
Dissertation

Building Bridges Between Formal
Verification and Testing with
Automatic Test Generation

Franz Röck1

Institute for Applied Information Processing and
Communications (IAIK)

Graz University of Technology
A-8010 Graz, Austria

Supervisor/First reviewer: Prof. Roderick Bloem

Second reviewer: Prof. Georg Weissenbacher

Graz, February 2018

1 E-mail: roeck.f@gmx.at

c© Copyright 2018 by the author

ii

iii

Dissertation

Brücken Bauen zwischen Formaler
Verifikation und Testen mittels

Automatischer Test Generierung

Franz Röck1

Institut für Angewandte Informationsverarbeitung und
Kommunikationstechnologie (IAIK)

Technische Universität Graz
A-8010 Graz, Österreich

Betreuer/1. Gutachter: Prof. Roderick Bloem

2. Gutachter: Prof. Georg Weissenbacher

Graz, Februar 2018

Diese Arbeit ist in englischer Sprache verfasst.

1 E-Mail: roeck.f@gmx.at

c© Copyright 2018, Franz Röck

iv

v

Abstract

The development process of software usually starts with a big document
describing the requirements of the intended product. From this text, which
is given in natural language, developers derive the implementation. When
formal verification is desired, then it often evolves in a parallel branch in a
different domain (formal methods) that aims to prove that the product will
satisfy the requirements. Testers, who complement formal methods experts,
usually derive their tests from the requirements given in natural language
and, thus, do not benefit from the work of this formal branch.

In this thesis we take advantage of the work by formal experts to support
the testers. We provide approaches that allow a tester, who is not necessarily
an expert in formal methods, to make use of the formalized requirements
and formal models and automatically derive tests that can be applied on
the real implementation.

We present a technique to generate test cases to test complex Boolean
formulas representing for example access policies. We’ve developed a tool
that takes the formula and the desired coverage criterion as an input and
calculates variable assignments that test the implementation of the formula.
In a case study on the Java Card applet firewall of an industrial implemen-
tation we then evaluate our approach.

We’ve developed another approach that derives test strategies for a given
temporal specification to detect specific faults. This approach does not rely
on any implementation details and strategies can, thus, be applied to dif-
ferent implementations of the same specification. We evaluate the approach
on the AMBA bus arbiter and apply it in a case study on the fault detec-
tion isolation and recovery (FDIR) component of a satellite that is currently
under development.

Finally, we present a semantics for linear temporal logics (LTL) that al-
lows the user to evaluate LTL properties, which are defined on infinite paths,
on finite execution traces which is crucial in testing as all tests are finite.
We present an evaluation method that maps inconclusive traces with respect
to previously observed behavior, i.e., successful satisfactions of violations,
to presumably truth values to support the tester when evaluating many
traces. We show that this approach computes also for non-monitorable LTL
properties results that match the human intuition.

Keywords: Automatic Test Case Generation, System Testing, Test Strate-
gies, Runtime Verification, LTL.

vi

vii

Kurzfassung

Die Entwicklung von Software startet gewöhnlich mit einem Dokument,
welches die Anforderungen an das geplante Produkt enthält. Von diesem
Text, der in natürlicher Sprache verfasst ist, leiten die Entwickler in mehreren
Schritten die Implementierung ab. Wenn formale Verifikation verlangt wird,
dann erfolgt diese zu meist in einem parallelen Prozess, jedoch in einer an-
deren Domäne (Formale Methoden). Das Ziel der formalen Verifikation ist
es zu beweisen, dass das Produkt die Anforderungen erfüllt. Tester hingegen
leiten für gewöhnlich die Tests von den - in natürlicher Sprache gegebenen -
Anforderungen ab und profitieren daher nicht von der Arbeit der formalen
Experten.

In dieser Arbeit entwickeln wir Ansätze, welche es den Testern, die nicht
notwendigerweise Experten in formalen Methoden sind, erlauben, sich die
formalisierten Anforderungen und formalen Modelle zu Nutze zu machen.

Wir präsentieren eine Technik um Testfälle für komplexe (boolsche)
Formeln zu generieren. Wir haben ein Tool entwickelt, welches die Formel
und das gewünschte Coverage Kriterium als Input nimmt und entsprechend
die Variablenwerte berechnet. An einem industriellen Fallbeispiel, der Java
Card applet firewall, evaluieren wir unseren Ansatz.

Wir haben einen weiteren Ansatz entwickelt, der Teststrategien für eine
gegebene temporale Spezifikation ableitet um spezifizierte Fehler zu finden.
Dieser Ansatz benötigt keine implementierungsspezifischen Details. Die
Strategien können daher für jede Implementierung der gegebenen Spezifika-
tion verwendet werden. Wir evaluieren den Ansatz am AMBA bus arbiter
und verwenden das Tool zum Testen einer realen Komponente eines Satel-
liten der sich in Entwicklung befindet.

Schlussendlich präsentieren wir eine Semantik für Lineare Temporale
Logik (LTL), die es dem Nutzer und der Nutzerin erlaubt LTL Eigen-
schaften, die auf unendlichen Pfaden definiert sind, auf endlichen Traces zu
evaluieren. Die Evaluierungsmethode bewertet Traces anhand dem bisher
beobachteten Verhalten, d.h., hat die Erfüllung einer Eigenschaft schon ein-
mal länger gedauert, dann ist das ein gutes Zeichen und die Eigenschaft wird
vermutlich erfüllt werden. Wir zeigen, dass dieser Ansatz auch für nicht
beobachtbare LTL Eigenschaften Ergebnisse liefert, die der menschlichen
Intuition entsprechen.

Schlagworte: Automatische Testfall Generierung, System Testen, Laufzeit
Verifikation, LTL.

viii

ix

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

. .
place, date (signature)

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

. .
Ort, Datum (Unterschrift)

x

xi

Acknowledgements

I want to thank everyone who supported me in my studies and this thesis,
either directly or indirectly.

In particular, I want to thank my parents Franz and Maria, who made
this path in my life possible and who are always here for me. Thank you
for always believing in me and thank you for your support and all the small
things that are overlooked so easily but that are yet so important, such as
some encouraging words whenever necessary. Mum and Dad, I love you. ,

Next, I thank my beloved wife Hannah, who is always on my side. Thank
you for your understanding whenever my thoughts went back to topics of
this work, although it was our leisure time and we were having a walk in
the park. Thank you for always believing in me and thank you for all your
support, also in times where I had doubts on ever finishing this thesis and
thank you for all the small things that made every day so much easier for
me. Hannah, I love you always and forever. ,

Special thanks also goes to my supervisor Roderick, who supported me
with his experience and expertise and who always helped me to stay focused
and not drift away from the main research. Thank you for your crucial
questions that allowed me to investigate things from different perspectives
and, thus, gain new insights. ,

Finally, I thank my brothers Oliver and Dominik, as well as all my friends
and colleagues, who also shared their precious time with me and supported
me, even if it was just a coffee talk that helped me to free my mind. ,

This research has been financially supported by the European Commis-
sion through the project IMMORTAL (644905) and by the Austrian Science
Fund (FWF) through the project NewP@ss (835917).

Franz Röck
Graz, Austria, February 2018

xii

xiii

Danksagung

Ich bedanke mich bei allen Menschen die mich direkt oder auch indirekt
bei der Erstellung dieser Arbeit unterstützt haben.

Im speziellen danke ich meinen Eltern Franz und Maria, die mir diesen
Weg in meinem Leben ermöglicht haben und immer für mich da sind. Danke,
dass ihr immer an mich glaubt und danke für eure Unterstützung, den
Rückhalt und alle die kleinen Dinge die so leicht übersehen werden und
die doch so wichtig sind, wie etwa ein paar aufmunternde Worte wenn es
gerade notwendig ist. Mama und Papa, ich hab euch lieb. ,

Dann danke ich meiner geliebten Frau Hannah, die immer für mich da ist.
Danke für dein Verständnis wenn ich in der Freizeit, etwa bei Spaziergängen,
mit meinen Gedanken zu Themen dieser Arbeit abgeschweift bin. Danke,
dass du immer an mich glaubst und danke für all deine Unterstützung, etwa
wenn ich manchmal an der Fertigstellung dieser Arbeit gezweifelt habe, und
danke für all die vielen Dinge die mir jeden Tag erleichtert haben. Hannah,
ich liebe dich. ,

Ein besonderer Dank gilt auch meinem Betreuer Roderick, der mich mit
seiner Erfahrung und Expertise unterstützt und mich immer wieder in die
richtige Richtung gelenkt hat, wenn ich Gefahr lief zu weit vom Forschungs-
thema abzukommen. Danke für deine oftmals kritischen Fragen, die es mir
ermöglicht haben all die Dinge aus verschiedensten Perspektiven zu betra-
chten und dadurch neue Erkenntnisse zu gewinnen. ,

Schlussendlich danke ich meinen Brüdern Oliver und Dominik, sowie all
meinen Freunden, Bekannten und Kollegen, die mir ebenfalls wertvolle Zeit
ihres Lebens geschenkt und mich unterstützt haben, und sei es nur durch
einen Kaffeetratsch, der mir half, meinen Kopf wieder frei zu bekommen. ,

Diese Arbeit wurde von der Europäische Kommission durch das Pro-
jekt IMMORTAL (644905) sowie vom Österreichischen Wissenschaftsfonds
(FWF) durch das Projekt NewP@ss (835917) finanziell unterstützt.

Franz Röck
Graz, Österreich, Februar 2018

xiv

Contents

Contents xv

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Boolean Formulas . 3

1.2 Implementation Independent Tests 6

1.3 Runtime Verification Approach 9

1.4 Thesis Statement . 11

1.5 List of Publications . 12

1.6 Structure of the Thesis . 14

2 Background 15

2.1 Terminology . 15

2.2 Logics . 17

2.2.1 Propositional Logic . 17

2.2.2 Linear Temporal Logic 18

2.2.3 Safety and Liveness 19

2.2.4 Automata . 20

2.2.5 Model Checking . 21

2.2.6 Reactive Synthesis . 22

2.3 Testing . 23

2.3.1 Equivalence Classes 24

2.3.2 Boundary Value Testing 24

2.4 Quality of a Test Suite . 26

2.4.1 Control Flow Criteria 26

2.4.2 Mutation Testing . 28

xv

xvi CONTENTS

3 Test Case Generation for a Formula 31
3.1 Test Purpose - Motivation . 32
3.2 Test Case Generation . 33
3.3 Experimental Results . 35

3.3.1 Formal Models . 35
3.3.2 Java Card Applet Firewall 41
3.3.3 Secure Cache . 44

4 Test Case Generation from LTL 47
4.1 Test Purpose - Motivation . 48
4.2 Test Case Generation . 52

4.2.1 Coverage Objective . 52
4.2.2 Fault Model . 60
4.2.3 Test Strategy Computation 61
4.2.4 Extensions and Variants 63

4.3 Experimental Results . 67
4.3.1 Formal Specifications 68
4.3.2 Test Strategy Generation 72
4.3.3 Evaluation of the Test Strategies 74

5 Finite LTL Interpretation 87
5.1 Motivation . 88
5.2 Counting Semantics for LTL 89

5.2.1 Definitions . 89
5.2.2 Counting Semantics 90
5.2.3 Evaluation . 96

5.3 Examples . 101

6 Conclusion and Outlook 111
6.1 Summary and Conclusion . 111

6.1.1 Boolean Formulas . 112
6.1.2 Implementation Independent Tests 112
6.1.3 Runtime Verification Approach 113

6.2 Future Work . 113

Bibliography 115

List of Figures

1.1 Bridging the gap. 4

1.2 From the formal model to a test verdict. 4

2.1 Visual representation of the equivalence classes of Equation 2.3. 24

2.2 Visual representation of the boundary values of Example 2. . 25

3.1 The Java Card Runtime Environment. 36

3.2 Simplified version of the NuSMV model for the cache control
logic to access a block. 40

3.3 Additional coverage on previously from the JCTCK uncov-
ered code achieved by our test suite. 42

4.1 Our testing setup. 48

4.2 Traffic light example. 49

4.3 Test strategy τ1 that forces p to be true at least once. 51

4.4 Test strategy τ2 that forces p to be true again and again. . . . 51

4.5 Strategy τ3. 52

4.6 Strategy τ4. 52

4.7 Coverage goal illustration. 53

4.8 Strategy τ3. 55

4.9 Test strategy T6 and a faulty system implementation of the
specification ϕ = G((i↔ X(¬i))→ X(o)). 65

4.10 Test strategy T7 on the left, T8 in the middle and T9 on the
right. 66

4.11 An overview of how the FDIR component is integrated in the
satellite. 70

4.12 Test strategy that forces satmodesafe to true. 75

4.13 Execution trace of a faulty system under the strategy that
tests for a stuck-at-0 fault of signal safemode. Bold signals
are controlled by the strategy. 76

xvii

xviii LIST OF FIGURES

5.1 Strategy that tests for a stuck-at-0 fault in any system that

implements the property G
(
r → Fg

)
. 88

5.2 Lattice for (s,f) with φ and i < |π| fixed. 100

List of Tables

1.1 Executions of two different systems that have to implement
GFp. 9

2.1 Boundary value tests for a ≤ x1 ≤ b. 25

3.1 Instrumentations and achieved coverage 42

3.2 Conditions which were not fully covered 44

3.3 Code Coverage. 45

4.1 Assumptions of the AMBA Specification. 68

4.2 Guarantees of the AMBA Specification. 80

4.3 Assumptions of the PIN Specification. 80

4.4 Guarantees of the PIN Specification. 81

4.5 Descriptions of the input signals of the FDIR component. . . 81

4.6 Descriptions of the output signals of the FDIR component. . 81

4.7 Temporal specification of system-level FDIR component in
LTL. 82

4.8 Results for the AMBA bus arbiter. The suffix “k” multiplies
by 103. 83

4.9 Results for the door specification. 83

4.10 Results for the FDIR specification with max. 4 strategies.
The suffix “k” multiplies by 103. 84

4.11 Testing mutated AMBA implementations. 84

4.12 Mutation coverage by fault models and signals when execut-
ing all four derived strategies. 84

4.13 Code coverage. 85

5.1 Observed traces π1 and π2 for G
(
r → Fg

)
. 89

5.2 Request/Acknowledge motivating example with π1, where EOT
indicates the end of the trace, i.e., i > |π| 92

xix

xx LIST OF TABLES

5.3 Request/Acknowledge motivating example with π1. 99
5.4 Making a system “more true”. 102
5.5 Evaluation of FXg. 103
5.6 Evaluation of GXg. 103
5.7 Trace π2 from the motivation. 104
5.8 Need for prediction of individual subformulas. 104
5.9 Trace of a system claiming to implement G(¬r1∨Fg1)∧G(¬r2∨

Fg2). 105
5.10 Evaluation of G((Xa)UXXb). 106
5.11 Traces of two systems that claim to implement FGa ∨ FG¬a. . 106
5.12 Evaluation of G(Fa ∨ Fb). 107
5.13 Evaluation of GFa ∨ GFb. 108
5.14 Trace where evaluations differ for semantically equivalent spec-

ifications. 108

Chapter 1

Introduction

There are these two young fish
swimming along and they
happen to meet an older fish
swimming the other way, who
nods at them and says
“Morning, boys. How’s the
water?” And the two young fish
swim on for a bit, and then
eventually one of them looks
over at the other and goes
“What the hell is water?”

David Foster Wallace

High quality is very important for products on the market. As perfect
software is the ideal, testing [97, 80] plays an important role. In combination
with formal verification it can prove correctness [54, 59] and it can also
illustrate that the product is faulty with a single run. So we need to find
good tests. The art of testing is, therefore, asking the right questions, i.e.,
due to the infinite number of possible test cases, the challenge is to derive
those that will discover the flaws in the system.

Software development starts with requirements from which a specifica-
tion document on how to meet these requirements, is generated. From this
specification, the system is developed and formal verification, if desired [100],
evolves in parallel. While verification of the (real) system is achieved by test-
ing, formal verification is achieved by logical proofs [2, 41, 69]. These proofs
may consist of a formal model derived from the system specification and log-
ical properties derived from given requirements. The formal model is model

1

2 CHAPTER 1. INTRODUCTION

checked to verify if the desired properties hold on it. This proves that the
existing formal model satisfies the given requirements. However, it is the
(formal) model that satisfies the given requirements and no verdict is given
on the real system.

To use the already existing (formal) models and properties for test case
generation seems obvious. Moreover, this establishes a link between the
formal verification branch and the implementation branch (see Figure 1.1)
that complement each other [59].

In [96], Tretmans defines model based testing as a testing approach that
derives the test cases from an (abstract) model of desired behavior of the
SUT. Since modelling during the development process of the system is often
part of the design phase, attention on model based testing increased as well.
If the model is a valid representation of the intended system, i.e., expresses
exactly the expected behavior of the intended SUT, then the generated tests
are also valid, i.e., the verdicts on the conclusion of the test can be given.
This is the necessary assumption on which model based testing is built.

Model based testing not only provides the possibility to generate an
arbitrary number of test cases from the model, it also introduces a more
structured way to the test case generation process. Methods that cover or
explore the model to a certain extent can be automated and those automatic
methods allow to produce complex test cases a human tester might never
have come up with. Moreover, the model works as a test oracle [59] which
is not always easy to come up with [11].

Another advantage of model based testing is that it complements for-
mal verification goals. While formal verification focuses on proving that the
model of the system satisfies desired properties, model based testing focuses
on checking if the real system conforms to the (formal) model. Models that
are verified using formal methods are either an abstraction of the real sys-
tem, or an isolated component. When using these models for system testing,
not only the the isolated component, which may have been verified, is eval-
uated, but the full composition of the real system and its environment are
involved as every part may affect the execution of the test. Considering
different platforms on which, and different environments in which, the de-
veloped system gets executed goes far beyond the possibilities of what can
be formally verified.

And as testing is not only interesting on the real system but also in
requirements engineering [55], a formalization of the requirements and the
application of testing tools can help to idenify flaws already in the design
phase.

However, test case generation from formal descriptions requires people

1.1. BOOLEAN FORMULAS 3

trained in formal methods and testing. A specification provided in tempo-
ral logic considers infinite paths while an execution on the System Under
Test (SUT) usually terminates at some point. The resulting trace is, there-
fore, finite and a verdict has to be given on whether this finite trace satisfies
the specification that is defined on infinite paths or not [45]. Some ap-
proaches put special attention on the end of the trace that is reflected in the
specification [16] or restrict themselves to observable sentences [53].

Providing tools that automate the generation of test cases and the oracle
shifts the need of people trained in both disciplines to the development
phase of the tool. Once the tool is developed and accepted, the number of
people familiar with both disciplines is reduced. The main challenge is what
techniques to use to derive test cases and oracles from the models.

In this thesis we focus on extending the rich set of model based testing
techniques [44]. We focus on propositional formulas that are too large to be
tested combinatorial and too complex for a human. We research a technique
to derive a test suite from temporal logic properties only, such that the re-
sulting test suite can be applied to any system claiming to implement these
properties. Finally, we propose a runtime verification approach that evalu-
ates the resulting finite trace under a given specification in Linear Temporal
Logic (LTL).

We visualize in Figure 1.2 how our tools can be integrated in a chain
to get from a formal model to a test verdict. Using our proposed test case
generation tools a tester can simply take the temporal logic specification
of the system under development to derive a good test suite and can use
our runtime verification method as a test oracle to evaluate the resulting
traces of the system under test. The tester does not need to be an expert in
formal methods anymore but can still benefit from the advantages of formal
methods such as unambiguous formal specifications of the desired system
behavior.

1.1 Boolean Formulas

The models generated in a company during certification processes can be
related to security parts of the SUT and specify for example an access policy.
Such a policy can be a complex Boolean formula that expresses under which
conditions access is allowed or denied. But the policy can as well be a
number of events that has to happen in a defined order before a certain
event is allowed. It is of big interest to test if the individual transitions and
access rules are implemented as modeled (and verified). To achieve this,

4 CHAPTER 1. INTRODUCTION

Institute for Applied Information Processing and Communications (IAIK) - Secure & Correct Systems

1

Automatic Test Case Generation

Program
Specification

(Formal) Model Implementation

Test Suite

Text

Figure 1.1: Bridging the gap.

Formal System
Model

Test Suite

Our Test
Generator

System
Under Test

Test Traces

Our Evaluation
Method

Test
Verdict

Figure 1.2: From the formal model to a test verdict.

1.1. BOOLEAN FORMULAS 5

tests need to check if the single parts of a transition guard are implemented
and influence the result in the correct way. As these models are verified
using a model checker, test case generation using model checker and SAT
solver is investigated.

A common approach to generate test cases from a (formal) model is to
generate counterexamples using a model checker. A counterexample is a
concrete trace through the model. This counterexample is then translated
to a concrete test by extracting the inputs and mapping them to inputs of
the SUT. Moreover, the trace is as well a test oracle. Outputs extracted
from the trace are compared to mapped outputs of the SUT to decide if the
concrete test case passed or failed. Tools such as CBMC [40], LLBMC [47],
BLAST [22] and Java Pathfinder [56] are only a few of the available software
model checking engines.

The idea of generating test cases based on formal specifications was
already presented in [19]. Since then, a lot of research has been done in
this field [85, 83, 51, 98].

The closest related work we are aware of regarding our test case gener-
ation approach is presented in [83]. The authors compute test cases achiev-
ing Modified Condition Decision Coverage (MCDC) on a specification by
walking through the parse trees of the decisions. Depending on the logical
operator they decide what the expression of the subtree should evaluate to.
In contrast, our method does not stop at the Boolean level but also pro-
duces values for non-Boolean variables appearing in the decisions, and can
handle complex dependencies between the idividual parts of the decision.
Coverage criteria focusing on graphical representations of a model as well
as on transition guards are presented by Ammann et al. in [9].

In [99] the authors define structural coverage metrics for high-level soft-
ware requirements expressed in LTL. The goal is to exercise the behavior
of a system available only as a blackbox. As LTL formulas specify behavior
of infinite traces, they discuss structural coverage criteria on these LTL for-
mulas and how they can be adapted to be measured using finite test cases.
Finally, they also apply it on a realistic example.

Fraser et al. present a survey of the principles of model-based testing
using model checkers [51]. They show that a model checker can be used to
generate counterexamples which are translated to test cases. To generate
the counterexamples, trap properties are constructed, such as presented in
an approach by Beyer et al. in [21]. The resulting test suites meet specified
coverage criteria on the model.

A method by Fraser and Ammann [49] ensures that properties are not
vacuously satisfied and that faults propagate to observable property viola-

6 CHAPTER 1. INTRODUCTION

tions (using finite-trace semantics for LTL).

FShell [60] follows this idea using its own query language FQL for speci-
fying which parts of the source code the user wants to cover. The underlying
model checker CBMC [40] is used to build a formal representation of the
program. Claiming then that the goals specified via FQL cannot be reached,
counterexamples are constructed which satisfy the specified coverage goals.
This approach is systematic and target oriented, but can be very resource
demanding, because the model checkers operate on a formal representation
of the entire program under test. Also, this approach does not benefit from
existing test cases – a scenario which is more common than creating all test
cases from scratch. Our test suite augmentation approach in [24] aims at
eliminating these shortcomings.

A criterion that tests the influence of every individual condition is the
MCDC criterion presented by Chilenski and Miller in [35]. It is required
by the US Federal Aviation Administration for safety critical software in
aircrafts [92], and also used in other domains like automotive. While gen-
erating test suites that satisfy this criterion manually is possible, it soon
becomes difficult with increasing size of the formula and coupled conditions.
In our work we formalize the MCDC criterion based on informal [35, 34] and
semi-formal [8] definitions. Then we automatically generate a test suite that
aims for achieving full MCDC coverage on a propositional formula provided
by the user. To evaluate our approach, we model the Java Card applet fire-
wall requirements [84] and derive a test suite for the guard that represents
the access policy. We then execute the resulting test suite on a Java Card
implementation and achieve a code coverage of 89%. We evaluate the out-
comes of the individual tests and are able to detect an inconsistency of the
specification and the implementation.

1.2 Implementation Independent Tests

Often requirements exist without concrete implementations, like for example
protocol or system standards. Sometimes reference implementations exist
that can be used as a golden reference but they may still contain yet unde-
tected flaws. While providing explicit input data with expected output data
is a way to provide tests, this may not work if there is some implementation
freedom that requires the test to react to system specific behavior. Adaptive
test strategies are capable of dealing with that and adjust their test behavior
to the concrete implementation according to the specification.

To aim for specified faults is the main objective of fault based testing

1.2. IMPLEMENTATION INDEPENDENT TESTS 7

techniques like mutation testing [65]. Simple faults are introduced into a
system implementation or an existing model, then tests are derived that are
capable of detecting those introduced faults. Based on two hypotheses, the
Coupling Effect [43, 82] and the Competent Programmer Hypothesis [43,
1], the resulting test suite is then also considered to be able to reveal other
faults. The Coupling Effect hypothesis states that tests that can detect
simple faults are also sensitive to more complex faults and the Competent
Programmer Hypothesis states that systems are usually close to a correct
version.

Our approach is also a fault based approach and relies on these two
hypotheses. While most of the existing work focuses on permanent faults and
deterministic system descriptions with unambiguous behavior, we consider
transient faults occurring with different frequencies and our approach can
uncover faults in every implementation of a given LTL specification (and all
behaviors of the uncontrollable part of the system’s environment).

To achieve the goal of triggering such a (transient) fault in place of im-
plementation freedom and uncontrollable as well as unspecified parts of the
system and the environment, the tests may have to react to observed be-
havior at runtime and adjust their behavior. Hierons [58] has studied such
adaptive test cases from a theoretical perspective, relying on fairness as-
sumptions (every non-deterministic behavior is exhibited when trying often
enough) or probabilities. Petrenko et al. compute adaptive tests for trace
inclusion [87, 88, 89] or equivalence [86, 75, 89] from a specification given
as non-deterministic finite state machine (FSM), also relying on fairness
assumptions.

In our method we do not make such assumptions but consider the SUT
to be fully antagonistic. Aichernig et al. [3] present a method to compute
adaptive tests from (non-deterministic) UML state machines. Starting from
an initial state, a trace to a goal state, the state that shall be covered
by the resulting test case, is searched for every possible system behavior,
issuing inconclusive verdicts only if the goal state is not reachable any more.
In contrast, our approach uses reactive synthesis to enforce reaching the
desired goal for all implementations if this is possible.

Considering the reactive system to behave antagonistic results in a two
player game. Yannakakis points this out in [101], the tester provides inputs
with the objective of revealing faults, whereas the SUT provides outputs
with the objective of hiding the faults. The tester can only observe outputs
and has thus partial information about the SUT. The goal is to find a
strategy for the tester that wins against every SUT implementing a given
specification. The underlying complexities are studied by Alur et al. in [6].

8 CHAPTER 1. INTRODUCTION

Our work builds upon reactive synthesis [91] (with partial information [72]),
which can also be seen as a game. However, we go far beyond this idea, as
we combine the game concept with user-defined fault models. We work out
the underlying theory, optimize the faults sensitivity with respect to their
frequency, and present a proof-of-concept tool and experimental results for
LTL specifications. Nachmanson et al. [81] also synthesize game strategies as
tests for non-deterministic software models, but their approach is not fault-
based and focuses on simple reachability goals. A variant considers the SUT
to behave probabilistically with known probabilities [81]. This model is also
used in [23]. Test strategies for reachability goals are also considered by
David et al. [42] for timed automata.

Another work that is close to our work is vacuity detection. [17, 73, 10]
aim at finding cases where the given specification is trivially satisfied (e.g.,
because the left side of an implication is false). A good test avoids vacuities
in order to challenge the SUT. The method by Beer et al. [17] can produce
witnesses that satisfy the specification non-vacuously, which can serve as
tests. Tan et al. proposed in [94] a framework for testing LTL properties
using the vacuity check [18]. They introduce the property-coverage criterion
to generate tests from mutated LTL formulas. Their focus is on generating
non-trivial test cases that enable testing the LTL formula on the real system.

Our approach avoids vacuities by requiring that certain faulty SUTs
violate the specification. Ammann et al. [7] create tests from CTL [38]
specifications using model mutations. This method as well as the previous
ones all assume that a deterministic system model is available in addition
to the specification.

Fraser and Wotawa [50] also consider non-deterministic models, but issue
inconclusive verdicts if the system deviates from the behavior foreseen in the
test case. In contrast, when we derive tests with our approach in Chapter 4,
we search for test strategies that achieve their goal for every realization of
the specification.

Boroday et al. [33] aim for a similar guarantee (calling it strong test
cases) using a model checker, but do not consider adaptive test cases, and
use an FSM as a specification.

In this work, we make an assumed fault in the system under test observ-
able. The system claims that it satisfies the requirements and, therefore, has
to behave accordingly. Our goal is to force the SUT, from which we assume
that it is almost correct and contains only faults we have specified, to violate
the requirements assuming the fault is present in the system. To achieve
this, we make use of reactive synthesis and generate a strategy for the envi-
ronment that chooses the inputs to the SUT based on the observed outputs,

1.3. RUNTIME VERIFICATION APPROACH 9

Table 1.1: Executions of two different systems that have to implement GFp.

trace 1 2 3 4 5 6 7 8 9 10 11

π1 p − > − > − > − > − > −

π2 p − > − > − − − − − − −

such that it forces the SUT to violate the specification if the assumed fault
is present. We evaluate our approach on the AMBA protocol [26] and ap-
ply the derived test strategies on a concrete AMBA implementation. The
strategies are able to not only trigger permanent faults but also transient
faults by forcing the system into the assumed fault if it is present in the
system. We then apply our approach in a real world case study on the fault
detection isolation and recovery component of a satellite.

1.3 Runtime Verification Approach

Whenever tests are derived from a specification, an oracle is necessary that
checks whether the resulting finite trace satisfies or violates the specifica-
tion. However, if the specification is provided in LTL, such as we assume
in this thesis, we face the challenge of evaluating a finite trace on proper-
ties that are defined on infinite paths. Runtime verification is a lightweight
method to check whether the execution of a system satisfies (or violates)
given requirements. Properties like “In five steps A has to hold” are easy to
monitor, because after five time steps either a satisfaction or a violation of A
can be observed. For a property like “Always eventually p has to hold”, this
is not possible. Because there always exists a continuation that can satisfy
the property and there also always exists a continuation that can violate
the property. Such properties are simply called non-monitorable. However,
there exists work on semantics for interpreting finite traces.

In Table 1.1 we have two traces (of two different systems) that claim
to implement the property “Always eventually p has to hold”. Manually
analyzing trace π1 gives confidence that the system that produced this trace
implements the required property, because p = > can be observed at every
even time step. In contrasts, looking at trace π2 immediately raises concerns
whether the system that produced this trace implemented the property cor-
rect, because there is a long suffix with p being false. We use these two
traces to highlight the problem with exists finite semantics.

In FLTL [76], the focus is on how to understand X(φ). According to

10 CHAPTER 1. INTRODUCTION

the definition of the next operator in LTL the next state must satisfy the
property φ. Unfortunately, hitting the end of a finite trace would face the
problem that there is no next state anymore. The idea of Manna and Pnueli
is to understand the next operator as a strong next operator, i.e., there has
to exist a next state that satisfies φ, and in addition add a dual operator,
the weak next X operator. This operator requires that only if there is a next
state, then this state has to satisfy the property φ, otherwise it evaluates to
true.

A drawback of this proposal is that it requires a rewriting of the spec-
ification to decide when a next state shall be considered strong and when
it shall be considered weak. And whatever we decide for our example, for
both the strong and the weak next operator the verdicts of the traces will
not differ from each other for the chosen operator, because they only con-
sider the end of the trace and evaluate it with respect to the chosen operator
strength.

Eisner et. al. [46] get around the requirement of rewriting the specifica-
tion by proposing a weak and a strong view on LTL instead of introducing
an additional operator. In the weak view (LTL–) every formula is satisfied
by the empty word. In the strong view (LTL+) the empty word does not
satisfy any formula.

Still, this semantics faces the same problem as the FLTL semantics. Both
traces π1 and π2 result in the same outcome when evaluated under the same
view.

The authors of [15] approach the problem of finite interpretation for LTL
semantics by introducing a three valued semantics. A trace evaluates to >
if it is a good prefix, i.e., for every possible continuation of this trace the
property evaluates to true, it evaluates to ⊥ if it is a bad prefix, i.e., for
every possible continuation the property evaluates to false, and it evaluates
to ? otherwise.

The problem with this semantics is that the inconclusive evaluation dom-
inates. Also in our example both traces are evaluated to ?, because there
always exists a continuation that can satisfy or violate the property.

To refine this inconclusive evaluation, the authors present RV-LTL [16].
This approach combines LTL3 and FLTL. The resulting semantics is based
on the definition of LTL3, with the inconclusive value ? being replaced with
>P , respectively ⊥P , if the trace evaluates to true, respectively false, in
FLTL.

Still, this improvement cannot distinguish our two traces.
In [78] the authors highlight cases in which RV-LTL would judge a finite

trace to evaluate to presumably false although one would expect that a

1.4. THESIS STATEMENT 11

continuation of the trace would satisfy the property. One such example is
the property G(r1 → Fg1) ∧ G(r2 → Fg2) with alternating requests, i.e., r1
being high at even time steps and r2 being high at odd time steps, and
every request being granted in the next time step. The authors propose a
more detailed refinement for inconclusive traces based on the type of the
LTL property. They define for each κ ∈ {G,F, Prefix,FG,GF, Streett} a
specialized semantics.

Focusing on different classes of temporal logic results in different num-
bers of truth values for the respective semantics of the class. However,
introducing this additional distinctions can still not distinguish between our
two given traces, as the approach does also not take observed behavior into
account.

All those proposals only focus on the definition of LTL for finite traces.
In our proposal we assume that one observes a trace of a finite system
that exibits all the good and bad behavior. Our semantics also takes the
observed behavior of the system into account when predicting whether an
inconclusive trace of this system satisfies or violates a given LTL property.
We introduce a distance metric that measures the distance to the satisfaction
of the property and another distance that measures the distance to the
violation of the property. Based on the collected information we then make
predictions on suffixes of the trace that are yet inconclusive. We consider a
suffix that is shorter than or equal to the longest sequence it took to satisfy
the property to be good, and we consider a suffix that is shorter than or
equal to the longest sequence that has violated the property to be bad.

1.4 Thesis Statement

This thesis focuses on automatic test case generation by taking advantage of
formal methods. We present an approach to derive tests that investigate in-
dividual conditions in a (complex) boolean formula of a system model. Then
we present an approach to derive adaptive test strategies that are implemen-
tation independent and make a specified fault observable by a specification
violation. To conclude whether the system that executes the derived test
strategies satisfies the temporal logic specification, we provide a method that
automatically evaluates a finite trace with respect to a given LTL specifica-
tion.

12 CHAPTER 1. INTRODUCTION

1.5 List of Publications

This thesis is build on the following work:

VALID’13
[27]

In this paper we present an automatic test case genera-
tion technique for complex boolean formulas. We imple-
mented our approach using an SMT-solver to generate a
test suit which achieves MCDC on the formula to cover.
Together with Robert Könighofer and Roderick Bloem I
formalized the MCDC coverage criterion. I implemented
the tool and did the experiments. Under supervision of
Karin Greimel at NXP I modeled the Java Card applet
firewall used for the case study. The paper was mainly
written by me and Robert Könighofer. Karin Greimel
contributed the Section about certification and Roder-
ick Bloem proofread the paper. I presented the paper at
VALID in Venice in 2013.

TAP’15
[25]

This paper presents a case study on automatic test case
generation for a secure cache implementation. I devel-
oped the formal model of the Secure Block Device. The
implementation and testing was done by Richard Schumi
in the course of his Master’s Thesis under my supervi-
sion. I wrote the paper to which Daniel Hein contributed
text in the part of the Secure Cache details in the case
study section. The paper was proofread by Daniel Hein
and Roderick Bloem. I presented the paper at TAP in
L’Aquila in 2015.

FMCAD’16
[29]

In this paper we present an approach to synthesize
adaptive test strategies from temporal logic specifica-
tions. The test strategies are implementation indepen-
dent and aim to reveal a given fault or class of faults.
I worked out the idea together with Roderick Bloem,
Robert Könighofer and Ingo Pill. Together with Robert
Könighofer I worked on the theoretical proofs. I also con-
tributed the optimization for special fault classes. I im-
plemented the approach and evaluated it on AMBA that
I’ve translated into LTL specification. I have written the
paper together with Robert Könighofer. Roderick Bloem
and Ingo Pill have proofread it. I presented the paper at
FMCAD in Mountain View in 2016.

1.5. LIST OF PUBLICATIONS 13

Journal
Submission
[28]

In this journal paper we extend our work published at
FMCAD. We enhance our tool with additional features
that compute multiple strategies searching for faults that
produce the same failure as specified in the fault model.
And we generalize computed strategies to provide addi-
tional information to the tester. Together with the Ger-
man Aerospace Center (DLR) we formalize requirements
for a fault detection isolation and recovery unit of a satel-
lite and apply and evaluate our testing approach in this
real life scenario. I worked out the enhancements to-
gether with Roderick Bloem and I implemented them.
I modeled the specification for the new case study and
evaluated it together with the people from DLR. I have
written the paper together with Heinz Riener.

Conference
Submission
[14]

In this work we propose a counting semantics for LTL
that allows to evaluate LTL properties on finite traces.
We first compute for every position of the trace the wit-
ness count for satisfaction and the witness count for vi-
olation. Based on the computed numbers we predict
whether the the respective trace satisfies, violates, pre-
sumably satisfies or presumably violates the property or
whether the outcome is yet inconclusive. I worked out
the core elements of this approach together with Roder-
ick Bloem, I implemented the approach and I was one of
the main authors when writing the paper.

Other publications:
QSIC’14
[24]

In this paper we present an approach for automatic test
suite augmentation. The implementation takes an exist-
ing test suite, evaluates the code coverage and generates
new test cases entering previously uncovered code. I de-
signed the idea together with Michael Tautschnig as an
enhancement for FShell. I implemented this enhance-
ment with Michael Tautschnig and evaluated it on the
Java Card applet firewall. I wrote most of the sections in
the paper. Robert Könighofer and Roderick Bloem con-
tributed ideas and proofread the paper. I presented the
paper at QSIC in Dallas in 2014.

FDL’16 [4] This is a joint paper of the IMMORTAL project group.
I’ve provided the section on deriving adaptive test strate-
gies from LTL specifications.

14 CHAPTER 1. INTRODUCTION

FDL Jour-
nal [52]

The FDL paper got extended to become a chapter in
Languages, Design Methods, and Tools for Elec-
tronic System Design.

1.6 Structure of the Thesis

The rest of the thesis is structured as follows. In Chapter 2 we introduce
the terminology necessary for this thesis and give some background. This
includes informal descriptions of terms and definitions from the field of test-
ing as well as formal definitions from the field of formal methods. In the
next three chapters we then present our contributions.

Chapter 3 presents our work of automatically generating test cases for
boolean formulas on transition guards in a formal model. We first motivate
the test purpose in Section 3.1 and present in Section 3.2 our test case gen-
eration approach. Then we present the formal models of our cases studies,
the Java Card applet firewall and the Secure Block device, and evaluate our
method in Section 3.3.

In Chapter 4 we present our work on synthesizing adaptive test strategies
from temporal logic specification. Section 4.1 motivates the test purpose.
We present our approach in Section 4.2. Then we give the formal specifica-
tions of the toy example and the two case studies we use for the evaluation
of our approach, the ARM AMBA bus arbiter and the FDIR component of
the Eu:CROPIS satellite, and evaluate our approach in Section 4.3.

In Chapter 5 we present our method to evaluate a finite trace with
respect to a given LTL specification. We motivate our method in Section 5.1,
before we present in Section 5.2 the counting semantics we’ve developed to
derive more detailed information on the (expected) outcome of the trace. In
Section 5.3 we evaluate our method on examples.

Finally, we conclude the thesis and present suggestions for future work
in Chapter 6.

Chapter 2

Background

The most dangerous thing about
an academic education is that it
enables my tendency to
over-intellectualize stuff, to get
lost in abstract thinking instead
of simply paying attention to
whats going on in front of me.

David Foster Wallace

In this chapter we present background knowledge and terminology used
in this thesis.

2.1 Terminology

We specify the following terms:

Black-box Testing. In ISO 29119 [62] specification-based testing,
which is defined to also be called black-box testing, is a test approach where
the knowledge for the generation of the tests “is the external inputs and
outputs of the test item”.

Dynamic Testing. ISO 29119 [62] defines dynamic testing to be “test-
ing that requires the execution of the test item”.

Error. According to IEEE 1044 [30], an error is “a human action that
produces an incorrect result”. In [67] the author also mentions mistake to
be a good synonym for an error.

Fault. According to IEEE 1044 [30], a fault is “a manifestation of an
error in software”. If the error is detected prior to the execution it is called a

15

16 CHAPTER 2. BACKGROUND

defect. In [67] the author also defines a fault as “[. . .] the representation of
an error, where representation is the mode of expression, such as narrative
text, data flow, diagrams, hierarchy charts, source code, and so on”. The
author also further distinguishes between (a) faults of omission and (b)
faults of commission. The former defines a fault where we fail to enter
correct information, i.e., something is missing but should be present, and
the latter defines a fault where we enter something into the representation
that is incorrect.

Failure. In IEEE 1044 [30], a failure is also defined as an event in which
a function does not stay within specified limits. Hence, a fault has to be
executed to result in a failure.

Online Testing. In model based testing, online testing is an approach
in which the testing tool is connected directly to the SUT and tests it dy-
namically, i.e., it can react to the behavior of the SUT and generate inputs
on the fly.

Offline Testing. The test suite is created before the tests are executed
on the SUT.

System Under Test (SUT). Whenever the test item is the system,
we call the test item SUT.

Testing. The goal of testing is to discover faults and demonstrate a cor-
rect execution [67]. In ISO 29119 [62] testing is defined to be the “[. . .] set
of activities conducted to facilitate discovery and/or evaluation of properties
of one or more test items”. It is the investigation of the SUT to collect in-
formation. So every action that aims for collecting information on the SUT
is essentially a test.

Test Adapter. A test adapter is an interface to the SUT that is capable
of executing the test cases and evaluating the results.

Test Case. Both ISO 29119 [62] and [67] define a test case to consist
of preconditions, inputs and expected results with the goal of meeting the
desired test objectives. The expected results include outputs as well as
postconditions that have to hold.

Test Item. In ISO 29119 [62] a test item is the item that is the “object
of testing”.

Test Oracle. A test oracle determines the correct outputs of the SUT
based on inputs.

Test Suite. Is a test set that contains according to ISO 29119 [62] “one
or more test cases with a common constraint on their execution”.

White-box Testing. In ISO 29119 [62] structure-based testing, which
is defined to also be called white-box testing, is a dynamic testing approach
where the tests are derived from the internal structures of the test item.

2.2. LOGICS 17

Another term that is often used is glass box testing.

2.2 Logics

While natural language is often ambiguous, we use formal languages to
express the intentions. Propositional logic forms the fundamental concept,
as it allows the user to rigorously define ones intentions in a formal way. In
Section 2.2.1 we introduce the operators for propositional logic that we will
need for the definition of the temporal logic LTL, a logic that is capable of
specifying propositional behavior over time, in Section 2.2.2. In Section 2.2.3
we then define safety and liveness, the two possible aspects of an arbitrary
LTL formula.

A specification of a system as well as a strategy for testing can be ex-
pressed as an automaton. Thus, we define automata in Section 2.2.4. In
Section 2.2.5 we present model checking and in Section 2.2.6 we present
reactive synthesis that we use for our test strategy generation approach.

2.2.1 Propositional Logic

In propositional logic [61], we express atomic sentences that can either be
true or false using distinct symbols such as p or q. To define a composition
over those atomic sentences we use the following operators:

¬ : The negation of an atomic sentence p is denoted by ¬p. It
expresses the negation of the atomic sentence.

∨ : A composition of two atomic sentences p and q using the or
operator expresses that at least one of the two statements is
true.

Those two operators are enough to express all kinds of compositions, but
for better readability there exist abbreviations:

∧ : A composition of two atomic sentences p and q using the and
operator expresses that both statements are true. p∧q is the
abbreviation for ¬(¬p ∨ ¬q).

→: A composition of two atomic sentences p and q using the
implication operator expresses that if the left side is true,
then the right side is true as well. p→ q is the abbreviation
for ¬p ∨ q.

↔: A composition of two atomic sentences p and q using the
equivalence operator expresses that both sentences have the
same evaluation. p↔ q is the abbreviation for (p→ q)∧(q →
p).

18 CHAPTER 2. BACKGROUND

2.2.2 Linear Temporal Logic

We use Linear Temporal Logic (LTL) [90] as the specification language for
reactive systems. It combines propositional operators (¬,∨) and temporal
operators (X,U).

The syntax of LTL is defined as follows: Every input of the input set
I or output of the output set O with p ∈ (I ∪ O) is an LTL formula. The
alphabet is Σ = 2I∪O and the set of infinite words over Σ is denoted by Σω.
We also refer to words as (execution) traces. If ϕ1 and ϕ2 are LTL formulas,
then ¬ϕ1, ϕ1∨ϕ2, Xϕ1 and ϕ1Uϕ2 are LTL formulas as well. For an infinite
trace σ = σ0σ1 . . . ∈ Σω that satisfies LTL formula ϕ we write σ |= ϕ. An
LTL formula ϕ over an infinite trace σ is interpreted over the two valued
truth domain B2 = {>,⊥}. We can now inductively define:

• σ |= p iff p ∈ σ0,

• σ |= ¬ϕ iff σ 6|= ϕ,

• σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2,

• σ |= Xϕ iff σ1σ2 . . . |= ϕ, and

• σ |= ϕ1Uϕ2 iff ∃j ≥ 0 . σjσj+1 . . . |= ϕ2 ∧ ∀0 ≤ k < j . σkσk+1 . . . |= ϕ1.

In natural language, Xϕ requires ϕ to hold in the next time step and
ϕ1Uϕ2 requires ϕ1 to hold in every time step until ϕ2 holds eventually. In
addition LTL also defines Fφ to be the abbreviation for trueUφ and defines
Gφ to be the abbreviation for ¬F¬φ.

We extend the definition of traces and also include finite traces. The set
of finite words over Σ is denoted by Σ∗. A (finite or infinite) trace π is a
sequence π1, π2, . . . ∈ Σ∗ ∪Σω. We denote by |π| ∈ N ∪ {∞} the length of π
and we denote by π · π′ the concatenation of π ∈ Σ∗ and π′ ∈ Σ∗ ∪ Σω.

As the next operator in standard LTL only allows to explicitly refer to
the next time step in the future, we abbreviate a formula of nested next
operators that refers to a finite point in the future.

Definition 1 (Nested Next Operators). Let φ be an LTL formula. Then
we abbreviate n ∈ N>0 nested next operators as follows:

Xnφ ⇐⇒ X1X2 . . .Xnφ.

We now restrict LTL to a fragment with the explicit F operator that
we add to the syntax. We provide a 3-valued semantics for this fragment,
denoted by µπ(φ, i) where i ∈ N>0 indicates a position in or outside the

2.2. LOGICS 19

trace. We assume the order ⊥ <? < >, and extend the Boolean operations
to the 3-valued domain with the rules ¬3> = ⊥, ¬3⊥ = > and ¬3? =? and
φ1 ∨3 φ2 = max(φ1, φ2). We define the semantics inductively as follows:

µπ(p, i) =

> if i ≤ |π| and p ∈ πi,
⊥ else if i ≤ |π| and p 6∈ πi,
? otherwise,

µπ(¬φ, i) = ¬3µπ(φ, i),
µπ(φ1 ∨ φ2, i) = µπ(φ1, i) ∨3 µπ(φ2, i),
µπ(Xφ, i) = µπ(φ, i+ 1),

µπ(Fφ, i) =

{
µπ(φ, i) ∨3 µπ(XFφ, i) if i ≤ |π|,
µπ(φ, i) if i > |π|,

µπ(φ1Uφ2, i) =

{
µπ(φ2, i) ∨3 (µπ(φ1, i) ∧3 µπ(X(φ1Uφ2), i)) if i ≤ |π|,
µπ(φ2, i) if i > |π|.

We are aware that this semantics cannot semantically characterize tau-
tologies and contradiction. Evaluating the p∨¬p results in ?, although this
property is semantically equivalent to >. We decided for this definition as it
allows us to evaluate a finite trace in polynomial time. Otherwise we would
require a PSPACE-complete algorithm.

In the following lemma, we relate this restricted 3-valued semantics to
the standard definition of LTL:

Lemma 2. Given an LTL formula and a trace π ∈ Σ∗ with |π| > 0, we
have that

µπ(φ, 1) = > ⇒ ∀υ ∈ Σω . π · υ |= φ,
µπ(φ, 1) = ⊥ ⇒ ∀υ ∈ Σω . π · υ 6|= φ.

Proof. The proof of these two statements is obtained by induction on the
structure of the LTL formula.

2.2.3 Safety and Liveness

Alpern and Schneider present in [5] that every property is an intersection of
a liveness property and a safety property.

Let iυ denote the finite prefix of the infinite word υ up to the ith position.
A property P is a safety property iff

∀υ.υ ∈ Σω.υ 6|= P =⇒ ∃i.i ≥ 0.(∀ω.ω ∈ Σω.iυ · ω 6|= P) (2.1)

20 CHAPTER 2. BACKGROUND

Less formal we say that every safety property has a bad prefix. In other
words, a safety property can always be violated in finite time.

And a property P is a liveness property iff

∀ν.ν ∈ Σ∗.(∃ω.ω ∈ Σω.ν · ω |= P) (2.2)

Less formal we say that there always exists a continuation that can satisfy
a liveness property. Thus, a liveness property can never be violated in finite
time.

2.2.4 Automata

The tester who’s part of the environment, as well as the reactive system
that is tested, can both be represented as automata. Thus, we specify
automata [95].

Let Σ∗ denote the set of finite words over the finite alphabet Σ and let
Σω denote the set of infinite words over Σ. Let υ and ν be finite words,
then we write υ · ν to denote the concatenation of those two words. For the
concatenation of a finite word υ and an infinite word ω, the resulting word
υ · ω is also an infinite word.

Finite State Machine.

A non-deterministic finite automaton (NFA) is defined as a quintuple
(Q,Σ,∆, q0, F) where

• Q is a finite, non-empty set of states,

• Σ is the input alphabet consisting of a finite, non-empty set of symbols,

• ∆ is a transition function Q× Σ→ P (Q),

• q0 ∈ Q is the initial state,

• and F is the set of final (accepting) states, which is a subset of Q.

Let α = α(0)α(1)α(2) . . . α(i) denote a word over Σ with α(i) ∈ Σ for
all i ∈ N.

A run on an NFA is a sequence of states s = s0s1s2...si with si ∈ Q,
s0 = q0 and (si, α(i), si+1) ∈ ∆ for all i ≥ 0. The automaton accepts a word
υ iff for the last state sn ∈ F holds. We denote the language L(M) as the
set of strings that is accepted by M.

A deterministic finite automaton (DFA) requires that each transition is
unique in its combination of source state and input symbol.

2.2. LOGICS 21

Mealy machines. A Mealy machine is a tuple S = (Q, q0,ΣI ,ΣO, δ, λ),
where Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q× ΣI → Q
is a total transition function that maps a state and an input to a state, and
λ : Q×ΣI → ΣO is a total output function that maps a state and an input
to an output. For an input trace σI = x0x1 . . . ∈ Σω

I , S produces the output
trace σO = S(σI) = λ(q0, x0)λ(q1, x1) . . . ∈ Σω

O, where qi+1 = δ(qi, xi) for all
i ≥ 0.

In every time step i, the Mealy machine S reads the input xi ∈ ΣI and
maps it together with the current state qi based on λ(qi, xi) to an output
letter yi ∈ ΣO. Then it updates its current state qi according to δ(qi, xi) to
the next state qi+1. A Mealy machine allows to model systems with inputs
and outputs evolving in discrete time steps.

Moore machines. The Moore machine is a special case of the Mealy
machine having ∀q ∈ Q .∀x, x′ ∈ ΣI . λ(q, x) = λ(q, x′). This states, that
the the input xi does not affect the current output in state qi as the out-
put function simplifies to λ(qi). It can, however, still affect the next state
qi+1 and, hence, the output of the next state. We write Moore(I,O) (resp.
Mealy(I,O)) for the set of all Moore (resp. Mealy) machines with inputs I
and outputs O.

Reactive Systems. A reactive system is a Mealy machine. We say a
system realizes a specification L ⊆ Σω if L(S) ⊆ L.

2.2.5 Model Checking

A model checker verifies if a given model satisfies a given specification. For-
mally, for a given model M and a given logical property φ it is checked if
M |= φ. The concept was first presented in [39]. If the model does not sat-
isfy the specification, a counterexample in form of concrete input values is
generated to illustrate a trace that violates the specification. One example
of a tool that performs model checking is NuSMV [37]. NuSMVs model-
ing language allows defining a finite state machine and properties that are
checked on the model can be specified using LTL.

In automatic test case generation model checkers are used to generate
a test by specifying a trap property. A trap property is a term that
specifies on purpose a logical property that is not satisfied by the model
and, therefore, results in a counterexample. The counterexample is a path
through the model that triggers the desired behavior and can be mapped to
a test case.

22 CHAPTER 2. BACKGROUND

2.2.6 Reactive Synthesis

In this thesis, we use reactive synthesis as a blackbox to automatically com-
pute test strategies from a specification provided in LTL.

The synthesis idea was first presented by Alonzo Church in [36]. The
goal of reactive synthesis is to automatically construct a reactive system
from a given formal specification [31]. Thus, one only has to provide a list
of formalized desired behaviors and the tool computes a model that satisfies
those properties.

The two main challenges in reactive synthesis of LTL-properties are that
it can become very time consuming as it is 2EXPTIME-complete and that
the classical approach is not compositional. These challenges are addressed
in three different ways [31]:

• Bounding the size of the desired systems,

• restricting LTL to a subset of its language and the use of specialized
algorithms,

• and aiming for partial synthesis which omits the need for complete
specifications.

The synthesis procedure requires as input the specification ϕ given in
LTL, the set I = {i1, . . . , im} of Boolean input signals and the set O =
{o1, . . . , on} of Boolean output signals.

A realization of the specification ϕ is a system with the finite set I of
Boolean input signals and the finite set O of Boolean output signals. The
input alphabet is ΣI = 2I , the output alphabet is ΣO = 2O, and the alphabet
of both is Σ = 2I∪O. The set of infinite words over Σ is denoted by Σω.

The synthesis procedure computes, based on the input parameter, either
a Moore machine M ∈ Moore(I,O) or a Mealy machine M ∈ Mealy(I,O)
that realizes ϕ. If no system exists that realizes ϕ, the procedure produces
the message unrealizable. We refer to this computation byM = synt(I,O, ϕ).

If not all signals are observable, then we require a synthesis procedure
with partial information. This synthesis procedure is defined similar to the
procedure with complete information that we have presented in the previous
paragraph. The difference is that it takes a subset I ′ ⊆ I of the input signals
as additional argument. It computes, again based on the input parameter,
a Moore, respectively Mealy, machine M′ = syntp(I,O, ϕ, I

′) with M′ ∈
Moore(I ′, O), respectively M′ ∈ Mealy(I ′, O), that realizes ϕ while only
observing the inputs I ′. Again, if no such Moore machine, respectively
Mealy machine, exists it produces the message unrealizable.

2.3. TESTING 23

We also assume that both synthesis procedures, synt and syntp, take
an additional optional parameter Θ, which denotes a set of Moore ma-
chines. The respective synthesis procedures compute Moore machinesM =
synt(I,O, ϕ,Θ) and M′ = syntp(I,O, ϕ, I

′,Θ) as before with the additional
constraint M,M′ 6∈ Θ.

We now distinguish a fault from a failure in a Mealy machine. A Mealy
machine S ∈ Mealy(I,O) is faulty with respect to a given LTL specification
ϕ iff S 6||= ϕ, i.e., ∃M ∈ Moore(O, I) . σ(M,S) 6|= ϕ. We call a deviation
between the faulty S and any correct realization S ′, i.e., S ′ ||=ϕ, a fault and
we call a trace σ(M,S) that reveals the faulty behavior of S, i.e., a trace
that violates the given LTL specification ϕ, a failure.

2.3 Testing

This Section gives a general overview on testing and its fundamental con-
cepts of test case identification. Testing can never be complete considering
all possible environments. It can, however, discover faults and demonstrate
a correct execution [67]. Thus, it is important to rely on hypotheses and
aim for a good choice of tests.

In [20], Bernot et al. present the need of test hypotheses and formalize
common test practices. In principle they state that if a tester decides on
a test suite T and all tests of this test suite pass when executed on the
SUT, then he or she assumes that the system is correct for all inputs. This
assumption is the result of many, most of the time implicit, assumptions of
the tester. The naive hypothesis of having a correct system does not require
any test, whereas having no hypotheses at all requires exhaustive testing.
Thus, testing is always a tradeoff between hypotheses put on the SUT and
the number of tests.

In Section 2.3.1 we present the concept of equivalence classes. This
concept is based on the hypothesis that the system (or the component under
test) behaves the same for all members of the same equivalence class. In
Section 2.3.2 we then present the concept of boundary value testing. This
is a technique where the tester goes for the extreme ends of the input values
as errors are expected to be more likely observed closer to boundaries. This
technique is linked to the equivalence classes in the sense that whenever the
tester has to pick elements from such classes he or she may go for values
around the boundaries of the respective equivalence class.

24 CHAPTER 2. BACKGROUND

x1

x2

[c

d]

[a b]

C1 C2 C3

C4 C5 C6

C7 C8 C9

Figure 2.1: Visual representation of the equivalence classes of Equation 2.3.

2.3.1 Equivalence Classes

In Equivalence class testing [67] inputs are grouped into sets and the tester
assumes that the SUT behaves identical for all members of the same set.
Hence, not every single input value has to be tested anymore, but only
elements of different equivalence classes. Example 1 illustrates this concept.

Example 1. Consider a function that takes two inputs {x1, x2} ∈ Z and
checks whether both input values are between defined bounds a, b, c, d ∈ Z:

a ≤ x1 ≤ b
c ≤ x2 ≤ d

(2.3)

In Figure 2.1 we have visualized the nine resulting equivalence classes for
Equation 2.3. Every member of equivalence class Ci is assumed to behave
the same way as all the other elements in Ci.

Additional Hypotheses have to be put on testing combinations of equiv-
alence classes. The tester has to decide if it is enough to test only one
element of every class or if it is necessary to test all possible combinations
of elements from (different) classes, or something between. The tester may
also merge several equivalence classes based on more hypotheses. In Ex-
ample 1 all classes but C5 may for example be merged into one equivalence
class assuming that the equivalence classes shall only reflect valid and invalid
inputs.

2.3.2 Boundary Value Testing

In boundary value testing [67], the tester assumes that errors are more likely
to be observed when the test data is close to the bounds. So the tester

2.3. TESTING 25

Table 2.1: Boundary value tests for a ≤ x1 ≤ b.
Test value

1 a+ a− ε ≤ x1 < a
2 a x1 = a
3 a− a < x1 ≤ a+ ε
4 b− b− ε ≤ x1 < b
5 b x1 = b
6 b+ b < x1 ≤ b+ ε

x1

a+

a

a− b−

b

b+

Figure 2.2: Visual representation of the boundary values of Example 2.

basically refines the equivalence classes. Whenever the tester has to pick an
element of an equivalence class, he or she may apply different policies for
choosing one or more values of the class. Such a selection can be a triplet
< b+, b, b− >, where b+ is a value that is close to the bound but outside
of the class, b is the value that is exactly the bound (within the class) and
b− is a value that is close to the bound and inside the class. The set can
also contain only the exact bound or additional values like values that are
further away from the bound. In Example 2 we illustrate this approach.

Example 2. Consider a function that takes one input {x1} ∈ Z and checks
if the input is between defined bounds a, b ∈ Z:

a ≤ x1 < b

The tester constructs the equivalence classes C1 = {x1 < a}, C2 = {a ≤
x1 < b} and C3 = {x1 ≥ b} and identifies the boundary between C1 and
C2 and the boundary between C2 and C3. The tester decides to generate a
triplet < x1

+, x1, x1
− > for these two boundaries. The resulting test classes

are presented in Table 2.1 and visualized in Figure 2.2.

26 CHAPTER 2. BACKGROUND

2.4 Quality of a Test Suite

The quality of a test suite is difficult to assess. The best test suite would de-
tect all errors. However, as the number of errors and their effect is unknown,
there is no way to derive a number for the progress of testing. To accom-
modate this shortage, measuring the achieved coverage on the source code
is a widely used technique. We present existing concepts in Section 2.4.1.
In Section 2.4.2 we present a different concept called mutation testing that
focuses on identifying which faults in the system the test suite can detect.

2.4.1 Control Flow Criteria

The coverage is measured by executing the test suite and measuring which
parts of the source code are executed.

Line coverage. This measure provides a percentage on the number of
lines that are executed by the test suite. Let linestotal be the total number
of lines in the source code and let linescov be the number of lines covered by
the test suite. Then line coverage is calculated as described in Equation 2.4.

line coverage =
linescov
linestotal

∗ 100 (2.4)

Unfortunately, the resulting percentage heavily depends on the coding
style. Imagine you concatenate several strings. If you do this with one line
per concatenation you have a different total number of lines, and thus a
different percentage of line coverage than concatenating all the strings in
one line. This criterion also gives no information on executed branches of
conditional statements.

Branch coverage. This measure tells the percentage of executed branches.
Let branchestotal be the number of all branches and let branchescov be the
number of branches entered by the test suite. Then branch coverage is
calculated as described in Equation 2.5.

branch coverage =
branchescov
branchestotal

∗ 100 (2.5)

Whenever an execution reaches a branching point, it evaluates a con-
ditional statement. The coverage of this branching condition can again be
subject of coverage analysis. There exists a number of coverage criteria that
differs in the requirement on how detailed the conditional statement itself is
tested.

2.4. QUALITY OF A TEST SUITE 27

Decision Coverage is the least detailed one. It requires the conditional
statement only to evaluate once to false and once to true. Let T be the test
suite and let d be the branching condition. Let f(d, t) with t ∈ T be the
evaluation of the branching condition d when executing test case t. Then
test suite T achieves full Decision Coverage on branching condition d iff

∃t ∈ T.f(d, t) ∧ ∃t′ ∈ T.¬f(d, t′) holds. (2.6)

This Coverage criterion only scratches the surface of the branching con-
dition as it does not trigger specific parts of the branching condition.

Condition Coverage requires every single Boolean condition within
the conditional statement to evaluate once to true and once to false. Let
T again be the test suite and let Cd be the set of all Boolean conditions in
branching condition d. Let f(c, t) with t ∈ T be the evaluation of condition
c when executing test case t. Then test suite T achieves full Condition
Coverage on branching condition d iff

∀c ∈ Cd.
(
∃t ∈ T.f(c, t) ∧ ∃t′ ∈ T.¬f(c, t′)

)
holds. (2.7)

Achieving full Condition Coverage is, unfortunately, sometimes also pos-
sible with only two test cases, one test case in which all conditions evaluate
to true and another one in which all evaluate to false. Due to short cir-
cuit evaluation, some parts of the conditional statement may still not be
triggered.

Multiple Condition Coverage (MCC) is a very detailed coverage
criterion. It requires all combinations of evaluations of all Boolean conditions
within the conditional statement to be covered, i.e., a conditional statement
consisting of n Boolean conditions requires a test suite consisting of 2n test
cases. So MCC may result in enormously large test suites. This includes
infeasible evaluations as well as evaluations that are indistinguishable due
to short circuit evaluation, e.g., two evaluations of a condition that does not
effect the outcome of the conditional statement due to the evaluations of
other conditions.

Modified Condition Decision Coverage (MCDC) is a code cover-
age criterion that keeps the test suite at a manageable size while still testing
a conditional statement in detail on the level of each boolean condition. It is
used in different domains and required by standards like the DO-178B [92],
the standard for safety critical software in aircrafts. The coverage goal ac-
cording to the Avionics Handbook [93] is that each condition must be shown
to independently affect the outcome of the decision and that the outcome of
a decision changes when one condition is changed at a time.

28 CHAPTER 2. BACKGROUND

In [68] the authors highlight the ambiguity of the textual description of
MCDC. The original textual definition makes no constraints on the outcome
of other boolean conditions in a decision while one condition has to take all
possible outcomes. This results in different interpretations. While [34] men-
tions three different variants, one is basically a combination of the other two,
which are masking MCDC and unique cause MCDC. The latter requires the
truth values of other conditions to be constant while one toggles between
true and false and the former allows them to change. Therefore, unique cause
MCDC is a stricter interpretation and masking MCDC is a weaker interpre-
tation. In the literature, the interpretation as used for masking MCDC is
also referred to as Correlated Active Clause Coverage by the authors in [8].
We formalize this criterion in Section 3.2.

Another issue that arises in MCDC is that conditions may not be inde-
pendent. One variable may be part of more than one condition and fixing
the truth value for one condition might determine the truth values of other
conditions as well. So there exist two cases: Either flipping the truth value
of one condition always flips the truth value for other conditions (see Exam-
ple 3), or there exist some variable assignments for which it is possible to
flip the truth value of one condition but not the other (see Example 4). The
former is called strongly coupled [35] and the latter is called weakly coupled.

Example 3. Consider two subformulas φ1 = (a > 5) and φ2 = (a ≤ 5). For
every possible assignment of variable a the truth value of φ2 is always the
opposite of φ1. Such coupled conditions are called strongly coupled.

Example 4. Consider two subformulas φ1 = (a > 5) and φ2 = (a < 9).
By choosing the assignment of variable a properly it is possible to switch
the truth value of φ1 without switching the truth value of φ2. We could for
example choose a = 4, which results in φ1 evaluate to false and φ2 evaluate
to true, and then a = 6, which makes φ1 evaluate to true while not changing
the evaluation of φ2.

2.4.2 Mutation Testing

A different approach to measure the quality of a test suite is mutation testing
as presented in [66]. Faults are inserted in the system on purpose. If the
test suite is capable of detecting the introduced fault this mutant is said to
be “killed”. It is measured how many of the mutants can be killed by the
test suite. The mutation score is a value in the range of zero to one. It is
calculated as described in Equation 2.8. The higher the mutation score, the

2.4. QUALITY OF A TEST SUITE 29

better the test suite. If all mutants are killed by the test suite the mutation
score becomes one.

MS =
number of killed mutants

number of total mutants
(2.8)

One drawback of this approach is that it requires to compile various
mutations of the original system and the execution of the whole test suite
on all mutated versions. Nevertheless, meaningful answers on what errors
the test suite is capable to discover can be given.

Another drawback is that a modification may not necessarily lead to a
different behavior. If the mutated system behaves equivalent to the original
one then the mutant is said to be an equivalent mutant. For the correct
calculation of the mutation score equivalent mutants have to be identified
and excluded. Unfortunately detecting an equivalent mutant is a difficult
problem by itself.

30 CHAPTER 2. BACKGROUND

Chapter 3

Test Case Generation for a
Boolean Formula

Everything in my own
immediate experience supports
my deep belief that I am the
absolute center of the universe,
the realest, most vivid and
important person in existence.

David Foster Wallace

This chapter is based on my already published work [27, 25]. References
to these papers are not made explicit.

In this chapter, we present our approach on how to automatically derive a
test suite that achieves MCDC on a (complex) Boolean formula with strong
coupling. To obtain concrete variable assignments we use a Satisfiability
Modulo Theories (SMT) solver. This allows the user to compute values for
potentially non-Boolean variables in the formula. Moreover, the solver can
handle complex interdependencies like “couplings”.

We first motivate the test purpose and present our test case generation
approach and a formalization of the coverage criterion MCDC. Then we
present the formalization of the Java Card applet firewall, a complex access
policy, and the Secure Block Device (SBD), a cache control logic without
complex guards, that we use to illustrate our approach for automatic test
case generation. Finally, we present the experimental results of our two
case studies. We derive a test suite from the complex transition guard that
describes the access policy of the Java Card applet firewall, evaluate our
test suite on a real industrial implementation and discuss the results. For

31

32 CHAPTER 3. TEST CASE GENERATION FOR A FORMULA

the case study of the SBD we use an automatic test case generation tool
that implements our approach to not only get a satisfying assignment for
a single guard, but to get a full input sequence. The test case generation
tool generates trap properties for a model checker to derive the test suite
satisfying graph coverage criteria like node coverage and edge coverage.

3.1 Test Purpose - Motivation

Models created during the design phase within the software development
process are a great source for automatic test case generation using model
based testing techniques. Is the model formally verified, the value of the
model increases as it is checked to be correct with respect to given require-
ments and there is a higher confidence when using it as a test oracle. If
the model contains transition guards with large Boolean formulas it may be
difficult to manually derive test cases that check the details of this formula.
Therefore, we focus on automatically deriving a test suite that tests such
guards in detail, i.e., the role of every individual term in the formula.

Imagine you have a policy that accepts everyone older than 21 with at
least 3 years experience or at least 4 special skills. In a more formal way we
can express this policy as follows:

((age > 21) ∧ ((exp ≥ 3) ∨ (skills ≥ 4)))

Now you want to test if the system executes every single Boolean con-
dition of the policy in a correct way. Test τ1 = (age, experience, skills) =
(19, 0, 0) may evaluate to false correctly, but you don’t know based on which
Boolean condition of the policy. To test for example only the age check
of the system, you have to provide a test that only fails the age check but
satisfies all other Boolean conditions. So test τ2 = (19, 4, 2) only evaluates
to false if the age check evaluates to false. Test τ3 = (22, 4, 2) checks if the
system accepts a correct age and not just always evaluates to false regardless
of the age.

The same holds for checks of the experience condition. For test τ4 =
(22, 4, 4) you don’t know if it passed because of the experience or because of
the skills, while we can use test τ3 again to also test the experience check.

Thus, to check the individual Boolean conditions of a large formula one
has to choose the variable assignment wisely.

3.2. TEST CASE GENERATION 33

3.2 Test Case Generation

To test a transition guard in detail, we’ve implemented a tool that takes
a boolean formula as an input and computes a test suite T that achieves
MCDC on it. Our tool supports both variants of MCDC, i.e., masking
MCDC and unique cause MCDC. Moreover, it also supports MCC.

The formula that shall be covered must be provided in SMT-LIB2 for-
mat [12]. The tool builds a parse tree of the formula and is then capable of
replacing single conditions, which are nodes in the parse tree, with either >
or ⊥. Applying this replacement we can construct, based on Equation 3.1,
queries for all conditions of the formula to compute the necessary variable
assignments using the SMT-solver Z3 [79] that satisfy the MCDC criterion.
For every query that is satisfiable our tool extracts the satisfying assignment
of the variables as a pair of test cases t and t′. Before appending the tests to
the test suite T the tool checks if one of these tests already exists, to avoid
duplicates.

Formalization of MCDC

In Chapter 2.4.1 we have already presented MCDC. In this section we now
present a formalization of the informal description.

First, let V = {v1, v2, . . .} be the set of variables of domain D occurring
in a decision ϕ and let ϕ be a Boolean formula composed of conditions that
are subformulas which evaluate to either true or false and do not contain a
Boolean operator. A test case is an assignment t : V → D of values to all
variables in V .

We write CoN(ϕ) = {c1, c2, . . .} for the set of all condition nodes in the
parse tree of decision ϕ, and ϕ[c|>], respectively ϕ[c|⊥], for the decision ϕ
with condition node c ∈ CoN(ϕ) replaced by >, respectively ⊥. To express
the truth value (> or ⊥) of decision ϕ or condition node c ∈ CoN(ϕ) under
assignment t, we write ϕ(t) or c(t). Let the set T = {t1, t2, . . .} be a test
suite containing all test cases.

We say that ci determines ϕ under t, written det(ci, ϕ, t), iff ϕ(t) 6=
ϕ[ci|¬ci(t)](t), i.e., negating the truth value of condition ci changes the truth
value of ϕ.

Test suite T achieves Masking Modified Condition Decision Coverage [34]
on decision ϕ (see Example 3.1) iff:

34 CHAPTER 3. TEST CASE GENERATION FOR A FORMULA

∃t, t′ ∈ T : ϕ(t) ∧ ¬ϕ(t′)

and

∀c ∈ CoN(ϕ) : ∃t, t′ ∈ T : c(t) ∧ ¬c(t′) ∧ det(c, ϕ, t) ∧ det(c, ϕ, t′)

(3.1)

The decision ϕ must evaluate to true and to false on some test. Also,
every condition node c must evaluate to true and to false while determining
the truth value of ϕ.

Example 5. Assume the Boolean formula ϕ = (a > 5)∧
(
(b > 4)∨(c < 9)

)
.

The set of condition nodes is CoN(ϕ) = {(a > 5), (b > 4), (c < 9)}. To
compute a test case t and a test case t′ for condition node (a > 5) we need
to compute variable assignments t = {a, b, c} and t′ = {a′, b′, c′} that satisfy
the following equation:

(a > 5) ∧ ¬(a′ > 5) ∧ det((a > 5), φ, t) ∧ det((a′ > 5), φ, t′)

For det((a > 5), φ, t) we have

(> ∧
(
(b > 4) ∨ (c < 9)

)
)↔ ¬((⊥ ∧

(
(b > 4) ∨ (c < 9)

)
))

and for det(¬(a′ > 5), φ, t′) we have

(⊥ ∧
(
(b′ > 4) ∨ (c′ < 9)

)
)↔ ¬((> ∧

(
(b′ > 4) ∨ (c′ < 9)

)
))

Passing the query to the SMT-solver may produce the following variable
assignments:

t = {a = 6, b = 5, c = 0} and t′ = {a′ = 5, b′ = 5, c′ = 9}.

While this definition of MCDC allows conditions to evaluate to different
truth values for t and t′ as long as they don’t change the evaluation of ϕ (as
also illustrated in Example 5), this is not allowed according to the stricter
interpretation of the MCDC description. We say that test suite T achieves
unique cause MCDC [34] on decision ϕ iff:

∃t, t′ ∈ T : ϕ(t) ∧ ¬ϕ(t′)

and

∀c ∈ CoN(ϕ) : ∃t, t′ ∈ T : c(t) ∧ ¬c(t′) ∧ det(c, ϕ, t) ∧ det(c, ϕ, t′)∧
∀c′ ∈ {CoN(ϕ)\c} : c′(t) = c′(t′)

(3.2)

Note that Equation 3.2 only differs from Equation 3.1 by having the
additional restriction ∀c′ ∈ {CoN(ϕ)\c} : c′(t) = c′(t′) that requires the

3.3. EXPERIMENTAL RESULTS 35

other condition nodes to evaluate to the same truth value under t and t′

(see Example 6).

Example 6. Assume again specification ϕ = (a > 5) ∧
(
(b > 4) ∨ (c < 9)

)
and compute again a test case t and a test case t′ for condition node (a > 5).
For unique cause MCDC we require in addition to masking MCDC that all
condition nodes c′ ∈ {CoN(ϕ)\c}, which are {(b > 4), (c < 9)}, satisfy
c′(t) = c′(t′), i.e., that they evaluate to the same truth value under assign-
ments t and t′. Thus, the SMT-solver may provide the following assignments:

t = {a = 6, b = 5, c = 0} and t′ = {a′ = 5, b′ = 5, c′ = 0}

3.3 Experimental Results

To evaluate our approach, we’ve applied our tool on the access policy of
the Java Card applet firewall that is a Boolean formula and expresses under
which conditions an access is allowed according to the specification. In a
next step we have executed the resulting test suite on a real Java Card applet
firewall implementation.

In a second case study we’ve applied our tool for automatic test case
generation on a secure cache implementation. This model consists of more
states and less complex transition guards.

Before we present the evaluation of the Java Card applet firewall in
Section 3.3.2 and the evaluation of the secure cache implementation in Sec-
tion 3.3.3, we first introduce the formalizations of the respective case studies
in Section 3.3.1.

3.3.1 Formal Models

In this section we present the formalization of the Java Card applet firewall
access policy and the model of a secure cache implementation. We use these
two formalizations to evaluate our test generation approach in the next two
sections.

The Java Card Applet Firewall

Whereas in standard Java every applet runs on its own instance of a virtual
machine, the Java Card virtual machine must be able to deal with several
(independent) applets. The Java Card applet firewall ensures that applets

36 CHAPTER 3. TEST CASE GENERATION FOR A FORMULA

Figure 3.1: The Java Card Runtime Environment.

cannot randomly access data belonging to other applets, but only in re-
stricted cases. The applet firewall is part of the Java Card virtual machine
(JCVM) (see Fig. 3.1) and checks every single access according to the JCRE
specification [84].

The functionality of the Java Card applet firewall is rather simple. As
long as access is granted it idles. If, however, an access is denied, a Securi-
tyException is thrown and no more access check is processed until the JCVM
processes this exception, e.g. it resets a started transaction and resets the
applet firewall.

The complexity for testing lies in the size of the access policy. We want to
test if every single defined granted access is also implemented in the system.
As the guard that defines when access is granted is a complex decision,
deriving tests is not so simple anymore.

Access is granted according to Section 6.2.8 of the Java Card Runtime
Environment (JCRE) specification [84], i.e., a satisfying assignment of the
guard always corresponds to an access that is granted. If an access does not
satisfy this guard, it is denied by definition and the applet firewall throws
the exception. This whitelistening ensures that every access that is not
explicitly allowed, is denied.

In Example 7 we present the formalization for one part of the access
policy, we take a closer look on Section 6.2.8.7 of the JCRE specification [84].
The other requirements are formalized the same way, such that in the end
a big complex guard describes under which conditions the applet firewall
grants access.

Example 7. Section 6.2.8.7 of the JCRE specification [84] specifies access
rules for the bytecode athrow by saying:

• “If the object is owned by an applet in the currently active context,
access is allowed.

• Otherwise, if the object is designated a Java Card RE Entry Point
Object, access is allowed.

3.3. EXPERIMENTAL RESULTS 37

• Otherwise, if the Java Card RE is the currently active context, access
is allowed.

• Otherwise, access is denied.”

This text is formalized as follows:

(bytecode = athrow)∧
((Owner = FLAG CurrentlyActiveContext)∨
(FLAG entryPointJCREObject)∨
(FLAG CurrentlyActiveContext = 0))

The first line checks if the bytecode equals athrow, the second line checks
if the owner is the applet that is currently the active context, the third line
checks if the object is a Java Card RE Entry Point object, and the last line
check if the JCRE, which is encoded with constant 0, is the currently active
context.

Formalizations 3.3 to 3.14 on the next two pages present the full access
policy of Section 6.2.8 of the JCRE specification [84] with respect to every
bytecode.

3
8

C
H
A
P
T
E
R

3.
T
E
S
T

C
A
S
E

G
E
N
E
R
A
T
IO

N
F
O
R

A
F
O
R
M
U
L
A

(bytecode = getstatic)∨ (3.3)(
(bytecode = putstatic) ∧ ((FLAG CurrentlyActiveContext = 0) ∨ (¬fieldReferenceType)∨ (3.4)

(¬(FLAG V al entryPointJCREObject ∧ FLAG V al temporaryJCREObject)∧

¬FLAG V al global))
)
∨(

(bytecode = aload)∧ (3.5)

((FLAG CurrentlyActiveContext = 0) ∨ (Owner = FLAG CurrentlyActiveContext) ∨ FLAG global)
)
∨(

(bytecode = astore)∧ (3.6)

((FLAG CurrentlyActiveContext = 0) ∨ (((¬fieldReferenceType)∨
(¬(FLAG V al entryPointJCREObject ∧ FLAG V al temporaryJCREObject) ∧ ¬FLAG V al global))∧

((Owner = FLAG CurrentlyActiveContext) ∨ FLAG global)))
)
∨(

(bytecode = arraylength)∧ (3.7)

((FLAG CurrentlyActiveContext = 0) ∨ (Owner = FLAG CurrentlyActiveContext) ∨ FLAG global)
)
∨(

(bytecode = checkcast)∧ (3.8)

((FLAG CurrentlyActiveContext = 0) ∨ (Owner = FLAG CurrentlyActiveContext) ∨ FLAG global∨

FLAG entryPointJCREObject ∨ (FLAG shareableInterfaceObject ∧ exShareable))
)
∨(

(bytecode = instanceof)∧ (3.9)

((FLAG CurrentlyActiveContext = 0) ∨ (Owner = FLAG CurrentlyActiveContext)∨

3
.3
.

E
X
P
E
R
IM

E
N
T
A
L
R
E
S
U
L
T
S

39
FLAG global ∨ FLAG entryPointJCREObject ∨ (FLAG shareableInterfaceObject ∧ exShareable))

)
∨(

(bytecode = getfield)∧ (3.10)

((FLAG CurrentlyActiveContext = 0) ∨ (Owner = FLAG CurrentlyActiveContext))
)
∨(

(bytecode = putfield) ∧ ((FLAG CurrentlyActiveContext = 0) ∨ (((¬fieldReferenceType)∨ (3.11)

(¬(FLAG V al entryPointJCREObject ∧ FLAG V al temporaryJCREObject) ∧ ¬FLAG V al global))∧

(Owner = FLAG CurrentlyActiveContext)))
)
∨(

(bytecode = invokevirtual) ∧ ((Owner = FLAG CurrentlyActiveContext) ∨ FLAG global∨ (3.12)

FLAG entryPointJCREObject ∨ (FLAG CurrentlyActiveContext = 0))
)
∨(

(bytecode = invokeinterface)∧ (3.13)

((Owner = FLAG CurrentlyActiveContext) ∨ FLAG entryPointJCREObject∨
(FLAG CurrentlyActiveContext = 0) ∨ (¬(LCSelectionStatus = NonMultiselectable)∧

((FLAG shareableInterfaceObject ∧ exShareable) ∨ (FLAG CurrentlyActiveContext = 0))))
)
∨(

(bytecode = athrow) ∧ ((Owner = FLAG CurrentlyActiveContext)∨ (3.14)

FLAG entryPointJCREObject ∨ (FLAG CurrentlyActiveContext = 0))
)

40 CHAPTER 3. TEST CASE GENERATION FOR A FORMULA

The Secure Block Device Cache

In another case study we formalize the SBD, which is a software component
written in C for secure persistent data storage [57]. This component does not
have complex guards but multiple states instead. We investigate if applying
MCDC on rather small guards in a model with multiple states provides an
improvement or if there is no gain in code coverage compared to a test suite
that only focuses on covering the nodes and edges in the model.

The SBD has to handle management blocks and data blocks. Manage-
ment blocks that store cryptographic information for a specific number of
data blocks are stored in the persistent data storage back-end, where they
are interleaved with the blocks containing actual input, the data blocks. To
read or write a specific data block, the corresponding management block
needs to be in the cache.

InitIdle

GetD
Block

LoadD
Block

InsD
Block

DBlock
in cache

DBlock not
in cacheLRU is evictable

MBlock in cache

LoadM
Block

Bump
LRU

InsM
Block

LRU is evictable

MBlock in
cache

LRU not
evictable

MBlock in cache
LRU not evictable

MBlock not
in cache

MBlock not
in cache

Error

Figure 3.2: Simplified version of the NuSMV model for the cache control
logic to access a block.

We model the access to a data block (DBlock) from the cache. A data

3.3. EXPERIMENTAL RESULTS 41

block is either already in the cache, or it has to be loaded, put into the
cache and then returned to the caller. A simplified version of the model is
illustrated in Figure 3.2.Whenever a data block is requested from the cache,
the cache controller first checks if this data block is already in the cache
(GetDBlock). If so, the block is returned to the caller. If it is not in the
cache, the cache controller has to check if the corresponding management
block (MBlock) is in the cache (LoadDBlock). If the management block is
also not in the cache, the cache controller has to load it (LoadMBlock) as
well. To load the management block the cache controller first evicts the
Least Recently Used (LRU) element from the cache. In our analyzed cache
it is possible that the LRU element cannot be evicted (BumpLRU), then it
gets pushed to a higher position in the index such that a different block in
cache becomes the new LRU element. This happens only if the LRU element
is a management block (MLRU) that we do not want to evict. There exist
two cases when we do not want to evict the LRU element. We do not
want to evict management blocks where there is at least one corresponding
data block for MLRU in the cache, and we also do not want to evict the
management block that corresponds to the data block that was requested
by the caller. In the first case, we bump MLRU until it is more recently
used than its most recently used corresponding data block. In the second
case, we make it the most recently used element. Once the management
block is in the cache, the cache controller loads the data block. Again, the
cache controller has to evict the LRU element. If it can be evicted, the
cache controller loads the data block and returns it to the caller. If the LRU
element cannot be evicted the cache controller goes into state BumpLRU until
a cache slot is available, and then proceeds to load the data block and return
it.

3.3.2 Java Card Applet Firewall

To evaluate the test suite derived from the access policy presented in Sec-
tion 3.3.1, we compare it to the hand-crafted test suite of the Java Card
Technology Compatibility Kit (JCTCK). While our test adapter is imple-
mented in C and our test cases only test the applet firewall module, the
tests of the JCTCK are provided as Java Card applets and test the full
implementation of the Java Card runtime environment.

As the two test approaches are quite different and our test suite only
focuses on the access policy of the Java Card applet firewall, we only analyze
results with respect to the applet firewall module and measure the achieved
code coverage in the corresponding source code related to JCRE specification

42 CHAPTER 3. TEST CASE GENERATION FOR A FORMULA

(a) JCTCK coverage (b) Additional coverage on the pre-
viously uncovered code

Figure 3.3: Additional coverage on previously from the JCTCK uncovered
code achieved by our test suite.

Table 3.1: Instrumentations and achieved coverage

test suite covered / total percentage

JCTCK 64/71 90%
our test suite 63/71 89%

together 68/71 96%

Section 6.2.8. Therefore, the source code of the Java Card applet firewall is
instrumented by a code coverage tool, such that a test suite that covers all
instrumentations is a test suite that achieves condition coverage and basic
block coverage. We also point out limitations from the type of test that
hinder the test case to achieve the intended goal, e.g. the Java Card applet
is restricted when creating an object.

Not all instrumentations are reachable. Some of them are preceded by
Exceptions and can never be reached. We manually analyzed the source
code and from originally 78 instrumentations only 71 are actually reachable
and correspond, therefore, to 100% coverage. We execute both test suites
and collect the coverage information. While none of the two test suites
was able to achieve full condition and basic block coverage, both achieved
a high coverage of approximately 90% (see Table 3.1). Combining the two
improved the coverage to 96%. Our test suite was, therefore, able to cover
60% of instrumentations missed by the JCTCK (see Figure 3.3).

3.3. EXPERIMENTAL RESULTS 43

Coverage Analysis

As the coverage is high for both test suites, we manually analyze the uncov-
ered code and discuss why it was not reached by the respective test suite.
For a summary of uncovered conditions see Table 3.2.

One condition on which our test suite did not cover both possible eval-
uations is a null pointer check of an object, which in our test suite never
evaluated to true. In the implementation, some functions perform such null
pointer checks before using the pointer, however, null pointers are not part
of the specification from which we derived our test suite and, thus, not in
our focus. Therefore, no tests are generated that aim for covering such a
condition.

Another condition that is covered by our test suite but not by the JCTCK
is a check if an accessed object is a global array. In none of the test applets
of the JCTCK the condition evaluated to true. Due to the type of test, a
Java Card applet, it is not possible for the JCTCK to achieve this, because
the incomplete covered condition is disjunct with another condition that
checks whether the object is a temporary entry point object. So to cover
this condition that checks for an global array, the test needs to generate a
global array that is not a temporary entry point object. However, In the
Java Card implementation exists only one global array, which is the APDU
buffer, being also a temporary entry point object and it is not possible to
generate the desired object out of an applet. So the short circuit evaluation,
and the lack of other global arrays, makes it impossible to have this global
array check evaluate to true for the JCTCK. Our test suite is able to cover
both truth values of the condition as our test adapter is a C module not un-
derlying the Java Card object generation restrictions and, therefore, capable
of generating a global array that is not a temporary entry point object.

Two other conditions are not covered for both possible evaluations by
both our test suite and the one from the JCTCK. These conditions check
whether an object is a shareable object and whenever evaluated never result
in false. An analysis of the source code shows that it is impossible to cover
the condition evaluating to true, because the implementation already per-
forms a check if the class or interface is shareable in the implementation of
the function handling the bytecode and otherwise does not call the firewall
function at all.

To conclude the coverage analysis, the combination of the two test suites
covered every reachable instrumentation. So full condition coverage and
basic block coverage with respect to Section 6.2.8 of the JCRE specification
is achieved when running both of the test suites.

44 CHAPTER 3. TEST CASE GENERATION FOR A FORMULA

Table 3.2: Conditions which were not fully covered

condition JCTCK our test suite

is the object a null pointer - not to true
is the object a global array not to true -

is the object a shareable object not to false not to false
access of a shareable object not to false not to false

Error Detection

When running the test suites and collecting the coverage information, we
also analyzed the behavior and compared the outcome to the expected one.
While all tests of the JCTCK passed, the outcome of three tests of our test
suite did not match the expected one. Manual investigation revealed that
two of them have been false positives, where the Java Card applet firewall did
not deny access to objects with a certain combination of attributes. While
our test adapter allows us to generate every desired type of an object, a Java
Card applet is restricted in object generation by the methods provided by
the Java Card implementation. Those methods ensure that these objects
with attributes that passed the applet firewall although they shouldn’t, can
not be generated.

The third test case that failed, however, revealed an inconsistency. Whereas
one sentence in Section 6.2.8.9 of the JCRE specification states “Otherwise,
if the object is designated a Java Card RE Entry Point Object, access is al-
lowed”, the implementation denies access and throws a Security Exception.
Further investigations, including previous versions of the specification, con-
firmed that this access rule was not part of version 2.1 [63]. It was introduced
in version 2.2 [64], but not implemented in the source code. Because of limi-
tations when creating an object in a Java Card applet, no test of the JCTCK
could have tested for this behavior on the system level, and, therefore, the
inconsistency remained undiscovered. While this inconsistency cannot occur
in practice at the moment because of restrictions in the Java Card object
generations, future versions may offer a generation of such an object and
then, this inconsistency can produce a failure.

3.3.3 Secure Cache

In a second case study we evaluated our test case generation approach on a
detailed model of a secure cache implementation that contains only simple

3.3. EXPERIMENTAL RESULTS 45

Table 3.3: Code Coverage.

Coverage criterion test cases line coverage branch coverage

Node 45 87.10% 58.14%
Edge 357 89.52% 59.30%
Edge with MCDC 924 89.52% 59.30%

transition guards. We want to see if having a test suite that satisfies MCDC
and is already close to the actual implementation can still provide a gain
in code coverage and if a more sophisticated coverage criterion like this is
necessary to detect a serious bug that was difficult for a human to find.

To investigate our questions, we derived for the model in Section 3.3.1 a
test suite satisfying MCDC on the transition guards. As a comparison we
generated, using trap properties, a test suite achieving node coverage, i.e., a
test suite that visits every node in the model at least once, and a test suite
achieving edge coverage, i.e., a test suite that takes every edge in the model
at least once. While the test suite that aims for node coverage contains only
45 test cases, the one achieving edge coverage contains 357 test cases and
the test suite aiming for edge coverage with MCDC contains even 924 test
cases.

Coverage Analysis

We executed the test suites and measured the achieved line coverage and
branch coverage on the source code of the implementation. Table 3.3 presents
the results. The test suite that only satisfies node coverage on the model
achieves a high line coverage of 87.1% and the more sophisticated test suite
which achieves edge coverage on the model increases the line coverage on
the source code to 89.53%. The test suite achieving edge coverage with
MCDC cannot push the coverage any higher. We observe a similar result
with respect to branch coverage. Whereas the test suite satisfying node
coverage on the model is capable of covering 58.14% of the branches in the
implementation, the other two cover only slightly more branches.

Simple node coverage is in this case study nearly as good as the other two
with respect to code coverage. If we look again on the model in Figure 3.2,
then we notice that achieving node coverage also requires to cover most of
the edges as well. This observation is confirmed by the coverage results in
Table 3.3.

In general, one would also expect to achieve an increase in branch cover-

46 CHAPTER 3. TEST CASE GENERATION FOR A FORMULA

age for the more sophisticated coverage criterion edge coverage with MCDC
as it not only generates tests that evaluate the whole guard once to true
and once to false, but every single subcondition. If the SUT implements the
transition guard by more than one branching condition, then the test suite
likely produces a higher branch coverage. In our implementation, however,
the transition guards of the model are close to the implemented branching
statements and the more sophisticated coverage criterion can, therefore, not
improve the branch coverage.

Error Detection

Besides evaluating the coverage of the different test suites on the actual
implementation of the SBD, we are also interested in evaluating if the test
suites are able to find bugs. To do this, we patched a serious bug from
a previous version of the source code into the current version. While the
error was hard to find for a human because it is only triggered on a complex
control flow, the test suite satisfying node coverage was able to detect this
bug. This is due to the high detail level of the model as some of the nodes
can only be reached via a certain list of actions. And while a systematic
coverage of the detailed model also includes such sequences, this bug that
was difficult to find for a human, is detected with a test suite that achieves
simple node coverage on the model of the implementation.

Chapter 4

Test Case Generation from
Temporal Specification

...the most obvious, ubiquitous,
important realities are often the
ones that are hardest to see and
talk about.

David Foster Wallace

This chapter is based on and reuses parts from my already published
work [29] and a journal version of this work [28] that is yet under review.
References to those papers are not made explicit.

In this chapter, we present a test generation approach for reactive sys-
tems that computes system-independent adaptive test strategies. We take
formalized requirements provided as temporal logic specification, apply a
fault model and synthesize a strategy that enforces a specification viola-
tion if a fault that satisfies the fault model is present in the system. The
computed strategy is capable of revealing the specified simple fault, like an
occasional bit-flip, in every realization of the given requirements. Taking hy-
potheses from fault-based testing into account, we argue that the resulting
strategies can also reveal more complex bugs.

We first discuss the test purpose and illustrate the approach in a moti-
vating example. Then we work out the underlying theory and present the
test case generation approach. We apply it on two examples, the amba bus
arbiter specification and a PIN locked door specification, to illustrate that
the approach can handle industrial sized specifications as well as specifica-
tions requiring complex test strategies. Then we apply our approach in a

47

48 CHAPTER 4. TEST CASE GENERATION FROM LTL

Specification 𝜑

Fault Model
Synthesis

Runtime
Verification

Adaptive
Test

Strategy

System Under
Test (SUT)

Oracle

input

o
u

tp
u

t

Test case
generation

Test case execution Input Verdict

Pass/
Fail/
Inconcl.

Figure 4.1: Our testing setup.

real world case study on the Fault Detection Isolation and Recovery (FDIR)
system for the Eu:CROPIS satellite developed at the German Aerospace
Center (DLR).

4.1 Test Purpose - Motivation

Model checking is a valid way to obtain confidence in the correctness of the
system. However, it is not always applicable due to components where no
code is available, like third-party IP components, or due to scalability issues.
Moreover, building a precise model may require high effort and in the end
model checking still cannot verify the final and “live” product, but only the
(abstracted) model itself.

Testing is a natural choice complementing formal methods. Blackbox
techniques do not need any insight of the system and can be generated be-
fore the actual system has been implemented. Moreover, as specifications
and requirements are usually much simpler than the actual implementation,
scalability on this abstraction level is less of a problem. Also, the require-
ments focus on critical aspects of the intended system and, thus, thorough
testing is necessary.

One of the main challenges when deriving tests from the requirements
is controllability, because there is plenty of implementation freedom that
may result in different system behavior for given inputs. Test cases have to
adapt to the system behavior which makes fixed input sequences impossible.
Usually, testing approaches solve this issue by requiring a deterministic or
probabilistic model of the intended implementation that fixes the behavior
in a defined way, which is not necessarily required by the requirements.

Fig. 4.1 presents our assumed testing setup, i.e., how our approach for
synthesizing adaptive test strategies (illustrated in black) is integrated in
the testing chain. The user provides a specification φ that expresses the
requirements of the SUT in LTL. Moreover, the user provides a fault model,
specified in LTL, that defines the coverage subject, i.e., a class of faults for
which the resulting test strategy shall enforce a specification violation if the

4.1. TEST PURPOSE - MOTIVATION 49

SUT

f p

c

h

Highway

Farm
Road

Figure 4.2: Traffic light example.

fault is present in the SUT. We then synthesize test strategies that adapt
to the behavior of the SUT, such that the strategies can be executed on
any system that claims to implement the given specification. If synthesis is
successful, then executing the resulting test strategy long enough guarantees
to reveal faults corresponding to the fault model in every realization of the
specification. Existing runtime verification methods can be used to derive
an oracle from the specification that checks if the SUT conforms to the
specification φ. Also, in the next chapter we present a semantics to evaluate
LTL properties on finite traces.

Imagine a farm road that crosses a highway. At the intersection a traffic
light is planned and we have to develop the corresponding controller. There
is an induction loop on the farm road that detects if a car is waiting. Fig-
ure 4.2 illustrates the crossing. The controller takes as input the Boolean
signal c of this detector, being true if a car is idling. Two Boolean outputs
of the controller represent the current status of the two traffic lights with h
being the signal for the highway and f being the signal for the farm road.
The respective signal for a traffic light is true if the light is intended to be
green, and false if the light shall be red. In addition, there is a camera that
takes a picture whenever a car at the farm road does a jump start, i.e., races
off immediately as soon as the traffic light of the farm road turns green.
This camera is controlled by the traffic light controller. A Boolean output
signal p is true if the camera shall record a picture.

The controller then has to satisfy the following four critical properties:

1. The two lights must never be green at the same time.

2. Whenever a car is waiting at the farm road, the farm road light turns
green eventually.

50 CHAPTER 4. TEST CASE GENERATION FROM LTL

3. Whenever no car is waiting at the farm road, the highway light turns
green eventually.

4. The camera shall take a picture, if a car on the farm road does a head
start.

We express these critical properties in LTL with

ϕ1 = G(¬f ∨ ¬h),

ϕ2 = G(c→ Ff),

ϕ3 = G(¬c→ Fh),

ϕ4 = G
(
(¬f ∧ X(c ∧ f ∧ X¬c))↔ XXp

)
.

The resulting specification is then:

ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4

A system can implement this specification in many ways. Consider for
example the farm road traffic light. A valid implementation of the controller
may switch the farm road traffic light to green every once in a while, but it
is also valid to switch it to green only if a car is waiting at the crossing. If
we have no additional knowledge on implementation details, the only way
to test if the farm road’s traffic light turns to green is by setting c = true,
i.e., relying on Property 2. A correct implementation of Property 2 of the
specification requires that the farm road’s traffic light turns green (f = true)
eventually.

To test whether the camera takes a picture (p = true), a specific input
behavior is needed according to the specification. First a car has to be at
the crossing and as soon as the farm road’s traffic light turns green the car
has to start. For this test, a static input sequence is not going to work.
The test has to observe the outputs of the system and adapt its behavior
accordingly.

A strategy τ1 that forces the system to set p = true is illustrated in
Figure 4.3. States are labeled by the value of the inputs to the SUT. The
transitions between the states are labeled with conditions on observed out-
puts of the SUT. So all but the first input of the test depend on previous
inputs and the correspondingly observed outputs. In the first step, c is set
to false. Relying on Property 3 together with Property 1, f has to become
false eventually (if the properties are implemented correct). As soon as the
adaptive test case observes f = false, c is switched to true, now requiring

4.1. TEST PURPOSE - MOTIVATION 51

¬c c ¬c

f

¬f

¬f

f

true

Figure 4.3: Test strategy τ1 that forces p to be true at least once.

¬c c

f ¬f
¬f

f

Figure 4.4: Test strategy τ2 that forces p to be true again and again.

f = true eventually, based on Property 2. When the SUT now switches f
to true again, the strategy sets c = false and, therefore, requires the SUT to
respond with p = true to satisfy Property 4.

We may also define a class of faults that is not always present. Consider
the stuck-at-0 fault at signal p being persistent eventually, but we don’t know
from which point on exactly. Then our approach may compute strategy τ2,
illustrated in Figure 4.4. This strategy is similar to the previous strategy τ1,
but instead of entering a third state and idling there, the strategy returns to
the first state initiating again the sequence that forces the system to switch
signal p to true. Thus, if from any time onwards p is stuck-at-0, the system
will violate the specification.

Strategies τ1 and τ2 are able to reveal a stuck-at-0 fault that manifests
permanently at signal p or a stuck-at-0 fault that manifests from some point
in time on permanently at signal p, respectively. Let us now assume that
a stuck-at-0 fault occurs from some point in time only if a certain input-
output interaction happened first, e.g., if c is false at the second time step.
Strategy τ3 as shown in Figure 4.5 guarantees to set c=false in the second
time step. The output produced by the SUT responding is not relevant.
The strategy then follows τ2 to enforce p=true infinitely often as before.

The assignment of c to false in the initial state of τ3 is neither necessary to
activate the fault in the envisioned scenario nor to enforce p=true infinitely
often. From testing perspective, the tester is free to make an arbitrary choice

52 CHAPTER 4. TEST CASE GENERATION FROM LTL

¬c

¬cc

f¬f

true

¬f

f

Figure 4.5: Strategy τ3.

¬cc

f¬f

true

¬f

f

Figure 4.6: Strategy τ4.

for the input to the SUT in the initial state. As a generalization mechanism
of the test strategies, we identify and remove labels from the automaton not
necessary to enforce the testing goal. Strategy τ4 (illustrated in Figure 4.6)
is similar to τ3, but differs by only having assignments for input variables
in states where the concrete values are necessary to enforce the desired
behavior.

4.2 Test Case Generation

In this section we first take a closer look at the intended coverage objectives.
Then we present our approach to derive a test suite of test strategies. We
finish this section by presenting extensions to and variants of our approach.

4.2.1 Coverage Objective

In Chapter 2.4 we have presented existing coverage metrics. As the fore-
most goal of testing is to detect flaws in the SUT, we follow a fault-centered
approach and aim for implementations of a faulty model. We assume that
the system is “almost correct”, i.e., the SUT is a composition of a correct
implementation S′ according to specification φ and a fault F that mutates
one of the output signals. This composition is illustrated in Figure 4.7.

4.2. TEST CASE GENERATION 53

SUT 𝑆

 𝑆′ ⊨ 𝜑 𝐹 ⊨ 𝛿

𝐼 𝑜𝑖
′

𝑜1

𝑜𝑛

𝑜𝑖
…

…

Figure 4.7: Coverage goal illustration.

Our assumption of an “almost correct” system is built on the Competent
Programmer Hypothesis [43, 1] that states that implementations are most
of the time close to a correct version. As the requirements are on a high
abstraction level compared to the actual implementation, a fault model con-
structed with input and output signals may only model simple faults. Based
on the Coupling Effect [43, 82] we argue that strategies that can reveal such
simple faults are also sensitive to more complex errors.

Our approach allows the user to define the considered faults in an LTL
formula δ. This not only provides the user the possibility to define the type
of the mutation, but also when the mutation is expected to be present, i.e., if
it’s a permanent or transient fault that occurs once or frequently. Examples
for such fault models are δ1 = F(oi ↔ o′i), which describes a transient bit flip
occurring at least once, δ2 = GF(¬oi), which expresses a transient stuck-at-0
fault that occurs infinitely often, and δ3 = G(X(oi) ↔ o′i), which models a
permanent shift by one time step. In our approach we try to compute a test
strategy that can reveal every fault that satisfies δ in every realization of the
specification φ. We express this coverage objective formally in the following
definition.

Definition 3. A test suite TS ⊆ Moore(O, I) for a system with inputs I,
outputs O, and specification ϕ is universally complete1 with respect to a
given fault model δ iff

∀oi ∈ O . ∀S ′ ∈ Mealy(I,O ∪ {o′i} \ {oi}) .
∀F ∈ Mealy(I ∪O ∪ {o′i} \ {oi}, {oi}) . ∃τ ∈ TS .((

S ′ ||=ϕ[oi ← o′i] ∧ F ||=δ
)
→
(
σ(τ,S ′ ◦ F) 6|= ϕ

))
. (4.1)

1 The word “universal” indicates that the faults are revealed in every (otherwise correct)
system.

54 CHAPTER 4. TEST CASE GENERATION FROM LTL

So, for every output oi the test suite TS must contain test strategies
that enforce a specification violation in every system S ||= ϕ[oi ← o′i] that
contains the fault F ||=δ (see Figure 4.7). Note that signal o′i does not exist
in the real system implementation and, thus, cannot be observed by the test
strategies τ ∈ TS ⊆ Moore(O, I). We only introduced this signal to define
our coverage objective.

The number of systems that realize S ′ ||= ϕ[oi ← o′i] and faults F ||= δ
can be infinite. Hence, computing a separate test case for every realization
is impossible. It’s more efficient to have one strategy for every oi that covers
all.

Theorem 4. A universally complete test suite TS ⊆ Moore(O, I) with re-
spect to fault model δ exists for a system with inputs I, outputs O, and
specification ϕ if

∀oi ∈ O . ∃τ ∈ Moore(O, I) .∀S ∈ Mealy(I,O ∪ {o′i}) .
σ(τ,S) |=

(
(ϕ[oi ← o′i] ∧ δ)→ ¬ϕ

)
. (4.2)

Proof. Equation 4.2 implies

∀oi ∈ O . ∀S ∈ Mealy(I,O ∪ {o′i}) .∃τ ∈ Moore(O, I) .(
S ||=ϕ[oi ← o′i] ∧ δ

)
→
(
σ(τ,S) 6|= ϕ

)
(4.3)

because (a) going from ∃τ∀S to ∀S∃τ can only make the formula weaker,
and (b) S ||=ϕ[oi ← o′i]∧ δ implies σ(τ,S) |= (ϕ[oi ← o′i]∧ δ) for all τ , which
can only make the left side of the implication stronger. In turn, Equation 4.3
is equivalent to

∀oi ∈ O . ∀S ′ ∈ Mealy(I,O ∪ {o′i} \ {oi}) .
∀F ∈ Mealy(I ∪O ∪ {o′i} \ {oi}, {oi}) .∃τ ∈ Moore(O, I) .(

S ′ ||=ϕ[oi ← o′i] ∧ F ||=δ
)
→
(
σ(τ,S ′ ◦ F) 6|= ϕ

)
. (4.4)

because for a given S ′ ||=ϕ[oi ← o′i] and F ||= δ from Equation 4.4 we can
define an equivalent system S = (S ′◦F) ∈ Mealy(I,O∪{o′i}) for Equation 4.3
such that S ||=ϕ[oi ← o′i]∧ δ is satisfied. Also, for a given S ||=ϕ[oi ← o′i]∧ δ
from Equation 4.3 we can define a corresponding S ′ ||=ϕ[oi ← o′i] and F ||=δ
by stripping off different outputs.

While Equation 4.2 is a sufficient condition for a universally complete
test suite to exist, it is not a necessary condition. If it were, computing

4.2. TEST CASE GENERATION 55

¬i i

¬o true

o

Figure 4.8: Strategy τ3.

one test strategy per oi would be enough. Unfortunately, it isn’t, as the
following example illustrates.

Example 8. Consider a system with input I = {i}, output O = {o}, and
specification ϕ =

(
G(i → Gi) ∧ Fi

)
→
(
G(o → Go) ∧ Fo ∧ G(i ∨ ¬o)

)
. The

left side of the implication assumes that the input signal i is set to true at
some point and then remains true forever. The right side of the implication
requires the same for the output signal o. Moreover, output signal o must
not be raised before the input signal i. This specification can for example
be realized by a system that always copies the input to the output, i.e., by
setting o = i.

The test suite TS = {τ3} with τ3 shown in Figure 4.8 is universally
complete with respect to fault model δ = F(o ↔ ¬o′), which models a bit
flip that happens at least once. As long as the input signal i is false, any
correct system implementation S ′ ∈ Mealy({i}, {o′}) ||=ϕ[oi ← o′i] must set
the output o′ = false. Eventually, because of F ||=δ, the output must flip o
to true. At that time the input i is set to true by τ3 so that the resulting
trace σ(τ,S ′ ◦ F) violates ϕ. Still, Equation 4.2 is false. A closer look at
strategy τ3 confirms that it does not satisfy Equation 4.2. Consider a system
S ∈ Mealy({i}, {o, o′}) that sets o′ = true and o = false in all steps, then we
have σ(τ3,S) |=

(
ϕ[oi ← o′i] ∧ δ ∧ ϕ

)
. So i stays false, and ϕ[oi ← o′i] and ϕ

are vacuously satisfied by σ(τ3,S). The fault formula δ is satisfied because
o ↔ ¬o′ holds all time. Hence, S is a counterexample to τ3 that satisfies
Equation 4.2. Similar counterstrategies exist for all other test strategies.

While Equation 4.2 is only a sufficient but not a necessary condition in
case of partial observability, it is both sufficient and necessary if all output
signals are observable.

The following two lemmas state that (a) the quantifiers can be swapped
and (b) the assumption σ(τ,S) |= A is equivalent to the assumption (S ||=A)
if τ has full information on the outputs in S. Based on these two lemmas we
then show that Equation 4.2 is both a necessary and a sufficient condition
for a universally complete test suite to exist whenever all output signals are

56 CHAPTER 4. TEST CASE GENERATION FROM LTL

observable.

Lemma 5. For every LTL specification ψ over inputs I and outputs O,
∃τ ∈ Moore(O, I) .∀S ∈ Mealy(I,O) . σ(τ,S) |= ψ holds if and only if ∀S ∈
Mealy(I,O) .∃τ ∈ Moore(O, I) . σ(τ,S) |= ψ holds.

Proof. Synthesis from LTL specifications under complete information is (fi-
nite memory) determined [77], i.e., either
∃τ ∈ Moore(O, I) .∀S ∈ Mealy(I,O) . σ(τ,S) |= ψ

or
∃S ∈ Mealy(I,O) . ∀τ ∈ Moore(O, I) . σ(τ,S) |= ¬ψ

holds, but not both. Less formal we can say that either there exists a test
strategy τ that satisfies ψ for all systems S, or there exists a system S that
can violate ψ for all test strategies τ . From that, it follows that

∃τ ∈ Moore(O, I) . ∀S ∈ Mealy(I,O) . σ(τ,S) |= ψ

iff ¬∃S ∈ Mealy(I,O) .

∀τ ∈ Moore(O, I) . σ(τ,S) |= ¬ψ
iff ∀S ∈ Mealy(I,O) .∃τ ∈ Moore(O, I) . σ(τ,S) |= ψ.

Lemma 6. For all LTL specifications A,G over inputs I and outputs O, we
have

∀S ∈ Mealy(I,O) . ∃τ ∈ Moore(O, I) .

(S ||=A)→
(
σ(τ,S) |= G

)
(4.5)

iff ∀S ∈ Mealy(I,O) . ∃τ ∈ Moore(O, I) .

σ(τ,S) |= (A→ G). (4.6)

Proof. Direction⇒: We show that Equation 4.6 being false contradicts with
Equation 4.5 being true.

¬∀S ∈ Mealy(I,O) . ∃τ ∈ Moore(O, I) .

σ(τ,S) |= (A→ G)

iff ∃S ∈ Mealy(I,O) .∀τ ∈ Moore(O, I) .

σ(τ,S) |= (A ∧ ¬G)

iff ∃S ∈ Mealy(I,O) .S ||=(A ∧ ¬G), which implies

∃S ∈ Mealy(I,O) .∀τ ∈ Moore(O, I) .

(S ||=A) ∧
(
σ(τ,S) |= ¬G

)
.

4.2. TEST CASE GENERATION 57

Direction ⇐: Using the LTL semantics, we can rewrite σ(τ,S) |= (A→
G) in Equation 4.6 as

(
σ(τ,S) |= A

)
→
(
σ(τ,S) |= G

)
. Since S ||=A implies

σ(τ ′,S) |= A for every τ ′ ∈ Moore(I,O), the assumption in Equation 4.5 is
not weaker, so Equation 4.5 is not stronger.

For all cases in which all output signals are observable, we use Lemma 5
and Lemma 6 to prove that Equation 4.2 of Theorem 4 is both a necessary
and a sufficient condition for a universally complete test suite to exist.

Proposition 7. Given a fault model of the form δ = G(o′i ↔ ψ), where ψ
is an LTL formula over I and O, a universally complete test suite TS ⊆
Moore(O, I) with respect to δ, I, O, and ϕ exists if and only if Equation 4.2
holds.

Proof. ϕ[oi ← o′i]∧G(o′i ↔ ψ) is equivalent to ϕ[oi ← ψ]∧G(o′i ↔ ψ). Thus,
Equation 4.2 becomes

∀oi ∈ O . ∃τ ∈ Moore(O, I) . ∀S ∈ Mealy(I,O ∪ {o′i}) .
σ(τ,S) |=

(
(ϕ[oi ← ψ] ∧ G(o′i ↔ ψ))→ ¬ϕ

)
,

which is equivalent to

∀oi ∈ O . ∃τ ∈ Moore(O, I) . ∀S ∈ Mealy(I,O) .

σ(τ,S) |=
(
ϕ[oi ← ψ]→ ¬ϕ

)
because of the G operator, a unique value for o′i exist is all steps and thus,
o′i is just an abbreviation for ψ. Whether this abbreviation o′i is available
as output of S or not is irrelevant, because τ cannot observe o′i anyway.
Since o′i no longer occurs, Lemma 5 and Lemma 6 can be applied to prove
equivalence between Equation 4.2 and

∀oi ∈ O . ∀S ∈ Mealy(I,O) .∃τ ∈ Moore(O, I) .

(S ||=ϕ[oi ← ψ])→ σ(τ,S) 6|= ϕ.

As τ cannot observe o′i, it is irrelevant whether the truth value of ψ is
available as additional output o′i of S or not. Hence, the above formula is
equivalent to

∀oi ∈ O . ∀S ∈ Mealy(I,O ∪ {o′i}) . ∃τ ∈ Moore(O, I) .

(S ||=(ϕ[oi ← ψ] ∧ G(o′i ↔ ψ))→ σ(τ,S) 6|= ϕ

58 CHAPTER 4. TEST CASE GENERATION FROM LTL

and

∀oi ∈ O . ∀S ∈ Mealy(I,O ∪ {o′i}) .∃τ ∈ Moore(O, I) .

(S ||=(ϕ[oi ← o′i] ∧ δ)→ σ(τ,S) 6|= ϕ,

i.e., to Equation 4.3. The remaining steps can be taken from the proof of
Theorem 4.

So, if we can rewrite ϕ[oi ← o′i] to ϕ[oi ← ψ] in Equation 4.2, then the
hidden signal is eliminated and it is not only a sufficient condition anymore,
but also becomes a necessary one.

Proposition 8. If the fault model δ does not reference o′i, a universally
complete test suite TS ⊆ Moore(O, I) with respect to δ, I, O, and ϕ exists if
and only if Equation 4.2 holds.

Proof. We show that Equation 4.2 holds if and only if Equation 4.3 holds.
The remaining steps have already been proven for Theorem 4.

Lemma 9. Equation 4.2 holds if and only if

∀oi ∈ O . ∃τ ∈ Moore(O, I) .∀S ∈ Mealy(I,O) .

σ(τ,S) |= (δ → ¬ϕ).
(4.7)

Direction ⇐ is obvious because Equation 4.2 contains stronger assump-
tions (and ∀S ∈ Mealy(I,O) can be changed to ∀S ∈ Mealy(I,O ∪ {o′i}) in
Equation 4.7 because δ → ¬ϕ does not contain o′i).

Direction ⇒: We show that Equation 4.7 being false contradicts with
Equation 4.2 being true.

¬∀oi ∈ O . ∃τ ∈ Moore(O, I) .

∀S ∈ Mealy(I,O) . σ(τ,S) |= (δ → ¬ϕ) (4.8)

iff ∃oi ∈ O . ∀τ ∈ Moore(O, I) .

∃S ∈ Mealy(I,O) . σ(τ,S) |= (δ ∧ ϕ) (4.9)

iff ∃oi ∈ O . ∃S ∈ Mealy(I,O) .

∀τ ∈ Moore(O, I) . σ(τ,S) |= (δ ∧ ϕ) (4.10)

iff ∃oi ∈ O . ∃S ∈ Mealy(I,O) .S ||=(δ ∧ ϕ) (4.11)

iff ∃oi ∈ O . ∃S ′ ∈ Mealy(I,O ∪ {o′i}) .
S ′ ||=(ϕ[oi ← o′i] ∧ δ ∧ ϕ), (4.12)

4.2. TEST CASE GENERATION 59

iff ∃oi ∈ O . ∃S ′ ∈ Mealy(I,O ∪ {o′i}) .
∀τ ∈ Moore(O ∪ {o′i}, I) .

σ(τ,S) |= (ϕ[oi ← o′i] ∧ δ ∧ ϕ), (4.13)

iff ∃oi ∈ O . ∀τ ∈ Moore(O ∪ {o′i}, I) .

∃S ′ ∈ Mealy(I,O ∪ {o′i}) .
σ(τ,S) |= (ϕ[oi ← o′i] ∧ δ ∧ ϕ), (4.14)

⇒ ∃oi ∈ O . ∀τ ∈ Moore(O, I) .

∃S ′ ∈ Mealy(I,O ∪ {o′i}) .
σ(τ,S) |= (ϕ[oi ← o′i] ∧ δ ∧ ϕ), (4.15)

which contradicts Equation 4.2. (4.9)⇔(4.10) holds because of Lemma 5.
and (4.11)⇔(4.12) holds because δ ∧ ϕ does not contain o′i, so S ′ can be
S with o′i ↔ oi. (4.13)⇔(4.14) holds because of Lemma 5. Finally, (4.14)
implies (4.15) because τ has less information in (4.15).

Lemma 10. Equation 4.7 holds if and only if Equation 4.3 holds.

Direction ⇒: is obvious because Equation 4.7 is equivalent to Equa-
tion 4.2 (Lemma 3) and Equation 4.2 implies Equation 4.3 (see proof for
Theorem 4).

Direction ⇐: we show that Equation 4.7 being false contradicts Equa-
tion 4.3 being true. Equation 4.7 being false implies Equation 4.12 (see
above). As S ′ ||=(ϕ[oi ← o′i]∧δ∧ϕ) implies (S ′ ||=ϕ[oi ← o′i]∧δ)∧

(
σ(τ,S) |=

ϕ
)

for all τ ∈ Moore(O ∪ {o′i}, I) and thus also for all τ ∈ Moore(O, I),
Equation 4.3 cannot hold.

In general, the assumption S ′ ||= ϕ[oi ← o′i] is necessary to prevent a
faulty system S ′ 6||=ϕ[oi ← o′i] from compensating the fault F ||=δ such that
S ′◦F ||=ϕ. For example, given I = ∅, O = {o}, ϕ = Go with δ = G(o↔ ¬o′),
Equation 4.1 would be false without S ′ ||= ϕ[oi ← o′i] because there exists
an S ′ that always sets o′ = false, in which case S ′ ◦ F has o correctly set
to true. However, if δ does not reference the hidden signal o′, such a fault
compensation is not possible.

Thus, for computing our test strategies we will rely on Equation 4.2. To
optimize our implementation, we drop the assumption whenever possible.

60 CHAPTER 4. TEST CASE GENERATION FROM LTL

4.2.2 Fault Model

The description of the fault model δ covers two different aspects of the fault,
the kind of fault κ and the frequency of the fault frq, such that δ = frq(κ).
The fault kind κ is an LTL formula that defines which faults we consider.
Examples for different fault kinds are (a) κ = ¬oi that describes a stuck-at-0
fault, (b) κ = oi ↔ ¬o′i that defines a bit-flip and (c) κ = o′i ↔ X(oi) which
describes a delay by one time step. The fault frequency frq on the other
hand defines how often this faultkind is expected to be present. Our imple-
mentation supports to only provide the κ and use already implemented fault
frequencies. In detail, we support the four fault frequencies {G,FG,GF,F}:

• Fault frequency G means that the fault is permanent.

• Frequency FG means that the fault occurs from some time step i on
permanently. Yet, we do not make any assumptions about the precise
value of i.

• Frequency GF states that the fault strikes infinitely often, but not
when exactly.

• Frequency F means that the fault occurs at least once.

Among the four fault frequencies we provide is a natural order. A fault
κ that occurs permanently (frequency G) is only a special case of the same
fault κ occurring from some point onwards (frequency FG), as “some point”
in the case of a permanent fault is the first point in time. The fault κ
occurring from some point onwards is again a special case of a fault κ oc-
curring infinitely often (frequency GF), because if it appears infinitely often
but does not disappear between the occurrences anymore it just occurs from
some point onwards. Finally, this is again a special case of κ occurring at
least once, because a fault that occurs at least once may also occur infinitely
often. Thus, a test strategy that reveals a fault that occurs at least once
(without knowing when) will also reveal a fault that occurs infinitely often,
a test strategy that can reveal a fault that occurs infinitely often can also
reveal a fault occurring from “some point” in time onwards, and so on. We,
thus, start our approach with the goal of deriving a test strategy that can
reveal faults occurring at the lowest frequency, i.e., faults occurring at least
once, and iteratively increase the fault frequency in case we cannot derive a
strategy for the previous frequency.

4.2. TEST CASE GENERATION 61

Algorithm 1 SyntOutputIterate: Synthesizes adaptive test strategies
from an LTL specification for all outputs in O

1: procedure SyntLtlTest(I,O, ϕ, κ), returns: A set TS of test strate-
gies

2: TS := ∅
3: for each oi ∈ O do
4: TS := TS ∪ SyntLtlIterate(I,O, ϕ, oi, κ, ∅);
5: return TS

Algorithm 2 SyntLtlIterate: Synthesize an adaptive test strategy from
an LTL spec by iterating over fault frequencies frq.

1: procedure SyntLtlIterate(I,O, ϕ, oi, κ,Θ), returns: A singleton
{T } with a test strategy T on success or ∅

2: for each frq from (F,GF,FG,G) in this order do
3: T := syntp

(
O ∪ {o′i}, I,

(
ϕ[oi ← o′i] ∧ frq(κ)

)
→ ¬ϕ,O,Θ

)
4: if T 6= unrealizable then
5: return {T };
6: return ∅

4.2.3 Test Strategy Computation

We build our test strategy computation approach upon Theorem 4, i.e.,
for targeted outputs we search for a test strategy τi ∈ Moore(O, I) such
that ∀S ∈ Mealy(I,O ∪ {o′i}) . σ(τ,S) |=

(
(ϕ[oi ← o′i] ∧ δ) → ¬ϕ

)
holds.

We make use of synthesis with partial information to compute a Moore
machine M ∈ Moore(I ′, O) with I ′ ⊆ I that allows to enforce the desired
LTL objective δ in all environments. Remember that a test strategy is a
Moore machine with input and output signals swapped. Hence, we try to
compute τi := syntp

(
O ∪ {o′i}, I, (ϕ[oi ← o′i] ∧ δ) → ¬ϕ,O

)
to derive a

test strategy. If the computation of τi is successful, the test strategy is
guaranteed to be universally complete with respect to fault model δ for a
system with inputs I, outputs O, and specification ϕ. In case syntp returns
unrealizable, a test strategy may exist nevertheless, as Theorem 4 only is
a sufficient but not a necessary condition. However, if Proposition 7 or
Proposition 8 apply, the method is both sound and complete and, thus, if
the algorithm returns unrealizable there also exists no strategy.

Algorithm. In Algorithm 1, which uses Algorithm 2, we formalize our
approach. Let I be the inputs and O be the outputs of the SUT. Moreover,
let ϕ be the specification in LTL of the SUT and let κ be an LTL formula that

62 CHAPTER 4. TEST CASE GENERATION FROM LTL

describes the kind of fault. Then the result of this algorithm is a test suite
TS. To compute TS, the algorithm iterates over all outputs oi ∈ O (Line 3
of Algorithm 1) and Algorithm 2 iterates over our four fault frequencies
(Line 2), starting with the lowest one, i.e., a fault that occurs at least once.
Line 3 attempts to derive a strategy that is capable of revealing every fault
that satisfies the provided fault kind κ for the current fault frequency. If the
computation is successful, the strategy is added to TS and the next output
is processed. Otherwise, the fault frequency is increased and the algorithm
again tries to compute a strategy.

Sanity checks. For an unrealizable specification ϕ or an unrealizable
fault model δ, Equation 4.1 is vacuously satisfied. This would make any
strategy be a valid solution. To avoid getting such spurious results, we
perform a sanity check and test if specification ϕ and the fault model G(κ)
are (Mealy) realizable. To test G(κ) for realizability is enough, because if
G(κ) is realizable then so are FG(κ), GF(κ) and F(κ).

Handling unrealizability. Whenever our algorithm returns unrealizable
on Line 3 of Algorithm 2 for frq = G, meaning that we could not even derive
a test strategy for a permanent fault, then we print a warning. There are
two possible reasons for unrealizability. First, due to limited observability
our approach may not be able to compute a strategy although one exists,
like in Example 8. And second, there may really be no strategy because
there exists an S ′ ||= ϕ[oi ← o′i] and F ||= δ such that the composition
S = S ′ ◦F (see Figure 4.7) is correct, i.e., S ′ ◦F ||=ϕ. Less formal, for some
realization the fault may not violate the specification, i.e., the fault may be-
have like an equivalent mutant in mutation testing. For example, consider
a stuck-at-0 fault model on output signal o and a correct realization of the
specification that never requires this signal to become true. Then such a
high degree of underspecification is at least suspicious and may hint to un-
intended vacuities [17] in specification ϕ. Hence, it should be investigated
manually. If Proposition 7 or 8 applies, then we can be sure that the latter
reason applies, i.e. that there exists a high degree of underspecification. The
user then may compute some diagnostic information [71] to help him or her
understand why no test strategy exists.

Complexity. Both syntp(O, I, ψ,O
′,Θ) and synt(O, I, ψ,Θ) are 2EX-

PTIME complete in |ψ| [72], so the execution time of Algorithm 2, and
consequently also Algorithm 1, are at most doubly exponential in |ϕ|+ |κ|.

Theorem 11. For a system with inputs I, outputs O, and LTL specification
ϕ over I∪O, if the fault kind κ is of the form κ = ψ or κ = (o′i ↔ ψ), where
ψ is an LTL formula over I and O, SyntLtlTest(I,O, ϕ, κ) will return

4.2. TEST CASE GENERATION 63

a universally complete test suite with respect to the fault model δ = G(κ) if
such a test suite exists.

Proof. Since G(κ) implies frq(κ) for all frq ∈ {F,GF,FG,G}, Theorem 4 and
the guarantees of syntp entail that the resulting test suite TS is universally
complete with respect to δ = G(κ) if |TS| = |O|, i.e., if SyntLtlTest
found a strategy for every output. It remains to be shown that |TS| = |O|
for κ = ψ or κ = (o′i ↔ ψ) if a universally complete test suite for δ = G(κ)
exists: either Proposition 7 or Proposition 8 states that Equation 4.2 holds
with δ = G(κ). Thus, syntp cannot return unrealizable in SyntLtlIterate
with frq = G, so |TS| must be equal to |O| in this case.

Theorem 11 states that SyntLtlTest is not only sound but also com-
plete for many interesting fault models such as stuck-at faults or permanent
bit-flips. For κ = ψ, Theorem 11 can even be strengthened to hold for all
δ = frq(κ) with frq ∈ {F,GF,FG,G}.

4.2.4 Extensions and Variants

A successful test strategy computation results in a universally complete test
suite that can detect the specified fault. As a tester we may not only be
interested in this specific fault but in any fault that results in the same
failure as the specified fault. Such a fault may only get triggered on a
specific path through the system. Thus, identifying paths that enforce a
failure such as specified in the fault model is also of interest. We achieve
this by generalizing the computed strategy, i.e., we remove assignments that
are not needed to enforce the desired behavior on the system, and then
computing aother strategy for the given fault model that is different from
previously derived (generalized) strategies.

User-specified fault frequencies. The user can not only choose from
provided fault models (stuck-at-0, stuck-at-1, bitflip, timeshift) and fault
frequencies (G, FG, GF, and F), but is free to provide an LTL file specifying
the intended faulty behavior. He or she can either specify a kind of fault κ
and iterate over the available fault frequencies or choose to treat the provided
specification as δ = frq(κ). The latter option allows the user to also specify
other fault frequencies that differ from the provided frequencies, he or she
may for example target specific time steps.

Algorithm 2 supports full LTL and thus we can extend the procedure by
replacing Line 2 by “for each frq from frq in this order”, where frq is an
additional parameter provided by the user.

64 CHAPTER 4. TEST CASE GENERATION FROM LTL

Multiple faults and faults at the inputs. While we have presented
the approach for a single fault on the output so far, our approach can also
handle simultaneous faults at multiple inputs and/or outputs. For example,
consider simultaneous faults on the outputs {o1, . . . , ok} ⊆ O with every
faulty output being described in its own fault model such that the final fault
model becomes δ =

∧k
i=1 δi. To compute a test strategy that is capable

of revealing all faults simultaneously, the synthesis procedure is called as
follows:

τ := syntp
(
O ∪ {o′1, . . . , o′k}, I, (ϕ[o1 ← o′1, . . . , ok ← o′k] ∧

k∧
i=1

δi)→ ¬ϕ,O
)
.

When considering faults at the inputs, we have to modifiy Line 3 in Algo-
rithm 1 to “for each o ∈ I∪O do” such that we not only compute strategies
for output signals but also for input signals. Remember, however, that for
a fault model that considers one or more input signals only, the resulting
strategy will be the realization of the negated fault model if possible. In
the next paragraph we present an enhancement that allows the user to pro-
vide an arbitrary fault model in LTL and derive strategies that reveal the
specified faults.

Faults within the SUT. If an implementation does not satisfy the fault
assumption, the enforced execution by the test strategy may nevertheless
reveal (unknown) faults that result in the same failure as the given fault
model (see Example 9).

Example 9. Consider a system with input I = {i}, output O = {o}, and
specification ϕ = G((i ↔ X¬i) → Xo). The specification enforces o to be
set to true whenever input i alternates between true and false in consecutive
time steps. Consider a stuck-at-0 fault δ = GF¬o at the output o. The
test suite TS = {T6} with the test strategy T6 illustrated in Figure 4.9
(on the left) is universally complete with respect to δ. The test strategy
T6 flips input i in every time step and thus forces the system to set o =
true in the second time step. Now consider the concrete and faulty system
implementation in Figure 4.9 (on the right) of ϕ. It does not satisfy the fault
assumption we’ve put on the system, as the faulty parts needs to be entered
first. The test strategy T6, when executed, first follows the bold edge and
then remains forever in the same state. As a consequence, the fault in the
system implementation, i.e., o stuck-at-0, is not uncovered. Another valid
strategy may have flipped the states of strategy T6, i.e., starting with i set
to false in the initial state. This strategy is now capable of uncovering the
fault in the implementation.

4.2. TEST CASE GENERATION 65

i ¬i

true

true

i/o

¬i/¬o

true/o

true/¬o

Figure 4.9: Test strategy T6 and a faulty system implementation of the
specification ϕ = G((i↔ X(¬i))→ X(o)).

Faults within a system implementation can be considered by computing
more than one test strategy for a given fault model. We extend Algorithm 1
to generate a bounded number b of test strategies by passing Θ = TS in
Line 4 and enclosing the line by a while-loop that uses an additional integer
variable c to count the number of test strategies generated per output oi. The
while-loop terminates if no new test strategy is generated or if c becomes
equal to b. The resulting test strategies for a certain output and a certain
fault model all aim for revealing the same fault, as defined in the fault model.
However, every strategy achieves its goal by enforcing a different trace and
thus enables the tester to reveal other faults that result in the same failure
as the original fault model.

Strategy Generalization. Another optimization we have added to
our approach affects the computed test strategy. The synthesis procedure
always assigns values to every variable in every state of the strategy and,
thus, limits the language of the automaton. However, often it may not be
necessary to fix all inputs to force the system into a certain state as shown
in Example 10. And as our focus is not only on the specified fault but also
on coupled faults, keeping inputs open results in a more general strategy
which opens the opportunity to trigger more coupled faults. In other words,
we aim for extending the language of the automaton by removing variable
assignments when the variable in this state can not generate a counterex-
ample. The tester is then free to assign arbitrary values to the free variables
when executing the generalized strategy. This offers the possibility to apply
additional testing criteria on the free inputs.

Example 10. Consider an arbiter with inputs I = {r1, r2}, outputs O =
{g1, g2}, and specification ϕ =

(
G(r1 → Fg1)∧G(r2 → Fg2)∧G(¬g1 ∨¬g2)

)
.

Every request shall eventually be granted and there shall never be two grants
at the same time. A valid test strategy τ7 that tests for a stuck-at-0 fault

66 CHAPTER 4. TEST CASE GENERATION FROM LTL

r1
¬r2

true

r1
r2

true

r1

true

Figure 4.10: Test strategy T7 on the left, T8 in the middle and T9 on the
right.

Algorithm 3 GeneralizeStrat: Generalize a strategy.

1: procedure Generalize(I,O, ϕ, oi, frq, κ, T), returns: A generaliza-
tion of T

2: for each qi ∈ T do
3: for each xi ∈ ΣI do
4: T ′ := remove assignment to xi from state qi in T
5: if modelcheckl(T ′,

(
ϕ[oi ← o′i] ∧ frq(κ)

)
→ ¬ϕ) then

6: T := T ′
7: return T

of signal g1 from some point in time onwards may simply set r1 = true and
r2 = false all the time (illustrated in Figure 4.10 on the left). This forces
the system in every time step to eventually grant this one request. Another
valid test strategy τ8 sets r1 = true and r2 = true all the time (illustrated
in Figure 4.10 in the middle). Now the system has to grant both requests
eventually. Both τ7 and τ8 test for the defined stuck-at-0 fault of signal g1
from some point in time onwards but will likely trigger different paths in the
SUT. Thus, considering the more general strategy τ9 that sets r1 = true all
the time but puts no restrictions on the value of r2 (illustrated in Figure 4.10
on the right), i.e., the user is free to assign any value to the signal, allows
the tester to evaluate different paths in the SUT while still testing for the
defined fault class.

Algorithm 3 presents the algorithm to generalize strategy τ . The algo-
rithm loops in Line 2 over all states of τ and in Line 3 over all inputs. In
Line 4 the assignment to the input xi in this state is removed, i.e., made
non-deterministic. If the resulting model still satisfies the orginial synthesis
formula ψsynt, then τ is overwritten with this new model. Otherwise, the
search continues with the previous model.

Note that generalizing a test strategy is a special way of computing
multiple concrete test strategies. However, generalization may fail when

4.3. EXPERIMENTAL RESULTS 67

computing multiple strategies succeeds, e.g., in Example 9 from the exten-
sion for faults within the SUT generalization is not applicable but different
strategies can be computed.

If generalization succeeds, the approach provides the user not only with
a single strategy for a defined fault class, but with a set of strategies and
when computing multiple strategies, we can now immediately exclude the
full set.

Optimization for full observability. One optimization we have al-
ready discussed at Proposition 8. In Line 3 of Algorithm 2 we can drop part
of the assumption and simplify the synthesis step to τi := synt

(
O, I, frq(κ)→

¬ϕ
)

for cases in which κ does not refer to a hidden signal o′i. Also for a
fault model δ that describes a fault of kind κ = (o′i ↔ ψ), where ψ is an
LTL formula over I and O, we can drop the part of the assumption accord-
ing to Proposition 7 if frq = G. This simplifies Line 4 of Algorithm 1 to
τi := synt

(
O, I, ϕ[oi ← ψ] → ¬ϕ,Θ

)
. These simplifications, moreover, no

longer require a synthesis procedure with partial information and thus, a
larger set of synthesis tools is supported.

Mutating the specification. We can also synthesize adaptive test
strategies that would uncover bugs where the SUT implements a mutated
(i.e., slightly modified) specification ϕ′ instead of ϕ by calling T := synt(O, I, ϕ′ →
¬ϕ,Θ). The implication requires the original specification ϕ to be violated
under the assumption that the mutated specification ϕ′ has been imple-
mented in the SUT. This variant does not require partial information syn-
thesis.

Other specification formalisms. Finally, although we’ve worked out
our approach for LTL, it is not limited to this formal language. The proposed
approach works for any other language if (a) the language is closed under
Boolean connectives (∧, ¬), (b) the desired fault models can be expressed,
and (c) a synthesis procedure (depending on the fault model we may require
one supporting partial information) is available.

4.3 Experimental Results

To demonstrate our method we evaluate it on three different specifications,
two cases studies that illustrate the applicability on realistic specifications
and a smaller toy example that focuses on illustrating the advantages of
our method. The first specification is the AMBA Bus Arbiter for two mas-
ters [26], the second specification is our toy example of a door system that
requires sophisticated strategies to unlock the door, and the third specifica-

68 CHAPTER 4. TEST CASE GENERATION FROM LTL

Table 4.1: Assumptions of the AMBA Specification.

A1 G(hbursteqincr→ ¬hbursteqburst4)
G(hbursteqburst4→ ¬hbursteqincr)

A2 G((hmastlock ∧ hbursteqincr ∧ ¬hmaster)→ X(F(¬hbusreq0)))
G((hmastlock ∧ hbursteqincr ∧ hmaster)→ X(F(¬hbusreq1)))

A3 G(F(ready))

A4 G(hlock0 → hbusreq0)
G(hlock1 → hbusreq1)

tion is the FDIR component.

We extended the LTL synthesis tool PARTY [70] and use it for the
AMBA case study. PARTY implements SMT-based bounded synthesis [48]
for LTL, which sets a bound b on the number of states of the system to be
synthesized. This bound is increased iteratively until a solution is found.
For the second experiment, where we only use fault models that do not
require partial information, we use the synthesis tool Acacia+ [32]. And for
the FDIR component, we use again PARTY.

We have split this Section into three parts, first we present the speci-
fications of our two case studies and the toy example, then we discuss the
computation of the test strategies for all three examples and, finally, we
evaluate the derived test strategies for the AMBA example and the FDIR
example on real implementations.

4.3.1 Formal Specifications

In this section we give the LTL specification of the ARM AMBA bus ar-
biter for two masters and we present the FDIR component of the satellite
Eu:CROPIS and formalize its requirements.

AMBA

The ARM AMBA bus arbiter specification is an industrial sized specification
formalized in [26] and deriving test cases for such a specification illustrates
that our approach can successfully handle real world examples.

The specification for two masters contains 7 input signals {ready, hlock0,
hlock1, hbusreq0, hbusreq1, hbursteqincr, hbursteqburst4} and 7 out-
put signals {hmaster, hgrant0, hgrant1, hmastlock, start, locked, decide}.
The LTL assumptions are presented in Table 4.1 and the LTL guarantees
are presented in Table 4.2.

4.3. EXPERIMENTAL RESULTS 69

PIN

This specification is a toy example to illustrate the advantages of our ap-
proach. It allows for the system that implements the specification to choose
arbitrary binary three digit codes in two consecutive time steps whenever
the user wants to unlock the door. To successfully unlock the door, the
user has to mirror these codes correctly. The example has 7 input sig-
nals {actionopen, actionclose, actionlock, actionunlock, pressA, pressB,
pressC} and 5 output signals {doorclosed, doorlocked, digitA, digitB,
digitC}, all of them observable. The assumptions (presented in Table 4.3)
assure that the inputs are mutually exclusive and that all inputs eventu-
ally reoccur. The guarantees (presented in Table 4.4) of the specification
require from any implementation to open and close an unlocked door when
requested. The door can be locked by the user and to unlock the door, the
user has to successfully mirror in two consecutive time steps a shown code
that is freely chosen by the implementation.

FDIR

Often, a satellite contains two redundant control units, such that in case
of problems with one unit the satellite can switch to the backup unit. The
Fault Detection Isolation and Recovery (FDIR) system is the component
of the satellite that monitors the running control unit and decides when to
restart the same unit and when to switch to the backup unit. Based on
housekeeping signals from the running control unit it may send a message
to the electronic power system to switch a unit off or on. When a sever
error occurs and no backup unit is available anymore, the FDIR system
may require the satellite to be switched to a safe mode from which it can
only be recovered by a reset command sent from ground control. A reset
message from outside starts one of the two control units and restarts the
FDIR system.

In Figure 4.11 an overview of such a composition with an FDIR system
is illustrated. While the FDIR block illustrates the component itself, EP

illustrates the electronic power component, S1 the nominal control unit and
S2 the backup control unit. The FDIR component is connected to the
electronic power component and can send messages to switch one of the
two control units on or off. It receives housekeeping information from the
current running unit. In case of a non critical error, the FDIR system
may initiate a restart of the same unit by requesting to switch it off and
on again, or it may request to switch to the backup unit by requesting to

70 CHAPTER 4. TEST CASE GENERATION FROM LTL

EP

FDIR𝑆1

𝑆2

System
on1
off1
on2
off2

mode1
mode2
errnc
errs

reset

safemode

Figure 4.11: An overview of how the FDIR component is integrated in the
satellite.

switch the running unit off and the backup unit on. In case of a severe error,
a restart of the same unit is not allowed and the FDIR system has to switch
off the running control unit and switch to the backup unit. If the FDIR
system has already initiated a switch to the backup unit before and there
is no available backup unit anymore, it has to activate the safe mode after
successfully requesting to switch off the faulty control unit.

Input signals to the FDIR component are I = {mode1, mode2, errnC,
errcrit, reset}. They are described in Table 4.5. The (observable) output
signals of the FDIR component are O = {on1, off1, on2, off2, safemode}
and signals that are not observable are O′ = {lastupisnom, allowswitch}.
They are described in Table 4.6.

The complete LTL specification of the FDIR component consists of the
assumptions A1-A6 and the guarantees G1-G13. All properties are listed in
Table 4.7, expressing the following intentions:

A1 Whenever both control units are off, then there is no running unit that
can have an error. Thus, the error signals have to be low as well.

A2 The error signals are mutual exclusive. If the environment enforces a
reset then both error signals have to be low, because we assume that
ground control has taken care of the errors.

A3 After a reset enforced by the environment, one of the two control units
has to be running and the other has to be off.

A4 Whenever the FDIR component sends on1, we assume that in the next
time step unit number one is running (mode1) and the state of the
second unit (mode2) does not change. The same assumption applies
analogously for on2.

4.3. EXPERIMENTAL RESULTS 71

A5 Whenever the FDIR component sends off1, we assume that in the
next time step unit number one is off (¬mode1) and the state of the
second unit (mode2) does not change. The same assumption applies
analogously for off2.

A6 We assume that the environment, more specifically the electronic power
unit, is not immediately free to change the state of the units when there
is no message from the FDIR component. It has to wait for one more
time step (with no messages of the FDIR component).

G1 This guarantee keeps track which unit was last activated by the FDIR
component.

G2 We require the signals on1, off1, on2 and off2 to be mutually exclu-
sively set to high.

G3 Whenever both units are off, then the FDIR component eventually
requests switching on one of the units (on1, on2) or activates safemode
or observes a reset.

G4 We restrict the FDIR component to not enter safemode as long as the
component can switch to the backup unit.

G5 The FDIR component must not request switching on one of the units
(on1, on2) as long as one of the units is running.

G6 Whenever the FDIR component is not allowed to switch to the backup
unit, then it must not request switching the backup unit on.

G7 Once the FDIR component switches to the backup unit it is not allowed
anymore to switch again (unless the environment performs a reset, see
G9).

G8 As long as the FDIR component only restarts the same unit it is still
allowed to switch in the future.

G9 A reset by the environment allows the FDIR component again to
switch to the backup unit if required.

G10 Whenever the FDIR component is in safemode it must not request
switching on one of the units (on1,on2).

G11 Once a switch is not allowed anymore and the environment does not
perform a reset, then the switch is also not allowed in the next time
step.

72 CHAPTER 4. TEST CASE GENERATION FROM LTL

G12 Whenever the FDIR component observes a server error (errcrit), it
must eventually switch to the backup unit or activate safemode unless
the environment performs a reset or the error disappears by itself
(without restarting the unit).

G13 Whenever the FDIR component observes a non-critical error (errnC),
it must eventually switch to the backup unit or activate safemode or
the error disappears (restarting the currently running unit is allowed).

4.3.2 Test Strategy Generation

AMBA

In 4.3.1 we have given the LTL specification of the ARM AMBA bus arbiter.
The properties can be clustered into 3 (interdependent) parts [26]: (a) de-
ciding about the next access, (b) starting an access, and (c) granting the
bus. In order to improve scalability and demonstrate that our approach can
operate on incomplete specifications, we synthesize test strategies for these
3 parts separately. Each part is combined with all assumptions to ensure
that the synthesized test strategies can be run on the entire system.

Table 4.8 summarizes the results for the computation of the strategies.
We computed strategies for three different fault models present in the rows.
While for the stuck-at-0 and stuck-at-1 fault assumption we have full infor-
mation we also computed strategies for a bit-flip fault model that requires
synthesis with partial information. Sub-rows for every fault model distin-
guish the output signals oi ∈ O. The column-blocks contain results for the
three specification parts and the full specification. For every computation
we present in the sub-columns of the respective specification (a) the lowest
fault frequency for which Algorithm 1 found a solution (“-” indicates that
no strategy with ≤b states exists, even with frq = G), (b) the number of
states in the resulting test strategy, (c) the execution time, and (d) the peak
memory consumption over all outputs. An empty sub-row indicates that
the output does not occur in that specification parts.

In many cases, the synthesized test strategies cannot only reveal perma-
nent faults but also transient faults with low frequencies. For stuck-at-0 and
stuck-at-1, we can consider the entire spec, and we get such strategies for
12 cases. If we use the fault model that flips the output, we have to restrict
ourselves to a subset of the spec. Nevertheless, we can derive another six
strategies of the desired quality.

4.3. EXPERIMENTAL RESULTS 73

Deriving strategies for parts of the specification that reveal (transient)
flips succeeds more often than deriving strategies revealing (transient) stuck-
at faults because, with the latter fault model, an output may be (temporar-
ily) stuck at the correct value. On the other hand, synthesizing flip-tests
consumes more resources because the optimization discussed in Proposi-
tion 8 cannot be applied. This is also the reason for the timeout with flips
on the full specification. Although test strategies are found for most outputs
when processing the three specification parts separately, processing the full
specification yields better strategies but takes longer.

PIN

Although the AMBA specification is industrial, the realization is rather
straightforward, which is confirmed by the resulting strategies that all con-
tain at most three states. To evaluate our approach on a specification that
requires more complex strategies, we apply it on the PIN toy example that
specifies the opening mechanism of a door that is protected by a PIN when
the door is locked. We have given the respective LTL specification of it in
Section 4.3.1.

Table 4.9 summarizes the results using Acacia+. Our approach is able to
derive GF strategies for the output doorclosed. For the output doorlocked,
that is not specified for every step in time, our approach derived strategies
detecting FG faults. As the number of states indicates, the strategies are
larger, because they need to adapt the input behavior to the observed be-
havior of the implementation that is free to choose the PIN required for
successfully unlocking the door.

FDIR

For the specification of the FDIR system (see Section 4.3.1) we derived for
the output signals on1, off1 and safemode strategies for the basic fault mod-
els stuck-at-0, stuck-at-1 and bit-flip. The signals on2 and off2 are analog
to the nominal signals. Thus, the resulting strategies would be equivalent
to the strategies for the nominal signals, only with redundant and nominal
behavior switched. The results for the strategy generation are presented in
Table 4.10.

The more freedom there is for implementations of the specification, the
more difficult it becomes to compute a strategy. The search for strategies
that are capable of detecting a bit-flip is the most difficult one as we cannot
make use of our optimization for full observability of the output signals. For

74 CHAPTER 4. TEST CASE GENERATION FROM LTL

all signals with a stuck-at-0 fault and for the off1 signal with one of the
other two faults we are able to derive test strategies that can detect the
fault if it is permanent from some point onwards. For the signals on1 and
safemode we are able to derive strategies for stuck-at-1 faults and bit-flips
also at a lower frequency, i.e., we can detect those faults also if they occur
at least infinitely often.

We illustrate and explain one derived strategy in detail. The strategy
derived for the signal safemode being stuck-at-0 consists of four states. Fig-
ure 4.12 illustrates one of the strategies computed with PARTY. In the
first state (state 0) we have the nominal control unit running (mode1) and
activate the errnC flag, i.e., we raise a non critical error that requires the
component to request a restart of the same unit until the error is gone or to
request a switch to the backup unit. We do this until the FDIR component
requests switching off the nominal unit. In the next state (state 1) we have
to wait, doing nothing, for the FDIR component to decide how to proceed.
Once the FDIR component requests a switch to the backup unit (state 3),
we raise the errnC flag, i.e., we again raise a non critical error, but with
the redundant unit running (mode2), until the system requests switching off
the redundant unit. It may try to restart the same unit, but we will always
raise the error flag until the FDIR component eventually has to activate safe
mode if it satisfies the specification.

4.3.3 Evaluation of the Test Strategies

To evaluate the computed test strategies for the AMBA and the FDIR spec-
ification, we applied them to real implementations.

AMBA

For the AMBA protocol, we implemented an arbiter for two masters in Ver-
ilog. We model checked the implementation against the specification to be
sure that the implementation is correct with respect to the specification.
Next we generated mutations for every line of code of the correct imple-
mentation by fixing assignments in a specified time step to a fixed value
to introduce possible transient errors. To eliminate equivalent mutants, we
model checked all the mutated implementations and removed those which
did not violate the specification. Fixing the assignment to 0 resulted in
39 mutants, fixing the assignment to 1 in 37 and negating the assignment
resulted in 41 mutants.

For our test suite TS we used the strategies derived from the full speci-

4.3. EXPERIMENTAL RESULTS 75

0
errnC
¬errcrit
mode1
¬mode2
¬reset

3
errnC
¬errcrit
¬mode1
mode2
¬reset

2
errnC
¬errcrit
mode1
mode2
¬reset

1
¬errnC
¬errcrit
¬mode1
¬mode2
¬reset

else

on2

off1

on1

off2

elseelse

off1

off2

else

on2

on1

Figure 4.12: Test strategy that forces satmodesafe to true.

fication (see Table 4.8). The test suite consists of the one strategy that can
detect F stuck-at-0 faults, the four strategies that can detect GF stuck-at-
0 faults, the two strategies that can detect FG stuck-at-0 faults, the three
strategies that can detect F stuck-at-1 faults and the four strategies that can
detect GF stuck-at-1 faults. For the test suite gTS we used the generalized
strategies from TS. The random test suite consists of nine strategies, i.e.,
nine different random seeds, that choose valid random input values.

We executed the generalized test strategies from the test suite for a
fixed number of time steps and logged the input and output values of the
execution traces. Whenever an input signal was not fixed by the strategy
we randomly chose a valid value. We then applied the random test suite for
the same number of time steps, such that we have a reference to compare to.
Every logged trace is then checked against the specification and a mutant
is killed whenever the trace is a witness for a violation of the specification,
i.e., the specification is violated for any continuation of this trace.

Table 4.11 presents the results. The first two columns show in which time
step the mutation is active and which fault was added to the code with 0,
respectively 1, being an assignment to 0, respectively 1, and with neg being
a negation of the statement. Mut is the number of mutated implementations
that violate the specification. TS#, respectively gTS# and Rnd#, present

76 CHAPTER 4. TEST CASE GENERATION FROM LTL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

state 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 3 1 3 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1

mode1

mode2

errnC

errcrit

reset

on1

off1

on2

off2

safemode

Figure 4.13: Execution trace of a faulty system under the strategy that tests
for a stuck-at-0 fault of signal safemode. Bold signals are controlled by the
strategy.

the number of detected mutants by the strategies of the corresponding test
suite with MS [%] being the mutation score. For better readability in every
row the highest mutation score is highlighted green and the lowest one is
highlighted red.

As we have already discussed in Section 4.3.2, the strategies are short
and, therefore, the success rate of random strategies for detecting a tran-
sient fault comes with no surprise. In the table the advantages of generaliza-
tion over concrete strategies is immediately obvious. While the computed
strategies with concrete values sometimes do have a low detection rate, the
generalized strategies detect in all benchmarks at least 40% of the mutants.
All detected mutants besides the ones that are part of the fault model for
which the strategies were built for are detected due to the coupling effect.
For the transient bit-flip we have no strategy at all in our test suite. Nev-
ertheless our generalized strategies detected 41.46% of the mutants in the
corresponding benchmark.

FDIR

Test setting. The FDIR component in the Eu:CROPIS satellite is im-
plemented in C++. It is not an exact realization of the specification in
Section 4.3.1, because it allows commands to the EP to be lost (e.g. due to
electrical faults), which is an extension of the specification.

The implementation uses an abstract interface to access other sub-systems

4.3. EXPERIMENTAL RESULTS 77

of the satellite. We replace this interface by a set of test adapters that con-
nect the signals produced by the test strategy. As we are only interested
in the functional properties of the implementation, we can run the code on
a normal Linux system, instead of the microprocessor which is used in the
satellite. This gives access to all Linux based debugging and test tools and
allows for example to use gcov to measure the code coverage during test
execution.

One time step during test execution is split into the following four opera-
tions: (1) request values for the input variables IFDIR from the test strategy;
(2) provide the values via the test adapter to the FDIR implementation; (3)
execute the FDIR implementation for one cycle and (4) extract the output
values OFDIR from the test adapter and provide them to the test strategy to
derive input values for the next time step. For each time step the execution
trace is logged, i.e., we store the values assigned to the inputs IFDIR and
outputs OFDIR of the FDIR component.

Mutation testing. We apply mutation analysis to assess the effective-
ness, i.e., fault finding abilities, of our test suite. We say a test suite kills
a mutant program M if it contains at least one test strategy that when
executed on M and the original program P produces a trace where at least
one output of M differs in at least one time step from the respective output
of P (for the same input sequence). A mutant program M is equivalent
to the original program P if M does not violate the specification. For our
evaluation we manually identify and remove equivalent mutants.

We derive mutant programs from the implementation of the FDIR com-
ponent by systematically introducing the following four mutations in each
line: (1) removing the line, (2) replacement of true with false or false

with true, (3) replacement of == with != or != with ==, and (4) replacement
of && with || or || with &&. In total, 198 mutant programs are generated.
We use the GNU compiler gcc to remove all mutant programs which do not
compile and thus not conform to the C++ programming language. Also all
mutant programs which fail during runtime e.g. by raising a segmentation
fault are removed. We manually analyzed the remaining 96 mutants and
identified 23 mutants that are correct with respect to the specification, i.e.,
equivalent mutants. Thus, 73 mutants violate the specification. Moreover,
11 of these 73 mutants can only violate the specification if the off1 and
off2 commands can fail, which contradicts our assumptions on the EP unit.
We keep those mutants to check whether the strategies can kill them never-
theless. Next, we execute all test strategies on the mutant programs for 80
time steps each and log the corresponding execution traces.

From the 73 mutants that violate the specification, our strategies all to-

78 CHAPTER 4. TEST CASE GENERATION FROM LTL

gether are able to kill 52, this corresponds to a mutation score of 71.23%. If
we do not take the 11 mutants into consideration that violate our assump-
tions for the test strategy generation, then the mutation score increases to
80.65%.

We illustrate in Figure 4.13 the execution of the test strategy from Fig-
ure 4.12 on a mutant. The strategy aims for revealing a stuck-at-0 fault of
signal safemode. It can be seen that the test strategy first forces the FDIR
component to eventually switch to the backup control unit, the switch hap-
pens in time step 14 after several restarts of the control unit. Then the
strategy forces the FDIR component to eventually activate safemode. How-
ever, this mutant is faulty and instead of activating safemode the system
remains silent from time step 26 onwards. Thus, violating guarantee G32.

As the strategies are only derived from requirements, without any imple-
mentation specific knowledge, they are applicable on any system that claims
to implement the given specification. The mutation score of 71.23% illus-
trates that our strategies, although computed for only three different faults
that are assumed to only affect a single output signal, are also sensitive to
many other faults.

If we only apply a single of the four strategies we computed per fault
model and output signal, then the resulting test suite can kill (1) 51 mutants,
(2) 51 mutants, (3) 49 mutants and (4) 49 mutants. While one strategy per
fault and output already achieves a high mutation score, deriving multiple
strategies per fault model and output signal still increases the mutation
score.

In Table 4.12 we present the mutation score of the individual combi-
nations of signals and fault models. From all the mutants killed, there
were 9 mutants only killed by a single signal / fault model combination,
namely on1with stuck-at-0 assumption exclusively killing 7 mutants and
safemodewith stuck-at-0 assumption exclusively killing 2 mutants.

Random testing. We compared the fault finding abilities of the gener-
ated test strategies and random testing executed for 100, 10’000, and 100’000
time steps, respectively. For random testing we use a similar test setup to
the test strategy setup, but instead of requesting the input values IFDIR

from a test strategy we use uniformly distributed random values. For each
time step, the input and output values are recorded. For each mutant the
same input sequence is supplied and the output sequence of the mutant is
compared to the output sequence of the actual implementation.

2Given that we have decided to we have waited long enough for safemode to become
true.

4.3. EXPERIMENTAL RESULTS 79

Random testing for 100 time steps killed 46 mutants, while random test-
ing for 10’000 time steps killed 69 mutants. Executing the random test
for a longer time did not cover any additional mutants, random testing for
100’000 time steps killed 69 mutants as well.

Our strategies are able to kill three mutants that are missed by all of
the three random test sequences. These mutants can only be killed when
executing certain input/output sequences and it is very unlikely for random
testing to hit one of the required sequences. The corresponding sequence
requires that a sequence of errnC, mode1going low and mode1going high is
executed multiple times before either errcritor resetis triggered.

One mutant is neither covered by the test strategies nor by the random
sequences. This mutant requires a longer sequence as well in order to be
executed. The mutant is not covered by the test strategies because the
sequence is about the timeout of an EP command, which is not covered by
the specification from which the test strategies are derived.

Code coverage. Table 4.13 lists the line coverage and branch coverage
measured with gcov for the different testing approaches. Each line of the
table presents one testing approach. The first column contains the name
of approach, the second column lists the number of time steps the test was
executed, and the third and the fourth column present the achieved line and
branch coverage. Overall, the random testing approaches achieve a higher
code coverage than the generated adaptive test strategies when executed on
the source code of the FDIR component. This stems from the fact that the
test strategies are derived from the specification only and independent from
a concrete implementation. As mentioned previously, the implementation
adds timeouts for operations of the EP, which is not part of the specification.
Removing the corresponding instructions would increase the line coverage
to 87.3% and the branch coverage to 74.5%. In combination random tests
and our strategies together achieve a line coverage of 97.6% and a branch
coverage of 87%.

80 CHAPTER 4. TEST CASE GENERATION FROM LTL

Table 4.2: Guarantees of the AMBA Specification.

G1 G(¬ready→ X(¬start))

G2 G((hmastlock ∧ hbursteqincr ∧ start ∧ ¬hmaster)→ X(¬hbusreq0R¬start))
G((hmastlock ∧ hbursteqincr ∧ start ∧ hmaster)→ X(¬hbusreq1R¬start))

G3 G(stateg32 → ¬start)

G4,G5 G(ready→ ((hgrant0 ↔ X(¬hmaster))∧
(hgrant1 ↔ X(hmaster)) ∧ (locked↔ X(hmastlock))))

G6 G((X¬start)→ ((hmaster↔ X(hmaster)) ∧ (hmastlock↔ X(hmastlock))))

G7 G((decide ∧ X(hgrant0))→ (hlock0 ↔ Xlocked))
G((decide ∧ X(hgrant1))→ (hlock1 ↔ Xlocked))

G8 G(¬decide→ ((hgrant0 ↔ X(hgrant0)) ∧ (hgrant1 ↔ X(hgrant1))∧
(locked↔ X(locked))))

G9 G(hbusreq0 → F(¬hbusreq0 ∨ ¬hmaster))
G(hbusreq1 → F(¬hbusreq1 ∨ hmaster))

G10 G(¬hgrant1 → (hbusreq1R¬hgrant1))
G((decide ∧ (¬hbusreq0 ∧ ¬hbusreq1))→ X(hgrant0))

CNT (¬stateg32 ∧ ¬stateg31 ∧ ¬stateg30)
G((¬stateg32 ∧ ¬stateg31 ∧ ¬stateg30∧
¬(hmastlock ∧ hbursteqburst4 ∧ start))→ X(¬stateg32 ∧ ¬stateg31 ∧ ¬stateg30))
G((¬stateg32 ∧ ¬stateg31 ∧ ¬stateg30 ∧ hmastlock∧
hbursteqburst4 ∧ start ∧ ¬ready)→ X(stateg32 ∧ ¬stateg31 ∧ ¬stateg30))
G((¬stateg32 ∧ ¬stateg31 ∧ ¬stateg30 ∧ hmastlock∧
hbursteqburst4 ∧ start ∧ ready)→ X(stateg32 ∧ ¬stateg31 ∧ stateg30))
G((stateg32 ∧ ¬stateg31 ∧ ¬stateg30 ∧ ¬start ∧ ready)→
Xstateg32 ∧ ¬stateg31 ∧ stateg30))
G((stateg32 ∧ ¬stateg31 ∧ ¬stateg30 ∧ ¬start ∧ ¬ready)→
X(stateg32 ∧ ¬stateg31 ∧ ¬stateg30))
G((stateg32 ∧ ¬stateg31 ∧ stateg30 ∧ ¬start ∧ ready)→
X(stateg32 ∧ stateg31 ∧ ¬stateg30))
G((stateg32 ∧ ¬stateg31 ∧ stateg30 ∧ ¬start ∧ ¬ready)→
X(stateg32 ∧ ¬stateg31 ∧ stateg30))
G((stateg32 ∧ stateg31 ∧ ¬stateg30 ∧ ¬start ∧ ready)→
X(stateg32 ∧ stateg31 ∧ stateg30))
G((stateg32 ∧ stateg31 ∧ ¬stateg30 ∧ ¬start ∧ ¬ready)→
X(stateg32 ∧ stateg31 ∧ ¬stateg30))
G((stateg32 ∧ stateg31 ∧ stateg30 ∧ ¬start ∧ ready)→
X(¬stateg32 ∧ ¬stateg31 ∧ ¬stateg30))
G((stateg32 ∧ stateg31 ∧ stateg30 ∧ ¬start ∧ ¬ready)→
X(stateg32 ∧ stateg31 ∧ stateg30))

Table 4.3: Assumptions of the PIN Specification.

A1 G(actionopen → ¬actionclose ∧ ¬actionlock ∧ ¬actionunlock)
G(actionclose → ¬actionopen ∧ ¬actionlock ∧ ¬actionunlock)
G(actionlock → ¬actionclose ∧ ¬actionopen ∧ ¬actionunlock)
G(actionunlock → ¬actionclose ∧ ¬actionlock ∧ ¬actionopen)

A2 GFactionopen ∧ GFactionclose ∧ GFactionlock ∧ GFactionunlock

4.3. EXPERIMENTAL RESULTS 81

Table 4.4: Guarantees of the PIN Specification.

G1 doorclosed ∧ doorlocked

G2 G((actionopen ∧ ¬doorlocked)→ X¬doorclosed)
G((actionopen ∧ doorlocked)→ (doorclosed↔ Xdoorclosed))

G3 G(actionclose → Xdoorclosed)

G4 G(actionlock → Xdoorlocked)

G5 G
(
(actionunlock∧

(digitA ↔ XpressA) ∧ (digitB ↔ XpressB) ∧ (digitC ↔ XpressC)∧
(XdigitA ↔ XXpressA) ∧ (XdigitB ↔ XXpressB) ∧ (XdigitC ↔ XXpressC)∧
XX¬actionlock)→ XXX¬doorlocked

)
G
(
(actionunlock∧

¬((digitA ↔ XpressA) ∧ (digitB ↔ XpressB) ∧ (digitC ↔ XpressC)))

→ XXdoorlocked
)

G6 G((¬doorclosed ∧ ¬actionclose)→ X¬doorclosed)
G((doorclosed ∧ ¬actionclose)→ Xdoorclosed)

Table 4.5: Descriptions of the input signals of the FDIR component.

mode1 true iff S1 is activated
mode2 true iff S2 is activated
errnC true iff a non-critical error is signaled by S1 or S2
errcrit true iff a severe error is signaled by S1 or S2
reset true iff the FDIR component is reset

Table 4.6: Descriptions of the output signals of the FDIR component.

on1 true iff S1 shall be switched on
off1 true iff S1 shall be switched off
on2 true iff S2 shall be switched on
off2 true iff S2 shall be switched off

safemode true iff the FDIR component initiates the safemode

lastupisnom true iff the last active unit was S1 and
false if the last active unit was S2

allowswitch true iff a switch of S1 to S2 or S2 to S1 is allowed

82 CHAPTER 4. TEST CASE GENERATION FROM LTL

Table 4.7: Temporal specification of system-level FDIR component in LTL.

A1 G(¬mode2 ∧ ¬mode1 → ¬errnC ∧ ¬errcrit)

A2 G(¬errnC ∨ ¬errcrit) ∧ G(reset→ ¬errnC ∧ ¬errcrit)

A3 G(reset→ X(mode2 ⊕ mode1))

A4 G(¬mode1 ∧ on1 ∧ ¬off1 ∧ ¬on2 ∧ ¬off2 ∧ ¬reset ∧ ¬safemode→
X(mode1) ∧ (mode2 ↔ X(mode2)))

G(¬mode2 ∧ ¬on1 ∧ ¬off1 ∧ on2 ∧ ¬off2 ∧ ¬reset ∧ ¬safemode→
X(mode2) ∧ (mode1 ↔ X(mode1)))

A5 G(mode1 ∧ ¬on1 ∧ off1 ∧ ¬on2 ∧ ¬off2 ∧ ¬reset ∧ ¬safemode→
X(¬mode1) ∧ (mode2 ↔ X(mode2)))

G(mode2 ∧ ¬on1 ∧ ¬off1 ∧ ¬on2 ∧ off2 ∧ ¬reset ∧ ¬safemode→
X(¬mode2) ∧ (mode1 ↔ X(mode1)))

A6 G((¬(¬on2 ∧ ¬off1 ∧ ¬on1 ∧ ¬off2) ∧ X(¬on2 ∧ ¬off1 ∧ ¬on1 ∧ ¬off2)∧
(¬reset ∧ X(¬reset) ∧ ¬safemode ∧ X(¬safemode))→
X((mode2 ↔ X(mode2)) ∧ (mode1 ↔ X(mode1)))

G1 G((on1 ∧ ¬on2)→ (X(lastupisnom)))
G((¬on1 ∧ on2)→ (X(¬lastupisnom)))
G((¬on1 ∧ ¬on2)→ (lastupisnom↔ X(lastupisnom)))

G2 G(on1 → ¬off1 ∧ ¬on2 ∧ ¬off2)
G(off1 → ¬on1 ∧ ¬on2 ∧ ¬off2)
G(on2 → ¬on1 ∧ ¬off1 ∧ ¬off2)
G(off2 → ¬on1 ∧ ¬on2 ∧ ¬off1)

G3 G(¬mode2 ∧ ¬mode1 → F(reset ∨ on2 ∨ on1 ∨ safemode))

G4 G(allowswitch→ ¬safemode)

G5 G((mode2 ∨ mode1)→ ¬on1 ∧ ¬on2)

G6 G(¬allowswitch ∧ lastupisnom→ ¬on2)
G(¬allowswitch ∧ ¬lastupisnom→ ¬on1)

G7 G(¬reset ∧ allowswitch ∧ lastupisnom ∧ on2 → X(¬allowswitch))
G(¬reset ∧ allowswitch ∧ ¬lastupisnom ∧ on1 → X(¬allowswitch))

G8 G((allowswitch ∧ ¬(((lastupisnom ∧ on2) ∨ (¬lastupisnom ∧ on1))))→ X(allowswitch))

G9 G(reset→ X(allowswitch))

G10 G(safemode→ (¬on1 ∧ ¬on2))

G11 G(¬allowswitch ∧ ¬reset→ X(¬allowswitch))

G12 G((errcrit ∧ mode1 ∧ ¬reset)→ F(reset ∨ safemode ∨ mode2 ∨ (mode1U(mode1 ∧ ¬errcrit))))
G((errcrit ∧ mode2 ∧ ¬reset)→ F(reset ∨ safemode ∨ mode1 ∨ (mode2U(mode2 ∧ ¬errcrit))))

G13 G((errnC ∧ mode1 ∧ ¬reset)→ F(reset ∨ safemode ∨ mode2 ∨ (mode1 ∧ ¬errnC)))
G((errnC ∧ mode2 ∧ ¬reset)→ F(reset ∨ safemode ∨ mode1 ∨ (mode2 ∧ ¬errnC)))

4.3. EXPERIMENTAL RESULTS 83

Table 4.8: Results for the AMBA bus arbiter. The suffix “k” multiplies by
103.

Decide Next Start Access Grant Bus Full Spec

Fault oi frq |τ | sec MB frq |τ | sec MB frq |τ | sec MB frq |τ | sec MB

S
tu

ck
at

0

(κ
=
¬o

i)

hmaster FG 2 359
p

ea
k
:

57
4

M
B

- - 147

p
ea

k
:

13
8

M
B

- - 146

p
ea

k
:

13
1

M
B

GF 2 4,848

p
ea

k
:

2,
20

7
M

B

hgrant0 F 2 18 G 2 150 F 2 2,082
hgrant1 - - 856 - - 172 GF 2 4,991
hmastlock - - 803 - - 133 - - 133 GF 2 5,808
start G 2 126 G 2 230 FG 2 9,367
locked - - 736 - - 170 GF 2 5,236
decide G 2 689 FG 2 9,934

S
tu

ck
at

1

(κ
=
o i

)

hmaster FG 2 1,237

p
ea

k
:

78
3

M
B

G 2 133
p

ea
k
:

13
0

M
B

G 2 153

p
ea

k
:

13
1

M
B

F 2 2,388

p
ea

k
:

1,
91

7
M

B

hgrant0 - - 6,775 - - 171 GF 2 5,681
hgrant1 F 2 19 G 2 151 F 2 1,970
hmastlock G 2 9,64 G 2 115 G 2 186 F 2 1,473
start GF 3 53 - - 129 GF 2 5,934
locked GF 2 800 - - 202 GF 2 5,423
decide - - 1,011 GF 2 4,169

F
li
p

(κ
=
o i
↔
¬o
′ i) hmaster G 2 22k

p
ea

k
:

6
,1

76
M

B G 2 54k

p
ea

k
:

47
2

M
B

GF 2 1,828
p

ea
k
:

1,
47

6
M

B

hgrant0 F 2 29 F 2 10 Timeout
hgrant1 F 2 38 F 2 10 (> 6 days
hmastlock G 2 3,385 G 2 53k GF 2 1,057 for first
start FG 2 43k G 2 163 output)
locked GF 2 1,525 GF 2 86
decide F 3 61

Table 4.9: Results for the door specification.

Fault oi frq |τ | sec MB

stuck-at-0
doorclosed GF 25 22,341 347
doorlocked FG 29 2,425 285

stuck-at-1
doorclosed GF 45 23,290 1,000
doorlocked FG 52 3.100 148

84 CHAPTER 4. TEST CASE GENERATION FROM LTL

Table 4.10: Results for the FDIR specification with max. 4 strategies. The
suffix “k” multiplies by 103.

Fault oi frq |τ | sec peak MB

S
tu

ck
0 on1 FG 4 1.2k 400

off1 FG 3 517 396
safemode FG 4 934 324

S
tu

ck
1 on1 GF 4 438 222

off1 FG 4 753 378
safemode GF 3 169 192

F
li
p on1 GF 4 26k 3.6k

off1 FG 4 98.9k 4.3k
safemode GF 3 13.1k 4.3k

Table 4.11: Testing mutated AMBA implementations.

Tick Fault Mut TS# MS[%] gTS# MS[%] Rnd# MS[%]

7 0 39 11 28.21 16 41.03 14 35.90
5 1 37 15 40.54 15 40.54 9 24.32
12 1 37 13 35.14 15 40.54 12 32.43
12 neg 41 13 31.71 17 41.46 18 43.90

4, 13 0 39 17 43.59 17 43.59 16 41.03
6, 11 1 37 18 48.65 18 48.65 12 32.43

Table 4.12: Mutation coverage by fault models and signals when executing
all four derived strategies.

Output Fault Model

S-a-0 S-a-1 Bit-Flip All
[%] [%] [%] [%]

on1 65.75 39.73 5.48 65.75
off1 5.48 4.11 9.59 9.59
safemode 61.64 6.85 6.85 61.64

All 71.23 39.73 9.59 71.23

4.3. EXPERIMENTAL RESULTS 85

Table 4.13: Code coverage.

Approach Time steps Line coverage Branch coverage
[%] [%]

Random 100 80.5 64.8
Random 10’000 96.3 85.2
Random 100’000 96.3 85.2

Test strategy 80 76.8 64.8

Together 97.6 87.0

86 CHAPTER 4. TEST CASE GENERATION FROM LTL

Chapter 5

Finite LTL Interpretation

“Learning how to think” really
means learning how to exercise
some control over how and what
you think. It means being
conscious and aware enough to
choose what you pay attention
to and to choose how you
construct meaning from
experience. Because if you
cannot or will not exercise this
kind of choice in adult life, you
will be totally hosed.

David Foster Wallace

This chapter presents the newest work [13] that is yet under review.
References to this paper are not made explicit.

When testing a system that implements a specification given in Linear
Temporal Logic (LTL), it is not always straightforward to evaluate the re-
sulting traces of the System Under Test (SUT). While LTL is specified on
infinite paths, any trace of an executed test is finite. We may need to draw
a verdict on whether the system satisfies or violates the property “p holds
infinitely often.” The problem is that there always exists a continuation of
a finite trace that satisfies the property and a different continuation that
violates it.

Thus, we present in this chapter a method to evaluate inconclusive finite
traces whether they (presumably) satisfy given LTL properties or not. Our
approach decides based on observed behavior that is hidden in the trace

87

88 CHAPTER 5. FINITE LTL INTERPRETATION

r ¬r

g

¬g

g

¬g

Figure 5.1: Strategy that tests for a stuck-at-0 fault in any system that

implements the property G
(
r → Fg

)
.

whether a trace that is inconclusive, i.e., a trace that has neither satisfied
nor violated the specification yet, will presumably satisfy/violate the speci-
fication. In Section 5.1 we first motivate our approach as a requirement for
the proposed test strategy computation approach from the previous chapter.
We then present in Section 5.2 our new approach and evaluate the approach
on examples in Section 5.3.

5.1 Motivation

Assume a specification that requires a system to eventually provide a grant
g whenever a user triggers a request r. The formalization of this property
in LTL looks as follows:

ψ = G
(
r → Fg

)
.

Now consider we have used our approach from Chapter 4 and computed
a strategy that aims to reveal a fault of the type FG¬g, i.e., we test whether
there eventually exists a persistent stuck-at-0 fault at signal g. Executing
the computed strategy (illustrated in Figure 5.1) on two different systems,
we present in Table 5.1 the observed trace π1 of the first system and the
observed trace π2 of the second system.

To evaluate the traces we use existing approaches that evaluate LTL
properties on finite traces as discussed in Section 1.3. Again, all the dis-
cussed methods evaluate both the traces to the same verdict. However, this
is not what we would expect, as the system that produces trace π1 looks
totally fine, whereas something seems to be wrong with the system that pro-
duces trace π2. While requests seem to be granted after exactly two time
steps, this is not the case for the third request. This request is not granted

5.2. COUNTING SEMANTICS FOR LTL 89

Table 5.1: Observed traces π1 and π2 for G
(
r → Fg

)
.

trace t 1 2 3 4 5 6 7 8 9 10 11 12 13

π1 r > − − > − − > − − > − − >
g − − > − − > − − > − − > −

π2 r > − − > − − > − − − − − −
g − − > − − > − − − − − − −

in any of the six time steps after the last request, which is much longer than
the time it took in the past to observe the grant. Thus, we desire a seman-
tics that evaluates LTL properties on finite traces with respect to observed
past behavior. If the time is just too short to observe the satisfaction of
the property with respect to previous satisfactions, then we assume that a
continuation on the same system would satisfy the property, such as in trace
π1, where we would expect to observe a grant if we continue the trace for
two more time steps. If, however, the property is not satisfied for a longer
time than the longest witness for a satisfaction in the past (such as in trace
π2), then we conclude this to be bad.

5.2 Counting Semantics for LTL

Before we introduce our counting semantics for LTL in Section 5.2.2, we pro-
vide necessary definitions in Section 5.2.1. Then we present in Section 5.2.3
our evaluation method that maps the counting semantics to a truth value.

5.2.1 Definitions

We extend the set of natural numbers (incl. 0) with the two special symbols
∞ (infinite) and − (impossible) and refer to it as N+ = N0 ∪ {∞,−}. We
define an order on it such that for all n ∈ N0, we have n <∞ < −. To add
two elements a, b ∈ N+ we define the addition-operator ⊕ as follows:

Definition 12 (Operator ⊕). We define the binary operator ⊕ : N+×N+ →
N+ such that for every a, b ∈ N+:

a⊕ b =

{
a+ b if a, b ∈ N0

max{a, b} otherwise

90 CHAPTER 5. FINITE LTL INTERPRETATION

To express our counting finite semantics we use pairs (s, f) with s, f ∈
N+ and define the following operations on the pairs:

Definition 13 (Operations ∼, ⊕, t, u). Given two pairs (s, f) ∈ N+ ×N+

and (s′, f ′) ∈ N+ × N+ and let k ∈ N0, we have:

∼(s, f) = (f, s) (5.1)

(s, f)⊕ k = (s⊕ k, f ⊕ k) (5.2)

(s, f) t (s′, f ′) = (min(s, s′),max(f, f ′)) (5.3)

(s, f) u (s′, f ′) = (max(s, s′),min(f, f ′)) (5.4)

In Equation 5.1 (operator ∼) we define the swap between the two values
of a pair. The operator ⊕1 in Equation 5.2 defines the increment of both
values in the pair by the value 1. The binary operator t (we refer to it
also as minmax) in Equation 5.3, computes a new pair with the minimum
of the first values as the new first value and the maximum of the second
values as the new second value. The binary operator u (we refer to it also
as maxmin) in Equation 5.4 is symmetric to the minmax operator, i.e., it
computes the maximum of the first values as the new first value and the
minimum of the second values as the new second value. We now give some
examples to illustrate some operations on pairs:

Example 11. Given the pairs (0, 0), (∞, 1) and (7,−) we have:

∼(0, 0) = (0, 0) ∼(∞, 1) = (1,∞)
(0, 0)⊕ 1 = (1, 1) (∞, 1)⊕ 1 = (∞, 2)

(0, 0) t (∞, 1) = (0, 1) (∞, 1) t (7,−) = (7,−)
(0, 0) u (∞, 1) = (∞, 0) (∞, 1) u (7,−) = (∞, 1)

Remark. Note that N+×N+ forms a lattice where (s, f)� (s′, f ′) when
s ≥ s′ and f ≤ f ′ with join t and meet u. Intuitively, larger values are
closer to true.

5.2.2 Counting Semantics

With operations on the pairs defined, we now introduce our counting se-
mantics for LTL. For an arbitrary position i of a given finite trace π ∈ Σ∗

and a given LTL formula φ we give a pair (s, f) ∈ N+×N+. We refer to s as
satisfaction witness count and to f as violation witness count. Intuitively,
the value s (f) denotes the number of additional steps needed to witness the
satisfaction (violation) of the formula. The value ∞ is used to denote that

5.2. COUNTING SEMANTICS FOR LTL 91

the property cannot be satisfied (violated) by a finite continuation and −
denotes that the property cannot be satisfied (violated) by any continuation
of the trace.

Definition 14 (Counting finitary semantics). Let π ∈ Σ∗ be a finite trace,
i ∈ N>0 be the ith position of a trace and φ ∈ Φ be an LTL formula. We
define the counting finitary semantics of LTL as the function
dπ : Φ× N>0 → P(N+ × N+) such that:

dπ(p, i) =

(0,−) if i ≤ |π| ∧ p ∈ πi
(−, 0) if i ≤ |π| ∧ p 6∈ πi
(0, 0) if i > |π|,

dπ(¬φ, i) = ∼ dπ(φ, i),

dπ(φ1 ∨ φ2, i) = dπ(φ1, i) t dπ(φ2, i),

dπ(Xφ, i) = dπ(φ, i+ 1)⊕ 1,

dπ(φUψ, i) =

dπ(ψ, i) t
(
dπ(φ, i) u dπ(X(φUψ), i)

)
if i ≤ |π|

dπ(ψ, i) t
(
dπ(φ, i) u (−,∞)

)
if i > |π|,

dπ(Fφ, i) =

{
dπ(φ, i) t dπ(XFφ, i) if i ≤ |π|
dπ(φ, i) t (−,∞) if i > |π|.

Proposition The evaluation of a proposition for a position inside the trace
is trivial, as the proposition either holds or not. If the proposition
holds, then we do not need any additional steps to observe satisfaction,
i.e., s is 0, and it is impossible to violate it, i.e., f is −. In case
the proposition does not hold, we have the symmetric witness counts.
For the evaluation of the empty word, we take an optimistic view and
assume that we can either satisfy or violate the proposition right away,
i.e., with 0 additional steps.

Negation Negating a formula simply swaps the witness counts. If we wit-
ness the satisfaction of φ in n steps, then we witness the violation of
¬φ in n steps, and vice versa.

Disjunction For the disjunction we take the shorter satisfaction witness
count, because the satisfaction of one subformula is enough to satisfy
the property. We take the longer violation witness count, because both
subformulas need to be violated to violate the property.

92 CHAPTER 5. FINITE LTL INTERPRETATION

Table 5.2: Request/Acknowledge motivating example with π1, where EOT
indicates the end of the trace, i.e., i > |π|

1 2 3 4 5 6 7 EOT

r > − − > − − >
g − − > − − > −

dπ(r, i) (0,−) (−, 0) (−, 0) (0,−) (−, 0) (−, 0) (0,−) (0,0)
dπ(g, i) (−, 0) (−, 0) (0,−) (−, 0) (−, 0) (0,−) (−, 0) (0,0)
dπ(¬r, i) (−, 0) (0,−) (0,−) (−, 0) (0,−) (0,−) (−, 0) (0,0)
dπ(Fg, i) (2,−) (1,−) (0,−) (2,−) (1,−) (0,−) (1,∞) (0,∞)

dπ(r → Fg, i) (2,−) (0,−) (0,−) (2,−) (0,−) (0,−) (1,∞) (0,∞)
dπ(G(r → Fg), i) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)

Next The next operator naturally increases the witness counts by one step.

Eventually We use the rewriting rule Fφ ≡ φ∨XFφ to define the semantics
of the eventually operator. When evaluating the formula after the end
of the trace, we replace the remaining obligation (XFφ) by (−,∞).
Thus, Fφ evaluated on the empty word is satisfied by a suffix that
satisfies φ, and it is violated only by infinite suffixes.

Until We use the same principle for defining the until semantics that we
used for the eventually operator. We use the rewriting rule φUψ ≡
ψ∨(φ∧X(φUψ)). On the empty word, φUψ is satisfied (in the shortest
way) by a suffix that satisfies ψ, and it is violated by a suffix that
violates both φ and ψ.

To illustrate the use of our counting semantics, we take the motivating
example from Table 5.1 and evaluate the trace π1 with respect to specifi-
cation ψ in Table 5.2. We see that every proposition evaluates to (0,−)
when true. The satisfaction of a proposition that holds at time i is imme-
diately witnessed and it cannot be violated by any suffix. Analogously, a
proposition evaluates to (−, 0) when false. The evaluations of Fg give the
number of steps to the next position in which g holds. For instance, the
first time at which g holds is at i = 3, hence Fg evaluates to (2,−) at i = 1,
(1,−) at i = 2 and (0,−) at time i = 3. We also note that Fg evaluates
to (0,∞) at the end of the trace, because it could be immediately satisfied
with the continuation of the trace with g that holds, but could be violated
only by an infinite suffix in which g never holds. We finally observe that
G(r → Fg) evaluates to (∞,∞) at all positions, because the property can
be both satisfied and violated only with infinite suffixes.

The rules in Definition 14 restrict the resulting pairs to certain combi-
nations of values in the pair.

5.2. COUNTING SEMANTICS FOR LTL 93

Lemma 15. Let π ∈ Σ∗ be a finite trace, φ an LTL formula and i ∈ N>0

an index. We have that dπ(φ, i) is of the following form:

(s,f)
s

a b ∞ −

f

a X
b X X
∞ X X
− X

where a ≤ |π| − i and b > |π| − i.

Proof. The proof is obtained using structural induction on the LTL formula.
Let s, f ∈ N0 ∪ {∞}. We first define the following sets:

P+
i,π = { (s,−) | s ≤ |π| − i },
P−i,π = { (−, f) | f ≤ |π| − i },

P ?
i,π = { (s, f) | s, f > |π| − i },
Pi,π = P+

i,π ∪ P
−
i,π ∪ P

?
i,π,

where P+
i,π contains all pairs of the form (a,−), the set P−i,π all pairs of

the form (−, a) and the set P ?
i,π all pairs of the form (b1, b2), (b1,∞), (∞, b2)

and (∞,∞), with a ≤ |π| − i and bj > |π| − i for j ∈ {1, 2}.
In order to prove the lemma, we first need the following proposition.

Proposition 16. Let π ∈ Σ∗ be a finite trace, φ an LTL formula and
i ∈ N>0 an index. Then we have that ∀i > |π|, dπ(φ, i) ∈ P ?

i,π.

Proof. We use structural induction on the structure of the LTL formula to
prove this proposition.

Base case ϕ ::= p.
dπ(p, i) = (0, 0) ∈ P ?

i,π for i > |π|

Induction step dπ(ϕ, i) ∈ P ?
i,π ⇒ dπ(¬ϕ, i) ∈ P ?

i,π.

If dπ(ϕ, i) ∈ P ?
i,π then so is ∼ dπ(ϕ, i) ∈ P ?

i,π.

Induction step dπ(ϕ1, i) ∈ P ?
i,π, dπ(ϕ2, i) ∈ P ?

i,π,⇒ dπ(ϕ1 ∨ ϕ2, i) ∈ P ?
i,π.

This holds because if dπ(ϕ1, i) = (s1, f1) ∈ P ?
i,π and dπ(ϕ2, i) = (s2, f2) ∈

P ?
i,π with s1, s2, f1, f2 ∈ N0 ∪ {∞} and s1, s2, f1, f2 > |π| − i, then

dπ(ϕ1 ∨ ϕ2, i) = (s1, f1) t (s2, f2) = (min(s1, s2)︸ ︷︷ ︸
> |π| − i

,max(f1, f2)︸ ︷︷ ︸
> |π| − i

) ∈ P ?
i,π.

94 CHAPTER 5. FINITE LTL INTERPRETATION

Induction step dπ(ϕ, i+ 1) ∈ P ?
i+1,π ⇒ dπ(Xϕ, i) ∈ P ?

i,π.

If dπ(ϕ, i+ 1) = (s, f) ∈ P ?
i+1,π with s, f ∈ N0 ∪{∞} and s, f > |π| − (i+ 1),

then we have that
dπ(Xϕ, i) = (s, f)⊕ 1︸ ︷︷ ︸

s⊕ 1, f ⊕ 1 > |π| − i

∈ P ?
i+1,π.

Induction step dπ(ϕ1, i), dπ(ϕ2, i) ∈ P ?
i,π,⇒ dπ(ϕ1Uϕ2, i) ∈ P ?

i,π.

If dπ(ϕ1, i) = (s1, f1) ∈ P ?
i,π and dπ(ϕ2, i) = (s2, f2) ∈ P ?

i,π with s1, s2, f1, f2 ∈
N0∪{∞} and s1, s2, f1, f2 > |π|−i, then applying the definition of dπ(φ1Uφ2, i)
for i > |π| we have that

dπ(ϕ1Uϕ2, i) =
(

(s1, f1) t
(

(s2, f2) u (−,∞)︸ ︷︷ ︸
= (max(s2,−),min(f2,∞)) = (−, f2)

))
︸ ︷︷ ︸
= (min(s1,−),max(f1, f2)) = (s1,max(f1, f2)) ∈ P ?

i,π

∈ P ?
i,π.

Induction step dπ(ϕ, i) ∈ P ?
i,π ⇒ dπ(Fϕ, i) ∈ P ?

i,π.

If dπ(ϕ, i) = (s, f) ∈ P ?
i,π with s, f ∈ N0 ∪ {∞} and s, f > |π| − i, then

applying the definition of dπ(Fφ, i) for i > |π|, we have that

dπ(Fϕ, i) = dπ(ϕ, i) t (−,∞) = (min(s,−)︸ ︷︷ ︸
s > |π| − i

,max(f,∞)︸ ︷︷ ︸
∞ > |π| − i

) ∈ P ?
i,π.

Now we prove the Lemma by proving the closure of Pi,π under dπ(φ, i)
inductively on the structure of the LTL formula.

Base case ϕ ::= p dπ(p, i) =

(0,−) ∈ P+

i,π if i ≤ |π| ∧ p ∈ πi
(−, 0) ∈ P−i,π if i ≤ |π| ∧ p 6∈ πi
(0, 0) ∈ P ?

i,π if i > |π|

Induction step dπ(ϕ, i) ∈ Pi,π ⇒ dπ(¬ϕ, i) ∈ Pi,π We have three cases:

(dπ(ϕ, i) ∈ P+
i,π) dπ(¬ϕ, i) = ∼(dπ(ϕ, i)) ∈ P−i,π

(dπ(ϕ, i) ∈ P−i,π) dπ(¬ϕ, i) = ∼(dπ(ϕ, i)) ∈ P+
i,π

(dπ(ϕ, i) ∈ P ?
i,π) dπ(¬ϕ, i) = ∼(dπ(ϕ, i)) ∈ P ?

i,π

Induction step A = dπ(ϕ1, i) ∈ Pi,π, B = dπ(ϕ2, i) ∈ Pi,π ⇒ dπ(ϕ1 ∨ ϕ2, i) ∈ Pi,π
We have 32 = 9 cases, since A and B can be elements of P+

i,π, P−i,π or P ?
i,π.

(A ∈ P+
i,π, B ∈ P+

i,π) A = (s1,−), B = (s2,−), A tB = (min(s1, s2),−)︸ ︷︷ ︸
∈ P+

i,π ⊂ Pi,π

5.2. COUNTING SEMANTICS FOR LTL 95

(A ∈ P−i,π, B ∈ P+
i,π) A tB = B ∈ P+

i,π ⊂ Pi,π

(A ∈ P ?
i,π, B ∈ P+

i,π) A = (s1, f1), B = (s2,−), s1 > |π| − i, s2 ≤ |π| − i⇒ s2 < s1

A tB = (min(s1, s2),max(f1,−)) = (s2,−) = B ∈ P+
i,π ⊂ Pi,π

(A ∈ P+
i,π, B ∈ P

−
i,π) Since t is commutative see the case (A ∈ P−i,π, B ∈ P+

i,π)

(A ∈ P−i,π, B ∈ P
−
i,π) A = (−, f1), B = (−, f2), A tB = {(−,max(f1, f2))}︸ ︷︷ ︸

∈ P−
i,π ⊂ Pi,π

(A ∈ P ?
i,π, B ∈ P

−
i,π) A = (s1, f1), B = (−, f2), f1 > |π| − i, f2 ≤ |π| − i⇒ f1 > f2

A tB = (min(s1,−),max(f1, f2)) = (s1, f1) = A ∈ P ?
i,π ⊂ Pi,π

(A ∈ P+
i,π, B ∈ P ?

i,π) Since t is commutative see the case (A ∈ P ?
i,π, B ∈ P+

i,π).

(A ∈ P−i,π, B ∈ P ?
i,π) Since t is commutative see the case (A ∈ P ?

i,π, B ∈ P−i,π).

(A ∈ P ?
i+1,π, B ∈ P ?

i,π) A = (s1, f1), B = (s2, f2), s1, f1, s2, f2 > |π| − i

A tB = (min(s1, s2),max(f1, f2)) ∈ P ?
i,π ⊂ Pi,π

Induction step A = dπ(ϕ, i+ 1) ∈ Pi+1,π ⇒ dπ(Xϕ, i) ∈ Pi,π We have three cases:

(A ∈ P+
i+1,π) dπ(Xϕ, i) = A⊕ 1 = (s1 + 1,−)︸ ︷︷ ︸

s1 ≤ |π| − i− 1⇒ s1 + 1 ≤ |π| − i

∈ P+
i,π

(A ∈ P−i+1,π) dπ(Xϕ, i) = A⊕ 1 = (−, f1 + 1)︸ ︷︷ ︸
f1 ≤ |π| − i− 1⇒ f1 + 1 ≤ |π| − i

∈ P−i,π

(A ∈ P ?
i+1,π) dπ(Xϕ, i) = A⊕ 1 = (s1 ⊕ 1, f1 ⊕ 1) ∈ P ?

i,π︸ ︷︷ ︸
s1 > |π| − i− 1⇒ s1 ⊕ 1 > |π| − i, f1 > |π| − i− 1⇒ f1 ⊕ 1 > |π| − i

Induction step A = dπ(ϕ, j) ∈ Pj,π ⇒ dπ(Fϕ, i) ∈ Pi,π.

if i > |π| ⇒ A ∈ P ?
i,π ⇒ dπ(Fϕ, i) ∈ P ?

i,π ⊂ Pi,π (See Prop. 16)

if i ≤ |π| ⇒ dπ(Fϕ, i) = dπ(φ, i) t dπ(X(Fϕ), i)

dπ(Fϕ, i+ 1) ∈ Pi+1,π ⇒ dπ(φ, i) t dπ(X(Fϕ), i) ∈ Pi,π

96 CHAPTER 5. FINITE LTL INTERPRETATION

and we proved for i+ 1 > |π| that dπ(Fϕ, i+ 1) ∈ P ?
i+1,π ⊂ Pi+1,π.

Induction step A = dπ(ϕ1, i) ∈ Pi,π, B = dπ(ϕ2, i) ∈ Pi,π ⇒ dπ(ϕ1Uϕ2, i) ∈ Pi,π.

i > |π| ⇒ A,B ∈ A ∈ P ?
i,π ⇒ dπ(ϕ1Uϕ2, i) ∈ P ?

i,π ⊂ Pi,π (See Prop. 16)

i ≤ |π| ⇒ dπ(ϕ1Uϕ2, i) = A t (B u (dπ(X(ϕ1Uϕ2), i)))

dπ(ϕ1Uϕ2, i+ 1) ∈ Pi+1,π ⇒ A t (B u (dπ(X(ϕ1Uϕ2), i))) ∈ Pi,π

and we proved for i+ 1 > |π| that dπ(ϕ1Uϕ2, i+ 1) ∈ P ?
i+1,π ⊂ Pi+1,π.

Finally, we relate our counting semantics to the three valued semantics
in Lemma 17.

Lemma 17. Given an LTL formula and a trace π ∈ Σ∗ where i ∈ N>0 is
an index and φ is an LTL formula, we have that

µπ(φ, i) = > ↔ dπ(φ, i) = (a,−),
6 ∃x < a . µπ′(φ, 1) = > with π′ = πi · πi+1 · . . . πi+x,

µπ(φ, i) = ⊥ ↔ dπ(φ, i) = (−, a),
6 ∃x < a . µπ′(φ, 1) = ⊥ with π′ = πi · πi+1 · . . . πi+x,

µπ(φ, i) =? ↔ dπ(φ, i) = (b1, b2),
6 ∃x < b1 . µπ′(φ, 1) = > with π′ = πi · πi+1 · . . . πi+x,
6 ∃y < b2 . µπ′(φ, 1) = ⊥ with π′ = πi · πi+1 · . . . πi+y,

where a ≤ |π| − i and bj is either ∞ or bj > |π| − i for j ∈ {1, 2}.

Lemma 17 holds because we only introduce the symbol “−” within the
trace when a satisfaction (violation) is observed. The proof can be obtained
again with structural induction on the LTL formula.

5.2.3 Evaluation

We now present our evaluation function that assigns a truth value to ev-
ery pair. We use a 5-valued set of truth values consisting of true (>),
presumably true (>P), inconclusive (?), presumably false (⊥P) and false (⊥)
verdicts. We define the following order over these five values:

⊥ < ⊥P < ? < >P < >.

5.2. COUNTING SEMANTICS FOR LTL 97

We equip this 5-valued domain with the negation (¬) and disjunction (∨)
operations, letting ¬> = ⊥, ¬>P = ⊥P , ¬? =?, ¬⊥P = >P , ¬⊥ = >
and φ1 ∨ φ2 = max{φ1, φ2}. We define other Boolean operators such as
conjunction by the usual logical equivalences (φ1∧φ2 = ¬(¬φ1∨¬φ2), etc.).

We evaluate a property on a trace to > (⊥) when the satisfaction (viola-
tion) can be fully determined from the trace, following the definition of the
three-valued semantics µ. Intuitively, this takes care of the case in which
the safety (co-safety) part of a formula has been violated (satisfied), at least
for properties that are intentionally safe (intentionally co-safe, resp.) [74].

Whenever the truth value is not determined, we distinguish whether
dπ(φ, i) indicates the possibility for a satisfaction, respective violation, in
finite time or not. For possible satisfactions, respective violations, in finite
time we make a prediction on whether past observations support the believe
that the trace is going to satisfy or violate the property. If the predictions
are not inconclusive and not contradicting, then we evaluate the trace to
the (presumable) truth value >P or⊥P . If we cannot make a prediction to a
truth value, we compute the truth value recursively based on the operator in
the formula and the truth values of the subformulas (with temporal operators
unrolled).

We use the predicate predπ to give the prediction based on the observed
witnesses for satisfaction. The predicate predπ(φ, i) becomes ? when no
witness for satisfaction exists in the past. When there exists a witness that
requires at least the same amount of additional steps as the trace under
evaluation then the predicate evaluates to >. If all the existing witnesses
(and at least one exists) are shorter than the current trace, then the predicate
evaluates to ⊥. For a prediction on the violation we make a prediction on
the satisfaction of dπ(¬φ, i), i.e., we compute predπ(¬φ, i).
Definition 18 (Prediction predicate). Let s, f denote natural numbers and
let sπ(φ, i), fπ(φ, i) ∈ N+ such that dπ(φ, i) =

(
sπ(φ, i), fπ(φ, i)

)
. We define

the 3-valued predicate predπ as

predπ(φ, i) =

> if ∃j < i . dπ(φ, j) = (s′,−) and sπ(φ, i) ≤ s′,
? if 6 ∃j < i . dπ(φ, j) = (s′,−),

⊥ if ∃j < i . dπ(φ, j) = (s′,−) and ,

sπ(φ, i) > max0≤j<i{s′ | dπ(φ, j) = (s′,−)},

For the evaluation we consider a case split among the possible combina-
tions of values in the pairs as presented in Lemma 15.

98 CHAPTER 5. FINITE LTL INTERPRETATION

Definition 19 (Predictive evaluation). We define the predictive evaluation
function eπ(φ, i), with a ≤ |π| − i and bj > |π| − i for j ∈ {1, 2} and
a, bj ∈ N0, for the different cases of dπ(φ, i):

dπ(φ, i) eπ(φ, i)

(a,−) >

if predπ(φ, i) > predπ(¬φ, i) >P
(b1, b2) if predπ(φ, i) = predπ(¬φ, i) rπ(φ, i)

if predπ(φ, i) < predπ(¬φ, i) ⊥P
if predπ(φ, i) = > >P

(b1,∞) if predπ(φ, i) =? rπ(φ, i)
if predπ(φ, i) = ⊥ ⊥P

(∞, b1) eπ(¬φ, i)

(∞,∞) rπ(φ, i)

(−, a) ⊥

where rπ(φ, i) is an auxiliary function defined inductively as follows:

rπ(p, i) =?

rπ(¬φ, i) = ¬eπ(φ, i)

rπ(φ1 ∨ φ2, i) = eπ(φ1, i) ∨ eπ(φ2, i)

rπ(Xnφ, i) = eπ(φ, i+ n)

rπ(Fφ, i) =

{
eπ(φ, i) ∨ rπ(XFφ, i) if i ≤ |π|
eπ(φ, i) if i > |π|

rπ(φ1Uφ2, i) =

{
eπ(φ2, i) ∨ (eπ(φ2, i) ∧ eπ(X(φ1Uφ2), i) if i ≤ |π|
eπ(φ2, i) if i > |π|

The predictive evaluation function is symmetric. Hence, eπ(φ, i) =
¬eπ(¬φ, i) holds.

We refer again to our motivating example from Table 5.1 and evaluate
the trace π1 with respect to the specification ψ. We present the outcome in
Table 5.3. Subformula r → Fg is predicted to be >P at i = 7 because there
exists a longer witness for satisfaction in the past (e.g., at i = 1). Thus, as
we do not expected the globally property to be violated, the trace evaluates
to >P , as expected.

5.2. COUNTING SEMANTICS FOR LTL 99

Table 5.3: Request/Acknowledge motivating example with π1.
1 2 3 4 5 6 7 EOT

r > − − > − − >
g − − > − − > −

dπ(r, i) (0,−) (−, 0) (−, 0) (0,−) (−, 0) (−, 0) (0,−) (0,0)
eπ(r, i) > ⊥ ⊥ > ⊥ ⊥ > ?

dπ(g, i) (−, 0) (−, 0) (0,−) (−, 0) (−, 0) (0,−) (−, 0) (0,0)
eπ(g, i) ⊥ ⊥ > ⊥ ⊥ > ⊥ ?

dπ(¬r, i) (−, 0) (0,−) (0,−) (−, 0) (0,−) (0,−) (−, 0) (0,0)
eπ(¬r, i) ⊥ > > ⊥ > > ⊥ ?

dπ(Fg, i) (2,−) (1,−) (0,−) (2,−) (1,−) (0,−) (1,∞) (0,∞)
eπ(Fg, i) > > > > > > >P >P

dπ(r → Fg, i) (2,−) (0,−) (0,−) (2,−) (0,−) (0,−) (1,∞) (0,∞)
eπ(r → Fg, i) > > > > > > >P >P

dπ(G(r → Fg), i) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)
eπ(G(r → Fg), i) >P >P >P >P >P >P >P >P

In Figure 5.2 we visualize the evaluation of a pair dπ(φ, i) = (s, f) for
a fixed φ and a fixed position i. On the x-axis is the witness count s for a
satisfaction and on the y-axis is the witness count f for a violation. For a
value s, respectively f , that is smaller than the length of the suffix starting
at position i (with the other value of the pair always being −), the evaluation
is either > or ⊥. Otherwise the evaluation depends on the values smax and
fmax. These two values represent the largest witness counts for a satisfaction
and a violation in the past, i.e., for positions smaller than i in the trace.
Based on the prediction function predπ(φ, i) the evaluation becomes >P ,
? or ⊥P , where ? indicates that the auxiliary function rπ(φ, i) has to be
applied. Starting at an arbitrary point in the diagram and moving to the
right increases the witness count for a satisfaction while the witness count
for a violation remains constant. Thus, moving to the right makes the
pair “more false”. The same holds when keeping the witness count for a
satisfaction constant and moving up in the diagram as this decrease the
witness count for a violation. Analogously, moving down and/or left makes
the pair “more true” as the witness count for a violation gets larger and/or
the witness count for a satisfaction gets smaller.

Our 5-valued predictive evaluation refines the 3-valued LTL semantics.

Theorem 20. Let φ be an LTL formula, π ∈ Σ∗ and i ∈ N>0. We have

µπ(φ, i) = > ↔ eπ(φ, i) = >,
µπ(φ, i) = ⊥ ↔ eπ(φ, i) = ⊥,
µπ(φ, i) = ? ↔ eπ(φ, i) ∈ {>P ,⊥P , ?}.

Theorem 20 holds, because the evaluation to > and ⊥ is simply the

100 CHAPTER 5. FINITE LTL INTERPRETATION

f

−
∞
n

|π| − i

s−∞n|π| − i(0,0)
smax

fmax

?

?

⊥P

>P

>
>P ⊥P

⊥

⊥P

>P

?

good

bad

Figure 5.2: Lattice for (s,f) with φ and i < |π| fixed.

mapping of a pair that contains the symbol “−”, which we have shown in
Lemma 17.

Remember that N+ × N+ is partially ordered by �. We now show that
having a trace that is “more true” than another is correctly reflected in our
finitary semantics. To define “more true”, we first need the polarity of a
proposition in an LTL formula.

Definition 21 (Polarity). Let #¬ be the number of negation operators on a
specific path in the parse tree of φ starting at the root. We define the polarity
as the function pol(p) with proposition p in an LTL formula φ as follows:

pol(p) =

pos, if #¬ on all paths to a leaf with proposition p is even,

neg, if #¬ on all paths to a leaf with proposition p is odd,

mixed, otherwise.

With the polarity defined, we now define the constraints for a trace to
be “more true” with respect to an LTL formula φ.

Definition 22 (π vφ π′). Given two traces π and π′ of equal length and an

5.3. EXAMPLES 101

LTL formula φ over proposition p, we define that π vφ π′ iff

∀i∀p . pol(p) = mixed⇒ p ∈ πi ↔ p ∈ π′i and
pol(p) = pos⇒ p ∈ πi → p ∈ π′i and
pol(p) = neg⇒ p ∈ πi ← p ∈ π′i.

Whenever one trace is “more true” than another, this is correctly re-
flected in our finitary semantics.

Theorem 23. For two traces π and π′ of equal length and an LTL formula
φ over proposition p, we have that

π vφ π′ ⇒ dπ′(φ, 1)� dπ(φ, 1).

Therefore, we have for π vφ π′ that

eπ(φ, 1) = > ⇒ eπ′(φ, 1) = >, and

eπ(φ, 1) = ⊥ ⇐ eπ′(φ, 1) = ⊥.

Theorem 23 holds, because we have that replacing an arbitrary observed
value in π by one with positive polarity in π′ always results with dπ(φ, 1) =
(s, f) and dπ′(φ, 1) = (s′, f ′) in s′ ≤ s and f ′ ≥ f , as with π vφ π′ we have
that π′ witnesses a satisfaction of φ not later than π and π′ also witness a
violation of φ not earlier than π.

In Table 5.4 we give examples to illustrate the transition of one evaluation
to another one. Note that it is possible to change from >P to ⊥P . However,
this is only the predicated truth value that becomes “worse”, because we
have strengthened the prefix on which the prediction is based on, the values
of dπ(φ, i) don’t change and remain the same is such a case.

5.3 Examples

Empty Word: The empty word evaluates to ? for all LTL properties.
Given that the empty word contains no observation, we do not have any
information to predict future events.

Evaluation of the Next Operator: In Table 5.5 and Table 5.6 we illus-
trate the evaluation of the X operator nested in an F property and nested
in a G property.

Our approach focuses on observed past behavior and predicts evaluations
of subformulas when possible. The prediction on Xg is necessary to draw a

102 CHAPTER 5. FINITE LTL INTERPRETATION

Table 5.4: Making a system “more true”.
φ π dπ(φ, 1) eπ(φ, 1)

p
− (−, 0) ⊥
> (0,−) >

p ∧ XFp
−−− (−, 0) ⊥
>−− (3,∞) ⊥P

Gp
−>> (−, 0) ⊥
>>> (∞, 3) >P

Fp
−−− (3,∞) ⊥P
>−− (0,−) >

FGp
>−>−> (∞,∞) ⊥P
>−>>> (∞,∞) >P

GFp
−−>−− (∞,∞) >P
>−>−− (∞,∞) ⊥P

p ∨ XGp
−>> (∞, 3) >P
>>> (0,−) >

conclusion on the eventually, respectively globally, property being violated,
respectively satisfied. For the trace in Table 5.5 our approach results in
the expected presumably false verdict, because we have always observed
Xg being violated and we do not expect it to be satisfied. For the trace
in Table 5.6 our approach results in the expected presumably true verdict,
because we have always observed Xg being satisfied and we do not expect it
to be violated.

Request/Acknowledge Properties: As a running example we have al-
ready illustrated the evaluation of trace π1 from the motivation with the
property

G(r → Fg).

We now also evaluate the second trace from the motivation. In Table 5.7 we
present the evaluation. While for many positions (like i = 5) the signal r
dominates (because it is false and, thus, the implication is trivially satisfied)
this is not the case for position i = 4. At this position the implication is
not yet satisfied within the trace and, thus, can be at earliest satisfied in 4
steps by extending the trace with g = true at i = 8. However, the longest

5.3. EXAMPLES 103

Table 5.5: Evaluation of FXg.
i 1 2 3 4 EOT

g − − − −

dπ(g, i) (−, 0) (−, 0) (−, 0) (−, 0) (0, 0)
(1)

eπ(g, i) ⊥ ⊥ ⊥ ⊥ ⊥P
dπ(Xg, i) (−, 1) (−, 1) (−, 1) (1, 1) (1, 1)

(2)

eπ(Xg, i) ⊥ ⊥ ⊥ ⊥P ⊥P
dπ(FXg, i) (4,∞) (3,∞) (2,∞) (1,∞) (1,∞)

(3)

eπ(FXg, i) ⊥P ⊥P ⊥P ⊥P ⊥P

Table 5.6: Evaluation of GXg.
i 1 2 3 4 EOT

πg > > > >

dπ(g, i) (0,−) (0,−) (0,−) (0,−) (0, 0)
(1)

eπ(g, i) > > > > >P
dπ(Xg, i) (1,−) (1,−) (1,−) (1, 1) (1, 1)

(2)

eπ(Xg, i) > > > >P >P
dπ(GXg, i) (∞, 4) (∞, 3) (∞, 2) (∞, 1) (∞, 1)

(3)

eπ(GXg, i) >P >P >P >P >P

observed witness for satisfaction of the implication is at i = 1 and requires
two additional steps. As we’ve never observed a witness that requires at
least 4 additional steps for a satisfaction, the suffix at i = 4 is concluded to
be presumably false. Hence, the globally property is expected to be violated
and we conclude that this trace is going to presumably violate the given
property.

Next we illustrate in Table 5.8 why predictions on the different levels of
subformulas are necessary. Note that the prediction for the property Fg at
Position 5 is >P , because there exists a witness in the past (at Position 1)
that required the same amount of additional steps for satisfaction. when
evaluating the property r → Fg, the prediction for the same Position be-
comes ⊥P , because now the longest witness (at Position 2) only requires one
additional step, which is shorter than the required two additional steps (at
Position 5). This is, because the signal g is related to the signal r, and at
Position 1 the truth value of signal r dominates. Human intuition supports

104 CHAPTER 5. FINITE LTL INTERPRETATION

Table 5.7: Trace π2 from the motivation.
i 1 2 3 4 5 6 7 EOT

r > − − > − − −
g − − > − − − −

dπ(r, i) (0,−) (−, 0) (−, 0) (0,−) (−, 0) (−, 0) (−, 0) (0, 0)
(1)

eπ(r, i) > ⊥ ⊥ > ⊥ ⊥ ⊥ ?

dπ(¬r, i) (−, 0) (0,−) (0,−) (−, 0) (0,−) (0,−) (0,−) (0, 0)
(2)

eπ(¬r, i) ⊥ > > ⊥ > > > ?

dπ(g, i) (−, 0) (−, 0) (0,−) (−, 0) (−, 0) (−, 0) (−, 0) (0, 0)
(3)

eπ(g, i) ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ?

dπ(Fg, i) (2,−) (1,−) (0,−) (4,∞) (3,∞) (2,∞) (1,∞) (0,∞)
(4)

eπ(Fg, i) > > > ⊥P ⊥P >P >P >P

dπ(r → Fg, i) (2,−) (0,−) (0,−) (4,∞) (0,−) (0,−) (0,−) (0,∞)
(5)

eπ(r → Fg, i) > > > ⊥P > > > >P

dπ(G(r → Fg, i)) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)
(6)

eπ(G(r → Fg, i)) ⊥P ⊥P ⊥P ⊥P >P >P >P >P

Table 5.8: Need for prediction of individual subformulas.

i 1 2 3 4 5 6 EOT

r − > − − > −
g − − > − − −

dπ(r, i) (−, 0) (0,−) (−, 0) (−, 0) (0,−) (−, 0) (0, 0)
(1)

eπ(r, i) ⊥ > ⊥ ⊥ > ⊥ ?

dπ(g, i) (−, 0) (−, 0) (0,−) (−, 0) (−, 0) (−, 0) (0, 0)
(2)

eπ(g, i) ⊥ ⊥ > ⊥ ⊥ ⊥ ?

dπ(Fg, i) (2,−) (1,−) (0,−) (3,∞) (2,∞) (1,∞) (0,∞)
(3)

eπ(Fg, i) > > > ⊥P >P >P >P
dπ(r → Fg, i) (0,−) (1,−) (0,−) (0,−) (2,∞) (0,−) (0,∞)

(4)
eπ(r → Fg, i) > > > > ⊥P > >P

dπ(G(r → Fg), i) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)
(5)

eπ(G(r → Fg), i) ⊥P ⊥P ⊥P ⊥P ⊥P >P >P

this evaluation. While evaluating only Fg allows the observer to conclude
that it always takes two additional steps to observe the grant, this is not
the case when evaluating r → Fg. For this property, the signal g is only
relevant whenever a request r is observed and then the grant g is observed
in one additional step.

In another request/acknowledge example we analyze the property

G(r1 → Fg1) ∧ G(r2 → Fg2)

with r1 being triggered at even time steps, r2 being triggered at odd time
steps, and both requests being always granted after exactly one time step.
No matter where you cut the trace there is always one request not yet

5.3. EXAMPLES 105

Table 5.9: Trace of a system claiming to implement G(¬r1 ∨ Fg1)∧G(¬r2 ∨
Fg2).

1 2 3 4 5 6 7 8 9 10 11 12 13

r1 > − > − > − > − > − > − >
g1 − > − > − > − > − > − > −
r2 − > − > − > − > − > − > −
g2 − − > − > − > − > − > − >

granted (Table 5.9 illustrates an example trace).
The two request/grant properties are conjunct on the highest level of

the formula. Our approach computes truth values for every subformula,
i.e., computes independent predictions for both request/grant properties
which is in both cases >P . On the highest level (no predictions are possible
anymore at this level, because all computed pairs are of the form (∞,∞))
the computed truth values for the two request/grant properties are conjunct
and result in the expected verdict presumably true.

Evaluation of the Until Operator: To illustrate our approach on a
specification that contains an until operator, we consider the property

G((Xa)UXXb).

Table 5.10 shows an example trace and the associated evaluation. The
longest observed witness for satisfaction of the until property starts at po-
sition 1 and requires six additional time steps. In positions 1, 2, 3 and 4
the subformula Xa holds, until in position 5 the subformula XXb holds. The
suffix of the trace from position 6 can be satisfied at earliest after 3 time
steps by an extension of the trace with b = > at i = 9. As the suffix is
shorter than the longest observed witness for satisfaction and we have not
observed any violation, this inconclusive suffix is predicted to be presumably
true. The same applies for the suffixes starting at i = 7 and i = 8. Thus,
we neither observe nor expect a violation of the globally property. Hence,
the property evaluates to >P with respect to the given trace.

Stabilization Properties: Consider the property

FGa ∨ FG¬a

that states that eventually the truth value of a has to stabilize.
We analyze the traces presented in Table 5.11. While in trace π1 the

system seems to flip the truth value of a always after time time steps, in

106 CHAPTER 5. FINITE LTL INTERPRETATION

Table 5.10: Evaluation of G((Xa)UXXb).

i 1 2 3 4 5 6 7 8 EOT

a − > > > > − > >
b − > − − − − > −

dπ(a, i) (−, 0) (0,−) (0,−) (0,−) (0,−) (−, 0) (0,−) (0,−) (0, 0)
(1)

eπ(a, i) ⊥ > > > > ⊥ > > ?

dπ(Xa, i) (1,−) (1,−) (1,−) (1,−) (−, 1) (1,−) (1,−) (1, 1) (1, 1)
(2)

eπ(Xa, i) > > > > ⊥ > > ? ?

dπ(b, i) (−, 0) (0,−) (−, 0) (−, 0) (−, 0) (−, 0) (0,−) (−, 0) (0, 0)
(3)

eπ(b, i) ⊥ > ⊥ ⊥ ⊥ ⊥ > ⊥ ?

dπ(Xb, i) (1,−) (−, 1) (−, 1) (−, 1) (−, 1) (1,−) (−, 1) (1, 1) (1, 1)
(4)

eπ(Xb, i) > ⊥ ⊥ ⊥ ⊥ > ⊥ ? ?

dπ(XXb, i) (−, 2) (−, 2) (−, 2) (−, 2) (2,−) (−, 2) (2, 2) (2, 2) (2, 2)
(5)

eπ(XXb, i) ⊥ ⊥ ⊥ ⊥ > ⊥ ? ? ?

dπ(XaUXXb, i) (6,−) (5,−) (4,−) (3,−) (2,−) (3, 4) (2, 3) (2, 2) (2, 2)
(6)

eπ(XaUXXb, i) > > > > > >P >P >P >P

dπ(G(XaUXXb), i) (∞, 9) (∞, 8) (∞, 7) (∞, 6) (∞, 5) (∞, 4) (∞, 3) (∞, 2) (∞, 2)
(7)

eπ(G(XaUXXb), i) >P >P >P >P >P >P >P >P >P

Table 5.11: Traces of two systems that claim to implement FGa ∨ FG¬a.

1 2 3 4 5 6 7 8 9 10 11 12 13

π1: a > > − − > > − − > > − − >

π2: a > > − − > > − − > > > > >

trace π2 the truth value of a seems to remain stable from i = 9 onwards.
Applying our approach, the first sequence (π1) evaluates to presumably false
because the suffix with one time a = > is shorter than a previous observed
sequence of as being stable (e.g. at position i = 1 the truth value of a was
stable for two time steps). In the second sequence, the suffix with five times
a = > is longer than any previous sequence of as being stable and, thus, our
approach evaluates this trace to presumably true.

These two examples also illustrate the importance of having a trace
not truncated too early. Imagine cutting the trace at i = 5 or i = 9, then
both traces evaluate to presumably false with respect to previously observed
behavior, because we miss the observation of the long stable suffix.

When one subformula dominates: We now discuss a shortcoming of
our approach. Consider the following specification

φ = G(Fa ∨ Fb).

This specification requires that for any index i either signal a evaluates to
true now or at a future position or, otherwise, signal b evaluates to true now

5.3. EXAMPLES 107

Table 5.12: Evaluation of G(Fa ∨ Fb).

i 1 2 3 4 5 6 EOT

a > > > > − −
b > − > − > −

dπ(a, i) (0,−) (0,−) (0,−) (0,−) (−, 0) (−, 0) (0, 0)
eπ(a, i) > > > > ⊥ ⊥ ?

dπ(Fa, i) (0,−) (0,−) (0,−) (0,−) (2,∞) (1,∞) (0,∞)
eπ(Fa, i) > > > > ⊥P ⊥P >P
dπ(b, i) (0,−) (−, 0) (0,−) (−, 0) (0,−) (−, 0) (0, 0)
eπ(b, i) > ⊥ > ⊥ > ⊥ ?

dπ(Fb, i) (0,−) (1,−) (0,−) (1,−) (0,−) (1,∞) (0,∞)
eπ(Fb, i) > > > > > >P >P

dπ(Fa ∨ Fb, i) (0,−) (0,−) (0,−) (0,−) (0,−) (1,∞) (0,∞)
eπ(Fa ∨ Fb, i) > > > > > ⊥P >P

dπ(G(Fa ∨ Fb), i) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)
eπ(G(Fa ∨ Fb), i) ⊥P ⊥P ⊥P ⊥P ⊥P ⊥P >P

or at a future position. In Table 5.12 we see that our approach concludes
the trace under evaluation to presumably false. This is not what we would
expect, as for positions smaller than or equal to 4, the formula Fa is always
satisfied immediately in the same time step and for all observed positions
i ≤ 5 the formula Fb is satisfied within in at most one additional time step.
In position i = 6 our approach predicts the formula Fa∨Fb to be presumably
false, because the shorter witness for satisfaction dominates and, as both of
the subformulas are eventually properties, none of them can be violated in
finite time. Thus, the globally property is predicted to be violated which
results in the evaluation of presumably false.

Intuitively, φ requires in every time step to eventually raise one of the
two signals, i.e., one interpretation is that only the faster satisfaction counts.
The specification φ′ = GF(a∨b) is semantically equivalent to φ and expresses
this interpretation formally and (also) evaluates to presumably false.

On the other side, if we rewrite φ to

φ′′ = GFa ∨ GFb,

which is again semantically equivalent to φ, then the conclusion is presum-
ably true (see Table 5.13), which is what we would expect. Thus, there is
a difference in the interpretation of φ (and φ′) and φ′′. The specification
φ′′ can be interpreted such that the system only has to satisfy one of the
two formulas GFa and GFb, as those to formulas are connected with a logi-
cal or. Thus, the violation of one of the globally properties still allows the

108 CHAPTER 5. FINITE LTL INTERPRETATION

Table 5.13: Evaluation of GFa ∨ GFb.
i 1 2 3 4 5 6 EOT

a > > > > − −
b > − > − > −

dπ(a, i) (0,−) (0,−) (0,−) (0,−) (−, 0) (−, 0) (0, 0)
eπ(a, i) > > > > ⊥ ⊥ ?

dπ(Fa, i) (0,−) (0,−) (0,−) (0,−) (2,∞) (1,∞) (0,∞)
eπ(Fa, i) > > > > ⊥P ⊥P >P
dπ(GFa, i) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)
eπ(GFa, i) ⊥P ⊥P ⊥P ⊥P ⊥P ⊥P >P
dπ(b, i) (0,−) (−, 0) (0,−) (−, 0) (0,−) (−, 0) (0, 0)
eπ(b, i) > ⊥ > ⊥ > ⊥ ?

dπ(Fb, i) (0,−) (1,−) (0,−) (1,−) (0,−) (1,∞) (0,∞)
eπ(Fb, i) > > > > > >P >P
dπ(GFb, i) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)
eπ(GFb, i) >P >P >P >P >P >P >P

dπ(GFa ∨ GFb, i) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)
eπ(GFa ∨ GFb, i) >P >P >P >P >P >P >P

Table 5.14: Trace where evaluations differ for semantically equivalent spec-
ifications.

1 2 3 4 5 6

a > − > − − −
b − − − > > >

specification to be presumably satisfied (by the other globally).
Another example for two specifications that are semantically equivalent,

but can be interpreted in different ways is:

ψ = G(Fa ∨ Gb)

ψ′ = GFa ∨ (FaUGb)

While in specification ψ the formula Fa dominates, because the formula
Gb cannot be satisfied in finite time, the rewriting to ψ′ eliminates this
dominating factor. Thus, for the trace presented in Table 5.14, evaluating
ψ results in presumably false and evaluating ψ′ results in presumably true.

System implements the specification in different modes: In the
above examples we’ve shown a weakness of our approach that arises from
a dominating subformula. The specifications with dominating subformulas
for which our predictions fail have in common that they implicitly allow

5.3. EXAMPLES 109

systems to operate in two modes and (eventually) switch from one mode to
the other.

Our approach may also fail for a system that operates in different modes
when the mode is not part of the specification, e.g., a system that has a
high- and a low-performance mode. Consider a system that implements
the low-performance mode in such a way that the system takes longer to
react (without violating the specification). When the trace contains system
behavior of both modes, i.e., the high-performance and the low-performance
mode, then our prediction is built on the behavior of the low-performance
mode (assuming that witnesses are longer here), as we look at the longest
observed witness for satisfaction. Thus, at some point predictions in the
high-performance mode may be incorrect.

Shortcoming of our Approach: Consider the specification GFp and a
system that raises p in the time steps 1, 2, 4, . . . , 2i with i = 3 . . .∞. As the
distance for the next satisfaction of Fp always doubles, we will give a wrong
evaluation in half of the case. The reason for the wrong evaluation is that
we have not yet observed witnesses with similar lengths for the second half
of the last (doubled) distance to the (not yet observed) satisfaction of the
eventually part.

110 CHAPTER 5. FINITE LTL INTERPRETATION

Chapter 6

Conclusion and Outlook

It is about simple awareness –
awareness of what is so real and
essential, so hidden in plain
sight all around us, that we have
to keep reminding ourselves,
over and over: “This is water,
this is water.”

David Foster Wallace

In this thesis we have presented approaches for automatic test case gener-
ation that help to bridge the gap between formal verification and testing. In
this chapter we will summarize the presented work and draw conclusions in
Section 6.1, before we give an outlook to possible future work in Section 6.2.

6.1 Summary and Conclusion

In companies that aim for certification of their products often two branches
evolve in parallel. One branch aims for formal models and the other one
is the usual development branch. Those two branches often have their own
domain languages and, thus, to make use of knowledge from one domain in
the other is difficult.

In this thesis we developed three tools for automatic test case generation
that help to bridge the gap between those two branches. The presented
approaches make use of existing formal models to automatically derive tests
from them and also provide an approach that gives an indication on whether
resulting finite traces of the SUT satisfy a given LTL property or not. A

111

112 CHAPTER 6. CONCLUSION AND OUTLOOK

test engineer, who’s not familiar with formal methods, may use the presented
tools to check the system under test for conformance to the specification and
the (formalized) requirements. In the next three subsections we summarize
our work.

6.1.1 Boolean Formulas

Transition guards may be (complex) formulas and exhaustive testing not
possible. We implemented a tool that computes a test suite that achieves
MCDC coverage on a given boolean formula. Our approach makes use of an
SMT-solver that can also handle restrictions due to complex dependencies
within the formula. This automatic test case generation method comple-
ments the certification in the development process as it can take the existing
formal model and link the formal description of the product to the actual
implementation.

We evaluated our approach on the applet firewall of an an implementa-
tion of the Java Card operating system. Our tool derived a small test suite
and was able to improve the code coverage (condition + basic block cover-
age) of the existing test suite so that now all reachable locations and cases
are covered. The additional tests produced by our tool also revealed that
an update of the specification was not implemented. The MCDC criterion
proved to be effective in our setting because it tests the different parts of
the decisions in isolation without producing too many test cases.

For our case study of the Secure Block Device, simple node coverage
already achieved a high line and branch coverage on the source code. While
the test case generation time increased significantly for more complex cov-
erage criteria, no gain in source code coverage was observed. As the model
does not have any complex guards on the transitions, applying MCDC on
the guards did not add any additional value. Executing the test suite that
achieves simple node coverage, we found a real life bug in the SBD cache
already. This illustrates that simple coverage criteria like node coverage may
already yield test suites of sufficient quality to discover bugs that are hard
to find manually.

6.1.2 Implementation Independent Tests

Using implementation specific knowledge for modeling implicitly influences
tests derived from those models. We developed a tool that computes test
strategies that aim for revealing a user defined class of faults in every al-
most correct implementation that claims to satisfy a given temporal logic

6.2. FUTURE WORK 113

specification. The computed strategies do not rely on any implementation
details. Our method is sound but incomplete, i.e., it may succeed finding
a strategy but it may also fail finding one although a strategy exists. For
many interesting cases, however, we have shown that it is both sound and
complete.

The resulting strategies are generalized, such that the tester can assign
values for inputs which do not influence the next state according to the
specification. The user may also decide to compute another strategy that is
different from the previous one. This opens many possible test cases for a
specified class of faults.

We evaluated our tool on the AMBA specification, an industrial sized bus
arbiter specification, as well as on the specification of an FDIR component.
We executed the resulting strategies on real implementations and evaluated
the code coverage as well as the ability to discover faults.

6.1.3 Runtime Verification Approach

Executing the strategy for a finite time on an reactive system results in a
finite trace. While the system may not have obviously violated a property
as the liveness part of the property can not get violated in finite time, the
behavior can still be suspicious. We developed a semantics for evaluating
LTL properties on finite traces. We assign for such an inconclusive suffix
of a trace either presumably true, if the behavior of the system up to know
gives rise that the property will be satisfied, and we assign presumably false
for such an inconclusive suffix, if this behavior is worse than the behavior
we have observed in the past.

To be able to asses an inconclusive suffix, we’ve presented a counting
semantics that counts the number of steps to the next existing satisfaction,
respectively violation, or otherwise indicates the earliest possible future sat-
isfaction and violation. Based on this semantics we then evaluate incon-
clusive suffixes and assign truth values that indicate whether the trace is
presumably true or presumably false.

We evaluated our semantics on properties and traces where existing se-
mantics failed to provide a answer a human would expect.

6.2 Future Work

While this thesis presents approaches that support the tester by automat-
ically deriving tests from existing formal models and also presents an ap-

114 CHAPTER 6. CONCLUSION AND OUTLOOK

proach for runtime verification of LTL properties, it also raises new questions
that open up further research possibilities.

The test strategy generation from a temporal specification opens up
different future research possibilities. The generalization of the strategy
allows to follow different ideas. While we have implemented a proof of
concept idea for generalization of the strategies, one can research ways to
maximize the generalization or include additional intentions of the tester.

Implementations of a generalized test strategy opens up another field of
research. While one may simply pick a random value for every input that
is not fixed to a concrete value, one may also investigate more sophisticated
approaches.

A general improvement can be to narrow down the choice for the input
values. Remember the fundamental testing concepts presented in Chap-
ter 2.3. The presented approaches do generate tests that fall into different
equivalence classes with respect to the test purpose. The exact value is,
however, picked automatically by the tool, as for example the SMT-solver,
or left open to be chosen by the test engineer within specified bounds. Fu-
ture work may focus on identifying bounds along the equivalence classes and
automatically choosing values that are closer to these bounds than others.
Such an improvement can then be added to the presented tools.

This thesis focuses on computing tests from existing models to check
conformance of the system under test to the specification and the require-
ments, future work may use tests not only for conformance checking but also
for learning a model of a blackbox system. This model can then be formally
verified or manually investigated. The tool for adaptive test case generation
may be of help to investigate the behavior of the blackbox.

The counting semantics presented in Chapter 5 opens the possibility to
evaluate finite traces with respect to properties specified on infinite paths.
While our definition of the semantics is based on a single trace, it is easily
extended to take an entire set of traces into account instead and, thus, maybe
provide a more precise prediction. Our approach uses a very simple form of
learning to predict the future. Hence, investigating learning methods may
be very promising for improving the prediction function.

While test case generation offers so many challenges and various ways
to solve them, there is no way to ever get familiar with everything. It is,
however, important to know and understand different approaches. To know
what techniques are best used in which situations and to be able to ask the
right questions at the right time.

Bibliography

[1] A. T. Acree et al. Mutation Analysis. Tech. rep. GIT-ICS-79/08. At-
lanta, Georgia: Georgia Institute of Technology, 1979.

[2] W. R. Adrion, M. A. Branstad, and J. C. Cherniavsky. “Validation,
Verification, and Testing of Computer Software”. In: ACM Comput.
Surv. 14.2 (1982), pp. 159–192. doi: 10.1145/356876.356879. url:
http://doi.acm.org/10.1145/356876.356879.

[3] B. K. Aichernig et al. “Killing strategies for model-based mutation
testing”. In: Software Testing, Verification and Reliability 25.8 (2015),
pp. 716–748. doi: 10.1002/stvr.1522. url: http://dx.doi.org/
10.1002/stvr.1522.

[4] G. Aleksandrowicz et al. “Designing reliable cyber-physical systems
overview associated to the special session at FDL’16”. In: 2016 Fo-
rum on Specification and Design Languages, FDL 2016, Bremen,
Germany, September 14-16, 2016. 2016, pp. 1–8. doi: 10 . 1109 /

FDL.2016.7880382. url: https://doi.org/10.1109/FDL.2016.
7880382.

[5] B. Alpern and F. B. Schneider. “Defining Liveness”. In: Inf. Process.
Lett. 21.4 (1985), pp. 181–185. doi: 10.1016/0020-0190(85)90056-
0. url: https://doi.org/10.1016/0020-0190(85)90056-0.

[6] R. Alur, C. Courcoubetis, and M. Yannakakis. “Distinguishing tests
for nondeterministic and probabilistic machines”. In: STOC’95. 1995.
doi: 10.1145/225058.225161. url: http://doi.acm.org/10.
1145/225058.225161.

[7] P. Ammann, W. Ding, and D. Xu. “Using a Model Checker to Test
Safety Properties”. In: ICECCS’01. 2001, pp. 212–221. doi: 10.1109/
ICECCS.2001.930180. url: http://dx.doi.org/10.1109/ICECCS.
2001.930180.

115

http://dx.doi.org/10.1145/356876.356879
http://doi.acm.org/10.1145/356876.356879
http://dx.doi.org/10.1002/stvr.1522
http://dx.doi.org/10.1002/stvr.1522
http://dx.doi.org/10.1002/stvr.1522
http://dx.doi.org/10.1109/FDL.2016.7880382
http://dx.doi.org/10.1109/FDL.2016.7880382
https://doi.org/10.1109/FDL.2016.7880382
https://doi.org/10.1109/FDL.2016.7880382
http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1145/225058.225161
http://doi.acm.org/10.1145/225058.225161
http://doi.acm.org/10.1145/225058.225161
http://dx.doi.org/10.1109/ICECCS.2001.930180
http://dx.doi.org/10.1109/ICECCS.2001.930180
http://dx.doi.org/10.1109/ICECCS.2001.930180
http://dx.doi.org/10.1109/ICECCS.2001.930180

116 BIBLIOGRAPHY

[8] P. Ammann, A. J. Offutt, and H. Huang. “Coverage Criteria for Logi-
cal Expressions”. In: International Symposium on Software Reliability
Engineering (ISSRE’03). IEEE, 2003, pp. 99–107.

[9] P. Ammann, J. Offutt, and W. Xu. “Coverage Criteria for State
Based Specifications”. In: Formal Methods and Testing, An Outcome
of the FORTEST Network, Revised Selected Papers. 2008, pp. 118–
156. doi: 10.1007/978-3-540-78917-8_4. url: http://dx.doi.
org/10.1007/978-3-540-78917-8_4.

[10] R. Armoni et al. “Enhanced Vacuity Detection in Linear Temporal
Logic”. In: CAV’03. 2003, pp. 368–380. doi: 10.1007/978-3-540-
45069-6_35. url: http://dx.doi.org/10.1007/978-3-540-
45069-6_35.

[11] E. T. Barr et al. “The Oracle Problem in Software Testing: A Survey”.
In: IEEE Trans. Software Eng. 41.5 (2015), pp. 507–525. doi: 10.
1109/TSE.2014.2372785. url: http://dx.doi.org/10.1109/TSE.
2014.2372785.

[12] C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo The-
ories Library (SMT-LIB). www.SMT-LIB.org. 2010.

[13] E. Bartocci et al. “A Counting Semantics beyond LTL Monitorabil-
ity”. In: under review (). under submission.

[14] E. Bartocci et al. “A Counting Semantics for Runtime LTL”. In:
Journal (Under Submission).

[15] A. Bauer, M. Leucker, and C. Schallhart. “Monitoring of Real-Time
Properties”. In: FSTTCS 2006: Foundations of Software Technology
and Theoretical Computer Science, 26th International Conference,
Kolkata, India, December 13-15, 2006, Proceedings. 2006, pp. 260–
272. doi: 10.1007/11944836_25. url: http://dx.doi.org/10.
1007/11944836_25.

[16] A. Bauer, M. Leucker, and C. Schallhart. “The Good, the Bad, and
the Ugly, But How Ugly Is Ugly?” In: Runtime Verification, 7th Inter-
national Workshop, RV 2007, Vancouver, Canada, March 13, 2007,
Revised Selected Papers. 2007, pp. 126–138. doi: 10.1007/978-3-
540-77395-5_11. url: http://dx.doi.org/10.1007/978-3-540-
77395-5_11.

[17] I. Beer et al. “Efficient Detection of Vacuity in ACTL Formulaas”.
In: CAV’97. 1997, pp. 279–290. doi: 10.1007/3-540-63166-6_28.
url: http://dx.doi.org/10.1007/3-540-63166-6_28.

http://dx.doi.org/10.1007/978-3-540-78917-8_4
http://dx.doi.org/10.1007/978-3-540-78917-8_4
http://dx.doi.org/10.1007/978-3-540-78917-8_4
http://dx.doi.org/10.1007/978-3-540-45069-6_35
http://dx.doi.org/10.1007/978-3-540-45069-6_35
http://dx.doi.org/10.1007/978-3-540-45069-6_35
http://dx.doi.org/10.1007/978-3-540-45069-6_35
http://dx.doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1007/11944836_25
http://dx.doi.org/10.1007/11944836_25
http://dx.doi.org/10.1007/11944836_25
http://dx.doi.org/10.1007/978-3-540-77395-5_11
http://dx.doi.org/10.1007/978-3-540-77395-5_11
http://dx.doi.org/10.1007/978-3-540-77395-5_11
http://dx.doi.org/10.1007/978-3-540-77395-5_11
http://dx.doi.org/10.1007/3-540-63166-6_28
http://dx.doi.org/10.1007/3-540-63166-6_28

BIBLIOGRAPHY 117

[18] I. Beer et al. “Efficient Detection of Vacuity in ACTL Formulaas”.
In: Computer Aided Verification, 9th International Conference, CAV
’97, Haifa, Israel, June 22-25, 1997, Proceedings. 1997, pp. 279–290.
doi: 10.1007/3-540-63166-6_28. url: http://dx.doi.org/10.
1007/3-540-63166-6_28.

[19] G. Bernot, M. C. Gaudel, and B. Marre. “Software testing based on
formal specifications: a theory and a tool”. In: Software Engineering
Journal 6.6 (1991), pp. 387–405.

[20] G. Bernot, M. C. Gaudel, and B. Marre. “Software Testing Based on
Formal Specifications: A Theory and a Tool”. In: Softw. Eng. J. 6.6
(Nov. 1991), pp. 387–405. issn: 0268-6961. doi: 10.1049/sej.1991.
0040. url: http://dx.doi.org/10.1049/sej.1991.0040.

[21] D. Beyer et al. “Generating Tests from Counterexamples”. In: Pro-
ceedings of the 26th International Conference on Software Engineer-
ing. ICSE ’04. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 326–335. isbn: 0-7695-2163-0. url: http://dl.acm.org/citation.
cfm?id=998675.999437.

[22] D. Beyer et al. “The software model checker BLAST”. In: STTT
9.5-6 (2007), pp. 505–525.

[23] A. Blass et al. “Play to Test”. In: FATES’05. LNCS 3997. Springer,
2005, pp. 32–46. isbn: 3-540-34454-3. doi: 10.1007/11759744_3.
url: http://dx.doi.org/10.1007/11759744_3.

[24] R. Bloem et al. “Automating Test-Suite Augmentation”. In: 2014
14th International Conference on Quality Software, Allen, TX, USA,
October 2-3, 2014. 2014, pp. 67–72. doi: 10.1109/QSIC.2014.40.
url: http://dx.doi.org/10.1109/QSIC.2014.40.

[25] R. Bloem et al. “Case Study: Automatic Test Case Generation for a
Secure Cache Implementation”. In: Tests and Proofs - 9th Interna-
tional Conference, TAP 2015, Held as Part of STAF 2015, L’Aquila,
Italy, July 22-24, 2015. Proceedings. 2015, pp. 58–75. doi: 10.1007/
978-3-319-21215-9_4. url: http://dx.doi.org/10.1007/978-
3-319-21215-9_4.

[26] R. Bloem et al. “Interactive presentation: Automatic hardware syn-
thesis from specifications: a case study”. In: Design, Automation &
Test in Europe (DATE’07). 2007, pp. 1188–1193. doi: 10.1145/

1266366.1266622. url: http://doi.acm.org/10.1145/1266366.
1266622.

http://dx.doi.org/10.1007/3-540-63166-6_28
http://dx.doi.org/10.1007/3-540-63166-6_28
http://dx.doi.org/10.1007/3-540-63166-6_28
http://dx.doi.org/10.1049/sej.1991.0040
http://dx.doi.org/10.1049/sej.1991.0040
http://dx.doi.org/10.1049/sej.1991.0040
http://dl.acm.org/citation.cfm?id=998675.999437
http://dl.acm.org/citation.cfm?id=998675.999437
http://dx.doi.org/10.1007/11759744_3
http://dx.doi.org/10.1007/11759744_3
http://dx.doi.org/10.1109/QSIC.2014.40
http://dx.doi.org/10.1109/QSIC.2014.40
http://dx.doi.org/10.1007/978-3-319-21215-9_4
http://dx.doi.org/10.1007/978-3-319-21215-9_4
http://dx.doi.org/10.1007/978-3-319-21215-9_4
http://dx.doi.org/10.1007/978-3-319-21215-9_4
http://dx.doi.org/10.1145/1266366.1266622
http://dx.doi.org/10.1145/1266366.1266622
http://doi.acm.org/10.1145/1266366.1266622
http://doi.acm.org/10.1145/1266366.1266622

118 BIBLIOGRAPHY

[27] R. Bloem et al. “Model-Based MCDC Testing of Complex Decisions
for the Java Card Applet Firewall”. In: VALID’13. 2013, pp. 1–6.

[28] R. Bloem et al. “Synthesizing Adaptive Test Strategies from Tempo-
ral Logic Specifications”. In: Journal (Under Submission).

[29] R. Bloem et al. “Synthesizing adaptive test strategies from tem-
poral logic specifications”. In: 2016 Formal Methods in Computer-
Aided Design, FMCAD 2016, Mountain View, CA, USA, October
3-6, 2016. 2016, pp. 17–24. doi: 10.1109/FMCAD.2016.7886656.
url: https://doi.org/10.1109/FMCAD.2016.7886656.

[30] Board, IS. “IEEE Standard Classification for Software Anomalies”.
In: IEEE Std 1044 (2009).

[31] R. Bod́ık and B. Jobstmann. “Algorithmic program synthesis: in-
troduction”. In: STTT 15.5-6 (2013), pp. 397–411. doi: 10.1007/
s10009-013-0287-9. url: https://doi.org/10.1007/s10009-
013-0287-9.

[32] A. Bohy et al. “Acacia+, a tool for LTL synthesis”. In: Computer
Aided Verification. Springer. 2012, pp. 652–657.

[33] S. Boroday, A. Petrenko, and R. Groz. “Can a Model Checker Gen-
erate Tests for Non-Deterministic Systems?” In: Electronic Notes in
Theoretical Computer Science 190.2 (2007), pp. 3–19. doi: 10.1016/
j.entcs.2007.08.002. url: http://dx.doi.org/10.1016/j.
entcs.2007.08.002.

[34] J. J. Chilenski. An investigation of three forms of the modified con-
dition decision coverage (MCDC) criterion. Tech. rep. DTIC Docu-
ment, 2001.

[35] J. J. Chilenski and S. P. Miller. “Applicability of modified condi-
tion/decision coverage to software testing”. In: Software Engineering
Journal 9.5 (1994), pp. 193–200. issn: 0268-6961.

[36] A. Church. “Logic, arithmetic and automata”. In: Proceedings of the
international congress of mathematicians. 1962, pp. 23–35.

[37] A. Cimatti et al. “NuSMV 2: An OpenSource Tool for Symbolic
Model Checking”. In: Computer Aided Verification, 14th Interna-
tional Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002,
Proceedings. 2002, pp. 359–364. doi: 10.1007/3-540-45657-0_29.
url: http://dx.doi.org/10.1007/3-540-45657-0_29.

http://dx.doi.org/10.1109/FMCAD.2016.7886656
https://doi.org/10.1109/FMCAD.2016.7886656
http://dx.doi.org/10.1007/s10009-013-0287-9
http://dx.doi.org/10.1007/s10009-013-0287-9
https://doi.org/10.1007/s10009-013-0287-9
https://doi.org/10.1007/s10009-013-0287-9
http://dx.doi.org/10.1016/j.entcs.2007.08.002
http://dx.doi.org/10.1016/j.entcs.2007.08.002
http://dx.doi.org/10.1016/j.entcs.2007.08.002
http://dx.doi.org/10.1016/j.entcs.2007.08.002
http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1007/3-540-45657-0_29

BIBLIOGRAPHY 119

[38] E. M. Clarke and E. A. Emerson. “Design and Synthesis of Syn-
chronization Skeletons Using Branching-Time Temporal Logic”. In:
Workshop on Logics of Programs. 1981, pp. 52–71. doi: 10.1007/
BFb0025774. url: http://dx.doi.org/10.1007/BFb0025774.

[39] E. M. Clarke and E. A. Emerson. “Design and Synthesis of Syn-
chronization Skeletons Using Branching-Time Temporal Logic”. In:
Logics of Programs, Workshop, Yorktown Heights, New York, May
1981. 1981, pp. 52–71. doi: 10.1007/BFb0025774. url: http://dx.
doi.org/10.1007/BFb0025774.

[40] E. M. Clarke, D. Kroening, and F. Lerda. “A Tool for Checking ANSI-
C Programs”. In: Tools and Algorithms for the Construction and
Analysis of Systems, 10th International Conference, TACAS 2004,
Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April
2, 2004, Proceedings. 2004, pp. 168–176. doi: 10.1007/978-3-540-
24730-2_15. url: http://dx.doi.org/10.1007/978-3-540-
24730-2_15.

[41] V. D’Silva, D. Kroening, and G. Weissenbacher. “A Survey of Auto-
mated Techniques for Formal Software Verification”. In: IEEE Trans.
on CAD of Integrated Circuits and Systems 27.7 (2008), pp. 1165–
1178. doi: 10.1109/TCAD.2008.923410. url: https://doi.org/
10.1109/TCAD.2008.923410.

[42] A. David et al. “A Game-Theoretic Approach to Real-Time System
Testing”. In: DATE’08. 2008. doi: 10.1109/DATE.2008.4484728.
url: http://dx.doi.org/10.1109/DATE.2008.4484728.

[43] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. “Hints on Test Data
Selection: Help for the Practicing Programmer”. In: IEEE Computer
11.4 (1978), pp. 34–41. doi: 10 . 1109 / C - M . 1978 . 218136. url:
http://dx.doi.org/10.1109/C-M.1978.218136.

[44] A. C. Dias Neto et al. “A survey on model-based testing approaches:
a systematic review”. In: Proceedings of the 1st ACM international
workshop on Empirical assessment of software engineering languages
and technologies: held in conjunction with the 22nd IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE)
2007. ACM. 2007, pp. 31–36.

http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1109/TCAD.2008.923410
http://dx.doi.org/10.1109/DATE.2008.4484728
http://dx.doi.org/10.1109/DATE.2008.4484728
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1109/C-M.1978.218136

120 BIBLIOGRAPHY

[45] L. K. Dillon and Y. S. Ramakrishna. “Generating Oracles from Your
Favorite Temporal Logic Specifications”. In: SIGSOFT ’96, Proceed-
ings of the Fourth ACM SIGSOFT Symposium on Foundations of
Software Engineering, San Francisco, California, USA, October 16-
18, 1996. 1996, pp. 106–117. doi: 10.1145/239098.239116. url:
http://doi.acm.org/10.1145/239098.239116.

[46] C. Eisner et al. “Reasoning with Temporal Logic on Truncated Paths”.
In: Computer Aided Verification, 15th International Conference, CAV
2003, Boulder, CO, USA, July 8-12, 2003, Proceedings. 2003, pp. 27–
39. doi: 10.1007/978-3-540-45069-6_3. url: http://dx.doi.
org/10.1007/978-3-540-45069-6_3.

[47] S. Falke, F. Merz, and C. Sinz. “The bounded model checker LLBMC”.
In: ASE’13. IEEE, 2013, pp. 706–709.

[48] B. Finkbeiner and S. Schewe. “Bounded synthesis”. In: STTT 15.5-
6 (2013), pp. 519–539. doi: 10.1007/s10009-012-0228-z. url:
http://dx.doi.org/10.1007/s10009-012-0228-z.

[49] G. Fraser and P. Ammann. “Reachability and Propagation for LTL
Requirements Testing”. In: QSIC’08. 2008, pp. 189–198. doi: 10.

1109/QSIC.2008.21. url: http://dx.doi.org/10.1109/QSIC.
2008.21.

[50] G. Fraser and F. Wotawa. “Test-Case Generation and Coverage Anal-
ysis for Nondeterministic Systems Using Model-Checkers”. In: IC-
SEA’07. 2007. doi: 10.1109/ICSEA.2007.71. url: http://dx.doi.
org/10.1109/ICSEA.2007.71.

[51] G. Fraser, F. Wotawa, and P. E. Ammann. “Testing with Model
Checkers: A Survey”. In: Softw. Test. Verif. Reliab. 19.3 (Sept. 2009),
pp. 215–261. issn: 0960-0833. doi: 10.1002/stvr.v19:3. url: http:
//dx.doi.org/10.1002/stvr.v19:3.

[52] F. Fummi and R. Wille. Languages, Design Methods, and Tools for
Electronic System Design: Selected Contributions from FDL 2016.
Vol. 454. Springer, 2017.

[53] P. L. Gall and A. Arnould. “Formal Specifications and Test: Cor-
rectness and Oracle”. In: Recent Trends in Data Type Specification,
11th Workshop on Specification of Abstract Data Types Joint with the
8th COMPASS Workshop, Oslo, Norway, September 19-23, 1995, Se-
lected Papers. 1995, pp. 342–358. doi: 10.1007/3-540-61629-2_52.
url: https://doi.org/10.1007/3-540-61629-2_52.

http://dx.doi.org/10.1145/239098.239116
http://doi.acm.org/10.1145/239098.239116
http://dx.doi.org/10.1007/978-3-540-45069-6_3
http://dx.doi.org/10.1007/978-3-540-45069-6_3
http://dx.doi.org/10.1007/978-3-540-45069-6_3
http://dx.doi.org/10.1007/s10009-012-0228-z
http://dx.doi.org/10.1007/s10009-012-0228-z
http://dx.doi.org/10.1109/QSIC.2008.21
http://dx.doi.org/10.1109/QSIC.2008.21
http://dx.doi.org/10.1109/QSIC.2008.21
http://dx.doi.org/10.1109/QSIC.2008.21
http://dx.doi.org/10.1109/ICSEA.2007.71
http://dx.doi.org/10.1109/ICSEA.2007.71
http://dx.doi.org/10.1109/ICSEA.2007.71
http://dx.doi.org/10.1002/stvr.v19:3
http://dx.doi.org/10.1002/stvr.v19:3
http://dx.doi.org/10.1002/stvr.v19:3
http://dx.doi.org/10.1007/3-540-61629-2_52
https://doi.org/10.1007/3-540-61629-2_52

BIBLIOGRAPHY 121

[54] M. Gaudel. “Testing Can Be Formal, Too”. In: TAPSOFT’95: The-
ory and Practice of Software Development, 6th International Joint
Conference CAAP/FASE, Aarhus, Denmark, May 22-26, 1995, Pro-
ceedings. 1995, pp. 82–96. doi: 10.1007/3-540-59293-8_188. url:
https://doi.org/10.1007/3-540-59293-8_188.

[55] D. R. Graham. “Requirements and Testing: Seven Missing-Link Myths”.
In: IEEE Software 19.5 (2002), pp. 15–17. doi: 10.1109/MS.2002.
1032845. url: https://doi.org/10.1109/MS.2002.1032845.

[56] K. Havelund and T. Pressburger. “Model Checking JAVA Programs
using JAVA PathFinder”. In: STTT 2.4 (2000), pp. 366–381.

[57] D. M. Hein, J. Winter, and A. Fitzek. “Secure Block Device - Se-
cure, Flexible, and Efficient Data Storage for ARM TrustZone Sys-
tems”. In: 2015 IEEE TrustCom/BigDataSE/ISPA, Helsinki, Fin-
land, August 20-22, 2015, Volume 1. 2015, pp. 222–229. doi: 10.

1109/Trustcom.2015.378. url: http://dx.doi.org/10.1109/
Trustcom.2015.378.

[58] R. M. Hierons. “Applying adaptive test cases to nondeterministic
implementations”. In: Information Processing Letters 98.2 (2006),
pp. 56–60. doi: 10.1016/j.ipl.2005.12.001. url: http://dx.
doi.org/10.1016/j.ipl.2005.12.001.

[59] R. M. Hierons et al. “Using Formal Specifications to Support Test-
ing”. In: ACM Comput. Surv. 41.2 (Feb. 2009), 9:1–9:76. issn: 0360-
0300. doi: 10.1145/1459352.1459354. url: http://doi.acm.org/
10.1145/1459352.1459354.

[60] A. Holzer et al. “FShell: Systematic Test Case Generation for Dy-
namic Analysis and Measurement”. In: CAV’08. Vol. 5123. LNCS.
Springer, 2008, pp. 209–213.

[61] M. Huth and M. D. Ryan. Logic in computer science - modelling and
reasoning about systems (2. ed.) Cambridge University Press, 2004.

[62] “ISO/IEC/IEEE Standard for Software Testing”. In: (2013).

[63] S. M. Inc. Java Card TM 2.1 Runtime Environment (JCRE) Specifi-
cation. 1999.

[64] S. M. Inc. Java Card TM 2.2 Runtime Environment (JCRE) Specifi-
cation. 2006.

http://dx.doi.org/10.1007/3-540-59293-8_188
https://doi.org/10.1007/3-540-59293-8_188
http://dx.doi.org/10.1109/MS.2002.1032845
http://dx.doi.org/10.1109/MS.2002.1032845
https://doi.org/10.1109/MS.2002.1032845
http://dx.doi.org/10.1109/Trustcom.2015.378
http://dx.doi.org/10.1109/Trustcom.2015.378
http://dx.doi.org/10.1109/Trustcom.2015.378
http://dx.doi.org/10.1109/Trustcom.2015.378
http://dx.doi.org/10.1016/j.ipl.2005.12.001
http://dx.doi.org/10.1016/j.ipl.2005.12.001
http://dx.doi.org/10.1016/j.ipl.2005.12.001
http://dx.doi.org/10.1145/1459352.1459354
http://doi.acm.org/10.1145/1459352.1459354
http://doi.acm.org/10.1145/1459352.1459354

122 BIBLIOGRAPHY

[65] Y. Jia and M. Harman. “An Analysis and Survey of the Development
of Mutation Testing”. In: IEEE Trans. Software Eng. 37.5 (2011),
pp. 649–678. doi: 10 . 1109 / TSE . 2010 . 62. url: http : / / doi .

ieeecomputersociety.org/10.1109/TSE.2010.62.

[66] Y. Jia and M. Harman. “An Analysis and Survey of the Development
of Mutation Testing”. In: IEEE Trans. Software Eng. 37.5 (2011),
pp. 649–678. doi: 10 . 1109 / TSE . 2010 . 62. url: http : / / doi .

ieeecomputersociety.org/10.1109/TSE.2010.62.

[67] P. C. Jorgensen. Software Testing: A Craftsman’s Approach, Third
Edition. 3rd ed. AUERBACH, 2008. isbn: 0849374758.

[68] H. Kelly J. et al. A Practical Tutorial on Modified Condition/Decision
Coverage. Tech. rep. 2001.

[69] C. Kern and M. R. Greenstreet. “Formal verification in hardware
design: a survey”. In: ACM Trans. Design Autom. Electr. Syst. 4.2
(1999), pp. 123–193. doi: 10.1145/307988.307989. url: http:

//doi.acm.org/10.1145/307988.307989.

[70] A. Khalimov, S. Jacobs, and R. Bloem. “PARTY: Parameterized Syn-
thesis of Token Rings”. In: CAV’13. 2013, pp. 928–933. doi: 10.1007/
978-3-642-39799-8_66. url: http://dx.doi.org/10.1007/978-
3-642-39799-8_66.

[71] R. Könighofer, G. Hofferek, and R. Bloem. “Debugging formal speci-
fications using simple counterstrategies”. In: FMCAD’09. 2009. doi:
10.1109/FMCAD.2009.5351127. url: http://dx.doi.org/10.
1109/FMCAD.2009.5351127.

[72] O. Kupferman and M. Y. Vardi. “Synthesis with incomplete infor-
matio”. In: ICTL’97. 1997, pp. 91–106.

[73] O. Kupferman and M. Y. Vardi. “Vacuity detection in temporal
model checking”. In: STTT 4.2 (2003), pp. 224–233. doi: 10.1007/
s100090100062. url: http://dx.doi.org/10.1007/s100090100062.

[74] O. Kupferman and M. Y. Vardi. “Model Checking of Safety Proper-
ties”. In: Formal Methods in System Design 19.3 (2001), pp. 291–314.
doi: 10.1023/A:1011254632723. url: https://doi.org/10.1023/
A:1011254632723.

http://dx.doi.org/10.1109/TSE.2010.62
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.62
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1109/TSE.2010.62
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.62
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1145/307988.307989
http://doi.acm.org/10.1145/307988.307989
http://doi.acm.org/10.1145/307988.307989
http://dx.doi.org/10.1007/978-3-642-39799-8_66
http://dx.doi.org/10.1007/978-3-642-39799-8_66
http://dx.doi.org/10.1007/978-3-642-39799-8_66
http://dx.doi.org/10.1007/978-3-642-39799-8_66
http://dx.doi.org/10.1109/FMCAD.2009.5351127
http://dx.doi.org/10.1109/FMCAD.2009.5351127
http://dx.doi.org/10.1109/FMCAD.2009.5351127
http://dx.doi.org/10.1007/s100090100062
http://dx.doi.org/10.1007/s100090100062
http://dx.doi.org/10.1007/s100090100062
http://dx.doi.org/10.1023/A:1011254632723
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1023/A:1011254632723

BIBLIOGRAPHY 123

[75] G. Luo, G. von Bochmann, and A. Petrenko. “Test Selection Based
on Communicating Nondeterministic Finite-State Machines Using
a Generalized Wp-Method”. In: IEEE Trans. Software Eng. 20.2
(1994), pp. 149–162. doi: 10.1109/32.265636. url: http://dx.
doi.org/10.1109/32.265636.

[76] Z. Manna and A. Pnueli. Temporal verification of reactive systems -
safety. Springer, 1995. isbn: 978-0-387-94459-3.

[77] D. A. Martin. “Borel determinacy”. In: Annals of Mathematics 102.2
(1975), pp. 363–371.

[78] A. Morgenstern, M. Gesell, and K. Schneider. “An Asymptotically
Correct Finite Path Semantics for LTL”. In: Logic for Programming,
Artificial Intelligence, and Reasoning - 18th International Confer-
ence, LPAR-18, Mérida, Venezuela, March 11-15, 2012. Proceedings.
2012, pp. 304–319. doi: 10.1007/978-3-642-28717-6_24. url:
http://dx.doi.org/10.1007/978-3-642-28717-6_24.

[79] L. M. de Moura and N. Bjørner. “Z3: An Efficient SMT Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08). Vol. 4963. LNCS. Springer, 2008, pp. 337–340.

[80] G. J. Myers and C. Sandler. The Art of Software Testing. John Wiley
& Sons, 2004. isbn: 0471469122.

[81] L. Nachmanson et al. “Optimal strategies for testing nondeterministic
systems”. In: ISSTA’04. 2004, pp. 55–64. doi: 10.1145/1007512.
1007520. url: http://doi.acm.org/10.1145/1007512.1007520.

[82] A. J. Offutt. “Investigations of the Software Testing Coupling Effect”.
In: ACM Trans. Softw. Eng. Methodol. 1.1 (1992), pp. 5–20. doi:
10.1145/125489.125473. url: http://doi.acm.org/10.1145/
125489.125473.

[83] A. J. Offutt et al. “Generating test data from state-based specifica-
tions”. In: Softw. Test., Verif. Reliab. 13.1 (2003), pp. 25–53. doi:
10.1002/stvr.264. url: http://dx.doi.org/10.1002/stvr.264.

[84] Oracle. Java Card 3 Platform Runtime Environment Specification,
Classic Edition Version 3.0.4. 2011.

[85] T. J. Ostrand and M. J. Balcer. “The category-partition method for
specifying and generating fuctional tests”. In: Communications of the
ACM 31.6 (1988), pp. 676–686.

http://dx.doi.org/10.1109/32.265636
http://dx.doi.org/10.1109/32.265636
http://dx.doi.org/10.1109/32.265636
http://dx.doi.org/10.1007/978-3-642-28717-6_24
http://dx.doi.org/10.1007/978-3-642-28717-6_24
http://dx.doi.org/10.1145/1007512.1007520
http://dx.doi.org/10.1145/1007512.1007520
http://doi.acm.org/10.1145/1007512.1007520
http://dx.doi.org/10.1145/125489.125473
http://doi.acm.org/10.1145/125489.125473
http://doi.acm.org/10.1145/125489.125473
http://dx.doi.org/10.1002/stvr.264
http://dx.doi.org/10.1002/stvr.264

124 BIBLIOGRAPHY

[86] A. Petrenko, A. da Silva Simão, and N. Yevtushenko. “Generating
Checking Sequences for Nondeterministic Finite State Machines”. In:
ICST’12. 2012, pp. 310–319. doi: 10.1109/ICST.2012.111. url:
http://dx.doi.org/10.1109/ICST.2012.111.

[87] A. Petrenko and A. Simão. “Generalizing the DS-Methods for Test-
ing Non-Deterministic FSMs”. In: Computer Journal 58.7 (2015),
pp. 1656–1672. doi: 10.1093/comjnl/bxu113. url: http://dx.
doi.org/10.1093/comjnl/bxu113.

[88] A. Petrenko and N. Yevtushenko. “Adaptive Testing of Nondeter-
ministic Systems with FSM”. In: HASE’14. 2014, pp. 224–228. doi:
10.1109/HASE.2014.39. url: http://dx.doi.org/10.1109/HASE.
2014.39.

[89] A. Petrenko and N. Yevtushenko. “Conformance Tests as Check-
ing Experiments for Partial Nondeterministic FSM”. In: FATES’05.
2005, pp. 118–133. doi: 10.1007/11759744_9. url: http://dx.
doi.org/10.1007/11759744_9.

[90] A. Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Sym-
posium on Foundations of Computer Science, Providence, Rhode Is-
land, USA, 31 October - 1 November 1977. 1977, pp. 46–57. doi:
10.1109/SFCS.1977.32. url: http://dx.doi.org/10.1109/SFCS.
1977.32.

[91] A. Pnueli and R. Rosner. “On the Synthesis of a Reactive Module”.
In: Principles of Programming Languages (POPL’89). 1989, pp. 179–
190. doi: 10.1145/75277.75293. url: http://doi.acm.org/10.
1145/75277.75293.

[92] Radio Technical Commission for Aeronautics (RTCA). RTCA-DO-
178B: Software Considerations in Airbone Systems and Equipment
Certification. Dec. 1992.

[93] C. R. Spitzer and C. Spitzer. Digital Avionics Handbook. CRC press,
2000.

[94] L. Tan, O. Sokolsky, and I. Lee. “Specification-based Testing with
Linear Temporal Logic”. In: Proceedings of the 2004 IEEE Interna-
tional Conference on Information Reuse and Integration, IRI - 2004,
November 8-10, 2004, Las Vegas Hilton, Las Vegas, NV, USA. 2004,
pp. 493–498. doi: 10.1109/IRI.2004.1431509. url: http://dx.
doi.org/10.1109/IRI.2004.1431509.

http://dx.doi.org/10.1109/ICST.2012.111
http://dx.doi.org/10.1109/ICST.2012.111
http://dx.doi.org/10.1093/comjnl/bxu113
http://dx.doi.org/10.1093/comjnl/bxu113
http://dx.doi.org/10.1093/comjnl/bxu113
http://dx.doi.org/10.1109/HASE.2014.39
http://dx.doi.org/10.1109/HASE.2014.39
http://dx.doi.org/10.1109/HASE.2014.39
http://dx.doi.org/10.1007/11759744_9
http://dx.doi.org/10.1007/11759744_9
http://dx.doi.org/10.1007/11759744_9
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1145/75277.75293
http://doi.acm.org/10.1145/75277.75293
http://doi.acm.org/10.1145/75277.75293
http://dx.doi.org/10.1109/IRI.2004.1431509
http://dx.doi.org/10.1109/IRI.2004.1431509
http://dx.doi.org/10.1109/IRI.2004.1431509

BIBLIOGRAPHY 125

[95] W. Thomas. “Automata and reactive systems”. In: Course Lectures,
RWTH Aachen, Germany (2002).

[96] J. Tretmans. “Model Based Testing with Labelled Transition Sys-
tems”. In: Formal Methods and Testing, An Outcome of the FORTEST
Network, Revised Selected Papers. 2008, pp. 1–38. doi: 10.1007/978-
3-540-78917-8_1. url: http://dx.doi.org/10.1007/978-3-
540-78917-8_1.

[97] G. M. Weinberg. Perfect Software: And Other Illusions About Test-
ing. New York, NY, USA: Dorset House Publishing Co., Inc., 2008.
isbn: 0932633692, 9780932633699.

[98] E. Weyuker, T. Goradia, and A. Singh. “Automatically generating
test data from a Boolean specification”. In: IEEE Transactions on
Software Engineering 20.5 (1994), pp. 353–363.

[99] M. W. Whalen et al. “Coverage metrics for requirements-based test-
ing”. In: Proceedings of the ACM/SIGSOFT International Sympo-
sium on Software Testing and Analysis, ISSTA 2006, Portland, Maine,
USA, July 17-20, 2006. 2006, pp. 25–36. doi: 10.1145/1146238.
1146242. url: http://doi.acm.org/10.1145/1146238.1146242.

[100] J. Woodcock et al. “Formal methods: Practice and experience”. In:
ACM Comput. Surv. 41.4 (2009), 19:1–19:36. doi: 10.1145/1592434.
1592436. url: http://doi.acm.org/10.1145/1592434.1592436.

[101] M. Yannakakis. “Testing, Optimizaton, and Games”. In: Logic in
Computer Science (LICS’04). 2004, pp. 78–88. doi: 10.1109/LICS.
2004.1319602. url: http://dx.doi.org/10.1109/LICS.2004.
1319602.

http://dx.doi.org/10.1007/978-3-540-78917-8_1
http://dx.doi.org/10.1007/978-3-540-78917-8_1
http://dx.doi.org/10.1007/978-3-540-78917-8_1
http://dx.doi.org/10.1007/978-3-540-78917-8_1
http://dx.doi.org/10.1145/1146238.1146242
http://dx.doi.org/10.1145/1146238.1146242
http://doi.acm.org/10.1145/1146238.1146242
http://dx.doi.org/10.1145/1592434.1592436
http://dx.doi.org/10.1145/1592434.1592436
http://doi.acm.org/10.1145/1592434.1592436
http://dx.doi.org/10.1109/LICS.2004.1319602
http://dx.doi.org/10.1109/LICS.2004.1319602
http://dx.doi.org/10.1109/LICS.2004.1319602
http://dx.doi.org/10.1109/LICS.2004.1319602

	Contents
	List of Figures
	List of Tables
	Introduction
	Boolean Formulas
	Implementation Independent Tests
	Runtime Verification Approach
	Thesis Statement
	List of Publications
	Structure of the Thesis

	Background
	Terminology
	Logics
	Propositional Logic
	Linear Temporal Logic
	Safety and Liveness
	Automata
	Model Checking
	Reactive Synthesis

	Testing
	Equivalence Classes
	Boundary Value Testing

	Quality of a Test Suite
	Control Flow Criteria
	Mutation Testing

	Test Case Generation for a Formula
	Test Purpose - Motivation
	Test Case Generation
	Experimental Results
	Formal Models
	Java Card Applet Firewall
	Secure Cache

	Test Case Generation from LTL
	Test Purpose - Motivation
	Test Case Generation
	Coverage Objective
	Fault Model
	Test Strategy Computation
	Extensions and Variants

	Experimental Results
	Formal Specifications
	Test Strategy Generation
	Evaluation of the Test Strategies

	Finite LTL Interpretation
	Motivation
	Counting Semantics for LTL
	Definitions
	Counting Semantics
	Evaluation

	Examples

	Conclusion and Outlook
	Summary and Conclusion
	Boolean Formulas
	Implementation Independent Tests
	Runtime Verification Approach

	Future Work

	Bibliography

