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Abstract

The low-power consumption and low-cost of Bluetooth Low Energy (BLE) devices
raised the popularity of BLE over the past years. Nowadays, BLE is supported by most
consumer electronic devices and it is an integral part in everyday application domains.
Because it is used in a wide range of applications, the specific requirements of BLE appli-
cations are largely different. Furthermore, requirements may change over time and may
be user dependent, having an adverse impact on the energy efficiency and responsiveness
of BLE. The community is aware of changing application requirements over time: sev-
eral runtime adaptation techniques for device discovery and connection management are
indeed available in the literature. To date, however, there is no work that targets the
influence of user behavior on the device discovery process of BLE.

This thesis focuses on making the device discovery process more energy efficient and
responsive. It does so by introducing two novel concepts: Adaptive Advertising and Range
Extender. To find the appropriate trade-off and adapt it at runtime, Adaptive Advertising
is introduced. The latter adapts the advertising interval of a BLE advertiser at runtime,
according to a daily schedule, based on user behavior. To increase the responsiveness of
BLE even further, the concept of Range Extender is introduced. The latter informs BLE
devices about the presence of other nearby BLE devices by establishing a temporary or
permanent connection.

Both Adaptive Advertising and Range Extender are generic such that they can be
used in different application scenarios. To outline the benefits of both approaches they
are evaluated according to a real world application: the Nuki Smart Lock. The imple-
mentation of Adaptive Advertising takes place on the Cypress CY8C4248LQI-BL483 chip.
An experimental evaluation shows that the energy consumption and the mean device dis-
covery latency can be decreased by 50%. The Range Extender is implemented on Nordic
Semiconductor’s nRF52 radio chip using the real-time operating system Zephyr. In both
Temporary and Permanent Connection mode, the connection partner could be notified in
a mean time of less than two seconds. After a successful notification the connection part-
ner may adapt its advertising interval. This reduces the device discovery time of other
potential connection partners, depending on the currently used advertising interval, by
more than 95%.
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Kurzfassung

Auf Grund seiner Energieeffizienz und geringen Kosten hat Bluetooth Low Energy (BLE)
in den letzten Jahren an Popularität gewonnen. Heutzutage sind die meisten elektroni-
schen Verbrauchergeräte mit BLE ausgestattet und BLE ist Bestandteil von vielen alltägli-
chen Anwendungen geworden. Auf Grund des breiten Einsatzgebietes variieren die Anwen-
dungsanforderungen. Zudem sind Anforderungen zeit- und benutzerabhängig. Dies kann
einen negativen Einfluss auf die Energieeffizienz und die Reaktionsgeschwindigkeit von
BLE haben. Die Forschung ist sich über den zeitlichen Einfluss bewusst. Deshalb gibt es
für die Geräteerkennung und das Verbindungsmanagement einige Adaptionstechniken, die
zur Laufzeit eingreifen. Allerdings gibt es gegenwärtig keine Adaptionstechniken, die auch
den Einfluss des Benutzerverhaltens auf die Geräteerkennung von BLE miteinbeziehen.

Diese Masterarbeit beschäftigt sich mit der Energieeffizienz und der Reaktionsge-
schwindigkeit der BLE-Geräteerkennung. Dazu werden zwei neue Konzepte eingeführt:
Adaptive Advertising und Range Extender. Adaptive Advertising findet einen geeigneten,
zur Laufzeit anpassbaren, Kompromiss. Basierend auf einem täglichen, vom Nutzerverhal-
ten abhängigen, Zeitplan, adaptiert Adaptive Advertising das Advertising Interval eines
BLE Advertisers zur Laufzeit. Um die Reaktionsgeschwindigkeit von BLE weiter zu stei-
gern, wird das Konzept des Range Extenders eingeführt. Dieser informiert BLE Geräte
mittels einer temporären oder permanenten Verbindung über die Anwesenheit anderer,
sich in der Nähe befindenden, BLE Geräte.

Beide Konzepte sind generisch implementiert, so dass ein breites Anwendunsspektrum
möglich ist. Um die Vorteile beider Konzepte hervorzuheben, erfolgt die Evaluierung in
einem praxisorientierten Szenario, dem Nuki Smart Lock. Die Implementierung von Ad-
aptive Advertising wird am Cypress Chip CY8C4248LQI-BL483 durchgeführt. Die experi-
mentelle Evaluierung zeigt, dass sowohl der Energieverbrauch als auch die mittlere Zeit der
Geräteerkennung um 50% verringert werden können. Der Range Extender wird unter Ver-
wendung des Echtzeitbetriebssystems Zephyr am nRF52 Chip von Nordic Semiconductor
implementiert. In beiden Modi, Temporary Connection und Permanent Connection, kann
das verbundene Gerät innerhalb einer durchschnittlichen Zeit von unter zwei Sekunden
verständigt werden. Sobald eine Benachrichtigung erhalten wurde, kann das verbundene
Gerät sein Advertising Interval anpassen um die Zeit der BLE-Geräteerkennung für an-
dere potentielle Verbindungspartner zu verkürzen. Abhängig vom aktuellen Advertising
Interval, kann diese Reduktion mehr als 95% betragen.
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Chapter 1

Introduction

Nowadays, more and more devices are connected to each other, creating the Internet of
Things (IoT). Those devices are not only powerful devices such as laptop and smart phones,
but also smaller, constrained embedded devices equipped with sensors. The IoT has many
different application areas such as home automation, smart cities, fitness applications, and
health monitoring. In most applications devices collect data and communicate it to nearby
devices or over the Internet, transforming them into “smart devices” forming a network
that is able to communicate without human intervention. The amount of transferred data
for smart objects is usually limited, allowing them to use smaller data rates and achieve a
higher energy efficiency. This is an important characteristic, as many IoT devices have to
operate for a long time powered by batteries, often cell coin sized batteries. This applies
to blood glucose, heart rate, or blood pressure monitors. Also fitness trackers, like fitness
bands, require a low energy consumption while not needing high data throughput. To save
energy, such devices typically employ a low transmission power (at a price of a reduced
communication range) and make use of radio duty cycling, where the radio is switched off
or kept in a low-power state most of the time. This behavior of IoT devices introduces
a common problem: devices are only discoverable for other devices when they have their
radio activated and when they are spatially close to each other. Therefore, it is important
to provide an efficient device discovery mechanism. Efficiency can be considered in terms
of power consumption and responsiveness.

The requirements of low power consumption are often in contrast to the requirements
of responsiveness. On the one hand, users need a short discovery time at the cost of a
short battery lifetime, which may make a product unusable. On the other hand, products
running for several years on coin cell batteries are not able to provide users with a short
latency. An example are smart locks, where the user wants the lock to react as soon as
he/she is in close range of the door. Two factors diminishes the customer satisfaction:
first, long waiting times in front of the door, which are caused by high latency allowing to
save energy. Second, the need of frequent battery replacement, allowing to support a short
latency. Therefore, it is crucial to find the right trade-off between energy consumption and
responsiveness. This trade-off is application-dependent and thus, it is typically neglected.

11
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1.1 Motivation

The motivation for this thesis is based on the crucial trade-off between the energy consump-
tion and responsiveness (i.e., the latency experienced by the end-user) of the discovery of
devices based on Bluetooth Low Energy (BLE). BLE is a popular wireless communication
protocol supported by most consumer electronic devices, such as smart phones, laptop,
and tablets. BLE is especially designed for low-cost, low-range (up to tens of meters),
low-power devices using a reduced data rate of 1 Mbps. It meets most of the requirements
of smart devices by offering a highly adjustable protocol. As mentioned, devices operating
in the IoT are heavily dependent on the energy consumption.

Using an off-the-shelf BLE v4.2 [Blu14] chip, we investigate the behavior of device
discovery and data transmission, in order to increase the performance of the system. Both
device discovery and data transmission are dependent on several parameters, that are set
at compile time and, usually, not changed afterwards. Depending on the selected operating
system (e.g., Android or iOS), devices may support only few different settings, limiting the
possibility of optimally fitting the requirements. Furthermore, developers are not aware
of the different setting and their possible combinations, leading to systems that are using
default values and delivering suboptimal performance. As a consequence of using static
default parameters, most BLE devices are either consuming more energy than actually
needed or being very unresponsive because the settings are too energy conservative.

These problems are strengthened by the fact that application requirements can change
over time and can be user dependent. By using static parameter settings, previously made
assumptions about application requirements may no longer be met. For example, during
the day a system needs to be highly reactive as users want to connect frequently to the
device, but during night the system is not used at all. This assumption can change if we
investigate the user behavior. Some users may use a device during night, others during the
day. Developers of the specific application have to be aware of such a shift of requirements
in order to save as much energy as possible without diminishing the user experience. This
time and user dependency of application requirements introduce the necessity of a dynamic
adaption of protocol parameters.

1.2 Contribution

We model the BLE device discovery process (advertising and scanning) in detail in order to
gain a deep understanding of its influence on energy consumption and responsiveness of the
system. Furthermore, the model is used to estimate the expected energy consumption and
latency of the overall system. In contrast to the common opinion, device discovery does
not depend only on parameters used while advertising, but also on scanning parameters.
Therefore, we introduce Optimal Scan Parameters (OSP), a mathematical approach that
determines the most suited scan parameters based on the advertising parameters of the
remote device such that the device discovery latency is as short as possible.

Based on the BLE device discovery model, we propose Adaptive Advertising (AA), a
technique which allows a BLE device to learn from its past activities and adapt the radio’s
physical parameters accordingly. The algorithm is generic and can be used for different
application scenarios. Among others, it offers the following features:
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• variable number of advertising levels adjustable at compile time;

• variable calculation granularity adjustable at compile time;

• variable dividers in order to reduce time spent on each advertising level, minimizing
the consumed energy, adjustable at compile time;

• variable number of user data adjustable at compile time;

• implementation in C without the need of any external library, making it platform
independent, and

• simple algorithm executed during runtime on a daily basis directly on the micro
controller, i.e., no data has to leave the system.

Adaptive Advertising allows to increase the performance of a BLE system in periods
of high activity, while saving energy whenever possible.

To increase the responsiveness of BLE even further, we introduce the concept of Range
Extender (RE). The RE is an additional BLE device that informs nearby interested de-
vices about the approach or appearance of other BLE devices. This allows devices to save
energy by setting their own parameters accordingly and adjust them whenever they get
notified by the RE about possible necessary interactions.

The RE functionality is implemented as generic solution and is designed in two different
modes. The difference between modes is on how the information exchange between RE and
interested devices takes place. In the first mode a permanent connection (PC) between two
devices is maintained. In the second mode a temporary connection (TC) is established
once information has to be exchanged and terminated afterwards. Depending on the
application scenario, one mode may be a better option. Both scenarios are evaluated
accordingly in order to understand which mode is better suited for a specific scenario.

The RE offers the following features:

• two different modes allowing to react on device constraints and application needs;

• variable connection interval, adjustable at compile time in order to meet an appli-
cation’s power and latency constraints;

• variable number of supported connections;

• variable scan settings adjustable at compile time;

• event-driven scanning;

• variable advertising settings adjustable at compile time;

• variable duration of storing devices adjustable at compile time;

• implementation in C without the need of any external library, making it platform
independent, and

• implementation using Zephyr OS on Nordic Semiconductor’s nRF52.
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We evaluate AA and RE with respect to power consumption and device discovery
latency on a real world application: the Nuki Smart Lock (NSL). The NSL allows to
lock/unlock a door with a smart phone or a small key fob. For this application, a reasonable
trade-off between energy consumption and user experienced latency has to be found. Both
energy consumption and latency depend on the discovery time of a user’s device and the
NSL. We show that AA and RE help decreasing this time and reducing the device discovery
latency of the system.

AA is realized on the CY8C4248LQI-BL483 chip, the same as the NSL is using. In
contrast, RE is build on top of the operation system Zephyr on Nordic Semiconductor’s
nRF52. Additional hardware for the power consumption measurement of both chips is
used.

Compared to static advertising, our measurements show that AA is able to reduce the
user experienced latency by more than 50 % while consuming half of the energy. The RE
reduces the device discovery time up to 95 %.

1.3 Outline

The remainder of this thesis is structured as follows. Chapter 2 introduces BLE v4.2
and describes the important parts of the stack that are needed to understand the contri-
butions of this thesis. Furthermore, the Nuki Smart Lock and other used hardware are
introduced, highlighting the particularities and describing the setup of each device. More-
over, we discuss the real time operating system Zephyr and its advantages. Chapter 3
lists some existing smart locks that are using similar approaches as the Nuki Smart Lock.
Furthermore, we mention already existing work in the field of energy consumption, device
discovery, and runtime parameter adaption of BLE. Chapter 4 models BLE device discov-
ery, starting with advertisements and its energy consumption as a function of the amount
of advertising payload. Therefore, a simple mathematical model is introduced. Further-
more, the line of sight range is measured and the maximum time for device discovery is
estimated. Finally, we introduce Optimal Scan Parameters, a mathematical approach to
determine the optimal scan parameters for a given advertising interval. In Chapter 5, we
introduce Adaptive Advertisement, a smart advertising technique that helps to decrease
the device discovery latency and the energy consumption. It does so by learning from user
behavior and adapting the advertising interval of a BLE advertiser at runtime. We dis-
cuss and evaluate the algorithm in detail according to the achieved mean device discovery
latency and the mean power consumption. Chapter 6 explains the concept of the Range
Extender that notifies interested BLE devices about the presence of other BLE devices.
The description of the main concept is followed by an elaborated discussion and evaluation,
showing the mean device discovery latency and the mean power consumption. Chapter 7
concludes this thesis, followed by an overview of possible improvements in Chapter 8.



Chapter 2

Background

This chapter is divided into three parts. Section 2.1 describes background knowledge about
Bluetooth Low Energy, its device discovery, connection establishment, data transmission,
and security mechanisms. Section 2.2 investigates the used hardware and lists its relevant
features. Section 2.3 introduces the operating system Zephyr Project that is used for the
RE implementation on Nordic Semiconductor’s nRF52 chip.

2.1 Bluetooth Low Energy (BLE)

Bluetooth was developed before the turn of the millennium by the Bluetooth Special
Interest Group (SIG) [BS17] that includes nowadays more than 30000 companies. The idea
was to define a global standard for short-range, low-power, and low-cost cable replacement
enabling communication between devices [Gup13]. Today, Bluetooth can be found in
almost every mobile phone, tablet or laptop. With the accelerated growth of the Internet
of Things (IoT) [GBMP13] and its requirements, such as energy efficiency and security,
Bluetooth Low Energy (BLE) was developed. With the introduction of BLE, also called
Bluetooth Smart, a new chapter was added to the Bluetooth story. Since the end of
2009, BLE was added as a part of the Bluetooth 4.0 specification. Since then, three new
specifications have been published: 4.1, 4.2 and 5.0. In this section we mainly focus on
specification 4.2. For simplicity, BLE according to Bluetooth Specification 4.2 is tagged
as BLE v4.2. This applies also for other specifications.

The success of BLE can be attributed to its capability of targeting the ultra low-power
constraints of the new devices, which enables a device to operate for months or even for
years on one coin cell battery. This allows to market BLE devices in key application
domains, such as:

• health care,

• sports and fitness,

• smart cities, and

• home automation

In order to achieve low power operations, BLE is a mostly-off technology [Spo16]: the
radio is disabled most of the time, resulting in a low energy consumption. Once needed,
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Figure 2.1: BLE stack and its different layers (adapted from [Gup13]).

the radio is enabled and communication can take place. In BLE, it can be distinguished
between two types of data communication: connection-based and connection-less.

Connection-based means that two devices have to establish a connection in order to
exchange data (see Section 2.1.2.5). Once they are connected, data can be exchanged
bidirectionally on the data channels of BLE. Transmitted data can be encrypted and the
receiver can be addressed directly. Theoretically, the size of the transmitted data is not
limited, as large data is splitted into smaller, same sized packets. Those packets are sent
and reassembled on the receiver side (see Section 2.1.4). The limiting factor is the memory
of both devices. Connection-based data transmission is reliable. This means that every
transmitted packet gets acknowledged by the link layer. If a packet is lost or corrupted, the
packet gets re-transmitted automatically. The number of re-transmission is not limited:
the attempt of re-transmitting stops on link loss. Therefore, this mode is used when
bidirectional communication is necessary and a large amount of data or sensitive data has
to be transmitted.

BLE allows to exchange data also without establishing a connection, with its connection-
less mode. Two devices that are not connected can exchange unidirectional data by using
the three advertising channels (see Section 2.1.2.1). The sending device needs to advertise
on one to all three channels, the receiver has to scan on the used channels (see Section
2.1.2.2). Data is structured into so called advertising packets (see Section 2.1.2.3). The
number of transmitted bytes of payload in one advertising packet is at most 31 (BLE
v4.2 and earlier). Note that advertising packets can be received and read by all scanning
devices, as there is no encryption for advertising packets. Therefore, this mode is used for
broadcasting small amounts of nonsensitive data.

The interoperability between devices of different vendors is guaranteed by implement-
ing the Generic Access Profile (GAP) and the Generic Attribute Profile (GATT). There-
fore, their implementation is mandatory for all BLE devices. The profiles define the basic
concepts of BLE regarding device discovery and data transmission. GAP defines proce-
dures for device discovery, connection establishment, and security features. In contrast to
GAP, GATT defines how devices exchange data.
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In the next sections the focus is on the BLE stack, divided into different layers and
illustrated in Figure 2.1. We discuss all layers, starting from the bottom and focus on the
relevant parts in order to understand the contribution of this thesis.

2.1.1 Physical Layer (PHY)

The Physical Layer (PHY) is the bottom layer in the BLE communication stack (see
Figure 2.1). Its responsibility is sending and receiving data over the air.

BLE operates in the 2.4 GHz industrial, scientific and mechanical (ISM) band. Data
modulation is performed using Gaussian Frequency Shift Keying (GFSK). As the priorities
are shifted towards energy efficiency, the data rate of the physical layer is limited to 1 Mbps
(BLE v4.2). In contrast to classic Bluetooth (BR/EDR), BLE uses only 40 channels, each
2 MHz wide, where three channels (37, 38, 39) are reserved for device discovery, also called
advertising channels. In order to allow a successful device discovery, interference is kept to
a minimum by selecting the three channels in between of the three most popular Wireless
LAN channels (1, 6, 11). Limiting the number of advertising channels enables a faster
connection establishment, allowing to react faster and saving energy, as the radio has to
be turned on shorter. The remaining 37 channels are data channels that are only used
once a connection between two devices is established.

2.1.2 Link Layer (LL)

In the BLE communication stack hierarchy (see Figure 2.1) the Link Layer (LL) is on
top of the Physical Layer. It is responsible for establishing and controlling links, and ex-
changing data. Furthermore, the LL manages the frequency selection: BLE uses Adaptive
Frequency Hopping (AFH) on the data channels, which allows to reduce interference from
other devices in the ISM band.

In order for two BLE devices to exchange data, at least one device has to be aware
of the other device. This procedure is called device discovery. In BLE, device discovery
is handled using advertising and scanning events. Both advertising and scanning are
described next.

2.1.2.1 Advertising

The device advertising its presence is called advertiser. It is the device that wants to be
discovered and thus it is transmitting its presence on the advertising channels. Advertising
is performed periodically in so called advertising events. The advertising procedure is
illustrated in the upper part of Figure 2.2.

During an advertising event an advertiser is sending advertising packets that takes
tADV time, followed by a time of radio inactivity till the next advertising event starts.
During this time tDS the radio can be switched off and the system may be put in deep
sleep mode. The time between the start of two consecutive advertising events is called
advertising interval (TADVI). At the end of each advertising interval, a random delay
between 0 and 10ms (tDelay) is added. This delay should avoid persisting collision with
other BLE devices.

The advertising interval can be set between 20ms and 10.24s. As in BLE three out of
40 possible channels are used as advertising channels, there is the possibility to advertise
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Figure 2.2: BLE device discovery: advertising (upper part) and active scanning (lower
part) on three channels with successful device discovery on channel 38.

on any combination of all three channels (channel 37, 38 and 39) during a single advertis-
ing event. When a device supports requests (scan and connection requests, described in
Section 2.1.2.2 and 2.1.2.5) each transmission phase of an advertising event on one chan-
nel has to be followed by listening on the corresponding channel for a possible response
of another BLE device. Afterwards, the radio switches to the next channel (inter-channel
transition). The time spent on one channel (transmitting, listening and switching to the
next channel) is considered to be tADV,CH-CH.

2.1.2.2 Scanning

On the one hand, using multiple advertising channels increase the robustness against
radio interference of other communication technologies. On the other hand, a device that
wants to detect the advertiser needs to scan on all advertising channels. As the radio
can only scan a single channel at one point in time, the device has to perform alternating
scanning. The scanning procedure is illustrated in the lower part of Figure 2.2. We
distinguish between the scan interval (TS) and the scan window (tS). The scan interval
determines the time between the start of two consecutive scanning phases. The scan
window determines the net scanning time where the radio is in receiving mode. If TS is
equal to ts, we talk about continuous scanning, as the radio is never turned off. Still,
switching between channels has to be performed. This switching takes several tenths of
microseconds depending on the used BLE chip. Roughly said, an advertising packet will
be received successfully if tADV and tS of the same channel overlap. This is illustrated
with the dotted lines in Figure 2.2.

The scanner is aware of the presence of the advertiser once an advertising packet
is received. Depending on its type (see Section 2.1.2.3), the scanner has three options:
sending a scan request (SCAN REQ), sending a connection request (CONNECT REQ),
or continue listening.

By sending a scan request, the scanner can ask for further advertising information.
Sending a scan request is also known as active scanning. If a scan request is received, the
advertiser may answer with a scan response. Afterwards, both devices are aware of each
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Figure 2.3: Structure of BLE advertising packet according to BLE v4.2.

Source: https://os.mbed.com

other. The scenario is illustrated in Figure 2.2. The usage of a scan response is useful in
order to ask for further information in case not all data could fit in the advertising packet.
Note that, with this method, the size of the transmitted data can only be doubled. If
more data has to be transmitted, a connection has to be established.

If the scanner wishes to establish a connection, it sends a CONNECT REQ. More
information about connection establishment can be found in Section 2.1.2.5.

The last option for the scanner is to simply continue listening, called passive scanning.
This allows the scanner to observe passively the environment not enclosing information
about its own presence. Still the scanner is able to establish a connection, whenever
needed. Please note that, using passive scanning does not inform the advertising device
about the presence of another BLE device.

Regardless of the option chosen by the scanner, all requests have to be performed on
the channel where the advertising packet was received, respecting the Inter Frame Space
time (TIFS) of 150 µs. TIFS defines the interval between two consecutive packets on the
same channel. Therefore, the advertising device has to switch to listening mode after every
advertising packet.

2.1.2.3 Advertising Packet Structure

In each advertising event an advertising packet is transmitted up to three times (once on
every channel). This packet has a predefined structure, that is illustrated in Figure 2.3.
We can observe that even without sending any data in the advertising packet we have to
send 10 bytes overhead. Depending on the advertising type, the actual payload structure
(data) changes. The advertising types differ in connectivity (advertiser accepts connection
requests), directness (advertiser wants to address only a specific device by including its
address) and if the advertiser allows scan requests. This results in four advertising types:

1. ADV IND (connectable undirected): the device accepts connections from any device.

2. ADV DIRECT IND (connectable directed): the device accepts connections from a
specific device only.

https://os.mbed.com
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Android Advertising [ms] Scanning [ms]
Version TADVI Ts TS

4.3 & 4.4 not possible 200 200

5.0+ 100 500 5000
250 2000 5000

1000 5000 5000

Table 2.1: Android’s possible settings for all versions with BLE support: advertising
interval (TADV I), scan window (Ts), and scan interval (TS).

3. ADV NONCONN IND (non-connectable undirected): the device does not accept
any connections.

4. ADV SCAN IND (scannable undirected): the device accepts scan requests and con-
nection requests from any device.

For all cases, the advertiser’s address is included into the payload, which reduces the
actual payload by 6 bytes. This sums up to 16 bytes of mandatory overhead. Therefore, the
actual payload of an advertising event is 31 bytes. As already mentioned in Section 2.1.2.2,
this can be doubled by using the scan request/response principle. When using directed
advertising (ADV DIRECT IND), we have to include the scanner’s address, which reduces
the amount of payload by another 6 bytes.

2.1.2.4 Parameters on Smart Devices

BLE is available on everyday devices such as smart phones and tablets. Most of these
devices run Android or iOS: both limit the possibilities of different advertising intervals,
scan intervals and scan windows.

Android. Android introduced BLE with version 4.3 (2013). With version 5.0, a
radical revision of the Bluetooth implementation took place. Therefore, we have two
different settings, illustrated in Table 2.1.

Before the introduction of Android 5.0, no advertising was possible. Devices could only
act as connection master. Updating the device to a newer version does not change this
ability. With the release of Android 5.0 three different advertising intervals are supported
[Chi17]:

• ADVERTISING INTERVAL LOW MILLS (100 ms)

• ADVERTISING INTERVAL MEDIUM MILLS (250 ms)

• ADVERTISING INTERVAL HIGH MILLS (1000 ms)

Scanning was available since the introduction of BLE. In version 4.3 and 4.4 there was
only continuous scanning with a scan interval of 200 ms possible. With the introduction
of Android 5.0, the scan interval is set to 5000 ms and three different scan windows are
supported, allowing also non-continuous scanning. The three options are tagged as [Chi17]:

• SCAN MODE LOW POWER (500 ms)
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Figure 2.4: BLE connection establishment [Blu14]. The scanner turns into the master of
the connection (M), the advertiser acts as slave (S).

• SCAN MODE BALANCED (2000 ms)

• SCAN MODE LOW LATENCY (5000 ms)

iOS. Apple’s iOS introduced BLE with iOS 5, which was released in 2011.

• Advertising: a lot of different advertising intervals are possible. Apple suggests to
advertise with an interval of 20 ms for the first 30 seconds and to switch then to
some special slower advertising intervals. More information can be found in Apple’s
developer guidelines [Inc17a].

The advertising options depend on the current state of the application: running in
the foreground or in the background. For the scope of this thesis this is not relevant.

• Scanning: again, iOS distinguishes between two different scanning policies that de-
pend on whether the app is running in the foreground or in the background. The scan
interval and window can not be changed and are selected considering performance
and power consumption. Therefore, when the application runs in the background
scanning with a lower duty cycle is used in order to conserve energy. This means that
the scan window is considerably shorter than the scan interval. Unfortunately, it was
not possible to find exact values for both interval and window. More information
can be found on [Hid17].

2.1.2.5 Connection Establishment

Once device discovery is successful (see Section 2.1.2.2), and the advertising device al-
lows connection establishment, the scanning device can initiate a connection by sending
a connection request (CONNECT REQ) to the advertising device (see Figure 2.4). The
scanner turns into the master of the connection, the advertiser acts as slave. The connec-
tion request packet is sent on the advertising channel where the advertising packet was
received and contains connection parameters defined by the master. Although the master
defines the first connection settings, they may be (re-)negotiated later. Both devices have
to agree on the connection parameters and can request a connection parameter update
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Figure 2.5: Overview of several BLE connection events. The master initiates each connec-
tion event. The slave has to respond to each packet. The slave latency allows the slave to
skip connection intervals.

Source: Adapted from https://devzone.nordicsemi.com

once the connection is established (see Section 2.1.2.6). The connection parameters of the
CONNECT REQ are connection interval (connInterval), slave latency (connSL), channel
map, and transmit window size.

The connection interval determines the time between the start of two consecutive con-
nection events and is in the range between 7.5 ms and 4 seconds. Similar to advertising and
scanning events, we have connection events that can be seen as point of synchronization
between two devices. Each connection event is initiated by the master by sending a packet
to the slave. The slave has to respond to each packet received by the master. During a
connection event master and slave alternate sending and receiving packets. All commu-
nication of one connection event takes place on the same data channel. The standard
defines no limit on the amount of data packets per connection events, but, in practice, it
is limited by the BLE devices. Limiting factors are memory constraints of both devices
and time constraints as a master may have to maintain connection to multiple slaves.

The master has to ensure that a connection event terminates at least TIFS (150 µs)
before the start of the next connection event. If both devices do not have more data to
send, the packet of the slave determines the end of the connection event.

A slave latency value different than zero allows the slave to skip up to that number of
consecutive connection events (see Figure 2.5). This gives the slave the possibility to save
energy.

The channel map determines which channels are used and defines a hop increment
that is a random value between 5 and 16. After each connection event AFH is applied:
the hop increment is added to the current channel number resulting in the next channel
number. This increases the robustness: some channels may be blocked by other devices
operating in the 2.4 GHz ISM band. Switching between channels increases the probability
that successful communication can take place.

After sending the CONNECT REQ the master has to wait at least 1.25 ms, followed
by the so called transmit window size. During this time the scanner has to send its first
packet to the advertiser, that, in case CONNECT REQ was successfully received, listens
for it. This communication takes already place on one of the 37 data channels.

https://devzone.nordicsemi.com
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2.1.2.6 Connection Parameter Update

Central and peripheral devices agree on connection parameters during the connection
establishment (see Section 2.1.2.5). Still, there is the possibility to request an update of
those parameters during an ongoing connection in any connection event. This is useful if
the application requirements change at runtime. For example, there might be the case that
a higher data throughput or a lower latency is necessary. Once application requirements
changed, previously made assumptions about suitable connection parameters may not
be valid anymore. In this case, slave devices are allowed to request an update of the
connection parameters. The device that initiated the procedure sends a request with a
proposal of new values that can be accepted or declined by the master of the connection.

2.1.2.7 Connection Termination

In BLE, both devices are allowed to close the connection by sending an appropriate packet.
Furthermore, a connection can terminate in a unforeseeable way: a device can move out of
range, run out of power, or interference is too strong making communication impossible.
In those cases, the communication between both devices is interrupted. To be able to
detect link loss, both devices are using timers. During the connection establishment, the
initiator, after sending the connection request, waits 6· connInterval. If after that period
no packet was received successfully, the connection is considered lost. Furthermore, BLE
defines a connection supervision timeout (connSupervisionTimeout), used by both devices
in order to detect link loss after a connection was successfully established. This parameter
sets the maximum time between two received packets before the connection is considered
to be lost. On each successful reception of a packet the timer is reset. This parameter can
be set device specific.

Once the connection is lost, both device may try to reestablish the connection by going
back to advertising and scanning state respectively.

2.1.2.8 Address Types

In the world of BLE, a device is identified by its unique 48 bit device address (BD ADDR),
also called public device address. The most-significant 24 bits are the Organizationally
Unique Identifier (OUI). The OUI is assigned by Institute of Electrical and Electronics
Engineers (IEEE) and is used to determine the manufacturer of a device. The remaining
24 bits are assigned by the vendor of the device. BD ADDR can not be changed and
therefore, once known, it could be used for tracking a device and its user. This is a
problem regarding privacy issues. Therefore, BLE introduced random device addresses
that can be used alternatively in order to hide the identity of a device while still being
able to communicate. A random address changes periodically (developer selectable) and,
therefore, the device can not be tracked. Using those private addresses, a BLE device
can not determine if another device was present or connected previously, which can be a
problem for certain applications. Therefore, a third type of address was introduced: the
resolvable private address. Similar to random addresses, this address changes periodically
and hides the real identity of a device. In contrast to the random address, devices that are
in a relation of trust are able to resolve the BD ADDR of the peer device. This process is
called address resolution and is explained in Section 2.1.5.2.
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2.1.3 Host Controller Interface (HCI)

The host controller interface provides a standardized communication mechanism between
the lower and the upper part of the BLE stack (see Figure 2.1). Most of the time, the
lower layers are located on a separated BLE chip while the upper layers are part of the
host [Gup13]. This layer is not mandatory.

2.1.4 Logical Link Control and Adaptation Protocol (L2CAP)

The responsibility of the L2CAP layer is to manage the logical link that is shared between
higher layer protocols [Spo16]. It ensures correct packet segmentation and reassembly for
the upper layers in the BLE communication stack (see Figure 2.1).

Furthermore, the L2CAP layer defines the maximum transmission unit (MTU) between
two connected devices. The actual value is variable and has to be negotiated between
both devices during the connection establishment (see Section 2.1.2.5). In BLE v4.2, the
minimum MTU size is 23 bytes: an upper boundary does not exist. A smaller MTU
size keeps the packet size small: this allows to minimize the sending and receiving buffers
[Gup13].

2.1.5 Security Manager (SM)

The Security Manager (SM) layer is located above the L2CAP layer (see Figure 2.1) and
provides procedures for pairing, bonding, authentication, and encryption between BLE
devices [Gup13]. Those features are needed once security for a specific connection is
needed (e.g., transmission of sensitive data). The SM dispenses a key management system
that allows to generate and store various keys that may be exchanged with other devices
once needed. Furthermore, the SM takes care of the address generation and resolution.
The different types of BLE device addresses are discussed in Section 2.1.2.8.

2.1.5.1 Pairing and Bonding

Once two devices want to exchange sensitive data, they have to create a trustful connection
between each other. This process is called pairing. During the pairing process both
devices exchange the necessary information in order to establish an encrypted connection.
A pairing process can be initiated independent by the device role (master/slave) after a
successful connection was created (see Section 2.1.2.5). After both devices disconnected,
the pairing information is lost and the pairing process, if needed, has to be started again
after the next connection establishment. This can be avoided by using bonding procedure.
During bonding the exchanged pairing information is stored on the devices so that the
information does not need to be exchanged again once the connection is reestablished.

2.1.5.1.1 Security Issues As mentioned, pairing enables the possibility of establish-
ing a secure link. As always, there are some weak points that an attacker can make use of.
Although this thesis does not focus on BLE’s security features, it is still worth mentioning,
as it is of high relevance for the NSL use case.

We can distinguish between three main security issues when talking about BLE com-
munication [Gup13]:
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1. Passive eavesdropping: a third device (Eve) listens to the ongoing communication
between two devices (Alice, Bob). Eve does not take part of the communication
process, therefore Alice and Bob can not notice the presence of Eve. In order to
counter this, BLE encrypts the communication over a secure link by using the block
cipher AES in Counter Mode with CBC-MAC (AES-CCM), enabling confidentiality
and integrity. As every block cipher, AES uses symmetric keys. Only with the
knowledge of the key, the message can be encrypted. Therefore, the key has to be
exchanged between Alice and Bob.

This key exchange procedure, in BLE called pairing procedure, can introduce vulner-
abilities leading to the scenario in which Eve is able to decrypt the communication
between Alice and Bob.

2. Man in the middle (MITM) attacks: a third device (Eve) impersonates the other
two devices (Alice, Bob) in order to trick them. Both Alice and Bob establish
a connection to Eve, thinking they are connected to each other. By holding both
communication keys, Eve can read and also forward the data resulting in the scenario
where Alice and Bob do not notice the presence of Eve.

3. Device/identity tracking: ability to physically track a device by its device address.
As countermeasure, BLE introduced different address methods (see Section 2.1.2.8).
During the pairing/bonding procedure the information for address resolution can be
exchanged, enabling the possibility to track a device.

2.1.5.1.2 Pairing Procedure Once a device requested a pairing procedure, both
devices exchange a Temporary Key (TK) that is used to create a Short Term Key (STK).
This procedure is called LE legacy pairing. The connection is encrypted using the STK.
The security of this process depends on the selected pairing method, that determines how
the TK is exchanged.

After the pairing request, both devices exchange device capabilities and requirements
(unencrypted!):

• I/O capabilities: information about the presence of I/O devices like displays, but-
tons, or keyboards.

• Out of Band Information (OOB): information about the support of any other wire-
less communication standard that could be used in order to exchange the pairing
information (e.g., NFC).

• Maximum key size: each device informs its counterpart about the maximum sup-
ported key size.

• Authentication requirements: connection requirements such as encryption, authen-
tication, and signature.

• Bonding requirement: flag stating if the pairing information should be stored or not.

Once both devices are aware of the capabilities of its counterpart, they determine how
they are going to set up a secure connection. Now, both devices generate and exchange
TK, depending on the selected method:
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• Just Works,

• OOB Pairing,

• Passkey, and

• Numeric comparison.

Once a pairing method is selected, depending on the devices’ capability, the devices
exchange a key in order to encrypt the connection. This indicates the end of the pairing
procedure and the start of the optional bonding procedure.

Depending on the BLE version, some methods are more or less secure. More infor-
mation about the exact exchange of keys and security against passive eavesdropping and
MITM can be found in [Bon16] and in the corresponding BLE standards.

With the introduction of BLE v4.2 [Blu14], the concept of LE Secure Connections was
introduced. This enables the exchange of a Long Term Key (LTK) that is used instead
of TK and STK, in order to encrypt the connection. This key is created and exchanged
using Elliptic Curve Diffie Hellman (ECDH). Both devices generate a key pair, consisting of
public and private key. The usage of this asymmetric keys makes it possible to authenticate
the connection: the devices exchange the public keys and compute the shared secret, used
as symmetric key in order to encrypt the communication needed for the selected pairing
method. After a successful pairing method, the LTK is generated, exchanged and used for
further communication. This approach offers stronger security compared to the original
BLE key exchange protocol. Therefore, most BLE applications that were developed before
the release of BLE v4.2 adapted their own key exchange mechanism.

2.1.5.1.3 Bonding Procedure After the successful pairing of two devices, a bonding
procedure can start if it was set as option during the pairing request (see Section 2.1.5.1.2).
In this phase, devices exchange several parameters allowing to encrypt the link and in order
to avoid another pairing procedure at the next connection establishment. Therefore, a
128 bit Long Term Key LTK is distributed. This key is used to encrypt all further
messages. Furthermore, the so called Identity Resolution Keys IRK (128 bit) and the
public BLE addresses (BD ADDR) of the devices are exchanged: they allow to perform
address resolution (see Section 2.1.5.2).

2.1.5.2 Address Resolution

The procedure to derive the BD ADDR of a device from one of its used resolvable private
addresses is called address resolution. The different address types of BLE are explained in
Section 2.1.2.8. The resolvable private addresses are generated and resolved by the usage
of the Identity Resolution Key (IRK). This 128 bit key can be assigned to the device or
randomly generated and is held in the key storage of the SM.

In order to map a resolvable private address to a specific device, the resolving device
needs to know the BD ADDR and kIR of the specific device. Therefore, the privacy
concept only protects against devices that do not possess the device specific IRK and the
corresponding BD ADDR. In order to exchange those values and create a circle of trust,
the bonding procedure has to be performed (see Section 2.1.5.1.3).
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This step should be taken carefully: in a scenario where device A and B perform the
bonding procedure, device A can create private resolvable addresses based on the received
information and impersonate device B. Furthermore, device A could forward the received
information to a third device C. This would include C into the circle of trust between A
and B, even if B did not agree on that.

2.1.6 Attribute Protocol (ATT)

The Attribute Protocol (ATT) is above the L2CAP layer in the BLE communication stack
(see Figure 2.1). It provides procedures for discovering, reading, and writing attributes of
a connected device. In BLE, an attribute is an abstract type of data representation and
can represent a service, a characteristic, or a descriptor. How attributes are related to
each other is defined in the higher layer Generic Attribute Protocol (GATT), described in
Section 2.1.7.

2.1.6.1 Attributes

An attribute can be accessed in a client-server model: the server provides a set of attributes
to the client. Which attributes a server supports and their exact structure have to be
discovered by the client. Depending on different permissions, the client may be allowed to
read and/or write attributes. Furthermore, the server can notify or indicate clients about
changes of attributes.

At any point in time, only one server can be active on a device. Still, the device can
implement a client role, a server role, or both client and server role [Gup13].

An attribute can be seen as something that represents data, so a value or information
about the value. It is a discrete value containing:

• attribute type: each attribute is uniquely defined by a UUID. In general, BLE is
operating with 128-bit UUIDs, but a range of UUID values has been pre-allocated
in order to allow devices faster attribute discovery. Internally, every device uses
128-bit UUIDs, that can be derived easily from the shorter UUIDs (16 and 32-bit).
The shorter UUIDs are allowed only for services and characteristics defined by the
Bluetooth SIG. For custom services and characteristics, the full 128-bit UUIDs have
to be used.

• attribute handle: a 16-bit value used to uniquely identify an attribute on the server.
It is assigned by each server to its own attributes. Using the handle, the client
can perform read or write requests. Furthermore, the handle is used to identify
notifications or indications.

• attribute value: value of variable length and data type.

• set of permissions: specifies that an attribute may be read and/or written. Fur-
thermore, necessary security features in order to access a specific attribute can be
defined (e.g., encryption).
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2.1.6.2 Attribute Discovery

Every client device has to perform attribute discovery to find out the server defined at-
tribute handles. Only by knowing those handles a client can perform requests in order
to read/write data. As GATT defines an attribute hierarchy, the client has to start to
discover the services first, followed by characteristics and optional descriptors. Once the
client is in possession of the attribute handle of the desired characteristic, it can start to
perform actions in case the client holds the necessary permissions:

• read: reading a specific characteristic value.

• write: change the value of a specific characteristic value.

2.1.6.3 Notifications/Indications

The notifications/indications feature was introduced in order to avoid data polling which
would dramatically increase the energy consumption of client devices. Imagine the scenario
where a device C (client) is dependent on the sensor value of device S (server). In order
to notice changes of that value, C would need to periodically request the sensor value.
This is called polling. Dependent on the polling frequency, the energy consumption of
both devices changes, independent from how often the sensor value actually changes.
Notifications/Indications avoid that scenario. If S supports notifications or indications, C
can subscribe to this service. After a successful attribute discovery, C knows the attribute
handles used by S. Therefore, C can enable notifications by sending a write request and
setting the corresponding characteristic to 1. Once notifications/indications are enabled,
S informs C about changes of the sensor value. The communication is reduced to the
minimum, conserving as much energy as possible on both devices.

Of course, a device can disable notifications/indications whenever needed. Therefore,
again, a simple write request, now with value 0, is sufficient.

The difference between notifications and indications can be found on application level.
In contrast to notifications, indications need an acknowledgment on the application level.
This limits the amount of indications to one indication per connection event. The appli-
cation acknowledgment is sent on the next connection event. Therefore, two consecutive
indications are at least two connection events apart. There is no limitation on the amount
of notifications per connection interval (see Section 2.1.2.5). Hence, notifications are pre-
ferred if a higher transfer rate is needed.

For transmission of both notifications and indications, Attribute Protocol PDUs are
used. Their size depends on the MTU both devices agreed on (see Section 2.1.4). The
PDU format introduces three bytes of overhead that reduce the actual payload [Blu14]:

• Opcode: 1 byte in order to select between indication or notification. Of course, there
exist more opcodes for other ATT features.

• Attribute Handle: 2 byte in order to specify the attribute. The assigned handle is
server specific.

This results in an actual payload of MTU - 3 bytes.
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2.1.7 Generic Attribute Profile (GATT)

The Generic Attribute Profile introduces a hierarchy allowing to organize information into
profiles, services, characteristics, and descriptors. Services, characteristics, and descriptors
are also called attributes (see Section 2.1.6). A profile is composed of one or more services
necessary to fulfill a use case. A service is a collection of data associated to a particular
function and consists of at least one characteristic or references to other services. As shown
in Figure 2.1 this layer is on top of the ATT layer.

Profiles and services are defined by the Bluetooth SIG, but they can also be developer
defined. In the second case we talk about custom profiles and services. A list of predefined
profiles and services can be found on the official website [BS17].

2.1.8 Generic Access Profile (GAP)

The Generic Access Profile (GAP) defines the base functionality and roles common to all
BLE devices. Thus, its implementation is mandatory. GAP defines procedures for devices
discovery, establishing and terminating connections, and exchange of security features and
data [Gup13]. The profile should ensure interoperability between devices from different
vendors.

GAP defines four different roles for BLE devices:

1. Broadcaster: a device is only transmitting advertising packets. It never receives any
data, thus only a transmission unit is needed. This role is used for broadcasting
data.

2. Observer: a device is only scanning for advertising packets. Thus, it never transmits
any data. Therefore, only a receiving unit is needed. This role is used for collecting
broadcasted data or to track other devices.

3. Peripheral: a device that accepts incoming connection request, further serving as
slave of the connection. The device needs transmission and receiving unit.

4. Central: a device that initiates connections by sending connection requests. The
device needs transmission and receiving unit.

Once supported by the used BLE stack, a device can be in all 4 roles at the same time,
holding multiple connections.

2.1.9 Bluetooth Low Energy 5.0

In December 2016 the latest BLE version, tagged as 5.0, was released by the Bluetooth
SIG [Blu16]. Unfortunately, till now, not many BLE chips are supporting the new version.
Even though this thesis focuses on the BLE v4.2 standard, we want to mention the new
possibilities that BLE v5.0 offers. The major improvements and new features introduced
by BLE v5.0 can be summarized by the following points:

1. Physical Layer LE 2M

BLE v5.0 brings a new physical layer that increases the data rate. Until BLE v4.2
the data rate was limited to 1 Mbps (LE 1M). BLE v5.0 devices should support
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both layers. With the new layer, doubling the data rate is possible. LE 2M supports
a data rate of 2 Mbps. Doubling the data rate means that the transmission and
reception time is halved. LE 2M uses the same transmission power as LE 1M. The
increased data rate is achieved by a higher data modulation at the price of a smaller
link budget. As we know, most of a device’s energy demand is produced by an
active radio. Thus, a shorter transmission and reception time reduces the energy
consumption significantly. This leads to an increased battery life.

2. Physical Layer LE Coded

An optional new physical layer, called LE Coded is introduced by BLE v5.0. With
this option, coding with a spreading factor of two or eight is possible. This option
is only available on LE 1M. On the one hand, coding increases the redundancy and
makes the connection more robust and reliable. On the other hand, it reduces the
effective symbol rate. Once an application can disclaim a high data rate, this allows
to increase the range of BLE significantly.

3. Transmission Power

The maximum transmission power for BLE v4.2 was 10 dBm. BLE v5.0 multiplies
this value by ten and makes a transmission power of 20 dBm possible. Together
with LE Coded, this should increase the communication range by a factor of four.

4. Extended Advertising

BLE v5.0 adds a new possibility to broadcast data. So far, in BLE v4.2, broadcasting
was only possible by advertising packets using up to three advertising channels. The
amount of data was limited to 31 bytes of payload per advertising packet. Listening
devices could not know in advance on which channels devices are advertising data
packets, which made it necessary to advertise the same data on all three channels.

With BLE v5.0 the concept of extended advertising was introduced. This concept
allows advertising devices to use data channels for broadcasting data. The idea is
that the device is announcing on the advertising channels that data is sent on a
specific data channel. Interested devices can listen on the corresponding frequency
at the given time. The advertising packet on the data channel contains information
about the next used channel and its transmission time. Furthermore, the amount of
payload is increased from 31 bytes to 255 bytes. Once devices miss a certain packet
or new devices want to listen to it, they do not know the next used channel. Thus,
synchronization is needed: from time to time the advertiser is advertising again on
the three advertising channels, allowing all listening devices to follow the upcoming
chain of advertising packets on data channels.

Extended Advertising allows to broadcast bigger amount of data in a more efficient
way.

2.2 Hardware

In this section we describe the hardware used for this thesis. The description includes
basic information about the device as well as particular properties that are important for
this thesis.
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(a) Nuki Smart Lock. (b) Nuki fob.

(c) Nuki bridge. (d) Nuki box.

Figure 2.6: Different Nuki devices [Gmb17].

2.2.1 Nuki Smart Lock (NSL)

The Nuki Smart Lock (NSL)[Gmb17] allows to lock/unlock doors with the smart phone.
The lock is illustrated in Figure 2.6a. The NSL is mounted on the inside of the front door.
Almost any double cylinder lock is supported. Putting the physical key on the inside of
the door, the NSL is able to turn the key once an user action is received. BLE v4.0 is
used as communication protocol. Nuki offers three other devices:

• Key fob: can be used instead of a smart phone in order to lock/unlock the NSL via
BLE. The fob is illustrated in Figure 2.6b.

• Bridge: brings the NSL online and allows remote control of the NSL. Furthermore,
this enables smart home integration. The bridge supports two communication pro-
tocols: IEEE 802.11 for the communication with the home network and BLE for the
communication with the NSL. An illustration of the bridge can be found in Figure
2.6c.

• Box: brings the smart lock functionality to the entry intercom of a building, pre-
sented in Figure 2.6d.

To control the NSL with the smart phone the Nuki application has to be installed.
The app is available for both Android and iOS.
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Length LengthFlags Manufacturer

Specific Data
Data Data

0x02 0x01 0x06 0x1A 0xFF
0x4C:00:02:15:A9:2E:E2:00:55:01:11:E4:

91:6C:08:00:20:0C:9A:66:05:5C:B2:49:C4

Company Type UUID Major Minor Signal PowerLength

30 Byte

Figure 2.7: Advertising packet structure of the NSL. The structure implements the func-
tionality of an iBeacon.

2.2.1.1 General functionality

The NSL acts as advertiser and advertises its presence in predefined time intervals. A
user approaches the door and tries to unlock the door with his smart phone or by using
the key fob. Normally, the unlocking devices would need to scan for the NSL’s advertising
packets in order to perform device discovery (see Section 2.1.2). This is only possible once
the device of the user is in range of the NSL. Nuki follows a different approach. Once
the user wants to perform an action, his device directly sends a connection request using
the public device address (BD ADDR, see Section 2.1.2.8) of the NSL. If both devices are
in range, the NSL can react appropriately. If the devices are out of range after a certain
timeout, the corresponding message appears on the screen of the smart phone. Therefore,
scanning is not necessary. If BD ADDR of the NSL is not known, a BLE scan would
become necessary.

2.2.1.2 Advertising Settings

The NSL implements the functionality of an iBeacon, i.e., it periodically advertises its
presence following Apple’s iBeacon definition. Therefore, the advertising packet of the
NSL must contain:

• UUID: 16 byte Identifier (attribute type, see Section 2.1.6.1) of the service. Nuki
advertises its own key turner initialization service UUID [Gmb16].

• Major: 2 byte string in order to identify a subset of beacons offering the same service
indicated by the UUID.

• Minor: 2 byte string individually identifying an individual beacon

• Signal Power (optional): 1 byte indicating the expected signal strength exactly in
one meter distance of the device. This is a hard coded value and can be used by
other devices together with the Received Signal Strength Indicator (RSSI) to roughly
estimate the distance.



CHAPTER 2. BACKGROUND 33

ADVMode ADVInterval [ms]

active 152.5

normal 417.5

slow 1022.5

slowest 2000.0

Table 2.2: Advertising intervals supported by the NUKI Smart Lock.

Length Local Name Data

0x02 0x01 Nuki_XXXXXXXX

15 Byte

Figure 2.8: Structure of the scan response packet of the NSL, that is sent after every
received scan request.

The resulting advertising packet of the NSL looks like the one shown in Figure 2.7. It
contains Flags, stating that the device does not support classical Bluetooth and that the
device is discoverable continuously without any timeout. Furthermore, the packet contains
Manufacturer Specific Data (0xFF) embedding the manufacturer company identifier that
is assigned by the Bluetooth SIG. As the iBeacon technology is used, type 0x02 is selected
and Apple’s manufacturer ID (0x004C) is broadcasted. Keep in mind that the values are
little-endian. After the type declaration, the length of the following data is specified (0x15
= 21 bytes). Those 21 bytes contain the fields UUID, major, minor and signal power as
described above. In total, the NSL is advertising 30 byte of payload with every advertising
packet.

The NSL supports the four different advertising intervals that are listed in Table 2.2.
On each received scan request, a scan response containing the complete local name of

the NSL is sent. The local name contains the prefix Nuki and the unique 8 byte Nuki-ID.
As shown in Figure 2.8, the total payload used in the scan response is 15 bytes.

2.2.1.3 Security

Although every scanning device is able to receive the advertising packets of the NSL,
any communication with the NSL is only possible for trusted devices. This relationship
of trust is created during a pairing process with key exchange. This key exchange is
not a bonding process as described in Section 2.1.5.1.3. At the time Nuki started with its
implementation, BLE v4.2 was not released and thus LE Secure Connections not available.
Therefore, Nuki implemented their own secure key exchange mechanism. This approach
is based on Diffie-Hellmann key exchange, and is similar to the one introduced with BLE
v4.2. The Diffie-Hellmann key exchange between NSL and user’s device can be initiated
by pressing the button on the NSL for 5 seconds. During the pairing process, not only
a long term key LTK is exchanged but also an authentication ID (4 byte integer) that is
unique for every paired device. The user device stores the ID together with the unique
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Nuki-ID, BD ADDR of the NSL and the LTK. The NSL stores the authentication ID
together with the LTK.

Every request of the user device is encrypted with the exchanged LTK. In order for the
NSL to be able to decrypt the message, the authentication ID is added (unencrypted!).
According to the received authentication ID, the NSL can select the appropriate LTK and
decrypt the message.

2.2.1.4 Connection Settings

For encrypted data transmission a connection establishment is necessary. Most of the BLE
chips on the market support only one active connection at any point in time. This means
that the NSL is not responsive for any other devices while the NSL is holding an active
connection. Nuki solved this problem by immediately terminating the connection after
each user interaction. After the connection termination, the NSL is advertising with the
fastest possible advertising interval (active mode, see Table 2.2) for the next 30 seconds.
This reduces the user experienced latency during the next 30 seconds if a new connection
establishment would be necessary, meaning another user interaction takes place.

2.2.1.5 Logging

The NSL holds a portion of persistent memory where the last 300 locking and unlocking
actions are stored. An entry consists of the action (lock/unlock), the user who was re-
sponsible for the action, and a time stamp containing date and time. Once the storage is
full, the first entry is overwritten.

According to Nuki, the storage information does not leave the lock, even if the lock is
used in combination with the Nuki bridge.

2.2.1.6 Smartphone Application

The Nuki application1 is available for Android and iOS. It is possible to select between
three different advertising modes (normal, slow, slowest) in order to conserve battery
power on the NSL. The active mode is used by the NSL after a disconnection and can not
be selected manually. All possible advertising intervals are illustrated in Table 2.2.

The application allows to govern multiple smart locks and allows to change the name
according to the user’s preferences. By swiping left and right, the NSL can be locked/un-
locked easily. It is possible to enable a feature called Smart Actions, that allows to au-
tomatically unlock the door once the user gets in range of the NSL. This approach uses
Google location services to assign the NSL a certain location. Once the smart phone of
the user gets inside a circular area around that point, the applications starts to send au-
tomatic unlock requests. This area is larger than the BLE range. Once in BLE range, the
NSL is able to receive the unlock request and can start the unlocking process.

The first paired smart phone becomes the administrator of the lock and is free to
add/remove other users, i.e., giving away and revoking lock/unlock privileges. This can
be temporary (e.g., several days) or infinite with optional restrictions (e.g., only 1 day per
week or only 2 hours per day).

1https://play.google.com/store/apps/details?id=io.nuki
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Figure 2.9: CY8CKIT-042-BLE development kit with mounted CY8C4248LQI-BL483
BLE chip from Cypress (CDK).

Source: www.arrow.com

2.2.2 Cypress Development Kit (CDK)

During the development, we are using the CY8CKIT-042-BLE development kit from Cy-
press (CDK). It is a PSoC4 device and part of the PSoC 4200 device family. The CDK
allows to connect a variety of shields and expansions boards, that are Arduino or Dig-
ilent Pmod compatible or that come directly from Cypress. As BLE chip we used the
CY8C4248LQI-BL483 [Cyp17]. The same chip is used by the NSL. The chip runs with
a 32-bit ARM Cortex-M0 CPU. It has 256 kB flash memory and 32 kB SRAM. The
BLE radio supports BLE v4.2 and its sensitivity goes down to -92 dBm, while supporting
an output power starting from +3 dBm down to -18 dBm in 3 dB steps. According to
the datasheet the current consumption in receiving mode is 18.7 mA and in transmitting
mode 16.5 mA in case a transmission power of 0 dBm is used. Both CY8CKIT-042-BLE
development kit and used BLE chip CY8C4248LQI-BL483 are illustrated in Figure 2.9.

2.2.2.1 Setup

Setting up the development environment for the CDK is pretty easy. On the official
Cypress website2, the Integrated Design Environment PSoC Creator can be downloaded.
Unfortunately, it is only available for Windows. Once the program is downloaded and
installed, the development process can be started. To get familiar with the environment,
example programs and videos can be found on the website.

2www.cypress.com

www.arrow.com
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The advantage of PSoC creator is the design based approach for the different compo-
nents of the Development Kit. In a graphical interface, components can be placed and
parameter settings selected. Each component has a detailed data sheet and API interface
documentation that can be accessed from the IDE. Building the project creates the neces-
sary code. Therefore, only application code has to be written. The code can be debugged
with the built-in debugger.

2.2.2.2 Low Power Modes

PSoC 4 devices, like the development kit we are using, support four different low power
modes: sleep, deep-sleep, hibernate and stop [SK16]. For our application purposes only
the first two power modes are relevant:

• Sleep Mode: during this mode the CPU does not run any instruction. All other
peripherals remain active and can generate interrupts, that can be used in order to
wake up the device.

• Deep-Sleep Mode: in this mode high-frequency clocks and all peripherals that require
those clocks are disabled. The low-speed oscillator, the watchdog timer and the
watch crystal oscillator remain active. They can be used in order to wake the system
up from deep-sleep. Furthermore, the I2C unit can continue in slave mode in order
to wake up the device on address match. Additionally, GPIO interrupts can be used
as wake up source.

2.2.3 nRF52 Development Kit (nDK)

The nRF52 Development Kit (nDK) is a single board development kit that supports BLE
v5.0, ANT, and NFC. Our version is equipped with the nRF52832 SoC. As alternative, the
nRF52819 SoC can be used. The used board is illustrated in Figure 2.10. For programming
and debugging Segger J-Link OB is used. It is possible to use third party shields compatible
to the Arduino Uno Revision 3 standard. This compatibility is useful for the nRF PPK
(see Section 2.2.5).

The nRF52832 is running with a Cortex M4F, a 32-bit ARMv7-M CPU. It can be
supplied in the range from 1.7 V to 3.6 V. Furthermore, it has 512 kB flash memory and
64 kB RAM. The BLE radio sensitivity goes down to -96 dBm and the chip supports an
output power from +4 dBm to -20 dBm in 4 dB steps.

According to the data sheet [Nor17a], the current consumption in receiving mode is
6.5 mA. When used for transmission, the radio consumes 7.1 mA (0 dBm output power).
While in ultra-low power mode, a current consumption between 0.3 µA and 1.9 µA,
depending on used peripherals, is observable.

2.2.3.1 Setup

We used the nDK in combination with the Zephyr Project (see Section 2.3). Therefore,
we describe the setup in combination with the mentioned OS.

In order to be able to flash the nDK over USB, Segger J-Link and nRF5x Command-
Line Tools have to be installed. They can be downloaded from the official webpages
https://www.segger.com and http://www.nordicsemi.com respectively. We use the

https://www.segger.com
http://www.nordicsemi.com
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Figure 2.10: Nordic Semiconductor’s nRF52 Development Kit (nDK) with nRF52832 SoC.

Source: http://infocenter.nordicsemi.com

installed command line tools to erase the flash memory and to upload the new program.
More details and an accurate description can be found on the Zephyr Project webpage
[Fou17] browsing for the corresponding board. If all tools are installed successfully, you
can run the following command from your current working directory in order to build and
flash a program:

make BOARD=nrf52_pca10040 &&

nrfjprog --eraseall -f nrf52 &&

nrfjprog --program outdir/nrf52_pca10040/zephyr.hex -f nrf52 &&

nrfjprog --reset -f nrf52

2.2.3.2 Low Power Modes

The nRF52832 supports two different power modes [Nor17a]:

• System OFF: mode where the highest power saving is possible. In this mode, all
ongoing tasks are terminated and the core functionality is powered down. A wake
up from this mode resets the system. Therefore, this mode is not of use for our use
case.

• System ON: in this mode, all functional blocks such as CPU and peripherals can be
running or idle, depending on the software sided configuration. Once CPU and all
peripherals are in idle mode, the system can enter two sub power modes:

http://infocenter.nordicsemi.com
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Figure 2.11: PowerTool provided by Monsoon Solutions Inc. in order to measure and
display the current consumption.

– Constant latency: in this mode, the wake up latency of the CPU and the task
response is kept at a constant minimum. Therefore, some resources are kept
on, which allows to have a constant and predictable latency at the cost of an
increased power consumption.

– Low power: this mode ensures the lowest possible power consumption. The
price we have to pay is an increased and unpredictable CPU wake up latency
and task response. By default, the system uses automatic power management,
which tries to save as much power as possible and, therefore, this mode is used
whenever needed.

As we do not have to deal with hard deadlines, we can live with the increased latency
and hence, we try to spend as much time as possible in low power mode in order to
conserve as much energy as possible.

2.2.4 Monsoon Solutions Inc. Power Monitor

Monsoon Solutions Inc. offers two power monitors: a high voltage power monitor (AAA10F)
and a low voltage power monitor (FTA22J). We are using the low voltage power monitor,
where a supply voltage between 2.0 V and 4.55 V in 0.01 V steps can be selected [Mon14].
For an accurate current measurement a self-calibrating, integrating system is used. The
power monitor has two current ranges which differ in resolution. The proper range is se-
lected during measurement by software. The maximum time resolution that can be used
is 20 µs. Once values are written to a file, the average over ten values is build. Thus, the
highest logging resolution is 200 µs. The calibration is performed also during runtime,
thus self-calibrating. This allows the compensation of temperature changes during mea-
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surement run. The current resolution goes down to 2.86 µA with an accuracy of 1 % or
50 µA, whichever is greater.

A .NET software (PowerTool) is available for Windows. Furthermore, a Python library
is provided for Windows, Linux, and Mac. Documentation and installation instructions
can be found on the official website [Inc17b] and in the manual [Mon14].

In order to perform simple energy measurements, we do not need to use the Python
API. The available PowerTool program (see Figure 2.11) allows us to take all measurements
we need. Measurements can be taken theoretically infinitely long, the total consumed
energy and the average power consumption are displayed on the right side (red box). For
the graph, different scaling can be used (right green box). Power, voltage and current can
be displayed, if needed, all simultaneously (left green box). Beside a manual start/stop of
the measurement, triggers can be used. The trigger selection as well as the start/stop of
the measurement can be found inside the purple box on the right side.

The power monitor is used in order to perform all measurements on the CDK (see
Section 2.2.2).

2.2.5 nRF Power Profiler Kit (nRF PPK)

Measuring current consumption with Monsoon’s Power Monitor is possible for the CDK
but not for the nDK. The reason is that the BLE chip can not be supplied in a completely
independent fashion from other board components and, therefore, depending on the ac-
tivities of other components on the board, the results are not sufficiently precise. Nordic
Semiconductor provides a Power Profiling Kit (nRF PPK) that can be used to measure
current consumption on the development kits nRF51 and nRF52 [Nor17b]. The board is
illustrated in Figure 2.12. The nRF PPK board is connected to the top of the development
kit, using the Arduino Uno Revision 3 standard pin.

The nRF PPK has an analog measurement unit that allows accurate current consump-
tion measurement in the range from 0.2 µA to 70 mA. Automatic switches ensure a high
measurement resolution throughout the whole measurement range. The time resolution
goes down to 15 µs, which delivers reliable measurement values as current consumption
spikes can be detected.

Nordic Semiconductors provides a PC software for the nRF PPK that comes with a
graphical user interface and supports two variable length measurement windows. One for
longer measurements (0.1 s to 20.0 s) and one high resolution window (4.82 ms to 26.62
ms) for trigger events. Both windows support averaging functionality. The supply voltage
can be selected via software in the range from 1.8 V to 3.6 V. The software is written in
Python, which allows customization according to own preferences. Furthermore, there is
the option to log longer measurements to a csv file. This allows to go beyond the 20 s
measurement window, which would not be enough for our case. We tested the software
only on Windows, but it should also work on other platforms.

In order to be able to measure current consumption on the nDK a manual preparation
of the board has to be performed. A detailed description how to prepare the board and
how to install and use the software can be found in Nordic Semiconductor’s user guide
[Nor17b].
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Figure 2.12: Nordic Semiconductor’s Power Profiler Kit (nRF PPK) which is used in order
to measure current consumption of the nDK.

Source: http://infocenter.nordicsemi.com

2.3 Zephyr Project

Zephyr Project [Fou17] is a small, scalable open source real-time operating system (RTOS)
for embedded devices. We decided to use Zephyr as operating system for the nRF52 for
several reasons:

• BLE v5.0 support for multiple hardware architectures: developing our project with
Zephyr allows us to be flexible for the future. Zephyr already implements the new
BLE v5.0 standard and supports many different hardware architectures. Therefore,
we are not bound to Nordic devices and can change BLE chip afterwards.

• Open source: Zephyr is available through the Apache 2.0 open source license. It is
totally free to use for commercial and noncommercial solutions.

• Modular: Zephyr offers a modular RTOS, optimized for memory and power con-
strained devices. It allows to enable/disable almost every feature (e.g., scan request
notifications) over a config file in order to find the best solution for a specific use
case.

• Adjustability: BLE parameters are adjustable with a fine granularity. Advanced
features can be enabled when needed.

http://infocenter.nordicsemi.com
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• Support: the operating system is under active development. It is possible to an-
nounce personal preferences and wishes that will be included in future releases.

The operating system is available for Linux, Windows, and macOS and can be down-
loaded directly from Github3. We tried out Linux and Windows and both were working
as described on the official webpage. The Windows installation relies on MSYS2, which is
a UNIX environment for Windows.

The setup description for Zephyr on the nRF52 can be found in Section 2.2.3.1.

3https://github.com/zephyrproject-rtos/zephyr
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Related Work

In this chapter we discuss the works that are related to this thesis. In Section 3.1 we
list other smart locks available on the market working with different wireless technologies.
Section 3.2 outlines modeling approaches for energy consumption and performance of BLE
device discovery. Finally, in Section 3.3 we discuss existing runtime adaptation techniques
of link layer parameters that have influence on device discovery, connection establishment,
and connection management.

3.1 Smart Locks

As the NSL (see Section 2.2.1), most of the available smart locks use BLE to communicate
with the user’s smart phone or a special key fob. Wireless technologies such as WiFi, Z-
Wave, or ZigBee are used to remote control or to include the smart lock into a smart
home. Furthermore, most smart locks offer the possibility to keep track of the locking
activities.

For example, the Kwikset Kevo Bluetooth Deadbolt1 allows a user to unlock the door
just by a finger tap on the lock. After the contact, the lock starts to search for the user’s
smart phone where the corresponding app is installed. Once the lock detected that the
user is outside the door, it unlocks the door. As for the NSL, Kwikset provides a fob with
which the lock can be used. Furthermore, the activity of all users engaging with a specific
lock is tracked. In contrast to the NSL, the physical installation is harder, as the existing
lock of a door has to be removed in order to mount the Kwikset Kevo on the door.

The smart lock August2 is using a similar approach. Also in this case the existing lock
has to be removed in order to be able to mount the smart lock. August is using BLE in
order to communicate with the smart phone, auto unlocking when the user approaches,
and auto locking when the user leaves. Every locking or unlocking activity is tracked
with an activity log. Using the August WiFi-Bridge, the lock can be remotely controlled,
similar to the NSL. Furthermore, an August door bell is available, including a camera that
streams its captures to the user’s smart phone. In addition to BLE and WiFi, August
supports Z-Wave, making the lock easily capable of being integrated into a smart home.

1www.kwikset.com/kevo
2www.august.com
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The smart lock Danalock3 is an option once ZigBee or Z-Wave support is needed. Both
versions are optional. In the basic version the smart lock can be used by BLE devices
such as smart phones or tablets. As the NSL, the Danalock is not visible from outside.
Still, the existing cylinder lock has to be replaced. Furthermore, all user interactions are
tracked. Till March 2018 a WiFi-Bridge will be introduced allowing to remote control the
smart lock. An additional feature of Danalock is the possible support of garage doors and
gates by using an additional universal module.

The company Noke4 offers a variety of BLE based smart locks in order to monitor
shipping trucks and office doors, to secure dumpsters and employee lockers, and to lock
a bike. With the phone application multiple locks can be managed, including an activity
log and location history. Besides the smart phone also a key fob can be used to unlock
the smart locks. Worth mentioning is the quick-click feature allowing to unlock a padlock
without any device using a predefined code of short and long taps.

A further possibility to lock a bike is Ellipse5, a smart lock based on BLE and equipped
with a built-in solar panel that automatically charges its battery. It can be locked or
unlocked using the smart phone. In case the phone runs out of battery a touchpad can
be used to enter a predefined code. Furthermore, Ellipse is able to lock and unlock
automatically using the received signal strength indicator (RSSI). As the lock can be
located and access to it shared, Ellipse enables a smart bike share solution. Bike share
members can use the mobile app to locate, book and access a bike.

The solutions presented in this thesis are not specific to the Nuki Smart Lock. Optimal
Scan Parameters (OSP) can be used in any scenario where the scanner has knowledge
about the advertising interval of the advertiser. The usage of Adaptive Advertising (AA)
requires an activity log storing user interactions. Using this log, AA learns from user
behavior and adapts the advertising interval of the device accordingly. Therefore, it can be
applied on most smart locks and also on other devices with similar requirements. The idea
of Range Extender (RE) can be used in any scenario two BLE devices are communicating
with each other. Depending on the specific implementation, modifications of the design
and implementation may be necessary.

3.2 BLE Modeling

Liu et al. [LCMX13] present a quantitative energy consumption analysis of BLE device
discovery. They focus on the energy consumption of both advertiser and scanner, and
outline the influence of their particular parameters (advertising interval, scan interval,
scan window) on the energy consumption of each device.

Kamath et al. [KL10] show how to accurately measure the power consumption of a
BLE peripheral (CC2541) while connected to another device, sending one or multiple data
packets per connection event.

In contrast to the energy consumption, Jeon et al. [JDJ17] presented a model for an-
alyzing the performance of BLE device discovery and outline the trade-off between device
discovery latency and energy consumption. The efficiency of this trade-off is dependent

3www.smartlock.de
4www.noke.com
5www.lattis.io
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on the parameter settings on both devices, advertiser and scanner.
Similar, Cho et al. [CPH+14] developed an analytic model in order to evaluate the

device discovery latency and probability in BLE networks. They showed that, with an
increasing number of BLE devices, the device discovery latency may suffer under expo-
nential growth, leading to the conclusion that there exist severe contentions among BLE
devices. Those contentions are mainly caused by an inappropriate parameter selection.

In order to evaluate eligible parameters, Kindt et al. [KSC15] showed an algorithm
that computes the discovery latency of purely interval based protocols such as BLE and
ANT dependent on the selected parameters.

In this thesis, we model the energy consumption depending on the advertising interval
and the advertising payload. We highlight the influence of the interaction of advertising
and scanning parameters on the device discovery latency. Furthermore, we show that
the device discovery latency can be minimized by choosing the advertising and scanning
parameters appropriately.

3.3 Adapting Parameters at Runtime

Based on the performance analysis of the BLE device discovery process, Liu et al. [LCM12]
show that BLE device discovery with standardized BLE parameters may lead to inefficient
device discovery. As a solution the advertiser may adaptively reduce its advertising interval
when encountering a long device discovery latency.

For Bluetooth ad-hoc networks, Drula et al. [DARD07] present adaptive policies for
neighbor communication establishment. By dynamically changing the scan interval and
scan window, they adapt the power usage of the discovery process depending on the
probability of discovery success, which is calculated based on the location and recent
activity.

Once a BLE connection is established successfully, Kindt et al. [KYGC15] show an
adaptive online power management. Their approach allows a master device to save energy
by dynamically adapting the connection interval dependent on the desired throughput.

In this thesis, we adapt the advertising interval of a BLE advertiser at runtime depend-
ing on user behavior. Therefore, an activity log storing past user interactions is necessary.
Using this log, the device computes a daily schedule and adapts its advertising interval
appropriately. This results in a reduction of energy consumption and device discovery
latency.



Chapter 4

Modeling BLE Device Discovery

Before any action can take place, BLE devices have to perform device discovery, which
includes advertising and scanning (see Section 2.1.2.1 and Section 2.1.2.2). Based on
the distance and the selected parameters of both devices (such as advertising interval,
advertising payload, scan interval, and scan window) the device discovery time and the
consumed energy change. Therefore, in this chapter we want to gain a deep understanding
of BLE device discovery.

Based on energy measurements, we develop a mathematical model to estimate the
energy consumption of a BLE peripheral in Section 4.1. Furthermore, we present a model
that estimates the energy consumption as a function of the advertising payload.

In Section 4.2, we investigate the influence of the transmission power on the line of
sight (LOS) communication range. We show a simple model that allows us to estimate
the maximum time for device discovery. This time is the period in which two BLE devices
meet each other once one device is moving towards the other. This is of high relevance for
use cases where a smart phone is involved. An example for such an use case would be a
smart lock. A smart lock is advertising its presence and depending on its range we have
limited amount of time, till the smart lock has to identify the user and unlock the door in
order to avoid unnecessary waiting times.

In Section 4.3, we develop a mathematical model that gives the optimal scanning
parameters (OSP) for a specific advertising interval in order to reduce the device discovery
latency to a minimum. In order to prove the model, the device discovery latency is
measured with different scan settings (scan interval, scan window).

4.1 BLE Advertisements

The energy consumption of a BLE peripheral is mostly determined by its advertising
parameters. This includes the amount of channels the device is advertising on, the amount
of advertised data, and the advertising interval. To maximize reliability under interference
BLE devices should advertise on all three channels, and thus, we do not change this
parameter. We model the energy consumption of the CDK based on the specific NSL
use case (see Section 2.2.1) for different advertising intervals and for different advertising
payload lengths.

Conversions from energy (E) to power (P) are realized with the standard power (P =
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U · I) and energy (E = P · t) equations. Power is defined as the product of the supply
voltage (U) and the current drain (I), which is measured using the Power Monitor (see
Section 2.2.4). Energy is the product of power and time.

The starting point of the model is an energy consumption measurement with different
advertising intervals over 60 s on the CDK. The measurement and its result is presented
in the next section. The measurement does not take place on the NSL, as other energy
consuming components that can not be switched off are running simultaneously and would
thus influence the measurement in an unforeseeable way.

4.1.1 Measurements on the Cypress Development Kit (CDK)

We measure the energy consumption of the CDK for different advertising intervals and
advertising payload lengths.

First, we measure the energy consumption on the CDK dependent on different ad-
vertising intervals. We measure the advertising intervals that are used by the NSL (see
Section 2.2.1.2) and add a slower one that is used later in this thesis. Based on those mea-
surements, we can calculate the mean power consumption for each advertising interval. In
a further step, we use these values to estimate the energy consumption for longer periods
(see Section 4.1.2). In order to simulate the NSL advertising as good as possible, the CDK
imitates the advertising of the NSL. Therefore, the transmitted data is set according to
the NSL advertising packet (30 bytes). The exact composition of the advertising packet
is explained in Section 2.2.1.2.

Second, in order to estimate the energy consumption for different advertising payloads
(see Section 4.1.3), we measure the energy consumption when in deep sleep (DS) mode.

Note that the NSL is also providing the local name consisting of 14 bytes, which is
only sent as a scan response. This neither affects the energy consumption of one single
advertising event, nor the energy consumption of the long term measurement, as it consists
of advertising events only. This assumption holds as long as no other BLE device is
scanning in the range of the advertiser. A power of 0dBm is used as transmission power.

For the measurement the Monsoon Solutions Inc. Power Monitor (see Section 2.2.4)
was used. The power monitor measures the current drain, which can be measured on the
CDK by removing the responsible jumper of the BLE chip and connect the VDD and GND
pins to the power monitor. The Power Tool summarizes the total energy consumption.

The resulting values consist of the average of five measurements, each measured over
a period of 60 seconds. The corresponding standard deviation was calculated.

TADV I [ms] Mean Power [mW]

152.5 1.1615 ± 0.0030

417.5 0.4689 ± 0.0008

1022.5 0.2273 ± 0.0029

2000.0 0.1422 ± 0.0026

4000.0 0.0998 ± 0.0010

DS 0.0546 ± 0.0027

Table 4.1: Power consumption of the CDK, calculated based on the measured energy
consumption over a period of 60 seconds.
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Figure 4.1: Mean power consumption of the CDK for different advertising intervals and
being in deep sleep (DS) mode.

The results of the measurement are listed in Table 4.1 and are illustrated in Figure
4.1.

The measurement results are as expected: faster advertising intervals switch the radio
on more frequently. Thus, the time spent in deep sleep is less and the power consumption
is higher. Of course, despite the selected advertising interval, the power consumption of
active advertising can never be less than pure deep sleep.

4.1.2 Mathematical Model

We derive a mathematical model in order to estimate the energy consumption of the BLE
advertiser for longer periods and different advertising parameters. The power consumption
dependent on a specific advertising interval was already calculated in Table 4.1. Based on
those results, we can simply estimate the energy consumption of arbitrary long periods.
The whole energy consumed during the considered period is ETOT . This energy depends
on the duration T of the period itself and the length of the advertising event TADV E , which
consists of the duration of the advertising interval TADV I plus the random delay tDelay.
The random delay is a random value between 0 ms and 10 ms and is added at the end of
each advertising interval in order to avoid persistent collisions with other advertising BLE
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Figure 4.2: Progress of a BLE advertising event for the time TADV E using all three ad-
vertising channels.

devices. More details can be found in Section 2.1.2.1. The average energy consumed in
one advertising event EADV E is the sum of the energy consumed in an advertising interval
(EADV I) and the subsequent random delay (EDelay). Furthermore, EADV I consists of the
advertising energy EADV , consumed during three periods of tADV , and the energy EDS of
the time spent in deep sleep (tDS). This relations are shown in Figure 4.2 and in Equation
4.1, where NADV E is the number of advertising events in the considered period.

ETOT =
T

TADV E

· EADV E

=
T

TADV I + tDelay

· (EADV I + EDelay)

= NADV E · (EADV + EDS + EDelay)

= NADV E · (EADV + PDS · (tDS + tDelay))

(4.1)

Note that Equation 4.1 assumes a uniformly distributed energy consumption over the
whole period depending on EADV E . Of course, depending on the relative start of the first
advertising event, it is possible that the last advertising event is not complete. To counter
this, the start of the first advertising event has to be equal with the start T and NADV E

has to be rounded down to the next natural number. From the fraction, the rest of the
time in the period can be calculated. With the knowledge of how long each phase takes,
we can add the consumed energy of all phases that still take place in the period T. This
fact has a very small influence on relatively long periods T and is neglected in further
calculations.

The exact value of the random delay is not known. As the delay is chosen between 0
ms and 10 ms, on average, we expect a random delay of tDelay = 5ms.

Equation 4.1 shows the importance of the power consumption in deep sleep mode. De-
pending on the selected advertising interval, a significantly high percentage of the whole
time period is spent in deep sleep mode, which highly influences the overall energy con-
sumption.
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tTX,Byte [µs] PTX,Byte [mW] ETX,Byte [µJ] ETX,Byte,NADV CH=3 [µJ]

8 62.70 0.5016 1.5048

Table 4.2: Time, power and energy consumption for each transmitted byte.

4.1.3 Advertising Payload

In this section, the influence of the advertising payload on the energy consumption based
on the presented mathematical model in Section 4.1.2 is elicited. The number of sent
bytes has a direct impact on the deep-sleep phase, which makes a calculation of the
consumed energy not trivial. The aim is to formulate an equation that expresses the
energy consumption as a function of the payload.

An exact measurement of EADV needs expensive equipment. To avoid this, we adapt
Equation 4.1 accordingly, allowing to estimate the energy consumption accurately, and
managing without expensive equipment.

We know that, including overhead, the smallest advertising packet with no payload is
16 bytes. The maximum amount of payload is 31 bytes, which increases the size of the
advertising packet to 47 bytes (see Equation 4.2).

In order to estimate the energy consumption based on the advertising payload, we have
to think what each transmitted byte costs, meaning how long the radio has to be turned
on for transmitting one single byte. In BLE the transmission time is given by Equation
4.3, where Rb is the Bitrate of 1Mbit/s. Applying Equation 4.3 leads to a transmission
time of 8 µs per byte. The data sheet [Cyp17] states a current consumption of 16.5 mA
while transmitting. In fact, the current consumption is higher as the whole system has
to be awake. Measurements showed peaks of 19 mA during transmission. This leads to
a power and energy consumption for one byte as stated in Table 4.2, based on a supply
voltage of 3.3 V.

As we advertise on all three advertising channels, the time has to be multiplied by the
factor of NADV CH = 3. This means that every byte more we send increases the energy
consumption per byte by a factor of three (see ETX,Byte,NADV CH=3 in Table 4.2).

NBytes = NPayload +NOverhead = NPayload + 16 (4.2)

tTX =
NBytes · 8

Rb

(4.3)

Based on Equation 4.1, we know that every time unit not spent in the actual advertising
time tADV is spent in deep sleep. This means that sending less bytes results in a shorter
time needed for the advertising, which allows the device to go earlier to deep sleep. Vice
versa, sending more bytes results in a shorter deep sleep phase and a longer time for
advertising. The sum of both times stays constant in order to meet the advertising interval
time TADV I .

Tripling the energy consumption per byte (see Table 4.2) leaves us with 1.5048 µJ

consumed for each byte on all advertising channels. The energy for the same period of
deep sleep is 1.3104 nJ . So the total extra power per byte can be expressed as the energy
consumed per byte minus the energy consumed in DS during the same period of time.
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y x calc. EByte · (y − x) t calc. ETOT,y meas. ETOT,y

[bytes] [bytes] [µJ] [s] [mJ] [mJ]

30 30 0 60 - 69.6881

15 30 -22.3754 60 61.1631 56.9052

3 30 -40.2758 60 54.3429 51.4879

Table 4.3: Reducing the energy consumption by reducing the payload length of an adver-
tising event from x = 30 bytes to y bytes: calculated change of energy consumption per
advertising interval (EByte · (y − x)), calculated energy consumption over a period of 60 s
for y bytes (calc. ETOT,y), and measured energy consumption over a period of 60 s for y
bytes (meas. ETOT,y).

y x Deviation

[bytes] [bytes] [%]

30 30 -

15 30 +7.48

3 30 +5.54

Table 4.4: Deviation of the calculated energy consumption compared to the measured
energy consumption illustrated in Table 4.3.

Note that transmitting no data does not mean zero energy. During this time the device
is in deep sleep mode. This results in an energy demand of 1.491696 µJ per byte sent
(EByte) in a single advertising event when we advertise on all three advertising channels.

Equation 4.4 shows the resulting energy consumption over a considered period T , using
an advertising interval TADV I compared to a previous energy value ETOT,x, where x and
y are the number of transmitted bytes for the corresponding energy value ETOT,x and
ETOT,y respectively.

ETOT,y = ETOT,x +
T

TADV I + tDelay

· (EByte · (y − x)) (4.4)

Based on the previous measurement with a payload of 30 bytes, we estimate the energy
consumption of the fastest used advertising interval (152.5 ms) based on two different
amounts of payload (3 and 15 bytes). On the CDK a payload of 0 can not be selected, thus,
the smallest possible payload is 3 bytes as the flag field (see 2.2.1.2) and the corresponding
length has always to be sent.

Table 4.3 shows the result of the calculation (using Equation 4.4) and the measurement
of the energy consumption based on different amount of payloads. According to the
measurement, the reduction of the energy consumption is even more than estimated:
the deviation of the calculation is illustrated in Table 4.4. The reason is probably in
the previously made assumption of the current drain while transmission. We assumed a
current drain of 19 mA. In fact, the current consumption is probably higher.

Nevertheless, we showed a valid mathematical model that demonstrates the consider-
able influence of the payload length on the energy consumption while advertising.
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4.1.4 Outcome

Sending data in BLE advertising packets increases the energy consumption considerably.
On the CDK, sending 27 bytes more while using an advertising interval of 152.5 ms
increases the energy consumption by more than 25%. Thus, whenever possible try to
reduce the amount of advertised data.

Remember, that BLE offers the scan response feature (see Section 2.1.2.2). This allows
to transmit up to other 31 bytes of payload after a scanning device asked for it (scan
request). Therefore, information that does not have to be inside the advertising packet
could be moved to the scan response packet. Normally, scan requests occur much less
frequent than the device is advertising. Thus, this can be a good way to save energy.

Unfortunately, for the use case NSL reducing the advertising payload is not possible.
The NSL needs to represent an iBeacon (see Section 2.2.1.2), that needs 30 bytes of
payload. Thus, no bytes can be elided.

4.2 Range

The usability of a BLE device depends on the discovery distance. This distance is the
maximum distance at which device discovery is possible, i.e., the scanning device is able to
receive advertising packets of the advertiser. Especially if we consider moving devices, this
discovery distance is crucial. A larger discovery distance means more time is available once
devices are moving towards each other in order to establish a connection or exchange data.
In contrast to that, once they move away from each other, devices are able to transmit
more data as they are for a longer time in transmission range.

In Section 4.2.1 we measure the line of sight (LOS) range of the CDK and the NSL.
Based on those measurements, we present a simple model in order to estimate the maxi-
mum time for device discovery when one device is moving towards the other device (Section
4.2.2).

4.2.1 Range measurement

The NSL uses a transmission power of 0dBm. The maximum range, where a smart phone
(Sony Xperia Z1 compact) was able to communicate over the NUKI App with the NSL in

PTX [dBm] dRSSI=−87dBm [m]

-18 1

-12 2

-6 3

-3 6

-2 8

-1 9

0 14

3 15

Table 4.5: Maximum LOS distance of the CDK for RSSI = -87dBm with different trans-
mission power settings.
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Figure 4.3: Maximum time for device discovery: time elapsing till the moving device with
speed v at a distance of d reaches the stationary device.

the line of sight (LOS), was 14m: at this distance an RSSI of -87dBm was measured. For
this measurement the successful reception of one single advertising packet is sufficient.

The same range measurement was performed with all power settings the Cypress BLE
chip offers. To have comparable values with the NUKI Smart Lock, the distance at the
RSSI of -87 dBm in the line of sight (LOS) was measured. The results are shown in Table
4.5.

Even though the BLE chip used in the NSL (which is the same as the CDK is using)
supports a transmission power of 3 dBm, Nuki uses a transmission power of 0 dBm. The
reason is that in this case doubling the transmission power does not pay off: using 3 dBm
instead of 0 dBm gains one additional meter.

4.2.2 Maximum Time for Device Discovery

As maximum time for device discovery we define the time that a moving BLE device needs
in order to reach a stationary BLE device. For simplicity, we assume that both devices
are in line of sight (LOS). The stationary device is advertising and the moving device is
scanning. The start of the time period is the time in which the moving device enters the
range of the stationary device, meaning the scanning device is able to receive advertising
packets sent by the advertiser. The moment in which the moving device reaches the
stationary device using the shortest possible way terminates the time period.

We assume that the moving device moves with constant speed v towards the stationary
device. The moving device gets in range of the stationary device at the distance d. The
maximum time for device discovery t can be calculated by using Equation 4.5.

t =
d

v
(4.5)

For example, using a LOS distance of 14 m (transmission power of 0 dBm), measured
in Section 4.2.1, and assuming that the moving device is approaching with a speed of 5
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Figure 4.4: Device discovery latency dependent on the selected advertising event duration
TADV E , scan interval TS , and scan window tS .

km/h (fast walking speed of a person) results in a maximum time for device discovery of
10.08 seconds.

4.3 BLE Scanning

Usually, BLE device discovery takes place on three different channels (see Section 2.1.2).
Device discovery is only possible if sender/receiver are using the same channel at the
same time. Figure 4.4 illustrates the BLE device discovery process and the time spent
for device discovery. The influence of the offset φ(0) is explained in the next section.
Different configurations of advertising interval TADV I , scan interval TS , and scan window
tS lead to a different device discovery latency and make its calculation challenging. In
Section 4.3.1, we present a mathematical model in order to estimate the maximum device
discovery latency under different advertising and scanning parameters.

Based on this model we introduce Optimal Scan Parameters (OSP) in Section 4.3.2.
OSP consists of scan interval and scan window. By the knowledge of the used advertising
interval of a remote device, OSP minimizes the amount of time spent for device discovery.

In Section 4.3.3 we evaluate the presented mathematical model by measuring the de-
vice discovery latency between two BLE devices depending on different advertising and
scanning settings. We evolve the calculation of OSP by real measurements in comparison
with the scan settings used by Android OS.

4.3.1 Mathematical Model

In order to determine the OSP, a mathematical model is developed. Some initial assump-
tion have to be made:

1. No advertising packets are lost, i.e., we assume a 100% transmission reliability.

2. Fixed advertising intervals are used.

3. TADV E = TADV I + tDelay = TADV I + 10 ms
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The duration of one advertising event is the time of the advertising interval plus the
random delay tDelay (see Section 2.1.2.1). This delay is a random value between 0
ms and 10 ms. We assume the maximum possible delay of 10 ms.

4. Depending on the used time axis (discrete or continuous), we distinguish between
two different assumptions:

• Discrete time axis: TADV E < tS

This ensures that, in each scan window, at least one advertising packet is re-
ceived as each channel advertisement gets scanned at least once during one scan
event.

• Continuous time axis: TADV E + tCH < tS

The start/end of a scan window can happen at every point of the advertising
event. Adding the time spent advertising on each channel (tCH) ensures that
each scan window scans at least one channel successfully.

5. (TS - tS) ≤ TADV E

For faster device discovery, the time in which no scanning is performed should be
minimized. Therefore, we assume that the time without scanning in each scan
interval is at least smaller than the duration of an advertising event. This prevents
the partial reception of an advertising packet in one scan interval.

To reach the fastest possible device discovery, continuous scanning (TS = tS) has to
be performed.

In order to calculate the latency, a simplified model is introduced. Each advertising
event is divided into four phases:

• A: advertising on channel 37

• B: advertising on channel 38

• C: advertising on channel 39

• D: phase with turned off radio in order to wait for the next advertising. This includes
the random delay tDelay. There we use the maximum possible delay of 10 ms (see
Section 2.1.2.1).

This simple model allows us to deal with constant lengths of each phase.
The latency depends on which channel gets scanned at which point in time. In the worst

case scenario, two other channels get scanned before the channel used by the advertiser.
Therefore, the latency can be seen as number of needed advertising events that have taken
place before the scan window where an advertising packet was received successfully, plus
the advertising time of the channel itself. Equation 4.6 shows the calculation of the latency
of the considered channel CH. φCH(0) describes the offset of the first advertising of the
considered channel. tCH represents the time spent while advertising on each channel. If
the latency from the first advertising of the considered channel to its discovery of this
channel has to be calculated then Equation 4.7 can be used. Thus, in this equation the
offset φ(0) is elided. NSCANCH is the number of channels that the scanner is scanning.
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If this number is lower than the number of channels the advertiser is using (NADV CH),
one or more channels can experience an infinite latency. If both are not using all three
channels, then there is the danger that the device discovery will never be successful (e.g.,
advertiser is advertising only on channel 37, scanner is scanning only channel 38 and 39).

Lmax,CH = TADV E · ⌈
TS ·NSCANCH − φCH(0)− tS

TADV E

⌉+ tCH + φCH(0) (4.6)

Lmax,CH,relative = TADV E · ⌈
TS ·NSCANCH − φCH(0)− tS

TADV E

⌉+ tCH (4.7)

4.3.2 Optimal Scan Parameters (OSP)

Based on the mathematical model presented in the previous section the OSP can be cal-
culated: we derive a suited setting of scan parameters in order to minimize the device
discovery latency according to a predefined advertising interval. In other words, we are
looking for the maximum device discovery latency for optimal parameters. The calculation
is illustrated with an example (see Figure 4.5). As we are interested in the maximum pos-
sible device discovery latency, we assume that the scan window of the considered channel
is the third scan window (two other advertising channels may be scanned before). Once
a channel is scanned for one time unit, its color changes to a shade of green. One device
is always scanning, the other device is advertising: therefore, this example describes an
unidirectional discovery.

We distinguish between two modes of scanning: non continuous and continuous scan-
ning (see Section 2.1.2.2). Both modes are evaluated, illustrating their difference.

Non continuous scanning The first example presented in Figure 4.5 illustrates a
non continuous scanning scenario. The numeric values are discrete time units, chosen in
order to allow simple calculations, and are used for example only:

• TS = 8

• tS = 5

• TADV E = 5

• tCH = 1

The maximum possible latency is achieved when the first scan window starts after TS− ts.
Inserting the values above in equation 4.6 using the channels offsets (φA(0) = 3, φB(0) = 4,
φC(0) = 0) leads to the maximum latencies for each channel. This results in Lmax,A = 24,
Lmax,B = 20, Lmax,C = 21.

Continuous scanning Using continuous scanning results in the second example,
illustrated in Figure 4.5. The numeric values are discrete time units, chosen in order to
allow simple calculations, and are used for example only:

• TS = 6

• tS = 6
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Figure 4.5: Device discovery latency calculation for non continuous and continuous scan-
ning using a discrete time axis.

• TADV E = 5

• tCH = 1

Using the same offsets as in the example for non continuous scanning, we calulate the
maximum latencies Lmax,A = 14, Lmax,B = 15, Lmax,C = 16.

The presented approach let us derive a suited setting of scan interval and scan window
according to a predefined advertising interval in order to minimize the device discovery
latency for BLE. The minimal latency is achieved when the following two points hold:

• TS = tS : use continuous scanning. This ensures that no advertising of a channel
is missed.

• (TADV E + tCH) = tS : the scan interval is equal to the advertising event duration
(advertising interval and tDelay) plus the advertising time of one channel. This
ensures the smallest possible scan window while being able to scan at least one
channel successfully.

4.3.3 Evaluation

In order to evaluate the OSP calculations presented in Section 4.3.1, the device discovery
latency is measured in a real world scenario with the three different scanning windows ts
(5000 ms, 2000 ms, 500 ms) supported by Android OS (see Section 2.1.2.4). Furthermore,
the device discovery latency for a scan window that follows the OSP approach is measured.
This means that, given an advertising interval, we add 10 ms for the maximum random
delay tDelay and the time of advertising on all three channels. This time depends on the
amount of used advertising channels, the amount of bytes that have to be advertised and
the inter channel transition time of the BLE chip. To be on the safe side, we have chosen
3.125 ms. Thus, in total, the OSP scan window is 13.125 ms more than the corresponding
advertising interval. For an advertising interval of 4000 ms this would result in a scan
interval and window of 4013.125 ms. With the measurement we demonstrate the influence
of continuous/non-continuous scanning and the consequence of the length of the scan
window on the latency.

4.3.3.1 Measurement Setup

For the measurement, the CDK is advertising with a fixed advertising interval TADVI

(152.5 ms, 417.5 ms , 1022.5 ms , 2000 ms, and 4000 ms). The nDK executes a simple
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Scan Parameters
TADV I TS [ms] / ts [ms] TS [ms] / ts [ms] TS [ms] / ts [ms] TS [ms] / ts [ms]

[ms] 5000/5000 5000/2000 5000/500 OSP/OSP

latency [ms] latency [ms] latency [ms] latency[ms]

4000.0 4145.8 6823.2 132580.0 3757.7

2000.0 1992.1 2222.1 57194.0 1986.0

1022.5 1078.7 1212.0 8512.0 1046.3

417.5 408.3 484.8 424.8 418.6

152.5 172.4 165.5 153.6 157.3

Table 4.6: Measured mean device discovery latency depending on the selected advertising
interval (TADVI) on the CDK, as well as on the scan interval (TS) and scan window (tS)
on the nDK.

program performing passive scanning. At the start of the scan, a timer is set to 0. The
timer stops once the CDK was discovered. A successful device discovery consists of the
successful reception of an advertising packet. After a successful discovery, the nDK stays
inactive for a random period (0 up to 5 seconds). This step should simulate a real world
application where devices can appear at any point in time. Subsequently, the scan process
is started again. The measurement stops after 100 successful device discoveries. From all
100 measurement values the average is built. The resulting values are illustrated in Table
4.6.

4.3.3.2 Outcome

The measurement values presented in Table 4.6 allow several conclusions:

1. As long as the scan window tS is larger than the selected advertising interval TADVI,
the average device discovery latency remains close to the advertising interval value.
This confirms our OSP assumptions. Selecting the scan window larger than the
advertising interval assures that at least one advertising interval can be received
during a scan window. Depending on the relation in time between start of scan
window and start of advertising packet, the discovery time can be of different length.
Note that we are using a random time of inactivity, which changes this relation from
one measurement to the next one.

Thus, even when selecting a shorter scan window, the average device discovery time
remains close to the results of longer windows. This is because when starting the scan
interval, the active part (the window) is executed first, followed by the inactive part
of the scan interval. Once the first possible advertising packet is received without
any errors, the average device discovery latency remains more or less the same. This
behavior is illustrated in Figure 4.6a, where including the advertising interval of 2000
ms, the measurement averages of the three different scan windows (5000 ms, 2000
ms, OSP) are close to each other. The selection of a scan window of 2000 ms has an
influence when the advertising interval increases to 4000 ms (green bar). There the
device discovery latency increases dramatically.
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Figure 4.6: Device discovery latency dependent on advertising interval and scan window
(a) (b) and the gain of OSP compared to a normal continuous scan window (c).

2. Once the advertising interval TADVI is longer than the used scan window, the device
discovery latency increases to very high values. The reason is that now it is not as-
sured anymore that at least one advertising packet can be received in a scan window.
An unpredictable long time period can pass till a match in time between advertising
packet and scan window occurs. This fact is illustrated in Figure 4.6b. Starting
from the point where the advertising interval is longer than the scan window, the
device discovery latency explodes. Of course, a bigger difference between advertising
interval and scan window reinforces this effect.

3. The usage of OSP scanning policy pays off. On all measurements, independently
from the selected advertising interval, OSP produced, with one exception, the best
measurement values. The exception occurred with an advertising interval of 417.5
ms. There the latency value of a scan window of 5000 ms was slightly better. The
reason for this behavior was explained in the first point: as long the advertising
interval is shorter than the selected scan window, resulting values are close to the
time of the advertising interval.

The comparison between the device discovery latency of the two continuous scanning
policies with a window of 5000 ms and OSP respectively is illustrated in Figure 4.6c.
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As we can see, OSP performs slightly better. The calculated standard deviations
are on a comparable level and show the influence of the randomization technique of
appearing devices.

According to the measurement results presented in Table 4.6, we can see that on
average, OSP reduces the device discovery time by 4.16%.

We demonstrated that the device discovery latency depends on several factors such as
advertising interval, scan interval, and scan window. What makes modeling com-
plex is that the advertising and scan parameters have to be examined together. When
developing BLE devices this fact has to be considered! We showed that OSP (selection
of optimal scanning parameters as a function of the advertising parameters) is able to
reduce the device discovery latency by more than 4%. Thus, as a developer of one device
(advertiser or scanner) we should have knowledge about the settings the other device is
supporting and using. For example, it is not reasonable to choose a short scan window
when we know that the advertising device is using long advertising intervals. In case ad-
vertising intervals are not changed over time, or other devices get informed in advanced
about used advertising intervals, OSP can be of high relevance.

Further concepts presented in this thesis do not rely on OSP. Chapter 5 elaborates an
advertising strategy, called Adaptive Advertising, which is independent from a scanning
device. Adaptive Advertising is introduced in order to optimize device discovery from the
point of view of an advertiser, minimizing latency and power consumption. In case of
the strategy presented in Chapter 6, the Range Extender, the scanning device does not
know the advertising interval used by the advertiser. Hence, for the Range Extender, the
calculation and the usage of OSP is not possible.



Chapter 5

Adaptive Advertisement

Application requirements of BLE devices can change over time and can even be user
dependent. As most BLE devices use static advertising intervals, those shifts in application
requirements are not covered. This results in systems with a low energy efficiency or bad
responsiveness.

The aim of Adaptive Advertising (AA) is to consider the constantly changing time,
and user dependent application requirements. AA finds the right trade-off between energy
consumption and responsiveness.

In Section 5.1, we describe the algorithm. We mention two different Adaptive Adver-
tising strategies: Time of Day (TD) and User Behavior (UB). Furthermore, we highlight
the possible savings regarding energy consumption.

Further sections are specific to Adaptive Advertising using User Behavior (AA-UB):
in Section 5.2, we explain the design of the algorithm, followed by the implementation in
Section 5.3. The algorithm can be fine tuned using several parameters. Their influence and
the evaluation of AA-UB according to energy consumption and device discovery latency
is explained in Section 5.4.

5.1 Algorithm

Adaptive Advertising (AA) means that the advertising interval TADV I is changed depen-
dent on the current application requirements. This comes up with two advantages:

1. Responsiveness: device discovery latency can be improved by choosing a shorter
TADV I .

2. Energy consumption: energy can be conserved by choosing a longer TADV I .

AA helps to find the right trade-off between device discovery latency and energy con-
sumption. Among many other possibilities, we propose two different Adaptive Advertising
strategies: Time of Day (TD) and User Behavior (UB). We focus on UB in our design and
implementation.

5.1.1 Time of Day (TD)

Time of Day (TD) adapts the advertising interval according to a predefined advertising
schedule, meaning the BLE device knows in advance at which point in time it has to use

60
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T152.5ms [h] T417.5ms [h] T1022.5ms [h] ETOT [J] Saving [%]

0 24 0 40.51 0

4 8 12 40.05 1.14

2 4 18 29.84 26.33

Table 5.1: Energy consumption based on different advertising intervals and savings with
respect to the standard advertising interval of 417.5 ms.

which advertising interval.
With this approach, different advertising intervals can be used, allowing to target peri-

ods of different application requirements. We can say that the overall energy consumption
for a time period T is the sum of the consumed energy in each period of a certain adver-
tising interval Ti. Using M different advertising intervals and adapting Equation 4.1 this
overall energy consumption ETOT,adaptive can be calculated as demonstrated in Equation
5.1.

ETOT,adaptive =
M∑

i

Ti

TADV I,i

· EADV,i (5.1)

Using this equation and the CDK energy consumption measurements illustrated in
Table 4.1 we can estimate the energy consumption of the CDK when different advertising
intervals are used. The result is illustrated in Table 5.1. This table illustrates the energy
saving on the CDK over a whole day compared to a static advertising interval of 417.5 ms
(first row), the default advertising interval of the NSL, dependent on how many hours a
certain advertising interval is active. The second row of the table shows us that with the
same amount of consumed energy, 4 hours per day can be spent in a faster advertising
interval (152.5 ms) in order to increase the responsiveness significantly while energy is
conserved during 12 hours per day. Those 12 hours could be spent during periods of
inactivity, e.g., during night. The third row shows the potential of energy conserving for
devices that do not need to be highly responsive over long periods. More than one quarter
of energy could be conserved while reducing the responsiveness for 18 hours (1022.5 ms).
Still during two hours per day a better responsiveness as with static advertising can be
achieved.

TD is very simple and does not need any computation during runtime. Nevertheless,
TD requires a priori knowledge about the application requirements, e.g., rarely used during
night. An application could offer different advertising schedules that could be selected by
users according to their own preferences. Of course, this would not represent an optimized
advertising schedule, meaning that the time of high responsiveness may not be assigned
appropriately. Therefore, we introduce User Behavior (UB), which we describe in the next
section.

5.1.2 User Behavior (UB)

The strategy of TD presented in Section 5.1.1 can be improved by having knowledge about
the specific usage of a device allowing to adapt the advertising schedule during runtime.
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This means that UB matches the periods of high responsiveness with periods of high
activity by using faster advertising intervals whenever needed and saving energy whenever
it is possible. The knowledge about the usage of a device consists of several time stamps,
created whenever the application was used (activity log) and stored directly on the specific
device. Based on those past activities, UB generates a prediction for the future. It is not
necessary that the data leaves the device. Those time stamps can be generated from many
different users or other devices that interacted with the considered device.

Note that the estimated energy consumption presented in Table 5.1 holds also here. In
contrast to TD, UB ensures that periods spent in faster advertising intervals are scheduled
as efficiently as possible.

The design of the algorithm and its implementation is discussed in detail in Section
5.2 and Section 5.3, respectively.

5.2 Design

Starting from the storage containing time stamps, we calculate the appropriate schedule
on a daily basis. This means that after every day, new log entries are considered for the
schedule of the consecutive day. The amount of entries is not limited by the algorithm,
but dependent on the frequency. A storage of several hundred entries may be appropriate.
For example, if we assume a storage of 300 values and ten entries per day, this would
result in a time period of about one month. We decided to give all entries the same
weight. This means that more recent entries have the same influence on the outcome as
past entries. The aim is to design a highly variable schedule for the day that determines:

1. when/which advertising interval has to be set.

2. for how long an advertising interval has to be used.

All time values are mapped to a time line of 24 hours. Periods of high activity (many
device discovery interactions) are sections with a high density of time values. As we want
to match periods of high activity with periods of fast advertising intervals, we have to
identify those agglomerations of time points. In order to find those clusters of time values,
the algorithm k-means [Mac67] is used. This algorithm is used for vector quantization
and cluster analysis. Points are categorized in k different clusters. We operate on a single
time line but k-means can be used in a multidimensional space as well. The k-means
algorithm adopted for our case is described in detail in Section 5.3.2.

Based on the resulting clusters of k-means and their standard deviation (δ), so called
points of interest (PoI) are determined. The cluster represents the point with the
highest density, meaning the fastest advertising interval that should be used around that
point. The center plus/minus the standard deviation tells us the period in which the
advertising interval should be used. Before and after the second fastest advertising interval
is used. Both the start and the end of this period is a PoI. This calculation of PoIs continues
till the slowest possible advertising interval is reached, resulting in a cascaded change of the
current advertising interval. These are important points on the time axis, where an action
(change of the advertising interval) could be necessary, as intersections with PoIs of other
clusters may be possible. More information can be found in Section 5.3.3. Our algorithm
decides which PoIs are relevant, depending on the selected parameters such as number



CHAPTER 5. ADAPTIVE ADVERTISEMENT 63

(a) Distribution of 300 activity values over the whole day.
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(b) Advertising schedule over the whole day. Edges illustrate relevant PoIs.

Figure 5.1: Progress of advertising level during a single day for three different advertising
levels and based on 300 activity values.

of supported advertising intervals, meaning on which points a change of the advertising
interval is necessary. The number of supported advertising intervals is not limited. We
speak about advertising levels (see Section 5.3.1), where level 0 is the fastest supported
advertising interval. The outcome of the algorithm are several points on a daily time axis,
telling the device that the current advertising interval has to be changed. An exemplary
schedule is illustrated in Figure 5.1b, based on 300 activity entries. Furthermore, one of
the cluster centers is marked with its PoIs (+/-δ). Their distribution over the whole day
is illustrated in Figure 5.1a. Of course the profile depends on the current locking data and
the selected params. The time points where an action (adaptation of advertising interval)
has to take place and, therefore, the system has to be awake, are managed in the so called
wakeup array. The calculation of the wakeup array is described in Section 5.3.4.

Applying the presented algorithm allows to accurately determine the time where a
device should be in a highly responsive state or where it can advertise in a slower mode
(e.g. during night). Based on this knowledge, the advertising interval can be adapted at
runtime. This method does not increase the possible energy saving illustrated in Table
5.1, but ensures that the times in the different advertising modes are spent as efficiently
as possible.
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5.3 Implementation

The implementation of Adaptive Advertising (AA) was performed on the CY8CKIT-042-
BLE Development Kit (CDK), that uses the CY8C4248LQI-BL583 BLE chip (see Section
2.2.2).

Periods where no actions take place allow to save a lot of power. This periods can be
interrupted only by the execution of the AA-UB algorithm, including the calculation and
the advertising itself. A user interaction always requires a previous advertising event. We
do not have to care about waking up the system in case of advertising, as the BLE stack
is handling this. As we want to eliminate static advertising, we need to define points in
time, so called wakeup points, where the advertising interval is adapted according to a
previously calculated schedule. The calculation of such a schedule and its realization is
the core of the AA-UB algorithm (see Section 5.2).

The algorithm should run on constrained devices, which brings additional require-
ments: in order to ensure a predictable behavior, no variable data structures are used.
Furthermore, all code is written in C in order to have full control over all structures and
operations. The implementation is described in the following section.

5.3.1 Advertising Levels

The number of used advertising intervals is not limited and can be set through the param-
eter ADV LEVEL. We speak about advertising levels, as any arbitrary advertising interval
can be mapped to a certain advertising level. A higher ADV LEVEL value means more
supported advertising intervals and therefore more possible switches between advertising
intervals may take place. This allows to use the algorithm for different preferences and
use cases. It should be ensured, that level 0 is the fastest of the used advertising intervals.
Higher level means slower advertising interval.

Note, that an ADV LEVEL of 0 deactivates the adaptive advertising.

5.3.2 K-means

K-means is used to find agglomeration of time points, meaning periods with a high density
of time values. The cluster center itself is a point on the time axis and the mid of the
time that should be spent on advertising level 0. First, we have to define how many
clusters we want to generate. The number is developer-defined by setting the parameter
NUMBER OF CLUSTERS.

K-means is an iterative algorithm and after an initialization phase it consists of two
steps:

1. Assign each point to its closest cluster.

2. Recalculate the cluster center by applying the arithmetic mean considering all points
assigned to the cluster.

These two steps are repeated as long as the set (points) of a cluster changes with each
iteration. The algorithm terminates if the set does not change anymore. Depending on
the initialization of the cluster centers, the algorithm can take different numbers of steps.
Furthermore, the initialization has influence on the final position of the cluster centers.
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Usually, the cluster centers are initialized randomly, which can lead to a suboptimal po-
sition of the centers and an increased number of steps. To improve this, a simplified
k-means++ initialization was chosen. Our approach initializes the first cluster center
randomly from the existing data points and the next centers are selected based on their
distance to all previous selected centers. The next center is the data point that shows the
largest distance from all currently selected centers. The calculation takes more time than
a random selection of the cluster centers, but ensures a fast convergence of the k-means
algorithm. This lowers the computation time and therefore the energy consumption.

Once the cluster centers and all related points are calculated, the duration of each
advertising level has to be determined. Therefore, for each cluster center, the standard
deviation σ is calculated. Note that the standard deviation is cluster dependent and
therefore differs from cluster to cluster! The value of the standard deviation is taken as
width for each stage. The start of the first level 0 advertising is the center of the earliest
cluster center minus the standard deviation of this cluster. The end of this stage is the
cluster center plus the standard deviation. This results in a total width of 2σ. This
calculation is valid for all other stages, which means that each advertising level has at
most the duration of two times the standard deviation per cluster. The width of the
different levels can be changed with the parameters w and f using the parameters W DIV
and F DIV. The parameter w determines the width of advertising level 0, f determines
the width of all other stages. If both define statements are 1, the standard deviation of
the current cluster is used for w and f. Further explanation about their influence can be
found in Section 5.4.2.2.

5.3.3 Points of Interest (PoI)

Once all clusters and their standard deviations are calculated, so called point of interest
(PoI) can be determined. These points are important points on the time axis where an
action (change of the advertising interval) could be necessary. PoIs are implemented as a
struct containing four values:

• time: time value of the point.

• level: current advertising level.

• ignore: flag that allows to consider(0)/ignore(1) the point for further operations.

• edge: flag that defines the property of the transition of the current level. A falling
edge (1→0) means an increment of the current level, a rising edge (0→1) decrements
the current level.

For every cluster, an array with PoIs, dependent on the cluster center, ADV LEVEL and
the standard deviation σ, are calculated (see Figure 5.2).

If a high advertising level or number of clusters is selected, the calculated clusters
are relatively close together. This can cause overlapping between time points of two or
more clusters. To counter this, the so called points of interest (PoI), are prioritized. This
prioritization follows four steps, starting from the most important one:

1. ignored-state: not ignored PoIs have higher priority
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Figure 5.2: Structure of PoI array, depending on the number of clusters and the selected
number of advertising levels. The width of level 0 is determined by w; f dictates the width
of all other levels (see Section 5.3.2).

2. time: earlier PoIs have higher priority

3. level: lower level means a higher priority

4. cluster membership: if PoI belongs to a earlier cluster it has a higher priority

The prioritization is performed by the function getHighestPriorityPoi().

5.3.4 Wakeup Array

Respecting the priorities, an array of PoIs is created. The resulting array is called wakeup
array, as on each time point an action (increasing/decreasing the advertising interval)
is needed. The function calculatePoisAndWakeupArrayKmeans() calculates the wakeup
array, sorts it ascending, and returns the number of written time points. Several problems
have to be solved here:

• Influence of random time points

Consider a set of 300 data points without any weighting. The time values in a realistic
scenario are not spread uniformly over the whole day. There are aggregations of
points. As explained, k-means is used to determine those. The number of selected
clusters determines the granularity: a smaller number of clusters leads to a larger
standard deviation. Using a large number of clusters leads to clusters with only a
small number of points. This so called random time points only occur a few times
over the full period of 300 actions. If those points stick together, the damage is
small. The cluster’s standard deviation is small and, therefore, the time spent on
fast advertising intervals is short. The energy consumption is increased slightly.

This changes with a bigger distance between the different time points. If the distance
is small enough so that no new cluster is created, but big enough so that the standard
deviation increases significantly, the time spent on faster advertising intervals is
increased. This increases the energy consumption as well. It was our intention to be
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highly reactive when it is necessary, but in this case there is no need to spend a lot
of energy on a long time where then only a few locking actions are performed.

Therefore, a two staged cluster weighting was introduced, adjustable over two
defines:

1. SECOND LOWEST LEVEL ENABLE MIN PERCENT (SLLEMP)

This statement allows to define a percentage threshold under that a cluster is
ignored totally. For example, when selecting 5 as threshold, all clusters that do
not contain at least 5% of all data points are ignored. Considering a number
of 300 data points, all PoIs of clusters without at least 15 members are elided
by setting the ignore flag accordingly. The consequence is a reduction of the
current advertising interval to the slowest possible interval.

2. LOWEST LEVEL ENABLE MIN PERCENT (LLEMP)

This statement allows to define a percentage threshold under that the fastest
advertising interval (level 0) of a cluster is ignored. This value must be higher
than SLLEMP. For example, when selecting 10 as threshold, all clusters with
less members than 10% of all data points but more members than SLLEMP%
are not ignored totally. The time spent on level 0 advertising (2σ) is downgraded
to level 1 advertising. Therefore, for those clusters, no level 0 advertising is
possible!

The two thresholds introduce a kind of cluster weighting. Clusters that have more
members are more important as clusters with a number of entities smaller than the
above explained thresholds. Energy can be saved by increasing the advertising level
(slower advertising interval) of less important clusters.

• Creating the wakeup array from an arbitrary number of PoI arrays

The number of clusters is variable. On the one hand, it depends on the selection
of the parameter NUMBER OF CLUSTERS. On the other hand, the number of
clusters can be reduced on runtime depending on SLLEMP. Furthermore, increasing
ADV LEVEL increases the number of PoIs per PoI array. This fact demands an
algorithm that can deal with a large range of different numbers of clusters and ad-
vertising levels, in other words with a highly variable number of PoIs. Furthermore,
PoIs can overlap and therefore overrule past/future decisions.

To implement these requirements, prioritized insertion sort was used. The algorithm
works iterative on all PoI arrays. In every iteration, the earliest PoIs (smallest time
value) of all PoI arrays are selected and from all minima the highest priority PoI
(see Section 5.3.3) is determined. Depending on the last inserted PoI in the wakeup
array, the currently highest priority PoI is inserted or ignored. Note that in this
stage, the decision of an insertion is dependent only from the previously inserted
PoI! A PoI gets inserted when:

1. The wakeup array is empty.

2. The previously inserted PoI of the wakeup array has the same level but different
edges, which is a switch from up to down or vice versa. But we have to take
care: if both values, last inserted PoI and current PoI, have the same time value
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two changes of the current level would happen simultaneously resulting in the
previously selected advertising level. This is unnecessary. In this case, not only
the current PoI is ignored but also the previously inserted PoI is removed.

3. The previously inserted PoI is of a lower level (higher priority) and the edges
of both values, last inserted PoI and current PoI, are falling. This scenario
describes a staircase-shaped reduction of the advertising interval.

4. The previously inserted PoI is of a higher level (lower priority) and the edges of
both values, last inserted PoI and current PoI, are rising. This scenario is the
opposite evolution as described previously: it is a staircase-shaped increment
of the advertising interval. Here we have to consider two special cases: first,
if the edges are not equal, the new PoI is overruling the old entry. Because
of its higher priority, the new PoI overrides the previously inserted value of
the wakeup array. Second, if both have falling edges, the new PoI of a higher
priority overrides the previously written value.

The algorithm terminates when all PoIs of all clusters are inserted or ignored. The
number of written values is saved.

• Influence of PoIs over multiple wakeup array entries

So far, the decision if the current PoI is considered or ignored only depends on the
previously inserted PoI. This could be a source of possible inconsistencies: besides
the direct influence of the previously inserted PoI, the current PoI may depend on
PoIs that are outside the closest neighborhood. On the one hand, these may be
PoIs that are in a distance of multiple wakeup array entries but still follow a timely
sequence. On the other hand, these may be PoIs that are “in the future”, e.g., a high
priority PoI shortly before midnight may overrule a lower priority PoI after midnight
of the same day. This problem is solved by iterating over the wakeup array as many
times as the wakeup array contains values. Some basic rules have to be met in each
iteration in order to guarantee consistency:

1. Every consecutive PoI has to be in a level range of one. If this does not apply,
the lower priority PoI (higher level) gets ignored and removed from the wakeup
array.

2. Different edges of consecutive PoIs are only possible if they are of the same
level. This can happen in two cases: first, when one advertising level starts at
one point in time and ends later, where no other change is in between. Second,
when one advertising level ends and starts at a later point in time again, while
in the meantime no other changes occur.

Else, the PoI with the smaller priority (higher level) gets ignored and removed
from the wakeup array.

Note that if we are talking about consecutive PoIs also the wrap around has to be
considered. Therefore, those rules have to hold for the last and the first element of
the array as well.

Once the algorithm determined all relevant PoIs of the wakeup array, it returns the
number of PoIs in the wakeup array. The wakeup array is sorted ascending.
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• Real Time Clock (RTC) and the alarm

To save as much energy as possible, all components that are not needed at the
moment should be switched off. This includes the CPU as well. With the knowledge
of the number of PoIs that are in the wakeup array, an easy wakeup mechanism can
be implemented. This allows to switch off the CPU in the meantime and still be
able to wakeup on variable, aperiodic time points. All we need is a Real Time Clock
(RTC) and an alarm functionality. Luckily, the Cypress BLE Pioneer Kit with the
CY8C4248LQI-BL583 BLE chip provides both functionalities. In order to be able
to enter deep-sleep mode (see Section 2.2.2.2) a low frequency clock has to be used.
Therefore we use the watch crystal oscillator (WCO) as source for the RTC. This
can be configured in the Design Wide Resource File (.cdwr) under the clock tab
inside PSoC creator. Once the RTC is initialised, we can set the first alarm to the
time value of the first entry of the wakeup array. Once the alarm goes off, we set
the new alarm to the time value of the next entry of the wakeup array. When the
alarm with the time of the last entry of the wakeup array is reached, all wakeups
of one days were performed and the next alarm is set to midnight. At midnight a
recalculation of the wakeups, based on possible new locking actions take place. This
includes the whole algorithm, containing k-means, standard deviation calculation,
and wakeup array calculation. After the calculation finishes, a new alarm can be
set, depending on the time value of the first entry of the wakeup array.

5.4 Evaluation

The evaluation of the AA-UB algorithm is based on the use case of the NSL, which is
described in Section 5.4.1.

In Section 5.4.2 we analyze the behavior of the algorithm based on different data
(simulation scenarios) and parameter settings. In Section 5.4.3 we measure the mean
power consumption and the mean device discovery latency of the CDK (see Section 2.2.2).
The results of both measurements are compared to the case where no AA is used (static
advertising). Finally, we summarize the presented content in Section 5.4.4.

5.4.1 Use Case: NSL

The NSL stores the last 300 lock/unlock operations, categorized in three different types:

1. smart phone,

2. fob, and

3. manually

triggered lock/unlock operations. All three values disclose information about user activity
and inactivity, but for us only the device triggered operations (1 and 2) are of interest.
These tell us the exact time when the user established a connection to the NSL in order to
lock/unlock the door. Advertising in general is only needed when a user wants to use the
NSL, triggered by a device. A manual use of the NSL (without device discovery) is always
possible. The task and the goal of AA-UB is to predict the user behavior in a way that
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the NSL is advertising when the user is likely to use the NSL and else minimize the rate
of advertising. A perfect prediction is not possible, as unexpected events can occur at any
point in time (random time points). In order to react to such events, advertising can never
be turned off completely, else device-triggered operations do not work anymore. Therefore,
we want to achieve low latency (fast advertising interval) on predict user interactions and
saving energy consumption (slow advertising interval) whenever it is possible.

Lock/unlock entries can be generated from many different users. The NSL stores which
user or which device (in case of the fob) interacts with itself. For us it is not important
which user operates with the NSL. Therefore, all device generated entries have the same
weight.

5.4.2 Simulation Scenarios and Parameter Settings

In this section, the algorithm is evaluated based on different time values (scenarios) and
parameter settings according to the presented use case.

5.4.2.1 Simulation Scenarios

As we do not have access to any usage data of the NSL, we generate random time values
for a smart lock. The values are generated using a Linear Feedback Shift Register (LFSR)
as pseudo random number generator (polynomial 0xA3000000 in API Single Step mode).
We distinguish between three scenarios: random time values, single household values and
family household values.

The random scenario is used to evaluate the algorithm in the worst case scenario,
i.e., no usage patterns are detectable. In contrast to that, the single household scenario
evaluates the algorithm in case the smart lock is used by one person only. Finally, the
family household scenario allows to evaluate the algorithm when multiple people are using
the same lock.

Random Time Values. In this case an array of only random time values, spread
over the whole 24 hours, is generated (see Figure 5.3a). Therefore, the percentage of
random values PctRandom = 100.

This first scenario enables an investigation of the behavior of the algorithm in the
worst case scenario: all time values are spread randomly over the full range. Projecting
this scenario into the real world: a high number of persons is using the lock. Every person
has a different locking behavior (different time when the lock is used) resulting in a 24h
activity of the lock. Due to a non chronological weighting of the locking values, this
scenario can also happen if only a few persons are using the lock and all of them showing
scattered locking behavior over the maximum number of locking actions.

Figure 5.3 shows the performance of the developed algorithm based on random time
values. Plots b-e are based on the same random values, illustrated in Figure 5.3a, in order
to have comparable results. While the values of SLLEMP and LLEMP (see Section 5.3.4)
remain constant, the setting of the used advertising levels and the possible number of
clusters are changed. Putting the focus on Figure 5.3b shows that the number of possible
clusters was fully utilized: we observe five different level 0 peaks. This means the fastest
possible advertising interval is active once for every cluster. This is the outcome one
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(a) Distribution of random time values over 24 hours.
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Figure 5.3: AA-UB algorithm applied on random time values (a) with different set-
tings of the advertising level (ADV LEVEL) and the possible number of clusters (NUM-
BER OF CLUSTERS). The values of SLLEMP and LLEMP (see Section 5.3.4) remain
constant on 5 and 10 respectively.

would expect. The width of each peak is the same, which leads to the conclusion that
the calculated standard deviation σ for every cluster is the same. The whole width of
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the peak is 2σ. The large σ prohibits an increment of the used advertising level, limiting
the advertising levels from six possible to two that are actually used: level 0 and 1. This
results in a slow latency but of course in a high energy consumption.

Figure 5.3c comes up with an interesting observation: doubling the number of clusters
changes the plot significantly. The additional number of clusters introduces new possibil-
ities (clusters) time points can be assigned to. Therefore, even in randomly distributed
time points, agglomerations of points can be determined. Thanks to a smaller standard de-
viation, sliding down to slower advertising intervals (higher advertising levels) is possible.
This reduces the time spent in lower levels and results in a significant energy reduction.
Furthermore, we can see that the threshold of SHELMP is applied in order to save fur-
ther energy. As not every cluster reaches the desired percentage of members, the lowest
advertising level 0 is deactivated for those clusters. Therefore, some peaks stop at level 1.

Tripling the number of used clusters used in Figure 5.3b, leads to a similar outcome as
we observed in Figure 5.3c. Thanks to the introduction of more clusters, the number of
members per cluster is reduced. In this case, for some clusters the percentage of members
is too small for the selected thresholds SHELMP. This leads to a total elimination of
the cluster. Notwithstanding, we selected a higher number of clusters, the granularity is
reduced as in the end less clusters are active as in Figure 5.3d. In this case, a reduction of
the threshold SHELMP would be necessary in order to make use of all possible clusters.

The impact of changing the number of used advertising levels is illustrated in Figure
5.3e. Comparing it with Figure 5.3c shows that the progression of the advertising level
over the day is the same as one would cut off the Figure 5.3c horizontally at level 3. This
leads to the conclusion that increasing the advertising level offers the possibility to return
to slower advertising intervals on positions where the highest level is reached. In case of
Figure 5.3c, the last possible level is not used. The plot with ADV LEVEL 4 would be
exactly the same. Therefore, having more advertising levels allows to save more energy
whenever possible. Still it is not wise to choose a very high value as the computational
effort increases rapidly. Furthermore, the device has to support the same number of
different advertising intervals.

Single Household Values. For this scenario, an array of random time values is
generated, where PctRandom% of all values are spread over the whole 24 hours. The
remaining 100% - PctRandom% of all values are spread over the interval [tStart, tStart +
Tσ]. An example of the distribution is shown in Figure 5.4a (PctRandom = 10).

Using the generated values allows us to evaluate the algorithm in case the smart lock
is used in a single household, i.e., there is only one person using the lock. This results
in an agglomeration of the time values around a certain center time. For example, after
returning every day from work at 5 pm most of the time values are spread around this
value. Furthermore, this behavior can be achieved when multiple users are using the lock,
having very similar locking behavior, meaning using the lock with a similar center time.

Figure 5.4 illustrates the behavior of the algorithm based on the discussed values.
Comparing Figure 5.4b and Figure 5.4c shows the impact of the randomization.

In the first example, a tenth of all values are outside the red boundaries. This is
indicated by the percentage of random values PctRandom. The remaining 90% of all values
are randomly distributed inside the interval [tStart, tStart + Tσ], where tStart = 15:00:00
and tStart + Tσ = 19:00:00. This example illustrates a person coming home every day
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(a) Distribution of single household with a width of 4 hours and 10% of random values over 24
hours.
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Figure 5.4: AA-UB algorithm applied on single household time values (a) with different
possible numbers of clusters (NUMBER OF CLUSTERS) and different percentages of
random values. The values of SLLEMP and LLEMP (see Section 5.3.4) remain constant
on 5 and 10, respectively.

between 15:00:00 and 19:00:00 with only small anomalies. Therefore, we expect that
the lock is using a fast advertising interval inside the red boundaries. As only very few
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points are outside (10%) and the threshold LLEMP was 10 itself, all clusters outside the
boundaries do not have enough members. Therefore, they are elided. The device performs
most of the time in the highest advertising level. This fact changes when we increase the
percentage of random values that are located outside the selected boundaries to 30% (see
Figure 5.4c). The threshold LLEMP is exceeded: the clusters outside the boundaries are
not ignored. Still, there are not enough members per cluster in order to enable level 0
advertising outside the boundaries.

For the third example, the number of possible clusters is doubled in order to achieve
a better granularity (see Figure 5.4d). Furthermore, the width of the boundaries Tσ is
doubled. It ranges now from 15:00:00 to 23:00:00. This results in two consequences: first,
more clusters are located inside the boundaries, allowing a finer setting of the advertising
level. Second, the values outside the boundaries are spread over more clusters. This leads
to the elimination of some clusters due to lack of members and therefore smaller advertising
intervals can be used in order to save energy. Still, in time of the highest lock activity
(inside the boundaries) the smart lock is operating at its two lowest levels. Outside the
boundaries, thanks to SLLEMP, the lock is operating at levels higher or equal than 1.

Going one step further and increasing the number of values outside the boundaries
to 50% while keeping the other settings does not change the algorithms behavior inside
the boundaries (see Figure 5.4e). Even with only one half of values remaining inside the
boundaries, this is still the region with the highest density of time values. Therefore,
most of the peaks are located there. Even with a high percentage of random values, the
algorithm performs in a way where it enables high reactivity whenever it is needed (inside
boundaries) and allows to save energy whenever its possible.

Family Household Values. Here, an array of random time values, where PctRandom%
of all values are spread over the whole 24 hours, is generated. The remaining 100% -
PctRandom% of all values are divided into three parts:

•
100%−PctRandom

3 % of all values are spread over the interval [tStart,1, t Start,1 + Tσ,1].

•
100%−PctRandom

3 % of all values are spread over the interval [tStart,2, tStart,2 + Tσ,2].

•
100%−PctRandom

3 % of all values are spread over the interval [tStart,3, tStart,3 + Tσ,3].

Using this set of values allows to determine the behavior of the algorithm when multiple
people are using the smart lock resulting in three different main peaks. Figure 5.5b shows
the resulting advertising level evolution. For this example, six different possible advertising
levels and ten possible clusters are used. 90% of all values are located inside the three
boundaries. More accurate, 30% of all values are located inside each boundary (see Figure
5.5a). As we can observe, all regions of high activity are hit by low advertising levels.
Outside the boundaries, where power can be saved, the advertising interval is reduced.

In the second example (Figure 5.6b), the number of time values located outside the
boundaries is increased to 40% (see Figure 5.6a). This means that two tenth of all values
are located in each boundary. As explained before with Figure 5.4e, the width of each
boundary is relatively small, therefore, the value density is higher inside each boundary.
The algorithm determines the agglomeration of points and enables the fastest advertising
interval. In comparison with Figure 5.5b, the calculated standard deviations are larger
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Figure 5.5: Daily schedule (b) of AA-UB algorithm applied on family household values
(a) with 10 clusters (NUMBER OF CLUSTERS) and 10% of random values (PctRandom).
The values of SLLEMP and LLEMP are set to 5 and 10, respectively.

resulting in broader pyramids. Furthermore, thanks to the higher number of random
time values, an additional cluster appears outside the boundaries, but with not enough
members to pass the LLEMP threshold. This illustrates a situation where the users of the
smart lock return most of the time inside the presented boundaries of two hours (12:00:00
- 14:00:00, 16:00:00 - 18:00:00 and 21:00:00 - 23:00:00). In a real life scenario, this could
be a normal week of work. There are some occasions like weekend, holidays or other users,
who are using the smart lock, that create points outside the boundaries.

Imagine the situation where a company is using a smart lock (see Figure 5.7b).

1. Red boundary: the office hours are from 09:00:00 to 17:00:00. Workers arrive up to
one hour earlier. For making lunch break, they need to leave the building. On their
return they have to unlock the smart lock again. Suppliers who are allowed to use
the lock can arrive during this time.

2. Green boundary: after the office closes, a team of workers handling night calls arrives.

3. Magenta boundary: the cleaning company accesses the building every night between
21:00:00 and 23:00:00.

Outside this daily five weekday schedule, there is a tenth of all locking actions. For
simplicity, each boundary contains 30% of all time values. As we can see in Figure 5.7b,
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Figure 5.6: Daily schedule (b) of AA-UB algorithm applied on family household values
(a) with 10 clusters (NUMBER OF CLUSTERS) and 40% of random values (PctRandom).
The values of SLLEMP and LLEMP are set to 5 and 10, respectively.

the device is in a lower advertising level inside the boundaries. This ensures a better user
experience: lower advertising level means a faster active advertising interval which reduces
the expected latency when a locking actions has to be performed. During night, where
only a tenth of all locking actions are performed, a lot of energy can be saved using higher
advertising levels.

Applying the algorithm with an increased number of possible clusters to the same
data as explained with Figure 5.7b results in Figure 5.7c. As already outlined in the
explanation of Figure 5.3, an increased number of clusters allows a finer distinction of the
time values. This is an important property when inside an agglomeration several smaller
agglomerations are located, i.e., a boundary can be split into smaller boundaries.

5.4.2.2 Parameter Settings

In this section, the influence of the several adjustable parameters are shown. ADV LEVEL
selects the possible number of advertising levels. Using NUMBER OF CLUSTERS allows
to select the maximum number of clusters. W DIV and F DIV control the width of the
different stages. More precisely, the parameter W DIV determines the width of advertis-
ing level 0, F DIV determines the width of all other stages. LLEMP defines a percent-
age threshold under that advertising level 0 of a cluster is ignored. In contrast to that,
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Figure 5.7: Daily schedule (b, c) of AA-UB algorithm applied on family household values
(a) with different number of clusters (NUMBER OF CLUSTERS) and 10% of random
values (PctRandom). The values of SLLEMP and LLEMP are set to 5 and 10, respectively.

SLLEMP defines a percentage threshold under that a cluster is ignored totally.

ADV LEVEL With this parameter the number of possible advertising levels can be
selected. There are ADV LEVEL + 1 different advertising levels.

Figure 5.8 shows the influence of the parameter ADV LEVEL. Figure 5.8a illustrates
the generated values. In Figure 5.8b an advertising level of five was chosen. In contrast to
that, in Figure 5.8c the advertising level was doubled. As demonstrated by the figures, a
higher advertising level offers more possible advertising intervals but does not guarantee
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Figure 5.8: AA-UB algorithm applied on the same data (a) with varying ADV LEVEL
parameter (b, c).

that all of them are used, e.g., in the figure on the right side only the levels 0-7 are
applied. If we take a closer look, above the red line the two plots are identical. Increasing
the ADV LEVEL adds further possible reductions of the advertising interval once the
highest advertising level is reached.

NUMBER OF CLUSTERS With this parameters, the maximum possible num-
ber of clusters can be selected. This does not guarantee that all clusters are active!
Depending on the thresholds LLEMP and SLLEMP clusters can be partially or totally
ignored.

Based on the values illustrated in Figure 5.9a and in comparison with Figure 5.9b, Fig-
ure 5.9c shows that increasing the number of clusters increases the granularity. In general
calculated standard deviations getting smaller leading to a finer trend of the advertising
level. This holds as long clusters remain active. If values are spread randomly over the
whole day, it can occur that even with higher cluster number the output gets flatter, i.e.,
the algorithm does not make use of the high advertising levels. So in addition to the
energy spent on the computation, more energy is consumed as the higher levels are not
used. Therefore, increasing the number of clusters should happen with care!
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Figure 5.9: AA-UB algorithm applied on the same data (a) with varying NUM-
BER OF CLUSTER parameter (b, c).

W DIV and F DIV The width of the different stages can be controlled with the
paramaters W DIV and F DIV. W DIV is operating as divider of the width of the adver-
tising level 0. If set to 1, no divider is active and therefore the width of the advertising
level 0 is two times the standard deviation of the cluster. F DIV is the divider of the width
of each consecutive stage (see Section 5.3.2 and Figure 5.2). If set to 1, the width of each
stage is at most 2σ. Again, a higher F DIV allows to reduce this width. Remember that
both dividers are used for an integer division. Therefore, choose this values with care.

Figure 5.10 shows the outcome when different W DIV and F DIV are used. Both plots
are based on the same data points (see Figure 5.10a). Figure 5.10b shows the result of
the algorithm when W DIV and F DIV are set to one. Therefore the width of the level
0 peaks are 2σ. On the peaks where level 0 advertising is deactivated thanks to LLEMP,
the width is at most 4σ. Remember that f is 2σ per stage if no divider is applied. For all
other stages, the width on each side of the pyramid is at most σ.

In Figure 5.10c the dividers for w and f are doubled, i.e., w and f are halved. As we can
observe, the number and position of peaks does not change but the width of every stage is
halved. Spending less time on each level opens the possibility to make use of higher levels
in between of each peak. This means that selecting higher dividers saves more energy, but
has a negative impact on the latency.
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Figure 5.10: AA-UB algorithm applied on the same data (a) with varying parameters
W DIV and F DIV (b, c).

LLEMP and SLLEMP Thanks to the threshold
SECOND LOWEST LEVEL ENABLE MIN PERCENT (SLLEMP) clusters with not at
least the stated percentage of members are ignored totally. This allows to counter the
creation of a full advertising level pyramid for only a few values. As we can see in Figure
5.11b, only three clusters reached level 0. Remember that once a cluster is accepted all
advertising levels are passed if they are not overruled by lower levels. For further expla-
nation see Section 5.3.4. The only exception can be achieved with the threshold LOW-
EST LEVEL ENABLE MIN PERCENT (LLEMP). Using this threshold, a percentage of
cluster members can be defined above which the full advertising pyramid is built (level
0 - ADV LEVEL). If a cluster does not exceed this threshold, the advertising level 0 is
disabled. In that case, the lowest possible level is level 1 (see Figure 5.11). LLEMP should
be higher than SLLEMP. Figure 5.11c shows the plot of the advertising level trend on the
same data (see Figure 5.11a) as in Figure 5.11b but with halved LLEMP and SLLEMP
parameters. We observe two things: first, more level 0 peaks are present. This means
more clusters were able to exceed the LLEMP threshold. Second, the highest level that
is reached is level 3. This implies that in comparison to the left figure, more clusters are
present, because they were able to pass the SLLEMP threshold.

Therefore, using higher thresholds reduces the number of active clusters and enables
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Figure 5.11: AA-UB algorithm applied on the same data (a) with varying parameters
LLEMP and SLLEMP (b, c).

a higher energy saving. As consequence, the latency is increased. Note that reducing
NUMBER OF CLUSTERS does not lead to the same result: there is a difference between
the number of possible clusters (NUMBER OF CLUSTERS) and the number of active
clusters, that is calculated by the algorithm!

5.4.3 Power Consumption and Device Discovery Latency

In this section, the power consumption and the resulting device discovery latency of the
algorithm is estimated, measured, and evaluated according to the three different simulation
scenarios (random, single household, and family household) presented in Section 5.4.2.1.
We compare the results with the measurements of static advertising in order to highlight
the gain of AA. All power measurements were performed on the CDK (see Section 2.2.2)
using the power monitor (see Section 2.2.4).

For the evaluation of this section five different advertising levels were chosen. The
levels and their assigned advertising intervals (TADV I) are illustrated in Table 5.2.

First of all, we need to measure the mean power consumption and the mean device
discovery latency of the CDK while performing static advertising, based on the five dif-
ferent advertising intervals. The results of the measurements are already listed in Section
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Advertising Level TADV I [ms]

0 152.5

1 417.5

2 1022.5

3 2000.0

4 4000.0

Table 5.2: Advertising levels and their assigned advertising intervals (TADVI) used for the
power consumption measurement on the CDK.

TADV I [ms] Mean Power [mW] Latency [ms]

152.5 1.1615 172.4

417.5 0.4689 408.3

1022.5 0.2273 1078.7

2000 0.1422 1992.1

4000 0.0998 4145.8

DS 0.0546 -

Table 5.3: Mean power consumption and device discovery latency of the CDK dependent
on the used advertising interval (TADVI).

4.1.1 and Section 4.3.3, respectively. As a matter of lucidity, both measurements are sum-
marized in Table 5.3, where DS is the time spent in deep sleep. We assume an Android
smart phone as scanner, performing continuous scanning (scan interval = scan window =
5000 ms).

Based on this results, we can estimate the consumed energy while using static ad-
vertising, but also while AA is used. Thanks to the daily schedule (see Figure 5.12) we
know how much time is spent in each level and thus, how much time is spent using a
certain advertising interval. Table 5.4 illustrates the measured mean power consumption
over a period t of static advertising with an interval of 417.5 ms (PS,meas.) and Adaptive
Advertising (PAA,meas.), dependent on the three different simulation scenarios (random,
single household, and family household). The deviation (Dev.) of the estimated power
consumption (PAA,est.) and PAA,meas., and the gain of AA (Gain), meaning the reduction
of the mean power consumption, are expressed as percentage value. The results allow
three observations:

1. The estimation of the mean power consumption with the model is accurate. It allows
us to predict the energy consumption within an accuracy of ± 2%.

Scenario PS,meas.[mW] PAA,est.[mW] PAA,meas.[mW] Dev.[%] Gain[%]

Random 0.4689 0.5783 0.5895 -1.94 +23.33

Single 0.4689 0.2456 0.2414 +1.68 -48.52

Family 0.4689 0.3629 0.3681 -1.43 -21.50

Table 5.4: Estimated (PAA,est.) and measured (PAA,meas.) mean power consumption of AA
in comparison with the mean power consumption of static advertising (PS,meas.).
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(a) Schedule for a random time value distribution using five advertising levels.
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(b) Schedule for the single household scenario using five advertising levels.
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(c) Schedule for the family household scenario using five advertising levels.

Figure 5.12: Resulting schedules based on different data: random (a), single household
(b), and family household (c).

2. AA reduces the mean power consumption in most of the cases significantly. The
exact value depends on the value distributions. For our scenarios, we are able to
reduce the mean power consumption by some more than 48%. The more a
user shows deterministic, routine behavior (most of the values are around certain
time points), the lower the power consumption of AA is.

3. AA increases the mean power consumption in cases where the data values are
spread randomly over the whole 24 hours. Therefore, clusters are also spread
over the full range resulting in more time spend on advertising level 0 and thus, an
increase in power consumption of 23% is observable.
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Scenario LatencyS[ms] LatencyAA[ms] Better[%] Equal[%] Worse[%]

Random 408.3 172.4 - 4145.8 35.7 28.7 35.6

Single 408.3 172.4 - 4145.8 57.0 34.3 8.7

Family 408.3 172.4 - 4145.8 51.0 34.7 14.3

Table 5.5: Influence of AA on the mean device discovery latency (LatencyAA) in compar-
ison with static advertising (LatencyS) for different scenarios (random, single household,
and family household).

We showed that AA is possible to change the amount of consumed energy, but how
does this influence the user experienced latency? Changing the advertising interval has
a direct impact on the device discovery latency (see Table 5.3). Therefore, we evaluate
for each scenario (random, single household, and family household) for which amount
of interactions the device discovery latency improves, stays the same, or degrades. By
the knowledge of the schedules (see Figure 5.12) and the used advertising level mapping
(see Table 5.2) we know which advertising interval is used at which point in time. Table
5.3 gives us the mean device discovery latency for each interval. Based on the created
time values and the resulting schedule, we know how many time values occur during
which advertising level. The resulting device discovery latency (LatencyAA) is compared
with static advertising (LatencyS, assuming an advertising interval of 417.5 ms) and is
illustrated in Table 5.5. AA regulates the mean device discovery latency between a certain
interval. The exact values depend on the mapping of advertising intervals to advertising
levels (see Table 5.2). For our example, the mean device discovery latency is between
172.4 ms and 4145.8 ms. We distinguish between three different cases for all three
scenarios in comparison with static advertising:

1. Better: an improvement of the mean device discovery latency is achieved for the
stated percentage of all time values, which means, that advertising level 0 is used.
In our case, this reduces the mean device discovery latency to 172.4 ms, which
reduces the time by more than 57% compared to static advertising (TADV I = 417.5
ms).

2. Equal: neither an improvement nor a deterioration of the mean device discovery
latency is achieved for the stated percentage of all time values. This means, that the
time is spend on advertising level 1, which is the same as static advertising is using.

3. Worse: for the stated percentage of all time values a deterioration of the mean
device discovery latency is introduced, meaning advertising level 2 or higher is used.
Dependent on the current level this increases the mean device discovery latency up
to 4145.8 ms.

As illustrated in Table 5.5, the benefit of using AA is different for each scenario (ran-
dom, single household, or family household). The more deterministic the usage behavior
of a user is, the higher is the benefit of AA. This argument is confirmed once we combine
Better and Equal values of each scenario: once a random time value distribution was
chosen, AA performed better or equal in 64.4% of all cases. In contrast, using a highly de-
terministic behavior (single household) with a tenth of randomness, AA performed better
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or equal in 91.4% of all cases. Having a reduced deterministic behavior (family household)
decreases this value to 85.7%.

Limitations. AA increases the mean device discovery latency during periods of low
device activity. The schedule is calculated on a daily basis. This introduces an issue, once
user behavior is dramatically changing from one day to the next day. In such cases, users
experience high latency and energy is wasted in periods where it would not be needed.
Furthermore, as targeted by our simulation scenarios, there is a part of time values that
are not part of a predictable behavior, so called random time values. They can occur each
day with a different percentage. Once those random time values occur in periods where a
high advertising level is used, the user experiences a high latency.

5.4.4 Outcome

The three different used time value types (random, single household, and family household)
prove the characteristics of the algorithm Adaptive Advertising - User Behavior (AA-UB):
we developed an algorithm that can react adequate to different data input. Parameters
that can be set developer-sided at compile time make the algorithm highly versatile and
available for different application areas: dependent on the use case, the algorithm can be
fine-tuned in order to achieve the best results regarding power consumption and device
discovery latency.

We examined that the benefit of AA depends on the determinism and regularity of
user behavior and even with a decent amount of randomness (10%) a significant reduc-
tion of energy consumption and device discovery latency is achieved: for both,
simultaneously, more than 50% are possible.

We showed a mathematical approach wherewith a prediction of the mean power
consumption with a deviation of under 2% is possible.

In order to prevent the limitations mentioned in Section 5.4.3, the concept of a Range
Extender is introduced in the next chapter.



Chapter 6

Range Extender

In this chapter, the concept of Range Extender (RE) is introduced. In Section 6.1 we
describe the principle of Range Extender. The aim of RE is to extend the Adaptive
Advertising (AA) algorithm, presented in Chapter 5. RE allows to achieve a satisfying
usability even when user behavior is unpredictable or suddenly changing. It does so
by notifying BLE devices about the presence of other nearby BLE devices. Notified
devices may adapt their advertising interval in order to reduce the device discovery time
of potential connection partners. Two different modes, Permanent Connection (PC) and
Temporary Connection (TC), are described. Although the description of the concept is
explained on the basis of the NSL, it can be applied on any use case where three or more
BLE devices are interacting with each other.

The design, the implementation, and the evaluation are based on the specific use case
of the Nuki Smart Lock, which is described in Section 6.2.

In Section 6.3, three different design possibilities of the RE are introduced: Powerful
NSL, Powerful RE, and Current System and RE. They differ in application- and smart
lock-sided changes that have to be performed in order to use the RE functionality.

Section 6.4 describes the implementation of Powerful NSL in both PC and TC mode.
In Section 6.5, we evaluate Powerful NSL in both modes according to energy consump-

tion and device discovery latency. The evaluation consists of two different scenarios, high
traffic and standby.

6.1 Concept

As described in Section 4.2.1, the range of BLE is very limited. Furthermore, obstacles can
be between the NSL and the smart phone. One of those obstacles is the door on which
the NSL is mounted. Depending on the material of the door, the range may decrease
significantly (e.g., a metal door). The usability depends heavily on the range at which
the NSL and the smart phone can interact the first time. The device discovery, connec-
tion establishment, exchange of unlocking information (authentication), and lock/unlock
mechanism take time (see Figure 6.1). To avoid that the user is waiting in front of the
locked door, this time should be shorter than the time from the first interaction between
the two devices till the user has reached the door. The time spent on device discovery is
highly variable and depends on several factors, that are described in Chapter 4. In con-

86
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Device Discovery
Connection establishment and 

exchange of unlocking information
Mechanical unlocking process

Both devices are in range:

device discovery is possible

Device discovery 

was successful

t

variable static

Door unlocked

Figure 6.1: Phases of the unlocking mechanism of the NSL: starting with the device
discovery between smart phone and NSL, followed by a connection establishment and
exchange of unlocking information (authentication), and concluded by the mechanical
unlocking process (not to scale).

trast to that, the connection establishment, the exchange of unlocking information, and
the mechanical unlocking process are not adjustable, as they are realized by Nuki. Thus,
these time periods are named static.

In Section 4.2.2, we calculated, based on the maximum LOS distance of 14 m, a
maximum available time for device discovery of 10.08 seconds. The specific use case
NSL introduced two additional, static time consuming phases (connection establishment,
mechanical unlocking), illustrated in Figure 6.1. Furthermore, as mentioned above, the
maximum communication distance of 14 m may decrease by environmental reasons. These
new circumstances decrease the maximum time available for device discovery and introduce
the need of a range extender.

Increasing the range shifts the point where both devices are able to interact the first
time to an earlier point in time. This increases the time available to complete the fore-
mentioned steps.

To avoid that a user has to wait in front of the locked door, a range extender could be
used. This range extender (RE) could be another BLE device placed outdoors acting
as an additional hop between the smart phone and the NSL. This device could be used to
extend the range of the smart lock.

The task of the RE is to detect nearby, approaching BLE devices. After a new BLE
device (e.g., smart phone) was discovered by the RE, the RE notifies the NSL about the
smart phone. In case multiple smart locks are present, the RE is able to notify all of
them. Furthermore, it is possible that a single smart lock receives information about
nearby devices from multiple REs, e.g., a smart lock itself, supporting the RE feature,
could notify other smart locks. After the notification was received, the NSL may switch
to a faster advertising interval in order to decrease the device discovery latency. Once the
smart phone gets in range of the NSL, thanks to the faster advertising interval used by
the NSL, the phone is able to detect the lock faster. It can send a connection request and
in a further step unlock the door earlier. This reduces the user experienced latency for
the difference in device discovery latency dependent on the selected advertising interval.

Challenging is the fact that approaching devices perform scanning to discover the
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advertising packets of the NSL. Therefore, the RE can not perform scanning in order to
get knowledge about the presence of scanning devices in its close neighborhood. Hence,
we need to turn around the device discovery process of BLE: the RE itself advertises
periodically its presence containing information about a range extender service. For details
about advertising and its data structure see Section 2.1.2.1 and Section 2.2.1. This allows
a scanning device, e.g., a smart phone, to discover the RE. Once the smart phone received
an advertising packet, it sends by default a scan request. If this is not the case, the running
Nuki app has to initialize the scan request. This happens after the smart phone analyzed
the packet payload. If the packet contains the UUID (see Section 2.1.6.1) of the range
extender service, the smart phone knows that the RE may be of relevance and sends a
scan request. By sending the scan request, the RE gets notified about the presence of a
smart phone that may be relevant for the NSL. If the smart phone is actually relevant
or not depends on the relationship of trust between smart phone and NSL. If they were
paired previously, the smart phone has the privileges to unlock/lock the door. Else the
phone is not a trusted device and can not perform any actions. The decision about the
relevance of a phone for a certain NSL can not be made by the RE!

The information exchange between RE and smart lock is connection based. Therefore,
the RE has to perform scanning to discover the advertising smart lock and to initiate the
connection with the smart lock. We distinguish between two modes in which the RE could
operate, Permanent (PC) or Temporary (TC) Connection mode.

6.1.1 Range Extender - Permanent Connection (RE-PC)

In this scenario, a connection between RE and NSL is established after the first notification
is sent and maintained permanently. All further notifications are sent using the already
established connection. While holding a connection, both devices need to advertise: the
RE needs to detect possible nearby devices and the NSL needs to stay responsive for
possible connection requests by trusted smart phones. This requires that a BLE device
can sustain multiple connections simultaneously.

6.1.2 Range Extender - Temporary Connection (RE-TC)

Here, the range extender connects to the NSL only when needed: in this case a connection
between the extender and the NSL is only created when a nearby device was detected by
the RE. The RE initiates the connection, exchanges information about nearby devices,
and terminates the connection afterwards. In this mode, again both devices, NSL and
extender, need to advertise. The RE advertises in order to be able to be detected by
approaching smart phones. The NSL needs to advertise in order to be discoverable for a
connection establishment with the RE or with a smart phone.

In contrast to RE-PC, this mode is applicable on devices that support only one active
BLE connection at any point in time. The whole time where both devices are connected
and thus not discoverable for other BLE devices is very short.
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Figure 6.2: Sending messages from a smart phone to a paired Nuki Smart Lock (NSL).

6.2 Use Case: NSL

The special design of the BLE communication between smart phone and Nuki Smart Lock
(NSL) (see Section 2.2.1) is the reason for several challenges for the design of a Range
Extender (RE). The current system is illustrated in Figure 6.2. After the phone (device
A) is paired with the NSL (device B), both devices derive the shared Long Term Key
(LTKAB) with a Diffie-Hellman key exchange. The smart phone and the NSL exchange
the device and lock specific authentication ID. Furthermore, the smart phone knows the
NSL ID, an identifier that is unique for each Nuki Smart Lock, and the real BLE device
address of the NSL BD ADDRA. The NSL does not use the privacy feature of BLE and
therefore its address does not change during lifetime (see Section 2.1.2.8).

Once the smart phone is in range of the NSL and is able to receive the advertising
packets of the NSL, it can start to send a connection request (CONNECT REQ) to the
NSL. After the connection is established communication can take place on the BLE data
channels. Each request or action performed by the phone is now encrypted with the shared
LTK with exception of the ID. The NSL uses this unencrypted ID in order to find the
corresponding LTK. With LTKAB the message can be decrypted and interpreted.

The aim of the Range Extender (RE) is to inform the NSL on the possible approach
of a smart phone. To avoid device tracking, smart phones usually use resolvable pri-
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vate addresses. Private means that during communication the device uses an address
(addr randres) that is not the BD ADDR and changes over time, e.g., every 15 minutes.
Resolvable means that with the possession of the device specific Identity Resolution Key
(IRK) it is possible to recover BD ADDR from the addr randres. More information about
address types can be found in Section 2.1.2.8. The IRK can be exchanged between devices
after a successful pairing process. This enables tracking of a device for all BLE devices
that know its IRK!

6.3 Design Possibilities

We distinguish between three possibilities that allow to inform the NSL about the approach
of a BLE device. They differ in app- and NSL-sided changes that have to be made in order
to make use of the RE functionality. To start with, the concept of the Powerful NSL is
introduced. There, the evaluation of the relevance of nearby devices is kept in the NSL.
In contrast to that, Powerful RE decides itself if nearby devices are of relevance for a
specific smart lock and informs the smart lock only if relevant information is available.
Finally, Current System and Range Extender tries to introduce as little changes as
possible according to the existing implementation of the NSL.

6.3.1 Powerful NSL

The evaluation of the relevance of nearby devices is kept in the NSL (see Figure 6.3). This
demands that during the pairing process of smart phone and NSL the smart phone shares
its IRK and its BD ADDR with the NSL. This enables address resolution in a later point
in time. The NSL needs to store both values together with the already existing values of
ID and LTK.

In order to make use of the RE functionality, the NSL subscribes to a custom service
that enables notifications about nearby devices.

The RE is advertising scannable advertising packets. The smart phone has to per-
form active scanning. Android devices perform active scanning per default, while phones
running with iOS perform passive scanning. For iOS devices active scanning has to be
enabled over the Nuki application. Once the smart phone receives a scannable advertising
packet (ADV SCAN IND) it sends a scan request (SCAN REQ) back to the RE. Thanks
to this request, the RE knows the resolvable private address of device A (addr randresA).
The RE does not have knowledge about the IRKA and is not able to find out BD ADDRA.

The RE holds a list of addresses from devices who sent a scan request. On each
appearance of a new address (remember: it can be the same device that changed the
address) it notifies the NSL about the new address. The NSL has to perform address
resolution with the stored IRK. If the private resolvable address and the IRK are of the
same device, it results in a valid BD ADDR. The validity of this operation can be checked
as the NSL has stored IRK and matching BD ADDR. If the NSL has stored more than
one IRK, it has to repeat address resolution for each IRK, until either address resolution
is successful or all IRKs have been evaluated.

If address resolution was successful, the NSL knows that a device that has permissions
to perform locking actions is close and further steps can be initiated. When address
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LTKAB
IDAB
NSL_ID

BD_ADDRB

LTKAB
IDAB
IRKA
BD_ADDRA

IDAB | LTKAB | BD_ADDRA | IRKA

   ...BLE pairing with IRKA exchange

A B

ADV_SCAN_IND

SCAN_REQ

 addr_randresA

 ...

subscribe to 
custom service

notify

IRKA(addr_randresA) = BD_ADDRA

Figure 6.3: Powerful NSL: range extender informing the NSL about approaching devices
and their addresses. The NSL performs address resolution in order to uniquely identifying
the approaching device and decides if it is relevant.

resolution was unsuccessful, no relevant devices are currently in the neighborhood and
therefore no further actions have to be performed.

• Advantages:

1. Centrality: the decision about the relevance of a detected device is kept in the
NSL. This allows to add an arbitrary number of REs.

2. Simple RE: the RE looks for nearby devices and lets the NSLs decide if they
are relevant or not.

3. Selectivity: the NSL can decide which REs are of interest and does not have to
subscribe to all of them. The NSL can also temporary subscribe to the service
of a RE and unsubscribe at a later point in time.

4. Privacy: the devices IRKs are only shared with the NSL and do not leave the
NSL. REs are not able to track devices.

5. Diversity: any device supporting the custom service can act as RE. For exam-
ple, other NSLs can act as range extender as no device has to know the IRKs
of other devices.
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LTKAB
IDAB
NSL_ID

BD_ADDRB

LTKAB
IDAB

BLE pairing with IRKA exchange

A B

subscribe to 
custom service

notify

IRKA(addr_randresA) = BD_ADDRA

 BD_ADDRA | IRKA | BD_ADDRB

   ...

Figure 6.4: Powerful RE: range extender identifies approaching devices, performs address
resolution and informs the NSL only if the approaching device is of relevance for a certain
NSL.

• Disadvantages:

1. Complex NSL: the functionality on the NSL has to be extended. IRKs and
BD ADDRs of all devices with locking permissions have to be exchanged and
stored. Furthermore, on each notification about a new device, address resolu-
tion has to be performed.

2. Active Scanning: the phone has to perform active scanning in order to inform
the RE about its presence. Therefore, the Nuki application has to be adapted.

6.3.2 Powerful RE

As shown in Figure 6.4, the evaluation of the relevance of nearby devices is outsourced to
the RE. This means that the RE decides which devices are relevant for a specific NSL and
inform the NSL about necessary actions. This implies that the RE is in possession of the
IRKs of phones that have access to the NSL. Therefore, users that want to use the RE
have to pair their phone once with the RE. During the pairing process, the phone shares
its IRK and its BT ADDR with the RE. Furthermore, the phone forwards the BD ADDR
of the NSL it has access to. The RE stores all three values and creates a new entry for
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each NSL if a phone has access to multiple locks.
As for the scenario above, the NSL subscribes to a custom notification service in order

to get notified about approaching devices. The RE is advertising scannable advertising
events (ADV SCAN IND). Again, the phone has to perform active scanning in order
to inform the RE about a scan request (SCAN REQ) and therefore about its presence.
The private resolvable address of the phone (addr randresA) can be read from the scan
request. Based on this address, the RE performs address resolution. If address resolution
is successful, all NSLs (to which the approaching smart phone has access to) get notified
and the NSL can initiate further actions.

• Advantages:

1. Simple NSL: as all additional features are placed on the RE, no changes have
to be performed on the NSL.

2. User decision: the user decides which REs are used and has full control over
the network. REs and NSLs of different users are separated from each other.

• Disadvantages:

1. User interaction: each used RE has to be paired once to the smart phone of
the user.

2. Complex RE: each RE has to evaluate which devices are relevant for subscribed
NSLs and notify the corresponding locks.

3. Limited network: the user can only make use of its own REs and NSLs. Possible
nearby REs or other locks that are not under control of the user can not support
to the functionality.

4. Active Scanning: the phone has to perform active scanning in order to inform
the RE about its presence. Therefore, the Nuki application has to be adapted.

6.3.3 Current System and RE

With this approach a solution with as little changes as possible should be found in order
to use a Range Extender together with the current system. As we know about the two
previous possibilities, smart phone sided active scanning is necessary in order that the
RE can detect the smart phone. Therefore, active scanning has to be enabled over the
Nuki application. As explained before, the RE notifies the NSL about nearby devices. In
contrast to the illustration in Figure 6.3 we do not exchange phones’ IRKs. As a result,
the NSL is not able to resolve the resolvable private addresses of the devices. Therefore,
it would be unnecessary to send the resolvable private addresses from the RE to the NSL.
We could substitute this with a short notification stating that one or more BLE devices
are in the neighborhood. Of course we are not able to make a decision about the relevance
of such an notification.

• Advantages:

1. Few changes: the functionality of the RE can be seen as simple extension to
the current system. No changes have to be performed on the NSL. All we need



CHAPTER 6. RANGE EXTENDER 94

is enabled active scanning which can be achieved with an update to the Nuki
smart phone app.

• Disadvantages:

1. Relevance of devices: no statement about the relevance of a received notification
can be made because BLE device addresses can not be resolved.

2. Static devices: devices that are permanently active scanning in the close neigh-
borhood of the RE can lead to continuous notifications if they change their
addresses frequently. The RE thinks a new device appeared every time the ad-
dress is changed. Sending notifications continuously drains the battery of both
devices (RE and smart lock).

3. Active Scanning: the phone has to perform active scanning in order to inform
the RE about its presence. Therefore, the Nuki application has to be adapted.

6.4 Implementation

In this section, we describe the implementation of the RE - Powerful NSL, introduced
in Section 6.3.1. This approach keeps decisions about further actions in the NSL (e.g., no
sensitive information leaves the lock). The whole network is easily expandable by adding
new REs or other BLE devices that support the RE functionality. Furthermore, the user
does not have to perform any setup in order to use the new functionality. This keeps the
system simple but enables to ignore devices that are not relevant for a specific smart lock.

For the smart lock, again, the CDK (see Section 2.2.1) is used. Its BLE chip comes
up with a problem: the chip can only hold one connection at any point in time. This fact
blocks any further interactions with other devices. During a connection no advertising or
scanning is possible. This disables the chip for all further actions once a connection is
established. For our case and the PC mode this means, that once the RE would detect
a smart phone which probably wants to connect to the smart lock, the RE would need
to drop the connection with the NSL. The NSL itself would not be able to advertise
itself, making a phone sided discovery impossible. Still both modes are implemented and
evaluated, as a substitution of the chip is planned by the company soon.

The nRF52 BLE chip was chosen as range extender. This decision was made in order
to be open to further development with respect to the new BLE v5.0 standard (see Section
2.1.9). The nRF52 is available as Development Kit (nDK). More information about the
hardware can be found in Section 2.2.3.

The implementation of the RE can be subdivided into five main parts, that are dis-
cussed in the following sections:

1. Advertising: advertising packet structure and advertising policy in order to be dis-
coverable for other BLE devices.

2. Scanning and connection establishment: used scanning policy for the sake of detect-
ing smart locks, followed by a connection establishment.

3. Scan requests: scan request notifications and their benefits.
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4. Nearby device service: service provided by the RE in order to inform NSLs about
nearby devices.

5. Modes: differences of the two main supported modes, RE-PC and RE-TC. Addi-
tionally, there is the possibility to enable event driven scanning that subdivide the
PC and TC mode further.

6.4.1 Advertising

The range extender is using static advertising. The used advertising interval can be se-
lected at compile time via the parameter ADVINT, depending on device discovery latency
requirements. Note that the device discovery latency depends not only on the advertising
interval of the RE but also on the used scan interval and scan window of the smart phone
(see Section 4.3.3).

6.4.2 Scanning and Connection Establishment

The scan interval can be set with the define statement SCANINT in config.h. According
to the results of the device discovery latency, presented in Section 4.3.3, we scan with
the OSP scanning policy (see Section 4.3) according to the slowest possible advertising
interval of our counterpart (4000 ms).

The RE scans for advertising packets with Nuki’s key turner service (see 2.2.1) in
order to identify smart locks. Once a smart lock was found, the RE initiates a connection
by sending a connection request to the NSL. For the initial connection establishment,
Accelerated Connection Establishment (ACE) is used [Mik14]. This approach selects a
shorter connection interval for the connection establishment in order to be able to faster
terminate connections that fail to establish. Furthermore, a fast connection interval allows
the NSL to discover attributes provided by the RE faster (see Section 2.1.6.1). According
to ACE, after a successful connection establishment, the connection interval is adapted by
a connection parameter update (see Section 2.1.2.6).

After a successful service discovery, the NSL knows attribute handles used by the RE
and, as a consequence, is able to subscribe to the nearby device service provided by the
RE. Of course it is possible to revoke the subscription at any point in time. For more
information about how service discovery and notifications work see Section 2.1.6.1.

Once subscription to the nearby device service was successful, the RE sends the cur-
rent entries of the nearby device list to the smart lock. As the connection is established,
attribute handles are known, and data is received, we want to conserve energy. Therefore,
the NSL sends a connection parameter update request that includes slower connection
intervals and also a higher timeout. Still, we do not want to allow the slave to skip con-
nection events. This would increase the latency unnecessarily and thus a slave latency of 0
should be selected. Further proceedings are dependent on the selected mode. Differences
can be found in Section 6.4.5.

6.4.3 Scan Requests

Scan requests are necessary in order that a BLE advertiser (e.g, the RE) is able to get
knowledge about the presence of a BLE scanner (e.g., a smart phone). Therefore, the
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scanning device has to perform active scanning, meaning that once the scanning device
received an advertising packet it sends a scan request to the advertising device. By the re-
ception of the scan request the advertiser gets informed about the presence of the scanning
device.

In Zephyr OS the scan request feature can be enabled by setting the configuration
variable CONFIG BT CTLR SCAN REQ NOTIFY in the project’s configuration file ac-
cordingly. Although this feature is defined in the BLE specification [Blu14], it is still
under development in Zephyr, and therefore, even when setting the previously mentioned
configuration variable, scan requests are disabled. In order to make use of the feature, we
have to modify the kernel slightly.

In the file ctrl.c which is located in zephyr/subsys/bluetooth/controller/ll sw one can
find several if defined statements dependent on the configuration variable CONFIG BT
CTLR SCAN REQ NOTIFY. Taking a closer look at the function isr rx adv() shows that
the generation of the scan request event by isr rx adv sr report() is suppressed by a if(0)
statement. Replacing the zero value by one enables the event generation.

Unfortunately, so far, the triggered event can not be handled on application level. All
we notice is a debug message stating that a scan request was received. Thus, again, we
have to slightly change the kernel.

In function encode control() in file hci.c, which can be found in zephyr/subsys/blue-
tooth/controller, one can observe another define statement dependent on the above men-
tioned configuration variable. On a received scan request the function le scan req received()
is called. We substitute this function by our own function ndAddDevice() that is part of
the Nearby Device Service and thus more information can be found in Section 6.4.4

6.4.4 Nearby Device Service (NDS)

The nearby device service (NDS) is a service that informs interested devices about recently
detected devices. In our use case, the RE implements this service in order to inform the
smart locks about approaching devices. In this section, a general service description is
given. Furthermore, it is explained how the RE maintains the list of nearby devices.

A UUID was assigned to the service (see Section 2.1.6.1). This 128-bit identifier is
created randomly and uniquely identifies the service. Devices offering this service shall
maintain a list with addresses of devices that where seen recently. Furthermore, connected
devices shall be able to enable notifications or simply read the list of devices. If notifica-
tions are enabled, the device should provide the content of the device list corresponding
to the following description. Each notification starts with a byte indicating how many ad-
dresses are contained in a single notification. For each address, transmitted in little-endian
order, 7 bytes were send, where 1 byte is used for the type of the address (private/public)
and 6 bytes are used for the address itself. One single notification contains at most 2
addresses in order to be compatible with a minimal MTU size of 23 bytes, resulting in an
actual payload of 20 bytes (see Section 2.1.6.1): one byte is used for opcode, wherewith
the packet can be marked as notification. Two additional bytes are needed to identify
the specific value, the actual device list. Therefore, the server specific attribute handle
is used. Hence, in total 8 (1 address) or 15 (2 addresses) bytes are transmitted for each
notification. If not all devices fit into one single notification, additional notifications with
the same structure are sent. Remember, more than one notification can be sent in one
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Opcode

1 Byte

Payload

up to 20 Bytes

Addresses Type MSBLSB

Payload when transmitting address (C3:8D:BD:41:AA:14, private) of one device.

0x01 0x14 0xAA 0x41 0xBD 0x8D 0xC30x01

0x01 0x14 0xAA 0x41 0xBD 0x8D 0xC30x02

0x00 0xD8 0x75 0x61 0x50 0xA0 0x00

Payload when transmitting addresses (C3:8D:BD:41:AA:14, private and 

00:A0:50:61:75:D8, public) of two devices.

Attribute Handle

2 Byte

Figure 6.5: Packet structure of a single notification when transmitting one or two different
device addresses with an MTU of 23 bytes.

connection event (see Section 2.1.6.1).
Applying the mentioned rules the PDU of a single notification looks like illustrated in

Figure 6.5.
Each range extender has a list containing detected devices. The list is a structure

containing the following fields:

• number of devices: integer to keep track of the amount of devices that are part of
the list.

• devices[]: array with a maximum of MAX ND LIST ENTRIES entries (configurable
in config.h). In this array, all addresses of discovered devices get stored. Each
address consists of its type (1 byte) and its actual value (6 bytes).

• timestamp [MAX ND LIST ENTRIES]: in this array, a time stamp for each discov-
ered device is hold. The time stamp is based on the up time of the system. Once a
device reappears, the time stamp gets updated accordingly.

On each received scan request (see Section 6.4.3) the function ndAddDevice() gets
called. The scan request contains the address of the requesting device. This address is
used to check if the device was already seen recently. Upon a scan request, we distinguish
between two cases:

• Address already part of the list: in the first case, the corresponding time stamp gets
updated to the current up time of the system. No notifications are sent.
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Main Mode Sub Mode

PC TC MODE EDS

PC disabled

PC enabled

TC disabled

TC enabled

Table 6.1: Supported modes of the RE. Recommended modes are bold.

• New address found: in the second case, if advertising is active we disable adver-
tising and start scanning (if event driven scanning was selected). This allows us
to detect smart locks. The discovered device is added to the list with the current
time stamp. Afterwards, if not already established, connections are created and
subscribed devices get notified at the next connection event.

Independent from a possible previously detected presence of a device, at each received scan
request, the devices are updated regarding timeliness. If more time than LAST SEEN
THRESHOLD MS passed since the last received scan request of a device, then the device
is removed. The threshold can be adjusted in config.h. This removal of devices keeps the
list small and avoids that smart locks adjust their advertising interval for devices that are
not relevant anymore as too much time passed.

6.4.5 Modes

As mentioned previously, the RE can be used in two different modes: Permanent Connec-
tion (PC) and Temporary Connection (TC) mode. Most of the implementation remains
the same, but still there are some differences that are explained in Section 6.4.5.1.

Furthermore, by the usage of event driven scanning (EDS) the two main modes
can be subdivided. Its description and influence is discussed in Section 6.4.5.2.

An overview of all modes can be found in Table 6.1. In order to achieve the best
results regarding latency and energy consumption, we suggest to use the modes marked
bold. More details can be found in Section 6.5.

6.4.5.1 PC / TC

The selection between the two main modes, PC and TC, is performed via the configuration
variable PC TC MODE and can be found in config.h. Setting it to 0 enables PC mode, 1
executes TC mode.

• PC: connections are established whenever possible. This means the RE sends a
connection request once a smart lock was detected. Once connected, the connection
is maintained permanently, meaning that the RE itself does not disconnect. Reasons
for disconnect are link loss or if the connection is terminated by the remote device.

• TC: in TC mode, a connection is established only when needed and disconnected
when not needed anymore. The connection is hold temporary. Similar to PC, this
assumes that the RE was scanning in order to be able to detect smart locks. Once
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the subscription for notification is received, the RE sends the current content of the
device list. It can take up to connection interval seconds till the notification is actu-
ally transmitted. Therefore, the connected device is not disconnected directly after
the notification. Instead, the device is marked as disconnectable and is disconnected
during the next main loop which is sleeping for LOOP DURATION. Also this pa-
rameter can be changed in config.h. Because we are using ACE [Mik14], the initial
connection interval is relatively short. The update takes place after the first received
notification. Note, that LOOP DURATION shall be bigger than four second, which
is the longest possible connection interval. This ensures that a second connection
interval is granted to both devices. This could be necessary if not all data fits in one
connection interval (see Section 2.1.6.1). Afterwards, the connection is terminated
by the RE.

6.4.5.2 Event Driven Scanning (EDS)

Event driven scanning (EDS) can be enabled by setting EDS in config.h to 1.
Continuous scanning is very expensive as the radio has to be turned on over the

whole period. Furthermore, it may cause troubles with other tasks accessing the radio,
e.g., advertising or maintaining a connection. The radio can be seen as resource which
has to be shared between different tasks. In our case we would need to scan, advertise,
sending data and maintain a connection (only PC mode). We can brake that down to the
three main events of BLE: advertising, scanning and connection event (see Section 2.1.2.1,
Section 2.1.2.2, and Section 2.1.2.5). Fortunately, Zephyr OS manages the radio resource
autonomously, but we have to consider the radio constraints. Zephyr prioritizes concurrent
tasks. The highest priority is assigned to connection events, followed by advertising events
and scanning events. This leads to the case that every scan window can be interrupted by
an advertising event or a connection event. After the preemption of an event, the event is
not resumed afterwards and will only be revived on the next corresponding interval.

Thus, the selection of the used advertising interval, connection intervals, and the sched-
ule of connection events (e.g., when multiple devices are connected to the RE) limit the
duration of scan windows. This fact has to be considered during the implementation and
the energy measurement.

Therefore, we introduced an event driven scanning policy. By using EDS, the RE is
scanning only when it is needed. This means, the RE starts scanning once it has to send
out notifications about nearby devices. The duration of the scanning period is defined
in EDS DURATION and should be at least three times the scan interval. This enables
scanning on all three advertising channels.

To avoid interruptions of the scan window, caused by advertising events, we disable
advertising while scanning. On the one hand, this allows us to use scan windows ac-
cording to OSP in order to not cause unpredictable device discover latency. On the other
hand, disabling advertising while scanning leads to the fact that after a successful device
discovery the RE is not detectable immediately for new devices that might appear during
the scan period. In a further step this leads to a later received scan request and thus
nearby devices may not be detected in a reasonable time. With our proposal using three
times OSP scanning policy this time can take up to 12.1 seconds.
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6.5 Evaluation

We introduced two main modes, permanent connection (PC) and temporary connection
(TC) with further possibility of enabling the feature event driven scanning (EDS).

In Section 6.5.1 we describe the measurement setup which is used for the evaluation
of the system.

Depending on the use case, one mode may be better than another one. In Section 6.5.2
and Section 6.5.3 we examine the energy consumption and the latency of the modes PC and
TC respectively. Again, we have our crucial trade off between system performance, which
can also be seen as user experienced latency and energy consumption. The evaluation
is based on the two recommended modes PC/TC with active EDS (out of four possible
modes), presented in Table 6.1. The reason is that disabling EDS results in permanent
scanning, draining a lot of power, which is not applicable for our use case NSL.

Different parameters influence the latency and power consumption of the RE. Their
individual strength varies depending on the selected mode. To have comparable values,
the parameters are adapted depending on the specific mode.

6.5.1 Measurement Setup

For the measurements of both modes, we distinguish between two different scenarios, high
traffic and standby.

In the first scenario, new BLE devices appear with constant frequency of once every
minute. Therefore, a notification is sent every minute, containing a certain amount of
devices, depending on the value of LAST SEEN THRESHOLD. After the start, however,
the device list is empty and therefore, the first notification consists of one address only.
The measurement contains the initial connection establishment. With this scenario, the
power consumption of the system under a heavy workload (a lot of new devices appear)
should be simulated.

In the second scenario no BLE devices appear over the whole measurement period,
meaning that no new entry is added to the device list. Thus, no notification is sent. This
scenario should evaluate the power consumption of the system during periods of inactivity,
so where no new devices appear.

For the measurements of both modes in both scenarios, following settings are selected:

1. TADVI = 1022.5 ms

The RE is performing static advertising with an interval of 1022.5 ms.

2. TS = tS = 4013.125 ms

The RE uses active scanning with a scan window according to the OSP policy for
an advertising interval of 4000 ms. This results in a scan window of 4013.125 ms
(details can be found in Chapter 4.3).

3. EDS DURATION = 3 · tS

Scanning is performed for three times the scan interval. This assures that at least
every channel is scanned once.
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4. Measurement duration = 10 minutes

Each measurement takes 10 minutes and is performed three times. The standard
deviation and the power consumption are calculated.

5. LAST SEEN THRESHOLD MS = 70000 ms

After a device did not send a scan request for 70 seconds it is removed from the list.
Informing a smart lock about nearby devices that are not seen recently, unnecessarily
consumes energy on both devices as the user is probably not in range anymore. For
the scenario high traffic this means that except of the first notification containing one
device address, all notifications are composed of two device addresses. Therefore,
during the duration of one measurement (10 minutes) 10 notifications or 143 bytes
of payload (19 devices) are sent.

All current consumption measurements are taken with the nRF PPK (see Section
2.2.5), supplied with a voltage of 3.303 V, using a resolution of 13 µs resulting in one
sample every 13 µs. A window size of 10 samples is applied, meaning that the average of
10 data samples is logged to the output file resulting in one log entry every 130 µs.

In total three BLE devices are involved. We use one RE (nDK) and one smart lock
(CDK). A third device (second nDK) is used as periodic scanner, sending scan requests
to the RE.

6.5.2 Permanent Connection (PC)

The evaluation of the Permanent Connection (PC) mode with enabled EDS is described
in this section.

The RE is advertising statically with an advertising interval of 1022.5 ms. After a
successful device discovery that causes a new entry in the nearby device list, the RE
notifies all already connected devices. Furthermore, the RE stops advertising and starts
the scan process in order to discover new smart locks that are able to connect permanently
to the RE. In this test, one connected smart lock was used, still scanning was active in
order to look for potential other devices.

6.5.2.1 Power Consumption

The energy consumption of a BLE connection depends on two factors: the connection
interval and the slave latency. The connection interval determines the frequency of con-
nection events and thus the frequency of packet transmission between master and salve.
Shorter intervals increase the energy consumption on both devices as the radio has to be
turned on more frequently. The slave latency allows the slave to skip some connection in-
tervals in order to save energy at the price of an increased latency. Therefore, we decided
to use a slave latency of 0.

Three different connection intervals (4000 ms, 2000 ms, and 1000 ms) were selected
in order to examine their influence on the power consumption. The measurements results
of the measurement scenarios (high traffic, standby) are presented in Table 6.2 and Table
6.3.

The results of Table 6.2 come up with an interesting observation. Their illustration
can be found in Figure 6.6a. While using a faster connection interval, the mean power
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connInterval [ms] Mean Current Consumption [mA] Mean Power Consumption[mW]

4000 1.4848 ± 0.0503 4.9042 ± 0.1661

2000 1.0335 ± 0.0376 3.4137 ± 0.1242

1000 0.5968 ± 0.0644 1.9712 ± 0.2127

Table 6.2: High traffic: measured current consumption and calculated power consumption
of nRF52 in PC mode over 10 minutes for different connection intervals (connInterval).
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Figure 6.6: Power consumption of the RE in PC mode during high traffic (a) and in
standby (b).

consumption decreases despite our expectations. The reason is the radio usage that was
already discussed in Section 6.4.5.2. After each successful device discovery, the RE per-
forms scanning in order to be able to find new smart locks which wants to get notified.
Applying continuous scanning for a duration of three scan intervals would require the radio
to scan for more than 12 seconds! In fact, this duration is not reached. The connection
event of the existing connection terminates the scan window as the radio is needed in order
to keep the connection alive. By applying a shorter connection interval, the scan window
is interrupted earlier. For example, a connection interval of 1 second terminates the scan
window within 1 second. The scan window is not resumed afterwards. Therefore, the
radio is switched off and a lot of energy is conserved. The next scan window starts when
the scan interval is over. Again, a shorter connection interval terminates the scan window
earlier than a long connection interval. The exact time point of the abruption depends on
the relative position of scan and connection events on the time axis. They can vary from
event to event and thus they can not be determined exactly. This fact is illustrated by a
relatively high standard deviation.

Activated advertising would introduce an additional event that is able to interrupt the
scan window. Therefore, we highly recommend to not use advertising while scanning is
active.

The influence of different connection intervals on the power consumption in the standby
scenario is demonstrated by Table 6.3 and illustrated in Figure 6.6b. In this scenario, no
other BLE devices are appearing, meaning that no notifications are necessary. This also
means that the RE never scans for new smart locks that would like to get notified. There-
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connInterval [ms] Mean Current Consumption [mA] Mean Power Consumption [mW]

4000 0.0257 ± 0.0001 0.0849 ± 0.0003

2000 0.0272 ± 0.0001 0.0897 ± 0.0003

1000 0.0303 ± 0.0001 0.1001 ± 0.0003

Table 6.3: Standby : measured current consumption and calculated power consumption of
nRF52 in PC mode over 10 minutes for different connection intervals (connInterval). The
measurement excludes the initial connection establishment.

fore, the measurements shows the energy consumption of the RE using static advertising
and holding a single connection with different connection intervals. As expected, a higher
connection interval increases the power consumption. In contrast to the scenario before,
we can observe a very low standard deviation. This is because we have advertising and
connection events only. No scanning with variable length termination is applied.

Comparing both tables shows us that the main part of the energy is consumed by the
need of scanning for further devices.

6.5.2.2 Latency

Despite the power consumption, the time (L) which is needed from the point where a
device enters inside the range of the RE till the successful reception of the notification by
the interested device is an important indicator for the usefulness of a system. For PC, this
time can be subdivided into two steps, assuming a connection is already established (see
Equation 6.1):

L = DDAD,RE +NTRE,NSL(connInterval) (6.1)

1. Device discovery of RE and appearing BLE device (DDAD,RE)

This time is already known. The measurement results are presented in Table 4.6.
As the RE is using an advertising interval of 1022.5 ms we can assume an average
device discovery time of 1078.7 ms and a continuously scanning smart phone.

2. Sending notification from RE to interested device (NTRE,NSL)

The time that is needed for sending the notification depends on the selected con-
nection interval. Data to be sent is queued until the next connection event. The
time between two connection events is determined by the connection interval con-
nInterval. Therefore, at most the time of the connInterval is spent here. The exact
time is the time of the next connection interval minus the appearance time of a new
device. As a randomization of the time of appearance of new devices was chosen,
the average notification latency is close to connInterval

2 . The resulting measurement
values are demonstrated in Table 6.4.

The measurement results show that doubling the connection interval also doubles the
average notification latency. Thus, we have linear relation between connection interval
and notification latency.

The whole average latency can be calculated by inserting the measured and calculated
values in Equation 6.1. E.g., for a connection interval of 4000 ms this would result in a
total latency of 3109.7 ms.
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connInterval [ms] Notification Latency [ms]

4000 2031.0 ± 1158.8

2000 1005.5 ± 571.1

1000 522.2 ± 293.1

Table 6.4: Average notification latency in PC mode over 100 measurements, using different
connection intervals.

6.5.2.3 Discussion

The Permanent Connection (PC) mode is able to maintain connections to multiple smart
locks and to notify all locks quickly. Once needed, the latency can be improved by selecting
a faster connection interval. This comes at the price of the multiple connection support
requirement from the RE and also from the connection partner. Else the device is not
discoverable for all other devices.

While supporting multiple smart locks, the power consumption increases due to the
needed scan windows. Still, the energy consumption is acceptable, although the reason can
be found in terminated scan windows. The probability of the discovery of new smart locks
diminishes with every connected device. Once the smart lock is using slow advertising
intervals it is unlikely to establish a working connection. While supporting only one
specific smart lock, a very good power consumption could be achieved. In this case,
scanning for further devices could be disabled and the power consumption would be close
to the measurements presented in Table 6.3.

On the one hand, PC is able to sustain a high load of BLE traffic, caused by an
environment that is determined by a lot of (re)appearing BLE devices. The number of
appearing devices do not increase the power consumption considerably nor reduce the
latency. On the other hand, in standby or if new devices appear very rare, holding a
connection for a long time increases the power consumption unnecessarily.

Furthermore, PC mode is dependent on the environment. A lossy environment leads to
disconnections. Depending on the number of currently maintained connections, the recon-
nection process might be time consuming. Furthermore, a high amount of reconnections
consumes an unnecessary amount of energy on both devices.

6.5.3 Temporary Connection (TC)

The evaluation of the Temporary Connection (TC) mode with enabled EDS is described
in this section.

The RE is using static advertising with an advertising interval of 1022.5 ms. After
every received scan request, the RE stops advertising and start scanning instead. After
the discovery of a smart lock, the RE initiates the connection establishment such that
the content of the device list can be exchanged. After the connection establishment, the
scanning process is restarted in order to look for possible other smart locks. Once the
data is transmitted, the connection is disconnected by the RE.
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TADVI [ms] Mean Current Consumption [mA] Mean Power Consumption [mW]

4000.0 2.8873 ± 0.1185 9.5369 ± 0.3914

2000.0 2.2101 ± 0.0347 7.3001 ± 0.1146

1022.5 2.1193 ± 0.1400 6.9999 ± 0.4624

417.5 1.4547 ± 0.0410 4.8050 ± 0.1354

152.5 1.371 ± 0.0463 4.5284 ± 0.1529

Table 6.5: High traffic: measured current consumption and calculated power consumption
of nRF52 in TC mode 110 over 10 minutes for different advertising intervals (TADVI) on
the connection partner.

Mean Current Consumption [mA] Mean Power Consumption [mW]

0.0242 ± 0.0001 0.0798 ± 0.0003

Table 6.6: Standby : measured current consumption and calculated power consumption of
nRF52 in TC mode over 10 minutes.

6.5.3.1 Power Consumption

In contrast to the PC mode, in TC mode the main influence on the power consumption is
not the connection interval. The energy consumption in this mode depends on two main
factors: the advertising interval of the RE (static advertising with an interval of 1022.5
ms) and the advertising interval of the device the RE has to connect to (smart locks). The
reason for this dependency is the device discovery latency dependent on the advertising
interval (see Table 4.6). When a smart lock is advertising with a faster interval, the RE
is able to detect it faster. A faster device discovery leads to the case that the scanning
process can be stopped earlier leading to the radio being powered for shorter periods.

After an exchange of information with the first device, the RE reactivates scanning
to discover further smart locks. If one whole scan period (duration of EDS DURATION)
passes without the discovery of a new smart lock, the RE stops scanning. In the test
scenario, the RE does not connect to more than one smart lock. Still, after the successful
transmission of the device list, the RE scans for a whole period, consuming additional
energy. In contrast to the first device discovery that is stopped once the advertising
packet of the smart lock is received, this scan takes EDS DURATION and is independent
from the advertising interval of the potential connection partner.

In order to evaluate the influence of the connection partner’s advertising interval on
the power consumption of the RE, we measured the current consumption for all four
available advertising intervals of the NSL (see Table 2.2) plus the advertising interval that
was introduced with the introduction of AA (see Chapter 5). The results are listed in
Table 6.5. As explained, longer advertising intervals of the connection partner increase
the power consumption of the RE. The scan windows are the main contribution to the
energy consumption and their length is determined by the device discovery latency. As
this latency can vary, also the power consumption can change. Similar to PC mode, a
significant reduction in power consumption can be observed when no new BLE devices
are approaching. The measurement result is presented in Table 6.6. Again, this is be-
cause scanning is deactivated during the whole measurement. This means, the energy
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Figure 6.7: Power consumption of the RE in TC mode during high traffic (green) and in
standby (yellow).

consumption consists of the energy needs of advertising only.
A comparison of both measurements is illustrated in Figure 6.7. The green bars rep-

resent the power consumption dependent on the different advertising intervals of the con-
nection partner while new BLE devices appear periodically (high traffic scenario). The
yellow bar illustrates the significantly lower power consumption when no new BLE devices
appear and thus no scanning is needed (standby scenario).

6.5.3.2 Latency

Despite the power consumption, the time (L) which is needed from the point where a
device enters inside the range of the RE till the successful reception of the notification by
the interested device is an important indicator about the usefulness of a system. For TC,
this time is composed of four different parts (see Equation 6.2):

L = DDAD,RE +DDRE,NSL + TCONNRE,NSL +NTRE,CDK (6.2)

1. Device discovery of RE and appearing BLE device (DDAD,RE)

This time is already known. The measurement results are presented in Table 4.6.
As the RE is using an advertising interval of 1022.5 ms we can assume an average
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TADVI [ms] Notification Latency [ms]

4000.0 6565.80 ± 1279.40

2000.0 3612.90 ± 599.50

1022.5 2224.90 ± 584.80

417.5 1081.50 ± 232.27

152.5 748.10 ± 173.38

Table 6.7: Average notification latency in TC mode over 100 measurements, using different
advertising intervals on the remote device.

device discovery time of 1078.7 ms and a continuously scanning smart phone.

2. Device discovery of RE and interested device (DDRE,NSL)

Also this time is already known. The device discovery latency is given depending on
the current advertising of the smart lock (see Table 4.6). Remember that the RE is
using OSP fitting an advertising interval of 4000 ms (see Chapter 4.3).

3. Connection establishment initiated by RE with interested device (TCONNRE,NSL)

This includes the time for connection establishment as well as the service discovery
time. BLE would allow to store already discovered services and their corresponding
handlers. A problem can be once an interested device wants to use information from
multiple RE’s. Every RE, that implements the server functionality is allowed to
assign different handlers to its attributes. Therefore, for each RE handlers would
need to be stored. In order to cause as less changes as possible on the interested
device, the decision was made to not store already discovered parameters. Thus, on
each connection establishment service discovery has to be performed.

4. Sending notification (NTRE,CDK)

For sending the notification, the connection interval of the connection establishment
is used. This follows the ACE approach [Mik14] that uses a faster connection inter-
val during the connection establishment process and updates the connection interval
after the connection establishment was successful. Therefore, after a successful con-
nection establishment, the notification reaches the interested device very fast.

Similar to PC mode (see Table 6.4), we measured the time between the received scan
response and the successful received notification (notification latency). This measurement
includes step two till four of the description above. The resulting values are listed in Table
6.7.

As expected, the device discovery latency (see Table 4.6) has direct impact on the
measured notification latency (see Equation 6.2) as a connection can only be initiated
once the RE discovered the interested device (smart lock). Increasing the advertising
interval of the interested device increases the discovery time.

The whole average latency can be calculated by inserting the measured and calculated
values in Equation 6.2. For example, when the smart lock uses an advertising interval of
4000 ms this would result in a total latency of 7644.5 ms.
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6.5.3.3 Discussion

The Temporary Connection (TC) mode allows the RE and also the connection partner to
support only one simultaneous connection. The connection is kept very short such that
the smart lock is responsive immediately after the data transmission. Furthermore, TC
mode allows a very low power consumption. During periods of inactivity (standby) its
power consumption is determined only by its advertising interval (see Table 6.6). New
smart locks are discovered quickly, also with higher advertising intervals as connection
events do not disturb the scanning process.

Moreover, TC mode avoids that the smart lock wastes energy. A lossy environment
handicaps the device discovery and the connection establishment, but as long no connec-
tion request is received by the smart lock, the smart lock do not even notice the presence
of the RE and thus, do not consume further energy.

All its benefits come with the cost of an increased notification latency. While sup-
porting multiple smart locks the notification latency is increased from lock to lock as
they have to be notified consecutively. For each lock, device discovery, connection estab-
lishment, service discovery and notification exchange has to be performed. This increases
the notification latency and makes it dependent on the advertising interval of the con-
nection partner. Furthermore, this fact disqualifies TC mode in a high traffic scenario.
Every (re)appearing BLE device increases the power consumption considerably as device
discovery, connection establishment, and service discovery have to be performed for each
lock.

6.5.4 Outcome

We introduced the concept of the RE, a BLE device, that notifies interested BLE devices
about the presence of other BLE devices. The RE is implemented and evaluated in
two different modes, TC and PC. This section showed an evaluation of both RE modes
regarding power consumption and latency.

Figure 6.8 compares the overall latency of both modes. This means we are consider-
ing the time starting from the entrance of an approaching device into the range of the
RE till the interested device received the proper notification. Based on the energy and
performance measurements, we can say that PC should be used in scenarios where a rel-
atively stable link is available or a high load is demanded. Furthermore, it is the right
choice once low latency is required. As illustrated in Figure 6.8 the lowest latency can be
achieved in PC mode. Furthermore, support for multiple interested devices is given when
a compromise regarding the connection establishment time can be accepted. The highest
possible connection interval (4000 ms) should be chosen once multiple interested devices
should be supported. In contrast to that we recommend a lower connection interval like
1000 ms once only one device should be notified. The latency is decreased by paying a
relatively small amount of additional energy.

TC is suited for a lossy environment with only a few of interested devices. Above all,
TC is the best choice when a low load is required. With respect to the Nuki use case the
TC mode is not applicable. The RE should inform the NSL about nearby devices in order
to reduce its advertising interval once it is running with a slow advertising interval (to be
discoverable faster for a smart phone). This means, the highest gain of the RE is when the
NSL is using the slowest possible advertising interval (4000 ms). There, as illustrated in
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Figure 6.8: Measured average latency of the RE in the two modes, PC and TC, depend-
ing on different connection and advertising intervals. The overall latency consists of the
device discovery latency between the approaching device and the RE (DDAD,RE) and the
notification latency.

Figure 6.8, the notification latency of TC mode is increased as the latency depends on the
device discovery time between RE and smart lock, and thus, on the advertising interval of
the smart lock. This fact could change with a longer range supported by the RE. The new
BLE specification (BLE v5.0, see Section 2.1.9) increases the range of BLE significantly,
making this mode interesting for this specific use case.

Once the smart lock received the notification of the RE (independent from the used
mode) and resolved at least one address successfully (i.e., a trusted device is nearby), the
smart lock sets its advertising interval to the fastest possible advertising interval (152.5
ms). This reduces the device discovery latency of smart phone and smart lock. Depending
on the currently used advertising interval, the reduction differs (see Table 6.8). The values
of the device discovery latency depending on the used advertising interval are taken from
Table 4.6. In case the smart lock is currently advertising with a slower advertising interval,
a significant reduction of the device discovery latency can be achieved (more than
95%).

Note, that on the RE an advertising interval of 1022.5 ms was chosen. Once needed,
the overall latency can be reduced by choosing a faster advertising interval. The expected
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TADVI [ms] Device Discovery Latency [ms] Reduction [%]

152.5 172.4 0

417.5 408.3 -57.8

1022.5 1078.7 -84.0

2000.0 1992.1 -91.3

4000.0 4145.8 -95.8

Table 6.8: Reduction of the device discovery latency by adapting the advertising interval
to the fastest possible advertising interval (152.5 ms).

saving can be read out of Table 4.6. Of course, the power consumption of the RE is
increased.



Chapter 7

Conclusion

Thanks to its low-power and low-cost properties, BLE became a popular wireless commu-
nication protocol that is nowadays supported by most consumer electronic devices, such
as smart phones, laptops, and tablets. BLE is a highly versatile protocol that allows to
target many different adaptation requirements. As such requirements may change over
time and may be user dependent, runtime algorithms are needed in order to achieve the
best performance and energy efficiency. Therefore, the major contribution of this Mas-
ter’s thesis are three concepts that increase the performance and energy efficiency of BLE
device discovery at runtime.

First, advertising and scanning of BLE is evaluated according to its device discovery
latency, energy consumption, and amount of transmitted data. We show a highly accurate
mathematical model with which a prediction of the mean power consumption is possible.
We demonstrate that BLE device discovery is dependent on advertising interval, scan
interval, and scan window. Based on that, we introduce Optimal Scan Parameters, a
mathematical model that allows to reduce the mean device discovery time by more than
4% once scan parameters are adapted accordingly.

Second, Adaptive Advertising is a smart advertising technique that adapts the adver-
tising interval of a BLE advertiser at runtime according to a daily schedule, calculated
based on user behavior. This enables a reduction of the mean device discovery latency and
the energy consumption simultaneously by more than 50%. Adaptive Advertising allows
to automatically adapt a BLE application to specific use cases and individual needs.

Third, the concept of a Range Extender is introduced in order to notify BLE devices
about the presence of other BLE devices. Notified devices are able to adapt their parame-
ters (e.g., advertising interval) accordingly and thus, to reduce the overall device discovery
latency significantly. The Range Extender is implemented and evaluated using different
parameters in two different modes: temporary connection and permanent connection, al-
lowing to react on specific application requirements. In both modes, we are able to inform
a specific BLE device on average in under two seconds about the presence of other BLE
devices. We showed that depending on the used advertising intervals a reduction of the
device discovery latency of more than 95% can be achieved.
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Chapter 8

Future Work

Packet Reception Rate. In this thesis we assumed a packet reception rate of 100%.
The two contributions Optimal Scan Parameters and Range Extender could be tested and
evaluated in a lossy environment showing its influence on the mean device discovery latency
and energy consumption.

Adaptive Advertising - Weekday Distinction. The current implementation of
Adaptive Advertising does not distinguish between week days. The daily calculation of
the schedule could be extended to a weekly calculation. This, however, requires more
user data. The performance could be improved as the user experienced device discovery
latency could be reduced. More user data introduces the need of data weighting, meaning
that more recent time values have a stronger influence on the resulting schedule.

Adaptive Advertising - Amount of Users. From the usage data, a specific device
could extract how many users are using it. Depending on the use case and the amount
of identified users, the advertising interval can be adjusted further. For example, a smart
lock is used by three different users and we know that all users unlocked the door in order
to enter the house. Because we know that no further unlocking operation was recorded,
nobody left the house. As a consequence, we know that no remaining users are outside
and thus, it is not possible that the door will be accessed. Therefore, in order to save
energy, we could overrule the precalculated schedule of Adaptive Advertising (which may
uses a fast advertising interval) and turn advertising completely off or at least use a slower
advertising interval.

Range Extender - User behavior. The time between detection and locking action
may differ from user to user. For example the first user directly accesses the door while
the second user drives the car into the garage and needs more time to reach the door. The
second case gives the Nuki Smart Lock more time to react and a higher advertising interval
could be used. Therefore, also the Range Extender could learn from its environment and
adapt its advertising interval accordingly.

Range Extender - Service Discovery. After a successful service discovery, the
device subscribing for notifications could store the attribute handles of the corresponding
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Range Extender. After the termination of a connection, e.g., in Temporary Connection
mode or after link loss, a new service discovery is not necessary anymore. Depending on
the connected Range Extender, the device can use the stored attribute handle in order to
subscribe for the notification service.

Range Extender - Extended Advertising. With the introduction of BLE v5.0
and its Extended Advertising (see Section 2.1.9, the two modes of the Range Extender
(Temporary and Permanent) could be extended by a third, connection-less mode that uses
Extended Advertising of BLE v5.0. In this mode, information about nearby devices could
be broadcasted on the data channels with synchronization packets on the three advertising
channels in order to inform potential interested devices. In this case, interested devices are
able to omit the time consuming connection establishment and do not need to subscribe
for notifications anymore. Once devices want to gain knowledge about their environment,
they start listening on the advertising channels for the synchronization packets that con-
tain information about the next used data channel. Afterwards, they switch to the data
channels and receive the desired information. This mode would allow to notify multiple
devices simultaneously without any delay introduced by connection establishment or other
devices.

Range Extender - Longer Range. With the introduction of BLE v5.0, a longer
communication range is possible. This increased range allows the Range Extender to
spend more time on the notification exchange without suffering an adverse impact on the
user experience latency. As now more time is available, the Permanent Connection mode
could use a higher connection interval. In Temporary Connection mode the remote device
could use a higher advertising interval, reducing its energy consumption.

Range Extender - Smart Scheduling of Scan and Connection Events. The
Range Extender is able to support multiple connections while scanning for further potential
connection partners. As demonstrated, the duration of the scan window is limited by the
occurrence of connection events. To avoid early abruptions of scan windows, a smart
scheduling technique for scan and connection events could be introduced.

Cooperation of Range Extender and Adaptive Advertising. Once a Range
Extender is exclusively used with a device running Adaptive Advertising, this device could
then inform the Range Extender about the used advertising interval. As a consequence,
the Range Extender knows the advertising interval of the remote device at any point
in time, allowing to adjust its scan parameters (interval and window) according to the
Optimal Scan Parameters. This could reduce the mean device discovery time between
both devices.
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