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Abstract

In this thesis we consider the dense image matching problem, where the goal is to find for

every pixel its corresponding match in a sequence of images. Determining correspondence

is among the most fundamental low-level problems in computer vision, and dense corre-

spondences appear as an integral part of many higher-level applications. Being inherently

ill-posed, the dense matching problem is typically tackled by an energy minimization con-

sisting of a data term, which models the deviation of the solution from the data, and a

regularization term, which imposes prior knowledge on the solution.

We propose to improve the modeling power of the regularization term by incorporating

the geometry of the solution manifold. Using techniques from differential geometry, we

formulate a physically meaningful regularizer based on the differential surface area element.

We show how the differential area element can be pulled back under orthographic and

perspective projection, resulting in a regularization functional on the image plane that

regularizes a physically meaningful property of the surface. Applying the idea to the dense

stereo problem, we show how the non-convex area functional can be convexified by means

of a suitable reparameterization. We perform a number of experiments to show that area

regularization has no bias towards fronto-parallel surfaces and results in higher-quality

depthmaps compared to Total Variation (TV) regularization. Next, we apply the idea of

manifold regularization to the problem of intensity image reconstruction for neuromorphic

cameras. Such cameras do not operate on a frame basis, but instead deliver a continuous

stream of events indicating brightness changes for the individual pixels. We formulate the

reconstruction of grayscale images from these events as a variational problem, which is

defined on a manifold given by the timestamps of the events. Our model uses the geometry

of the manifold to guide the regularization, and we show that this approach results in more

pronounced edges and higher contrast of the reconstructed intensity images.

Turning to the data term of the dense matching energy, we consider the problem of

learning descriptors for optical flow by means of a Convolutional Neural Network (CNN).

Whereas the learning of descriptors based on a multiclass classification model has shown

vii



viii

excellent results in the context of stereo matching, applying such model to optical flow is

intractable due to the quadratic memory complexity. We propose a dimensionality reduc-

tion via min-projection of the four-dimensional optical flow cost function, which reduces

the memory complexity from quadratic to linear. Moreover, we accelerate the computation

by using binary features. Learning of binary CNNs is challenging, because the hard non-

linearity used in the binarization step results in zero gradient almost everywhere. Previous

state of the art circumvented this problem through the use of the so-called straight through

estimation of gradients, which in effect simply discards the hard nonlinearity during gra-

dient computation. We propose a novel hybrid learning scheme, which in the context of

learning descriptors for matching significantly improves upon the straight through esti-

mator. In the Conditional Random Field (CRF)-inference step, we apply the concept of

dimensionality reduction to decompose the graphical model into a series of subproblems.

We use a massively parallel solver to compute solutions of the dual of the decomposition,

and we show that the inter-plane updates correspond to a min-projection with additional

offsets. Our approach enables CRF inference on high resolution images using the full

quadratic label space at linear memory complexity.

Keywords. Correspondence, Stereo, Optical Flow, Variational Methods, Graphical

Models, Differential Geometry



Kurzfassung

Diese Arbeit beschäftigt sich mit dem dichten Korrespondenzproblem, bei dem das Ziel

darin besteht für jeden Pixel den entsprechenden Partner in einer Sequenz von Bildern

zu finden. Das Korrespondenzproblem gehört zu den grundlegendsten Problemen des

maschinellen Sehens und tritt als wichtiger Teil in vielen Anwendungen auf. Da die

Aufgabenstellung mathematisch schlecht gestellt ist, wird das Problem als Energiemi-

nimierung formuliert. Die Energie besteht aus einem Datenterm, welcher die Abweichung

der Lösung zu den Daten misst, sowie einem Regularisierungsterm, welcher die a-priori

Annahmen modelliert.

Wir zeigen, wie die Modellierungskraft des Regularisierungsterms erhöht werden kann,

indem die Geometrie der Lösungsmannigfaltigkeit berücksichtigt wird. Mit Hilfe von

Techniken der Differentialgeometrie formulieren wir einen physikalisch sinnvollen Regu-

larisierer basierend auf dem differentiellen Oberflächenelement. Wir zeigen, wie das differ-

entielle Oberflächenelement entlang der orthographischen und perspektivischen Projektion

zurückgezogen werden kann. Das REsultat ist ein Regularisierungsfunktional, welches auf

der Bildebene definiert ist, jedoch eine physikalisch sinnvolle Eigenschaft der Oberfläche

regularisiert. Wir wenden diese Idee auf das dichte Stereo Problem an, und zeigen wie

das nicht konvexe Oberflächenfunktional durch eine passende Reparametrisierung in ein

konvexes Funktional transformiert werden kann. Eine Reihe von Experimenten bestätigt,

dass das Oberflächenfunktional im Unterschied zu TV -Regularisierung keinen systema-

tischen Bias zu stückweise konstanten Funktionen aufweist, wodurch wir Tiefenmaps von

höherer Qualität erhalten. Darüber hinaus setzen wir die Idee der Mannigfaltigkeits-

Regularisierung im Bildrekonstruktionsproblem für Event Kameras ein. Solche Kam-

eras erzeugen kein gewöhnliches Bild, sondern einen kontinuierlichen Strom von Events

basierend auf der Helligkeitsänderung der einzelnen Pixel. Wir formulieren die Rekon-

struktion von Graustufenbildern aus den Events als Variationsproblem auf einer Man-

nigfaltigkeit, welche durch die Zeitstempel der Events gegeben ist. Unser Modell nutzt
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die Geometrie der Mannigfaltigkeit als Leitlinie für die Regularisierung. Wir zeigen, dass

dieser Ansatz bessere Kanten und höheren Kontrast in den rekonstruierten Bildern ergibt.

Als nächstes beschäftigen wir uns mit dem Lernen von Deskriptoren für optischen

Fluss mit Hilfe eines CNN . Lernansätze basierend auf dem Mehr-Klassen Klassifika-

tionsmodell zeigten bereits sehr gute Ergebnisse im Stereo Problem, sind jedoch wegen

der quadratischen Speicherkomplexität für optischen Fluss nicht direkt anwendbar. Wir

führen eine Minimum-Projektion der vierdimensionalen Kostenfunktion ein, welche die

Speicherkomplexität von quadratisch auf linear reduziert. Darüber hinaus beschleuni-

gen wir die Berechnungen durch Verwendung von binären Deskriptoren. Das Lernen von

binären CNNs ist schwierig, da der Gradient wegen der harten Nichtlinearität, welche für

die Binarisierung verwendet wird, fast überall Null ist. Frühere Arbeiten umgingen dieses

Problem durch den sogenannten straight-through Schätzer für den Gradienten, welcher

bei Berechnung des Gradienten die Nichtlinearität vernachlässigt. Wir führen eine neuar-

tige hybride Lernstrategie ein, welche die Resultate im Vergleich zum straight-through

Schätzer signifikant verbessert. Im CRF -Inferenz Schritt zerlegen wir den Berechnungs-

graphen in eine Reihe von Unterproblemen, was zu einer Komplexitätsreduktion führt.

Um die Dualprobleme innerhalb der Ebenen zu lösen, verwenden wir einen massiv par-

allelen Algorithmus, und wir zeigen dass die Update Schritte zwischen den Ebenen einer

Minimum-Projektion mit zusätzlichen Kostenoffsets entsprechen. Unser Ansatz ermöglicht

effiziente CRF -Inferenz auf hochauflösenden Bildern mit dem vollen quadratischen Merk-

malsraum bei linearer Speicherkomplexität.

Schlagwörter. Korrespondenz, Stereo, Optischer Fluss, Variationsmethoden, Proba-

bilistische Graphische Modelle, Differentialgeometrie



Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present doctoral

thesis.

Date Signature

Eidesstattliche Erklärung
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Introduction

Contents

1.1 The Correspondence Problem . . . . . . . . . . . . . . . . . . . . 1

1.2 Dense Image Matching . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Computing Solutions of the Dense Matching Problem . . . . . 5

1.4 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . 9

1.1 The Correspondence Problem

The goal of computer vision algorithms is to infer higher level information from images.

It has been recognized since the early beginnings of computer vision that the ability to

find correspondences in images is very useful for this task. Indeed, as soon as we have a

collection of images that in some sense “show the same”1, the concept of correspondences

arises naturally. It is therefore no surprise that the search for correspondences is an

integral part of many machine vision algorithms, with applications ranging from stereo

and optical flow to medical image registration, face recognition, visual odometry, tracking

and 3D-reconstruction. For example, if we have an image sequence depicting moving

objects, correspondences allow to track the objects. On the other hand, if we have images

of a static scene taken from different viewpoints, correspondences allow to reconstruct 3D

structure.

We define the correspondence problem informally as follows:

Given a point in one image, find the corresponding point in the other image.

Let us point out two difficulties:

1Images of the scene taken at/from a) different vantage points and same time, b) same vantage points
and different time, c) different vantage points and different time.

1



2 Chapter 1. Introduction

a) It is not clear how to quantify and measure “correspondence”. One intuitive idea is to

measure differences of intensity values. However, in case of appearance changes this

breaks down: corresponding points could have an arbitrarily different pixel value.

b) Sometimes a corresponding point might not exist at all. Moving objects and varying

viewpoints cause occlusions, i.e. parts of one image that are not visible in the other

image.

The underlying root cause of problems a) and b) is that correspondences are generated by

the projection of a 3D point onto the 2D image plane. Unfortunately, the same 3D point

can project to quite different image points, see fig. 1.1. If the images are taken at different

times, lighting conditions and shadows may have changed, which results in problem a).

Even if the images are taken at the same time, varying vantage points and moving objects

will result in occlusions and thus problem b).

?

Figure 1.1: Corresponding patches in images. The blue patches look similar in both images,
whereas the green patches change appearance. The yellow patch in the left image is occluded in
the right image.

In order to see how these difficulties affect the mathematical properties of the cor-

respondence problem, let us introduce a formal notation. We consider a domain Ω =

{1, . . . ,W}× {1, . . . ,H} of width W and height H on which we define two images I1, I2 :

Ω → RC , where C ∈ {1, 3} corresponds to grayscale and RGB-color images respectively.

Pixel positions in the first and second image are denoted by p, p̂ ∈ Ω respectively and we

use the notation I(p) and Ip to access the value of the pixel at p. Moreover we define a

function ψ(· ; I) : Ω→ Rn, that computes a feature vector (or descriptor) from a position

p in an image I and we let Ψ{1,2} = ψ(Ω, I{1,2}) be the features of the two images. Last,

a distance function d : Rn ×Rn → R+ computes the distance between two feature vectors

in an n-dimensional space.
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Then we can formulate the correspondence problem as

min
p̂∈Ω

d
(
Ψ1(p), Ψ2(p̂)

)
, (1.1)

which tries to find the position p̂ in the second image, such that the distance between the

feature vectors of p and p̂ is minimized. Then we can hope that p and p̂ are corresponding

points. For example, consider the simple case that the descriptor is the pixel value, i.e.

Ψ(p) = I(p) ∈ RC , and the distance function is given by the norm of the difference

between the descriptors. Then the model is equivalent to minimizing the well-known

Absolute Differences (AD) similarity measure, e.g. for C = 1 the problem is given by

minp̂∈Ω |I1(p)− I2(p̂)|.

We can already see that the function ψ will play an important role. The goal is to

make the feature vector as descriptive as possible. With patch-based similarity measures

like Sum of Absolute Differences (SAD), it is clear that an increased window size results

in higher quality matching, since comparing larger patches is more discriminative than

comparing single pixel values. On the other hand, larger patches also result in larger devi-

ations due to perspective, lighting changes, motion etc. More sophisticated descriptors like

Normalized Cross-Correlation (NCC) [Lewis, 1995], Census [Zabih and Woodfill, 1994]

or Scale-Invariant Feature Transform (SIFT) [Lowe, 2004] are to some extent invariant

against illumination changes, rotation etc. and allow to deal with some of the problems

caused by a). In fact, there is an ever-growing body of literature on how to compute good

features for various problems in computer vision. This bears evidence that computing

meaningful features is an active research topic in its own right.

A straightforward approach to solve the correspondence problem eq. (1.1) is by ex-

haustive search: Compare the descriptor of a pixel the first image to all descriptors in the

second image and take the point whose descriptor gives the minimum distance as solution.

If we want to establish correspondence for more than one pixel, eq. (1.1) lends itself to

the notion of a matching cost. Given a set of points P = {pk}, pk ∈ Ω, k = 1 . . .K, we

define the matching cost as

c(P, P̂ ) =

K∑
k=1

d
(
Ψ1(pk), Ψ2(p̂k)

)
. (1.2)

Then we can formulate the correspondence problem for multiple pixels conveniently as

minimization of the matching cost for all points

min
P̂
c(P, P̂ ) (1.3)

which is nothing more than repeatedly solving eq. (1.1). Note that every individual cor-

respondence problem involves minimization over the complete image domain Ω, which

quickly becomes very costly if the images are big and K is large. Therefore a reduced set
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of possibilities is often used in practice, which results in a substantial simplification. As

an example, consider the classical computer vision problem of image stitching, where the

search for corresponding points appears as a subproblem. A typical algorithm for image

stitching consists of the following steps

• Obtain interesting points P = {pk}, P̂ = {p̂l}, k = 1 . . .K, l = 1 . . . L in the first

and second image respectively, e.g. by running a keypoint detection algorithm. In

the general case we have K 6= L, different numbers of keypoints in the first and

second image.

• Establish correspondences by solving minp̂l∈P̂ c(pk, p̂l) for k = 1 . . .K. Here we have

to minimize over the reduced set of points P̂ .

• Use the correspondences to compute a homography via some robust estimation pro-

cedure, e.g. Random Sample Consensus (RANSAC).

• Warp the images into the final panorama.

Running a keypoint detector on the image is a preprocessing step of the correspondence

problem: It reduces the number of points for which we have to find correspondences to

K, and the number of potential matches for each pk to L.

1.2 Dense Image Matching

The preselection step via a keypoint detector will usually concentrate on interesting image

points, that is, on corners or strong texture or points that exhibit some other salient

property. The dense image matching problem is obtained by taking eq. (1.3) to the

extreme: We skip the preprocessing step and wish to match all points in the image,

without any constraint on the number of potential matches. This creates a new difficulty

as illustrated in fig. 1.2.

c) Pixels from homogeneous image regions might look alike, hence different points will

produce the same descriptor. This makes the matching ambiguous.

We conclude that we have neither stability (see a)) nor existence (see b)) nor uniqueness

(see c)) of the solution. This makes the dense matching problem ill-posed, which means

that in general it is not possible to compute a direct solution.

The standard approach when facing ill-posed problems is to pose an optimization

problem via the following energy minimization formulation

min
u
{E(u) = D(u) +R(u)} . (1.4)

Here the unknown u is a parameterization of correspondences that might take different

forms depending on the application. For example, in stereo matching the images are pre-

processed such that the epipolar lines are horizontal and parallel. Then correspondence
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?

Figure 1.2: Corners and high-contrast texture help to make the correspondence unique (green
patches). In homogeneous regions, the problem is ambiguous (blue patch).

can be parameterized by a scalar called disparity: up ∈ R, up = p̂(1) − p(1), where p(1)

denotes the first component (x-coordinate) of point p. In a more general case the param-

eterization could be a flow field that describes the 2D-displacement for every pixel, i.e.

up ∈ R2, up = p̂− p.
The term R(u) is called regularization term. It originates from Bayesian Maximum a

Posteriori (MAP) estimation, where it corresponds to the image prior model. We have

seen that the dense matching problem is ill-posed, which means that there are infinitely

many possible solutions. The purpose of the regularizer is to pick one particular solution

among the infinitely many based on some prior assumption. For example, one widely

used regularizer is the smoothness assumption, which states that neighboring pixels are

likely to have a similar solution. This allows to compute a meaningful solution in regions

where the dataterm is uninformative, see fig. 1.2. Modeling the regularizer is therefore

of critical importance. It should be general enough for a wide range of input data, yet

problem-specific in modeling desirable properties of the solution. This raises the question

how to find a good tradeoff between these conflicting requirements. Chapter 3 will be

devoted to this question in the context of stereo matching and reconstruction of grayscale

images from event cameras.

The term D(u) is called data term, it measures how well the solution u fits the underly-

ing data, i.e. the images. It is given by the matching cost eq. (1.2), which in turn is based

on the concept of a feature vector. In chapter 4 we will address the question how to find

good features by means of deep learning with a Convolutional Neural Network (CNN).

1.3 Computing Solutions of the Dense Matching Problem

There are two fundamentally different approaches to solving the energy minimization

eq. (1.4): Discrete and continuous optimization. Both have distinct advantages and disad-

vantages, stemming from the mathematical principles used to compute a solution, namely
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combinatorial optimization and calculus of variations. In the following we give a short

overview of these two approaches.

1.3.1 Discrete Optimization

In the discrete setting, images are modeled as a graph, consisting of a vertex set V = Ω

corresponding to pixels, and an edge set E = V ×V corresponding to connections between

pixels. The solution is given as the set u = {up}, p ∈ V, where every up takes (discrete)

values out of some label space L. This space is constructed depending on the problem at

hand, e.g. in stereo matching it could be a discretization of the disparity range. The data

term of the energy eq. (1.4) is given by the sum of the matching cost eq. (1.2) over all

pixels, D(u) =
∑

p∈V c(p, p̂). The regularizer is defined as R(u) =
∑

kl∈E r(uk, ul), where

the penalty function r(·, ·) is used to impose desirable properties on the solution.

In practice, the regularizer is computed on a n-connected local neighborhood, usually

with n ∈ {4, 8, 16}, instead of exhausting the full space of all possible connections for every

pixel. In a Bayesian framework, this means the probability distribution factorizes over the

graph2 and such models are are called graphical models. The two dominant approaches for

solving graphical models in computer vision are mincut/maxflow and message passing

methods.

The mincut/maxflow algorithm was first used in computer vision in the context of

binary image restoration [Greig et al., 1989]. As the name suggests, the mincut algorithm

computes a minimum cut in a graph (V, E) with vertices V and edges E . The graph is en-

dowed with a source vertex s, a sink vertex t and edge capacities w : E → R+. A minimum

cut is a partition V = (S, T \S) that separates the source vertex from the sink vertex and

minimizes the sum of all boundary edge capacities, i.e. edges that start in S and end in T .

By the famous max-flow min-cut theorem [Elias et al., 1956, Ford and Fulkerson, 1956],

the value of the minimum cut is equal to the value of the maximum flow between the source

and sink vertex. In fact, from an optimization perspective the maximum flow is the dual

of the minimum cut. The limitation of the mincut algorithm to binary labelings was over-

come by the works of [Boykov et al., 1998, Ishikawa and Geiger, 1998], who showed that

the method could also be used to optimize a fairly general multilabel energy. This sparked

a tremendous interest across all fields of computer vision, and to date graph cuts are among

the most popular methods for discrete energy minimization due to their efficiency. Algo-

rithmic advances include better runtime bounds [Boykov and Kolmogorov, 2004], move-

making strategies [Lempitsky et al., 2010, Boykov et al., 2001] and even parallel multicore

implementations [Delong and Boykov, 2008].

Message passing methods maximize the concave dual of the Linear Programming (LP)

relaxation of the energy. Widely used algorithms are the Tree-Reweighted Max-Product

Message Passing (TRW) [Wainwright et al., 2005] and its improved successor Sequential

Tree-Reweighted Message Passing (TRW-S) [Kolmogorov, 2006]. Whereas the former does

2given its neighborhood, a variable is conditionally independent of the rest of the graph.
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not converge monotonically, the latter does, but since both belong to the family of block-

coordinate-ascent algorithms, they can get stuck in suboptimal points. In contrast to

mincut/maxflow, for which there is strong duality, in general there is no guarantee

that, given a dual solution, a primal solution satisfying complementary slackness exists.

However, if the energy is submodular, both mincut and message passing algorithms con-

verge to the optimal solution.

Discrete algorithms are more challenging to parallelize than continuous methods.

Even though block-coordinate-ascent algorithms like TRW-S can compute message

updates parallel, it has been found that sequential updates often perform better in

practice [Kappes et al., 2015]. There also exist methods that compute an energy

dependent schedule of updates which results in faster convergence and better results

[Tarlow et al., 2011], albeit complicating parallel implementations. On a higher level, the

basic paradigm of cyclic maximization in each coordinate is not well suited for massive

parallelism. However, recently there have been advances in this regard, with FPGA

implementations of TRW-S [Choi and Rutenbar, 2012, Hurkat et al., 2015] and new

massively parallel dual solvers that are implemented on the Graphics Processing Unit

(GPU) [Shekhovtsov et al., 2016].

We point out that in the discrete setting, the data cost is precomputed by sampling

the cost function at positions k ∈ Ω. The full information is available to the optimization

algorithm, and in some lucky cases it can even find a globally optimal solution. Because

the data cost is precomputed for all possible positions, the matching cost function itself

can be arbitrarily complex: complicated non-convex functions like NCC or SIFT are often

used due to their good matching performance. The regularizer is usually restricted to first-

order differences, since general higher order regularization is significantly more difficult to

optimize and algorithms converge very slowly [Fix et al., 2014, Arora et al., 2012]. On

the upside, robust, e.g. truncated and other non-convex regularization functions are easily

dealt with by discrete optimization algorithms, as long as they are first-order.

1.3.2 Continuous Optimization

In the continuous setting images are modeled as functions I : Ω→ Rd, with Ω ⊂ R2. In

this case, the solution u itself is a function. The sum from the discrete setting is replaced

by an integral and we obtain the continuous dataterm D(u) =
∫

Ω c(u) dx. Likewise,

the regularizer is given by R(u) =
∫

Ω r(Ku) dx, where K is an analysis operator and

r(·) is a (robust) penalty function. If we choose for example K = ∇ and the absolute

value function r(·) = | · |, we obtain the famous Total Variation (TV) regularizer R(u) =

TV (u) =
∫

Ω |∇u|dx, which enforces sparsity of gradients, i.e. smoothness, in the solution.

In contrast to the discrete setting, where the pixel neighborhood played an integral role in

defining the graph factorization and has strong algorithmic implications, in the continuous

we do not need to worry about the neighborhood.

A large body of literature exists on the topic of minimization of convex functions, rang-
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ing from standard gradient descent to more complicated higher order methods with elabo-

rate linesearch schemes [Bertsekas, 1999, Boyd and Vandenberghe, 2004, Nesterov, 2004].

However, since problems in computer vision are usually large-scale with millions of un-

knowns, and often non-smooth as well, most practically relevant algorithms are based on

first-order schemes. These methods are easy to implement, since in each iteration they only

need to evaluate the gradient. Moreover, many computer vision problems exhibit a natural

grid-like structure which makes parallel implementations on GPUs straightforward.

Since edges are a fundamentally important image property, we wish for methods that

are able to represent steps and sharp jumps. This means that many useful continuous

models are inherently non-smooth, i.e. not continuously differentiable. To solve such large

non-smooth problems, proximal splitting methods have been proven to be very effective.

There exist many variants and extensions of this approach, all of which can be seen as

instances of the basic Proximal Point Algorithm (PPA) [Martinet, 1970]. An extensive

recent overview can be found in [Chambolle and Pock, 2016].

We note that even though most algorithms from convex optimization theory can also

be applied in the non-convex case, we usually want our models to be convex. In the convex

case any local minimum is also a global minimum, whereas in the non-convex case one

can in general only compute critical points, e.g. local minima or saddle points. Globally

optimal solutions are important, since they make interpretations of the models much easier.

Hence, one important difference to the discrete setting is that in the continuous we usually

restrict the data term as well as the regularization term to be convex functions.

The regularization function is typically convex by construction. In contrast to the

discrete setting, where the regularizer was restricted to first-order differences, in the con-

tinuous we can also have higher order regularization: Total Generalized Variation (TGV)

[Bredies et al., 2010] is a convex extension of TV . TGV allows to overcome the so-called

staircaising effect of TV regularization. Staircaising occurs because the space of minimiz-

ers of TV is spanned by piecewise constant basis functions. TGV of order n enriches the

space of basis functions with polynomials of up to order n − 1, i.e. second-order TGV

allows for piecewise affine solutions.

Turning to the matching cost, the data term usually involves the image function and

is thus inherently non-convex. A widely used approach is to convexify the data term

with a first-order Taylor expansion, i.e. linearization. Because the linearization becomes

invalid far away from the linearization point, a coarse-to-fine warping strategy is used in

order to deal with large displacements [Brox et al., 2004]. The idea is to approximate the

original non-convex problem through a series of convex models with linearized data terms.

However it is known that this approach suffers from loss of fine details, as small-scale

structures that are not visible at coarse levels cannot be recovered later on. To overcome

this drawback, methods have been developed that under certain circumstances are able to

compute a globally optimal solution even with non-convex data term. [Pock et al., 2008]

showed that if the solution space exhibits some natural ordering and the regularizer is

the TV , it is possible to lift the problem to a higher-dimensional space where it becomes
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convex and can be solved globally. This idea has been extended to general convex functions

of ∇u, e.g. [Pock et al., 2010, Ranftl et al., 2013].

Let us also mention that while first-order optimization algorithms are the tool of choice

for solving large-scale problems in computer vision, straightforward implementations often

suffer from slow convergence. A long line of research is devoted to acceleration tricks that

can significantly improve convergence rates. Many of these tricks are based on extrap-

olation of gradients or “momentum”, they are very easy to implement and typically do

not change the computational complexity of the algorithm significantly. We mention the

accelerated gradient descent method for smooth problems [Nesterov, 1983], the Fast Iter-

ative Shrinkage Thresholding Algorithm (FISTA) algorithm by [Beck and Teboulle, 2009]

for composite problems consisting of a smooth and a non-smooth function and the primal-

dual algorithm of [Chambolle and Pock, 2011] for completely non-smooth problems.

In summary, continuous and discrete approaches have quite different properties due to

the underlying mathematical principles as shown in table 1.1.

Discrete Continuous

Paradigm combinatorial optimization calculus of variations
Model domain Ω = {1 . . . H} × {1 . . .W} Ω ⊂ R2

Solution set u = {up ∈ L}, p ∈ Ω function u ∈ H1,1(Ω)
Data term arbitrary (sampled) convex (linearized)

Regularization term first-order, non-convex higher-order, convex
Large displacements easy hard

Parallelization hard easy
Memory consumption high low

Table 1.1: Discrete vs. continuous optimization

1.4 Contributions and Outline

The dense matching problem is ill-posed and is solved by means of an optimization problem

eq. (1.4). The energy to be minimized consists of the regularization term and the data

term, and the properties of each as well as the interplay between the two terms determines

the quality of the solution. In this thesis we make contributions to both terms:

• Regularization We consider a geometric approach and develop a novel regularizer

based on the inner geometry of the solution manifold. This results in a physically

meaningful geometric prior, which turns out to be useful in problems with a strong

geometric background. Whereas physically meaningful priors are relatively easy to

compute given an explicit representation of the surface, the resulting algorithms are

often slow and require complicated and resource-hungry data structures and consid-

erable overhead in order to maintain the representation of the surface. In contrast,
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we propose to formulate the regularizer on the image plane using techniques from

differential geometry. We build on the fact that surfaces in 3D can be parameterized

by a depthmap. Such parameterization corresponds to the notion of charts from

manifold theory. We show that the metric tensor allows to pull back problems de-

fined on the surface to the local coordinate system of the image plane. This enables

efficient and highly parallel implementations on GPUs, without the need to maintain

an explicit representation of the surface.

• Data term We tackle the problem of learning descriptors for dense optical flow

with a CNN . As pointed out in section 1.1, the descriptors play a crucial role in

the matching problem. Learned descriptors generalize over hand-crafted ones by

providing problem-specific features. To avoid a patch-sampling step, we opt for a

general one-vs-all learning approach, which previously showed good results in the

context of stereo matching [Luo et al., 2016]. However, implementing such approach

for optical flow turns out to be difficult, because one-vs-all learning needs the full

cost function in memory. The size of the cost function grows quadratically with the

search range, which is feasible in the context of stereo matching, but intractable

for optical flow. Therefore we propose a dimensionality reduction of the optical

flow cost function. This drastically reduces memory requirements and makes end-

to-end learning on high resolution images tractable. To reduce the computational

complexity, we consider binary feature vectors and introduce a new learning scheme

which improves upon existing approaches for learning binary CNNs.

Outline Chapter 2 of this thesis gives an overview of the notation and the mathematical

foundations needed in the rest of the work. We give a short introduction to convex

optimization in section 2.1, followed by the basics of discrete optimization, section 2.2.

Section 2.3 is devoted to differential geometry, needed for the metric regularization of

surfaces.

In chapter 3 we present two applications of our regularizer: First, we consider the

dense stereo matching problem in section 3.1. The goal is to compute a 3D surface from

a pair of images. In this context, popular image-based regularizers like TV or TGV are

agnostic of the fact that the object of interest is a 3D surface. Inspired by the research

on minimal surfaces, we propose to use the area of the surface as regularizer. To that

end, we derive the surface area form under orthographic and perspective projection and

show how to compute it in local coordinates, i.e. on the image plane. Our regularizer,

while formulated on the image plane just like TV , respects the geometry of the surface.

We show that this enables higher-quality 3D reconstructions. Second, we apply the metric

regularizer to construct grayscale images from event cameras in section 3.2. Event cameras

or neuromorphic cameras are different from standard frame-based cameras, they operate

asynchronously on the pixel level. Each pixel measures the incoming light and fires an

event in case the absolute change in intensity is above a threshold. Thus, in a given time
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interval one gets only a sparse set of events carrying the binary information {lighter (+1),

darker (-1)} instead of a full frame. Among the advantages of the event camera are the

high time resolution and the excellent dynamic range. However, visualizing the stream of

events as sparse black and white pixels, corresponding to the events -1 and +1, is not very

informative. There is a need for reconstructing grayscale images from the event stream for

visualization and verification purposes. We apply the metric regularizer in the variational

energy used for the reconstruction by incorporating additional information from the so-

called manifold of active events. This allows to formulate the variational model on the

surface given by the time history of the events and results in higher contrast and sharper

edges of the reconstructed images.

Chapter 4 is devoted to learning descriptors for optical flow with a CNN . We show

how one-vs-all learning is enabled by a dimensionality reduction via partial optimization

of the local optical flow matching cost. After verifying that the learned descriptors give

reasonable results using a simple Winner-Takes-All (WTA) strategy, we consider a discrete

energy minimization model that imposes robust regularization via a Conditional Random

Field (CRF). Here we face a similar problem as in the learning phase: Computing solutions

of the CRF needs the full cost function in memory. We adapt the dimensionality reduction

technique from CNN learning for CRF inference, and show how to efficiently minimize the

model with a highly parallel dual solver. The approach is based on a graph decomposition,

where the two components of the flow vector are modeled by two three-dimensional stereo-

like problems coupled through the four dimensional cost function. Our approach enables

efficient CRF inference on high resolution images with the full quadratic label space at

linear memory complexity.
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The purpose of this chapter is to introduce the notation and mathematical topics

needed in the rest of this work. We start with convex analysis and convex optimization,

which form the underlying theory of the variational models used to compute a solution

of the dense matching problem. Next, we give an overview of discrete optimization algo-

rithms. Finally we develop basic concepts of differential geometry, which are needed for

the metric regularization of surfaces in chapter 3.

In the sections about convex and discrete optimization we use the space Rn with its

vector space structure, i.e. component-wise addition and scalar multiplication of points.

In order to be consistent with the usual notation in differential geometry, we denote

x = (x1, . . . , xn) ∈ Rn, i.e. superscripts denote components, not exponentiation. We will

also use the standard Euclidean inner product 〈·, ·〉 : Rn × Rn → R : 〈x, y〉 7→
∑n

i=1 x
iyi

on Rn.

2.1 Convex Optimization

The material in this section is based on the textbooks [Rockafellar, 1970, Nesterov, 2004,

Boyd and Vandenberghe, 2004].

2.1.1 Norms

Definition 2.1. Let V be a real vector space. A norm on V is a function, written

‖ · ‖ : V → R, that satisfies ∀v, w ∈ V

13
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1. Positivity: ‖v‖ ≥ 0.

2. Definiteness: ‖v‖ = 0 iff v = 0.

3. Homogeneity: ‖λv‖ = |λ|‖v‖, with λ ∈ R.

4. Triangle inequality: ‖v + w‖ ≤ ‖v‖+ ‖w‖.

If condition 2 (definiteness) is violated, the function is called semi-norm. A vector

space with a norm is called normed space. The most widely used norm is arguably the

Euclidean norm or standard norm on Rn, defined as

‖v‖ =

√√√√ n∑
i=1

(vi)2 . (2.1)

The Euclidean norm is related to the Euclidean inner product by ‖v‖ =
√
〈v, v〉 . We say

that the Euclidean norm is induced by the Euclidean inner product. Furthermore, the

Euclidean norm is a special case of the more general `p-norm given by

‖v‖p =

(
n∑
i=1

|vi|p
)1/p

, p ∈ [1,∞), (2.2)

where the Euclidean norm is obtained for p = 2. The Euclidean inner product and

Euclidean norm have a strong connection to geometry, which will be discussed in much

more detail in section 2.3, where we give an introduction to differential geometry. Here

we just note that the Euclidean norm coincides with our usual notion of length.

As customary, we may omit explicit specification of p = 2 for the standard Euclidean

norm and write ‖ · ‖ = ‖ · ‖2.

The special case p =∞ yields the so-called infinity norm, defined by

‖v‖∞ = max
i=1,...,n

{|vi|}, (2.3)

i.e. the infinity norm is the maximal absolute component of v.

Definition 2.2 (Operator norm). Let T : V → W be a linear mapping, called operator,

between real vector spaces V,W . Every linear operator can be represented as a matrix

T ∈ R(dimW )×(dimV ). The operator norm is defined as

‖T‖ = inf{M ∈ R : ‖Tv‖ ≤M‖v‖ ∀v ∈ V }. (2.4)

The operator norm is a measure how much the norm of a vector changes under the

mapping T . Equivalently, the operator norm can be given by ‖T‖ = sup‖v‖≤1 {‖Tv‖} =

sup‖v‖=1{‖Tv‖}. Note that the operator norm depends on the choice of norm in the two
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spaces V and W . For example, if we choose the Euclidean norm in both V and W ,

the operator norm is commonly denoted ‖ · ‖2,2 and the value corresponds to the largest

singular value of the matrix T .

Definition 2.3 (Dual norm). Let ‖ · ‖ be a norm on a real vector space V and v, w ∈ V .

The dual norm ‖ · ‖∗ is defined as

‖v‖∗ = sup
‖w‖≤1

{〈v, w〉} = sup
‖w‖=1

{〈v, w〉} (2.5)

The resemblance of the dual norm with the definition of the operator norm is not a

coincidence. If v is represented as a column vector, we can interpret the row vector vT as

an element of the dual space V ∗, i.e. a linear functional. Elements of the dual space are

also called covectors, and a covector field is known as differential one-form in the context

of differential geometry, see section 2.3.5.1. The action of a covector on a vector is given

by the inner product, i.e. a covector “eats” a vector and returns a scalar. Thus we can

interpret the dual norm as the operator norm of the linear functional vT .

The `p-norm ‖ ·‖p and its dual norm ‖ ·‖q are related by 1/p+1/q = 1, e.g. the 2-norm

is self-dual and the dual norm of ‖ · ‖1 is ‖ · ‖∞.

2.1.2 Convex Sets

Definition 2.4. A subset C ⊆ Rn is convex, if for all x, y ∈ C and θ ∈ [0, 1]

θx+ (1− θ)y ∈ C.

Intuitively this definition means that the straight line between any two points x, y in

the set is completely in the set as well, see fig. 2.1. By convention, the empty set {∅} and

the whole space Rn are convex sets.

y

x

(a) Convex set

y
x

(b) Non-convex set

a

〈a, x〉 ≤ b
〈a, x〉 ≥ b

〈a, x〉 = b

(c) Halfspaces in R2.

Figure 2.1: Sets in the two-dimensional plane.

An important concept is the hyperplane, defined as the set {x ∈ Rn | 〈a, x〉 = b} with

a 6= 0 ∈ Rn and b ∈ R. A hyperplane can be visualized as the plane with normal vector a
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and distance from the origin b
‖a‖ . It divides the space Rn into two halfspaces of the form

{x ∈ Rn | 〈a, x〉 R b}, both of which are convex sets, see fig. 2.1(c). The following lemma

establishes a connection between a convex set and the halfspaces which contain it.

Lemma 2.1. Let S be a convex set and denote by H the set of all halfspaces which contain

S. Then S =
⋂
H∈HH.

Proof. By definition the halfspaces contain S, so clearly S ⊆
⋂
H∈HH. To prove that

S ⊇
⋂
H∈HH, we need to show that if x ∈

⋂
H∈HH it follows that x ∈ S, or, equivalently,

if x /∈ S it follows that x /∈
⋂
H∈H. By the separating hyperplane theorem, if x /∈ S there

is a hyperplane separating x from S. This hyperplane defines a halfspace H containing S,

and since x /∈ S it follows x /∈ H which implies x /∈
⋂
H∈HH.

If we have a number of points {x1, . . . , xK} and positive scalars θ1, . . . , θK with
∑

k θk =

1, we call x =
∑

k θkxk a convex combination of points. Any convex combination of points

taken from a convex set is again in the set. Conversely, a set is convex if and only if it

contains all convex combinations of its points.

In dealing with convex sets, it is important to know which operations preserve convex-

ity. We have for convex sets C1, C2 that

• The intersection C1 ∩ C2 is a convex set.

• The vector sum C1 + C2 = {x+ y : x ∈ C1, y ∈ C2} is a convex set.

• The image f(C1) = {f(x) | x ∈ C1} under an affine function f(x) = Ax + b with

A ∈ Rm×n, b ∈ Rm is a convex set.

2.1.3 Convex Functions

Definition 2.5. Let f : S → R be a function with domain S ⊆ Rn. The set

epi f = {(x, t) ∈ Rn × R | x ∈ S, t ≥ f(x)}

is called the epigraph of f .

The prefix “epi” from ancient greek means “on top of”, hence the epigraph is the set

of all points above the graph of f , see fig. 2.2(a). Note that the epigraph of a function

with domain S ⊆ Rn is a subset of Rn+1.

With the help of the epigraph, we now define the central object of convex analysis.

Definition 2.6 (Convex function). Let S ⊆ Rn. A function f : S → R is convex if its

epigraph is a convex set. We call f concave if (−f) is convex.

From the convexity-preserving operations on sets in the previous section we get an

important relation between the convexity of a function and its domain.
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f(x)

epi f

(a) The epigraph of f .

θf(x) + (1− θ)f(y)

x y

f(θx+ (1− θ)y)

(b) The straight line between the two points f(x), f(y)
is always above the graph of the convex function f .

Figure 2.2: Epigraph (a) and convex function (b).

Lemma 2.2. The domain S ⊆ Rn of a convex function f : S → R is a convex set.

Proof. Since f is convex, its epigraph is a convex set. Define L : S × R → S : (x, t) 7→ x

as the mapping that projects the epigraph of f onto the domain of f . Clearly L is linear,

and since convexity of a set is preserved under linear mappings, it follows that the domain

S is a convex set.

In particular, this means that in order for a function to be convex, its domain must be

a convex set. Sometimes this condition is included into the definition of a convex function.

Besides the basic definition 2.6 there are a number of other characterizations of convex

functions, many of which have a strong geometric interpretation. In the following we will

list a few of them.

Jensen’s Inequality We start with the fact that convex functions enjoy an important

interpolation property known as Jensen’s inequality. Namely, if f is a convex function

with (convex) domain S ⊆ Rn, it holds that

∀x, y ∈ S, θ ∈ [0, 1] : f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.6)

Geometrically this means that the straight line between any two points f(x) and f(y) is

always above the graph of f , see fig. 2.2(b). Due to this intuitive interpretation, eq. (2.6)

is often used as an alternative definition of convexity.

First-Order Condition If a convex function f : S → R, S ⊆ Rn is differentiable, it

can be characterized as follows

∀x, y ∈ S : f(x) ≥ f(y) + 〈∇f(y), x− y〉 . (2.7)
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y

f(y) + 〈∇f(y), x− y〉

f(x)

(a) The graph of a convex function is
always above its linearization.

f(x)

g = ∇f(y)

y z

g1 ∈ ∂f(z)

g2 ∈ ∂f(z)

g3 ∈ ∂f(z)

(b) The subdifferential is the set of all subgra-
dients.

Figure 2.3: First-order convexity condition and subdifferential.

This means that the graph of a convex function is always above the linear approximation

at any point y. In other words, f can be globally underestimated by its first-order approx-

imation, see fig. 2.3(a). Moreover, if we switch the roles of the points x and y in eq. (2.7),

we obtain through a short computation that

∀x, y ∈ S : 〈∇f(x)−∇f(y), x− y〉 ≥ 0, (2.8)

which shows that the gradient of a convex function is monotone. The relations eqs. (2.7)

and (2.8) play an important role in the optimization of convex functions, because they

allow to obtain global information from the local gradient.

We can generalize eq. (2.7) for convex functions which are not continuously differen-

tiable. In particular, we call any vector g that fulfills

∀x ∈ S : f(x) ≥ f(z) + 〈g, x− z〉 (2.9)

at a point z ∈ S a subgradient of f at z, denoted g ∈ ∂f(z). If f is differentiable at z,

then there is exactly one g that fulfills eq. (2.9), namely the vector g = ∇f(z). In this case

eq. (2.9) is equivalent to eq. (2.7). If f is not differentiable at z there are multiple different

subgradients that fulfill eq. (2.9), see fig. 2.3(b). The set of all subgradients is called the

subdifferential. The subdifferential of a convex function is non-empty everywhere, a fact

which allows to characterize the optimality condition of a convex function.

Definition 2.7. A point x∗ ∈ S ⊆ Rn is a minimum of the convex function f : S → R if

and only if 0 ∈ ∂f(x∗). Therefore, if x∗ is a minimum we have by eq. (2.9) that

∀x ∈ S : f(x) ≥ f(x∗) + 〈∂f(x∗), x− x∗〉 = f(x∗)

which means that x∗ is a global minimum of f . It follows that every (local) minimum of

a convex function is also a global minimum.
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Second-Order Condition If a convex function f : S → R, S ⊆ Rn is twice differen-

tiable, it can be characterized by

∀x ∈ S : ∇2f(x) < 0,

the Hessian matrix is positive semidefinite everywhere.

To check convexity of a function f , in practice it is often useful to construct f from

functions known to be convex and operations that preserve convexity. Some of these

operations are

• The non-negative weighted sum of convex functions is convex.

• A convex function f under an affine mapping is convex, g(x) = f(Ax + b), A ∈
Rm×n, b ∈ Rm.

• The point-wise maximum of convex functions f1, f2 is convex,

g(x) = max{f1(x), f2(x)}.

• Norms are convex.

2.1.4 The Convex Conjugate

The convex conjugate is one of the most fundamental geometric relations in convex analy-

sis. It is based on an alternative characterization of a convex set, namely as an intersection

of all halfspaces containing it, see lemma 2.1. This alternative characterization is an in-

stance of duality, which we already encountered in section 2.1.1 where we defined the dual

norm. Applying the concept of duality to the epigraph of a convex function (which is a

convex set) yields the convex conjugate. Recall that a halfspace is generated by a hyper-

plane of the form 〈a, x〉 − b = 0, see section 2.1.2. Duality suggests that we are interested

in characterizing the epigraph of a convex function f as an intersection of halfspaces.

Lemma 2.3. A convex function f : S → R, S ⊆ Rn is the point-wise supremum of all

affine functions minorizing it.

Proof. Since f is convex, epi f is a convex set. By lemma 2.1, epi f can be represented as

the intersection of halfspaces which contain it. These halfspaces are given as a parameter-

ized family of the form 〈a, x〉− t ≤ b with parameter t ∈ R and a ∈ Rn, b ∈ R. Each of the

halfspaces constrains (x, t) ∈ epi f to 〈a, x〉 − b ≤ t. The value f(x) is the smallest value

of t such that (x, t) ∈ epi f , hence f(x) is the point-wise supremum of affine functions

〈a, x〉−b. The fact that the halfspaces contain epi f implies 〈a, x〉−b ≤ f(x), which shows

that the affine functions are minorants of f .

Note that together with lemma 2.1 this lemma also shows that the point-wise supre-

mum of affine functions is the intersection of their epigraphs. Moreover, it is not hard

to see that in fact we do not need all minorants to characterize f . It suffices to take the
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point-wise supremum of all tight minorants. For any minorant that is not tight, we can

find another one with a smaller value of t such that (x, t) is still in epi f .

From lemma 2.3, we are interested in affine functions x 7→ 〈a, x〉 − b that minorize f

∀x : f(x) ≥ 〈a, x〉 − b. (2.10)

Fixing a, we can find the special value b∗ such that eq. (2.10) holds with equality for some

x0 – this is exactly the tight affine minorant or the supporting hyperplane of epi f at x0,

see fig. 2.4. We should mention here that a is an element of the dual space, i.e. a covector.

x0

f(x)

〈a, x〉 − b1
= 0

〈a, x〉 − b
∗ = 0

〈a, x〉 − b2
= 0

Figure 2.4: Hyperplanes with fixed slope a and varying parameters b. The value b1 yields a
minorant of f , but the minorant is not tight. b∗ gives a tight minorant, i.e. there is some x0 for
which eq. (2.10) holds with equality. The hyperplane with parameter b2 does not minorize f .

Moreover we use the usual notation with angular brackets for the action of a covector on a

vector, i.e. it should be understood that 〈a, x〉 = a(x). In geometric terms, a corresponds

to the slope of the supporting hyperplane. Now we reorder terms in eq. (2.10) and obtain

f(x) ≥ 〈a, x〉 − b ∀x
⇔ b ≥ 〈a, x〉 − f(x) ∀x
⇔ b ≥ sup

x
{〈a, x〉 − f(x)}. (2.11)

The special value b∗, i.e. the parameter of the supporting hyperplane, is attained when

equality holds

b∗ = sup
x
{〈a, x〉 − f(x)}. (2.12)

We can express the value of b∗ in eq. (2.12) as a function of the dual variable, which yields

Definition 2.8 (Convex conjugate). Let S ⊆ Rn with dual space S∗ = L(S,R) the space

of all linear functionals on S. The convex conjugate f∗ : S∗ → R of a function f : S → R
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is defined as

f∗(y) = sup
x∈S
{〈x, y〉 − f(x)}.

The geometric interpretation of the convex conjugate is as follows: We feed a slope y

to f∗ and it returns the parameter b∗, i.e. such that the hyperplane with slope y minorizes

f tightly, see fig. 2.4. The value of b∗ corresponds to the intercept on the (n + 1)-axis of

the supporting hyperplane with slope y. Note that the convex conjugate is a supremum

of affine functions, hence f∗ is convex even if f is not. Inserting a = y and b∗ = f∗(y) into

eq. (2.11) and following the steps backwards, one immediately obtains the Fenchel-Young

inequality f(x) + f∗(y) ≥ 〈x, y〉 ∀x ∈ S, y ∈ S∗.
Applying definition 2.8 to the convex conjugate itself yields the biconjugate

f∗∗(x) := (f∗)∗(x) = sup
y∈S∗
{〈y, x〉 − f∗(y)}. (2.13)

By the Fenchel-Young inequality, f(x) ≥ 〈y, x〉 − f∗(y) for all y ∈ S∗, hence taking the

supremum over y does not change the inequality and it follows that

f(x) ≥ sup
y∈S∗
{〈y, x〉 − f∗(y)} = f∗∗(x), (2.14)

the biconjugate is the convex envelope of f .

As a special and important case consider that f is convex. Fixing a slope y, by

definition the convex conjugate is the value f∗(y) such that 〈x, y〉−f∗(y) is a tight minorant

of f . Therefore the biconjugate eq. (2.13) is a supremum of tight minorants, and since f

is convex, by lemma 2.3 this supremum is equal to f . We thus obtain the fundamental

property that f = f∗∗, the biconjugate of a convex function is the function itself.

2.1.5 The Proximal Operator

One subproblem that often occurs in convex optimization is the projection onto a convex

set. Assume we have a convex set C ⊆ Rn and a point x̃ /∈ C. The projection of x̃ onto

C is given by

projC(x̃) = arg min
x∈C

‖x− x̃‖. (2.15)

This is also called orthogonal projection, because under the Euclidean norm the shortest

path from C to the point x̃ is the line orthogonal to the boundary of C, see fig. 2.5. Note

that the norm is a convex function and we minimize over a convex set, hence eq. (2.15) is

a constrained convex optimization problem which has a unqiue solution. We can alterna-

tively transform eq. (2.15) to an unconstrained minimization problem using the indicator
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x̃

C
projC(x̃)

Figure 2.5: The orthogonal projection of a point x̃ onto the convex set C.

function of a set, which is defined as

IC(x) =

{
0 if x ∈ C
∞ else

.

We get

projC(x̃) = arg min
x

{‖x− x̃‖+ IC(x)}

= arg min
x

{
1
2‖x− x̃‖

2 + IC(x)
}
, (2.16)

since the minimizer does not change if we square the norm or multiply it by a constant.

The proximal operator is a generalization of eq. (2.16), where the indicator function is

replaced by a general convex function.

Definition 2.9. The proximal operator with respect to a convex function f is defined as

proxf (x̃) = arg min
x

{
1
2‖x− x̃‖

2 + f(x)
}
. (2.17)

The proximal operator is also often denoted as (I + ∂f)−1(x̃), which can be seen by

considering the optimality condition of eq. (2.17)

0 ∈ x− x̃+ ∂f(x)

⇔x̃ ∈ x+ ∂f(x)

⇔x̃ ∈ (I + ∂f)(x)

⇔x = (I + ∂f)−1(x̃) = proxf (x̃),

where I denotes the identity operator. In the context of optimization algorithms, the

notation proxτf is frequently used, which simply means that the term f(x) in eq. (2.17)

is multiplied by a scalar τ .

We point out that the proximal operator does not assume differentiability of f . This

will become important in the context of optimization of non-smooth functions.
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2.1.6 Algorithms

In this section we give a few standard algorithms for optimizing a convex function. After

presenting the basic gradient descent algorithm for smooth functions, we turn to proximal

splitting methods for composite problems which consist of a smooth and a non-smooth

part. Finally we present an efficient primal-dual algorithm for completely non-smooth

problems.

The general form of a convex optimization problem is defined as

min
x∈C

f(x), (2.18)

where f : S ⊆ Rn → R is a convex function and C ⊆ Rn is a convex set. Note that in

addition to f being a convex function we also require that we optimize over a convex set.

If S ⊂ Rn (i.e. S is a proper subset, different from Rn itself) then it is always possible to

extend f to all of Rn by setting the function value to ∞ outside of S. In the rest of this

section we will therefore drop the set S and assume that the objective function is defined

on Rn.

2.1.6.1 Gradient Descent

The most basic approach to optimizing a smooth convex function is simply taking steps

along the negative gradient direction, i.e. in a direction where the function value decreases.

This procedure is known as gradient descent, see algorithm 2.1. The advantage of the

Algorithm 2.1: Gradient descent

Data: Convex differentiable function f
1 Initialization: Set k = 0, choose a starting point x0 ∈ Rn and stepsizes αk > 0

2 while not converged do
3 xk+1 = xk − αk∇f(xk)
4 k = k + 1

5 end

gradient descent algorithm is that it is very simple. Of course the function needs to be

differentiable in order to compute the gradient. If in addition∇f(x) is Lipschitz continuous

with parameter L, meaning L fulfills ∀x, y ∈ Rn : ‖∇f(x) − ∇f(y)‖ ≤ L‖x − y‖, then

it can be proved that the gradient descent algorithm with constant stepsize αk ∈ (0, 2/L)

converges with rate O(1/k) to the optimal value.1

It is known that the lower complexity bound for any first-order method on smooth

convex functions is O(1/k2) [Nesterov, 2004]. This raises the question if algorithm 2.1 can

be improved for faster convergence.

1Unless stated otherwise, we will always talk about convergence of the function value.
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In a seminal work, [Nesterov, 1983] showed that one can achieve the optimal O(1/k2)

convergence rate with a simple extrapolation and a clever selection of the extrapolation

parameters, see algorithm 2.2. The accelerated algorithm comes with basically unchanged

Algorithm 2.2: Nesterov accelerated gradient descent

Data: Convex function f , with L-Lipschitz gradient
1 Initialization: Set k = 0, choose points y0 = x−1 ∈ Rn, α0 = 1

2 while not converged do
3 xk = yk − 1

L∇f(yk)

4 αk+1 =
1+
√

1+4α2
k

2

5 yk+1 = xk + αk−1
αk+1

(xk − xk−1)

6 k = k + 1

7 end

computational complexity, only memory complexity increases slightly because one needs

to store the additional point yk.

2.1.6.2 Proximal Methods

Proximal methods were invented out of the need to optimize non-differentiable functions,

in which case gradient-based methods could not be applied. In the most basic form, one

simply iterates

xk+1 = proxαf (xk),

which results in the Proximal Point Algorithm (PPA) [Martinet, 1970]. With appropriate

stepsize, the PPA eventually converges to a fixed point of f . However, solving the proximal

operator is usually as hard as optimizing the original function f , which means the PPA

in this form it is a rather conceptual algorithm. We still mention it here, because many

state of the art algorithms for non-smooth optimization of convex functions can be seen

as an instance of the basic PPA.

Consider the class of optimization problems of the form

min
x∈Rn
{f(x) = g(x) + h(x)}, (2.19)

where the objective function is given as the sum of a differentiable convex function g(x)

and a convex, possibly non-differentiable function h(x). As it turns out, many practically

relevant problems can be given in this form. Assume we have an estimate of a Lipschitz

constant L of ∇g(x), then a simple algorithm that exploits the additional structure of the

optimization problem eq. (2.19) is the proximal gradient method, see algorithm 2.3. It

can be seen as a counterpart of the basic gradient descent algorithm 2.1. The proximal
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Algorithm 2.3: Proximal gradient method

Data: Convex function g with L-Lipschitz gradient, convex function h
1 Initialization: Set k = 0, choose a starting point x0 ∈ Rn and stepsizes αk > 0

2 while not converged do
3 xk+1 = proxαkh (xk − αk∇g(xk))
4 k = k + 1

5 end

Algorithm 2.4: Fast Iterative Shrinkage Thresholding Algorithm (FISTA)

Data: Convex function g with L-Lipschitz gradient, convex function h
1 Initialization: Set k = 0, choose points y0 = x−1 ∈ Rn, α0 = 1

2 while not converged do
3 xk = proxh/L

(
yk − 1

L∇g(yk)
)

4 αk+1 =
1+
√

1+4α2
k

2

5 yk+1 = xk + αk−1
αk+1

(xk − xk−1)

6 k = k + 1

7 end

gradient method works by taking gradient descent steps on the smooth part g, followed by

a proximal step on the non-smooth part h. Such methods are known as proximal splitting

algorithms. The proximal gradient method converges for αk ∈ (0, 2/L) with rate O(1/k).

It is interesting that even though the function h(x) is not differentiable, the proximal

gradient algorithm enjoys the same convergence rate as the gradient descent algorithm for

smooth functions.

To improve upon the slow convergence, the proximal gradient method can be acceler-

ated, see algorithm 2.4. This accelerated algorithm is known as Fast Iterative Shrinkage

Thresholding Algorithm (FISTA) [Beck and Teboulle, 2009] and is very popular for opti-

mizing composite functions of the form eq. (2.19). In particular, it can be proved that

FISTA has the optimal convergence rate of O(1/k2). Note that the FISTA algorithm is

very similar to Nesterov’s accelerated gradient descent for smooth functions. Basically the

only difference is the application of the proximal operator in line 3.

We now mention an important point: Algorithms involving the proximal map are based

on the assumption that the proximal map is “easy” to evaluate. In practice, “easy” ideally

means that an explicit solution for the proximal map can be given. It turns out that this is

indeed often the case for many practically relevant problems. If the proximal map cannot

be solved explicitly, one has to solve a subproblem at every iteration of the algorithm. If

the proximal operator is sufficiently simple, then this subproblem can be solved by a few

iterations of some suitable optimization algorithm, and the overall method still converges

reasonably fast.
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2.1.6.3 Primal-Dual Algorithm

We now turn to completely non-smooth problems that exhibit the following structure

min
x∈Rn
{f(Kx) + g(x)}, (2.20)

where f, g are convex functions and K is a linear operator. This structure is very similar

to the class of problems considered in the previous section, however now both functions

are potentially non-differentiable.

Equation (2.20) is tackled by computing the convex conjugate of f(Kx). In fact, since

f is convex we have f∗∗ = f and eq. (2.20) can be written as the following convex-concave

saddle point problem

min
x∈Rn

max
y∈Rm

{〈Kx, y〉+ g(x)− f∗(y)}, (2.21)

where Rm denotes the dual space. Since the primal variable x as well as the dual variable

y appear in the saddle point problem, eq. (2.21) is also called the primal-dual formu-

lation of eq. (2.20). A key observation is that in the primal-dual form neither f nor

g contain the linear operator K anymore. The primal-dual hybrid gradient algorithm

[Chambolle and Pock, 2011] is thus obtained from the intuitive idea of taking descent

steps in x and ascent steps in y. Because both f and g are non-smooth, this will be

proximal gradient steps. The linear operator K can appear on either side of the scalar

product through the relation 〈Kx, y〉 = 〈x,K∗y〉, where K∗ denotes the adjoint operator.

In case we are working in a real vector space, the linear operator can be represented as

a matrix with real entries and the adjoint is equivalent to the transpose of the matrix.2

Additionally, the primal-dual algorithm uses an over-relaxation step in order to ensure

convergence, see algorithm 2.5. Let ‖K‖ denote the operator norm of the linear operator

Algorithm 2.5: Primal-dual algorithm

1 Initialization: Set k = 0, choose points x0, x̄0 ∈ Rn, y0 ∈ Rm, stepsizes τ, σ > 0

2 while not converged do
3 yk+1 = proxσf∗ (yk + σKx̄k)

4 xk+1 = proxτg(xk − τK∗yk+1)

5 x̄k+1 = 2xk+1 − xk
6 k = k + 1

7 end

K, then the algorithm converges if τσ‖K‖2 < 1 with rate O(1/k), which is the optimal

rate for non-smooth problems. As before, the basic assumption is that the proximal maps

2The situation is more complicated in complex vector spaces, where the adjoint is obtained from the
conjugate transpose, i.e. transposing the matrix and taking the complex conjugate of the entries.
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are “easy” to compute. Additionally, if g is strongly convex then the algorithm can be

accelerated to rate O(1/k2).

2.2 Discrete Optimization

2.2.1 Graphical Models

The basic object in discrete optimization for computer vision is the weighted (capacitated)

graph. It consists of a set of nodes and a set of edges that connect the nodes. Usually the

pixels of an image are the nodes, whereas the edges define the neighborhood connectivity

between pixels. A probabilistic graphical model is a graph in which nodes represent

random variables and edges define conditional (in)dependence assumptions. The dominant

graphical models used for low-level vision tasks are undirected graphs. If additionally

the conditional independence between variables is of a special form, namely such that a

variable given its neighbors in the graph is conditionally independent of the rest of the

graph, such graphical models are called Markov Random Fields (MRFs) [Lauritzen, 1998].

The property of local statistical independence is the Markov property.

s t

xs xt

Figure 2.6: A graph on the pixelgrid. The black squares are pixels, which correspond to nodes
in the graph. Each node is connected within its 4-neighborhood and carries a variable symbolized
by a box with labels. The value of the label is indicated by the black circle and the labeling by
blue lines.

The prototypical problem in graph-based computer vision is the labeling problem. It

can be modeled by a graph in the following way, see fig. 2.6. Let V be a set of nodes and

E ⊂ V×V a set of edges, which together specify the graph G = (V, E). An edge is given as

a pair (s, t) ∈ E , also denoted simply st. The goal is to assign a variable xs to each node

(or pixel) s ∈ V, which takes values from a discrete labelset L = {l1, . . . , lL}. The value of

xs is also called the label at s, and in many cases the set L is given by the integers, i.e.

L = {0, . . . , L− 1}. Let us define a labeling as the vector x = (xs), s ∈ V of all variables.
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This vector takes values in the space L = Ln, n = |V|, the Cartesian product over all

labelsets. The problem is then given as

min
x∈L

E(x) =
∑
s∈V

fs(xs) +
∑
st∈E

fst(xs, xt) + fconst. (2.22)

The functions f are commonly referred to as potentials, with the first term of the en-

ergy eq. (2.22) the unary term, and the second term the binary (or pairwise) interac-

tion potential. The last term exists for convenience to collect any constant values that

might arise, e.g. from reparameterizations of the energy. The solution of eq. (2.22) corre-

sponds naturally to the Maximum a Posteriori (MAP) configuration of a Gibbs distribution

p(x) ∝ exp(−E(x)). Whereas higher-order interaction potentials are possible, we do not

cover them here since in practice the resulting problems are much harder.

A clique C is a fully connected subset of nodes, i.e. st ∈ E for all s, t ∈ C. Let us also

define C, the set of all maximal cliques of the graph, i.e. cliques not properly contained in

another clique. We associate to each clique a compatibility function ϕc : ⊗s∈CLs → R+,

where ⊗ denotes the Cartesian product of the labelsets for the nodes in the clique. An

important consequence of the Markov property is that the joint probability distribution

p(x1, . . . , xN ) of the graph factorizes as

p(x1, . . . , xN ) ∝
∏
C∈C

ϕC(xC).

This is the basis for efficient computation of max (resp. min) marginals pmax(xs) =

maxx′,x′s=xs p(x
′).

Submodularity Let x and y be two labelings, we define the operations ∧ and ∨ as the

component-wise minimum and maximum respectively

∀s ∈ V : (x ∧ y)s= min(xs, ys)

∀s ∈ V : (x ∨ y)s= max(xs, ys).

A function f is called submodular [Topkis, 1978, Murota, 2003], if

∀x, y ∈ L : f(x ∧ y) + f(x ∨ y) ≤ f(x) + f(y). (2.23)

Submodularity can be seen as the discrete equivalent to convexity for continuous functions

[Lovász, 1983]. In the same way as the optimization of convex functions is relatively easy,

there are powerful discrete algorithms for computing the exact minimizer of submodular

functions. In particular, an energy of the form eq. (2.22) is submodular, iff all pairwise

terms fst are submodular functions [Boros and Hammer, 2002].
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2.2.2 Exact Algorithms

The general problem eq. (2.22) is NP-hard [Boros and Hammer, 2002]. However under

certain conditions, an efficient and exact solution can be computed. A standard model

in computer vision is the binary image segmentation, where the labelset is given by

L = {0, 1}. Then the condition for submodularity eq. (2.23) takes the well-known form

fst(0, 0)+fst(1, 1) ≤ fst(0, 1)+fst(1, 0). The binary problem can be solved by a minimum

cut in polynomial time. To that end, the pairwise potentials are interpreted as edge ca-

pacities or weights. A minimum cut is a partition V = (S, T \S) that separates the source

vertex from the sink vertex and minimizes the sum of all boundary edge capacities, where

a boundary edge is an edge that starts in S and ends in T . By the max-flow min-cut

theorem [Elias et al., 1956, Ford and Fulkerson, 1956], the value of the minimum cut is

equal to the value of the maximum flow between the source and sink vertex.

The simplest algorithm to compute the maximum flow due to

[Ford and Fulkerson, 1956] works as follows. One iteratively finds paths from

source to sink with non-saturated edge capacities and pushes more flow through that

path until all edges of the path are saturated. If any path from source to sink passes

through at least one saturated edge, the maximum flow is reached. Algorithms following

this scheme are called augmenting path methods and are popular for their efficiency

[Boykov and Kolmogorov, 2004]. We refer to [Cook et al., 1998] for further in-depth

treatment.

Binary labeling problems, while efficiently solvable, are of limited paractical appli-

cability. Certain multi-label problems can be reduced to a binary minimum cut with a

construction proposed by [Ishikawa, 2003]. The key idea of this method is that one can use

the natural ordering of the labels to construct an equivalent lifted hypergraph with binary

variables. This lifted graph is then solved by a minimum cut. Such construction works

in case of arbitrary unaries and submodular pairwise terms. For the special case that the

unaries are convex, algorithms with better runtime bounds than Ishikawas method exist

[Kolmogorov, 2005, Hochbaum, 2001].

2.2.3 Approximate Algorithms

Unfortunately many interesting energy minimization models are NP-hard. In this case

methods that give approximate solutions are popular. One approach are move-making

strategies [Boykov et al., 1998, Boykov et al., 2001], which try to construct an approxi-

mate global solution by a series of local binary problems. For instance, the expansion

move for a label l increases the number of nodes having label l. The criterion for a local

minimum is that no expansion move for any label li gives a labeling with lower energy.

Thus in each move, the subproblem is a binary labeling problem that can be solved effi-

ciently.

Another approach to compute approximate solutions is through the Linear Program-

ming (LP) relaxation of the energy eq. (2.22). First, we need to introduce notation: Collect
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all unaries and pairwise terms in a vector f = (fα), α ∈ I where the index set I is given

as I = {0} ∪ {(s ∈ V, i ∈ L)} ∪ {(st ∈ E , ij ∈ L×L)}. In this notation, fs(i) refers to the

value of the unary potential at node s when xs takes the label i. Similarly, fst(i, j) is the

value of the pairwise term for xs = i, xt = j. We also require that fst(i, j) = fts(j, i), i.e.

the direction does not matter.

x0 x1

f0(0)

f0(1)

f1(0)

f1(1)

f01(0,0)

f01(1,1)

f01 (0,1) f01
(1,

0)

f0(0) f0(1) f1(0) f1(1) f01(0,0) f01(0,1) f01(1,0) f01(1,1)f =

(a)

x0 = 0 x1 = 0

(b)

f0(0) f0(1) f1(0) f1(1) f01(0,0) f01(0,1) f01(1,0) f01(1,1)f =

1 0 1 0 1 0 0 0δ(x) =

(c)

x0 = 1 x1 = 0

(d)

f0(0) f0(1) f1(0) f1(1) f01(0,0) f01(0,1) f01(1,0) f01(1,1)f =

0 1 1 0 0 0 1 0δ(x) =

(e)

Figure 2.7: (a) A graph with two nodes, binary labels, pairwise interactions and corresponding
components of the cost vector f . (b),(c) and (d),(e) show the graph and canonical overcomplete
representation for the configurations x0 = 0, x1 = 0 and x0 = 1, x1 = 0 respectively.

Now we express the energy as a scalar product with the help of the mapping δ : L→
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{0, 1}|I| defined as follows

δ(x)0 = 1

δ(x)s(i) = Jxs = iK

δ(x)st(i, j) = Jxs = i, xt = jK,

where J·K is the Iverson bracket, i.e. it is 1 if the argument is true and 0 otherwise. The map-

ping δ is called the canonical overcomplete representation [Wainwright and Jordan, 2008].

It is basically for each variable xs and for each pair xst an indicator of their respective

label values, see fig. 2.7. The term overcomplete is justified, considering that there are lots

of linear relationships between the potentials δ(x). For instance, it is easy to see that if

the indicator for xs taking the label i is true, then this induces a constraint on the pairwise

potentials involving the node xs. Namely we have that

∀st ∈ E , ∀i ∈ L : δ(x)s(i)−
∑
j′∈L

δ(x)st(i, j
′) = 0.

We can now write

E(x) = 〈δ(x), f〉 =
∑
α∈I

δ(x)αfα,

and the energy minimization becomes

min
x∈L
〈δ(x), f〉 = min

µ∈MARG(G)
〈µ, f〉 , (2.24)

where MARG(G) is the so-called marginal polytope [Wainwright and Jordan, 2008]. It is

defined as the convex hull of the vectors forming the canonical overcomplete representa-

tion, i.e. MARG(G) = conv(δ(x) |x ∈ L). The marginal polytope depends on the mapping

δ, which in turn is defined by the structure of the graph. In general, the LP eq. (2.24)

is not tractable, as the number of constraints in the feasible set MARG(G) grows ex-

ponentially with the problem size. Hence the LP is relaxed by dropping the integrality

constraints of µ,3 which is often referred to as the standard LP relaxation of the MRF

energy [Živný et al., 2014].

3remember that the feasible set MARG(G) is constructed from the vectors δ, which are defined to be
binary, i.e. δ(x)s(·) ∈ {0, 1} ∀s ∈ V and δ(x)st(·, ·) ∈ {0, 1} ∀st ∈ E
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Let us define the set LOCAL(G), the local marginal polytope, as follows

LOCAL(G) =


µ ∈ R|I|

∣∣∣∣∣∣∣∣∣∣∣

µ ≥ 0∑
i∈L

µs(i) = 1 ∀s ∈ V∑
j′∈L

µst(i, j
′) = µs(i) ∀st ∈ E ,∀i ∈ L


, (2.25)

which yields the standard LP relaxation of eq. (2.24)

min
µ∈LOCAL(G)

〈µ, f〉 . (2.26)

The first constraint in eq. (2.25) relaxes the admissable values from {0, 1} to the positive

reals. The second constraint ensures that the (fractional) label values at a node sum to 1.

The third is a consistency constraint between the unary and pairwise relaxed labels. Note

that LOCAL(G) is an outer bound to MARG(G), and we have

min
µ∈MARG(G)

〈µ, f〉 ≥ min
µ∈LOCAL(G)

〈µ, f〉 ,

whith the case of equality achieved being a tight relaxation.

The advantage of the local marginal polytope is that it contains only polynomially

many constraints. However, for typical problems in computer vision this is still a large

number. Standard LP solvers do not scale well, hence specialized algorithms have been

developed.

2.2.3.1 Decomposition

The idea of decomposition methods is to split a difficult problem into smaller subprob-

lems that are tractable, and obtain a solution by combining the individual subproblems.

Consider a minimization problem of the form minx∈C f1(x) + f2(x) where C is a convex

set. Let us assume that minimizing the individual fi is easy, but minimizing their sum is

hard. For example, suppose that x is high-dimensional and decomposes as x = (u, v, y),

where the subvector y is low-dimensional compared to the subvectors u, v. One situation

where minimizing the individual fi is easy but minimizing the sum is hard is when the fi
almost decouple, in particular f1(x) = f1(u, y) and f2(x) = f2(v, y). In this situation the

subvector y is called complicating variable, because it complicates an otherwise separable

problem.

We can formulate an equivalent problem by considering local versions of the variable

x and adding consistency constraints which force the local variables to be equal

min
x1,x2∈C

f1(x1) + f2(x2) s.t. x1 = x2.
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The dual decomposition is obtained by introducing Lagrange multipliers for the equality

constraint, which yields the Lagrangian

L(x1, x2, λ) = f1(x1) + f2(x2) + 〈λ, x1 − x2〉 .

The dual subproblems are given by

g1(λ) = min
x1∈C

f1(x1) + 〈λ, x1〉 (2.27)

g2(λ) = min
x2∈C

f2(x2)− 〈λ, x2〉 (2.28)

and the dual problem is therefore

max
λ
{g(λ) = g1(λ) + g2(λ)} (2.29)

= max
λ

{
min
x1∈C

f1(x1) + 〈λ, x1〉+ min
x2∈C

f2(x2)− 〈λ, x2〉
}
.

Note that the dual subproblems eqs. (2.27) and (2.28) are now the easy minimizations in-

volving the individual fi only, with an additional scalar offset from the Lagrange multiplier

λ. Importantly, the subproblems decouple and can even be solved in parallel.

In this particular setup, eq. (2.29) is called the master problem and eqs. (2.27)

and (2.28) are the slave problems [Bertsekas, 1999]. The master algorithm updates λ via

the information from the solutions of the subproblems. Note that the dual problem is

concave, it is composed of slave subproblems each being a minimum of a function linear

in λ. Let x∗1(λ) be a solution for the first subproblem, i.e. g1(λ) = f1(x∗1(λ)) + 〈λ, x∗1(λ)〉.
Then by concavity we have for all λ̄

g1(λ̄) = min
x1∈C

f1(x1) +
〈
λ̄, x1

〉
≤ f1(x∗1(λ)) +

〈
λ̄, x∗1(λ)

〉
= f1(x∗1(λ)) +

〈
λ̄, x∗1(λ)

〉
+ 〈λ, x∗1(λ)〉 − 〈λ, x∗1(λ)〉

= f1(x∗1(λ)) + 〈λ, x∗1(λ)〉+
〈
λ̄− λ, x∗1(λ)

〉
= g1(λ) +

〈
λ̄− λ, x∗1(λ)

〉
,

which shows that g1(λ̄) ≤ g1(λ) +
〈
λ̄− λ, x∗1(λ)

〉
. Comparing this to the definition of

the subgradient eq. (2.9), we see that the solution x∗1(λ) is a (sub)gradient of the dual

subproblem g1 at λ. Because one has to solve the subproblems in any case, the necessary

information for updating λ in the master algorithm is obtained at essentially no additional

cost through the solution of the slave problems.

Apart from the decomposition described here, the dual can be used to lower bound the

original problem. Assume we have a Lagrangian L(x0, λ) and the problem is to compute

minx0 maxλ L(x0, λ). The dual problem maxλ minx L(x, λ) is a lower bound, which can be

seen as follows. First we note that L(x0, λ) ≥ minx L(x, λ), as a direct consequence of the
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min on the right hand side. Taking first the maximum w.r.t. λ and then the minimum

w.r.t. x0 on both sides yields

max
λ

L(x0, λ) ≥ max
λ

min
x
L(x, λ)

min
x0

max
λ

L(x0, λ) ≥ max
λ

min
x
L(x, λ).

Dual Decomposition Algorithms In the context of MRF -MAP inference, the de-

composition idea is applied in the following way. We split the graph into a collection of

trees T k covering all of G, i.e. every node and every edge is part of at least one T k. Let us

also define I(T k) as the set of indices corresponding to tree T k. The trees induce a decom-

position of the cost vector f into a sum f =
∑

k∈K f
k, fk ∈ Ak. Each fk is constrained

to be zero outside T k by the constraint set Ak = {f ∈ R|I| | fα = 0 ∀α ∈ I \ I(T k)}.
Then we can lower bound the LP eq. (2.24) as

min
x∈L
〈δ(x), f〉 = min

x∈L

〈
δ(x),

∑
k

fk

〉
≥
∑
k

min
x∈L

〈
δ(x), fk

〉
. (2.30)

However, the decomposition f =
∑

k f
k is not unique, and it is natural to consider the

question which decomposition gives the tightest bound. This amounts to maximizing the

lower bound eq. (2.30) over all possible decompositions

max
fk∈Ak,

∑
k f

k=f

∑
k

min
x∈L

〈
δ(x), fk

〉
. (2.31)

A fundamental theorem ([Wainwright et al., 2005], Theorem 1) links this maximization,

which is a LP , to the standard LP relaxation of the MRF energy. In particular, it turns

out that the LP relaxation eq. (2.26) is the Lagrangian dual to eq. (2.31). An important

consequence of this theorem is that the optimal value of eq. (2.31) does not depend on the

choice of decomposition, as long as the trees cover the whole graph.

For images, where the graph is given by the pixelgrid, a popular choice is a decom-

position into horizontal and vertical chains. Such chains are can be solved efficiently by

e.g. dynamic programming. In view of the decomposition approach, the chains correspond

to the slave problems eqs. (2.27) and (2.28) and the outer maximization in eq. (2.31) is

the master problem. Compared to the equivalent LP relaxation eq. (2.26), the problem

eq. (2.31) has orders of magnitude less constraints thanks to the decomposition. However,

it is still a large-scale optimization problem.

There are different approaches for optimizing the master problem. A straightfor-

ward method is the subgradient algorithm [Komodakis et al., 2011, Kappes et al., 2012],

which guarantees convergence to the optimal value of the relaxed dual. Sequential Tree-

Reweighted Message Passing (TRW-S) [Kolmogorov, 2006] is an efficient block-coordinate

ascent algorithm based on dynamic programming, however this method might get stuck
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in suboptimal fixed points. A massively parallel algorithm is Dual Minorize-Maximize

(DMM) [Shekhovtsov et al., 2016], which aims specifically at exploiting the speedup en-

abled by parallel capabilities of programmable Graphics Processing Units (GPUs). The

idea of this method is to alternate between computing minorants of the slave problems and

using these minorants to update (maximize) the master problem – hence the name DMM .

The key property is that computing the minorants can be implemented very efficiently

in a parallel manner. DMM has the same fixed points as TRW-S , but is much faster in

practice.

2.3 Differential Geometry

The material in this section is based on the two classic textbooks

[Spivak, 1999, do Carmo, 1992], as well as on the extensive book by [Lee, 2012]. The

geometric approach to tensors is inspired by the enlightening script [Grinfeld, 2013].

The topic of differential geometry is the study of geometric structures by means of

calculus. For example, given a curve in the two-dimensional Euclidean plane, one could

ask about the tangent to the curve. The tangent at a fixed point P on the curve can be

found as follows:

Choose a point P̂ near P on the curve and construct the unique straight line

passing through the two points. Let P̂ come closer to P , the tangent is the

line obtained from the limit of this procedure.

Whereas in modern terminology the tangent is defined by the gradient of the curve at P ,

we point out that this recipe does not involve coordinates or functions. It uses only the

geometric concepts of distance, points and lines in the plane.

Geometry is one of the oldest branches of mathematics with a history of more than

two millenia, rooted in practical problems of construction, measurements of land and the

motion of stars. These tasks were solved by classical compass-and-straightedge construc-

tions, in which the main elements are the notion of points, lines, circles, length and angle.

Many of the mathematical methods can be traced back to the cultures of Babylonia and

Egypt, which were then refined further by the ancient Greeks. This development eventu-

ally culminated in the great work of Euclid of Alexandria, The Elements (ca. 300 B.C.).

In this script, which is regarded as one of the most important works in the history of

mathematics, Euclid introduced what is today known as the axiomatic method : Starting

from a small set of axioms, propositions are developed by careful logical reasoning, even-

tually giving a complete and consistent picture of the mathematics known at the time.

Up to this day, geometry obeying the axioms laid down by Euclid is known as Euclidean

geometry.

We emphasize the absence of coordinates, vectors and algebraic operations in the

classical geometry described in The Elements. All propositions and proofs are given in
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terms of intuitive geometric concepts like lines, length and angles. Indeed, from a historic

perspective the invention of coordinate systems is quite new. Attributed to René Descartes

in the seventeenth century, a coordinate system systematically assigns a set of numbers to

points in space. This enabled the use of algebraic methods for solving geometric problems,

an event that marked a turning point in the history of science. A famous quote by Joseph

Lagrange described it as follows:

As long as algebra and geometry have been separated, their progress has been

slow and their uses limited, but when these two sciences have been united, they

have lent each mutual forces, and have marched together towards perfection.

The “mutual forces” of geometry and algebra ultimately led to the development of calculus,

and around the year 1700 scientific advancement happened at an unprecedented rate of

progress. Newton and Leibniz developed differential calculus, Kepler, Descartes, Fermat

and others found new algebraic space curves, members of the Bernoulli family are linked

with the solution of many ordinary differential equations, and Euler and Lagrange set up

the foundations of the calculus of variations.

With differential calculus readily available, great success has been made in adapting

geometric concepts such as distance between points, area and angles to arbitrary curves

and surfaces. A prime example of a geometric problem that was solved by calculus is the

task of finding a surface of minimum area with given boundary, i.e. minimizing the surface

area

min
S
A(S) =

∫
S

ds (2.32)

over all possible surfaces S with fixed boundary. This problem has various connections to

real phenomena, for example the surface spanned by a soap film across a fixed boundary

takes the form of a minimal surface, see fig. 2.8. Euler and Lagrange studied such problems

in the context of the calculus of variations, and Euler is credited with discovering a formal

description of a non-trivial example of a minimal surface: The catenoid. Lagrange found

the differential equation of the catenoid for a surface of the form z = f(x, y), with area

element ds =
√

1 + |∇f |2 =
√

1 + f2
x + f2

y . He considered critical points of the varia-

tional problem eq. (2.32) by computing the associated Euler-Lagrange equation. With the

Lagrangian L(x, y, f,∇f) =
√

1 + |∇f |2 , the Euler-Lagrange equation is given by

∂L

∂f
− div

(
∂L

∂∇f

)
= 0. (2.33)
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Inserting ∂L
∂f = 0 and

∂L

∂∇f
=

[
fx√

1+|∇f |2
,

fy√
1+|∇f |2

]T
div

(
∂L

∂∇f

)
=
fxx(1 + |∇f |2)− fx(fxxfx + fxyfy) + fyy(1 + |∇f |2)− fy(fyyfy + fxyfx)

(1 + |∇f |2)3/2

into eq. (2.33) yields the following differential equation (due to Lagrange) for the catenoid:

fxx(1 + f2
y ) + fyy(1 + f2

x)− 2fxyfxfy = 0. (2.34)

It is interesting that neither Euler nor Lagrange realized the geometric meaning of their

equations. Later it was proved by Meusnier that eq. (2.34) is equivalent to the vanishing of

the mean curvature on the surface. Meusniers work is the basis for the modern definition

of a minimal surface: A surface S is minimal if its mean curvature H is zero. In the

special case that the surface is given as z = f(x, y), the mean curvature reads

H =
1

2

fxx(1 + f2
y ) + fyy(1 + f2

x)− 2fxyfxfy

(1 + |∇f |2)3/2
.

Figure 2.8: A soap film forms a catenoid (Image source: wikipedia, CC0 public domain)

2.3.1 Coordinate Systems

One of the reasons Lagranges differential equation for the catenoid is hard to interpret

geometrically is that we silently introduced a coordinate system by specifying the surface

as the graph of a function z = f(x, y). Therefore eq. (2.34) not only carries information

about the algebraic solution of the variational minimal surface problem, it also inherently

carries information about the coordinate system being used. In the example above, we

employed a Cartesian coordinate system. A Cartesian coordinate system is characterized

by the fact that the basis vectors are orthonormal.
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Although Cartesian coordinates are arguably the most natural and most widely used,

it is important to realize that the choice of coordinate system in general is not fixed. A

given problem may be easier to analyze in one coordinate system than in another. Finding

the differential equation for the catenoid is best done using Cartesian coordinates, it would

be much harder were the problem formulated e.g. in spherical coordinates. On the other

hand, consider the curve depicted in fig. 2.9. It would be a daring task to give the curve

equation in Cartesian coordinates, but in polar coordinates it is simple: The curve equation

reads r(ϕ) = sin(2ϕ)− 2.2.

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Figure 2.9: The curve with equation r(ϕ) = sin(2ϕ) − 2.2 in polar coordinates would be very
complicated to express in Cartesian coordinates.

We see that in order to investigate the geometry of curves and surfaces by means

of calculus, we have to introduce a coordinate system. But it should not stand in the

way of the perception of geometric properties. A coordinate system is merely a useful

tool, nothing more. In particular, we wish that geometric properties of a curve or surface

evaluate the same in any coordinate system. In fact, by definition a property is geometric,

if it is independent from the coordinate system.

We thus begin with the following very simple definition of a vector:

Definition 2.10. A vector V is a finite, directed line segment.

Vectors live in a Euclidean space, since only the Euclidean space can accommodate

straight lines. Note that this definition is geometric, it does not involve coordinates.

In fact, it is counterproductive to think of V as a n-tuple of components – we haven’t

introduced a coordinate system with respect to which the components could be given. We

will use boldface notation whenever we refer to vectors as geometric objects according to

definition 2.10. Vectors can be naturally added together (for example by the tip-to-tail

rule) and scaled by a scalar, which makes Euclidean space into a vector space, usually

denoted by En. In principle all of the following results hold in any dimension n, but

since spaces with n > 3 are hard to visualize we will usually give examples in a two- or

three-dimensional space.
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What can we do with vectors? Since a vector is a finite line segment, its length,

denoted |V|, can be taken. We emphasize that in this context length is a primary concept

that is not defined in terms of anything else.

A very important and useful operation is the dot product, which is defined as follows:

Definition 2.11. The dot product of vectors U and V is given by

U ·V = |U||V| cosα,

where α is the angle between U and V. The dot product is bilinear and symmetric.

While this definition might seem quite arbitrary from an algebraic point of view, it

turns out that the dot product has a lot of nice geometric properties. For example, it

follows directly from definition 2.11 that

• U ·U = |U|2, the dot product of a vector with itself is its length squared.

• U ·V = 0⇔ U ⊥ V, if the dot product of two (nonzero) vectors is zero, the vectors

are orthogonal.

We can find the orthogonal projection of V onto U, denoted by projU(V), with the help

of the dot product as follows (see fig. 2.10(b))

projU(V) =
U ·V
U ·U

U.

We emphasize again that the definition of the dot product is purely geometric. This is

possible, because the length of a vector is a primary concept. The angle α that appears in

definition 2.11 is used only for convenience: Alternatively, the dot product can be defined

solely in terms of length, without introducing angles

U ·V =
|U + V|2 − |U−V|2

4
. (2.35)

This can be derived by considering the squared length of the sum of the two vectors

|U + V|2 = (U + V) · (U + V)

= U ·U + 2U ·V + V ·V,

where we used linearity of the dot product to expand the expression. From this, we get

the identity 2U ·V = |U+V|2−U ·U−V ·V. If we do the same for the difference between

the vectors, we get 2U ·V = U ·U + V ·V− |U−V|2. Summing the two identities yields

eq. (2.35). In geometry, the relation we have used is known as the parallelogram law, see

fig. 2.10(a). It states that the sum of the squared lengths of the sides of a parallelogram

is equal to the sum of the squared lengths of the diagonals. Having a definition of the

dot product in terms of length only, we point out another geometric property of the dot

product
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• cosα = U·V√
U·U

√
V·V , the dot product can be used to define the concept of angle

between vectors.

|U|

|V|

|U−V|

|U + V|

(a) The dot product between U and V can be
computed geometrically via the parallelogram law
2|U|2 + 2|V|2 = |U + V|2 + |U−V|2.

U

V

projU(V)

(b) Orthogonal projection of V onto
U.

Figure 2.10: Parallelogram law and orthogonal projection.

2.3.1.1 Rn and Euclidean Space

In order to formally establish the notion of a coordinate system, we first need to introduce

the space Rn. Again, we will mostly use n = 2, 3 for examples, but the theory carries in

an obvious way to arbitrary dimensions.

Definition 2.12. The space Rn is the set of all ordered n-tuples of real numbers. A

n-tuple x = (x1, . . . , xn) is called a point of Rn, and the numbers x1, . . . , xn ∈ R are called

the components of x.

Following the usual conventions of differential geometry, we use superscripts to denote

the components of points. Note that there co-exist different possibilities how to interpret

the space Rn. The first interpretation is merely as a topological space according to defini-

tion 2.12. At the same time, Rn can be considered as a vector space, with component-wise

addition and scalar multiplication of points. This is arguably the most common use of Rn.

While this might seem trivial, it turns out that precise treatment of these matters is

crucial for the modern formulation of calculus on manifolds and Riemannian geometry

in general. In fact, by a basic theorem of linear algebra any two vector spaces of the

same dimension are isomorphic, i.e. there exists a bijective, invertible mapping between

them. However, in general they are not canonically isomorphic, meaning the isomorphism

depends on the choice of basis in the two vector spaces. For example, the plane P of all
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points orthogonal to x = (1, 1, 1) is clearly a two-dimensional subspace of R3. Hence P

is isomorphic to R2, but it is not canonically isomorphic. The isomorphism (x1, x2, 0) 7→
(x1, x2) is one obvious example among many, and it depends on the way in which we

represent elements of P by means of a basis.

In general, one can always represent elements of a n-dimensional vector space by a

n-tuple of numbers, i.e. as points of Rn. These numbers are the coefficients of a lin-

ear combination of basis vectors, and the resulting n-tuple is called the coordinate or

component representation of the vector. Critically, the vector itself and its component

representation are different things. Any set of elements that can be added together and

multiplied by a scalar forms a vector space. Take for example the vector space P3 of

polynomials of degree ≤ 2. Clearly p = 3x2 − 2 is a vector in this space. Using the

basis {x2, x, 1}, the coordinate representation of p is the triplet (3, 0,−2). We see that the

vector and its component representation are fundamentally different, for instance a triplet

of numbers cannot be integrated or differentiated, whereas a polynomial can. While it

certainly makes sense to call elements of a vector space “vectors”, this terminology is a

bit unfortunate. First, it collides with the concept of a geometric vector from the previous

section, definition 2.10. Second, the most simple case of the vector space Rn is also the

most confusing. Both, vectors in Rn and their coordinate representation, are tuples of

numbers. This makes it easy to conflate the two concepts. For this reason, we started our

presentation with geometric vectors and made a point not to think about them as tuples

of numbers.

Rn as a vector space with component-wise addition and scalar multiplication of points

is quite special: it is canonically isomorphic to Rn the topological space, i.e. it exhibits

a canonical (or natural, standard) basis. This means that the basis in a sense is given

by the nature of the space itself. For instance, in R3 with component-wise addition and

scalar multiplication of points, we have the situation that the elements of the space (the

vectors) are themselves triplets of numbers. There is a natural basis, characterized by the

fact that any vector x ∈ R3 is equal to its triplet of coordinates with respect to the natural

basis. That basis is of course the set {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)}, and the

representation of a vector is obtained via x =
∑3

i=1 x
iei.

Origin

R

p

Figure 2.11: The position vector R is the directed line segment from the origin to a point in
Euclidean space.

This leads to yet another interpretation of Rn, namely as a model for the Euclidean
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space En. In fact, this is the interpretation most closely related to the notion of geometric

vectors that we have encountered in section 2.3.1. Consider a two-dimensional plane, we

introduce the position vector R ∈ E2 which represents points in the Euclidean space with

respect to some arbitrary origin, see fig. 2.11. We then identify the position vector R with

a vector4 r ∈ R2, where r is given by a pair of coordinates, r = (r1, r2). Renaming the

coordinates r1, r2 to x, y, one obtains the well-known presentation of elementary geometry

often taught in high school. It is very intuitive and appealing, hence it is no surprise that

this identification propelled the “mutual forces of geometry and algebra”. In fact it is so

powerful that oftentimes the identification is assumed silently, and Rn is simply equated

with En. This approach however can obstruct understanding of the modern notion of

manifolds and the role of coordinates.

Let us therefore mention explicitly the concepts involved in identifying En with Rn.

First, we are using Rn with its vector space structure. Geometry starts with the measure-

ment of length, therefore we need to carry the notion of length over to Rn. A standard way

to achieve this is to endow Rn with the structure of an inner product. We point out that

whereas a norm on Rn would also provide a notion of length, an inner product provides

more structure than a norm. In particular, a norm is not enough to do geometry, we need

to have the structure of an inner product.

Definition 2.13. An inner product on a real vector space V is a mapping 〈·, ·〉 : V ×V →
R which satisfies for v, w, q ∈ V and c ∈ R

1. Symmetry

〈v, w〉 = 〈w, v〉 ;

2. Bilinearity

〈v + q, w〉 = 〈v, w〉+ 〈q, w〉 ,
〈v, w + q〉 = 〈v, w〉+ 〈v, q〉 ,
〈cv, w〉 = c 〈v, w〉 = 〈v, cw〉 ;

3. Positive Definiteness

〈v, v〉 ≥ 0,

with equality iff v = 0.

An inner product induces a norm or length of a vector, denoted ‖v‖, via ‖v‖ =
√
〈v, v〉 .

It is easy to see that this expression fulfills the requirements of a norm. A vector space with

an inner product is called inner product space. Note that whereas every inner product

4here we mean “vector” as an element of the vector space, not a geometric vector.
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space is also a normed space, the reverse is not true. In general there is no canonical way

how to choose an inner product for a vector space. For example, it is not hard to see

that the mapping 〈v, w〉 = 3v1w1 + 2v2w2 fulfills the requirements of definition 2.13 and

is therefore a valid inner product on R2.

As a short detour, we now show that one of the most famous geometric theorems,

the Pythagorean theorem, follows directly from the structure of an inner product. In an

inner product space we say that vectors u, v are orthogonal if their inner product is zero:

〈u, v〉 = 0⇔ u ⊥ v.

Lemma 2.4 (Pythagorean theorem). Let u, v ∈ Rn be orthogonal vectors. Then ‖u+v‖2 =

‖u‖2 + ‖v‖2.

Proof. Expressing the squared norm as an inner product and using linearity of the inner

product and the fact that 〈u, v〉 = 0, we find

‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 2 〈u, v〉+ 〈v, v〉 = ‖u‖2 + ‖v‖2.

In the same way that the vector space Rn is special in that it has a natural basis, it

also has a natural inner product, given by 〈v, w〉 =
∑

i v
iwi. We can characterize this

inner product by the fact that the natural basis with respect to the natural inner product

is orthonormal

〈ei, ej〉 =

{
1 if i = j

0 else
.

Moreover, it turns out that the natural inner product behaves geometrically in the same

way as the dot product in Euclidean spaces that we have given in definition 2.11! This is

a surprising fact, since the dot product for geometric vectors is a quite arbitrary algebraic

expression that just happens to yield useful geometric relations. Due to this connection

to the dot product, the natural inner product is also called Euclidean inner product or

standard inner product. For the purpose of identifying En with Rn this is useful, since it

allows to carry over all the geometric concepts related to the dot product to the vector

space Rn.

We point out the following observation: Even though the dot product on En and the

standard inner product on Rn are equivalent in their behavior, the reasoning behind the

two approaches is in a sense opposite. In the geometric space En, the length of a vector is

a given concept that exists a priori. The dot product, and consequently other geometric

properties like orthogonality, are derived from the concept of length. In the vector space

Rn, it is the other way around: The structure of an inner product is defined axiomatically,

and length and other relations are derived from an (any!) inner product.
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The last piece missing for the identification are coordinates. In elementary analytic

geometry, one usually starts by investigating objects in the two-dimensional Euclidean

plane. This is done by means of congruency of triangles, length of line elements, angles

between lines etc. Such approach is in the spirit of Euclid and the geometers before the

18th century, who certainly did not think of geometric vectors as tuples of numbers. Later,

coordinates are introduced through the following device: Choose mutually orthogonal

“number axes” and define a “coordinate mapping” between E2 and R2 by

ϕ : E2 → R2

R 7→ (x1(R), x2(R)), (2.36)

with (x1, x2) the coordinates of the point represented by the position vector R. Note that

we think of coordinates as functions. We require that the mapping ϕ be a homeomorphism

in order to avoid degenerate configurations. A homeomorphism is a bijective, continuous

mapping that admits a continuous inverse. This requirement makes immediate sense, since

we wish for the coordinate mapping to map all points in a unique way, i.e. surjective and

injective, thus bijective.

With such a mapping, we can establish further correspondence of elementary geometric

objects. For example, lines in E2 correspond to subsets of R2 consisting of the solutions

of linear equations. While the mapping ϕ makes the identification possible, it is crucial

to note that ϕ is chosen arbitrarily. There is no natural, geometric way to identify the

two spaces. We have seen at the beginning of this chapter that the choice of coordinates

is rather dictated by the problem at hand. We conclude that En may be identified with

an inner product space Rn plus a coordinate system. Clearly this is very practical, since

coordinates can serve as a powerful computational tool. Therefore we usually want to

make the identification, however we should always keep in mind that an arbitrary choice

of coordinate system is involved.

2.3.2 Tangent Vectors

In the previous chapter we have already hinted that there is an overloading of the meaning

of “vector”, which we would like to clarify now. On the one hand we think of vectors simply

as elements of a vector space. In the case of Rn these are points in space, described by

their coordinates (x1, . . . , xn). On the other hand, we also think about vectors as directed

line segments in the sense of definition 2.10, i.e. as geometric vectors. Whereas a point in

space is completely determined by its position, a geometric vector consists of two pieces

of information: The start point p and the “vector part” v. We visualize the geometric

vector as the arrow from p to p + v. When we talk about vectors as arrows, we often

focus exclusively on the vector part v, disregarding the start point p. As we will see,

this is only possible in the special case of Rn and a Cartesian coordinate system. We

emphasize that in general vectors with the same vector part v but different start points
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p are different objects. For example, in general is not possible to add two vectors unless

their start point is the same: Consider classical mechanics, where a force vector acts on

some object. Clearly it makes a difference where the force is applied to the object. Hence

we would like to formalize the notion of “arrows attached to a point”.

On a different note, we recall that the central idea of calculus is linear approximation.

As stated at the beginning of this chapter, differential geometry is the study of geometric

structures by means of calculus. In order to generalize the ideas of calculus to arbitrary

manifolds, we need some sort of “linear model” of the manifold at a point.

We thus introduce the concept of a tangent space to Rn at a point p, denoted by

Tp(Rn), as the set of all arrows emanating from p. For shorter notation, we may omit the

parentheses and write TpRn for Tp(Rn). An element of the tangent space is called tangent

vector (or simply vector) of Rn at p and denoted by vp. Intuitively, just as the tangent to

a curve is the line that “just touches” the curve at a point p, the tangent space “touches”

Rn at p. The tangent space Tp(Rn) is of course again just Rn with the origin shifted to

the point p, see fig. 2.12(a). If we consider a more interesting example, say the sphere S2,

we could think of its tangent space at a point p intuitively as the plane that “touches”

the sphere at p as depicted in fig. 2.12(b). We could define this formally as the subspace

of Tp(R3) of vectors orthogonal5 to the radial vector through p. This approach however

presupposes that the sphere is embedded in 3-dimensional Euclidean space and it does

not work for an arbitrary manifold where there might not be an ambient space.

Tp(R2)

p

vp

(a) The tangent space of R2.

p

Tp(S2)vp

(b) The tangent space of the sphere S2, with
the radial vector in blue.

Figure 2.12: The tangent space is a “linear model” of the space at a point p. Basis vectors of the
tangent space are depicted in orange, the tangent vector in red. Figure adapted from [Lee, 2012].

5orthogonality uses the inner product that TpR3 inherits from R3 through the natural isomorphism
R3 ∼= TpR3.
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Therefore another characterization of tangent vectors is needed, one that does not de-

pend on the ambient space at all. The standard approach in modern differential geometry

is through the concept of derivations of smooth functions.

We denote by C∞(Rn) the set of all real-valued, smooth functions on Rn, i.e. functions

f : Rn → R with continuous partial derivatives of all orders. A tangent vector vp can be

used to take the directional derivative of a function f ∈ C∞(Rn) at a point p ∈ Rn

Dvf |p = Dvf(p) =
d

dt

∣∣∣∣
t=0

f(p+ tv), (2.37)

which is just the usual rate of change of f in direction v at the point p. If we write the

tangent vector vp in terms of the standard basis as vp =
∑

i v
iei, by the chain rule the

directional derivative becomes

Dvf |p =
∑
i

d

dt

∣∣∣∣
t=0

(pi + tvi)
∂f

∂xi
(p) =

∑
i

vi
∂f

∂xi
(p). (2.38)

To avoid clutter, we may omit the point of application and write Dvf if the meaning is

clear from the context.

Let w denote a map from the space of smooth function to the reals, i.e. w : C∞(Rn)→
R. The map w is called derivation at the point p if it is linear and satisfies the product

rule

w(fg) = g(p)wf + f(p)wg (2.39)

for f, g ∈ C∞(Rn) and p ∈ Rn. Interpreting the directional derivative as an operator

on smooth functions, any tangent vector vp gives rise to a map Dv|p : C∞(Rn) → R by

means of eq. (2.38). It is easy to see that Dv|p is a derivation, since the partial derivatives
∂f
∂xi

(p) possess the required properties, i.e. the differentiation operator ∂ is linear and fulfills

eq. (2.39) [Werner, 2007]. Hence there is a map from the tangent space to the space of

derivations Dp(Rn) at p

φ : Tp(Rn)→ Dp(Rn)

vp 7→ Dv|p =
∑
i

vi
∂f

∂xi
(p). (2.40)

We now consider in more detail the space of derivations Dp(Rn). This is a vector space

on its own, with the operations

(w1 + w2)f = w1f + w2f, (cw)f = c(wf),

for w,w1, w2 ∈ Dp(Rn), f ∈ C∞(Rn) and c ∈ Rn.

One of the fundamental observations in differential geometry is that there is a one-to-
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one correspondence between tangent vectors and derivations at p. In fact, we are going to

prove the (somewhat unexpected) fact that the vector space Dp(Rn) is finite-dimensional

and naturally isomorphic to the tangent space Tp(Rn). To that end, we will need two

additional lemmas.

Lemma 2.5. Let p ∈ Rn, w ∈ Dp(Rn) and f ∈ C∞(Rn). If f is a constant function, then

wf = 0.

Proof. Since we do not know if every derivation is also a directional derivative, we can

use only the defining properties of a derivation. By linearity of derivations, w(cf) = cwf ,

with c ∈ R. Therefore it suffices to prove the claim for the constant function f1 ≡ 1, since

wf for any f ≡ c can then be written as c(wf1). By the product rule eq. (2.39), we have

for f1 ≡ 1

w(1) = w(1 · 1) = 1 · w(1) + w(1) · 1 = 2w(1).

Subtracting w(1) from both sides gives the desired result w(1) = 0.

This lemma simply asserts the well-known fact that the derivative (derivation) of a

constant function is zero.

Lemma 2.6 (Taylor’s theorem). Let U ⊂ Rn be a convex subset of Rn, f ∈ C∞(U) and

fix a point p ∈ U . Then there are functions g1(x), . . . , gn(x) ∈ C∞(U) such that for any

x ∈ U

f(x) = f(p) +
∑
i

(xi − pi)gi(x), gi(p) =
∂f

∂xi
(p).

Proof. With U being convex, the line segment p + t(x − p), t ∈ [0, 1] lies in U for all

x ∈ U . Hence, f(p + t(x − p)) is defined for 0 ≤ t ≤ 1. By the chain rule, we have that
d
dtf(p+ t(x− p)) =

∑
i(x

i − pi) ∂f
∂xi

(p+ t(x− p)). Integrating both sides w.r.t. t from 0 to

1, we obtain

f(p+ t(x− p))
∣∣∣∣1
0

=
∑
i

(xi − pi)
∫ 1

0

∂f

∂xi
(p+ t(x− p))dt. (2.41)

Now we let gi(x) =
∫ 1

0
∂f
∂xi

(p + t(x − p))dt, which are C∞ functions on U , and eq. (2.41)

becomes

f(x)− f(p) =
∑
i

(xi − pi)gi(x).

Additionally, we have

gi(p) =

∫ 1

0

∂f

∂xi
(p+ t(p− p))dt =

∫ 1

0

∂f

∂xi
(p)dt =

∂f

∂xi
(p),
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which completes the proof.

In the one-dimensional case the lemma says f(x) = f(p)+(x−p)g(1)(x), where g(1)(x)

is some C∞ function. Applying the lemma repeatedly to the function g(1)(x), one obtains

higher-order terms

g(1)(x) = g(1)(p) + (x− p)g(2)(x)

g(k)(x) = g(k)(p) + (x− p)g(k+1)(x),

where the g(k) are C∞ functions. Inserting the higher-order terms with the shorthand

∆ := x− p

f(x) = f(p) + ∆
[
g(1)(p) + ∆g(2)(x)

]
= f(p) + ∆g(1)(p) + (∆)2

[
g(2)(p) + ∆g(3)(x)

]
...

= f(p) + ∆g(1)(p) + (∆)2g(2)(p) + · · ·+ (∆)kg(k)(p) + (∆)k+1g(k+1)(x), (2.42)

where the last term is called the remainder and we denote the k-th power by (∆)k to

distinguish from the components of a point. Let us investigate the functions g(k) at the

point p. The case k = 1 follows trivially from the lemma as g(1)(p) = df
dx (p). Taking k = 2

in eq. (2.42), differentiating twice and evaluating at p yields

d2f(x)

d(x)2

∣∣∣∣
x=p

=
d2

d(x)2

(
f(p) + ∆g(1)(p) + (∆)2g(2)(p) + (∆)3g(3)(x)

) ∣∣
x=p

= 2g(2)(p) +
d2

d(x)2

(
(x− p)3g(3)(x)

) ∣∣
x=p

= 2g(2)(p) +
(
3 · 2(x− p)g(3)(x)

) ∣∣
x=p

+

(
(x− p)3 d2g(3)(x)

d(x)2

)∣∣∣∣
x=p

= 2g(2)(p),

hence g(2)(p) = 1
2

d2f
d(x)2

(p). In general the remainder, i.e. the k + 1-th term of eq. (2.42),

differentiated k times and evaluated at p is zero. The terms (∆)ig(i)(p), i < k differentiated

k times are zero as well. Thus, differentiating eq. (2.42) k times and evaluating at p yields

dkf

d(x)k

∣∣∣∣
x=p

=
dk

d(x)k

(
(∆)kg(k)(p)

) ∣∣∣∣
x=p

=
dk

d(x)k

(
(x− p)kg(k)(p)

) ∣∣∣∣
x=p

= k!g(k)(p).

We obtain that

g(m)(p) =
1

m!

dmf

d(x)m
(p), m = 1, . . . , k,
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which shows that the polynomial expansion eq. (2.42) agrees up to the last term with the

Taylor series of f at p.

Note that if f is a C∞ function defined on an open set U (not necessarily convex),

then there is an ε > 0 such that p ∈ B(p, ε) ⊂ U , with B(p, ε) = {x ∈ Rn | ‖x− p‖ < ε}
the open ball of radius ε. We can restrict the domain of f to B(p, ε), which is convex, and

the lemma applies.

Theorem 2.1. Let p ∈ Rn. The map φ : vp 7→ Dv|p is an isormorphism from Tp(Rn) to

Dp(Rn).

Proof. To show that the map φ is an isormorphism, we need to check that it is one-to-one

(injective) and onto (surjective). We first note that φ is linear, as can be seen easily from

eq. (2.40). Furthermore, we know from linear algebra that a linear map is injective iff

its kernel contains only the zero element. Hence we consider a tangent vector vp with

the property that Dv|p is the zero derivation. We will show that it follows that vp itself

must be the zero vector. Expressing vp in the standard basis as vp =
∑

i v
iei and taking

f to be the j-th coordinate function xj , we obtain by inserting into the definition of the

directional derivative eq. (2.38)

0 = Dvf = Dvx
j =

∑
i

vi
∂xj

∂xi
.

Clearly ∂xj

∂xi
= 0 except when i = j where it is 1. Therefore we have 0 = vj and since this

holds for all j it follows that vp = 0.

To prove surjectivity, let w be an arbitrary derivation at p. Similar to the previous

paragraph, we define a vector vp =
∑

i v
iei, with the numbers vi given by vi = w(xi).

We will now show that w = Dv|p. To that end, consider any C∞ function f in a convex

neighborhood around p. By lemma 2.6, f can be written as

f(x) = f(p) +
∑
i

(xi − pi)gi(x), gi(p) =
∂f

∂xi
(p).

Now we apply the derivation w to both sides

wf = w (f(p)) +
∑
i

w
(
(xi − pi)gi(x)

)
,

and note that w (f(p)) and w(pi) are both zero by lemma 2.5. Using the product rule, we
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obtain

wf =
∑
i

w
(
(xi − pi)gi(x)

)
=
∑
i

(
w(xi)− w(pi)

)
gi(p) +

∑
i

(pi − pi)wgi(x)

=
∑
i

w(xi)
∂f

∂xi
(p)

=
∑
i

vi
∂f

∂xi
(p).

Since this holds for any f and w was arbitrary, we conclude that w = Dv|p.

This theorem shows that a tangent vector vp ∈ TpRn is a derivation. Hence, the

notation vpf means to take the derivative in direction vp of the smooth function f as

suggested by eq. (2.40). In particular, we can consider the standard basis {ei} for the

tangent space TpRn to obtain the following useful result:

Corollary 2.1. For any p ∈ Rn, the n derivations

∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

defined by
∂

∂xi

∣∣∣∣
p

f =
∂f

∂xi
(p)

form a basis for TpRn, which therefore is a n-dimensional vector space.

Proof. Apply the previous theorem and note that ∂
∂xi

∣∣
p

= Dei |p.

We will frequently make use of this corollary in the following way: Consider a coor-

dinate system on Rn given by some coordinate mapping ϕ. We can construct a basis for

the tangent space at any point p ∈ Rn by taking partial derivatives of ϕ. This approach

to tangent vectors might seem more complicated and abstract, when compared to the

intuitive geometric approach where a tangent vector at p is visualized as an arrow at ϕ(p).

However, consider a different coordinate mapping ψ, the tangent vector at p will be a

different arrow at ψ(p), and one would need to figure out a way to identify arrows at ϕ(p)

with arrows at ψ(p). Viewing tangent vectors as derivations at p is the most intrinsic way,

since it is independent from the particular coordinate system. This approach to differen-

tial geometry is hence also called coordinate-free. Of course, since the two approaches are

equivalent, in practice it is useful and sensible to keep the intuitive “arrow” point of view

in mind.

2.3.2.1 Tensor Notation

Most of the technical machinery of modern differential geometry is built up using tensors,

hence we have to introduce a few notation conventions. In an informal way, tensors can be
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seen as an extension of linear algebra to multidimensional arrays. For now we can think

of a tensor as a collection of numbers indexed in some systematic way, similar in spirit

to a vector or a matrix. In contrast to linear algebra, where the focus is on the algebraic

relation between objects6, tensor calculus puts the focus on the individual elements, called

components, of the tensor. To this end, an indicial notation is used. Tensor calculus uses

both lower and upper indices, i.e. upper indices denote components, not exponentiation.

The number of different indices is called the order (or degree, rank) of the tensor. Usually

the range of the indices is clear from the context and not given explicitly. Whereas the

name of the index does not matter (widely used are the Latin letters i, j, k . . . and the

Greek letters α, β, µ, ν), their vertical (upper vs. lower) as well as horizontal (first, second,

third. . . ) position is of significance. To avoid ambiguities, we may use an additional dot

to clarify the order of index slots in a tensor with mixed upper and lower indices. For

example, the rank 3 tensor Ak · j· i · has k as the first index, i as second and j as third.

One of the most important notation conventions is the so-called Einstein summation

convention, popularized by Einstein and his theory of general relativity.

Definition 2.14 (Einstein Notation). If any monomial term contains the same index

twice, once as a lower and once as an upper index, summation over that index is implied.

The index that is summed over is also called dummy index, and the summation over a

dummy index is known as contraction. In many cases the dummy index of a contraction

can be renamed freely, e.g. xjy
j and xiy

i mean the same thing.

For example, matrix-vector multiplication can be expressed with the help of the sum-

mation convention as follows:

A =

A11 . . . A1j

...
...

Ai1 . . . Aij

 , x =

x
1

...

xj


Ax = Aijx

j

=
∑
j

Aijx
j

 .

One of the advantages of indicial tensor notation is that expressions are given in terms

of the individual tensor components, which are just numbers. If one wants to do calculus

this is a good thing, and sometimes a problem can be solved more easily. Consider the

following example of quadratic form minimization in linear algebra notation

min
x

{
f(x) = 1

2x
TQx+ bTx

}
, Q ∈ Rn×n, x, b ∈ Rn. (2.43)

6In the matrix equation Ax = b and its solution x = A−1b, the elements of the matrix A and vectors
x, b play a secondary role.
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Using tensor notation, eq. (2.43) reads

min
x

{
f(x) = 1

2Qijx
ixj + bix

i
}
. (2.44)

Minimizing this quadratic form involves computing the gradient of f with respect to x.

Computing the gradient from the linear algebra notation eq. (2.43) turns out to be quite

involved if one does not know the result a priori (for example, by looking it up in the matrix

cookbook which contains the identity ∂xTBx
∂x = (B + BT )x without further explanation).

The reason for this is that linear algebra notation hides the components of matrices and

vectors, but computing the gradient needs access to these components. In tensor notation

on the other hand, the task is simple: Just apply the product rule to eq. (2.44) to find

∂f(x)

∂xk
=

1

2
Qij

∂xi

∂xk
xj +

1

2
Qijx

i ∂x
j

∂xk
+ bi

∂xi

∂xk
. (2.45)

The quantity ∂xi

∂xk
obviously is zero whenever i 6= k and 1 if i = k. In tensor calculus, there

exists a special symbol for this situation.

Definition 2.15. The Kronecker delta symbol is defined as

δij =

{
1 if i = j

0 else
.

The Kronecker delta typically appears in a contraction and has the effect of “renaming

an index”, since it is easy to see that δijbi = bj . Hence, eq. (2.45) simplifies to

∂f(x)

∂xk
=

1

2
Qijδ

i
kx

j +
1

2
Qijx

iδjk + biδ
i
k

=
1

2
Qkjx

j +
1

2
Qikx

i + bk

=
1

2
Qkix

i +
1

2
Qikx

i + bk, (2.46)

where in the last line we renamed the dummy index of the first term j → i. Thanks to

the rules of the Einstein convention, there is no ambiguity how to interpret e.g. the term

Qijx
iδjk. Q and δ both contain the index j, as a lower and upper index respectively. Thus

summation is invoked and the Kronecker delta is absorbed into Q, renaming the index

j → k.

We see that Qkix
i corresponds in linear algebra notation to the matrix-vector multipli-

cation Qx, whereas Qikx
i corresponds to QTx. Therefore we can state that the expression

for the gradient of (2.43) is given by ∇f = 1
2

(
Q+QT

)
x+ b. It is worth noting that the

tensor notation reveals additional information about the quadratic form in a very natural

way. The combination of indices in eq. (2.46) tells that the range of the first and second

index of Q must be the same. In other words, the matrix Q must be quadratic. Of course
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we already knew that, since we started with a quadratic form in the beginning. Nonethe-

less it is nice that this fact is supported by the notation as well. Moreover, we can see that

if Qki = Qik, i.e. the matrix is symmetric, the gradient simplifies to ∂f(x)
∂xk

= Qkix
i + bk,

which in linear algebra notation corresponds to ∇f = Qx+ b.

We conclude this section by applying tensor notation to the concepts that we have

already developed. The situation to sum over an index occurs ubiquitously in differential

geometry, which is precisely the reason why the Einstein convention has been invented. In

particular, we can express the coordinate representation of a vector v with respect to some

basis {bi} as v = vibi. Note that in this expression we think of v as a geometric vector, that

is, an object independent of the coordinate system. The numbers vi are its representation

once a particular coordinate system has been chosen. We may use the boldface notation

in case we wish to emphasize the geometric nature of a vector.

Likewise, we can now denote the directional derivative (see eq. (2.38)) of a function f

at a point p very concisely as

Dvf |p = vi
∂f

∂xi
(p).

In this expression the summation convention applies, i.e. the right hand side is assumed

to be summed over i. This is consistent with the indexing convention, since we regard an

“upper index in the denominator” as a lower index. Similarly, by applying corollary 2.1

any tangent vector v ∈ Tp(Rn) can be written as

v = vi
∂

∂xi

∣∣∣∣
p

, (2.47)

where ∂
∂xi

are the partial derivatives of the coordinate mapping at p.

2.3.2.2 Coordinate Bases

We now bring the rather abstract concepts about tangent vectors developed in section 2.3.2

to more concrete geometric applications. Consider the position vector R, which represents

points in Euclidean space with respect to an arbitrarily chosen origin, and introduce a

coordinate system ϕ given by x = (xi). Similar to eq. (2.36) we think about the coordinate

system as a set of coordinate functions xi. In particular, since the coordinate mapping

is a homeomorphism, we have that the coordinates are functions of the position vector

x = x(R), and vice-versa the position vector is a function of the coordinates R = R(x).

For example, consider the two dimensional Euclidean plane E2 referred to the natural

Cartesian coordinate system. This means that we have the coordinates x1 = x, x2 = y,

i.e. R = R(x, y). If we refer E2 to a polar coordinate system, we have x1 = r (the radius),

and x2 = θ (the angle) and consequently R = R(r, θ). To any combination of (x, y) resp.

(r, θ) coordinates there corresponds a specific position vector R.

By the fundamental result of corollary 2.1, we obtain a basis for the tangent space
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by partial differentiation of the coordinate mapping. Thus we define the covariant basis

vectors Xi as

Xi =
∂R(x)

∂xi
. (2.48)

The term covariant refers to the way the basis vectors transform under a change of coor-

dinates. As customary in differential geometry, covariance is indicated by lower indices.

Note that Xi is not the i-th component of a tuple of numbers, it rather denotes the i-th

basis vector. Previously we made a point to not think of a geometric vector as a tuple of

numbers, hence whenever an index appears with a geometric vector, indicated by boldface,

it cannot refer to components. Unfortunately, the conflation between vectors and tuples of

numbers (see section 2.3.1.1) makes it difficult to keep track of which object means what.

To make matters worse, notation is often guided by conventions.7

Example 2.1. Refer the Euclidean plane E2 to a polar coordinate system, i.e. x1 =

r, x2 = θ. The polar coordinate system is set up as follows: Choose a designated point to

be the origin, further select an arbitrary axis to be the axis corresponding to θ = 0. For

convenience we will let the horizontal axis correspond to θ = 0. It is important to specify

the (any) coordinate system in geometric terms, without reference to a “background”

Cartesian coordinate system. By that we mean to refrain from definitions like let the

x-axis correspond to θ = 0. Euclidean space does not have an x-axis built into it.

We wish to compute the covariant basis at the points with coordinates
(
3, π4

)
and(

1, 5π
6

)
, see fig. 2.13.

Since we do not have an explicit expression for the coordinate mapping, we adopt a

geometric approach in the spirit of Euclid. To find the basis vector Xr, compute the

partial derivative of R(r, θ) w.r.t. r by constructing the limit

Xr =
∂R(r, θ)

∂r
= lim

h→0

R(r + h, θ)−R(r, θ)

h
.

It is easy to see that this vector points in radial direction and has unit length. To find the

basis vector Xθ, compute in a similar fashion

Xθ = lim
h→0

R(r, θ + h)−R(r, θ)

h
.

This vector points in tangential direction to the circle of radius r and its length is pro-

portional to r. This additional factor r comes from the fact that the “speed” of the curve

representing the circle is proportional to r – larger circles need to be traveled “faster” as

θ goes from 0 to 2π.

7The old joke that “differential geometry is the study of properties that are invariant under change
of notation” is funny primarily because it is alarmingly close to the truth. Every geometer has his or
her favorite system of notation, and while the systems are all in some sense formally isomorphic, the
transformations required to get from one to another are often not at all obvious to students. – [Lee, 2012]
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θ = 0
r

R(3, π
4

)

Xr

Xθ

R(1, 5π
6

)

Xr

Xθ

Figure 2.13: The position vectors representing the points with coordinates
(
3, π4

)
and

(
1, 5π6

)
in

a polar coordinate system along with the basis vectors Xr,Xθ.

The covariant basis can be used to represent other vectors: Any vector V is given

as the unique linear combination V = viXi. The numbers vi are called contravariant

components of V w.r.t. to the coordinate basis, or simply coordinates of V. The term

contravariant refers to the way vi transforms under a change of coordinates – this will

be explained in section 2.3.4, where we introduce the tensor property. Contravariance is

indicated by upper indices, and we note again that in the expression V = viXi, the vi are

numbers whereas the Xi are vectors. We also emphasize that the covariant basis might

vary from point to point, see fig. 2.13.

Equivalently we can say that a vector v ∈ TpRn is represented in a coordinate sys-

tem (xi) by v = vi ∂
∂xi

. The equivalence comes of course from the fact that we defined

the position vector R as representing points in space. The crucial point here is that ge-

ometric vectors and points in space are in a sense fixed, “physical” objects, while their

representations are just tuples of numbers that depend on a coordinate system.

A Cartesian coordinate system in the two-dimensional plane is characterized by the fact

that the coordinate axes are orthogonal. A simple calculation in the spirit of example 2.1

shows that in this case the covariant basis vectors are constant at all points. Hence we

consider Euclidean space with a Cartesian coordinate system as a special case, in which by

coincidence two identical arrows at different locations happen to have the same coordinate

representations. It is the silent assumption of this special case, that allows us to routinely

think about vectors as objects having length and direction, discarding their location. In

particular, we emphasize that in general the coordinate representations of two vectors at
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different locations cannot be e.g. added. The coordinates gain meaning only in conjunction

with the basis vectors, which might vary from point to point. This means that the tangent

spaces TpRn and TqRn at two points p, q ∈ Rn, p 6= q, are really two separate copies of

Rn. In general the coordinate representation of a tangent vector in one space cannot be

transferred directly to the other. Only in Euclidean space with a Cartesian coordinate

system we can informally take the coordinate representation to be the vector, and adding

coordinate representations of vectors at different points works correctly.

2.3.2.3 Change of Coordinates

We now investigate the relation between different coordinate systems. Due to the central

role of tangent vectors established in section 2.3.2, we are interested in the way a change of

coordinates affects tangent vectors at a point. To that end, we first explore how a smooth

mapping F : Rn → Rm acts on elements of the tangent space. We consider a linear map

between the tangent spaces

dFp : TpRn → TF (p)Rm, (2.49)

called differential of F at p. Let vp ∈ TpRn, then dFp(vp) is the tangent vector in TF (p)Rm

defined through its action on a function f ∈ C∞(Rm)

(dFp(vp)) f = vp(f ◦ F ). (2.50)

Since the composition f ◦ F ∈ C∞(Rn), applying the derivation vp ∈ TpRn makes sense.

Let (x1, . . . , xn) be the coordinates on Rn and (y1, . . . , ym) the coordinates on Rm re-

spectively. We have seen that a basis for the tangent space TpRn is given by
{

Xi := ∂
∂xi

∣∣
p

}
,

and similarly
{

Yj := ∂
∂yj

∣∣
F (p)

}
is a basis for the tangent space TF (p)Rm. As before, it is

important to remember that indices are used for two different meanings here: The object

xi is a number, but Xi is a vector, indicated by boldface notation. The action of the linear

map dFp on a basis vector is given by

(dFp (Xi)) f = Xi(f ◦ F ).

Applying the chain rule, we find

Xi(f ◦ F ) =
∂f

∂yj
(F (p))

∂F j

∂xi
(p) =

(
Yj

∂F j

∂xi
(p)

)
f,

where F j is the j-th component function of F , and consequently

dFp (Xi) =
∂F j

∂xi
(p)Yj . (2.51)

Note that the Einstein convention allows a very compact notation of the summation in-
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volved in the chain rule. Applying eq. (2.51) to a tangent vector v ∈ TpRn yields

v = vidFp (Xi) = vi
∂F j

∂xi
(p)Yj .

Hence the matrix of dFp relative to the bases Xi and Yj is given by
∂F 1

∂x1
(p) · · · ∂F 1

∂xn (p)
...

. . .
...

∂Fm

∂x1
(p) · · · ∂Fm

∂xn (p)

 , (2.52)

which is precisely the Jacobian matrix of F at p. The Jacobian matrix is also called

pushforward, since it “pushes” tangent vectors from the domain of F to the codomain.

The Jacobian can also be expressed in coordinates, where we denote by ϕ the coordinate

mapping on the domain Rn and by ψ the coordinate mapping on the codomain Rm. A

coordinate expression for the point p is thus given by p̂ = ϕ(p), and the mapping F in

coordinates reads F̂ = ψ ◦ F ◦ ϕ−1 : ϕ (Rn)→ ψ(Rm). Then a short computation yields

dFp (Xi) =
∂F̂ j

∂xi
(p̂)Yj , (2.53)

which says that the coordinate expression of the Jacobian is simply eq. (2.51), where the

partial derivative of F at p is replaced with the respective coordinate representation.

We can use these results as follows: Given two coordinate systems ϕ and ψ on Rn

with coordinate functions
(
xi
)
,
(
xi
′
)

respectively, the tangent vector at a point p can be

expressed either in the basis {Xi} or in the basis {Xi′}. The two coordinate systems are

often called the unprimed or “old” and primed or “new” coordinate system respectively.8

We wish to know how the two representations of a tangent vector are related. To that

end, we let F = id be the identity mapping and apply eq. (2.53). We see that in this case

we get a mapping F̂ = ψ ◦ϕ−1 known as transition map between the coordinate systems.

Thanks to the coordinate mappings being homeomorphisms, this is a smooth map. An

expression for the transition map is given by

ψ ◦ ϕ−1(x) = x′(x) =
(
xi
′
(x)
)
,

where we follow the common practice in differential geometry of not distinguishing between

the coordinates as functions and the coordinates as vector representation, i.e. tuples of

numbers. In fact, the choice of the variable x for the coordinate functions is meant

to encourage this casual conflation, where we sometimes think of x as a function and

sometimes as coordinate vector. For instance, in the expression xi
′
(x) we think of xi

′
as

the i-th coordinate function in the primed coordinate system, but of x as the coordinate

vector of p in the unprimed coordinate system. Usually it is clear from the context which

8Note that we placed the prime at the index.
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interpretation applies. Inserting into eq. (2.53) we get

Xi =
∂

∂xi

∣∣∣∣
p

=
∂xi

′

∂xi
(p̂)Xi′ =

∂xi
′

∂xi
(ϕ(p))

∂

∂xi′

∣∣∣∣
p

, (2.54)

where we have back-substituted the shorthands Xi := ∂
∂xi

∣∣
p

in order to make the con-

nections clear. Now we apply this expression to the representation of a tangent vector

v = viXi = vi
′
Xi′ = vi ∂x

i′

∂xi
(p̂)Xi′ , from which we get that the components of a tangent

vector transform according to

vi
′

=
∂xi

′

∂xi
(p̂)vi, (2.55)

and hence the Jacobian of the coordinate transition map is
∂x1
′

∂x1
(p̂) · · · ∂x1

′

∂xn (p̂)
...

. . .
...

∂xn
′

∂x1
(p̂) · · · ∂xn

′

∂xn (p̂)

 .
This Jacobian, which transforms the component representation of a tangent vector from

the unprimed to the primed coordinate system, will be denoted J i
′
i = ∂xi

′

∂xi
. It allows

to express the transformation rule very concisely as vi
′

= J i
′
i v

i. Note that we have to

evaluate the Jacobian at the coordinate representation of p in the unprimed coordinate

system. This is easy to remember: Use the representation of p in that coordinate system

in which the vector we want to transform “lives”. In this case we transform the vector vi,

which lives in the unprimed system.

Example 2.2. Refer the two-dimensional Euclidean plane to a polar coordinate system ϕ

with coordinate functions (r, θ) and to the standard Cartesian coordinate system ψ with

coordinate functions (x, y). Let p be the point in R2 whose polar coordinates are (2, π)

and let v ∈ TpR2 be the tangent vector whose polar coordinates are (vi) = (−3,−1). We

are going to find the Cartesian coordinates of v.

The transition map between polar and Cartesian coordinates is given by (x, y) =

(r cos θ, r sin θ), where we restrict (r, θ) to a suitable subset of the plane. We compute

J i
′
i =

[
∂r cos θ
∂r

∂r cos θ
∂θ

∂r sin θ
∂r

∂r sin θ
∂θ

]
=

[
cos θ −r sin θ

sin θ r cos θ

]
.

Now v = −3 ∂
∂r

∣∣
p
− ∂

∂θ

∣∣
p

in polar coordinates, and we obtain

v′ = J i
′
i

∣∣
(r,θ)=(2,π)

vi =

[
−1 0

0 −2

][
−3

−1

]
=

[
3

2

]
.
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θ = 0

r

v

∂
∂x

∣∣
(0,0)

y

p = R(r, θ) = ϕ(2, π)

∂
∂r

∣∣
p

∂
∂θ

∣∣
p

∂
∂y

∣∣
(0,0)

x

Figure 2.14: The tangent vector v at the point p with polar coordinates (2, π) can either be
expressed as v = −3 ∂

∂r

∣∣
p
− ∂

∂θ

∣∣
p

in polar coordinates or as v = 3 ∂
∂x

∣∣
p

+ 2 ∂
∂y

∣∣
p

in Cartesian coordi-

nates. Note that the Cartesian basis at p is just the canonical basis (blue) shifted to p. Illustration
of the Cartesian basis at p would overlap with the red position vector.

Hence in Cartesian coordinates the tangent vector is given by v = 3 ∂
∂x

∣∣
p

+ 2 ∂
∂y

∣∣
p
, see

fig. 2.14.

2.3.3 Topological Manifolds

One might wonder why such a sophisticated framework is needed, if the task is simply

to convert from polar to Cartesian coordinates. The reason for this is twofold. First, the

theory carries seamlessly to arbitrary manifolds. This allows to apply the concepts not

only in flat spaces like Rn, but also for instance on a sphere, a curved surface embedded

in R3 etc. Second, in conjunction with tensors this approach provides a principled way to

do calculations in coordinates. We have stated that coordinate systems are necessary for

solving geometric problems by means of calculus. This led to the problem that expressions

in coordinates quickly became complicated. In particular, the result of a calculation

inevitably carries artifacts of the coordinate system. Recall the differential equation for the

catenoid in Cartesian coordinates fxx(1+f2
y )+fyy(1+f2

x)−2fxyfxfy = 0. This equation has

a geometric meaning, but it also exhibits artifacts that are due to the Cartesian coordinate

system. It is difficult to disentangle these properties. Tensors provide a principled way to

formulate expressions where artifacts of the coordinate system are present in a systematic
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way.

Before we turn to geometrically invariant objects that can be obtained through tensor

calculus, let us give a definition of manifolds. A manifold is a space that looks locally like

Euclidean space, i.e. it is flat. More formally, we call the space M topological manifold of

dimension n if

• M is a Hausdorff space.

• M is second-countable.

• M is locally Euclidean of dimension n.

While the first two conditions are technical, the third one is the most important for prac-

tical purposes. It means that any point p ∈M has a neighborhood that is homeomorphic

to Rn. This is expressed through the notion of coordinate charts. If M is a topological

n-manifold, a chart on M is given by the pair (U,ϕ), where U ⊂M and ϕ : U → Û ⊂ Rn

is a homeomorphism from U to a subset of Rn. Clearly the mapping ϕ is conceptually

the same as the coordinate mapping between Euclidean space and Rn that we introduced

in eq. (2.36). The difference is that now it does not map the whole space, but a subset

of M into a subset of Rn, see fig. 2.15. Therefore the mapping ϕ is often called local

coordinate chart, with the corresponding local coordinates. With some care9, we can as-

U Ûϕ

Figure 2.15: A coordinate chart mapping a subset U ⊂M into a subset Û ⊂ Rn.

semble a collection of charts whose domains cover all of M . The collection of these charts

is called the atlas A for M , and if any two charts in A are diffeomorphic it is a smooth

atlas. If additionally A is maximal, meaning it is not contained in any larger atlas, we

say that A is a smooth strucure on M . It is this smooth structure that allows to talk

about differentiable functions on M . For example, consider the Euclidean space Rn with

the single chart (Rn, id), where id is the identity mapping. Clearly this chart is smooth,

and the atlas consisting of this chart is maximal. We call this atlas the standard smooth

9We need to make sure that for two overlapping charts (U,ϕ) and (V, ψ), U ∩V 6= ∅ the transition map
ψ ◦ ϕ−1 is a diffeomorphism.
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structure on Rn, and it makes Rn into a smooth n-manifold. It is important to realize that

even though we almost instinctively imagine a Cartesian coordinate system with x, y, z

axes when we think about R3, a manifold does not come with a predetermined coordinate

system. In particular, certainly the manifold R3 does not come with Cartesian coordi-

nates. One might equally well work with e.g. spherical coordinates. However, we will refer

to Cartesian coordinates on Rn as standard coordinates.

For general manifolds M the situation in a sense is less ambiguous, because usually

it is not possible to cover M with a single chart. One inherently has different charts and

hence different local coordinates. In this case, the temptation to speak about (or assume)

“the” coordinate system does not exist.

2.3.4 The Tensor Property

In section 2.3.2.2 we have seen that the Jacobian J i
′
i transforms a tangent vector at p from

the unprimed to the primed coordinate system. Thanks to the framework of manifolds,

the transition map between coordinate systems is a diffeomorphism, meaning the Jacobian

is invertible. It is natural to define the inverse Jacobian J ii′ = ∂xi

∂xi′
, which transforms from

the primed to the unprimed coordinate system, where we have to remember to evaluate

J ii′ at the coordinate representation of p w.r.t. the primed coordinate system. The fact

that the two Jacobians are inverses10 of each other is expressed as

J i
′
i J

i
j′ = δi

′
j′ and J ii′J

i′
j = δij . (2.56)

Tensors are objects whose components transform in a certain way. In particular, Ti is

called covariant tensor, if the components are related by

Ti′ = TiJ
i
i′ . (2.57)

Likewise, if the components of T i transform as

T i
′

= T iJ i
′
i , (2.58)

we call T i a contravariant tensor. Similar relations can be given for higher order tensors.

For example we call Tij a covariant tensor of order two if it transforms as Ti′j′ = TijJ
i
i′J

j
j′ .

Co- and contravariant indices can be mixed, for example T i
′
j′ = T ijJ

i′
i J

j
j′ is a mixed tensor of

order two. More formally, a rank (k, l) tensor has k contravariant (upper) and l covariant

(lower) indices. Whereas in Rn we can informally think of rank 1 tensors as “vectors”

and of rank 2 tensors as “matrices”, it is advisable to see a tensor simply as a indexed

collection of numbers that transform in a certain way.

10To see the inverse relationship, one has to take care to evaluate the Jacobians in a common coordinate
system, which usually involves transforming the entries of one Jacobian into the coordinate system of the
other.
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Covariant means “transforms in the same way as the basis” and is indicated by lower

indices. Similarly, the components of a contravariant tensor transform in the opposite way

as the basis, indicated by upper indices. To demonstrate this we recall eq. (2.54), which

says that a basis vector Xi transforms under a change of coordinates as Xi = Xi′
∂xi
′

∂xi
(ϕ(p)).

Applying this to a tangent vector v, we found in eq. (2.55) that its components transform

as vi
′

= vi ∂x
i′

∂xi
(ϕ(p)). Note that the transformation of the unprimed basis is the same as

the transformation of the primed vector components. Due to the inverse relationship of the

Jacobians, we find that the unprimed vector components transform as vi = vi
′ ∂xi

∂xi′
(ψ(p)),

which is opposite (contravariant) to the unprimed basis vector.

It is important to note that not all indexed objects are tensors. For instance, the

partial derivative ∂T i

∂xj
of a tensor is not a tensor, and neither is the Jacobian J ii′ . The

components of an indexed object must transform as eq. (2.57) or eq. (2.58) to qualify as

a tensor.

We are now in the position to justify that we called the basis vector in eq. (2.48)

“covariant”. We start with the expression for the basis vector in the primed coordinate

system

Xi′ =
∂R(x′)

∂xi′
,

and then see how it relates to the unprimed system. The key observation is that the

position vector R is a geometric vector – it exists independent from any coordinate system.

In particular, we can express the same position vector as a function of the unprimed

coordinates by substituting x(x′), i.e. R(x′) = R (x(x′)). Applying the chain rule we get

Xi′ =
∂R(x(x′))

∂xi′
=
∂R(x)

∂xi

∣∣∣∣
x=x(x′)

∂xi

∂xi′
= XiJ

i
i′ , (2.59)

which shows that the basis indeed transforms according to eq. (2.57) and is thus a covariant

tensor.

Next we introduce one of the most important objects in differential geometry: The

metric tensor. To that end, we recall that the dot product for geometric vectors (defini-

tion 2.11) played an important role in establishing various sorts of geometric relations. In

a vector space, the equivalent of the dot product is the Euclidean inner product (defini-

tion 2.13). This is even more important, since an inner product provides a metric to the

vector space, which in turn can be used to define the length of vectors. It is no exaggeration

to say that geometry begins with the measurement of length, hence the Euclidean inner

product is indeed fundamental. With the tensor framework available, we ask the question

how the dot product looks “in coordinates”. Let U = uiXi and V = viXi be two vectors

located at the same point, the dot product is given by U·V = uiXi ·vjXj = uivj (Xi ·Xj) .

The indicial tensor notation facilitates the reordering of terms in the last equality. The

components ui, vi are just numbers, and in a multiplication of numbers we are free to
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shuffle terms to our liking. We just need to make sure that the dot product is computed

between the two basis vectors. This pairwise dot product between the basis vectors is the

metric tensor. We state this result as a definition.

Definition 2.16 (Metric tensor). The covariant metric tensor gij is the pairwise dot

product between the covariant basis vectors

gij = Xi ·Xj =
∂

∂xi
· ∂

∂xj
.

The contravariant metric tensor gij is defined as the inverse of the covariant metric tensor

gijgjk = δik

Lemma 2.7. The metric tensor gij is a covariant tensor of order two.

Proof. In definition 2.16 we called gij a covariant tensor without justification. We will

now formally proof this. To that end, we need to show that gij transforms according to

eq. (2.57). By eq. (2.59) we have that Xi′ = XiJ
i
i′ and obtain

gi′j′ = Xi′ ·Xj′ = XiJ
i
i′ ·XjJ

j
j′ = (Xi ·Xj) J

i
i′J

j
j′ = gijJ

i
i′J

j
j′ .

With the help of the metric tensor we can state the dot product in coordinates as

U ·V = giju
ivj . Note that this holds for any coordinate system. The covariant metric

tensor encodes complete information about the dot product in coordinates and is the

central object to measure lengths, areas, volumes and angles. For instance, we compute

the length of the coordinate representation of a vector in an arbitrary coordinate system

as

|U| =
√

U ·U =
√
gijuiuj . (2.60)

Example 2.3. Consider the setup of example 2.2. We are going to use eq. (2.60) to

compute the length of the tangent vector v from its representation in polar and Cartesian

coordinates.

First, we compute the metric tensor for the polar coordinate system. The two basis

vectors are orthogonal, and since the off-diagonal entries of the metric tensor are given

by the dot product between the two vectors, they are zero. The diagonal entries are

computed from the dot product of each of the basis vector with itself. ∂
∂r

is unit-length,

which determines the first diagonal entry to 1. The length of ∂
∂θ

is |r| and since the polar

coordinates of p are given by (2, π) we have that the second diagonal entry is |r| · |r| = 4.
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Hence the metric tensor for the polar coordinate system at the point (2, π) is

gpolar
ij =

[
1 0

0 r2

]
=

[
1 0

0 4

]

To compute the metric tensor for the Cartesian coordinate system, we note again that

the basis vectors are orthogonal. Moreover, both basis vectors are unit length, which

trivially determines the metric tensor to the identity matrix

gcart
ij =

[
1 0

0 1

]

Now compute the length of v from its representation in polar coordinates, vi = (−3, 1)

‖v‖ =
√
gpolar
ij vivj =

√
1 · (−3) · (−3) + 4 · 1 · 1 =

√
13

The representation of v in Cartesian coordinates is vi = (3, 2) and

‖v‖ =
√
gcart
ij vivj =

√
1 · 3 · 3 + 1 · 2 · 2 =

√
13

The power of this concept unfolds once one considers general manifolds. Geometry is

the measurement of lengths, and the metric tensor tells how to do that on an arbitrary

manifold M . At every point p ∈ M the metric tensor can be thought of as a ruler, and

because the coordinate charts are diffeomorphisms the metric depends smoothly on p.

Using the ruler, one can do calculus, e.g. integrate curves, measure curvature etc. On a

n-dimensional manifold the metric tensor can be expressed as n×n matrix, and since the

dot product between vectors is symmetric, we have that the matrix of the metric tensor

is symmetric, i.e. gij = gji.

The metric tensor is very useful in converting covariant indices to contravariant and

vice-versa. In particular, we have the relation

Ti = gijT
j , (2.61)

which is called lowering an index. Likewise, a contraction with the contravariant metric

tensor results in raising an index

T i = gijTj . (2.62)

Note that since the metric tensor is symmetric, it does not make a difference on which

index we contract and eq. (2.61) could be written equivalently as Ti = gjiT
j .

We now consider an important property of the zero-order tensor U , namely the fact

that U is an invariant, i.e. it evaluates the same in all coordinate systems: U = U ′. By
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definition, an object that is independent from the coordinate system carries geometric

meaning. How to obtain a zero-order tensor? By contraction, which “sums away” a

covariant and a contravariant index.11 For example, consider the tensor expression

U = T iSi,

which we can express in the primed coordinate system as follows

U ′ = T iJ i
′
i SkJ

k
i′ = T iSkJ

i′
i J

k
i′ . (2.63)

However, by eq. (2.56) there is an inverse relationship between the Jacobians, namely we

have J i
′
i J

k
i′ = δki , therefore we write eq. (2.63) as

U ′ = T iSkδ
k
i .

Now it does not matter into which tensor we absorb the Kronecker delta, in any case we

get

U ′ = T iSi = T kSk = U,

which shows that U evaluates indeed the same in the primed coordinate system. We have

already used this fact in example 2.3, where we contracted away all indices with the help

of the metric tensor to obtain the length of the tangent vector v independently from the

coordinate system. Thus we have a simple way to recognize geometric properties: contract

away all indices and the result will evaluate the same in any coordinate system. While

artifacts of the coordinate system are present in the components of a tensor, they are

present in a systematic way. We have a principled method to disentangle the artifacts of

the coordinate system and the geometric meaning of an expression.

2.3.5 Calculus on Manifolds

We now transfer the two elementary operations of calculus to manifolds: Integrating and

taking the gradient of a function. To that end, we first introduce vector fields and the

concept of covectors.

2.3.5.1 Vector Fields and Covector Fields

Definition 2.17. A vector field X on a manifold M assigns to each point p ∈M a tangent

vector Xp ∈ TpM .

We can think of a vector field in the usual intuitive way: It assigns an arrow to every

point on the manifold. For example, let (U, (xi)) be a chart on M , then the local basis

11Here we assert the fact that contraction of a tensor is again a tensor without formal proof.
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∂
∂xi

∣∣
p

generates a vector field as p varies over U . We call this vector field the i-th coordinate

vector field.

Recalling theorem 2.1, a tangent vector at p is a derivation. Therefore we can use a

vector field X and a smooth function f ∈ C∞(Rn) to construct a new function Xf by

(Xf)(p) = Xpf, (2.64)

which of course means to take the directional derivative along the vector Xp of f .

Definition 2.18. A covector on a real vector space V is a real-valued linear functional

on V . I.e. a covector ω is a linear map ω : V → R. The space of all covectors is the dual

space of V , denoted by V ∗.

A basis {ei} ∈ V for V gives rise to a dual basis which we temporarily denote by {λi} ∈
V ∗. The relation between the bases vectors is captured by the following fundamental

equation

λi(ej) = δij . (2.65)

For example, a vector v ∈ V can be represented by v = viei, where vi ∈ R. As a result

of eq. (2.65), the i-th basis covector picks out the i-th component when fed a vector v,

λi(v) = vi. Conversely, every covector ω can be represented in the dual basis as ω = ωiλ
i.

Note that components of vectors have upper indices, whereas components of covectors have

lower indices. This is consistent with the conventions about contravariant and covariant

tensors, see section 2.3.4.

In linear algebra, this duality has much resemblance to the relation between column

and row vectors. If we represent vectors as columns, we can think of row vectors as linear

functionals that act on a vector by the scalar product. In particular, it is easy to see

that the row vectors e1 = (1 0 . . .), e2 = (0 1 0 . . .) . . . pick out the i-th component of a

vector, they correspond to the (standard) dual basis. Due to this connection, the action

of a covector ω on a vector v is often denoted by 〈ω, v〉 = ω(v). Meaning is dictated by

context: Whenever one variable is a covector and the other is a vector, the scalar product

of the two is understood as the action of the former on the latter.

Tangent Covectors on Manifolds On a manifold M , we have seen that we can con-

struct at each point p the tangent space TpM by partial differentiation of the coordinate

mapping. Similar to definition 2.18, we define the cotangent space at p as the dual space

to TpM , denoted T ∗pM .12 Elements ωp of the cotangent space are called cotangent vectors

or covectors. A covector field ω on a manifold M is a function that assigns a covector

12We may also use the more explicit notation (TpM)∗ or (Tp(M))∗. Note that the subscript p is crucial,
since TM and T ∗M usually denote the tangent and cotangent bundle respectively. These are the collections
of all tangent resp. cotangent spaces parameterized by M . In modern Riemannian geometry, the tangent
space and cotangent space at a point are obtained as sections of the tangent and contangent bundle
respectively.
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ωp to each point p ∈ M . In that sense, covector fields are dual to vector fields on M .

Covector fields are also called differential one-forms or just one-forms. In eq. (2.64) we

have defined the function Xf for a vector field X and smooth function f . In the dual, we

can accordingly construct a covector field fω by

(fω)p = f(p)ωp. (2.66)

One-forms belong to the more general class of differential n-forms, which play a central

role in manifold theory. Whereas a one-form assigns to each point a functional which takes

a tangent vector as input and returns a number, a n-form assigns a functional which takes

n tangent vectors as input and returns a number.

Given a chart (U, (xi)) on M , the local basis for the tangent space is given by{
ei := ∂

∂xi

∣∣
p

}
, with corresponding dual basis λi|p. As in the case of a vector field, we call

the covector field generated by moving p on U the coordinate covector field. A covector

ωp ∈ T ∗pM can be represented as ωp = ωiλ
i|p, where ωi = ωp

(
∂
∂xi

∣∣
p

)
.

2.3.5.2 The Gradient of a Function on a Manifold

Let us now turn to the gradient of a function f ∈ C∞(M) on a manifold M . In standard

calculus, the gradient is defined as a vector field, with the components being the partial

derivatives of f . Using our framework, this would read

∇f =
n∑
i=1

∂f

∂xi
∂

∂xi
. (2.67)

However, in this form the gradient is not independent of the coordinate system, as hinted

by the fact that eq. (2.67) violates the indexing convention.

Whereas it is not possible to interpret the partial derivatives of a real-valued function

as the components of a vector field in a coordinate-independent way, it turns out that

they can be interpreted naturally as the components of a covector field. Given a tangent

vector vp ∈ TpRn, we therefore define a covector field df called differential of f

df(vp) = dfp(vp) = vpf. (2.68)

It is easy to see that dfp depends linearly on v at each point p ∈ M , therefore dfp is

indeed a covector as defined in definition 2.18.

Let us see how df looks in coordinates (xi). With the help of the coordinate vector

field ∂
∂xi

∣∣
p

and the corresponding coordinate covector field λi|p we can write df as

dfp =
∂f

∂xi
(p)λi|p. (2.69)

This means that the components of df in any coordinate chart are given by the partial
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derivatives of f w.r.t. those coordinates. In particular, we can apply eq. (2.69) to the

coordinate functions xj themselves

dxj |p =
∂xj

∂xi
(p)λi|p = δji λ

i|p = λj |p. (2.70)

This shows that the dual basis vectors are nothing else than the differentials dxj!

Therefore we drop our preliminary notation of using λi for the basis covector field and

modify eq. (2.65) accordingly to get the well known duality

dxi|p

(
∂

∂xj

∣∣∣∣
p

)
= δij , (2.71)

which results in the following representation of a covector ωp = ωidx
i|p.

If we let x, y, z be coordinates on R3, then dx,dy,dz are one-forms on R3. This gives

a well-defined meaning to the widely used (and often not properly justified) notation in

elementary calculus. A quote from the great Michael Spivak summarizes the state of

affairs:

Classical differential geometers (and classical analysts) did not hesitate to talk

about “infinitely small” changes dxi of the coordinates xi, just as Leibnitz

had. No one wanted to admit that this was nonsense, because true results

were obtained when these infinitely small quantities were divided into each

other (provided one did it in the right way).

Eventually it was realized that the closest one can come to describing an in-

finitely small change is to describe a direction in which this change is supposed

to occur, i.e., a tangent vector. Since df is supposed to be the infinitesimal

change of f under an infinitesimal change of the point, df must be a function of

this change, which means that df should be a function on tangent vectors. The

dxi themselves then metamorphosed into functions, and it became clear that

they must be distinguished from the tangent vectors ∂
∂xi

. Once this realization

came, it was only a matter of making new definitions, which preserved the old

notation, and waiting for everybody to catch up. [Spivak, 1999]

In a one-dimensional space with the coordinate x, the above reduces to the following

familiar expression for the differential of a function f

df =
df

dx
dx. (2.72)

Having an expression of the differential as a covector field, it is a simple matter of using

the metric tensor to raise the index on df (see eq. (2.62)), thus converting the covector

field to a vector field. The components of this vector field are the partial derivatives of f ,
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which, by definition, is nothing else than the gradient of f

∇f = gijdf = gij
∂f

∂xi
∂

∂xj
. (2.73)

It is important to note that if our manifold is Rn with a Cartesian coordinate system, the

metric tensor is given by the identity matrix, i.e. it is a flat space, and eq. (2.73) reduces

to the standard definition of the gradient. In this case there is no distinction between

vectors and covectors, since essentially they all live in the same space, i.e. vector fields and

covector fields can be used interchangeably. On a general manifold however, vectors and

covectors live in different spaces (cf. section 2.3.2.2) and have to be treated on their own

terms. The metric tensor is the fundamental object to achieve this, it defines the inner

product on the tangent space in a way such that everything “works correctly”.

Pullback of Covector Fields In section 2.3.2.3 we have established that a smooth

map F : M → N between manifolds M,N induces a linear map dFp : TpM → TF (p)N

between the tangent spaces at every point p ∈ M . We called this map the differential or

pushforward of F . We can see the relation between this differential and the differential

as a covector field from the previous section eq. (2.68) by considering eq. (2.49) and the

special case that F : M → R. Under the canonical identification of R with TF (p)R, the

two definitions are really the same. Thus we are justified in calling both of them the

differential.

The differential pushes tangent vectors at p from M to N , and it is natural to con-

sider the dual of the differential, called codifferential, which is a linear map between the

cotangent spaces

dF ∗p : T ∗F (p)N → T ∗pM. (2.74)

The codifferential is defined by(
dF ∗p (ωF (p))

)
(v) = ωF (p)(dFp(v)), (2.75)

where ωF (p) ∈ T ∗F (p)N and v ∈ TpM . Intuitively, the codifferential reverses the direction

and pulls back a covector at F (p) from N to M . If ω is a covector field on N , we call

(F ∗ω)p = dF ∗p (ωF (p)) (2.76)

the pullback of the covector ωF (p) by F , i.e. the pullback F ∗ is the codifferential. In

particular, the pullback commutes with the differential and the product as shown in the

next proposition.

Proposition 2.1. Let F : M → N be a smooth mapping between manifolds M,N , h ∈
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C∞(N) a real-valued function on N and ω a covector field on N . Then

F ∗(hω) = (h ◦ F )F ∗ω (2.77)

F ∗dh = d(h ◦ F ) (2.78)

Proof. To proof eq. (2.77), it suffices to check that for any p ∈M

(F ∗(hω))p = dF ∗p
(
(hω)F (p)

)
(by the pullback eq. (2.76))

= dF ∗p
(
h(F (p))ωF (p)

)
(by eq. (2.66))

= h(F (p))dF ∗p (ωF (p)) (by linearity of dF ∗p )

= h(F (p))(F ∗ω)p (by the pullback eq. (2.76))

= ((h ◦ F )F ∗ω)p (by eq. (2.66))

To proof eq. (2.78) let v ∈ TpM be a tangent vector and compute

(F ∗dh)p (v) =
(
dF ∗p (dhF (p))

)
(v) (by eq. (2.76))

= dhF (p) (dFp(v)) (by definition of dF ∗p eq. (2.75))

= dFp(v)h (by definition of the differential eq. (2.68))

= v(h ◦ F ) (by definition of the differential eq. (2.50))

= d(h ◦ F )p(v) (by definition of the differential eq. (2.68))

We note that a real-valued function h ∈ C∞(N) on N can be pulled back by

F ∗h = h ◦ F. (2.79)

2.3.5.3 Integration on Rn

Concerning integration, there is no way to directly integrate a function on a manifold in

a coordinate-independent way. Consider for example any closed ball C ⊂ Rn and the

function f : C → R which is equal to 1, f(x) ≡ 1. Then the integral∫
C
fdV = V ol(C)

with dV being the volume element is clearly not invariant under coordinate transforma-

tions. The theory of integration on manifolds is extraordinarily rich, and we can give only

a very brief overview of the most important concepts here. The subsequent exposition

closely follows the very insightful article “Differential Forms and Integration” by Terence

Tao.13

13http://www.math.ucla.edu/~tao/preprints/forms.pdf

http://www.math.ucla.edu/~tao/preprints/forms.pdf
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Let us start with the most basic situation to integrate a smooth real-valued function

in a one-dimensional space. For instance, we are interested in the amount of work it takes

to move a one-dimensional particle from a to b in the presence of a force field given by

a function f : R → R, i.e. to compute the integral
∫ b
a f(x)dx. We can approximate this

infinitesimally by considering the work to move the particle from a position xi ∈ R to a

nearby position xi+1 ∈ R.14 This work will be (up to small errors) linearly proportional to

the displacement ∆xi := xi+1 − xi, with the proportionality constant given by f(xi), i.e.

the work is given by f(xi)∆xi. We now select any discrete path x0 = a, x1, x2, . . . , xn = b

between a and b and approximate the integral as∫ b

a
f(x)dx ≈

n−1∑
i=0

f(xi)∆xi.

If we now let the maximum step size sup {|∆xi|, 0 ≤ i ≤ n− 1} go to zero, eventually the

discrete sum will converge to the value of the continuous integral on the left hand side.

Let us now consider the more advanced case to integrate over a path from a ∈ Rn to

b ∈ Rn in a n-dimensional ambient space. Such path can be described as a space curve

γ : [0, 1]→ Rn, with γ(0) = a and γ(1) = b. This canonical description of a space curve is

called a parameterization. If the curve is given in a different form, for example as a function

from some interval [r, s] to the ambient space, it can always be reparameterized into the

canonical form. Now the positions on our discrete path are points xi ∈ Rn, e.g. with

coordinate t on the interval [0, 1] we have x0 = a = γ(0), x1 = γ(t1), x2 = γ(t2), . . . , xn =

b = γ(1) where ti ∈ [0, 1]. This makes the displacements ∆xi into vectors, more precisely

∆xi ∈ TxiRn, i.e. the displacements are tangent vectors to Rn at the point xi. In the

one-dimensional case, we converted the displacement ∆xi via the proportionality constant

f(xi) into a new number f(xi)∆xi. In higher dimensions, we will thus need a (linear)

transformation which takes a tangent vector ∆xi and returns a number, i.e. a functional

ωxi : Rn → R. The suggestive notation ωxi is on purpose, since it is clear that what we are

looking for is exactly a covector, see definition 2.18. If we let ω be a differential one-form

on [a, b], that is, a covector field, we can compute the work to move from a to b along γ as∫
γ
ω ≈

n∑
i=0

ωxi(∆xi).

This shows that differential forms are “the natural thing” to integrate on a manifold.

Let us see how this connects to the usual notation of the line integral in the one-

dimensional case. With the standard coordinate x on R, a one-form ω can be written as

ωx = f(x)dx for some smooth function f : [a, b] → R. Then we define the integral of ω

14here i is simply a running index, it does not denote components of a (co)vector.
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over [a, b] as ∫
[a,b]

ω =

∫ b

a
f(x)dx. (2.80)

This construction is more than just a trick of notation. If ϕ : [c, d]→ [a, b] is an increasing

diffeomorphism, meaning that t1 < t2 implies ϕ(t1) < ϕ(t2), then we have that∫
[c,d]

ϕ∗ω =

∫
[a,b]

ω,

which shows eq. (2.80) is invariant under diffeomorphisms (if ϕ is instead a decreasing

diffeomorphism, there is a simple sign change involved).

In a higher-dimensional space, the above concepts generalize in the following way. Let

D ⊂ Rn be a domain of integration, and ω a differential n-form, i.e. a functional that takes

n vectors and returns a number. Similar to the one-dimensional case, such n-form can be

written as ω = fdx1 ∧ · · · ∧ dxn, where ∧ denotes the wedge product and f : D → R is

some function. The integral of ω over D is defined as∫
D
ω =

∫
D
fdx1 ∧ · · · ∧ dxn,

which is often written more suggestively by erasing the wedges as∫
D
ω =

∫
D
fdx1 · · · dxn.

One has to take care when using this last notation. Without the wedges it is easy forget

that the integrand is a n-form. In particular, this notational convenience only works when

the n-form is specified as above, as a wedge product of one-forms in increasing order.

If this is not the case, there is an additional sign change involved. The reason for this

is the basic fact that the wedge product is anticommutative. If ω is a k-form and ν a

l-form, then ω ∧ ν = (−1)klν ∧ ω. In particular, for one-forms dx1, dx2 this means that

dx1 ∧ dx2 = −dx2 ∧ dx1 and as a result
∫
D fdx1 ∧ dx2 = −

∫
D fdx2 ∧ dx1.

The equivalent to invariance under diffeomorphisms from the one-dimensional case is

obtained as follows. Let E ⊂ Rn be another domain of integration and G : D → E a

smooth map. If ω is an n-form on E∫
D
G∗ω =

∫
E
ω,

that is, the change of integration domains is obtained by pulling back ω by G.15

15To be precise, we need the additional requirement that G is orientation-preserving. We skip the
technical details of what exactly this means and just mention that if G is orientation-reversing, then the
integral on the right hand side changes sign.
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2.3.5.4 Integration on Manifolds

On a n-dimensional manifold M with a chart (U,ϕ), the integral of a n-form ω is defined

as ∫
M
ω =

∫
ϕ(U)

(
ϕ−1

)∗
ω. (2.81)

Now consider a different coordinate mapping ψ with the same U and the fact that the

transition map ϕ ◦ ψ−1 : ψ(U)→ ϕ(U) is a diffeomorphism. Then∫
ϕ(U)

(
ϕ−1

)∗
ω =

∫
ψ(U)

(
ϕ ◦ ψ−1

)∗ (
ϕ−1

)∗
ω =

∫
ψ(U)

(
ψ−1

)∗
ω,

which shows that integrating a n-form on a manifold is indeed independent of the choice

of coordinates.

We now mention a very important property of a Riemannian manifold, that is, a

manifold with the structure of a metric g. On such a manifold there exists a unique

n-form dV , sometimes also denoted dVg or ωg, which satisfies

dV (e1, . . . , en) = 1 (2.82)

for any local orthonormal coordinate frame {ei}. In particular, the coordinate expression

of dV in coordinates (xi) is given as

dV =
√

det (gij) dx1 ∧ · · · ∧ dxn. (2.83)

This n-form is also called the Riemannian volume element. Its importance stems from

the fact that it allows to integrate functions, not just differential forms. The following

beautiful equation brings together all the concepts developed so far.

Let f ∈ C∞(U) be a function on U ⊆ M , then fdV is a n-form and we define the

integral of f over U as∫
U
fdV =

∫
ϕ(U)

f(x)
√

det (gij) dx1 · · · dxn. (2.84)

We point out that in Rn with a Cartesian coordinate system (xi), the metric tensor is

given by the identity matrix. Hence the Riemannian volume element is 1. If we let Ω be

the domain of integration given in the coordinate representation, i.e. Ω = ϕ(U), then we

recover the familiar equation∫
Ω
f(x)dx1 · · · dxn =

∫
Ω
f(x)dx

for the integral of a function over Ω.
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In this chapter we will address the issue of regularization in the context of 3D surfaces.

In the general energy minimization eq. (1.4), the regularizer is the functional R(u). Re-

calling that the energy minimization we wish to solve is ill-posed, we face the problem that

there exist infinitely many possible solutions. The purpose of the regularizer is to pick

one particular solution by imposing prior assumptions. It therefore plays a key role both

in the quality of the solution, as well as in the efficiency of the optimization algorithm.

3.1 Minimal Area Variational Stereo Model

We consider the case where the unknown u corresponds to a 3D surface. This situation

appears naturally in the 3D reconstruction problem, where the goal is to reconstruct

3D structure from the projections onto 2D images. The most principled approaches

to 3D reconstruction aim to infer a collection of (multiply-connected, piecewise

smooth) surfaces directly, represented intrinsically without regards to the images

[Balzer and Soatto, 2014, Delaunoy and Pollefeys, 2014, Hernández and Schmitt, 2004,

Pons et al., 2006, Tyleček and Šará, 2010, Zaharescu et al., 2011], as evident by the large

body of literature on shape space and shape optimization. In these methods, both the

geometry and the topology is then inferred to fit the available images. This is desirable

as one can enforce priors on the surfaces based on physically meaningful regularizers.

The disadvantage is that inferring topology is difficult and requires computation of

visibility at each iteration of the algorithm, with obvious repercussions on computational

efficiency.

75
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(a) Ground truth (b) TV regularization (c) Our method

Figure 3.1: TV regularization tends to favor piecewise-constant functions, which is detrimental
in the case of depth maps that represent a 3D surface. Our regularizer, while being defined on the
image, just as TV, respects the inner geometry of the 3D surface.

On the other hand, one could use depthmaps that associate a positive

number (distance) to each pixel [Campbell et al., 2008, Fan and Ferrie, 2010,

Gallup, 2014, Goesele et al., 2006, Hu and Mordohai, 2012, Sormann et al., 2007,

Tanskanen et al., 2013, Tola et al., 2011]. This approach is strongly connected to

differential geometry. In particular, there is a mapping that connects the value of a pixel

(its depth), which is defined on a 2D domain, to the position of a point in 3D space.

This is exactly a chart on the surface, i.e. a depthmap is a local parameterization of a

3D surface, see section 2.3.3. Note that such depthmaps will have to be combined in an

additional fusion step to yield the global surface. The advantage of using depthmaps is

that they conveniently confine the data (images), the optimization variable (surfaces) and

hence the objective function to the same domain, the image plane of a reference view.

This makes computation efficient, and the method of choice for real-time applications.

Unfortunately, the image plane is not the natural place to enforce regularization of

the surface. In the vicinity of depth discontinuities, caused by occlusions, neighboring

pixels do not necessarily correspond to points which are close in 3D space. Thus typical

image-based regularizers, such as Total Variation (TV), favor piecewise fronto-parallel

depthmaps, resulting in staircasing artifacts, see fig. 3.1(b).

3.1.1 Overview and Related Work

In the following, we seek to combine the advantages of shape space methods with those of

range maps. The advantage of the former is the availability of surface-based, physically

plausible regularizers, whereas the use of range maps allows us to avoid the inference of

scene topology. To the best of our knowledge, this has not been done in the literature on

variational stereo and is made possible by a number of technical contributions summarized

in section 3.1.1.

In addition to variational reconstruction algorithms described thus far, the

research on 3D reconstruction spawned a variety of methods that seek to bypass

the complexities of computing topology or visibility by localizing the surface
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Image

Surface

data

objective (surface)
regularizer

(a) Direct surface regulariza-
tion

Image

Surface

data
objective (depthmap)

regularizer

(b) Image-based depthmap
regularization

Image

Surface

data
objective (depthmap)

regularization

pullback

(c) Image-based surface regu-
larization

Figure 3.2: 3D reconstruction from images with direct surface regularization (a). Topology has
to be taken into account explicitly, which makes optimization hard. 3D reconstruction by param-
eterized depthmaps (b) uses efficient image-based regularization. The regularizer is disconnected
from properties of the surface. Our minimal area regularizer (c) is image-based, but regularizes a
physically meaningful property of the surface.

representation to subsets of the image plane. These image patches are small enough

that correspondence with a topologically-connected surface patch can be maintained

[Bailer et al., 2012, Besse et al., 2012, Bodis-Szomoru et al., 2014, Bleyer et al., 2011,

Bradley et al., 2008, Furukawa and Ponce, 2010, Klaus et al., 2006, Raposo et al., 2014,

Wang and Zheng, 2008]. Often, the optimization is restricted to a collection of small

planar facets rotating and moving along the viewing rays of the reference camera, a

process referred to as plane sweeping. In the variational setting that we adopt here,

the object of inference, including the depthmap, is a function. This distinguishes our

approach from patch-based methods which we will therefore consider no further. The

majority of variational methods resort to implicit handling of depth discontinuities

by TV regularization [Graber et al., 2011, Newcombe et al., 2011, Liu et al., 2009,

Stühmer et al., 2010, Wendel et al., 2012].

While TV effectively handles depth discontinuities in images, it does not impose ge-

ometrically meaningful constraints on the depthmap: In section 3.1.3.2, we show that

TV is a proxy of the minimal-area functional provided the depth map is orthographic, a

rather unrealistic assumption. Straightforward coupling of TV with a perspective repro-

jection error ceases to be physically plausible and yields undesirable staircasing artifacts,

see fig. 3.1, fig. 3.2(b). Therefore, we wish to design image-based regularizers that impose

a geometrically meaningful prior on the surface, see fig. 3.2(c). In section 3.1.3.3, we

derive the correct area form for the perspective case and embed it in a novel regulariza-

tion term for variational stereo. While this makes the regularizer plausible, it makes the

resulting optimization challenging. Thus, our second goal is to devise an efficient opti-

mization method tailored to this regularizer. On this topic, our core contribution is to to

re-parametrize the regularizer into a form that is linear in the optimization variable and

thus amenable to highly efficient primal-dual solvers. This is made possible by the gauge
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freedom in the parametrization: we exploit the fact that there are infinitely many equiv-

alent parameterizations to our advantage. The approach is summarized in fig. 3.2. The

implementation details of our method are provided in section 3.1.4.2 and section 3.1.4.3.

A series of experiments on synthetic and real data confirm our theoretical findings and

demonstrate a gain in reconstruction quality, section 3.1.5.

In two companion papers [Li and Zucker, 2006a, Li and Zucker, 2006b], Li and

Zucker recognize the need for richer geometric representations in stereo vision. Their

work has initiated a series of enhancements of patch-based methods [Besse et al., 2012,

Bleyer et al., 2011, Taniai et al., 2014, Woodford et al., 2009, Zhang et al., 2014]

that all include some crude approximation of surface curvature in the proposed

energy functional. Recently, Heise et al. [Heise et al., 2013] proposed to augment the

PatchMatch algorithm with a term reminiscent of a Huber norm applied to normal

changes across different patches. All of the aforementioned approaches depart from

a discrete, label-based formulation of the problem, whose solution is accomplished

by combinatorial optimization. Combinatorial optimization is however contrary to

the calculus of variations, which we have chosen as our paragon here. Weighing the

advantages and disadvantages of both paradigms against each other is beyond the scope

of this paper, but we believe that the latter offers more flexibility in accurately modelling

the inner geometry of regular surfaces. In the variational setting, Total Generalized

Variation (TGV) has helped to diminish staircasing by enriching the piecewise constant

basis that spans the space of functions of minimal TV with polynomials of higher

order [Heber and Pock, 2014, Ranftl et al., 2012]. Still, TGV is a generic regularizer

not specifically designed for surface parametrization, unlike the regularizer introduced

here. Re-parametrizations of range maps to the benefit of optimization have appeared

previously, e.g., in the realm of shape from shading [Prados and Faugeras, 2005] or

self-localization and mapping [Civera et al., 2008].

3.1.2 Epipolar Geometry

If we have two images of a scene and know corresponding points, it is possible to recon-

struct 3D structure. The underlying principle is called epipolar geometry, it describes the

relations between a 3D point and its projection into images. We see that this is an instance

where the search for correspondences appears in an important low-level vision problem.

While it is certainly possible, and often necessary, to have multiple images of a scene in

order to do reconstruction, the canonical case of two images is of major importance. It is

the topic of a research area known as stereo matching.

We give here a short overview of epipolar geometry and introduce the concepts that

are necessary to develop the variational stereo model in the next section. A more in-depth

treatment can be found e.g. in [Hartley and Zisserman, 2004].

The n-dimensional projective space Pn is defined as the quotient space of the equiva-



3.1. Minimal Area Variational Stereo Model 79

lence relation

(x1, . . . , xn+1) ∼ (x̂1, . . . , x̂n+1)

iff ∃α 6= 0 : (x1, . . . , xn+1) = α(x̂1, . . . , x̂n+1),

i.e. two points are equivalent if they are the same up to a non-zero scale factor. Such

points are called homogeneous, and the last (n + 1)-th component is designated as the

homogeneous weight. The relation between projective coordinates and the usual Euclidean

coordinates is given by xEuclid = (x1, . . . , xn) ↔ xproj = (x1, . . . , xn, 1). Given a point

in projective space with homogeneous weight 6= 0, one obtains Euclidean coordinates by

dividing all components through the homogeneous weight and discarding the homogeneous

weight. We will denote this operation by

π : Pn → Rn

(x1 . . . , xn+1) 7→ (x1/xn+1, . . . , xn/xn+1), (3.1)

with the inverse mapping

π−1 : Rn → Pn

(x1, . . . , xn) 7→ (x1, . . . , xn, 1). (3.2)

Note that this means loss of information. The homogeneous weight of a point in projective

space cannot be recovered from its Euclidean representation. The (n + 1)-th component

is lost through the application of the mapping π.

Let us define

K =

f1 0 c1

0 f2 c2

0 0 1

 , (3.3)

the intrinsic calibration matrix of the camera. The parameters f1, f2 ∈ R are the focal

length and c1, c2 ∈ R represents the principal point. This camera model is known as the

pinhole model, it describes the relationship between two-dimensional points on the image

plane and three-dimensional points on the Z = 1 plane of the camera. In particular, let

X = (X,Y, Z)T be a 3D point, then its projection onto the image plane is given as

x = (x, y)T = ϕ(K,X), (3.4)

where the mapping ϕ : P2 → R2 : X 7→ π(KX) combines the pinhole model and trans-

formation to non-homogeneous coordinates. By slight abuse of notation we overload the

symbols X,x to mean both the vector and its first component. Usually this will not be

a problem, in case there is ambiguity we will explicitly resolve it. In the above equa-
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tion the multiplication KX ∈ P2 yields a point in the two-dimensional projective space,

represented as a vector in R3.

Given a pixel coordinate x = (x, y)T , we find the corresponding 3D point at the Z = 1

plane by the inverse mapping ϕ−1 : R2 → P2 given by

X = (X,Y, 1) = ϕ−1(K,x) = K−1π−1 (x) . (3.5)

Note that this backprojection tells us nothing about the actual 3D position of a given image

pixel. We only recovered the 3D coordinates at the Z = 1 plane. We also emphasize that

the backprojected point is given in the local camera coordinate frame with the optical

center of the camera as the coordinate origin.

Camera position and orientation in the global world coordinate frame are described

by the extrinsic parameters, which can be represented as a matrix C ∈ SE(3), the special

Euclidean group of R3. Elements of SE(3) can be further decomposed into a rotation

matrix R ∈ SO(3), the special orthogonal group, and a translation vector t ∈ R3. The

special orthogonal group of R3 is given by the orthogonal 3 × 3 matrices, i.e. matrices

which fulfill RRT = I, where I denotes the identity matrix. A useful consequence is that

the inverse rotation is easy to compute via R−1 = RT . The extrinsic parameters are then

given as the matrix C = [R | t] ∈ R3×4. Note that we are working in the projective space

P3, where a homogeneous 3D point X is given by a vector in R4, therefore the matrix

multiplication CX makes sense. We can always augment the extrinsic matrix with an

additional row of the zero vector and homogeneous weight 1, which yields the 4×4 matrix

C =

[
R t

0 0 0 1

]
.

It is important to know in which direction the matrix C transforms a 3D point X. We

will adopt the convention that

Xcam = CXworld,

multiplication with C transforms a point from the global world coordinate frame into the

local camera coordinate frame. In the local camera frame the origin (0, 0, 0, 1)T is defined

as the optical center of the camera, and we can obtain the position of the camera in the

global frame by C−1(0, 0, 0, 1)T = [R−1 | −R−1t](0, 0, 0, 1)T = −RT t.
Recalling the backprojection eq. (3.5), we can construct a ray1 between center of the

camera and each backprojected point, given by

X(α) = αX = (αX,αY, α), α ≥ 0. (3.6)

We know that the actual 3D point must lie somewhere on this ray, i.e. there is some α̂ for

1here we are working in the local camera frame, i.e. camera center is the origin
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which α̂X = (α̂X, α̂Y, α̂)T is the position of the 3D point corresponding to pixel x. We

call the value α̂ the depth of pixel x. If we represent X in projective space, we obtain the

interesting relationship that the homogeneous weight corresponds to inverse depth. The

ray can be alternatively given by

X(α) =
(
X,Y, 1, 1

α

)
, (3.7)

and using eq. (3.1) it is easy to check that this is equivalent to eq. (3.6).

C1

C2

x1

X(α1)

X(α2)

X(α3)

X(α4)

baseline

Π

epipolar line

Figure 3.3: Epipolar Geometry. An image point x1 in the first image gives rise to an epipolar
line in the second image. The epipolar line is obtained by intersecting the epipolar plane Π with
the image plane. Π is spanned by the basline and the viewing ray X(α). Note that the epipolar
geometry is independent of the scene geometry, i.e. the actual depth of the 3D point corresponding
to x1 does not matter.

Let us now assume that we have two cameras C1, C2 observing the scene, with corre-

sponding images I1, I2. We wish to establish a constraint on corresponding image points.

To that end, assume a pixel x1 in the first image backprojects to a ray X(α). Furthermore

we can construct the line between the centers of the two cameras, called baseline. The

backprojected ray and the baseline span a plane in space, called the epipolar plane Π. The

intersection of this plane with the image plane of the second camera yields the epipolar

line l2 corresponding to pixel x1. Thus we get the constraint that the pixel corresponding

to x1 must lie somewhere on l2 in the second image, see fig. 3.3. By the classic duality

between points and lines in projective space,2 the epipolar line can be written as

l2 = Fx1, (3.8)

2One associates to a point with projective coordinates (a, b, c)T ∈ P2 the line ax+ by + cz = 0.



82 Chapter 3. Metric Regularization for Surfaces

where the 3×3 matrix F is the fundamental matrix. From the duality between points and

lines, a point x is on the line l iff lTx = 0. Since we know that the point x2 corresponding

to x1 must lie on the epipolar line, we have lT2 x2 = 0. Inserting eq. (3.8), we get the

epipolar constraint between corresponding points

lT2 x2 = (Fx1)T x2 = xT1 F
Tx2 = xT2 Fx1 = 0. (3.9)

This constraint is independent of scene geometry: Assuming known intrinsics, the epipolar

plane is completely determined by the baseline and the viewing ray X(α) corresponding to

x1, both of which can be computed from the extrinsic camera parameters. In particular,

the actual depth of the 3D point corresponding to x1 is not needed. This means that

if the intrinsics are known, the fundamental matrix can be computed from the extrinsic

parameters C1, C2 ∈ SE(3) alone. The search for correspondence then reduces to a one-

dimensional problem, as the corresponding point is constrained by eq. (3.9) to lie on the

epipolar line.

Vice-versa, if we know corresponding points x1, x2, we can compute their rays

C−1
1 X1(α), C−1

2 X2(β), where multiplication with the inverse extrinsic parameters

transforms the ray from the local camera coordinate frame to the global world coordinate

frame. The intersection of the rays then uniquely determines the position of the 3D point

X = C−1
1 X1(α̂) = C−1

2 X2(β̂) corresponding to the image points x1, x2, with α̂ being the

depth of X as seen from the first image, and β̂ the depth as seen from the second image.

3.1.3 Variational Stereo Model

In the following we will develop our variational stereo model by considering the canonical

binocular stereo problem. An extension to more than two views is conceptually straight-

forward.

3.1.3.1 Data Term

We model the relative position and orientation of the sensors by an element Grel ∈ SE(3).

Two radiance images Ir, I : Ω → R+, the former being the reference image and Ω ⊂ R2

denoting the image domain, give rise to the re-projection residual

r = I ◦ w(x, z(x))− Ir(x). (3.10)

The domain warping w = ϕ ◦Grel ◦ ϕ−1 is obtained by projecting pixels x ∈ Ω back onto

the surface S ⊂ R3 and then into the projection center of the camera displaced by Grel.

Finally, the data term accumulates some robust Huber function | · |ε of the re-projection

error over S:

E(S) =

∫
Ω

|r|ε dx. (3.11)
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Note that this integral is computed over Ω which rules out trivial solutions such as S = ∅
that may occur in shape-space-based methods discussed in section 3.1.1. Also note that

the back-projection ϕ−1 needed to compute the warping w depends on the – initially

unknown – surface S, and thus also on its parameterization which we will turn to now.

3.1.3.2 Orthographic Minimal-Area Regularizer

In the simplest case where ϕ is orthographic, we can model S by the graph of a scalar

function z : Ω→ R. Each point X ∈ S can then be written as

X = ϕ(x) =

 x

y

z(x, y)

 . (3.12)

Note that conceptually, the surface has not much in common with the depth map, yet

z appears in the parametrization and thus will influence the inner geometry of S. The

metric tensor (see definition 2.16) at a point X = ϕ(x) reads

I =

[
〈Xx, Xx〉 〈Xx, Xy〉
〈Xx, Xy〉 〈Xy, Xy〉

]
, (3.13)

where the tangent vectors Xx = ∂ϕ
∂x and Xy = ∂ϕ

∂y are obtained by partial differentiation

w.r.t. x and y. In the context of surfaces embedded in 3D space, the metric tensor is

also known as first fundamental form, a term which dates back to Gauss. Typically, I is

used to measure infinitesimal lengths and angles on the surface. In particular,
√

det (I)

determines the distortion of the two infinitesimal area elements dx and dS. A scalar

function f : S → R defined on the surface can be pulled back by ϕ to the parametric

domain Ω. The pullback also relates the domains of integration S and Ω with each other:∫
S

f(X)dS =

∫
Ω

f ◦ ϕ(x)
√

det (I) dx. (3.14)

Setting f = 1 and substituting eq. (3.12) into eq. (3.13) and then eq. (3.14) yields the

total area

A(z) =

∫
Ω

√
det (I) dx =

∫
Ω

√
z2
x + z2

y + 1 dx (3.15)

of the graph of z.

Recall that TV(z) :=
∫

Ω |Dz|dx, where D denotes the distributional derivative which

makes the definition well-defined even for non-differentiable functions. If z is differentiable,

we have TV(z) =
∫

Ω |∇z|dx =
∫

Ω

√
z2
x + z2

y dx. Note that eq. (3.15) looks much like the

TV of z if it were not for the additional value 1 under the square root. It is this difference

that allows measuring the area of a surface element. Still, both the area form eq. (3.15)
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TV(z)
dS

dx

z

(a) Orthographic

dS

dx

z

TV(z)

X̂

(b) Perspective

Figure 3.4: TV and surface area under orthographic projection (a) differ in that the TV measures
only the jumps along z, whereas a surface element dS also takes into account the component of
dx parallel to the image plane. To reduce the area of a non-minimal surface element, the only
option in both cases is to rotate until fronto-parallelity is achieved, i.e. TV(z) = 0. The area form
induced by perspective projection (b) on the other hand has an additional degree of freedom: the
area of a non-minimal surface element can either be decreased by rotating it until perpendicular
to the pixel viewing ray, or by moving it closer to the center of projection.

and TV(z) have the tendency to create piecewise fronto-parallel surfaces, as can be seen

in fig. 3.4(a).

This property may be desirable in image processing applications, where z corresponds

to some image intensity distribution over Ω, but certainly not when z is a depthmap

that parameterizes a geometric surface. Meanwhile, the assumption of an orthographic

camera model in reconstruction is quite unrealistic for practical purposes, and so is the

use of TV(z) as a regularizer, although that appears to be common practice in previous

works [Graber et al., 2011, Newcombe et al., 2011, Liu et al., 2009, Stühmer et al., 2010,

Wendel et al., 2012]. So in the following section, let us clarify how the area form of a

perspective depthmap parametrization looks like, and highlight its interplay with the TV .

3.1.3.3 Perspective Minimal-Area Regularizer

In the perspective parameterization, for which – to reduce the notational burden – we

maintain the symbol ϕ, the depth z influences all three spatial coordinates of a surface

point. More precisely, we have X = zX̂, where

X̂ =

x̂ŷ
1

 = ϕ−1(x) =


x−c1
f1
y−c2
f2

1

 (3.16)
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is the direction of the viewing ray associated with a pixel. From the tangent vectors

Xx =

x̂zx + z
f1

ŷzx
zx

 , Xy =

 x̂zy
ŷzy + z

f2

zy

 , (3.17)

both, the fundamental form and the square root of its determinant, immediately follow:√
det (I) =

z

f1f2

√
‖∇fz‖2 + (〈∇fz, x̂〉+ z)2 . (3.18)

Here, we have introduced an abbreviation ∇f for the nabla operator whose components

are weighted by the focal lengths f = (f1, f2), i.e., ∇fz = (f1zx, f2zy).

Equation (3.18) presents the central ingredient in our regularization term, so a few

remarks are in order: First of all, the factor z in front of the square root makes the

surface area form
√

det (I) dS distance-dependent. Consequently, a mean curvature flow

is furnished with an additional degree of freedom. As shown in fig. 3.4(b), one can reduce

surface area (locally) by moving points towards the center of projection. Vice-versa,

minimal surfaces, unless they constitute the global optimum z = 1 at which dS = dx,

are not necessarily piecewise constant in depth. As we will later verify empirically, this

helps reduce staircasing artifacts generated by methods with “naive” TV regularization.

On the downside, eq. (3.18) is neither equal to the TV nor to the norm of some linear

operator applied to z. Hence, a model combining the data term eq. (3.11) and area form

under perspective projection eq. (3.18) does not yield a functional of the class eq. (2.20).

The culprit is the area form eq. (3.18), which is non-convex. We will address this issue

in the next section by transforming our variational problem such that eq. (3.18) becomes

tractable for the primal-dual solver algorithm 2.5.

3.1.4 Optimization

3.1.4.1 Algorithm

Let us first summarize the continuous variational stereo model we wish to solve:

min
z

∫
Ω

z

f1f2

√
|∇fz|2 + (〈∇fz, x̂〉+ z)2 dx+ λ

∫
Ω

|I ◦ w(x, z(x))− Ir(x)|ε dx. (3.19)

As customary, λ ∈ R+ is a scalar parameter controlling the trade-off between data

fidelity and smoothness. A similar approach was used recently by the authors of

[Stühmer et al., 2010] to compute dense depthmaps in real-time, albeit employing

the raw TV for regularization. Flow-based stereo carries out a continuous search

for correspondences along the epipolar lines. It can thus be seen as the variational

counterpart of the planesweep algorithm, however, with the advantages that it requires

no resource-hungry spatial data structure. Also, the extension to multiple views is easy
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to achieve by summing up the reprojection error over a number of image pairs.

Looking at the first term of eq. (3.19), we see that in general it is non-convex because

of the bilinear form involving z and its derivative. If we use the fact that
√

det (I) equals

the length of the surface normal ‖n‖ = ‖Xx ×Xy‖, the situation improves slightly. From

eq. (3.17), it becomes clear, though, that

n =

 − zzx
f2

− zzy
f1

1
f1f2

(z2 + x̂f1zzx + ŷf2zzy)

 (3.20)

and therefore ‖n‖ in general is still non-convex in z. Remarkably, this can be fixed by

re-parameterizing S as stated in the central

Proposition 3.1. Substituting z in the perspective depth map parameterization by z =

φ(ζ) with φ(ζ) =
√

2ζ , the surface normal becomes a linear function of ζ. In particular,

it holds

n(ζ) =

 − ζx
f2

− ζy
f1

x̂ζx
f2

+
ŷζy
f1

+ 2ζ
f1f2

 . (3.21)

Proof. We start by applying the chain rule to the non-convex term zzx (similarly to zzy),

which yields for a re-parameterization z = φ(ζ)

zzx = φ
dφ

dζ

∂ζ

∂x
. (3.22)

If we now require that

φ
dφ

dζ
= 1, (3.23)

we are left with the term ∂ζ
∂x , which can be expressed as a linear operator on ζ. Equa-

tion (3.23) constitutes a first-order ordinary differential equation, which can be solved for

φ by separation of the variables:

φdφ = dζ∫
φdφ =

∫
dζ

φ2

2
= ζ. (3.24)

From eq. (3.24), we get φ =
√

2ζ . Inserting this into eq. (3.20) and using dφ
dζ = 1

φ , it
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follows immediately that

zzx = φ
dφ

dζ

∂dζ

∂x
=
√

2ζ
d
√

2ζ

dζ
ζx = ζx,

zzy = φ
dφ

dζ

∂ζ

∂y
= ζy,

z2 = φ2 = 2ζ, (3.25)

and hence the claim.

Note that the transformation ζ = z2

2 can be interpreted as a change of coordinates,

see section 2.3.2.3. We have effectively re-parameterized the variational problem on the

manifold given by the parabola z2

2 , where it turns out to be convex. This is an example of

the maxim stated at the beginning of our treatment of differential geometry in section 2.3:

The coordinate system is dictated by the problem at hand, and sometimes an appropriate

choice of coordinates can make a problem easier to analyze and solve.

Let us remark that the transformation φ is bijective and differentiable over (0,∞),

which is sufficient since we may assume all surface points to be located in front of the

camera.

We are now left with the non-convexity of the data term. Since the optimization

variable z appears as an argument to the warping w in eq. (3.19), it is clear the only way

to get around the non-convexity is to linearize the data term. This calls for an iterative

optimization strategy, in which at each step, say k ∈ N, a local convex approximation of

the data term is minimized. With the residual

r(z) = I ◦ w(x, z(x))− Ir(x), (3.26)

the idea is to compute a Taylor expansion

r(z) ≈ r(zk) +
dr

dz

∣∣∣
zk

(z − zk) (3.27)

around the current iterate zk, yielding a local approximation of eq. (3.11):

Ê(z) :=

∫
Ω

∣∣∣∣r(zk) +
dr

dz

∣∣∣
zk

(z − zk)
∣∣∣∣
ε

dx. (3.28)

The overall strategy is reminiscent of the classical Gauss-Newton method for nonlinear

least-squares problems. The last piece we need in order to finalize treatment of the data

term is the derivative of the residual w.r.t. the function z, which is given by

dr

dz
= ∇I|ϕ◦Grel(zX̂)Dϕ|Grel(zX̂)DGrelX̂, (3.29)
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where the operator D denotes differentiation. To conclude this section, let us state the

full variational problem in the variable ζ following re-parametrization:

min
ζ

∫
Ω
|n(ζ)|dx+ λ

∫
Ω
|I ◦ w(x, ζ(x))− Ir(x)|ε dx. (3.30)

Note that since the original warp w depends on z, it also has to be reformulated in terms

of ζ.

3.1.4.2 Discretization

We discretize the image domain Ω on the regular Cartesian grid of size M ×N and repre-

sent images as matrices in RM×N . To discretize the gradient, we utilize linear operators

Dx, Dy : RM×N → RM×N corresponding to finite difference approximations of the par-

tial derivatives in x and y direction. Their action on an image u ∈ RM×N is given by

[Chambolle, 2004]

(Dxu)i,j =

{
ui,j+1 − ui,j if j < N,

0 else,

(Dyu)i,j =

{
ui+1,j − ui,j if i < M,

0 else.

Now we can define a linear operator L : RM×N → RM×N×3, which computes for every

element of ζ ∈ RM×N its normal vector according to eq. (3.21) as follows

(Lζ)ij1 =
(Dxζ)ij
f2

(Lζ)ij2 =
(Dyζ)ij
f1

(3.31)

(Lζ)ij3 =
x̂ij(Dxζ)ij

f2
+
ŷij(Dyζ)ij

f1
+

2

f1f2
,

where x̂, ŷ ∈ RM×N are images of the x and y components of the viewing ray eq. (3.16).

The discrete regularization term is then given by ‖Lζ‖1,1,2, where the 1, 1, 2-norm is ob-

tained by taking the `1-norm along the first two dimensions and the `2-norm along the

third. That is, for A ∈ RM×N×K we have ‖A‖1,1,2 =
∑M

i=1

∑N
j=1

√∑K
k=1 (Aijk)

2 . We

note that the operator L can be represented as a matrix L̄ ∈ R3MN×MN , acting by matrix-

vector multiplication on the vectorized image ζ̄ ∈ RMN×MN . Then (L̄ζ̄) ∈ R3MN , which

can be rearranged in the obvious way, i.e. inverse to the vectorization operation, to obtain

(Lζ) ∈ RM×N×3 as required by eq. (3.31).

The discrete data term is given by ‖r‖ε, where r ∈ RM×N is the residual eq. (3.26).

The discrete Huber norm is defined as the element-wise sum ‖r‖ε =
∑

i

∑
j |rij |ε.
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3.1.4.3 Implementation

Recalling that our strategy to solve the originally non-convex problem eq. (3.19) is to

linearize the data term around some estimate ζk and subsequently solve a series of locally-

convex approximations, each of the sub-problems looks like

min
ζ
‖Lζ‖1,1,2 + λ‖r + a� (ζ − ζk)‖ε, (3.32)

where a := dr
dζ

∣∣
ζk
∈ RM×N is the element-wise derivative of r ∈ RM×N w.r.t. ζ ∈ RM×N

and � denotes element-wise multiplication. We point out that while eq. (3.32) and

eq. (3.19) are equivalent, they differ in the important aspect that the regularizer in

eq. (3.19) is non-convex in the optimization variable, whereas the regularizer of eq. (3.32)

is the norm of a linear operator applied to ζ, hence it is convex. For this reason, we can

apply the highly efficient first order primal-dual algorithm due to Chambolle and Pock

[Chambolle and Pock, 2011] to minimize eq. (3.32). The the primal-dual formulation reads

min
ζ

max
‖q‖∞,∞,2≤1

〈Lζ, q〉+ λ‖r + a� (ζ − ζk)‖ε, (3.33)

where q ∈ RM×N×3 is the dual variable and the scalar product for arrays A,B ∈ RM×N×K

is defined in the obvious way as 〈A,B〉 =
∑M

i=1

∑N
j=1

∑K
k=1AijkBijk. The inner iteration –

denoted by l to distinguish it from the outer iterations k – delivers a minimizer of eq. (3.33)

with convergence rate O(l)

ql+1 = proj‖q‖∞∞,2≤1(ql + Σ� (Lζ̃ l)), (3.34)

ζ l+1 = prox(ζ l − T � (L∗ql+1)), (3.35)

ζ̃ l+1 = 2ζ l+1 − ζ l,

where L∗ denotes the adjoint operator of L. We can see from eq. (3.21) that L has ir-

regular structure: For a fixed index (i, j) it computes a vector with 3 components, where

the range of the last component is much different from the range of the first two. This

makes estimation of the operator norm difficult, and likely it will be large, meaning that

the algorithm converges slowly. Therefore we apply a preconditioning, denoted by T,Σ,

according to [Pock and Chambolle, 2011]. To that end, we utilize the matrix representa-

tion L̄ ∈ R3MN×MN of L, see section 3.1.4.2. We compute preconditioning vectors τ, σ

by

τn =
1∑3MN

m=1 |̄Lmn|
, σm =

1∑MN
n=1 |̄Lmn|

.

Rearranging elements, we get T ∈ RM×N ⇔ τ ∈ RMN and Σ ∈ RM×N×3 ⇔ σ ∈ R3MN ,

and T,Σ can be multiplied element-wise with (L∗q) ∈ RM×N and (Lζ̃) ∈ RM×N×3 respec-

tively in eq. (3.35) and eq. (3.34).
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(a) Input image pair (b) 3D surface (TV) (c) 3D surface (ours)

Figure 3.5: Results for the synthetic experiment consisting of a tilted plane to show the behavior
of the regularizer in case of a slanted surface. The TV regularizer (b) produces the well-known
staircaising artifacts while the surface area regularizer (c) shows no bias towards fronto-parallelity.

proj‖q‖∞,∞,2≤1(·) is a simple pointwise projection onto the unit ball. The proximal

operator for the data term can be solved explicitly by the following formula:

ζ̂ = prox(ξ)⇔ ζ̂ij =


ξij − Tijλaij if aijξij + bij > Tijλa

2
ij + ε

ξij + Tijλaij if aijξij + bij < −Tijλa2
ij − ε

ξij−Tijλaijbij/ε
1+Tijλa2ij/ε

else

, (3.36)

where b := r − a� ζk.
As it is common in many optical flow algorithms, we embed the whole procedure

into a coarse-to-fine warping framework to account for large discontinuities in depth. We

created a highly parallel implementation using the CUDA toolkit, which makes the method

attractive for (near) real-time applications.

3.1.5 Experimental Studies

All results were computed on a desktop PC equipped with a 3.2GHz i7 QuadCore CPU and

a Geforce 780Ti GPU. We used a pyramid scale factor of 0.75 throughout, and computed

30 warps per pyramid level and 60 iterations per warp.

For a real-world configuration with a scale factor of 0.5, 20 warps and 30 iterations

(note that this is rarely needed for convergence and can be trimmed further), the runtime

is 0.14 s for a resolution of 640×480 and 1.9 s for 3072×2048 respectively.

3.1.5.1 Synthetic Data

To empirically verify the theoretical properties of our regularizer (see section 3.1.3.3), we

conducted a number of experiments with synthetic (i.e., perfect) input data and known

ground truth. Despite the fact that our model is conceptually capable of using multiple

views, we restricted ourselves to classical binocular stereo for all experiments.

The first example consists of a plane rotated 30◦ around the x-axis. As depicted in
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(a) Depth map TV (b) Depth map Ours

(c) 3D surface (TV), λ = 0.15 (d) 3D surface (ours), λ = 3 · 10−4

Figure 3.6: Results for a synthetic curved surface. Whereas the depth maps (a)-(b) of the
sphere surface look similar, a 3D visualization (c)-(d) allows a more thorough examination of
reconstruction quality: the plateau structure is visible in case of TV regularization (especially at
the top), area regularization on the other hand is more faithful to the true curved surface.

fig. 3.5, TV regularization clearly shows staircaising artifacts, whereas our surface area

regularizer produces a smooth slanted plane. We emphasize the fact that the regularization

strength for TV has been hand-tuned to be as smooth as possible before breaking down

(e.g., approximating the slanted surface by a series of very large fronto-parallel steps).

The next experiment (fig. 3.6) involves a hemisphere set against a fronto-parallel back-

ground. We use the hemisphere to assess the ability of the regularizer to reconstruct

curved surfaces. Figure 3.6(c) and fig. 3.6(d) show a 3D visualization of the result for

TV and surface area regularization respectively.Despite of the depth maps fig. 3.6(a) and

fig. 3.6(b) of the sphere looking similarly smooth, one can see qualitative differences in the

3D surface: Where TV tends to approximate the half-sphere by fronto-parallel plateaus,

area regularization produces a more pleasing result. This underlines the importance of

using 3D visualizations when assessing the quality of stereo algorithms.

Figure 3.7 illustrates the behaviour of the regularizer under varying values of the

regularization parameter λ. TV (fig. 3.7(b)) suffers from sudden breakdown whereas area

regularization (fig. 3.7(c)) remains stable over orders of magnitude. Stable parameters are

of great interest to the practitioner because most of these are still hand-tuned. Note that

for the visualizations of the sphere (fig. 3.6(c) and fig. 3.6(d)) we again chose favorable
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regularization strength for TV (i.e., close to breakdown) and medium regularization for

surface area.
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Figure 3.7: Horizontal cross-section through the depth maps for the sphere experiment. Note
that the depth discontinuity at the left side is occluded in the input images; the right side is co-
visible. We find that in occluded regions, where the task of the regularizer is hallucination, TV
produces the familiar steps. Area regularization on the other hand smoothly bridges the occluded
area.

3.1.5.2 Real Data

We tested our regularizer on real-world examples taken from the Strecha

dataset [Strecha et al., 2008]. It consists of a number of high-resolution (3072 × 2048)

images for dense multiview stereo algorithms. All results were obtained using only

two images. Figure 3.8 depicts 3D renderings of results from the Fountain-P11 and

Herz-Jesu-P25 scene. We also provide the input images for reference. Despite our

best efforts and a very strong weight on the data term (as can be seen in fig. 3.8(e)

by the artifacts at the bottom and the top), we did not succeed in getting a smooth

reconstruction of the church facade by means of TV regularization. The reason for this

is that the facade is slightly slanted w.r.t. the reference camera image plane. The gaps

between the individual weakly-textured bricks provide a gradient for the TV regularizer

to hold on to. It therefore tends to approximate every individual brick by its own

fronto-parallel facet, as can be seen in the closeup fig. 3.9(c). The surface area regularizer

fig. 3.9(d) is able to recover small depth discontinuities, see for instance the little arches

above the front door, while maintaining a smooth facade.

Table 3.1 shows a quantitative comparison of the Root Mean Square (RMS) error

against ground-truth depthmaps over different datasets.

3.1.6 Conclusion

We have introduced a new regularizer for variational stereo, which is defined on the image

but regularizes a geometrically meaningful quantity on the surface. Exploiting gauge free-

dom, a re-parameterization makes the regularizer compatible with highly efficient primal-
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(a) Input image 1 (b) TV (c) Ours

(d) Input image 1 (e) TV (f) Ours

Figure 3.8: Results for the Fountain-P11 and Herz-Jesu-P25 scene. Closeups can be found in
fig. 3.9.

RMS error Reduction
TV Ours TV−Ours

TV

TiltedPlane10 5.5527e-4 1.0819e-4 80.5%

TiltedSine10 0.0167188 0.0114407 31.6%

Fountain-P11 0.05342 0.02644 50.5%

Herz-Jesu-P25 0.264935 0.222491 16.0%

Table 3.1: RMS error against ground-truth depth-maps for different datasets. The last column
is the error reduction, i.e., the percentaged gain in reconstruction quality achieved by our method
over TV regularization.

dual solvers for large scale problems. We evaluated important properties of the regularizer

such as the ability to reconstruct smooth surfaces using both synthetic and real world data.

In particular, a comparison to the widely used TV regularizer showed that the minimal

surface regularizer does not suffer from the staircaising effect. Because the computational

cost remains basically the same when going from TV to surface area regularization, our

method is suited for real-time applications.
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(a) TV (closeup) (b) Ours (closeup)

(c) TV closeup (d) Ours closeup

Figure 3.9: Closeup renderings of the results on Strecha dataset.

3.2 Image Reconstruction for Event Cameras using Mani-

fold Regularization

In contrast to standard Complementary Metal-Oxide-Semiconductor (CMOS) digital cam-

eras that operate on frame basis, neuromorphic cameras such as the Dynamic Vision Sensor

(DVS)[Lichtsteiner et al., 2008] work asynchronously on a pixel level. Each pixel measures

the incoming light intensity and fires an event when the absolute change in intensity is

above a certain threshold (which is why those cameras are also often referred to as event

cameras). The time resolution is in the order of µs. Due to the sparse nature of the events,

the amount of data that has to be transferred from the camera to the computer is very

low, making it an energy efficient alternative to standard CMOS cameras for the tracking

of very quick movement [Delbruck and Lichtsteiner, 2007, Wiesmann et al., 2012]. While

it is appealing that the megabytes per second of data produced by a digital camera can be

compressed to an asynchronous stream of events, these events cannot be used directly in

computer vision algorithms that operate on a frame basis. In recent years, the first algo-

rithms have been proposed that transform the problem of camera pose estimation to this
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(a) Raw Events (b) Reconstructed Image (c) Event Manifold

Figure 3.10: Sample results from our method. The image (a) shows the raw events and (b) is the
result of our reconstruction. The time since the last event has happened for each pixel is depicted
as a surface in (c) with the positive and negative events shown in green and red respectively.

new domain of time-continuous events e.g. [Benosman et al., 2014, Gallego et al., 2015,

Kim et al., 2014, Mueggler et al., 2014, Mueggler et al., 2015, Weikersdorfer et al., 2013],

unleashing the full potential of the high temporal resolution and low latency of event

cameras. The main drawback of the proposed methods are specific assumptions on the

properties of the scene or the type of camera movement.

Contribution In this work we aim to bridge the gap between the time-continuous do-

main of events and frame-based computer vision algorithms. We propose a simple method

for intensity reconstruction for neuromorphic cameras (see fig. 3.10 for a sample output of

our method). In contrast to very recent work on the same topic by [Bardow et al., 2016],

we formulate our algorithm on an event-basis, avoiding the need to simultaneously estimate

the optical flow. We cast the intensity reconstruction problem as an energy minimization,

where we model the camera noise in a data term based on the generalized Kullback-Leibler

divergence. The optimization problem is defined on a manifold induced by the timestamps

of new events (see fig. 3.10(c)). We show how to optimize this energy using variational

methods and achieve real-time performance by implementing the energy minimization on

a Graphics Processing Unit (GPU). We release software to provide live intensity image

reconstruction to all users of DVS cameras3. We believe this will be a vital step towards

a wider adoption of this kind of cameras.

3.2.1 Related Work

Neuromorphic or event-based cameras receive increasing interest from the computer vision

community. The low latency compared to traditional cameras make them particularly

interesting for tracking rapid camera movement. Also more classical low-level computer

vision problems are transferred to this new domain like optical flow estimation, or image

3https://github.com/VLOGroup/dvs-reconstruction

https://github.com/VLOGroup/dvs-reconstruction
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reconstruction as proposed in this work. In this literature overview we focus on very recent

work that aims to solve computer vision tasks using this new camera paradigm. We begin

our survey with a problem that benefits the most from the temporal resolution of event

cameras: camera pose tracking. Typical Simultaneous Localization and Mapping (SLAM)

methods need to perform image feature matching to build a map of the environment and

localize the camera within [Hartmann et al., 2013]. Having no image to extract features

from means, that the vast majority of visual SLAM algorithms cannot be readily applied

to event-based data. [Milford et al., 2015] show that it is possible to extract features

from images that have been created by accumulating events over time slices of 1000 ms

to perform large-scale mapping and localization with loop-closure. While this is the first

system to utilize event cameras for this challenging task, it trades temporal resolution for

the creation of images like fig. 3.10(a) to reliably track camera movement.

A different line of research tries to formulate camera pose updates on an event basis.

[Cook et al., 2011] propose a biologically inspired network that simultaneously estimates

camera rotation, image gradients and intensity information. An indoor application of a

robot navigating in 2D using an event camera that observes the ceiling has been proposed

by [Weikersdorfer et al., 2013]. They simultaneously estimate a 2D map of events and

track the 2D position and orientation of the robot. Similarly, [Kim et al., 2014] propose a

method to simultaneously estimate the camera rotation around a fixed point and a high-

quality intensity image only from the event stream. A particle filter is used to integrate

the events and allow a reconstruction of the image gradients, which can then be used

to reconstruct an intensity image by Poisson editing. All methods are limited to 3 De-

grees of Freedom (DOF) of camera movement. A full camera tracking has been shown in

[Mueggler et al., 2014, Mueggler et al., 2015] for rapid movement of an Unmanned Aerial

Vehicle (UAV) with respect to a known 2D target and in [Gallego et al., 2015] for a known

3D map of the environment.

[Benosman et al., 2014] tackle the problem of estimating optical flow from an event

stream. This work inspired our use of an event manifold to formulate the intensity image

reconstruction problem. They recover a motion field by clustering events that are spatially

and temporally close. The motion field is found by locally fitting planes into the event

manifold. In experiments they show that flow estimation works especially well for low-

textured scenes with sharp edges, but still has problems for more natural looking scenes.

Very recently, the first methods for estimating intensity information from event cameras

without the need to recover the camera movement have been proposed. [Barua et al., 2016]

use a dictionary learning approach to map the sparse, accumulated event information to

infer image gradients. Those are then used in a Poisson reconstruction to recover the

log-intensities. [Bardow et al., 2016] proposed a method to simultaneously recover an

intensity image and dense optical flow from the event stream of a neuromorphic camera.

The method does not require to estimate the camera movement and scene characteristics

to reconstruct intensity images. In a variational energy minimization framework, they

concurrently recover optical flow and image intensities within a time window. They show
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that optical flow is necessary to recover sharp image edges especially for fast movements

in the image. In contrast, in this work we show that intensities can also be recovered

without explicitly estimating the optical flow. This leads to a substantial reduction of

complexity: In our current implementation, we are able to reconstruct > 500 frames per

second. While the method is defined on a per-event-basis, we can process blocks of events

without loss in image quality. We are therefore able to provide a true live-preview to users

of a neuromorphic camera.

3.2.2 Image Reconstruction from Sparse Events

We have given a time sequence of events (en)Nn=1 from a neuromorphic camera, where

en = {xn, yn, θn, tn} is a single event consisting of the pixel coordinates (xn, yn) ∈ Ω ⊂ R2,

the polarity θn ∈ {−1, 1} and a monotonically increasing timestamp tn.

A positive θn indicates that at the corresponding pixel the intensity has increased by

a certain threshold ∆+ > 0 in the log-intensity space. Vice versa, a negative θn indicates

a drop in intensity by a second threshold ∆− > 0. Our aim is now to reconstruct an

intensity image un : Ω→ R+ by integrating the intensity changes indicated by the events

over time.

Taking the exp(·), the update in intensity space caused by one event en can be written

as

fn(xn, yn) = un−1(xn, yn) ·

{
c1 if θn > 0

c2 if θn < 0
, (3.37)

where c1 = exp(∆+), c2 = exp(−∆−). Starting from a known u0 and assuming no

noise, this integration procedure will reconstruct a perfect image (up to the radiometric

discretization caused by ∆±). However, since the events stem from real camera hardware,

there is noise in the events. Also the initial intensity image u0 is unknown and cannot

be reconstructed from events alone. Therefore the reconstruction of un from fn cannot

be solved without imposing some regularity in the solution. We therefore formulate the

intensity image reconstruction problem as the solution of the optimization problem

un = arg min
u∈C1(Ω,R+)

[E(u) = D(u, fn) +R(u)] , (3.38)

where D(u, fn) is a data term that models the camera noise and R(u) is a regularisation

term that enforces some smoothness in the solution. In the following section we will show

how we can utilize the timestamps of the events to define a manifold which guides a

variational model and detail our specific choices for data term and regularization.

3.2.2.1 Variational Model on the Event Manifold

Moving edges in the image cause events once a change in logarithmic intensity is bigger

than a threshold. The collection of all events (en)Nn=1 can be recorded in a spatiotemporal
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volume V ⊂ Ω × T . V is very sparsely populated, which makes it infeasible to directly

store it. To alleviate this problem, [Bardow et al., 2016] operate on events in a fixed time

window that is sliding along the time axis of V . They simultaneously optimize for optical

flow and intensities, which are tightly coupled in this volumetric representation.

Regularization Term As in [Benosman et al., 2014], we observe that events lie on

a lower-dimensional manifold within V , defined by the most recent timestamp for each

pixel (x, y) ∈ Ω. A visualisation of this manifold for a real-world scene can be seen

in fig. 3.10(c). [Benosman et al., 2014] fittingly call this manifold the surface of active

events. We propose to incorporate the surface of active events into our method by for-

mulating the optimisation directly on the manifold. Our intuition is, that parts of the

scene that have no or little texture will not produce as many events as highly textured

areas. Regularizing an image reconstructed from the events should take into account the

different “time history” of pixels. In particular, we would like to have strong regularization

across pixels that stem from events at approximately the same time, whereas regulariza-

tion between pixels whose events have very different timestamps should be reduced. This

corresponds to a grouping of pixels in the time domain, based on the timestamps of the

recorded events. Solving computer vision problems on a surface is also known as intrinsic

image processing [Lai and Chan, 2011], as it involves the intrinsic (i.e. coordinate-free)

geometry of the surface, a topic studied by the field of differential geometry. Looking at

the body of literature on intrinsic image processing on surfaces, we can divide previous

work into two approaches based on the representation of the surface. Implicit approaches

[Krueger et al., 2008, Cheng et al., 2000] use an implicit surface (e.g. through the zero

level set of a function), whereas explicit approaches [Lui et al., 2008, Stam, 2003] con-

struct a triangular mesh representation. Our method uses the same underlying theory of

differential geometry, however we note that because the surface of active events is defined

by the timestamps which are monotonically increasing, the class of surfaces is effectively

restricted to 21
2D. This means that there exists a simple parameterization of the surface

and we can perform all computations in a local euclidean coordinate frame, i.e. the im-

age domain Ω, see section 2.3.3. In contrast to [Lai and Chan, 2011], where the authors

deal with arbitrary surfaces, we avoid the need to explicitly construct a representation

of the surface. This has the advantage that we can straightforwardly make use of GPU-

accelerated algorithms to solve the large-scale optimization problem.

We start by defining the surface S ⊂ R3 as the graph of a scalar function t(x, y)

through the mapping ϕ : Ω→ S

X = ϕ(x, y) =
[
x, y, t(x, y)

]T
, (3.39)

where X ∈ S denotes a 3D-point on the surface. t(x, y) is simply an image that records

for each pixel (x, y) the time since the last event. By corollary 2.1 the partial derivatives

of the parameterization ϕ define a basis for the tangent space TXS at each point X of the
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surface S, and the dot product in this tangent space gives the metric of the manifold. In

particular, the metric tensor is defined as the symmetric 2× 2 matrix

gij =

[
〈ϕx, ϕx〉 〈ϕx, ϕy〉
〈ϕx, ϕy〉 〈ϕy, ϕy〉

]
, (3.40)

where subscripts denote partial derivatives and 〈·, ·〉 denotes the scalar product. Starting

from the definition of the parameterization eq. (3.39), straightforward calculation gives

ϕx =
[
1 0 tx

]T
, ϕy =

[
0 1 ty

]T
and

gij =

[
1 + t2x txty
txty 1 + t2y

]
(3.41)

gij =
1

G

[
1 + t2y −txty
−txty 1 + t2x

]
, (3.42)

where gij denotes the inverse of the metric tensor and G = det(gij).

Given a function f̃ ∈ C1(S,R) on the manifold, the gradient of f̃ is characterized by

∇gf̃ = gijdf̃ , see eq. (2.73). We will use the notation ∇gf̃ to emphasize the fact that

we take the gradient of a function defined on the surface (i.e. under the metric of the

manifold). ∇gf̃ can be expressed in local coordinates as

∇gf̃ =
(
g11f̃x + g12f̃y

)
ϕx +

(
g21f̃x + g22f̃y

)
ϕy, (3.43)

Inserting the inverse metric tensor eq. (3.42) into the equation for the gradient eq. (3.43)

gives an expression for the gradient of a function f̃ on the manifold in local coordinates

∇gf̃ =
1

G


((

1 + t2y
)
f̃x − txtyf̃y

) 1

0

tx

+
((

1 + t2x
)
f̃y − txtyf̃x

) 0

1

ty


 . (3.44)

Equipped with these definitions, we are ready to define our regularization term. It will

be a variant of the TV norm insofar that we take the norm of the gradient of f̃ on the

manifold

TVg(f̃) =

∫
S
|∇gf̃ | ds. (3.45)

It is easy to see that if we have t(x, y) = const, then gij is the 2 × 2 identity matrix

and TVg(f̃) reduces to the standard TV . Also note that in the definition of the TVg we

integrate over the surface. Since our goal is to formulate everything in local coordinates,

we relate integration over S and integration over Ω using the pull-back∫
S
|∇gf̃ |ds =

∫
Ω
|∇gf̃ |

√
G dxdy, (3.46)
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(a) Flat surface
(b) Ramp surface (c) Sine surface

Figure 3.11: ROF denoising on different manifolds. A flat surface (a) gives the same result as
standard ROF denoising, but more complicated surfaces (b)(c) significantly change the result. The
graph function t(x, y) is depicted in the upper right corner. We can see that a ramp surface (b)
produces regularization anisotropy due to the fact that the surface gradient is zero in y-direction
but non-zero in x-direction. The same is true for the sine surface (c), where we can see strong
regularization along level sets of the surface and less regularization across level sets.

where
√
G is the differential area element that links distortion of the surface element ds

to local coordinates dxdy. In the same spirit, we can pull back the data term defined on

the manifold to the local coordinate domain Ω. In contrast to the minimal-area stereo

regularizer in section 3.1, where we used the differential area element as regularization

term, here we formulate the full variational model on the manifold, thus incorporating

spatial as well as temporal information.

To assess the effect of TVg as a regularization term, we depict in fig. 3.11 results of the

following variant of the ROF denoising model [Rudin et al., 1992]

min
u

∫
Ω
|∇gu|

√
G + λ

2 |u− f |
2
√
G dxdy, (3.47)

with different t(x, y), i.e. ROF-denoising on different manifolds. We see that computing

the TV norm on the manifold can be interpreted as introducing anisotropy based on the

surface geometry (see figs. 3.11(b) and 3.11(c)). We will use this to guide regularization

of the reconstructed image according to the surface defined by the event time.

Data Term The data term D(u, fn) encodes the deviation of u from the noisy measure-

ment fn eq. (3.37). Under the reasonable assumption that a neuromorphic camera sensor

suffers from the same noise as a conventional sensor, the measured update caused by one

event will contain noise. In computer vision, a widespread approach is to model image

noise as zero-mean additive Gaussian. While this simple model is sufficient for many ap-

plications, real sensor noise is dependent on scene brightness and should be modelled as a

Poisson distribution [Ratner and Schechner, 2007]. We therefore define our data term as

D(u, fn) := λ

∫
S

(u− fn log u) ds = λ

∫
Ω

(u− fn log u)
√
G dxdy (3.48)

s.t. u(x, y) ∈ [umin, umax]
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whose minimizer is known to be the correct ML-estimate under the assumption of Poisson-

distributed noise between u and fn [Le et al., 2007]. Note that in contrast to the minimal

surface stereo model section 3.1, we also define the data term to lie on the manifold.

eq. (3.48) is also known as generalized Kullback-Leibler divergence and has been investi-

gated by [Steidl and Teuber, 2010] in variational image restoration methods. Furthermore,

the data term is convex, which makes it easy to incorporate into our variational energy

minimization framework. We restrict the range of u(x, y) ∈ [umin, umax] since our recon-

struction problem is defined up to a gray value offset caused by the unknown initial image

intensities.

Discrete Energy In the discrete setting, we represent images of size M×M as matrices

in RM×M with indices (i, j) = 1 . . .M . Derivatives are represented as linear maps Lx, Ly :

RM×M → RM×M , which are simple first order finite difference approximations of the

derivative in x- and y-direction [Chambolle, 2004]. The discrete version of ∇g, defined in

eq. (3.44), can then be represented as a linear map Lg : RM×M → RM×M×3 that acts on

u as follows

(Lgu)ij1 = 1
Gij

(
(1 + (Lyt)

2
ij)(Lxu)ij − (Lxt)ij(Lyt)ij(Lyu)ij

)
(Lgu)ij2 = 1

Gij

(
(1 + (Lxt)

2
ij)(Lyu)ij − (Lxt)ij(Lyt)ij(Lxu)ij

)
(Lgu)ij3 = 1

Gij
((Lxt)ij(Lxu)ij + (Lyt)ij(Lyu)ij)

Here, G ∈ RM×M is the pixel-wise determinant of the metric tensor given by Gij =

1 + (Lxt)
2
ij + (Lyt)

2
ij .

4 The discrete data term follows from eq. (3.48) as D(u, fn) :=

λ
∑

i,j(uij − fnij log uij)
√
Gij . This yields the complete discrete energy

min
u
‖Lgu‖g + λ

∑
i,j

(
uij − fnij log uij

) √
Gij s.t. uij ∈ [umin, umax], (3.50)

with the g-tensor norm defined as ‖A‖g =
∑

i,j

√
Gij

∑
l(Aijl)

2 ∀A ∈ RM×M×3.

3.2.2.2 Minimizing the Energy

We minimize eq. (3.50) using the Primal-Dual algorithm [Chambolle and Pock, 2011]. Du-

alizing the g-tensor norm yields the primal-dual formulation

min
u

max
p

[
D(u, fn) + 〈Lgu, p〉 −R∗(p)

]
, (3.51)

where u ∈ RM×M is the discrete image, p ∈ RM×M×3 is the dual variable and R∗ denotes

the convex conjugate of the g-tensor norm. A solution of eq. (3.51) is obtained by iterating

4The discrete element Gij , i.e. the value of G at pixel position (ij) should not be confused with the
metric tensor gij .
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uk+1 = proxτD(uk − τL∗gpk)
pk+1 = proxσR∗(pk + σLg(2uk+1 − uk)),

where L∗g denotes the adjoint operator of Lg. The proximal maps for the data term and

the regularization term can be solved in closed form, leading to the following update rules

û = proxτD(ū) ⇔ ûij = clamp
umin,umax

(
1
2

(
ūij − βij +

√
(ūij − βij)2 + 4βijfnij

))
p̂ = proxσR∗(p̄) ⇔ p̂ijl =

p̄ijl
max{1, ‖p̄ij,·‖/√Gij }

,

with βij = τλ
√
Gij . The time-steps τ, σ are set according to τσ ≤ 1/‖Lg‖2, where we

estimate the operator norm as ‖Lg‖2 ≤ 8 + 4
√

2 . Since the updates are pixel-wise inde-

pendent, the algorithm can be efficiently parallelized on GPUs. Moreover, due to the low

number of events added in each step, the algorithm usually converges in k ≤ 50 iterations.

3.2.3 Experiments

We perform our experiments using a DVS128 camera with a spatial resolution of 128×128

and a temporal resolution of 1µs. The parameter λ is kept fixed for all experiments. The

thresholds ∆+,∆− are set according to the chosen camera settings. In practice, the

timestamps of the recorded events cannot be used directly as the manifold defined in

section 3.2.2.1 due to noise. We therefore denoise the timestamps with a few iterations

of a TV-L1 denoising method. We compare our method to the recently proposed method

of [Bardow et al., 2016] on sequences provided by the authors. Furthermore, we will show

the influence of the proposed regularization on the event manifold using a few self-recorded

sequences.

3.2.3.1 Timing

In this work we aim for a real-time reconstruction method. We implemented the proposed

method in C++ and used a Linux computer with a 3.4 GHz processor and a NVidia Titan

X GPU 5. Using this setup we measure a wall clock time of 1.7 ms to create one single

image, which amounts to ≈ 580 fps. While we can create a new image for each new

event, this would create a tremendous amount of images due to the number of events

(≈ 500.000 per second on natural scenes with moderate camera movement). Furthermore

one is limited by the monitor refresh rate of 60 Hz to actually display the images. In order

to achieve real-time performance, one has two parameters: the number of events that are

5We note that the small image size of 128 × 128 is not enough to fully load the GPU such that we
measured almost the same wall clock time on a NVidia 780 GTX Ti.
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(a) (b) (c) (d)

Figure 3.12: Sample results from our method. The columns depict (a) raw events, (b) time
manifold, (c) result without manifold regularization and finally (d) with our manifold regulariza-
tion. Notice the increased contrast in weakly textured regions, especially around the edge of the
monitor.

integrated into one image and the number of frames skipped for display on screen. The

results in the following sections have been achieved by accumulating 500 events to produce

one image, which amounts to a time resolution of 3-5 ms.

3.2.3.2 Influence of the Event Manifold

We have captured a few sequences around our office with a DVS128 camera. In fig. 3.12

we show a few reconstructed images as well as the raw input events and the time manifold.

For comparison, we switched off the manifold regularization (by setting t(x, y) = const),

which results in images with notably less contrast.

3.2.3.3 Comparison to Related Methods

In this section we compare our reconstruction method to the method proposed

[Bardow et al., 2016]. The authors kindly provided us with the recorded raw events,

as well as intensity image reconstructions at regular timestamps δt = 15ms. Since we

process shorter event packets, we search for the nearest neighbour timestamp for each

image of [Bardow et al., 2016] in our sequences. We visually compare our method on

the sequences face, jumping jack and ball to the results of [Bardow et al., 2016]. We

point out that no ground truth data is available so we are limited to purely qualitative

comparisons.

In fig. 3.13 we show a few images from the sequences. Since we are dealing with highly

dynamic data, we point the reader to the included supplementary video6 which shows

whole sequences of several hundred frames.

6https://www.youtube.com/watch?v=rvB2URrGT94

https://www.youtube.com/watch?v=rvB2URrGT94
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(a)

(b)

(c)

Figure 3.13: Comparison to the method of [Bardow et al., 2016]. The first row (a) shows the
raw input events that have been used for both methods. The second row (b) depicts the results of
Bardow et al., and the last row (c) shows our result. We can see that out method produces more
details (e.g. face, beard) as well as more graceful gray value variations in untextured areas, where
[Bardow et al., 2016] tends to produce a single gray value.

3.2.3.4 Comparison to Standard Cameras

We have captured a sequence using a DVS128 camera as well as a Canon EOS60D Digital

Single-Lens Reflex (DSLR) camera to compare the fundamental differences of traditional

cameras and event-based cameras. As already pointed out by [Bardow et al., 2016], rapid

movement results in motion blur for conventional cameras, while event-based cameras

show no such effects. Also the dynamic range of a DVS is much higher, which is also

shown in fig. 3.14.

3.2.4 Conclusion

In this paper we have proposed a method to recover intensity images from neuromorphic or

event cameras in real-time. We cast this problem as an iterative filtering of incoming events

in a variational denoising framework. We propose to utilise a manifold that is induced by

the timestamps of the events to guide the image restoration process. This allows us to

incorporate information about the relative ordering of incoming pixel information without

explicitly estimating optical flow like in previous works. This in turn enables an efficient

algorithm that can run in real-time on currently available PCs.

Future work will include the study of the proper noise characteristic of event cameras.
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Figure 3.14: Comparison to a video captured with a modern DSLR camera. Notice the rather
strong motion blur in the images of the DSLR (top row), whereas the DVS camera can easily deal
with fast camera or object movement (bottom row).

While the current model produces natural-looking intensity images, a few noisy pixels

appear that indicate a still non-optimal treatment of sensor noise within our framework.

Also it might be beneficial to look into a local minimization of the energy on the manifold

(e.g. by coordinate-descent) to further increase the processing speed.
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Optical flow can be seen as an instance of the dense image matching problem, where the

goal is to find for each pixel its corresponding match in the other image. One fundamental

question in the dense matching problem is how to choose good descriptors or features.

Data mining with Convolutional Neural Networks (CNNs) has recently shown excellent

results for learning task-specific image features, outperforming previous methods based on

hand-crafted descriptors. One of the major difficulties in learning features for optical flow

is the high dimensionality of the cost function: Whereas in stereo, the full cost function

can be represented as a 3D volume, the matching cost in optical flow is a 4D volume.

Especially at high image resolutions, operations on the flow matching cost are expensive

both in terms of memory requirements and computation time.

Our method avoids explicit storage of the full cost volume, both in the learning phase

and during inference. This is achieved by a splitting (or min-projection) of the 4D cost

into two quasi-independent 3D volumes, corresponding to the u and v component of the

flow. We then formulate CNN learning and Conditional Random Field (CRF) inference

in this reduced setting. This achieves a space complexity linear in the size of the search

range, similar to recent stereo methods, which is a significant reduction compared to the

quadratic complexity of the full 4D cost function.

Nevertheless, we still have to compute all entries of the 4D cost function. This compu-

tational bottleneck can be optimized by using binary descriptors, which give a theoretical

speed-up factor of 32. In practice, even larger speed-up factors are attained, since binary

descriptors need less memory bandwidth and also yield a better cache efficiency. Conse-

107
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quently, we aim to incorporate a binarization step into the learning. We propose a novel

hybrid learning scheme, where we circumvent the problem of hard nonlinearities having

zero gradient. We show that our hybrid learning performs almost as well as a network

without hard nonlinearities, and much better than the previous state of the art in learning

binary CNNs.

4.1 Related Work

In the past hand-crafted descriptors like Scale-Invariant Feature Transform (SIFT), Nor-

malized Cross-Correlation (NCC), Features from Accelerated Segment Test (FAST) etc.

have been used extensively with very good results, but recently CNN -based approaches

[Žbontar and LeCun, 2015, Luo et al., 2016] marked a paradigm shift in the field of im-

age matching. To date all top performing methods in the major stereo benchmarks rely

heavily on features learned by CNNs. For optical flow, many recent works still use en-

gineered features [Chen and Koltun, 2016, Bailer et al., 2015], presumably due to the dif-

ficulties the high dimensional optical flow cost function poses for learning. Only very

recently we see a shift towards CNNs for learning descriptors [Gadot and Wolf, 2016,

Güney and Geiger, 2016, Xu et al., 2017]. Our work is most related to [Xu et al., 2017],

who construct the full 4D cost volume and run an adapted version of Semiglobal Matching

(SGM) on it. They perform learning and cost volume optimization on 1
3 of the original

resolution and compress the cost function in order to cope with the high memory con-

sumption. Our method is memory-efficient thanks to the dimensionality-reduction by the

min-projection, and we outperform the reported runtime of [Xu et al., 2017] by a factor

of 10.

Full flow with CRF [Chen and Koltun, 2016] is a related inference method using

Sequential Tree-Reweighted Message Passing (TRW-S) [Kolmogorov, 2006] with efficient

distance transform [Felzenszwalb and Huttenlocher, 2006]. Its iterations have quadratic

time and space complexity. In practice, this takes 20GB1 of memory, and 10-30 sec.

per iteration with a parallel CPU implementation. We use the decomposed model

[Shekhovtsov et al., 2008] with a better memory complexity and a faster parallel

inference scheme based on [Shekhovtsov et al., 2016].

Hand-crafted binary descriptors like Census have been shown to work well in a num-

ber of applications, including image matching for stereo and flow [Ranftl et al., 2014,

Ranftl et al., 2012, Trzcinski et al., 2013, Calonder et al., 2010]. However, direct learning

of binary descriptors is a difficult task, since the hard thresholding function, sign(x), has

gradient zero almost everywhere. In the context of Binary CNNs there are several ap-

proaches to train networks with binary activations [Bengio et al., 2013] and even binary

weights [Courbariaux and Bengio, 2016, Rastegari et al., 2016]. This is known to give a

considerable compression and speed-up at the price of a tolerable loss of accuracy. To

1Estimated for the cost volume size 341×145×160×160 based on numbers in [Chen and Koltun, 2016]
corresponding to 1

3
resolution of Sintel images.
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circumvent the problem of sign(x) having zero gradient a.e., surrogate gradients are used.

The simplest method, called straight-through estimator [Bengio et al., 2013] is to assume

the derivative of sign(x) is 1, i.e., simply omit the sign function in the gradient compu-

tation. This approach can be considered as the state of the art, as it gives best results

in [Bengio et al., 2013, Courbariaux and Bengio, 2016, Rastegari et al., 2016]. We show

that in the context of learning binary descriptors for the purpose of matching, alternative

strategies are possible which give better results.

4.2 Method

We define two models for optical flow: a local model, known as Winner-Takes-All (WTA)

and a joint model, which uses CRF inference. Both models use CNN descriptors, learned

in section 4.2.1.2. The joint model has only few extra parameters that are fit separately

and the inference is solved with a parallel method, see section 4.2.2. For CNN learning,

we optimize the performance of the local model. While learning by optimizing the perfor-

mance of the joint model is possible [Knöbelreiter et al., 2017], the resulting procedures

are significantly more difficult.

We assume color images I1, I2 : Ω → R3, where Ω = {1, . . . H} × {1, . . .W} is

a set of pixels. Let W = S × S be a window of discrete 2D displacements, with S =

{−D/2,−D/2 + 1, . . . , D/2 − 1} given by the search window size D, an even number.

The flow x : Ω→W associates a displacement to each pixel i ∈ Ω so that the displaced

position of i is given by i+xi ∈ Z2. For convenience, we denote by x = (u, v), where u and

v are mappings Ω → S, the components of the flow in horizontal and vertical directions,

respectively. The per-pixel descriptors φ(I; θ) : Ω → Rm are computed by a CNN with

parameters θ. Let φ1, φ2 be descriptors of images I1, I2, respectively. The local matching

cost for a pixel i ∈ Ω and displacement xi ∈ W is given by

ci(xi) =

{
d(φ1

i , φ
2
i+xi

) if i+ xi ∈ Ω,

coutside otherwise,
(4.1)

where d : Rm×Rm → R is a distance function in Rm. “Distance” is used in a loose sense

here, we will consider the negative2 scalar product d(φ1, φ2) = −〈φ1, φ2〉. We call

x̂i ∈ arg min
xi∈W

ci(xi) (4.2)

the local optical flow model, which finds independently for each pixel i a displacement xi
that optimizes the local matching cost. The joint optical flow model finds the full flow

2since we want to pose matching as a minimization problem
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field x optimizing the coupled CRF energy cost:

x̂ ∈ arg min
u,v : Ω→S

[∑
i∈Ω

ci(ui, vi) +
∑
i∼j

wij(ρ(ui − uj) + ρ(vi − vj))
]
, (4.3)

where i ∼ j denotes a 4-connected pixel neighborhood, wij are contrast-sensitive weights,

given by wij = exp(−α
3

∑
c∈{R,G,B} |I1

i,c− I1
j,c|) and ρ : R→ R is a robust penalty function

shown in fig. 4.1.

x

ρ(x)

1 δ

τ1

τ2

Figure 4.1: The penalty function ρ used by the CRF is a generalization of the P1P2 penalty
function of SGM [Hirschmüller, 2005]. The cutoff is parameterized by δ, whereas in the P1P2 loss
it is fixed at |x| = 2.

4.2.1 Learning Descriptors

We can identify two popular approaches to learning features for image matching. The first

is based on a binary classification model. Assume we have given a descriptor φ1 = φ1
i at

some position i in the first image. With the groundtruth displacement xgt
i , one obtains

the positive example φ2,P = φ2
i+xgti

, the descriptor in the second image at position i+ xgt
i .

Furthermore a negative example φ2,N = φ2
i+xNi

is sampled from some position i+xN
i , where

xN
i 6= xgt

i . Then the goal is to learn the descriptors such that

d(φ1, φ2,P ) < d(φ1, φ2,N ), (4.4)

the distance between the true matching pair of descriptors should be smaller than the

distance between the non-matching pair. In this sense it is a “one-vs-one” strategy,

since each positive example competes against one negative example, see fig. 4.2(a). It

is clear that this strategy requires a sampling strategy to obtain the negative samples

[Simo-Serra et al., 2015]. In the context of learning features for optical flow, the sampling

heuristic plays an important role and can potentially influence the learning results due to

the large number of possibilities in choosing a negative example.

One the other hand, one could adopt a multiclass classification approach. In this setting
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A P N

(a) Binary (one-vs-one) classification: Patch A in the first image is compared to the correct
example P and to a single negative example N in the second image.

A

P

N

(b) Multiclass (one-vs-all) classification: Patch A in the first image is compared exhaustively to
all examples in the second image. The classifier delivers a probability for all possible classes, i.e.
displacements.

Figure 4.2: Binary (a) and multiclass (b) classification for CNN -learning.

one compares exhaustively against all negative examples φ2,N
n = φ2

i+xni
. Here, xni ∈ W

denotes all possible displacements in the search windowW enumerated by n = 1 . . . D2. Of

course we need to exclude the correct displacement, hence we require that xni 6= xgt
i ∀n ∈ N.

This yields n = D2 − 1 negative examples. The goal is now to learn the descriptors such

that

d(φ1, φ2,P ) < min
n
d(φ1, φ2,N

n ), (4.5)

the distance between the correct pair of descriptors should be smaller than the distance

between all other pairs. In this sense it is a “one-vs-all” strategy, see fig. 4.2(b). In

the context of stereo matching it has been shown that such approach yields good results

[Luo et al., 2016]. The one-vs-all comparison gives the network additional information

and allows to implicitly capture correlations between the different displacements. Note

that the multiclass approach does not need a patch sampling step because all potential

matches are considered at once.

In this work, we wish to apply the multiclass strategy eq. (4.5). We point out that in

contrast to the binary classification model eq. (4.4), multiclass learning needs the full cost

function eq. (4.1) in memory. In contrast to the stereo setting, storing the optical flow cost

function needs O(|Ω|D2) memory, which is prohibitive at high image resolutions. To the

best of our knowledge, all previous works that learned descriptors for optical flow exclu-

sively used the binary classification approach [Xu et al., 2017, Güney and Geiger, 2016,

Gadot and Wolf, 2016]. In the following we will show how to efficiently apply the mul-

ticlass approach at linear space complexity, which facilitates memory-efficient end-to-end

training on high resolution images without a patch sampling step.
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4.2.1.1 Dimensionality Reduction via Min-Projection

Processing the 4D cost eq. (4.1) involves computing distances in Rm per entry. Storing

such cost volume takes O(|Ω|D2) space and evaluating it O(|Ω|D2m) time. We can reduce

space complexity to O(|Ω|D) by avoiding explicit storage of the 4D cost function. Towards

this end we write the local optical flow model eq. (4.2) in the following way

ûi ∈ arg min
ui

cui (ui), where cui (ui) = min
vi

ci(ui, vi); (4.6a)

v̂i ∈ arg min
vi

cvi (vi), where cvi (vi) = min
ui

ci(ui, vi). (4.6b)

The inner step in (4.6a) and (4.6b), called min-projection, minimizes out one com-

ponent of the flow vector. This can be interpreted as a decoupling of the full 4D flow

problem into two simpler quasi-independent 3D problems on the reduced cost volumes

cu, cv, see fig. 4.3. Assuming the minimizer of (4.2) is unique, (4.6a) and (4.6b) find the

same solution as the original problem (4.2). Using this representation, CNN learning can

be implemented within existing frameworks. We point out that this approach has the

same space complexity as recent methods for learning stereo matching, since we only need

to store the 3D cost volumes cu and cv. As an illustrative example consider an image with

size 1024 × 436 and a search range of 256. In this setting the full 4D cost function takes

roughly 108 GB whereas our splitting consumes only 0.8 GB.

min-p
roj

ect
ion

v

min-projection u

Figure 4.3: Solving the local flow model eq. (4.2) for a fixed pixel i amounts to minimizing a
2D cost function depicted on the left side. The minimum, marked in red, can be alternatively
computed by considering the min-projections along the u and v dimension of the flow, depicted on
the right side. The advantage is that the min-projections are one-dimensional functions, requiring
only O(|Ω|D) memory to store.
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I1

I2

Convolution

tanh

Convolution

tanh

Convolution

tanh

Convolution

tanh

min-projection
v

min-projection
u

Correlation

cu

cv

shared parameters

φ1

φ2

Figure 4.4: Network architecture: A number of convolutional layers with shared parameters
computes feature vectors φ1, φ2 for every pixel. These feature vectors are cross-fed into a correlation
layer, that computes local matching costs in u and v direction by minimizing out the other direction.
The result are two quasi-independent cost volumes for the u and v component of the flow.

4.2.1.2 Network

Figure 4.4 shows the network diagram of the local flow model eq. (4.2). The structure

is similar to the recent methods proposed for learning stereo matching [Luo et al., 2016,

Žbontar and LeCun, 2015, Chen et al., 2015, Knöbelreiter et al., 2017]. It is a siamese

network consisting of two convolutional branches with shared parameters, followed by a

correlation layer. We use a filter size of 3× 3 for the convolutions. The tanh nonlinearity

keeps feature values in a defined range, which works well with the scalar product as

distance function. We do not use striding or pooling. The last convolutional layer uses

96 filter channels which fixes the dimensionality of the distance space to m = 96. The

previous layers use a varying number of filter channels, where we found that starting with

a small number (e.g. 16 in the first layer) and gradually increasing to 96 in the last layer

yields good results.

Loss Given the groundtruth flow field (u∗, v∗), we pose the learning objective as follows:

we define a probabilistic softmax model of the local prediction ui (resp. vi) as p(ui) ∝
exp(−scui (ui)), where s ∈ R is a global scale factor learned by the network. This gives the

network the freedom to adapt for a more smooth resp. peaky distribution p(ui). Then

we consider a naive model p(u, v) =
∏
i p(ui)p(vi) and apply the maximum likelihood

criterion. The negative log likelihood is given by

L(u, v) = −
∑
i∈Ω

[
log p(u∗i ) + log p(v∗i )

]
. (4.7)

This is equivalent to cross-entropy loss with the target distribution concentrated at the

single point (u∗i , v
∗
i ) for each i. Variants of the cross-entropy loss, where the target dis-

tribution is spread around the ground truth point (u∗i , v
∗
i ) are also used in the litera-

ture [Luo et al., 2016] and can be easily incorporated.
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4.2.1.3 Learning Quantized Descriptors

The computational bottleneck in scheme (4.6) is computing the min-projections, with time

complexity O(|Ω|D2m). This operation arises during the learning as well as in the CRF

inference step, where it corresponds to the message exchange in the dual decomposition.

It is therefore desirable to accelerate this step. We achieve a significant speed-up by

quantizing the descriptors and evaluating the Hamming distance of binary descriptors.

Let us define the quantization: we call φ̄ = sign(φ) the quantized descriptor field. The

distance between quantized descriptors is given by d(φ̄1, φ̄2) = −〈φ̄1, φ̄2〉 = 2H(φ̄1, φ̄2)−m,

equivalent to the Hamming distance H(·, ·) up to a scaling and an offset. Let the quantized

cost function be denoted c̄i(xi), defined similar to (4.1). We can then compute quantized

min-projections c̄u, c̄v.

However, learning model (4.2) with quantized descriptors is difficult due to the gradient

of the sign function being zero almost everywhere. We introduce a new technique specific

to the matching problem and compare it to the baseline method that uses the straight-

through estimator of the gradient [Bengio et al., 2013]. Consider the following variants of

the model (4.6a)

ûi ∈ arg min
ui

ci(ui, v̂i(ui)), where v̂i(ui) ∈ arg min
vi

c̄i(ui, vi); (FQ)

ûi ∈ arg min
ui

c̄i(ui, v̂i(ui)), where v̂i(ui) ∈ arg min
vi

c̄i(ui, vi). (QQ)

The respective variants of (4.6b) are symmetric. The second letter in the naming

scheme indicates whether the inner problem, i.e., the min-projection step, is performed

on (Q)uantized or (F)ull cost, whereas the first letter refers to the outer problem on the

smaller 3D cost volume. The initial model (4.6a) is thus also denoted as FF model.

While models FF and QQ correspond, up to non-uniqueness of solutions, to the joint

minimum in (ui, vi) of the cost c and c̄ respectively, the model FQ is a mixed one. This

hybrid model is interesting because minimization in vi can be computed efficiently on

the binarized cost with Hamming distance, and the minimization in ui has a non-zero

gradient in cu. We thus consider the model FQ as an efficient variant of the local

optical flow model (4.2). In addition, it is a good learning proxy for the model QQ: Let

ûi = arg minui ci(ui, v̂i(ui)) be a minimizer of the outer problem FQ. Then the derivative

of FQ is defined by the indicator of the pair (ûi, v̂i(ui)). This is the same as the derivative

of FF, except that v̂i(ui) is computed differently. Learning the model QQ involves a hard

quantization step, and we apply the straight-through estimator to compute a gradient.

Note that the exact gradient for the model FQ can be computed at approximately the

same reduced computational cost as the straight-through gradient in the model QQ.
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(u, v)

(a) The labels of the product model are two-
dimensional displacements. The graph consists
of |Ω| variables and D2 labels, the matching cost
lives on the labels.

u

v

(b) The labels of the decomposed model are one-
dimensional displacements. The graph consists
of 2|Ω| variables and D labels, the matching cost
lives on the inter-layer edges.

Figure 4.5: CRF product model (a) and decomposed model (b).

4.2.2 CRF

The baseline model, which we call product model, has |Ω| variables xi with the state space

S ×S, see fig. 4.5(a). It has been observed in [Felzenszwalb and Huttenlocher, 2006] that

max-product message passing in the CRF eq. (4.3) can be computed in time O(D2) per

variable for separable interactions using a fast distance transform. However, storing the

messages for a 4-connected graph requires O(|Ω|D2) memory. Although such an approach

was shown feasible even for large displacement optical flow [Chen and Koltun, 2016], we

argue that a more compact decomposed model [Shekhovtsov et al., 2008] gives comparable

results and is much faster in practice. The decomposed model is constructed by observing

that the regularization in eq. (4.3) is separable over u and v. Then the energy eq. (4.3)

can be represented as a CRF with 2|Ω| variables ui, vi (see fig. 4.5(b)) with the following

pairwise terms: The in-plane term wijρ(ui−uj) and the cross-plane term c(ui, vi), forming

the graph shown in fig. 4.6(a). In this formulation there are no unary terms, since costs ci
are interpreted as pairwise terms. The resulting Linear Programming (LP) dual is more

economical, because it has only O(|Ω|D) variables. The message passing for edges inside

planes and across planes has complexity O(|Ω|D) and O(|Ω|D2), respectively. The price

for the O(|Ω|D) memory complexity of the decomposed model is that it admits a weaker

LP -relaxation compared to the product model. We argue that it is a favorable trade,

since solving the product model on high resolution images is simply intractable due to the

immense memory requirements.

We apply the parallel inference method [Shekhovtsov et al., 2016] to the dual of the

decomposed model [Shekhovtsov et al., 2008], see fig. 4.6(a). Although different dual

decompositions reach different objective values in a fixed number of iterations, it is

known that all decompositions with trees covering the graph are equivalent in the op-

timal value [Wainwright et al., 2005]. The decomposition in fig. 4.6(a) is into horizontal

and vertical chains in each of the u- and v- planes plus a subproblem containing all

cross-layer edges. We introduce Lagrange multipliers λ = (λk ∈ RΩ×S | k = 1, 2, 3, 4)
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(a) (b)

p

(c) (d)
Figure 1: Grid structures of previous approaches. Nodes
represent pixels, while edges indicate that the smooth-
ness function operates on the adjacent nodes. (a) Four-
connected grid. (b) Scanline-based DP approaches. (c)
Tree-based DP proposed by (Veksler, 2005). (d) Approach
of (Hirschmüller, 2005) to derive the disparity of pixel p.

ing (Scharstein and Szeliski, 2002). However, a se-
vere limitation of these optimization algorithms is that
they are computationally rather expensive. Especially
for the graph-cut approach, calculation of a single dis-
parity map can still take several minutes.
To bypass the NP-complete optimization problem,

classical DP approaches (Bobick and Intille, 1999;
Ohta and Kanade, 1985; Wang et al., 2006) adopt
a greatly simplified neighbourhood structure in their
smoothness terms. They enforce smoothness only
within, but not across horizontal scanlines. The corre-
sponding grid graph is illustrated in Figure 1b. Since
there is no interconnection between horizontal scan-
lines, an energy minimum for this grid structure can
be derived by computing the optimum for each scan-
line separately. The exact optimum of (1) on each in-
dividual scanline is then determined using DP. Such
approaches are favourable for their excellent com-
putational speed. Skipping the vertical smoothness
edges, however, leads to the well-known scanline
streaking effect. This inherent problem represents a
major reason for the bad reconstruction quality of DP
in comparison to the state-of-the-art.
Recently, (Veksler, 2005) proposed approximat-

ing the four-connected grid via a tree. The motiva-
tion is that efficient DP-based optimization also works
on tree structures. Roughly spoken, the tree is con-
structed by discarding edges that show a high gradient
in the intensity image from the four-connected grid.
In contrast to scanline-based DP, horizontal and ver-
tical edges are treated symmetrically, which weakens

the streaking problem. Nevertheless, as can be seen
from Figure 1c, a large number of edges have to be
sacrificed in order to obtain a tree structure. The in-
formation of these edges remains unused, which is
most likely the reason for the only average results
of this method. Subsequent work (Deng and Lin,
2006; Lei et al., 2006) combines tree-based DP with
colour segmentation. These algorithms improve the
results on standard images such as the Middlebury
set (Scharstein and Szeliski, 2002). They, however,
fail if segments overlap disparity discontinuities.
A different approach to handle the streaking prob-

lem is to compute multiple DP passes. Two-pass
methods (Gong and Yang, 2005; Kim et al., 2005)
first apply DP on the horizontal scanlines and use the
results to bias the second pass, which operates on
the vertical scanlines. While horizontal streaks are
reduced, these algorithms introduce vertical streaks,
and their scanline-based nature is clearly visible in the
resulting disparity maps.

(Hirschmüller, 2005) proposed a hybrid approach
between local and global methods. The disparity
of each pixel is computed using the winner-takes-all
strategy, i.e. without considering the disparity assign-
ments of neighbouring pixels. Instead of aggregating
matching costs from spatially surrounding pixels, the
algorithm computes DP paths from various directions
towards each pixel p as shown in Figure 1d. Cost
aggregation is then performed by summing up the in-
dividual path costs. In Hirschmüller’s approach, the
disparity of an image point is influenced by only a
small subset of the whole image’s pixels. This repre-
sents a problem if none of the paths captures enough
texture to provide a clear cost minimum at the correct
disparity. To weaken this problem, Hirschmüller pro-
posed increasing the number of paths. Nevertheless,
this results in higher computational demands and only
partially represents a remedy to the problem. In a sub-
sequent paper (Hirschmüller, 2006), he addressed this
problem using image segmentation.

2 THE SIMPLE TREEMETHOD

The algorithm proposed in this paper performs a sep-
arate disparity computation for each individual pixel.
We apply an individual tree construction in order to
determine the disparity of a single pixel. The tree’s
root node is formed by the pixel whose disparity
needs to be computed. Although our trees prove to be
effective, their structure is relatively simple. (Hence,
we call our algorithm the Simple Tree Method.) For
now, it is only important to know that a tree spans all
pixels of the reference frame. A global minimum of
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Figure 1: Grid structures of previous approaches. Nodes
represent pixels, while edges indicate that the smooth-
ness function operates on the adjacent nodes. (a) Four-
connected grid. (b) Scanline-based DP approaches. (c)
Tree-based DP proposed by (Veksler, 2005). (d) Approach
of (Hirschmüller, 2005) to derive the disparity of pixel p.

ing (Scharstein and Szeliski, 2002). However, a se-
vere limitation of these optimization algorithms is that
they are computationally rather expensive. Especially
for the graph-cut approach, calculation of a single dis-
parity map can still take several minutes.
To bypass the NP-complete optimization problem,

classical DP approaches (Bobick and Intille, 1999;
Ohta and Kanade, 1985; Wang et al., 2006) adopt
a greatly simplified neighbourhood structure in their
smoothness terms. They enforce smoothness only
within, but not across horizontal scanlines. The corre-
sponding grid graph is illustrated in Figure 1b. Since
there is no interconnection between horizontal scan-
lines, an energy minimum for this grid structure can
be derived by computing the optimum for each scan-
line separately. The exact optimum of (1) on each in-
dividual scanline is then determined using DP. Such
approaches are favourable for their excellent com-
putational speed. Skipping the vertical smoothness
edges, however, leads to the well-known scanline
streaking effect. This inherent problem represents a
major reason for the bad reconstruction quality of DP
in comparison to the state-of-the-art.
Recently, (Veksler, 2005) proposed approximat-

ing the four-connected grid via a tree. The motiva-
tion is that efficient DP-based optimization also works
on tree structures. Roughly spoken, the tree is con-
structed by discarding edges that show a high gradient
in the intensity image from the four-connected grid.
In contrast to scanline-based DP, horizontal and ver-
tical edges are treated symmetrically, which weakens

the streaking problem. Nevertheless, as can be seen
from Figure 1c, a large number of edges have to be
sacrificed in order to obtain a tree structure. The in-
formation of these edges remains unused, which is
most likely the reason for the only average results
of this method. Subsequent work (Deng and Lin,
2006; Lei et al., 2006) combines tree-based DP with
colour segmentation. These algorithms improve the
results on standard images such as the Middlebury
set (Scharstein and Szeliski, 2002). They, however,
fail if segments overlap disparity discontinuities.
A different approach to handle the streaking prob-

lem is to compute multiple DP passes. Two-pass
methods (Gong and Yang, 2005; Kim et al., 2005)
first apply DP on the horizontal scanlines and use the
results to bias the second pass, which operates on
the vertical scanlines. While horizontal streaks are
reduced, these algorithms introduce vertical streaks,
and their scanline-based nature is clearly visible in the
resulting disparity maps.

(Hirschmüller, 2005) proposed a hybrid approach
between local and global methods. The disparity
of each pixel is computed using the winner-takes-all
strategy, i.e. without considering the disparity assign-
ments of neighbouring pixels. Instead of aggregating
matching costs from spatially surrounding pixels, the
algorithm computes DP paths from various directions
towards each pixel p as shown in Figure 1d. Cost
aggregation is then performed by summing up the in-
dividual path costs. In Hirschmüller’s approach, the
disparity of an image point is influenced by only a
small subset of the whole image’s pixels. This repre-
sents a problem if none of the paths captures enough
texture to provide a clear cost minimum at the correct
disparity. To weaken this problem, Hirschmüller pro-
posed increasing the number of paths. Nevertheless,
this results in higher computational demands and only
partially represents a remedy to the problem. In a sub-
sequent paper (Hirschmüller, 2006), he addressed this
problem using image segmentation.

2 THE SIMPLE TREEMETHOD

The algorithm proposed in this paper performs a sep-
arate disparity computation for each individual pixel.
We apply an individual tree construction in order to
determine the disparity of a single pixel. The tree’s
root node is formed by the pixel whose disparity
needs to be computed. Although our trees prove to be
effective, their structure is relatively simple. (Hence,
we call our algorithm the Simple Tree Method.) For
now, it is only important to know that a tree spans all
pixels of the reference frame. A global minimum of
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represent pixels, while edges indicate that the smooth-
ness function operates on the adjacent nodes. (a) Four-
connected grid. (b) Scanline-based DP approaches. (c)
Tree-based DP proposed by (Veksler, 2005). (d) Approach
of (Hirschmüller, 2005) to derive the disparity of pixel p.

ing (Scharstein and Szeliski, 2002). However, a se-
vere limitation of these optimization algorithms is that
they are computationally rather expensive. Especially
for the graph-cut approach, calculation of a single dis-
parity map can still take several minutes.
To bypass the NP-complete optimization problem,

classical DP approaches (Bobick and Intille, 1999;
Ohta and Kanade, 1985; Wang et al., 2006) adopt
a greatly simplified neighbourhood structure in their
smoothness terms. They enforce smoothness only
within, but not across horizontal scanlines. The corre-
sponding grid graph is illustrated in Figure 1b. Since
there is no interconnection between horizontal scan-
lines, an energy minimum for this grid structure can
be derived by computing the optimum for each scan-
line separately. The exact optimum of (1) on each in-
dividual scanline is then determined using DP. Such
approaches are favourable for their excellent com-
putational speed. Skipping the vertical smoothness
edges, however, leads to the well-known scanline
streaking effect. This inherent problem represents a
major reason for the bad reconstruction quality of DP
in comparison to the state-of-the-art.
Recently, (Veksler, 2005) proposed approximat-

ing the four-connected grid via a tree. The motiva-
tion is that efficient DP-based optimization also works
on tree structures. Roughly spoken, the tree is con-
structed by discarding edges that show a high gradient
in the intensity image from the four-connected grid.
In contrast to scanline-based DP, horizontal and ver-
tical edges are treated symmetrically, which weakens

the streaking problem. Nevertheless, as can be seen
from Figure 1c, a large number of edges have to be
sacrificed in order to obtain a tree structure. The in-
formation of these edges remains unused, which is
most likely the reason for the only average results
of this method. Subsequent work (Deng and Lin,
2006; Lei et al., 2006) combines tree-based DP with
colour segmentation. These algorithms improve the
results on standard images such as the Middlebury
set (Scharstein and Szeliski, 2002). They, however,
fail if segments overlap disparity discontinuities.
A different approach to handle the streaking prob-

lem is to compute multiple DP passes. Two-pass
methods (Gong and Yang, 2005; Kim et al., 2005)
first apply DP on the horizontal scanlines and use the
results to bias the second pass, which operates on
the vertical scanlines. While horizontal streaks are
reduced, these algorithms introduce vertical streaks,
and their scanline-based nature is clearly visible in the
resulting disparity maps.

(Hirschmüller, 2005) proposed a hybrid approach
between local and global methods. The disparity
of each pixel is computed using the winner-takes-all
strategy, i.e. without considering the disparity assign-
ments of neighbouring pixels. Instead of aggregating
matching costs from spatially surrounding pixels, the
algorithm computes DP paths from various directions
towards each pixel p as shown in Figure 1d. Cost
aggregation is then performed by summing up the in-
dividual path costs. In Hirschmüller’s approach, the
disparity of an image point is influenced by only a
small subset of the whole image’s pixels. This repre-
sents a problem if none of the paths captures enough
texture to provide a clear cost minimum at the correct
disparity. To weaken this problem, Hirschmüller pro-
posed increasing the number of paths. Nevertheless,
this results in higher computational demands and only
partially represents a remedy to the problem. In a sub-
sequent paper (Hirschmüller, 2006), he addressed this
problem using image segmentation.

2 THE SIMPLE TREEMETHOD

The algorithm proposed in this paper performs a sep-
arate disparity computation for each individual pixel.
We apply an individual tree construction in order to
determine the disparity of a single pixel. The tree’s
root node is formed by the pixel whose disparity
needs to be computed. Although our trees prove to be
effective, their structure is relatively simple. (Hence,
we call our algorithm the Simple Tree Method.) For
now, it is only important to know that a tree spans all
pixels of the reference frame. A global minimum of
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Figure 1: Grid structures of previous approaches. Nodes
represent pixels, while edges indicate that the smooth-
ness function operates on the adjacent nodes. (a) Four-
connected grid. (b) Scanline-based DP approaches. (c)
Tree-based DP proposed by (Veksler, 2005). (d) Approach
of (Hirschmüller, 2005) to derive the disparity of pixel p.

ing (Scharstein and Szeliski, 2002). However, a se-
vere limitation of these optimization algorithms is that
they are computationally rather expensive. Especially
for the graph-cut approach, calculation of a single dis-
parity map can still take several minutes.
To bypass the NP-complete optimization problem,

classical DP approaches (Bobick and Intille, 1999;
Ohta and Kanade, 1985; Wang et al., 2006) adopt
a greatly simplified neighbourhood structure in their
smoothness terms. They enforce smoothness only
within, but not across horizontal scanlines. The corre-
sponding grid graph is illustrated in Figure 1b. Since
there is no interconnection between horizontal scan-
lines, an energy minimum for this grid structure can
be derived by computing the optimum for each scan-
line separately. The exact optimum of (1) on each in-
dividual scanline is then determined using DP. Such
approaches are favourable for their excellent com-
putational speed. Skipping the vertical smoothness
edges, however, leads to the well-known scanline
streaking effect. This inherent problem represents a
major reason for the bad reconstruction quality of DP
in comparison to the state-of-the-art.
Recently, (Veksler, 2005) proposed approximat-

ing the four-connected grid via a tree. The motiva-
tion is that efficient DP-based optimization also works
on tree structures. Roughly spoken, the tree is con-
structed by discarding edges that show a high gradient
in the intensity image from the four-connected grid.
In contrast to scanline-based DP, horizontal and ver-
tical edges are treated symmetrically, which weakens

the streaking problem. Nevertheless, as can be seen
from Figure 1c, a large number of edges have to be
sacrificed in order to obtain a tree structure. The in-
formation of these edges remains unused, which is
most likely the reason for the only average results
of this method. Subsequent work (Deng and Lin,
2006; Lei et al., 2006) combines tree-based DP with
colour segmentation. These algorithms improve the
results on standard images such as the Middlebury
set (Scharstein and Szeliski, 2002). They, however,
fail if segments overlap disparity discontinuities.
A different approach to handle the streaking prob-

lem is to compute multiple DP passes. Two-pass
methods (Gong and Yang, 2005; Kim et al., 2005)
first apply DP on the horizontal scanlines and use the
results to bias the second pass, which operates on
the vertical scanlines. While horizontal streaks are
reduced, these algorithms introduce vertical streaks,
and their scanline-based nature is clearly visible in the
resulting disparity maps.

(Hirschmüller, 2005) proposed a hybrid approach
between local and global methods. The disparity
of each pixel is computed using the winner-takes-all
strategy, i.e. without considering the disparity assign-
ments of neighbouring pixels. Instead of aggregating
matching costs from spatially surrounding pixels, the
algorithm computes DP paths from various directions
towards each pixel p as shown in Figure 1d. Cost
aggregation is then performed by summing up the in-
dividual path costs. In Hirschmüller’s approach, the
disparity of an image point is influenced by only a
small subset of the whole image’s pixels. This repre-
sents a problem if none of the paths captures enough
texture to provide a clear cost minimum at the correct
disparity. To weaken this problem, Hirschmüller pro-
posed increasing the number of paths. Nevertheless,
this results in higher computational demands and only
partially represents a remedy to the problem. In a sub-
sequent paper (Hirschmüller, 2006), he addressed this
problem using image segmentation.

2 THE SIMPLE TREEMETHOD

The algorithm proposed in this paper performs a sep-
arate disparity computation for each individual pixel.
We apply an individual tree construction in order to
determine the disparity of a single pixel. The tree’s
root node is formed by the pixel whose disparity
needs to be computed. Although our trees prove to be
effective, their structure is relatively simple. (Hence,
we call our algorithm the Simple Tree Method.) For
now, it is only important to know that a tree spans all
pixels of the reference frame. A global minimum of
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Figure 4.6: (a) Decomposition of the pairwise CRF into 5 subproblems. (b) Lagrange multipliers
in the dual corresponding to equality constraints between the subproblems. They act as offsets of
unary costs between subproblems, increasing on one side of the arrow and decreasing on the other.

enforcing equality constraints between the subproblems as shown in fig. 4.6(b). The La-

grange multipliers λk are identified with modular functions λk : SΩ → R : u 7→
∑

i λ
k
i (ui).

Let us also introduce shorthands for the sum of pairwise terms over horizontal chains

fh : SΩ → R : u 7→
∑

ij∈Eh wijρ(ui − uj), and a symmetric definition fv for the sum

over the vertical chains. The lower bound Ψ(λ) corresponding to the decomposition in

fig. 4.6(b) is given by:

Ψ(λ) = Ψ1(λ) + Ψ2(λ) + Ψ3(λ), where (4.8a)

Ψ1(λ) = min
u

[
(λ1 + λ3)(u) + fh(u)

]
+ min

u

[
− λ1(u) + fv(u)

]
; (4.8b)

Ψ2(λ) = min
v

[
(λ2 + λ4)(v) + fh(v)

]
+ min

v

[
− λ2(v) + fv(v)

]
; (4.8c)

Ψ3(λ) =
∑
i

min
ui,vi

[
ci(ui, vi)− λ3

i (ui)− λ4
i (vi)

]
. (4.8d)

Our Lagrangian dual to eq. (4.3) is to maximize Ψ(λ) in λ, which enforces consistency

between minimizers of the subproblems. The general theory [Wainwright et al., 2005]

applies, in particular, when the minimizers of all subproblems are consistent they form a

global minimizer. In eq. (4.8b), there is a sum of horizontal and vertical chain subproblems

in the u-plane. When λ3 is fixed, Ψ1(λ) is the lower bound corresponding to the relaxation

of the energy in u with the unary terms given by λ3. It can be interpreted as a stereo-like

problem with 1D labels u. Similarly, Ψ2(λ) is a lower bound for the v-plane with unary

terms λ4. Subproblem Ψ3(λ) is simple, it contains both variables u, v but the minimization

decouples over individual pairs (ui, vi). It connects the two stereo-like problems through

the 4D cost volume c.

Updating messages inside planes can be done at a different rate than across

planes. The optimal rate for fast convergence depends on the time complexity of the

message updates. [Shekhovtsov et al., 2008] reported an optimal rate of updating

in-plane messages 5 times as often using the TRW-S solver [Kolmogorov, 2006].
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Algorithm 4.1: Flow CRF Optimization

Input: Cost volume c;
Output: Dual point λ optimizing Ψ(λ);

1 Initialize λ := 0;
2 for t = 1, . . . , it outer do
3 Perform the following updates:
4 v → u: pass slacks to u-plane by eq. (4.11), changes λ3;
5 u-plane: DMM with it inner iterations for u-plane eq. (4.9), changes λ1, λ3 ;
6 u→ v: pass slacks to v-plane by eq. (4.10), changes λ4;
7 v-plane: DMM with it inner iterations for v-plane, changes λ2, λ4;

8 end

The decomposition eq. (4.8a) facilitates this kind of strategy and allows to use the

implementation [Shekhovtsov et al., 2016] designed for stereo-like problems. We therefore

use the dual solver [Shekhovtsov et al., 2016], denoted Dual Minorize-Maximize (DMM)

to perform in-plane updates. When applied to the problem of maximizing Ψ1(λ) in

λ1, it has the following properties: a) the bound Ψ1(λ) does not decrease and b) it

computes a modular minorant s such that s(u) ≤ λ3(u) + fh(u) + fv(u) for all u and

Ψ1(λ) =
∑

i minui si(ui). The modular minorant s is an excess of costs, called slacks,

which can be subtracted from λ3 while keeping Ψ1(λ) non-negative. The associated

update of the u-plane can be denoted as

(λ1, s) := DMM(λ1, λ3, fh, fv),

λ3 := λ3 − s. (4.9)

The slack s is then passed to the v plane by the following updates, i.e., message passing

u→ v:

λ4
i (vi) := λ4

i (vi) + min
ui

[
ci(ui, vi)− λ3

i (ui)
]
. (4.10)

The minimization eq. (4.10) has time complexity O(|Ω|D2), assuming the 4D costs ci are

available in memory. As discussed above, we can compute the costs ci efficiently on the

fly and avoid O(|Ω|D2) storage. The update v → u is symmetric to eq. (4.10):

λ3
i (ui) := λ3

i (ui) + min
vi

[
ci(ui, vi)− λ4

i (vi)
]
. (4.11)

The complete method is summarized in algorithm 4.1. It starts from collecting the

slacks in the u-plane. When initialized with λ = 0, the update eq. (4.11) simplifies to

λ3
i (ui) = minvu ci(ui, vi), i.e., it is exactly matching to the min-projection cu eq. (4.6).

The problem solved with DMM in line 5 in the first iteration is a stereo-like problem

with cost cu. The dual solution redistributes the costs and determines which values of u

are worse than others, and expresses this cost offset in λ3 as specified in eq. (4.9). The
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optimization of the v-plane then continues with some information of good solutions for u

propagated via the cost offsets using eq. (4.10).

4.3 Evaluation

4.3.1 Learning Patch Transformations

(a) Isometry: Rotation and
translation.

(b) Similarity: additional
global scale factor.

(c) Affine: additional non-
isotropic scaling.

Figure 4.7: Sample training data for learning patch transformations.

We conduct experiments in order to evaluate the ability of the CNN to learn different

patch transformations. To that end, we generated training data by applying different

homographies to image patches. A homography H ∈ R3×3 may be subclassed into

• Isometries H =

[
R(θ) t

0T 1

]
consisting of a rotation R(θ) ∈ SO(2) where R(θ) =[

cos θ − sin θ

sin θ cos θ

]
and a translation t = (tx, ty). An isometry has 3 Degrees of Freedom

(DOF): the rotation angle θ and the two translation parameters.

• Similarities H =

[
sR(θ) t

0T 1

]
are specified by an isometry with an additional scaling

s ∈ R. A similarity has 4 DOF .

• Affine transformations H =

[
A t

0T 1

]
, where A = R(θ)R(−ϕ)DR(ϕ) and D =[

λ1 0

0 λ2

]
. Compared to the similarity, an affine transformation has two additional

parameters: The shearing angle ϕ and the ratio of the scaling parameters λ1, λ2.

Therefore the affine transformation has 6 DOF . Note that the ratio of λ1, λ2 corre-

sponds to a non-isotropic scaling along the axis specified by ϕ.
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Data sets and learning setup Figure 4.7 shows sample image pairs with different

transformations. To experimentally investigate how well different types of transformations

can be learned by the network, we first note that CNNs are inherently able to deal with

patch translations due to the convolutional nature. Therefore we identify the following

Data set Rotation θ [◦]

R0-10 |θ| ∈ [0, 10]
R10-20 |θ| ∈ [10, 20]
R20-30 |θ| ∈ [20, 30]
R30-40 |θ| ∈ [30, 40]
R40-50 |θ| ∈ [40, 50]
R50-60 |θ| ∈ [50, 60]

a Isometry data sets.

Data set Scale

S0.0-0.1 s ∈ 1± 0.1
S0.1-0.2 s ∈ [1.1, 1.2] ∪ 1

[1.2,1.1]

S0.2-0.3 s ∈ [1.2, 1.3] ∪ 1
[1.3,1.2]

S0.3-0.4 s ∈ [1.3, 1.4] ∪ 1
[1.4,1.3]

S0.4-0.5 s ∈ [1.4, 1.5] ∪ 1
[1.5,1.4]

b Similarity data sets. Rotation is fixed at |θ| ∈ [0, 20].

Data set Shearing angle ϕ [◦] Scale Ratio r = λ1/λ2

A1 |ϕ| ∈ [0, 10] r ∈ [1.1, 1.4] ∪ 1
[1.4,1.1]

A2 |ϕ| ∈ [10, 20] r ∈ [1.3, 1.8] ∪ 1
[1.8,1.3]

A3 |ϕ| ∈ [15, 35] r ∈ [1.8, 3.0] ∪ 1
[3.0,1.8]

c Affine data sets. Rotation and global scale are fixed at |θ| ∈ [0, 30], s ∈ [ 1
1.2 , 1.2].

Table 4.1: Data sets for learning patch transformations. Each data set contains 200 image pairs,
we generate separate training and test sets

Network Data sets used

CNN-R10 R0-10
CNN-R20 R0-10, R10-20

CNN-R30
R0-10, R10-20

R20-30

CNN-R40
R0-10, R10-20
R20-30, R30-40

CNN-R50
R0-10, R10-20
R20-30, R30-40

R40-50

CNN-R60
R0-10, R10-20
R20-30, R30-40
R40-50, R50-60

a Isometry networks.

Network Data sets used

CNN-S0.1 S0.0-0.1
CNN-S0.2 S0.0-0.1, S0.1-0.2

CNN-S0.3
S0.0-0.1, S0.1-0.2

S0.2-0.3

CNN-S0.4
S0.0-0.1, S0.1-0.2
S0.2-0.3, S0.3-0.4

CNN-S0.5
S0.0-0.1, S0.1-0.2
S0.2-0.3, S0.3-0.4

S0.4-0.5

b Similarity networks.

Network Data sets used

CNN-A1 A1
CNN-A12 A1, A2
CNN-A123 A1, A2, A3

c Affine networks.

Table 4.2: Networks for learning patch transformations. The networks for each subtype of
transformation are trained on gradually increasing data size.

interesting subtypes of transformations: rotation, isotropic scaling and non-isotropic scal-

ing. These correspond to isometries, similarities and affine transformations respectively,

modulo translation.3 For each subtype, we generate separate training and test sets with

3For good measure and to make training data more interesting, we include moderate translations of up
to ±10 pixels in x and y direction by setting |tx|, |ty| ∈ [0, 10] for all data sets.
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gradually increasing transformations, see table 4.1. For example, data set R40-50 contains

rotations between 40 and 50 degrees in positive and negative direction, data set S0.3-0.4

contains scale changes between 1.3 and 1.4 (scaling up) and 1
1.4 = 0.71 and 1

1.3 = 0.76

(scaling down). Each data set consists of 200 image pairs.

The networks are trained by gradually increasing the data size, see table 4.2. For

instance, the network CNN-R10 sees rotations of up to ±10◦ during training, whereas the

network CNN-R40 sees rotations of up to ±40◦. Networks using only one data set, i.e.

CNN-R10, CNN-S0.1 and CNN-A1, train on all 200 image pairs. To keep training times

reasonable, we randomly select a subset of 50% of each data set for all other networks.

For example, the network CNN-R40 uses 4 data sets, and we randomly select 100 pairs

from each set. In total, CNN-R40 trains on 400 image pairs.

Evaluation We are interested in the matching performance of the descriptors only, hence

we do not use CRF inference but rather compute the WTA solution. We present the overall

End Point Error (EPE) on all as well as on non-occluded pixels, where we evaluate each

network model on all of its test sets combined. E.g. each isometry network is evaluated on

all 6 isometry test sets. Note that during training occluded regions are masked, therefore

EPE (noc) is more indicative of the quality of the descriptors than EPE all. Moreover, we

also present a breakdown of the network performance per test set in order to investigate

at which point the performance breaks down.

CNN-R10 CNN-R20 CNN-R30 CNN-R40 CNN-R50 CNN-R60

Model

0.0

2.5

5.0

7.5

10.0

12.5

15.0
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20.0

E
P

E

18.14

20.79

12.99

15.80

7.18

10.13

3.21

6.19

2.63

5.57

2.24

5.16

noc

all

(a) Overall EPE for different networks on all
isometry test sets combined. The more data
the network has seen during training, the bet-
ter its performance.

R0-10 R10-20 R20-30 R30-40 R40-50 R50-60

Test set

0
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E
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E

CNN-R10

CNN-R20

CNN-R30

CNN-R40

CNN-R50

CNN-R60

(b) EPE (noc) per network and test set. The
network trained on rotations up to ±60◦ yields
consistent good results.

Figure 4.8: Results for learning isometries.

Figure 4.8 depicts the results of learning rotations. It shows that the networks which

saw more rotations during training in general perform better. The detailed breakdown

in fig. 4.8(b) shows that our networks can adapt to rotations up to ±60◦, provided the

training data contains such transformations. In particular, the network CNN-R60 yields



4.3. Evaluation 121

CNN-S0.1 CNN-S0.2 CNN-S0.3 CNN-S0.4 CNN-S0.5
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(a) Overall EPE for different networks on all
similarity test sets.

S0.0-0.1 S0.1-0.2 S0.2-0.3 S0.3-0.4 S0.4-0.5

Test set
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(b) EPE (noc) per network and test set. Scale
changes of more than 1.35 and less than 1

1.35
are challenging.

Figure 4.9: Results for learning similarities.
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(a) Overall EPE for different networks on all
affine test sets.
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(b) EPE (noc) per network and test set.

Figure 4.10: Results for learning affine transformations.

consistent good results. It is interesting to note that a network trained on rotations up to

θ◦ performs reasonably on test data with rotations up to θ+10◦ before breaking down. The

results show that the limiting factor for learning rotations is the amount of transformation

in the training data. Even inter-frame rotations of more than 45◦, which are unlikely to

occur in real-world data, can be matched with good quality.

The results for learning scale changes are depicted in fig. 4.9. Whereas the overall

EPE decreases with the amount of training data, we see in the detailed analysis fig. 4.9(b)

that learning scale changes is more difficult than learning rotations. In particular, at

larger scale changes the error grows more rapidly. This indicates that the current network

architecture need to be improved to effectively deal with scale changes.
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The same holds true for learning affine transformations, see fig. 4.10. This is intuitive,

since the affine transformation differs from the similarity only in the fact that the scaling

is non-isotropic. From these results, the most obvious way to learn better descriptors is

to adapt the network architecture such that it can better handle scale changes.

4.3.2 Comparison of our Models

Next, we compare different variants of our model on the Sintel optical flow

dataset [Butler et al., 2012]. In total the benchmark consists of 1064 training images

and 564 test images. For CNN learning we use a subset of 20% of the training images,

sampled evenly from all available scenes. For evaluation, we use a subset of 40% of the

training images.

To investigate the performance of our model, we conduct the following experiments:

First, we investigate the influence of the size of the CNN , and second we investigate the

effect of quantizing the learned features. Additionally, we evaluate both the WTA solution

eq. (4.2), and the CRF model eq. (4.3). To assess the effect of quantization, we evaluate

the local flow model a) as it was trained, and b) QQ, i.e., with quantized descriptors both

in the min-projection step as well as in the outer problem on cu, cv respectively. For CRF

inference the updates eq. (4.10) and eq. (4.11) amount to solving a min-projection step

with additional cost offsets. F and Q indicate how this min-projection step is computed.

CRF parameters are fixed at α = 8.5 (eq. (4.3)), τ1 = 0.25, τ2 = 25, δ = 8 (fig. 4.1)

for all experiments and we run 8 inner and 5 outer iterations. Table 4.3 summarizes the

comparison of different variants of our model. We see that the WTA solution of model

FQ performs similarly to FF, while being much faster to train and evaluate, cf. table 4.4.

In particular, model FQ performs better than QQ, which was trained with the straight

Local Flow Model (WTA) CRF

Train #Layers as trained QQ F Q
noc (all) noc (all) noc (all) noc (all)

FF
5 5.25 (10.38) 10.45 (15.67) 1.58 (4.48) 1.64 (4.87)
7 4.72 (10.04) 9.43 (14.93) 1.53 (4.32) 1.61 (4.70)
9 –1 –1 –1 –1

FQ
5 6.15 (11.36) 11.43 (16.78) –2 1.63 (4.62)
7 5.62 (10.98) 10.15 (15.70) –2 1.65 (4.62)
9 5.62 (11.13) 9.87 (15.52) –2 1.64 (4.69)

QQ
5 same as QQ 9.63 (14.80) –2 1.72 (4.91)
7 same as QQ 9.75 (15.23) –2 1.66 (4.78)
9 same as QQ 9.72 (15.31) –2 1.72 (4.85)

Table 4.3: Comparison of our models on a representative validation set at scale 1
2 . We present

the EPE for non-occluded (noc) and all pixels on Sintel clean.
1Omitted due to very long training time.
2Not applicable.

through estimator of the gradient. If we switch to QQ for evaluation, we see a drop in
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performance for models FF and FQ. This is to be expected, because we now evaluate costs

differently than during training. Interestingly, our CRF model yields similar performance

regardless whether we use F or Q for computing the costs. Figure 4.11 depicts sample

(a) Model WTA-FF, EPE for left / right image: 1.8 / 19.7

(b) Model WTA-FQ, EPE for left / right image: 2.1 / 20.7

(c) Model WTA-QQ, EPE for left / right image: 3.4 / 24.1

(d) Model CRF-Q, EPE for left / right image: 0.7 / 9.3

Figure 4.11: Results of the WTA solution for the models FF (a), FQ (b) and QQ (c), as well as
the CRF -Q solution (d).

results of the WTA solution for the three models FF, FQ and QQ. The images reflect the

numbers of table 4.3, FF and FQ perform similar whereas QQ is considerably worse. Note

that if matching is possible, i.e. in non-occluded image regions, the simple WTA solution

performs already quite well, with few spurious wrong matches (see left column in fig. 4.11).

Most of these wrong matches are taken care of by the CRF . The remaining errors of the

CRF solution fig. 4.11(d) are mainly in occluded regions, where any two-frame method is

forced to hallucinate.
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Table 4.3 shows that model FQ delivers a good performance while being much faster to

train and evaluate than FF. Therefore we fix the training model to FQ for the subsequent

experiments. For evaluation, we fix FQ for computing the WTA solution and Q for CRF

inference.

We also conduct an experiment to see how the networks that were trained on synthetic

data (see section 4.3.1) perform on real data. To that end, we evaluate the homography

networks from the previous section on the Sintel dataset. We choose the clean version

of the benchmark, since our synthetic training data does not contain motion blur, lens

distortion, fog and other effects present in the final version of Sintel. A network trained

on Sintel clean is used for comparison. It is no surprise that simple WTA matching works
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(a) Overall EPE of WTA solution on Sintel
clean.
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(b) Overall EPE of CRF -Q solution on Sintel
clean.

Figure 4.12: Comparison of the affine transformation networks on the Sintel dataset. For com-
parison, the model CNN-sintel was trained specifically on the Sintel clean data.

best when the training data is similar to the test data. We think that the performance of

the CNN-scale0.5 network is remarkable, given the fact that it was trained only on simple

scaled and rotated random patches. When we add the CRF , the performance differences

get even smaller. The experiments indicate that it is feasible to learn general descriptors

for the purpose of matching from completely synthetic data.

4.3.3 Runtime

The main reason for quantizing the descriptors is speed. For CRF inference, we need to

compute the min-projection on the 4D cost function twice per outer iteration, see Alg.

4.1. We show an exact breakdown of the timings for D = 128 on high resolution images

in table 4.4, computed on a Intel i7 6700K and a Nvidia Titan X.

The column WTA refers to computing the solution of the local model on the cost

volumes cu, cv, see eq. (4.6). Full model is the CRF inference, see section 4.2.2. We

see that we can reach a significant speed-up by using binary descriptors and Hamming
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Method Feature Extraction WTA Full Model

FF 0.04 – 0.08 4.25 24.8
FQ 0.04 – 0.08 1.82 -
QQ 0.04 – 0.08 0.07 3.2

[Xu et al., 2017] ( 1
3

res.) 0.02 0.06 3.4
QQ ( 1

3
res.) 0.004 – 0.008 0.007 0.32

Table 4.4: Timings of the building blocks (seconds).

distance for computing intensive calculations. For comparison, we also report the runtime

of [Xu et al., 2017], who, at the time of writing, report the fastest execution time on Sintel.

We point out that our CRF inference on full resolution images takes about the same time

as their method, which constructs and optimizes the cost function at 1
3 resolution.

4.3.4 Benchmark Results

We compare our method on the Sintel final benchmark. Our CRF is effective in inferring

the match if matching is possible, but it does not perform well in occluded regions. As it is

common in many other optical flow methods, we apply a postprocessing aiming specifically

at inpainting occluded areas. First, we compute the forward flow between I1 and I2 and

the backward flow between I2 and I1. Using a forward-backward check, we mask a pixel

as unmatched/occluded if the forward and backward flow do not agree. Then we feed all

surviving matches to EpicFlow [Revaud et al., 2015], a method specialized in inpainting

flow fields. A sample input to Epicflow is depicted in fig. 4.13(a). Pixels where forward

and backward flow do not agree are masked in black. In case of large occlusions, e.g.

right image of fig. 4.13(a), we see that the forward-backward check is effective in detecting

occluded areas. The result of the EpicFlow inpainting is shown in fig. 4.13(b). Compared

to the EPE numbers of pure CRF inference (see fig. 4.11), we can decrease the EPE

substantially.

The results on the Sintel final test set are shown in table 4.5. Whereas we are compet-

itive on the EPE all metric, our method outperforms many well known algorithms on the

EPE noc metric. We think that this shows that our network learns robust features that

are well-suited for image matching. The discrepancy between the all and noc metric sug-

gests that we can improve our results by using a more sophisticated handling of occluded

image regions.

4.4 Conclusion

We showed that both learning and CRF inference of the optical flow cost function on

high resolution images is tractable. We circumvent the excessive memory requirements

of the full 4D cost volume by a min-projection. This reduces the space complexity from

quadratic to linear in the search range. To efficiently compute the cost function, we learn



126 Chapter 4. Learning Descriptors for Optical Flow

(a) Initialization for EpicFlow. Unmatched/occluded pixels are masked in black.

(b) Result of EpicFlow inpainting, EPE for left / right image: 0.2 / 4.0

Figure 4.13: Postprocessing with EpicFlow results in substantial decrease of the EPE . For
reference, EPE with pure CRF inference is 0.7 / 9.3 respectively, see fig. 4.11. The forward-
backward check masks mainly the occluded regions, see right image in (a), which afterwards get
inpainted by EpicFlow.

Method EPE all [Rank] EPE noc [Rank]

DCFlow [Xu et al., 2017] 5.119 [2] 2.283 [3]
FlowFields+ [Bailer et al., 2017] 5.707 [13] 2.684 [15]

FullFlow [Chen and Koltun, 2016] 5.895 [21] 2.838 [22]
FlowNet2 [Ilg et al., 2017] 6.016 [23] 2.977 [28]

DiscreteFlow [Menze et al., 2015] 6.077 [29] 2.937 [24]

Ours CRF-Q + EpicFlow 6.053 [26] 2.618 [10]

Table 4.5: Results on the Sintel final dataset. Our method performs particularly well on the
non-occluded metric, indicating that the learned descriptors are of high quality.

binary descriptors with a new hybrid learning scheme, that outperforms the previous

state-of-the-art straight-through estimator of the gradient.



5
Summary

In this work, we have considered the dense image matching problem. We presented a

general energy minimization formulation consisting of a data term and a regularization

term in order to solve the ill-posed problem. Motivated by the theories of differential

geometry, we introduced a regularization term based on the inner geometry of the solution

manifold. We derived the surface area functional under orthographic and perspective

projection, which enables to penalize surface area in the parametric domain, i.e. on the

image plane. Being able to formulate the problem on the image plane bypasses the need for

an explicit representation of surface geometry and is the key for highly efficient parallel

algorithms. We showed that the non-convex area functional becomes convex under a

suitable reparameterization, and we formulated a dense stereo problem using surface area

as regularizer. We compared our area regularization to standard Total Variation (TV)

regularization, and we showed theoretically and experimentally that our stereo model is

not affected by the staircaising effect of TV . The experiments confirm quantitatively that

area regularization leads to higher quality depthmaps and better 3D-reconstructions.

In the context of intensity image reconstruction for event cameras, we used the mani-

fold of active events to steer regularization by formulating the entire variational problem

on the manifold. Using a variant of the ROF-model for image denoising, we showed that

computing the TV -norm under the metric of the manifold introduces anisotropy based

on the geometry of the manifold. Applied to the problem of intensity image reconstruc-

tion for event cameras, this approach results in sharper edges, higher contrast and more

graceful grayvalue variations in the reconstructed images. Because the problem is still

formulated on the image plane, our algorithm can be trivially accelerated by massively

parallel Graphics Processing Units (GPUs) and we reach a time resultion of up to 500

reconstructed frames per second.

Concerning the low-level problem of dense optical flow estimation, we showed that Con-

volutional Neural Network (CNN)-based learning of descriptors for the four-dimensional

optical flow cost function is tractable. To that end, we proposed a min-projection, which
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reduces the memory complexity from quadratic to linear in the size of the search range. We

tackled the high computational demands by introducing a binarization step in the learning,

and we proposed a hybrid learning scheme which yields better results than previous state

of the art in learning binary CNNs. Using a Conditional Random Field (CRF) for robust

inference, we adapted the idea of dimensionality reduction by decomposing the graphical

model into smaller subproblems, where the horizontal and vertical subproblems correspond

to stereo problems and the inter-plane subproblems correspond to a min-projection with

additional cost offsets. Our approach allows to efficiently solve the CRF with the full

quadratic label space at linear memory complexity.

5.1 Outlook

In contrast to TV regularization, the minimal area regularizer has no bias towards fronto-

parallel surfaces. However, penalizing area is distance dependent and has a natural bias

towards shrinking the surface. An alternative would be to penalize surface curvature,

but it turns out that the pullback of curvature under perspective projection is a rather

complicated expression. Moreover, while the surface area is a first-order functional which

can be reparameterized, i.e. convexified, rather easily, finding a suitable convexification of

the higher-order nonlinear curvature functional turns out to be much harder. Whereas it is

possible to optimize a non-convex and non-linear functional using a variant of the primal-

dual algorithm [Valkonen, 2014], we did not succeed in implementing a stereo model with

curvature regularization. In general, curvature regularization is still an open problem

[Yashtini and Kang, 2015, Zhang and Chen, 2016] due to the difficulty of the higher-order

non-linear functional.

Recent results in learning descriptors for stereo and optical flow has shown that

problem-specific features learned by CNNs are clearly superior to the hand-crafted fea-

tures that have been used in the past. However, our experiments on synthetic training

data indicate that there is potential for improvement. We showed that while a CNN can

learn rotations very well, standard network architectures have difficulties in learning scale

changes. [Zagoruyko and Komodakis, 2015] report that a multiscale-strategy, where the

network explicitly learns simultaneously on small and larger image patches, yields good

results. We conducted experiments with undersampling and varying the size of the recep-

tive field using dilated convolutions. We found that whereas larger receptive fields result

in more robust matching in difficult areas, i.e. distortions, motion blur, little texture etc.,

they come at a loss of matching accuracy at fine details. This is in a sense similar to the

problem of the coarse-to-fine warping scheme used in continuous methods. We think that

networks which explicitly take into account different scales are a promising future research

direction.

Another fundamental problem in dense image matching are occlusions. Explicitly

modeling occlusions in dense correspondence problems turns out to be difficult and com-

putationally very demanding [Unger et al., 2012, Ayvaci et al., 2012]. It seems that in-
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corporating occlusions is most helpful as part of a general scene understanding system

[Hur and Roth, 2016]. Eventually the findings from such higher-level methods can be

used as a guideline on how to deal with occlusion in low-level correspondence problems.





A
List of Acronyms

AD Absolute Differences

CMOS Complementary Metal-Oxide-Semiconductor

CNN Convolutional Neural Network

CRF Conditional Random Field

DMM Dual Minorize-Maximize

DOF Degrees of Freedom

DSLR Digital Single-Lens Reflex

DVS Dynamic Vision Sensor

EPE End Point Error

FAST Features from Accelerated Segment Test

FISTA Fast Iterative Shrinkage Thresholding Algo-

rithm

GPU Graphics Processing Unit

LP Linear Programming

MAP Maximum a Posteriori

MRF Markov Random Field

NCC Normalized Cross-Correlation

PPA Proximal Point Algorithm

RANSAC Random Sample Consensus

RMS Root Mean Square

SAD Sum of Absolute Differences

SGM Semiglobal Matching

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

TGV Total Generalized Variation

TRW Tree-Reweighted Max-Product Message Pass-

ing
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TRW-S Sequential Tree-Reweighted Message Passing

TV Total Variation

UAV Unmanned Aerial Vehicle

WTA Winner-Takes-All
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