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Abstract

In this thesis, we propose a novel way to improve the quality and efficiency of the Multi-

View Stereo (MVS) reconstruction process without changing the MVS algorithm itself.

The key component of our method is the concept of MVS Confidence Prediction, which

allows us to estimate the chances of a successful reconstruction before the MVS algorithm

is executed. We use this prediction to actively select image constellations which are well-

suited for the MVS algorithm with respect to the presented scene. This scheme allows us

to maximize important quality parameters, such as coverage, ground resolution and 3D

accuracy, while at the same time minimizing the number of images, the computation time

and memory consumption.

The proposed machine learning technique does not require any ground truth or manu-

ally labeled data for training, but instead adapts ideas from depth map fusion for provid-

ing a supervision signal. The key idea is to use different view points for reasoning about

contradictions and consistencies between multiple depth maps generated with the same

MVS algorithm. This leads to a fully automated training scheme for MVS Confidence

Prediction.

We then use the trained confidence predictor for automating and improving two steps

in the reconstruction process. The first step is the image acquisition itself, where we

propose an iterative image acquisition technique for autonomous drones. The second step

prioritizes the MVS depth map generation process. This means that prior to executing

the MVS algorithm, we select a good set of matching partners for each view and rank

the resulting view clusters (i.e. key views with matching partners) according to their

impact on the reconstruction quality. Both steps can be integrated within the traditional

photogrammetric reconstruction process and can speed up the reconstruction process by

up to a full order of magnitude without losing much information.

All elements of our approach are evaluated on a reoccurring photgrammetric task in

a challenging environment; i.e. the preservation of prehistoric art on open rock surfaces

surrounded by vegetation in the Valley of Valcamonica. Additionally, we evaluate our
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training data generation approach on public two-view stereo datasets with ground truth.

Finally, we evaluate the generalization performance of our MVS Prioritization on the

task of reconstructing single family houses in an environment which was never seen in

training. All experiments show that automated confidence learning can be a substantial

benefit for MVS, leading to compact 3D reconstructions with highly complete content at

a significantly lower computational cost.

Keywords. Multi-View Stereo, MVS Confidence Prediction, Machine Learning, Con-

fidence Measures, MVS Prioritization, Image Clustering, View Cluster Ranking, View

Planning, Active 3D Reconstruction



Kurzfassung

In dieser Arbeit präsentieren wir einen Ansatz um die Qualität und Effizienz

des Multi-View Stereo (MVS) Rekonstruktionsprozesses zu steigern ohne den

MVS-Algorithmus selbst zu verändern. Die Basis unserer Methode ist das Konzept

der MVS-Konfidenzvorhersage, welches uns erlaubt die Chancen einer erfolgreichen

Rekonstruktion abzuschätzen, noch bevor der MVS Algorithmus selbst ausgeführt wird.

Diese Vorhersage erlaubt uns dann aktiv Bildkonstellationen auszuwählen, welche gut

für den verwendeten MVS-Algorithmus, im Bezug auf die gegebene Szene, geeignet

sind. Unter Verwendung dieses Ansatzes, maximiert unsere Methode dann wichtige

Qualitätsparameter, wie Vollständigkeit, Bodenauflösung und 3D Genauigkeit, während

sie gleichzeitig die Anzahl der Bilder, die Rechenzeit und den Speicheraufwand minimiert.

Um diese Vorhersage zu ermöglichen, präsentieren wir eine neue Art des maschinellen

Lernens, welche keine Referenzrekonstruktion oder manuelle Interaktion zur Trainings-

datenbeschaffung benötigt, sondern stattdessen Ideen aus dem Bereich der Tiefenkarten-

fusion als Überwachungssignal verwendet. Die grundlegende Idee unseres Ansatzes ist

es mit Hilfe verschiedener Blickwinkel Übereinstimmungen und Widersprüche zwischen

mehreren Tiefenkarten, welche mit dem selben MVS-Algorithmus generiert wurden, zu

finden und diese für die vollautomatische Trainingsdatengenerierung zu verwenden.

Nach dem Training, verwenden wir den resultierenden Konfidenzprädiktor dann um

zwei Schritte im Rekonstruktionsprozess zu verbessern und zu automatisieren. Der erste

Schritt ist die Bildaufnahme selbst, für die wir einen neuen iterativen Prozess zur Bil-

daufnahme mit autonomen Drohnen vorstellen. Der zweite Schritt ist die Priorisierung

des MVS-Tiefenkartengenerierungsprozesses. Das heißt, dass wir vor der Ausführung des

MVS-Algorithmus für jedes Bild gute Partnerbilder auswählen und die resultierenden Bild-

gruppen dann nach ihrer Bedeutung für die Rekonstruktionsqualität reihen. Beide Schritte

können mit geringem Aufwand in den traditionellen photogrammetrischen Rekonstruk-

tionsprozess integriert werden und haben das Potential diesen Prozess um bis zu einer
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Größenordnung zu beschleunigen, ohne essentielle Information zu verlieren.

Alle Elemente unseres Ansatzes werden mit einer wiederkehrenden photogram-

metrischen Aufgabe in einer herausfordernden Umgebung evaluiert. Diese Aufgabe ist

die Rekonstruktion von prähistorischer Kunst, welche auf offenen Gesteinsformationen

im Valcamonica Tal verewigt wurde und von dichter Vegetation umgeben ist. Zusätzlich

werten wir unseren Ansatz für Trainingsdatengenerierung auf öffentlichen Two-View

Stereo Datensätzen mit Referenztiefenkarten aus. Schlussendlich evaluieren wir

das Generalisierungspotential unserer MVS-Priorisierung bei der Rekonstruktion

von Einfamilienhäusern in einer Umgebung, welche nie im Training gesehen wurde.

Alle Experimente demonstrieren, dass vollautomatisches Konfidenz-Lernen einen

substanziellen Vorteil für MVS bringen kann und für die Generierung von kompakten

und hoch-vollständigen 3D Rekonstruktionen bei signifikant reduziertem Rechenaufwand

verwendet werden kann.
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Chapter 1

Introduction

1.1 Motivation

The process of extracting 3D information from 2D images (aka photogrammetry) has

a long standing history, which goes back to the 19th century [74, 83]. The key idea is

to find correspondences between images and then use the knowledge of the camera

orientation and position at the time of the image acquisition to triangulate the

position of the correspondences in 3D. Nowadays, state-of-the-art photogrammetric

pipelines (e.g. [30, 70, 89, 110, 115]) can generate very accurate and complete 3D

reconstructions from a given set of images – provided that this set of images fulfills

a range of prerequisites.

Some of these prerequisites are innate to the task. I.e. in order to measure 3D

information at a pixel location, the object at this location must be observed from

at least two different view points. Further, the object surface (which we aim to

measure) must be visible to the sensor; i.e. the illumination has to be suitable for

the camera settings (to avoid under or overexposure) and the object should not be

completely transparent or reflective. The last prerequisite is that the object surface

at a pixel location should be sufficiently visually distinct from other surface parts,

so that it is possible to find the corresponding pixel in another image.

Note that for a natural image taken with a physical camera, it is extremely

unlikely that all these basic assumptions (especially the visual distinctiveness) are

fulfilled for all pixels. Therefore, all common photogrammetric pipelines first focus

only on very salient image regions. This first step is called Structure-from-Motion

(SfM) and its main purpose is to determine the relative camera poses (i.e. the
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2 Chapter 1. Introduction

Figure 1.1: Multi-View Stereo (MVS) challenges. We show results for 3 different MVS
approaches (COLMAP [115], LTVRE [70] and PMVS [32]) on two scenes (Botanical Gar-
den and Observatory) of the very recent ETH3D dataset [116]. Note that the Observatory
scene is shown two times, once with a point cloud colored with the input images and
once a zoomed detail of the same point cloud colored with the object height. While all
approaches operate on the same set of images, the results strongly vary as the underlying
assumptions of the MVS approaches differ quite significantly. E.g. in contrast to the
other two approaches, PMVS has a very strong assumption of local planarity and visual
saliency. Consequently, it has extreme problems with high-frequency structures such as
vegetation (top row) and regions with low texture (yellow ellipse middle row), where it
simply fails to produce any output. If we compare COLMAP and LTVRE, we see a trend
that LTVRE is slightly more complete (blue and yellow ellipses), however it also contains
significantly more outliers (ellipses in bottom row). Aside from this trend, it is often very
hard to tell why one approach delivers results in one part of the scene and not in others
(compare cyan and blue ellipses in the top row).

relative position and orientation of the camera at the time when the images were

taken). Commonly, this is achieved by first detecting key points (typically corners

and/or blobs), then computing a descriptor for each key point and finally match-

ing the descriptors between images. The found correspondences are then used to

simultaneously optimize the 3D position of the key points and the relative camera

poses.

After this step, a process called Multi-View Stereo (MVS) uses the (now fixed)

camera poses to recover as much 3D information as possible. Ideally, an MVS

algorithm would measure a 3D value for each pixel in each image. However, as
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(a) Citywall Dataset.

2.5 km 500 m 50 m 

5 m 50 cm 5 cm 

(b) Valley Dataset.

Figure 1.2: Examples of surface reconstruction as a subsequent step to MVS. Both exam-
ples were processed with a scalable state-of-the-art surface reconstruction approach [89].
(a) shows the resulting surface mesh for the Citywall dataset [30], which consists of 564
images of a historical city wall. This results in a point cloud of 300M points with MVE [30]
as MVS algorithm. The top left image shows an overview, where the red circles indicate
the location of the zoomed out details of the other images. In the bottom left image, we
can observe reconstruction problems at the stair case, which are the result of large regions
without any measurements from the MVS algorithm. However, if the MVS algorithm
delivers sufficient supporting points, then the surface reconstruction is able to extract a
very detailed 3D model (images on the right). Note that the image acquisition for this
kind of data only takes around one hour, while the surface reconstruction alone takes a
full day. (b) shows the Valley dataset [89], which consists of a MVS point cloud containing
2 billion points obtained with SURE [108] as MVS algorithm. Turning this point cloud
into a consistently connected mesh takes 9 days using 120GB of RAM on a server with 40
CPU cores. Note that the computational complexity of all surface extraction approaches
is at least linear in the number of input points (i.e. the points generated by the MVS
algorithms). For scalable approaches like [89], this means that a reduction in the point
cloud size directly relates to approximately the same reduction in run-time.

mentioned before, it is highly unlikely that all basic requirements are fulfilled for

each pixel. Consequently, MVS algorithms have to make additional assumptions to

fulfill this challenging task. These assumptions can include a static environment,

local planarity, Labertian (”diffuse”) reflectance properties and/or sufficient visual

saliency. The set of assumptions made the MVS algorithm has direct influence on

its performance. If all assumptions are fulfilled, current MVS approaches are able to

produce highly accurate and complete 3D reconstructions, however, if some of the

assumptions are violated, then the resulting reconstructions very often contain out-

liers and/or undesirable holes. Sometimes the assumptions of an MVS algorithm can

lead to a complete reconstruction failure for certain types of objects (see Figure 1.1).
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Another problem of MVS is its extreme demand for resources (i.e. computation

time and memory). If we look at the current state-of-the-art in MVS, we see that

most approaches (e.g. [35, 45, 108, 115, 142]) aim to produce one depth map for each

image. While this approach has the advantage of being completely scalable, this also

means that an immense amount of data is generated. More specifically, this means

that 3D points in the order of 107 are created per image of a modern camera. With a

few hundred images, this leads to billions of points that have to be stored, visualized

and/or handled by subsequent processing steps such as depth map fusion or surface

reconstruction. In Figure 1.2, we visualize the impact of the immense amount of

generated data for the run-time of the subsequent step of surface reconstruction. For

this subsequent step, the run-time complexity is linear in the number of input points.

This means that if the number of required images is lower, then we do not only save

a lot of computation time and memory in the MVS processing step itself, but also

directly save computation time in the surface reconstruction step. However, this

goal of improved efficiency stands in direct opposition to common photogrammetric

practice, which tries to capture as many images from as many angles as possible (see

e.g. [137]). The main reason for this intentional redundancy is that more images

can only lead to higher completeness, however, very often this leads to unnecessarily

redundant image sets, which only makes the 3D reconstruction process more costly

in each and every step. This motivated us to investigate one big unsolved question in

photogrammetry: What is (un)necessary redundancy for dense 3D reconstruction?

1.2 Contribution

This thesis contains three main contributions, where the last two can be seen as

applications of the first.

Our first contribution deals with the problem of predicting if a MVS reconstruc-

tion will succeed or not. As mentioned before, the reconstruction success depends

on many factors, including the image constellation, the assumptions of the MVS

algorithm, the light conditions, the image exposure and the scene structures them-

selves. Thus, our first contribution is a learning-based confidence prediction frame-

work (published in [91]), which aims to estimate the chances of a successful MVS

reconstruction prior to executing the MVS algorithm itself.

The most notable property of our learning approach (published in [92]) is that it
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does not require any labeled training data or ground truth. Instead we use ideas of

depth map fusion to detect and learn unmodeled errors in the 3D output. The main

motivation behind this approach is that the systematic assumption violations are

not the same from each view point. For example, if there is no visual information

in one part of the image due to overexposure, images from significantly different

view points often do not contain the same problem. Motivated by this observation,

we evaluate different reconstruction subsets against each other and thus generate

training data for a machine learning algorithm. All that our approach requires is a

large set of images, which observe the same scene from many different view points.

The output of our machine learning approach is a pixel-wise confidence predictor,

where the confidence represents the likelihood of a successful 3D reconstruction.

With ”successful” we mean that the produced 3D/depth value at a pixel location

abides with our uncertainty model. We show that the nature of the confidence

function, which we parameterize with the triangulation angle1, depends on the used

algorithm as well as the nature of the 3D structure itself. High-frequency structures,

such as vegetation or fences, result in a very different confidence function than

smooth structures, which are much easier to reconstruct.

The other two contributions of this thesis are two inclusive approaches that aim

to increase the efficiency of the MVS reconstruction process, while at the same time

fulfilling a set of desired quality requirements such as coverage, ground resolution

and 3D accuracy.

The first approach is the automated image acquisition for MVS reconstruction

with high-resolution images at close range (published in [91]). The aim is to acquire

images in such a way that they optimize three competing goals at the same time.

The first goal is that the images are suited for processing with a specific MVS

algorithm. The second goal is that the images maximize the quality requirements

(i.e. coverage, ground resolution and 3D accuracy). And the third goal is that the

acquisition time is as low as possible. For achieving these goals, we loop between

planning and autonomous execution to iteratively explore the scene and improve the

reconstruction quality. Within this procedure, the confidence prediction allows us to

integrate the requirements of an MVS approach with respect to the scene structure,

which leads to an improved reconstruction success without the need of running the

1The triangulation angle is the angle spanned by two cameras and a 3D measurement (see Figure 2.4
for a visual example).
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Figure 1.3: MVS Prioritization as one application of MVS Confidence Prediction. Our
approach allows us to prioritize/rank view clusters (i.e. key views with matching partners)
such that a highly complete and accurate point cloud can be obtained with a very small
fraction of the available images as key views. Here, we show the point clouds from the raw
depth maps of the view clusters (with 11 matching partners) ranked with our approach
after reaching 30%,50%,70% and 80% of the maximal achievable quality fulfillment (i.e.
completeness with respect to a desired ground sampling distance and accuracy of 1cm).
The color of the points is extracted from the images and the blue gradient background
illustrates holes in the reconstruction. Already with 50% fulfillment and only 22 view
clusters / key views (i.e. 1.8% of the potential key views), most parts of this complex
scene are already contained in the reconstruction (red ellipse) and only a small part is
missing (yellow ellipse). With 70% fulfillment, even strongly occluded parts such as tree
trunks (see ellipses) are contained in the point cloud, although this point cloud is computed
from only 62 key views (i.e. 5% of the potential key views). For going from 70% to 80%
fulfillment, the number of necessary key views already has to be more than doubled,
however, the visual difference between those two point clouds is nearly imperceptible (see
Video [87]).

costly MVS approach during acquisition. This approach can be used stand-alone to

reduce the number of required images or in conjunction with traditional acquisition

methods such as grid planning to increase the scene coverage at low cost.

The second approach (published in [88]) assumes that the image set is fixed

(i.e. the acquisition is completed and no further images can be acquired) and aims

to reduce the run-time of MVS as well as the size of the resulting point cloud by
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exploiting the fact that, in most cases, the set of images is highly redundant.

Our approach, which we call MVS Prioritization, works in two steps. First, we

find a good set of matching partners (i.e. images used for matching/depth inference)

for each image in the image set, such that a specific MVS algorithm has a high chance

of generating a complete and accurate depth map for these images. In this first step,

all images are considered as the central images for depth map generation (further

called key views), which results in a set of view clusters, where each image acts as

the key view for exactly one view cluster, while it can also be part of other view

clusters as matching partner.

In the second step, the resulting view clusters are then prioritized/ranked de-

pending on their impact on the quality requirements. As we formulate the quality

requirements as a monotone submodular function, we are able to obtain strong opti-

mality guarantees for a solution found with a greedy algorithm [94]. The confidence

prediction supports both steps and allows us to rank all view clusters with an esti-

mate of the expected quality fulfillment (i.e. completeness with respect to a desired

resolution and accuracy) for each entry – without having to execute the actual MVS

algorithm within the ranking procedure.

This formulation has many advantages. First of all, the computed quality ful-

fillment function provides the opportunity to decide how many view clusters are

necessary to obtain a certain quality fulfillment level with respect to a maximal

achievable quality (i.e. the quality obtained with all available view clusters). Thus,

the operator can either choose to reconstruct the n best view clusters and has an

estimation of the expected level of quality fulfillment or can simply query how large

n should be to reach a certain level. The second advantage is that the inherent

parallelism of MVS based on depth maps is maintained as our ranking procedure

happens before executing the MVS reconstruction step. Third, the overall efficiency

of the MVS reconstruction step can be significantly improved without changing the

MVS algorithm itself. In our experiments, we were thus able to obtain a quality

fulfillment of 70% with only 5% of the available key views. This leads to a speed

up factor of approximately 10 and a complexity/memory reduction factor of ap-

proximately 20 for the resulting point cloud without losing much information (see

Figure 1.3).





Chapter 2

Related Work

In this thesis, we aim to improve dense 3D reconstruction from 2D images. Thus, we

start our related work chapter with reviewing the basics of this field in Section 2.1.

If you are already familiar with the pinhole camera model, epipolar geometry and

structure-from-motion, then you can directly start with the next section (i.e. Sec-

tion 2.2), which reviews the current state-of-the-art in Multi-View Stereo (MVS)

and works out the most common assumptions made by current MVS approaches

and their implications.

These implications then directly lead us to Section 2.3, which reviews works

related to our first contribution, i.e. MVS Confidence Prediction. The goal of MVS

Confidence Prediction is to predict the chances of a successful MVS reconstruction

before the actual MVS algorithm is executed. To make this prediction possible,

we have to answer two questions. First, how can we model the prediction (which

is related to the field of confidence measures), and second, what supervision signal

can we use to learn this prediction in an automated and scalable fashion (which is

related to the field of alternative machine learning supervision).

In Section 2.4, we then come to a field of research called view planning. This

field is related to both our other contributions. For our second contribution (i.e.

automated image acquisition), view planning plays an essential role as we have to

actively decide, where, in which constellation and order further images should be

acquired. For our third contribution (i.e. MVS Prioritization), where we aim to

improve the efficiency of MVS by ranking view clusters (i.e. images with matching

partners), the underlying problem still remains closely related to view planning, with

the difference that the image set is fixed and no further images can be acquired.

9
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The second field, which plays an important role for MVS Prioritization, is the

field of matching partner selection, which we review in Section 2.5. Finally, we

close this chapter by summarizing the highlights of the reviewed related work in

Section 2.6.

2.1 3D Reconstruction from 2D Images - Basics and Nota-

tion

3D reconstruction from 2D images starts, as the name suggests, with 2D images

captured with a ”normal” digital camera. The basic projective nature of such a

camera is typically modeled with an idealized pinhole camera (see Figure 2.1). In a

pinhole camera, all rays of light are completely straight and go from all directions

within the field of view of the camera through the ”pinhole” (i.e. a point open-

ing of infinitesimal size) and project onto an ideal sensor plane, which can record

the intensity and wave length of all light that projects onto the sensor within an

infinitesimal small time frame.

Pinhole Model versus Real Digital Camera. At this point, we would like to

make the reader aware that the pinhole camera model can be a useful instrument

of abstraction, but that a real digital camera is a much more complex system with

many physical constraints and imperfections. First of all, a real digital camera has

a physical lens system, which does not let all incoming light through on a straight

path, but bends the light in a non-linear way, which slightly differs for various wave

lengths (this effect is called chromatic aberration). Even worse, the lens system

partially absorbs the incoming light and this absorption typically increases with

the distance from the optical axis1 (this effect is known as vignetting). Further,

the light rays pass through an aperture (i.e. the physical counterpart to an ideal

pinhole) with a non-negligible size. This means that, while an ideal pinhole camera

sees everything sharp, a real camera only sees sharp in a certain range (aka depth

of field) around the plane of focus. After the light passed the lens system, it falls

onto a digital sensor, which discretizes the image into pixels. This means that all

light rays that fall onto the area of the pixel (which has a physical size) are grouped

1The optical axis is the one virtual light path through the center of the lens system which stays
completely straight
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c

f

(a) Idea of Pinhole Camera.

c

f

(b) Visualization of Pinhole Camera.

Figure 2.1: Pinhole Camera Model. In (a), we visualize the basic idea of the pinhole
camera, which is a simple box, where light can only enter through an infinitesimal small
hole (i.e. the pinhole/optical center/camera center, denoted as c). At the back of the box,
there is the image plane (physically represented by a film or sensor), which records the
light passing through the pinhole. Due to the pinhole, all light can be represented by light
rays (red lines), which all follow a straight path from the scene through the pinhole to
the image plane. The focal length f (i.e. the distance of the image plane to the camera
center) defines how large the projection is on the sensor/image plane. In (b), we show a
second type of visualizing a pinhole camera, which places the image plane in front of the
camera center. While not physically sound (as it represents an outward projection and
not an inward projection), this type of representation has the advantage that the image is
not rotated, which makes it easier to interpret what is happening. Consequently, nearly
all works (this work included) use this representation for visualizing the pose of a pinhole
camera.

into a single value, which is then quantized into a certain number of bits (typically

8 to 16). Further, the light in one pixel is integrated over a non-negligible period of

time (aka exposure time or shutter speed), which might introduce blur effects (aka

motion blur) if the camera moves during this period of time. Aside from this, there

are many, many more physical limitations and imperfections related to a real sensor

(e.g. sensitivity, linearity or noise), of which the most important are summarized

and modeled in the EMVA Standard 1288 [24].

Using the Pinhole Model. Now that we have established that a real digital cam-

era is far from an ideal pinhole camera, it is worth mentioning that nearly all pho-

togrammetric pipelines have something very close to a pinhole camera in their core

due to its simplicity and linearity. The main reason why this works is that many

of the real world effects of the camera system can be removed or at least mitigated
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through calibration.

Intrinsic Camera Calibration. For 3D reconstruction, the most important type

of the calibration is the intrinsic (geometric) calibration of the camera. This type of

calibration aims to determine the direction of each pixel ray. Note that a pixel ray is

an idealized ray going through the virtual optical center of the camera and the center

of the pixel. In the real world, a pixel ray would correspond to something close to

a cone, where the base shape of this cone would be close to a quadrilateral, but

this base shape would vary slightly for each pixel depending on the lens distortion.

However, for the purpose of calibration the notion of a pixel ray is sufficient as most

calibration methods will try to fit some kind of global distortion model for the whole

image. There exist many of such distortion models, of which many can achieve sub-

pixel accuracy with a suitable calibration method (see [128] for a recent analysis on

distortion models).

After the geometric calibration, the orientation of each pixel ray is known (with

some uncertainty) with respect to a camera coordinate system, where the origin is

in the virtual optical center (also called camera center). In theory, the orientation

of the axes of this coordinate system can be placed arbitrarily, however, the x- and

y-axis are typically aligned close to parallel with the sensor axes and the z-axis with

the optical axis. The camera distortion model, now allows us to warp the original

image into the camera coordinate system of a virtual pinhole camera (this process

is called ”undistortion”).

After the undistortion, the undistorted image can be treated as if it were captured

with the virtual pinhole camera. The intrinsic calibration of this virtual pinhole

camera can be described by a matrix K:

K =

 f 0 cx

0 f cy

0 0 1

 , (2.1)

where f is the focal length (which represents the distance of the image plane to the

camera center in pixel), and Pc = (cx, cy) is the principle point (i.e. the point where

the z-axis (or optical axis) intersects the image plane in pixel coordinates). Note

that there are more complex representations of K (see e.g. [50] Section 6.1), but for
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most applications this representation of the virtual pinhole camera is sufficient, also

because the undistortion process can be used to warp the image such that it fits this

simple model.

Extrinsic Calibration. If we have a camera setup with multiple rigidly connected

cameras, then it is possible to calibrate their relative pose (i.e. relative position

and orientation) to each other. An important point in this extrinsic calibration

process is that some scene structure (e.g. the size of a checkerboard) has to be

known metrically, as otherwise the relative pose between the cameras can only be

determined up to an unknown scale factor. A camera pose has 6 degrees of freedom.

The rotation is most of the time represented as a 3 × 3 rotation matrix R with 3

degrees of freedom and the position of the optical center as 3 × 1 vector c with 3

degrees of freedom. Rotation and position make up the ”extrinsic” calibration of a

camera to a common coordinate frame (which can be chosen arbitrarily). Together

with the intrinsic calibration, this lets us define the 3× 4 projection matrix P of a

camera:

P = K · [R|t], (2.2)

where t is often referred to as the translation vector and is defined as t = −R · c.

This projection matrix now allows us to project a 3D point x3D into the pinhole

camera. The corresponding projected point x2D can then be found by using homo-

geneous coordinates and matrix multiplication as:

X2D = P ·X3D, (2.3)

where X3D = [x3D
T |1]T is the homogeneous 3D point and X2D is the homogeneous

projected point in image coordinates of the undistorted image with:

x2D = X2D(1 : 2)/X2D(3). (2.4)

For monocular 3D reconstruction, where only one camera is used to take images

from multiple view points, the extrinsic calibration cannot be precomputed in ad-

vance and instead is part of an optimization process called Structure-from-Motion,

however, the basic camera model and notation stays the same.
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Figure 2.2: Epipolar Geometry. We show two pinhole cameras with associated camera
centers cl and cr. Here, we aim to find the correspondence for the key point xl in the right
image. For this point, the epipolar geometry (i.e. the relative pose of the two pinhole
cameras) defines an epipolar line in the right image (red line), on which the corresponding
point xr has to lie. This means that, purely geometrically, all points along the epipolar

line could be correct correspondences (see x
(i)
r with i = 1, 2, 3)). This ambiguity has to

be resolved through visual correspondences (in the case of keypoints, this is achieved by
descriptor matching) to find the unknown 3D position x3D corresponding to the object
surface point projecting to the image location xl.

Structure-from-Motion (SfM). The main purpose of SfM is to determine the

relative camera poses. With the term ”camera pose”, we refer to the pose of the

virtual pinhole camera at the time that an image was taken in a common coordinate

system. I.e. each (undistorted) image is associated with a virtual pinhole camera

(further simply referred to as ”camera”) with its intrinsic calibration and pose.

To estimate the camera poses, all common SfM pipelines start with detecting

salient points (aka key points). A key point is typically a structure, which can be

well-localized in the image (e.g. a corner or a blob). Then the region around a key

point is described in a discriminative and dimensionality reducing way, such that key

points originating from the same 3D structure (but from different images) should

have very similar descriptors, while key points from different structures should have
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more dissimilar descriptors. As a key point with descriptor is also referred to as

”feature”, the corresponding process is often referred to as ”feature extraction”.

The most popular feature extraction approaches are SIFT [76] and SURF [8], both

with their own detector and descriptor.

After the feature extraction, the features are matched between images by com-

paring the descriptors, which results in a set of potential correspondences. As this

set will contain many wrong matches (i.e. outliers), they are robustly verified with

the correspondence condition of epipolar geometry [50] within a RANSAC [28] pro-

cedure. The correspondence condition is essential for 3D reconstruction algorithms

and is defined as follows:

X1
T · F ·X2 = 0, (2.5)

where F is the fundamental matrix and X1 and X2 are arbitrary corresponding ho-

mogeneous 2D points in two images. The fundamental matrix is a 3×3 matrix with

7 degrees of freedom, which is defined through the relative pose of two calibrated

cameras (see Section 9.2 in [50] for more details). The meaning of this correspon-

dence condition is that if X1 is a valid correspondence of X2, then X1 has to lie on

the epipolar line l1 defined through X2 and the fundamental matrix as l1 = F ·X2

(and vice versa). Note that this also means that once the poses of the calibrated

cameras are known, the search for a corresponding point reduces to a search along

the epipolar line, which we visualize in Figure 2.2.

After the fundamental matrix is found for each pair of cameras, the 3D recon-

struction and pose estimation process can start. This can be achieved incrementally,

camera by camera, (see e.g. [30, 110, 114]) or globally for all cameras jointly (see e.g.

[18, 127]). The main idea of the more common incremental SfM is to fix one camera

and estimate the relative pose to a second camera with a suitable algorithm (e.g.

5-point algorithm [95]). Then the correspondences are triangulated in 3D, leading to

a sparse point cloud. After this initialization, new cameras are incrementally added

to the reconstruction by verifying the previously found correspondences with the

existing sparse reconstruction (e.g. with the perspective-3-point algorithm [38] in a

RANSAC [28] loop). When a new camera is added, all features with correspondences

to already integrated cameras are either added to the feature track of existing 3D

points or are used for triangulating new 3D points. This whole process is supported

by a non-linear optimization called bundle-adjustment [50]. This optimization tries
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Figure 2.3: 3D reconstruction example. The top row shows the three input images, which
are used for a fully automated 3D reconstruction. In a first step, a process called Structure-
from-Motion (SfM) estimates the camera poses and a sparse reconstruction of salient scene
points (bottom left). Then in a second step, a process called Multi-View Stereo (MVS)
uses the SfM camera poses to extract 3D information for as many pixels as possible.
Whether or not an MVS algorithm succeeds in this task depends on many parameters,
including the scene structure, the image constellation and the assumptions made by the
MVS algorithm. In the bottom, we visualize the output of two different MVS algorithms.
Note that for this example, SURE [108] produces a much more complete reconstruction
than PMVS [32], although both MVS algorithms use the exact same images. While both
approaches deliver good results for planar surfaces (rock surface and short grass), PMVS
has problems in regions with low texture (yellow ellipse) and high frequency structures
such as trees (red ellipse), which leads to many missing parts in the reconstruction.

to minimize the reprojection error (i.e. the distance between feature measurements

and the projection of the corresponding 3D point) by jointly optimizing the cam-

era poses and the 3D points. Bundle-adjustment is a very important part of all

SfM pipelines and can also be used to refine and correct the camera distortion (see

e.g. [110]), however, like all non-linear optimization techniques, it strongly depends

on a good initialization.

The main output of SfM for our purposes are the camera poses. In this sense,

SfM can be seen as method for the extrinsic calibration of all (virtual) cameras. Like

for other extrinsic calibrations, the relative camera poses can only be determined up

to an unknown scale factor. If a metric or geo-referenced reconstruction is desired,

then additional external metric information has to be provided ( e.g. through ground

control points [110]). Additional to the camera poses, SfM also delivers a sparse
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point cloud, however, for most purposes this point cloud is not dense enough and

even for a human observer it is often very hard to interpret these point clouds (see

Figure 2.3). This problem is solved by a subsequent processing step, called Multi-

View Stereo (MVS). However, before we review the current state-of-the-art in MVS,

we have to discuss one last highly relevant topic, i.e. the modeling of 3D uncertainty.

Modeling 3D Uncertainty. As photogrammetry aims to measure 3D structures,

it is important to have an estimate of expected error of a 3D measurement (aka 3D

uncertainty or 3D accuracy). Such an estimation is typically obtained by modeling

the uncertainty distribution.

In this work, we use the uncertainty model proposed in [49]. This model has three

main assumptions. The first assumption is that the noise of the camera parameters

is small compared to the noise of the 3D points. The second assumption is that we

have a good estimate for the expected 2D uncertainty. The third assumption is that

the uncertainty distribution of a 3D point can be approximated with a Gaussian 3D

distribution.

Under these assumptions, we can use first order covariance propagation to prop-

agate the assumed 2D uncertainty to 3D and thus estimate the 3D uncertainty

distribution (represented by a covariance matrix) for each 3D point [50]. As point

of linearization, we use the estimated 3D point x3D and obtain the corresponding

covariance matrix as:

Cov3D =

 ∑
Ci∈Ck

JTi · Cov−1
2D · Ji

−1

, (2.6)

where Ji is the 2 × 3 Jacobian of the projection function (Equation 2.4) of camera

Ci in the 3D point x3D, Ck is the set of k cameras that observe x3D and Cov2D is

the assumed 2D covariance (i.e. the image noise).

Note that there are many other approaches available for modeling the 3D un-

certainty, where some also represent the pose estimation uncertainty (e.g. [84]) and

others use a different parameterization (e.g. [16, 22, 36]), however, for our task the

model presented above works sufficiently well.

One of the properties that all these models (including the model used in this

work) share is that the 3D uncertainty strongly depends on the triangulation angle.
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Figure 2.4: Triangulation Angle Trade-off. This example illustrates an intrinsic problem
of 3D reconstruction from 2D images in relation to the triangulation angle α. The goal in
this example is to estimate the 3D position of the point marked in cyan. If we assume that
a correspondence can be located in image space with a known uncertainty, this induces
an uncertainty cone in 3D (shown in light cyan). If we now assume that a correspondence
between 2 images can be correctly found, then a large triangulation angle (b) leads to
a lower 3D uncertainty, than a small triangulation angle (a). However in practice, it is
more likely to find a correct correspondence for images with a similar view point (blue
and orange image) than for images with dissimilar view points (blue and green image).

This basic property stems from the projective nature of a camera and the epipolar

geometry. In order to infer 3D information, the camera has to observe the same scene

from different view points. If we assume that a correspondence/2D measurement

can be localized with a specific uncertainty distribution in image space (e.g. a 2D

Gaussian), then each 2D measurement induces cone-like distribution in 3D. If we

now intersect two such distributions in 3D, then the overlapping volume (which is

related to the 3D uncertainty) becomes smaller if the triangulation angle becomes

larger. We visualize this property in the bottom row of Figure 2.4. This property can

be seen as a direct opponent to feature matching. While the 3D uncertainty declines

with increasing triangulation angle, the resulting view point change also makes the

feature matching (i.e. finding correspondences) increasingly more difficult. For this
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work, the knowledge of this triangulation trade-off is very important, as we want

to concurrently minimize the 3D uncertainty and maximize the number of correct

correspondences. However, let us first define the main task of this work, i.e. Multi-

View Stereo.

2.2 Multi-View Stereo

Given a set of images with known intrinsic and extrinsic calibration, the goal of

Multi-View Stereo (MVS) is to densely extract accurate 3D information for as many

pixels as possible. To achieve this goal, all MVS algorithms use some kind of simi-

larity measure (e.g. Census Transform [141] or Normalized Cross Correlation) with

some optimization strategy. However, there are several issues that make the MVS

optimization very challenging.

First of all, the search space is very large. For each pixel in an image the

corresponding pixel in another image can lie along the epipolar line. This means

that the number of times, which a brute force approach would have to evaluate the

similarity measure, is in the order of O(s3 · n2), where s is the average image side

length and n is the number of images in the dataset (this assumes that the average

epipolar line length is directly related to image dimensions and that the similarity

measure is evaluated with a constant step size in pixels along the epipolar line). For

medium sized MVS datasets (such as the Citywall dataset [30], this would mean in

the order of 1016 similarity score evaluations (with 40003 · 5002 = 1.6 · 1016), which

would require many petabytes of data just to store the resulting scores.

The next problem is that, on the one hand, it is desirable to use all available visual

information in the image, on the other hand, MVS algorithms have to be robust to

various degrees of image noise and illumination changes. As a consequence, there

will be many local optima along the epipolar line and the global optimum along the

epipolar line does not necessarily represent a correct correspondence. This whole

process is further complicated by the fact that there is a significant number of pixels,

where no correspondence to another image can be found, as the corresponding scene

part is not visible in the other image due to an occlusion. However, prior to the

MVS reconstruction, it is unknown which scene parts are occluded in each image.

To solve this task despite these challenges, many approaches have been proposed,

each with its own set of assumptions, where each assumption has a direct influence
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on the reconstruction performance in certain environments and conditions. In the

following, we review the most relevant MVS approaches and work out the main

underlying assumptions.

One approach to MVS is to directly densify the sparse SfM point cloud. This

approach is used by PMVS [32] and MVE [30]. The idea is to use the sparse point

cloud as seed points for an MVS region growing process. I.e. Starting with the depth

value of a sparse 3D point (i.e. a feature point projected into a specific image) a local

optimization tries to fit a planar patch to this point, yielding an improved depth

estimate and a surface normal. Depth and surface normal are then propagated to the

neighboring pixels, where they are optimized once more. Within the optimization,

great care has to be taken that views, where the current scene part is not visible

due to occlusions, do not have a negative influence on the optimization.

The underlying assumptions of this approach are the following. First, it assumes

that all scene parts can be reached along a smooth surface from at least one sparse

3D point. Second, it assumes that the scene surface is sufficiently salient to allow

a stable local optimization. Third, it assumes the region within the optimization

window (MVE uses a 5× 5 and PMVS a 7× 7 pixel window) can be approximated

with a plane. Fourth, it assumes the occlusions can be identified by bad similarity

scores (as a similarity measure, MVE uses the Sum of Squared Difference (SSD) with

an estimated scaling factor and PMVS the Normalized Cross Correlation (NCC)).

Note that this directly assumes that all surfaces have Lambertian surface properties

and that specular highlights are rejected as outliers.

Another popular MVS approach is PatchMatch (e.g. [35, 115, 142]), which

also uses the idea of local patch probagation, but does not use the sparse points

as initialization. PatchMatch was first presented for structural image editing [7]

and then for two-view stereo [11]. The basic idea of PatchMatch is to initialize

each pixel with a random surface patch (i.e. a random depth value with random

orientation). Then the algorithm sweeps across the image (e.g. [11] sweeps from the

top left corner in row-major order to the bottom right corner and then in the reverse

direction), and checks if propagating the current patch to the neighbor improves the

similarity score. After the probagation the patch is locally optimized by iteratively

adding random noise to the patch parameters and checking if the score improves.

The currently best performing PatchMatch approach is COLMAP [115]. This

approach is highly engineered and contains a large range of heuristics and carefully
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chosen parameters to make the optimization process more robust (each one with its

own assumption). Thus, we only focus on the most prominent assumptions.

First, the use of local planar patches and the local probagation induces a local

planarity assumption and typically requires quite large patches (e.g. [142] uses 15×15

pixels, COLMAP 11 × 11) for a stable optimization. This leads to a very strong

planarity assumption, which COLMAP mitigates by using a bilaterally weighted

NCC as a similarity score. This means that pixels farther from the patch center and

pixels with a significantly different color from the center pixel do not have so much

influence on the similarity score. The second assumption is that the scene surface is

sufficiently salient to allow a stable local optimization. Third, there is an assumption

about the expected scene depth range to constrain the random initialization. This

range is typically set with the help of the sparse point cloud. Fourth, COLMAP

contains a weak assumption that occlusions can be detected by a bad similarity

score. In the optimization, COLMAP does not explicitly detect occlusions and

rejects them, however, it guides the view selection process for a given pixel such

that dissimilar patches are less likely to be contained in the optimization process.

Note that COLMAP produces very accurate and complete results, however, for

reaching this performance it requires a lot of memory and computation time. In the

paper, they always load as many images as fit into their 48GB GPU memory (i.e.

4× Nvidia Titan X) and the generation of a single depth map still takes 70s with

this powerful setup.

Another approach to MVS is Space-Sweep [17] (aka Plane-Sweep). Plane-Sweep

discretizes the search space by sampling planes in 3D, which allows this approach

to sweep through the 3D space and compute the similarity measure for each plane

and image pair. The standard version uses only fronto-parallel planes, however, also

slanted planes are possible [37]. The biggest problem of this approach is the plane

sampling. If many planes are sampled, the problem soon becomes computationally

intractable (especially if multiple plane rotations are considered), however, if too

few planes are sampled, most scene parts are not well represented. Thus, Gallup et

al. [37] try to recover good sweeping directions by finding dominant perpendicular

structures in the sparse point cloud. This works well in human-made environments,

where walls are typically perpendicular to the ground and perpendicular to each

other, but can lead to problems in other environments. The final depth is typically

extracted with a winner-takes-all strategy [37, 48, 51, 53, 63] over the sweeping
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space.

Plane-sweep has many assumptions. First, it has a strong planarity assumption.

Second, it assumes that the sampled planes have a similar orientation to the object

surface. The impact of these two assumptions on the reconstruction performance

depends on the used patch size and is thus stronger for some approaches (e.g. [51]

uses 32× 32 patches) than for others (e.g. [63] uses 5× 5 patches). The drawback of

very small patches (especially in conjunction with a winner-takes-all strategy) is a

very high outlier rate or, if they are removed, a low completeness. This is also related

to a strong local saliency assumption made by the winner-takes-all strategy. Thus,

Plane-Sweep is typically used in conjunction with a very outlier robust, global surface

extraction method [53, 63] as post-processing step to remove the remaining outliers

and fill in gaps in the reconstruction. Despite this expensive post-processing step,

this kind of approach (represented through CMPMVS [62]) does not reach state-of-

the-art performance on challenging datasets such as the ETH3D dataset [116].

The only MVS approaches, which are currently rivaling the performance of

COLMAP, are based on Semi-Global Matching (SGM) [54] (further referred to as

SGM-MVS). Note that SGM is actually a two-view stereo method. In the field of

two-view stereo, it is one of the most dominant approaches, because it delivers very

accurate and complete results in a very efficient way.

The key idea of SGM is to accumulate matching costs along scan lines in different

directions. The matching cost depends on the similarity score and depth changes

along the scan line (i.e. staying on the same depth does not incur additional costs,

while changing the depth does and strong changes incur more costs than small

changes). Two very prominent MVS approaches are based on SGM, i.e. SURE [108],

which is a state-of-the-art commercial photogrammetric software, and LTVRE [70],

which is a closed source implementation that was already evaluated on the ETH3D

benchmark [116], where it slightly outperforms COLMAP.

LTVRE [70] uses the original SGM (with hierarchical mutual information [54] as

similarity score) to generate depth maps and then fuses the output in 3D using an

octree structure. SURE [108], on the other hand, uses a slightly different version of

SGM (with Census Transform [141] as similarity measure) on multiple scale levels

for increased efficiency. Further, SURE fuses the SGM depth maps in the camera

coordinate system of each undistorted image. Note that the individual SGM depth

maps are not computed in the coordinate system of the undistorted image, but in
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the coordinate system of the rectified stereo images, which is different for each pair of

images (as the cameras are rotated such that the epipolar lines correspond to the x-

axis of the images). However, the fusion in the coordinate system of the undistorted

image allows SURE to remove outliers and improve the accuracy of the geometry

without having a full 3D representation at this stage (which is more efficient than

the octree fusion of LTVRE).

The assumptions made by SGM-MVS are the following. First, SGM-MVS has

a local planarity assumption, as it uses patches for computing the similarity scores.

Second, SGM-MVS has a strong bias towards fronto-parallel planes in the coordinate

system of the rectified stereo images. This bias is contained in the similarity score

computation and the SGM regularization (where staying on the same depth level

does not incur additional costs). Third, the SGM regularization leads to a strongly

planarity assumption for weakly textured regions. I.e. if a region does not contain

a lot of visual information SGM tends to fit a plane in between points with more

visual information. On the one hand, this means that sometimes a plane is fit

inappropriately, on the other hand, this means that the local saliency assumption is

not as strong as in other approaches, which leads to a higher completeness in many

scenarios.

Summary of MVS Assumptions. In the following, we summarize the most im-

portant assumptions shared by all previously mentioned MVS approaches. First,

all of them share a local planarity assumption. This assumption reflects in the use

of image patches for the similarity score computation as well as in the schemes for

depth value probagation and regularization. Second, all of them have an assumption

of sufficient local saliency in their optimization schemes. Third, all of them have

an assumption that most surfaces have Lambertian reflection properties and no ap-

proach has an explicit model for reflective or partially transparent surfaces. Fourth,

all of them contain the implicit assumption that all relevant parts of the scene are

completely static. This assumption is deeply rooted in MVS through the use of one

single camera pose for each image. For reconstructing dynamic objects, multiple

camera poses (one for each moving object) would be required to use epipolar geom-

etry for structure inference (see e.g. the work of Ranftl et al. [105] for monocular

video sequences).
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Implications. While these assumptions work well for most scene structures, all of

these assumptions can (and are) violated in real world environments, which leads

to outliers or holes in the 3D reconstruction (see Figure 1.1). The exact point when

such a failure occurs is not simply described and depends on many factors.

Let us explain this difficulty using the example of the local saliency assumption.

While local saliency is very important, the moment when the saliency of region is

too low is not clearly defined. On the one hand, you can have an object without any

image gradient, which would correspond to no local visual information on the whole

object surface. However, if this object occludes a scene structure to which it strongly

contrasts, the location of the occluding object can be very well-localized. On the

other hand, there can be image regions with a very strong image gradient, which

would typically indicate a lot of visual information. However, this strong gradient

might correspond to image noise (e.g. a lens flare) or could be caused by very thin

structures. Thin structures are typically problematic for MVS algorithms as the local

planarity assumption is violated. However, if the background behind the thin object

stays similar, the similarity score will still spike at the correct correspondence. If the

MVS algorithm can then actually interpret this spike correctly strongly depends on

the inner workings of the MVS algorithm with all its assumptions and parameters.

E.g. a simple change in the regularization strength might make one object visible

in one part of the scene, but cause a lot of wrong matches in other parts.

This motivated us to develop a framework, which allows us to learn and predict

this kind of failures for specific MVS algorithms (with fixed parameters) with respect

to all present scene structures in specific environments. We call this prediction

process Multi-View Stereo Confidence Prediction.

2.3 Multi-View Stereo Confidence Prediction

In this work, we introduce a new concept, which we call Multi-View Stereo (MVS)

confidence prediction and we define its goal as:

Definition 2.3.1. Given a coarse scene reconstruction and a 2D image, the goal of

MVS Confidence Prediction is to predict the chances of a successful depth estimation

with a specific MVS algorithm and a specific camera constellation for each pixel of

the image before the MVS algorithm is executed.
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To the best of our knowledge, we are the first to attempt such a confidence

prediction task for MVS. However, there exists a great deal of work in the field of

two-view stereo vision, which aims to separate correct depth measurements from in-

correct ones for an already computed depth map. These works fall under the concept

of two-view stereo confidence measures, which we review in the next paragraphs.

Confidence Measures. Confidence measures have been around in the field of two-

view stereo for more than a decade. For a given depth hypothesis at a certain

pixel location, a confidence measure estimates the likelihood of the depth hypothesis

being correct. A confidence measure is typically computed using image intensities,

disparity values and/or matching costs. Early works in this field are purely hand-

crafted and surveys about these traditional confidence measures can be found in [20,

21, 60]. In the simplest way a confidence measure can be used to remove very likely

wrong measurements from the depth map. This process is called sparsification. The

most common way for sparsification without training is the left-right consistency

check [60], which can be seen as a binary confidence measure. While this check

already detects many outliers, it cannot detect errors caused by a systematic problem

of an approach (e.g. foreground fattening).

With the increasing success of machine learning, also confidence measures started

to benefit from this trend. Haeusler et al. [46] showed that ensemble learning of

many different hand-crafted confidence measures with random decision forests (RF)

can significantly improve the sparsification performance. Note that confidence mea-

sures are also learned in similar fashion in the domain of optical flow, e.g. [41, 77].

Spyropoulos et al. [125] used a RF-based confidence measure as a soft-constraint

in a Markov random field to improve the stereo output. In the work of Park and

Yoon [97], a RF-based confidence measure is used to modulate the matching cost of a

semi-global matcher (SGM) [54] and thus increase its performance. Poggi and Mat-

toccia [101] integrated a RF-based confidence measure in the SGM cost aggregation

to reduce streaking artifacts and the memory footprint.

More recent works then shifted from random forests to more powerful convolu-

tional neural networks (CNNs). Thus, Poggi and Mattoccia [102] propose a purely

CNN-based confidence measure with the raw disparity map as input, whereas Seki

and Pollefeys [120] propose a CNN-based confidence measure with two channel in-

put (i.e. disparity patches of left and right image). In [103], Poggi and Mattoccia
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show that the performance of confidence measures (traditional and machine learn-

ing based) can be further boosted by training a CNN on top of the confidence

output of another confidence measure to enforce local consistency. That local con-

sistency plays an important role for confidence measures was also observed by Kim

et al. [68], who boost the performance of RF-based confidence measures by using

super-pixels. In the very recent work [104], Poggi et al. present a quantitative

evaluation of 52 state-of-the-art confidence measures. This evaluation shows that

learning based approaches consistently outperform hand-crafted confidence mea-

sures and that CNN-based approaches lead to a better performance than RF-based

approaches – provided that they have sufficient training data. And here lies one of

the big problems of learning based confidence measures, as the necessary training

data is very hard and costly to obtain.

Training Data Generation for Confidence Measures. Previous approaches used

three main sources of training data. The first source is manual labeling. While this

is the traditional approach in the fields of classification and segmentation (e.g. [25,

123, 131]), it requires hundreds of man-hours even in 2D. Because the task becomes

even more taxing in 3D, only very few manually labeled datasets exist in this domain

(e.g. [72]). The second source is synthetic data generation [13, 15, 79, 99]. While this

kind of data shows great potential for initializing the weights of a CNN, fine tuning

these weights with real data leads to a significant improvement in performance [79,

130]. The third source is to record ground truth data with active depth sensors,

which is currently the most popular source [42, 81, 112, 117, 126]. If a projector

based setup is used [112], the ground truth can achieve a very high accuracy, but

the data acquisition takes a lot of time and is restricted to indoor scenes. For

outdoor scenes the method of choice is typically the use of a laser scanner [42,

81, 117, 126]. Aside from requiring a non-trivial registration between the laser

reconstruction and the recorded images, this method is also subject to a range of

assumptions itself. This fact makes a manual removal of obviously incorrect ground

truth data necessary for outdoor datasets [42, 81, 117]. Some approaches, like [81],

combine these three sources. They combine active sensing with synthetic car models

and manual annotation to increase the quality of ground truth data.

None of these methods shows good scaling properties in the sense of required

man-hours per training data. Thus, we present a novel way [92] to generate training
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data for confidence measures by means of self-supervision.

While ours was the first work on self-supervision for confidence measures, re-

cently Tosi et al. [132] presented an alternative approach. The main idea of their

work is to use a set of carefully selected hand-crafted confidence measures for train-

ing data generation. If at a certain pixel location all traditional measures agree that

a measurement is correct or incorrect, then this pixel is used for training (either as

positive or a negative sample). One drawback of this approach is that it strongly

biases the samples towards the hand-crafted confidence measures. The main advan-

tage of this approach over ours is that it only uses a single stereo pair and can thus

handle static and dynamic scene parts equally. While this is a great advantage for

dynamic scene parts, it also prevents the approach from using multiple view points

for obtaining additional information about static scene parts to uncover system-

atic problems of a stereo algorithm. E.g. if a stereo algorithm consistently fattens

foreground objects, then a single view point is insufficient to uncover this problem,

while multi-view consistency has the potential to detect this problem if the camera

motion is favorable. Another drawback of this method, with respect to MVS, is that

it requires access to the cost volume. However, a huge bulk of MVS methods do

not have an explicit cost volume (e.g. [32, 35, 45, 115, 142]), which precludes this

approach from being used for MVS Confidence Prediction.

Supervision for Sparse Feature Matching. Aside from stereo vision, there exist

some works that deal with learning the matchability of features. Some of these

works [12, 47, 134] use ground truth data collected by [12]. To generate the ground

truth data they use the multi-view stereo reconstruction algorithm provided by

Goesele et al. [45] and trust this approach to be accurate enough. The problem

with applying this approach to dense stereo is that a learning algorithm will try to

tune its output to reproduce any systematic error made by [45]. Philbin et al. [100]

use SIFT [76] nearest-neighbors together with a RANSAC verification to generate

negative and positive training data, whereas Simonyan et al. [124] first compute a

homography between images using SIFT and RANSAC and then establish region

correspondences using the homography. Hartmann et al. [52] learn the matchability

of SIFT features by collecting features that survive the matching stage and those

which are rejected as positive and negative training data. All of these approaches

focus on a specific type of sparse feature and do not generalize well to dense stereo.
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Image-based Supervision for other Tasks. In the last two years, the data hunger

of CNNs has spawned a lot of research on alternative ways of supervision for many

different tasks. For training a CNN for single view depth estimation, Garg et al. [39]

use pairs of sequential images. In one of the images they estimate the depth and

in the second image (which has a known orientation to the first image) they then

evaluate the photometric error. Godard at al. [44] use a similar idea but with

calibrated stereo images, where they also enforce left-right consistency between the

images. Yu et al. [140] also use a photometric error for training a CNN for optical

flow. Based on an (oriented) image sequence, they combine a photometric loss with

a loss that enforces spatial smoothness in the flow field. Pathak et al. [98] use videos

of moving objects to learn object based features that can then be used for object

detection. Long et al. [75] use image sequences to first train a CNN on the task

of image interpolation (i.e. for 3 given consecutive frames, they train the network

to reconstruct the middle frame from the outer two). The resulting CNN is then

used for optical flow estimation by inverting the network and tracing how it would

interpolate the two images. While these approaches work well for their individual

tasks, they cannot be easily generalized to MVS Confidence Prediction.

2.4 View Planning

Next-best view (NBV) planning, view planning, sensor placement, path planning

for reconstruction and/or coverage, visual inspection and exploration are all closely

related topics. They all have to answer the questions ”what parts of the scene are

already sufficiently covered?” and ”how can I best improve this coverage?”. In this

sense they are all related to the art gallery problem [96] or the coverage problem [129],

which both have been shown to be NP-hard.

Thus, researchers from the communities of photogrammetry, robotics and com-

puter vision have developed and are still developing methods which are honed to

very specific tasks exploiting all available domain specific knowledge to conquer

this challenging task with one specific actuator/sensor setup. Some works (e.g.

[2, 3, 26, 133]) thus focus on the reconstruction of small scale scenes in laborato-

ries. For this kind of approaches we refer the reader to a very recent review article

of [67]. Other works (e.g. [29, 93, 107, 111]) include the feature richness into

the path planning to ensure good visual localization. With the increasing avail-



2.4. View Planning 29

ability of robotic platforms, also the research in the field of structure inspection

drastically increases (e.g. [4, 9, 10, 23, 33, 55]). A review of current approaches on

this topic can be found in [5]. This field is also closely related to coverage search

(e.g. [19, 34]). For photogrammetry, there also exist several works on view planning

for UAVs (e.g [58, 64, 65, 78, 91, 106, 113]). Most works in the field follow the same

paradigm. Under the assumption that they have a good 3D approximation of the

scene, they first sample an over-complete set of views. Then they try to select a

small subset of these views such that some quality or coverage function is sufficiently

fulfilled. Finally, they have some path optimization algorithm to solve the remaining

path planning problem.

As input for the planning procedure Martin et al. [78] use a rough terrain model

(with 10m resolution), Schmid et al. [113] a digital surface model (DSM), Jing et

al. [65] use a 2D map and manually extrude the building height, while Hoppe et

al. [58] assume that they have a surface mesh of the scene of interest. All these

approaches assume that a sufficiently good 3D model is given prior to the actual 3D

reconstruction, which is typically not the case. In this regard, the very recent work

of Roberts et al. [106] is more general. Roberts et al. [106] first let the drone fly an

ellipse around the scene of interest, then land the drone and run a full multi-view

stereo pipeline on the acquired set of images. The resulting 3D reconstruction is

then used for planning. The problem with this two step approach is that if the

geometry is insufficiently covered in the first flight, the 3D model will be wrong and

consequently the computed view plan will be suboptimal with respect to the real

geometry.

For sampling potential views each approach follows its own strategy. Martin et

al. [78] sample randomly over a region of interest, while Hoppe et al. [58] sample one

view for each triangle in the mesh at a fixed distance. Schmid et al. [113] sample

potential views in a regular pattern on the hull around the scene of interest looking

towards the geometry. Roberts et al. [106] sample on a regular grid with regular

orientations and then use a greedy algorithm to fix the view rotations. Jing et al. [64]

first randomly sample positions with a buffer zone around the geometry and then

set the orientation based on a geometry force field such that the views look towards

the closest geometry.

After sampling, the next task is to reduce the number of views and then connect

them to obtain the final view plan. Thus, Hoppe et al. [58] greedily select the ones
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that maximizes their objective function. In their objective function they consider the

3D uncertainty and the camera overlap. They terminate if 95% of the scene is cov-

ered and optimize the path length with a greedy algorithm. Schmid et al. [113] select

a subset of the sampled views based on a heuristic such that the resulting views are

not redundant (considering what parts of the DSM they observe and under which

angle). Then they minimize the path length with a Farthest-Insertion-Heuristic.

Martin et al. [78] optimize the scene coverage with a genetic algorithm and then

find the global optimal solution to the remaining traveling salesman problem with

a binary integer linear program. As this problem is NP-hard, they only use a very

small number of views in their experiments (i.e. 30 views). Jing et al. [65] formulate

the view planning problem as a set covering problem, which they optimize with a

greedy algorithm. Roberts et al. [106] set themselves apart from other works by

proposing an additive approximation for the scene coverage function. With this ap-

proximation they are able to formulate the view planning problem as an orienteering

problem using a submodular objective function. An orienteering problem tries to

solve a knapsack problem and a traveling salesman problem at the same time. In the

case of view planning, this means that the algorithm tries to maximize the coverage

considering the available budget in terms of flight path length. All works mentioned

above focus on rather simple structures (i.e. mostly houses or well-textured flat

terrain), which are quite easy to reconstruct with MVS. However, in our work [91]

we show that for more challenging scene structures the image constellation together

with the used MVS algorithm (with all its underline assumptions) play an important

role for the MVS reconstruction success. Thus, we use this knowledge (which is en-

coded by a MVS Confidence Predictor) to improve the image acquisition process. In

particular, this also allows us to avoid constellations that do not lead to the desired

outcome. One good example in this regard is a grass surface. From far away, grass

is close to random texture and can be easily reconstructed, however, if the distance

to the camera becomes too small then some approaches won’t be able to reconstruct

this part of the scene at all. Our approach can detect such circumstances during

the image acquisition and thus enables a reliable reconstruction even in challenging

environments.

Aside from image acquisition, view planning is also related to the second ap-

plication presented in this thesis, i.e. the MVS Prioritization. Given a fixed set

of images, the aim of our MVS Prioritization is to establish an ordering of images
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(with a suitable set of other images for matching) such that any subset of the ranked

entries from entry 1 to n retains a maximum of information about the scene for any

n. While this task shares many aspects with view planning, the problem tackled in

this task also shows one important difference: The set of images is fixed. On the

one hand, this is an advantage as subtasks such as path planning do not need to

be handled anymore. On the other hand, if the image constellations are suboptimal

then there is no possibility to improve the situation.

From all the works mentioned above, we see the works of [59] and [80] as most

related to the task of MVS Prioritization. Both approaches try to obtain a maximally

complete reconstruction from a given image set by iteratively updating the geometry

estimate. For updating the geometry, [59] use the complete PMVS algorithm [31]

after each added view, while [80] execute the stereo algorithm of [136] after selecting

the next-best stereo pair. We contrast from these works in several points. First of

all, our aim is not an iterative update scheme with the MVS algorithm in the loop,

but instead we aim to rank all view clusters (i.e. key views with matching partners)

according to their importance for the final reconstruction. On the one hand, we

are thus able to obtain a complete reconstruction with a fraction of available view

clusters. On the other hand, we can pre-compute the whole key view ranking, which

allows us to maintain the natural parallelization capabilities of MVS based on depth

maps in the execution phase. Instead of updating the geometry estimate in each

iteration, we use all measurements of the sparse reconstruction to obtain a high

quality surface mesh at a low computational cost once at the start of our algorithm.

Through this formulation, we combine the advantages of NBV planning and MVS

based on depth maps, i.e. data reduction and parallelism. This leads to a light-

weight approach, which can be easily integrated in most photogrammetric pipelines

to increase the overall efficiency.

2.5 Matching Partner Selection

Most MVS approaches based on depth maps formulate some kind of heuristic to

select the k best matching partners for each key view to increase the efficiency of

MVS. While this significantly decreases the run-time, the size of the resulting point

cloud stays approximately the same, as each image is considered as a key view.

The heuristics for matching partner selection strongly depend on how the images
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are acquired (structured versus unstructured) and the requirements of the MVS

algorithm. If the images are acquired in a regular grid, the k closest images are a

natural choice to maximize the completeness. For more unstructured settings, this

technique can be problematic as the images can look into different directions. In an

unstructured setting, the connectivity in the sparse reconstruction (i.e. how many

sparse 3D points are shared between two cameras) is typically a more reliable cue to

determine if the MVS matching step will work or not. However, in an unstructured

setting it can also happen that many images are acquired from nearly the same

position (this also happens if panoramic image acquisition techniques [137] are used).

In such cases, taking the most connected images as matching partners will very likely

lead to insufficient parallax and a very high depth uncertainty. Thus, Goesele et

al. [45] combine the connectivity with geometric constraints in a greedy fashion.

Their formulation down-weights connections (shared features) with a triangulation

angle below 10◦ and dissimilar scale. Additionally to these two terms, Bailer et al. [6]

also add a coverage term, which favors connections that have not been covered by

other selected images. Shen et al. [121] use a formulation without connectivity

only based on the geometric constraints on the triangulation angle and the distance

between images. For very small datasets, where all images nearly see the same

part of the scene (as in the DTU dataset [1]), also random selection of matching

partners can lead to good results [35]. Note there also exist works that select suitable

matching partners on a per pixel basis during the reconstruction also based on hand-

crafted constrains [115, 138, 142, 143]. Of all formulations mentioned above, the

formulation of Bailer et al. [6] seems to be the closest to our approach. However,

their approach has two main drawbacks. First, they use a hand-crafted model for

the triangulation angle, which is specifically tuned for their own PatchMatch-based

approach [6] for the reconstruction of flat, human-made environments. Second,

they use the sparse point cloud for evaluating the coverage. The problem with this

approach is that it strongly biases the algorithm to well-textured parts of the scene,

which typically generate a lot more sparse points than weakly textured scene parts.

This can be problematic as many important scene parts (such as building facades)

are often completely unrepresented in the sparse point cloud, although they very

often contain sufficient micro-texture for a reliable MVS reconstruction.



2.6. Summary 33

2.6 Summary

In this chapter, we first tried to make the reader aware of the differences between

a real physical camera and the pinhole camera model, which is used in nearly all

photogrammetric pipelines (Section 2.1). The main point of this comparison was to

show that real physical cameras have many limitations, of which the most important

ones (such as the lens distortion) are modeled, while others (such as vignetting,

chromatic aberration or depth of field) are typically left unmodeled and are assumed

to be small enough to be handled by robust algorithms.

Then we gave a broad review over current MVS approaches and discussed their

underlying assumptions (Section 2.2). The main point of this discussion was to

show that all approaches share a similar set of general assumptions (including a

static environment, Lambertian reflectance, local planarity and local saliency), but

also differ a lot in how they use this assumptions and how strongly they depend on

them. As the impact of these assumptions does not only depend on the algorithm,

but also the complete set of parameters (including e.g. the regularization weights), it

is exceedingly hard to tell why sometimes one algorithm is able to obtain a complete

and accurate reconstruction of one object, while another fails (see e.g. the ellipses

in Figures1.1).

This motivated us to learn to predict such failures such that we can detect and

avoid unfavorable image constellations. However, the lack of suitable supervision

(in form of reliable reference data) made it necessary to think about alternative

ways of supervising the learning procedure. On this aspect, we gave an overview

(Section 2.3) over many fields in computer vision (including confidence measures for

two-view stereo, sparse feature matching and single image depth estimation), which

all thirst for cheap and scalable supervision in form of automated processes. In this

regard, we did not find a single approach which would suit our purpose of predicting

MVS failures.

For our two applications (i.e. Automated Image Acquisition and MVS Priori-

tization), we then reviewed the field of view planning (Section 2.4) and matching

partner selection (Section 2.5). The main conclusion of this review is that in both

fields nearly all aspects are hand-crafted and tuned towards one specific application,

in one environment, with one specific MVS algorithm due to the difficulty of the un-

derlying tasks. No approach (that we are aware of) in these fields has yet attempted
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to learn the requirements of MVS and use this knowledge to actively control the set

of images with learned likelihood functions rather than hand-crafted models.



Chapter 3

Confidence Learning without

Ground Truth

In this chapter, we present our fully automated approach for confidence learning,

which can be used for two-view stereo [92] as well as multi-view stereo (MVS) [91].

The main idea of our approach is to use many independent 3D reconstructions to

separate consistent 3D hypotheses from contradicting 3D hypotheses. With ”inde-

pendent 3D reconstructions”, we mean 3D reconstructions produced with the same

algorithm from independent image sets, which view the scene from significantly dif-

ferent view points. This approach is to some extend related to depth map fusion

(see e.g. [82]), but instead of outputting an improved depth map, we generate

pixel-wise training data for machine learning. Another significant difference is that

we can also refrain from using pixels as training data, in case we are not able to

assess if the measurement is correct or not. Care has to be taken in this assessment

to keep the number of false positives (consistent but incorrect) and false negatives

(inconsistent but correct) as low as possible. This means that systematic errors,

which are consistent to each other, should not be taken as positive training samples

and also not lead to correct measurements being classified as negative samples. We

mitigate this problem in ensuring that only reconstructions from significantly differ-

ent view points (i.e. with large relative motion) are respected for positive support

assessment. This restriction has shown to be useful, as the systematic errors (e.g.

edge fattening) of independent reconstructions with a large relative motion tend to

appear at different locations. In the following, we give an overview of our automated

35
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learning procedure and then outline all important steps in more detail.

3.1 Overview

As input our approach only requires an unordered set of images, viewing one or

multiple scenes from many view points. With this input, we then estimate the cam-

era poses and extract a sparse point cloud with Structure-from-Motion (SfM) (see

Figure 3.1). Now instead of reconstructing the whole scene with all available infor-

mation, we split the cameras into small clusters and run the query MVS algorithm

on each small cluster.

Then we use the resulting MVS reconstructions to benchmark the quality of each

other. The goal is to find consistent measurements, which have a high probability

of being correct, and inconsistent measurements, which have a high probability of

being incorrect. To achieve this, we propose an approach with three stages.

The first stage has the purpose to identify parts of the reconstruction, which

are consistent over multiple, significantly different view points. This assessment

is important, because otherwise systematic errors made by the approach tend to

accumulate if many images were taken from similar view points.

In the next stage, the resulting highly consistent measurements of the recon-

structions vote for the consistency of all other measurements. This results in many

labeled training samples (negative and positive), however, a lot of ”easy” negative

samples are also left out, because they are not on the line of sight of the highly

consistent measurements.

In the last stage, we uncover these outliers in a second voting scheme, which is

less restrictive and lets all measurements vote. Note that this less restrictive voting

scheme can only result in negative training samples. The last step of our approach

also has the purpose to identify ”missing measurements”; i.e. measurements that

would have been geometrically possible, but for some reason the MVS algorithm

failed to generate them. We achieve this by comparing the MVS depth maps to a

fused depth map and a surface reconstruction derived from the sparse point cloud.

This leads to more negative samples, which can then be used for training.

With all collected training data, we then train a random forest. The advantage

of a random forest over CNNs is that it allows us to store meta data with the

training samples. For a query sample, the stored meta data allows us to extract
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Figure 3.1: Fully Automated Confidence Learning as proposed in [91, 92]. With a set
of unordered images as input, we first perform Structure-from-Motion (SfM) to obtain
a sparse point cloud and the camera poses. From the point cloud, we reconstruct two
surface meshes with different object boundaries. From the camera poses, we extract small
image clusters for executing a query Multi-View Stereo (MVS) algorithm. This leads to
many overlapping 3D reconstructions of the same scene. With this data, we first assess
the mutual support between reconstructions from significantly different view points to
reduce the influence of systematic errors. Then we perform an information weighted
voting process to collect positive and negative training data. Severe outliers and missing
parts are then detected with the help of other reliable reconstructions and the surface
meshes. This leads to labeled training data with the necessary meta data (triangulation
angle information). With this data, we train a random forest, where the leaves then
store the likelihood of a successful reconstruction (aka confidence) in relation to the visual
information of the 3D structure and the triangulation angle.
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confidence functions (parameterized over the triangulation angle) instead of just

a single confidence value. These functions then allow us to separate good image

constellations from suboptimal ones, which we then use to modify the set of images

before the MVS is executed.

3.2 Setup

Starting with an unordered set of images, we process these images with a fully

automated Structure-from-Motion (SfM) pipeline [110]. After this step, we then

split the resulting camera network (i.e. camera poses with associated sparse 3D

points) into small independent subsets/clusters, such that these clusters can then

be used to uncover inconsistencies between 3D reconstructions obtained with the

same MVS algorithm, but from different view points. For MVS, we use a cluster

size of three, as this is the minimum number for most MVS algorithms. In theory

one could use larger clusters, however, with each added camera it becomes harder

to judge the individual influence of each camera on the reconstruction output.

As one of our aims is to predict the reconstruction confidence in dependence of

the triangulation angle, we have to ensure that a large diversity of triangulation

angles is present in the training data. Thus, we randomly sample camera triplets

from a fixed number of triangulation angle bins as follows.

First, we randomly choose one camera. Then, we randomly choose one of t

triangulation angle bins. The lowest bin starts at a minimum angle βmin and ranges

to double that value, where the next bin then starts. Now, we randomly select a

camera that shares measurements (in the sparse point cloud) with the central camera

and check if the following three criteria are fulfilled: (1) The median triangulation

angle is within the currently chosen bin. (2) To ensure sufficient overlap between the

cameras, the area spanned by the shared measurements has to be at least greater

than half the total image area for one of the cameras. (3) To avoid scale issues, the

median scale ratio sres between the two cameras shall not exceed smax. The scale ratio

of a single shared 3D point pshared is defined as sres,shared = max{res1/res2, res2/res1}
with resx = fx/‖cx−pshared‖, where cx is the camera center and fx the focal length.

If these criteria are fulfilled, the same check is repeated for the second camera.

This generation scheme runs for a large number of iterations i and produces a set

of camera triplets with a very diverse range of triangulation angles. For two-view
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Figure 3.2: Motion-Supervised Training Data Generation. From left to right we show the
three main stages of our approach. In Stage 1, we collect the support between reconstruc-
tions from far away view points. In Stage 2, we use visibility rays to collect positive and
negative training samples. In Stage 3, we collect outliers and missing measurements as
negative samples.

stereo, we skip the clustering step and directly treat each stereo pair as its own

cluster. For each cluster, we then execute the query algorithm, which results in a

set of highly redundant reconstructions of the scene from many different viewpoints.

3.3 Motion-Supervised Training Data Generation

For training data generation, we now want to use the set of highly redundant re-

constructions to evaluate each other and in this way collect consistencies and con-

tradictions as positive and negative training samples. To avoid labeling consistent

systematic errors as positive training data, our approach works in three main stages

(see Figure 3.2).

3.3.1 Stage 1: Support Assessment

The first stage has the purpose of reducing the influence of all consistent but in-

correct measurements. In practice, we can observe that the likelihood that two

measurements of independent 3D reconstructions1 are consistent but incorrect at

the same time decreases as the relative view point difference increases. Thus, we

analyze how well each measurement is supported by reference reconstructions from

13D reconstructions that were produced with the same MVS algorithm from independent image sets.
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a sufficiently different view point. The aim of this stage is to accumulate the support

suppquery for each measurement pquery of each available depth map.

In this process of support accumulation, we have to take care that images from

similar view points do not bias the voting process with the same systematic error.

So before we accumulate the support of a measurement pquery, we split all refer-

ence measurements that project into the same pixel of the query camera as pquery

into support clusters Sref. The purpose of these clusters is to group measurements

from approximately the same view point (with respect to the query measurement)

together and limit the maximum support of such a reference cluster to one.

For MVS, this clustering is first done via mean shift on the logarithm of the

resolution (scaled with log(smin)) and a unit bandwidth. Here we use a logarithmic

space such that all relative relations have the same distance (i.e. log(a
b
) = log(a)−

log(b) = −log( b
a
)). Then the resulting clusters are further refined by performing

mean shift clustering of the viewing direction with a bandwidth αmin. For two-

view stereo in a street view scenario [92], we use a simpler clustering scheme as

the view point variation is very restricted. In this scenario, we found that using

fix-spaced angular bins for clustering is sufficient. In both scenarios, the purpose of

the clustering stays the same, i.e. reference measurements of a similar view point

shall only be able to express their support once.

Using the support clusters, we then look if they contain measurements that are

sufficiently different from the view point of the query measurement. We treat a

reference measurement as sufficiently different if the view angle difference αdiff >

αmin or the scale difference sres,query > smin is sufficiently large. We compute these

values as αdiff = ](−−−−−→pquerycref,
−−−−−−−→pquerycquery) and sres,query = resref/resquery with resx =

fx/‖cx − pquery‖, where cx is the mean camera center and fx the mean focal length

of a camera triplet.

If a reference measurement is sufficiently different, we have to assess if it supports

the query measurement. To assess this property, we require an uncertainty model.

In this work, we use the uncertainty model explained in Section 2.1. With this

model, it is possible to propagate an assumed 2D uncertainty distribution from the

images into 3D to obtain a first order estimate of the 3D uncertainty via a covariance

matrix. For this task, we assume that 2D uncertainty distribution is a Gaussian with

unit pixel noise. For Equation 2.6, this means that Cov2D = I2 with I2 as the 2D

identity matrix.
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Data: Query measurement pquery and a set of reference measurements Pref that
project into the same pixel of the query camera as pquery. Each reference
measurement pref ∈ Pref is part of a support cluster Sref, which groups all
reference measurements with a similar view point (i.e. multiple pref share
the same Sref).

Result: Accumulated support suppquery for the query measurement pquery

suppquery ← 0;

for each support cluster Sref do
activationSref

← 0
end
for each pref ∈ Pref do

if activationSref
= 0 and view points of pref and pquery sufficiently different

and dM (pref,pquery) < σmax then
activationSref

← 1;
end

end
for each support cluster Sref do

suppquery ← suppquery + activationSref

end
Algorithm 1: Stage 1: Support Assessment

Using this model, we now assess if a reference measurement pref is within a fixed

theoretical tolerance σmax of the query measurement pquery. For this assessment, we

use the theoretic Mahalanobis distance dM(pref,pquery), which we compute as:

dM(pref,pquery) =
√

(pquery − pref)TCov
−1
3D,min(pquery − pref), (3.1)

where Cov3D,min is the covariance matrix with smaller uncertainty (i.e. largest eigen-

value) of either pref or pquery. Note that the two matrix inverses in Equation 2.6

and Equation 3.1 cancel each other and never have to be computed explicitly. Also

note that, as we assume the distribution to be fixed and only the 3D point to be

unknown, Cov−1
3D = I3D, where I3D is the Fisher information matrix. Thus also the

largest eigenvalue of Cov3D can be found as the smallest eigenvalue of I3D.

Now if the view points of pref and pquery are sufficiently different and

dM(pref,pquery) < σmax, then we set the activationSref
of the corresponding

reference cluster Sref to one. Finally, we sum up all reference cluster activations to

obtain the final support suppquery for a query measurement pquery. The complete

first stage is summarized in Algorithm 1.
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query camera 

reference camera 

Figure 3.3: Consistency Voting. There are three possibilities for voting. A positive vote
(center) is only cast if the reference measurement is within the uncertainty boundary of
the query measurement. A negative vote is either cast if a reference measurement would
block the line of sight of the query camera (left) or the other way around (right).

3.3.2 Stage 2: Consistency Voting

The basic idea of this stage is to let all depth maps vote for the (in)consistency

of a query depth map. Similar to works in depth map fusion (e.g. [82]), negative

votes are cast by free space violations and occlusions and positive votes are cast by

measurements which are sufficiently close to each other (see Figure 3.3). Compared

to fusion approaches, we aim for a completely different output. While works in depth

map fusion try to improve/fuse the depth map, we only aim to decide which parts

of the depth map cause contradictions and which parts are sufficiently consistent.

Furthermore, we have to reduce the influence of systematic errors in the voting

scheme, which we achieve with the support of a reference measurement computed in

the previous stage. In particular, this means that only parts which have a support

from at least one significantly different observation angle are eligible for voting.

For casting a positive vote v+, a reference measurement has to fulfill two prop-

erties. First, it shall be more accurate than the query measurement. We evaluate

this property with the largest eigenvalue of the corresponding covariance matrix.

Second, the reference measurement has to be within a fixed theoretical tolerance of

σmax of the query measurement. For this evaluation we use the Mahalanobis dis-

tance based on the covariance matrix of the query 3D point. We define a positive

vote as:

v+ =
√
iref · supportref (3.2)

where iref is the smallest eigenvalue of the Fisher information matrix of the reference
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Data: Query measurement pquery and a set of reference measurements Pref that
project into the same pixel in either the query view or a reference view and
where each reference measurement pref ∈ Pref has a positive support (i.e.
suppref > 0)

Result: Label for the query measurement pquery (labelquery)
votequery ← 0;
activationquery ← 0;
for each pref ∈ Pref do

if pref more accurate than pquery then
if pref within a theoretical tolerance of σmax of pquery then

votequery ← votequery + v+ ;
activationquery ← 1;

else
if pquery causes a free space violation or occlusion with respect to pref

then
votequery ← votequery + v− ;
activationquery ← 1;

end

end

end

end
labelquery ← ignore;
if activationquery = 1 then

if votequery > 0 then
labelquery ← positive

else
labelquery ← negative

end

end
Algorithm 2: Stage 2: Consistency Voting

3D point. This means that measurements with a low theoretic uncertainty get a

higher voting strength, as
√
iref = 1/

√
uref, where uref is the largest eigenvalue of

the covariance matrix and hence
√
uref can be interpreted as the standard deviation

along the axis of the highest uncertainty.

For casting a negative vote v−, a reference measurement has to fulfill three prop-

erties. First, it also has to be more accurate than the query measurement. Second,

it has to be outside the fixed theoretical tolerance of σmax. Third, it has to cause a

free space violation or occlusion as depicted in Figure 3.3. In a free space violation,

a reference measurement would block the line of sight of a query measurement (left

side in Figure 3.3), whereas the other way around would cause an occlusion (right
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side in Figure 3.3). If these properties are met, a negative vote is cast:

v− = −
√
iref · supportref (3.3)

For each pixel in the query depth map the votes are collected. The label of a

pixel with more than zero votes is then set depending on the sign of the final sum

of votes. The complete voting scheme of this stage is summarized by Algorithm 2.

3.3.3 Stage 3: Detection of Outliers and Missing Measurements

The third stage deviates for two-view stereo [92] and multi-view stereo [91]. In

two-view stereo, the confidence also has the purpose of identifying occlusions from

already computed depth maps, whereas in the case of MVS, we do not have the fi-

nal reconstruction during prediction time (only a rough scene representation). Thus

in the MVS case, we only desire training samples from regions that are visible in

all three images. More precisely, we have to detect if the MVS algorithm failed to

produce any output in a region where it should have been geometrically possible

and use this case as a negative training sample. In the following paragraphs, we

first present a depth map augmentation (which has the purpose of detecting obvi-

ous outliers and is used for two-view and multi-view stereo) and then explain our

extension for multi-view stereo (which uses two surface meshes for detecting missing

measurements).

Depth Map Augmentation. For computing the augmented depth map, we collect

all depth values of the other depth maps that would project into a pixel of the query

image (Here we respect the pixel radius induced through scale change). Then we sort

these depth values and search for the closest depth value which obtains a positive

score in a second voting scheme. This voting scheme is very similar to the one

proposed in the previous stage, but many more depth values will end up with a

positive score although they are incorrect.

There are 4 differences to the other voting scheme: (1) Every depth map can vote

(without accuracy restrictions), (2) the border between consistent and contradicting

vote is set to (1/
√
uquery + 1/

√
uref) · σmax, (3) supportref = 1 for all measurements

and (4) a depth value has to obtain at least three votes to be considered valid. If

no such depth value is found, the original depth is kept.
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Using the augmented depth map, we now treat a depth value as a negative

sample if the following two criteria are met. First, the query depth value has to be

smaller than the depth value of the augmented depth map. Second, the difference

between those two depth values has to be larger than σmax · 1/
√
uaugmented, where

uaugmented stands for the largest eigenvalue of the covariance matrix of the augmented

measurement if we pretend that it is only visible from the query camera cluster.

MVS Extension. Additional to the augmented depth map, we use two meshes

to detect scene parts which an approach completely fails to reconstruct (e.g. some

approaches will simply not work on vegetation). The two meshes are created inde-

pendent of the query algorithm from the sparse point cloud. We use two meshes

with slightly different object boundaries to account for errors in the meshes. To

construct these meshes, we first use all available images in the dataset to compute

a joint sparse point cloud [109]. From this point cloud we robustly extract a surface

mesh [71, 135], and then shrink and expand this mesh for our purpose. The exact

implementation details of our meshing approach can be found in [90]. From this

base mesh, we obtain a shrunken mesh by performing three iterations of neighbor-

based smoothing. In each iteration a vertex moves half the distance to the average

position of the vertices that share an edge with this vertex. For the second mesh, we

expand the shrunken mesh again. For this purpose, we compute a vector by averag-

ing the motion vectors of a vertex and its neighbors from the shrinking procedure.

Each vertex is then moved twice the vector length in the opposite direction of this

vector. Both meshes (shrunken and expanded) are very similar to each other, but

have slightly different object boundaries. Now we use the two meshes and the depth

map augmentations to check which parts of the scene should be visible in all three

cameras, but are missing in the query depth map. If the query depth map does not

contain any measurement at a pixel location, but the two meshes and the augmented

depth map agree that a measurement should have been possible, the corresponding

pixel is used as negative training samples.

Final Labels. The final label images are then a combination of the labeled pixels

from the voting stage together with the negative samples from this stage. Note that

for MVS, we also save the triangulation angle as meta information for each pixel. For

positive samples, we use the measurement and the average pair-wise triangulation
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angle of all cameras that were used for obtaining the measurement. For negative

samples, we use the corresponding 3D point from the depth map augmentation (if

available), otherwise we estimate the depth value with the shrunken mesh.

3.4 Learning and Predicting MVS Confidence

For both our applications (Automated Image Acquisition and MVS Prioritization),

we want to know which camera constellation will give us a high likelihood of getting

a complete and accurate 3D reconstruction. As this likelihood depends on the scene

structure and the quality of the images, we want to use the acquired images together

with a coarse scene representation. For training, we pose the problem as a pixel-wise

classification task. During run-time, we compute the MVS Confidence depending

on the triangulation angle and the scene around the pixel of interest.

For this task, we chose Semantic Texton Forests (STFs) [122]. We selected this

approach for three main reasons. First, this approach is very fast in the execution

phase as it operates directly on the input image (without any feature extractions or

filtering). Second, STFs have shown a reasonable performance in semantic image

segmentation. Third, it is possible to store meta information in the leaves of the

forest. We use this property to store the triangulation angle under which a sample

was obtain (or failed to obtain). This does not influence the learning procedure, but

allows us to predict the reconstruction confidence in dependence of the triangulation

angle at evaluation time.

Training. We implemented the STFs in the random forest framework of [118]. We

only use STFs in its basic form without image-level prior [122] as this would require

semantic categories. This means that all split decisions are made directly on the

image data (Lab color space) within a patch of the size d × d without any explicit

feature extraction (which makes the evaluation extremely fast). This is possible as

the set of split decisions from the root node to leaf can be interpreted as something

similar to a BRIEF descriptor [14].

In STFs, there are four types of split functions, of which one is randomly chosen

in training for each node in the tree, and then compared to a randomly chosen

threshold. The first type is a single color value vp1,c1 , where p1 are pixel coordinates

within the patch and c1 is one of the three image channels. The second type is



3.4. Learning and Predicting MVS Confidence 47

the sum of two values vp1,c1 + vp2,c2 , the third type is the difference of two values

vp1,c1− vp2,c2 and the last type is the absolute difference of two values |vp1,c1− vp2,c2|.
In all experiments, we used the following set of parameters. The parameters were

chosen such that we obtain a good prediction performance, within a reasonable time

frame as one of our applications demands real-time performance. For the patch size

we used d = 27. Note that this is larger than in the original paper (which uses

d = 21), however, in a parameter sweep this resulted in slightly better results. For

the tree structure itself, we chose 20 trees with a maximum depth of 20. Note that

the original paper only uses 5 trees with a depth 10, however, in our experiments

this led to significantly worse results. Our choice is also supported by other works

(e.g. [52, 119]), where 25 trees with a depth of 20-25 led to a good trade-off between

performance and speed. We also experimented with 25 trees and a depth of 25, but

could not observe a significant performance difference compared to 20 trees with 20

depth, while the run-time increased significantly.

For the training strategy, we set the parameters so that the training takes roughly

a day on a Intel(R) Xeon(R) E5-2680 CPU. The resulting parameters are a minimum

leaf size for further splitting of 50, 5000 node tests, 100 thresholds and 1000 random

training samples at each node with approximately 4 million training patches for each

class in training. Note that we cannot guarantee that this set is the optimal set of

parameters, but in our experiments it worked sufficiently well.

Prediction. For both tasks (i.e. Automated Image Acquisition and MVS Prioriti-

zation), we want to keep the computational overhead as small as possible. Although

our STF implementation is already quite fast on the CPU (approx. 600k predictions

per second), it would still take several seconds for the evaluation of a 16Mpix image.

Thus we provide two ways to reduce the prediction time. First, we restructure

the STF leaf nodes to contain a fixed number (b) of angular bins with one confidence

value for each bin. Second, we can make use of the property that the confidence is

in general a smooth function for a specific type of object (Section 6.2.2) (note that

this fact is also exploited by Poggi and Mattoccia [103] and Kim et al. [68]). Thus,

we evaluate the MVS Confidence on a regular grid and compute a confidence image

with b channels for each input image.

With this approach it is now possible to obtain a quasi-dense prediction for

the whole image within a definable fixed time frame. This means that we can
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precompute the reconstruction confidence for each image and can simply look up

the precomputed predictions in the image space for each potential constellation.

To obtain a MVS Confidence Prediction from the random forest for a specific

image constellation, all that is needed is a target triangle (from the coarse mesh)

and the oriented images. With this information, the MVS Confidence can simply

be looked up by projecting the triangle into the images.



Chapter 4

Automated Image Acquisition for

Multi-View Stereo

The main aim of our image acquisition method [91] is to automate the close-range

acquisition of images for high-resolution monocular 3D reconstruction such that the

acquisition time is minimized, while the completeness of the reconstruction should

be as high as possible (also respecting the desired ground sampling distance and 3D

accuracy). Compared to traditional aerial image acquisition, which mostly covers

large areas from a safe distance, the image acquisition at a close range brings many

new challenges. These challenges include: (1) Regular flight patterns, such as grids

or domes, are not well suited for close-range image acquisition in complex environ-

ments due to a lack of flexibility and large safety distances, which strongly limits the

maximal obtainable ground sampling distance and completeness. In order to recon-

struct highly complex scenes at close-range, the system should be able to adapt to

the environment and adaptively avoid objects. (2) In practice, no sufficiently accu-

rate 3D model can be assumed to be available beforehand. This consequently leads

to the requirement of on-site 3D reconstruction and planning strategy. (3) For irreg-

ular image acquisition, the camera constellation strongly influences the 3D accuracy

and the completeness. This behavior cannot fully be modeled mathematically due

to the heuristic nature of the matching step in monocular 3D reconstruction. As

this behavior also depends on the applied algorithm and the present type of 3D

structure, this motivated us to apply machine learning to automatically learn this

relation (via the MVS Confidence described in the previous chapter). (4) As the

49
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Figure 4.1: Automated Image Acquisition. After a manual initialization, our system loops
between view planning and autonomous execution. This process is repeated as long as the
reconstruction can be safely improved. Within the view planning procedure, we use the
MVS Confidence to predict the best camera constellation for the presented scene and a
specific MVS algorithm. This MVS algorithm will use the recorded high resolution images
to produce a highly accurate and complete 3D reconstruction off-site in the lab.

view planning has to be done on-site, the planning time should be as low as possible.

In the following, we outline our approach [91] to handle these challenges and

introduce the basic execution flow of the proposed system from a high level perspec-

tive (Section 4.1) and then explain the key parts of our planning strategy in more

detail in Section 4.2.

4.1 Image Acquisition System

Our image acquisition system is requires three major components (see Figure 4.1).

For acquiring images, we require an active robotic platform, which accepts 6D poses

(aka way points) as input (in our experiments we used an Unmanned Aerial Vehicle

(UAV)). For the geometry estimation and the view planning, we require a computa-

tional unit with a connection to the robotic platform. In our experiments, we used

a laptop on the ground with a wireless connection to the UAV for this purpose. Fi-

nally, we require a human operator to define the goal of the acquisition and initialize

the system manually. In the following, we describe the image acquisition system in

more detail.

Initialization. To initialize our system, the operator first steers the UAV manually

and acquires a few images of the scene of interest. These images, together with the
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GPS position of the UAV, are directly streamed to a laptop which performs the

geometry estimation in real-time. We use the GPS information to scale and geo-

reference the reconstruction. After acquiring some images, the operator tells the

system which parts of the scene are of interest by highlighting those parts in one

or more of the acquired images. In the further steps, the system will focus on the

marked region of interest for the quality estimation and disregard the other parts.

Geometry Estimation. For estimating the scene geometry, our system performs

incremental structure-from-motion (SfM) [57] and incremental mesh updates based

on a Delaunay triangulation of the SfM point cloud [56]. Both modules run concur-

rently in real-time for our scenario. To speed up the feature matching, the system

uses a vocabulary tree [61] of SIFT features [76]. The matched features are used

for camera pose estimation and the triangulation of 3D points. After a fixed num-

ber of iterations of local bundle adjustment, the sparse 3D points are incrementally

integrated by the meshing procedure, which outputs a closed surface mesh. When

the operator invokes the planning procedure, we run one last iteration of bundle

adjustment and then make all points available to the meshing procedure.

View Planning. The first step of our view planning strategy is the assessment

of the current acquisition quality. In other words this means that, before we start

to plan, we need to identify which parts of the scene still need improvement. For

estimating the acquisition quality, we use a snapshot of the mesh and the camera

poses from the geometry estimation. With this information the system estimates

how well the scene of interest is covered by the already captured images. For the

quality estimation we use four different factors. The first three factors encode the

fulfillment of geometric requirements defined by the operator, i.e. coverage, ground

resolution and 3D accuracy. The fourth factor is the MVS Confidence Prediction

output (Chapter 3), which encodes the likelihood that the MVS algorithm will work

as intended.

After evaluating the acquisition quality, we now plan a fixed number of camera

positions (view plan) that improve the acquisition quality. As we perform all our

computations on-site during the acquisition, we only have a limited time frame

available for the plan creation. Moreover, it is very likely that the geometry estimate

is not complete and many parts of the scene are not yet sufficiently represented in
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the mesh due to occlusions. Thus, we aim to obtain a good view plan in a limited

time frame rather than one close to optimal solution. The final quality of the MVS

reconstruction depends on a combination of many factors. These factors include

the scene geometry, texture, lighting, the camera constellation and the chosen MVS

algorithm. In this work, we respect these factors in predicting the MVS Confidence

based on the rough scene estimate and 2D images. The exact algorithm is detailed

in Section 4.2.

Closing the Loop. The resulting view plan is translated into GPS positions and

camera angles and is sent to the UAV, which then executes the plan autonomously.

When an image is taken, it is again streamed down to the laptop, where it is in-

tegrated into the reconstruction. After the execution, the system reassesses the

acquisition quality and launches a new iteration of view planning and execution if

our requirements are not yet fulfilled.

4.2 View Planning

The aim of our view planning approach [91] is to plan a set of useful camera poses

in a fixed time frame. As the view planning problem is NP-hard, we have to make

several simplifications to constrain the computation time.

One of our most prominent simplifications is that we plan camera triplets instead

of single cameras. On the one hand, this lets us directly integrate our MVS Con-

fidence Prediction and, on the other hand, we can treat each camera triplet as an

independent measurement unit. In Figure 4.2 we show an overview of our approach,

which we use to guide the reader through our algorithm and its submodules. As in-

put our approach requires a snapshot of the estimated geometry (mesh and camera

poses), as well as the pre-computed MVS Confidence images. Further, the operator

has to label a region of interest in one of the images, and define the desired quality

constraints (ground resolution and 3D accuracy). Optionally, the operator can also

mark his observation position in one of the images. This position will be used to

ensure that there is a direct line of sight between the planned UAV trajectory and

the operator, such that he can manually intercept at any stage.
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Figure 4.2: View planning. Our algorithm tries to find the k next best camera triplets for
improving the acquisition quality. It uses pre-computed MVS Confidence Prediction im-
ages to constrain the triangulation angle between the cameras with the learned limitations
of the MVS algorithm. Next to the arrows, we show the data communication between our
submodules (M1-M4) in red and in black we show how often this data is computed. S is
the set of surrogate cameras, T the set of considered unfulfilled triangles and C3 the set
of camera triplets generated from the surrogate cameras.

Estimation of quality fulfillment (M1). The whole view planning algorithm

starts with the estimation of the current quality fulfillment, i.e. which parts of the

scene have been sufficiently covered and which parts could be improved with fur-

ther images. Therefore, we assess how the desired quality constraints are currently

fulfilled by the already captured images. For this estimation, we need the already

acquired images and their camera poses C as well as the surface mesh. Then we split

the triangles of the surface mesh within the region of interest to approximately the

same size through iteratively splitting them until the maximum edge length equals

the average edge length before splitting. Within the region of interest, we then

randomly select a fixed number Nt of triangles. Next, we determine the visibility

information between these triangles and the camera poses C through rendering the

mesh from the camera poses. After the rendering, we also know which cameras see

which triangles, i.e. each camera that sees the triangle t is in the set Ct. As Ct can

contain many camera combinations that will not work, we can speed up the compu-
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tation significantly in pre-grouping the cameras in feasible clusters using mean shift.

This clustering is done first via 1D mean shift on the logarithm of the resolution

(i.e. log(rc,t)/log(rmin) with c ∈ Ct) and a unit bandwidth. We use the logarithm

here as the relative scale changes (e.g. 0.5 and 2) have the same distance in logarith-

mic space. The resulting clusters are then further refined by performing mean shift

clustering of the viewing direction with a bandwidth αmin. This splits the camera

set Ct into subsets Ct,i (i.e. Ct =
⋃
iCt,i and

⋂
iCt,i = ∅). For each triangle, we now

generate all possible combinations of camera triplets from the cameras that observe

a triangle t respecting the camera clusters (i.e. c3 ∈ C3
t,i∀i). For each camera triplet

c3, we now evaluate the following four fulfillment functions.

(1) The coverage is modeled as a Boolean, which is true if sufficient cameras

(≥ x) observe the triangle, i.e.

fcov =

1, if ∃Ct,i ∈ Ct with |Ct,i| ≥ x

0, otherwise
(4.1)

(2) The resolution requirement (px/m2) is defined as a truncated ratio:

fres = min

{
r

rd
, 1

}
, (4.2)

where rd is the desired resolution and r is the estimated resolution. We determine

r by projecting the 3D triangle into each camera of c3 and averaging the pixel area.

The desired resolution rd can be computed from a desired ground sampling distance

gd as rd = 1/g2
d.

(3) The fulfillment of the 3D uncertainty requirement for a desired accuracy ad

is defined as:

func = min

{
ad√
u
, 1

}
, (4.3)

Here, u stands for the maximum eigenvalue of the covariance matrix Cov3D related

to a triangle’s centroid. For computing the covariance matrix, we use the same

uncertainty model as for the training data generation (see Equation 2.6).

(4) The last fulfillment function is the output of our MVS Confidence Prediction

algorithm fconf (Sec. 3.4). Note that the prediction tries to capture everything

that is not covered by the 3D uncertainty model. In other words, fconf represents
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the likelihood that we will obtain a 3D measurement which abides our uncertainty

model.

With these four functions, we then evaluate the combined fulfillment function

as:

f(t, c3) = (αfres + (1− α)func) · fcov · fconf (4.4)

This formulation allows the operator to define the relative weight α between desired

ground resolution and 3D accuracy, while the coverage and MVS Confidence encode

the chances of a successful reconstruction. The overall fulfillment of a triangle t is

computed as

f(t) = max
c3∈C3

t

f(t, c3). (4.5)

Based on the fulfillment information, we now further reduce the number of con-

sidered triangles to a triangle set T . We guide this reduction such that we end up

with triangles that have a low fulfillment but are well distributed over the scene of

interest. Thus, we randomly select a fixed number Nv of triangles from a piece-wise

constant distribution, where the chance of selecting a triangle t is weighted with

w(t) = 1 − f(t)/fconf (t). We remove fconf from the weight to avoid bias towards

structures that might not be reconstructible at all.

The output of this module (M1) is a set of considered triangles T (with |T | ≤ Nv)

and the current fulfillment f(t) for all triangle t ∈ T .

Sampling and Visibility Estimation (M2). As sampling camera poses with ori-

entation and then estimating the visibility of the geometry for each view contains

many redundant computations, we approach this topic in an more efficient way by

inverse geometry rendering. The key idea of our approach is that we place virtual

cameras on the surface of the geometry and render potential camera centers as 3D

points into these virtual cameras. The big advantage of this approach is that we

can evaluate hundred thousands of potential camera poses in the same time it would

take to evaluate hundreds camera poses in the direct approach.

Thus, we first randomly sample a fixed number Np of 3D positions in the free

space of the scene. For the representation of free space, we use a probabilistic

octree representation [73]. As we only use this octree to keep a safe distance to

the environment, we can use a very coarse maximum resolution. This makes the

memory and computational effort of maintaining this data structure negligible. If
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the operator marked his observation position in one of the images, we also check

which position has a direct line of sight to the operator and only keep the ones which

are visible from the operator’s position.

Each sampled 3D position in free space represents the camera center of a surro-

gate camera. A surrogate camera has an unlimited field of view and thus also no

orientation at this point (later we will transform this surrogate camera into a camera

triplet). The usage of surrogate cameras allows us to reformulate the visibility es-

timation problem and to estimate which surrogate cameras are visible from a given

triangle instead of the other way around. Thus, we generate a virtual camera for

each triangle t ∈ T . The camera center of a virtual camera is set to the triangle’s

centroid and the optical axis to the triangle’s normal. We set the focal length of this

camera such that we get a fixed field of view φ. Now we use the virtual cameras for

rendering the scene, i.e. the mesh and the 3D points that define the centers of the

surrogate cameras. The resulting visibility links are stored in the surrogate cameras.

Finding the best camera triplet (M3). To find the best camera triplet at a low

computational cost, we guide the transformation from surrogate cameras to camera

triplets such that we only need to evaluate potentially useful and feasible camera

constellations. Thus, we first compute the potential fulfillment gain gpot(t, s) of a

surrogate camera s with respect to a linked triangle t as:

gpot(t, s) = maxα{f(t, c3
α)− f(t), 0}, (4.6)

for a hypothetical equilateral camera triplet c3
α, that has the surrogate camera in its

center and where each camera directly faces towards the triangle. With equilateral

camera triplet, we mean that that baseline/distance between each camera pair in the

triplet is the same, which means that the three cameras together span an equilateral

triangle perpendicular to the main view direction. The triangulation angle α defines

the distance between the cameras in the b steps of the predicted MVS Confidence,

which we evaluate with the confidence image of the closest already captured image

(with respect to the surrogate camera) that observes the triangle.

Using this potential gain information, we determine in which direction the sur-

rogate cameras should face. Therefore, we perform a weighted mean shift clustering

on the rays towards the linked triangles. As a weight we use the fulfillment gain and
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the bandwidth is set to the minimum camera opening angle (the minimum camera

opening angle is defined by the smallest image dimension (height or width) and the

principal point). The winning cluster (i.e. the cluster with the highest potential

fulfillment gain) is chosen to define the general viewing direction of the surrogate

camera. Then we update the visibility information of the now oriented surrogate

cameras.

Given the orientation, we generate b equilateral camera triplets for each surrogate

camera, one for each confidence bin. For each camera triplet c3 we efficiently check

the distance to obstacles [73] and compute the fulfillment gain of c3 as

g(c3) =
∑
t∈Tc3

max{f(t, c3)− f(t), 0}, (4.7)

where Tc3 are the triangles that are visible from c3. Over all triplets, we find the

best camera triplet as

c3
best = arg max

c3∈C3
g(c3), (4.8)

where C3 is the set of all generated camera triplets. For the implementation, we

can drastically reduce the number of evaluations by using the potential gain as an

upper bound.

If g(c3
best) is greater than zero and we have not yet planned k camera triplets, we

add c3
best to the set of already acquired images (C) and plan a new camera triplet.

Otherwise, we pass all planned camera triplets with positive gain on to the flight

path optimization.

Flight path optimization (M4). This module minimizes the travel distance be-

tween the camera poses and ensures that the resulting images can be registered by

the geometry estimation module. First, we reorder the camera poses with a greedy

distance minimization using the last captured image as a starting point. Then we

check if the taken images can be connected to the given set of images respecting

the capture sequence. We assume that this is the case if an image has a minimum

overlap omin with at least one of the previously captured images. If this is not the

case we sample camera poses which fulfill this property along the trajectory from

the closest previously captured camera pose to the target camera pose. This results

in a view plan that ensures a successful sequential registration of the planned image
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set. The complete view planning strategy is summarized in Algorithm 3.



4.2. View Planning 59

Data: A set C of already acquired images with poses and precomputed confidence
images and a surface mesh with a set of triangles Tall, where a subset of the
triangles TROI ⊆ Tall were marked to be inside the region of interest.

Result: The view/path plan as an ordered list of camera poses Lc = (c1, c2, ..., cn).
Estimation of quality fulfillment (M1)

sample random triangle subset Tr from TROI with |Tr| = Nt;
assess fulfillment f(t) with respect to C and compute the weight w(t) ∀t ∈ Tr;
reduce Tr to T with |T | = Nv by weighted random selection with w(t);

Sampling and Visibility Estimation (M2)
sample a set of surrogate cameras S (as 3D points) in free space with |S| = Np;
render Tall and S from virtual cameras placed on T and store links (S ↔ T );

Cp ← empty ;
Finding the best camera triplet (M3)

while
(

first iteration or
(
|Cp| < k and c3

best 6= invalid and g(c3
best) > 0

))
do

c3
best ← invalid; g(c3

best)← 0;
compute potential gain gpot(t, s) ∀s ∈ S and t ∈ T ;
compute and store Gpot(s) =

∑
t∈T gpot(t, s) ∀s ∈ S;

for all s ∈ S do
if Gpot(s) > g(c3

best) then
fix view direction of s with weighted mean shift based on gpot(t, s);
scoped update of visibility links (s↔ T ) with view frustum;
for all triangulation bins b do

generate equilateral camera triplet c3 based on b;
compute fulfillment gain g(c3);
if g(c3) > g(c3

best) then
g(c3

best)← g(c3); c3
best ← c3;

end

end

end

end
if g(c3

best) > 0 then
add all cameras of c3

best to camera sets Cp;
update fulfillment f(t)∀t ∈ T analog to (M1) with the camera set C ∪Cp;

end

end

Flight path optimization (M4)
order all cams in Cp with greedy path planning to ordered list Ltmp;
for i = 1...|Ltmp| do

if camera ci has insufficient overlap with all c ∈ C then
sample cameras Lci from closest camera cci ∈ C to ci to ensure overlap;
append Lci to Lc and insert all c ∈ Lci in C;

end
append ci to Lc and insert ci in C;

end
Algorithm 3: View Planning Strategy





Chapter 5

Multi-View Stereo Prioritization

In this chapter, we aim to improve the efficiency of multi-view stereo (MVS) ap-

proaches based on depth maps. This type of approach is very popular (e.g. [35, 45,

108, 115, 142]) as it is inherently parallelizable and delivers state-of-the-art results.

One drawback of such approaches is that they typically generate one depth map per

image in the dataset. For modern cameras, this means that 3D points in the order

of 107 are created per image. Within a few hours it is possible to acquire images

that will result in billions of 3D points. While it is true that more data can only

improve the completeness, practice shows that the acquired data is very often highly

redundant. In many cases, it is possible to retain all important information with a

small fraction of the acquired data.

The basic element of our prioritization [88] is a view cluster, which stands for a

key view (i.e. an image used for generating a depth map) together with its matching

partners. The aim of our MVS Prioritization is to establish an ordering of view

clusters such that any subset of the ranked entries from entry 1 to n retains a

maximum of information about the scene for any n. In this work, we approach the

problem of view cluster prioritization in two steps.

In the first step, we aim to select suitable matching partners for each image

in the image set; i.e. each image is considered as a potential key view in this

step. To generate a depth map, we require other images that observe the same

part of the scene from different positions. Choosing a subset of images for this

task has a lot of impact on the quality of the resulting depth map. On the one

hand, choosing images with a large baseline to the key view will lead to depth

values with high accuracy. On the other hand, it will also make the matching task

61
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(i.e. finding correspondences between the images) significantly harder, which will

negatively influence the completeness of the depth map. Selecting more images will

be beneficial for completeness and accuracy, however, the matching time also rises

linear with the number of matching partners. So for increasing the efficiency, the

number of matching partners is typically kept as low as possible. Thus, in this

subproblem it is our aim to find the best subset of k matching partners such that k

can be very small and we still obtain high quality results in terms of accuracy and

completeness.

The second step is next-best view ranking. For this step, let us assume that

we have already decided the set of matching partners for each potential key view.

While it is possible to generate one depth map for each view, this approach leads

to a massive amount of highly redundant data. Thus it is our aim to rank the view

clusters (key views with matching partners) such that the most useful view clusters

can be processed first. As by product, our approach delivers a fulfillment prediction

(with respect to a desired ground resolution and 3D accuracy) for each added view

cluster. This information makes it possible to determine how many and which view

clusters are necessary to obtain a certain level of fulfillment prior to executing the

MVS algorithm itself.

In Figure 5.1, we show an overview of the complete ranking procedure, which is

explained in full detail in the remainder of this chapter.

5.1 Preprocessing

As input our approach requires the color images, a pre-trained MVS Confidence Pre-

dictor (Chapter 3) and the structure-from-motion output including the correspond-

ing camera poses and a sparse 3D point cloud. For our metric quality constraints

(ground sampling distance and 3D accuracy), we also require that the structure-

from-motion output was transformed metrically. In our experiments, we used auto-

matically detectable ground control points (GCPs) [110] for this purpose.

From this input, we then robustly extract a surface mesh with a Delaunay trian-

gulation of the sparse point cloud [71] with the same parameters used in [89]. The

amount of triangles of the resulting surface mesh is in the order of the number of

sparse 3D points. For view cluster prioritization, the resulting geometry complex-

ity is typically already unnecessarily high. Therefore, we first simplify the mesh
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Figure 5.1: MVS Prioritization. As input our approach requires the SfM output (i.e. the
camera poses and the sparse point cloud), the original color images and the pre-trained
confidence predictor. From the SfM output, we extract a surface mesh, which is then used
for visibility estimation (i.e. estimation of which camera sees which mesh triangles). With
this information, we then precompute the MVS Confidence for each image as described in
Chapter 3 and cache the predictions for each visible mesh triangle. Using this data, we
then find good matching partners for each view, which results in a set of view clusters.
These view clusters are then ranked by their importance for the overall reconstruction in
a next-best view scheme. The output is ordered list of view clusters (i.e. key views with
matching partners) together with a fulfillment prediction f for each entry.

reconstruction using an adaption of quadratic edge collapse decimation [40], which

terminates when 95% of all triangle edges are above r times the desired ground sam-

pling distance. In our experiments, we found r = 20 to be good value, as with this

value all important 3D structures are still contained in the mesh, but the number

of triangles is drastically reduced. To balance the triangle size independent of the

3D topology, we then refine large mesh triangles by iterative sub-division until all

edge lengths are below e times the desired ground sampling distance. We found that

e = 5 × r lead to a good trade-off between simplicity and balance. Note that the

surface mesh is computed exactly once at the beginning of our approach and is not

refined with the MVS output as our prioritization approach works before the MVS

algorithm is executed.

5.2 Matching Partner Selection

For computing a depth map with MVS, each key view requires a set of matching

partners which observe the same scene from different view points. In this step of

our approach, we try to find a good set of k matching partners in the sense that
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completeness and accuracy are optimized simultaneously. We say that we are aiming

for a good set (opposed to the optimal set) as even the solution space for a single

key view can be extremely large. The size of the solution space for this task is the

same as for unordered sampling without replacement, i.e. the binomial coefficient
n!

k!(n−k)!
, where n is the size of the potential set of matching partners. Even for quite

small numbers, like picking k = 6 matching partners out of n = 23 possibilities, the

solution space is already larger than 100k.

For this purpose, we follow other works in the field (e.g. [6, 45]) and use the

connectivity between the images for a dimensionality reduction. Thus, we first

reduce the set of potential matching partners to the top n most connected images.

We evaluated the connectivity based on the number of sparse points shared with the

key view. From this set, we then draw y combinations. As the connectivity can be a

very strong cue, we also want to ensure that the most connected images are included

in the drawn y combinations. Thus, we first draw all possible combinations of the q

most connected images, where q is the largest set size for which the solution space

is less or equal y
4

(i.e. q!
k!(q−k)!

≤ y
4
). The rest of the y − q combinations are drawn

randomly from the larger set of the n most connected images. In this way, at least

75% of the combinations are drawn completely random, whereas we also consider the

most connected combinations. For each drawn combination of matching partners

(ck), we now evaluate four fulfillment functions in relation to the key camera ckey

and a triangle t observed from ckey. Note that these fulfillment functions are very

similar to the fulfillment functions for image acquisition, as the tasks show many

similarities. The main difference is that now the fulfillment functions are generalized

to k matching partners, while the image acquisition approach could only handle

image triplets.

This means that the first three fulfillment functions stay the same as in Sec-

tion 4.2. I.e. (1) the coverage is modeled as a Boolean function fcov, which is true if

sufficient cameras (≥ x) observe the triangle t and false otherwise. (2) The resolution

requirement fres is defined as a truncated ratio with respect to a desired resolution

rd as in Equation 4.2 and (3) the 3D uncertainty requirement func a truncated ratio

with respect to a desired accuracy ad as in Equation 4.3.

Only the last fulfillment function (4), the MVS Confidence fconf , is changed

significantly. In previous chapters, we presented a way to learn and predict this

confidence without any ground truth for two matching partners. Here, we present a
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way to generalize the confidence prediction step to an arbitrary number of k match-

ing partners. For this purpose, we assume that the MVS reconstruction process

follows a stochastic process and can be modeled as a combination of unary MVS

Confidence Predictions.

Under this assumption, we can use probability theory to reason about the overall

probability of obtaining a successful measurement for a pixel of a key view given

a set of matching partners. For a successful measurement, most MVS approaches

require successful matches to at least two matching partners. Thus, we formulate

the overall probability of obtaining a successful measurement, as the probability of

getting successful matches to at least two matching partners. In Section 5.3, we

derive this overall probability by growing a binary probability tree. In the following,

we apply the general solution described in Section 5.3 to our specific problem.

In our problem, we are given a surface mesh with a set of triangles T and a set

of images C. For a specific combination of a key view ckey ∈ C with k matching

partners ck ∈ Ck, we want to predict the chances of successfully reconstructing the

depth of the pixels in which a triangle t ∈ T projects.

Thus, we now end up with the following equation for the overall probability of a

successful match considering all matching partners:

fconf (t, ckey, c
k) =

k∑
i=2

(−1)i · (i− 1) ·
∑

c(i)∈C(i)
k

(
i∏

j=1

fconf

(
ckey, c

(i)
j

)) , (5.1)

where C
(i)
k is the solution space for drawing subsets of i cameras from the available

set of k matching partners, c(i) is one of these subsets and c
(i)
j is one camera of this

subset and fconf

(
ckey, c

(i)
j

)
is the pair-wise MVS Confidence for camera c

(i)
j with

the key camera ckey. We compute this pair-wise MVS Confidence by averaging the

unary confidence values of the two cameras. We extract the unary confidence value

for a triangle t by averaging the pixel-wise confidence predictions of all pixels that

lie inside the projection of triangle t into the individual camera. The confidence

predictor is trained and executed as described in Chapter 3. Note that for improved

efficiency, we also precompute and store the unary confidence values for each camera-

triangle pair in our preprocessing step.

Based on these four fulfillment functions, we define the fulfillment for a triangle
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t as:

f(t, ckey, c
k) = (αfres(t, ckey)+(1−α)func(t, ckey∪ck))·fcov(t)·fconf (t, ckey, ck), (5.2)

where α defines the relative weight between the resolution and uncertainty fulfill-

ment.

With this basis function, we now compute a combined fulfillment score for each

set of drawn matching partners as

f(ckey, c
k) =

∑
t∈Tckey

f(t, ckey, c
k), (5.3)

where ckey is the key camera, ck is the selected set of k matching partners, the

triangle set Tckey is the set of triangles visible in ckey with Tckey ∈ Tz. Tz is a fixed

fraction z of all the available triangle set Tall (i.e. |Tz| = |Tall|/z).

Of all drawn combinations of matching partners, we now select the one that

maximizes this combined fulfillment. The combination of key view and selected

matching partners, we will further call view cluster. We execute this step for all

available images.

5.3 Probabilistic MVS Confidence Extension

In this section, we extend the confidence prediction framework to an arbitrary num-

ber of matching partners. For this purpose, we use a traditional probability tree. In

Figure 5.2 we show such a probability tree for 4 matching partners. In the follow-

ing, we use such a general probability tree to derive a probabilistic formulation for

obtaining a successful 3D measurement from k cameras.

Let us first formalize the probability tree for k cameras as a binary tree with a

depth k. Every depth level d represent more or less what happens if we add a dth

camera to the previous set of d− 1 cameras. Every vertex in the tree represents an

event, which is successful with a probability p(d), where d is the depth of the tree

(also corresponding to the dth matching partner). Let us call a path from the root

vertex to a leaf vertex (i.e. a vertex without child vertices) simply ”branch”.

Now let us grow the binary tree. As we are only interested in having at least 2

successful matches, we can stop growing a branch when it has reached two positive
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𝑃 𝑏2,1 = 𝑝(1) ∙ 𝑝(2) 

𝑃 𝑏3,1 = 𝑝(1) ∙ (1 − 𝑝(2)) ∙ 𝑝(3) 

𝑝(1) 𝑝(1) 
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Figure 5.2: Probability tree. We formulate the MVS Confidence for a key view with k
cameras as matching partners as a stochastic process (here k = 4). Each edge in the tree
relates to an event. For a matching partner d, the event can either be positive (green
color) with a probability p(d) or negative (red color) with a probability p(d) = 1 − p(d).
A positive event corresponds to a successful match between the matching partner d and
the key view at a specific pixel location, which results in a 3D measurement that conforms
with our uncertainty model. For obtaining a reliable 3D reconstruction, we require at least
two matching partners with a successful match. Thus, each path in the tree with at least
two positive events can be seen a successful branch. Each successful branch by,x is defined
by the first two positive events at level x and y respectively. The overall probability of a
successful measurement can be obtained by summing all successful branches. Note that
the order events in the tree is irrelevant for the overall probability, which can be better
seen in Equation 5.7.

events (we will further call this kind of branch as ”successful branch”). As such a

successful branch has always exactly two successful events, we will further denote

a successful branch as by,x, where y is the depth/id of the last successful event and

x is the depth/id of the preceding successful event. This means that only branches

with less than 2 successful events are grown in the next depth level. It follows that

in the process of growing from level d − 1 to d (i.e. adding a dth camera), the tree

gains exactly d − 1 new successful branches (one for each camera already in the

tree), while all old successful branches remain unchanged. It also follows that each

new successful branch (bd,i) has exactly one previous camera i (with 1 ≥ i < d)
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with a successful event associated. Thus the probability along such a new successful

branch bd,i is given by:

P (bd,i) = p(d) · p(i)
∏

j∈{1,2,...,d−1}\i

(1− p(j)), (5.4)

where p(x) is the probability of a successful match with camera x. If we now add

up all branches with 2 successful events at level d, we end up with the following

probability for obtaining at least 2 successful events:

Pmin2 =
d∑
i=2

i−1∑
a=1

P (bi,a) =
d∑
i=2

i−1∑
a=1

p(i) · p(a)
∏

j∈{1,2,...,i−1}\a

(1− p(j)) (5.5)

Now we can expand the equation to

Pmin2 =
d∑
i=2

p(i) ·

( i−1∑
c=1

p(c)

)
− 2

 ∑
c(2)∈C(2)

i−1

p
(
c

(2)
1

)
· p
(
c

(2)
2

)
+3

 ∑
c(3)∈C(3)

i−1

3∏
a=1

p
(
c(3)
a

)− ...+ (−1)i(i− 1)

 ∑
c(i−1)∈C(i−1)

i−1

i−1∏
a=1

p
(
c(i−1)
a

)
 ,

(5.6)

where C
(x)
i−1 is the solution space for drawing subsets of x cameras from the available

set of i− 1 cameras, c(x) is one of these subsets and c
(x)
a is one camera of this subset.

Now we can contract the equation again to

Pmin2 =
d∑
i=2

(−1)i · (i− 1) ·
∑

c(i)∈C(i)
d

(
i∏

a=1

p
(
c(i)
a

)) (5.7)

Note that this equation and Equation 5.1 are equivalent and that only the pa-

rameterization was changed; i.e. d 7→ k, Pmin2 7→ fconf (t, ckey, c
k) and p

(
c

(i)
a

)
7→

fconf

(
ckey, c

(i)
a

)
.
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5.4 Next-Best View Ranking

In general, image acquisition for photogrammetric reconstruction is done with a

lot of redundancy to ensure that the whole scene is sufficiently covered. However,

a drawback of this acquisition technique is that some images do not contain any

additional information compared to their neighbors. Finding the best and mini-

mal subset for a sufficiently complete reconstruction is a very hard task. In fact,

subproblems of this task are known to be NP-hard. E.g. if an oracle told us that

the minimal number of key views for sufficiently covering the scene is n, we would

still have to solve the NP-hard maximum coverage problem [27]. While solving this

problem optimally is computationally intractable (unless P = NP), there exist ap-

proximation approaches with theoretic quality guarantees for the found solution if

the function is a nonnegative monotone submodular function. Thus, let us define

such a function with the following three conditions [69]:

Definition 5.4.1. (Submodularity) A set function f : 2V → R is submodular if for

every subset A,B ⊆ V (where V is a finite set) it holds that,

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B). (5.8)

Definition 5.4.2. (Monotonicity) A set function f : 2V → R is monotone if for

every subset A ⊆ B ⊆ V (where V is a finite set) it holds that,

f(A) ≤ f(B). (5.9)

Definition 5.4.3. (Nonnegativity) A set function f : 2V → R is nonnegative if for

every subset A ⊆ V (where V is a finite set) it holds that,

f(A) ≥ 0 (5.10)

If an objective function f fulfills these three conditions, then a greedy algorithm

is guaranteed to select n views such that the reached objective value is within 63%

of the optimal objective value for the same amount of views [94] (see [69] for a good

explanation of the proof and all implications). This fact (and the fact that n is not

easily estimated) motivated us to solve this problem with a greedy algorithm and a

nonnegative monotone submodular objective function.
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Objective function. Now let us formalize the objective function which we aim to

maximize, i.e. the overall fulfillment, as:

fo(V, T ) =
1

|T |
∑
t∈T

max
v∈V

f(t, v), (5.11)

where T is the set of all mesh triangles, |T | is the size of this set, t is one of these

triangles, V is the set of view clusters and v is one of these view clusters. f(t, v) is

the triangle fulfillment as defined in Equation 5.2 with v = {ckey, ck}.

Relation to other problems. If we consider that V and T are fixed, we see that

this optimization problem is closely related to the well known facility location prob-

lem [69]. Here, the triangles t are the customers and the view clusters v are the

facilities and each customer (triangle) selects the facility (view cluster) with the

highest value (fulfillment). As f(t, v) ≥ 0 for all t and v, it also follows that the

objective function fo(V, T ) is a nonnegative monotone submodular function [69].

This means that the quality guarantees of [94] for a greedy algorithm apply to our

objective function. Note that we can also relate our problem to another NP-hard

problem, i.e. the maximum coverage problem [27]. If we consider the special case

that f(t, v) = 1 if t is visible from view cluster v and f(t, v) = 0 otherwise for all

v ∈ V and t ∈ T , our problem reduces to the maximum coverage problem (i.e.

maximizing the number of all observed/covered triangles). This means our problem

is a generalization of the maximum coverage problem, which means that our prob-

lem is still NP-hard despite having a nonnegative monotone submodular objective

function.

Algorithm. We formulate our ranking procedure as a greedy algorithm. In each

iteration, we select the next-best view cluster, i.e. the view cluster with the highest

fulfillment gain. We define this gain for a view cluster vi as:

g(vi, V
′, T ) = fo({V ′ ∪ vi}, T )− fo(V ′, T ), (5.12)

where V ′ is the set of already selected view clusters. For an efficient solution to this

problem, we propose the following algorithm.

Our algorithm first starts by estimating the visibility between each view/camera
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and the triangle mesh. This visibility information is stored in each triangle (i.e.

each triangle knows which camera has a direct line of sight to it). Based on this

information, we precompute the fulfillments f(t, v) for all triangles t ∈ T with

sufficient camera views (≥ x, related to the coverage fulfillment fcov) and all view

clusters. This fulfillment f(t, v) is then stored within a map in each triangle t.

For each view cluster v, we now compute the initial fulfillment gain g(v, V ′, T )

with V ′ = {} (i.e. an empty set of selected view clusters). Each pair of view cluster

and gain value {v, g(v, V ′, T )} is inserted into a priority queue, where now each view

cluster is ranked by its fulfillment gain. While initializing this data structure has a

complexity of O(n log n) with n = |V |, we can now use lazy updates in each iteration

and avoid a significant number of unnecessary computations.

In each iteration, we now select and pop the top element of the queue, i.e. the

element with the highest fulfillment gain, and add the selected view cluster vs to

the set of selected view clusters V ′. Then we update the current fulfillment for each

triangle t that is observed by vs. This current fulfillment is stored inside the triangle

t and computed as f ′(t, V ′) = maxv∈V ′ f(t, v). Based on this information, we now

lazily update all elements of the priority queue. This means that we select and pop

the top element of the queue and update the fulfillment gain of the corresponding

view cluster vu. We store all such temporarily removed view clusters Vu in a separate

data structure and keep track of the maximum fulfillment gain gmax over all these

values. We can stop the update procedure if gmax ≥ g(vtop, V
′, T ), where vtop is

the current top element of the priority queue. Then all temporarily removed view

clusters Vu are reinserted into the priority queue. Now the next iteration can start.

We terminate if g(vtop, V
′, T ) = 0 or the priority queue is empty.

Note that all computational components (the visibility estimation, the confidence

prediction and the fulfillment computation) are computed only once at the beginning

of algorithm and the execution of the actual MVS algorithm is avoided altogether.

This makes the ranking procedure very light weight in terms of computation time.

The final output of this ranking procedure is an ordered list of view clusters (key

views with matching partners) together with the estimated fulfillment up to this

point.





Chapter 6

Experiments

We split our experiments into four parts. First, we validate our approach for au-

tomatic training data generation for two-view stereo. There are two main reasons

for this choice. First of all, there exists more ground truth data for two-view stereo

than for multi-view stereo. Second, the confidence measures in two-view stereo have

a long standing tradition (see Section 2.3) and allow us to evaluate the quality of

our training data in terms of confidence measuring performance.

In Section 6.2, we then apply our training scheme to MVS on the task of preserv-

ing prehistoric rock art in an environment dominated by vegetation. Within this

scenario, we then analyze what the system learned about certain scene structures

in relation to two very different MVS algorithms. In the same environment, we

then also evaluate our approach for Automated Image Acquisition (Section 6.3) and

MVS Prioritization (Section 6.4), and demonstrate that both applications strongly

benefit from the MVS Confidence Prediction in terms of reconstruction quality and

efficiency. In the latter experiment (Section 6.4), we also evaluate the generaliza-

tion of the MVS Confidence Prediction across different domains to demonstrate the

stability of our approach towards structures that were never seen in training.

73
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6.1 Training Data Generation for Two-View Stereo Confi-

dence Measures

In our experiments with two-view stereo confidence measures (published in [92]), we

use three publicly available datasets, which are namely the KITTI2012 dataset [42],

the Middlebury2014 dataset [112], and the Strecha fountain dataset [126].

The main focus of our experiments is on the KITTI2012 dataset [42], because

it is well-suited to demonstrate our approach and has already been used for the

evaluation of confidence measures before [46, 97]. The KITTI2012 dataset does not

only let us evaluate the coverage and accuracy of our approach, but also lets us

highlight the usefulness of our approach in boosting the performance of confidence

measures by simply training them on the automatically generated training data.

6.1.1 General Setup

For all experiments, we used the same set of parameters. The parameter αmin (= 10◦)

can be used to adjust the trade-off between coverage and label error. As a general

rule, we can say that if one increases this parameter, the false positive rate becomes

lower, but at the same time the label coverage decreases as well. The parameter σmax

(= 2) can be used to express desired accuracy of a query algorithm as a multiple of

the σ bound.

As query algorithms, we use two different stereo algorithms. The first algorithm

is a Semi-Global Matching (SGM) [54] implementation by Rothermel et al. [108]

which uses the census transform for computing the matching cost. As a second

algorithm, we chose the Slanted Plane Smoothing (SPS) approach of Yamaguchi

et al. [139]. We chose this approach because it shows a very good performance on

the KITTI datasets [42, 81], and gives a completely different output than a SGM

(piece-wise planar super pixels vs. unrestricted transitions).

For analyzing the benefit of our approach for learning, we have chosen three

different machine-learning based confidence measures [46, 97, 125]. All three ap-

proaches use random forests, which made it possible to re-implement them in a

common framework. The difference between the approaches lies in which hand-

crafted features they feed to the random forest. Ensemble learning [46] uses the

peak ratio, entropy of disparities, perturbation, left-right disparity difference, hor-
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trees max depth min leaf size split criterion #samples/node #thresholds

20 20 100 standard entropy 2000 500

Table 6.1: Random Forest Parameters.

izontal gradient, disparity map variance, disparity ambiguity, zero mean sum of

absolute differences and the local SGM energy, which results through consideration

of multiple scales in a feature vector of 23 dimensions. Ground Control Point (GCP)

learning [125] uses eight features, which are the matching cost, distance to border,

maximum margin, attainable maximum likelihood, left-right consistency, left-right

difference, distance to discontinuity and difference with median disparity. Park et

al. [97] use a feature vector with 22 dimensions, which contains the peak ratio, naive

peak ratio, matching score, maximum margin, winner margin, maximum likelihood,

perturbation, negative entropy, left-right difference, local curvatures, local variance

of disparity values, distance to discontinuity, median deviations of disparities, left-

right consistency, magnitude of image gradient and the distance to border.

For the implementation, we used the publicly available random forest framework

of Schulter et al. [118]. For training the forest, we used the same settings in all our

experiments. We used 20 trees with a maximum depth of 20 and a minimum leaf

size of 100. For choosing a split function we use the standard entropy and draw

2000 random samples per node and 500 random thresholds per feature channel. All

parameters are summarized in Table 6.1. For every training setup, we balanced

the dataset on image basis. This means that every image contributed as many

positive training examples as negative examples. For the final evaluation, we always

considered the complete image. For obtaining the pose estimation on the KITTI2012

dataset, we use the Library for Visual Odometry 2 (LIBVISO2) [43].

6.1.2 KITTI Dataset

We use the KITTI2012 dataset [42] to evaluate three properties of our ground truth

generation, which are namely accuracy, coverage and training performance. The

first two, we obtain by comparing our automatically generated label images to label

images produced with the laser ground truth provided for the training dataset.

For the SGM [108] data, we reach an accuracy of 97.3% (STD: 1.4%) at an

average coverage of the laser ground truth of 47.8% (STD: 11.8%). For the SPS [139]
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Figure 6.1: Sparsification curves for sequence 102 of the KITTI training dataset. We
display all combinations of query algorithm (SGM [108] and SPS [139]), confidence measure
(Ensemble [46], GCP [125], Park [97]) and training data (Laser and Ours). As a baseline
method we also show the Left-Right disparity Difference (LRD).

data, we obtain an accuracy of 95.3% (STD: 5.7%) at an average coverage of 48.6%

(STD: 13.4%). Note that the coverage mostly depends on the camera motion. The

ideal case to demonstrate our approach would be a circular motion around an object,

whereas no motion will result in no labeled images. As the KITTI dataset contains

some sequences with very little motion, this results in a high standard deviation of

the coverage.

While accuracy and coverage are relevant, the much more interesting factor is

how well the data is suited for training an algorithm. To analyze this factor, we

benchmark the change of the confidence measuring performance of three recent

confidence measures, which we further refer to as Ensemble [46], GCP [125] and

Park [97]. For benchmarking this performance, we evaluate the Area Under the

Sparsification Curve (AUSC) as in [46, 60, 97]. A sparsification curve plots the bad

pixel rate over the sparsification factor. For drawing the curve, the pixels are sorted

by confidence values and always the lowest values are removed. Sparsification curves

for frame 102 of the dataset are shown in Figure 6.1.

For training on the laser ground truth, we follow the evaluation protocol of [46,

97]. This means that we select the frames 43, 71, 82, 87, 94, 120, 122 and 180 of

the KITTI training dataset for training. The labels correct/incorrect are set by

comparing the query depth maps with the laser ground truth using the standard
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Figure 6.2: Qualitative results for sequence 102 of the KITTI training dataset. In the first
column,we show the depth maps of SGM [108] and SPS [139] together with the color input
image. The second column shows the resulting label images once produced with the laser
ground truth (Laser) and once with our approach (Ours). Note that our approach only
assigns a positive label to parts of the scene that are observed under significantly different
view points (the car is making a turn to the left in the sequence). The remaining 3 columns
show the confidence output of Ensemble [46], GCP [125] and Park [97] once trained on
Laser and once on Ours. The confidence ranges from low (black) to high (white). Note
the confidence output is much smoother for Ours and contains less artifacts (especially for
GCP).

three pixel disparity threshold. Further on, we will mark a confidence measure

trained on this data with the suffix ”Laser”. As our approach requires multiple

images that view the same scene, we use the 195 sequences of 21 stereo pairs of

the KITTI testing dataset for automatically generating our label images. Further

on, we will mark a confidence measure trained on this data with the suffix ”Ours”.

Example label images can be found in Figure 6.2. For testing, we once again follow

the protocol of [46, 97] and evaluate the confidence measuring performance on the

KITTI training dataset minus the eight sequences that were used for training on

the laser ground truth. Thus, there is no overlap between training and testing for

Laser as well as Ours. Also note that Ours has not seen a single ground truth laser

scan. In training, we used all available training samples from the laser ground truth

and roughly ten times this number from our automatically generated data. Note

that this is less than one percent of all available training data. With this setup our

implementation used ∼20GB of memory for training.

Results. In Figure 6.3 we show the mean, minimum and maximum AUSC values of

the three confidence measures for all combinations of query algorithm and training

data. In Tab. 6.2 we show the AUSC for each approach divided by the optimal

AUSC over all evaluated sequences of the KITTI dataset.
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Figure 6.3: Mean, minimum and maximum AUSC values over the three confidence mea-
sures (Ensemble [46], GCP [125], Park [97]) for all frames of the KITTI training dataset
minus the eight frames used for training. We display all combinations of query algorithm
(SGM [108] and SPS [139]) and training data (Laser and Ours). The frames were sorted
according to mean AUSC value of Ours. As a baseline method we also show the Left-Right
disparity Difference (LRD). Note that Ours (red) is lower than Laser (blue) in most cases.
For SGM, all approaches perform always better than LRD if they are trained on Ours,
while if they are trained on Laser they sometimes perform worse (e.g. 142). For SPS
stereo, the number of severe errors is significantly higher for Laser than for Ours (compare
blue versus red peaks above 160).
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LRD Ens.[46] Park[97] GCP[125]

SGM-Laser 2.81 1.97 1.93 2.50

SGM-Ours 2.81 1.95 1.92 2.45

Reduction - 0.94% 0.78% 2.02%

SPS-Laser 7.60 5.86 6.23 8.28

SPS-Ours 7.60 5.43 5.61 7.95

Reduction - 7.28% 9.93% 3.98%

Table 6.2: Area under the sparsification curve divided by optimal area on the KITTI
dataset. We display all combinations of query algorithm (SGM [108] and SPS [139]),
confidence measure (Ensemble [46], GCP [125], Park [97]) and training data (Laser and
Ours). The reduction is computed as 1−AUSCOurs/AUSCLaser.

In all cases, using our training data resulted in a performance boost. In some

cases the AUSC even dropped by 10%. A visual comparison of the difference in the

confidence output can be found in Figure 6.2. Note that our training data leads to

a smoother confidence output with significantly fewer artifacts.

As a matter of completeness, we executed our training data generation only on

the eight same sequences that were used for training Laser. One has to note that the

coverage of our approach depends on the camera motion and one of the sequences

(180) contains no useful motion, which leaves our approach with 7 sequences. Using

only this limited amount of training data, the AUSC increased by ∼10% for all

approaches compared to using the 195 testing sequences. This is not surprising,

as each of our training images can be considered as weaker compared to the laser

ground truth, in the sense that consistency alone cannot uncover all errors and that

the coverage of our labeling depends on the camera motion. But this experiment

clearly shows that using ten times more ”weak” training samples, which can be

cheaply generated with our method, still leads to a better performance than fewer

”strong” training samples.

6.1.3 Middlebury Dataset

The Middlebury2014 [112] dataset contains a set of 23 high resolution stereo pairs

for which known camera calibration parameters and ground truth disparity maps

obtained with a structured light scanner are available. The set is divided into 10

stereo pairs for training and additional 13 stereo pairs that we used for testing. The

images in the Middlebury dataset all show static indoor scenes with varying diffi-
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Figure 6.4: Area under the Sparsification Curve (AUSC) values for all 13 frames of the
additional Middlebury dataset. The frames were sorted according to the optimal area
under the curve value. We display all combinations of query algorithm (SGM [108] and
SPS [139]), confidence measure (Ensemble [46], GCP [125], Park [97]) and training data
(Kitti [42] and Middle [112]). As a baseline method we also show the Left-Right disparity
Difference (LRD). Note that the red symbols (Middle) are in many cases drastically lower
than their blue counter parts (Kitti).

culties including repetitive structures, occlusions, wiry objects as well as untextured

areas.

Due to the limitation that only stereo pairs and no multi-view sequences are

provided, we are not able to evaluate the accuracy performance of our ground truth

generation. But we can still evaluate the performance of the confidence measures

previously learned on the KITTI to evaluate their generalization performance from

outdoor to indoor scenes. Figure 6.4 shows the resulting AUSC curve for SGM [108]

and SPS [139], respectively. In Tab. 6.3 we show the AUSC over the optimal values.
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LRD Ens.[46] Park[97] GCP[125]

SGM-Kitti 2.10 1.24 1.25 1.78

SGM-Middle 2.10 1.19 1.20 1.50

Reduction - 3.29% 3.30% 15.86%

SPS-Kitti 1.41 1.48 1.81 2.05

SPS-Middle 1.41 1.39 1.42 1.44

Reduction - 6.32% 21.63% 29.82%

Table 6.3: Area under the sparsification curve divided by optimal area on the Middlebury
dataset. We display all combinations of query algorithm (SGM [108] and SPS [139]),
confidence measure (Ensemble [46], GCP [125], Park [97]) and training data (Kitti [42]
and Middle [112]). The reduction is computed as 1−AUSCMiddle/AUSCKitti.

Results. For all combinations of query algorithm and confidence measure, training

on the Middlebury increased the performance compared to training on the KITTI

and evaluating on the Middlebury. The percentage of area reduction strongly de-

pends on the used confidence measure. We assume that the large variation in area

reduction (3%-30%) is caused by features which are very setup specific (e.g. dis-

tance to border). Despite the large reduction variation, all approaches benefit from

training on the Middlebury rather than the KITTI. This means that tuning towards

a special setup can make a large difference in performance.

6.1.4 Strecha Dataset

To further demonstrate the value of our approach, we analyze the sparsification

performance in a completely different setup. For this experiment, we used the multi-

view stereo dataset of Strecha et al. [126]. This dataset provides images together

with camera poses and two ground truth meshes. From the two available meshes,

the Herz-Jesu mesh is a good example that also active sensors have their limitations.

In this mesh, all the thin structures (hand rails and bars) are simply missing. As

these errors would cause problems in the evaluation, we only used the second dataset

(Fountain), which does not contain any thin structures. This dataset consists of 11

images aligned to the ground truth mesh. For this experiment, we split the images

into a training set containing 3 image pairs and a test set with 2 image pairs. The

training pairs are made of images 0+1, 4+5 and 8+9 and the testing pairs of 2+3

and 6+7. Each pair was then rectified using [108]. As the SPS implementation [139]

failed to produce any reasonable output on this kind of data, we limit this experiment
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Figure 6.5: Sparsification curves for testing stereo pair on the Strecha fountain dataset.
We display all combinations of confidence measure (Ensemble [46], GCP [125], Park [97])
and training data (Kitti [42], Middle [112] and Ours) for the SGM output [108]. As a
baseline method we also show the Left-Right disparity Difference (LRD).

LRD Ens.[46] Park[97] GCP[125]

Kitti RA 2.12 1.81 1.91 3.54

Middle RA 2.12 1.43 1.59 2.60

Ours RA 2.12 1.40 1.51 2.01

Kitti Red - 22.34% 21.04% 45.30%

Middle Red - 1.86% 5.02% 23.53%

Table 6.4: Area under the sparsification curve divided by optimal area (Relative Area
RA) on the Strecha fountain dataset. We display all combinations of confidence measure
(Ensemble [46], GCP [125], Park [97]) and training data (Kitti [42], Middle [112] and
Ours) for the SGM output [108]. The reduction is computed as 1 − AUSCx/AUSCOurs
for each confidence measure.

to the SGM [108] reconstruction.

Results. In this setup our ground truth generation reached an accuracy of 95.1%

(STD: 2.6%) at a coverage 30.4% (STD: 5.0%). In Figure 6.5 we show the resulting

two sparsification curves and the AUSC reduction statistics in Tab. 6.4. All com-

binations of query algorithms and confidence measures performed better trained on

the Middlebury than on the KITTI. In all cases, the performance was further in-

creased by tuning them specifically to this scene in using our automatically generated

training data.
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6.1.5 Discussion

In this series of experiments, we have shown that confidence measures work better

if they are trained and executed in the same domain. Our method provides a way of

obtaining the necessary training data at a low cost, which makes it possible to acquire

training data in high diversity and quantity. Although we can make no guarantees for

the correctness of each generated training sample, our experiments demonstrate that

average quality of the generated samples is high enough to obtain strong confidence

measures even in the complete absence of traditional ground truth. This property is

very important, as in our following experiments we will enter a domain, where it is

close to impossible to obtain reliable ground truth for all present scene structures.
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6.2 MVS Confidence Prediction

In this section, we move from two-view stereo confidence measures to MVS Confi-

dence Prediction. We would like to emphasize the difference between the two terms.

A confidence measure estimates the reliability of a depth measurement in a fixed

setup given both images, the complete cost volume and two complete depth maps.

In contrast, MVS Confidence Prediction aims to predict the reliability of a future

depth measurement – without having the real measurement or even all necessary

images at prediction time. In the first part of this section, we show what this differ-

ence means in hard numbers on the KITTI dataset [42]. In this experiment, we use

our complete MVS Confidence Prediction framework (including Semantic Texton

Forest (STF) [122]) instead of two-view stereo confidence measures. In the second

part, we use a challenging multi-view dataset to evaluate what the system can learn

about two different MVS approaches in relation to a variety of scene structures and

camera constellations without any ground truth.

6.2.1 KITTI2012 Dataset

For learning, we follow the same procedure as in the previous chapter and use the

195 sequences of 21 stereo pairs of the testing dataset for automatically generat-

ing our label images. We treat each stereo pair as a distinct cluster and use a

semi-global matcher with left-right consistency check (SURE [108]) as the query al-

gorithm. As before, we evaluate the label accuracy and the average Area Under the

Sparsification Curve (AUSC), although with a slightly different setup. While stereo

confidence measures try to decide which depth values cannot be trusted from an

already computed depthmap, our aim is to predict which kind of structures cause

more problems than others. Thus, we remove all regions from the Lidar ground

truth, which are not visible in both color images (including object occlusions).

Results. In Figure 6.6 we show the resulting receiver operator characteristic (ROC)

of the confidence prediction as well as the label accuracy. With this setup we reach

a labeling accuracy of 98.7% while labeling 35% of the ground truth pixels (which

is very similar to the results in the previous chapter). Although the Lidar ground

truth and our approach label very different regions of the image, the accuracy and

the receiver operating characteristic of the predicted confidence (Figure 6.6) are very
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Figure 6.6: Two-View Stereo Experiment. On the left side, we show the receiver operating
characteristic of the predicted confidence in relation to the Ground truth Labels (GL)
and the Automatically generated Labels (AL). On the right side, we show the obtained
classification accuracy (ACC) for three different combinations of query labeling (Qry) and
reference labeling (Ref). PL stands for Predicted Labels.

similar for both reference labelings. This means that the missed regions do not seem

to have a significant impact on what the system learns. For the sparsification, we

obtain a relative AUSC of 3.15 (obtained AUSC divided by optimal AUSC). This

means that the AUSC is 39% lower than random sparsification with 5.15. This is

a strong indication that the system learned to predict regions which are difficult to

reconstruct for the semi-global matcher. In Figure 6.7, we show an example of a

systematic problem learned by our approach.

For the matter of completeness, we also analyze the sparsification performance

of the STF [122] with the exact same setup as in the previous chapter (including the

training data generation). With this setup, STF reaches a relative AUSC of 6.63.

It is not surprising that STF cannot reach the sparsification performance of stereo

specific sparsification approaches (e.g. left-right difference with 2.81), as the STF

only uses color information of a single image and thus has no chance to reason about

occlusions. Nevertheless, the STF was able to extract some high level knowledge in

which regions the chances of failure are higher and thus still obtains a 31.4% lower

AUSC value than random sparsification (9.65).
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Figure 6.7: Example of problems learned with our MVS Confidence Prediction approach
on the KITTI dataset. The used algorithm (SURE [108]) seems to have a systematic
problem at shadow edges, where the high gradient at the shadow edge leads to wrong
depth estimates in the shadow region. In the bottom image, we visualize this problem by
unprojecting the depth map and showing the resulting point cloud. Instead of a flat and
continuous road, the algorithm underestimates the depth in the transition to the shadow
region. This leads to wrong measurements that ”float” over the road surface. Note that the
confidence prediction in this region is very low (dark), which indicates that our approach
successfully learned to detect this systematic problem from a single color image before the
reconstruction occurs.

6.2.2 Valcamonica Dataset

For the second dataset, we have chosen a reconstruction scenario in a closed real-

world domain, where the task is the 3D reconstruction of prehistoric rock art sites

in the Italian valley of Valcamonica. The recorded dataset consists of over 5000
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Figure 6.8: Examples of the Valcamonica Dataset. In the top row, we show three images
from far away, in the middle, three slanted views and ,in the bottom row, three close-ups.
All sites contain a limited set of 3D structures (mainly rock, grass, trees, bridges and
markers).

images of 8 different sites (see Figure 6.8). The images contain a great variety of

viewing angles and acquisition scales. The camera to scene distance varies from 2

to 50 meters. The whole environment contains a well-defined set of 3D structures

(mainly rock, grass, trees, bridges, signs and markers). These structures dominate

nearly all sites in the region (hundreds), which makes this a perfect example for

learning and predicting domain specific properties of a query algorithm.

For generating camera triplets, we used t = 5 triangulation bins and i = 20000

iterations. The lowest triangulation angle bin starts at a minimum angle of 4◦ and

ranges to double that value, where the next bin starts. On each resulting triplet,

we execute a query algorithm three times at different image resolutions (levels 1, 2

and 3 of an image pyramid). For defining sufficiently different view points, we used

the a minimum angle of αmin = 10◦ and a minimum scale difference of smin = 2.

For assessing if measurements support each other, we used a two sigma bound (i.e.
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σmax = 2).

We evaluate two query algorithms for the dense 3D reconstruction. The first

query algorithm is based on semi-global matching SURE-3 [108], but can use more

than two views for improving the reconstruction accuracy. In contrast, our second

query algorithm PMVS-3 [32] tries to densify an initial sparse 3D reconstruction

through iterative expansion. As it enforces the visibility consistency already in the

reconstruction procedure, many parts of the scene are simply missing in the recon-

struction output. We noted that the number of seed points with only 3 cameras is

very low, and thus we also executed PMVS with its own clustering algorithm [31]

and a much higher cluster size of 40 cameras (denoted as PMVS-40). Due to in-

sufficient overlap, we assume that all measurements are correct and only used the

missing data detection for obtaining negative training data in this setup.

Results. For the quantitative evaluation of this experiment, we performed leave-

one-out cross validation across the 8 sites, i.e. we train on 7 sites and test on the

remaining. This led to the following classification accuracies (with standard devia-

tion): PMVS-40: 76.4% (STD: 5.1%), PMVS-3: 81.1% (STD: 4.2%) and SURE-3:

65.3% (STD: 6.1%).

Within this context, we also analyzed the influence of regular grid sampling on

the prediction performance. For small grid sizes, the classification error stays nearly

the same (relative error increase is below 1% for 4 pixels), while for larger grid sizes

it declines gradually (below 3% for 16 pixels and below 7% for 64 pixels). This

means that regular sampling can drastically reduce the computational load of the

prediction with only a small decrease of the prediction performance.

But much more important than these numbers seems the question: What did the

system learn about the different algorithms? To answer this question, we display

the confidence prediction for certain details in the dataset in Figure 6.9.
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Figure 6.9: MVS Confidence Prediction. From top to bottom: Zoomed input images, gradient images and the predicted
confidence (PMVS-40, PMVS-3, SURE-3). If we compare the gradient images with the confidence prediction, it is apparent that
much more than simple gradients have been learned. While PMVS seems to require a minimum image gradient (sharp image (7)
vs. motion-blurred image (8)), the consistency of SURE does not depend so strongly on this property. This seems reasonable as
PMVS requires the image gradient to constrain its local patch optimization, whereas SURE can consistently interpolate regions
with low gradient through semi-global matching. For both approaches, the confidence of smooth surfaces (e.g. rock and bridge)
is significantly higher than for high frequency structures like vegetation. Grass seems to be a very special case. If it is shortly
trimmed and viewed from far above (3), it behaves similar to random texture and can be nicely reconstructed. However, if it
is too long or viewed more closely (4), the high-frequency structure of grass is more dominant and it becomes nearly impossible
to reconstruct. This property was captured for both approaches. One of the most remarkable differences between the two
approaches is that SURE’s confidence is low at shadow boundaries (5+6), whereas PMVS’ confidence rises. For SURE even
object boundaries seem to be implicitly encoded in the confidence (2), as the output at discontinuities is often incorrect.
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Figure 6.10: Dependence of the confidence prediction on the triangulation angle and
the 3D structure. On the right, we display the patches (50 × 50px) which we used to
produce the curves. These curves show the confidence prediction within angular bins (20
bins between min and max). The curves stop if less than 1% of the collected triangulation
angles fall within a bin. For both approaches (SURE-3 and PMVS-3), there is a significant
difference between smooth surfaces (marker, bridge, stone) and high frequency structures
(tree, grass). The predicted confidence is to some extent correlated with the degree of non-
planarity of a structure. While grass viewed from far away is quite easy to reconstruct,
the same grass viewed close up becomes very hard to reconstruct. For both approaches,
the chance for reconstructing highly non-planar structures above 30◦ is virtually zero.

For all setups, our approach has learned that vegetation, despite having a strong

image gradient, is harder to reconstruct than smooth surfaces (e.g. rock or bridge).

If we compare PMVS to SURE, we see at first glance that PMVS has overall a lower

confidence. This is mainly due to the fact that PMVS was developed for a larger

number of cameras and the small number of seed points between the three cameras

leads to many missing parts. The most outstanding difference between PMVS and

SURE seems to be shadow object boundaries. For SURE, the confidence values for

shadow boundaries are low, despite the huge gradient at this position. If we look

at images (5) and (6), the both approaches outline the shadow boundaries. While

the SURE confidence is lowered, the PMVS Confidence is higher. In general, it is

quite reasonable to lower the confidence values at shadow boundaries, as the shadows

tend to move quite significantly over the acquisition period. Thus, matching shadow

boundaries leads to wrong depth estimates. We assume that the difference in the

output density is the reason why only SURE seems to have learned this very useful

property.

Now let us analyze what the system learned about the two algorithms in relation

to scene structures and triangulation angle. In Figure 6.10, we show the confidence
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Figure 6.11: Dependence of the confidence prediction on the triangulation angle and the
3D structure with patches of the House Dataset. On the right, we display the patches
(50× 50px) which we used to produce the curves for SURE-3 and PMVS-3. These curves
show the confidence prediction within angular bins (20 bins between min and max). The
curves stop if less than 1% of the collected triangulation angles fall within a bin.

prediction for six different structures. From this experiment we can draw several

conclusions. First, the 3D structure of the scene has a significant influence on

how well something can be reconstructed under a given triangulation angle. The

more non-planar a structure is, the harder it is to reconstruct at large triangulation

angles. Second, the two analyzed approaches react very differently to a change

in triangulation angle. While for SURE the confidence is always highest for very

small angles, PMVS’ confidence stays constant for smooth surfaces. In the case of

non-planarity, SURE is clearly more robust than PMVS.

While it is highly interesting to see what the system ”thinks” about structures

it has already seen, we found it also interesting to evaluate the same for ”un-

seen” structures. Thus, Figure 6.11 shows the same evaluation for patches on a

completely different scenario, i.e. the reconstruction of single family houses in an

sub-urban environment (Note that we will also evaluate our MVS Prioritization ap-

proach in the same environment - see Chapter 6.4). If we compare the curves of

both datasets, we would like to observe a similarity between structures which are

similar in 3D. For most structures, this works very well. For example, for both MVS

approaches the random forest correctly classifies smoother structures (street, grass,

paved way,wooden table, roof and umbrella) and high frequency structures (tree and

hedge). Note that in training the random forest actually never seen the classes street,

paved way, roof or umbrella. For some other structures, where nothing remotely



6.2. MVS Confidence Prediction 93

similar was observed in training, the random forest predicts something unexpected.

E.g., the car lights, the orange wall and wooden bench seem to interpreted as a

high frequency structure (similar to tree or hedge). For pool ripples, both random

forest think that a higher triangulation gives better chance of a good reconstruction.

Overall however, the correct predictions seem to outweigh the incorrect predictions,

which indicates a reasonable generalization performance. This indication is further

strengthened by our experiments on MVS Prioritization in Chapter 6.4.

6.2.3 Discussion

In this section, we first evaluated the difference between two-view confidence mea-

sures and our MVS Confidence Prediction with Semantic Texton Forests (STFs).

This evaluation has shown two things. First, that two-view confidence measures,

which have both images, the complete cost volume and two complete depth maps at

their disposal, are much more powerful than our MVS Confidence Predictor which

only uses a single color image for its prediction. Second, despite this extremely lim-

ited input, the MVS Confidence Predictor was able to detect systematic problems

of the stereo algorithm. E.g. it correctly learned that there are problems with the

depth estimation at shadow boundaries. This means that even from a single color

image, it is possible to learn general problems of an algorithm.

In the second part of this section, we analyzed what the MVS Confidence Predic-

tion can learn about two different MVS algorithms and what this tells us about these

two algorithms. First of all, this experiment has shown that there is a significant dif-

ference between the two MVS algorithms. Second, the MVS Confidence seems to be

strongly influenced by the triangulation angle and the individual scene structures.

PMVS, which tries to locally optimize patches in 3D, seems to have significantly

more problems with reconstructing high frequency structures (such as vegetation)

than SURE, which is based on semi-global matching with a census transform cost.

However, through the local patch optimization PMVS’ behavior is more stable on

well-textured planar structures. In general, we see that high frequency structures

(such as vegetation) are more likely to be correctly reconstructed at a low triangu-

lation angle, while smooth surfaces (such as wood planks) can also be reconstructed

at much larger angles.

In the following experiments, we will use the MVS Confidence Prediction to
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improve the input for the MVS reconstruction step (i.e. the images and their con-

stellation). This approach allows us to avoid bad image constellations with respect

to the scene structures and the given MVS algorithm and thus allows us to obtain

high quality 3D reconstructions with a high efficiency.
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Figure 6.12: In this experiment, we aim to reconstruct the archaeological site Seradina
Rock 12C with some of the surrounding vegetation. The region of interest is marked
in red. Related to this experiment, we show the work flow from a user’s perspective in
Video [86].

6.3 Automated Image Acquisition for Multi-View Stereo

The main aim of our acquisition approach is to record images in such a way that the

MVS algorithm can reconstruct the scene of interest with as much detail as possible

and at the same time fulfill a set of quality constraints, such as ground resolution

and 3D accuracy. One of the targeted application areas of the resulting 3D model is

a virtual reality environment, where a user can visit the archaeological sites from a

remote location. To enable an immersive user experience, we are not only interested

in completely reconstructing the smooth surfaces, but we also want the approach

to reconstruct as much as possible of the surrounding environment (including the

vegetation).

6.3.1 Experimental Procedure

For evaluating our image acquisition approach, we focus on one site in Valcamonica,

namely Seradina Rock 12C. The rock surface (17×13 m) is covered with prehistoric
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rock carvings and is partly occluded by the surrounding vegetation (Figure 6.12).

We placed 7 fiducial markers in a circle around the rock of interest and measured

them with a Leica total station. These markers can be automatically detected in

the images and are used for geo-referencing the offline reconstructions [109]. Ad-

ditionally, a ground truth mesh of the rock (not the surroundings) was obtained

through terrestrial laser scanning (TLS) in the same coordinate system two years

before. The mesh has a resolution of 8 mm edge length and the accuracy of the

laser scanner (Riegl VZ-400) is 5 mm. We use this mesh to evaluate the resulting

3D accuracy.

To evaluate our image acquisition approach, we first run different view planning

algorithms on-site and then analyze the effective reconstruction output, which is

computed off-site. As we also desire a reconstruction of the surrounding environment

(which is dominated by vegetation), we use SURE [108] as MVS algorithm.

For this experiment, we run three versions of the proposed approach. The first

version is our full approach (F5x4), where we let the algorithm plan 4 camera triplets

per iteration for a total of 5 iterations. In the second version (F1x20), we let

our approach plan the same number of total triplets (20) but in a single iteration,

i.e. we disable the incremental geometry updates. The third version (NP5x4) is

exactly the same as F5x4 but without the prediction to constrain the triangulation

angle. As a baseline method, we use grid planning with 80 percent overlap. For the

grid computation, we estimate the dominant plane in the region of interest of the

mesh reconstruction. All approaches share the same set of parameters. The quality

requirements were set to x = 3, gd = 8 mm and ad = 8 mm with α = 0.5. The safety

distance was set to 5 m at a maximum octree [73] resolution of 2 m and the minimum

camera overlap for registration to omin = 50%. The triangulation angle was binned

in b = 9 steps of 5◦ from 0◦ to γmax = 45◦. For the inverse visibility estimation we set

the parameters such that the planning approximately takes 5 seconds per planned

triplet, i.e. Nt = 2000, Np = 5000 and Nv = 200 with φ = 120◦. This parameters

resulted in an effective execution time per triplet of 5.98 seconds (STD: 2.19) over all

experiments on a HP EliteBook 8570w. The confidence was evaluated on a regular

grid with a step size of 8 pixels, which resulted in a confidence prediction time of

∼2 sec/image. We acquire the images with a Sony Nex-5 16Mpx camera mounted

on an Asctec Falcon8 octocopter.

To evaluate the coverage and the quality fulfillment, we first obtain a geo-
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Init Grid F5x4 F1x20 NP5x4 G+F5x4 G+F1x20 G+NP5x4

cov 53.5± 1.2 56.0± 1.2 65.6± 1.6 66.6± 1.4 56.7± 1.4 69.5± 1.5 67.0± 1.5 57.2± 1.2

fres 17.9± 1.3 43.9± 2.6 42.2± 2.6 47.5± 2.7 29.3± 2.3 52.8± 2.7 55.3± 2.7 46.8± 2.6

func 15.5± 0.3 22.8± 0.4 21.2± 0.5 20.7± 0.5 19.9± 0.5 27.7± 0.5 26.2± 0.4 25.6± 0.4

f 16.7± 0.8 33.4± 1.5 31.7± 1.5 34.1± 1.6 24.6± 1.4 40.2± 1.6 40.7± 1.6 36.2± 1.5

Table 6.5: Fulfillment statistics in percent. We show the coverage of the region of interest
cov, the resolution fulfillment fres and the uncertainty fulfillment func, as well as the overall
fulfillment f as defined in Sec. 3.3. We display the mean value and the standard deviation
over the three surface meshes. We mark all results within the standard deviation of the
best method with a bold fond. In the first column, we show the results with only the 19
initialization images, then we show the four standalone approaches. The last three columns
show a combination of the standard grid approach (Grid) with the other approaches.

referenced sparse reconstruction from all flights on the day of the experiment (∼500

images). Then we obtain three meshes, one based on [71, 135] and the two others as

described in Section 3.3. As we know that these meshes will contain errors, we only

use these meshes as a guideline for the evaluation. Within the region of interest,

we split all triangles to have a maximum edge length of 8 cm. For each taken im-

age, we first compute the triangle visibility. Then we produce a depthmap from all

SURE 3D points linked to the image. If the measured depth is either larger than or

within 24 cm of the triangle depth, we accept the 3D point as a valid measurement

of the triangle. Based on the links of the 3D measurement, we then compute the

fulfillment of the triangle analog to Section 3.3. Instead of the MVS Confidence

fconf , we use the actual coverage of the triangle. This means for a given triangle,

we project this triangle into the key view and analyze the percentage of pixels with

a valid measurement within the 2D projection of the triangle. Finally, this results

in a set of fulfillment and coverage scores over all triangles in the region of interest.

In field, all approaches were initialized with 19 images taken in grid at a height

of 50 m above the lowest point of the site. The region of interest was marked in

one of the initialization images, such that it is centered on the rock and includes a

few meters of the surrounding vegetation (Figure 6.12). Landing and take-off are

performed manually, while the view plans are executed autonomously by the UAV.

6.3.2 Results

In Figure 6.13, we show the resulting view plans for each approach. For each of our

approach variants, we executed SURE only on the three images of the triplets. Like
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Figure 6.13: Resulting view plans for all approaches. We show traditional grid planning
(Grid), our approach without prediction (NP5x4), our approach with prediction without
geometry update (F1x20) and our full approach (F5x4). The blue cameras are regular or
triplet cameras, while the pink cameras ensure sufficient overlap for sequential registration.

this we can evaluate the general success rate of view planning variants in analyzing on

which triplets SURE succeeded to produce any 3D output. Without the confidence

prediction the success rate is very low (18% for NP5x4). This shows the gap

between theory and practice. While in theory a large triangulation leads to a small

3D uncertainty, the matching becomes much more difficult and only flat surfaces

survive. However, with the proposed confidence prediction we were able to reach

a perfect success rate for our full approach (100% for F5x4), and still reached an

acceptable success rate without the reconstruction updates (80% for F1x20).

In Table 6.5 we display the effective fulfillment statistics of all approaches in the

region of interest. Of the standalone approaches, F1x20 and Grid take the lead, but

are closely followed by F5x4. The worst performance was reached by NP5x4. While

the dense grid performs well on the overall fulfillment, we can see a 10% gap in

the scene coverage, where F5x4 and F1x20 lead with nearly equal results. F1x20

performs slightly better than F5x4, because F1x20 found a sweet spot in the center

above the rock for a single triplet, where it was able to drop below the tree line and

acquire a close up of the rock.

If we combine the results of the dense grid (Grid) with the proposed approach, we

achieve the overall best results. All evaluated measures improve significantly, which

is an indication of a symbiosis between the approaches. This suggests that for the
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Figure 6.14: Error histogram on the rock surface. We show the normalized histograms of
the error distribution and the 1 σ bound in which 68.3% of all measurements lie. Grid
and F1x20 share the same error bound.

given scene (which is quite flat for many scene parts) an initial grid reconstruction

with a subsequent refinement with the proposed approach is recommended. Note

that if the scene complexity increases and a grid plan can no longer be executed

safely (e.g. underneath a forest canopy or indoors), our planning approach is still

applicable.

If we take a look at the error distribution in relation to the ground truth of the

rock surface (Figure 6.14), we can see that our approach and grid planning achieve

very similar results. Note the Grid only covered 87.4% of the rock surface, while

all others covered significantly more: F5x4 covered 97.9%, F1x20 94.7% and NP5x4

94.0% (see Figure 6.15 for more details). This is a very promising result, as we only

allowed our approach to use the planned triplets and no combination between them,

while we put no such restrictions on the Grid approach. Furthermore, many of the

triplets focused on the surrounding vegetation and the overall number of acquired

images by our approach is lower than for the Grid approach (60 vs. 108 images).

Thus, our approach achieved a high accuracy at a higher coverage with fewer images,

which can also be observed visually in Figure 6.16 or in Video [85].

6.3.3 Discussion

In this experiment, we applied our image acquisition approach to a challenging scene,

which is made up of a combination of smooth surfaces (rock and short grass) and

high frequency structures (such as trees and fences). Compared to traditional grid
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planning, we achieve a significantly higher scene coverage (while retaining the desired

3D accuracy) requiring only half of the images. The main key to this significant

performance gain is our MVS Confidence Prediction. This prediction allows us

to plan image constellations, which are perfectly suited for the used MVS stereo

algorithm and thus lets us minimize the number of require images. If we switch off

the MVS prediction, we can see a significant drop in performance. The reason for

this drop is that 3D accuracy term in our fulfillment function pushes the cameras too

far away from each other, such that the theoretical 3D accuracy is high, but the MVS

algorithm is unable to find reliable correspondences. With the MVS prediction, the

system knows the limits of the MVS algorithm with respect to the scene structure

and only plans feasible camera constellations. In the following experiment, we show

that this idea cannot only be used for Automated Image Acquisition, but also to

improve the efficiency of MVS on a fixed set of images.
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Figure 6.15: Distance to the ground truth. On the top we show the ground truth mesh
which has been acquired with terrestrial laser scanning and was partly textured with UAV
acquired images. The other images show the color coded distance of the final reconstruc-
tions to the ground truth mesh. Note that the error of Grid, F1x20 and F5x4 is very
similar, while NP5x4 has a much larger error in the bottom part of the rock. Further
notice that F5x4 has the largest coverage of the rock surface in the lower left corner of the
rock.
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Figure 6.16: We show the resulting reconstructions for the four different approaches. To
eliminate the influence of color in the depth perception, we computed the normals of
the point cloud and show the resulting point clouds also without color. For all triplet
based approaches (NP5x4, F1x20, F5x4) we only show the output of the planned triplets
(without initialization images or additional images for registration). Note that the coverage
underneath the trees is significantly higher with confidence prediction (F1x20 and F5x4).
The bottom row (4a-b) shows a close-up of the rock surface. Note that Grid is overly
smooth, while F1x20 and F5x4 have much sharper edges. NP5x4 has a lot of missing
parts caused by self-occlusion of the rock surface.
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6.4 Multi-View Stereo Prioritization

In this experiment, we move from active vision (where we influence the way images

are acquired) to passive vision (where a fixed set of images is given, which cannot be

enlarged further). In this experiment, we aim to use the MVS Confidence Prediction

to increase the efficiency of the MVS reconstruction process. The main lever for this

improved efficiency is the fact that most MVS datasets are acquired in an over-

complete way. This means that not all images and view points are required to

satisfy the user’s requirements.

In our experiments, we use two different environments. The first environment

contains cultural heritage sites in the valley of Valcamonica, Italy (the same en-

vironment used in the previous experiments). For our experiments, we use our

learning-based confidence predictor (Section 5.2), which was specially trained for

this kind of environment (Section 6.2.2). For evaluation, we then use a test site

which was not included in the training. This allows us to demonstrate the full

potential of our approach in the same environment in which is was trained.

The second environment, we use for evaluation, is a suburban setting of single

family houses. We will use this scenario only for evaluation and not for training.

With this setting, we evaluate the domain generalization properties of our confidence

predictor. I.e. how does the predictor react if it is confronted with structures it has

never seen before? Does it break down or still behave reasonable?

Using these two datasets, we structure our experiments in three main parts.

First, we evaluate only the matching partner selection in Section 6.4.2 and then

only the ranking performance in Section 6.4.3. From both of these experiments,

we then take the best performing baseline approach and evaluate this combination

against our full approach in Section 6.4.4. Finally, we summarize and discuss the

outcome of our experiments in Section 6.4.5.

6.4.1 Evaluation Details

For all our experiments, we use the same confidence predictor. This confidence pre-

dictor was trained for the environment of Valcamonica on 5000 images of 8 different

sites with SURE [108] as MVS algorithm (Section 6.2.2). Note that this dataset

does not have any overlap with the two datasets used for evaluation. We selected

SURE as our main MVS algorithm as it a widely accepted photogrammetric soft-
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ware, which yields high quality results.

For the matching partner selection, we use the n = 22 most connected images,

draw y = 100 combinations and set the triangle fraction factor to z = 10.

For our fulfillment functions, we set the necessary number of cameras to x = 3

in line with the default parameter of SURE [108] (i.e. 2 matching partners). We

set the desired ground sampling distance gd and desired accuracy ad to 1cm and the

weighting parameter α to 0.5. For the mesh balancing procedure, this means that

95% of all edges have an edge length longer than 20cm and no edges are longer than

1m.

Valley Dataset. The dataset consists of 1236 registered images of a complex scene

in the valley of Valcamonica (Figure 6.17). The images were acquired on 3 consec-

utive days in regular patterns (i.e. grids and domes) and in semi-structured ways

using Automated Image Acquisition (Chapter 4). The grid was acquired with 80%

overlap and 8mm GSD. The domes were centered on two separate locations and

the GSD was varied approximately from 8mm to 16mm. For the semi-structured

Automated Image Acquisition (Chapter 4), the quality parameters were set to 8mm

ground sampling distance and accuracy. The images were processed with structure-

from-motion pipeline of [110] and geo-referenced using the same fiducial markers as

in Section 6.3. This resulted in a sparse point cloud of approximately 480k points,

where nearly all cameras contain 3D points with 100+ connections.

House Dataset. The House Dataset contains 485 registered images of a detached

house with 3000 m2 garden. The images were taken in a regular grid and several

iterations of our Automated Image Acquisition approach (Chapter 4). The grid

was acquired with 80% overlap and 1cm GSD, and for our approach with 1cm for

ground resolution and accuracy. Structure-from-Motion and geo-referencing were

done in the same way as for the Valley dataset. We use this scenario to evaluate the

generalization performance of our approach to new environments. While some scene

structures are similar to the Valley environment (grass and trees), most structures

have never been seen in training (roofs, house walls, swimming pool, cars, etc.).

Computation Time. We ran all our experiments on the same desktop computer

with a Intel Core i7-4771 CPU (with 4 physical and 8 virtual cores), 32GB of RAM
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(a) Valley Dataset (b) House Dataset

Figure 6.17: Valley and House Dataset. Top left: One image of the dataset shows an
overview of the scene. Top right: A nadir view of the sparse point cloud. Bottom right:
The camera poses with the sparse point cloud from the same nadir view point. Bottom
left: A side view of the camera poses with the sparse point cloud. For the Valley Dataset,
ground truth of the rock formation Seradina 12C (marked in red) was acquired with a
laser scanner.

Num Matching Partners 2 3 5 11

Matching Partner Selection [s]

Valley Dataset 0.7 1.0 1.8 23.8

House Dataset 0.7 1.0 1.8 18.2

Next-Best View Ranking [s]

Valley Dataset 3.5 3.6 4.0 10.8

House Dataset 2.8 3.1 3.4 8.5

Overall Average [s]

(Valley+House)/2 3.9 4.4 5.5 30.7

Prioritization Time / Matching Time [%]

(Valley+House)/2 4.13% 3.11% 2.36% 5.98%

Table 6.6: We show the average time consumption of the two main parts of our approach
(i.e. Matching Partner Selection and Next-Best View Ranking) in seconds per key view.
All initialization steps are included in the timings. The last two row show the overall
average and the relative time consumption between our prioritization method and the
matching time of SURE [108].
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and GeForce GTX 770. We use the linux version of SURE [108], which only uses

the CPU. With this version of SURE the average depth map computation time per

matching partner on our datasets is 46.6s. In our approach, the mesh computa-

tion and the visibility casting are negligible compared to the more computationally

intense parts of our approach (both parts together are finished in less than two

minutes for both datasets). Our confidence prediction takes a constant time of 1s

per image. In Table 6.6, we show the time consumption for the matching partner

selection and the next-best view ranking for each dataset and number of matching

partners separately. Note that our prioritization approach is very light weight and

only requires 2%-6% of the time the matching procedure of SURE [108] itself. This

means that if we reduce the number of required key views to 5%, we effectively re-

duce the overall run-time to 7%-11%, which speeds up the full MVS reconstruction

process by a full order of magnitude.

6.4.2 Selecting the k-best Matching Partners

In this experiment, we evaluate the first subtask of our view cluster prioritization, i.e.

the matching partner selection. In this subtask, the algorithm is given a fixed set of

key frames and for each key frame the k-best matching partners should be selected.

This task is part of many MVS pipelines and has a great impact on the overall

performance of the pipeline as k represents the tradeoff between execution speed

and quality of the 3D reconstruction. If wrong matching partners are selected, many

parts of the scene might either be missing or the estimated 3D points might show

a undesirable amount of noise. Thus, we evaluate three factors in this experiment,

i.e. completeness, outlier percentage and RMSE (root mean square error). However,

this evaluation requires reference data. For the Valley Dataset, we have a traditional

ground truth only for a small part of the scene, i.e. a rock formation called Seradina

Rock 12C (Figure 6.17). This ground truth was captured with a Riegl VZ-400 Laser

Scanner and has an accuracy of 5mm. While we also use this ground truth in our

evaluation (denoted as ”Laser GT”), it is limited to a mostly flat rock surface.

In order to evaluate the three quality factors also for the other parts of the scene

(including the vegetation), we have to use a more unconventional approach. For

this purpose, let us first formally define the task of the matching partner selection.

In the task of matching partner selection, an algorithm shall select a subset Mk of
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Figure 6.18: Matching partner selection experiment on the Valley and House Datasets.
We show completeness, RMSE (Root-Mean-Square Error) and outlier ratio compared to
the output with the 22 most connected matching partners (22 MP) and the laser ground
truth of a rock formation (Laser GT).
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k matching partners (images) for a specific MVS algorithm such that the resulting

depth map maximally resembles the depth map produced with the same algorithm

and a much larger set of matching partners Mlarge with Mk ⊂ Mlarge and |Mk| �
|Mlarge| . With this definition, we can use the depth map produced with Mlarge as

reference data for assessing the quality parameters. We will further refer to this

reference data as ”22 MP” as we use the most connected 22 matching partners.

Using these two kinds of reference data, we evaluate the three quality parameters

in the following manner. First, we detect outliers with respect to the reference

data and the desired accuracy. I.e. we classify all depth estimates which are more

than 3 times the desired accuracy (i.e. > 3 · 1cm) as outliers. Note that for the

traditional ground truth, we additionally exclude occlusions that are more than 24cm

from the rock surface from this evaluation. Then we evaluate the completeness and

RMSE with respect to the reference data using only the valid measurements (without

outliers and occluded values).

From the large set of possible approaches for matching partner selection (see

Section 2.5), we select the most relevant approaches for the given algorithm and

application of photogrammetric reconstruction. Thus, we evaluate our approach

against two photogrammetric standard approaches, which are both implemented

by SURE [108], i.e. the k closest images (MinDist), the k most connected images

(MaxCon). Note that the default parameters of SURE are MinDist with k = 5.

For evaluating the connectivity, we count the shared 3D points in the sparse re-

construction. Further, we select k random images as proposed by [35] (Rand) and

k images with the carefully hand-crafted approach of [6] (Bailer). Finally, we run

our approach once with confidence prediction (Ours) and once without prediction

(OursNoCP), i.e. fconf = 1. For each key frame, all approaches have the task of

selecting k = 2, 3, 5, 11 out of the 22 most-connected matching partners.

For computational reasons, we do not computed all possible combination on all

images of the datasets, but use a representative subset. For the 22 MP evaluation,

we will use 100 randomly selected key views for evaluation. For the Laser GT

evaluation (of Rock 12C), we select the 50 views (of the 100) in which Seradina 12C

is most prominently visible (i.e. covers the largest area in pixel).

Results. In Figure 6.18, we show the averaged results (over 100 views for 22

MP and over 50 views for Laser GT) in completeness, the root mean square er-



6.4. Multi-View Stereo Prioritization 109

Figure 6.19: Impact of matching partner selection (selecting 5 out of 22) on the Valley
Dataset. All shown reconstructions are computed with the same image as key view (top
left). All evaluated approaches used 5 matching partners. The top two row show the whole
point clouds where the color encodes the distance to the reference (22MP); from no error
(blue) to 6cm error (red). The bottom row shows a cutout of the same reconstruction (here
red indicates an error larger than 3cm). Notice that our approach leads to a reconstruction
with low error that still preserves fine details such as the hand rail. Other approaches have
either a low error but also low completeness (Bailer) or have a high completeness but also
a high error (MinDist and MaxCon). Only our approach performs well in both aspects.

ror (RMSE) and the ratio of outliers.

Now let us first compare the results of Valley Laser GT and Valley 22 MP to

establish the relation between traditional ground truth and the reference data with

a large number of matching partners. In this regard, the number of outliers seems

to be most important. If we compare sub-figures (g) and (h), we can observe that

the relative ordering between the approaches stays the same for 2,3 and 5 matching

partners. Only for 11 matching partners, this ordering seems to change. From this

we conclude that our approximative reference data seems to work reasonably up to

5 matching partners.

Now let us compare the individual approaches on the Valley Dataset. As ex-
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pected, for all approaches more matching partners lead to higher completeness.

Similarly, more matching partners lead to a lower outlier ratio for most approaches.

Only for Bailer, the number of outliers seems to increase (we think this is due to the

very low completeness). For all approaches, the RMSE and the outlier ratio seem

to be highly correlated.

In general, we can observe a tradeoff between completeness and accuracy (outliers

and RMSE). None of the evaluated approaches leads in both completeness and

accuracy. Some approaches are rather tuned for completeness (MaxCon and Ours),

while others more for accuracy (Bailer and OursNoCP). In contrast to only flat

surfaces (Laser GT), we can see a clear gap between the two versions of our approach

on the complete scene (22 MP). Further, we can see that our approach seems to be

tuned very much towards completeness (very close to MaxCon), but at the same

time shows a significantly lower outlier ratio than MaxCon (especially for a low

number of matching partners).

If we now take a look at the results of the House Dataset, the relative ordering

between MaxCon, Ours and OursNoCP is very similar. Ours stays between the

other two approaches (for completeness and accuracy), but exhibits a much higher

completeness than OursNoCP.

Overall we conclude that our approach with learning leads to a significantly

higher completeness than our approach without learning and at the same time keeps

the outlier ratio significantly lower than approaches of similar completeness (espe-

cially for a low number of matching partners). This can also be observed in the

example shown in Figure 6.19.

6.4.3 Ranking Only

In the previous experiment, we fixed the set of key views and evaluated the matching

partner selection. In this experiment, we fix the matching partner selection and

evaluate the view cluster ranking performance. For each view, we run our full

approach with 5 matching partners. This leads to one view cluster per view.

The task in this experiment is to maximize the real fulfillment with as few view

clusters as possible. We evaluate the real fulfillment analogue to Equation 5.11, with

the difference that all estimated and predicted values are replaced by measurements

as follows. For evaluating the coverage, we use the projected depth map together
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Fulfillment Opt Ours OursNoCP OursRU MaxPts Random

Threshold Required View Clusters [%]

10% 0.08 0.24 0.24 0.24 0.24 0.32

20% 0.24 0.57 0.49 0.57 0.73 1.05

30% 0.49 0.97 1.46 0.89 1.62 2.18

40% 0.73 1.46 3.07 1.62 2.83 2.99

50% 1.13 2.43 6.63 3.72 4.21 5.02

60% 1.78 4.37 12.78 5.99 6.07 7.36

70% 3.16 7.12 19.17 10.92 10.60 13.03

80% 5.66 14.00 25.16 21.60 20.71 25.16

90% 12.70 30.91 39.56 42.07 39.97 47.98

Table 6.7: View Cluster Ranking on the Valley Dataset. We show the percentage of view
clusters that are required for reaching a certain percentage of the maximal achievable
fulfillment. Note that our approach only requires two times the optimal number of view
clusters, whereas the second best approach requires between 30-90% more than ours.

with the set of successful matching partners reported by SURE. For judging whether

a measurement represents a valid measurement of a triangle, we use the same crite-

rion as in the last experiment. I.e. we treat a measurement as valid if the distance

to the corresponding measurement with 22 matching partners is smaller or equal to

three times the desired accuracy (≤ 3 · 1cm). For evaluating the theoretical uncer-

tainty (Equation 4.3), we use the set of reported matching partners by SURE and

check for self occlusions for each triangle. Finally, we replace fconf with the actual

coverage of the triangle. This means for a given triangle, we project this triangle

into the key view and analyze the percentage of pixels with a valid measurement

within the 2D projection of the triangle.

In this experiment, we evaluate our approach with prediction (Ours) against two

variants of our approach. The first variant (OursNoCP) does not use the confidence

prediction (i.e. fconf is fixed to 1). The second variant (OursRealUpdate) uses the

confidence prediction, but instead of also predicting the update of the objective

function, it uses the real fulfillment for the update. This variant can be seen as our

approach with the MVS approach in the loop.

Additionally to random ranking (Random), we also tried to come up with a

good baseline algorithm that only operates on the sparse point cloud. We denote

this algorithm as ”MaxPts”. This algorithm always greedily selects the view cluster

of the camera with the highest number of connected 3D points. A 3D point is
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Figure 6.20: Ranking Performance on the Valley and House Datasets. We show the
normalized fulfillment over the number of used view clusters. The left side shows the plot
over all view clusters and the right side the first 100 steps of the same plot.

connected to a certain camera if this camera is contained in the feature track of the

3D point. After selecting the camera with the maximum number of points, all these

points are removed from the sparse reconstruction. Through this removal operation,

the algorithm naturally tries to explore the reconstruction. Finally, we also compare

our approach to the optimal greedy solution (Optimum). This algorithm requires all

reconstructions to be available in every iteration and uses the real objective function

for all its decisions.
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Results. In Figure 6.20, we show the normalized fulfillment for all approaches,

such that the highest fulfillment value is set to one. The normalized fulfillment is

computed as the current fulfillment divided by the maximal achievable fulfillment

(i.e. the fulfillment with all 1236 view clusters). In Table 6.7, we also show the

percentage of view clusters, which are needed to reach a certain fulfillment level in

steps of 10%.

If we analyze the results of the Valley Dataset, we can see the following. First

of all, our full approach performs very well. Up to roughly 80% fulfillment our

approach roughly requires two times more than the Optimum. Between 30% and

70% (which is one of the most interesting regions for our task), the second best

approach requires approximately 70% more view clusters than our approach. What

seems really fascinating at first glance is that in this region our approach with

prediction (Ours) actual performs better than with the MVS algorithm in the loop

(OursRealUpdate). The reason for this astonishing result is that, with the real

update, the algorithm does not have any notion of what it has tried in the past. This

means, if for some reason the prediction says that there is a chance to reconstruct this

object from this view point and the reconstruction actually fails, the algorithm will

try the same thing with the view directly next to the last one. However, if we only use

the prediction instead of the real update, the algorithm will rather try a completely

different view point next. With real updates, the performance of our approach

slowly converges to the simple exploration baseline (MaxPts). If we completely

remove the prediction from our approach (OursNoCP), the performance degrades

very soon below the baseline method. This point of failure marks the moment where

the algorithm thinks it has explored most parts of the scene geometrically (just using

the mesh), but in reality it is still only at 40% fulfillment. If we take a closer look

at Table 6.7, we can see that the first 60% of fulfillment are quite cheap with our

approach. For 60% we only require 4.4% of all poses (i.e. 45 view clusters). However,

each further added 10% of fulfillment roughly doubles the required number of view

clusters.

If we analyze the results of the House Dataset (Figure 6.20), we can see that our

approach still performs better than the baseline approaches from 40% upwards.
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6.4.4 Full MVS Prioritization

In the previous two experiments, we analyzed each of our two steps separately. In

this experiment, we evaluate our full approach against the best combination of the

baseline methods. We denote this approach as ”Max”, as it consists of the matching

partner selection based on the maximum connectivity (MaxCon) and the ranking

procedure based on the maximum number of visible 3D points (MaxPts). For both

approaches, we evaluate the performance for different numbers of matching partners,

i.e. k = 2, 3, 5, 11.

Results. In Figure 6.21, we show the fulfillment curves for both datasets. Note

that the curves are normalized such that maximally achieved fulfillment over all

approaches (i.e. Ours11 with all key views) is set to one. On a first glance, we can

see that there is a significant difference in the datasets. For the Valley Dataset, there

is a significant difference in the maximally reached fulfillment for different numbers

of matching partners. E.g. our approach with 3 matching partners is only able to

reach half of the fulfillment of the approach with the maximum number of matching

partners. For the House Dataset, this gap is significantly smaller and our approach

with 3 matching partners is able to reach 90% of the fulfillment. We think that the

main reason for this discrepancy is the difficulty of the dataset. While the Valley

Dataset is strongly dominated by trees which are exceedingly hard to reconstruct,

the House Dataset contains mostly flat structures such as roads, short grass or roofs.

For the Valley Dataset, our approach significantly outperforms right from the

start. In Table 6.8, we see that between 30% and 70% fulfillment the baseline

approach with 11 matching partners requires 2 to 3 times more matching pairs than

our approach for obtaining the same fulfillment level.

If we take a look at the House Dataset (Figure 6.21 and Table 6.9), we can also

see a clear gap between our approach and the baseline. However, this clear gap only

starts to form between 60% and 70% fulfillment. What seems interesting is that

in terms of computational efficiency, three matching partners seem to be the best

choice for the House Dataset. Once again, we think that this is the case because

the House environment seems to easier than the Valley environment.

If we take a look at the prediction performance (Figure 6.22), we see a significant

difference between the training environment (Valley) and the unseen test environ-
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Figure 6.21: Fulfillment development of our full approach on the Valley Dataset (top)
and House Dataset (bottom). We show our full approach (Ours) and the baseline
method (Max) for four different numbers of matching partners (i.e. k = 2, 3, 5, 11). The
left side shows the fulfillment over the number of key views, whereas the right side shows
the fulfillment over the number of matching pairs.

ment (House). While there is a significant gap between predicted fulfillment and

real fulfillment on the House Dataset, the gap is a lot smaller on the Valley Dataset.

In fact, the gap closes below 10% after only 55 key views for 5 matching partners

(87 for 11). This means in a known environment, the predicted fulfillment can in-

deed be used for estimating the actual fulfillment before executing the actual MVS

algorithm. With just using a 10% buffer, it is possible to estimate the necessary
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Figure 6.22: Prediction performance on the Valley and House Dataset. On the left side,
we show the normalized fulfillment once of predicted with the random forest (Predicted)
and once measured with the actual depth maps (Real) for 2,3,5 and 11 matching partners.
On the right side, we show the prediction gap as the difference of the normalized fulfillment
(i.e. Predicted minus Real) for the Valley and House Dataset. Note that the prediction
gap on the Valley dataset is not very wide (especially for 5 and 11 matching partners).
Also note that the relative ordering between different numbers of matching partners is
preserved. On the House Dataset (which contains mostly objects that were never seen in
training) the gap is significantly wider.
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Max Ours
2 3 5 11 2 3 5 11

Fulfillment Required Matching Pairs [%]

10% 0.29 0.26 0.22 0.24 0.15 0.15 0.18 0.16

20% 0.94 0.82 0.92 0.89 0.71 0.35 0.40 0.49

30% 2.88 1.83 1.54 2.18 2.77 1.04 0.70 0.81

40% 9.91 4.30 2.57 2.99 10.61 2.91 1.29 1.13

50% - 10.55 5.63 4.45 - 8.94 2.83 1.78

60% - - 10.70 5.99 - - 7.02 2.67

70% - - 30.78 10.03 - - 22.76 5.02

80% - - - 19.26 - - - 10.52

90% - - - 36.25 - - - 23.46

Table 6.8: Required number of matching pairs to reach a certain level of fulfillment on the
Valley Dataset . We compare our full approach (Ours) to the best baseline combination
(Max) for a varying number of matching partners. The best values of each row are marked
in bold font.

Max Ours
2 3 5 11 2 3 5 11

Fulfillment Required Matching Pairs [%]

10% 0.49 0.39 0.66 1.24 0.30 0.28 0.56 0.62

20% 1.05 0.90 1.60 2.48 1.01 0.79 1.22 1.86

30% 1.77 1.63 2.72 4.75 2.10 1.52 2.25 4.34

40% 3.38 2.54 4.32 7.23 3.34 2.31 3.85 7.64

50% 5.90 3.94 6.57 11.36 5.11 3.61 5.82 12.40

60% 11.34 5.58 9.86 16.53 9.50 5.58 8.64 17.56

70% - 9.07 15.40 26.03 - 7.61 13.71 26.45

80% - 15.72 26.01 41.94 - 11.66 21.88 37.60

90% - 24.40 39.07 72.52 - 21.07 35.41 55.79

Table 6.9: Required number of matching pairs to reach a certain level of fulfillment on the
House Dataset. We compare our full approach (Ours) to the best baseline combination
(Max) for a varying number of matching partners. The best values of each row are marked
in bold font.

number of key views for a certain fulfillment level.

Visual Interpretation. In Figure 6.23, we show the early exploration behavior

for our approach and the baseline for 44-45 matching pairs. At this point, Ours3

reaches approximately 25% fulfillment, while all others still have a significantly lower

fulfillment. The reason for this gap is the following. With 45 matching pairs, Ours3
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Figure 6.23: Comparison of the early reconstruction behavior (44-45 matching pairs) on
the Valley Dataset. The two top rows show the point clouds and the two bottom rows
the color coded fulfillment on the evaluation mesh. Red is a low (but existing) fulfillment
and green a high fulfillment. White means that this part is not covered at all. We compare
our approach with the Max baseline for different numbers of matching partners (3,5,11).

and Max3 can select 15 view clusters. While Max3 stays there where most images

were taken, Ours3 explores nearly all parts of the scene. At this point, Max11 and

Ours11 could only select 4 view clusters. While both approaches can clearly not cover

the whole scene with 4 views, we can see a difference in how the views are selected.

While Max11 selects highly connected views from a far distance, Ours11 already

prefers closer views which are able to reach the desired resolution and accuracy on

smooth surfaces (rock).

In Figure 6.24, we show the exploration behavior for our approach and the base-
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Figure 6.24: Comparison of the exploration behavior for 220 matching pairs. The right
column shows point clouds, while the others show the fulfillment on the evaluation mesh.
The colors of the mesh range from close to zero fulfillment (red) over yellow to complete
fulfillment (green) and white means zero fulfillment.

line for 219-220 matching pairs. While all variants of our approach explored the

scene well, a lot of the outer parts of the scene are missing for the baseline. Note

that the compactness of the representation with a higher number of matching part-

ners is much better than for lower numbers. With 11 matching partners the point

cloud size is approximately 150 million points, while it is already 500 million points

for 5 matching partners and exceeds 1 billion points for 3 matching partner. We

conclude that in this environment, fewer views with more matching partners lead to

a better fulfillment at a higher compactness for SURE.

In Figure 6.25, we show the advantage of our mesh-based approach compared to

only using sparse points. To make the difference more obvious, we only marked the

main house as the region of interest; i.e. the task now is to reconstruct only the

house and the other parts of the scene do not matter. For this experiment, we also

removed all sparse points outside the the region of interest from the point cloud.

If we take a look at the results, we can see that with our approach the facades of

the houses are included in the model at a very early stage, while they are completely

missing for the Max approach. The reason for this is that Ours starts to select

oblique views at a very early stage as it gives facades and roof equal priority. In

contrast, the Max approach is led by the number of sparse points and only a very low

number of sparse points lie on the facades. This biases the Max approach strongly
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Figure 6.25: Benefit of mesh (Ours) versus point cloud only (Max). In this experiment,
we only marked the house itself as region of interest (RoI) (top right); the corresponding
interesting triangles are shown in blue (bottom right). We show the MVS output after
8 view clusters for five matching partners. The Max approach tends to only select nadir
views, as most of the sparse features lie on the roof of the house. In contrast, our approach
gives the facades and the roof equal priority. Thus, our approach also selects oblique views
so that the facades are also represented in the 3D reconstruction.

towards selecting nadir views, which nicely cover the well textured roof.

6.4.5 Discussion

In all our experiments, we have shown that the MVS Confidence Prediction allows us

to consistently outperform the exact same approach without prediction. We see this

as proof that our prioritization approach was able to use the accumulated knowledge

of the confidence predictor to significantly improve the performance. In this sense,

we think that our approach is a great benefit to reoccurring photogrammetric tasks

in difficult environments.

Potential Benefits. On the Valley Dataset (i.e. the dataset which was captured in

the same domain as the training data), we were able to achieve significantly better

results for the view cluster prioritization than any other baseline. For the same

level of fulfillment our approach requires 2 to 3 times less key views than the best

baseline. Further, we demonstrated that the real fulfillment only lacks approximately

10% behind the predicted fulfillment. This means that the fulfillment prediction is

a reasonable approach for approximating the necessary number of key views to get

a good coverage of the scene. E.g. if we aim for 70% fulfillment with 11 matching

partners, we can use our approach to predict a fulfillment of 80%. In this experiment,
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this method would lead to 69.3% fulfillment with only 60 key views (which is already

highly complete – see Video [87]). If we analyze the computation time for this

example in relation to using each view as key view (as done by conventional MVS),

we end up with a speed up factor of 9.2 (from n/(s + n · r) with number selected

of key views n, number selected of key views s and the ratio r of prioritization time

over MVS time). If we are only interested in the saved memory, we even achieve a

memory reduction factor of 20.1 (430M points vs. 8650M points). This means that

our approach has a large potential to save computational time and memory with a

very small overhead.

Generalization Performance. Our experiments on the House dataset demon-

strated that our approach still performs reasonable even if confronted with a scene

that contains mostly objects that were never seen in training. Our approach still has

some benefit over the baseline methods at higher levels of fulfillment, however, the

margin is significantly less than for the Valley dataset. On the House dataset, we

reach 70% of the achievable fulfillment with 7.6% of the available matching pairs,

while the corresponding baseline requires 9.1%. However, if we compare our the

actual run-time to the best baseline, we see that our method does not lead to a run-

time improvement for the same fulfillment level due to the higher computational

overhead. In this sense, we can conclude that our method will not break down in

an unknown environment, but the main benefit over non-learning approaches will

be significantly diminished.





Chapter 7

Conclusion and Outlook

In this thesis, we introduce the concept of MVS Confidence Prediction. In contrast to

traditional stereo confidence measures, this new concept aims to predict the chances

of a successful 3D reconstruction before the actual MVS algorithm is executed. This

concept gives us active control over the images presented to the MVS algorithm and

thus grants us the opportunity to actively avoid suboptimal or redundant image

constellations.

One of the special attributes of our method is that we are able to obtain the nec-

essary training data in a fully automated manner – without ground truth or manual

interaction. The key to our training scheme is that we evaluate the consistency

between 3D reconstructions obtained with the same algorithm from significantly

different view points. This scheme allows us to detect systematic problems of an

MVS algorithm (with respect to certain scene structures) and allows us to use such

cases for training a MVS Confidence Predictor. This means that the only input

our method requires is an over-complete set of images that observes a scene from

different view points, which makes our training scheme highly scalable and flexible

to the application scenario.

We demonstrate the usefulness of MVS Confidence Prediction in two applica-

tions. The first application is the image acquisition itself. Here, we use the MVS

Confidence to actively adapt the acquisition pattern in a way that the resulting

image constellations are perfectly suited for a specific MVS algorithm. In a chal-

lenging environment, this allows us to achieve a highly complete and accurate 3D

reconstruction with a significantly lower number of images compared to traditional

acquisition methods.

123
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In the second application, we take a fixed (but over-complete) set of images and

use the MVS Confidence to rank the given images depending on their impact on the

3D reconstruction quality. In our experiments, our approach is thus able to reach a

certain level of quality fulfillment (in terms of completeness with respect to a desired

accuracy and ground resolution) with up to three times less key views than the best

baseline approach. In contrast to other approaches, our approach has the distinct

advantage that it provides the opportunity to predict the relative fulfillment level in

complex scenes. This means that the user can decide whether doubling the amount

of computation time and memory consumption for reaching 80% fulfillment instead

of 70% (which is hardly visible – see Video [87]) is necessary or not. On the topic of

domain generalization, we have shown that our approach still performs reasonably

well in an environment that has never been seen in training, however, the advantage

over non-learning based approaches is significantly diminished. In this sense, we see

the main application area of our approach in reoccurring photogrammetric tasks in

challenging environments, where our approach can be applied with little additional

cost as the whole learning procedure is fully automated.

Possible Improvements. In this work, we showed that self-supervised learning can

be a great benefit for improving the efficiency of MVS, however, our approach has

its limits. In our approach, the prediction is done with a very light-weight random

forest that only has an inference window of 27×27 pixels. With this restriction our

approach can only make decisions based on a small local window and does not have

any context information. In this regard, we think that convolutional neural networks

(CNNs) have the potential to significantly improve the prediction performance.

For our approach for automated image acquisition, we see room for improvement

in the number of planned images. In the related experiments, we only generate

three images out of each surrogate camera, because we used the exact same setup

in training. However, our later experiments on MVS Prioritization have shown that

using only 3 images is suboptimal for all scenarios. Thus, we recommend to generate

a larger number of images out of each surrogate camera; at least 4 cameras for easy

scenes and even more for difficult scenes.

This brings us to another point, where we see room for improvement. I.e. our

approach currently does not select the number of required matching partners de-

pending on the observed scene. In our approach, this decision has to be still made
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by the user. While we think that this can be incorporated in our framework, we

did not yet have time to explore this option. In this regard, the main difficulty will

be to find the right kind and amount of regularization to tradeoff computing time,

amount of resulting data and fulfillment.

Outlook. In this thesis, we focused on improving the efficiency and quality of

the MVS reconstruction process without changing the algorithm itself. This makes

it possible to integrate our approach in a standard MVS pipeline and boost its

efficiency and performance with very little effort. In the future, however, we also

see the potential that ideas similar to ours are used within the MVS algorithm itself

to adapt its internal parameters to the presented scene structure.

In the short term, it could replace hand-crafted heuristics such as the triangula-

tion angle prior of Schönberger et al. [115] for improving the performance. However,

if we look a little bit farther in the future, we see a lot of potential in transferring

ideas of two-view confidence measures to MVS. As demonstrated in our experiments,

two-view confidence measures are exceedingly more powerful than our MVS Confi-

dence Predictor. The main reason for the significant performance difference is that

our MVS Confidence Predictor only uses very little information (i.e. a single color

image) for the confidence estimation, while two-view confidence measures have a

lot more information available for the confidence estimation (i.e. a rectified image

pair, two depth maps and/or the cost volume). Thus, we think that also for MVS

a very powerful confidence measure could be learned, if the necessary input data is

provided. Such a confidence measure – within the reconstruction procedure – could

detect which images or parameter sets (e.g. the matching window size or similarity

measure) will more likely lead to a successful reconstruction and smoothly adapt

the algorithm’s behavior to the presented scene structure.

If we once again look farther into the future and take CNNs for single view depth

estimation (e.g. [39]) and 3D CNNs (e.g. [66]) into account, we think that measure-

ments (in the traditional sense) and learned hallucinations (supported by previously

seen data) will be continuously merging with each other. While future dense 3D re-

construction algorithms will also have to fit some data term, we see a lot of freedom

in how regions between data-supported measurements will be interpolated and oc-

cluded parts will be completed. For certain applications (e.g. content generation for

virtual reality), many scene parts will be only mildly supported by measurements
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and then fully automatically completed with learned shapes. The challenges will

be how to achieve this consistently and in a scalable fashion, for which the ideas

presented in this thesis could be a valuable starting point.



Appendix A

Acronyms

List of Acronyms

AUSC Area Under the Sparsification Curve

CNN Convolutional Neural Network

CPU Central Processing Unit

DSM Digital Surface Model

FOV Field Of View

GCP Ground Control Point

GPS Global Positioning System

GPU Graphics Processing Unit

GSD Ground Sampling Distance

MVS Multi-View Stereo

NBV Next-Best-View

RAM Random-Access Memory

RANSAC Random Sample Consensus

RF Random Decision Forest

RGB Red, Green, Blue (color space)

RMSE Root Mean Square Error

ROC Receiver Operator Characteristic

SfM Structure from Motion

SGM Semi-Global Matching

SIFT Scale Invariant Feature Transform
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STD STandard Deviation

STF Semantic Texton Forest

UAV Unmanned Aerial Vehicle



Appendix B

List of Publications

In chronological order, we list all peer-reviewed publications of Christian Mostegel

and note how they are related to this thesis.

B.1 2014

B.1.1 Active Monocular Localization: Towards Autonomous Monocu-

lar Exploration for Multirotor MAVs

Christian Mostegel, Andreas Wendel and Horst Bischof.

In: IEEE International Conference on Robotics and Automation (ICRA).

June 2014, Hong Kong, China.

(full paper - oral presentation)

[Best Student Paper Award - Finalist]

(5 finalists of 1001 accepted papers (48% general acceptance rate)).

Abstract. The main contribution of this paper is to bridge the gap between pas-

sive monocular SLAM and autonomous robotic systems. While passive monocular

SLAM strives to reconstruct the scene and determine the current camera pose for

any given camera motion, not every camera motion is equally suited for these tasks.

In this work we propose methods to evaluate the quality of camera motions with

respect to the generation of new useful map points and localization maintenance. In

our experiments, we demonstrate the effectiveness of our measures using a low-cost

quadrocopter. The proposed system only requires a single passive camera as exte-

129
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roceptive sensor. Due to its explorative nature, the system achieves autonomous

way-point navigation in challenging, unknown, GPS-denied environments.

Related Chapter(s): -

B.2 2015

B.2.1 Graz Griffins Solution to the European Robotics Challenges 2014

Jesus Pestana Puerta, Rudolf Prettenthaler, Thomas Holzmann, Daniel Muschick,

Christian Mostegel, Friedrich Fraundorfer and Horst Bischof.

In: Austrian Robotics Workshop (ARW).

May 2015, Klagenfurt, Austria.

(short paper - oral presentation)

Abstract. An important focus of current research in the field of Micro Aerial Ve-

hicles (MAVs) is to increase the safety of their operation in general unstructured

environments. An example of a real-world application is visual inspection of in-

dustry infrastructure, which can be greatly facilitated by autonomous multicopters.

Currently, active research is pursued to improve real-time vision-based localization

and navigation algorithms. In this context, the goal of Challenge 3 of the EuRoC

20144 Simulation Contest was a fair comparison of algorithms in a realistic setup

which also respected the computational restrictions onboard an MAV. The evalua-

tion separated the problem of autonomous navigation into four tasks: visual-inertial

localization, visual-inertial mapping, control and state estimation, and trajectory

planning. This EuRoC challenge attracted the participation of 21 important Euro-

pean institutions. This paper describes the solution of our team, the Graz Griffins,

to all tasks of the challenge and presents the achieved results.

Related Chapter(s): -

B.2.2 Performance Evaluation of Vision-Based Algorithms for MAVs

Thomas Holzmann, Rudolf Prettenthaler, Jesus Pestana Puerta, Daniel Muschick,

Christian Mostegel, Friedrich Fraundorfer, Horst Bischof and Gottfried Graber.
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In: Workshop of the Austrian Association for Pattern Recognition (OAGM).

May 2015, Salzburg, Austria.

(full paper - oral presentation)

Abstract. An important focus of current research in the field of Micro Aerial Ve-

hicles (MAVs) is to increase the safety of their operation in general unstructured

environments. Especially indoors, where GPS cannot be used for localization, re-

liable algorithms for localization and mapping of the environment are necessary in

order to keep an MAV airborne safely. In this paper, we compare vision-based real-

time capable methods for localization and mapping and point out their strengths

and weaknesses. Additionally, we describe algorithms for state estimation, control

and navigation, which use the localization and mapping results of our vision-based

algorithms as input.

Related Chapter(s): -

B.3 2016

B.3.1 Using Self-Contradiction to Learn Confidence Measures in Stereo

Vision

Christian Mostegel, Markus Rumpler, Friedrich Fraundorfer, Horst Bischof.

In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

June 2016, Las Vegas, USA.

(full paper - poster presentation)

Abstract. Learned confidence measures gain increasing importance for outlier re-

moval and quality improvement in stereo vision. However, acquiring the necessary

training data is typically a tedious and time consuming task that involves manual

interaction, active sensing devices and/or synthetic scenes. To overcome this prob-

lem, we propose a new, flexible, and scalable way for generating training data that

only requires a set of stereo images as input. The key idea of our approach is to use

different view points for reasoning about contradictions and consistencies between

multiple depth maps generated with the same stereo algorithm. This enables us

to generate a huge amount of training data in a fully automated manner. Among
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other experiments, we demonstrate the potential of our approach by boosting the

performance of three learned confidence measures on the KITTI2012 dataset by sim-

ply training them on a vast amount of automatically generated training data rather

than a limited amount of laser ground truth data.

Related Chapter(s): 3, 6.1

B.3.2 UAV-based Autonomous Image Acquisition with Multi-View

Stereo Quality Assurance by Confidence Prediction

Christian Mostegel, Markus Rumpler, Friedrich Fraundorfer, Horst Bischof.

In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Work-

shops.

June 2016, Las Vegas, USA.

(full paper - spotlight and poster presentation)

Abstract. In this paper we present an autonomous system for acquiring close-range

high-resolution images that maximize the quality of a later-on 3D reconstruction

with respect to coverage, ground resolution and 3D uncertainty. In contrast to

previous work, our system uses the already acquired images to predict the confidence

in the output of a dense multi-view stereo approach without executing it. This

confidence encodes the likelihood of a successful reconstruction with respect to the

observed scene and potential camera constellations. Our prediction module runs

in real-time and can be trained without any externally recorded ground truth. We

use the confidence prediction for on-site quality assurance and for planning further

views that are tailored for a specific multi-view stereo approach with respect to the

given scene. We demonstrate the capabilities of our approach with an autonomous

Unmanned Aerial Vehicle (UAV) in a challenging outdoor scenario.

Related Chapter(s): 3, 4, 6.2, 6.3
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B.3.3 The 3D-PITOTI Project with a Focus on Multi-Scale 3D Recon-

struction using Semi-Autonomous UAVs

Christian Mostegel, Georg Poier, Christian Reinbacher, Manuel Hofer, Friedrich

Fraundorfer, Horst Bischof, Thomas Höll, Gert Holler, Axel Pinz.

In: 1st OAGM-ARW Joint Workshop (Vision Meets Robotics).

May 2016, Wels, Austria.

(extended abstract - oral presentation)

Abstract. In this talk, we showcase our outcome of the ambitious 3D-PITOTI

project, which involves a multi-disciplinary team of over 30 scientists from across

Europe. The project focuses on the 3D aspect of recording, storing, processing and

visualizing prehistoric rock art in the UNESCO World Heritage site in Valcamonica,

Italy. The rock art was pecked into open-air rock formations thousands of years ago

and has an inherent 3D nature. After a project overview, we present the results of the

Graz University of Technologyâs contributions in 3D acquisition and processing with

a focus on our novel autonomous UAV system. We elaborate the challenges of 3D

reconstruction across vastly different scales, from a valley wide reconstruction down

to individual peckings on the rock surface. Within this context, we first present a

novel 3D scanning device with sub-millimeter accuracy. Aside from correctly scaled

3D information, the scanning device also provides the surface radiometry without

the need for artificial shrouding. Additionally, we point out one application for which

this highly accurate 3D data has shown to be crucial: The interactive segmentation

of the individually pecked figures.

Finally, we present a novel autonomous UAV system for acquiring high-resolution

images at a few meters distance. The system optimizes scene coverage, ground

resolution and 3D uncertainty, while ensuring that the acquired images are suitable

for a specific dense offline 3D reconstruction algorithm. There are three main aspects

that set this system apart from others. First, the system operates completely on-site

without the need for a prior 3D model of the scene. Second, the system iteratively

refines a surface mesh, predicts the fulfillment of requirements and can thus correct

for initially wrong geometry estimates and imperfect plan execution. Third, the

system uses the already acquired 2D images to predict the chances of a successful

reconstruction with a specific offline 3D densification algorithm depending on the
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observed scene and potential camera constellations. We demonstrate the capabilities

of our system in the challenging environment of the prehistoric rock art sites and

then register the individual reconstructions of all scales in one consistent coordinate

frame.

Related Chapter(s): 3, 4, 6.2, 6.3

B.4 2017

B.4.1 Evaluations on multi-scale camera networks for precise and geo-

accurate reconstructions from aerial and terrestrial images with

user guidance

Markus Rumpler, Alexander Tscharf, Christian Mostegel, Shreyansh Daftry,

Christof Hoppe, Rudolf Prettenthaler, Friedrich Fraundorfer, Gerhard Mayer, Horst

Bischof.

In: Computer Vision and Image Understanding.

April 2017, Volume 157.

(journal paper)

Abstract. During the last decades photogrammetric computer vision systems have

been well established in scientific and commercial applications. Recent developments

in image-based 3D reconstruction systems have resulted in an easy way of creating

realistic, visually appealing and accurate 3D models. We present a fully automated

processing pipeline for metric and geo-accurate 3D reconstructions of complex ge-

ometries supported by an online feedback method for user guidance during image

acquisition. Our approach is suited for seamlessly matching and integrating images

with different scales, from different view points (aerial and terrestrial), and with

different cameras into one single reconstruction. We evaluate our approach based

on different datasets for applications in mining, archaeology and urban environ-

ments and thus demonstrate the flexibility and high accuracy of our approach. Our

evaluation includes accuracy related analyses investigating camera self-calibration,

georegistration and camera network configuration.

Related Chapter(s): -
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B.4.2 Der Einsatz unbemannter Flugsysteme zur Charakterisierung von

gesprengtem Haufwerk

Alexander Tscharf, Christian Mostegel, Andreas Gaich, Gerhard Mayer, Friedrich

Fraundorfer, Horst Bischof.

In: 18. Geokinematischer Tag des Institutes für Markscheidewesen und Geodäsie

am 10. und 12. Mai 2017 in Freiberg.

May 2017, Freiberg, Germany.

(full paper - oral presentation)

Abstract. The fragmentation and the shape of the muck pile are the two major

outcomes of open pit mine and quarry blasts. Fast information about the muck

pile properties will help to improve the production scheduling and furthermore this

information could be used to optimize the blasting patterns of future production

blasts. The combined use of unmanned aerial vehicles (UAVs) and modern machine

learning and computer vision systems offers a new way of acquiring spatial data

to determine on-site fragment size distribution, while at the same time enabling

integration into common work flows and mitigating the weaknesses of ground-based

systems with special regard to completeness and representativeness. In the present

paper, we will discuss the relevant related work, present the planned path for system

development and give examples of first work.

Related Chapter(s): -

B.4.3 Scalable Surface Reconstruction from Point Clouds with Extreme

Scale and Density Diversity

Christian Mostegel, Rudolf Prettenthaler, Friedrich Fraundorfer, Horst Bischof.

In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

July 2017, Honolulu, USA.

(full paper - poster presentation)

Abstract. In this paper we present a scalable approach for robustly computing

a 3D surface mesh from multi-scale multi-view stereo point clouds that can handle

extreme jumps of point density (in our experiments three orders of magnitude). The
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backbone of our approach is a combination of octree data partitioning, local Delau-

nay tetrahedralization and graph cut optimization. Graph cut optimization is used

twice, once to extract surface hypotheses from local Delaunay tetrahedralizations

and once to merge overlapping surface hypotheses even when the local tetrahedral-

izations do not share the same topology. This formulation allows us to obtain a

constant memory consumption per sub-problem while at the same time retaining

the density independent interpolation properties of the Delaunay-based optimiza-

tion. On multiple public datasets, we demonstrate that our approach is highly

competitive with the state-of-the-art in terms of accuracy, completeness and outlier

resilience. Further, we demonstrate the multi-scale potential of our approach by

processing a newly recorded dataset with 2 billion points and a point density varia-

tion of more than four orders of magnitude - requiring less than 9GB of RAM per

process.

Related Chapter(s): -

B.5 2018

B.5.1 Prioritized Multi-View Stereo Depth Map Generation using Con-

fidence Prediction.

Christian Mostegel, Friedrich Fraundorfer, Horst Bischof.

In: ISPRS Journal of Photogrammetry and Remote Sensing.

(journal paper - in revision)

Abstract. In this work, we propose a novel approach to prioritize the depth map

computation of multi-view stereo (MVS) to obtain compact 3D point clouds of high

quality and completeness at low computational cost. Our prioritization approach

operates before the MVS algorithm is executed and consists of two steps. In the first

step, we aim to find a good set of matching partners for each view. In the second step,

we rank the resulting view clusters (i.e. key views with matching partners) according

to their impact on the fulfillment of desired quality parameters such as completeness,

ground resolution and accuracy. Additional to geometric analysis, we use a novel

machine learning technique for training a confidence predictor. The purpose of this
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confidence predictor is to estimate the chances of a successful depth reconstruction

for each pixel in each image for one specific MVS algorithm based on the RGB

images and the image constellation. The underlying machine learning technique

does not require any ground truth or manually labeled data for training, but instead

adapts ideas from depth map fusion for providing a supervision signal. The trained

confidence predictor allows us to evaluate the quality of image constellations and

their potential impact to the resulting 3D reconstruction and thus builds a solid

foundation for our prioritization approach. In our experiments, we are thus able to

reach more than 70% of the maximal reachable quality fulfillment using only 5% of

the available images as key views. For evaluating our approach within and across

different domains, we use two completely different scenarios, i.e. cultural heritage

preservation and reconstruction of single family houses.

Related Chapter(s): 5, 6.4
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