 1.007 4.812 2.372 58.436 9.263 3.037
Net+PD 3.017 1.306 37.760 2.904 1.032 4.715 2.312 56.562 9.136 3.055
PD-Net 3.124 1.231 34.590 2.397 1.008 4.819 2.215 53.831 8.037 2.991

Net∗ 2.776 1.232 39.813 1.879 0.653 3.793 1.970 57.177 6.485 1.504
Net+PD∗ 2.698 1.177 37.032 1.904 0.642 3.793 1.970 57.177 6.485 1.504
PD-Net∗ 2.727 1.117 34.295 1.689 0.652 3.728 1.870 55.586 5.393 1.334

3.5. Summary & Discussion 101

Table 3.11: Evaluation of guided depth super-resolution on the ToFMark dataset for different up-
sampling factors. The RMSE and MAE values are in mm and the OL>x values are percentages.
The best entries are highlighted in orange, the second best in yellow. Methods that use an
additional high-resolution intensity image as guidance are marked with an asterisk ∗.

RMSE MAE OL>1 OL>5 OL>10

Bicubic 28.570 18.374 95.366 77.237 57.084
[Bose and Ahuja]∗ 28.914 16.596 94.215 71.870 49.444
[Lu et al.]∗ 26.157 15.791 94.046 71.261 48.412
[Ferstl et al.]∗ 25.693 14.066 93.759 69.149 41.220
[Yang et al.]∗ 26.314 14.877 91.944 67.131 43.581

Net 25.598 13.760 92.526 66.135 41.701
Net+PD 25.141 13.721 92.699 66.370 41.521
PD-Net 25.653 13.406 92.303 64.358 39.368

Net∗ 24.789 12.906 92.611 65.813 39.496
Net+PD∗ 24.288 12.871 92.555 65.844 39.536
PD-Net∗ 25.384 12.747 91.554 62.949 37.654

The core contribution presented in this chapter is a deep learning based method to

this problem. While in single image super-resolution for color images deep learning based

methods are already the state-of-the-art, this is only recently swapping over to the depth

domain. The major issue is the availability of training data, i.e. for each noisy input

sample how to obtain a high-resolution, noise-free ground-truth target.

We demonstrated that we already outperform most of the recently proposed depth

super-resolution methods, even those that rely on an additional high-resolution guidance

intensity image by training a deep convolutional network on synthetically rendered depth

maps. Although we tried to model some effects of active depth sensors on the input depth

maps with depth-dependent noise on our rendered data, we still observed that a variational

post-processing of the network outputs further improved the results. This indicates that

the prior knowledge encoded in the variational method helped to deal with the domain shift

between the synthetic training data and the testing data, e.g. time-of-flight depth maps.

Motivated by this observation, we proposed a framework to train the variational method

on top of the deep convolutional network to further boost the depth super-resolution

accuracy. We chose to unroll the optimization scheme of the variational method and

utilized automatic differentiation to backpropagate gradient information through the joint

model. With this technique, we were able to train the convolutional network to adapt to

the variational post-processing, but also all the adjustable parameters of the variational

model and its optimization scheme.

In our extensive evaluations, we could show the clear benefit of our joint model trained

on synthetic data over recent baseline methods. Interestingly, the choice of the variational

method on top is less critical than training both parts end-to-end. We observed that

training only one part of the joint method while freezing the other lead to inferior results

than joint training. Our conclusion is that the adaption of the convolutional network to

102 Chapter 3. Deep Learning for 2.5D

the post-processing is as important as tuning the parameters of the variational method.

Additionally, we extended our proposed method to guided depth super-resolution. Hence,

given a high-resolution color information along with the low-resolution depth map, we

could further improve our estimates.

CHAPTER 4

Deep Learning for 3D

Contents

4.1 Introduction . 103

4.2 Related Work . 106

4.3 Deep Learning for High-Resolution 3D . 113

4.4 Evaluation . 122

4.5 Summary & Discussion . 155

While 2.5D data itself enables a wide range of new applications, e.g. pose estimation,

or robot navigation, it is very natural to reason about the world in 3D. For example, an

object can not only be categorized by its various 2D projections in a set of images, but

also by its 3D geometry. This might be especially useful for objects, where the projection

is ambiguous. But also the other direction, the reconstruction of 3D environments from a

number 2D inputs, is an exciting topic by itself. In this chapter, we approach both aspects

of 3D data within the context of deep learning, where the main challenge is the memory

consumption that increases drastically with the resolution of the 3D volume. Therefore,

we will present an efficient method that can handle significantly larger input resolutions

and demonstrate its benefits on a number of different applications.

4.1 Introduction

Over the last several years, convolutional networks have led to substantial performance

gains in many areas of computer vision. In most of these cases, the input to the network is a

2D pixel grid, e.g. in image classification [102, 132, 220, 228], object detection [85, 86, 147,

178, 179, 180] or semantic segmentation [6, 34, 35, 81, 148, 267]. However, recent advances

103

104 Chapter 4. Deep Learning for 3D

in 3D reconstruction [165] and graphics [111] allow capturing and modeling large amounts

of 3D data. At the same time, large 3D repositories such as ModelNet [259], ShapeNet [30]

or 3D Warehouse1 as well as databases of 3D object scans [39] are becoming increasingly

available. These factors have motivated the development of convolutional networks that

operate on 3D data.

Most existing 3D network architectures [41, 154, 176, 259] replace the 2D pixel array

by its 3D analogue, i.e. a dense and regular 3D voxel grid, and process this grid using

3D convolution and pooling operations. This allows the reuse of network operations such

as convolution and pooling, but also of successful network architectures as for example

ResNet [102]. However, for dense 3D data, computational and memory requirements grow

cubically with the resolution. Consequently, existing 3D networks are limited to low 3D

resolutions, typically in the order of 303 voxels. To fully exploit the rich and detailed

geometry of our 3D world, however, much higher resolution networks are required.

In this work, we build on the observation that 3D data is often sparse in nature, e.g.

point clouds, or meshes, resulting in wasted computations when applying 3D convolutions

näıvely. We illustrate this in Figure 4.1 for a 3D classification example. Given the 3D

meshes of [259] we voxelize the input at a resolution of 643 and train a simple 3D convolu-

tional network to minimize a classification loss. We depict the maximum of the responses

across all feature maps at different layers of the network. It is easy to observe that high

activations occur only near the object boundaries.

Motivated by this observation, we propose OctNet, a 3D convolutional network that

exploits this sparsity property. Our OctNet hierarchically partitions the 3D space into a

set of shallow octrees [158]. Each octree splits the 3D space according to the density of

the data. More specifically, we recursively split octree nodes that contain a data point in

its domain, i.e. 3D points, or mesh triangles, stopping at the finest resolution of the tree.

Therefore, leaf nodes vary in size, e.g. an empty leaf node may comprise up to 83 = 512

voxels for a tree of depth 3 and each leaf node in the octree stores a pooled summary

of all feature activations of the voxel it comprises. The convolutional network operations

are directly defined on the structure of these trees. Therefore, our network dynamically

focuses computational and memory resources, depending on the 3D structure of the input.

This leads to a significant reduction in computational and memory requirements which

allows for deep learning at high resolutions. Importantly, we also show how essential

network operations (convolution, pooling, and unpooling) can be efficiently implemented

on this new data structure.

The main limitation of using an octree within the network architecture, however, is that

the octree representation is derived from the input and fixed during learning and inference.

While this is sufficient for tasks such as 3D classification or semantic segmentation where

the input and the output share the same octree representation, the OctNet framework

does not directly apply to tasks where the 3D space partitioning of the output is unknown

1https://3dwarehouse.sketchup.com, last accessed on October 26, 2017

https://3dwarehouse.sketchup.com

4.1. Introduction 105

D
en

se
N

et
D

en
se

N
et

O
ct

N
et

Layer 1: 323 Layer 2: 163 Layer 3: 83

Figure 4.1: Sparse activations of a 3D convolutional network. For illustration purposes, we
trained a dense convolutional network to classify 3D shapes from [259]. Given a voxelized bed as
input, we show the maximum response across all feature maps at intermediate layers of the network
before pooling. Higher activations are indicated with darker colors. Voxels with zero activation are
not displayed. The first row visualizes the responses in 3D while the second row shows a 2D slice.
Note how voxels close to the object contour respond more strongly than voxels further away. We
exploit the sparsity in our data by allocating memory and computations using a space partitioning
data structure, where larger cells share memory and computation (bottom row).

a priori and may be different from the input. In particular, for tasks such as volumetric

depth fusion and volumetric depth completion [38, 45, 165, 166, 224, 256] the location of

the implicit surface is unknown and needs to be inferred from noisy observations.

In the second part of this chapter, we lift this restriction. More specifically, we propose

a novel 3D CNN architecture called Dynamic OctNet which takes as input one or more

depth images and estimates both the 3D reconstruction and its supporting 3D space

partitioning, i.e. the octree structure of the output. We apply this architecture to the

depth map fusion problem and formulate the task as the prediction of truncated signed

distance fields which can be meshed using standard techniques [149].

106 Chapter 4. Deep Learning for 3D

We demonstrate the utility of the proposed OctNet on three different problems involv-

ing three-dimensional data: 3D classification, 3D orientation estimation, and semantic

segmentation of 3D point clouds. In particular, we show that the proposed OctNet en-

ables significant higher input resolutions compared to dense inputs due to its lower memory

consumption while achieving identical performance compared to the equivalent dense net-

work at lower resolutions. At the same time, we gain significant speed-ups at resolutions

of 1283 and above. Using our OctNet, we investigate the impact of high-resolution inputs

wrt. accuracy on the three tasks and demonstrate that higher resolutions are particularly

beneficial for orientation estimation and semantic point cloud labeling.

Additionally, we evaluate our Dynamic OctNet on synthetic and real-world datasets for

volumetric depth fusion and completion. Our experiments demonstrate that the proposed

method is able to reduce noise and outliers compared to standard methods, i.e. vanilla

TSDF fusion [45, 165] while avoiding the shrinking bias of local regularizers such as TV-

L1 [268]. Besides, our model learns to complete missing surfaces and fills in holes in the

reconstruction. We demonstrate the flexibility of our model by evaluating it on the task

of volumetric shape completion from a single view where we obtain improvements with

respect to the state-of-the-art [71].

The remainder of this chapter is organized as follows: We present the integration of

an efficient space partition data structure into a 3D convolutional network named OctNet

in Section 4.3.1. We further extend this framework to allow the use of OctNet also on

a priori unknown output structures, i.e. tasks like depth completion, or depth fusion,

where the 3D geometry is not known in advance, in Section 4.3.2. In Section 4.4 we show

a large variety of evaluations that demonstrate the effectiveness of OctNet in terms of

memory consumption and computational resources. Further, we show that high-resolution

inputs and outputs are needed to increase accuracy on tasks like 3D shape classification,

3D orientation estimation, 3D semantic segmentation, 3D depth fusion and 3D depth

completion.

4.2 Related Work

In this section, we first review the existing body of work on dense models in Section 4.2.1,

i.e. convolutional network models that directly operate on 3D voxel grids, which are the

3D equivalent of 2D pixel grids. The main drawback of those methods is the memory

consumption that increases cubically with respect to the input resolution. Therefore, we

survey the literature on deep learning methods that exploit the sparsity in 3D data in

Section 4.2.2. Our method relies on efficient space partitioning function to focus memory

and computation on relevant regions. Alternative data structures are reviewed in Sec-

tion 4.2.3. In the second part of this chapter, we utilize our method for depth fusion and

completion. Hence, in Section 4.2.4 we present previous work on volumetric depth fusion

and Section 4.2.5 is dedicated to related work on volumetric shape completion.

4.2. Related Work 107

(a) 2D Pixel Grid (b) 3D Voxel Grid

Figure 4.2: The 3D equivalent of the 2D pixel grid as depicted in (a) is the 3D voxel grid as
depicted in (b).

4.2.1 Dense Models

The natural continuation of convolutional networks from 2D to 3D data is by going from

the 2D pixel grid to the 3D voxel grid, see Figure 4.2. There has recently been an increased

interest in those 3D convolutional networks. One application is 3D shape classification.

For example, Wu et al. [259] trained a deep belief network to classify 3D shapes. There-

fore, they discretized the meshes to a coarse 303 voxel grid. Similarly, Maturana and

Scherer [154] proposed VoxNet, a simple 3D convolutional network that consists of 3

strided convolutional layers, and two fully-connected layers. The authors also voxelized

the input into a coarse 323 grid that is feed to the network. In a follow-up work, Alvar

et al. [4] showed that introducing an auxiliary orientation loss increases the classification

performance over the original VoxNet. Interestingly, Su et al. [225] demonstrated in their

work that applying 2D convolutional networks pre-trained on ImageNet and then fine-

tuned on a set of rendered views of the 3D object perform significantly better with respect

to the classification accuracy than the previously published 3D networks. Qi et al. [176]

closely investigated this gap between convolutional networks based on volumetric repre-

sentations and convolutional networks based on rendered 2D multi-view representations.

They proposed two new volumetric architectures: (i) a VoxNet like convolutional network

with sub-volume supervision where sub-volumes are classified independently and (ii) a

convolutional network with anisotropic probing kernels that learns the projection to a 2D

image that is then further processed by a pre-trained network. Additionally, they fur-

ther improve the accuracy of the multi-view classification network by using a multi-scale

approach within the network architecture. While the 3D network extension where able

to narrow the gap between those two approaches, the multi-view networks still perform

better on the shape classification task. In the end, the authors argue that the coarse 3D

voxel grid resolution is the main bottleneck.

Another task on dense 3D representations despite classification is for example embed-

ding learning. Girdhar et al. [84] learned a low-dimensional embedding to generate 203

108 Chapter 4. Deep Learning for 3D

(a) 3D Input Mesh (b) 163 voxels, 4.19% occupied (c) 323 voxels, 2.11% occupied

(d) 643 voxels, 1.06% occupied (e) 1283 voxels, 0.56% occupied (f) 2563 voxels, 0.31% occupied

Figure 4.3: Sparsity of 3D data. To classify triangle meshes as depicted in (a) with 3D convolu-
tional networks the typical approach is to voxelize the input (b)-(f). As we increase the resolution
of the voxelization from 163 to 2563 more and more details can be represented, but also the mem-
ory increases drastically. However, the percentage of occupied voxels also decreases along with the
resolution increase. This sparsity property of 3D data can be exploited.

voxels 3D representations. The embedding can be obtained from a 3D input or a 2D image

input. This is achieved by first training a convolutional auto-encoder on the voxelized 3D

data with the low-dimensional embedding as bottleneck layer. Then a 2D convolutional

neural network is trained to map the images to this low-dimensional embedding. Very

similar is the concurrent work presented by Sharma et al. [212]. They only learn the

low-dimension embedding for the voxelized 3D data and use it as feature representation

in other tasks, e.g. shape classification, shape interpolation and shape denoising. A vari-

ational auto-encoder for the interpolation task between shapes was presented by Brock

et al. [24]. In contrast to the normal auto-encoder, the variational auto-encoder produces

much more realistic examples.

A semantic segmentation approach based on 3D convolutional networks was proposed

by Huang and You [110]. The point cloud is divided into small local cubes and each of the

cubes is voxelized into a 203 grid and then feed to a small convolutional network. A similar

sliding cube approach was presented by Song and Xiao [221] for object recognition in 3D

from depth maps. First, a so-called Region Proposal Network outputs 3D bounding boxes

of interesting regions that are subsequently classified by an Object Recognition Network

that takes the 3D points, but also 2D color information into account.

4.2. Related Work 109

4.2.2 Sparse Models

A major drawback of the dense 3D voxel representation is the memory requirement that

become increasingly problematic with larger input resolutions. Due to this memory limi-

tations, all aforementioned methods are only able to process and generate shapes at a very

coarse resolution, typically in the order of 303 voxels. However, in most domains the 3D

data is sparse, i.e. point clouds, or triangle meshes, see Figure 4.3 for an example. This

sparsity property can be exploited to handle higher resolution inputs in convolutional net-

works. In this section, we review the few network architectures that have been proposed

so far to handle sparse data.

Engelcke et al. [62] proposed to only evaluate the convolutions at the sparse input

locations by pushing values to their target locations. This has the potential to reduce

the number of convolutions but does not reduce the amount of memory required. Conse-

quently, their work considers only very shallow networks with up to three layers. A similar

approach is presented by Graham in [94, 93] where sparse convolutions are reduced to ma-

trix operations. Unfortunately, the model only allows for 2 × 2 convolutions and results

in indexing and copy overhead which prevents processing volumes of higher resolution.

Besides, each layer decreases sparsity and thus increases the number of operations, even

at a single resolution. A different approach was proposed by Li et al. [141]. Instead of

using convolutional layers in the high-resolution 3D volume they introduced field probing

layers. A field probing layer contains 3D sampling points and computes the linear combi-

nation of the input values at those sampling points and the weights associated with those

sampling points. Then, not only the weights but also the sampling point locations can be

learned. The approach has the drawback that the field-probing layers cannot be stacked

and the output is directly fed into fully-connected layers. Jampani et al. [120] introduced

bilateral convolutional layers, which first map spare inputs into a permutohedral lattice,

then applies a convolution operation on this lattice structure and finally, the result of is

transformed back to the output space. A method that is explicitly designed for 3D point

clouds is PointNet by Qi et al. [175]. They propose a multi-layer perceptron that is applied

on each of the 3D points independently to get feature vectors. By pooling over the number

of feature vectors a single global feature representation is obtained that can then again be

concatenated to the point features. While this simple approach yields good classification

and segmentation results, it does not take into account the local structure of the points.

Another related branch is dedicated Graph Convolutional networks [25, 49, 59, 142,

160] that try to generalize the idea of convolutional networks on regular graphs to ar-

bitrary graphs. They are mostly formulated in the spectral domain [25, 49, 59] where

the convolution is dependent on the Fourier basis or Laplacian eigenbasis. However, this

makes those types of networks domain dependent and hence, the models learned on one

graph cannot easily be applied to other graphs with varying basis.

Finally, the concurrent work of Wang et al. [254] on O-CNN is very similar to ours,

as it also proposes to use an octree within a 3D convolutional network. It mainly differs

110 Chapter 4. Deep Learning for 3D

to our OctNet in the choice of the octree data structure and the definition of the network

operations. While we define the convolution equivalent to a dense representation with

the difference that feature vectors in larger octree cells are pooled, the authors of [254]

perform the convolution only on the same octree depth. If a neighboring octant is not on

the same depth, the features are assumed to be zero. This might hinder the propagation

of information within the network.

4.2.3 Space Partitioning Functions

In our proposed method we utilize a special hybrid grid-octree data structure similar to

the one proposed by Miller et al. [158] to efficiently partition the space and hence, enable

a higher input resolutions by decreasing the memory consumption. But this is only one

possible data structure to partition the 3D input space. One of the most popular ones is

the general octree as pioneered by Meagher [157]. An octree is a tree structure where each

octree cell can be further subdivided into eight equally sized octree cells. The division is

performed recursively such that fine details are represented on deeper leaf nodes in the

tree. This structure is heavily used in graphics for volume rendering [121, 135]. A related

data structure is the k-d tree invented by Bentley [12]. Instead of dividing each node

into eight equally space children, the split in a k-d tree is defined by a hyperplane that

optimally splits one dimension of the input. While this structure is normally used for

approximate nearest neighbor search, it was recently the main building block for a new

type of network for 3D shape classification and segmentation introduced by Klokov and

Lempitsky [129].

One drawback of those tree-based data structures is that deep trees are needed to

represent fine resolutions. However, this decreases the performance of GPGPUs because

the tree traversal leads to thread divergences. An alternative data structure that avoids

this problem is based on voxel hashing [138, 236]. Each voxel position maps to an integer

value, i.e. the hash, that determines the address within a hashmap. The hashmap then

stores the data associated with the sparse voxels. Variants of this data structure have

been used for real-time 3D reconstruction [33, 166].

4.2.4 Volumetric Fusion

In the second part of this chapter we will apply the proposed OctNet for volumetric depth

fusion and shape completion. Hence, we also survey the related work on volumetric fusion

in this section and on shape completion in the following one.

In their seminal work, Curless and Levoy [45] proposed to integrate range information

across viewpoints by averaging truncated signed distance functions. The simplicity of

this method has turned it into a universal approach that is used in many 3D reconstruc-

tion pipelines. Using the Microsoft Kinect sensor and GPGPU processing, Newcombe

et al. [165] showed that real-time 3D modeling is feasible using this approach. Large-scale

3D reconstruction has been achieved using iterative re-meshing [256] and efficient data

4.2. Related Work 111

structures [166, 224]. The problem of calibration and loop-closure detection has been

considered in [38, 274]. Due to the simplicity of the averaging approach, however, these

methods typically require numerous input views, are susceptible to outliers in the input

and do not allow the prediction of surfaces in unobserved regions.

A problem with the simple averaging of truncated sign distance functions is that it can

cause inconsistent surfaces if frequent sign changes appear [107]. Therefore, it is common

to employ additional regularization terms that incorporates prior assumptions about the

surface, i.e. smoothness assumption. Zach et al. [268] proposed the popular TV-L1 model

for volumetric fusion, where a total variation term is utilized for regularization. The

total variation favors minimal surfaces. Additionally, the L1 data term is more robust to

outliers than a simple averaging of the signed distance values. An extension to this method

was proposed by Pock et al. [173] where the total variation regularization is replaced by

total generalized variation, see Section 2.2.3.4. This regularization term better captures

the piecewise affine solutions and reduces the stair-casing effect introduced by the Total

Variation norm. Similar models have also been proposed that additionally include semantic

segmentation cues to improve the fusion results [14, 98].

While those methods do not explicitly consider free space and visibility constraints,

ray potentials explicitly allow the modeling these constraints in a Markov Random Field.

Ulusoy et al. [249] considered a fully probabilistic model for image-based 3D reconstruction.

Liu and Cooper [146] formulated the task as MAP inference in a Markov Random Field. In

contrast to our method, these algorithms do not learn the geometric structure of objects

and scene from data. Instead, they rely on simple hand-crafted priors such as spatial

smoothness [146], or piecewise planarity [248]. Notably, Savinov et al. [201] combined ray

potentials with 3D shape regularization terms that are learned from data. However, their

regularization term is local and relies on a semantic segmentation of the input.

A common drawback of the methods that are either based on variational models, or

ray consistency is, while they achieve superior results over vanilla TSF fusion [45], they

are also much slower and have limited capabilities to handle missing or occluded data.

4.2.5 Shape Completion

A different approach to volumetric fusion from multiple depth map inputs is shape com-

pletion, where a incomplete 3D model is given. In this section, we focus especially on

methods that complete the 3D shape from a single input image, or depth map.

Kim et al. [125] proposed Voxel-CRF, a Conditional Random Field that estimates the

occupancy and semantic label of a 3D voxel grid given a single RGB-D input. While

their goal is to improve 3D semantic segmentation, they include higher-order terms in

the Random Field to encourage planar surfaces and contiguous objects. Similarly, Zheng

et al. [272] proposed a voxel completion method by extruding visible points in detected

Manhattan world directions. Firman et al. [71] proposed a learning-based framework for

scene completion. A structured random forest is evaluated on voxel locations to estimate

112 Chapter 4. Deep Learning for 3D

3D shape parts that are then fused. Instead of a random forest, Song et al. [222] used a

3D convolutional network for the completion of room scenes. In addition to the inference

of the voxel occupancy in the 3D grid, their method also estimated the semantic class for

each voxel. They were able to show learning both tasks together increased the performance

on the individual tasks.

Instead of using a single depth map as input, there has recently been a great interest

in reconstructing objects from a single color image. For example, Kar et al. [122] fitted

deformable 3D models of objects to images. They first predict the viewpoint and category

of the object with a convolutional network and then fit the deformable 3D model to

detected key-point locations. A recently popular and related set approach is to extract

depth information from a single image [60, 61, 77, 90], or producing an anaglyph 2.5D

output from a single image [260] using convolutional networks. Similarly, there has recently

been proposed a deep network approach to directly synthesizing novel views from a set

images [72] This technique was utilized by Tatarchenko et al. [233] for volumetric fusion.

They trained a deep convolutional network to output depth maps and color images for

a specific rotation given as input a single color image. Multiple depth maps of different

rotations are then fused to a volumetric representation using TGV-Fusion [173]. Choy

et al. [41] introduced a related approach, but instead of single depth maps the output is a

3D 323 occupancy voxel grid. In addition, they proposed a recurrent convolutional layer

that fuses the encoder representation of multiple input images, which slightly improved

the reconstruction results. Wu et al. [258] presented 3D Interpreter Neural Networks

that combine the ideas of [122] and [41]. The authors utilized a convolutional network

to estimate the 2D key-points of object categories. Those key-points are then fed into

an additional network that interprets them and outputs a 3D structure, i.e. a 3D line

diagram.

A drawback of those direct approaches is that they require a huge amount of 3D

ground-truth models for training. Yan et al. [262] tried to circumvent this by formulating

the loss not in the 3D voxel space, but on 2D projections of the 3D object. This is

possible because the projection is fully differentiable. This loss was further generalized by

Tulsiani et al. [247]. Instead of evaluating the loss in the 2D projections, they formulated a

differentiable ray consistency loss. The network can then be trained by providing multiple

depth maps, or only foreground masks as supervision.

A common problem of the volumetric representation as the output of convolutional

networks is again the resolution. Hence, Fan et al. [63] introduced a Point Set Generation

Network. As the name suggests, the output is a 3D point cloud instead of a voxel-based

representation. However, the number of points still needs to be fixed. Dai et al. [47]

proposed a different approach. Their network still outputs a coarse 323 voxel grid for the

task of shape completion, but then utilizes shape synthesis relying on an external database

to produce a high-resolution voxel grid.

Very related to our octree based approach are the concurrent works by Häne et al. [97]

and Tatarchenko et al. [234]. They also successively output reconstructions on increasing

4.3. Deep Learning for High-Resolution 3D 113

(a) Voxel Representation (b) Hybrid Grid-Octree Representation

Figure 4.4: Hybrid grid-octree data structure. This example illustrates a hybrid grid-octree
consisting of 27 shallow octrees. Using 3 shallow octrees in each dimension with a maximum depth
of 3 leads to a total resolution of 243.

resolutions in an octree. However, they only use the octree scheme on the output, whereas

we are able to use it for the input, too.

4.3 Deep Learning for High-Resolution 3D

In this section, we present our method named OctNet that enables training of convolu-

tional networks on high-resolution voxelized 3D data. We enable this by using a space

partitioning data-structure within the network, see Section 4.3.1. Further, we formulate

common network operations, e.g. convolution, pooling, and unpooling, on this non-uniform

data structure, but keeping them close to their counterparts on a regular voxel grid. This

drastically decreases the memory footprint of the models, but also enables us to reuse

popular network architectures [102, 228, 220] for problems in 3D. However, this method

is not directly applicable if the space partitioning is not known in advance, e.g. for 3D

completion, or reconstruction. Therefore, we present Section 4.3.2 an extension that han-

dles this issue by learning the space partitioning in addition to the occupancy of the 3D

volume.

4.3.1 OctNet

To decrease the memory footprint of convolutional networks operating on sparse 3D data,

we propose an adaptive space partitioning scheme which focuses computations on the

relevant regions. As mathematical operations of deep networks, especially convolutional

networks, are best understood on regular grids, we restrict our attention to data struc-

114 Chapter 4. Deep Learning for 3D

Shallow tree depth 1 2 3 4 5

Bit string length 1 9 73 585 4,681

Volume in voxels 1 64 512 4,096 32,768

Table 4.1: Trade-off between shallow octree depth and memory consumption.

tures on 3D voxel grids. One of the most popular space partitioning structures on voxel

grids are octrees [157] which have been widely adopted due to their flexible and hierar-

chical structure. An non-exhaustive list of application include depth fusion [124], image

rendering [135] and 3D reconstruction [249]. In this thesis, we propose 3D convolutional

networks on octrees to learn representations from high-resolution 3D data.

An octree partitions the 3D space by recursively subdividing it into octree cells, also

called octants. By subdividing only the cells which contain relevant information, e.g.

cells crossing a surface boundary or cells containing one or more 3D points, storage can

be allocated adaptively. Densely populated regions are modeled with high accuracy, i.e.

using small cells, while empty regions are summarized by large cells in the octree.

Unfortunately, vanilla octree implementations [157] have several drawbacks that ham-

per its application in deep networks. While octrees reduce the memory footprint of the

3D representation, most versions do not allow an efficient access to the underlying data.

In particular, octrees are typically implemented using pointers, where each node contains

a pointer to its children. Accessing an arbitrary element (or the neighbor of an element)

in the octree requires a traversal starting from the root until the desired cell is reached.

Thus, the number of memory accesses is equal to the depth of the tree. This becomes in-

creasingly costly for deep, i.e. high-resolution, octrees. Convolutional network operations

such as convolution or pooling require frequent access to neighboring elements. It is thus

critical to utilize an octree design that allows for fast data access.

We tackle these challenges by leveraging a hybrid grid-octree data structure which we

describe in Section 4.3.1.1. In Section 4.3.1.2, we show how 3D convolution and pooling

operations can be implemented efficiently on this data structure.

4.3.1.1 Hybrid Grid-Octree Data Structure

The above mentioned problems with the vanilla octree data structure increase with the

octree depth. Instead of representing the entire high-resolution 3D input with a single

unbalanced octree, we leverage a hybrid grid-octree structure similar to the one proposed

by Miller et al. [158]. The key idea is to restrict the maximal depth of an octree to a

small number, e.g. three, and place several such shallow octrees along a regular grid as

illustrated in Figure 4.4. While this data structure may not be as memory efficient as

the standard octree, significant compression ratios can still be achieved. For instance, a

single shallow octree that does not contain input data stores only a single vector, instead

of 83 = 512 vectors for all voxels at the finest resolution at depth 3.

An additional benefit of a collection of shallow octrees is that their structure can be

4.3. Deep Learning for High-Resolution 3D 115

(a) Single Shallow Octree

1

0 1

01010001

0 1

01000101

0 1

00010000

0 1

01010000

(b) Bit Representation

Figure 4.5: Shallow octree bit representation. A single shallow octree can be efficiently en-
coded using a bit-string. Here, the bit-string 1 01010101 00000000 01010001 00000000 01000101
00000000 00010000 00000000 01010000 defines the octree in (a). The corresponding tree structure
is shown in (b). The color in the bit-string corresponds to the split level.

encoded very efficiently using a bit string representation which further lowers access time

and allows for efficient GPGPU implementations [158]. Given a shallow octree of depth 3,

we use 73 bit to represent the complete tree. The first bit with index 0 indicates, if the root

node is split, or not. Further, bits 1 to 8 indicate if one of the child nodes is subdivided

and bits 9 to 72 denote splits of the grandchildren, see Figure 4.5. A tree depth of 3 gives

a good trade-off between memory consumption and computational efficiency. Further,

increasing the octree depth results in an exponential growth in the required bits to store

the tree structure and further increases the cell traversal time as depicted in Table 4.1.

Using this bit-representation, a single voxel in the shallow octree is fully characterized

by its bit index. This index determines the depth of the voxel in the octree and there-

fore also the voxel size. Instead of using pointers to the parent and child nodes, simple

arithmetic can be used to retrieve the corresponding indices of a voxel with bit index b

pa(b) =

⌊
b− 1

8

⌋
, (4.1)

ch(b) = 8 · b+ 1 . (4.2)

In contrast to [158], we associate a data container for storing features vectors with all

leaf nodes of each shallow tree. We allocate the data of a shallow octree in a contiguous,

breath-first data array. The offset associated with a particular voxel in this array can be

computed as follows

data idx(b) = 8

pa(b)−1∑
b′=0

bit(b′) + 1︸ ︷︷ ︸
#nodes above b

−
b−1∑
b′=0

bit(b′)︸ ︷︷ ︸
#split nodes pre b

+ mod(b− 1, 8)︸ ︷︷ ︸
offset

. (4.3)

116 Chapter 4. Deep Learning for 3D

1

0 1

1 0 0 1

0 1

0 1 0 0

(a) Bit-String

s

v s

s

v v v v

v v s

v v v v

v s

v s

v v v v

v v

(b) Split & Leaf Nodes

0

1 2

9

37 38 39 40

10 11 12

49 50 51 52

3 4

17 18

73 74 75 76

19 20

(c) Bit Index

-

0 -

-

7 8 9 10

2 3 -

11 12 13 14

1 -

4 -

15 16 17 18

5 6

(d) Data Index

Figure 4.6: Data index computation example.

Here, mod denotes the modulo operator and bit returns the tree bit-string value at b.

The first part of the equation above counts the number of split and leaf nodes up to the

voxel with bit index i. The second term subtracts the number of split nodes before the

particular voxel as data is only associated with leaf nodes. Finally, we need to get the

offset within the voxel’s neighborhood. This is done by the last term of the equation. Both

sum operations can be efficiently implemented using bit counting intrinsics, i.e. popcnt.

The data arrays of all shallow octrees are concatenated into a single contiguous data array

during training and testing to reduce I/O latency.

Let us illustrate the data index computation with a simple example: For ease of

visualization, we will consider a quadtree. Hence, each voxel can be split into 4 instead of

8 children. The equation for the offset changes to

data idx4(b) = 4

pa4(b)−1∑
b′=0

bit(b′) + 1︸ ︷︷ ︸
#nodes above b

−
b−1∑
b′=0

bit(b′)︸ ︷︷ ︸
#split nodes pre b

+ mod(b− 1, 4)︸ ︷︷ ︸
offset

, (4.4)

with

pa4(b) =

⌊
b− 1

4

⌋
. (4.5)

Now consider the following bit string for instance: 1 0101 0000 1001 0000 0100. According

to our definition, this bit string corresponds to the tree structure visualized in Figure 4.6a

and 4.6b, where s indicates a split node and v a leaf node with associated data. In

Figure 4.6c we show the bit indices for all nodes. Note that the leaf nodes at depth 3 do

not need to be stored in the bit string as this information is implicit. Finally, the data

index for all leaf nodes is visualized in Figure 4.6d. Now we can verify equation (4.4) using

a simple example. Assume the bit index 51: The parent bit index is given by equation (4.5)

as 12. To compute the data index we first count the number of nodes before 49 as it is the

first node within its siblings (first term of the equation), which is 17. Next, we count the

number of split nodes up to 49 (second term of the equation), which is 6. Finally, we look

up the position 51 within its siblings (last term of the equation), which is 2. Combining

those three terms yields the data index 17− 6 + 2 = 13.

4.3. Deep Learning for High-Resolution 3D 117

4.3.1.2 Network Operations

Given the hybrid grid-octree data structure introduced in the previous section, we now

discuss the efficient implementation of network operations on this data structure. We will

focus on the most common operations in convolutional networks [6, 34, 35, 81, 102, 132,

148, 220, 228]: convolution, pooling and unpooling. Note that point-wise operations, like

activation functions, do not differ in their implementation as they are independent of the

data structure.

Let us first introduce the notation which will be used throughout this section. Ti,j,k
denotes the value of a 3D tensor T at location (i, j, k). Now assume a hybrid grid-octree

structure with D×H ×W unbalanced shallow octrees of maximum depth 3. Let O[i, j, k]

denote the value of the smallest cell in this structure which comprises the voxel (i, j, k).

Further, let Ω[i, j, k] be the smallest octant that contains the voxel at (i, j, k). Hence,

Ω[i, j, k] is the set of voxel indices whose data is pooled to a single value. Note that

in contrast to the tensor notation, O[i1, j1, k1] and O[i2, j2, k2] with i1 6= i2 ∨ j1 6= j2 ∨
k1 6= k2 refer to the same value/octant in the hybrid grid-octree, if (i1, j1, k1) ∈ Ω[i, j, k]

and (i2, j2, k2) ∈ Ω[i, j, k]. We obtain the index of the shallow octree in the grid via

(b i8c, b
j
8c, bk8c) and the local index of the voxel at the finest resolution in that octree by

(mod(i, 8),mod(j, 8),mod(k, 8)).

Given this notation, the mapping from a grid-octree O to a tensor T with compatible

dimensions is given by

oc2ten : Ti,j,k = O[i, j, k] . (4.6)

Similarly, the reverse mapping is given by

ten2oc : O[i, j, k] = pool voxels
(i′,j′,k′)∈Ω[i,j,k]

(Ti′,j′,k′) , (4.7)

where pool voxels (·) is a pooling function (e.g., average- or max-pooling) which pools all

voxels in T over the smallest grid-octree cell comprising location (i, j, k). This pooling is

necessary as a single voxel in O can cover up to 83 = 512 elements of T , depending on its

size |Ω[i, j, k]|.
Note that with the two functions defined above, we could wrap any network operation

f defined on 3D tensors via

g(O) = ten2oc(f(oc2ten(O))) . (4.8)

However, this would require a costly conversion from the memory efficient grid-octrees

to a regular 3D tensor and back. Besides, storing a dense tensor in memory limits the

maximal resolution. We therefore define our network operations directly on the hybrid

grid-octree data structure.

118 Chapter 4. Deep Learning for 3D

(a) Input

0.125

0.250

0.125

0.000

0.000

0.000

0.125

0.250

0.125

0.125

0.250

0.125

0.000

0.000

0.000

0.125

0.250

0.125

0.125

0.250

0.125

0.000

0.000

0.000

0.125

0.250

0.125

(b) Convolution (c) Output

Figure 4.7: Octree convolution example. The different colors in the input depicted in (a) indicate
the different values per octree cell. The convolution kernel is applied on each voxel location resulting
in different responses within octree cells, see (b). Therefore, the information is pooled which yields
the octree convolution result as visualized in (c).

Convolution The convolution operation is the most important, but also the most com-

putationally expensive operation in deep convolutional networks. For a single feature map,

convolving a 3D tensor T with a 3D convolution kernel W ∈ RL×M×N can be written as

T out
i,j,k =

L−1∑
l=0

M−1∑
m=0

N−1∑
n=0

Wl,m,n · T in
i′,j′,k′ , (4.9)

with i′ = i− l+bL/2c, j′ = j−m+bM/2c, k′ = k−n+bN/2c. Similarly, the convolutions

on the grid-octree data structure are defined as

Oout[i, j, k] = pool voxels
(̂i,ĵ,k̂)∈Ω[i,j,k]

(Tî,ĵ,k̂)

Tî,ĵ,k̂ =
L−1∑
l=0

M−1∑
m=0

N−1∑
n=0

Wl,m,n ·Oin[i′, j′, k′]

(4.10)

with i′, j′, k′ defined as above. A visualization of this octree convolution is visualized in

Figure 4.7. While this calculation yields the same result as the tensor convolution in Equa-

tion (4.9) with the oc2ten, ten2oc wrapper, we are now able to define a computationally

more efficient convolution operator.

A näıve implementation would apply the convolution kernel at every location (i, j, k)

comprised by the cell Ω[i, j, k]. Therefore, for an octree cell of size 83 and a convolution

kernel of 33 this would require 83 · 33 = 13, 824 multiplications. However, we can exploit

that O[i, j, k] is constant within a small margin of the cell due to its constant support

Ω[i, j, k]: For a small convolution kernel, e.g. 33, the filter response within the octree cell

is constant. Hence, we can implement this calculation much more efficiently as depicted

in Figure 4.8. We observe that the value inside the cell of size 83 is constant. Thus, we

only need to evaluate the convolution once inside this cell and multiply the result by the

size of the cell 83, see Figure 4.8a. Additionally, we need to evaluate a truncated version

of the kernel on the corners, edges and faces of the octant, see Figures 4.8b-4.8d. This

implementation is more efficient, as we need only 27 multiplications for the constant part,

4.3. Deep Learning for High-Resolution 3D 119

(a) Constant (b) Corners (c) Edges (d) Faces

Figure 4.8: Efficient octree convolution implementation. The grid depicted in the four graphics
visualizes the voxel locations of a single large octree cell. The convolution kernel is depicted by
the red cube, and the active voxel locations for the convolutions by orange cubes.

(a) Input (b) Pooling finest cells (c) Combining octrees

Figure 4.9: Octree pooling example. The red color indicates octree cells on the finest resolution.

8 · 19 multiplications for the corners, 12 · 6 · 15 multiplications for the edges, and 6 · 62 · 9
multiplications for the faces of the octree cell. In total, this yields 3, 203 multiplications, or

23.17% of the multiplications required by the näıve implementation. At the same time, it

enables a better caching mechanism, especially if the neighboring octree cells also comprise

many voxels.

Pooling Another important operation in deep convolutional networks is pooling. Pool-

ing reduces the spatial resolution of the input tensor and aggregates higher-level informa-

tion for further processing, thereby increasing the receptive field and capturing context.

For instance, strided 23 max-pooling divides the input tensor T in into 23 non-overlapping

regions and computes the maximum value within each region. Formally, we have

T out
i,j,k = max

l,m,n∈[0,1]

(
T in

2i+l,2j+m,2k+n

)
, (4.11)

where T in ∈ R2D×2H×2W and T out ∈ RD×H×W .

To implement pooling on the grid-octree data structure we reduce the number of

shallow octrees. For an input grid-octree Oin with 2D × 2H × 2W shallow octrees, the

120 Chapter 4. Deep Learning for 3D

output Oout contains D × H ×W shallow octrees. Each octree cell of Oin is halved in

size and copied one level deeper in the shallow octree. Octree cells at depth 3 in Oin are

pooled. This can be formalized as

Oout[i, j, k] =

{
Oin[2i, 2j, 2k] if ocd(2i, 2j, 2k) < 3

P else

P = max
l,m,n∈[0,1]

(Oin[2i+ l, 2j +m, 2k + n]) , (4.12)

where ocd(·) computes the depth of the indexed voxel in the shallow octree. A visual

example is depicted in Figure 4.9.

Unpooling For several tasks such as semantic segmentation, the desired network output

is of the same size as the network input. While pooling is crucial to increase the receptive

field size of the network and capture context, it loses spatial resolution. To increase

the resolution of the network, U-shaped network architectures have become popular [6,

42] which encode information using pooling operations and increase the resolution in a

decoder part using unpooling or deconvolution layers, possibly in combination with skip-

connections to increase precision. The simplest unpooling strategy uses nearest neighbour

interpolation and can be formalized on dense input T in ∈ RD×H×W and output T out ∈
R2D×2H×2W tensors as follows

T out
i,j,k = T in

bi/2c,bj/2c,bk/2c , (4.13)

Again, we can define the analogous operation on the hybrid grid-octree data structure by

Oout[i, j, k] = Oin[bi/2c, bj/2c, bk/2c] , (4.14)

This operation also changes the data structure: The number of shallow octrees increases

by a factor of 8, as each octree cell at depth 0 spawns a new shallow octree. All other

octree cells double their size. Thus, after this operation, the tree depth is decreased. See

Figures 4.10a-4.10b for a visual example of this operation.

To capture fine details, cells can be split again at the finest resolution, i.e. according to

the original octree of the corresponding pooling layer, or given any other guidance octree

structure. This allows using skip-connections in U-shaped networks, or dynamic OctNets

as presented in the next section. See Figures 4.10c-4.10d for a visual example of this

operation.

4.3.2 Dynamic OctNet

The main drawback of OctNets as presented in the previous section is that the octree

structure of the input and output, i.e. the partitioning of the 3D space, has to be known a

4.3. Deep Learning for High-Resolution 3D 121

(a) Input (b) Output (c) Guidance (d) Output Guided

Figure 4.10: Octree unpooling example. The different colors indicate octree cells on different
depth.

OD×H×W
n

Unpool
n, n, 2 × 2, 2

P 2D×2H×2W
n Split Q2D×2H×2W

n

Conv
n, 1, 3 × 3, 1

RD×H×W

1 L

Figure 4.11: OctNet structure module. The structure manipulation module doubles the spatial
resolution of the feature maps. A loss ∆ measures the quality of the reconstruction at the respective
resolution.

priori. This is a reasonable assumption for tasks like shape classification, or 3D point cloud

labeling where the input and the output octree structures are the same, or the output is

a 1D vector, respectively. However, for tasks where the output geometry is different from

the input geometry, e.g. in volumetric fusion or shape completion, the grid-octree data

structure has to be adapted during inference.

To cope with this short-coming we introduce a structure module which determines

for each octree cell if it shall be split, or not. Our structure module is illustrated in

Figure 4.11. The main idea is to derive a split mask from an intermediate reconstruction.

This split mask is then utilized in the unpooling operation as guidance which of the octree

cells should be further subdivided.

More formally, let us consider an input grid-octree structure O with n feature channels

and D×H×W shallow octrees as illustrated in Figure 4.11. After the unpooling operation

we obtain a structure P that consists of 2D× 2H × 2W shallow octrees where each octree

cell comprises eight-times the number of voxels, i.e., |ΩP [2i, 2j, 2k]| = 8|ΩO[i, j, k]|.
To determine the new octree structure, we additionally predict a reconstruction R at

the resolution of O using a single convolution optionally followed by a sigmoid non-linearity

depending on the desired output format, e.g. occupancy grid, or truncated signed distance

function (TSDF). The reconstruction loss L ensures that the predicted reconstruction is

close to the ground truth reconstruction.

122 Chapter 4. Deep Learning for 3D

(a) Reconstruction

(b) Split Mask τ = 1 (c) Split τ = 1

(d) Split Mask τ = 2 (e) Split τ = 2

Figure 4.12: Octree splitting. Given a reconstruction as depicted in (a) a split mask is computed,
(b) and (d). The split mask indicates the transition from occupied to free voxels with a given
distance τ . The octree cells that are marked by the split mask are then represented on the finest
octree resolution,(c) and (e).

We define the split mask implicitly by the surface of the reconstruction R. The surface

is defined by the gradients of R when predicting occupancies or by the zero level set of R in

the case of TSDF regression. Given the surface, we split all voxels within distance τ from

the surface. For TSDF regression, τ could equal the truncation threshold. For occupancy

classification, τ is a flexible parameter which can be tuned to trade reconstruction accuracy

vs. memory usage. See Figure 4.12 for a visual illustration. The output of this split

operation finally yields the high-resolution structure Q which serves as input to a next

level in the network architecture.

4.4 Evaluation

In this section, we evaluate the proposed OctNet on a number of different tasks for high-

resolution 3D data. First, we evaluate the core OctNet, where the input and output

structure is known in Sections 4.4.1-4.4.3. There, we will focus on the memory and runtime

requirements of the proposed solution and on the representational abilities compared to

dense 3D convolutional networks for the 3D shape classification task. Additionally, we

will also show how increasing the input resolution can benefit the orientation estimation

capabilities of deep networks, as well as the semantic segmentation of 3D point clouds. In

4.4. Evaluation 123

the second part of the evaluation, we show how the learning of the octree subdivision can

be used for depth completion and fusion, see Section 4.4.4. The presented learning based

approach outperforms well-established baseline methods especially if the number of input

views is limited, or are degenerated by noise.

4.4.1 3D Shape Classification

A popular task on 3D data that is very related to 2D image data is shape classification.

The input is a 3D triangle mesh and the goal is to assign it one out of N possible categories,

or classes. We will use this evaluation not only to assess the classification accuracy with

respect to the input resolution but also to quantify the memory and runtime benefits of

the proposed OctNet.

Experimental Set-Up In this evaluation we utilize the widely used ModelNet10 and

ModelNet40 [259] datasets. ModelNet10 consists of 3, 991 training and 908 test shapes

divided into 10 categories. The larger ModelNet40 dataset contains 9, 843 training and

2, 468 test shapes spread over 40 categories. We further randomly split the training set by

using 25 samples per category in an additional validation set. To input the 3D triangle

meshes to the network we first compute 3D occupancy grids, where a voxel is set to 1, i.e.

occupied, if it is intersected with one or more triangles of the mesh. Otherwise, the voxel

is set to 0, i.e. free space. As the shape meshes do not have a normed size, we scale all

meshes prior to voxelization to fit into the grid. To avoid border effects, we use 1
16 of the

voxels of each dimension for padding, e.g. if we use a voxel grid of 323, then the shape will

be scaled to fit into 303 voxels. For our grid-octree representation, all occupied voxels are

represented on the finest resolution and the rest is summarized in larger octree cells.

For this evaluation, we utilize a network architecture similar to ResNet [102]. To

enable a fair evaluation across the different input resolutions, we keep the number of

network parameters constant but change the number of pooling operations towards the

end of the networks. Therefore, emphasizing more high-level features. See Figure 4.13

for a detailed depiction of the architecture. We train each network for 20 epochs with a

learning rate of 10−3 and Adam [128] as optimizer. The training objective is the standard

cross-entropy loss with an additional weight decay of 10−4. The batch size is set to 32.

For the evaluation, we use the network per resolution that yields the lowest error on the

validation set.

Results Before we discuss the results in terms of classification accuracy, we first want

to show the memory and runtime of our method in this experiment. In Figure 4.14 we

visualize the memory consumption of single voxelized shapes for different resolutions, once

in the dense grid representation and once in our grid-octree representation. The memory

consumption of the voxel grid is of course only dependent on the input resolution, whereas

for our grid-octree structure the memory consumption is also dependent on the voxel occu-

124 Chapter 4. Deep Learning for 3D

In
p
u
t

C
on

v
c
in
,
c
in
,
3×

3×
3
,
1

A
d
d

C
on

v
c
in
,
c
o
u
t ,
3×

3×
3
,
1

O
u
tp
u
t

(a) ResUnit

In
p
u
t

2563

C
on

v
1
,
1
6
,
3×

3×
3
,
1

R
esU

n
it

1
6
,
3
2
,
3×

3×
3
,
1

P
o
o
l

2×
2×

2
,
2

1283

R
esU

n
it

3
2
,
4
8
,
3×

3×
3
,
1

P
o
ol

2×
2×

2
,
2

643

R
esU

n
it

4
8
,
6
4
,
3×

3×
3
,
1

P
o
ol

2×
2×

2
,
2

323
R
esU

n
it

6
4
,
8
0
,
3×

3×
3
,
1

P
o
ol

2×
2×

2
,
2

163

R
esU

n
it

8
0
,
8
0
,
3×

3×
3
,
1

P
o
ol

4×
4×

4
,
4

43

D
rop

ou
t

0
.5

F
C

8
0
·
4
3
,
5
1
2

D
rop

ou
t

0
.5

F
C

5
1
2
,
N

(b) 2563

In
p
u
t

1283

C
on

v
1
,
1
6
,
3×

3×
3
,
1

R
esU

n
it

1
6
,
3
2
,
3×

3×
3
,
1

P
o
o
l

2×
2×

2
,
2

643

R
esU

n
it

3
2
,
4
8
,
3×

3×
3
,
1

P
o
ol

2×
2×

2
,
2

323
R
esU

n
it

4
8
,
6
4
,
3×

3×
3
,
1

P
o
ol

2×
2×

2
,
2

163

R
esU

n
it

6
4
,
8
0
,
3×

3×
3
,
1

P
o
ol

2×
2×

2
,
2

83

R
esU

n
it

8
0
,
8
0
,
3×

3×
3
,
1

P
o
ol

2×
2×

2
,
2

43

D
rop

ou
t

0
.5

F
C

8
0
·
4
3
,
5
1
2

D
rop

ou
t

0
.5

F
C

5
1
2
,
N

(c) 1283

In
p
u
t

643

C
o
n
v

1
,
1
6
,
3×

3×
3
,
1

R
esU

n
it

1
6
,
3
2
,
3×

3×
3
,
1

P
o
ol

2×
2×

2
,
2

323

R
esU

n
it

3
2
,
4
8
,
3×

3×
3
,
1

P
o
o
l

2×
2×

2
,
2

163

R
esU

n
it

4
8
,
6
4
,
3×

3×
3
,
1

P
o
ol

2×
2×

2
,
2

83

R
esU

n
it

6
4
,
8
0
,
3×

3×
3
,
1

P
o
o
l

2×
2×

2
,
2

43

R
esU

n
it

8
0
,
8
0
,
3×

3×
3
,
1

D
ro
p
o
u
t

0
.5

F
C

8
0
·
4
3
,
5
1
2

D
ro
p
o
u
t

0
.5

F
C

5
1
2
,
N

(d) 643

In
p
u
t

323
C
o
n
v

1
,
1
6
,
3×

3×
3
,
1

R
esU

n
it

1
6
,
3
2
,
3×

3×
3
,
1

P
o
ol

2×
2×

2
,
2

163

R
esU

n
it

3
2
,
4
8
,
3×

3×
3
,
1

P
o
o
l

2×
2×

2
,
2

83

R
esU

n
it

4
8
,
6
4
,
3×

3×
3
,
1

P
o
ol

2×
2×

2
,
2

43

R
esU

n
it

6
4
,
8
0
,
3×

3×
3
,
1

R
esU

n
it

8
0
,
8
0
,
3×

3×
3
,
1

D
ro
p
o
u
t

0
.5

F
C

8
0
·
4
3
,
5
1
2

D
rop

ou
t

0
.5

F
C

5
1
2
,
N

(e) 323

In
p
u
t

163

C
o
n
v

1
,
1
6
,
3×

3×
3
,
1

R
esU

n
it

1
6
,
3
2
,
3×

3×
3
,
1

P
o
ol

2×
2×

2
,
2

83

R
esU

n
it

3
2
,
4
8
,
3×

3×
3
,
1

P
o
ol

2×
2×

2
,
2

43

R
esU

n
it

4
8
,
6
4
,
3×

3×
3
,
1

R
esU

n
it

6
4
,
8
0
,
3×

3×
3
,
1

R
esU

n
it

8
0
,
8
0
,
3×

3×
3
,
1

D
ro
p
ou

t
0
.5

F
C

8
0
·
4
3
,
5
1
2

D
ro
p
ou

t
0
.5

F
C

5
1
2
,
N

(f) 163

In
p
u
t

83

C
on

v
1
,
1
6
,
3×

3×
3
,
1

R
esU

n
it

1
6
,
3
2
,
3×

3×
3
,
1

P
o
ol

2×
2×

2
,
2

43

R
esU

n
it

3
2
,
4
8
,
3×

3×
3
,
1

R
esU

n
it

4
8
,
6
4
,
3×

3×
3
,
1

R
esU

n
it

6
4
,
8
0
,
3×

3×
3
,
1

R
esU

n
it

8
0
,
8
0
,
3×

3×
3
,
1

D
ro
p
o
u
t

0
.5

F
C

8
0
·
4
3
,
5
1
2

D
rop

o
u
t

0
.5

F
C

5
1
2
,
N

(g) 83

Figure 4.13: OctNet ResNet for different input resolutions. The main building block of the
architecture is the residual unit as depicted in (a). To enable a fair evaluation of the network
performance with varying input resolutions, we keep the number of network parameters fixed.
Therefore, we first decrease the last pooling stride from 4× 4× 4 for (b) 2563 to 2× 2× 2 for (c)
1283. Then, we remove one pooling layer for each decrease of the input resolution by a factor of
23 (d)-(g).

4.4. Evaluation 125

0.0 0.1 0.2 0.3
Voxel Occupancy [%]

0

50

100

M
em

or
y

[K
B

]

Dense

Grid-Octree

(a) 323

0.00 0.05 0.10 0.15
Voxel Occupancy [%]

0.00

0.25

0.50

0.75

1.00

M
em

or
y

[M
B

]

Dense

Grid-Octree

(b) 643

0.00 0.02 0.04 0.06 0.08
Voxel Occupancy [%]

0

2

4

6

8

M
em

or
y

[M
B

]

Dense

Grid-Octree

(c) 1283

0.00 0.02 0.04
Voxel Occupancy [%]

0

20

40

60

M
em

or
y

[M
B

]

Dense

Grid-Octree

(d) 2563

Figure 4.14: Memory consumption of standard voxel grids compared to hybrid grid-octrees. The
memory consumption of the voxel grid is constant for a given resolution. In contrast, the memory
consumption of the hybrid grid-octree structure scales almost linearly with the voxel occupancy
and is always way below the voxel grid.

83 163 323 643 1283 2563

Input Resolution

0

50

100

150

200

M
em

or
y

[G
B

]

DenseNet

OctNet

(a) Overview

83 163 323 643 1283 2563

Input Resolution

0.0

2.5

5.0

7.5

10.0
M

em
or

y
[G

B
]

DenseNet

OctNet

(b) Zoomed

Figure 4.15: Memory consumption of a 3D convolutional network on voxel grids and hybrid
grid-octrees. The number of network parameters is fixed. For lower resolutions, the number of
pooling layers is reduced.

pancy, i.e. how many percents of the voxels intersect with a mesh triangle. It also depends

on how the occupied voxels are distributed. Therefore, it is not monotonic increasing in

the plots. What is important to observe is that the grid-octree data structure always

needs significantly less memory. This is especially pronounced for higher resolutions, i.e.

for 2563 the voxel grid needs 67.11 MB, whereas our grid-octree needs always less than

10 MB.

The memory consumption is only for a single sample and this gets even more pro-

nounced if a whole network is trained. In that case, the memory consumption gets mul-

tiplied with the batch size which can be decreased to 1 in the worst case, but also with

the number of feature maps, which is typically in the hundreds. Therefore, we compare

the memory consumption of the deep network with respect to the input resolution in

Figure 4.15. The memory consumption is for a forward pass with the previously stated

settings, once for the network on the voxel grid called DenseNet, and once for the network

on the hybrid grid-octree called OctNet. We observe that the OctNet is always more mem-

ory efficient than the equivalent DenseNet variant. For small input resolutions, i.e. ≤ 323,

126 Chapter 4. Deep Learning for 3D

83 163 323 643 1283 2563

Input Resolution

0

20

40

60

80

R
u

nt
im

e
[s

]

DenseNet

OctNet

(a) Overview

83 163 323 643

Input Resolution

0.5

1.0

1.5

R
u

nt
im

e
[s

]

DenseNet

OctNet

(b) Zoomed

Figure 4.16: Runtime of a 3D convolutional network on voxel grids and hybrid grid-octrees.
The number of network parameters is fixed. For lower resolutions, the number of pooling layers is
reduced.

83 163 323 643 1283 2563

Input Resolution

0.80

0.85

0.90

0.95

1.00

O
ve

ra
ll

A
cc

u
ra

cy

DenseNet

OctNet

(a) ModelNet10

83 163 323 643 1283

Input Resolution

0.6

0.7

0.8

0.9

1.0

O
ve

ra
ll

A
cc

u
ra

cy

DenseNet

OctNet

(b) ModelNet40

Figure 4.17: Classification accuracy for ModelNet10 and ModelNet40.

this improvement might be less spectacular, but for higher resolutions, the difference is

really enormous. For example, we can train the OctNet on 1283 with less memory than

the equivalent DenseNet on 643. Further, the DenseNet with the given setting does not

fit on a single GPGPU with 12GB of memory anymore, hence the dotted line in the plot

as the results are extrapolated from a smaller batch size.

We get a similar picture, if we have a detailed look at the runtime, see Figure 4.16. For

small input resolutions (≤ 643) the network on the voxel grid (DenseNet) is slightly faster

due to the faster memory access pattern, i.e. coalesced memory access. However, for larger

input resolutions (≥ 1283) the network on the hybrid grid-octree data structure (OctNet)

gets significantly faster, due to the efficient convolution implementation discussed in the

method section. Hence, OctNet does not only enable training networks on higher input

resolutions on the same hardware than a network on a regular voxel grid but is also faster

to train.

4.4. Evaluation 127

b
at

ht
u

b

b
ed

ch
ai

r

d
es

k

d
re

ss
er

m
on

it
or

n
.s

ta
n

d

so
fa

ta
b

le

to
ile

t

toilet

table

sofa

n.stand

monitor

dresser

desk

chair

bed

bathtub

0.01 0.04 0.01 0.94

0.12 0.01 0.87

0.01 0.02 0.02 0.95

0.15 0.01 0.78 0.06

0.01 0.01 0.97 0.01

0.01 0.78 0.01 0.19 0.01

0.01 0.01 0.64 0.03 0.01 0.03 0.05 0.21

0.99 0.01

0.94 0.01 0.01 0.04

0.86 0.10 0.04

(a) 83

b
at

ht
u

b

b
ed

ch
ai

r

d
es

k

d
re

ss
er

m
on

it
or

n
.s

ta
n

d

so
fa

ta
b

le

to
ile

t

toilet

table

sofa

n.stand

monitor

dresser

desk

chair

bed

bathtub

0.01 0.99

0.26 0.74

0.01 0.99

0.01 0.08 0.84 0.07

0.01 0.97 0.01 0.01

0.73 0.01 0.24 0.01

0.86 0.01 0.02 0.02 0.08

0.01 0.99

0.99 0.01

0.92 0.06 0.02

(b) 1283

Figure 4.18: Confusion matrices of the ModelNet10 classification results.

What we did not look at yet is the representational capacity of the OctNet compared

to the DenseNet. Therefore, we present the classification accuracy of both networks with

respect to the different input resolutions for ModelNet10 and ModelNet40 in Figure 4.17.

We first note that despite its pooled representation, OctNet performs on par with its

DenseNet counterpart. This confirms our initial intuition that sparse data allows for

allocating resources adaptively without loss of performance. Note, that the purpose of

this experiment was to evaluate the memory, runtime and representational capacity of

OctNet compared to its counterpart DenseNet. Therefore, we did not utilize any data

augmentation for ModelNet10, and used 10 uniform rotated versions around the z-axis

of the ModelNet40 shapes, because those samples are not aligned. We expect to get

an additional performance gain by using more extensive data augmentation, additional

auxiliary losses [4, 176] and training more networks in an ensemble [24].

Although we observe a slight performance improvement with respect to the input

resolution, i.e. up to 643 for ModelNet10 and up to 1283 for ModelNet40, the increase is

only subtle beyond the resolution of 323. This indicates that higher resolutions might not

be necessary for this dataset to distinguish the categories. The claim can also be supported

by a look at the confusion matrices of the ModelNet10 results in Figure 4.18. We see that

for small resolutions obvious shape categories get confused like bathtubs with beds, that

are then better distinguished at higher resolutions. However, there are certain category

pairs that are still very hard at high resolutions where all details are visible, e.g. desk

vs. table and night stand vs. dresser. We visualize some of the ModelNet ambiguities in

Figure 4.19. Note that those ambiguities are even more frequent in the larger ModelNet40

dataset.

4.4.2 3D Orientation Estimation

In this section we investigate the importance of the input resolution on 3D orientation

estimation tasks. First, we have a look at the ModelNet dataset [259] in Section 4.4.2.1

128 Chapter 4. Deep Learning for 3D

(a) 83

(b) 163

(c) 323

(d) 643

(e) 1283

Figure 4.19: ModelNet ambiguities. We show six different ModelNet categories for different
input resolutions. Even after drastically increasing the input resolution from 83 in (a) to 1283 in
(e) shapes from the categories desk vs. table and night stand vs. dresser are hard to distinguish.

again, where the goal is to estimate the rotation of unknown object instances. In a second

evaluation presented in Section 4.4.2.2 we evaluate OctNet on the popular head pose

estimation dataset by Fanelli et al. [64, 65].

4.4.2.1 ModelNet

Most existing approaches to 3D pose estimation [18, 19, 235, 257] assume that the true 3D

shape of the object instance is known. To assess the generalization ability of 3D convolu-

tional networks, we consider a slightly different set-up where only the object category is

known. After training the model on a hold-out set of 3D shapes from a single category, we

test the ability of the model to predict the 3D orientation of unseen 3D shapes from the

same category. More concretely, given an instance of a predefined object category with an

unknown pose, the goal is to estimate the rotation with respect to the canonical pose.

4.4. Evaluation 129

83 163 323 643 1283 2563

Input Resolution

4.0

4.5

5.0

M
ea

n
A

n
gu

la
r

E
rr

or
[◦

]

OctNet

(a) Mean Angular Error

0 5 10 15
Success Threshold τ

0.00

0.25

0.50

0.75

1.00

F
ra

m
es

W
it

h
in
τ

Octnet 83

Octnet 163

Octnet 323

Octnet 643

Octnet 1283

Octnet 2563

(b) Success Threshold

Figure 4.20: Quantitative orientation estimation results on ModelNet10. (a) shows the mean
angular error µ(φ) of all test samples with respect to the input resolution. (b) visualizes a cumu-
lative error plot, where we show the percentage of correctly estimated orientations for a certain
success threshold τ .

Experimental Set-Up As in the previous experiment, we utilize the ModelNet10

dataset [259] where all the provided models are in a canonical pose. We selected as

object category the class chair as it provides many training and test samples and has

high intra-class variance, but the possible rotations are not ambiguous as it might

be the case for instance for tables. For each 3D model we created 10 train and test

samples by randomly rotating them between ±15◦ around each axis. Those random

rotations are then converted to unit quaternions which are the regression targets for

the 3D convolutional network. As in the previous experiment, we convert the triangle

meshes to regular occupancy voxel grids. The network architecture and training protocol

are also identical to the setting in the previous experiment with the difference that we

now optimize a simple mean squared error loss for the regression task instead of the

cross-entropy loss. For the rotations considered in this experiment, this loss is a good

approximation to the rotation angle φ between two quaternions q1,q2

φ = arccos(2 〈q1,q2〉 − 1) . (4.15)

Results The results of this evaluation are summarized in Figure 4.20, where we use two

different plots for visualization. First, we show the mean angular error µ(φ) over all test

samples with respect to the input resolution. It can be observed that by increasing the

input resolution the rotation estimates get continuously better. This should come to no

surprise, as a detailed discretization is necessary to distinguish between the small rotation

differences. In the second plot, we show the percentage of correctly estimated rotations

over a range of success thresholds τ . We can see that the area under the curve is larger

for higher-resolution inputs, meaning that the accuracy increases.

In Figure 4.21 we present qualitative results of the orientation estimation over the

130 Chapter 4. Deep Learning for 3D

(a) 83

(b) 163

(c) 323

(d) 643

(e) 1283

(f) 2563

Figure 4.21: Qualitative orientation estimation results on ModelNet10.

4.4. Evaluation 131

various input resolutions. Each row depicts four randomly selected chair instances, where

the canonical pose is visualized with gray color and the estimated rotation with yellow if

it is close the ground-truth and red if it is farther away. Note the intra-class variance of

the 3D models and how the estimates are clustered more closely to the canonical pose for

higher resolutions than for lower resolutions.

4.4.2.2 Head Pose

In our second 3D orientation estimation experiment we evaluate the impact of the input

resolution on the task of 3D head pose estimation. The input is a single 2.5D depth

map of a person in front of a depth sensor and the goal is to estimate the 3D orientation

of the head. We will follow the tracking-by-detection paradigm for this task, meaning

that the head pose is estimated for each frame independently. This is in contrast to the

frame-by-frame temporal tracking approach, which relies on estimates of previous frames

to estimate the pose of the current one.

Experimental Set-Up For this evaluation, we rely on the BiWi Kinect Head Pose

Database [64, 65]. The dataset consists of 24 sequences of 20 different subjects recorded

with a consumer RGB-D sensor. In total, it contains around 15, 000 frames where each

subject stands approximately one meter away from the sensor and moves and rotates its

head. We use the sequences of 17 subjects for training, one subject for validation and two

for testing. To create the voxel grid, we project each 3D voxel center into the depth map

and set the voxel occupied if the depth of the voxel center is beyond the depth value of

the projected location in the depth map. The hybrid grid-octree data structure is then

built by representing the border of the occupied voxels as cells on the finest resolution.

In this experiment we are only interested in the rotation and therefore, assume that the

head location is given. The rotation is then again represented as a unit quaternion and

we use exactly the same network architecture and training protocol as in the previous

experiment.

Results The quantitative results of this evaluation are summarized in Figure 4.22. First,

we plot the mean angular error µ(φ) with respect to the input resolution. We can again

observe the clear trend that with higher input resolution the orientation estimates get

significantly better. Note that the best mean angular error at 1283 corresponds to a mean

error of the Euler angles of 5.57◦. These are better results than previously published

tracking-by-detection methods obtain, e.g. the Alternating Regression Forests by Schulter

et al. [208] yield a mean Euler error of 12.2◦ and the Hough Networks by Riegler et al. [183]

yield a mean Euler error of 9.8◦. However, the best results are currently obtained by frame-

by-frame tracking approaches like the one by Tan et al. [229] which obtains a mean Euler

error of 2.0◦. In the second plot, we show the percentage of correctly estimated frames

for a certain success threshold τ . The networks with the high-resolution inputs get much

132 Chapter 4. Deep Learning for 3D

83 163 323 643 1283

Input Resolution

6

7

8

M
ea

n
A

n
gu

la
r

E
rr

or
[◦

]

OctNet

(a) Mean Angular Error

0 10 20 30
Success Threshold τ

0.00

0.25

0.50

0.75

1.00

F
ra

m
es

W
it

h
in
τ

Octnet 83

Octnet 163

Octnet 323

Octnet 643

Octnet 1283

(b) Success Threshold

Figure 4.22: Quantitative orientation estiamtion results on the head pose dataset. (a) shows the
mean angular error µ(φ) of all test samples with respect to the input resolution. (b) visualizes
a cumulative error plot, where we show the percentage of correctly estimated orientations for a
certain success threshold τ .

more frames correct for low success thresholds (τ < 5◦), but also produce less extreme

outliers (τ > 20◦).

Qualitative results of the head pose estimation are visualized in Figure 4.23. We show

the voxelized heads computed from the depth maps for the various input resolutions.

Additionally, for each sample, the blue box indicates the ground-truth rotation and the

green box the estimated one. The qualitative results also demonstrate that the orientation

estimation gets better with higher input resolutions.

4.4.3 3D Point Cloud Segmentation

In this section we evaluate our OctNet method on the problem of labeling 3D point clouds

with semantic information. Therefore, the task is to assign each 3D point of the input a

discrete semantic label. It differs from the previous evaluations in one important aspect.

Not only do we provide a 3D, volumetric input, but also the output is a 3D volume, in

contrast to the 1D outputs of the previous tasks.

Experimental Set-Up We evaluate OctNet for the task of 3D point cloud labeling

on the VarCity dataset [190]. The dataset provides a colored 3D point cloud of several

Haussmanian style facades. It comprises approximately 1 million 3D points in total and has

a defined train/test split. The labels are L = {window,wall, balcony, door, roof, sky, shop}.
To input the 3D point cloud to the network, we first convert it to a hybrid grid-octree

structure. For a given input resolution we choose the voxel size such that the height of

all buildings fit into the input volume. Then, we map the point cloud to the grid-octree

structure by creating an octree cell on the finest resolution if it contains one, or more 3D

points. For each point, we store its associated color, its normal vector, and also the height

4.4. Evaluation 133

(a) 83 (b) 163 (c) 323 (d) 643 (e) 1283

Figure 4.23: Qualitative orientation estimation results on the head pose dataset. The green box
indicates the ground-truth orientation, whereas the blue box depicts the estimates.

above the ground. If more than one point falls into one octree cell, then we average the

input features and we compute the majority vote for the output label. To increase the

training set size we added minimal random rotations to the local point clouds.

As network we chose U-shaped architecture with skip connection, which is a popular

choice in semantic segmentation [6, 42]. The details of the network are presented in Fig-

ure 4.24. It basically consists of an encoder and a decoder part. The decoder part consists

of four blocks, where each block comprises two convolution layers and a pooling layer to

increase the receptive field size. The decoder part then increases the resolution of the

features again by employing convolutional and unpooling layers. Note that the unpooling

134 Chapter 4. Deep Learning for 3D

Input

Conv
1,8,3×3×3,1

Conv
8,16,3×3×3,1

Pool
2×2×2,2

Conv
16,16,3×3×3,1

Conv
16,32,3×3×3,1

Pool
2×2×2,2

Conv
32,32,3×3×3,1

Conv
32,64,3×3×3,1

Pool
2×2×2,2

Conv
64,64,3×3×3,1

Conv
64,128,3×3×3,1

Pool
2×2×2,2

Conv
128,128,3×3×3,1

Conv
128,128,3×3×3,1

Conv
128,128,3×3×3,1

Unpool
2×2×2,2 Concat

Conv
256,128,3×3×3,1

Conv
128,64,3×3×3,1

Unpool
2×2×2,2 Concat

Conv
128,64,3×3×3,1

Conv
64,32,3×3×3,1

Unpool
2×2×2,2 Concat

Conv
64,32,3×3×3,1

Conv
32,16,3×3×3,1

Unpool
2×2×2,2 Concat

Conv
32,32,3×3×3,1

Conv
32,32,3×3×3,1

Output

F
ig

u
re

4
.2

4
:

U
-sh

a
p

ed
sem

an
tic

segm
en

ta
tion

n
etw

o
rk

.
N

o
te,

th
a
t

w
e

u
se

g
u

id
ed

u
n

p
o
o
lin

g
layers.

H
en

ce,
th

e
o
ctree

stru
ctu

re
is

given
b
y

th
e

in
p

u
t

o
f

th
e

co
rresp

o
n

d
in

g
p

o
olin

g
layer.

4.4. Evaluation 135

Average Overall IoU

Riemenschneider et al. [190] - - 42.3
Martinović et al. [153] - - 52.2
Gadde et al. [75] 68.5 78.6 54.4

OctNet 643 60.0 73.6 45.6
OctNet 1283 65.3 76.1 50.4
OctNet 2563 73.6 81.5 59.2

Figure 4.25: Quantitative results on the VarCity dataset.

layers are guided as presented in the method section. Therefore, the octree structure is

derived from the corresponding pooling layer. In addition, we introduce skip connections,

where the feature maps of the layers prior to the pooling layers are concatenated with

the feature maps of the unpooling layers. The network architecture is kept the same

independent of the input resolution.

We train the network for 10 epochs with a batch size of 4 and a constant learning

rate of 10−3. Further, we use Adam [128] as optimizer. The training loss is a per voxel

cross-entropy function. If an octree cell does not contain a single 3D point, then the loss

is automatically set to 0 and therefore does not contribute to the overall loss.

Metrics For this experiment we follow the evaluation protocol of [75]. First, we back-

project the per-voxel semantic class estimates to the input 3D point cloud. Then, we

compute for each label l the number of true positives (TPl), the number of false negatives

(FNl), and the number of false positives (FPl). The considered metrics are then the overall

pixel accuracy given by ∑
l TPl∑

l TPl + FNl
, (4.16)

the average class accuracy given by

1

|L|
∑
l

TPl
TPl + FNl

, (4.17)

and the intersection over union given by

1

|L|
∑
l

TPl
TPl + FNl + FPl

. (4.18)

Results We compare our quantitative results with the methods of Riemenschneider et

al. [190], Martinović et al. [153] and Gadde et al. [75]. For each method, we consider only

the variant that uses the colored 3D point cloud as input. We evaluate our OctNet method

136 Chapter 4. Deep Learning for 3D

for the input resolutions 643, 1283 and 2563. The results are summarized in Table 4.25.

The first thing that we can observe is that the input resolution for the OctNet based

U-net is crucial. All metrics are getting better by increasing the resolution up to 2563. For

this input resolution, we even obtain state-of-the-art results on this dataset. The reason

for this performance becomes obvious by looking at the qualitative results in Figure 4.26.

On a small resolution like 643 many 3D points fall into the same octree cell and smooth

the input too much. Hence, all the points get assigned the same semantic class. On

the other hand, for the input resolution of 2563, most of the octree cells comprise only a

single 3D point. Additionally, the U-net architecture allows incorporating a lot of context

through the large receptive field. For larger input resolutions the octree cells on the finest

resolution are getting to sparse, i.e. the point cloud density is too low, and the information

flow between neighbouring points gets interrupted.

4.4.4 Depth Fusion and Completion

In the experiments shown so far, the octree structure of the input and the output, i.e.

the space partitioning of the 3D volume has been known a priori. In contrast, we present

in this section experiments on tasks where this assumption is no longer valid. For depth

fusion and depth completion the output geometry is different from the input geometry, i.e.

the octree structure of the output is not known in advance. We will use the split module

presented in Section 4.3.2 in a coarse-to-fine framework to dynamically compute the octree

structure for each output in a principled manner. This coarse-to-fine network architecture

is presented in Section 4.4.4.1. An important aspect of these tasks is the encoding of

the input and output. Therefore, we discuss in Section 4.4.4.2 how we voxelize the N

input depth maps and in Section 4.4.4.3 we show the output encoding. The volumetric

depth fusion experiments are then presented in Section 4.4.4.4 and on volumetric depth

completion in Section 4.4.4.5.

4.4.4.1 Network Architecture

Our overall network architecture is illustrated in Figure 4.27, which we name OctNetFu-

sion. We represent the voxelized input and output using the presented hybrid grid-octree

structure. The input to the network is a feature volume, calculated from a single, or mul-

tiple depth maps. The output may encode a truncated signed distance function (TSDF)

or a binary occupancy map, depending on the application.

As the 3D input to our method can be incomplete, we refrain from using the classi-

cal U-shaped architecture as common for 2D-to-2D prediction tasks [6, 56]. Instead, we

propose a coarse-to-fine network with encoder-decoder modules, structure manipulation

modules and a loss L defined at every pyramid level. More specifically, we create a 3D

scale pyramid where the number of voxels along each dimension increases by a factor

of two between pyramid levels. At each level, we process the input using an encoder-

decoder module which enlarges the receptive field and captures contextual information.

4.4. Evaluation 137
6
4
3

1
28

3
2
56

3

Voxel Input Voxel Estimate Point Cloud Estimate Point Cloud GT

(a)

6
4
3

1
28

3
25

6
3

Voxel Input Voxel Estimate Point Cloud Estimate Point Cloud GT

(b)

64
3

12
8
3

25
6
3

Voxel Input Voxel Estimate Point Cloud Estimate Point Cloud GT

(c)

Figure 4.26: Qualitative results on the VarCity dataset for semantic 3D point cloud labeling.

138 Chapter 4. Deep Learning for 3D

643 1283 2563

1283 2563

6
4
3

L

1
2
8
3

L

2
5
6
3

L

6
4
3

1
2
8
3

2
5
6
3

Figure 4.27: OctNetFusion coarse-to-fine network architecture.

In
p
u
t

F
eatu

res

C
on

cat

C
on

v
1
,
1
6
,
3×

3×
3
,
1

C
on

v
1
6
,
3
2
,
3×

3×
3
,
1

P
o
ol

3
2
,
3
2
,
2×

2×
2
,
2

C
on

v
3
2
,
3
2
,
3×

3×
3
,
1

C
on

v
3
2
,
6
4
,
3×

3×
3
,
1

P
o
ol

6
4
,
6
4
,
2×

2×
2
,
2

C
on

v
6
4
,
6
4
,
3×

3×
3
,
1

C
on

v
6
4
,
6
4
,
3×

3×
3
,
1

C
on

v
6
4
,
6
4
,
3×

3×
3
,
1

U
n
p
o
ol

6
4
,
6
4
,
2×

2×
2
,
2

C
on

cat

C
on

v
1
2
8
,
3
2
,
3×

3×
3
,
1

C
o
n
v

3
2
,
3
2
,
3×

3×
3
,
1

U
n
p
o
ol

3
2
,
3
2
,
2×

2×
2
,
2

C
on

cat

C
o
n
v

6
4
,
1
6
,
3×

3×
3
,
1

C
on

v
1
6
,
1
6
,
3×

3×
3
,
1

S
tru

ctu
re

F
eatu

res
R
econ

stru
ctio

n

Figure 4.28: Encoder-Decoder module.

We pass the resulting features to a structure manipulation module as presented in Sec-

tion 4.3.2 which computes the output at the respective resolution, increases the resolution

and updates the structure of the network for further processing. We propagate features

to successively finer resolutions until we have reached the final target resolution.

The core building block of the coarse-to-fine architecture is the encoder-decoder module

as illustrated in Figure 4.28. It combines convolution layers with pooling and unpooling

layers similar to the segmentation network used in previous semantic segmentation ex-

periment. All convolutional layers are followed by a ReLU non-linearities [162]. The

convolution layer before each pooling operation doubles the number of feature maps while

the convolution layer after each unpooling operation halves the number of feature maps.

Pooling operations reduce spatial information but increase the level of context captured in

the features. The result of the unpooling operation is concatenated with the correspond-

ing high-resolution features from the encoder path to combine high-resolution information

with low-resolution contextual cues.

4.4.4.2 Input Encodings

The input to our method are one or more 2.5D depth maps with known extrinsic and in-

trinsic camera parameters C. We now discuss several ways to project this information into

3D voxel space which, represented using grid-octree structures, forms the input to the Oct-

NetFusion architecture described above. The traditional volumetric fusion approach [45]

4.4. Evaluation 139

calculates the weighted average TSDF with respect to all depth maps independently for

every voxel where the distance to the surface is measured along the line of sight to the

sensor. While providing for a simple one-dimensional signal at each voxel, this encoding

does not capture all information due to the averaging operation. Thus, we also explore

higher dimensional input encodings which might better retain the information present in

the sensor recordings. We now formalize all input encodings used during our experiments,

starting with the simplest one.

Occupancy Fusion (1D) The first and simplest encoding fuses information at the

occupancy level. Let d
(i)
v be the depth of the center of voxel v wrt. camera i ∈ C. Further,

let d
(i)
c be the depth value of the projecting voxel v into the depth map for camera i.

Denoting the signed distance between the two depth values δ
(i)
v = d

(i)
c − d(i)

v , we define the

occupancy of each voxel o(v) as

o(v) =

{
1 ∃i ∈ C : δ

(i)
v ≤ s ∧ @i : δ

(i)
v > s

0 else
(4.19)

where s is the size of voxel v. The interpretation is as follows: If there exists any depth

map in which voxel v is observed as free space the voxel is marked as free, otherwise it

is marked as occupied. While simple, this input encoding is susceptible to outliers in the

depth maps and does not encode uncertainty. Furthermore, the input distance values are

not preserved as only occupancy information is encoded.

TSDF Fusion (1D) Our second input encoding is the result of traditional TSDF fusion

as described in [45, 165]. More specifically, we project the center of each voxel into every

depth map, calculate the truncated signed distance value using a truncation threshold τ

(corresponding to the size of four voxels in all our experiments), and average the result

over all input views

tsdf(v) =
1

Z

∑
i∈C

[δ(i)
v ≥ −τ] min(τ,max(−τ, δ(i)

v))

Z =
∑
i∈C

[δ(i)
v ≥ −τ]

. (4.20)

While various weight profiles have been proposed like in [224], we found that the simple

constant profile proposed by Newcombe et al. [165] performs well. This input representa-

tion is simple and preserves distances, but it does not encode uncertainty and thus makes

it harder to resolve conflicts.

TDF + Occupancy Fusion (2D) The TSDF encoding can also be split into two

channels: One channel that encodes the truncated unsigned distance to the surface (TDF)

and one that encodes occupancy. Note that if tdf(v) is the TDF of voxel v, and o(v)

140 Chapter 4. Deep Learning for 3D

its occupancy, then −tdf(v) · o(v) is equivalent to tsdf(v), the truncated signed distance

function of voxel v.

Histogram (10D) While the previous two encodings capture surface distances, they do

not maintain the multi-modal nature of fused depth measurements, nor do they handle

uncertainties in the input. To capture this information, we propose a histogram-based

representation. In particular, we encode all distance values for each voxel using a 10D

histogram with 5 bins for negative and 5 bins for positive distance values. The first and

the last bin of the histogram capture distance values beyond the truncation limit, while

the bins in between collect non-truncated distance values. To allow sub-voxel surface

estimation, we choose the histogram size such that a minimum of 2 bins is allocated per

voxel. Furthermore, we populate the histogram smoothly by distributing the vote of each

observation linearly between the two closest bins, e.g. we assign half of the mass to both

neighboring bins if the prediction is located at their boundary.

4.4.4.3 Output Encodings

Finally, we describe the output encodings and the loss functions we use for the volumetric

depth fusion and the volumetric depth completion tasks considered in this experimental

evaluation.

Volumetric Depth Fusion For volumetric fusion, we choose the TSDF as output rep-

resentation using an appropriate truncation threshold τ . Note that in contrast to binary

occupancy, TSDF outputs allow for predicting implicit surfaces with sub-voxel precision.

We regress the TSDF values at each resolution within the structure module using a linear

activation function and use the `1 loss for training.

Volumetric Depth Completion For volumetric completion from a single view, we

use a binary occupancy representation to match the set-up of the baselines as closely as

possible. Following common practice, we leverage the binary cross entropy loss to train

the network.

4.4.4.4 Volumetric Depth Fusion

First, we evaluate our OctNetFusion method on the task of volumetric depth fusion. We

will compare our results to the traditional volumetric fusion approach of Curless and

Levoy [45] denoted as VolFus and the variational approach of Zach et al. [268] denoted

as TV-L1. The parameters of those methods have been tuned on the validation set using

grid search.

4.4. Evaluation 141

(a) Ground-truth set-up (b) Input set-up

Figure 4.29: To acquire the TSDF ground-truth targets we render synthetic depth maps without
noise from 80 views sampled from a sphere as depicted in (a). As input we use only a subset
of these views, e.g. 4 as depicted in (b), and add depth-dependent noise to obtain a challenging
volumetric depth fusion set-up.

Experimental Set-Up We conduct a series of experiments on the synthetic Model-

Net40 dataset [259], where we use 10 different categories, i.e. airplane, bed, car, desk,

chair, guitar, piano, person, toilet, piano. For training, validation, and testing we use 100,

5 and 20 samples per category, respectively. Unfortunately, the ground-truth TSDF cannot

be calculated directly from the 3D models in this dataset as the meshes are not watertight,

i.e. they contain holes and cracks. Moreover, the meshes typically do not have consistently

oriented normals. Instead, we obtain the ground truth TSDF by densely sampling views

around the object, rendering the input 3D model from all views and running traditional

volumetric fusion on all those generated (noise-free) depth maps. Towards this goal, we

scaled the ModelNet objects to fit into a cube of 3× 3× 3 meters and rendered the depth

maps onto equally spaced views sampled from a sphere. We found that 80 views cover all

object surfaces and hence, allow for computing highly accurate TSDF ground-truth.

To generate the input we again rendered depth maps from the 3D model, but use only

N views. In our experiments, we use N = 4, if not otherwise stated. See Figure 4.29 to

compare the two different set-ups for ground-truth and input generation. Additionally, we

add depth dependent Gaussian noise to the depth maps to simulate the noisy acquisition

of the depth maps. If d is the noise-free depth map from the rendering, then the noisy

depth map dn for the input is generated by

dn = d
(
1 +N (0, σ2)

)
, (4.21)

where N is a random value sampled from the normal distribution with σ set to 0.02 in

our experiments, if not otherwise stated.

We train our coarse-to-fine architecture stage-wise, i.e. one resolution after another.

For each stage we use a batch size of 4 samples, a constant learning rate of 10−4 and

142 Chapter 4. Deep Learning for 3D

Adam [128] as optimizer. The training objective is the `1 loss with an additional weight

decay term of 10−4 for regularization. We train the first stage for 50 epochs, and the

next two stages for 25 epochs, respectively. Note that we have to initialize the first stage

randomly according to the scheme proposed in [103], but the other stages are initialized

by the weights of the previous stage.

Metrics For the experiments, we investigate three different evaluation metrics that are

directly evaluated on the volumetric voxel grid. As our output is a hybrid grid-octree

structure, we convert it back to a voxel grid for the evaluation. Assume that f denotes

the estimated TSDF and t is the ground-truth TSDF with each having N voxels, then the

considered metrics are: The mean absolute error (MAE) given by

MAE(f , t) =
1

N

N∑
i=1

|fi − ti| , (4.22)

the root mean squared error (RMSE) given by

RMSE(f , t) =

√√√√ 1

N

N∑
i=1

(fi − ti)2 , (4.23)

as well as the Jaccard index given by

Jaccard(f , t) =

∑N
i=1[fi ≤ 0 ∧ ti ≤ 0]∑N

i=1[(fi ≤ 0 ∧ ti ≤ 0) ∨ (fi ≤ 0 ∧ ti > 0) ∨ (fi > 0 ∧ ti ≤ 0)]
. (4.24)

The last metric computes the intersection over union of the occupied voxels, whereas a

voxel is considered occupied if it has a negative TSDF,

Input Encoding We first investigate the impact of the input encodings on the recon-

struction performance. Our quantitative results are shown in Table 4.2. We observe that

our model outperforms the traditional fusion approach [45], as well as TV-L1 fusion [268]

by a large margin independent of the input encoding and evaluation metric. Improvements

are particularly pronounced at high resolutions which demonstrates that our learning based

approach is able to refine and complete geometric details which can not be recovered using

existing techniques. Furthermore, we observe that the TSDF histogram encoding yields

the best results. We thus use this input encoding for all remaining experiments.

Qualitative results are visualized in Figure 4.30. We can clearly observe the strengths

of our method: It is able to perform a nice smoothing of the surface, but at the same time

is still able to recover thin structures and details. Additionally, it can produce meaningful

results in areas that are either unobserved or occluded. This is especially pronounced at

the example with the desk. Our method is able to recover the thin table leg at higher

4.4. Evaluation 143

Table 4.2: Quantitative volumetric depth fusion results of different input encodings.

(a) MAE (mm)

VolFus [45] TV-L1 [268] Occ TDF + Occ TSDF TSDF Hist

643 4.136 3.899 2.095 1.987 1.710 1.715
1283 2.058 1.690 0.955 0.961 0.838 0.736
2563 1.020 0.778 0.410 0.408 0.383 0.337

(b) RMSE (mm)

VolFus [45] TV-L1 [268] Occ TDF + Occ TSDF TSDF Hist

643 17.408 16.888 8.518 7.939 7.466 7.243
1283 9.903 9.012 4.816 4.656 4.291 4.081
2563 5.431 4.630 2.538 2.486 2.370 2.296

(c) Jaccard Index

VolFus [45] TV-L1 [268] Occ TDF + Occ TSDF TSDF Hist

643 0.683 0.674 0.787 0.797 0.824 0.818
1283 0.636 0.596 0.791 0.803 0.819 0.828
2563 0.615 0.630 0.810 0.820 0.824 0.834

resolutions but also learnt that the space between the table tops has to be free space. The

other methods struggle with unobserved voxels as the assume those to be occupied.

Number of Input Views Next, we evaluate the performance of our network by varying

the number of input views from one to six on the ModelNet dataset. Our results are shown

in Table 4.4 and the qualitative results of are visualized in Figure 4.31. Again, our approach

outperforms both baselines in all considered metrics. As expected the performance of all

methods increases with the number of input views. The largest difference between the

baselines and our approach is visible in the experiment with only one input view. In

this depth completion task, the baseline approaches completely lack the ability to infer

geometry from occluded regions. In contrast, our deep learning method can reconstruct

details to some degree from the samples it has seen during training. But also in the cases

with an increased number of input views, e.g. four, our proposed method reduces the error

by a factor of 2 to 3 wrt. TSDF fusion and TV-L1 fusion in terms of MAE.

Input Noise In our next experiment we evaluate the impact of the noise in the depth

maps on the reconstruction results. Table 4.6 summarizes our results. We observe that

our method is faithful with respect to the increase of input noise. The mean absolute error

increases from 0.274 mm for no noise to only 0.374 mm for severe noise (σ = 0.03). In

contrast, for TSDF fusion the mean absolute error increases by more than 0.5 mm and for

TV-L1 fusion by more than 0.2 mm. This is also true for the Jaccard index, where our

method only decreases by less than 9%, but the TSDF fusion decreases by more than 24%

and TV-L1 by more than 22%. The qualitative results of this evaluation are visualized

144 Chapter 4. Deep Learning for 3D

T
a
b

le
4
.4

:
Q

u
an

tita
tive

vo
lu

m
etric

d
ep

th
fu

sio
n

resu
lts

w
rt.

n
u
m

b
er

of
in

p
u

t
v
iew

s.

(a
)

M
A

E
(m

m
)

v
iew

s=
1

v
iew

s=
2

v
iew

s=
4

v
iew

s=
6

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

6
4
3

5
9
.2

9
5

4
8
.3

4
5

7
.8

5
5

1
5
.6

2
6

1
3
.2

6
7

2
.7

5
5

4
.1

3
6

3
.8

9
9

1
.7

1
5

3
.1

7
1

2
.9

0
5

1
.4

8
4

1
2
8
3

2
9
.7

9
5

2
6
.5

2
5

3
.8

5
3

7
.8

5
0

6
.9

9
9

1
.3

3
3

2
.0

5
8

1
.6

9
0

0
.7

3
6

1
.6

4
8

1
.4

4
5

0
.6

6
1

2
5
6
3

1
4
.9

1
9

1
4
.5

2
9

1
.9

2
7

3
.9

2
9

3
.5

3
7

0
.6

1
6

1
.0

2
0

0
.7

7
8

0
.3

3
7

0
.8

4
2

0
.6

4
4

0
.3

6
0

(b
)

R
M

S
E

(m
m

)

v
iew

s=
1

v
iew

s=
2

v
iew

s=
4

v
iew

s=
6

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

6
4
3

1
0
3
.7

0
8

8
0
.4

0
6

2
5
.7

8
9

4
7
.2

2
7

3
8
.0

8
1

1
1
.3

0
7

1
7
.4

0
8

1
6
.8

8
8

7
.2

4
3

1
3
.6

4
9

1
3
.0

2
1

6
.1

1
7

1
2
8
3

5
2
.3

8
4

4
6
.7

6
9

1
4
.1

9
7

2
4
.3

8
6

2
1
.2

4
4

6
.5

0
8

9
.9

0
3

9
.0

1
2

4
.0

8
1

8
.2

5
6

7
.7

5
4

3
.7

3
6

2
5
6
3

2
6
.3

3
3

2
5
.6

6
7

7
.6

4
9

1
2
.4

5
4

1
1
.3

8
9

3
.6

9
7

5
.4

3
1

4
.6

3
0

2
.2

9
6

4
.7

5
9

4
.0

8
4

2
.3

2
7

(c
)

J
a
cca

rd
In

d
ex

v
iew

s=
1

v
iew

s=
2

v
iew

s=
4

v
iew

s=
6

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

6
4
3

0
.1

3
5

0
.1

1
9

0
.4

5
1

0
.3

5
5

0
.0

4
8

0
.7

4
8

0
.6

8
3

0
.6

7
4

0
.8

1
8

0
.7

2
0

0
.7

1
0

0
.8

3
6

1
2
8
3

0
.1

3
0

0
.1

2
2

0
.4

3
9

0
.3

3
8

0
.1

3
9

0
.7

5
8

0
.6

3
6

0
.5

9
6

0
.8

2
8

0
.6

4
4

0
.6

4
8

0
.8

3
4

2
5
6
3

0
.1

2
8

0
.1

2
6

0
.4

1
6

0
.3

3
0

0
.2

5
6

0
.7

6
0

0
.6

1
5

0
.6

3
0

0
.8

3
4

0
.6

0
5

0
.5

9
6

0
.8

1
7

4.4. Evaluation 145

T
a
b

le
4
.6

:
Q

u
an

ti
ta

ti
ve

vo
lu

m
et

ri
c

d
ep

th
fu

si
o
n

re
su

lt
s

w
rt

.
in

p
u

t
n

o
is

e.

(a
)

M
A

E
(m

m
)

σ
=

0
.0

0
σ

=
0
.0

1
σ

=
0
.0

2
σ

=
0
.0

3

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

6
4
3

3
.0

2
0

3
.2

7
2

1
.6

4
7

3
.4

3
9

3
.4

5
4

1
.4

8
7

4
.1

3
6

3
.8

9
9

1
.7

1
5

4
.8

5
2

4
.4

1
3

1
.9

3
8

1
2
8
3

1
.3

3
0

1
.3

9
6

0
.7

4
4

1
.6

4
7

1
.5

4
3

0
.6

7
6

2
.0

5
8

1
.6

9
0

0
.7

3
6

2
.4

2
0

1
.8

5
0

0
.8

0
4

2
5
6
3

0
.6

2
1

0
.6

3
7

0
.3

1
9

0
.8

1
9

0
.6

9
7

0
.3

2
1

1
.0

2
0

0
.7

7
8

0
.3

3
7

1
.1

8
8

0
.8

5
8

0
.4

0
2

(b
)

R
M

S
E

(m
m

)

σ
=

0
.0

0
σ

=
0
.0

1
σ

=
0
.0

2
σ

=
0
.0

3

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

6
4
3

1
4
.9

5
6

1
5
.3

2
8

6
.8

1
2

1
5
.7

3
1

1
5
.7

2
9

6
.7

0
1

1
7
.4

0
8

1
6
.8

8
8

7
.2

4
3

1
9
.3

3
1

1
8
.4

3
4

7
.6

9
9

1
2
8
3

7
.8

2
8

7
.9

3
1

3
.9

4
6

8
.5

9
9

8
.4

9
6

3
.7

5
0

9
.9

0
3

9
.0

1
2

4
.0

8
1

1
1
.0

6
1

9
.5

8
5

4
.3

5
8

2
5
6
3

4
.0

3
8

4
.0

6
2

2
.3

0
7

4
.6

7
7

4
.2

9
0

2
.1

1
8

5
.4

3
1

4
.6

3
0

2
.2

9
6

6
.0

1
4

4
.9

7
5

2
.1

7
9

(c
)

J
a
cc

a
rd

In
d

ex

σ
=

0
.0

0
σ

=
0
.0

1
σ

=
0
.0

2
σ

=
0
.0

3

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

V
o
lF

u
s

[4
5
]

T
V

-L
1

[2
6
8
]

O
u
rs

6
4
3

0
.7

9
9

0
.7

6
9

0
.8

4
8

0
.7

5
5

0
.7

4
2

0
.8

4
6

0
.6

8
3

0
.6

7
4

0
.8

1
8

0
.6

1
5

0
.6

0
9

0
.8

0
4

1
2
8
3

0
.8

0
5

0
.7

8
6

0
.8

5
9

0
.7

2
5

0
.6

6
2

0
.8

6
0

0
.6

3
6

0
.5

9
6

0
.8

2
8

0
.5

7
0

0
.5

2
5

0
.8

0
6

2
5
6
3

0
.8

0
4

0
.7

9
4

0
.8

6
4

0
.6

9
9

0
.7

0
5

0
.8

5
7

0
.6

1
5

0
.6

3
0

0
.8

3
4

0
.5

5
5

0
.5

6
8

0
.8

0
6

146 Chapter 4. Deep Learning for 3D

Table 4.8: Quantitative volumetric depth fusion results wrt.. seen vs. unseen categories.

(a) MAE (mm)

VolFus [45] TV-L1 [268] Seen Unseen

all
643 4.136 3.899 1.715 1.686
1283 2.058 1.690 0.736 0.799
2563 1.020 0.778 0.337 0.358

airplane
643 0.668 0.583 0.419 0.470
1283 0.324 0.297 0.174 0.192
2563 0.157 0.111 0.076 0.076

desk
643 5.122 4.767 1.954 2.000
1283 2.540 2.165 0.777 0.898
2563 1.260 0.987 0.334 0.383

(b) RMSE (mm)

VolFus [45] TV-L1 [268] Seen Unseen

all
643 17.408 16.888 7.243 7.384
1283 9.903 9.012 4.081 4.263
2563 5.431 4.630 2.296 2.357

airplane
643 5.466 4.999 2.637 2.732
1283 3.450 3.428 1.271 1.470
2563 2.048 1.664 0.749 0.818

desk
643 20.953 20.239 7.605 8.166
1283 11.930 11.142 4.236 4.749
2563 6.537 5.747 2.394 2.596

(c) Jaccard Index

VolFus [45] TV-L1 [268] Seen Unseen

all
643 0.683 0.674 0.818 0.816
1283 0.636 0.596 0.828 0.816
2563 0.615 0.630 0.834 0.827

airplane
643 0.677 0.657 0.801 0.787
1283 0.617 0.550 0.841 0.815
2563 0.594 0.627 0.856 0.845

desk
643 0.643 0.635 0.818 0.810
1283 0.592 0.531 0.837 0.817
2563 0.569 0.559 0.841 0.820

in Figure 4.32. Note how our proposed method is able to reconstruct the side mirror of

the car up to a noise of σ = 0.02 and simultaneously produces a much smoother result.

Further, our deep learning based result is closer to the ground-truth even in the case of no

input noise . It learns to smooth the result given only four input depth maps. However,

a drawback of this method is that it incorporates a small shrinkage bias on flat and thin

surface as visible on the desk example.

4.4. Evaluation 147

Generalization on Unseen Categories Most existing approaches that leverage deep

learning for 3D reconstruction train a model specific for a particular object class [24, 41,

84, 212] which typically does not generalize well to other classes, or scenes with varying

backgrounds. In contrast, here we are interested in the 3D reconstruction of general

scenes. Therefore, we analyze how our model behaves on shapes that were not seen during

training. In Table 4.8 we trained a network on only 8 categories out of 10 and use the

two unseen ones for testing, Unseen. We compare these results to the case where we train

on all 10 categories, Seen. Note that in neither case training shapes are part of the test

set, but shapes from the same category are used or ignored. As expected we can observe

a slight decrease in performance on unseen categories, but no real drop. If compared to

the baseline methods our method is still better by a multiplicative factor. This underlines

our motivation that we are able to generalize on unseen scenes and objects.

Kinect Object Scans In the following experiment, we evaluate our volumetric depth

fusion method on real data from a Kinect sensor In particular, we use the videos captured

by Choi et al. [39] which include a diverse set of objects such as chairs, tables, trash

containers, plants, signs, etc. Unfortunately, the dataset does not include ground-truth

3D models or camera poses. We thus estimated the camera poses using Kintinuous [256]

and visually inspect all models to remove those for which the pose tracking failed. Similar

to the previous experiments on the ModelNet dataset we compute reference 3D models

by TSDF fusion. However, for this dataset, we leverage for each scene all the views from

the corresponding video, which are on average >1000 viewpoints. This is possible as the

dataset has been collected with slow camera motion and many redundant views. At test

time we provide only a small fraction of views, i.e. 10 and 20, to each algorithm to simulate

challenging real-world conditions. Further, this enables us to augment the training data

by sampling different subsets for the input.

A drawback of this particular dataset is that despite the many viewpoints the created

ground-truth TSDF volumes are still incomplete for most scenes: The scenes contain

unobserved regions, as well as artifacts due to sensor noise and missing depth values.

For those reasons, we utilize an evaluation mask per sample during training and testing.

First, we exclude voxels that were observed from no camera viewpoint, i.e. the voxel is

outside the union of the viewing cones. Second, we further only consider voxels that have

a TSDF value larger than the negative truncation threshold in order to handle unobserved

regions. The network training set-up is the same as in the ModelNet evaluations with

the only difference that we initialized our networks with the weights from the ModelNet

experiment with 4 input views.

We present our quantitative results in Table 4.10 and qualitative results in Figure 4.33.

Even on this challenging task, we can report better results than the baseline methods,

although not as pronounced as in the previous evaluations. The qualitative results reveal

that our learned fusion method generates more complete results than TV-L1, but at the

same time also drastically reduces the noise in comparison to vanilla TSDF fusion. In

148 Chapter 4. Deep Learning for 3D
64

3
12

8
3

25
6

3

VolFus [45] TV-L1 [268] Ours Ground-Truth

64
3

12
8

3
25

6
3

VolFus [45] TV-L1 [268] Ours Ground-Truth

4.4. Evaluation 149
64

3
12

8
3

25
6

3

VolFus [45] TV-L1 [268] Ours Ground-Truth

64
3

12
8

3
2
56

3

VolFus [45] TV-L1 [268] Ours Ground-Truth

Figure 4.30: Qualitative volumetric depth fusion results for different output resolutions.

150 Chapter 4. Deep Learning for 3D
v
ie
w
s

=
1

v
ie

w
s=

2
v
ie

w
s=

4
v
ie

w
s=

6

VolFus [45] TV-L1 [268] Ours Ground-Truth

v
ie
w
s

=
1

v
ie

w
s=

2
v
ie

w
s=

4
v
ie

w
s=

6

VolFus [45] TV-L1 [268] Ours Ground-Truth

Figure 4.31: Qualitative volumetric depth fusion results wrt. number of input views.

4.4. Evaluation 151
σ

=
0.

0
σ

=
0.

0
1

σ
=

0.
0
2

σ
=

0.
0
3

VolFus [45] TV-L1 [268] Ours Ground-Truth

σ
=

0.
0

σ
=

0.
01

σ
=

0.
02

σ
=

0.
03

VolFus [45] TV-L1 [268] Ours Ground-Truth

Figure 4.32: Qualitative volumetric depth fusion results wrt. input noise.

152 Chapter 4. Deep Learning for 3D

Table 4.10: Evaluation on Kinect object scans

(a) MAD (mm)

views=10 views=20

VolFus [45] TV-L1 [268] Ours VolFus [45] TV-L1 [268] Ours

643 103.855 25.976 22.540 72.631 22.081 18.422
1283 58.802 12.839 11.827 41.631 11.924 9.637
2563 31.707 5.372 4.806 22.555 5.195 4.110

(b) RMSE (mm)

views=10 views=20

VolFus [45] TV-L1 [268] Ours VolFus [45] TV-L1 [268] Ours

643 164.977 46.750 42.281 134.966 40.508 35.844
1283 89.987 24.916 23.778 74.126 23.818 20.436
2563 47.631 11.378 10.957 39.442 11.024 9.602

(c) Jaccard Index

views=10 views=20

VolFus [45] TV-L1 [268] Ours VolFus [45] TV-L1 [268] Ours

643 0.408 0.743 0.756 0.499 0.782 0.789
1283 0.252 0.591 0.579 0.328 0.648 0.653
2563 0.151 0.343 0.462 0.206 0.517 0.535

our opinion, the main bottleneck in this evaluation is the quantity and quality of the

ground-truth data. We expect the same performance gap as in the previous experiments

by utilizing datasets with more training data and better quality.

Runtime Given its simplicity, Vanilla TSDF fusion [45] is the fastest method, using

just a few milliseconds on a GPGPU. In contrast, TV-L1 fusion [268] is computationally

more expensive. We ran all experiments using 700 iterations of the optimization algo-

rithm. For an output resolution of 643, TV-L1 needs 0.58 seconds on average and for an

output resolution of 2563 it needs 24.66 seconds on average. In comparison, our proposed

OctNetFusion CNN requires 0.005 seconds on average for an output resolution of 643 and

10.1 seconds on average for an output resolution of 2563. All numbers were obtained on

an NVidia K80 GPGPU.

4.4.4.5 Volumetric Depth Completion

A single depth map contains 2.5D information, i.e. for each pixel location the associated

depth is known. Hence, from a given viewpoint one can infer the free space up to the first

surface that is encountered along the viewing ray. It is however impossible to reason about

the occupancy of the volume behind. This makes the building of a full 3D model from

a single 2.5D input a heavily under-constrained problem. In the previous experiments

4.4. Evaluation 153

VolFus [45] TV-L1 [268] Ours Ground-Truth

Figure 4.33: Qualitative volumetric depth completion results on the Kinect object scans.

with the varying number of input views we already presented the special case with a

single view. However, the experiment was object-centric. There was a limited number of

object categories where a reasonable completion could be learnt. In this experiment, we

investigate a more general setting, where the categories are unknown.

Experimental Set-Up For the volumetric depth completion evaluation we use the

tabletop dataset by Firman et al. [71]. It contains the full geometry reconstructed with

KinectFusion [165] of 90 scenes recorded on a flat surface. Each scene contains 2 to

6 objects that were chosen from a set of 50 different objects. The dataset contains a

predefined train/test split, where 60 scenes are in the train set and 30 scenes are in the

test set. The split also ensures that no object from the train set was reused in the test

set. Each train scene also provides 5 depth maps. From the 60 training scenes, we use 5

154 Chapter 4. Deep Learning for 3D

Table 4.12: Quantitative volumetric depth completion results on the tabletop dataset.

Method IoU Precision Recall

[Zheng et al.]* 0.528 0.773 0.630
[Firman et al.]* 0.585 0.793 0.658

[Firman et al.] 0.550 0.734 0.705
Ours 0.650 0.834 0.756

for validation and the rest for training OctNetFusion. Therefore, we use 275 train samples

for training and 25 for validation, respectively.

We train the same OctNetFusion architecture as in the volumetric depth fusion ex-

periments, also with the same training protocol. The only difference is that we initialize

the networks with the parameter of the ModelNet completion experiment. This helps to

overcome the problem with the few training examples.

Metrics For the evaluation, we follow the same principles as outlined in Firman et

al. [71]. Our method outputs binary occupancy values in a hybrid grid-octree. Those

are first converted into a regular voxel grids. The considered metrics are all evaluated on

these binary occupancy grids. Therefore, we assume that f denotes the estimated binary

occupancy voxel grid and t is the ground-truth one with each having N voxels, then the

considered metrics are: The intersection over union given by

IoU(f , t) =

∑N
i=1[fi = 1 ∧ ti = 1]∑N

i=1[(fi = 1 ∧ ti = 1) ∨ (fi = 1 ∧ ti = 0) ∨ (fi = 0 ∧ ti = 1)]
, (4.25)

the precision given by

precision(f , t) =

∑N
i=1[fi = 1 ∧ ti = 1]∑N

i=1[(fi = 1 ∧ ti = 1) ∨ (fi = 1 ∧ ti = 0)
, (4.26)

and the recall given by

recal(f , t) =

∑N
i=1[fi = 1 ∧ ti = 1]∑N

i=1[(fi = 1 ∧ ti = 1) ∨ (fi = 0 ∧ ti = 1)]
, (4.27)

The intersection over union measures the fractional overlap between the estimated and the

ground-truth reconstruction. The precision metric penalizes the number of false positives,

i.e. over-complete reconstructions, and the recall metric penalizes the number of false

negatives, i.e. under-complete reconstructions.

Results The quantitative results of this volumetric depth completion experiment are

summarized in Table 4.12. We compare to an idealized version of the method by Zheng

4.5. Summary & Discussion 155

et al. [272] as proposed by [71] and to the structured random forest by Firman et al. [71].

Note that we report the number for the latter method twice. This is due to the fact that we

once report the numbers as stated in their paper (indicated with an asterisk), and once by

using the provided data from the authors. Unfortunately, we were not able to reproduce

their results even after communication with the authors due to post-publication changes

in their dataset. Nevertheless, as evidenced by our results, our method improves upon all

numbers. While it only slightly improves in terms of the precision metric, it produces a

significant improvement in terms of recall. Hence, we produce slightly less false positive

occupied voxels but simultaneously estimating much less false negatives. This can also

be observed in the qualitative results visualized in Figure 4.34. Looking at the first row,

our method is able to reconstruct larger portions of the Lego cube but simultaneously

producing no flying voxels that do not belong to the scene.

4.5 Summary & Discussion

This chapter of the thesis was devoted to deep learning on 3D data. There exist several

possible representations of 3D data, like 3D point clouds, triangle meshes, or implicit

surfaces. However, the most successful deep convolutional networks are defined on regular

spaced grids, i.e. for image classification on 2D pixel grids. So, the natural way is to elevate

2D networks and its operations to 3D voxel grids. In this way, operations like convolution

and pooling, but also the hierarchically stacking of those operations to successful network

architectures can be easily reused for 3D tasks. But the major drawback of this approach

is the drastic increase in memory consumption. While in 2D the memory consumption

increases quadratically by doubling the input resolution, in 3D the memory consumption

already increases cubically. The memory on modern GPGPUs is rather limited, hence,

the typical input resolution is around 303 for current methods, while for many problems

a higher resolution would be necessary to encode the fine details of 3D objects.

In this chapter, we proposed the utilization of an efficient 3D space partitioning data

structure within the deep network to focus the memory, but also the computational effort

on interesting parts of the input, i.e. the 3D surface of the object. More precisely, we

introduced a grid of shallow octrees to convolutional networks, where we share memory

and computational resources in larger octree cells, for example in empty regions of the

input, while voxels near the surface are represented with octree cells that capture the fine

resolution. We further defined the common network operations on this data structure like

convolution and pooling such that they are equivalent to the operations on regularly voxel

grids up to the pooled representation within larger octree cells.

In our experiments, we first demonstrated that with this novel network representation

we could boost the network input resolution by at least a factor of 64 while keeping the

network architecture and training setting the same. At the same time, we showed that

the pooling inside larger octree cells did not decrease the network performance. Interest-

ingly, we found that with higher input resolution we could not significantly increase the

156 Chapter 4. Deep Learning for 3D

[Zheng et al.] [Firman et al.] Ours Ground-Truth

Figure 4.34: Qualitative volumetric depth completion results on the tabletop dataset.

classification accuracy of 3D shapes. We could only demonstrate a small improvement in

terms of classification accuracy on the standard benchmark dataset. By close inspection

of the results, we observed that most of the errors stem from ambiguous object categories

rather than from similarities on low input resolutions. However, we could demonstrate a

clear benefit by increasing the input resolution on tasks such as 3D orientation estimation

and 3D semantic segmentation. On those tasks, the fine details that are only visible at

higher resolutions had a greater impact on the performance.

We further went on to use our proposed octree-based convolutional networks for volu-

metric depth fusion and volumetric depth completion. The main challenge here was, that

the 3D space partitioning of the output is not known a priori, but has to be estimated

along with the 3D reconstruction. We tackled this problem by relying on a coarse-to-fine

4.5. Summary & Discussion 157

strategy, which is very common in traditional computer vision approaches. In each stage,

we estimated the 3D reconstruction for the stage-specific resolution and used this inter-

mediate reconstruction to create the octree data structure for the next stage. With this

technique we outperformed well-established baseline methods on challenging volumetric

depth fusion tasks, i.e. only given a low number of input views and noise degraded input

depth maps. We also evaluated the method on a real-world Kinect dataset, where could

also show an improvement, although not as pronounced as on the 3D CAD models. In our

opinion, these results could be further improved by training the networks on large datasets

with better ground-truth quality. In addition to the volumetric depth fusion experiments,

we obtained new state-of-the-art results on a difficult depth completion dataset, where

given only one depth map as input the goal is to estimate the full 3D scene. While those

performance gains can be mostly attributed to the deep learning setting in general, the

proposed octree structure within the network was key to enable the high-resolution inputs

and outputs that would have been otherwise infeasible to obtain on today’s GPGPUs.

CHAPTER 5

Conclusion and Outlook

5.1 Conclusion

In this thesis, we presented deep learning based methods for problems in 2.5D and 3D.

Deep learning based methods are nowadays the method of choice for almost all recognition

tasks, not only in computer vision but also in speech recognition and natural language

processing. We focused especially on domains where deep methods are still less researched

mainly for two reasons: (i) Training data with accurate ground-truth labels are hard to

obtain, and (ii) the computational requirements increase drastically with the input size.

The first point is equally true for the covered problems in 2.5D and 3D. For depth super-

resolution, we can record an almost infinitely large amount of low-resolution data with

today’s depth sensors. However, getting accurate high-resolution ground-truth depth is

difficult. One could use an expensive structure light set-up to record scenes, but the

registration of the arrangement and registration of the scans is still problematic. In 3D

the training data problem is even worse, but the second point is at least as serious. If the

3D input is voxelized, the memory requirements to train a network explode with higher

input resolutions. We proposed methods in this thesis that tackle exactly those problems.

5.1.1 Deep Learning for 2.5D

If we talk about 2.5D data, we most of the time refer to depth maps. Depth maps are

2D images where each pixel describes the distance to the first surface it encounters along

the viewing ray. While this defines 3D points, it only describes the scene up to the first

encountered surfaces, the information behind is lost in the projection. 2.5D data is a

highly valuable source of data that has a wide range of applications in computer vision.

The drawback, however, is that while consumer depth sensors enable depth recordings at

159

160 Chapter 5. Conclusion and Outlook

a low cost and with high frame rates, the output is typically of low-resolution and exhibits

a certain degree of noise.

We proposed in this thesis a novel method that combines the modern deep convolu-

tional networks for super-resolution with traditional variational methods that incorporate

prior knowledge about the target domain. On intensity images, deep methods are cur-

rently state-of-the-art. However, they are mostly fueled by the sheer amount of training

data that is available on the web. Unfortunately, the situation is different for depth maps.

We demonstrated the use of synthetically generated depth maps to train a deep convo-

lutional network. While not perfectly capturing the real data domain, depth data is less

problematic to generate than for example color images. For the latter, one has to consider

textures, shading, lighting and so on, whereas depth data is mainly characterized by affine

surfaces with sharp depth discontinuities. We further made the interesting observation

that others already have observed for varying computer vision tasks: The utilizing of

global energy minimization method in a post-processing step further improves the depth

super-resolution results. This motivated our method to train a variational method on top

of the deep convolutional network. By unrolling the iteration steps of a fast convex op-

timization algorithm we were able to efficiently train both models end-to-end. Although

our proposed network alone already yields state-of-the-art results on the common depth

super-resolution benchmarks, our joint model further improved the results significantly.

This raises the natural question, why this is the case. The network alone should

be able to also approximate the output of the variational model. To this end, we do

not have a definitive answer, but some theories. One possibility might be our network

architecture. Although we have explored a wide range of state-of-the-art super-resolution

network architecture the space was still limited and one might come up with an even more

sophisticated model. However, we did observe that deeper, more expressive models did

not always obtain better performance. Another possibility might be the synthetic training

data. Normally, we would train the network on the massive amount of synthetic training

data and then fine-tune it on the real target domain. This was not possible because we did

not have any training data for the target domain. Also obtaining accurate high-resolution

ground-truth data for this task is non-trivial. Even with a high-resolution structured light

scanner as utilized in the ToFMark benchmark one has to record the scene from various

viewpoints to reduce occlusions, which is very time-consuming and limited to static scenes.

Hence, the provision of prior knowledge about this domain in the variational method is

an important factor for the additional performance gain.

At last, we want to note a final important observation. Namely, we never observed

a drop in performance by training the joint model with respect to the metric that we

optimized. This is an inherent property of the model due to the trade-off parameter in

the variational model. If the data term already perfectly fits, then the training procedure

is free to simply turn off the regularization term.

5.1. Conclusion 161

5.1.2 Deep Learning for 3D

Data in 3D is a highly interesting topic for its own. First, there are many possible rep-

resentations, e.g. 3D point clouds, triangle meshes, implicit surfaces like truncated signed

distance functions, or parametric functions. Further, the efficient storage is another in-

triguing facet. This is especially true for volumetric representations, where one needs

high-resolution grids to preserve fine surface details. Of course, those points are also a

concern for deep learning methods on 3D. The straight-forward way from a 2D classifica-

tion network to a 3D classification network is by representing the input data as 3D voxel

grid instead of a 2D pixel grid. In this way, operations like convolution and pooling, but

also the hierarchically stacking of those operations to successful network architectures can

be easily reused for tasks in 3D. However, the big drawback is the huge memory consump-

tion of the volumetric representation for deep convolutional networks that quickly exceeds

the available GPGPU memory.

In this thesis, we presented a method based on an efficient space partitioning data

structure that preserves the volumetric input but decreases the memory consumption

significantly. We utilized a hybrid grid-octree that can pool information in larger octree

cells. Hence, instead of storing feature vectors for each voxel independently, some feature

vectors are shared within larger octree cells that comprise a set of voxels. With this

method, we were able to share memory and computational resources in larger octree cells,

for example in empty regions of the input, while voxels near the surface are represented

with smaller octree cells that capture the fine resolution. We further defined the common

network operations like convolution and pooling on this hybrid grid-octree data structure

such that they are equivalent to the operations on the regular voxel grid up to the pooling

in the larger octree cells.

In our experiments, we first showed that our octree representation can at least handle

a factor of ×64 more voxels for the network input and running faster on larger resolutions.

Additionally, we also demonstrated that the pooled information in larger octree cells does

not degrade the network performance. It is not always obvious that high input resolutions,

i.e. fine 3D shape details, are necessary for a certain task. For example on the 3D classifi-

cation task higher input resolutions beyond 323 did not yield significantly better results.

By inspecting the dataset more closely we found that most errors are due to ambiguities

in categories, e.g. desk vs. table, rather than uncertainties due to discretization on a low

resolution. Therefore, we also presented experiments, e.g. 3D shape orientation estimation

and 3D semantic point cloud labeling, where increasing the input resolution yielded better

performance and was needed to achieve state-of-the-art results.

A supposed drawback of the presented method is that the space portioning has to be

known a priori. This is a valid assumption for shape classification, or semantic segmenta-

tion, where the output is either a 1D vector or has the same structure as the input. Yet,

this is an issue if we want to perform depth fusion or depth completion with 3D convo-

lutional networks. We, therefore, proposed a novel structural split module for our hybrid

162 Chapter 5. Conclusion and Outlook

grid-octree network architectures. Embedded in a coarse-to-fine network architecture that

was inspired by traditional computer vision approaches, we compute intermediate recon-

structions. Based on this intermediate reconstructions the structural split module was

used to compute the hybrid grid-octree structure for the next stage in the coarse-to-fine

architecture. Our evaluations demonstrated the effectiveness of this method on volumetric

depth fusion and volumetric depth completion. For the volumetric depth fusion task, our

method was able to handle very challenging settings, e.g. with a low number of input view

and noise on the input depth maps, in contrast to established baseline methods. Even

in the case with only one depth map as input, which is denoted as the depth completion

task, our method could still predict reasonable 3D objects and scenes. While those results

can be attributed to the deep learning setting in general, the proposed octree structure

within the network was key to enable the high-resolution inputs and outputs.

5.2 Outlook

We proposed novel deep learning methods for 2.5D and 3D data that pushed the state-of-

the-art in the respective fields. However, the problems are still far from being solved and

there is still room for improvement and future work.

For depth super-resolution, one major remaining challenge is to obtain a larger quantity

of high-quality and high-resolution ground-truth data. As we have seen in many other

computer vision tasks, fine-tuning on the real target domain can significantly improve the

performance. However, using, for example, high-end structured light scanners together

with consumer depth sensors in a calibrated set-up to record training data is a very

time-consuming process and is not fully automatic. But why not going the other way

around and produce synthetic depth data that more closely resembles the characteristics

of the target consumer depth sensor. With the current advances in generative models, i.e.

variational autoencoders and generative adversarial networks, this might be a promising

research direction.

For deep learning methods on 3D, there are also still a lot of open possibilities. Al-

though our novel 3D structure for deep convolutional networks enabled significantly higher

input resolutions and faster runtimes, it is still limited. It is for example not possible to fit

city scale large scenes into the network. There it might be interesting to research how even

more efficient space partitioning data structures, e.g. voxel hashing, could help. However,

we believe that our proposed methods already enable the application of deep learning

methods on additional 3D computer vision problems, like multi-view stereo.

APPENDIX A

List of Publications

My work at the Institute for Computer Graphics and Vision led to the following peer-

reviewed publications. For the sake of completeness of this thesis, they are listed in

chronological order along with the respective abstracts.

A.1 2017

OctNetFusion: Learning Fusion from Data

Gernot Riegler, Ali Osman Ulusoy, Horst Bischof and Andreas Geiger

In: Proceedings of the International Conference on 3D Vision (3DV)

October 2017, Qingdao, China

(Accepted for oral presentation)

Abstract: In this paper, we present a learning based approach to depth fusion, i.e., dense

3D reconstruction from multiple depth images. The most common approach to depth

fusion is based on averaging truncated signed distance functions, which was originally

proposed by Curless and Levoy in 1996. While this method is simple and provides great

results, it is not able to reconstruct (partially) occluded surfaces and requires a large

number frames to filter out sensor noise and outliers. Motivated by the availability of large

3D model repositories and recent advances in deep learning, we present a novel 3D CNN

architecture that learns to predict an implicit surface representation from the input depth

maps. Our learning based method significantly outperforms the traditional volumetric

fusion approach in terms of noise reduction and outlier suppression. By learning the

structure of real world 3D objects and scenes, our approach is further able to reconstruct

occluded regions and to fill in gaps in the reconstruction. We demonstrate that our learning

163

164 Chapter A. List of Publications

based approach outperforms both vanilla TSDF fusion as well as TV-L1 fusion on the

task of volumetric fusion. Further, we demonstrate state-of-the-art 3D shape completion

results.

OctNet: Learning Deep 3D Representations at High Resolutions

Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR)

July 2017, Honolulu, USA

(Accepted for oral presentation)

Abstract: We present OctNet, a representation for deep learning with sparse 3D data.

In contrast to existing models, our representation enables 3D convolutional networks which

are both deep and high resolution. Towards this goal, we exploit the sparsity in the input

data to hierarchically partition the space using a set of unbalanced octrees where each leaf

node stores a pooled feature representation. This allows to focus memory allocation and

computation to the relevant dense regions and enables deeper networks without compro-

mising resolution. We demonstrate the utility of our OctNet representation by analyzing

the impact of resolution on several 3D tasks including 3D object classification, orientation

estimation and point cloud labeling.

A.2 2016

ATGV-Net: Accurate Depth Super-Resolution

Gernot Riegler, Matthias Rüther, and Horst Bischof

In: Proceedings of European Conference on Computer Vision (ECCV)

October 2016, Amsterdam, The Netherlands

(Accepted for poster presentation)

Abstract: In this work we present a novel approach for single depth map

super-resolution. Modern consumer depth sensors, especially Time-of-Flight sensors,

produce dense depth measurements, but are affected by noise and have a low lateral

resolution. We propose a method that combines the benefits of recent advances in

machine learning based single image super-resolution, i.e. deep convolutional networks,

with a variational method to recover accurate high-resolution depth maps. In particular,

we integrate a variational method that models the piecewise affine structures apparent

in depth data via an anisotropic total generalized variation regularization term on top

of a deep network. We call our method ATGV-Net and train it end-to-end by unrolling

the optimization procedure of the variational method. To train deep networks, a large

corpus of training data with accurate ground-truth is required. We demonstrate that it is

A.2. 2016 165

feasible to train our method solely on synthetic data that we generate in large quantities

for this task. Our evaluations show that we achieve state-of-the-art results on three

different benchmarks, as well as on a challenging Time-of-Flight dataset, all without

utilizing an additional intensity image as guidance.

A Deep Primal-Dual Network for Guided Depth Super-Resolution

Gernot Riegler, David Ferstl, Matthias Rüther, and Horst Bischof

In: Proceedings of British Machine Vision Conference (BMVC)

September 2016, York, UK

(Accepted for oral presentation)

Abstract: In this paper we present a novel method to increase the spatial resolution

of depth images. We combine a deep fully convolutional network with a non-local varia-

tional method in a deep primal-dual network. The joint network computes a noise-free,

high-resolution estimate from a noisy, low-resolution input depth map. Additionally, a

high-resolution intensity image is used to guide the reconstruction in the network. By

unrolling the optimization steps of a first-order primal-dual algorithm and formulating it

as a network, we can train our joint method end-to-end. This not only enables us to learn

the weights of the fully convolutional network, but also to optimize all parameters of the

variational method and its optimization procedure. The training of such a deep network

requires a large dataset for supervision. Therefore, we generate high-quality depth maps

and corresponding color images with a physically based renderer. In an exhaustive evalu-

ation we show that our method outperforms the state-of-the-art on multiple benchmarks.

Efficiently Creating 3D Training Data for Fine Hand Pose Estimation

Markus Oberweger, Gernot Riegler, Paul Wohlhart, and Vincent Lepetit

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR)

June 2016, Las Vegas, USA

(Accepted for poster presentation)

Abstract: While many recent hand pose estimation methods critically rely on a train-

ing set of labelled frames, the creation of such a dataset is a challenging task that has

been overlooked so far. As a result, existing datasets are limited to a few sequences and

individuals, with limited accuracy, and this prevents these methods from delivering their

full potential. We propose a semi-automated method for efficiently and accurately labeling

each frame of a hand depth video with the corresponding 3D locations of the joints: The

user is asked to provide only an estimate of the 2D reprojections of the visible joints in

some reference frames, which are automatically selected to minimize the labeling work

by efficiently optimizing a sub-modular loss function. We then exploit spatial, temporal,

166 Chapter A. List of Publications

and appearance constraints to retrieve the full 3D poses of the hand over the complete

sequence. We show that this data can be used to train a recent state-of-the-art hand pose

estimation method, leading to increased accuracy.

A.3 2015

Conditioned Regression Models for Non-Blind Single Image

Super-Resolution

Gernot Riegler, Samuel Schulter, Matthias Rüther, and Horst Bischof

In: Proceedings of IEEE International Conference on Computer Vision (ICCV)

December 2015, Santiago, Chile

(Accepted for poster presentation)

Abstract: Single image super-resolution is an important task in the field of computer

vision and finds many practical applications. Current state-of-the-art methods typically

rely on machine learning algorithms to infer a mapping from low- to high-resolution images.

These methods use a single fixed blur kernel during training and, consequently, assume the

exact same kernel underlying the image formation process for all test images. However, this

setting is not realistic for practical applications, because the blur is typically different for

each test image. In this paper, we loosen this restrictive constraint and propose conditioned

regression models (including convolutional neural networks and random forests) that can

effectively exploit the additional kernel information during both, training and inference.

This allows for training a single model, while previous methods need to be re-trained

for every blur kernel individually to achieve good results, which we demonstrate in our

evaluations. We also empirically show that the proposed conditioned regression models

(i) can effectively handle scenarios where the blur kernel is different for each image and

(ii) outperform related approaches trained for only a single kernel.

Anatomical landmark detection in medical applications driven by syn-

thetic data

Gernot Riegler, Martin Urschler, Matthias Rüther, Horst Bischof, and Darko Stern

In: Proceedings of IEEE International Conference on Computer Vision Workshop (IC-

CVW), TASK-CV: Transferring and Adapting Source Knowledge in Computer Vision

December 2015, Santiago, Chile

(Accepted for poster presentation)

Abstract: An important initial step in many medical image analysis applications is the

accurate detection of anatomical landmarks. Most successful methods for this task rely on

data-driven machine learning algorithms. However, modern machine learning techniques,

A.3. 2015 167

e.g. convolutional neural networks, need a large corpus of training data, which is often an

unrealistic setting for medical datasets. In this work, we investigate how to adapt synthetic

image datasets from other computer vision tasks to overcome the underrepresentation of

the anatomical pose and shape variations in medical image datasets. We transform both

data domains to a common one in such a way that a convolutional neural network can be

trained on the larger synthetic image dataset and fine-tuned on the smaller medical image

dataset. Our evaluations on data of MR hand and whole body CT images demonstrate

that this approach improves the detection results compared to training a convolutional

neural network only on the medical data. The proposed approach may also be usable in

other medical applications, where training data is scarce.

Depth Restoration via Joint Training of a Global Regression Model and

CNNs

Gernot Riegler, René Ranftl, Matthias Rüther, Thomas Pock, and Horst Bischof

In: Proceedings of British Machine Vision Conference (BMVC)

September 2015, Swansea, UK

(Accepted for poster presentation)

Abstract: Denoising and upscaling of depth maps is a fundamental post-processing step

for handling the output of depth sensors, since many applications that rely on depth data

require accurate estimates to reach optimal accuracy. Adapting methods for denoising

and upscaling to specific types of depth sensors is a cumbersome and error-prone task

due to their complex noise characteristics. In this work we propose a model for denoising

and upscaling of depth maps that adapts to the characteristics of a given sensor in a

data-driven manner. We introduce a non-local Global Regression Model which models

the inherent smoothness of depth maps. The Global Regression Model is parametrized by

a Convolutional Neural Network, which is able to extract a rich set of features from the

available input data. The structure of the model enables a complex parametrization, which

can be jointly learned end-to-end and eliminates the need to explicitly model the signal

formation process and the noise characteristics of a given sensor. Our experiments show

that the proposed approach outperforms state-of-the-art methods, is efficient to compute

and can be trained in a fully automatic way.

Learning Depth Calibration of Time-of-Flight Cameras

David Ferstl, Christian Reinbacher, Gernot Riegler, Matthias Rüther, and Horst Bischof

In: Proceedings of British Machine Vision Conference (BMVC)

September 2015, Swansea, UK

(Accepted for poster presentation)

168 Chapter A. List of Publications

Abstract: We present a novel method for an automatic calibration of modern consumer

Timeof-Flight (ToF) cameras. Usually, these sensors come equipped with an integrated

color camera. Albeit they deliver acquisitions at high frame rates they usually suffer from

incorrect calibration and low accuracy due to multiple error sources. Using information

from both cameras together with a simple planar target, we will show how to accurately

calibrate both color and depth camera, and tackle most error sources inherent to ToF

technology in a unified calibration framework. Automatic feature detection minimizes

user interaction during calibration. We utilize a Random Regression Forest to optimize

the manufacturer supplied depth measurements. We show the improvements to commonly

used depth calibration methods in a qualitative and quantitative evaluation on multiple

scenes acquired by an accurate reference system for the application of dense 3D recon-

struction.

A Framework for Articulated Hand Pose Estimation and Evaluation

Gernot Riegler, David Ferstl, Matthias Rüther, and Horst Bischof

In: Proceedings of Scandinavian Conference on Image Analysis (SCIA)

June 2015, Copenhagen, Denmark

(Accepted for oral presentation)

Abstract: We present in this paper a framework for articulated hand pose estimation

and evaluation. Within this framework we implemented recently published methods for

hand segmentation and inference of hand postures. We further propose a new approach

for the segmentation and extend existing convolutional network based inference methods.

Additionally, we created a new dataset that consists of a synthetically generated training

set and accurately annotated test sequences captured with two different consumer depth

cameras. The evaluation shows that we can improve with our methods the state-of-the-

art. To foster further research, we will make all sources and the complete dataset used in

this work publicly available.

A.4 2014

Hough Networks for Head Pose Estimation and Facial Feature Localiza-

tion

Gernot Riegler, David Ferstl, Matthias Rüther, and Horst Bischof

In: Proceedings of British Machine Vision Conference (BMVC)

September 2014, Nottingham, UK

(Accepted for poster presentation)

Abstract: We present Hough Networks (HNs), a novel method that combines the idea

of Hough Forests (HFs) with Convolutional Neural Networks (CNNs). Similar to HFs we

A.4. 2014 169

perform a simultaneous classification and regression on densely extracted image patches.

But instead of a Random Forest we utilize a CNN which is able to learn higher-order

feature representations and does not rely on any handcrafted features. Applying a CNN

on a patch level has the advantage of reasoning about more image details and additionally

allows to segment the image into foreground and background. Furthermore, the structure

of a CNN supports efficient inference of patches extracted from a regular grid. We evaluate

HNs on two computer vision tasks: head pose estimation and facial feature localization.

Our method achieves at least state-of-the-art performance without sacrificing versatility

which allows extension to many other applications.

CP-Census: A Novel Model for Dense Variational Scene Flow from RGB-

D Data

David Ferstl, Gernot Riegler, Matthias Rüther, and Horst Bischof

In: Proceedings of British Machine Vision Conference (BMVC)

September 2014, Nottingham, UK

(Accepted for oral presentation)

Abstract: We present a novel method for dense variational scene flow estimation based

a multi-scale Ternary Census Transform in combination with a patchwise Closest Points

depth data term. On the one hand, the Ternary Census Transform in the intensity data

term is capable of handling illumination changes, low texture and noise. On the other

hand, the patchwise Closest Points search in the depth data term increases the robustness

in low structured regions. Further, we utilize higher order regularization which is weighted

and directed according to the input data by an anisotropic diffusion tensor. This allows

to calculate a dense and accurate flow field which supports smooth as well as non-rigid

movements while preserving flow boundaries. The numerical algorithm is solved based

on a primal-dual formulation and is efficiently parallelized to run at high frame rates. In

an extensive qualitative and quantitative evaluation we show that this novel method for

scene flow calculation outperforms existing approaches. The method is applicable to any

sensor delivering dense depth and intensity data such as Microsoft Kinect or Intel Gesture

Camera.

Real-time Flare Detection in Ground-Based Hα Imaging at Kanzelhöhe

Observatory

Werner Pötzi, Astrid Veronig, Gernot Riegler, Ulrike Amerstorfer, Thomas Pock,

Manuela Temmer, Wolfgang Polanec, and Dietmar J. Baumgartner

In: Solar Physics

November 2014

170 Chapter A. List of Publications

Abstract: Kanzelhöhe Observatory (KSO) regularly performs high-cadence full-disk

imaging of the solar chromosphere in the Hα and Ca ii K spectral lines as well as in

the solar photosphere in white light. In the frame of ESA’s (European Space Agency)

Space Situational Awareness (SSA) program, a new system for real-time Hα data provi-

sion and automatic flare detection was developed at KSO. The data and events detected

are published in near real-time at ESA’s SSA Space Weather portal (http://swe.ssa.

esa.int/web/guest/kso-federated). In this article, we describe the Hα instrument,

the image-recognition algorithms we developed, and the implementation into the KSO Hα

observing system. We also present the evaluation results of the real-time data provision

and flare detection for a period of five months. The Hα data provision worked in 99.96%

of the images, with a mean time lag of four seconds between image recording and on-

line provision. Within the given criteria for the automatic image-recognition system (at

least three Hα images are needed for a positive detection), all flares with an area ≥50

micro-hemispheres that were located within 60◦ of the solar center and occurred during

the KSO observing times were detected, a number of 87 events in total. The automatically

determined flare importance and brightness classes were correct in ∼85%. The mean flare

positions in heliographic longitude and latitude were correct to within ∼1◦. The median

of the absolute differences for the flare start and peak times from the automatic detections

in comparison with the official NOAA (and KSO) visual flare reports were 3 min (1 min).

http://swe.ssa.esa.int/web/guest/kso-federated
http://swe.ssa.esa.int/web/guest/kso-federated

APPENDIX B

Proofs

B.1 Intersection of Convex Sets

If X1 and X2 are convex sets, then also the intersection of both X1 ∩X2 is a convex set.

Proof. Let x1,x2 ∈ X1 ∩ X2. This implies x1 ∈ X1 ∧ x1 ∈ X2 and x2 ∈ X1 ∧ x2 ∈ X2.

Therefore, y = λx1 + (1−λ)x2 ∈ X1 and y ∈ X2 for λ ∈ [0, 1] by convexity of X1 and X2.

Hence, λx1 + (1− λ)x2 ∈ X1 ∩X2 which shows by definition of convex sets that X1 ∩X2

is convex.

B.2 Affine Transformation of Convex Sets

If we assume that X is a convex set, then is the convexity preserved by the affine trans-

formation Ax + b. A is a linear transformation in X and x,b ∈ X.

Proof. By the definition of convexity

A(λx1 + (1− λ)x2) + b⇔ (B.1)

A(λx1 + (1− λ)x2) + λb + (1− λ)b⇔ (B.2)

λAx1 + (1− λ)Ax2 + λb + (1− λ)b⇔ (B.3)

λ(Ax1 + b) + (1− λ)(Ax1 + b) . (B.4)

171

172 Chapter B. Proofs

B.3 Global Minimizers of Convex Functions

If f is a convex function, then each local minimum is a global minimum.

Proof. Let x∗ be a local minimum of the convex function f : X → R. Hence,

x∗ ∈ X ∧ ∃ε > 0 ∧ ∀x ∈ [x∗ − ε,x∗ + ε] : f(x∗) ≤ f(x) . (B.5)

Now, suppose for the sake of the proof that there exists a vector that yields a smaller

function value, i.e. ∃y ∈ X ∧ y 6= x for which

f(z) < f(x∗) . (B.6)

By the convexity of f we can rewrite the inequality as

f(λx∗ + (1− λ)z) ≤ λf(x∗) + (1− λ)f(z) . (B.7)

If we plug in the assumption in the right side of the inequality we can write it as

λf(x∗) + (1− λ)f(z) < λf(x∗) + (1− λ)f(x∗) = f(x∗) . (B.8)

However, as λ → 1 this contradicts that x is a local minimizer and hence, proofs that

every local minimizer of a convex function is a global minimizer.

B.4 Convex Functions are Global Under-Estimators

If f is a convex function, then the following relation is satisfied

f(y) ≥ f(x) + 〈∇f(x),y − x〉 . (B.9)

Proof. Let f be a convex function, x,y ∈ dom f and λ ∈ [0, 1]. Then, given the definition

of convex functions we have

f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x) . (B.10)

We can rearrange the definition as follows

f(λ(y − x) + x) ≤ λ(f(y)− f(x)) + f(x) (B.11)

f(y)− f(x) ≥ f(λ(y − x) + x)− f(x)

λ
(B.12)

B.5. Gradients of Convex Functions are Monotone 173

f(y) ≥ f(x) +
f(λ(y − x) + x)− f(x)

λ
. (B.13)

Using the definition of the differential operator (Definition 2.6) and taking the limes

limλ→∞, we get the desired relation.

B.5 Gradients of Convex Functions are Monotone

Given a convex function f , the gradient of this function is monotone, i.e. for scalar func-

tions is non-decreasing.

Proof. Given the definition of convex functions for differentiable functions

f(y) ≥ f(x) + 〈∇f(x),y − x〉 , (B.14)

we can exchange x and y as we did not assume any special ordering in the definition

f(x) ≥ f(y) + 〈∇f(y),x− y〉 . (B.15)

If we now combine booth equations we get the desired result

f(y) + f(x) ≥ f(x) + 〈∇f(x),y − x〉+ f(y) + 〈∇f(y),x− y〉 (B.16)

0 ≥ 〈∇f(x),y − x〉+ 〈∇f(y),x− y〉 (B.17)

0 ≤ 〈∇f(x)−∇f(y),x− y〉 . (B.18)

B.6 Optimality Condition of Convex Functions

For a convex function f the condition f(x∗) = 0 is a necessary and sufficient condition for

x to be a global optimizer.

Proof. By plugging ∇f(x∗) = 0 into Equation (B.9) we get

f(x) ≥ f(x∗) +∇f(x∗)(x− x∗) (B.19)

f(x) ≥ f(x∗) , (B.20)

which proofs that x∗ is a global minimizer.

B.7 Weighted Sum Preserves Convexity

If f1, and f2 are convex functions and w1, w2 > 0, then f = w1f + w2f is also convex.

174 Chapter B. Proofs

Proof. Using the definition of a convex function from Definition 2.9 we deduce

w1f1(λx1 + (1− λ)x2) + w2f2(λx1 + (1− λ)x2) ≤ (B.21)

w1(λf1(x1) + (1− λ)f1(x2)) + w2(λf2(x1) + (1− λ)f2(x2)) = (B.22)

λ(w1f1(x1) + w2f2(x1)) + (1− λ)(w1f1(x2) + w2f2(x2)) . (B.23)

B.8 Point-wise Maximum Preserves Convexity

If f1 and f2 are convex, then f(x) = max {f1(x), f2(x)} is also a convex function.

Proof. Using the definition of convex function from Definition 2.9 we deduce

max {f1(λx1 + (1− λ)x2), f2(λx1 + (1− λ)x2)} ≤ (B.24)

max {λf1(x1) + (1− λ)f1(x2), λf2(x1) + (1− λ)f2(x2)} ≤ (B.25)

λmax {f1(x1) + f2(x1))}+ (1− λ) max {f1(x2) + f2(x2))} . (B.26)

B.9 Conjugate of a Norm

The convex conjugate of a norm f(x) = ‖x‖ is given by the indicator function of the dual

norm unit ball

f∗(y) =

{
0 if ‖y‖∗ ≤ 1

+∞ else
. (B.27)

Proof. We distinguish two cases. If ‖y‖∗ ≤ 1, then from Definition 2.5 of the dual norm

it follows that 〈y,x〉 ≤ ‖y‖∗ ‖x‖ for all x. As ‖y‖∗ ≤ 1, it follows

〈y,x〉 − ‖x‖ ≤ 0 , (B.28)

for all x, and x = 0 is the value that maximizes 〈y,x〉− f(x) with maximum value 0. For

the second case of ‖y‖∗ > 1, there exists a z with ‖x‖ ≤ 1 and 〈y,x〉 > 1 by definition of

the dual norm. If we choose x = λz and letting λ→∞ we get

〈y,x〉 − f(x) = λ(〈y, z〉 − ‖z‖)→∞ . (B.29)

B.10. Minimizer of the Proximal Mapping 175

B.10 Minimizer of the Proximal Mapping

The point x∗ is the minimizer of the function f , iff x is a fixed point of proxf

x∗ = proxf (x∗) . (B.30)

Proof. Let us assume that x∗ minimizes f(x). Then, the following inequality holds for all

x, assuming λ = 1 without loss of generality

f(x) +
1

2
‖x− x∗‖22 ≥ f(x∗) = f(x∗) +

1

2
‖x∗ − x∗‖22 . (B.31)

Hence, x∗ minimizes f(x) + 1
2 ‖x− x∗‖22 and therefore, x∗ = proxf (x∗). Conversely, using

the definition of the subdifferential from Definition 2.12 and defining x̄ as

x̄ = proxf (y) = arg min
x

{
f(x) +

1

2
‖x− y‖22

}
. (B.32)

Then, x̄ minimizes proxf (y), iff 0 ∈ ∂f(x̄) + x̄− y. By setting x̄ = y = x∗ we derive the

desired result 0 ∈ ∂f(x∗), hence, x∗ minimizes f .

B.11 Moreau Decomposition

The proximal mapping is related to the convex conjugate by the Moreau decomposition

that states

x = proxf (x) + prox∗f (x) . (B.33)

Proof. Let y = proxf (x), then from the optimality condition we have

0 ∈ ∂f(y) + y − x (B.34)

x− y ∈ ∂f(y) . (B.35)

Using x − y ∈ ∂f(y) ⇔ y ∈ ∂f∗(x − y) and the proximal map definition from Equa-

tion (2.60) we can derive

y ∈ ∂f∗(x− y) (B.36)

x− y ∈ x− ∂f∗(x− y) (B.37)

x ∈ x− y + ∂f∗(x− y) (B.38)

x ∈ (I + ∂f∗)(x− y) (B.39)

x− y = (I + ∂f∗)−1(x) = prox∗f (x) . (B.40)

Plugging the last equation back into y = proxf (x) we get the Moreau decomposition.

Bibliography

[1] M. Aharon, M. Elad, and A. Bruckstein. “K-SVD: An Algorithm for Designing

Overcomplete Dictionaries for Sparse Representation”. In: IEEE Transactions on

Signal Processing (TSP) 54.11 (2006), 4311–4322 (cit. on p. 57).

[2] S. Almansa-Valverde, J. C. Castillo, and A. Fernández-Caballero. “Mobile robot

map building from time-of-flight camera”. In: Expert Systems with Applications

39.10 (2012), pp. 8835–8843 (cit. on p. 54).

[3] N. S. Altman. “An Introduction to Kernel and Nearest-Neighbor Nonparametric

Regression”. In: The American Statistician 46.3 (1992), pp. 175–185 (cit. on p. 37).

[4] N. S. Alvar, M. Zolfaghari, and T. Brox. “Orientation-boosted Voxel Nets for 3D

Object Recognition”. In: Proceedings of the British Machine Vision Conference

(BMVC). 2016 (cit. on pp. 107, 127).

[5] O. M. Aodha, N. D. Campbell, A. Nair, and G. J. Brostow. “Patch Based Syn-

thesis for Single Depth Image Super-Resolution”. In: Proceedings of the European

Conference on Computer Vision (ECCV). 2012 (cit. on pp. 55, 59, 60, 80–84).

[6] V. Badrinarayanan, A. Kendall, and R. Cipolla. “SegNet: A Deep Convolutional

Encoder-Decoder Architecture for Image Segmentation”. In: IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI) PP.99 (2017) (cit. on pp. 2,

103, 117, 120, 133, 136).

[7] T. Baltrušaitis, P. Robinson, and L.-P. Morency. “Continuous Conditional Neural

Fields for Structured Regression”. In: Proceedings of the European Conference on

Computer Vision (ECCV). 2014 (cit. on p. 60).

[8] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University

Press, 2012 (cit. on pp. 31, 37).

[9] J. Barron and B. Poole. “The Fast Bilateral Solver”. In: Proceedings of the European

Conference on Computer Vision (ECCV). 2016 (cit. on pp. 59, 85, 86, 100).

177

178

[10] A. Beck and M. Teboulle. “A Fast Iterative Shrinkage-Thresholding Algorithm

for Linear Inverse Problems”. In: Journal of Imaging Sciences (SIAM) 2.1 (2009),

pp. 183–202 (cit. on p. 23).

[11] J. R. Bellegarda and C. Monz. “State of the art in statistical methods for language

and speech processing”. In: Computer Speech & Language 35 (2016), pp. 163–184

(cit. on pp. 1, 37).

[12] J. L. Bentley. “Multidimensional Binary Search Trees Used for Associative Search-

ing”. In: Communications of the ACM 18.9 (1975), pp. 509–517 (cit. on p. 110).

[13] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006 (cit. on

pp. 31, 37, 48, 49).

[14] M. Blaha, C. Vogel, A. Richard, J. D. Wegner, T. Pock, and K. Schindler. “Large-

Scale Semantic 3D Reconstruction: an Adaptive Multi-Resolution Model for Multi-

Class Volumetric Labeling”. In: Proceedings IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2016 (cit. on p. 111).

[15] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. “Learnability and the

Vapnik-Chervonenkis Dimension”. In: Journal of the ACM (JACM) 36.4 (1989),

pp. 929–965 (cit. on p. 34).

[16] N. K. Bose and N. A. Ahuja. “Superresolution and Noise filtering Using Moving

Least Squares”. In: IEEE Transactions on Image Processing (TIP) 15.8 (2006),

pp. 2239–2248 (cit. on pp. 85, 93–96, 101).

[17] S. Boyd and L. Vandenberghe. Convex Optimization. New York, NY, USA: Cam-

bridge University Press, 2004 (cit. on p. 13).

[18] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother. “Learn-

ing 6D Object Pose Estimation using 3D Object Coordinates”. In: Proceedings of

the European Conference on Computer Vision (ECCV). 2014 (cit. on p. 128).

[19] E. Brachmann, F. Michel, A. Krull, M. Ying Yang, S. Gumhold, and C. Rother.

“Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB

Image”. In: Proceedings IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). 2016 (cit. on p. 128).

[20] K. Bredies, K. Kunisch, and T. Pock. “Total Generalized Variation”. In: Journal

of Imaging Sciences (SIAM) 3.3 (2010), 492–526 (cit. on pp. 28, 59, 66).

[21] L. Breiman. “Bagging Predictors”. In: Machine learning 24.2 (1996), pp. 123–140

(cit. on p. 50).

[22] L. Breiman. Classification and regression trees. Chapman & Hall/CRC, 1984 (cit.

on p. 37).

[23] L. Breiman. “Random Forests”. In: Machine learning 45.1 (2001), pp. 5–32 (cit. on

pp. 37, 50).

BIBLIOGRAPHY 179

[24] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. “Generative and Discriminative

Voxel Modeling with Convolutional Neural Networks”. In: 2016 (cit. on pp. 108,

127, 147).

[25] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. “Spectral Networks and Locally

Connected Networks on Graphs”. In: Proceedings of the International Conference

on Learning Representations (ICLR). 2014 (cit. on p. 109).

[26] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. “A Naturalistic Open Source

Movie for Optical Flow Evaluation”. In: Proceedings of the European Conference

on Computer Vision (ECCV). 2012 (cit. on pp. 55, 60).

[27] A. Chambolle and T. Pock. “A First-Order Primal-Dual Algorithm for Convex

Problems with Applications to Imaging”. In: Journal of Mathematical Imaging and

Vision (JMIV) 40.1 (2011), 120–145 (cit. on p. 24).

[28] A. Chambolle and T. Pock. “On the ergodic convergence rates of a first-order

primal-dual algorithm”. In: Mathematic Programming 159.1 (2015), 1–35 (cit. on

p. 61).

[29] D. Chan, H. Buisman, C. Theobalt, and S. Thrun. “A Noise-aware Filter for Real-

time Depth Upsampling”. In: Proceedings of the European Conference on Computer

Vision (ECCV) Workshops. 2008 (cit. on pp. 84, 86–92, 100).

[30] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan, Q. Huang, Z. Li,

S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. “ShapeNet:

An Information-Rich 3D Model Repository”. In: arXiv preprint arXiv:1512.03012

1512.03012 (2015) (cit. on p. 104).

[31] H. Chang, D.-Y. Yeung, and Y. Xiong. “Super-Resolution Through Neighbor

Embedding”. In: Proceedings IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2004 (cit. on p. 57).

[32] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud. “Two Deterministic

Half-Quadratic Regularization Algorithms for Computed Imaging”. In: Proceedings

IEEE International Conference on Image Processing (ICIP). 1994 (cit. on p. 64).

[33] J. Chen, D. Bautembach, and S. Izadi. “Scalable Real-Time Volumetric Surface

Reconstruction”. In: ACM Transactions on Graphics (SIGGRAPH) 32.4 (2013),

p. 113 (cit. on p. 110).

[34] L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and A. L. Yuille. “Semantic

Image Segmentation with Task-Specific Edge Detection Using CNNs and a Dis-

criminatively Trained Domain Transform”. In: Proceedings IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 2016 (cit. on pp. 2, 60, 103,

117).

180

[35] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. “Semantic

Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs”. In:

Proceedings of the International Conference on Learning Representations (ICLR).

2015 (cit. on pp. 2, 103, 117).

[36] L.-C. Chen, A. G. Schwing, A. L. Yuille, and R. Urtasun. “Learning Deep Struc-

tured Models”. In: Proceedings of the International Conference on Machine learning

(ICML). 2015 (cit. on p. 60).

[37] D. Chicco, P. Sadowski, and P. Baldi. “Deep Autoencoder Neural Networks for Gene

Ontology Annotation Predictions”. In: Proceedings of the 5th ACM Conference on

Bioinformatics, Computational Biology, and Health Informatics. 2014, pp. 533–540

(cit. on p. 37).

[38] S. Choi, Q. Zhou, and V. Koltun. “Robust Reconstruction of Indoor Scenes”.

In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2015 (cit. on pp. 105, 111).

[39] S. Choi, Q. Zhou, S. Miller, and V. Koltun. “A Large Dataset of Object Scans”.

In: arXiv preprint arXiv:1602.02481 1602.02481 (2016) (cit. on pp. 104, 147).

[40] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. “The Loss

Surfaces of Multilayer Networks”. In: Conference on Artificial Intelligence and

Statistics (AISTATS). 2015 (cit. on p. 39).

[41] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. “3D-R2N2: A Unified

Approach for Single and Multi-view 3D Object Reconstruction”. In: Proceedings of

the European Conference on Computer Vision (ECCV). 2016 (cit. on pp. 4, 104,

112, 147).

[42] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. “3D U-Net:

Learning Dense Volumetric Segmentation from Sparse Annotation”. In: Medical

Image Computing and Computer-Assisted Intervention (MICCAI). 2016 (cit. on

pp. 120, 133).

[43] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. “Describing Tex-

tures in the Wild”. In: Proceedings IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 2014 (cit. on p. 69).

[44] C. Cortes and V. Vapnik. “Support-Vector Networks”. In: Machine learning 20.3

(1995), pp. 273–297 (cit. on p. 37).

[45] B. Curless and M. Levoy. “A Volumetric Method for Building Complex Models

from Range Images”. In: ACM Transactions on Graphics (SIGGRAPH). 1996 (cit.

on pp. 58, 105, 106, 110, 111, 138–140, 142–146, 148–153).

[46] G. Cybenko. “Approximation by Superpositions of a Sigmoidal Function”. In:

Mathematics of Control, Signals, and Systems (MCSS) 2.4 (1989), pp. 303–314

(cit. on p. 44).

BIBLIOGRAPHY 181

[47] A. Dai, C. R. Qi, and M. Nießner. “Shape Completion using 3D-Encoder-Predictor

CNNs and Shape Synthesis”. In: Proceedings IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2017 (cit. on p. 112).

[48] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. “Iden-

tifying and attacking the saddle point problem in high-dimensional non-convex op-

timization”. In: Advances in Neural Information Processing Systems (NIPS). 2014,

pp. 2933–2941 (cit. on p. 39).

[49] M. Defferrard, X. Bresson, and P. Vandergheynst. “Convolutional Neural Networks

on Graphs with Fast Localized Spectral Filtering”. In: Advances in Neural Infor-

mation Processing Systems (NIPS). 2016 (cit. on p. 109).

[50] S. Dempe. “Annotated Bibliography on Bilevel Programming and Mathematical

Programs with Equilibrium Constraints”. In: Optimization 23.3 (2003), pp. 333–

359 (cit. on p. 63).

[51] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A Large-

Scale Hierarchical Image Database”. In: Proceedings IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 2009 (cit. on p. 2).

[52] J. Diebel and S. Thrun. “An Application of Markov Random Fields to Range

Sensing”. In: Advances in Neural Information Processing Systems (NIPS). 2005

(cit. on pp. 4, 55, 59, 84, 86–92, 100).

[53] J. Domke. “Generic Methods for Optimization-Based Modeling”. In: Conference

on Artificial Intelligence and Statistics (AISTATS). 2012 (cit. on p. 61).

[54] J. Domke. “Learning Graphical Model Parameters with Approximate Marginal

Inference”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI) 35.10 (2013), pp. 2454–2467 (cit. on p. 61).

[55] C. Dong, C. C. Loy, K. He, and X. Tang. “Learning a Deep Convolutional Net-

work for Image Super-Resolution”. In: Proceedings of the European Conference on

Computer Vision (ECCV). 2014 (cit. on pp. 4, 55, 56, 58, 72).

[56] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. van der

Smagt, D. Cremers, and T. Brox. “Flownet: Learning Optical Flow with Con-

volutional Networks”. In: Proceedings of the IEEE International Conference on

Computer Vision (ICCV). 2015 (cit. on p. 136).

[57] J. Duchi, E. Hazan, and Y. Singer. “Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization”. In: Journal of Machine Learning Research

(JMLR) 12.Jul (2011), pp. 2121–2159 (cit. on p. 41).

[58] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Vol. 2. Wiley,

2000 (cit. on pp. 31, 37).

182

[59] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-

Guzik, and R. P. Adams. “Convolutional Networks on Graphs for Learning Molecu-

lar Fingerprints”. In: Advances in Neural Information Processing Systems (NIPS).

2015 (cit. on p. 109).

[60] D. Eigen and R. Fergus. “Predicting Depth, Surface Normals and Semantic Labels

with a Common Multi-Scale Convolutional Architecture”. In: Proceedings of the

IEEE International Conference on Computer Vision (ICCV). 2015 (cit. on p. 112).

[61] D. Eigen, C. Puhrsch, and R. Fergus. “Depth Map Prediction from a Single Image

using a Multi-Scale Deep Network”. In: Advances in Neural Information Processing

Systems (NIPS). 2014 (cit. on p. 112).

[62] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner. “Vote3Deep: Fast

Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Net-

works”. In: Proceedings IEEE International Conference on Robotics and Automa-

tion (ICRA). 2017 (cit. on p. 109).

[63] H. Fan, H. Su, and L. J. Guibas. “A Point Set Generation Network for 3D Ob-

ject Reconstruction From a Single Image”. In: Proceedings IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 2017 (cit. on p. 112).

[64] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. J. V. Gool. “Random Forests

for Real Time 3D Face Analysis”. In: International Journal of Computer Vision

(IJCV) 101.3 (2013), pp. 437–458 (cit. on pp. 2, 128, 131).

[65] G. Fanelli, T. Weise, J. Gall, and L. J. V. Gool. “Real Time Head Pose Estimation

from Consumer Depth Cameras”. In: Proceedings of the German Conference on

Pattern Recognition (GCPR). 2011, pp. 101–110 (cit. on pp. 128, 131).

[66] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar. “Fast and Robust Multiframe

Super Resolution”. In: IEEE Transactions on Image Processing (TIP) 13.10 (2004),

pp. 1327–1344 (cit. on p. 56).

[67] D. Ferstl, C. Reinbacher, R. Ranftl, M. Rüther, and H. Bischof. “Image Guided

Depth Upsampling using Anisotropic Total Generalized Variation”. In: Proceedings

of the IEEE International Conference on Computer Vision (ICCV). 2013 (cit. on

pp. 4, 59, 85–96, 99–101).

[68] D. Ferstl, C. Reinbacher, G. Riegler, M. Rüther, and H. Bischof. “Learning Depth

Calibration of Time-of-Flight Cameras”. In: Proceedings of the British Machine

Vision Conference (BMVC). 2015.

[69] D. Ferstl, G. Riegler, M. Rüther, and H. Bischof. “CP-Census: A Novel Model for

Dense Variational Scene Flow from RGB-D Data”. In: Proceedings of the British

Machine Vision Conference (BMVC). 2014.

BIBLIOGRAPHY 183

[70] D. Ferstl, M. Rüther, and H. Bischof. “Variational Depth Superresolution using

Example-Based Edge Representations”. In: Proceedings of the IEEE International

Conference on Computer Vision (ICCV). 2015 (cit. on pp. 55, 59, 60, 80–84).

[71] M. Firman, O. Mac Aodha, S. Julier, and G. J. Brostow. “Structured Prediction of

Unobserved Voxels From a Single Depth Image”. In: Proceedings IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 2016 (cit. on pp. 106, 111,

153–156).

[72] J. Flynn, I. Neulander, J. Philbin, and N. Snavely. “DeepStereo: Learning to Pre-

dict New Views from the World’s Imagery”. In: Proceedings IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 2016 (cit. on p. 112).

[73] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. “Learning Low-Level Vision”.

In: International Journal of Computer Vision (IJCV) 40.1 (2000), pp. 25–47 (cit.

on pp. 55, 57, 60).

[74] K. Fukushima. “Neocognitron: A Hierarchical Neural Network Capable of Visual

Pattern Recognition”. In: Neural Networks 1.2 (1988), pp. 119–130 (cit. on p. 1).

[75] R. Gadde, V. Jampani, R. Marlet, and P. V. Gehler. “Efficient 2D and 3D Facade

Segmentation using Auto-Context”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI) PP.99 (2017) (cit. on p. 135).

[76] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. “Virtual Worlds as Proxy for Multi-

Object Tracking Analysis”. In: Proceedings IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2016 (cit. on p. 61).

[77] R. Garg, G. Carneiro, and I. Reid. “Unsupervised CNN for Single View Depth

Estimation: Geometry to the Rescue”. In: Proceedings of the European Conference

on Computer Vision (ECCV). 2016 (cit. on p. 112).

[78] C. F. Gauss. Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem

Ambientium. 1809 (cit. on p. 37).

[79] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. “Vision meets Robotics: The KITTI

Dataset”. In: International Journal of Robotics Research (IJRR) 32.11 (2013) (cit.

on p. 61).

[80] A. Geiger, P. Lenz, and R. Urtasun. “Are we ready for Autonomous Driving? The

KITTI Vision Benchmark Suite”. In: Proceedings IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 2012 (cit. on p. 61).

[81] G. Ghiasi and C. C. Fowlkes. “Laplacian Pyramid Reconstruction and Refinement

for Semantic Segmentation”. In: Proceedings of the European Conference on Com-

puter Vision (ECCV). 2016 (cit. on pp. 2, 103, 117).

[82] J. J. Gibson. “The Perception of the Visual World”. In: (1950) (cit. on p. 1).

[83] G. Gilboa and S. Osher. “Nonlocal Operators with Applications to Image Process-

ing”. In: Multiscale Modeling and Simulation 7.3 (2009), 1005–1028 (cit. on p. 67).

184

[84] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta. “Learning a Predictable

and Generative Vector Representation for Objects”. In: Proceedings of the European

Conference on Computer Vision (ECCV). 2016 (cit. on pp. 107, 147).

[85] R. Girshick. “Fast R-CNN”. In: Proceedings of the IEEE International Conference

on Computer Vision (ICCV). 2015 (cit. on pp. 2, 103).

[86] R. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich feature hierarchies for

accurate object detection and semantic segmentation”. In: Proceedings IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR). 2014 (cit. on pp. 2,

103).

[87] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. W. Fitzgibbon. “Efficient

Regression of General-Activity Human Poses from Depth Images”. In: Proceedings

of the IEEE International Conference on Computer Vision (ICCV). 2011 (cit. on

pp. 2, 54).

[88] D. Glasner, S. Bagon, and M. Irani. “Super-Resolution from Single Image”. In:

Proceedings of the IEEE International Conference on Computer Vision (ICCV).

2009 (cit. on pp. 57, 60).

[89] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feedfor-

ward neural networks.” In: Conference on Artificial Intelligence and Statistics (AIS-

TATS). Vol. 9. 2010, pp. 249–256 (cit. on p. 42).

[90] C. Godard, O. M. Aodha, and G. J. Brostow. “Unsupervised Monocular Depth Es-

timation with Left-Right Consistency”. In: Proceedings IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR). 2017 (cit. on p. 112).

[91] G. Goh. “Why Momentum Really Works”. In: Distill 2.4 (2017) (cit. on p. 40).

[92] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT Press, 2016 (cit. on

p. 31).

[93] B. Graham. “Sparse 3D convolutional neural networks”. In: Proceedings of the

British Machine Vision Conference (BMVC). 2015 (cit. on p. 109).

[94] B. Graham. “Spatially-sparse convolutional neural networks”. In: arXiv preprint

arXiv:1409.6070 (2014) (cit. on p. 109).

[95] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. “Learning Rich Features from

RGB-D Images for Object Detection and Segmentation”. In: Proceedings of the

European Conference on Computer Vision (ECCV). 2014 (cit. on p. 2).

[96] A. Handa, V. Patraucean, V. Badrinarayanan, S. Stent, and R. Cipolla. “Under-

standing Real World Indoor Scenes with Synthetic Data”. In: Proceedings IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 2016 (cit. on

p. 61).

[97] C. Häne, S. Tulsiani, and J. Malik. “Hierarchical Surface Prediction for 3D Object

Reconstruction”. In: arXiv preprint arXiv:1704.00710 (2017) (cit. on p. 112).

BIBLIOGRAPHY 185

[98] C. Häne, C. Zach, A. Cohen, R. Angst, and M. Pollefeys. “Joint 3D Scene Recon-

struction and Class Segmentation”. In: Proceedings IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 2013 (cit. on p. 111).

[99] M. Hansard, S. Lee, O. Choi, and R. P. Horaud. Time-of-Flight Cameras: Princi-

ples, Methods and Applications. Springer Science & Business Media, 2012 (cit. on

p. 54).

[100] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. 2nd ed.

Cambridge University Press, 2003 (cit. on p. 2).

[101] K. He, J. Sun, and X. Tang. “Guided Image Filtering”. In: Proceedings of the

European Conference on Computer Vision (ECCV). 2010 (cit. on pp. 84, 86–92,

100).

[102] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recog-

nition”. In: Proceedings IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). 2016 (cit. on pp. 2, 73, 103, 104, 113, 117, 123).

[103] K. He, X. Zhang, S. Ren, and J. Sun. “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification”. In: Proceedings of the IEEE

International Conference on Computer Vision (ICCV). 2015 (cit. on pp. 42, 142).

[104] D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Psychol-

ogy Press, 2005 (cit. on p. 1).

[105] G. E. Hinton, S. Nitish, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. “Im-

proving neural networks by preventing co-adaptation of feature detectors”. In:

arXiv preprint arXiv:1207.058 (2012) (cit. on pp. 1, 37, 50).

[106] M. Hornáček, C. Rhemann, M. Gelautz, and C. Rother. “Depth Super Resolution by

Rigid Body Self-Similarity in 3D”. In: Proceedings IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 2013 (cit. on pp. 55, 59, 60, 80–84).

[107] A. Hornung and L. Kobbelt. “Robust Reconstruction of Watertight 3D Models

from Non-Uniformly Sampled Point Clouds Without Normal Information”. In: Eu-

rographics Symposium on Geometry Processing (SGP). 2006 (cit. on p. 111).

[108] B.-S. Hua, Q.-H. Pham, D. T. Nguyen, M.-K. Tran, L.-F. Yu, and S.-K. Yeung.

“SceneNN: A Scene Meshes Dataset with aNNotations”. In: Proceedings of the

International Conference on 3D Vision (3DV). 2016 (cit. on p. 61).

[109] J.-B. Huang, A. Singh, and N. Ahuja. “Single Image Super-resolution from Trans-

formed Self-Exemplars”. In: Proceedings IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 2015 (cit. on p. 57).

[110] J. Huang and S. You. “Point Cloud Labeling using 3D Convolutional Neural Net-

work”. In: Proceedings of the International Conference on Pattern Recognition

(ICPR). 2016 (cit. on p. 108).

186

[111] Q. Huang, H. Wang, and V. Koltun. “Single-View Reconstruction via Joint Anal-

ysis of Image and Shape Collections”. In: ACM Transactions on Graphics (SIG-

GRAPH). 2015 (cit. on p. 104).

[112] D. H. Hubel and T. N. Wiesel. “Receptive Fields and Functional Architecture of

Monkey Striate Cortex”. In: The Journal of Physiology 195.1 (1968), pp. 215–243

(cit. on p. 45).

[113] D. H. Hubel and T. N. Wiesel. “Receptive Fields, Binocular Interaction and Func-

tional Architecture in the Cat’s Visual Cortex”. In: The Journal of Physiology 160.1

(1962), pp. 106–154 (cit. on p. 45).

[114] D. H. Hubel and T. N. Wiesel. “Receptive Fields of Single Neurones in the Cat’s

Striate Cortex”. In: The Journal of Physiology 148.3 (1959), pp. 574–591 (cit. on

p. 45).

[115] P. J. Huber. “Robust Regression: Asymptotics, Conjectures and Monte Carlo”. In:

Annal. of Stat. 1.5 (1973), pp. 799–821 (cit. on p. 10).

[116] T.-W. Hui, C. C. Loy, and X. Tang. “Depth Map Super-Resolution by Deep Multi-

Scale Guidance”. In: Proceedings of the European Conference on Computer Vision

(ECCV). 2016 (cit. on pp. 55, 59, 60, 73, 80–84).

[117] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Train-

ing by Reducing Internal Covariate Shift”. In: Proceedings of the International

Conference on Machine learning (ICML). 2015 (cit. on p. 2).

[118] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S.

Hodges, D. Freeman, A. Davison, and A. Fitzgibbon. “KinectFusion: Real-time 3D

Reconstruction and Interaction Using a Moving Depth Camera”. In: ACM Sympo-

sium on User Interface Software and Technology. 2011 (cit. on pp. 59, 60).

[119] W. Jakob. Mitsuba Renderer. 2010 (cit. on pp. 56, 69, 70).

[120] V. Jampani, M. Kiefel, and P. V. Gehler. “Learning Sparse High Dimensional Fil-

ters: Image Filtering, Dense CRFs and Bilateral Neural Networks”. In: Proceedings

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016 (cit.

on p. 109).

[121] V. Kämpe, E. Sintorn, and U. Assarsson. “High Resolution Sparse Voxel DAGs”. In:

ACM Transactions on Graphics (SIGGRAPH) 32.4 (2013), p. 101 (cit. on p. 110).

[122] A. Kar, S. Tulsiani, J. Carreira, and J. Malik. “Category-Specific Object Recon-

struction from a Single Image”. In: Proceedings IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 2015 (cit. on p. 112).

[123] K. Kawaguchi. “Deep Learning without Poor Local Minima”. In: Advances in Neu-

ral Information Processing Systems (NIPS). 2016, pp. 586–594 (cit. on p. 39).

[124] W. Kehl, T. Holl, F. Tombari, S. Ilic, and N. Navab. “An Octree-Based Approach

towards Efficient Variational Range Data Fusion”. In: 2016 (cit. on p. 114).

BIBLIOGRAPHY 187

[125] B.-s. Kim, P. Kohli, and S. Savarese. “3D Scene Understanding by Voxel-CRF”.

In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2013, pp. 1425–1432 (cit. on p. 111).

[126] J. Kim, J. K. Lee, and K. M. Lee. “Accurate Image Super-Resolution Using Very

Deep Convolutional Networks”. In: Proceedings IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 2016 (cit. on pp. 4, 56, 58, 73).

[127] J. Kim, J. K. Lee, and K. M. Lee. “Deeply-Recursive Convolutional Network for

Image Super-Resolution”. In: Proceedings IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2016 (cit. on p. 58).

[128] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In:

Proceedings of the International Conference on Learning Representations (ICLR).

2014 (cit. on pp. 41, 72, 123, 135, 142).

[129] R. Klokov and V. Lempitsky. “Escape From Cells: Deep Kd-Networks for the Recog-

nition of 3D Point Cloud Models”. In: Proceedings of the IEEE International Con-

ference on Computer Vision (ICCV). 2017 (cit. on p. 110).

[130] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele. “Joint Bilateral Up-

sampling”. In: ACM Transactions on Graphics (SIGGRAPH) 26.3 (2007) (cit. on

p. 59).

[131] P. Krähenbühl and V. Koltun. “Efficient Inference in Fully Connected CRFs with

Gaussian Edge Potentials”. In: Advances in Neural Information Processing Systems

(NIPS). 2012 (cit. on p. 60).

[132] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep

Convolutional Neural Networks”. In: Advances in Neural Information Processing

Systems (NIPS). 2012 (cit. on pp. 1, 2, 37, 50, 103, 117).

[133] K. Kunisch and T. Pock. “A Bilevel Optimization Approach for Parameter Learning

in Variational Models”. In: Journal of Imaging Sciences (SIAM) 6.2 (2013), 938–

983 (cit. on p. 65).

[134] H. Kwon, Y.-W. Tai, and S. Lin. “Data-Driven Depth Map Refinement via Multi-

scale Spare Representations”. In: Proceedings IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR). 2015 (cit. on pp. 59, 60).

[135] S. Laine and T. Karras. “Efficient Sparse Voxel Octrees”. In: IEEE Transactions on

Visualization and Computer Graphics (VCG) 17.8 (2011), pp. 1048–1059 (cit. on

pp. 110, 114).

[136] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel. “Backpropagation Applied to Handwritten Zip Code Recognition”.

In: Neural computation 1.4 (1989), pp. 541–551 (cit. on p. 45).

188

[137] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-Based Learning Applied

to Document Recognition”. In: Proceedings of the IEEE 86.11 (1998), 2278–2324

(cit. on pp. 42, 45).

[138] S. Lefebvre and H. Hoppe. “Perfect Spatial Hashing”. In: ACM Transactions on

Graphics (SIGGRAPH). Vol. 25. 3. 2006, pp. 579–588 (cit. on p. 110).

[139] A. M. Legendre. Nouvelles Méthodes Pour la Détermination des Orbites des

Comètes. 1805 (cit. on p. 37).

[140] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. “Multilayer Feedforward Net-

works With a Nonpolynomial Activation Function Can Approximate Any Func-

tion”. In: Neural Networks 6.6 (1993), pp. 861–867 (cit. on p. 44).

[141] Y. Li, S. Pirk, H. Su, C. R. Qi, and L. J. Guibas. “FPNN: Field Probing Neural

Networks for 3D Data”. In: Advances in Neural Information Processing Systems

(NIPS). 2016 (cit. on p. 109).

[142] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. “Gated Graph Sequence Neural

Networks”. In: Proceedings of the International Conference on Learning Represen-

tations (ICLR). 2016 (cit. on p. 109).

[143] S. Linnainmaa. “Taylor Expansion of the Accumulated Rounding Error”. In: BIT

Numerical Mathematics 16.2 (1976), pp. 146–160 (cit. on pp. 44, 61, 66).

[144] S. Linnainmaa. “The Representation of the Cumulative Rounding Error of an Al-

gorithm as a Taylor Expansion of the Local Rounding Errors”. In: Master’s Thesis

(in Finnish), University Helsinki (1970) (cit. on pp. 44, 61, 66).

[145] D. C. Liu and J. Nocedal. “On the limited memory BFGS method for large scale

optimization”. In: Mathematical programming 45.1 (1989), pp. 503–528 (cit. on

p. 41).

[146] S. Liu and D. B. Cooper. “Statistical Inverse Ray Tracing for Image-based 3D

Modeling”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI) 36.10 (2014), pp. 2074–2088 (cit. on p. 111).

[147] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg.

“SSD: Single Shot Multibox Detector”. In: Proceedings of the European Conference

on Computer Vision (ECCV). 2016 (cit. on pp. 2, 103).

[148] J. Long, E. Shelhamer, and T. Darrell. “Fully Convolutional Networks for Semantic

Segmentation”. In: Proceedings IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2015 (cit. on pp. 2, 103, 117).

[149] W. E. Lorensen and H. E. Cline. “Marching Cubes: A High Resolution 3D Surface

Construction Algorithm”. In: ACM Transactions on Graphics (SIGGRAPH). 1987

(cit. on p. 105).

BIBLIOGRAPHY 189

[150] J. Lu and D. Forsyth. “Sparse Depth Super-Resolution”. In: Proceedings IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 2015 (cit. on

pp. 84, 86, 100).

[151] J. Lu, K. Shi, D. Min, L. Lin, and M. N. Do. “Cross-Based Local Multipoint Fil-

tering”. In: Proceedings IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). 2012, pp. 430–437 (cit. on pp. 85, 93–96, 101).

[152] X. Mao, C. Shen, and Y.-B. Yang. “Image Restoration Using Very Deep Convolu-

tional Encoder-Decoder Networks with Symmetric Skip Connections”. In: Advances

in Neural Information Processing Systems (NIPS). 2016 (cit. on pp. 4, 56, 58, 73).

[153] A. Martinović, J. Knopp, H. Riemenschneider, and L. Van Gool. “3D All The Way:

Semantic Segmentation of Urban Scenes from Start to End in 3D”. In: Proceedings

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015 (cit.

on p. 135).

[154] D. Maturana and S. Scherer. “VoxNet: A 3D Convolutional Neural Network for

real-time object recognition”. In: Proceedings IEEE International Conference on

Intelligent Robots and Systems (IROS). 2015 (cit. on pp. 4, 104, 107).

[155] J. McCormac, A. Handa, S. Leutenegger, and A. J. Davison. “SceneNet RGB-D:

5M Photorealistic Images of Synthetic Indoor Trajectories with Ground Truth”.

In: arXiv preprint arXiv:1612.05079 (2016) (cit. on p. 61).

[156] W. S. McCulloch and W. Pitts. “A Logical Calculus of the Ideas Immanent in

Nervous Activity”. In: The Bulletin of Mathematical Biophysics 5.4 (1943), pp. 115–

133 (cit. on p. 1).

[157] D. Meagher. “Geometric Modeling Using Octree Encoding”. In: Computer Graphics

and Image Processing (CGIP) 19.1 (1982), p. 85 (cit. on pp. 110, 114).

[158] A. Miller, V. Jain, and J. L. Mundy. “Real-time Rendering and Dynamic Updating

of 3-d Volumetric Data”. In: Proceedings of the Workshop on General Purpose

Processing on Graphics Processing Units (GPGPU). 2011 (cit. on pp. 104, 110,

114, 115).

[159] T. M. Mitchell. Machine Learning. 1997 (cit. on pp. 31, 37).

[160] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein.

“Geometric deep learning on graphs and manifolds using mixture model CNNs”.

In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2017 (cit. on p. 109).

[161] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012 (cit.

on pp. 31, 37).

[162] V. Nair and G. E. Hinton. “Rectified Linear Units Improve Restricted Boltzmann

Machines.” In: Proceedings of the International Conference on Machine learning

(ICML). 2010 (cit. on pp. 2, 38, 138).

190

[163] Y. Nesterov. “A Method of Solving a Convex Programming Problem with Con-

vergence Rate O(1/sqr(k))”. In: Soviet Mathematics Doklady 27.2 (1983), 372–376

(cit. on pp. 22, 40).

[164] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.

Vol. 87. Springer Science & Business Media, 2013 (cit. on pp. 13, 21, 22).

[165] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P.

Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. “KinectFusion: Real-time Dense

Surface Mapping and Tracking”. In: Proceedings of the International Symposium

on Mixed and Augmented Reality (ISMAR). 2011 (cit. on pp. 2, 104–106, 110, 139,

153).

[166] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. “Real-time 3D Recon-

struction at Scale using Voxel Hashing”. In: ACM Transactions on Graphics (SIG-

GRAPH). 2013 (cit. on pp. 105, 110, 111).

[167] M. Oberweger, G. Riegler, P. Wohlhart, and V. Lepetit. “Efficiently Creating 3D

Training Data for Fine Hand Pose Estimation”. In: Proceedings IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 2016 (cit. on pp. 2, 54).

[168] M. Oberweger, P. Wohlhart, and V. Lepetit. “Hands Deep in Deep Learning for

Hand Pose Estimation”. In: Proceedings of the Computer Vision Winter Workshop

(CVWW). 2015 (cit. on pp. 2, 54).

[169] P. Ochs, R. Ranftl, T. Brox, and T. Pock. “Bilievel Optimization with Nonsmooth

Lower Level Problems”. In: Proceedings of the International Conference on Scale

Space and Variational Methods in Computer Vision (SSVM). 2015 (cit. on p. 61).

[170] P. Ochs, R. Ranftl, T. Brox, and T. Pock. “Techniques for Gradient-Based Bilevel

Optimization with Non-smooth Lower Level Problems”. In: Journal of Mathemat-

ical Imaging and Vision (JMIV) 56.2 (2016), pp. 175–194 (cit. on p. 61).

[171] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and

Complexity. Courier Corporation, 1982 (cit. on p. 39).

[172] J. Park, H. Kim, Y.-W. Tai, M. S. Brown, and I.-S. Kweon. “High Quality Depth

Map Upsampling for 3D-TOF Cameras”. In: Proceedings of the IEEE International

Conference on Computer Vision (ICCV). 2011 (cit. on pp. 55, 59, 71, 84, 86–92,

97, 100).

[173] T. Pock, L. Zebedin, and H. Bischof. “TGV-Fusion”. In: Rainbow of Computer

Science. 2011 (cit. on pp. 111, 112).

[174] B. T. Polyak. “Some Methods of Speeding Up the Convergence of Iteration Meth-

ods”. In: USSR Computational Mathematics and Mathematical Physics 4.5 (1964),

pp. 1–17 (cit. on p. 40).

BIBLIOGRAPHY 191

[175] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. “PointNet: Deep learning on Point

Sets for 3D Classification and Segmentation”. In: Proceedings IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 2017 (cit. on p. 109).

[176] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. Guibas. “Volumetric and

Multi-View CNNs for Object Classification on 3D Data”. In: Proceedings IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 2016 (cit. on

pp. 4, 104, 107, 127).

[177] R. Ranftl and T. Pock. “A Deep Variational Model for Image Segmentation”. In:

Proceedings of the German Conference on Pattern Recognition (GCPR). 2014 (cit.

on pp. 61, 62).

[178] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. “You Only Look Once: Uni-

fied, Real-Time Object Detection”. In: Proceedings IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 2016 (cit. on pp. 2, 103).

[179] J. Redmon and A. Farhadi. “YOLO9000: Better, Faster, Stronger”. In: Proceedings

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017 (cit.

on pp. 2, 103).

[180] S. Ren, K. He, R. B. Girshick, and J. Sun. “Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks”. In: Advances in Neural Infor-

mation Processing Systems (NIPS). 2015 (cit. on pp. 2, 103).

[181] G. Riegler, D. Ferstl, M. Rüther, and H. Bischof. “A Deep Primal-Dual Network

for Guided Depth Super-Resolution”. In: Proceedings of the British Machine Vision

Conference (BMVC). 2016 (cit. on p. 6).

[182] G. Riegler, D. Ferstl, M. Rüther, and H. Bischof. “A Framework for Articulated

Hand Pose Estimation and Evaluation”. In: Scandinavian Conference on Image

Analysis (SCIA). 2015 (cit. on pp. 2, 54).

[183] G. Riegler, D. Ferstl, M. Rüther, and H. Bischof. “Hough Networks for Head Pose

Estimation and Facial Feature Localization”. In: Proceedings of the British Machine

Vision Conference (BMVC). 2014 (cit. on pp. 2, 131).

[184] G. Riegler, R. Ranftl, M. Rüther, T. Pock, and H. Bischof. “Depth Restoration via

Joint Training of a Global Regression Model and CNNs”. In: Proceedings of the

British Machine Vision Conference (BMVC). 2015 (cit. on pp. 6, 62, 66).

[185] G. Riegler, M. Rüther, and H. Bischof. “ATGV-Net: Accurate Depth

Super-Resolution”. In: Proceedings of the European Conference on Computer

Vision (ECCV). 2016 (cit. on p. 6).

[186] G. Riegler, S. Schulter, M. Rüther, and H. Bischof. “Conditioned Regression Mod-

els for Non-Blind Single Image Super-Resolution”. In: Proceedings of the IEEE

International Conference on Computer Vision (ICCV). 2015.

192

[187] G. Riegler, A. O. Ulusoy, and A. Bischof Horst Geiger. “OctNetFusion: Learning

Depth Fusion from Data”. In: Proceedings of the International Conference on 3D

Vision (3DV). 2017 (cit. on p. 6).

[188] G. Riegler, A. O. Ulusoy, and A. Geiger. “OctNet: Learning Deep 3D Representa-

tions at High Resolutions”. In: Proceedings IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2017 (cit. on p. 6).

[189] G. Riegler, M. Urschler, M. Rüther, H. Bischof, and D. Stern. “Anatomical land-

mark detection in medical applications driven by synthetic data”. In: Proceedings of

the IEEE International Conference on Computer Vision (ICCV) Workshops. 2015.

[190] H. Riemenschneider, A. Bódis-Szomorú, J. Weissenberg, and L. V. Gool. “Learning

Where to Classify in Multi-view Semantic Segmentation”. In: Proceedings of the

European Conference on Computer Vision (ECCV). 2014 (cit. on pp. 132, 135).

[191] L. G. Roberts. “Machine Perception of Three-Dimensional Solids”. PhD thesis.

Massachusetts Institute of Technology, 1963 (cit. on p. 1).

[192] R. T. Rockafellar. Convex Analysis. Princeton university press, 2015 (cit. on p. 13).

[193] B. Rogers and M. Graham. “Motion parallax as an independent cue for depth

perception”. In: Perception 8.2 (1979), pp. 125–134 (cit. on p. 1).

[194] B. Rogers and M. Graham. “Similarities between motion parallax and stereopsis

in human depth perception”. In: Vision research 22.2 (1982), pp. 261–270 (cit. on

p. 1).

[195] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. Lopez. “The SYNTHIA

Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of

Urban Scenes”. In: Proceedings IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2016 (cit. on p. 61).

[196] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain”. In: Psychological Review 65.6 (1958), p. 386 (cit. on

pp. 1, 38).

[197] S. T. Roweis and L. K. Saul. “Nonlinear Dimensionality Reduction by Locally

Linear Embedding”. In: Science 290.5500 (2000), pp. 2323–2326 (cit. on p. 57).

[198] L. I. Rudin, S. Osher, and E. Fatemi. “Nonlinear Total Variation Based Noise

Removal Algorithms”. In: Physica D: Nonlinear Phenomena 60.1-4 (1992), 259–

268 (cit. on p. 26).

[199] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representa-

tions by error propagation. Tech. rep. DTIC Document, 1985 (cit. on pp. 1, 38, 44,

61).

[200] A. L. Samuel. “Some Studies in Machine Learning Using the Game of Checkers”. In:

IBM Journal of research and development 3.3 (1959), pp. 210–229 (cit. on p. 30).

BIBLIOGRAPHY 193

[201] N. Savinov, L. Ladicky, C. Hane, and M. Pollefeys. “Discrete Optimization of Ray

Potentials for Semantic 3D Reconstruction”. In: Proceedings IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 2015 (cit. on p. 111).

[202] A. M. Saxe, J. L. McClelland, and S. Ganguli. “Exact solutions to the nonlinear

dynamics of learning in deep linear neural networks”. In: arXiv preprint

arXiv:1312.6120 (2013) (cit. on pp. 42, 72).

[203] D. Scharstein, H. Hirschmüller, Y. Kitajima, N. Nešić, X. Wang, and P. Westling.

“High-Resolution Stereo with Subpixel-Accurate Ground Truth”. In: Proceedings

of the German Conference on Pattern Recognition (GCPR). 2014 (cit. on pp. 55,

60).

[204] D. Scharstein and C. Pal. “Learning Conditional Random Fields for Stereo”.

In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2007 (cit. on p. 71).

[205] D. Scharstein and R. Szeliski. “A Taxonomy and Evaluation of Dense Two-Frame

Stereo Correspondence Algorithms”. In: International Journal of Computer Vision

(IJCV) 47.1 (2002), pp. 7–42 (cit. on pp. 55, 60).

[206] D. Scharstein and R. Szeliski. “High-Accuracy Stereo Depth Maps Using Struc-

tured Light”. In: Proceedings IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2003 (cit. on p. 54).

[207] S. Schulter, C. Leistner, and H. Bischof. “Fast and Accurate Image Upscaling with

Super-Resolution Forests”. In: Proceedings IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2015 (cit. on pp. 55, 58).

[208] S. Schulter, C. Leistner, P. Wohlhart, P. M. Roth, and H. Bischof. “Alternating

Regression Forests for Object Detection and Pose Estimation”. In: Proceedings of

the IEEE International Conference on Computer Vision (ICCV). 2013 (cit. on

pp. 2, 131).

[209] S. Schuon, C. Theobalt, J. Davis, and S. Thrun. “High-quality scanning using time-

of-flight depth superresolution”. In: Proceedings IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) Workshops. 2008 (cit. on p. 58).

[210] S. Schuon, C. Theobalt, J. Davis, and S. Thrun. “Lidarboost: Depth superresolution

for tof 3d shape scanning”. In: Proceedings IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2009 (cit. on p. 58).

[211] A. G. Schwing and R. Urtasun. “Fully Connected Deep Structured Networks”. In:

arXiv preprint arXiv:1503.02351. 2015 (cit. on p. 60).

[212] A. Sharma, O. Grau, and M. Fritz. “VConv-DAE: Deep Volumetric Shape Learning

Without Object Labels”. In: Proceedings of the European Conference on Computer

Vision (ECCV) Workshops. 2016 (cit. on pp. 108, 147).

194

[213] E. Shechtman, Y. Caspi, and M. Irani. “Space-Time Super-Resolution”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI) 27.4 (2005),

pp. 531–545 (cit. on p. 56).

[214] X. Shen, C. Zhou, and J. Jia. “Mutual-Structure for Joint Filtering”. In: Proceedings

of the IEEE International Conference on Computer Vision (ICCV). 2015 (cit. on

pp. 59, 84, 86, 100).

[215] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and

Z. Wang. “Real-Time Single Image and Video Super-Resolution Using an Efficient

Sub-Pixel Convolutional Neural Network”. In: Proceedings IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 2016 (cit. on pp. 4, 58, 72).

[216] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook,

and R. Moore. “Real-time Human Pose Recognition in Parts from Single Depth Im-

ages”. In: Proceedings IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). 2011 (cit. on p. 54).

[217] A. Shpunt and Z. Zalevsky. Depth-varying light fields for three dimensional sensing.

US Patent 8,050,461. 2011 (cit. on p. 54).

[218] J. Sietsma and R. J. Dow. “Creating artificial neural networks that generalize”. In:

Neural Networks 4.1 (1991), pp. 67–79 (cit. on p. 50).

[219] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. “Indoor Segmentation and Sup-

port Inference from RGBD Images”. In: Proceedings of the European Conference

on Computer Vision (ECCV). 2012 (cit. on p. 61).

[220] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for

Large-Scale Image Recognition”. In: Proceedings of the International Conference

on Learning Representations (ICLR). 2015 (cit. on pp. 2, 103, 113, 117).

[221] S. Song and J. Xiao. “Deep Sliding Shapes for Amodal 3D Object Detection in

RGB-D Images”. In: Proceedings IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR). 2016 (cit. on p. 108).

[222] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser. “Semantic

Scene Completion from a Single Depth Image”. In: Proceedings IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 2017 (cit. on p. 112).

[223] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In: Journal

of Machine Learning Research (JMLR) 15.1 (2014), pp. 1929–1958 (cit. on p. 50).

[224] F. Steinbrucker, C. Kerl, and D. Cremers. “Large-Scale Multi-resolution Surface

Reconstruction from RGB-D Sequences”. In: Proceedings of the IEEE International

Conference on Computer Vision (ICCV). 2013 (cit. on pp. 105, 111, 139).

BIBLIOGRAPHY 195

[225] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. “Multi-View Convolutional

Neural Networks For 3D Shape Recognition”. In: Proceedings of the IEEE Inter-

national Conference on Computer Vision (ICCV). 2015 (cit. on p. 107).

[226] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. “On the importance of

initialization and momentum in deep learning”. In: Proceedings of the International

Conference on Machine learning (ICML). 2013 (cit. on p. 40).

[227] I. Sutskever, O. Vinyals, and Q. Le. “Sequence to Sequence Learning with Neural

Networks”. In: Advances in Neural Information Processing Systems (NIPS). 2014,

pp. 3104–3112 (cit. on pp. 1, 37).

[228] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.

Vanhoucke, and A. Rabinovich. “Going Deeper with Convolutions”. In: Proceedings

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015 (cit.

on pp. 2, 103, 113, 117).

[229] D. J. Tan, F. Tombari, and N. Navab. “Real-Time Accurate 3D Head Tracking and

Pose Estimation with Consumer RGB-D Cameras”. In: International Journal of

Computer Vision (IJCV) 121.1 (2017), pp. 1–26 (cit. on pp. 2, 131).

[230] D. Tang, H. J. Chang, A. Tejani, and T.-K. Kim. “Latent Regression Forest: Struc-

tured Estimation of 3D Articulated Hand Posture”. In: Proceedings IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR). 2014 (cit. on pp. 2,

54).

[231] M. F. Tappen. “Utilizing Variational Optimization to Learn Markov Random

Fields”. In: Proceedings IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2007 (cit. on p. 61).

[232] M. F. Tappen, B. C. Russell, and W. T. Freeman. “Exploiting the Sparse Deriva-

tive Prior for Super-Resolution and Image Demosaicing”. In: IEEE Workshop on

Statistical and Computational Theories of Vision. 2003 (cit. on pp. 55, 57).

[233] M. Tatarchenko, A. Dosovitskiy, and T. Brox. “Multi-view 3D Models from Single

Images with a Convolutional Network”. In: Proceedings of the European Conference

on Computer Vision (ECCV). 2016 (cit. on p. 112).

[234] M. Tatarchenko, A. Dosovitskiy, and T. Brox. “Octree Generating Networks: Ef-

ficient Convolutional Architectures for High-resolution 3D Outputs”. In: arXiv

preprint arXiv:1703.09438 (2017) (cit. on p. 112).

[235] A. Tejani, D. Tang, R. Kouskouridas, and T.-K. Kim. “Latent-Class Hough Forests

for 3D Object Detection and Pose Estimation”. In: Proceedings of the European

Conference on Computer Vision (ECCV). 2014 (cit. on p. 128).

[236] M. Teschner, B. Heidelberger, M. Müller, D. Pomerantes, and M. H. Gross. “Opti-

mized Spatial Hashing for Collision Detection of Deformable Objects”. In: Vision

Modeling and Visualization. Vol. 3. 2003, pp. 47–54 (cit. on p. 110).

196

[237] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running

average of its recent magnitude. 2012 (cit. on p. 41).

[238] A. N. Tikhonov and V. I. Arsenin. Solutions to Ill-Posed Problems. Winston Wash-

ington, 1977 (cit. on p. 25).

[239] R. Timofte, V. D. Smet, and L. V. Gool. “A+: Adjusted Anchored Neighborhood

Regression for Fast Super-Resolution”. In: Proceedings of the Asian Conference on

Computer Vision (ACCV). 2014 (cit. on pp. 55, 58).

[240] R. Timofte, V. D. Smet, and L. V. Gool. “Anchored Neighborhood Regression for

Fast Example-Based Super-Resolution”. In: Proceedings of the IEEE International

Conference on Computer Vision (ICCV). 2013 (cit. on pp. 55, 57, 80–84).

[241] J. T. Todd and J. F. Norman. “The Visual Perception of 3D Shape from Multiple

Cues: Are Observers Capable of Perceiving Metric Structure?” In: Perception &

Psychophysics 65.1 (2003), pp. 31–47 (cit. on p. 1).

[242] C. Tomasi and R. Manduchi. “Bilateral Filtering for Gray and Color Images.” In:

Proceedings of the IEEE International Conference on Computer Vision (ICCV).

1998 (cit. on p. 59).

[243] J. Tompson, A. Jain, Y. LeCun, and C. Bregler. “Joint Training of a Convolutional

Network and a Graphical Model for Human Pose Estimation”. In: Advances in

Neural Information Processing Systems (NIPS). 2014 (cit. on pp. 2, 54, 60).

[244] J. Tompson, M. Stein, Y. Lecun, and K. Perlin. “Real-Time Continuous Pose Re-

covery of Human Hands Using Convolutional Networks”. In: ACM Transactions on

Graphics (SIGGRAPH) 33.5 (2014), p. 169 (cit. on pp. 2, 54).

[245] A. Torralba and A. Oliva. “Statistics of natural image categories”. In: Network:

computation in neural systems 14.3 (2003), pp. 391–412 (cit. on p. 25).

[246] J. Tropp and A. Gilbert. “Signal Recovery From Random Measurements Via Or-

thogonal Matching Pursuit”. In: IEEE Transactions on Information Theory 53.12

(2007), pp. 4655–4666 (cit. on p. 57).

[247] S. Tulsiani, T. Zhou, A. A. Efros, and J. Malik. “Multi-view Supervision for Single-

view Reconstruction via Differentiable Ray Consistency”. In: Proceedings IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 2017 (cit. on

p. 112).

[248] A. O. Ulusoy, M. J. Black, and A. Geiger. “Patches, Planes and Probabilities: A

Non-Local Prior for Volumetric 3D Reconstruction”. In: Proceedings IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR). 2016 (cit. on p. 111).

[249] A. O. Ulusoy, A. Geiger, and M. J. Black. “Towards Probabilistic Volumetric Re-

construction using Ray Potentials”. In: Proceedings of the International Conference

on 3D Vision (3DV). 2015 (cit. on pp. 111, 114).

BIBLIOGRAPHY 197

[250] M. Unger, T. Pock, M. Werlberger, and H. Bischof. “A Convex Approach for Vari-

ational Super-Resolution”. In: Proceedings of the German Conference on Pattern

Recognition (GCPR). 2010 (cit. on pp. 55, 57, 80–84).

[251] V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995 (cit. on p. 34).

[252] V. Vapnik and A. Chervonenkis. On the Uniform Convergence of Relative Frequen-

cies of Events to Their Probabilities. 1971 (cit. on p. 34).

[253] V. Vapnik and S. Kotz. Estimation of Dependences Based on Empirical Data.

Vol. 40. Springer, 1982 (cit. on p. 34).

[254] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong. “O-CNN: Octree-based

Convolutional Neural Networks for 3D Shape Analysis”. In: ACM Transactions on

Graphics (SIGGRAPH) 36.4 (2017), p. 72 (cit. on pp. 109, 110).

[255] M. Werlberger, T. Pock, and H. Bischof. “Motion Estimation with Non-Local Total

Variation Regularization”. In: Proceedings IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2010 (cit. on p. 67).

[256] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. McDonald.

“Kintinuous: Spatially Extended KinectFusion”. In: Proceedings Robotics: Science

and Systems (RSS) Workshops. 2012 (cit. on pp. 105, 110, 147).

[257] P. Wohlhart and V. Lepetit. “Learning Descriptors for Object Recognition and

3D Pose Estimation”. In: Proceedings IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 2015 (cit. on p. 128).

[258] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Torralba, and W. T.

Freeman. “Single Image 3D Interpreter Network”. In: Proceedings of the European

Conference on Computer Vision (ECCV). 2016 (cit. on p. 112).

[259] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. “3D ShapeNets:

A Deep Representation for Volumetric Shapes”. In: Proceedings IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 2015 (cit. on pp. 4, 69, 104,

105, 107, 123, 127, 129, 141).

[260] J. Xie, R. Girshick, and A. Farhadi. “Deep3D: Fully Automatic 2D-to-3D Video

Conversion with Deep Convolutional Neural Networks”. In: Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV). 2016 (cit. on p. 112).

[261] D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe. “Multi-Scale Continuous CRFs

as Sequential Deep Networks for Monocular Depth Estimation”. In: Proceedings

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017 (cit.

on p. 60).

[262] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee. “Perspective Transformer Nets:

Learning Single-View 3D Object Reconstruction without 3D Supervision”. In: Ad-

vances in Neural Information Processing Systems (NIPS). 2016 (cit. on p. 112).

198

[263] J. Yang, J. Wright, Y. Ma, and T. Huang. “Image Super-Resolution as Sparse Rep-

resentation of Raw Image Patches”. In: Proceedings IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 2007 (cit. on p. 57).

[264] J. Yang, X. Ye, K. Li, C. Hou, and Y. Wang. “Color-Guided Depth Recovery From

RGB-D Data Using an Adaptive Autoregressive Model”. In: IEEE Transactions on

Image Processing (TIP) 23.8 (2014), 3443–3458 (cit. on pp. 59, 85–96, 100, 101).

[265] Q. Yang. “Stereo Matching Using Tree Filtering”. In: IEEE Transactions on Pat-

tern Analysis and Machine Intelligence (PAMI) 37.4 (2015), 834–846 (cit. on pp. 85,

86, 100).

[266] Q. Yang, R. Yang, J. Davis, and D. Nistér. “Spatial-Depth Super Resolution for

Range Images”. In: Proceedings IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2007 (cit. on pp. 55, 59, 84, 86–92, 100).

[267] F. Yu and V. Koltun. “Multi-Scale Context Aggregation by Dilated Convolu-

tions”. In: Proceedings of the International Conference on Learning Representations

(ICLR). 2016 (cit. on pp. 2, 103).

[268] C. Zach, T. Pock, and H. Bischof. “A Globally Optimal Algorithm for Robust TV-

L1 Range Image Integration”. In: Proceedings of the IEEE International Conference

on Computer Vision (ICCV). 2007 (cit. on pp. 106, 111, 140, 142–146, 148–153).

[269] J. Zbontar and Y. LeCun. “Stereo Matching by Training a Convolutional Neural

Network to Compare Image Patches”. In: Journal of Machine Learning Research

(JMLR) 17.65 (2016), pp. 1–32 (cit. on p. 60).

[270] R. Zeyde, M. Elad, and M. Protter. “On Single Image Scale-Up Using Sparse-

Representations”. In: Curves and Surfaces. 2010 (cit. on pp. 57, 80, 84).

[271] Q. Zhang, L. Xu, and J. Jia. “100+ Times Faster Weighted Median Filter (WMF)”.

In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2014 (cit. on pp. 86, 100).

[272] B. Zheng, Y. Zhao, J. C. Yu, K. Ikeuchi, and S.-C. Zhu. “Beyond Point Clouds:

Scene Understanding by Reasoning Geometry and Physics”. In: Proceedings IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 2013 (cit. on

pp. 111, 154–156).

[273] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang,

and P. Torr. “Conditional Random Fields as Recurrent Neural Networks”. In: Pro-

ceedings of the IEEE International Conference on Computer Vision (ICCV). 2015

(cit. on p. 60).

[274] Q.-Y. Zhou, S. Miller, and V. Koltun. “Elastic Fragments for Dense Scene Re-

construction”. In: Proceedings of the IEEE International Conference on Computer

Vision (ICCV). 2013 (cit. on p. 111).

	Abstract
	Kurzfassung
	Affidavit
	Acknowledgments
	Introduction
	Motivation
	Outline and Contributions

	Convex Optimization in Imaging and Deep Learning
	Notation and Definitions
	Convex Optimization
	Convex Analysis
	Convex Optimization Algorithms
	Convex Optimization for Imaging

	Deep Learning
	Supervised Learning
	Feed-Forward Networks
	Network Optimization
	Backpropagation
	Convolutional Networks
	Losses and Regularization

	Summary

	Deep Learning for 2.5D
	Introduction
	Related Work
	Deep Learning Meets Variational Methods
	Evaluation
	Summary & Discussion

	Deep Learning for 3D
	Introduction
	Related Work
	Deep Learning for High-Resolution 3D
	Evaluation
	Summary & Discussion

	Conclusion and Outlook
	Conclusion
	Outlook

	List of Publications
	Proofs
	Bibliography

