
Dipl.-Ing. Marco Steger, BSc

Secure and Efficient Wireless Automotive
Software Updates

DISSERTATION

to achieve the university degree of

Doktor der Technischen Wissenschaften

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Inform. Dr. sc. ETH Kay Uwe Römer

Institute of Technical Informatics

Advisor

Ass.Prof. Dott. Dott. mag. Dr.techn. MSc Carlo Alberto Boano

Institute of Technical Informatics

Graz, April 2018

EIDESSTATTLICHE ERKLÄRUNG

AFFIDAVIT

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in
TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Dissertation iden-
tisch.

I declare that I have authored this Thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly indicated all material which has been
quoted either literally or by content from the sources used. The text document uploaded to
TUGRAZonline is identical to the present doctoral dissertation.

. .
(Datum / Date)

. .
(Unterschrift / Signature)

Acknowledgements

Writing this thesis was one of the most valuable and rewarding things I did in my life
so far. I got to see different places around the globe, was allowed to meet a bunch of
great people and attend interesting conferences and other exciting events, and even found
a second home in Sydney, Australia. However, there have also been frustrating moments
and times where I doubted myself for even starting the whole mission. Especially in these
hard times, I could always count on the great support of my professor, my colleagues, my
friends, and, of course, my wonderful girlfriend helping me to stay focused and to keep on
track along the entire journey. Finally, it is time to thank all of you for your great and
never-ending support. I will be thankful for the rest of my life!

I begin by thanking my supervisor, Prof. Kay Römer, for being a great mentor and for
guiding me through the last four years. You not only helped me to significantly improve
my technical skills and my writing ability, but also provided me with a clear way towards
finalizing this thesis and even beyond. Furthermore, you immediately supported the idea
of spending some months abroad to enrich my thesis with inputs from other researchers
and acted as one of the main enablers of my stay at UNSW in Sydney. Thank you very
much for believing in me the whole time, for providing valuable feedback – often even
hours before the deadline – on our papers, and for helping me writing this thesis.

I also want to thank Prof. Salil Kanhere for allowing me to come to UNSW, for providing
me with a great environment in Sydney to continue my work, and especially for integrating
me in your incredible team from the first day on. I’m glad that we were able to continue
our common work even once I left Australia. I also want to thank you for agreeing to be
the second examiner of my thesis! Additionally, I want to thank my Australian colleagues
and friends. Especially Arash Shaghaghi for being a great colleague and friend, and for
all the great technical (and non-technical) discussions we had during my stay. Also I want
to thank Ali Dorri for introducing me to the Blockchain technology and for always being
open for new ideas and research areas. I hope we continue our fruitful collaboration for a
long time.

A special thanks also goes to my colleagues from Virtual Vehicle. I want to thank Prof.
Daniel Watzenig for allowing me to start my scientific career at Virtual Vehicle and es-
pecially for motivating me to start working on my thesis in the first place. Furthermore,
thank you so much for supporting my stay in Australia. I doubt that I would have been
able to gain this great experience without your advice and support. I also want to thank
Michael Karner for the countless discussions about my thesis and its organizational as
well as technical aspects (especially during our valued lunch breaks). You were one of the

v

key motivators for me to actually start working on this thesis. A special thanks also goes
to Joachim Hillebrand and Werner Rom for supporting me with their technical expertise.
Your valuable feedback on our papers really helped to push them to the next level.

I especially want to thank Carlo Alberto Boano for supporting me in some many different
ways. Working with you was a great experience and I’m deeply thankful for every feedback
on our papers, for every new idea we discussed together, and for all the motivation you
shared we me. I remember several occasions where you dedicated your time – working
hours, evenings and even weekends – to work with me on my thesis (and my thanks also
goes to Nora for allowing you to do so!). Thank you so much for being a great researcher,
mentor, motivator and friend!

My deepest gratitude goes to Christina Breitfuß, my incredibly smart and beautiful girl-
friend. Thank you for motivating me again and again to push my work, and for under-
standing, tolerating and even encouraging me to spend countless weekends in front of my
computer instead of with you. I’m so thankful that we were able to go to Sydney together
and share this great experience with each other. Thanks for being my first reviewer and
my last resort, and thanks for all the small (and big) things you do to make my life so
much better. Your love and support mean everything to me!

Last but not least, I want to thank my family for supporting me through my whole life.
You are my safe haven, my favorite holiday destination, and the reason why I came that
far in the first place. Thank you so much for all you love and support!

Graz, 18.03.2018

Marco Steger

——–

The research from DEWI (www.dewi-project.eu) leading to these results has received funding from
the ARTEMIS Joint Undertaking under grant agreement No 621353. The authors acknowledge the
financial support of the COMET K2 - Competence Centres for Excellent Technologies Programme
of the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT), the Austrian
Federal Ministry of Science, Research and Economy (BMWFW), the Austrian Research Promotion
Agency (FFG), the Province of Styria and the Styrian Business Promotion Agency (SFG).

This work was also partially funded by the SCOTT (http://www.scott-project.eu) project.

SCOTT has received funding from the Electronic Component Systems for European Leadership

(ECSEL) Joint Undertaking under grant agreement No 737422. This joint undertaking receives

support from the European Unions Horizon 2020 research and innovation programme and Aus-

tria, Spain, Finland, Ireland, Sweden, Germany, Poland, Portugal, Netherlands, Belgium, Norway.

SCOTT is also funded by the Austrian Federal Ministry of Transport, Innovation and Technology

(BMVIT) under the program “ICT of the Future” between May 2017 and April 2020. More in-

formation at https://iktderzukunft.at/en/. The authors also acknowledge the financial support of

the COMET K2 Program of the Austrian Federal Ministries BMVIT and BMWFW, the Province

of Styria, and the Styrian Business Promotion Agency (SFG).

vi

Abstract

The complexity of automotive systems and especially of the used software has increased
significantly in the last years due to the introduction of new safety mechanisms, enter-
tainment features and connected services, as well as due to the installation of autonomous
driving functions. This increased complexity of automotive systems and the consequent
growth of the software embedded on several electronic control units within a modern ve-
hicle raises the need for efficient mechanisms to update the embedded software. In this
regard, the ability of efficiently performing software updates is beneficial over the en-
tire lifecycle of a modern vehicle ranging from the vehicle development phase, over the
assembly of the vehicle, to the maintenance of the vehicle once sold to the end user.

Traditional automotive software updates can be performed more efficiently by replacing
the wired point-to-point links between dedicated diagnostic hardware providing the new
software and the vehicle with a dedicated wireless network. Such a wireless network allows
a user to update the software on several vehicles simultaneously.

Although beneficial and promising, wireless software update systems are particularly
critical w.r.t. security, as they require access to all control units within a modern vehicle
and thus are a worthwhile target for attacks. Recent attacks on automotive systems
such as the cyber-attack on a Jeep Cherokee, where the hackers were able to remotely
control the vehicle, have indeed shown the wide range of potential security threats and
emphasize the need for comprehensive security concepts protecting automotive systems.
Suitable security solutions must hence be in place to ensure the function of the vehicles,
the integrity of the software, and especially the safety of the users.

In this thesis a solution for secure and efficient wireless software updates is proposed,
with particular focus on local software update scenarios, where the wireless update is per-
formed within a local environment such as the premises of a vehicle development company
or within the building of a service center. The designed wireless software update system
provides secure and efficient solutions to cover the entire software update procedure end-
to-end, as it encompasses a secure software distribution mechanism based on Blockchain
technology, allowing the vehicle manufacturer to securely distribute new software to local
update providers such as a service center, as well as a framework for efficient and secure
locally-performed software updates called EASE-UP. The latter provides advanced soft-
ware update mechanisms such as parallel updates, where the software on several vehicles
is updated at the same time, and partial updates, where only the differences between the
currently installed and the new software needs to be transferred to the vehicle.

Using our testbed infrastructure with automotive EUCs we performed evaluations
which show that both mechanisms are able to significantly reduce the overall update du-

ix

ration and thus to increase the efficiency of wireless software updates. Besides efficiency,
we also tackle security-related issues within EASE-UP and provide a comprehensive se-
curity concept to tackle the peculiarities of different local software update environments.
The security concept is designed using a measurable-security-based system design flow,
where the required update system is analyzed, employed security methods are rated, and
finally security requirements are extracted. These requirements are finally used to develop
a security concept protecting EASE-UP by employing software- as well as hardware-based
security features.

x

Zusammenfassung

Die Automobilindustrie hat sich in den letzten Jahren sehr stark gewandelt und der Ent-
wicklungsfokus verschiebt sich, vor allem in Zeiten des automatisierten Fahrens, zusehends
weg vom traditionellen Maschinenbau hin zum Einsatz von mehr und mehr Elektronik so-
wie verteilten Softwarearchitekturen. Die Komplexität der eingebetteten Software steigt
dabei rasant an und auch die Fehlerhäufigkeit nimmt zu. Aus diesem Grund ist die Au-
tomobilindustrie heute mehr als je zuvor an innovativen Lösungen interessiert, die ein
sicheres sowie schnelles Aktualisieren dieser Software während des gesamten Lebenszyklus
eines Fahrzeugs erlauben.

Im Vergleich zu bereits existierenden Software-Update-Systemen, bei denen Diagno-
sehardware direkt über ein Kabel mit einem Fahrzeug verbunden wird, würden drahtlose
Systeme, bei denen mehrere Fahrzeuge ohne den Einsatz von Kabeln mit neuer Software
bespielt werden könnten, viel Zeit einsparen und damit einen signifikanten Vorteil bringen.
Solche drahtlosen Systeme könnten bereits in der Fahrzeugfertigung eingesetzt werden um
mehrere Fahrzeuge gleichzeitig mit der neuesten Software auszustatten, bevor diese die
Fertigungsstraße verlassen. Auch in Werkstätten könnten solche Systeme vorteilhaft ein-
gesetzt werden und es Mechanikern erlauben, zur gleichen Zeit an mehreren Fahrzeugen
zu arbeiten.

Den angeführten Vorteilen von drahtlosen Lösungen stehen jedoch ernste Sicherheits-
bedenken gegenüber. Software-Updates können alle Steuergeräte im Fahrzeug betreffen
und daher muss Update-Systemen Vollzugriff auf alle Bereiche des Fahrzeuges gewährt
werden. Bei mangelhaften Sicherheitskonzepten kann dies jedoch zu weitreichenden Be-
drohungen führen. Erfolgreiche Cyber-Attacken auf vernetzte Fahrzeuge wie der Angriff
auf einen Jeep Cherokee, wo es Hackern möglich war, das Fahrzeug aus der Ferne zu
steuern, zeigen die enormen Risiken auf, die mit der Nutzung von drahtlosen Schnittstel-
len bzw. Systemen in modernen Fahrzeugen einhergehen. Geeignete Sicherheitskonzepte
sind also unumgänglich um drahtlose Software-Update-Systeme in der Praxis einsetzen zu
können.

In dieser Arbeit wird ein Gesamtsystem für sichere und effiziente drahtlose Software-
Updates für Fahrzeuge vorgestellt. Der Fokus der Arbeit liegt dabei auf lokalen Update-
Szenarien, in denen Software-Updates innerhalb eines Gebäudes bzw. eines abgeschlos-
senen Bereiches durchgeführt werden. Die entwickelte Lösung deckt dabei sowohl die
Verteilung der Software, vom Fahrzeughersteller bis zu einem lokalen Software-Update-
Anbieter wie zum Beispiel einer Werkstatt, sowie dem eigentlichen, lokal durchgeführten
Update-Prozess ab. Die entwickelte Architektur zur Softwareverteilung nutzt dabei eine
Blockchain-gestützte Netzwerkstruktur um die Integrität sowie die Echtheit der übertra-

xi

genen Software zu garantieren.
Das Hauptaugenmerk der Arbeit liegt auf dem lokal durchgeführten Update-Prozess

selbst. EASE-UP, ein drahtloses Software-Update-System für den Einsatz in verschiedenen
lokalen Update-Szenarien, wurde entwickelt um diesen lokalen Update-Prozess möglichst
sicher sowie effizient durchzuführen. EASE-UP setzt dabei auf fortgeschrittene Update-
prozesse wie zum Beispiel parallele Updates, wo auf mehreren Fahrzeugen gleichzeitig neue
Software installiert wird, oder partielle Updates, wo nur jene Teile der neuen Software,
die sich von der aktuell am Steuergerät verwendeten Version unterscheiden, übertragen
werden müssen. Zusätzlich wurde ein umfangreiches Sicherheitskonzept entwickelt, um
EASE-UP und alle damit verbundenen Anwender, Geräte und Daten gleichermaßen zu
schützen.

Die resultierende Gesamtlösung für lokal durchgeführte, drahtlose Software-Updates
wird in der entwickelten Testumgebung entsprechend geprüft und auf ihre Eignung für
den Einsatz in verschiedenen lokalen Update-Szenarien hin untersucht. Dabei werden
auch die entwickelten Update-Mechanismen analysiert und miteinander verglichen.

xii

Contents

1 Introduction 1
1.1 Wireless Automotive Software Updates . 2
1.2 Locally-performed Wireless Software Updates 3
1.3 Problem Statement . 5
1.4 Contributions . 7
1.5 Structure . 9

2 Background 11
2.1 Automotive ECUs and In-vehicle Communication 11
2.2 Automotive Standards and Protocols . 12

2.2.1 Open Diagnostic data eXchange (ODX) 12
2.2.2 Protocol Stack for In-Vehicle Usage 13
2.2.3 Unified Diagnostics Protocol (UDS) 14

2.3 Blockchain Technology . 15
2.3.1 How Blockchain Works . 16
2.3.2 Lightweight Scalable Blockchain . 17

2.4 The SAE J3061 Automotive Security Standard 17
2.5 SHIELD Multi-Metrics . 18

3 Related Work and Research Challenges 21
3.1 Existing Solutions for Automotive Wireless Software Updates 21
3.2 Securing Wireless Automotive Software Updates 23
3.3 Increasing the Efficiency of Wireless Software Updates 25
3.4 Evaluating LSU Frameworks Experimentally 26
3.5 Secure End-to-end Solution for Automotive LSUs 28

4 End-to-end Solution for Local Software Updates 29
4.1 Local Software Update Scenarios . 29
4.2 Requirements for an End-to-end Solution for LSUs 31

4.2.1 Requirements for Secure Software Distribution 32
4.2.2 Requirements for EASE-UP . 33

4.3 End-to-End Software Update Procedure . 34
4.4 Secure Software Distribution . 34

4.4.1 Designed Architecture for Secure Software Distribution 36
4.4.2 Formal Architecture Evaluation . 39
4.4.3 Proof-of-concept Implementation . 42

xiii

4.5 EASE-UP: Framework for Secure and Efficient LSUs 42
4.5.1 Architecture . 43
4.5.2 Core Nodes . 43
4.5.3 Example of a LSU . 44

5 EASE-UP Networking Aspects 47
5.1 Selecting the Wireless Network for LSUs . 47

5.1.1 Selection Criteria . 47
5.1.2 Potential Wireless Protocols for LSUs 48
5.1.3 Comparison of Wireless Protocols 50
5.1.4 IEEE 802.11s as Selected Wireless Network for LSUs 51

5.2 Wireless Software Update Protocol . 52
5.2.1 Basic Software Update Protocol . 53

5.3 Advanced Software Update Mechanisms . 56
5.3.1 Parallel Software Update . 56
5.3.2 Partial Software Update . 59

6 EASE-UP Security Aspects 63
6.1 Measurable Security Design Approach . 63

6.1.1 DEWI Security Metric . 64
6.1.2 Evaluation of the DEWI Security Metric 68

6.2 Security Concept for Wireless Software Updates 72
6.2.1 Security Requirements for Wireless Software Updates 73
6.2.2 Multi-layer Security Concept . 74
6.2.3 Security Features of the Developed Update Protocol 75
6.2.4 Hybrid Security Solution . 80
6.2.5 Fulfillment of Security Requirements 80
6.2.6 Formal Security Concept Evaluation 81

7 Evaluating EASE-UP 85
7.1 Testbed Infrastructure . 85

7.1.1 Testbed Requirements . 85
7.1.2 CESAR – Comprehensive Testbed Infrastructure 87

7.2 Efficiency Evaluation – Case Studies . 89
7.2.1 Performance of Software Update Mechanisms 89
7.2.2 Network-related Evaluations . 93
7.2.3 Impact of Security Mechanisms on Efficiency 96

8 Conclusions and Future Work 101
8.1 Contributions . 101
8.2 Limitations and Future Work . 102

9 Publications 105

Bibliography 182

xiv

List of Figures

1.1 Different wireless software updates scenarios. New software can be installed
on the ECUs remotely by employing an Internet link as well as using a local
wireless network. 4

2.1 ECUs are clustered according to their task within the vehicle. Different bus
systems are used to interconnect the ECUs within a cluster and a Central
Gateway (CGW) is employed to allow the communication between ECUs
of different clusters [31]. 12

2.2 ODX data model. An ODX file contains information about the vehicle, the
available diagnostic and underlying communication protocols, as well as the
flash process required to update the software of an ECU. 13

2.3 Automotive communication and diagnostic protocol stack. Several candi-
dates for automotive communication protocols (often covering the physical,
data link, and network layer) as well as diagnostic protocols are available. . 14

2.4 UDS session management. The Default Session is automatically launched
after an ECU reset and once an advanced session times out. UDS Security
Access is used to authorize critical operations such as ECU programming. 15

2.5 Example of a local Blockchain instance. Blocks containing transaction are
chained together using the previous block ID. 16

2.6 Flow of activities within the concept phase as defined in SAE J3061 [52]. . . 18

2.7 The SHIELD Multi-Metrics measurable security approach. 19

4.1 Architecture for an efficient end-to-end solution for wireless automotive LSU. 30

4.2 Considered LSU scenarios: wireless software updates performed in the ve-
hicle development phase, in the vehicle assembly line, as well as in service
center scenarios. 31

4.3 End-to-end software update procedure including the secure software distri-
bution step as well as the locally-performed wireless software update process. 35

4.4 End-to-end solution for wireless software updates including secure software
distribution as well as software installation on the ECU. 36

4.5 Blockchain-based security architecture. The overlay network interconnects
the OEM, the software creator, the service centers, a cloud storage, and
even smart vehicles. 37

4.6 Different Blockchain transaction. Left: generic transaction structure. Mid-
dle: update transaction. Right: proposed structure of a genesis transaction
for smart vehicles. 38

xv

4.7 Software distribution example. From software creation at the software cre-
ator to software installation on the ECU. 39

4.8 EASE-UP architecture involving the Diagnostic Tester (DT) holding the
latest available software as well as the required authorization keys, the
handheld employed by the user to interact with EASE-UP, and the Wire-
less Vehicle Interface (WVI) acting as smart gateway between the wireless
network and the in-vehicle communication system. The in-vehicle commu-
nication system encompasses several different bus systems often intercon-
nected by a Central Gateway (CGW). 42

4.9 Activity diagram showing the basic steps of a generic wireless automotive
software update performed in a local environment. 46

5.1 IEEE 802.11n (a) and IEEE 802.11s (b) are employed in the same exam-
ple scenario. Using IEEE 802.11n leads to isolated vehicles (i.e., vehicles
without a reliable connection to the DT) while IEEE 802.11s is able to
interconnect all involved entities. 49

5.2 Example of an IEEE 802.11s mesh network encompassing 9 nodes. 52

5.3 The defined wireless update protocol. Six dedicated steps are employed to
control the entire wireless software update process for automotive ECUs. . . 53

5.4 State machine used on the WVI. Each step of the wireless software update
protocol is represented (please note that step 1 and 2 are handled together
within the first state) and also the substates are shown. A similar state
machine is used on the DT. 55

5.5 Parallel software update process. Information about the vehicles is gathered
to identify possibilities to perform an update for several vehicles in parallel. 57

5.6 Parallel software update process. The software is first transferred from the
DT to the WVIs and then installed on the ECUs. The software download
step is handled by each WVI individually. The DT can poll the current
status of the download and will also be informed once the download is done. 58

5.7 Software binary consisting of three Code Segments (CSs) in the ECU mem-
ory. The upper view shows a bad placement of the CSs w.r.t. partial
software updates. The lower placement of the CSs is more suitable for par-
tial software updates: no CSs are located within the same page and they
are placed in the memory according to their size. 60

5.8 Partial software update approach. Five major steps are required to perform
a partial software update in EASE-UP. 61

5.9 The flash memory of an ECU is divided into sections with different block
sizes. Figure taken from [37]. 62

6.1 System decomposition. System to subsystem and finally components. Sys-
tem parameters are identified for all components and mapped to a specific
configuration [5]. 67

6.2 Generic Wi-Fi protection mechanism. Main features of a Wi-Fi protec-
tion mechanism encompassing connection- as well as data-related security
measures. 69

xvi

6.3 Generic security concept. The defined multi-layer security concept encom-
passes security features on network as well as on application layer. 75

6.4 Securing EASE-UP: security features employed from Step 1 – Discovery
and connection establishment to Step 3 – Initialize a software update. . . . 78

6.5 Securing EASE-UP: security features for Step 4 – Wireless data transfer. . 79

7.1 CESAR testbed architecture. Testbed Nodes (TN) are interconnected using
a backbone network. A TN can be connected to one or several ECUs, or to
real vehicles using automotive buses such as CAN. 87

7.2 Timing profile of a wireless software update. Latency added by each step
leading to the overall update duration. 90

7.3 Comparison of wired and wireless software update mechanisms. The overall
duration of a wired as well as a wireless software update is measured and the
overhead added by the basic wireless software update protocol is analyzed. 90

7.4 Benefits of employing partial software updates. The performance of a par-
tial software mechanism is compared to a traditional wired update as well
as to an update performed using the designed basic software update protocol. 91

7.5 Overhead (top) and benefits (bottom) of employing parallel software up-
dates. Two software updates are done in parallel instead of performing
them sequentially. 92

7.6 Wireless software updates using IEEE 802.11n and IEEE 802.11s and com-
paring the performance using an emulated service center scenario in CE-
SAR. Node 9 is configured to work as DT, and also as Access Point (AP)
when using IEEE 802.11n. Nodes 1, 2, 4, and 6 are acting as WVIs and are
connected to ECUs. 94

7.7 Software update duration for updates performed using IEEE 802.11n and
IEEE 802.11s. The ECU connected to node 1 cannot be update when using
IEEE 802.11n. 94

7.8 Screenshot showing the actual deployment of the TNs. Purple lines are
representing the established connection tree with node 9 as root. All other
nodes, except node 6, are connected to node 9 (either directly or via other
nodes in between). 95

7.9 Peer links between nodes in an IEEE 802.11s network are very dependent
on the sequence the nodes join. Left: an inefficient structure as node 5 is
only connected to far away nodes. Right: node 5 is isolated from the rest
of the network. 95

7.10 Static multi-hop routes between node A and node B using relay nodes R1-R3. 97
7.11 Impact of SAE on the network efficiency. SAE security fea-

tures enabled vs. SAE disabled (i.e., None). Median (left), and
delta(median)=median(SAE)-median(None) (right) of the RTT measure-
ments using 10000 UDP packets are shown. 97

7.12 Impact of different security configurations on the update duration. 98
7.13 Impact of different key lengths on the wireless software update duration. . 99

xvii

List of Abbreviations

AES Advanced Encryption Standard

AP Access Point

BLE Bluetooth Low Energy

CA Certificate Authority

CAN Controller Area Network

CGW Central Gateway

CH Cluster Head

CM Cluster Members

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DoS Denial of Service

DT Diagnostic Tester

DTC Diagnostic Trouble Codes

DTM Distributed Throughput Management

ECU Electronic Control Units

GCM Galois/Counter Mode

GUI Graphical User Interface

HSM Hardware Security Module

HWMP Hybrid Wireless Mesh Protocol

IoT Internet of Things

ITS Intelligent Transportation System

xix

JBC Java Bouncy Castle

LAN Local Area Network

LIN Local Interconnect Network

LSB Lightweight Scalable Blockchain

LSU Local Software Update

MAC Medium Access Control

MIC Message Integrity Code

ODX Open Diagnostic data eXchange

OEM Original Equipment Manufacturer (i.e., car manufacturer)

OTA Over-The-Air

PCB Printed Circuit Board

PKI Public Key Infrastructure

PoW Proof of Work

RSA Rivest-Shamir-Adleman; a public-key cryptosystem

RTT Round Trip Time

SAE Simultaneous Authentication of Equals

SHA Secure Hash Algorithm

SPD Security, Privacy, and Dependability

TC Testbed Control PC

TN Testbed Nodes

TPM Trusted Platform Module

UDP User Datagram Protocol

UDS Unified Diagnostics Protocol

WSN Wireless Sensor Network

WVI Wireless Vehicle Interface

SE Secure Element

V2V Vehicle-to-Vehicle

xx

Chapter 1

Introduction

The automotive industry has changed radically in the last decades and year, as basic
mechanical engineering work is more and more replaced by electronics and software de-
velopment. Due to this trend, the cost distribution for producing cars has significantly
altered (i.e., in 2015, already 40% of the overall production costs of a car were dedicated to
electronics and software) and new industrial players such as Google and Apple are starting
to enter the automotive market [20].

The shift towards more and more electronics and software integrated in current as well
as in future vehicles is driven by various factors including applications such as autonomous
driving, an increased degree of connectivity, comfort features, and vehicle safety in general.
All these functions heavily rely on electronic components (i.e., sensors and units) as well
as on the embedded software running on these Electronic Control Units (ECU).

Already in 2009, first premium-class cars contained close to 100 million lines of software
code executed on 70 to 100 ECUs [9]. The ECUs thereby fulfill different kind of tasks
such as controlling the entertainment system of the car, the window lifters, the door locks,
but also the engine as well as the transmission. As of today (2018), modern vehicles allow
more and more autonomous driving functions and, because of that, ECUs have to handle
even more complex and safety-critical tasks. System failures due to software bugs can
indeed cause dangerous driving situations and lead to severe accidents.

One essential aspect, which is getting more and more important due to the rising
amount of software code in vehicles, is the maintenance of the software running on auto-
motive ECUs. This embedded software is very likely to change within the lifecycle of a
vehicle, due to vehicle upgrades and added functionality, or due to the need of fixing bugs
in the embedded software. Such software updates can already take place in the vehicle
development phase, when engineers are testing new software versions for ECUs integrated
in a test vehicle. Furthermore, software updates are required in the vehicle assembly line
to install the latest software on one or several ECUs before a vehicle can be sold, as well
as in vehicle service centers, when a vehicle upgrade is performed or a bug fix is required.

Today, dedicated and expensive equipment is utilized in all these scenarios to perform
software updates. In most cases the equipment is connected to the vehicle by using its
standardized diagnostic interface and via a wired point-to-point connection. Hence, cur-
rent systems are expensive, heavy, inflexible, and do not allow to maintain the software of
several vehicles at the same time. Replacing these wired point-to-point links with wireless
ones can offer several advantages in all aforementioned scenarios.

1

Chapter 1 – Introduction

1.1 Wireless Automotive Software Updates

Wireless software updates offer several advantages compared to wired update systems. In
the following, the most important advantages are highlighted and briefly discussed.

Increased flexibility by utilizing wireless interconnections. When employing wire-
less networks instead of wired connections, the static point-to-point link between one ve-
hicle and the update device – the so-called Diagnostic Tester (DT) – can be replaced by
a wireless network connecting all vehicles in close proximity (e.g., within a building such
as a service center) to the DT and other handheld devices such as tablets utilized by the
involved users (e.g., mechanics in a typical service center scenario). The resulting inter-
connectivity between all involved entities (i.e., vehicles, DT, and users utilizing tablets)
significantly increases the flexibility of the update system: a user can connect to several
vehicles in a row without unplugging from one vehicle to connect to a second one, as it
would be the case with wired systems.

Increased update process efficiency. The additional flexibility gained by employing
wireless systems will increase the efficiency of the process (i.e., the involved users will save
time). Furthermore, such wireless systems will also allow to perform wireless software
updates for several vehicles in parallel, significantly reducing the time required to maintain
vehicles (e.g., in a service center). Such parallel software updates can also be very beneficial
in assembly line scenarios, where potentially a lot of vehicles will require the identical
software update. In such highly automated scenarios (where every second that can be
spared leads to higher profits), reduced software update durations would decrease the
production costs. For all mentioned software updates scenarios, efficiency (i.e., reducing
the overall update duration) is essential and can be significantly increased by employing
wireless systems.

Autonomy of the involved entities. Future vehicles will be more and more connected
and thus equipped with different wireless interfaces. These interfaces could potentially be
used to perform wireless software updates in a very autonomous way: while current vehicles
still need a wireless dongle plugged-in via a diagnostic vehicle interface to connect to a
wireless update system, future vehicles could just use the built-in interfaces to connect
to such a system. This increased autonomy would again be very advantageous for all
aforementioned software update scenarios and thereby especially relevant when updating
a vehicle on the assembly line.

Possibility to cover a vehicle’s entire lifecycle. Wireless software update systems can
significantly increase the flexibility, autonomy, and thus the overall efficiency of automotive
software updates. The latter can be utilized in different update scenarios and therefore
support the entire lifetime of a modern vehicle: from vehicle development and vehicle
assembly (i.e., before a vehicle is sold) to vehicle maintenance (i.e., after a vehicle is
purchased), where necessary updates (e.g., due to a required bug fix or to upgrade the
ECU’s functionality) are performed locally in a service center or carried out using a remote
connection to the vehicle (especially relevant for future vehicles).

Remote updates will allow to install new software on vehicles already out in the field
by utilizing suitable Internet links such as a 3G connection between the vehicle and the
OEM, as shown in Figure 1.1. Such wireless remote or Over-The-Air (OTA) updates

2

Chapter 1 – Introduction

are currently investigated and addressed by various researchers as well as the automotive
industry [36, 49, 50], and allow to remotely install new software on a vehicle through a
connection to the Internet. Tesla was the first car manufacturer (OEM) enabling and
allowing automotive remote updates for an entire fleet of vehicles since 2014 [19].

In future, remote updates will be used by all OEMs as they allow to perform certain
software updates without the need of large vehicle recalls. However, a large portion of
automotive software updates will still be performed in local environments (i.e., the update
is done within a dedicated area or building), where vehicles are connected to diagnostic
equipment (i.e., the DT and handhelds running dedicated apps) using a wireless network
such as Wi-Fi. The entire update process is carried out locally without a direct involvement
of the OEM by utilizing secure and efficient wireless software update systems.

1.2 Locally-performed Wireless Software Updates

The use of secure and efficient wireless software update systems will be beneficial in dif-
ferent Local Software Update (LSU) scenarios: in the vehicle development phase, devel-
opment engineers can seamlessly install test software on several test vehicles/ECUs at the
same time without physically (i.e., by using a cable) connecting to each of them. Parallel
software updates can also be performed in the vehicle assembly line as well as in service
centers. Mechanics in such a service center will additionally benefit from parallel updates,
as they can work on several vehicles at the same time using a single handheld device. For
example, a mechanic can first trigger a software update on two vehicles (i.e., a parallel
update, where the same software is installed on multiple ECUs simultaneously) and, while
this update is carried out, diagnose and repair other vehicles.

LSUs versus OTA updates. One of the main differences between OTA updates and
LSUs is the interconnection between the OEM and the vehicle during an update, as
sketched in Figure 1.1. While this connection is essential for remote updates to trans-
fer new software to the vehicle, but also to handle the authorization of the update on
vehicle/ECU level, LSUs typically do not require any direct interaction with the OEM at
all during the update process, as the required authorization keys and the new software
are stored on a dedicated server within the local software provider (e.g., a service center).
A dedicated software distribution step is used in LSU scenarios to transfer new software
plus the required authorization keys to different local software update providers.

This software distribution step represents another difference between OTA updates and
locally-performed updates. An end-to-end update process in LSU scenarios encompasses
two dedicated (and discontiguous) steps as shown in Figure 1.1: step 1, the software
distribution and step 2, the local software installation, where new software is transferred
from the DT to the vehicle and then installed on the ECU. Typically, step 1 and step 2 are
not directly connected, meaning that the software distribution is done once new software is
available1. An actual update (i.e., step 2) is performed once a vehicle demanding the new
software is maintained within a local software provider (e.g., days after the new software
distributed by the OEM was received). OTA updates, in contrast, are only performed
when there is an actual need for the update: a vehicle periodically checks for new software.

1 In the early days, this distribution step was done by sending out DVDs, today a secured Internet con-
nection is utilized.

3

Chapter 1 – Introduction

Assembly line

- High degree of
automation
- Several vehicles
require same SW

Local
DB

Supplier

- Create new
software (SW)

OEM

- Create new SW
- SW adaptions
- Validate new SW

New software

Service center

- Vehicle repairs & maintenance
- Mechanics working on several vehicles

Vehicle
Development

- Test of new SW
and functionality
- Updates for a fleet
of vehicles

Remote update

- Direct link: OEM
and vehicle
- Secured Internet
link (e.g. via 3G)

Secured Internet link
(point-to-point)

Local
DB

Step 2: local SW
installation

O
TA

 u
p

d
ate scen

ario
s

Local Software Update (LSU) scenarios

Step 1: SW distribution

DT

users
Step 2: local SW installation

Step 2: local SW
installation

Figure 1.1: Different wireless software updates scenarios. New software can be installed on
the ECUs remotely by employing an Internet link as well as using a local wireless network.

Once new software is available, a direct secured link between the vehicle and the OEM is
established, the software is transferred to the vehicle, and finally installed on the ECU.

The third difference between an OTA and an LSU system is the scope of such a wireless
software update system. While OTA updates are only targeting modern vehicles equipped
with the required wireless interface (e.g., a dedicated 3G/4G module), LSUs are used to
update the software on all kind of vehicles including prototype/test vehicles (i.e., vehicle
development), new vehicles (i.e., within the vehicle assembly line), as well as used vehicles
(i.e., in a service center) of different ages. Especially in service centers but also in vehi-
cle development performed by supplier companies, an LSU system will provide software
updates for vehicles from different OEMs. OTA updates, in contrast, will typically only
target recently produced vehicles (e.g., not older than two years) of the same brand/OEM.

4

Chapter 1 – Introduction

1.3 Problem Statement

The primary aim of this doctoral thesis is to develop an end-to-end solution for locally
performed wireless software updates, while remote/OTA updates are not in scope of this
work. The focus on locally-performed software updates is mainly due to high potential of
improving the efficiency of vehicle maintenance in LSU scenarios: a well-designed solution
will help to significantly decrease the time required to perform a software update for one or
several vehicles and hence raise the profit for the local software update provider as well as
increase the satisfaction of the involved users (i.e., both mechanics/engineers performing
the update, as well as the vehicle owner).

The developed system shall be able to fulfill the requirements and the peculiarities of
all LSU scenarios, and especially focus on the essential aspects that are discussed next:
security and efficiency. Furthermore, also the software distribution step, where new soft-
ware is sent from the OEM to the local software update providers, shall be addressed,
leading to a secure end-to-end solution for LSUs.

Securing wireless automotive LSUs. Security is a key aspect of a wireless automotive
software update system, as the use of wireless networks as basis for LSUs as well as the
integration of wireless interfaces in (future) vehicles introduces a range of new security
threats. A malicious attacker could for example try to interfere a running software update
to slow down the entire update process, to install malicious software on the ECU of a vehi-
cle by tampering with the transferred data, or steal expensive software by eavesdropping
the wireless channel. First real-world attacks where hackers exploit insufficiently secured
wireless interfaces to gain remote control over a Tesla [15], a Corvette [22], or a Jeep [63],
show the huge potential of hacking connected vehicles.

A wide range of potential security threats are mainly affecting the user (i.e., his/her
safety and privacy), the confidentiality and genuineness of the software, required authen-
tication and authorization keys (e.g., the authorization key required to perform a software
update on a specific ECU), as well as the integrity of the vehicle and all other devices
(e.g., DT). One of the goals of this doctoral thesis is to analyze these threats and to define
a suitable security concept that can efficiently mitigate them.

A key challenge in having a general security solution is that LSU are performed in
different environments by different users and have thus various requirements w.r.t. secu-
rity. A generic security concept covering all these scenarios must therefore be designed in
a way that it can be adapted to the needs of the actual scenario and the corresponding
security level that is required. Furthermore, a structured design process shall be identified
and followed when developing such a system. The chosen design flow shall be similar to
the well-established automotive functional safety processes defined in the ISO 26262 stan-
dard [33], as these processes are well known and accepted within the automotive industry.
Hence, within this doctoral thesis, a structured security design approach will be defined in
a way that different LSU scenarios, as well as the corresponding environments and levels
of security, can be taken into account when creating the final security concept.

Making wireless automotive LSUs more efficient. Besides security, also efficiency is
an essential aspect of wireless automotive software updates. With regard to such updates,
efficiency typically refers to the ability of handling/performing the entire software update
procedure of one or several vehicles as fast as possible. In LSU scenarios, efficiency can

5

Chapter 1 – Introduction

be achieved on multiple layers:

The network layer (i.e., the wireless communication network chosen to interconnect
vehicles, users, and diagnostic equipment) have a significant impact on the reliability and
in further consequence the efficiency of the entire system. Weak links, high latency, or
a lack of scalability will decrease the update efficiency (i.e., due to a slow wireless data
transfer, the update duration will be prolonged), while redundancy and high bandwidth
will help to decrease the overall update duration. Additionally, the harsh environment in
which automotive software updates are performed, must be taken into account. Therefore,
another goal of this thesis is to analyze available wireless protocols and choose the most
suitable candidate to be used for a wireless automotive LSU system.

On the application layer, different factors such as the employed security mechanisms,
the chosen diagnostic protocol, as well as the utilized software update mechanism have
a significant impact on the efficiency of an automotive LSU system. Thus, this doctoral
thesis will investigate and develop different software update mechanisms increasing the
efficiency of the entire update process (i.e., decrease the overall update duration), and the
related security concept will be designed to support these mechanisms.

Ability to comprehensively test systems for wireless automotive LSUs. The
aforementioned factors (i.e., the employed security mechanisms, the used diagnostic pro-
tocol, and the utilized software update mechanism) indeed influence the duration of a
software update and hence their impact on the efficiency of a system must be evaluated.
This is especially important w.r.t. the employed security concept, as security and efficiency
often strongly influence each other. Hence, security, efficiency and other related aspects do
not only need to be considered together when designing and implementing an end-to-end
solution for LSUs, but also when it comes to evaluating and testing the developed system.

To perform such evaluations, an extensive testbed infrastructure is required. However,
as of today, neither a suitable testbed is available nor its possible design is described in
related works. Therefore, this doctoral thesis will focus on the development of a testbed
infrastructure allowing to evaluate various important aspects (e.g., impact of utilized se-
curity measures and advanced update mechanisms on the software update duration) as
well as different system configurations within one testbed.

End-to-end solution for wireless automotive LSUs. The software update procedure
for LSUs encompasses two individual steps, as illustrated in Figure 1.1: the software
update distribution step (step 1; where new software is sent by the OEM and/or its
suppliers to local software update providers such as a service center), and the actual
software installation process done within a local environment (i.e., step 2). Both steps must
be secured with suitable security measures and shall be based on an efficient architecture
allowing a fast software distribution as well as a quick software installation.

The ultimate goal of this thesis is hence the development of a secure and efficient end-
to-end solution for automotive wireless LSUs covering both aforementioned steps: the
design, implementation, and evaluation of a framework allowing efficient as well as secure
locally-performed software updates, and the definition of a suitable software distribution
architecture providing an efficient as well as secure channel between the OEM and the
LSU providers.

6

Chapter 1 – Introduction

1.4 Contributions

In this section the scientific contributions of this doctoral thesis in the area of secure and
efficient wireless automotive LSUs are summarized and references to the corresponding
publications are given.

End-to-end solution for LSUs. In this thesis an end-to-end solution for locally-
performed wireless automotive software updates is proposed. This solution encompasses
a secure software distribution architecture [59] as well as a framework for efficient and
secure software updates within different LSU scenarios [37, 61]. Special focus is put on
the local software update procedure handled within a dedicated area or building such as
a vehicle assembly line or a service center.

Secure and efficient software distribution based on Blockchain technology. Before new
software can be installed on an ECU of a vehicle within a LSU scenario, the software first
needs to be distributed from the OEM to all concerned local software update providers
such as a service center. This distribution chain includes the transfer of the new software
from a supplier (i.e., actually creating the new binary) to the OEM, the verification of the
binary by an OEM and, finally, the distribution of this binary to local software providers
(i.e., the considered LSU scenarios) as well as to smart vehicles remotely. As an important
contribution of this thesis w.r.t. the targeted end-to-end solution, we propose a Blockchain-
based security architecture allowing trustworthy software distribution [59]. The developed
architecture covers both steps of the distribution chain (i.e., step 1: from supplier to
OEM; step2: from OEM to the LSU environment), and can be connected to the developed
framework for secure and efficient wireless automotive software updates.

Comprehensive framework for secure and efficient wireless LSUs. The main contribution of
this thesis is a framework for locally-performed Efficient And SEcure wireless automotive
software UPdates (EASE-UP). EASE-UP combines the defined security concept [57] with
advanced software updates mechanisms [37] and the secure as well as reliable wireless
network infrastructure [60] to build a comprehensive LSU framework. The latter allows
to carry out efficient and secure wireless software updates in all aforementioned LSU
scenarios. The developed framework is fully implemented [37] and the resulting prototypes
can be used to demonstrate both wireless vehicle diagnostics as well as wireless LSUs.

Selection of an efficient and secure wireless protocol for LSUs. EASE-UP’s update frame-
work requires a wireless medium used to interconnect all entities involved in a typical
LSU scenario. This wireless medium has a significant impact on the security as well as
the efficiency (i.e., reliable and fast networks leading to a decreased update duration)
of EASE-UP. Therefore, one contribution of this thesis encompasses the identification of
requirements w.r.t. a wireless medium for automotive LSUs, and the comparison of differ-
ent wireless protocols w.r.t. their ability to fulfill all these requirements. The performed
investigation shows the applicability of IEEE 802.11s as wireless medium for wireless au-
tomotive software updates [60], as well as leads to the choice of IEEE 802.11s [29] as the
most promising candidate for a LSU framework.

Securing EASE-UP. Security is a key aspect of EASE-UP, as a suitable wireless LSU
system potentially provides numerous attack vectors that can be exploited by hackers (i.e.,
external attackers) as well as malicious users (i.e., internal attackers). To mitigate the risk

7

Chapter 1 – Introduction

of both internal and external attacks, suitable security measures must be employed, while
also considering the requirements of different LSU scenarios. The latter will demand
different security levels, as the updates are performed in diverse environments by different
types of users.

Methodology based on measurable security for automotive system design. A security con-
cept shall be configurable in a way that it provides sufficient security measures while
not disproportionally slowing down the entire system (i.e., decreasing the efficiency). To
design such a concept, a structured design approach is required. Thus, an important con-
tribution of this thesis is the selection and refinement of a security design approach for
automotive systems based on a measurable security framework [62]. The developed design
approach allows to analyze a system w.r.t. different application scenarios (e.g., different
local software update scenarios) and results in security requirements as well as possible
system configurations for each considered scenario. These results are the basis for the
definition of a suitable security concept.

Generic security concept for wireless automotive software updates. For each local software
update scenario specific peculiarities such as the education of the involved users or the
environment must be considered and hence a certain security level is required. Indeed, one
can therefore develop a tailor-made system for every LSU use case. However, we rather
aim to design a generic security concept for EASE-UP which can be utilized in all LSU
scenarios. Thus, a further contribution of this thesis is the definition of a generic security
concept for automotive software updates [57]. The definition procedure complies to the
design workflow of SAE-J3061 [52], a new security standard for vehicles [62].

Evaluation of EASE-UP. The developed update framework combines various aspects of
security and efficiency, relies on different protocols (e.g., diagnostic, wireless, and vehicle-
specific protocols and standards), as well as encompasses several interconnected entities
(e.g., DT, handheld device, wireless vehicle interface), while taking the specific require-
ments and aspects of the different LSU scenarios into account. Therefore, EASE-UP’s
implementation is rather complex and must be extensively tested to ensure that software
updates are performed in a secure, efficient and reliable way.

Comprehensive testbed infrastructure. Due to the lack of existing suitable testbed environ-
ments, a comprehensive testbed architecture allowing to analyze the impact of different
application scenarios, network topologies and environments on the efficiency of wireless au-
tomotive software updates was developed [58]. The resulting testbed infrastructure allows
to emulate different LSU scenarios and to perform detailed performance evaluations.

Performance evaluation. The last contribution of this thesis is a detailed performance
analysis of EASE-UP’s features. The gathered results encompass i) an analysis of the
impact of different security measures on the local software update duration [37, 58], ii) an
evaluation of the developed wireless software update mechanisms [58], and iii) an analysis
of the performance of the developed end-to-end solution [59], where the duration of the
software distribution is compared with the latency added by the local update process.

8

Chapter 1 – Introduction

1.5 Structure

The remainder of this dissertation is organized as follows. Chapter 2 provides background
information describing automotive standards and diagnostic protocols. Furthermore, an
overview on Blockchain technology is given, an automotive security standard providing
basic information about how to design a secure automotive system (i.e., SAE J3061 [52]) is
described, and a measurable security design approach, namely the SHIELD multi-metrics
[21], is discussed. Thereafter, in Chapter 3, existing work in the area of automotive
software updates is presented and the related challenges with specific focus on security
and efficiency are highlighted.

In Chapter 4, the developed end-to-end solution is presented. This end-to-end solution
encompasses the Blockchain-based security architecture for secure software distribution,
as well as EASE-UP’s architecture allowing secure and efficient wireless automotive LSUs.
Thereafter, in Chapter 5, networking aspects w.r.t. EASE-UP are discussed and the de-
fined framework is explained in more detail. In particular, different wireless protocols are
first analyzed w.r.t. their applicability for wireless software updates and the most suitable
candidate is selected. Furthermore, the defined wireless update protocol is described and
the developed advanced software update features are explained. Chapter 6 is dedicated to
the security-related aspects of EASE-UP. In this chapter, the developed structured system
design approach as well as the defined security concept for locally-performed wireless auto-
motive software updates are described. In Chapter 7 the developed testbed infrastructure
is described and, thereafter, the performed measurements and experiments are discussed.
Thereby, a detailed evaluation of the efficiency of EASE-UP and its key features (i.e., the
developed update mechanisms and the defined security concept) is presented. The gath-
ered results show the benefits of employing advanced software update mechanisms and
prove the efficiency of the developed LSU system compared to a wired solution. Chapter
8 concludes this doctoral thesis by summarizing the obtained results beyond the state of
the art, by discussing limitations, and by providing an outlook on future work.

9

Chapter 2

Background

In this chapter background information is presented on which thesis builds. In particu-
lar, information about different in-vehicle communication protocols as well as automotive
diagnostic standards is provided in Section 2.2, an overview of the Blockchain technology
is given in Section 2.3, in Section 2.4 the new SAE security standard is described, and a
measurable security system design approach is presented in Section 2.5. Please feel free
to skip any or all of these sections in case you have sufficient knowledge in the discussed
fields. Links to the given background information are provided throughout the thesis.

2.1 Automotive ECUs and In-vehicle Communication

A modern vehicle employs dozens of ECUs interconnected by its in-vehicle communication
systems to perform various tasks ranging from controlling the engine, the brakes, or the
steering system, to running the built-in navigation and infotainment systems. In a typ-
ical automotive in-vehicle communication system, ECUs are clustered according to their
dedicated task, as shown in Figure 2.1 and described in [24, 31].

Each cluster is interconnected using a dedicated automotive bus such as Controller Area
Network (CAN), FlexRay, or automotive Ethernet [24]. This bus allows ECUs within a
cluster to directly communicate with each other. Furthermore, each bus is also connected
to a Central Gateway (CGW) interconnecting the single bus systems and thereby forming
the in-vehicle communication system of a modern vehicle. The CGW is an essential device
as it enables distributed applications where ECUs of different clusters are collaborating
while protecting the vehicle and its ECUs from unauthorized access and external attacks.
Thus, this crucial device is broadly investigated by academy and industry (e.g., see [31]).

In most vehicles, the CGW separates the internal bus systems from the diagnostic
interface used by external entities (e.g., a DT within a service center) to access the in-
vehicle communication system. The access management of the CGW makes sure that
only authorized entities are allowed to interact with the integrated ECUs of a vehicle or to
read/write from/to the internal bus systems. Authorized entities can use the diagnostic
interface and automotive diagnostic protocols to query the vehicle for Diagnostic Trouble
Codes (DTC) and to perform software updates for the ECUs. In the following some of
these protocols are described in more detail.

11

Chapter 2 – Background

Central Gateway (CGW)

Diagnostic
interface

Diagnostic
bus

Powertrain Chassis control Body Infotainment

Engine
control

Transmission
control

Battery
management

...

Powertrain
bus

Steering
control

ABS/ESP
controller

Adaptive
cruise control

...

Chassis
bus

Window lifter
controller

Door (lock)
control

Air condition
control

...

Body
bus

Head unit

Navigation
system

Interface to
user devices

...

Infotainment
bus

Figure 2.1: ECUs are clustered according to their task within the vehicle. Different bus
systems are used to interconnect the ECUs within a cluster and a Central Gateway (CGW)
is employed to allow the communication between ECUs of different clusters [31].

2.2 Automotive Standards and Protocols

Several automotive standards are supporting the software update process or are describing
the underlying communication protocols. In the following, the most important standards
are addressed and an overview on the automotive diagnostic stack is given.

2.2.1 Open Diagnostic data eXchange (ODX)

ODX [32] is an automotive data exchange format based on XML providing standardized
mechanisms to exchange diagnostic-related information between vehicle, ECU, and tool
(i.e., DT) manufacturer. An ODX file contains information about the vehicle and its
configuration (e.g., any optional features), as well as information about all built-in ECUs
and how they are interconnected within the vehicle (i.e., bus type and ECU IDs). Software
updates are seen as an essential part of vehicle diagnostics and hence ODX files also include
information about the software available for each ECU.

In Figure 2.2 an overview on the ODX file format is given. A typical ODX file will con-
tain information about i) the vehicle itself including physical as well as logical links between
ECU (i.e., VEHICLE-INFO-SPEC), ii) the available diagnostic protocols including defined
request and the corresponding response messages (i.e., DIAG-LAYER-CONTAINER), iii)
the communication specification including the employed communication protocols (e.g.,
CAN), and the corresponding communication IDs (e.g., the CAN IDs of all ECUs con-
nected by the bus) and parameters (i.e., COMPARAM-SPEC), iv) available multi-ECU

12

Chapter 2 – Background

jobs (i.e., MULTI-ECU-JOB-SPEC; typical not used in practice), and v) how to program
ECUs including information about the ECU’s memory layout, a software version identifier,
and information about each single block of a program.

The developed wireless automotive software update system relies on different informa-
tion contained within a typical ODX file and hence supports this file format (i.e., a parser
to retrieve all required information was developed). The DT will store ODX files in a
local database or request an ODX file from the OEM via a dedicated backbone network
if no ODX description is available in the local database. Please note that ODX files will
be parsed by the DT and that only extracted (and required) data is forwarded to the
WVI/handheld, as ODX files can be quite large in size and contain lots of non-relevant
information (for the update process).

ODX data format

Diagnostic protocol
DIAG-LAYER-CONTAINER

Comm. Parameters
COMPARAM-SPEC

Multi-ECU jobs
MULTI-ECU-JOB-SPEC

Flash Programming
FLASH

Diagnostic
comm. objects

Defined requests
and responses

Supported
protocols

Timing
parameters

Definition of
multi-ECU jobs

ECU Memory
overlay

Software
version ID

Vehicle information
VEHICLE-INFO-SPEC

Brand & type

Physical & logical
links

List of integrated
ECUs

ECU bus (e.g.,
CAN) IDs

Programm
block info

Figure 2.2: ODX data model. An ODX file contains information about the vehicle, the
available diagnostic and underlying communication protocols, as well as the flash process
required to update the software of an ECU.

2.2.2 Protocol Stack for In-Vehicle Usage

Wired vehicle diagnostics (i.e., direct, point-to-point connection between the DT and the
vehicle) including software updates for ECUs are already well specified in the automotive
domain and several standards describe how this communication is carried out on each
layer. In Figure 2.3 an overview of these layers is given. The wireless software update
system developed within this thesis also supports these standardized protocols as they
allow to communicate with a vehicle and its ECUs in an OEM-independent as well as
backward-compatible way. In particular, the developed WVI supports OBD and CAN
connections (i.e., the transport layer as well as the underlying physical interfaces) to the
vehicle and employs Unified Diagnostics Protocol (UDS) to handle the software update
process between the WVI and the concerned ECU. More insights on the UDS protocol are
given in the next section.

13

Chapter 2 – Background

Unified Diagnostic
Services (UDS)

ISO 14229

Universal Measurement
and Calibration
Protocol (XCP)
ASAM MCD-1

A
p

p
lic

at
io

n

la
ye

r
N

et
w

o
rk

 la
ye

r
an

d
 b

el
o

w

Controller Area
Network (CAN)

ISO 11898

FlexRay

ISO 17458

Local Interconnect
Network (LIN)

ISO 17987

Automotive Ethernet

based on IEEE 802.3

Figure 2.3: Automotive communication and diagnostic protocol stack. Several candidates
for automotive communication protocols (often covering the physical, data link, and net-
work layer) as well as diagnostic protocols are available.

2.2.3 Unified Diagnostics Protocol (UDS)

The UDS protocol is defined in ISO 14229 [1] and covers almost all aspects (including ECU
programming) of vehicle diagnostics. It was initially specified for the use on top of UDS,
but there are also extensions for other underlying protocols such as FlexRay or automotive
Ethernet. UDS is supported by a wide range of current ECUs and an UDS stack is often
integrated in the bootloader of the ECU to provide a standardized way to update the
software running on it. Hence, the developed software update system (and in particular
the WVI) uses UDS as primary update protocol within the vehicle (i.e., to transfer data
from the WVI to the concerned ECU via CAN). However, also other diagnostic as well as
communication protocols can be integrated easily due to well-defined interfaces between
the core software components of the WVI.

A UDS-enabled ECU supports different sessions: in normal/operation mode (i.e., UDS
Default Session), the ECU supports a basic set of diagnostic requests. For more com-
prehensive diagnostics (i.e., UDS Extended Diagnostic Session) and to perform an ECU
programming process (i.e., UDS Programming Session), UDS also allows special sessions
and provides well-defined mechanisms to switch between the default session and any other
diagnostic session. The UDS session management is implemented as state machine as
sketched in Figure 2.4. Typically, an authorization step based on a Seed & Key mecha-
nism is required to approve any special session (i.e., authorize the session-specific requests).
Please note that a Seed & Key mechanism is rather weak compared to other available se-
curity measures. Hence, future ECUs will potentially be equipped with secure elements
(i.e., dedicated hardware security chips) allowing to employ more sophisticated security
mechanisms (see [41] or [49]).

UDS is following a typical request-response communication scheme, where most of the
defined requests and the corresponding responses are dedicated to a specific session. In
the programming session the following requests are specified in UDS (please note that

14

Chapter 2 – Background

Timeout
Default
Session

Diagnostic Session Control [03]

Timeout

Diagnostic Session Control [02]

Diagnostic Session Control [01]

Extended
Diagnostic

Programming
Session

Diagnostic Session Control [01]

Extended Diagnostic

Open requests:
Diagnostic Session Control
Security Access

Secured requests:
 Input Output Control
 WriteMemoryByAddress

Programming Session

Open requests:
Diagnostic Session Control
Security Access

Secured requests:
 Request Download
 Transfer Data
 Request Transfer Exit

Figure 2.4: UDS session management. The Default Session is automatically launched
after an ECU reset and once an advanced session times out. UDS Security Access is used
to authorize critical operations such as ECU programming.

UDS allows using additional OEM-specific requests):

• Request Download : initialize a data download to the ECU. This request is typi-
cally used to inform the ECU about the current data block to be transferred (e.g.,
its start address and size). This command will be used multiple times within a
programming session, if more than one code segment shall be transferred.

• Request Upload : initialize a data transfer from an ECU to the DT. This function
can be used to read data segments from the ECU memory.

• Transfer Data : the data transfer itself. The request includes a sequence number
(one byte) followed by the bytes to be transferred.

• Request Transfer Exit : to finalize the data transfer (i.e., upload or download).

It is important to note that there is no dedicated software installation process involved
on ECU level, as the new software is directly written into the flash memory of the ECU
(i.e., using the Transfer Data request) and executed after an ECU reset (i.e., UDS request
ECU Reset). The OEM or the ECU manufacturer can also develop dedicated validation
routines on the ECUs to verify an update (i.e., using the UDS Routine Control request).

2.3 Blockchain Technology

Blockchain is a distributed database (often referred to as ledger) maintaining a continu-
ously growing list of blocks that are chained to each other [13]. In 2008 the Blockchain

15

Chapter 2 – Background

technology was proposed as the underlying platform of the first cryptocurrency Bitcoin
by Satoshi Nakamoto [42]. Today (2018), Blockchains are not only employed in various
cryptocurrencies, but also in other applications such as tracking of goods and valuables
(e.g., for diamonds [34]), as well as in e-governance and the finance sector.

2.3.1 How Blockchain Works

The basic structure of a Blockchain is shown in Figure 2.5. A block within the Blockchain
contains a predefined number of transactions, the smallest piece within a Blockchain, and
includes metadata about a specific event. In Bitcoin, a transaction describes a transfer of
X bitcoins from user A to user B. Each transaction as well as every block is labeled with
a unique identifier (ID). This ID is created by computing the hash value of the content
of a transaction or block, respectively. The actual chaining of blocks is done using these
IDs. A new block contains, besides the transactions and other metadata, also the ID of
the latest added block of the Blockchain. Before the new block is added to the Blockchain,
its ID is computed by hashing the content of the transactions, the meta data, and the
previous block ID. Hence, a tamper-proof chain of blocks is created as every change within
a chained transaction or a stored ID will be immediately detected (as the hash value will
change when only one bit is changed within a block/transaction).

Block ID (BID)

...

Public Key (KeyPub)

Signature (Sig) Priv. Key
(KPriv)

Transaction 2 (T2)
Transaction 1 (T1)

Previous BID (P-BID)

Transaction N (TN)
#

Hash

BID [0x34DD]

...

KeyPubX

Sig X

T2 [0xDF62]
T1 [0x2342]

P-BID [0xF12D]

TN [0xCA0D]

BID [0xF12D]

...

KeyPubY

Sig Y

T2 [0x62DD]
T1 [0xB4C2]

P-BID [0x87C1]

TN [0x4369]

New block Block N Block N-1

Figure 2.5: Example of a local Blockchain instance. Blocks containing transaction are
chained together using the previous block ID.

Blockchain is managed distributedly by a peer-to-peer network, where each node and
user is identified using a public key. Blockchain networks can be public allowing users
from around the world to join the Blockchain ecosystem, or they may also be private (e.g.,
when used internally within a corporation with affiliates around the globe) and thus only
be accessible by authorized users and entities. In both approaches (i.e., public and private
Blockchains), a new transaction is signed by its creator using a digital signature (e.g., RSA)
and then broadcast to the entire network. In the next step, all nodes within the network
will verify this transaction by validating the signature of the transaction generator. The
same principle applies for new blocks except that the other nodes will not only verify the
signature of the block creator, but also all contained transactions.

Classical Blockchain architectures suffer from high (processing and packet) overhead as
well as low scalability and throughput. Especially the proof-of-work (PoW) employed by
such architectures is critical when the Blockchain shall be used within resource-constrained
environments such as the Internet of Things (IoT), but also when using it within automo-
tive applications. The PoW is a part of the Blockchain consensus algorithm that is used

16

Chapter 2 – Background

to add a new block in the Blockchain. When a new block shall be added, all Blockchain
nodes (the so-called miners) will compete with each other solving a complex cryptographic
puzzle. This requires a lot of resources (i.e., CPU, power, as well as time) and hence is not
suitable for resource-constrained entities. Dorri et al. proposed a light-weight Blockchain
approach called Lightweight Scalable Blockchain (LSB) dedicated to IoT applications [12],
where the PoW is replaced by a scheduled block generation process. As a consequence,
LSB eliminates the significant processing overhead of conventional Blockchains and is op-
timized for the IoT and other large-scale low-resource networks.

2.3.2 Lightweight Scalable Blockchain

LSB is based on a hierarchical communication model where the network is divided into
clusters that distributedly manage the public Blockchain. Each cluster consists of nu-
merous Cluster Members (CM) and is managed by one Cluster Head (CH). CHs are
maintaining a local copy of the Blockchain and are interconnected with other CHs by the
overlay network. The mostly resource-constrained CMs do not have to maintain such a
Blockchain copy, but can only access other clusters via their CH and the overlay network.
Thus, a new transaction created by a CM will first be sent to the CH and then broadcast
to the other CHs using the overlay.

The LSB architecture is able to fulfill the aforementioned requirements of a trustable
software distribution. Hence, a slightly adapted version of LSB is used as the basis for the
designed automotive security architecture allowing secure and efficient software distribu-
tion. This architecture is described in Section 4.4.

2.4 The SAE J3061 Automotive Security Standard

In January 2016, SAE released the first automotive security standard called Cybersecurity
Guidebook for Cyber-Physical Vehicle Systems [52]. This standard describes best practices
intended to be flexible, pragmatic, and adaptable in their further application to the vehicle
industry as well as to other cyber-physical vehicle systems. The defined methods and
procedures as well as the characteristic V-model (i.e., development lifecycle) are based on
the well-established automotive functional safety standard ISO 26262 [33].

The standard defines a complete lifecycle process framework that can be tailored and
utilized within each organization’s development processes to incorporate cyber-security
into cyber-physical vehicle systems from concept phase through production, operation,
service, to decommissioning [62]. Chapter 6 (Cyber-security process overview) is of most
interest for the definition of the DEWI1 Security Metric (i.e., the defined measurable secu-
rity design approach; see Section 6.1.1) as it describes the flow of activities in the concept
phase as shown in Figure 2.6. Especially the steps i) Threat Analysis and Risk Assessment
(TARA), ii) Cybersecurity Concept, and iii) Identify Cybersecurity Requirements are par-
ticularly important. The TARA is employed to identify and assess potential system threats
as well as to determine the risk associated with each of the identified threats. A performed
TARA results in the so-called Highest Risk Potential Threats, a group of threats/attacks
with the highest severity and the highest likelihood to be carried out successfully. Next,

1 EU ARTEMIS project Dependable Embedded Wireless Infrastructure (DEWI). For further details see
www.dewi-project.eu.

17

Chapter 2 – Background

Feature Definition

Initiation of Cybersecurity lifecycle

Threat Analysis and Risk Assessment

Cybersecurity Concept

Identify Cybersecurity Requirements

Initial Cybersecurity Assessment

Concept Phase Review

Indentify Cybersecurity Goals

Highest risk potential threats

Figure 2.6: Flow of activities within the concept phase as defined in SAE J3061 [52].

these Highest Risk Potential Threats are used to determine the cyber-security goals and
furthermore to develop a suitable cyber-security concept. Finally, based on the cyber-
security goals and the corresponding concept, the functional (high-level) requirements can
be extracted. These steps are then performed within an iterative process to further refine
the results.

SAE J3061 provides an abstract, high-level description of the aforementioned steps,
as well as the expected results. However, no guidance on how to obtain these results is
given except a possible work flow described in the appendix of the standard. The DEWI
Security Metric proposed in Section 6.1.1 of this thesis can close this gap and support the
process of defining a secure system configuration starting from the identified cyber-security
goals. Additionally, the DEWI Security metric provides a structured approach to create
a comprehensive cyber-security concept as well as to extract cyber-security requirements.

2.5 SHIELD Multi-Metrics

The SHIELD Multi-Metrics approach was developed within the two EU projects called
nSHIELD and pSHIELD. These projects were focused on the research of Security, Pri-
vacy, and Dependability (SPD) in the context of embedded and distributed systems. The
SHIELD Multi-Metrics were designed to evaluate SPD aspects of an entire system as
shown in [21], where a security concept for a vehicular communication unit was used as
an example on how to apply the metrics. The proposed approach allows to find the best
system configuration w.r.t. security by performing a structured system analysis. There-
fore, the overall score of an entire system is computed by first dividing the system into
subsystems, and finally into single components, by assigning weights and security values to
each component, and finally by using the metrics to compute the score of each subsystem
and for the entire system (i.e., a measurable security approach).

In Figure 2.7 the required steps of the SHIELD Multi-Metrics approach are outlined.

18

Chapter 2 – Background

System /
Application

Subsystem

Components

Multi
Metrics Compare

SPD goal

SPD system
score

Identify system
parameters

Identify
configurations

Most suitable system configuration

Figure 2.7: The SHIELD Multi-Metrics measurable security approach.

First, an SPD goal consisting of a value for security, privacy, and dependability in a range
from 0 to 100 (e.g., security: from 0 for no security up to 100 for highest security level) is
defined for each scenario (e.g., different local update scenarios). Next, the system is divided
in subsystems and components. A metric consisting of a criticality and a weight value is
defined for each system parameter (i.e., a possible technical solution for a component; e.g.,
a specific encryption scheme for a communication link). Thereafter, the Multi-Metrics are
used to compute the SPD value of the entire system starting at component level (i.e.,
bottom-up approach). With these steps different predefined system configurations can be
compared to each other, and the best fitting configuration can be identified. Please note
that the configuration closest to the goal value will be chosen due to performance reasons
(i.e., not necessarily the configuration with the highest score).

19

Chapter 3

Related Work and Research
Challenges

In this chapter related work in the area of wireless automotive software updates will be
reviewed. In particular, existing systems as well as proposed architectures will be discussed
regarding their ability to provide a solution for LSUs in Section 3.1. Thereafter, existing
wireless software update solutions are analyzed w.r.t. the important aspects security (see
Section 3.2) and efficiency (discussed in Section 3.3). Next, in Section 3.4, the availability
of comprehensive testbed infrastructures for locally-performed, secure and efficient wireless
software updates is discussed. The chapter concludes by highlighting the need for an end-
to-end solution for wireless automotive LSUs, and by stating the related research challenges
in Section 3.5.

3.1 Existing Solutions for Automotive Wireless Software
Updates

Wireless automotive software updates are currently in focus of academia as well as the
industry due to their high potential and the multitude of related research challenges. The
benefits of automotive OTA updates compared to wired software updates are listed in
[51]. In this white paper the disadvantages of conventional (i.e., wired) software updates
are listed, and a high-level architecture for efficient OTA updates is presented. However,
the author provides no technical insights on how to realize such a system and neither a
description of the wireless medium used nor the security mechanisms employed is given. In
[47] the software update process for ECUs based on international standards (e.g., UDS and
ODX; see also Section 2.2) is described. However, this work is not addressing a wireless
approach for such updates at all.

To date (2018), Tesla is the only car manufacturer providing a solution for automotive
remote updates for an entire fleet of vehicles. To perform such an OTA update, the vehicle
is either interconnected with the OEM via a 3G Internet link, or connected to a Wi-Fi
network to establish a secure tunnel to the OEM. The secured link between the OEM
and the vehicle can then be utilized to transfer the latest software from the servers of the
OEM to a Tesla vehicle [19]. However, this point-to-point connection between the OEM
and the vehicle cannot be used to simultaneously install software in different vehicles and

21

Chapter 3 – Related Work and Research Challenges

on several ECUs in parallel. Thus, this solution is not applicable for LSUs (e.g., within
a service center, where several vehicles are maintained at the same time). Furthermore,
the solution is dedicated to Tesla vehicles and cannot be used for vehicles of other OEMs.
Hence, a service center providing maintenance for different brands will require a dedicated
wireless system for each brand.

Other authors of previous work such as [26, 36, 39, 41, 43, 44] mostly focus on auto-
motive remote updates, but do not consider the peculiarities of LSU scenarios at all. A
system allowing OTA updates was presented by Idrees et al. [41]. In this work a high-level
OTA software update architecture is presented with focus on a secure software update
protocol and on the use of hardware-based security features. However, no further infor-
mation on the actual implementation of the system is provided nor is any detail about
the performance of the solution given. In a white paper by Steurich et al. [6], an OTA
architecture utilizing trust anchors to secure the actual software transfer process is pro-
posed. The authors discuss the advantages of wireless software updates and highlight the
need for strong security mechanisms. They argue that hardware modules – the so-called
trust anchors – are essential to protect the connection between vehicle and the outside
world as well as to establish a secure in-vehicle communication network. Although the
authors provide technical insights on the security aspects, they do not further describe an
actual implementation of the system. Furthermore, no information about the applicability
of utilizing the proposed system in LSU scenarios is provided. Also the authors of [49]
propose to use security hardware modules on the ECUs and the vehicle gateway to secure
OTA updates by providing a secured link between the OEM and the vehicle. In the paper,
the authors focus on the proposed security features and provide a high-level architecture
for automotive remote updates. However, no details on the actual implementation are
given and no evaluation results are presented (besides the performed overhead analysis).
Another OTA software update architecture is proposed by Nilsson et al. [43, 44]. In the
described architecture, a vehicle is employing an Internet link to receive new software from
a portal server. In the paper important security aspects, especially data integrity and data
confidentiality, are listed w.r.t. automotive remote updates. However, the authors neither
describe the utilized wireless network nor provide any details on an actual implementation
or the corresponding system evaluation, but mainly focus on security aspects. The authors
of [55] propose an Android-based framework for aftermarket software upgrades. A vehicle
communication interface is used to interconnect the vehicle and a web server hosting the
new software via 3G. The interface runs Android and is connected to the vehicle via the
OBD interface. The authors describe a proof-of-concept implementation and some basic
evaluation results (e.g., running a performance test on the server). However, the authors
are not discussing real-world update scenarios (such as LSUs) and are not addressing se-
curity at all. The authors of [46] also omitted security mechanisms and only focus on a
fast software update protocol applicable for LSUs as well as remote updates. However,
the authors do not discuss automotive updates in its entirely (i.e., covering all involved
steps and entities), but only focus on the developed compression algorithm.

Lack of suitable update frameworks for LSUs. The aforementioned solutions and ar-
chitectures are proposing different ways to update automotive software running on ECUs.
However, authors mainly address remote updates, where the vehicle is connected to the
server hosting the new software (most works assume the OEM to be the source of new

22

Chapter 3 – Related Work and Research Challenges

software) via a dedicated Internet link. This link can be seen as a point-to-point con-
nection between the OEM and a vehicle. Local update scenarios i) where several vehicles
shall receive new software at the same time, ii) expert users are maintaining vehicles whiles
updates are performed, and iii) where no direct communication channel between the OEM
and the vehicle exists, are not addressed. Therefore, the proposed solutions are not appli-
cable for the LSU scenarios targeted in this thesis and a suitable LSU framework needs to
be designed and developed.

Such a framework for locally-performed automotive software updates shall be able to
address the peculiarities of different LSU scenarios (e.g., provide mechanisms to handle
updates for several vehicles in parallel or allow users to work on several vehicles at the
same time), must employ a suitable security concept protecting all involved users and
entities, as well as shall provide efficient software update mechanisms to keep the time
required to perform an actual software update to a bare minimum.

The majority of the listed papers is focusing on the security-related aspects of the
software update process. The following section will discuss the proposed security solutions
in more detail, with particular focus on their applicability for securing automotive LSUs.

3.2 Securing Wireless Automotive Software Updates

Wireless software updates require a wireless interface interconnecting the vehicle with
the outside world. Such an interface does not only allow software updates, but can also
be used to run vehicle diagnostics (e.g., in a service center) or to let users interconnect
their personal devices (e.g., a smartphone) with the multimedia system of the vehicle.
However, such an interface can also be exploited to attack the vehicle and its in-vehicle
communication system [15, 22, 63]. Therefore, several related works address the security
issues and propose different security solutions to protect all involved entities of wireless
automotive software updates as well as the exchanged data [6, 26, 39, 41, 43, 44, 49]. The
presented works specifically highlight the security aspects ehicle integrity and authenti-
cation [35, 41], data confidentiality [6, 41], data integrity [39, 43], and key management
and exchange [6, 41, 49]. The core security features proposed to address all these security
aspects are stated next.

Hardware-based security features. Different authors have proposed to use dedicated
hardware-based security features to protect the software update process. In [41] the pro-
posed system utilizes a Hardware Security Module (HSM) for security-related tasks such
as ensuring data integrity as well as confidentiality and key management. The HSM is
used on all ECUs as well as the wireless interface connecting the vehicle with the outside
world. The authors mainly focus on the protection of the in-vehicle communication system
and do not detail the keying infrastructure, the trust model used between the vehicle and
the OEM (or the DT in local environments), as well as the wireless technology used to
transfer data from the OEM to the interface of the vehicle. Steurich et al. [6] propose the
use of secure elements to safeguard remote updates. In this paper, the authors state dif-
ferent security measures provided by secure elements, but do not specify a comprehensive
security concept for wireless automotive software updates. In [49], the authors propose
to use HSMs on the wireless vehicle interface as well as on all ECUs of the vehicle. The
focus of the authors is on the integration of these modules in the vehicle and its ECUs,

23

Chapter 3 – Related Work and Research Challenges

and an evaluation of the resulting resource overhead is presented. However, the authors
do not discuss the entire software update framework (neither for remote updates nor for
LSU scenarios), but only focus on securing the vehicle.

Software-based security features. Nilsson et al. [43] propose the use of a hash-chain
to protect the integrity of the transferred data. Therefore, the software is divided into
segments and computing the hash value of each segment. When a segment is transferred
to the vehicle, the segment itself is transferred along with the hash of the next segment.
Therefore, the vehicle can check that a segment was not altered while transferred. Ad-
ditionally, the proposed protocol provide mechanisms to ensure data confidentiality and
data authentication. Thereby, the authors only focus on unicast data streams between
one vehicle and the portal server. Scenarios including several vehicles receiving the same
software simultaneously (i.e., parallel updates) are not discussed.

In [39], the authors propose a security architecture for wireless automotive software
updates in which data integrity is ensured by sending multiple copies of the software to
the vehicle. However, the authors only discuss point-to-point links between the OEM and
the vehicle. Furthermore, no update authentication and authorization step is discussed
in the proposed architecture (i.e., update is started if the received copies match). In [26]
the authors also present a security concept for OTA updates, where a software binary is
transferred to a vehicle twice to secure the update process (this mechanism shall allow
to detect changes in the transferred data set). The paper focuses on comparing the error
probability of a system, where new software is only transferred once, with their approach
where each software binary is transferred twice. However, the authors do not consider a
wide range of state-of-the-art attacks (e.g., man-in-the-middle or replay attacks).

In [35], Liu et al. describe a vehicle authentication protocol to securely interconnect
electric vehicles with a smart grid using the vehicle’s wireless interface. Therefore, Public
Key Infrastructure (PKI) is used to perform the authentication step between the vehicles
and the grid in a secure way. The proposed protocol is not dedicated to wireless soft-
ware updates. However, the underlying idea could potentially also be used (with slight
adaptions) to perform the authentication step in LSU scenarios.

Security challenges with regard to LSUs. All listed security solutions highlight the
importance of security w.r.t. wireless automotive software updates. A framework for
wireless software updates – both remote as well as locally-performed updates – must ad-
dress the essential aspects vehicle integrity and authentication, data confidentiality, data
integrity, and key management and exchange. However, none of the proposed solutions is
able to cover all these security aspects and the authors do neither consider the peculiar-
ities of LSU scenarios in their security concepts nor evaluate the impact of the employed
security mechanisms on the efficiency of the software update process (i.e., mainly w.r.t.
the resulting software update duration).

A security concept for locally-performed software updates i) must address all afore-
mentioned security aspects as well as ii) shall be suitable for different LSU scenarios and
hence needs to configurable to fit the needs of each of these scenarios while still allowing
an efficient (i.e., fast) software update process.

24

Chapter 3 – Related Work and Research Challenges

3.3 Increasing the Efficiency of Wireless Software Updates

Besides security, also the duration of a software update is important. Next, related works
with a particular focus on increasing the efficiency of wireless automotive software updates
– for both remotely as well as locally-performed updates – are discussed.

Efficient automotive software update protocols. Today, automotive software up-
dates are often quite time consuming, as the in-vehicle communication networks (especially
CAN) are rather slow. A single update of a 4 MB software binary can take up to 5 min-
utes [6]. Therefore, advanced software update mechanisms that allow to reduce the actual
software update duration by means of partial updates (i.e., by reducing the number of
bytes to transfer) or to perform updates for several vehicles at the same time by means of
parallel updates could be very beneficial in all automotive software update scenarios.

In [6] an update mechanism for ECUs with two dedicated flash memory blocks is
proposed. While block A is still executing the current software, new software is installed
on block B. Once the software installation on block B has completed, the ECU can reboot
and start the new software stored on block B. This mechanism hence allows to perform
a software update while the vehicle is still operational (i.e., one can use and drive it).
Although this block swapping (i.e., the use of a second block once the new software is
installed) can be useful in some LSU scenarios (e.g., the mechanic can run diagnostics on
the running vehicle while updates are performed in parallel), it is not actually decreasing
the software update duration.

Andrade et al. [3] discuss parallel OTA updates for connected vehicles and focus on
the impact of the mobile network used to transfer the data to the vehicle. The authors
argue that performing updates for vehicles in parallel can help to significantly reduce
the overall duration of the updates (i.e., instead of performing a software update for
several vehicles sequentially, one parallel update will install the new software on all vehicles
simultaneously). Although the authors focus on remote OTA updates, the basic idea of
performing updates in parallel can also be transferred to LSUs.

In [27, 28] the authors propose an infrastructure-based wireless multicasting method
to update the software installed on automotive ECUs. The multicast performed between
vehicles and either a base station of a mobile communication network or an Intelligent
Transportation Tower of future Intelligent Transportation System (ITS) infrastructure is
used to distribute the software packets to the target vehicles. The proposed system also
includes a security architecture to protect the multicast system accordingly. The proposed
architecture is dedicated to remote software distribution (i.e., focus on how to transfer new
software the last mile from suitable ITS infrastructure to the vehicle) and hence does not
cover all aspects, required steps, and involved entities. However, the gathered simulation
results show the benefit of performing software updates on several vehicles simultaneously.

To actually decrease the duration of an individual software update, the authors of [46]
propose an update protocol that employs a compression algorithm to reduce the amount
of data to transfer and thus speed up the update process. The compression algorithm
allows to create a delta file that can be used on the gateway or on the ECU itself to create
the new software version using the delta file in combination with the currently installed
software. The delta files are significantly smaller than the software binary itself, thus the
time to transfer the software to the ECU (especially via the slow CAN bus) is reduced

25

Chapter 3 – Related Work and Research Challenges

significantly. However, this mechanism must be supported by the ECU (its bootloader)
and hence it cannot be used for all ECUs.

A similar approach to reduce the amount of data to transfer to the ECU is proposed
in [51]. The authors argue that the use of delta files can decrease the software update
duration significantly, as the size of the delta file is typically less than 5% of the original
size of the software binary and, therfore, the time to transfer the software to the ECU is
also reduced. However, the authors are not providing any insights on how such a delta
file can be created, nor on which algorithm they are using. Furthermore, no information
is given whether the ECU needs to support the proposed delta-update mode.

Efficient software updates for Wireless Sensor Networks (WSN). In WSNs dif-
ferent mechanisms enabling efficient ways to update the software on the WSN nodes were
developed. These mechanisms mostly address the aspects disseminating the update, re-
ducing the traffic required for the disseminated updates, and the sensor node execution
environment [7]. Especially traffic reduction is important w.r.t. wireless automotive soft-
ware updates, as it mitigates the effect of the slow in-vehicle communication protocols [6]
on the update duration and hence increases the efficiency of the entire process. In WSNs
traffic reduction is often achieved by utilizing partial software updates, where only the
delta between two software versions is sent to the sensor nodes, as shown in [10]. EASE-
UP will make use of partial software updates similar to these mechanisms (see Section
5.3.2). However, in contrast to WSNs, where power consumption is of highest importance,
the framework proposed in this thesis focuses on efficiency (w.r.t. the update duration)
and addresses peculiarities of the automotive domain.

Lack of software update systems allowing efficient LSUs. Different solutions for
automotive remote OTA updates as well as for wireless software updates in other domains
show the potential of significantly increasing the efficiency of wireless software updates by
utilizing advanced (e.g., partial or parallel) software update mechanisms. However, none
of the discussed solutions are addressing automotive LSU scenarios.

A framework for LSUs shall be able to utilize advanced software updates mechanisms
such as partial and parallel software updates to decrease the overall duration of updating
the software on one or several vehicles. These mechanisms must be applicable for different
LSU scenarios (e.g., a vehicle assembly line as well as a service center) and shall be as
OEM- and ECU-independent as possible. Furthermore, the advanced update mechanisms
must be protected by suitable security solutions (e.g., a secure multicast data stream
transferring a software binary to several vehicles at the same time) to ensure a fast but
also secure software update process.

3.4 Evaluating LSU Frameworks Experimentally

The LSU procedure for automotive systems is rather complex, and involves multiple steps
ranging from the secure authentication with the device providing the new software image
(i.e., the DT) and the reliable wireless data transfer, to the installation and verification
of the new software on the target ECU employing an automotive bus. All these steps
are interconnected and affect the overall efficiency of the software update process, which
should always be evaluated or studied in its entirety.

26

Chapter 3 – Related Work and Research Challenges

Hence, the efficiency of a LSU system in terms of duration of an update performed on
one or several vehicles and ECUs is of high relevance and needs to be carefully studied
[58]. This requires a deep investigation of the main aspects affecting the efficiency of a
software update system, such as: i) the topology of the wireless network , ii) the applied
security configuration (including different authentication schemes and key lengths), and
iii) the employed software update mechanism (e.g., parallel or partial updates). All afore-
mentioned aspects shall be analyzed experimentally on real hardware – ideally all at the
same time – in a repeatable as well as systematic way to study their interdependency and
to show the applicability of the tested automotive software update framework at hand.

A number of automotive testbed infrastructures have been proposed to evaluate auto-
motive systems. In [14], a testbed consisting of several automotive ECUs interconnected
by CAN is used to verify the SW running on these ECUs. Although the testbed provides
a basic software update function, it is not capable of evaluating the entire wireless soft-
ware update process, nor is able to analyze security- or network-related aspects. In [64],
a Vehicle-to-Vehicle (V2V) testbed consisting of 200 nodes distributed over three floors
within an office building is presented. The testbed can be used to simulate different V2V
scenarios (e.g., on a highway), thereby evaluating high density scenarios and properties of
IEEE 802.11p such as the signal-to-noise ratio and the packet error rate. This testbed,
however, does not allow to connect automotive ECUs and can not be used to evaluate
any aspect with respect to the efficiency of wireless software updates. In [8] an open
testbed integrating ad-hoc V2V communications and a wireless mesh backhaul deployed
at the UCLA campus is introduced. Although the testbed is meant to be used for analyz-
ing V2V communication aspects, the authors only evaluate a video streaming application
employing the mesh infrastructure.

Lack of suitable automotive testbeds. Although a number of existing testbed in-
frastructures for automotive systems exists (e.g., to verify the software running on ECUs
interconnected by CAN [14], or to study the reliability of car-to-car communications within
a large-scale setup [64]), none of them is able to evaluate automotive wireless LSU sys-
tems in their entirety. Thus, there is a clear need for suitable testbed infrastructures
allowing the evaluation of automotive LSU systems. Such testbeds must be able to em-
ulate different LSU scenarios, to analyze the impact of the employed security features,
and also to evaluate advanced software update mechanisms such as partial or parallel up-
dates. Furthermore, suitable infrastructures shall also allow to extensively test different
LSU scenarios end-to-end including the software distribution as well as the local software
installation step.

Other works evaluate the proposed software update architectures/protocols for remote
updates using simulations: in [26] an analytical and simulation-based analysis is performed
to evaluate the proposed architecture. The authors of [49] use simulations to evaluate the
memory overhead caused by the employed security mechanisms, and in [27] a dedicated
simulator was developed to evaluate the proposed multicast software update architecture.
Although these simulations can be used to analyze a software update framework (or at
least single aspects of it), they cannot replace extensive tests performed on real automotive
hardware.

27

Chapter 3 – Related Work and Research Challenges

3.5 Secure End-to-end Solution for Automotive LSUs

Numerous related works have been reviewed in Sections 3.1 to 3.4. These works are cover-
ing several important aspects of wireless automotive software updates and provide different
solutions and architectures for secure software updates especially w.r.t. to remote OTA
updates. Some of the reviewed works even provide end-to-end solutions for automotive
remote updates [27, 51] or propose end-to-end security concepts [6, 39, 41] for such OTA
updates. However, none of the discussed works is able to provide a secure end-to-end
solution for automotive LSUs due to the focus on systems for automotive remote updates.

Lack of end-to-end solutions for LSUs. A secure end-to-end system for different LSU
scenarios must provide suitable solutions for the software distribution step (i.e., software is
distributed to local software updates providers such as a vehicle assembly line or a service
center) as well as the actual software installation step within a local software provider.
Such an end-to-end solution for LSUs shall be able to cover:

• secure software distribution: distribute the software from the OEM or a supplier
company (i.e., the software creators) to a local software update provider such as a
vehicle assembly line or a service center and provide suitable security features to
protect the transferred data as well as the involved users;

• efficient automotive LSU framework: provide suitable mechanism to speed-up
the software update process in LSU scenarios;

• end-to-end security concept: a comprehensive security concept is required to
protect the integrity, authenticity as well as confidentiality of the transferred soft-
ware, ensure the secrecy of the employed keys, protect the safety as well as the
privacy of the involved users, and secure all involved entities.

The developed end-to-end solution shall be extensively tested in a suitable testbed in-
frastructure. This infrastructure shall allow to analyze the impact of the employed
security mechanisms, the utilized wireless network, as well as the used software update
mode on the software update duration.

28

Chapter 4

End-to-end Solution for Local
Software Updates

A primary goal of this thesis is to design an end-to-end solution covering both steps of
the LSU procedure as illustrated in Figure 4.1: the software distribution (step 1), and the
local software installation (step 2). In this chapter a detailed description of the proposed
architecture for the software distribution as well as for the actual software update process
within a local update provider (e.g., a service center) is presented.

In Section 4.1, the considered LSU scenarios are discussed and their peculiarities are
stated. Thereafter, in Section 4.2, requirements regarding an efficient and secure end-to-
end solution for wireless automotive LSUs are stated and described. These requirements
are valid for the secure software distribution architecture described in Section 4.4, as well
as for the architecture for local software updates proposed in Section 4.5.

4.1 Local Software Update Scenarios

This thesis focuses on locally-performed wireless automotive software updates supporting
the entire lifecycle of modern vehicles. In this section, the considered LSU scenarios, as
shown in Figure 4.2, are described one by one. Each scenario represents a local software
update provider able to install new software (once received from the OEM via the software
distribution network) on a vehicle and its ECUs, respectively. In the following, the pe-
culiarities of different LSU scenarios are revealed and the experience level of the involved
users is discussed [61].

Vehicle development. In the vehicle development scenario, development engineers have
to update the software of an ECU several times to evaluate and test newly developed
features. A flexible and efficient software update framework supporting the development
engineers in their work could be very beneficial (e.g., speeding up the preparation process
as the engineer can update the software of several test vehicles at the same time). Ve-
hicle development activities will primarily take place in restricted environments (e.g., a
dedicated test track or the company premises) and will be performed by expert users.

Vehicle assembly line. Vehicle assembly is performed in a highly automated environ-
ment, where most working steps are performed by robots. An ECU assembled in a new

29

Chapter 4 – End-to-end Solution for Local Software Updates

Supplier

- Create new
software (SW)

OEM

- Create new SW
- SW adaptions
- Validate new SW

Service center

- Vehicle repairs &
maintenance
- Mechanics working
on several vehicles

Assembly line

- Highly automated
process
- Several vehicles
require same SW

Vehicle
Development

- Test of new SW and
functionality
- New SW for a (fleet
of) test vehicle(s)

Step
 1

: so
ftw

a
re d

istrib
u

tio
n

St
ep

 2
:

lo
ca

l s
o

ft
w

ar
e

 in
st

al
la

ti
o

n

New software

Software
A

New
software

Software v2
(new)

Software
B

Software v1
(current)

Delta

Wireless update protocol Parallel updates Partial updates

Figure 4.1: Architecture for an efficient end-to-end solution for wireless automotive LSU.

vehicle, in most cases, already holds the required embedded software. However, it can
happen that the ECU software changes (e.g., due to a necessary bug fix) while the ECU
with the installed (and faulty) software on it, is already shipped to the assembly line. In
such a case, the software of many vehicles must be updated – ideally in parallel – to install
the latest software on the concerned ECUs. Because of the high number of vehicles as
well as the high degree of automation scalability, reliability and efficiency aspects of the
utilized software update system are of essential importance. An assembly line is a secured
environment where access is limited to trained users.

Service center. In a typical service center scenario mechanics (i.e., trained users) will
diagnose, repair and maintain several vehicles. Therefore, a mechanic most likely first
connects to a vehicle to run dedicated diagnostic functions and to look for DTC. Next,
the mechanic will perform maintenance tasks as well as necessary repairs according to the
gathered information. If new software is available for one or more of the embedded ECUs
of the vehicle, the mechanic will additionally trigger the installation of the latest software.

For an efficient work flow, the mechanic will potentially work on several vehicles at the
same time: while the latest software is installed on one vehicle, the mechanic can already
start to diagnose an other vehicle. In case of large vehicle recalls, several vehicles can even
require the same software update. Parallel software updates would significantly reduce

30

Chapter 4 – End-to-end Solution for Local Software Updates

Assembly line

Vehicle development

SW database

Service center

Office

Engineer

Operator

Local SW
database

Mechanic

SW

SW

Figure 4.2: Considered LSU scenarios: wireless software updates performed in the vehicle
development phase, in the vehicle assembly line, as well as in service center scenarios.

the overall update duration in such cases.

A service center is basically a restricted area. However, customers will frequently enter
the facility to pick up their repaired vehicles. Thus, service centers cannot be considered
as secured environments with limited access in practice.

4.2 Requirements for an End-to-end Solution for LSUs

An end-to-end solution for wireless software updates suitable for different LSU scenarios
shall be able to fulfill a range of essential system-level requirements. The latter must be
addressed by the developed software distribution architecture as well as by EASE-UP,
the developed framework allowing efficient as well as secure local software updates. In
the following, the relevant aspects efficiency, reliability, security, and privacy are briefly
discussed and their scope within an end-to-end solution for LSUs is defined. Thereafter,
specific requirements for both the secure software distribution (step 1) and the local soft-
ware installation (step 2; requirements for EASE-UP) are stated. In Section 5.1.1, the

31

Chapter 4 – End-to-end Solution for Local Software Updates

list of relevant aspects will be used again to extract specific requirements on a wireless
networking technology employed in LSUs.

• Efficiency: the end-to-end solution shall be as efficient as possible, whereas efficiency
is mainly seen with regard to the overall software update duration. Each component
and subsystem shall provide suitable bandwidth in the employed communication
channels as well as make use of parallel data streams where possible to reduce the
overall software update duration to a bare minimum.

• Reliability: the developed system and its components shall be reliable to ensure
that new software is installed successfully without any system failure or unnecessary
delays (reliability also contributes to efficiency). The system shall avoid single point
of failures (especially with respect to the wireless network) and try to benefit from
redundancy where possible.

• Security: all involved components as well as users must be protected by suitable
security measures. These measures must i) protect the confidentiality as well as the
integrity (i.e., against unintended changes such as flipped bits on the communication
channel as well as intended changes by an attacker) of the exchanged data, ii) en-
sure that only authorized users can interact with the developed update system, iii)
protect vehicles from unauthorized updates and access from outside in general, and
iv) provide suitable mechanisms to prove the authenticity of the involved entities
(e.g., a trustworthy DT is connected to the vehicle) as well as the exchanged data
(e.g., the authenticity that a new software is really coming from the OEM). The
employed security mechanisms must be strong enough to fulfill the aforementioned
security aspects i) to iv), but shall also be as light-weight as possible to keep the
added latency to a minimum (i.e., contributing to efficiency).

• Privacy: personal data (e.g., location information) of the involved users (especially
the owners of the vehicles) shall be protected to ensure the user’s privacy. Privacy
is thereby closely connected to the security requirements as ensuring the confiden-
tiality of the exchanged data is essential to privacy. However, privacy also requires
protection from malicious insiders such as a rogue mechanic using service center
equipment to extract personal information from a vehicle.

4.2.1 Requirements for Secure Software Distribution

In the following, the aforementioned general requirements are reconsidered w.r.t. the
secure software distribution system. These requirements will then be used to design the
corresponding architecture described in Section 4.4.1.

• Efficiency: the software distribution shall be efficient and hence fast. This is es-
pecially important if a critical software bug was discovered and the fixed software
version shall be distributed as fast as possible. The efficiency aspect is also re-
lated to scalability, as the distribution shall be efficient on an entire fleet of vehicles
encompassing thousands of vehicles located around the globe.

32

Chapter 4 – End-to-end Solution for Local Software Updates

• Reliability: the used software distribution network shall provide multiple paths in-
terconnecting the entities creating new software such as the OEM, and the local
software update providers such as a vehicle assembly line, where the new software is
installed on the concerned ECUs. This communication layer redundancy shall help
to prevent single point of failures in the software distribution process.

• Security: a software update can potentially allow an upgrade of a certain func-
tion/system within the vehicle and users (i.e., the vehicle owner) may have to pay
for such an update. Therefore, the confidentiality of the transferred software must
be protected so that i) no one can copy the software and provide it to others for free
or sell it without permission, and ii) the intellectual property of the software w.r.t.
the OEM and/or the supplier company is ensured.

The software distribution architecture also needs to protect the integrity of the
transferred data (i.e., the software binary) all the way from the department of a
company creating the software until it is finally installed on the concerned ECUs.
Neither an attacker nor a malicious employee shall be allowed to tamper with the
data while the software is stored and/or distributed.

Additionally, the designed software distribution architecture must ensure that i) only
authorized vehicles shall be allowed to get the new software binary, and ii) the OEM
is really the source of the new software.

• Privacy: the privacy of the involved users (i.e., the vehicle owner and driver) must be
protected. In contrast to current remote update systems (e.g., as used by Tesla [19]),
where dedicated VPN tunnels are established to perform software updates via point-
to-point connections between the vehicles and the OEM, the designed secure software
distribution architecture shall allow a connectionless software distribution procedure.
This loose coupling between the involved entities (i.e., OEMs, automotive suppliers,
local software update providers such as service centers and vehicle assembly lines, and
vehicles) shall be able to mitigate the risk of insider attacks, where an attacker (e.g.,
a malicious employee of an OEM) exploits the communication channel for accessing
privacy-related data from the vehicle or tracking the location of the vehicle.

In Section 4.4 a Blockchain-based solution for secure and efficient software distribution
addressing all these requirements and aspects is proposed.

4.2.2 Requirements for EASE-UP

In the following, the list of general requirements discussed in Section 4.2 is reconsidered
w.r.t. EASE-UP, the developed framework allowing efficient and secure wireless software
updates in LSU scenarios. These requirements will then be used to develop an efficient
update protocol encompassing advanced update mechanisms such as partial and parallel
software updates (see Chapter 5), as well as to define the corresponding security concept
applicable for different LSU scenarios (see Chapter 6).

• Efficiency: EASE-UP shall reduce the time required to install new software on an
automotive ECU in a local environment to a bare minimum by i) allowing users
to work on several vehicles at the same time using one handheld device, by ii)

33

Chapter 4 – End-to-end Solution for Local Software Updates

employing beneficial mechanisms such as partial or parallel software updates, and
by iii) utilizing a fast wireless network interconnecting all involved entities.

• Reliability: EASE-UP must ensure that a software update was successfully finished,
as a failed update (i.e., update started but never finished) will set the concerned
ECU and potentially the entire vehicle into an undefined and safety-critical state.
Therefore, EASE-UP shall provide suitable mechanisms to inform users about the
current state of an update and, in case an update has failed, also provide information
about the reason of the update failure.

• Security: EASE-UP must be protected by a suitable security concept ensuring data
confidentiality and integrity, and protecting involved entities (e.g., the DT) and
users (e.g., mechanics in a service center). Thereby, the security concept shall be
generic to be applicable for all targeted LSU scenarios and also be configurable to fit
the needs of each of these scenarios. Please note that a measurable security design
approach (see Section 6.1 for more information) was used to extract detailed security
requirements. These requirements can be found in Section 6.2.1.

• Privacy: EASE-UP must prevent attackers (i.e., hackers as well as rogue internal
users) from extracting personal information stored on a vehicle.

4.3 End-to-End Software Update Procedure

The requirements stated and described in the previous section (i.e., Section 4.2) apply to
both steps of the targeted end-to-end solution for locally-performed wireless automotive
software updates, as shown in Figure 4.3.

In the first step, the secure software distribution architecture described in Section 4.4
is used to transfer new software from the suppliers and the OEMs to the local software
update providers such as service centers or vehicle assembly lines. Once the software has
reached the local software update providers, the software will be verified to make sure
that it was originated by the OEM and not altered while transferred. After verifying the
new software, the local software update providers will store the software in their local
databases (i.e., part of the DT).

The actual wireless locally-performed software update is carried out once a vehicle
requiring the new software has entered the local software update provider and connected
to the LSU system (i.e., EASE-UP). The latter will then check for available updates by
querying its local database, initiate the software update process on the connected vehicle,
and finally control the wireless LSU procedure. More information on EASE-UP can be
found in Section 4.5, as well as in Chapters 5 and 6.

4.4 Secure Software Distribution

An automotive software update can be triggered by a tier-1 supplier (i.e., a company
directly selling products, e.g., an ECU or its software to the vehicle manufacturer) or by
an OEM due to a necessary bug fix or to upgrade the functionality of an ECU, as indicated
in Figure 4.4. Before the update can be installed on the ECUs of the concerned vehicles,

34

Chapter 4 – End-to-end Solution for Local Software Updates

Supplier company

Create new
software version

OEM

Receive
software

Validate and
adapt software

Distribute
software

Secure software distribution

Local software
update provider

Receive new
software

Validate new
software

Store in local
database

Check for new
software

Initiate
software update

Perform
software update

Vehicle requiring
new software

Connect to
the system

Authorization of
software update

Installation of
softare on ECU

Locally-performed software update

Figure 4.3: End-to-end software update procedure including the secure software distribu-
tion step as well as the locally-performed wireless software update process.

the new software first needs to be transferred to the vehicle itself or a local software update
provider. This is done within the software distribution step.

As illustrated in Figure 4.4, the software distribution step is suitable for both automo-
tive remote updates (out of scope of this thesis) and locally-performed software updates,
and encompasses two main stages: in the first stage, a supplier company (after creating
the new software) informs the OEM (or even several OEMs) about an available software
update. Next, the OEM will validate the new software and potentially perform some
adaptions. In the second stage, the OEM will forward the new software to the vehicles
itself (i.e., remote updates; out of scope of this thesis) or to local software update providers
such as the vehicle assembly line or a service center.

In the following, the proposed architecture for secure software distribution is described
in detail. This architecture allows to cover both aforementioned stages (i.e., stage 1:
transfer new software from the supplier to the OEM; as well as stage 2: distribute the
software to local software update providers) of the software distribution step and provide
suitable functions to:

• notify entities about available software: depending on the current stage of the soft-
ware distribution process, either the OEM (i.e., in stage 1) or the local software
providers as well as smart vehicles (i.e., in stage 2) are informed about new software,

35

Chapter 4 – End-to-end Solution for Local Software Updates

 Remote updates

 Local updates: service center, assembly line

Diagnostic
Tester

Mechanic

secured

 connection

CGW

ECU

ECU

ECU

OBDWVI

SW verification

OEM

CGW

ECU

ECU

ECU

WVI
N

e
w

 E
C

U

SW
 a

va
ila

b
le

St

a
rt

St
a

rt

Tier-1 supplier

Secure software
distribution

Local software
update

Figure 4.4: End-to-end solution for wireless software updates including secure software
distribution as well as software installation on the ECU.

and a pointer (e.g., an Internet link) to this software is provided;

• securely and efficiently transfer as well as store software: provide suitable mecha-
nisms i) to store new software on a public-accessible server or cloud service (i.e., an
online storage), and ii) allowing authorized entities and users to upload as well as
download software binaries from this online storage.

Additionally, the employed architecture shall be able to fulfill the list of requirements
stated in the Section 4.2.1.

Please note that the designed secure software distribution architecture is applicable
for remote as well as locally-performed automotive software updates. However, the focus
of this thesis is clearly on the development of local software update procedures.

4.4.1 Designed Architecture for Secure Software Distribution

The aforementioned aspects as well as the requirements stated in Section 4.2.1 mostly
match the benefits and advantages of a typical Blockchain architecture (i.e., security, im-
mutability and privacy). Therefore, Blockchains could be a useful technology to realize
a secure software distribution. More information on the functionality of the Blockchain
technology can be found in Section 2.3.1. The proposed architecture is based on the
Lightweight Scalable Blockchain (LSB) developed by Ali et al. [12]. LSB utilizes a hier-
archical model consisting of clusters, where each cluster is maintained by a Cluster Head
(CH) and encompasses several Cluster Members (CM). The so-called overlay network is
used to interconnect the CHs. More information can be found in Section 2.3.2.

The designed Blockchain architecture covers three essential tasks of the software dis-
tribution process. First, it allows to notify interested entities (i.e., the OEM as well as the

36

Chapter 4 – End-to-end Solution for Local Software Updates

local software providers) about available software. Therefore, a notification message con-
taining information about the location of the software on a online storage, is distributed
within the overlay network. Second, the designed Blockchain infrastructure provides suit-
able authorization mechanisms handling the interaction between involved entities and the
online storage (i.e., only authorized entities are allowed to access/download the software).
Third, it allows to prove the authenticity of the entities providing new software as well as
of the software itself (i.e., to ensure that no one has tampered with the software). In the
following, the designed architecture is described in more detail.

Automotive security architecture based on Blockchain. The developed architec-
ture is sketched in Figure 4.5. It involves several different entities, namely the software
creator, the OEM, a cloud storage, local software providers such as a service center, as
well as smart connected vehicles. The software creator is a dedicated department of an
OEM or a supplier company creating the new software version. This new software binary
is then stored on a cloud storage, a secure online storage only allowing authorized users
to store and access data. Next, the department of the OEM responsible for verifying and
adapting new software is notified about the new binary. Once the verification process is
done, the LSU environments and smart vehicles (i.e., directly connected to the Blockchain
network) are informed about the available software update.

OEM

Cloud
Storage
Service
Center

SW Creator

Vehicle

Inter-Cluster

Intra-Cluster

Overlay

Figure 4.5: Blockchain-based security architecture. The overlay network interconnects the
OEM, the software creator, the service centers, a cloud storage, and even smart vehicles.

The notification of the involved nodes is done using transactions either sent from the
software creator to the OEM (step 1), or sent from the OEM to local software update
providers such as a service center and to smart vehicles (step 2). The developed ar-
chitecture employs two different types of transactions: a genesis transaction, the initial
transaction created by each involved party, and the update transaction, required to inform
the concerned entities (i.e., the OEM in step 1, and the LSU environments and smart
vehicles in step 2) about newly available software.

A transaction basically consists of metadata, the public key of the transaction creator,
the transaction ID (i.e., the SHA-256 hash value of the metadata and the public key), and
a digital signature (i.e., the ID is signed using RSA with a 1024 bit key). This generic
structure is also shown in Figure 4.6a). An update transaction, as presented in Figure

37

Chapter 4 – End-to-end Solution for Local Software Updates

4.6b) additionally includes a second public key and signature field. These extra fields are
required to cover both aforementioned steps: after creating a new software binary, the
software creator will store the binary on a cloud storage, create a new transaction, fill
the metadata field with information about the software (including a hash of the software
to allow other parties to verify its integrity) and the location of the binary on the cloud
storage. Furthermore, the software creator adds its own public key, creates the hash (i.e.,
transaction ID), signs the transaction using its private key, and finally sends the key to
the overlay network. The OEM receives the incomplete transaction, verifies the signature,
downloads the software binary, adapts and verifies the binary, and finally, if every check
was ok, signs the transaction with its private key. The second signature completes the
transaction. A genesis transaction is the first transaction created by each entity within a
Blockchain system and its structure can really differ depending on the type of the entity
(e.g., an OEM, a service center, or a smart vehicle). In Figure 4.6c), an example for a
genesis transaction of a smart vehicle is proposed. It consists of metadata describing the
vehicle itself (e.g., the type and variant of the vehicle), its public key and signature, as
well as the public key and signature of its OEM. This allows the vehicle in a later phase
to access vehicle-related data (e.g., a software binary) stored on a cloud storage.

a) Generic Transaction b) Update Transaction c) Genesis Transaction
(smart vehicle)

Transaction ID (TID)

Metadata

Public Key (KPub)
Previous TID (P-TID)

Signature (Sig)

#
Hash

Priv. Key
(KPriv)

TID

Metadata

KPub1

P-TID
KPub2

Sig2
Sig1

#
Hash

KPriv1

KPriv2
OEM

SW

p
ro

vid
e

r

SW description
and hash
SW location on
cloud storage

V
eh

icle
V

eh
icle

d
escrip

tio
n

TID

Metadata

KPub1

P-TID
KPub2

Sig2
Sig1

Figure 4.6: Different Blockchain transaction. Left: generic transaction structure. Middle:
update transaction. Right: proposed structure of a genesis transaction for smart vehicles.

Example of software distribution. Next, an end-to-end scenario (shown in Figure 4.7)
ranging from the creation of new software until its installation on the concerned ECU is
described.

First, the software creator creates a new software binary (Figure 4.7, step 0) to fix
a bug in the old software version, to upgrade the functionality of the ECU, or to adapt
essential parameters required by the ECU. Once the software binary is completed and
tested, it is stored on a cloud storage (Figure 4.7, step 1). Next, the software creator
creates an update transaction, fills all required fields, and sends it to the concerned OEM
(Figure 4.7, steps 2 to 4). If the software creator is a CH in the Blockchain architecture
it directly uses the overlay network to deliver the transaction. In the other case, (i.e.,
the software creator is a CM), the transaction is first sent to the CH and then, after the
CH has checked the transaction by verifying the signature, forwarded to the OEM. The
forwarding mechanism makes use of the public key of the OEM, which was added to the
update transaction by the software creator to indicate which OEM (especially important

38

Chapter 4 – End-to-end Solution for Local Software Updates

OEM

Cloud
Storage
Service
Center

SW Creator

Vehicle

Inter-Cluster

Intra-Cluster

PK2
PK1

10

2

3
PK2
PK1

5

PK2
PK1

PK2
PK1

4

PK2
PK1

6

PK2
PK1

6

PK2
PK1

6

7

7
Vehicle
development
Vehicle
Assembly

Figure 4.7: Software distribution example. From software creation at the software creator
to software installation on the ECU.

if there are several OEMs within the same Blockchain overlay) shall be notified about the
new software. Please note that the overlay network supports both the broadcasting of
transactions and blocks (i.e., complete transaction and new blocks) as well as forwarding
incomplete transactions (and other message types such as the data transfer to the cloud
storage) to a specific CH or CM.

Once the transaction reaches the cluster including the OEM (i.e., the OEM is either
acting as CH of the cluster or is a CM of the cluster), the OEM will receive the transaction,
verify it, and download the software. Next, the software is validated as well as adapted
(e.g., to make sure to fit the requirements of certain countries/continents). Thereafter, the
OEM completes the transaction by adding its public key and signature. In the next step,
the transaction is broadcast on the overlay (Figure 4.7, steps 5 and 6). As the transaction
is complete, it is distributed to all CHs, who verify the received transaction and add it
to their running pool. This is a temporary buffer where new transactions are stored until
a predefined size (i.e., the block size) is reached. Once this limit is reached, the CH will
create a new block and distribute it over the network.

After the received complete update transaction is verified by the CHs, it is forwarded
to the CMs. However, the developed architecture is not broadcasting a transaction to all
CMs within a cluster, but only to interested ones in order to reduce the communication
and computation overhead. Interests are managed by using the public keys included in the
transactions. A CM can subscribe to one or more public keys and thus show its interest
in transactions from certain entities. In this concrete example, this means that a vehicle
could subscribe for messages coming from a specific OEM (Figure 4.7, step 7).

4.4.2 Formal Architecture Evaluation

In this section the defined architecture is formally evaluated by first discussing the ful-
fillment of the aforementioned requirements, and second by briefly addressing the most

39

Chapter 4 – End-to-end Solution for Local Software Updates

relevant security threats and stating how the use of the Blockchain plus the employed
security mechanisms can mitigate these threats.

Fulfillment of the defined requirements. The proposed architecture allowing a se-
cure distribution of automotive software shall be able to fulfill the important requirements
efficiency, security, and privacy described in Section 4.2.1. In the following, these re-
quirements will be discussed w.r.t. the proposed Blockchain architecture and thereby its
applicability for secure software distribution will be shown.

• Efficiency: The efficiency of the utilized Blockchain system is ensured w.r.t different
levels: first, the employed LSB uses a distributed trust algorithm to significantly
lower the processing time for validating new blocks compared to classical Blockchain
schemes (e.g., used in the Bitcoin system) [12]. An extended version of the proposed
architecture can potentially utilize suitable caching mechanisms within clusters to
further reduce the data traffic on the overlay network and hence additionally increase
the efficiency of the software distribution process.

Second, the proposed architecture (underpinned by the LSB scheme) replaces the
PoW by a more resource-optimized approach (i.e., scheduled block generation pro-
cess). Additionally, the network is clustered to realize a hierarchical topology, where
only the CHs need to maintain the Blockchain. Furthermore, LSB dynamically ad-
justs the throughput using a Distributed Throughput Management (DTM) to ensure
that the Blockchain throughput does not significantly deviate from the transaction
load generated by the nodes in the network [12]. Thus, LSB is optimized for large-
scale networks and applicable for scenarios involving entire fleets of vehicles.

• Reliability. The employed overlay network is able to avoid single point of failures
by using alternative routes in case a CH is temporarily offline and hence unable to
forward messages.

• Security. The confidentiality of the transferred data (i.e., the distributed software)
is ensured by i) storing and transferring the software in an encrypted way, and ii)
by only allowing authorized vehicles as well as local software update providers to
download and decrypt the software update.

Data integrity is ensured by employing state-of-the-art security measures (i.e., AES-
GCM [16]) to protect each packet. Additionally, the architecture allows each autho-
rized entity (i.e., vehicles and local software update providers) to verify the integrity
of the distributed software by downloading it from the cloud storage, computing
its hash value, and comparing this hash with the target hash value included in the
metadata field of the update transaction (see also Figure 4.6).

The OEM as well as the software creator are required to sign an update transaction
before it is considered as complete, stored within a block, and distributed by the
overlay network. These signatures allow the vehicles to verify that an available
software update is really coming from the OEM and not from any malicious entity.
Furthermore, the hash value included in the update transaction allows the vehicle
and the local software update provider to validate that the software was not altered
during distribution or storage.

40

Chapter 4 – End-to-end Solution for Local Software Updates

• Privacy. In Blockchain architectures the privacy of the involved users is ensured by
utilizing changeable public keys representing the end user (i.e., the vehicle owner).
Furthermore, and in contrast to other remote update methods such as the system
used by Tesla [19], no direct link between the vehicle receiving a new update and the
OEM providing this update is required. Such direct link could be used in a malicious
way to endanger the vehicle owners privacy (e.g., by tracking the user).

The previous listing shows that all requirements are met by the designed secure software
distribution architecture. In combination with EASE-UP, the developed framework al-
lowing efficient as well as secure wireless software updates in LSU scenarios, the proposed
architecture can be used to create a secure and efficient end-to-end solution for wireless
automotive LSUs.

Most relevant security threats. In the following, selected attacks are used to discuss
the security measures employed by the designed software distribution architecture and to
show how these attacks are affecting the security of a smart vehicle and other involved
entities. Please note that the used list of threats is not complete (as there is a wide range
of possible attacks), but encompasses diverse attacks with high potential and impact.

Tampering with the software binary. An attacker may try to get access to the cloud
storage and manipulate the software binary stored there with the goal of injecting malware
to a large number of vehicles. However, changing the software will lead to a different
software hash value compared to the hash of the untouched software included in the
update transaction. Thus, involved vehicles as well as local software update providers will
detect such an attack prior to installing the affected software update.

Additionally, an attacker could try to tamper with the data (i.e., the software bi-
nary) while it is transferred to render the software useless. However, adequate protection
mechanisms are in place while the software is i) transferred to the cloud storage, and ii)
finally distributed to the vehicles and local software update providers. First, each individ-
ual packet is protected to ensure data confidentiality and integrity by employing suitable
symmetric security measures (i.e., AES-GCM). Second, after the software is completely
transferred, the receiver (e.g., a local software provider or a smart vehicle) can compare
the hash of the received software with the hash included in the update transaction.

Distributing a malicious update by claiming to be the OEM or the software update provider
(i.e., identity spoofing). An attacker can also attempt to distribute malicious software
updates via the overlay network by claiming to be the OEM and/or the software creator.
To launch such an attempt, the attacker would need to broadcast an update transaction
pointing to the malicious software using the overlay network. This transaction would need
valid signatures from the software creator as well as the OEM, and hence the attack will
fail, as i) in case the attacker acts as software creator, the OEM will verify the signature
and realize that it is invalid (e.g., signature doesn’t fit the public key of the software
creator) or will just not accept the transaction from a unknown source (i.e., transaction
includes the public key of the attacker which is unknown to the OEM), and as ii) in
case an attacker is acting as OEM and manipulates an update transaction coming from a
trustworthy software creator, the vehicles will realize that the update transaction was not
signed by the real OEM by verifying the signature (a vehicle knows the public key of its
OEM). The same security mechanisms will also mitigate attacks where an attacker spoofs

41

Chapter 4 – End-to-end Solution for Local Software Updates

both the identity of the software creator as well as of the OEM.

More attacks as well as the corresponding countermeasures are discussed in [13].

4.4.3 Proof-of-concept Implementation

The developed Blockchain-based security architecture was additionally evaluated using a
proof-of-concept implementation based on Java. This proof-of-concept solution was then
compared to a certificate-based software distribution system and important aspects such
as packet overhead and overall efficiency were analyzed. The gathered results show that
both systems are quite similar w.r.t. overhead and efficiency.

More details on the proof-of-concept implementation, the performed evaluations, as
well as on the corresponding results can be found in [59].

4.5 EASE-UP: Framework for Secure and Efficient LSUs

Once a new software version was securely distributed to local software providers such as
an assembly line or a service center, efficient and secure wireless software updates will
be employed to install the new software on the concerned ECU of a newly assembled
or currently maintained vehicle. This is achieved using EASE-UP, whose architecture
allowing efficient and secure LSUs is presented next.

User / handheld
DT

WVI

ECU

ECU ECU ECU

ECU

ECUCGW

Wireless network
(Section 5.1)

Wireless
interface

WVI
core

Key
storage

Vehicle
interface

Mobil
App

Wireless
interface

Vehicle Diagnostics
Software updates

DT
database

Wireless
interface

DT coreDiff
tool

Parallel updates
(Section 5.3.1)

Partial updates
(Section 5.3.2)

Figure 4.8: EASE-UP architecture involving the Diagnostic Tester (DT) holding the latest
available software as well as the required authorization keys, the handheld employed by
the user to interact with EASE-UP, and the Wireless Vehicle Interface (WVI) acting as
smart gateway between the wireless network and the in-vehicle communication system.
The in-vehicle communication system encompasses several different bus systems often
interconnected by a Central Gateway (CGW).

42

Chapter 4 – End-to-end Solution for Local Software Updates

4.5.1 Architecture

EASE-UP is a framework allowing locally-performed efficient and secure wireless automo-
tive software updates. The corresponding architecture, as shown in Figure 4.8, provides
a basic wireless software update protocol (see Section 5.2.1) similar to today’s wired soft-
ware update systems (i.e., the wired connections are replaced by a wireless network) and
encompasses three core nodes, as described Section 4.5.2. These core nodes are intercon-
nected by a fast and secure wireless network suitable for all targeted LSU scenarios. In
Section 5.1 more details on the employed wireless network are presented.

In contrast to wired systems, where only one vehicle can be maintained at a time,
EASE-UP allows a user to work on several vehicles simultaneously and provides advanced
software update mechanisms to update the software on several vehicles at the same time
(i.e., parallel updates; see Section 5.3.1), or to perform a partial update (see Section 5.3.2),
where only a small portion of the software (i.e., the difference between the old and the
new software) needs to be transferred and installed on the ECU. Both mechanisms allow
to significantly reduce the time required to perform a LSU on one or several vehicles.

EASE-UP is protected by a comprehensive security concept applicable for different
LSU scenarios. This security concept is described in detail in Section 6.2.

4.5.2 Core Nodes

The architecture of EASE-UP, as shown in Figure 4.8, encompasses three core nodes (i.e.,
DT, WVI, and the handheld device) and is suitable for all aforementioned LSU scenarios.
In the following, these core nodes are described in more detail and the architecture for local
wireless software updates is highlighted. Further information on the actually developed
prototypes can be found in [37, 61].

Diagnotic Tester (DT). The DT is a local server or PC often located in a dedicated
and restricted room. The DT maintains a local database that is frequently synchronized
with the OEM using a dedicated backbone network (e.g., the Blockchain-based software
distribution architecture; see Section 4.4).

The local DT database holds vehicle descriptions including types and variants of ve-
hicles of a specific brand and the corresponding vehicle configuration. The vehicle config-
uration is typically stored in the Open Diagnostic data eXchange (ODX) format [32] and
encompasses, beside others, information about the integrated ECUs including ECU-IDs,
as well as the latest available software version for each integrated ECU. Furthermore, the
DT can provide authentication keys required to authorize a software update on ECU level
and holds the latest available software binaries (or can request the software using the
backbone network). The DT can therefore be seen as the source for new software updates.

Depending on the scenario, the DT can additionally be used to maintain user profiles:
in a service center, the user profiles can be utilized to specify which mechanics are autho-
rized to perform software updates (e.g., specially trained staff) and which users are only
allowed to perform basic diagnostics when performing repairs or yearly inspections.

Handheld device. The handheld device allows a user to interact with the wireless
software update system. Depending on the scenario, the handheld is used to perform
wireless diagnostics, to trigger and/or schedule wireless software updates, as well as to
monitor the update process itself (e.g., in the service center or vehicle development), or

43

Chapter 4 – End-to-end Solution for Local Software Updates

it is mainly utilized to monitor the software update process and the state of the update
system (e.g., within the assembly line).

Wireless Vehicle Interface (WVI). The WVI is an essential entity as it intercon-
nects the wireless software update system with the in-vehicle communication system. As
sketched in Figure 4.8, a modern vehicle can contain dozens ECUs interconnected by dif-
ferent automotive bus systems (mainly CAN, but also LIN and FlexRay, as well as, in
future, automotive Ethernet). In most vehicle architectures, the different bus systems are
interconnected by a central gateway (CGW). This gateway is used to forward data from
one bus to the other, and can also be used to implement certain security mechanisms
(especially in future vehicle architectures).

The WVI can be a dedicated ECU with a suitable wireless interface, can be part
of the CGW, or can be realized as plug-in solution, where it is temporarily connected
to the vehicle using a suitable interface such as the standardized On-Board Diagnostics
(OBD) interface. The plug-in version is of special importance in service centers to ensure
backward compatibility for older vehicles without an integrated WVI. As smart gateway,
the WVI is not only forwarding data packets, but is rather able to establish a secured
connection to the DT, to temporary store a software binary, to support advanced update
mechanisms (see Section 5.3), and to allow comprehensive vehicle diagnostics.

4.5.3 Example of a LSU

In the following, an example of an locally-performed software update is used to describe
the basic data flow between all involved entities. The activity diagram shown in Figure
4.9 is also showing this procedure.

The DT and the handhelds are typically used within the same environment, such as a
service center, for their entire lifetime. Thus, these devices can be considered as already
securely connected (i.e., a dedicated pairing process was initially performed) when a vehicle
is entering a scenario (e.g., a new vehicle is entering the service center). If this vehicle is
equipped with a fully integrated WVI, the vehicle may directly try to establish a secure
connection. Otherwise, a user (e.g., a mechanic in a service center) will first connect a
plug-in WVI to the vehicle. Next, this WVI will securely connect itself with EASE-UP.

After establishing the connection with the WVI and with the vehicle itself, the DT
will request basic information about and from the vehicle. This information is required to
retrieve more detailed information of the vehicle from the DT database and, based on this
information, also to figure out whether or not new software is available for the vehicle.

Once all entities are connected to each other and the DT found an available software
version, the actual update process can be started. A software update will typically be
triggered by the user using the handheld device (e.g., in the service center), but in certain
cases maybe also by the DT itself. The latter could especially be of importance in highly
automated environments such as the assembly line: once a vehicle requiring a new update
is entering the transmission range of the software update framework, the DT will start the
update process. In the developed architecture, the vehicle itself is not able to trigger the
software update itself.

To perform the actual update, first the concerned ECU needs to be prepared to re-
ceive new software. To do so, the DT sends suitable requests to the WVI, which is then
forwarding these request to the ECU (and also forwards the corresponding ECU responses

44

Chapter 4 – End-to-end Solution for Local Software Updates

to the DT). The initialization process thereby also includes an authorization step required
to set the ECU to a state where it can actually receive new software. Once the ECU is
successfully initiated, the software is transferred to the WVI and in further consequence
installed on the ECU. Therefore, EASE-UP supports different approaches and data flows,
respectively. More information on these approaches can be found in Section 5.2.1.

The core nodes – DT, handheld, and WVI – must be interconnected in a dependable
manner to ensure that a software update can be performed in a secure, fast, as well as
reliable way. Therefore, different wireless protocols were compared to each other to find
the most suitable wireless network for EASE-UP. More details on the actual choice of the
wireless network can be found in Section 5.1.

45

Chapter 4 – End-to-end Solution for Local Software Updates

Wireless automotive software update

Diagnostic Tester (DT) Handheld device
Wireless vehicle
interface (WVI)

Vehicle / ECU to update

Ph
as

e

yes

no

Integrated
WVI?

Co
n

ne
ct

io
n

 e
st

ab
lis

h
m

en
t

an
d

ga
th

er
 v

eh
ic

le
 in

fo
rm

at
io

n
Tr

ig
ge

r,
 in

it
ia

te
 a

n
d

 p
er

fo
rm

 s
o

ft
w

ar
e

up
d

at
e

Vehicle is entering
the scenario

Connection establishment between devices

Connect WVI and
power it up

Request vehicle
information

Provide vehicle
information

Forward request

Forward response
Use information to

query database

Provide information
to handheld / user

Display vehicle
information to user

Trigger software
update

Initiate update (incl.
authorization)

Initiate ECU and
handle authorization

Forward request

Forward response
Start software
update process

Software update process: software transfer, software installation,
software validation.

Figure 4.9: Activity diagram showing the basic steps of a generic wireless automotive
software update performed in a local environment.

46

Chapter 5

EASE-UP Networking Aspects

This chapter describes EASE-UP, the developed software update system, in more detail.
First different wireless protocols are compared to find the most suitable candidate to
be employed as dependable wireless network interconnecting all core entities within the
wireless update system, and second, the developed wireless software update protocol as
well as its advanced software update features are described.

5.1 Selecting the Wireless Network for LSUs

In this section the most suitable wireless networking technology for the developed wireless
software update framework is identified. Therefore, first relevant requirements regarding
the wireless networking technology are derived from the system-level requirements which
have been stated in Section 4.2. Thereafter, these requirements are used to compare dif-
ferent candidate technologies with each other to find the most suitable wireless networking
technology for EASE-UP.

5.1.1 Selection Criteria

The wireless network employed to interconnect the involved users as well as devices in all
considered LSU scenarios (please refer to Section 4.1) in a secure, efficient and reliable way,
must fulfill certain criteria. These criteria are derived from the system-level requirements
listed in Section 4.2 and described in the following [60].

• Security. The protection of the wireless network interconnecting all involved en-
tities can be considered as the first layer of security (for more information on the
defined security concept see Section 6.2). A suitable wireless networking technology
must provide state-of-the-art security mechanisms providing a robust authentication
scheme between the involved nodes and must be able to protect the exchanged data
by utilizing strong methods protecting data confidentiality and integrity.

• Efficiency. Wireless software updates shall be performed as fast as possible inde-
pendent of the size of the ECU software to transfer and install (typically in a range
of some KB up to dozens of MB). Therefore, the wireless protocol shall offer enough
bandwidth, but must be at least as fast as the automotive CAN bus: 1 MBit/s.

47

Chapter 5 – EASE-UP Networking Aspects

Most software update scenarios are quite dynamic (i.e., vehicles are frequently en-
tering and leaving the system) and the actual updates may take place at different
locations (e.g., in the vehicle development phase test vehicles are parked anywhere
on the premises). The employed wireless protocol must therefore provide enough
flexibility to satisfy the peculiarities of different and diverse dynamic LSU scenarios.

Additionally, the scalability aspect is very import for several LSU scenarios: in large
service centers or assembly lines lots of wireless devices may be interconnected by
the wireless network and hence the wireless protocol shall be able to deal with such
large scale scenarios encompassing up to 100 nodes within a large building or area.

In the following evaluation of different wireless protocols the efficiency aspect will
mainly be discussed w.r.t. bandwidth, flexibility and scalability.

• Reliability and range. The wireless network must be able to cover large areas
(e.g., large service centers or vehicle assembly lines) and shall be robust against any
kind of interference. As updates are mostly performed in harsh environments (for
wireless networks), the employed wireless protocol shall offer redundancy to make
sure that there is a reliable connection between all involved devices.

• Adoption in consumer devices. An additional requirement for EASE-UP is the
adoption of the wireless network in consumer devices as the costs for installing a
wireless software update system such as EASE-UP shall be kept to a minimum.
Therefore, Commercial Off-The-Shelf (COTS) hardware shall be used for realizing
the DT as well as the handhelds. The utilized wireless protocol shall hence be
supported by most COTS devices.

In Section 5.1 the defined selection criteria are used to choose the most suitable wireless
protocol for wireless automotive LSUs.

5.1.2 Potential Wireless Protocols for LSUs

Several wireless protocols can be used to set up a wireless network interconnecting all
involved entities of EASE-UP. To find the best fitting protocol, first promising candidates
are listed and studied in detail:

• ZigBee (based on IEEE 802.15.4) [30]. ZigBee is a low-power communication protocol
based on IEEE 802.15.4 that natively supports different network topologies (i.e., star,
tree and mesh). It is heavily used as communication protocol within Wireless Sensor
Networks (WSN) due to its low power consumption.

• Bluetooth Low Energy (BLE) [56]. BLE is the successor of classic Bluetooth (not
backward-compatible) offering significantly reduced latency and power consumption.
While classic Bluetooth is not really scalable due to the utilization of piconets (where
only seven slaves can be active at the same time), BLE allows to form networks
of unlimited size [66]. BLE is supported by numerous consumer devices such as
tablets, smartphones as well as laptops, and is hence used in a wide range of different
applications.

48

Chapter 5 – EASE-UP Networking Aspects

• IEEE 802.11n [2]. Wi-Fi networks based on IEEE 802.11n are available in most
company buildings, universities and private homes. Wi-Fi offers high bandwidths
(i.e., up to 600 Mbps for IEEE 802.11n), and is supported by most smartphones,
tablets and laptops. Wi-Fi utilizes a star topology coordinated by an Access Point
(AP) to interconnect all devices within a network. An example of a Wi-Fi network
topology is shown in Fig. 5.1a, where a DT acting as AP interconnects entities
within a local software update scenario.

• IEEE 802.11p. the communication between vehicles amongst themselves (i.e.,
vehicle-to-vehicle communication) as well as between vehicles and roadside infras-
tructure (i.e., vehicle-to-infrastructure communication) such as traffic lights is spec-
ified in several automotive standards. The underlying wireless communication is
standardized in IEEE 802.11p. Although this standard already exists since several
years (first version published in 2010), it is not integrated in today’s vehicles yet, and
currently substantial research is performed in the field of 5G with the goal of replac-
ing IEEE 802.11p. Therefore, it seems unclear if IEEE 802.11p will be used in future
vehicles at all and hence it is not further discussed in the following comparison.

• IEEE 802.11s [29]: contrary to classic Wi-Fi networks (e.g., IEEE 802.11n),
IEEE 802.11s uses a mesh topology to interconnect all entities within a network
while supporting rates similar to IEEE 802.11n (same hardware is used; routing is
done at the MAC layer). An example for such an IEEE 802.11s-based mesh network
is shown in Fig. 5.1b: nodes within the transmission range establish a (secured)
link with each other and, on top, maintain a path map, where the best route to all
nodes within the mesh network is stored. If no reliable direct connection between
two nodes within a network can be established (e.g., the nodes are too far apart
from each other), other nodes in between will forward the exchanged packets.

a) IEEE 802.11n b) IEEE 802.11s

DT

PER<50%

PER<20%

DT

Figure 5.1: IEEE 802.11n (a) and IEEE 802.11s (b) are employed in the same example
scenario. Using IEEE 802.11n leads to isolated vehicles (i.e., vehicles without a reliable
connection to the DT) while IEEE 802.11s is able to interconnect all involved entities.

49

Chapter 5 – EASE-UP Networking Aspects

5.1.3 Comparison of Wireless Protocols

Next, these aforementioned protocols are compared with each other w.r.t. selection criteria
defined in Section 5.1.1.

Security. IEEE 802.11n as well as IEEE 802.11s offer advanced security measures and
configurable options providing suitable security solutions for private home applications as
well as for large enterprises. Although critical security vulnerabilities (e.g., eavesdropping
and man-in-the-middle attacks were possible in BLE version 4.1 and below) of BLE were
fixed in version 4.2 and above [23], BLE is still not considered to be as secure as Wi-
Fi. The ZigBee standard itself implements quite strong security features, but still has
some vulnerabilities (e.g., key initialization and distribution) [17, 65], even in the latest
version, ZigBee 3.0 [40]. Thus, the security aspect is not yet satisfied in current ZigBee
implementations.

Bandwidth. ZigBee and BLE are particularly advantageous in low-power applications and
for battery-driven devices, as the employed communication mechanisms are very power-
efficient (e.g., compared to Wi-Fi). However, power-efficiency often, as in case of ZigBee
and BLE, comes at the cost of low data rates: while IEEE 802.11n and IEEE 802.11s are
providing high bandwidth (per channel) with up to 300 Mbps, BLE and ZigBee are only
offering 1 Mbps and 250 Kbps [38], respectively.

Reliability and range. Another important aspect is the reliability of the utilized wireless
network and especially its range (i.e., the ability of reaching all nodes of a network with at
least one reliable link). Therefore, the range of a wireless node, but even more importantly
of the wireless network in its entirely, is evaluated w.r.t the discussed wireless candidates:
ZigBee and BLE nodes are mostly designed and implemented to be as power-efficient
as possible. Thus, the used HW chipsets are often only supporting low transmission
output power (e.g., 0 dBm) while Wi-Fi hardware can provide TX output level up to
20 dBm (and even more). Therefore, a Wi-Fi node typically offers a significantly wider
transmission range compared to BLE and ZigBee devices. However, as mentioned above,
the more important aspect is the range of the entire network. IEEE 802.11n and BLE are
using star topologies to interconnect devices and the AP (i.e., in IEEE 802.11n) or the
master node (i.e., in BLE). If a device/slave is too far away, there will be no (reliable)
connection with the network. In mesh networks (ZigBee and IEEE 802.11s), in contrast,
each node with at least one other node of the network in its transmission range, can be
added to the wireless mesh network. A packet intended to be sent from one edge of a mesh
network to the other will thereby be forwarded by nodes in the middle of the network (i.e.,
multi-hop communication). Please note that BLE 5.0 and above will also support mesh
networks. However, at the time of writing BLE mesh networks are not yet supported by
most chipsets.

A summary of this comparison can be found in Table 5.1, showing that IEEE 802.11s
is the most promising candidate, as it fits best the defined selection criteria. The adoption
in COTS aspect is the only aspect that is not fully satisfied by IEEE 802.11s, as its
software implementation (i.e., mainly to provide routing on MAC layer) is not available
for all chipsets yet. Further information on the choice of IEEE 802.11s as well as some
experiments showing its applicability for automotive applications can be found in [60].

50

Chapter 5 – EASE-UP Networking Aspects

ZigBee BLE (v4.2) IEEE 802.11n IEEE 802.11p IEEE 802.11s

Security

Bandwidth

Scalability

Flexibility

Reliability

Ad. in COTS

Table 5.1: Comparison of wireless protocols w.r.t. the defined selection aspects. Per
aspect and per wireless protocol one to three dots are indicating whether the protocol can
fulfill the aspect insufficiently, sufficiently, or fully sufficiently, respectively.

5.1.4 IEEE 802.11s as Selected Wireless Network for LSUs

Based on the comparison of different wireless technologies described in the previous sec-
tions, IEEE 802.11s was identified as the most suitable wireless network for automotive
LSUs. In this section, the functionality of IEEE 802.11s is briefly described and its core
features are listed.

As sketched in Figure 5.2, IEEE 802.11s networks utilize a mesh topology to intercon-
nect all involved nodes. In its basic mode, each IEEE 802.11s node is equal w.r.t. the
network. However, IEEE 802.11s also allows to assign certain nodes as root nodes. Such
a root node will proactively announce itself within the network, allowing other nodes to
maintain the best (multi-hop) path to it. A root node is often also working as gate node.
The latter interconnects the mesh network and other networks (e.g., a LAN) by forwarding
data sent from the mesh network to entities outside the network (i.e., if a mesh network
cannot resolve an address within the mesh network, it will send the packet to the gate
node) and vice versa.

Routing in IEEE 802.11s. Within an IEEE 802.11s network one has to distinguish
between links and paths. Links are established locally between two nodes in transmission
range with each other (i.e., solid blue lines in Figure 5.2). Therefore, each node periodically
broadcasts its address and the ID of the network it is in. If a new node receives such
a broadcast beacon, it uses the contained information to establish a link to the node
sending the beacon (i.e., three-way-handshake). Theoretically, a node can have an infinite
number of links to neighboring nodes. However, the size of the neighbor-table holding the
established links is limited in practice (e.g., a maximum of 8 neighbors is allowed for the
TP-Link TL-WN722N modules used for the developed prototypes). In the worst case this
limitation can lead to isolated nodes (see also Section 7.2.2).

Links can be used for direct communication between two nodes. However, one core
feature of IEEE 802.11s is its multi-hop capability. The latter allows two nodes which are
not in direct communication range with each other (e.g., nodes 4 and 9 in Fig. 5.2), to
still exchange messages in a dependable way if a so-called path can be found between these
two nodes. Paths are maintained on top of the established links and the IEEE 802.11s
standard allows different ways on how to perform the routing (e.g., the identification of
new paths as well as the maintenance of established ones). The most widely used algorithm
in IEEE 802.11s networks is the Hybrid Wireless Mesh Protocol (HWMP). This protocol

51

Chapter 5 – EASE-UP Networking Aspects

provides mechanisms to find the best (i.e., most reliable and smallest latency) path through
the network. Therefore, a node maintains a second table where, for each target node, the
next hop (i.e., the first node within the path) is stored. Data packets are always sent via
paths and hence packets are sometimes transferred via a multi-hop path even if a direct
link between two nodes is established (especially for weak links). For example, in Figure
5.2, packets sent from node 3 to node 7 are transferred via node 5.

1
4

2

7

6

8

5

3
9

Paths
Links

7 Nodes

Path 1-3

Figure 5.2: Example of an IEEE 802.11s mesh network encompassing 9 nodes.

Security in IEEE 802.11s. The IEEE 802.11s standard provides a dedicated security
protocol – Simultaneous Authentication of Equals (SAE) [25] – handling the secure key
exchange in mesh networks. SAE hence provides security measures to protect the mesh
network itself, as well as the transferred data using a pre-shared password to handle the
secure key exchange. SAE is supported by the most popular open-source IEEE 802.11s
implementation open11s [11] and also by wpa supplicant, a generic security framework for
different types of wireless networks (e.g., popular in different Linux distributions).

SAE is protecting the network layer of the developed wireless automotive software
update framework and thus is an important aspect within the defined security concept
(i.e., first layer of security). More information on the defined comprehensive security
concept can be found in Section 6.2 and further details on the impact of SAE on network
layer performance is given in Section 7.2.3.

5.2 Wireless Software Update Protocol

In this section the actual protocol allowing wireless automotive LSUs is described. This
protocol is used by EASE-UP to support all steps from establishing a trustable connection
between the core entities (i.e., WVI, DT, and the handheld devices) to finally installing the
new software binary on the ECU. The protocol is employing several automotive standards
to support a wide range of ECUs (i.e., ECUs from different suppliers as well as different
types of ECUs) and to ensure that the developed solution is compatible with vehicles from
different OEMs as well as vehicles in a different age (i.e., ensuring backward compatibility).

52

Chapter 5 – EASE-UP Networking Aspects

Several automotive standards are supporting the software update process or are de-
scribing the underlying communication protocols. In Section 2.2 the most important
standards are discussed and an overview on the diagnostic stack is given.

5.2.1 Basic Software Update Protocol

EASE-UP’s basic wireless software update protocol employs the different automotive pro-
tocols (see Section 2.2 for details) to handle six major steps as sketched in Figure 5.3. In
the following, these steps are listed and described in more detail. Please note that the
following descriptions are focusing on the data flow between the involved entities. Security
aspects are addressed in Section 6.2 where EASE-UP’s security concept is presented.

Handheld

Diagnostic tester
(DT)

ECU ECU

ECU

CGW
ECU

WVI

Establish wireless
network (1)

Vehicle
description (ODX)

Gather vehicle
information (2)

Query database
for ODX file

using the VIN

Request ECU
programming UDS progr.

session

Initialize a software
update (3)

Validation and
reboot (6)

Figure 5.3: The defined wireless update protocol. Six dedicated steps are employed to
control the entire wireless software update process for automotive ECUs.

Step 1 – Discovery and connection establishment. This step refers to the estab-
lishment of a wireless network interconnecting DTs, WVIs, and handhelds. Therefore, the
DT periodically broadcasts beacons containing information about the available diagnostic
network as well as the provided services (e.g., a software update for specific brands). A
WVI will use such a beacon to discover the available diagnostic network and connect to
it if relevant services are offered (i.e., the DT supports the brand of the vehicle). Strong
authentication mechanisms are employed in the connection establishment process (see 6.2
for more information).

Step 2 – Gather vehicle information. In this step, the DT requests basic vehicle
information from the WVI and use it to query the DT database. The Vehicle Identification
Number (VIN) requested by the DT from the vehicle (in particular its WVI) will be used
to query the DT’s local ODX database or, if no information is available locally, to request
detailed vehicle descriptions via the OEM backbone network. The DT will parse the ODX
file containing the vehicle descriptions and use the developed software update protocol to
distribute relevant information about the vehicle to the connected handhelds.

Step 3 – Initialize a software update. In this step, the software update is initialized

53

Chapter 5 – EASE-UP Networking Aspects

on ECU level, if new software is available and shall be installed (e.g., update is triggered
by the user). The user (e.g., a mechanic in a service center) will be informed about an
available software update for a vehicle and decides when the update shall be installed.
Once the update is started, the developed protocol is used to inform all involved entities
about the update and to distribute relevant information such as the physical and logical
bus ID of the ECU required by the WVI to initialize the software update on ECU level
using UDS. The authorization of the software update is handled by the DT. Hence, neither
the WVI nor the handhelds obtain information about the authorization key due to security
reasons (see Section 6.2 for more information).

Step 4 – Wireless data transfer. This step describes the transfer of the software binary
from the DT to the WVI using the wireless network. The developed protocol provides
an efficient, reliable and secure data transfer of the software binary from the DT to the
WVI using the wireless network. Therefore, the software binary to transfer is divided into
data chunks of a configurable size. Next, dedicated security mechanisms ensuring data
integrity as well as confidentiality are employed and the resulting encrypted data chunk is
placed in the payload section of a newly created data packet. Finally, the data packet is
sent from the DT to the WVI using TCP or UDP (configurable). To detect out-of-order
as well as missing packets, each packet is equipped with an unique identifier and a packet
number. The WVI will send an acknowledgment packet back to the DT for each received
data packet.

Step 5 – Software download. This step describes the download of the software binary
from the WVI to the ECU using UDS (typical on CAN). The wireless software update
protocol provides mechanisms to trigger and monitor the UDS-based data download from
the WVI to the ECU. The user can employ these mechanisms to request the current state
(e.g., number of bytes transferred or time remaining) of the download process.

A software binary typically consists of several code segments. Each code segment
has a dedicated start address w.r.t. the location within the flash memory of an ECU.
UDS allows to specify this start address along with the size of the current code segment
within a Request Download frame sent from the WVI to the ECU. Once this frame was
acknowledged by the ECU, the WVI starts to download the actual code bytes of the
segment using the UDS Transfer Data frames. The ECU will directly write the received
bytes into its flash memory starting from the specified start address until the specified size
of the code segment is reached.

Step 6 – Validation and reboot. In the last step, the software update is validated
using a dedicated UDS frame such as Routine Control and the ECU is rebooted.

Protocol based on a state machine. The protocol is utilizing a state machine scheme
representing all six steps. Each step is represented by a dedicated state and certain
substates are defined for each state as shown in Figure 5.4. The state machine pattern
is chosen to prevent system failures due to actions performed in a wrong stage (e.g.,
starting a data download while the ECU is not yet initialized) and is also used within
the developed command structure. The latter is employed by the DT to control the
software update process. Each defined command is dedicated to a specific state and has
an unique identifier that is present in every command message exchanged between the
DT and the WVI. Besides the command identifier, a command message also optionally

54

Chapter 5 – EASE-UP Networking Aspects

contains metadata such as the seed bytes generated by the ECU.

Initiate software
update

(step 1 & 2)

Authorize update
(step 3)

Wireless data
transfer
(step 4)

Software
download

(step 5)

Validation and
reboot
(step 6)

StartDone

On success

On error

On errorOn error

On error

Request
seed

Key for
seed

Verify
key

Init
transfer

Perform
transfer

Verify
transferred

software

Init
download

blockDownload
block

Finalize
block Next block

Last block

Trigger
reboot

Validate
update

Figure 5.4: State machine used on the WVI. Each step of the wireless software update
protocol is represented (please note that step 1 and 2 are handled together within the first
state) and also the substates are shown. A similar state machine is used on the DT.

The defined states are also used for profiling the timing behavior of the wireless software
update process. Further information on these measurements and the gathered results can
be found in Section 7.2.1.

Supported update modes. EASE-UP’s basic wireless software update protocol sup-
ports different software update modes. These modes are mainly relevant for the steps 4
(Wireless data transfer) and 5 (Software download), and describe how software transfer
from the DT to the ECU via the WVI is handled.

• Direct programming. In this mode, the software binary is parsed on the DT and
transferred to CAN frames. These CAN frames are then wrapped into a predefined
packet, then sent to the WVI, where the CAN frame is unwrapped and finally sent to
the ECU using the CAN bus. For each frame, the WVI waits for the acknowledgment
frame from the ECU and forwards it to the DT. Then the next CAN frame is created
by the DT sent to the WVI and forwarded to the ECU (the WVI is acting as wireless-
to-wired gateway in this mode). This mode is mainly required if an ECU is not
supporting standard-conform UDS-programming.

• Two-stage programming. In this mode, the software binary is first transferred to
the WVI and in a second step downloaded to the ECU. Therefore, this mode allows

55

Chapter 5 – EASE-UP Networking Aspects

to transfer significantly larger data frames and is more efficient and faster w.r.t.
the wireless data transfer. Furthermore, this mode allows the WVI to work more
autonomously and thereby reduces the load of the wireless network, as significantly
less packets must be exchanged.

By default, EASE-UP utilizes the two-stage programming mode due to its significant
advantages compared to the direct programming mode.

5.3 Advanced Software Update Mechanisms

In the previous section EASE-UP’s basic wireless software update protocol was described
in detail. This protocol already significantly increases the flexibility of the developed
system compared to wired solutions (e.g., a mechanic can work on several vehicles without
disconnecting from the current vehicle and connecting to another one). However, there is
no improvement w.r.t. the overall software update duration compared to a wired solution.
In fact, the defined wireless software update protocol leads to an additional protocol
overhead of about 12% (see Section 7.2.1 for more details) compared to a purely wired
approach, as the wired software download via CAN must be wrapped within the wireless
solution. To increase the efficiency of the wireless solution (i.e., reducing the duration
of the update process), advanced software update mechanisms such as parallel updates
(Section 5.3.1) and partial updates (Section 5.3.2) have been developed. Results showing
the benefits of employing these advanced mechanisms can be found in Section 7.2.1.

5.3.1 Parallel Software Update

Parallel software updates are advantageous in all scenarios where several ECUs integrated
in different vehicles require the same new software binary: the assembly line (where dozens
of new vehicles of the same type are produced within a short time range), the service center
(where multiple vehicles require new software due to an identified software bug), or in the
vehicle development (where a fleet of test vehicles receives the same newly developed
software for a prototype ECU).

EASE-UP supports parallel software updates applicable for all aforementioned LSU
scenarios, as it allows to perform several steps of the defined update protocol in parallel. In
particular, the update protocol provides a specific mechanism to register several vehicles
for a LSU. As shown in Figure 5.5, EASE-UP provide mechanisms to perform a parallel
update (especially w.r.t. steps 3 to 6) for several vehicles at the same time: two vehicles
are connected to a DT. The gathered information shows that a parallel software update
is possible. Once the vehicles are ready to receive the new software (e.g., as the manual
tasks are done), the parallel software update process can be started (e.g., triggered by
the user) and most of the previously described steps (see Section 5.2.1) are performed in
parallel. Please note that not all steps can be done fully in parallel (especially security-
related steps; see Section 6.2) as they require exclusive access to specific software or
hardware components (e.g., a certain hardware security module on the DT). The system
is developed in a way that all involved ECUs/WVIs must complete the current step (e.g.,
initialize a software update – step 3) before the next step (e.g., wireless data transfer –
step 4) is triggered by the DT. In the following, all relevant steps (i.e., starting from step

56

Chapter 5 – EASE-UP Networking Aspects

3) are briefly discussed to describe which extensions have been made to allow parallel
updates. Additionally, the parallel update process for two vehicles is illustrated in Figures
5.5 and 5.6.

P
h

as
e

DT WVI1
Vehicle 1

ECU1 WVI2
Vehicle 2

ECU2

Co
n

ne
ct

io
n

 e
st

ab
lis

h
m

en
t

an
d

in
fo

rm
at

io
n

 g
at

h
er

in
g

Connection establishment DT-WVI2

Connection establishment DT-WVI1

WVI1
connected
to vehicle1

WVI2
connected
to vehicle2

Gather information about vehicle 1

- New software
available for ECU1
- Repairs required

Analyse information:

Register vehicle 1
for software update

- New software
available for ECU2
- Yearly inspection

Analyse information:

Register vehicle 2
for software update

Necessary repairs are performed

Mechanic is informed
about the repairs

Yearly inspection is
performed

Mechanic assigned to perform
inspection

Gather information about vehicle 2

Wait till updates
can be performed Manual tasks done. Ready for software updateP

e
rf

o
rm

 m
a

n
ua

l t
as

ks

Ready to
perform
parallel
update

Initialize a software
update (on ECU) Initialize software update on ECU

Initialize software
update on ECUECU initialized

In
it

 u
pd

at
e

Figure 5.5: Parallel software update process. Information about the vehicles is gathered
to identify possibilities to perform an update for several vehicles in parallel.

Once all involved vehicles are securely connected to EASE-UP (e.g., within an assem-
bly line) and the required information about the vehicle is gathered, the parallel wireless
software update can be started (see Figure 5.5). Therefore, the DT will trigger the initial-
ize a software update step on the concerned ECUs by sending a multicast message (i.e.,
a command message) to the involved WVIs. These WVIs individually take care about

57

Chapter 5 – EASE-UP Networking Aspects

P
h

as
e

DT WVI1
Vehicle 1

ECU1 WVI2
Vehicle 2

ECU2

So
ft

w
ar

e
d

ow
n

lo
ad

Init wireless transfer

Prepare to receive software

Prepare
to

receive
software

Store part 1 of software

Store
part 1 of
software

...

Ready to
perform
parallel
update

Unicast data transfer

Multicast data transfer

Transfer software
[part 1]

Store part N of software

Store
part N of
software

Transfer software
[part N]

W
ir

el
es

s
d

at
a

tr
an

sf
er

Finalize transfer software
including hash of software

Verify software against hash

Verify
software
against

hash

Start software
download

Software download
[block 1]

Software
download
[block 1]

...

Software download
[block M]

...

Software
download
[block M]

Get status of
software

download

Download status
[45% completed]Wait for

download
done

Download done

Validate and reboot
step

Parallel
update

successful

Validate and reboot
Validate and

rebootAll doneSt
ep

 6

Figure 5.6: Parallel software update process. The software is first transferred from the
DT to the WVIs and then installed on the ECUs. The software download step is handled
by each WVI individually. The DT can poll the current status of the download and will
also be informed once the download is done.

58

Chapter 5 – EASE-UP Networking Aspects

the update initialization on ECU level and directly communicate with the DT (i.e., uni-
cast data stream), if required (e.g., for handling the Seed&Key mechanisms). Once the
initialization procedure is done, the WVIs acknowledge the received multicast command
message and wait for further commands coming from the DT.

The DT waits until each WVI has successfully handled the update initialization process
and then triggers the wireless data transfer of the software binary. As shown in Figure
5.6, a multicast is used to send the binary from the DT to each WVI simultaneously.
Therefore, the DT uses a predefined multicast address instead of the address of a specific
WVI. No further adaptions are required in this step.

Once all WVIs have informed the DT that they have received the new software binary,
the DT triggers the software download by sending another multicast command message to
all involved WVIs. Next, these WVIs individually handle the software download process
to the ECU (e.g., over CAN) and inform the DT once the software download is done. The
DT can asynchronously request the current status of the download process by sending a
dedicated command message to one or all involved ECUs.

In the last step, the DT uses another multicast command to trigger the ECU validation
and finally the reboot of the ECU. Again, the only difference to the basic software update
approach is that a multicast is used instead of an unicast.

EASE-UP’s parallel software update mode is rather simple to develop, as the basic
update protocol was already designed in a way that it allows certain steps of the update
process to be performed simultaneously. However, from security point of view, this mode
requires some more attention, as certain features such as the secure multicast (e.g., trans-
fer the binary to several WVIs simultaneously) demand extensions to the basic security
concept. More information on these features is given in Section 6.2.

5.3.2 Partial Software Update

Partial software updates are particularly advantageous if the current and the previous
software version of an ECU only differ slightly (e.g., only one parameter field is updated)
and especially if the software binary itself is rather large (e.g., some megabytes). In such
a case, a partial software update will allow to significantly reduce the number of bytes
transferred, as only a small delta (i.e., at a minimum the bytes which are different from
one version to the other) must be sent from the DT to the ECU via the WVI. Hence, the
overall duration of the software update process can be reduced.

Partial software updates are already used in telecommunication (i.e., delta updates
for smartphones) as well as Wireless Sensor Networks (WSN). In Section 3.3 relevant
approaches are discussed.

Partial software updates for automotive ECUs. In contrast to parallel software
updates, which are completely independent from the ECU to be updated, the efficacy of
partial software updates strongly depend on the underlying ECU. First, the ECU must be
able to support partial software updates at all, and second, the utilized flash architecture
as well as the used memory layout of the developed ECU software significantly impact the
efficiency of the partial software update process. Hence, in the following the developed
partial software update process for one specific automotive ECU – the Infineon AURIX
ECU – will be described in more detail (see also [37]). However, the described concepts
can of course also be used for other ECU platforms (in slightly adapted form).

59

Chapter 5 – EASE-UP Networking Aspects

Developed partial software update mechanism. The developed mechanism exploits
the ability of UDS to update single code segments individually. If only one code segment
of an ECU software binary is affected by a software update (e.g., due to a bug fix within
this code segment), it is enough to only update this code segment instead of the entire
software binary. This basic idea requires the DT to be able to detect situations where only
some code segments are affected by a software update. In the developed software update
system, the software binary parser of the DT also allows to compare two software versions
with each other, resulting in a partial file only containing the affected code segments.

CS1 CS2 CS3

CS1 CS2 CS3

Page1 Page2 Page3 Page4 Page5 Page6 Page7

Figure 5.7: Software binary consisting of three Code Segments (CSs) in the ECU memory.
The upper view shows a bad placement of the CSs w.r.t. partial software updates. The
lower placement of the CSs is more suitable for partial software updates: no CSs are
located within the same page and they are placed in the memory according to their size.

The flash memory of an ECU is typically divided into physical blocks (so-called pages)
and the employed flash controller often only allows to delete and write an entire page.
Therefore, the location of the code segment within the physical memory must be taken into
account when developing the partial software update mechanism within the bootloader.
In Figure 5.7, an example of a software binary consisting of three Code Segments (CSs)
and their location within the ECU memory is given. In a case where two CSs are placed
within the same page (e.g., CS1 and CS2 in Figure 5.7, upper illustration), both CSs have
to be written to the affected page even if only one of the CSs has changed. The given
bad placement example would require to rewrite five pages in total if CS1 or CS2 require
an update. The developed ECU bootloader, but also the DT and especially its parser,
have to take these placement issues into account and ensure that all affected pages are
filled with all concerned CSs. Therefore, the developed DT prototype compares the parsed
binary (its defined CSs) with the memory layout of the ECU to ensure that the partial
file does not only contain the changed CSs, but also other CSs that needs to be written
to the ECU again due to the placement issue described above.

EASE-UP’s wireless software update protocol supports partial software updates with-
out any adaptions, as all the required update features are provided by the DT itself.
Other components such as the WVI or certain steps of the software update process (e.g.,
the wireless data transfer) are not affected at all, and also the defined security concept
does not require any adaption. In Figure 5.8, the designed partial update mechanism
consisting of five major steps is illustrated. First, vehicle- and ECU-specific information is
collected. In a second step, this information is used to check if new software for the ECUs
of the vehicle is available. In case new software is found, the so-called diff tool of the DT is
used to compare the currently installed (i.e., old) software version with the new software

60

Chapter 5 – EASE-UP Networking Aspects

(i.e., step 3). As a result of this comparison, the partial file is created (i.e., step 4). The
created partial file includes all CSs, which have to be transferred and installed on the
ECU (i.e., changed as well as affected CSs; see description above). Finally, in step 5, the
partial file is transferred to the ECU and ultimately installed on it. In the best case, the
partial file only includes the actually changed CS, and in the worst case all CS of the new
software have to be transferred and installed (i.e., in worst case, the partial file is equal to
the new software binary). It is important to mention that the developed partial update
mechanism does not require any adaption to the UDS standard or the ECU. Therefore,
the mechanism can basically be used for all ECUs supporting UDS. However, the actual
benefit of employing the developed mechanism heavily relies on the memory layout of the
ECU and the placement of the CS within the memory.

ECU ECU

ECU

CGW
ECU

WVI

Diagnostic tester (DT)

DT core

ODX
database

Diff tool

3) Check
software

Old New

?

Partial
file4)

 G
e

ne
ra

te

p
ar

ti
al

 fi
le

Figure 5.8: Partial software update approach. Five major steps are required to perform a
partial software update in EASE-UP.

Guidelines for efficient partial software updates. Partial software updates can
significantly reduce the time required to perform software updates and hence increase
the efficiency of the entire system. Evaluation results showing such improvements are
presented in Section 7.2.1. The update duration is strongly affected by the placement of
the code segments of an ECU software binary. Thus, some basic guidelines for the ECU
software development and the placement of the resulting code segments are presented
next. These guidelines are not dedicated to any specific ECU, but are applicable for a
generic ECU platform where the flash memory is divided into physical pages and logical
memory sections are defined within the development environment (i.e., logical memory
layout). Such a section covers one or several pages of the ECU flash memory.

In Figure 5.9 an example of an ECU flash memory layout is shown. The illustrated
layout encompasses several sections of different sizes. Most development environments
allow to adapt the default memory layout. This can be very useful especially if a very
large (e.g., for a comprehensive code segment) or lots of small sections (e.g., if many small
code segments will be implemented) are required. However, one has to make sure that the
changed memory layout still corresponds to the underlying physical pages (i.e., a section
can cover several pages but shall always end at the end of a page). Another important

61

Chapter 5 – EASE-UP Networking Aspects

aspect is the placement of the single code segments as indicated in Figure 5.9: large code
segments that will remain the same over the lifetime of a vehicle shall be placed in large
sections. Parameters or other code fragments more likely to change over the lifetime of the
ECU shall be placed in rather small sections. This placement will significantly improve
the performance of partial software updates.

Sectio
n

 1 (4
K

B
)

Sectio
n

 2 (4
K

B
)

Sectio
n

 3 (4
K

B
)

Sectio
n

 4 (4
K

B
)

Sectio
n

 5 (8
K

B
)

...

Sectio
n

 N

(25
6K

B
)

Big flash
sections for
software
unlikely to
change

Small
sections for

frequent
updates

Figure 5.9: The flash memory of an ECU is divided into sections with different block sizes.
Figure taken from [37].

62

Chapter 6

EASE-UP Security Aspects

Security is a crucial aspect of a wireless automotive software update system and for al-
most all automotive applications in general. The potential security threats range from
endangering the privacy of the vehicle owner/driver by stealing personal information or
tracking the vehicle, over theft of the vehicle or personal belongings within the vehicle, to
endangering the safety of the driver, the passengers as well as other road users by gaining
remote control over the vehicle or installing malicious software on an ECU.

To overcome this wide range of attacks, the automotive industry started to define
comprehensive security design processes for vehicle applications. These processes are
thereby often similar to the well-established automotive safety counterparts described
in the ISO 26262 [33] standard. A first security standard – SAE J3061 [52] – is describ-
ing a security design process for cyber-physical vehicle systems. However, the guidelines
presented by this standard are only specifying the conceptual steps towards a secure au-
tomotive application, but do not provide any details on how to tackle these single steps.

In this chapter a measurable security design approach applicable to support certain
steps described in SAE J3061 is proposed (Section 6.1) and used to find the best security
concept for a wireless software update system applicable for all aforementioned local up-
date scenarios (see Section 4.1). This comprehensive security concept is described in more
detail in Section 6.2 and finally evaluated in Section 6.2.6.

6.1 Measurable Security Design Approach

The proposed security design approach – the DEWI1 Security Metric [62] – is based on
the SHIELD Multi-Metrics [21, 45], a measurable security design approach for analyzing
complex cyber-physical systems. The DEWI Security Metric can be used to analyze and
design a system w.r.t. to security and thereby support the system design flow defined in
the SAE security standard SAE J3061 [52].

In Chapter 2 related background information on the SHIELD Multi-Metrics (see Sec-
tion 2.5) as well as the new SAE security standard for automotive systems (see Section
2.4) is provided. Next, the DEWI Security Metric is described in more detail, and an ex-
ample on how to apply this metric is provided. Additionally, an evaluation of the DEWI

1 EU ARTEMIS project Dependable Embedded Wireless Infrastructure (DEWI). For further details see
www.dewi-project.eu.

63

Chapter 6 – EASE-UP Security Aspects

Security Metric is performed.

6.1.1 DEWI Security Metric

The SHIELD Multi-Metrics approach (see Section 2.5) was successfully applied in the
DEWI project to analyze and evaluate different application scenarios. However, some
limitations of this approach were identified and hence the DEWI Security Metric was
defined to overcome these limitations and foster the use of a measurable security approach
in real-world applications.

SHIELD’s limitations and their solutions by the DEWI Security Metric. The
identified limitations range from a subjective assignment of the security goals as well
as security values for the system components leading to non-replicable results, over the
individual analysis of privacy aspects, to significant difficulties when evaluating a system
w.r.t the mixed term dependability. In the following the most important limitations are
discussed and the corresponding solution within the DEWI Security Metric is described.

Rating of system parameters: the definition of a metric consisting of a weight and a
criticality value for each identified system parameter is a crucial step within the SHIELD
Multi-Metrics approach. However, the authors of the latter do not give any guidance on
how these values shall be chosen. This can potentially lead to incomparable and non-
replicable results as users of the approach (i.e., security experts) will employ different
(subjective) rating schemes.

To mitigate this issue, the DEWI Security Metric comes with a suitable scale and
corresponding guidelines. This scale supports the security experts to choose the score
values for the system parameters and to comprehend the choice of their colleagues (i.e.,
when evaluating the previously chosen values). A non-linear scale was defined for the
parameter assessment as it better fits the human interpretation of criticality (security
value = 100 - criticality value). More information can be found in [62, 5].

Choosing the goal values: the goal values within the SHIELD Multi-Metrics approach
represent the required security level of an application (e.g., a wireless software update
system) in a specific scenario (e.g., updates in an assembly line). The chosen goal values
can easily be compared to the results of a performed system analysis to find the best
system configuration (e.g., the system configuration with the minimum difference to the
goal value). However, no guidance on how to choose the goal values is given and hence
choosing the goal values in advance can be difficult. The subjective process of selecting
the goal values will negatively influence the comparability and replicability of the results.

For the DEWI Security Metric a linear scale is used and some characteristic values are
defined to support the process of choosing the goal values for each application scenario.
For each of those values a certain security values is given and a description focusing on the
attacker abilities and the required resources is provided. In Table 6.1 these characteristic
values are summarized.

Privacy as part of security: in the SHIELD Multi-Metrics approach, security and privacy
are treated as different aspects. However, in many applications and scenarios security and
privacy issues are closely related to each other: all privacy- and security-related high-level
requirements (nearly 100 requirements) collected within the DEWI project were mapped
to technical security requirements in a detailed requirements consolidation phase.

64

Chapter 6 – EASE-UP Security Aspects

Table 6.1: DEWI scale to define goal values: characteristic values and descriptions

Security level Description

95
Very
strong

Very hard for a team of experts with hardware above State
of the Art (SotA) to break the system (upper practical limit)

75 Good
Experts need time AND access to the vehicle to
break the system. No chance for non-experts

50 Average
Experts need time OR access to the vehicle to break
the system. Non-experts need time AND access

25 Weak
Non-experts can break the system in affordable time
OR with access to the vehicle

5
Very
weak

Breaking the system with SotA hardware after a short web
research possible for every one (lower practical limit)

Within the DEWI Security Metrics privacy is handled as part of security to decrease the
complexity by removing one degree (i.e., privacy is not addressed individually anymore).

Evaluation of dependability: dependability is an integrating concept that encompasses
the attributes availability (i.e., readiness for correct service), reliability (i.e., continuity
of correct service), safety (i.e., absence of catastrophic consequences on the user and the
environment), integrity (i.e., absence of improper system alterations), and maintainability
(i.e., ability to undergo modifications and repairs) [4]. Rating system parameters w.r.t.
this complex term is rather difficult as some of the aforementioned attributes can even be
contrary: increasing the reliability and safety of a system (e.g., by maintaining a system
every day) can decrease the availability of the system as it most likely cannot be used
while being maintained.

Dependability is not supported within the current version of the DEWI Security Metric.
Dedicated dependability metrics will be in focus of the DEWI successor project SCOTT2.

Scope and terminology. Contrary to the SHIELD Multi-Metrics approach the DEWI
Security Metric is currently only used to evaluate security (and privacy as part of security)
aspects of a system, and dependability is out of scope for the analysis. In the following
listing the terminology of the DEWI Security Metric is stated:

• System: the system or application (e.g., an automotive software update system),
which will be analyzed by employing the DEWI Security Metric.

• Subsystem: a system consists of a set of subsystems (logical entities), which are in-
teracting with each other. DEWI Security Metric allows nested levels of subsystems.

• Components: the smallest building blocks within the DEWI Security Metric. It is a
logical unit (e.g., communication unit) assigned to a subsystem.

• System parameter: each component offers different parameters, which can be ad-
justed (e.g., communication unit as component; different encryption mechanisms as
system parameters).

2 EU ECSEL project Secure Connected Trustable Things (SCOTT). For further details see
www.scottproject.eu.

65

Chapter 6 – EASE-UP Security Aspects

• Scenarios: a system or application can be used in different scenarios (e.g., wireless
software updates in a service center).

• System configuration: a set of system parameters. Varying these parameter values
(e.g., using different encryption mechanisms in different configurations) will lead to
several different system configurations.

Structured system analysis using the DEWI Security Metric. The DEWI Security
Metric follows a structured approach encompassing six working steps. In the following
these steps are described in more detail. Therefore, EASE-UP will be used to support the
presented theoretical approach with a practical example. In [62] a comprehensive example
on how to perform a security analysis for a WVI is presented and in [5] a complete security
analysis of the developed local software update system using the DEWI Security Metric
is described.

Step 1 – Define goal values for scenarios and different ECU types. In the first step the
goal values are chosen for each scenario (i.e., software updates in the assembly line, during
vehicle development, in the service center, as well as while the vehicle is parked at the smart
home). The provided scale and guidelines (i.e., characteristic security values for specific
attacker abilities and employed resources) will be used to find the required security level
for each scenario.

The type of ECU should also be taken into account when employing the DEWI Security
Metric for analyzing a wireless software update system, as discussed in more detail in [5].
Therefore ECUs are classified in three different classes [57]:

• Uncritical - Class 1: infotainment and entertainment related ECUs. Lowest criti-
cality level as these ECUs have no impact on the safety of the vehicle.

• Body and comfort - Class 2: ECUs related to heating, ventilation, air conditioning,
but also controlling the window lifters and windscreen wipers. Medium criticality
level as this type have no direct impact on vehicle dynamics or the vehicle safety.

• Powertrain, chassis, driver assistance - Class 3: ECUs fulfilling complex and/or
safety-critical tasks. Highest criticality level.

In Table 6.2 an example for goal values for all relevant local software update scenarios
and the three classes of ECUs is provided. More information can be found in [57, 5].

Table 6.2: Security goals per local software update scenario and ECU class.

ECU class Assembly Line Vehicle Development Service Center Smart Home

Class 1 50 60 50 75

Class 2 55 60 60 80

Class 3 60 60 70 90

Step 2 – Decompose the system. Next, the system is divided into subsystems and com-
ponents. Therefore, logical entities of the system are identified (e.g., single devices of a

66

Chapter 6 – EASE-UP Security Aspects

system such as the DT or the WVI) and then further divided into technical components
(e.g., subsystem WVI: wireless communication unit as component). In Figure 6.1 a generic
example of an decomposed system is shown.

System

Subsystem 1 Subsystem 2 Subsystem 3
Comp. B

Comp. A

Comp. C Comp. D

Parameter

Parameter
Parameter

Parameter

Parameter

Metric

Metric
Metric

Metric

Metric

Metric
System

configuration

Parameter

Metric

Parameter

Figure 6.1: System decomposition. System to subsystem and finally components. System
parameters are identified for all components and mapped to a specific configuration [5].

Step 3 – Identify the system parameters. In this step system parameters are identified for
each component. Next, for each system parameter a metric including a criticality and a
security value is set using the provided scale and the corresponding guidelines. This step
is very important and requires expert knowledge. An example for a component and its
system parameters is presented in Table 6.3.

Table 6.3: Example of a component and its system parameters. For each parameter the
Security Value (SV) and the Criticality Value (CV) is provided.

Component/Parameter SV CV Description

Key storage Describes different ways of storing keys

Software 40 60 Stored in the software (e.g., #define) running

Memory (plain) 30 70 Stored in normal flash memory (plain)

Memory (encrypted) 75 25 Stored in normal flash memory (encrypted)

TPM 90 10 Trusted Platform Module (TPM) as key storage

Step 4 – Define suitable system configurations. To define a specific system configuration
a system parameter is chosen for each component of the system (see also Figure 6.1).
Thereby, one can create the most energy-efficient, cost-efficient, or strongest (w.r.t. se-
curity) system configuration by choosing the corresponding system parameters. Please
note that there is no point in varying the system parameters in a way to get any possible
configuration but one should only create practicable configurations.

67

Chapter 6 – EASE-UP Security Aspects

Step 5 – Compute the security score per configuration. Once a system configuration is
defined, the overall score of this configuration can be computed by applying the formulas
defined in the underlying SHIELD Multi-Metrics approach (see [57] for more information
on the formulas). Therefore, first the security score for each subsystem is computed and
then these intermediate results are used to finally compute the overall system security
score for the corresponding security configuration.

Step 6 – Find the most suitable system configuration per scenario. In the last step the
results for all evaluated system configurations can be compared to the defined goal values
to find the most suitable configuration for each considered scenario. Thereby, one can use
the system configuration closest to the defined security score. But it is also possible to
use the cheapest configuration fulfilling the security goal (i.e., management decision).

DEWI Security Metric supporting SAE J3061. The aforementioned steps allow to
perform a structured system security analysis and are thereby also able to support the
concept phase of the development cycle defined in SAE J3061 (see Section 2.4 for more
information). Therefore, the goal value scale defined within the DEWI Security Metric
can be mapped to the security goals described in the standard as shown in [62]. Fur-
thermore, the results of a system analysis based on the DEWI Security Metric (i.e., the
most suitable system configuration per scenario) can be used to simply perform the steps
Cybersecurity Concept and Identify Cybersecurity Requirements as defined in SAE J3061:
a system configuration can easily be transferred to a security concept as a configuration
encompasses a suitable security mechanism (i.e., the chosen system parameter) for each
technical component of a system. Furthermore, also security requirements can be easily
extracted from a system configuration by converting a component (e.g., wireless communi-
cation unit) plus the corresponding system parameter (e.g., encryption mechanism A with
key length X) to a textual requirement: The data transfer of the wireless communication
unit shall be secured by encryption mechanism A with key length X.

Further information can also be found in [5] and [62].

6.1.2 Evaluation of the DEWI Security Metric

In this section the proposed DEWI Security Metric will be evaluated using an ordering
relation. For this, the DEWI Security Metric will be employed to analyze a system (i.e.,
Wi-Fi protection mechanism), create system configurations according to established pro-
tection schemes (i.e., WEP, WPA, and WPA2), and finally compare the gathered results
for each configuration. These results shall thereby confirm that the Wired Equivalent
Privacy (WEP) mechanism provides the weakest protection, followed by Wi-Fi Protected
Access (WPA) and WPA2 as the best option w.r.t. security according to [53]:

Security(WEP) < Security(WPA) < Security(WPA2) (6.1)

To prove this hypothesis, the Wi-Fi protection mechanism and its main features are ana-
lyzed using the DEWI Security Metric in the following.

Generic Wi-Fi protection mechanism. In Figure 6.2 a generic Wi-Fi protection

68

Chapter 6 – EASE-UP Security Aspects

mechanism and its key features are sketched. Two main aspects are covered thereby.
Connection-related security features are handling the establishment and maintenance of a
trustable connection between an end device (e.g., a laptop or smartphone) and the Wi-Fi
AP, while data-related security features ensure the confidentiality as well as the integrity
of the exchanged data on packet level.

Wi-Fi
protection

Connection
protection

Data/packet
protection

Authentication Relay attack
avoidance

Data
confidentiality Data integrity

Figure 6.2: Generic Wi-Fi protection mechanism. Main features of a Wi-Fi protection
mechanism encompassing connection- as well as data-related security measures.

The existing Wi-Fi protection mechanisms WEP, WPA, and WPA2 are also addressing
these aspects and dedicate suitable protection measures to each of the required aforemen-
tioned security features. A summary of the employed protection measures employed by
WEP, WPA and WPA2 is presented in Table 6.4.

Table 6.4: Different Wi-Fi protection mechanisms. Comparison of WEP, WPA and WPA2
[53, 54, 18] and there security features.

WEP WPA WPA2

Data
integrity

Type CRC MIC MIC + CRC
Length 32 64 64 + 32

MIC key length - 64 64

Data
confidentiality

Type RC4 RC4 AES
Key length 40 128 128

Authentication
Type - 4-way handshake 4-way handshake

Key length - 256 256

Relay attack
avoidance

Type - inc. seq. number packet number
Key length - 64 48

Decomposing the system. Figure 6.2 already provides a starting point for the decom-
position of the system: one has to divide the system into subsystems and components.
In Table 6.5 the results of the decomposition process are summarized and the weights
on subsystem as well as on component level are stated. The two subsystems Connection
and Data are thereby using the same weight as both aspects are equally important to

69

Chapter 6 – EASE-UP Security Aspects

ensure a trustworthy connection between an end device and the AP. The same is true for
the components Encryption and Integrity of the subsystem Data. In the subsystem Con-
nection the component Authentication was given a higher weight as this component has
to mitigate several potential threats compared to the component Relay Attack Avoidance
focused only on one specific type of attack.

Table 6.5: Decomposition of the Wi-Fi protection system into subsystems and components.

Name Weight

System Wi-Fi protection -

Subsystem I Connection 50

Component I.a Authentication 60

Component I.b
Relay attack

avoidance
35

Subsystem II Data 50

Component II.a Confidentiality 50

Component II.b Integrity 50

Creating system configurations for WEP, WPA, and WPA2. In the next step
of the DEWI Security Metric approach the system parameters per component have to be
identified and then suitable system configurations are defined. In the current example the
system parameters are given by the analysed Wi-Fi protection mechanisms WEP, WPA
and WPA2. The security features employed by these mechanisms are summarized in Table
6.4. These features can easily be transferred into system parameters for the components
listed in Table 6.5 and then assigned to a system configuration. Table 6.6 shows the final
system configuration for each Wi-Fi protection mechanism (i.e., WEP, WPA, and WPA2)
as well as the corresponding security score per system parameter given in the brackets.

Use the DEWI Security Metric to calculate the security score. In a final step
the DEWI Security Metric can be employed to calculate the security score for each system

Table 6.6: System configurations for WEP, WPA, and WPA2. Per configuration the
identified system parameters plus the corresponding security scores (in brackets) are given.

Component WEP WPA WPA2

Data integrity CRC 32bit (40)
MIC 64bit length
and 64bit key (75)

CRC 32bit plus
MIC 64bit length
and 64bit key (80)

Data
confidentiality

RC4 with
40bit key (35)

RC4 with 128bit
key (50)

AES with 128bit
key (75)

Authentication None (10)
4-way handshake

using 256bit key (75)
4-way handshake

using 256bit key (75)

Relay attack
avoidance

None (10)
Incrementing sequence
number with 64bit (50)

Packet number
with 48bit (50)

70

Chapter 6 – EASE-UP Security Aspects

configuration. Therefore the score is first computed on subsystem and finally on system
level. The gathered results are presented in Table 6.7.

Table 6.7: The resulting security score on subsystem and finally system level (rounded).

Subsystem Security score WEP Security score WPA Security score WPA2

Connection 10 67 67

Data 37 60 77

System 22 63 72

Security(WEP) = 22 < Security(WPA) = 63 < Security(WPA2) = 72 (6.2)

The final security score values collected in Table 6.7 prove the defined hypothesis, conform
to the security rating of WEP, WPA, and WPA2 as presented in [53, 54, 18], and show
that the DEWI Security Metric leads to the expected results.

Sensitivity analysis. Next, the sensitivity of the DEWI security metric is discussed. This
is important as different security experts using the DEWI security metric will potentially
use slightly different values when performing the analysis, as the assignment of security
score values per component is still based on a subjective judgment (although suitable scales
have been defined to minimize the effect). The same is true for the chosen weight values
on component as well as subsystem level. In the following, the robustness/sensitivity of
the DEWI security metric is analyzed to prove that subjective judgment will not lead
to significantly different results (i.e., the hypothesis is not valid any more). Please note
that it is assumed that the analysis is performed by different security experts: although it
is likely that slightly different values are chosen (e.g., as one expert is always using more
pessimistic score values or lower weights in average), they all agree/know that one security
mechanism (e.g., different encryption schemes) or parameter (e.g., the chosen key length)
is more secure than another one. Cases where very diverse security scores are assigned for
the same component will not be discussed in the following due to this assumption.

The following discussions require knowledge about the underlying equations of the
DEWI security metrics (defined as part of the SHIELD multi-metrics; see also Section 2.5).
Thus, these equations (see Equations 6.3 and 6.4) are briefly described in the following.
More details can be found in [5, 21, 45].

Please note that the equations are not directly using the security value (Si) of a com-
ponent, but its criticality (Ci):

C =

√∑

i

c2i ∗ wi∑
iwi

with C = 100 − S, (6.3)

wi =

(
Wi

max(Wi)

)2

and Si = 100 − Ci (6.4)

with C being the resulting criticality value of the analyzed (sub)system, ci the criticality
of each of the components of the subsystem, Wi the weight values of the components
(between 0 and 100), and wi the normalized weight values (between 0 and 1).

71

Chapter 6 – EASE-UP Security Aspects

Offset in weights: assigned weights W per component or subsystem have to be in a range of
0 (i.e., unimportant) to 100 (i.e., highly important). For two similar important subsystems,
two experts could hence choose weight values such as W1=50 and W2=50 or W1=70 and
W2=70. In such a case, the DEWI security metric will lead to the same results, as the
weight values are normalized (see equation in 6.4).

Different scales for weights: the DEWI security metric is also robust in cases where security
experts use different scales for assigning weights (e.g., security expert 1 is assigning 25%
higher weights than expert 2: W1=75 and W2=50 for expert 1, and W1=60 and W2=40
for expert 2): by normalizing the assigned weights the difference can be mitigated (i.e., in
the given example the normalized weights will be w1=1.0 and w2=0.44 for both experts).

C =

√
c2I.a ∗ wI.a ∗ wI + c2I.b ∗ wI.b ∗ wI

(wI.a + wI.b) ∗ (wI + wII)
+

c2II.a ∗ wII.a ∗ wII + c2II.b ∗ wII.b ∗ wII

(wII.a + wII.b) ∗ (wI + wII)
(6.5)

Sensitivity w.r.t to security/criticality values: when performing a security analysis using
the DEWI security metric, a security expert will assess all identified components of a
system and assign security/criticality scores for each component accordingly. In case two
experts are carrying out such an analysis, they will potentially use slightly different security
score values. In contrast to the weights, where slight differences only cause minor variations
w.r.t. the overall results of the analysis (or even lead to the same results as described
earlier), differently chosen security/criticality values will have a more significant impact
on the overall result. This is due to the fact that the square of the security/criticality value
is used in the formula as shown in Equation 6.5, and hence a delta between two assigned
security values will have a square impact on the result. Please note that in this equation,
cI.a represents the first component (i.e., component Authentication) of subsystem 1 as
presented in Table 6.5.

To support the security experts in the assessment process (i.e., choosing security values
for each component) and, in further consequence, to minimize the impact of subjective
judgment on the results of an analysis, a dedicated scale is provided as part of the DEWI
security metric (please refer to Section 6.1.1 or [5, 57]).

6.2 Security Concept for Wireless Software Updates

The defined security design approach provides a structured methodology supporting the
definition of a comprehensive security concept for automotive cyber-physical systems, and
hence it was employed when defining the developed wireless automotive software update
system. Detailed information about the performed analysis can be found in [57] and the
results of the performed analysis can be found in [5] in its entirely.

In the following the defined security concept applicable for all addressed local software
update scenarios (as described in Section 4.1) is described in detail. Therefore, first the
identified security requirements (i.e., a result of the performed analysis) are summarized
in Section 6.2.1 and the defined generic multi-layer security concept is presented in Section
6.2.2. Thereafter, in Section 6.2.3, the security features of the developed update protocol
are described and the final hybrid security solution encompassing software as well as

72

Chapter 6 – EASE-UP Security Aspects

hardware security measures is proposed in Section 6.2.4. Finally, the fulfillment of the
identified requirements is discussed in Section 6.2.5. A detailed formal security evaluation
of the defined concept is described in Section 6.2.6.

6.2.1 Security Requirements for Wireless Software Updates

In the following the most important security requirements are stated and described in
detail. These requirements are a result of the performed structured system analysis based
on DEWI Security Metric: the resulting security configuration for EASE-UP can be easily
transferred into security requirements by converting a component (e.g., wireless commu-
nication unit) plus the corresponding system parameter (e.g., encryption mechanism A
with key length X) to a textual requirement. More information can be found in Section
6.1.1 (paragraph DEWI Security Metric supporting SAE J3061) as well as in [5].

REQ1 – Strong Authentication. Suitable authentication mechanisms must be em-
ployed to ensure that only i) authorized tools are allowed to connect to a vehicle (its
WVI) to perform wireless diagnostics and software updates, and ii) authorized vehicles
are receiving a new software update. The authentication step is essential for all addressed
local software update scenarios.

REQ2 – Confidentiality of the exchanged data. The developed system and especially
the utilized wireless network must ensure data confidentiality to protect the transferred
software binary (relevant for all scenarios), the exchanged keys and other sensitive material
(relevant for all scenarios), as well as user-related data to ensure the privacy of the involved
users (especially relevant for service center and smart home scenarios).

REQ3 – Ensure data integrity. Data integrity is essential in all local software update
scenarios and hence must be ensured by employing proper security mechanisms. The
utilized mechanisms shall thereby protect against random bit errors while transferring a
packet (e.g., due to interference) as well as ensure that attackers cannot tamper with the
transferred data while transferred over a wireless network.

REQ4 – Key Storage. The security mechanisms employed to fulfill the aforementioned
requirements REQ1 to REQ3 will demand several secret keys and other sensitive informa-
tion. It is essential that this material is kept secret and cannot be revealed by an attacker.
The developed system shall hence employ dedicated hardware such as a TPM to store
secret keys and sensitive data.

REQ5 – Trusted core network. In local software update scenarios where a plug-in WVI
is used to establish a connection between the vehicle and the local software update system
(especially service center and vehicle development scenarios), single components (e.g.,
the WVI and/or a handheld) can potentially be used to perform unauthorized software
updates or diagnostics (e.g., cash-in-hand jobs: a mechanic steals a WVI and performs
illegal software updates and repairs). To avoid such a misuse of equipment, the developed
system shall provide mechanisms to initially create a trusted core network involving the
DT, the plug-in WVIs, as well as utilized handhelds. Once this trusted network was
established, the WVIs and handhelds will only allow wireless diagnostics and software
updates if they are connected to the trusted DT. Therefore, the equipment can only be
used in close proximity (e.g., within a service center) to the DT. Please note that the DT
is very likely kept in a restricted area or a dedicated room and only authorized users such

73

Chapter 6 – EASE-UP Security Aspects

as the head of a service center can access it.

REQ6 – Secured backbone link supporting vehicle authentication. In contrast
to REQ 5, where plug-in WVIs as part of a trusted core network are employed to intercon-
nect vehicles with the wireless software update system, REQ 6 is dedicated to scenarios
where vehicles with integrated WVIs are involved. In such scenarios (e.g., a vehicle with
integrated WVI is maintained within a service center for the first time), the WVI and the
DT can potentially not establish a trustworthy connection without support of the OEM.
Thus, the developed system must provide a suitable interface to the OEM backbone and
be able to utilize this connection to request required information (e.g., the public key of the
vehicle to verify its signature included in an authentication request sent by the vehicle).

REQ7 – User authentication and profiles. The wireless software update system
must support dedicated user profiles to specify which group of users is allowed to perform
a specific set of operations (e.g., a normal mechanic can only perform wireless diagnostics
while a specially trained mechanic is also allowed to perform software updates). Addition-
ally, the system shall provide suitable mechanisms to authenticate users when they utilize
handhelds or directly interact with the DT.

REQ8 – Physical access to the vehicle cabin. A wireless software update needs to
be authorized by proving physical access to the vehicle’s inside (i.e., the cabin). This proof
can be provided by i) connecting a plug-in WVI to the vehicle via its OBD interface which
is located in the vehicle cabin (especially relevant for service centers), or by ii) pressing a
dedicated button within the vehicle (mainly for the smart home use case). This security
requirement is only relevant for the service center as well as the smart home scenario due
to a required high security level (see Table 6.2).

REQ9 – Support secure multicast. The developed system must support trustworthy
parallel software updates where several ECUs receive the same new software simultane-
ously (see Section 7.2.1 for more information). Thus, the wireless communication infras-
tructure as well as the developed update protocol must provide suitable mechanisms for
secure multicast data streams.

6.2.2 Multi-layer Security Concept

The defined generic security concept encompasses security features on both the network
as well as the application layer, as presented in Figure 6.3. On network layer the built-in
security features of IEEE 802.11s are used. More information on these security features is
presented in Section 5.1.4 and can also be found in [25].

The security features employed on application layer encompass i) a strong authen-
tication scheme to set up a trustworthy connection between the DT, the WVIs and the
handhelds, ii) mechanisms based on symmetric session keys protecting the integrity as well
as confidentiality of the exchanged data (e.g., a software binary) thereby also supporting
multicast data streams, iii) dedicated security hardware (i.e., TPM) to store keys and
other sensitive material, iv) a user management scheme supporting user profiles as well as
the user authentication on handheld devices as well as the DT, and v) out-of-band pairing
features to create a trusted core network.

74

Chapter 6 – EASE-UP Security Aspects

Network layer security

Application layer security

Authentication of nodes

Encryption of data

Authentication of entities
 - Based on asymmetric key cryptography
 - Authentication request from WVI to DT
 - Request: digital signatures, nonce and timestamp

First Security
Layer

Seco
nd

 Security
Layer

Protection of exchanged data
 - Based on symmetric keys (i.e., session key)
 - Ensure integrity on packet and binary level
 - Data encryption on packet level
 - Session key applicable for multi-WVI sessions

Protection of required (stored) keys
 - TPM used as secure hardware storage
 - Integrated in WVIs and DTs

User management
 - User profiles: normal, privileged, admin profiles
 - User authentication on handhelds and DT

Trusted core network
 - Initial pairing process

Figure 6.3: Generic security concept. The defined multi-layer security concept encom-
passes security features on network as well as on application layer.

6.2.3 Security Features of the Developed Update Protocol

The generic multi-layer security concept defines all relevant components required to secure
a wireless automotive software update system. In this section, these aforementioned com-
ponents are integrated in the defined software update protocol and technical details on
the employed security features are stated. First, the utilized set of secret keys is discussed
and thereafter the security features added to each of the six update steps of EASE-UP
as defined in Section 5.2.1 are specified. An illustration of these security features is also
provided in Figures 6.4 and 6.5.

Utilized security keys and key exchange. Several different keys are required by the
employed security mechanisms. In the following these keys are discussed one by one.

Master key pair. The master key pair encompasses a private and a public key and is based
on a RSA (i.e., public-key crypto system by Rivest, Shamir und Adleman). Thereby the

75

Chapter 6 – EASE-UP Security Aspects

developed system supports the use of 1024 and 2048 bit keys. Each device holds its own
master key pair for its entire lifetime.

In a classic PKI the public keys are exchanged (e.g., over the Internet) and then used
to encrypt data or to verify digital signatures. Thereby the problem of verifying that a
public key really belongs to a certain user or entity arises, as attackers could potentially
interfere this initial public key exchange and send there public keys instead. As a result,
for two users (e.g., Alice and Bob) trying to exchange their public keys but receiving the
public key of an attacker, no secure channel will exist as messages from Alice to Bob
encrypted with the attacker’s (however, Alice thinks its Bob’s key) public key and signed
with Alice’s private key can only be encrypted with the attacker’s private key (the same
is true for encrypted messages sent from Bob to Alice). The attacker can also send signed
messages to Alice acting as Bob (i.e., theft of identity).

To allow a user to verify that a public key really belongs to a certain entity or user,
classic PKI systems employ a third party, the Certificate Authority (CA). The CA is a
commonly trusted party maintaining digital certificates. In each certificate the identity
of a user or an organization is linked to a public key. Furthermore, the certificate will
also include other metadata such as an e-mail address or the URL of the organization’s
website, and specify a duration in which the certificate is valid. A user can hence request
or verify a public key by requesting a certificate from a CA using an online request.

As a consequence, each node requires an Internet connection to communicate with a
CA. In the defined security concept, a different approach has been chosen: to keep the
system local (i.e., only the DT is connected to the Internet and/or the OEM backbone), a
security concept without a CA was designed [37]. However, such a concept requires that
public keys are initially exchanged and then securely stored. This pairing step is performed
in a controlled environment (e.g., close proximity to the DT) using a dedicated media or
mechanism (e.g., the developed system allows the use of NFC and one-time passwords) by
authorized users (e.g., head of a service center). The initial pairing step (i.e., forming a
trusted core network) only has to be done once: first, a master key pair is created on each
device and securely stored (see REQ 4). Second, the public keys are exchanged within
the system (e.g., between a DT and a handheld) and then securely stored. After the
initial pairing step, the master keys can be used to handle the authentication between the
involved nodes and, additionally, to sign as well as to encrypt unicast packets.

Session key. The symmetric session key is used to encrypt data exchanged between two
entities within the developed local software update system (e.g., a DT and one WVI).
The key is created by the DT for a bidirectional connection between a DT and a WVI
or a handheld, or by the handheld for a connection between the WVI and the handheld.
In the next step the key is encrypted using the public master key of the other entity
(i.e., WVI or handheld) and signed by the private master key of the DT or the handheld,
respectively. Finally the encrypted session key is sent to the WVI or handheld. All packets
exchanged within the session key exchange handshake include timestamps and nonce to
avoid replay attacks. Additionally, as each packet is signed using the private master key,
also man-in-the-middle attacks are prevented.

A session key is typically valid for one continuous session. In the developed system
the maximum session duration is 8h. If a session exceeds the 8h, a new session key is
exchanged. Additionally, session timeouts (i.e., connection inactive for more than 1h)
are defined. Both parameters (i.e., maximum session duration and session timeout) are

76

Chapter 6 – EASE-UP Security Aspects

configurable. The session keys are realized as Advanced Encryption Standard (AES) keys
with a length of 128 or 256 bit.

Multicast-session key. This type of key is closely related to normal session keys despite
the fact that a multicast-session key allows to send a secured multicast packet to several
entities at the same time. The multicast-session key is created by the DT, then sent to
several WVIs and finally used for all multicast data packets sent from the DT to these
WVIs. Therefore, the DT once has to send an encrypted and signed packet including the
multicast-session key to each WVI individually. The multicast-session key is again based
on AES with either 128 or 256 bit length.

In the following the single steps of the software update protocol employed by EASE-UP
are discussed w.r.t. the employed security features and the aforementioned security keys.
An illustration of these security features is presented in Figure 6.4 and Figure 6.5.

Step 1 – Discovery and connection establishment: in this step the authentication
between the involved entities (i.e., DT, handheld and WVI) is performed. Therefore the
DT as well as the handheld will receive an authentication request from the WVI. This
authentication request is signed by the private master key of the WVI. The DT will verify
the request using the public key stored within its internal secure key storage and, if the
signature is valid, create a session key. Next, the session key is encrypted using the public
key of the WVI, signed by the private master key of the DT, and finally sent back to the
WVI. The WVI will then verify the signature of the DT, decrypt the session key, and
securely store it. All messages exchanged within this authentication handshake between
the DT and the WVI (the same holds true for WVI to handheld as well as handheld to
DT authentication) include nonce, identifiers, and timestamps to prevent replay attacks.

Step 2 – Gather vehicle information: no dedicated security features are required in
this step. However, if parallel software updates are utilized within a specific scenario, this
step can be used to i) identify if there is a potential for parallel updates (i.e., there are
two or more vehicles demanding the same software update) and to ii) create a multi-cast
session key and distribute it to all concerned WVIs.

Step 3 – Initialize a software update: this step requires to authorize the software
update on ECU level using UDS between WVI and the ECU. For a majority of today’s
ECUs this step will be based on a Seed & Key mechanism, where the ECU creates a
number of random bytes (i.e., the seed), sends the seed to the DT, and internally creates
the key using a secret algorithm. The DT is also aware of the algorithm and can hence
also compute the key and send it back to the ECU. Future ECUs will most likely employ
stronger security mechanisms based on secure elements. In both cases (i.e., Seed & Key or
authorization based on secure elements) the DT will be able to perform the authorization
step by utilizing the information gathered by the vehicle’s ODX file and/or the OEM
backbone network.

In this step, the WVI will only act as gateway allowing the DT and the ECU to perform
the authorization handshake. The WVI and the handheld will never hold algorithms or
other information required in the authorization step due to security reasons.

Step 4 – Wireless data transfer: the wireless data transfer between the DT and the
WVI is critical as attackers can try to eavesdrop or manipulate a software binary while it

77

Chapter 6 – EASE-UP Security Aspects

P
h

as
e

Verify request using
WVI1-KPub

and create response

DT WVI1
Vehicle 1

ECU1 WVI2
Vehicle 2

ECU2

Public RSA Key (KPub)

Private RSA Key (KPrv)!

AES Session Key (KS)

AES Multicast
Session Key (KMS)

Authentication Req.
- Connection info:
receiver, seq. number,
nonce, and timestamp

- RSA-encrypted

A
u

th
e

n
ti

ca
ti

o
n

 b
e

tw
e

en
 D

T
 a

n
d

 W
V

Is

Digital RSA Signature

Auth. Resp.
- Connection info

- RSA-encrypted

- KS1

Verify response using
DT-KPub

and store session key

A
u

then
ticatio

n hand
shake

D

T-W
V

I1

Authentication handshake DT-WVI2

Multicast session
- Connection info

- RSA-encrypted

- KMS

Verify message using
DT-KPub

and store session key
Verify and

store

Enc. with
WVI1-KPub

Enc. with WVI2-KPub

P
re

p
ar

e
 p

ar
al

le
l u

pd
at

e
s

AES-GCM protected

Init update request

- Update info
Decrypt and check
message using
Trigger init update

Trigger
init

update

Request Seed Generate
Seed and

compute keySeed&Key request
- Seed from
ECU

Compute key
from Seed

CAN

CAN

Seed&Key response
- Key from
seed Forward key Verify key.

ECU update
initiated.Init update response

- ECU update
initiated

CAN

CAN

Update initiated

In
it u

p
d

a
te

 h
and

sh
ake

 D
T-W

V
I1

-ECU
1

Init update handshake DT-WVI2-ECU2

In
it

ia
te

 u
p

d
at

e
 (

o
n

EC
U

 le
ve

l)

Unicast data transfer Multicast data transfer

Figure 6.4: Securing EASE-UP: security features employed from Step 1 – Discovery and
connection establishment to Step 3 – Initialize a software update.

is sent from the DT to the WVI. Thus, this step requires mechanisms to ensure data confi-
dentiality as well as integrity. Both aspects are ensured by utilizing the current session key

78

Chapter 6 – EASE-UP Security Aspects

and by using AES in Galois/Counter Mode (GCM). AES-GCM allows AES-based data
encryption plus provides stronger authentication assurance than a (non-cryptographic)
checksum or error detecting code; in particular, GCM can detect both i) accidental modi-
fications of the data and ii) intentional, unauthorized modifications [16]. Every data frame
sent from the DT to the WVI is protected using AES-GCM. Additionally, once the entire
binary was transferred to the WVI, the DT will create a hash of the binary using the Secure
Hash Algorithm (SHA) SHA-256, sign it using its private master key, and send the singed
hash to the WVI. The latter can use the hash to verify that the binary was transferred
correctly in its entirely. In Figure 6.5 the security features of step 4 are illustrated.

In case of parallel software updates, the same approach is used: all data frames are
protected by using the multicast-session key and by employing AES-GCM.

P
h

as
e

DT WVI1
Vehicle 1

ECU1 WVI2
Vehicle 2

ECU2

Public RSA Key (KPub)

AES Multicast
Session Key (KMS)

W
ir

e
le

ss
 d

at
a

tr
an

sf
er

 o
f

th
e

 s
o

ft
w

ar
e

 b
in

ar
y

Digital RSA Signature

End wireless transfer

- Hash of binary

- RSA-encrypted

- Verify message using
DT-KPub

- Check hash of binary Verify
message
and hash

Enc. with
WVI1-KPub

AES-GCM protected

Unicast data transfer

Multicast data transfer

Init wireless transfer

- Information w.r.t. the
wireless data transfer - Decrypt and check

message using
- Prepare for wireless
data transfer

Prepare
for

wireless
data

transfer

Wireless transfer
- Binary part 1

Store part 1 of binary

Store
part 1 of

binary

Wireless transfer
- Binary part N

Store part N of binary

Store
part N of

binary

...

Encrypted with WVI2-KPub

Figure 6.5: Securing EASE-UP: security features for Step 4 – Wireless data transfer.

Step 5 – Software download, and Step 6 – Validation and reboot: no dedicated
security features are required for these two steps.

79

Chapter 6 – EASE-UP Security Aspects

6.2.4 Hybrid Security Solution

The utilized TPM does not only provide a way to securely store secret keys and other sen-
sitive material in hardware, but also allows to perform different cryptographic operations
such as RSA encryption/decryption, creation and verifying digital RSA signatures, as well
as AES data protections (e.g., AES-GCM). Thus, the TPM would be able to provide all
suitable security measures (except SHA-256 support) required to protect the wireless soft-
ware update protocol as described in the last section. However, it would also be possible
to perform all required operations in software by utilizing suitable security libraries such
as Java Bouncy Castle (JBC). To decide whether to perform all operations in hardware or
software several experiments as presented in Section 7.2.3 and [37] were carried out. The
performed measurements show that the TPM module is significantly slower compared to
JBC, mainly due to a slow bus system interconnecting the security chip with the main
controller. However, the TPM is required to securely store the required keys (especially
the master key pair as well as public keys of other entities) and typically the private key
cannot be extracted from the TPM once deployed (or the master key pair is even created
by the TPM itself). This means that cryptographic operations where the private master
key is required (i.e., the creation of a digital signatures as well as the decryption of RSA-
encrypted data) must be performed by the TPM while other operations can be performed
in software by employing the JBC.

The final security concept is hence built upon a hybrid solution utilizing hardware-
as well as software-based security operations. This hybrid solution allows to combine
the advantages of both, the efficient JBC library for data protection (i.e., AES-GCM-
based security features) as well as the TPM for secure key storage and handling the
authentication procedure.

6.2.5 Fulfillment of Security Requirements

In the last sections the defined security concept and the security extensions for the de-
veloped wireless automotive software update protocol were described. To evaluate the
proposed security solution, first the fulfillment of all security requirement listed in Section
6.2.1 will be evaluated in this section and then a formal security concept evaluation is
performed in Section 6.2.6.

REQ1 – Strong Authentication. RSA-based hardware-supported authentication is used be-
tween all involved entities. The authentication handshake is thereby also used to exchange
the symmetric session keys.

REQ2 – Confidentiality of the exchanged data. Data exchanged between the involved
entities (especially software binaries sent from the DT to the WVI) is encrypted using
AES-GCM and either the session key (for bidirectional data exchange) or the multicast
session key for multicast data streams (i.e., to perform parallel software updates).

REQ3 – Ensure data integrity. Data integrity is ensured by using AES-GCM. This pro-
tection mechanism prevents accidental modifications of the data as well as intentional,
unauthorized modifications (i.e., tampering with the data).

REQ4 – Key Storage. Keys and other sensitive material can securely be stored on a TPM.

REQ5 – Trusted core network. A dedicated pairing mechanism was defined allowing to

80

Chapter 6 – EASE-UP Security Aspects

form a trusted core network. In this initial pairing step the public master keys are securely
exchanged and stored.

REQ6 – Secured backbone link supporting vehicle authentication. Besides the possibility of
forming trusted core networks, the generic security concept of the developed system also
allows to involve the OEM backbone network in the authentication process (i.e., mainly
relevant for fully integrated WVIs).

REQ7 – User authentication and profiles. A user management concept encompassing
different user profiles as well as suitable user authentication mechanisms was developed.
See [37, 57] for more information.

REQ8 – Physical access to the vehicle cabin. The proposed security concept can be con-
figured in a way that the wireless software updates system requires physical access to the
cabin of the vehicle as an additional authorization step (i.e., mainly relevant for service
center and smart home scenarios).

REQ9 – Support secure multicast. The defined security concept as well as the devel-
oped software update system allow parallel software updates and provide suitable security
mechanisms.

6.2.6 Formal Security Concept Evaluation

The defined security concept proposed in Section 6.2 is now formally evaluated using the
Microsoft STRIDE methodology [48]. The latter can be employed to create a comprehen-
sive threat model for complex systems. The resulting threat model can either be used to
design a secure system or to evaluate an existing security concept.

In this section first general background information about the STRIDE methodology
is given, and second the system is evaluated resulting in a list of potential system threats.
These threats are then analyzed and used to verify that the proposed security concept
encompasses suitable countermeasures mitigating the identified threats.

STRIDE threat model. The STRIDE threat model is an attack-centric approach al-
lowing to analyze the security aspect of a system by identifying a number of potential
security threats. These threats are thereby grouped into six categories: Spoofing iden-
tity, Tampering with data, Repudiation, Information disclosure, Denial of service, and
E levation of privilege.

Microsoft provides a free tool – the Threat Modeling Tool – allowing to model a
system and to automatically extract the identified threats. The tool thereby also allows
to prioritize the identified threats, to specify suitable threat mitigation measures and to
keep track about the remaining threats.

A STRIDE-based security analysis is performed by analyzing each part of a system.
Thereby every system component and process is evaluated w.r.t. all six threat classes. In
the next step the identified threats can be sorted by its likelihood and impact.

Potential security threats. In the following the collected security threats are listed. Per
STRIDE category, the most relevant threats (i.e., security threats with highest likelihood
and impact) are stated and described. Further information can also be found in [37, 57].

Threat class 1 – Spoofing identity.

81

Chapter 6 – EASE-UP Security Aspects

• Threat T1.1 – Spoofing the identity of a WVI: a malicious device acts as WVI to
gather new software by acting as a vehicle with outdated software installed.

• Threat T1.2 – Spoofing the identity of a DT: a malicious device acts as DT to install
malicious software on an ECU or to gather user-specific data from the vehicle.

Threat class 2 – Tampering with data.

• Threat T2.1 – Manipulate a software binary: an attacker tampers with the software
binary while it is sent from the DT to a WVI to install a malicious software version
on the ECU.

• Threat T2.2 – Tamper with an authentication handshake: an attacker manipulates
an authentication handshake either to prevent a node (e.g., a WVI) to authenticate
with another (e.g., a DT) or to gain access to the system itself.

Threat class 3 – Repudiation.

• Threat T3.1 – Performing an unauthorized software update (privileged user): a
privileged user (e.g., a trained mechanic who is basically allowed to perform software
updates) performs an unauthorized software update on a vehicle (e.g., the vehicle of
a friend; without permission of the head of the service center).

Threat class 4 – Information disclosure.

• Threat T4.1 – Eavesdropping a software binary: an attacker eavesdrop the wireless
channel while a software binary is transferred from the DT to the WVI. Thereby the
attacker is able to gather the entire software binary.

• Threat T4.2 – Steal software update authorization keys: a malicious user (e.g., a
mechanic) uses a handheld (i.e., an authenticated device) to eavesdrop the software
update initialization process to gain access to the used authorization keys.

Threat class 5 – Denial of service.

• Threat T5.1 – Overflow the system with authentication requests: an attacker sends
a vast number of authentication requests to the DT to overflow the system and hence
to make the wireless software update system temporary unavailable.

Threat class 6 – Elevation of privilege.

• Threat T6.1 – Unauthorized user performing a software update: an unauthorized
user (e.g., a mechanic without the required education) performs a software update
by using the handheld device and/or the user account of an authorized/privileged
user (e.g., a privileged and trained mechanic of the same service center).

Concept evaluation: security threats and countermeasures. Finally the identified
security threats can be compared to the defined countermeasures. Therefore for each
aforementioned threat the suitable countermeasure(s) are stated.

Threat T1.1 – Spoofing the identity of a WVI. For a successful attack, first the wireless
network security (i.e., SAE features of IEEE 802.11s) must be overcome and second the
digital signature of the WVI must be stolen. This can only be done by extracting the
private key from the TPM of the DT, which is practically nearly impossible.

82

Chapter 6 – EASE-UP Security Aspects

Threat T1.2 – Spoofing the identity of a DT. For this threat, similar considerations as
for T1.1 apply. Additionally, the DT is often located in a restricted area and therefore
accessing the TPM is even more challenging.

Threat T2.1 – Manipulate a software binary. AES-GCM is used to transfer a software
binary from a DT to a WVI. Thereby each frame containing a chunk of the software
binary is secured. Additionally, the hash value of the entire binary signed by the DT
is sent to the WVI. An attacker would first have to gain access to the session key to
successfully manipulate the AES-GCM protected data messages and second would need
to forge the signature of the DT.

Threat T2.2 – Tamper with an authentication handshake. First, an attacker would have to
overcome the security features of IEEE 802.11s. Then, to authenticate itself instead of the
node trying to authenticate to a DT, the attacker would have to manipulate the authen-
tication message. However, each message of the authentication handshake is protected by
a digital signature and thus these type of attacks is mitigated.

An attacker could also try to keep another node from establishing a trusted connection
to the DT by tampering with the authentication message in a way that the DT will
not accept it. Although this attack only requires to overcome the security features of
the wireless network (to identify authentication messages), it would require significant
technical effort to constantly interfere with the authentication process and the impact on
the system is rather small.

Threat T3.1 – Performing an unauthorized software update (privileged user). The devel-
oped system supports tracing of activities such as performing software updates. On the
DT each performed software update will be logged together with the name of the mechanic
performing the update as well as information about the vehicle. In a typical service center,
the created log would reveal the unauthorized updates and the head of the service center
could use the information to confront the user.

Threat T4.1 – Eavesdropping a software binary. Each data packet is encrypted using
strong symmetric encryption based on AES. Successfully eavesdropping the wireless chan-
nel would thereby require equipment far beyond the current state-the-art.

Threat T4.2 – Steal software update authorization keys. The same security feature as
explained in T4.1 are in place securing the messages required to authorize a software
update. Furthermore, for Seed & Key or challenge-response authorization steps in general
an attacker can only eavesdrop the solution for one specific challenge (i.e., the key for one
seed) and thus cannot reuse this key later as the ECU will create a new challenge for each
new authorization step.

Threat T5.1 – Overflow the system with authentication requests. In the current version of
the developed system no dedicated protection mechanisms against Denial of Service (DoS)
attacks are in place on application layer. However, an attacker would first need to break
the security mechanisms on network layer before a DoS attack can be launched (e.g., by
sending a vast number of authentication requests).

Threat T6.1 – Unauthorized user performing a software update. This type of threat is
hard to prevent as it is typically performed by insiders: a privileged mechanic allows
an untrained mechanic to use his personal user account and/or equipment to perform a
software update (case 1) or the untrained mechanic uses the handheld device of a privileged

83

Chapter 6 – EASE-UP Security Aspects

colleague in an unnoticed moment (e.g., during a lunch break; case 2).
The threat connected to the latter case is mitigated by employing suitable timeouts: if

the handheld device is inactive for a configurable duration (default value is five minutes),
the user will need to re-authenticate with the device before it can be used again. Case 1
can only be detected by a superior. The developed system can support this by tracing all
relevant user activities.

The performed formal analysis shows that all identified security threats (i.e., threats with
the highest impact and likelihood) are prevented or at least significantly mitigated by
suitable security mechanisms employed on network as well as application layer.

84

Chapter 7

Evaluating EASE-UP

EASE-UP, the proposed automotive software update framework described in Chapter 5,
the designed security concept presented in Section 6.2, the employed wireless communica-
tion media, as well as the developed advanced software update mechanisms (Section 5.3)
must be extensively tested to ensure that the software update process is performed in a
reliable and secure way. This is especially important as EASE-UP allows to update all
different types of ECUs including controllers performing safety-critical tasks in the vehi-
cle. A system failure of such ECUs (e.g., due to a malfunctioning software version) can
lead to severe accidents endangering the health and well-being of the driver, the vehicle
passengers, as well as other road users.

Besides security and reliability, also related efficiency aspects must be analyzed to
ensure that a wireless software update is performed in a secure, reliable but also fast way.
Especially in highly automated environments such as a vehicle assembly line the efficiency
aspect is of main importance as every delay (e.g., due to a slow software update) will
interfere with the assembly process and thus can lead to significant extra costs.

In this chapter CESAR, a comprehensive testbed infrastructure for wireless automotive
software updates is described and its key features are highlighted (Section 7.1). Thereafter,
in Section 7.2, the results of different case studies carried out using CESAR are presented.

7.1 Testbed Infrastructure

In the following CESAR, a Configurable testbed infrastructure that allows to evaluate
the effectiveness and Efficiency of wireless automotive Software updates in an Automated
and Repeatable way, is described in detail. First, some testbed requirements are discussed
and second the developed, comprehensive testbed infrastructure is described [58].

7.1.1 Testbed Requirements

A proper testbed infrastructure should support the evaluation of the entire automotive
software update process (i.e., six main steps as discussed in Section 5.2.1) and allow to
study the impact of different aspects on its efficiency.

Supporting the entire update process. The entire software update process includes
DTs, holding the new SW images as well as the required authorization keys, the WVI in-

85

Chapter 7 – Evaluating EASE-UP

terconnecting the vehicle and the wireless infrastructure, an ECU where the new software
image will be installed on (referred to as target ECU), and the network infrastructure
(both wired and wireless links) interconnecting all these components. This implies that
the nodes of a testbed should be able to support both DT and WVI roles. The WVI role
requires to connect to one or more ECUs employing an automotive bus. This connection
between a testbed node and one or several ECUs requires: i) the hardware to connect to
the ECU using typical automotive bus systems (this encompasses bus controllers and the
corresponding transceivers, physical interfaces, and additional hardware such as termi-
nation resistors), ii) the corresponding interface SW enabling the actual communication
on top of the physical connection (e.g., CAN protocol), and iii) automotive diagnostic
protocols on the application layer handling the data flow for larger frames and supporting
different diagnostic functions (e.g., unlock the ECU, transfer data from/to the ECU). Fur-
thermore, the testbed must support ECUs from different vendors and must hence provide
standardized diagnostic protocol stacks on the application layer. The testbed shall also
provide primary (but still exchangeable) target ECUs supporting standard-conform SW
update mechanisms as well as allowing the utilization of special update mechanisms such
as parallel and partial wireless SW updates.

Supporting different scenarios. The testbed should allow to emulate all relevant soft-
ware update scenarios, including a large-scale assembly line scenario with up to 100 nodes,
and support different wireless communication networks interconnecting these nodes. The
testbed infrastructure shall hence allow multiple configuration profiles allowing the user
to choose between different wireless network stacks (e.g., IEEE 802.11n or IEEE 802.11s)
as well as network topologies (e.g., force or block routes), and provide configuration meth-
ods to influence single network links (e.g., increase/decrease the TX power). Further-
more, these configuration profiles shall include different security configurations on both
the application as well as the network layer and allow to choose between different security
parameters such as the authentication scheme (e.g., RSA-based) or the key length (e.g.,
1024bit). This is important to analyze the impact of these security configurations on the
duration of a software update and the efficiency of the entire update process.

Controlling experiments and logging. Ideally an extensive testbed should provide
methods to (remotely) control the infrastructure and all involved nodes. These methods
shall encompass mechanisms to start and terminate the experiments, to configure and reset
testbed nodes, to request the current state and role of testbed nodes, and to collect the
experimental results. The testbed shall also support the developer in measuring the SW
update duration and create detailed timing profiles including the per-step latency of all
required steps of the software update procedure. Furthermore, the testbed infrastructure
shall provide configuration profiles allowing the fast and simple configuration of the testbed
itself and all its nodes without a manual intervention of the developer.

Testbed deployment. The installation effort of the testbed shall be kept to a minimum
and existing (network) infrastructures shall be reused whenever possible and applicable.
As users typically act remotely and do not have physical access to the testbed nodes, the
infrastructure should provide a way to power off and reboot each node remotely.

Remote control. The testbed should be remotely accessible from the Internet to allow
users to monitor and control the status of the experiments. Nevertheless, the testbed

86

Chapter 7 – Evaluating EASE-UP

network must be isolated from other corporate networks in order to minimize security
breaches.

7.1.2 CESAR – Comprehensive Testbed Infrastructure

In the following an overview on CESAR, a comprehensive testbed infrastructure able
to fulfill all the aforementioned requirements, is presented. Within this thesis the focus
thereby is on the utilized testbed architecture. More details on the actual implementation
of the testbed can be found in [58].

TN
TN

TN

TN
TN

Control PC

CESAR Wireless
Backbone

Local access Remote access

VPN

TN

ECU

Vehicular bus

ECU

TN

ECU

Figure 7.1: CESAR testbed architecture. TN are interconnected using a backbone net-
work. A TN can be connected to one or several ECUs, or to real vehicles using automotive
buses such as CAN.

In Figure 7.1 the designed architecture of CESAR is presented. CESAR basically con-
sists of wireless TN and a Testbed Control PC (TC). The TNs and the TC are thereby
interconnected by a wired back-channel. The TNs are utilizing a wireless network such as
IEEE 802.11s or IEEE 802.11n to communicate with each other during the performed mea-
surements while the testbed control as well as the collection of the gathered measurement
data is done via the back-channel.

Testbed Control. The TC is controlling the entire testbed infrastructure and is re-
sponsible to collect and store the results gathered in the testbed. CESAR’s TC provide
a dedicated GUI allowing the user to start and stop experiments as well as to monitor
the state of the testbed. The TC is also responsible to trigger the reconfiguration of
the entire testbed by sending dedicated command messages to all concerned TNs via the
back-channel.

Configuration profiles. CESAR is designed in a way that the configuration effort can
be reduced to a bare minimum. Therefore, the concept of configuration profiles was in-
troduced. A configuration profile is a set of configuration files and can contain i) specific
security and/or network configurations, ii) a certain node occupancy allowing to emulate
specific real-world SW update scenarios, iii) a set of system parameters such as the vehicle
bus bit rate or the employed authentication mechanism, and iv) specific SW update mech-
anisms [58]. A developer can choose between different profiles, modify and merge them,

87

Chapter 7 – Evaluating EASE-UP

and therefore easily switch between different experimental settings and redo a experiment
later by selecting the corresponding configuration profile. In the latest version of CESAR,
a configuration profile is a folder containing a set of configuration files (i.e., a text file with
one configuration aspect per line). Default configurations for different testbed aspects such
as predefined network topologies, sets of system parameters, or different logging mecha-
nisms are provided as a starting point for developers. The developer can simply create
a new profile by adapting these default configurations and pointing CESAR to the new
profile (i.e., path of the folder). The management of the configuration profiles as well
as the actual execution of them (i.e., the reconfiguration of the testbed according to the
selected profile) is performed by the TC.

Testbed nodes. Each TN is configurable to assume different roles within CESAR. De-
pending on the selected configuration profile, a TN can act as a DT, WVI, or as relay
node (i.e., only forwarding data in a multi-hop network such as IEEE 802.11s). Therefore,
each TN hosts dedicated software implementations for each role running on top of a given
hardware platform. The latter provides suitable automotive interfaces (i.e., bus systems
such as LIN, CAN or FlexRay) to interconnect a TN to one or several target ECUs.

Target ECUs. One primary goal of the developed wireless software update system was
to provide an OEM-independent solution. Therefore CESAR was designed to support
different types of ECUs. This requirement is mainly achieved by employing automotive
interfaces and connectors and by allowing different verification schemes. The latter is
required to test if a new software binary was actually installed on the target ECU or
not. Therefore, in the simplest case, one can implement target software binaries which
are periodically sending a software version ID on the automotive bus. For example, for a
specific target ECU two software binaries A and B exist. If binary A is installed, the ECU
will send a CAN frame with payload 0x1 every second on the CAN bus while binary B
will broadcast a frame with 0x2 per second. Besides this simple but efficient verification
mechanism, the main target ECU employed within CESAR also allows more sophisticated
checks. Therefore, the hash of the entire ECU memory is computed after a software update
and in further consequence used to verify that the binary was successfully (i.e., completely
and error-free) installed. The main target ECU additionally allows CESAR to monitor the
current state of the ECU (via CAN) while a software update is performed. This feature is
realized by sending specific CAN requests (i.e., frames with predefined IDs) from the TN
to the connected ECU.

Remote control. CESAR allows to control the testbed remotely by employing the TC
as a secure gateway between the Internet and the testbed infrastructure (i.e., the TNs
interconnected by the back-channel). This remote access can be used to i) monitor the
state of the current experiment and/or the testbed, ii) start and stop experiments, as well
as iii) re-configure the testbed by selecting a different configuration profile.

Prototype testing. In the developed testbed infrastructure the performance of different
software versions can be compared in a highly automated manner. Therefore, CESAR
stores and maintains all developed software prototypes in a centralized repository allowing
a user to select a certain software version by choosing a specific configuration profile.

88

Chapter 7 – Evaluating EASE-UP

7.2 Efficiency Evaluation – Case Studies

CESAR was used to carry out different case studies to i) evaluate the performance of differ-
ent software update mechanisms as presented in Section 7.2.1, ii) analyze the applicability
of different wireless protocols (i.e., IEEE 802.11n and IEEE 802.11s) for local software
update as well as to test the latest implementation of IEEE 802.11s (i.e., open11s [11];
results are described in Section 7.2.2), and iii) evaluate the impact of different security
configurations on the efficiency of the entire system as discussed in Section 7.2.3.

7.2.1 Performance of Software Update Mechanisms

In this section the performances of different software update mechanisms are compared
with each other. Therefore a software update of the main target ECU is performed twenty
times using a specific test software with a size of 445 KB for each of the tested update
mechanisms, namely

• Basic wireless software update;

• Partial wireless software update;

• Parallel wireless software update.

As a baseline the aforementioned test software is installed on the main target ECU
using a traditional, UDS-based wired update mechanism. The gathered results will be
briefly discussed in the following. More detailed information on the performed experiments
and the collected results can be found in [37, 58, 61].

Profiling the software update duration. CESAR allows to create detailed timing
profiles for a wireless software update. In particular, one can not only measure the overall
duration of the software update process but it is also possible to analyze the latency added
by each of the six steps defined within the designed wireless software update protocol (see
Section 5.2.1 for more details). Please note that Step 2 – Gather vehicle information was
not considered in the following evaluations and timing profiles as the update was only
performed for one specific ECU (i.e., Volvo FlexECU) and thus no information about the
vehicle was collected nor required (see also [37]).

In Figure 7.2 an example of a measured timing profile is presented. Step 5 – Software
download is responsible for a large share (i.e., 64.0%) of the overall duration due to the slow
CAN bus employed between the ECU and the WVI. Step 1 – Discovery and connection
establishment including the RSA-based authentication between the entities adds about
11%, and Step 3 – Initialize a software update about 1% to the overall duration. The
second largest share is added by Step 4 – Wireless data transfer. This step is responsible
for about 21.6% of the time required to update the software of an ECU. The last step,
Step 6 – Validation and reboot, represents about 2.4% of the duration of an update.

Overhead of wireless software updates. A traditional wired software update encom-
passes the minimum set of required steps to install new software on an ECU: initialize and
authorize the software update on ECU level, download the new software to the ECU over
an automotive bus (i.e., most likely CAN), and reboot the ECU. In comparison, wireless

89

Chapter 7 – Evaluating EASE-UP

2.4%

Step 1

Duration [ms]

 Software download

Step 3

Step 4

Step 5

Step 6 Validation and reboot

Wireless data transfer

Initialize software update

Discovery and connection establishment

64.0%

21.6%

1.0%

11.0%

Duration [%]

21277.4

Profile

Figure 7.2: Timing profile of a wireless software update. Latency added by each step
leading to the overall update duration.

software updates require some steps and hence also add some overhead to the overall soft-
ware update duration. Please note that i) in this comparison some manually performed
steps (e.g., by the mechanic) such as interconnecting the DT with the vehicle using a ded-
icated wire are not considered and ii) the wired mechanism is used as benchmark where
only the overall update duration is provided but no information about the per-step latency
is available.

Duration [ms] 25000

Wireless

20000150005000

Wired

2553.3 ms
13.6%

18724.1

21277.4

Figure 7.3: Comparison of wired and wireless software update mechanisms. The overall
duration of a wired as well as a wireless software update is measured and the overhead
added by the basic wireless software update protocol is analyzed.

In Figure 7.3 the duration of the wired and the wireless update mechanism is shown
and the overhead added by the wireless protocol is highlighted. This overhead is mainly
due to additional latency added by network establishment mechanisms and the employed
security measures. Although the overall duration is slightly (13.6%) increased, the basic
wireless software update can still be very beneficial in different local software update
scenarios as it allows to connect to different vehicles and ECUs seamlessly (i.e., without
disconnecting from one vehicle to connect to another). Thereby, a user (e.g., a mechanic
in a service center) can work on several vehicles in parallel: the mechanic can diagnose
and repair vehicle A while vehicles B and C receive new software for their ECUs.

Evaluation of advanced update mechanisms. To actually decrease the overall dura-

90

Chapter 7 – Evaluating EASE-UP

tion of a wireless software update and thereby to increase the efficiency of the system, two
different advanced update mechanisms – partial and parallel wireless software updates –
were developed (see Section 5.3) and will be evaluated in the following.

Partial software updates. One approach to actually decrease the time required to install
new software is to reduce the number of bytes to be transferred. This is especially relevant
as the data download over CAN takes a significant portion of the overall update duration
as shown in Figure 7.2. Partial software updates allow to transfer only parts (e.g., one
code segment instead of the entire binary). In the following experiment only one code
segment with a size of 1 KB has to be transferred to the ECU (i.e., the main target ECU)
instead of the entire software binary with a total size of 445 KB.

Duration [ms] 25000

Wireless

20000150005000

Wired 18724.1

21277.4

Partial 4080.9

14643.2 ms (-78.2%)

17196.5 ms (-80.8%)

Figure 7.4: Benefits of employing partial software updates. The performance of a partial
software mechanism is compared to a traditional wired update as well as to an update
performed using the designed basic software update protocol.

The results of this experiment are shown in Figure 7.4. As expected, the overall du-
ration was significantly reduced (i.e., a duration decrease of 83%). With about 58% of
the overall duration, the largest share is now added by Step 1 – Discovery and connection
establishment and thereby especially the RSA-based authentication process. In compari-
son, the CAN-based data download from the WVI to the ECU is now only responsible for
about 16.1% of the overall time required to perform the update.

A reduction of the data to be transferred can significantly speed up the software
update process. However, the actual benefit is really depending on the size of the original
binary, the size of the code segments which are transferred to the ECU (instead if the
entire binary), and the automotive bus system interconnecting the WVI and the ECU.
Furthermore, also the segmentation of the binary itself significantly influences the potential
benefits. Please also refer to the Guidelines for efficient partial software updates discussed
in Section 5.3.

Parallel software updates. Parallel software updates are targeting situations, where the
same new software needs to be installed on several vehicles. Instead of installing the new
software on the vehicles sequentially (i.e., one by one) as it would be the case for wired
updates, the developed parallel update mechanism can be employed to install the software
on several vehicles/ECUs simultaneously. This parallel approach can thereby help to
decrease the overall duration (i.e., time required to install the software on all vehicles)
significantly.

91

Chapter 7 – Evaluating EASE-UP

Duration [ms] 25000

Wireless

20000150005000

Wired 18724.1

21277.4

Parallel

7670.7 ms (+41.0%)

26394.8

5117.5 ms (+24.1%)

Duration [ms] 50000

Wireless

400003000010000

Wired

Parallel 26394.8

42554.8

37448.2

11053.4 ms (+41.9%)

16159.9 ms (+61.2%)

Figure 7.5: Overhead (top) and benefits (bottom) of employing parallel software updates.
Two software updates are done in parallel instead of performing them sequentially.

In Figure 7.5 evaluation results are shown. Thereby, the duration of a parallel software
update for two ECUs is compared to the time required to install the software sequentially
on both ECUs using i) wired and ii) wireless (i.e., the designed basic update protocol)
approaches. The evaluation results presented in Figure 7.5 show that the parallel update
duration is increased by about 24% compared to a normal wireless software update and
about 41% compared to a wired update. This overhead is due to the fact, that the required
steps cannot by parallelized completely. However, parallel software updates are still way
faster compared to performing software updates sequentially (i.e., performing an update
two times in a row): the duration is decreased by about 61% compared to wireless and
about 42% compared to wired software updates, respectively. Thus, parallel software
updates can significantly help to improve the efficiency of the developed software update
system. This is especially true for situations, where several vehicles receive the same
software update.

Summary of the analyzed update mechanisms. Different wireless software up-
dates are supported by the developed wireless software update framework. Each of these
mechanisms was evaluated and compared to the performance of a baseline system based
on traditional wired software updates. The gathered results are summarized in Table
7.1. The developed framework provides a significantly more flexible approach to perform
wireless diagnostics and software updates, while keeping the added overhead (w.r.t. the
update duration) at a minimum. Furthermore, the developed advanced software update
mechanisms are able to significantly reduce the time required to perform wireless software

92

Chapter 7 – Evaluating EASE-UP

updates compared to the traditional wired solution. Appropriate security mechanisms
provide suitable mechanisms protecting all involved nodes, the connected vehicles, as well
as the exchanged data while still allowing an efficient software update process.

Table 7.1: Summary of collected evaluation results. Comparison of different wireless
software update mechanisms and the wired benchmark baseline.

Mode Step 1 Step 3 Step 4 Step 5 Step 6 Total

Wired Information not available for wired updates. 18724.1 ms

Basic
wireless

2340.2 ms
(11.0%)

205.4 ms
(1.0%)

4597.0 ms
(21.6%)

13626.3 ms
(64.0%)

508.6 ms
(2.4%)

21277.4 ms

Partial
2351.7 ms
(57.6%)

216.7 ms
(5.3%)

347.1 ms
(8.5%)

655.2 ms
16.1%)

510.2 ms
(12.5%)

4080.9 ms

Parallel
(2 ECUs)

3868.3 ms
(14.7%)

622.9 ms
(1.0%)

7378.5 ms
(28.0%)

14372.2 ms
(54.5%)

513.0 ms
(1.9%)

26394.8 ms

7.2.2 Network-related Evaluations

Besides evaluating and comparing different wireless software update mechanisms, CESAR
also allows to analyze the impact of the employed wireless network on the efficiency of
wireless software updates. Furthermore, the developed testbed infrastructure i) allows
to test actual implementations of these protocols (e.g., open11s as the most advanced
implementation of IEEE 802.11s), ii) can be used to verify that the network is working as
expected, and iii) helps to identify any network-related issues.

Wireless media for local updates – IEEE 802.11n vs. IEEE 802.11s. The
choice of a wireless media employed to perform a wireless software update will significantly
impact the dependability of the entire system. Because of that, different wireless protocols
were already discussed in Section 5.1, and their key features w.r.t. wireless software
updates were discussed. As a result of this comparison, IEEE 802.11s was identified as the
most suitable candidate. Besides IEEE 802.11s, also IEEE 802.11n can be an interesting
alternative mainly due to its high bandwidth and strong security features.

In the following, IEEE 802.11n and IEEE 802.11s are employed as wireless media in
an emulated service center scenario, where several vehicles within a service center shall
receive new software. The scenario is sketched in Figure 7.6. Node 9 is acting as DT and
performs software updates on the ECUs connected to nodes 1, 2, 4, and 6 (these nodes
are acting as WVIs). For the experiment, ten wireless software updates are performed per
ECU and wireless media (i.e., IEEE 802.11n and IEEE 802.11s) [58].

It is important to highlight that, in the chosen configuration, the links between node
9 and the other TNs are of different quality due to the placement of the nodes and the
resulting distance between them. As shown in Figure 7.6, node 1 is the furthest away
(from node 9 point of view), and is not in the direct communication range of node 9. As
a result, no communication can be established between these two nodes when employing
IEEE 802.11n. In contrast, when using IEEE 802.11s, the nodes can exchange data by
employing multi-hop routes. Therefore, data packets will hop through additional nodes
and thereby only use very good links to maximize the reliability of the communication.

93

Chapter 7 – Evaluating EASE-UP

1

2
4 6

9

A
ctin

g a
s D

T
(an

d
 A

P
 fo

r 1
1

n
)

Figure 7.6: Wireless software updates using IEEE 802.11n and IEEE 802.11s and com-
paring the performance using an emulated service center scenario in CESAR. Node 9 is
configured to work as DT, and also as AP when using IEEE 802.11n. Nodes 1, 2, 4, and
6 are acting as WVIs and are connected to ECUs.

Average duration [ms] 25000

Node 4

20000150005000

Node 2

438.3 ms

Node 6

Node 1 No connection with IEEE 802.11n
17620.1

21274.8
16918.2

16504.7
16943.0

16545.0
16590.4

IEEE 802.11s
IEEE 802.11n

4356.6 ms
(25.8%)

Figure 7.7: Software update duration for updates performed using IEEE 802.11n and
IEEE 802.11s. The ECU connected to node 1 cannot be update when using IEEE 802.11n.

The gathered results are presented in Figure 7.7. For good links (i.e., between node 9
and nodes 4 and 6), both protocols nearly exhibit the same performance [58]. For node
4 IEEE 802.11n, in average, is about 400 ms faster than IEEE 802.11s. This slightly
increased packet latency is due to the fact that some multi-hop paths were used by
IEEE 802.11s as a result of lost packets on the direct link: the detailed results gath-
ered using CESAR show an average path length of 1.06 hops. In case of intermediate links
such as between node 2 and node 9, IEEE 802.11s outperforms IEEE 802.11n by a factor
of about 25%. For node 1, only IEEE 802.11s is able to allow a wireless software update
due to its multi-hop ability.

The performed experiment shows that IEEE 802.11s is indeed the right choice as it
offers similar high bandwidth as IEEE 802.11n while ensuring reliable data exchange even
in challenging situations and environments (for wireless communication).

Isolate node problem and its solution. CESAR can also be used to investigate the
connectivity of wireless nodes and to expose issues in a network protocol implementation.
In this case study a scalability issue of the default open11s [11] implementation is revealed

94

Chapter 7 – Evaluating EASE-UP

1

2
3

4
5

6
8

7
9

1110

Figure 7.8: Screenshot showing the actual deployment of the TNs. Purple lines are repre-
senting the established connection tree with node 9 as root. All other nodes, except node
6, are connected to node 9 (either directly or via other nodes in between).

1

5

4
3

2

2
3
4

1
2
3

2
4
5

1
3
5

2
4
5

1

5

4
3

2

1
2
4

1
2
3

1
2
4

1
3
4

2
3
4

Figure 7.9: Peer links between nodes in an IEEE 802.11s network are very dependent on
the sequence the nodes join. Left: an inefficient structure as node 5 is only connected to
far away nodes. Right: node 5 is isolated from the rest of the network.

and a solution to mitigate this issue is proposed.

The scalability issue was first observed when configuring CESAR to use IEEE 802.11s
as wireless communication media for an update scenario encompassing 11 wireless nodes:
some nodes were not reachable by other nodes of the network, despite being physically
close to each other. An example of this problem, from now on referred to as the isolated
node problem, is depicted in Figure 7.8. This figure shows a screenshot of the testbed
user interface displaying a snapshot of the connectivity in the network at a given point in
time [58]. The figure shows a connection tree (purple lines) with node 9 as root. The tree
shows that all other nodes, except one (node 6), are either directly connected to the root
node or via several hops. Node 6, marked with a red circle, however, is isolated from the
network and cannot exchange data packets with any other node. The observed scalability
issue is critical as SW update scenarios can encompass several vehicles in a dynamic and
changing environment where vehicles are frequently joining and leaving the network.

To shed light on this problem, CESAR was used to carry out several connectivity tests

95

Chapter 7 – Evaluating EASE-UP

(i.e., different sequences of joining nodes) and thereby to collect link and path information.
The performed experiments reveal two major problems of the default open11s implementa-
tion caused by its limited neighbor table size. The employed TNs use Wi-Fi sticks allowing
to store up to seven (CESAR allows to configure different limits) established peer links.
Once the maximum number of links is reached new requests will be declined. In Figure 7.9
the problem is illustrated using 5 nodes with a neighbor table size of three (i.e., each node
can store information about up to three neighbors).

Inefficient network structure. In IEEE 802.11s peer links are established between two
nodes if i) the nodes can hear each other and ii) the nodes have a free spot in their
neighbor table. Hence, the link structure of an IEEE 802.11s network is mainly influenced
by the sequence of nodes joining the network (and not if a node is close or far away).
This fact leads to inefficient links affecting the network performance, as shown in the left
illustration of Fig. 7.9.

Isolated node. In the worst case the limited neighbor table size can even lead to isolated
nodes (Fig. 7.9, right illustration): nodes 1 to 4 have successfully established stable peer
links with each other (e.g., as all nodes join the network at the same time). Node 5 (e.g.,
joining later) will send peer-link-establishment requests to nodes 1 to 4 to properly join
the network. However, as nodes 1 to 4 already have three neighbor stored in their neighbor
table, they will decline these requests and node 5 will be isolated from the network.

This identified issue was solved by adapting the latest open11s implementation: i)
adding new messages to inform the network about isolated nodes, and ii) implementing
algorithms to solve the isolated node problem. The adapted open11s version can be chosen
and configured by CESAR besides the default open11s version.

7.2.3 Impact of Security Mechanisms on Efficiency

The employed security mechanisms are required to protect the exchanged data as well as
all involved entities and users. However, these mechanisms also impact the efficiency of
the system and add additional latency to some of the steps of the defined update protocol.
In the following some interesting security evaluations are presented and the impact on the
efficiency of the developed update system of different security features is analyzed.

Impact of IEEE 802.11s security features on network layer efficiency. In
IEEE 802.11s SAE [25] is utilized to protect the transferred data (see also Section 5.1.4).
In open11s, the SAE security features can be disabled to set up an open (i.e., without
any security features; no password required to join the network) wireless network. In
the following this ability is exploited to evaluate the impact of SAE on the network layer
performance.

The experiment performed within CESAR measures the Round Trip Time (RTT) for
different multi-hop paths with SAE enabled/disabled. The configured, static multi-hop
routes (i.e., the routes are forced and the routing algorithm is disabled) between node A
to node B encompass 1-hop, 2-hop, 3-hop and 4-hop paths as sketched in Figure 7.10.
Relay nodes R1-R3 are used to forward data packets according to the defined routes.

For each defined route 1000 UDP packets were sent from node A to node B and back
and the RTT was measured. The gathered results are presented in Figure 7.11. The
green, continuous line shows the RTT for different numbers of hops with SAE on and the

96

Chapter 7 – Evaluating EASE-UP

A B

R1

R2 R3

1 hop
2 hops
3 hops
4 hops

Figure 7.10: Static multi-hop routes between node A and node B using relay nodes R1-R3.

2

4

6

8

9

1hop 2hops 3hops 4hops

0.5

1

1.5

2Median(SAE)
Median(None)

1 hop 2 hops 3 hops 4 hops

Delta(Median)

R
TT

 [
m

s]

D
e

lt
a

R
TT

 [
m

s]

Figure 7.11: Impact of SAE on the network efficiency. SAE security features enabled vs.
SAE disabled (i.e., None). Median (left), and delta(median)=median(SAE)-median(None)
(right) of the RTT measurements using 10000 UDP packets are shown.

blue, dashed line for the measured RTT with SAE disabled. 7.11 shows that each hop
significantly increases the RTT (see also [58]). This is due to the fact that in SAE a packet
has to be encrypted and decrypted at each hop in between node A and node B.

Impact of different security configurations. In addition to the employed security
features on network layer (i.e., SAE), EASE-UP also utilizes strong security features on
application layer. In the following, the impact of all employed security features on the
overall performance is evaluated by measuring the software update duration (445 KB
binary) for different security configurations using CESAR and the Volvo FlexECU as
target ECU. Four different configurations were tested:

• Configuration C1 (baseline): all security features disabled;

• Configuration C2: only security features on network layer;

• Configuration C3: only security features on application layer;

• Configuration C4: all security features enabled.

The gathered results, presented in Table 7.2 as well as Figure 7.12, are showing that the
employed security mechanisms increase the overall update duration by 18.5%. Although

97

Chapter 7 – Evaluating EASE-UP

Duration [ms] 50000

Config. 4

400003000010000

49193.3

Config. 3

Config. 2

Config. 1

47167.1

43745.6

41528.6

Figure 7.12: Impact of different security configurations on the update duration.

Table 7.2: Software update duration for different security configurations. The latency (in
ms) of each step (except step 2) as well as the overall duration (also in ms) are presented.

Configuration Step 1 Step 3 Step 4 Step 5 Step 6 Overall

1
4.2

(<0.1%)
2273.7
(5.5%)

2445.0
(5.9%)

36294.8
(87.4%)

510.9
(1.2%)

41528.6

2
5.1

(<0.1%)
2272.6
(5.2%)

3756.0
(8.6%)

37200.2
(85.0%)

511.7
(1.2%)

43745.6

3
2363.6
(5.0%)

2496.2
(5.3%)

5414.2
(11.5%)

36380.2
(77.1%)

512.9
(1.1%)

47167.1

4
2369.7
(4.8%)

2410.6
(4.9%)

6585.4
(13.4%)

37315.3
(75.9%)

512.3
(1.0%)

49193.3

this duration increase is quite significant, it must be accepted as all security mechanisms
are required to guarantee a secure system execution.

Impact of different key lengths. The developed framework and its security concept
allow different security configurations to tailor itself to the requirements of a local update
environment (e.g., wireless software updates in a vehicle assembly line). Thereby, the
length of the involved keys can be one important configuration parameter. In the following
an evaluation of the impact of different key lengths of the RSA authentication key as well
as the AES encryption key on the system performance is evaluated.

For both keys two different configurations parameters were used: AES key with either
128 or 256 bit; and RSA key with either 1024 or 2048 bit. As baseline the minimum
security configuration RSA = 1024 bit and AES = 128 bit was chosen. For each security
configuration ten sequential wireless software updates were performed using CESAR’s
main target ECU (i.e., AURIX) and thereby the software update duration was measured.

The collected results are presented in Figure 7.13 and show that varying the key length
of the RSA-based authentication has a significant stronger impact on the overall update

98

Chapter 7 – Evaluating EASE-UP

Duration [ms]

1024 &
128 bit

180001600015000

1024 &
256 bit

2048 &
128 bit

2048 &
256 bit

18500

104.1 ms

1984.0 ms

Figure 7.13: Impact of different key lengths on the wireless software update duration.

Table 7.3: Performance evaluation. TPM chip compared to the JBC software library and
performance of the final, hybrid solution.

Min [ms] Max [ms] Average [ms]

TPM 6328.0 6588.0 6415.5

JBC 575.0 701.0 635.8

Hybrid 3525.0 3690.0 3577.9

duration compared to different AES encryption key lengths. However, this is only relevant
if a session is only established to perform one software update. In case that a session is
established to perform several consecutive updates and/or to additionally run wireless
diagnostics such as in a typical service center scenario, the authentication step only has
to be performed once.

TPM vs. JBC performance. A secure key storage is an essential pillar of most
comprehensive security solutions. Often TPMs are utilized to store secret keys and other
sensitive data. Besides storing these keys and data, TPMs also offer different cryptographic
functions such as the creation as well as verification of digital signatures.

As discussed in Section 6.2.4 the TPM as well as the JBC can be used to perform the
RSA-based authentication. In the final concept a hybrid solution, where the TPM as well
as the JBC library are involved in the authentication step, was developed as i) the TPM is
quite slow compared to the JBC library and ii) JBC cannot provide the ability of securely
store keys in dedicated memory.

In the following the performance of the JBC library and the utilized TPM is com-
pared w.r.t. the cryptographic functions used in the authentication step. Therefore, the
authentication step between a WVI and a DT is performed 20 times first using the TPM,
second utilizing JBC, and third employing the hybrid solutions, and thereby the duration
of these operations is measured using CESAR.

The gathered results, as presented in Table 7.3, clearly show that the JBC library
outperforms the TPM chip. However, the most important advantage of the TPM is its
ability to securely store sensitive data and keys, and thus the final concept uses a hybrid
solution where the fast JBC library is combined with the secure storage of the TPM.
The performance difference between JBC and the TPM, a HW chip dedicated to perform
cryptographic operations, is analyzed in more detail in [37].

99

Chapter 8

Conclusions and Future Work

In this chapter the contributions of this thesis are summarized, limitations of the developed
wireless software update solution are discussed, and potential for future work and research
is outlined.

8.1 Contributions

A main goal of this thesis is to elaborate an end-to-end solution for locally-performed
wireless automotive software updates. The proposed solution therefore consists of an
architecture allowing secure software distribution realized using Blockchain technology, as
proposed in Section 4.4, and EASE-UP, the framework for efficient and secure wireless
automotive LSUs.

EASE-UP provides a basic wireless software update protocol that already significantly
increases the flexibility of the update process, as it replaces the wired point-to-point links
between the DT and a vehicle, supports the use of handheld devices, and allows to work
on several vehicles at the same time (e.g., vehicle 1 receives a software update while vehicle
2 is diagnosed). In addition, EASE-UP provides advanced software update mechanisms,
namely parallel (see Section 5.3.1) and partial (see Section 5.3.2) software updates. The
performed experiments in the developed testbed infrastructure clearly show the benefit of
employing such advanced update mechanisms, as they allow to significantly speed up the
update process and thus to increase the efficiency of EASE-UP.

Besides efficiency, also security is essential for LSUs and thus a comprehensive security
concept (see Section 6.2) is developed to protect EASE-UP against a wide range of external
as well as internal attacks. One important aspect in the design of this security concept is
to ensure that the security solution is suitable for different LSU scenarios. A structured
system design approach based on measurable security proposed in this thesis (see Section
6.1) allows to analyze a system w.r.t. security, resulting in the most suitable security
configuration for all considered scenarios. This approach is used to analyze EASE-UP and
employed to identify security requirements w.r.t. LSUs. As a result, the designed security
concept allows different configurations and is adjustable to the needs of the targeted LSU
scenarios.

The developed software update mechanisms as well as the employed security features
potentially have a significant impact on the efficiency of a wireless software update system.

101

Chapter 8 – Conclusions and Future Work

To evaluate the actual impact of the developed update mechanisms and the identified secu-
rity configurations on the duration of wireless software updates, a comprehensive testbed
infrastructure is proposed in Section 7.1. Various experiments and tests described in Sec-
tion 7.2 analyze different aspects of the developed solution. The gathered results thereby
underpin the benefits of employing EASE-UP’s advanced software update mechanisms.

8.2 Limitations and Future Work

In this section limitations of the developed system are described and the potential for
future work and research is discussed.

Secure software distribution.

The secure software distribution is very likely the aspect of this thesis with the most
potential for future work and research. Although the proposed architecture is fully defined
as well as a proof-of-concept implementation already exist, one can further improve the
distribution process itself. This could potentially be done by the introduction of caching
mechanisms on the CHs of the overlay network. Such a mechanism could significantly
speed up the distribution process for software required by lots of entities within a specific
area (e.g., an update specific to European vehicles due to new regulations will require
software updates for lots of vehicles within Europe). Furthermore, we plan to investigate
how to use the Blockchain system to gathered diagnostic data from the vehicles. Thus,
the direction of the data flow is reversed, as information about a vehicle is now sent back
to the OEM and/or the supplier companies.

This idea can be further generalized by elaborating a generic automotive data exchange
platform based on Blockchains. Such a platform would allow to provide different entities
such as city planners, traffic management systems, insurance companies, as well as vehicle
manufactures and suppliers with valuable data collected by smart connected vehicles while
giving the owner of the vehicle full control over their data. The vehicle owner can decide
which entities are allowed to access her/his data and, furthermore, if the data will be
enriched with user-specific information (e.g., who is driving) or if the data is only shared
in a anonymous manner. Additionally, such a generic data sharing platform will allow to
realize different business models (i.e., what are the benefits for the vehicle owner when
sharing her/his data) and help to build a new ecosystem for connected vehicles.

Bring EASE-UP to life.

EASE-UP is quite advanced and was already extensively tested within the developed
testbed infrastructure. However, it is still a long way to go until EASE-UP can be used
in a real-world automotive application. One important step would be to further develop
the current prototypes with a special focus on the plug-in WVI. Currently, our WVI
prototype is based on a BeagleBone Black single-board computer equipped with an ad-
ditional Printed Circuit Board (PCB) providing suitable interfaces to connect the WVI
to the vehicle, to power the board using a battery, and to use the TPM required for the
authentication process. To use the WVI in harsh environments such as a service center,
the developed prototype (its software) needs to be ported onto an automotive computing
platform compliant to the requirements of automotive applications (e.g., supporting the
full temperature range).

102

Chapter 8 – Conclusions and Future Work

Development of secure gateways.

EASE-UP supports both the use of a plug-in WVI but also a gateway device that is
fully integrated within the communication system of a vehicle. Such a fully integrated
WVI can be part of a smart gateway interconnecting the vehicle with the outside world.
Smart gateways will offer different communication interfaces such as 3G/4G/5G, Wi-Fi,
Bluetooth, and IEEE 802.11p and are currently heavily investigated by academia and
industry.

We plan to intensify our research in the area of smart gateways and thereby especially
focus on the requirements of wireless software updates and diagnostics. Additionally, as
these smart gateways are worthwhile targets for various attacks, we will also work on
security aspects related to such gateways.

End-to-end security also on ECU level.

EASE-UP is employing a comprehensive security concept to protect all involved entities,
namely the WVIs, the DTs, and the handhelds, and supports the widely used Seed & Key
mechanism to authorize a software update on ECU level. At the time of writing (2018),
using such a Seed & Key mechanism for ECUs is state of practice in the automotive
industry and different automotive diagnostic standards are supporting this mechanism.
However, there is a movement towards using Secure Elements (SEs) on (critical) ECUs to
protect the data exchange and support authentication/authorization steps.

The use of SEs on ECU level is an important steps w.r.t. highly connected vehicles
and thus will also be in focus of our future research. Thereby, we will especially focus
on how to integrate SEs used on ECU level into EASE-UP and particularly its security
concept.

103

Chapter 9

Publications

This thesis is based on the following peer-reviewed journal articles, and conference papers
(ordered by publication date):

A. M. Steger, M. Karner, J. Hillebrand, W. Rom, E. Armengaud, M. Hansson, and K.
Römer. Applicability of IEEE 802.11s for Automotive Wireless Software Updates. In
Proceedings of the 13th International Conference on Telecommunications (ConTEL).
Graz, Austria. September 2015.

B. M. Steger, M. Karner, J. Hillebrand, W. Rom, and K. Römer. A Security Metric for
Structured Security Analysis of Cyber-Physical Systems Supporting SAE J3061. In
Proceedings of the 2nd International Workshop on Modelling, Analysis, and Control
of Complex CPS (CPS Data). Vienna, Austria. June 2016.

C. M. Steger, C.A. Boano, M. Karner, J. Hillebrand, W. Rom, and K. Römer. Se-
cUp: Secure and Efficient Wireless Software Updates for Vehicles. In Proceedings of
the 19th Euromicro Conference on Digital System Design (DSD). Limassol, Cyprus.
September 2016.

D. M. Steger, C.A. Boano, M. Karner, J. Hillebrand, W. Rom, and K. Römer. Generic
Framework Enabling Secure and Efficient Automotive Wireless SW Updates. In Pro-
ceedings of the 21st International Conference on Emerging Technologies and Factory
Automation (ETFA). Berlin, Germany. November 2016.

E. M. Steger, A. Dorri, S.S. Kanhere, K. Römer, R. Jurdak, and M. Karner. Secure
Wireless Automotive Software Up-dates using Blockchains – A Proof of Concept. In
Proceedings of the 21st International Forum on Advanced Microsystems for Auto-
motive Applications (AMAA). Berlin, Germany. September 2017.

F. M. Steger, C.A. Boano, K. Römer, M. Karner, J. Hillebrand, and W. Rom. CESAR:
a Testbed Infrastructure to Evaluate the Efficiency of Wireless Automotive Software
Updates. In Proceedings of the 20th International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems (MSWiM). Miami, USA. November
2017.

105

Chapter 9 – Publications

G. M. Steger, T. Niedermayr, C.A. Boano, K. Römer, M. Karner, J. Hillebrand, and W.
Rom. An Efficient and Secure Automotive Wireless Software Update Framework.
To appear in IEEE Transactions on Industrial Informatics (TII) in 2018.

Related book chapters not included in this thesis:

1. P. Azzoni, F. Rogo, C. Coveri, M. Steger, W. Rom, A. Fiaschetti, F. Liberati, and
J. Noll. Applying SHIELD in New Domains. Book chapter in Measurable and
Composable Security, Privacy, and Dependability for Cyberphysical Systems – The
SHIELD Methodology, ISBN 978-1-138-04275-9, 2018.

2. A. Dorri, M. Steger, S.S. Kanhere, and R. Jurdak. Blockchain: A distributed so-
lution to automotive security and privacy. IEEE Communications Magazine, pages
119–125, December 2017.

106

Paper A

M. Steger, M. Karner, J. Hillebrand, W. Rom, E. Armengaud, M. Hansson, and K. Römer.
Applicability of IEEE 802.11s for Automotive Wireless Software Updates. In
Proceedings of the 13th International Conference on Telecommunications (ConTEL), pages
1–8. Graz, Austria. September 2015.

Summary. This paper introduces a basic architecture of an automotive wireless software
update system based on the IEEE 802.11s mesh standard. It mainly focuses on the evalu-
ation of the IEEE 802.11s-based vehicle interface and on the influence of the environment
on this interface as well as on the wireless link (e.g., radio interference, shielding). There-
fore, the paper first lists essential technical requirements of a wireless software update
system (i.e., throughput, scalability, reliability, extendability, compatibility, security, and
functional safety) and evaluate different wireless technologies w.r.t. these requirements.
Thereby, the paper shows that IEEE 802.11s is the most suitable candidate for a wireless
software update system. Second, the paper described different evaluation steps and the
corresponding results. These results prove the applicability of IEEE 802.11s as wireless
media for automotive software updates.

My contributions. I am the main author of this article and I carried out the different
experiments showing the applicability of IEEE 802.11s for automotive applications and,
in particular, for automotive software updates. I wrote the vast majority of the paper in
collaboration and discussion with the co-authors, who significantly helped to identify the
requirements w.r.t. the wireless media, to define the basic design of the software update
system, and to evaluate the measurement results w.r.t. to the defined requirements.

c©2015 IEEE.
ISBN: 978-1-4799-8972-0.
DOI: 10.1109/ConTEL.2015.7231190.

Link: http://ieeexplore.ieee.org/document/7231190/.

Copyright: The IEEE does not require individuals working on a thesis to obtain a
formal reuse license, provided that the requirements listed below are followed:

1. The following IEEE copyright/ credit notice should be placed prominently in the
references: c©[year of original publication] IEEE. Reprinted, with permission,
from [author names, paper title, IEEE publication title, and month/year of
publication];

2. Only the accepted version of an IEEE copyrighted paper can be used when
posting the paper or your thesis on-line;

http://ieeexplore.ieee.org/document/7231190/

Chapter 9 – Publications

3. In placing the thesis on the author’s university website, please display the fol-
lowing message in a prominent place on the website: In reference to IEEE copy-
righted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity’s name goes here]’s products
or services. Internal or personal use of this material is permitted. If inter-
ested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistri-
bution, please go to http://www.ieee.org/publications_standards/
publications/rights/rights_link.html to learn how to obtain a Li-
cense from RightsLink.

108

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Paper A – 13th International Conference on Telecommunications

Applicability of IEEE 802.11s for Automotive
Wireless Software Updates

Marco Steger∗, Michael Karner∗, Joachim Hillebrand∗, Werner Rom∗, Eric Armengaud†,
Martin Hansson‡, Carlo Alberto Boano§, and Kay Römer§

∗Virtual Vehicle Research Center, Graz, Austria
†AVL LIST GmbH, Graz, Austria

‡Volvo Group Trucks Technology, Göteborg, Sweden
§Institute for Technical Informatics, Graz University of Technology, Graz, Austria

Email: marco.steger@v2c2.at

Abstract—Due to the rising number of electronic control
units (ECU) in a vehicle and the growing complexity of the
related software installed, a fast and efficient system for updating
software is needed. Wireless software updates similar to firmware
over the air updates for smartphones can be a suitable solution
to solve this issue. In this paper we propose a wireless update
system based on an IEEE 802.11s mesh network and describe
related high-level requirements for such a system. Additionally
the prototype of a wireless vehicle interface (WVI) is described.
This interface is needed to maintain the wireless link as well
as to forward the received data to the in-vehicle communication
system and finally to the ECU. Existing diagnostic standards are
applied to transfer and install the new software on the ECU.

Furthermore, IEEE 802.11s-based network nodes and the
WVI prototype are used to evaluate the applicability of
IEEE 802.11s for a wireless update system used in the vehicle
development phase. We performed indoor measurements as well
as measurements inside two different vehicles to evaluate the
influence of the shielding properties of a vehicle. The results of
these measurements show that the used setup consisting of the
WVI prototype and other IEEE 802.11s based nodes can be used
to realize a wireless update system and is able to fulfil the defined
system requirements.

I. INTRODUCTION

The number of electronic control units (ECU) in a vehicle
is rising, and the used software (SW) is getting more and
more complex, leading to a growing number of bugs in the
automotive SW. Because of that, efficient SW updates for
vehicular ECUs are getting more and more important. An
emerging trend for consumer devices is to perform wireless
SW updates. These so-called firmware-over-the-air (FOTA)
updates can help to speed up the update process and reduce the
related costs dramatically. All major mobile phone manufac-
turers are already using FOTA updates to provide new features
and to fix bugs. This technology can help to reduce costs for
customers as well as for OEMs, avoid product recalls, and
increase consumer satisfaction.

In a vehicle, the size of current ECU SW can be about tens
of megabytes for engine and transmission controllers, while
infotainment systems (e.g., audio or navigation system) are
usually the largest and most complicated software units, often
exceeding 100MB [1]. Therefore, a fast and reliable wireless

link to the vehicle is needed to ensure that the required data
can be transferred very quickly.

To enable FOTA updates, the vehicle must be equipped
with a wireless vehicle interface (WVI), which is used to
transfer the received data (e.g., the new SW version) to
the ECU concerned by using the in-vehicle communication
system. The wireless link to the WVI can either be based on an
external cellular network or use a local network infrastructure
(e.g., based on Wi-Fi or Bluetooth).

For vehicle respectively ECU development a system based
on a local wireless network seems to be more attractive and
realistic. A development engineer will be able to use such a
wireless update system to download new SW to a vehicle (via
the WVI) from his office or to run wireless diagnostics.

In this paper we will introduce such a wireless update
system based on the IEEE 802.11s mesh standard. Thereby we
will mainly focus on the evaluation of the IEEE 802.11s-based
vehicle interface and on the influence of the environment on the
WVI and the wireless link (e.g., radio interference, shielding).
The described wireless update system will mainly be used in
the development phase of a vehicle respectively on an ECU,
but in a more generalized form it will also work in workshops
(vehicle maintenance) or even in the assembly line.

The rest of the paper is structured as follows. In Section
2 the system requirements are stated and different wireless
technologies are discussed. Section 3 provides an overview
of the related work on wireless SW updates and applications
based on IEEE 802.11s. Section 4 describes the architecture
of the wireless update system and the components involved.
In Section 5 we describe the experimental setup and the
performed measurements. The results of these measurements
and an evaluation of the results can be found in Section 6.
Section 7 provides a summary of the key contributions of this
applied research and discusses future work.

II. SYSTEM REQUIREMENTS AND EVALUATION OF
WIRELESS TECHNOLOGY

In this section the requirements of the wireless update
system are defined and a technology evaluation based on these
requirements is performed.

c©2015 IEEE. Reprinted, with permission. From IEEE Conference on
Telecommunications (ConTEL), September 2015.

109

Chapter 9 – Publications

A. Requirements on the wireless vehicle interface and the
wireless update system

In the following the most important requirements on the
WVI are stated and described. The requirements must be taken
into account when the interface respectively the entire system
is designed and implemented.

• Throughput: as described above the size of the SW
installed on an ECU node is growing and can be
between dozens and hundreds of megabytes. There-
fore, the link requires high throughput to ensure a
fast data transfer. In practice, diagnostic protocols
like UDS [2] are used to handle the SW update on
the in-vehicle communication system and confine the
maximum response time of an ECU node. This time
is also influenced by the end-to-end latency of the link
(e.g., round-trip time for ’tester present’ messages to
keep programming session alive: wireless link + in-
vehicle communication consisting of bus transmission
times and the time the gateway(s) need to forward the
data + the time the ECU needs to react on the request
≤ 2000ms).

• Parallel updates and scalability: the wireless update
system shall be able to handle updates in parallel. This
means that several vehicles can receive new SW at the
same time. Therefore, one update (one SW version for
a specific ECU) can be transferred to several vehicles
(multi-cast, e.g., the same type of car/ECU) and the
system shall be able to distribute the required data
(different vehicle types, ECUs, and SW versions) via
the wireless link in an efficient, fast way (e.g., using
different channels per vehicle).

• Reliability: the wireless link may operate in harsh
environments (e.g., concerning temperature, vibration)
and will also be impaired by different sorts of radio
interferences.

• Extendability: the distance to the vehicle, which shall
receive new SW versions, will vary and may exceed
the current transmission range of the wireless update
system. In such a case there must be an easy way (with
less or without any additional configuration) to extend
the transmission range of the system (e.g., several
hundred meters to cover the whole area of a company
or a test track).

• Compatibility: laptops, smartphones, tablets, or dedi-
cated hardware devices (in the context of automotive
SW updates also called diagnostic tester devices) will
be used to interact with the vehicle via the WVI and
therefore the used technology shall be available for
consumer electronics.

• Security: updating the SW of an ECU and adding a
WVI to the existing vehicle architecture can be very
critical and therefore the integrity of the transferred
data as well as the integrity of the vehicle must be en-
sured. This paper focuses on the wireless system archi-
tecture as well as on the properties of IEEE 802.11s,
not on the security layer on top of it. We will use
the SHIELD methodology proposed in [3], [4] to
continuously evaluate our system regarding security,

privacy as well as dependability issues and to find
the best configuration of the core components of
our wireless update system. Additionally, security on
higher network layers will be addressed as part of
future research carried out within our project.

• Functional safety: for embedded automotive SW func-
tional safety is an important issue and must also be
considered when the SW of an ECU shall be updated.
ISO 26262 [5] defines a safety life cycle by delineating
different levels of safety requirements [6]. Regarding
our wireless update system we will start from a higher
level of functional abstraction (safety goal, functional
safety requirements) to the more detailed levels of the
technical realization of the system (technical safety
requirements), down to the software (software safety
requirements) and hardware levels (hardware safety
requirements). For the implementation we will use
knowledge about functional safety methods and work
flows which we developed in several projects (e.g.,
SafeCer [6], VeTeSS [7], [8]) to identify all relevant
functional safety requirements as well as continu-
ously analyze and improve our system w.r.t. functional
safety.

• Interconnection with other networks respectively
(re)use of existing infrastructure: the interconnection
to other networks (e.g., the network of a company)
would be very beneficial for the wireless SW up-
date scenario. The WVI or the diagnostic tester can
connect to the network infrastructure of a company
(via WLAN, Ethernet) to enable remote updates or to
increase the range of the entire system.

B. Wireless technology evaluation

Based on the requirements stated above, a suitable wireless
standard has to be chosen as the communication technology
for our wireless update system. IEEE 802.15.4 is a very
power-efficient protocol and is used in many different wireless
sensor network (WSN) applications. However, this standard
would be too slow for our purposes [9], [10] (raw bit rate
of 250 Kbps, with a measured throughput <50Kbps). The
throughput of Bluetooth Low Energy (BLE) is quite similar
to IEEE 802.15.4 [11] (maximum application layer through-
put is 236.7Kbps, typically <60Kbps), which also makes it
unsuitable for our wireless update scenario.

A lot of research regarding vehicle-to-vehicle communi-
cation (IEEE 802.11p [12]) has been carried out in the last
decades, but it is not clear when respectively if IEEE 802.11p
will be integrated into vehicles. Currently, IEEE 802.11p
platforms and interfaces are quite expensive compared to
Bluetooth or IEEE 802.11 components. Laptops or hand-held
devices such as smartphones or tablets probably won’t be
equipped with IEEE 802.11p hardware at all. So the avail-
ability of IEEE 802.11p components is currently insufficient.
Additionally, the interconnection to other IEEE 802 networks
is hard to realize because current automotive IEEE 802.11p
stacks are not IP-based and a dual-stack solution would be
needed to interconnect IEEE 802.11p and other infrastructural
networks (e.g., a corporate network via Ethernet or Wi-Fi).
Current IEEE 802.11 networks offer typically enough band-
width to satisfy the needs of the described SW update scenario.

110

Paper A – 13th International Conference on Telecommunications

The IEEE 802.11b/g/n hardware is integrated in nearly every
recent laptop and hand-held device, and a good fraction of
this hardware can also be used for IEEE 802.11s (e.g., several
Atheros and Qualcomm chips already support IEEE 802.11s).

IEEE 802.11 protocols are designed for large networks
and therefore satisfy the scalability requirement. Extending the
communication range of IEEE 802.11b/g/n network is possible
but dedicated hardware is required. IEEE 802.11s networks can
be extended easily by adding relay nodes (forwarding data to
other nodes, multi-hop) without any configuration effort (in
Section 3, an example regarding the range of the wireless
update system is presented). Additionally, IEEE 802.11s was
designed in a way that gateway nodes can be easily used to
forward data to other IEEE 802 networks.

III. RELATED WORK

The use of FOTA updates in the automotive domain
was already addressed in several works, which we summa-
rize is this section. Additionally, some applications based
on IEEE 802.11s are described to show the potential of
IEEE 802.11s.

A. Wireless SW updates

A white paper from Redbend [1] summarizes the benefits
of using FOTA updates in the automotive domain and shows
the benefits of this technology for both OEMs and end users.
In [13] the basic idea and the benefits of a dynamic SW
update system are demonstrated. The system provides high-
level abstractions for sensing and tuning automobile param-
eters. Using these abstractions, developers can achieve fuel
efficiency, responsiveness, or safety goals and users can tune
their vehicles at the granularity of individual trips, a capability
we call personalized tuning. Several other scientific papers
regarding SW updates over the air are available. These papers
are mainly focusing on security and verification issues but the
question of how the data can be transferred to the vehicle was
neither addressed nor resolved.

A system where vehicles can be updated using an Internet
connection to a portal server is proposed in [14]. The authors
mainly focus on the secure data link between the vehicle and
the portal and no in-depth information on how the data is
transferred to the ECU or how a vehicle can connect to the
network is provided. However, an overview on desired security
properties for the network traffic of such an automotive system
is given.

In [15], a security hardware module for vehicular ECUs,
to handle the verification of new SW updates, is proposed.
The module can also be used for data encryption respectively
decryption, digital signatures, and authentication. The wireless
interface and the wireless link are not described.

The authors of [16] focus on how transferred SW can be
verified when it is flashed to the ROM. Therefore, an additional
control system (as part of the ECU), which is responsible
to handle the verification procedure, is defined. In [17] a
classification of ECUs is stated and described. This approach
is based on the assumption that different ECUs may require
different levels of security. The idea is that an ECU, which
was classified as very critical, is not allowed to be updated
using FOTA updates.

All these articles focus on how wireless updates can be
performed and on how the required data can be transferred to
the vehicle in a secure way. However, no information about
how the wireless link actually can be realized and which
additional components and requirements are needed for such
a system are given.

FOTA updates play a crucial role also in wireless sensor
networks, as they allow to extend the software with additional
features and to fix existing bugs. Over-the-air programming
techniques for wireless sensor networks typically exploit their
multi-hop communications to transfer the new software to all
nodes in the network and need to meet also the limited power,
processing, and storage capabilities of sensor nodes [18]. The
same principles can be used in vehicular settings by using
multi-hop capabilities to carry out a fast and efficient firmware
update on several vehicles situated in a large area.

B. IEEE 802.11s applications and performance analysis

We will use IEEE 802.11s as communication media for
our wireless update infrastructure. Therefore we carried out a
literature research to get a better overview on the performance
and on the possibilities, as well as on the limitations of
IEEE 802.11s. In the following, we present the results of our
literature research.

In [19] an overview on IEEE 802.11s is given. The paper
starts with a brief explanation of IEEE 802.11 networks and
then focuses on 11s mesh networks. Frame structure, channel
selection, power management, security, and path selection are
described. Additionally, measurements in a test-bed consist-
ing of ten nodes (basic performance measurements, enforced
multi-hop) were performed.

In [20] and [21], IEEE 802.11s is used as a backbone
network for V2X1 networks. The main idea is to replace the
wired connections between the RSUs (road side units) and the
V2X servers by wireless ones. The authors of both papers use
simulation to verify the system performance.

An evaluation of the impact of uncontrolled traffic sources
on real-time communication in IEEE 802.11s networks is
described in [22]. The results are based on simulations using
the ns-3 simulator. The idea is to set up a WSN with real-
time constraints and simulate the impact of radio interference
(simulated HTTP traffic).

Other papers focus on improving the standard Hybrid
Wireless Mesh Protocol (HWMP), the routing protocol used
in IEEE 802.11s mesh networks, to increase the fairness in
mesh networks and to make IEEE 802.11s networks more
energy efficient. In [23] an energy efficient HWMP scheme
(eHWMP) is proposed, which shall help to increase the overall
network lifetime. Simulations are carried out to show the
positive impact of eHWMP on network lifetime. The authors
of [24] propose an energy-optimization-based path selection
algorithm which can be incorporated in the standard HWMP.
Simulations are carried out to evaluate the performance of the
path selection algorithm. The authors of [25] propose a power
efficient mesh application with nearly identical throughput as

1General term for vehicle to vehicle and vehicle to infrastructure commu-
nication.

111

Chapter 9 – Publications

normal 11s. The performance of the system was evaluated
based on simulation results.

In [26] the implementation of IEEE 802.11s nodes based on
open80211s2 is explained and test-bed measurements (through-
put vs. hop-count) were carried out. The authors also address
the gateway functionality of 802.11s to other (wireless) net-
works. In [28] a campus-wide mesh network was used to
test new mesh application. A proprietary mesh network (no
IEEE 802.11s) based on madWIFI3 was defined. The results of
the experiments (a very basic evaluation of a video streaming
application) are also briefly described.

A big portion of the mentioned articles use network simu-
lators to validate the described applications. In the automotive
domain, the environment can be quite rough for a wireless
network architecture (e.g., regarding vibrations, temperature,
and radio interference). Therefore, in this work, we perform
real-world measurements instead of simulations to evaluate the
performance and the applicability of an IEEE 802.11s based
wireless update system in a vehicular setting.

IV. SYSTEM DESCRIPTION

The wireless update system shown in Figure 1 is based
on a IEEE 802.11s mesh network infrastructure, where several
vehicles, hand-held devices such as smartphones and tablet and
diagnostic tester devices (the data source, where the new ECU
SW version is stored) like laptops, PCs or dedicated hardware
devices (mainly used in workshops) are connected to each
other either directly or via another device/node. Because of the
mesh characteristic of the IEEE 802.11s standard, additional
devices can be used as relay nodes (e.g., a parked vehicle or a
placed relay node) between two end nodes. If there is no direct
connection between the source (e.g., the diagnostic tester) and
the target (e.g., the WVI), a relay node can be placed in
between without any extra configuration of the network and
the nodes. This also means that the transmission range of
the wireless system can be extended easily by (temporarily)
adding/placing relay nodes. If a development engineer wants
to download SW to an ECU of a vehicle parked outside he can
either directly connect to the WVI (if in transmission range) or
place a relay node (e.g., at a window near the parking position
of the vehicle) and use this node to extend the range to ensure
the connection with the WVI.

The hand-held devices can be used to schedule, trigger, and
monitor the update process and to run wireless diagnostics. The
diagnostic tester can be seen as the data source. The data (SW
binary) can be located directly on the device or the device can
be connected to a backbone network (e.g., OEM SW server)
via an Internet link. The SW binary is sent to the WVI via
the IEEE 802.11s link using TCP or UDP. In the next step the
WVI will forward the data to the ECU, which shall be updated
using the in-vehicle communication system.

Figure 1 shows a higly simplified model of the in-vehicle
communication system. In reality, a vehicular communication
system consists of dozens of ECUs, several different bus sys-
tems (e.g., CAN, FlexRay, LIN) and a central gateway device,

2open80211s is an open-source implementation of the recently ratified IEEE
802.11s wireless mesh standard [27].

3http://madwifi-project.org/

Fig. 1. The top-level communication model of the wireless update system.

Fig. 2. Simplified block diagram of the WVI and the links to the in-vehicle
communication system and the IEEE 802.11s mesh network.

which is used to interconnect all bus systems and the ECUs.
The in-vehicle communication system can be accessed from
outside via the OBD interface. The interface is mainly used
for vehicle diagnostics (e.g., reading error codes) but can also
be used to transfer data (in our case the new SW version) to
an ECU inside the vehicle. Therefore diagnostic standards like
Unified Diagnostic Services (UDS) or Universal Measurement
and Calibration Protocol (XCP), which are running on top of
buses such as CAN or automotive Ethernet, can be used.

It is important that such a diagnostic standard is used to
guarantee the backward compatibility and the system accep-
tance inside the automotive domain of our solution.

The first prototype of our WVI consist of a Beaglebone
black (BBB), a single-board computer, a IEEE 802.11(s)
Wi-Fi stick (TL-WN722N) and an OBD-Controller and is
implemented according to the system requirements stated in
Section 2. In Figure 2 the block diagram of the WVI prototype
is presented. Additionally, the connection to the in-vehicle
communication system (via the OBD interface) as well as to
the ECU node is shown.

112

Paper A – 13th International Conference on Telecommunications

V. EXPERIMENTAL SETUP

In the considered scenario the test vehicle is parked in front
of the building where the office of the development engineer
is located. To test a new SW version the engineer wants to
download new SW to the vehicle from the office.

The prototype of the WVI described above was used to
perform some measurements to evaluate the feasibility of our
system setup. The basic idea was to get a feeling about the
range of the TL-WN722N sticks using IEEE 802.11s in and
around a vehicle. Additionally, the stick was used to perform
a spectral scan (in the 2.4GHz band) in two different cars.

In the following the measurement setup is described in
more detail. The results of the measurements are stated and
discussed in the next section.

A. Indoor Measurements

In the first step we used two nodes to measure the trans­
mission range of the system inside a building. Therefore we
performed indoor measurements in the Virtual Vehicle office
building. The first node was used as static node (NodeB) and
second node (NodeA) was moved around in the building (on
second floor, both nodes on the same floor for the whole
measurement, a mix of thin wooden and concrete walls).
Thereby we evaluated the impact of the distance between the
nodes on the link quality. Among others, we measured the
signal strength and used iperf4 to evaluate the link qUality. For
the measurement, the Debian default rate control algorithm
(Minstrels) was enabled, but the rate remain at 54Mbps all
the time. The multi-hop ability of lIs based network was not
used in this measurement setup. This means that no relay nodes
were used to increase the transmission range.

B. The impact of a vehicular environment on the IEEE 802.11 s
link

The WVI prototype was placed inside a vehicle (BMW
X3) and the link properties to other nodes located inside as
well as outside the vehicle was measured.

Fig. 3. Position of the used lIs node inside and around the BMW X3 and
the measured links.

4https:lliperfJr/
5 See https:llwireless. wiki.kemel.org/enldevelopersldocumentationlmac80211

Iratecontrollminstrel for more information

TABLE I. THE INDOOR LINK PROPERTIES BETWEEN A TWO NODES

Distance [m] SignaiNodeA [dBm] SignalNodeB [dBm] Metric
0 -16 -17 152
\0 -42 -44 152
20 -46 -SI 152
30 -66 -66 152
40 -59 -64 152
SO -68 -73 152
60 -64 -65 152
70 -69 -73 152

In Figure 3 the location of the WVI (near the OBD
interface) and the other nodes is shown. The WVI as well as the
other nodes consists of a BBB and a plugged in TL-WN722N
stick. The distance between the vehicle and the nodes outside
the vehicle (NI-N4) were about 5m and the data rate was
54Mbps (fixed rate with disabled rate control) for all performed
measurements.

C. Spectral scan of the 2.4 GHz band performed in two
different vehicles

The actuators in a vehicle will create different kinds of
interference. These interferences may also influence the link
quality between the WVI and other nodes in the transmission
range of the wireless update system. To get a better feeling
of how this interference can look like, we performed some
measurements in a conventional diesel car (BMW X3) and
also in a electric car (Citroen C-Zero). In practice, addi­
tional interferences because of other wireless networks (e.g.,
WLAN and Bluetooth) from outside but also inside the vehicle
(e.g., electronic devices of the passengers or the infotainment
system) can occur and may also influence the link quality.
However, in this paper we focus on the evaluation of the
influence of the vehicle itself (infotainment off). Therefore,
we first measured a baseline (no vehicle-based interferences,
ignition and engine off) to check that no other sources of
interference will influence our spectral scans.

The hardware used to collect the data consisted of a BBB
and the TL-WN722N stick (especially the ability of the built­
in Atheros ATH9K_HTC chip to perform a spectral scan in
the 2.4GHz band). An adapted version of the open source
spectrum analyzer tool FFT_eval6 was used to create the plots
shown in the following section. The resulting plots are mainly
influenced by 1) the signal strength and 2) the density over
several measurements. Hence, the blurry look of the plots is
an additional level of information.

VI. MEASUREMENTS AND EVALUATION

In this section the measurement results are described and
evaluated.

A. Indoor measurements

The first measurements with 802.11 s-based nodes was done
indoors in the Virtual Vehicle office building. In Table I the
link properties as a function of the distances between the nodes
is shown.

Along with the hop count (number of hops respectively
other nodes between the sender and the target node) the link

6https:llgithub.comlsimonwunderlichIFFT_eval

113

Chapter 9 – Publications

metric is used to find the best path through a mesh network
between two nodes. In IEEE 802.11s networks the metric is
a combination of the frame error rate and the bit rate. In our
measurements, the metric remains constant because the frame
error rate (error rate at the MAC layer, retries on HW are
not counted) stays 0 during the measurement and the metric
remains unchanged. In Figure 4 the plots of the received signal
strength are shown.

0 10 20 30 40 50 60 70
−80

−70

−60

−50

−40

−30

−20

−10
Signal strength

Signal strengh at static node
Signal strengh at moving node

Fig. 4. The indoor link between a static and a moving node.

The measured curves are quite similar to access-point-
based Wi-Fi like IEEE 802.11b/g/n and the indoor transmis-
sion performance (0 transmission errors at 70m distance and
54Mbps) is sufficient for the described scenario.

B. IEEE 802.11s based nodes inside and around a BMW X3

In Table II the results of the measurement are stated. For
each link marked in Figure 3 the signal strength and the link
metric is stated.

TABLE II. THE IEEE 802.11S LINK PROPERTIES BETWEEN THE WVI
AND A SECOND NODE

Link Distance SignalWV I SignalNode MetricWV I MetricNode

[m] [dBm] [dBm]
A 7 -61 -63 152 152
B 6 -59 -62 152 152
C 7.5 -58 -69 152 152
D 5.5 -55 -59 152 630
E 1.5 -46 -49 152 152
F 2 -45 -47 152 152

Except for link D the metric still remains constant because
no frame errors occurred during the measurement. For link D
one frame error occur during our measurements (frame sent
to the WVI) and because of that the metric is higher. We also
did this measurement with reduced data rate (1Mbps) and got
a constant metric value (8193) for all links. So the metric
value stays constant but the value is way higher because of the
reduced data rate (1Mbps compared to 54Mbps). The shielding
properties of the vehicle significantly influence the received
signal strength. The distance between the nodes outside the
vehicle and the WVI node is just about 5m but the measured
signal strength is between -45 and -69dBm. Compared to the
results of the indoor measurements this range equals a node
distance between 20 and 50m. As presented in Table II the

emitted signal strength measured at two nodes located inside
a vehicle (links E and F) is quite low compared to the other
results (links A-D).

C. Spectral scan inside a BMW X3

In the previous section the shielding properties of a vehicle
were measured and explained. The results show that the
shielding due to the metal, glass, etc. significantly reduces
the signal strength at the receiving node. Additionally, the
actuators in a vehicle will create all kinds of interference which
will also influence the robustness of wireless update systems
operating in the 2.4Ghz band. The following spectral scans
shall help to understand how this interference can look like.
In Figure 5 the spectral scan of the BMW X3 (Diesel) during
the start process (ignition off to engine started) is shown. Some
significant peaks can be found in the spectrum. The results of
several scans show that these peaks can appear in all channels
of the 2.4GHz band.

Fig. 5. Starting the engine of our BMW X3 (blue: samples below -80dBm,
green: -80dBm and above, red: one specific sample).

The same kind of peaks can also be found in the scans
shown in Figures 6 and 7, where scans of the same BMW
with running engine are presented. These scans clearly reveal
that interference can appear in all channels of the 2.4GHz
frequency band. Although, temporary there are channels with-
out significant interferences (see, e.g., Figure 7: no significant
interference between 2460 and 2480MHz).

D. Spectral scan inside a Citroën C-Zero (e-car)

In an electric car quite different actuators may be in use and
therefore the occurring interference may also differ. Because
of that we decided to create the same kind of spectral scans
also for an electric car. In Figure 8 the spectral scan of Citroën
C-Zero in parking mode (ignition on but vehicle in standstill)
is shown. In the collected frequency spectrum similar peaks
can be found but there are more peaks and more interference
in general distributed over the whole spectrum.

In the next step we collected spectral data while driving
around with the e-car (constant speed, approximately 30km/h)
to find out if the interferences are different than in standstill.
The results of these measurements are shown in Figures 9 and
10.

114

Paper A – 13th International Conference on Telecommunications

Fig. 6. First spectral scan of the BMW X3 with running engine (blue: samples
below -80dBm, green: -80dBm and above, red: one specific sample).

Fig. 7. Second spectral (approximately 1 minute after the first scan) scan
of the BMW X3 with running engine (blue: samples below -80dBm, green:
-80dBm and above, red: one specific sample).

The scans show that there is no significant difference
between vehicle in standstill and the vehicle driving at constant
speed. Compared to the scans of the BMX X3 the frequency
spectrum of the e-car contains more samples above the -
80dBm limit. Although there are also some regions with less
interference (see 2430-2440MHz in Figure 9 and 10).

VII. CONCLUSIONS AND FUTURE WORK

In this paper we described the design and the high-level
requirements for an IEEE 802.11s based wireless update
system for automotive software. Additionally, a prototype of
a wireless vehicle interface (WVI) was presented. Different
measurements and an evaluation of an IEEE 802.11s based
network in an automotive context was performed, and the result
were presented in the previous sections.

Our experimental results clearly show that IEEE 802.11s
can be used as the basis technology for a wireless SW update
system. Indoor measurements prove that a robust and reliable
link between two nodes in a distance of up to 70m can be
realized. Shielding properties of vehicles significantly influ-
ence the transmission range and the signal strength. However,
a reliable IEEE 802.11s based link between the WVI inside
the vehicle and a diagnostic device (e.g., a laptop, tablet or

Fig. 8. Citroën with ignition on but in standstill (blue: samples below -
80dBm, green: -80dBm and above, red: one specific sample).

Fig. 9. First scan of Citroën e-car at 30km/h (blue: samples below -80dBm,
green: -80dBm and above, red: one specific sample).

smartphone) or a relay node (nodes outside the vehicle) can
be achieved. Based on our experiments, we were able to show
that an IEEE 802.11s-based wireless update system can be
realized with the components used (mainly the WVI consisting
a single-board computer and a Wi-Fi stick). Additionally, we
also measured and analyzed the frequency spectrum of a
conventional car (BMW X3) and an e-car (Citroën C-Zero).
The results show that there is interference in the 2.4GHz
band which must be taken into account. Especially for nodes
with smaller antennas (e.g., a PCB antenna instead of the rod
antenna of the TL-WN722N) these interferences together with
the shielding properties of a vehicle can be critical.

In the next step we plan to test such a node with a smaller
(PCB) antenna and to evaluate if it still can be used for our
purpose. This smaller solution can then be used as plug-in
device for wireless updates and diagnostics. Additionally, we
will also think about an integrated solution, where the WVI
is part of the in-vehicle communication system, thereby being
able to use the antenna(s) of the vehicle. The antenna diversity
will help to improve the link quality and to avoid attenuation
issues. In the next months we will focus on the advancement
of the WVI including the implementation of the gateway
functionality to forward data received from the wireless update
system to the ECU node. A security layer will also be added

115

Chapter 9 – Publications

Fig. 10. Second scan (approximately I minute after the first scan) of Citroen
e-car at 30kmlh (blue: samples below -80dBm. green: -8OdBm and above. red:
one specific sample).

to ensure the integrity of the transferred data as well as the
integrity of the vehicle.

ACKNOWLEDGMENTS

The research from DEWI project (www.dewi-project.eu)
leading to these results has received funding from the
ARTEMIS Joint Undertaking under grant agreement n°
621353. The authors acknowledge the financial support of the
COMET K2 - Competence Centres for Excellent Technologies
Programme of the Austrian Federal Ministry for Transport.
Innovation and Technology (BMVIT), the Austrian Federal
Ministry of Science, Research and Economy (BMWFW), the
Austrian Research Promotion Agency (FFG), the Province of
Styria and the Styrian Business Promotion Agency (SFG).

REFERENCES

[I) Redbend Software. "Updating Car ECUs Over-The-Air (FOTA)." White
Paper. p. 14. 2011.

[2) ISO. "Road vehicles Unified diagnostic services (UDS) Specification
and requirements." ISO 2006. Tech. Rep .• 2006.

[3) 1. Noll. I. Garitano. S. Fayyad. E. Asberg. and H. Abie. "Measurable
security. privacy and dependability in smart grids." Journal of Cyber
Security. vol. 3. pp. 371-398. Apr. 2015.

[4) I. Garitano. S. Fayyad. and 1. Noll. "Multi-metrics approach for security.
privacy and dependability in embedded systems." Wireless Personal
Communications. vol. 81. no. 4. pp. 1359-1376.2015.

[5) ISO. "Road vehicles - Functional safety - Part I: Vocabulary." ISO.
Tech. Rep .• 20 II.

[6) H. Martin. M. Krammer. B. Winkler. and C. Schwarzl. "Model-based
engineering workflow for automotive safety concepts." SAE 2015 World
Congress and Exhibition. 2015.

[7) M. Karner. M. Krammer. and A. Fuchs. "System level modeling. simu­
lation and verification workflow for safety-critical automotive embedded
systems." SAE 2015 World Congress and Exhibition. 2014.

[8) M. Krammer. P. Stirgwolt. and H. Martin. "From natural language to
semi-formal notation requirements for automotive safety." SAE 2015
World Congress and Exhibition, 2015.

[9) M. Petrova. 1. Riihijarvi. P. Mahonen. and S. Labella. "Performance
study of IEEE 802.15.4 using measurements and simulations." IEEE
Wireless Communications and Networking Conference, 2006. WCNC
2006 .• vol. I. no. c. pp. 487-492. 2006.

[10) F. Mieyeville. W. Du. I. Daikh. and D. Navarro. "Wireless Sensor Net­
works for active control noise reduction in automotive domain." 2011
The 14th International Symposium on Wireless Personal Multimedia
Communications (WPMC). pp. 1-5. 20 II.

[II) C. Gomez. 1. Oller. and 1. Paradells. "Overview and evaluation of
bluetooth low energy: An emerging low-power wireless technology."
Sensors (Switzerland). vol. 12. no. 9. pp. 11734-11753.2012.

[12) I. S. for Information technology. "Local and metropolitan area networks­
Part II: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY):Wireless Access in Vehicular Environments." IEEE. Tech.
Rep .• 2010.

[13) T. Flach. N. Mishra. L. Pedrosa. C. Riesz. and R. Govindan. "CarMA:
Towards Personalized Automotive Tuning." University of Southern
California. Tech. Rep. 11-921. 2011.

[14) D. K. Nilsson and U. E. Larson. "Secure firmware updates over the air
in intelligent vehicles." IEEE International Conference on Communica­
tions. pp. 380-384. 2008.

[15) M. S. Idrees. H. Schweppe. Y. Roudier. M. Wolf. D. Scheuermann.
and O. Henniger. "Secure automotive on-board protocols: A case of
over-the-air firmware updates." Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). vol. 6596 LNCS. pp. 224-238. 2011.

[16) D. Nilsson. L. S. L. Sun. and T. Nakajima. "A Framework for Self­
Verification of Firmware Updates over the Air in Vehicle ECUs." 2008
IEEE Globecom Workshops. pp. 1-5. 2008.

[17) D. Nilsson. P. Phung. and U. E. Larson. "Vehicle ECU classification
based on safety-security characteristics." Road Transport Information
and Control - RTIC 2008 and ITS United Kingdom Members' Confer­
ence, lET. pp. 1-7. 2008.

[18) S. Brown and C. 1. Sreenan. "Software updating in wireless sensor
networks: A survey and lacunae." Journal of Sensor and Actuator
Networks. vol. 2. no. 4. pp. 717-760, 2013.

[19) G. R. Hiertz. D. Denteneer. S. Max. R. Taori. 1. Cardona. L. Berlemann.
and B. Walke. "IEEE 802.11 s: The WLAN mesh standard." IEEE
Wireless Communications. pp. 154-160. 2010.

[20) D. T. Tuan, S. Sakata, and N. Komuro, "Priority and admission control
for assuring quality of I2V emergency services in VANETs integrated
with Wireless LAN Mesh Networks." ICCE 2012. pp. 91-96, 2012.

[21) S. Chakraborty and S. Nandi. "IEEE 802.11 s mesh backbone for
vehicular communication: Fairness and throughput," IEEE Transactions
on Vehicular Technology. vol. 62. no. 5. pp. 2193-2203. 2013.

[22) c. M. D. Viegas. F. Vasques. and P. Portugal. "Evaluating the Impact of
Uncontrolled Traffic Sources upon Real-Time Communication in IEEE
802 . lis Mesh Networks." Industrial Informatics (INDIN), 2014 12th
IEEE International Conference. p. 4. 2014.

[23) M. A. Ng and K.-1. A. Yau. "An Energy-Efficient Hybrid Wireless Mesh
Protocol (HWMP) for IEEE 802.lls Mesh Networks." pp. 17-21.2013.

[24) M. M. Mhlanga and T. O. Olwal. "Energy Optimization based Path
Selection Algorithm for IEEE 802 . lis Wireless Mesh Networks." no.
September. pp. 13-15. 2011.

[25) S. Chen and G. M. Muntean. "E-Mesh: An energy-efficient cross-layer
solution for video delivery in wireless mesh networks." IEEE Interna­
tional Symposium on Broadband Multimedia Systems and Broadcasting,
BMSB.2012.

[26) P. Pandey. S. Satish. 1. Kuri. and H. Dagale. "Design & implementation
of IEEE 802.lls mesh nodes with enhanced features." 2009 IEEE 6th
International Conference on Mobile Adhoc and Sensor Systems, MASS
'09. pp. 639-644. 2009.

[27) "open80211 s an open-source implementation of the
recently ratified ieee 802.11 s wireless mesh standard."
http://open8021Is.org/open8021Is/.

[28) M. Cesana. L. Fratta. M. Gerla. E. Giordano. and G. Pau. "C-VET
the UCLA campus vehicular testbed: Integration of vanet and mesh
networks." 2010 European Wireless Conference, EW 2010. pp. 689-
695. 2010.

116

Paper B – 2nd International Workshop on Modelling, Analysis, and Control of Complex
CPS

Paper B

M. Steger, M. Karner, J. Hillebrand, W. Rom, and K. Römer. A Security Met-
ric for Structured Security Analysis of Cyber-Physical Systems Supporting
SAE J3061. In Proceedings of the 2nd International Workshop on Modelling, Analysis,
and Control of Complex CPS (CPS Data), pages 1–6. Vienna, Austria. June 2016.

Summary. In this paper the DEWI security metrics, a structured and detailed sys-
tem analysis with respect to security, are proposed. First, the new SAE J3061 standard
(Cyber-security Guidebook for Cyber-Physical Vehicle Systems) [52] is described and some
insight on how it can be used to evaluate and analyze a wireless software update system
given. Thereby, the paper describes the development process described in this standard,
lists all essential steps of the concept phase (i.e., an important part of the described de-
velopment process), and highlights how the DEWI security metrics can support these
steps. Thereafter, the DEWI security metrics are explained in more detail and the paper
shows that the DEWI security metrics can be utilized to perform a structured security
analysis with comparable and reusable results in different domains. Finally, a case study
is presented showing how the DEWI security metrics (in combination with the new SAE
security standard) can be applied to a real use case.

My contributions. As main author of this paper I evaluated the SHIELD multi-metrics
and identified its limitations, defined (with significant support by the co-authors) the
DEWI security metrics to overcome these limitations, described the benefits of utilizing
the DEWI security metrics to support SAE J3061, and carried out a case study (security
analysis of a wireless vehicle interface) to prove the applicability of the DEWI security
metrics. The co-authors eminently supported this work by providing detailed reviews and
fruitful discussions about the DEWI security metrics and the connection the the SAE
standard.

c©2016 IEEE.
ISBN: 978-1-5090-1154-4.
DOI: 10.1109/CPSData.2016.7496425.

Link: http://ieeexplore.ieee.org/document/7496425/.

Copyright: The IEEE does not require individuals working on a thesis to obtain a
formal reuse license, provided that the requirements listed below are followed:

1. The following IEEE copyright/ credit notice should be placed prominently in the
references: c©[year of original publication] IEEE. Reprinted, with permission,
from [author names, paper title, IEEE publication title, and month/year of
publication];

117

http://ieeexplore.ieee.org/document/7496425/

Chapter 9 – Publications

2. Only the accepted version of an IEEE copyrighted paper can be used when
posting the paper or your thesis on-line;

3. In placing the thesis on the author’s university website, please display the fol-
lowing message in a prominent place on the website: In reference to IEEE copy-
righted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity’s name goes here]’s products
or services. Internal or personal use of this material is permitted. If inter-
ested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistri-
bution, please go to http://www.ieee.org/publications_standards/
publications/rights/rights_link.html to learn how to obtain a Li-
cense from RightsLink.

118

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Paper B – 2nd International Workshop on Modelling, Analysis, and Control of Complex
CPS

A Security Metric for Structured Security Analysis
of Cyber-Physical Systems Supporting SAE J3061

Marco Steger∗, Michael Karner∗, Joachim Hillebrand∗, Werner Rom∗, and Kay Römer†

∗Virtual Vehicle Research Center, Graz, Austria
†Institute for Technical Informatics, Graz University of Technology, Graz, Austria

Email: marco.steger@v2c2.at

Abstract—Complexity in modern vehicles has increased dra-
matically during the last years due to new features and applica-
tions. Modern vehicles are connected to the Internet as well as
to other vehicles in close proximity and to the environment for
different novel comfort services and safety-related applications.
Enabling such services and applications requires wireless inter-
faces to the vehicle and therefore leads to open interfaces to the
outside world. Attackers can use those interfaces to impair the
privacy of the vehicle owner or to take control (of parts of) the
vehicle, which strongly endangers the safety of the passengers as
well as other road users. To avoid such attacks and to ensure
the safety of modern vehicles, sophisticated structured processes
and methods are needed.

In this paper we propose a security metric to analyse cyber-
physical systems (CPS) in a structured way. Its application leads
to a secure system configuration with comparable as well as
reusable results. Additionally, the security metric can be used
to support the conceptual phase for the development of CPS
specified in the new SAE security standard SAE J3061. A case
study has been carried out to illustrate the application of the
security metric.

I. INTRODUCTION

In the near future vehicles will be part of the Internet of
things and different cloud services already known from smart-
phones will also be available. Additionally, other applications
like remote diagnostics and remote software updates (e.g.,
enabling new features or increasing engine power) will be
possible. All these services require a wireless link between
the wireless interface(s) of the vehicle and the OEM network
or even the Internet. To this end either a direct 3G/4G/5G
connection or a short-range wireless technology like WiFi (as
last mile network) can be used between the vehicle and the
Internet. Adding a wireless interface to a modern vehicle will
enable a big variety of different new services and applications
but also leads to an open and attackable interface to the outside
world. Thus, a wireless vehicle interface (WVI) is a critical
component with respect to privacy, security and, in further
consequence, vehicle safety. Today already different attacks
using the infotainment system of a vehicle are known [1].
In the worst case an attacker is able to remotely control the
vehicle, which massively endangers the safety of the passen-
gers and other road users. Adding additional WVIs in modern
vehicles will lead to more potential threats. Therefore, suitable
countermeasures like security standards, security processes

and security metrics must be developed and integrated in the
development lifecycle of vehicles.

In this paper we propose the DEWI1 security metric which
can be used to perform a structured and detailed system
analysis with respect to security. We will also describe the new
SAE J3061 standard (Cybersecurity Guidebook for Cyber-
Physical Vehicle Systems) and give some insight on how it
can be used to evaluate and analyze a WVI. Additionally
we will show that the DEWI security metric can be used to
support some essential steps defined in the concept phase for
the development of CPS described in the new SAE standard.

This paper makes the following contributions:
• DEWI security metric for structured security analysis

with comparable and reusable results in different do-
mains.

• DEWI security metric as building block with respect to
the new SAE security standard.

• A case study on how to apply the DEWI security metric
in combination with the new SAE security standard.

II. RELATED WORK

Wireless or remote software update of ECUs (electronic
control units) of vehicles is one of the emerging applications
today. Remotely updating the software of a vehicle can be very
critical with respect to security and safety. Several publications
about secure software updates are available. A system where
vehicles can be updated using an Internet connection to a
portal server is proposed in [3]. The authors mainly focus
on the secure data link between the vehicle and the portal.
In [4], a security hardware module for ECUs to handle the
verification of a new SW update is proposed. The module
can also be used for data encryption respectively decryption,
digital signatures, and authentication. The wireless interface
and the wireless link are not described.

The connection of electric vehicles and the smart grid
can also require a wireless interface to the vehicle. In [5]

1The ARTEMIS project DEWI (Dependable Embedded Wireless Infrastruc-
ture) focuses on the area of wireless sensor / actuator networks and wireless
communication. With its four industrial domains (Aeronautics, Automotive,
Rail, and Building) and 21 industry-driven use cases, DEWI will provide and
demonstrate solutions for wireless seamless connectivity and interoperability
in smart infrastructures [2]. (For further details see www.dewi-project.eu)

c©2016 IEEE. Reprinted, with permission. From IEEE Modelling, Anal-
ysis, and Control of Complex CPS (CPS Data), June 2016.

119

Chapter 9 – Publications

an authentication protocol for electric vehicles is described.
These publications, however, do not include any safety-related
aspects or safety analysis of their applications. Additionally,
the impact of security on the vehicle safety is not considered.

Several other publications highlight the close relation be-
tween safety and security (in automotive applications). In [6]
a combined approach of the automotive HARA (hazard anal-
ysis and risk assessment) approach with the security domain
STRIDE [7] is presented and the impact of security issues on
safety concepts at system level are outlined. A combined safety
and security development lifecycle is proposed in [8]. Safety
and security considerations and activities are introduced in a
coordinated way. The authors of [9] investigated the possibility
of a combined safety and security approach to standards
in the automotive domain. Therefore, existing approaches in
the railway and avionics domain with similar challenges are
examined and specific requirements for the automotive domain
are identified. Contrary to these papers (using an attack-centric
approach) our work is based on a system-centric approach
allowing the reuse of analyzed components and (sub)systems.
The development of guidelines for security in CPS following
the well-known safety models and processes is also part of
ongoing standardization activities. Currently the SAE released
the first security standard for the automotive domain.

A. Security standard for automotive - SAE J3061

SAE recently released a new standard called SAE J3061:
Cybersecurity Guidebook for Cyber-Physical Vehicle Systems
[10]. The standard describes best practices intended to be
flexible, pragmatic, and adaptable in their further application to
the vehicle industry as well as to other cyber-physical vehicle
systems. The methods and procedures described in SAE J3061
are very similar to the methods and procedures of the well-
established functional safety standard ISO 26262 [11]. The
characteristic V-model of ISO 26262 is also used in SAE J3061
as the overall cybersecurity (CS) process framework.

The standard defines a complete lifecycle process frame-
work that can be tailored and utilized within each organiza-
tion’s development processes to incorporate CS into cyber-
physical vehicle systems from concept phase through produc-
tion, operation, service, to decommissioning [10]. However,
for this paper mainly chapter 6 (”CS process overview”) are
relevant.

In chapter 6 of SAE J3061 the flow of activities in the
concept phase is described. In Figure 1 all steps of the
concept phase are shown. For this paper especially the Threat
Analysis and Risk Assessment (TARA), the CS Concept, and
the functional CS requirements are important.

TARA is used to identify and assess the potential threats
to the system and to determine the risk associated with each
identified threat. For the highest risk potential threats the
so-called CS goals are determined. Once the CS goals are
identified for the highest risk potential threats, a CS concept
can be developed. Based on the concept and the CS goals
the functional (high-level) requirements can be extracted. An
iterative process can be used to further refine the results of the
single steps (e.g. start with high-level requirements in iteration

Fig. 1. Flow of activities in concept phase as described in SAE J3061[10]

Fig. 2. The required steps of the SHIELD multi-metrics approach

one and refine these requirements in later iterations to obtain
technical requirements). The standard provides a high-level
and abstract description of the single steps and the expected
results. However, no guidance of how to obtain these results
is given (except a possible workflow in the appendix).

In this paper we will show that the DEWI security metric
described in chapter III can be used to obtain a secure system
configuration starting from the CS goals. Furthermore, a CS
concept can be created and CS requirements can be extracted
based on results of the DEWI security analysis.

B. SHIELD multi-metric approach

SHIELD has been a project co-funded by the EU focused
on the research of SPD (Security, Privacy, Dependability) in
the context of embedded systems. In the SHIELD project se-
curity related prototypes and different metrics for measurable
security were developed. For this paper especially the SPD
multi-metrics (MM) approach is relevant [12], [13]. The MM
approach can be used to evaluate SPD aspects of an entire
system. With the SPD metrics a structured system analysis
can be performed. It can also be used to find the best system
configuration with respect to security. Therefore, the overall
score of an entire system is computed by first dividing the
system into subsystems and finally into components (in Sec-
tion III-A descriptions and definitons of the used terminology
is provided).

In Figure 2 the required steps of the SHIELD MM approach
are outlined. For each scenario an SPD goal value (from 0 for
no security up to 100 for highest security level) is defined.
After that the system is divided in subsystems and components.
This is also illustrated in Figure 3. In the next step system
parameters are extracted for each component. Furthermore, a
metric consisting of a criticality and a weight value is defined
for each system parameter. The MM can now be used to
compute the SPD value of the entire system from bottom up

120

Paper B – 2nd International Workshop on Modelling, Analysis, and Control of Complex
CPS

(starting at component level). Finally, the SPD value can be
compared with the predefined SPD goal. With these steps the
overall score of a system can be computed, several system
configurations can be compared to each other, and the best
fitting system configuration can be chosen (due to performance
reasons not necessarily the configuration with the highest score
but the one closest to the goal value). The described steps can
be applied to perform such an analysis for SPD.

The SHIELD MM approach was successfully applied in
DEWI to analyze and evaluate different application scenarios.
However some limitations of this approach were identified:

• Evaluation of dependability: Dependability is an integrat-
ing concept that encompasses the attributes availability
(readiness for correct service), reliability (continuity of
correct service), safety (absence of catastrophic conse-
quences on the user(s) and the environment), integrity
(absence of improper system alterations), and maintain-
ability (ability to undergo modifications and repairs) [14].
Some of the attributes can be contrary: Increasing the
reliability and safety of a system (e.g., by maintaining
an elevator every day) can decrease the availability of
the system (e.g., the elevator can not be used during
maintenance). Therefore, using dependability to rate a
system or a component can be quite difficult.

• Privacy as part of security: In SHIELD, security and
privacy are treated as different aspects. However, in many
scenarios security and privacy are closely related to each
other: If an attacker wants to steal personal data from
a Smartphone (privacy aspect), he first has to overcome
the lockscreen of the phone or use malicious apps (both
security related aspects).

• Rating of system parameters: A very important step of
the SHIELD MM approach is the definition of a metric
(weight and criticality value) for each system parameter.
However, no guidance is given on how these values shall
be chosen. This leads to incomparable results because
security experts will use different (subjective) rating
schemes.

• Choosing the goal values: The results of the SHIELD
MM analysis can be compared to the predefined goals
quite easily and based on these results, the best system
configuration (e.g., the system configuration with the
minimum difference to the goal value) can be chosen.
However, choosing the goal values in advance can be
difficult (no guidance given, subjective decision) and
will again negatively influence the comparability and
replicability.

III. DEWI SECURITY METRIC

To overcome the problems stated above we propose the
DEWI security metric. After analyzing all security-related
requirements of DEWI, a demand for a metric which a) helps
the system designers to find the best system configuration, b)
can be used to compare different solutions and mechanisms,
and c) enables the reuse of security-related components was
identified. Therefore, a common understanding about the used
metric, the terminology, and common scales to rate system

parameters and to define the goal values are needed. The
DEWI security metric is still based on the SHIELD MM
approach but several adaptions and adjustments were carried
out to improve the applicability and the usability of the
methodology.

A. Scope and terminology
Contrary to the SHIELD MM approach the DEWI security

metric is currently only used to evaluate security aspects
(including privacy related aspects as part of security) of the
system. Dependability is out of scope for the analysis.

In the following listing the terminology of the DEWI
security metric is summarized:

• System: the system which will be evaluated using the
DEWI security metric.

• Subsystem: A system consists of a set of subsystems
(logical entities), which are interacting with each other.
There can be several nested levels of subsystems.

• Components: Components are the smallest building
blocks within the DEWI security metric. It is a logical
unit (e.g., communication unit) and is part of a subsystem.

• System parameter: Each component offers different pa-
rameters which can be adjusted (e.g., communication
unit: different encryption mechanisms). See also Figure
3.

• Scenarios: The same system (e.g., wireless vehicle in-
terface) can be used in different scenarios (e.g., wireless
software updates or car sharing applications).

• System configuration: In a system configuration each
system parameter is adjusted (set to a specific value).
Varying these parameter values will lead to several dif-
ferent system configurations.

B. Decomposing the system
In Figure 3 all involved components of an analysis based

on the DEWI security metric are shown. By forming logical
entities, the system is divided into subsystems and finally into
components (an example is given in Section IV). A component
contains at least one parameter which can be adjusted. A
parameter offers different configuration possibilities. These
configuration possibilities can be summarized in a metric.
Different system configurations will use different parameter
configurations. As illustrated in Figure 4, a system can be
used in different scenarios and for each scenario several system
configurations can be used. It is also possible that some system
configurations cannot be used for certain use cases or domains.

C. DEWI scale to define goal values
One important improvement of the DEWI security metric

w.r.t. the underlying SHIELD MM approach is to predefine
a goal value for the entire system for each scenario. These
values can be compared with the results of the analysis. The
goal values can also be used to express which security level
is needed for a certain application. For the DEWI security
metric a linear scale is used and some characteristic values
are defined. For each value we describe the corresponding
security level (see Table I). These descriptions are focusing
on the attacker abilities and available resources.

121

Chapter 9 – Publications

Fig. 3. Decomposing the system into subsystems and components before
extracting the system parameters and defining the metric

Fig. 4. Different scenarios will require a different security goal value. Several
system configurations may fulfill the required goal.

D. DEWI scale to assess system parameters

To assess system parameters, a clear need for defining a
common scale was identified in DEWI. The scale will help
security experts to choose the score values for the system
parameters and to comprehend the choice of their colleagues
(when evaluating the previously chosen values). We suggest
to use criticality of a system parameter for the assessment
instead of the security level (criticality = 100 - security level).
We define a non-linear scale for the assessment because it
better fits the human interpretation of criticality (illustrated in
Table II).

E. DEWI security metric and SAE J3061

The DEWI security metric can be easily integrated in the
workflow defined in the new SAE standard (concept phase).

TABLE I
DEWI SCALE TO DEFINE GOAL VALUES: CHARACTERISTIC VALUES AND

DESCRIPTIONS

Security level Description

95 Very
strong

Very hard for a team of experts with HW above SotA
to break the system (upper practical limit)

75 Good Experts need time AND access to the vehicle to
break the system. No chance for non-experts

50 Average Experts need time OR access to the vehicle to break
the system. Non-experts need time AND access

25 Weak Non-experts can break the system in affordable time
OR with access to the vehicle

5 Very
weak

Breaking the system with SotA HW after a short web
research possible for every one (lower practical limit)

TABLE II
DEWI SCALE TO ASSESS SYSTEM PARAMETERS

Range Mode Description

0-50 normal,
operational

System operates in the normal and expected mode.
System faults (because of attacks) are unlikely.

50-70 critical System is still running. Unexpected problems (e.g.
unexpected message) can lead to a system fault.

70-100 failure Behavior of the system is unpredictable and faults
(because of attacks) can happen any time.

TABLE III
MAPPING OF THE SAE J3061 CS LEVEL (HEAVENS METHOD [15]) TO

THE DEWI SCALE FOR DEFINING GOAL VALUES

DEWI Security level SAE J3061 Security Level
90 Critical
75 Good High
50 Average Medium
25 Weak Low
10 QM

In the following the required steps are stated and the output
of each step is highlighted.

After initiating the CS lifecycle (beyond the scope of this
work) the TARA can be performed according to SAE J3061
respectively the HEAVENS [15] method. In this step potential
threats are identified and assessed. The output of this step is a
list of the highest risk potential threats. This list can be used
to identify the CS goals. These goals can now be mapped
to the DEWI security goals. The mapping is illustrated in
Table III. In the next step the DEWI security metric is used
to perform the system analysis and results in a secure system
configuration. These system configurations can be used to set
up a security concept for the system and to extract the security-
related requirements of the system. A very easy way to extract
the requirements is to find the minimum system configuration
(the configuration which barely fulfills the predefined security
goals) and transform the components and the chosen system
parameters into requirements.

IV. SECURITY ANALYSIS OF THE WVI: A CASE STUDY

The WVI represents the gateway between the in-vehicle
communication system and the outside world. In Figure 5
different types of WVIs are shown. Depending on the ap-
plication and the design decision of the OEM, the WVI can
be part of the central gateway (CGW), which interconnects
the different bus systems within a vehicle, or integrated in a
dedicated WVI ECU. It is also possible to use a plug-in WVI,
which is connected to the in-vehicle communication system
via the OBD interface. For business related vehicles (e.g.,
trucks) a fleet management system with an integrated WVI
can be used. Several current vehicles also provide a WVI as
part of the infotainment system (with potentially no access to
the in-vehicle communication system).

Different upcoming services and applications will require
a wireless interface to a vehicle, but especially applications
requiring a wireless connection to the outside world as well
as access to the in-vehicle communication system (e.g., CAN
bus to connect to an ECU) are very critical with respect to

122

Paper B – 2nd International Workshop on Modelling, Analysis, and Control of Complex
CPS

Fig. 5. Possible locations and types of WVIs in a vehicle.

security. In the following listing some promising but also
security critical applications and services are presented and
described.

• WVI for remote SW updates: Required to fix a bug in
the SW of an ECU or to enable new features. Today
remote updates are not possible (except for Tesla cars).
Therefore, vehicle owners have to bring the vehicles to a
workshop before new SW can be installed (via a wired
connection) on the concerned ECUs.

• WVI for car sharing application: The idea is to unlock a
vehicle via a Smartphone. Sophisticated security features
are needed to ensure that only authorized users can access
and use the car.

• WVI in workshops: An integrated WVI (part of the in-
vehicle communication) can be used for wireless diagnos-
tics and SW updates. However, misuse of the WVI (e.g.,
unauthorized tuning activities) must not be possible.

• WVI in electric cars and smart grid: A (wireless) con-
nection to the smart grid will be required to find the
ideal point in time and space to charge the battery of
the vehicle.

A. TARA and CS goals

The threat analysis process is used to identify the highest
risk potential threats. HEAVENS uses functional use cases to
perform the threat analysis and the results are 1) a mapping
between identified threats and assets and 2) a mapping between
identified threats and security attributes (according to the
STRIDE approach [7]). For more information see [15].

To illustrate this step we will use a SW download to an
ECU as an example and apply the HEAVENS approach (in a
simplified way): The WVI is used to download SW to an ECU
of a vehicle (functional use case). A potential threat (T1) is
that an attacker acts as a diagnostic tester2 (DT) and installs
malicious SW on an ECU (STRIDE threat: identity spoofing).
Another threat (T2) may be that an attacker changes the SW
while it is transferred via the wireless link (STRIDE threat:
tampering). In both cases the result of the attack can be very
critical (e.g., when a safety-critical ECU is reprogrammed).

2A tool used in a workshop to connect to the vehicle, run diagnostics and
update the SW of ECUs

TABLE IV
TARA RESULTS FOR EXAMPLE THREATS

Threat Asset STRIDE threat Security Attribute CS goal
T1 Act as DT Spoofing Authorization High
T2 ECU SW Tampering Integrity Medium

TABLE V
SUBSYSTEMS OF THE WVI

Subsystem Weight Description Components

Com.
unit 70

Handles wireless traffic,
interface to the in-vehicle
communication system

Wireless media,
Data encryption,
Authentication,
HW encryption,
Bus type

Memory 75 Storing application data,
passwords, WVI SW

Normal memory,
secure memory

Controller 60 CPU running the WVI
SW (microcontroller) CPU

To calculate the security level (without going into detail in
this paper) the threat level and the impact level parameters are
used. The result of such a TARA is shown in Table IV and
can be mapped to DEWI security goals using Table III.

B. Applying the DEWI security metric

After defining the goal values, the DEWI security metric
can be used to analyze the system (the WVI). The following
considerations and tables are not meant to be complete but
should give an insight of how the DEWI security metric can
be used to perform a system analysis. The first step is to split
the system into subsystems (see Table V) and components
(smallest building blocks). In the next step the components
of each subsystem can be identified and a weighting of the
subsystem and the components can be performed. A high
weight value means that the subsystem/component has a high
impact on the security level of the entire system. Finally for
each component different system parameters can be identified.
Some components of the communication module subsystem
can be found in Table VI. The system parameters can now
be assessed using the scale defined in Section III-D. After
assessing all parameters, different system configurations can
be defined (by choosing a system parameter setting per com-
ponent). Now the SHIELD MM approach (with the formulas
defined in [12] and [13]) can be used to compute the security
score: First at component, then at subsystem, and finally at
system level (bottom up). Different scenarios will lead to
different system configurations and therefore different security
levels.

The DEWI security metric can be used in an iterative
process, were the granularity of the system analysis can be
increased in each iteration step. This can be done by adding
an additional layer between subsystem and component level.
This is also illustrated in Table VII, where the communication
unit is grouped in a WiFi module, a bus module, and a
communication controller (sub-subsystems).

The resulting system configuration can now be used to
create the CS concept for the system. Additionally, it can
also be used to extract the security-related requirements of the

123

Chapter 9 – Publications

TABLE VI
COMPONENTS OF THE COMMUNICATION UNIT SUBSYSTEM (PARTIAL)

Component Weight Description Parameters

Wireless media 65 Used wireless
media

WLAN (65)
Bluetooth (55)
3G (75)

Wireless data
encryption 70

Chosen encryption
method for the
wireless link

Not used (10)
DES 56bit (45)
AES 256bit (75)

Wireless
authentication
protocol

75
Authentication
mechanism
(wireless)

PSK (50)
EAP (70)

HW encryption
(Wireless) 35

Wireless HW
module supports
encryption

No (40)
Yes (75)

TABLE VII
SUB-SUBSYSTEM AFTER REFINING AND REGROUPING OF THE

COMMUNICATION UNIT SUBSYSTEM

Component Weight Description Parameters
WiFi
module 60 HW module handling

wireless data exchange
Wireless technology,
HW encryption, ...

Bus
module 45

HW module handling
data exchange with the
in-vehicle com. system

Bus protocol,
HW encryption, ...

Comm.
handler 75 SW module, secure

data exchange

Encryption, signatures,
integrity checks,
authentication, ...

system. As explained in Section III-E, a very efficient way
to extract the requirements is to use the minimum system
configuration and transform the components (e.g., wireless
data encryption) and the chosen system parameter (e.g., AES
256bit) into requirements (e.g., data must be encrypted using
AES and a minimum key length of 256bit).

V. CONCLUSION

In this paper we described the DEWI security metric, which
can be used to perform a structured security analysis of
cyber-physical (automotive) systems. An analysis based on the
DEWI security metric will result in secure system configura-
tions covering different scenarios. The proposed methodology
can be applied in the automotive domain but can also be used
in other domains (e.g. avionics, railway or building domain).
Additionally, we illustrated how the DEWI security metric can
be used to support the new SAE security standard SAE J3061
(especially the conceptual phase of the security lifecycle).
In a case study we showed the steps required to perform
the security analysis using the DEWI security metric and
considering the steps described in SAE J3061.

In the future we plan to further extend the DEWI security
metric to facilitate the extraction of the security concept out
of the system configuration. We plan to develop guidelines
for a structured approach to support this step. Additionally,
the concept phase review step specified in SAE J3061 will be
part of future investigations. Our goal is to use the STRIDE
approach to evaluate the results of the system analysis using
the DEWI security metric.

ACKNOWLEDGMENT

We are particularly grateful to Josef Noll from the SHIELD
project for the discussions about the SHIELD MM approach
and possible adaptions of it.

The research from DEWI project (www.dewi-project.eu)
leading to these results has received funding from the
ARTEMIS Joint Undertaking under grant agreement n◦

621353. The authors acknowledge the financial support of the
COMET K2 - Competence Centres for Excellent Technologies
Programme of the Austrian Federal Ministry for Transport,
Innovation and Technology (BMVIT), the Austrian Federal
Ministry of Science, Research and Economy (BMWFW), the
Austrian Research Promotion Agency (FFG), the Province of
Styria and the Styrian Business Promotion Agency (SFG).

REFERENCES

[1] Valasek, Chris and Miller, Charlie , “Remote Exploitation of an Unal-
tered Passenger Vehicle,” White Paper, p. 93, 2015.

[2] W. Rom, P. Priller, J. Koivusaari, M. Komi, R. Robles, L. Dominguez,
J. Rivilla, and W. Van Driel, “DEWI – Wirelessly into the Future,”
in Digital System Design (DSD), 2015 Euromicro Conference on, Aug
2015, pp. 730–739.

[3] D. K. Nilsson and U. E. Larson, “Secure firmware updates over the air
in intelligent vehicles,” IEEE International Conference on Communica-
tions, pp. 380–384, 2008.

[4] M. S. Idrees, H. Schweppe, Y. Roudier, M. Wolf, D. Scheuermann, and
O. Henniger, “Secure automotive on-board protocols: A case of over-
the-air firmware updates,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6596 LNCS, pp. 224–238, 2011.

[5] H. Liu, X. Liang, L. Fang, B. Zhang, and J. wen Zhao, “A secure
and efficient authentication protocol based on identity based aggregate
signature for electric vehicle,” in Wireless Communication and Sensor
Network (WCSN), 2014 International Conference on, Dec 2014, pp.
353–357.

[6] G. Macher, H. Sporer, R. Berlach, E. Armengaud, and C. Kreiner,
“Sahara: A security-aware hazard and risk analysis method,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2015, March
2015, pp. 621–624.

[7] B. Potter, “Microsoft sdl threat modelling tool,” Network Security, pp.
15–18, 2009.

[8] C. Schmittner, Z. Ma, and E. Schoitsch, “Combined safety and security
development lifecylce,” in Industrial Informatics (INDIN), 2015 IEEE
13th International Conference on, July 2015, pp. 1408–1415.

[9] C. Schmittner and Z. Ma, Computer Safety, Reliability, and Security:
SAFECOMP 2015 Workshops, ASSURE, DECSoS. ISSE, ReSA4CI, and
SASSUR, Delft, The Netherlands, September 22, 2015, Proceedings.
Cham: Springer International Publishing, 2015, ch. Towards a Frame-
work for Alignment Between Automotive Safety and Security Standards,
pp. 133–143.

[10] SAE, “SAE J3061: SURFACE VEHICLE RECOMMENDED PRAC-
TICE - Cybersecurity Guidebook for Cyber-Physical Vehicle Systems,”
SAE International, Tech. Rep., 2016.

[11] ISO, “ISO 26262: Road vehicles – Functional safety – Part 1: Vocabu-
lary,” ISO, Tech. Rep., 2011.

[12] I. Garitano, S. Fayyad, and J. Noll, “Multi-metrics approach for
security, privacy and dependability in embedded systems,” Wirel.
Pers. Commun., vol. 81, no. 4, pp. 1359–1376, Apr. 2015. [Online].
Available: http://dx.doi.org/10.1007/s11277-015-2478-z

[13] J. Noll, I. Garitano, S. Fayyad, E. Asberg, and H. Abie&, “Measurable
security, privacy and dependability in smart grids,” Journal of Cyber
Security, vol. 3, pp. 371–398, 2015.

[14] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” Dependable and
Secure Computing, IEEE Transactions on, vol. 1, no. 1, pp. 11–33, Jan
2004.

[15] M. I. et al., “Deliverable d2 security models,” HEAVENS Project, vol.
Release 1, no. 1, 2014.

124

Paper C – 19th Euromicro Conference on Digital System Design

Paper C

M. Steger, C.A. Boano, M. Karner, J. Hillebrand, W. Rom, and K. Römer. SecUp:
Secure and Efficient Wireless Software Updates for Vehicles. In Proceedings of the
19th Euromicro Conference on Digital System Design (DSD)., pages 628–636. Limassol,
Cyprus. September 2016.

Summary. This paper presents a structured security analysis of a generic automotive
wireless software update system using the DEWI security metrics. The gathered results are
then used to define SecUp, a novel security concept enabling efficient and trustworthy wire-
less software updates for vehicles. In particular, SecUp is tailored to a scenario in which
the mechanics in a workshop diagnose and maintain vehicles wirelessly (IEEE 802.11s is
utilized as wireless media) using handheld devices. The latter can communicate with the
wireless vehicle interface of each surrounding vehicle and verify the presence of new soft-
ware as well as initiate an update by communicating with a diagnostic tester PC where
the new ECU software version is stored. SecUp supports traditional software updates
utilizing point-to-point links between the diagnostic equipment and the vehicles as well as
advanced update mechanisms such as parallel updates where a new software binary is sent
to and installed on several vehicles at the same time. Finally, SecUp is formally evaluated
using the STRIDE threat model [48].

My contributions. I am the main author of this paper and carried out the structured
security analysis by utilizing the DEWI security metrics, identified the security require-
ments, as well defined and evaluated the resulting security concept enabling secure as
well as efficient wireless automotive software updates. I wrote the vast majority of the
paper in collaboration and discussion with the co-authors, who significantly helped to
sharpen the description of the security concept. The co-authors also strongly supported
the STRIDE-based security concept evaluation.

c©2016 IEEE.
ISBN: 978-1-5090-2817-7.
DOI: 10.1109/DSD.2016.11.

Link: http://ieeexplore.ieee.org/document/7723609/.

Copyright: The IEEE does not require individuals working on a thesis to obtain a
formal reuse license, provided that the requirements listed below are followed:

1. The following IEEE copyright/ credit notice should be placed prominently in the
references: c©[year of original publication] IEEE. Reprinted, with permission,
from [author names, paper title, IEEE publication title, and month/year of
publication];

125

http://ieeexplore.ieee.org/document/7723609/

Chapter 9 – Publications

2. Only the accepted version of an IEEE copyrighted paper can be used when
posting the paper or your thesis on-line;

3. In placing the thesis on the author’s university website, please display the fol-
lowing message in a prominent place on the website: In reference to IEEE copy-
righted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity’s name goes here]’s products
or services. Internal or personal use of this material is permitted. If inter-
ested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistri-
bution, please go to http://www.ieee.org/publications_standards/
publications/rights/rights_link.html to learn how to obtain a Li-
cense from RightsLink.

126

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Paper C – 19th Euromicro Conference on Digital System Design

SecUp: Secure and Efficient Wireless
Software Updates for Vehicles

Marco Steger∗, Carlo Boano†, Michael Karner∗, Joachim Hillebrand∗, Werner Rom∗, and Kay Römer†

∗Virtual Vehicle Research Center, Graz, Austria
†Institute for Technical Informatics, Graz University of Technology, Graz, Austria

Email: marco.steger@v2c2.at

Abstract—Wireless software updates for vehicles are very
beneficial for both customers and manufacturers, as they enable
performance improvements and error correction without the
need of vehicle recalls, as well as a reduction of warranty costs
and continuous system upgrades over a vehicle’s whole lifetime.
However, adding a wireless interface to enable software updates
over the air may also expose the vehicle to security threats and
make it vulnerable to a variety of attacks. Hence, to protect the
safety of the driver and passengers of a vehicle, a strong and
comprehensive security concept is needed.

In this paper, we propose SecUp: a novel security concept
enabling efficient and trustworthy wireless software updates for
vehicles. SecUp is based on a system-centric structured analysis
enabling a secure system configuration. The concept uses, among
others, symmetric and asymmetric keys securely stored on the
devices in the network to prove the identity of the nodes and
to ensure the integrity as well as the confidentiality of data. We
evaluate the robustness of SecUp by employing an attacker-centric
threat model and show that it is indeed applicable for efficient
and trustworthy wireless software updates for vehicles.

I. INTRODUCTION

The number of electronic control units (ECU) in a vehicle
is rising and the software (SW) installed on these ECUs is
becoming increasingly complex, allowing to incorporate new
features, but also introducing a growing number of bugs in the
automotive SW. Hence, new concepts enabling efficient auto-
motive SW updates are required to support the development
and maintenance of modern vehicles.

Current SW update concepts are typically based on inflexi-
ble wired point-to-point connections between the vehicle to be
updated and a dedicated diagnostic device [1]. Wireless SW
updates, similar to firmware-over-the-air (FOTA) updates for
smartphones, can offer several advantages, such as an increased
flexibility of the SW update process, as well as the possibility
of performing updates for several ECUs integrated in various
vehicles in parallel. Such parallel SW updates can be beneficial
over the whole life-cycle of a modern vehicle (e.g., parallel SW
updates is the assembly line or in a workshop). As a result,
wireless SW updates can significantly reduce the time needed
to maintain modern vehicles (e.g., a mechanic in a workshop
can install new SW versions on several vehicles in parallel)
and thus will reduce the costs for customers as well as for the
OEMs (e.g., by avoiding large vehicle recalls) [1].

Enabling wireless SW updates for vehicles allows a more
efficient update process but also requires the introduction of
a wireless interface with full access to the in-vehicle com-
munication system (IVCS). Such a wireless vehicle interface
(WVI), however, can potentially be exploited by an attacker
to endanger the integrity of a vehicle by installing malicious
SW versions, or to compromise the privacy of the driver by
eavesdropping user- and vehicle-specific data (see Sect. II for a
more comprehensive list of security threats). Indeed, a number
of attacks using the wireless interface of the infotainment
system of a vehicle is known [2]: in the worst case, an attacker
could even remotely control a vehicle, massively endangering
the safety of the passengers and other road users. To prevent
such attacks and to guarantee the safety of the vehicles and
their drivers, a strong and comprehensive security concept
protecting the WVI is hence required.

In this paper, we carry out a structured security analysis
of a generic automotive wireless SW update system using the
SHIELD multi-metric approach [3] and, based on its results,
we propose SecUp, a novel security concept enabling efficient
and trustworthy wireless SW updates for vehicles. In particular,
we tailor SecUp to a scenario in which the mechanics in
a workshop diagnose and maintain vehicles wirelessly using
handheld devices. The latter can communicate with the WVI
of each surrounding vehicle and verify the presence of new
SW as well as initiate an update by communicating with a
diagnostic tester PC where the new ECU SW version is stored.
Handhelds, WVIs, and diagnostic tester PC are interconnected
using IEEE 802.11s, which allows to establish a multi-hop
wireless mesh network as illustrated in Fig. 1. In an IEEE
802.11s-based network, a new SW version can be installed on
several ECUs integrated in different vehicles simultaneously
by using a reliable and secure multi-cast communication.
Such a parallel SW update process enabling to install SW on
several vehicles at the same time can significantly increase
the efficiency and productivity in workshops, during vehicle
development, as well as in the assembly line.

SecUp describes both the security mechanisms used on
the network layer based on IEEE 802.11s, as well as on the
application layer of our wireless SW update system. Addi-
tionally, it addresses specific requirements and peculiarities of
the automotive domain such as support of long life-cycles of
modern vehicles, complex and OEM-specific key distribution

2016 Euromicro Conference on Digital System Design

978-1-5090-2817-7/16 $31.00 © 2016 IEEE

DOI 10.1109/DSD.2016.11

628

c©2016 IEEE. Reprinted, with permission. From IEEE Digital System
Design (DSD), September 2016.

127

Chapter 9 – Publications

Diagnostic Tester

DT

CGW
ECU

OBD

ECU

ECU ECU
ECU

WVI

Wireless IEEE 802.11s
Architecture

Wireless Vehicle
Interface

Fig. 1. The proposed wireless SW update system applied in a typical
workshop scenario. System overview with mapping to subsystems.

systems, as well as fleet management systems.

A full description of the scenarios considered in our secu-
rity analysis and security concept is provided in Sect. III. We
describe the performed structured system analysis in Sect. IV
and use the resulting secure system configuration as a basis for
our SecUp security concept illustrated in Sect. V. Finally, in
Sect. VI, we employ an attacker-centric threat model approach
based on STRIDE [4] to evaluate the robustness of SecUp and
show that it is applicable for the scenario of interest, allowing
trustworthy wireless automotive SW updates.

Hence, a key contribution of our work is the introduction of
a generic structured work-flow when deriving secure wireless
SW updates: first using a system-centric analysis to identify
secure system configurations, second extracting the security
requirements and defining our SecUp security concept, and
finally using an attack-centric threat model to validate SecUp.

II. RELATED WORK

Several concepts and systems for over-the-air automotive
SW updates have been proposed (e.g., [1], [5]). The authors
have specifically focused on secure wireless SW updates and
highlighted a number of security threats and aspects, namely:

Vehicle integrity and authentication: As connecting a
WVI to a vehicle exposes the latter to a number of attacks,
authentication mechanisms must be used to ensure (i) the
integrity of the vehicle and (ii) that only authorized entities
can access the IVCS. Liu et al. [6] have proposed a vehicle
authentication protocol to connect electric vehicles with a
smart grid using a WVI. Idrees et al. [7] have also highlighted
the need for a secure WVI w.r.t. wireless SW updates.

Data integrity: Data sent through a wireless network can
potentially be altered or corrupted by radio interference as well
as by a malicious attacker. Especially with respect to secure
SW updates, one has to ensure that any (malicious) changes of
the transferred data can be detected by the receiver. Mahmud et
al. [8] propose a system that ensures data integrity by sending
multiple copies of the SW binary. Nilsson et al. [9] use a hash-
chain to ensure data integrity in their framework for secure
firmware update for intelligent vehicles.

Data confidentiality: A new SW binary that is transferred
via the wireless link and installed on the ECU is owned by
the OEM or a supplier. An attacker must not be able to obtain
it by simply eavesdropping the wireless traffic. The same is
true for user- and vehicle-specific data. Idrees et al. [7] have
proposed a system that ensures data confidentiality by using
dedicated HW modules on every ECU to encrypt/decrypt data.

Key management and exchange: Authentication algo-
rithms and other security mechanisms are based on secret
keys. These keys must be securely stored and distributed across
the wireless network. Additionally, automotive systems must
ensure that an attacker cannot endanger a whole fleet by
breaking one vehicle. Idrees et al. [7] have partly addressed
this issue by storing keys on a HW Security Module (HSM).

None of the solutions described above fully addresses all
the identified security threats and aspects. Nilsson et al. [9],
[10] have proposed a system to connect a vehicle with a portal
server via an Internet link to install new SW. The authors
highlight the related security aspects data integrity and data
confidentiality. However, they do not consider the WVI as
entry point for a wide variety of attacks (apart from altering
the transferred data) and left key distribution, storage and
management out of scope. In [8], an architecture for secure
SW updates is presented. Although data integrity is ensured
by sending multiple copies of the SW, the proposed solution
depends on a number of prerequisites and assumptions (e.g.,
sending multiple copies to ensure secure SW updates) and does
not cover aspects such as vehicle integrity and authentication
as well as key management and exchange. Idrees et al. [7]
have proposed a system for wireless SW updates aiming to
address all security aspects described before. In the proposed
system, a HSM is used for key management, data encryption
and data integrity on the central gateway (the WVI) and on
all ECUs of a vehicle. This setup allows data verification
directly on the ECUs, but also requires to add a HSM to every
ECU, which leads to significant extra costs. Additionally, the
proposed system does not take into account the specific type
and properties of the wireless link.

Besides not fully addressing all security aspects at once,
these solutions are only applicable for wireless point-to-point
links. Multi-cast data streams and hence parallel SW updates
cannot be realized. The same applies to the Tesla over-the-air
SW update solution [11]. Tesla is currently the only OEM
providing such wireless remote updates, where a dedicated
wireless link (mainly 3G, but a vehicle can also be connected
to the users Wi-Fi at home) is used to securely transfer new SW
from the manufacturer servers to a vehicle. This point-to-point
connection (i.e., between server and vehicle), however, cannot
be used to simultaneously install SW in different vehicles
and on several ECUs in parallel. Differently from all these
works, SecUp, the security concept we propose in Sect. V,
supports secure multi-cast data streams and addresses all the
aforementioned security aspects at once.

A. Frameworks and Metrics for Security Analysis of Systems

Known frameworks and metrics used to analyze systems
w.r.t. security can be classified into (i) system-centric and (ii)

629

128

Paper C – 19th Euromicro Conference on Digital System Design

attacker-centric approaches. System-centric approaches con-
centrate on system components and capabilities (e.g., SHIELD
multi-metrics approach [3], [12]), whereas attacker-centric ap-
proaches consider attacker capabilities, resources and behavior
(e.g., Microsoft’s STRIDE [4] threat model).

The SHIELD multi-metrics (MM) approach can be used
to evaluate security, privacy, and dependability aspects of an
entire system first by dividing the system into smaller logical
units, second by defining a metric for each unit, and third by
computing the security score of the entire system [3], [12]. We
use an adapted version of SHIELD for the security analysis.

In the Microsoft STRIDE threat model, a wide variety of
potential threats (originally used in the IT security) is col-
lected and grouped into six categories: Spoofing, Tampering,
Repudiation, Information disclosure, Denial of service, and
Elevation of privilege. To apply STRIDE, first all potential
threats on system- as well as on component-level are collected.
The resulting list of potential threats can then be used to define
proper countermeasures. We will use the STRIDE threat model
evaluate SecUp in Sect. VI.

B. Security in IEEE 802.11s Networks

Similarly to [5], we use an IEEE 802.11s network for our
automotive SW update system. Steger et al. have highlighted
the applicability of IEEE 802.11s as wireless technology for
automotive applications requiring a fast, reliable and scalable
network, but have not addressed security threats nor provided
a security concept.

Security for 802.11s has only been discussed outside of the
automotive domain. Tan et al. [13] have described different
internal as well as external attacks on IEEE 802.11s and
extracted security requirements for systems based on IEEE
802.11s. Using these requirements the authors have performed
an evaluation of different approaches and have shown that none
of the evaluated algorithms (e.g., [14] and [15]) was able to
satisfy the desired security requirements.

Sbeiti et al. [16] use a combination of digital signatures
with lightweight authentication trees and symmetric block
ciphers called PASER to create a secure IEEE 802.11s mesh
network. The proposed system uses the GPS position of the
nodes to mitigate a wide range of potential attacks. In [17] the
same authors also use different approaches and compared them
to PASER, highlighting their inefficiency w.r.t. time (delay of
about 70ms per-hop) and power as well as their sensitivity to
blackhole and wormhole attacks. However, the use of GPS, as
proposed in [16] and [17], inside a workshop building is not
applicable for our wireless SW update system.

open11s [18] is an open-source implementation of the IEEE
802.11s standard and it is part of the Linux kernel (kernel
version above 3.11). open11s is supporting Simultaneous Au-
thentication of Equals (SAE) [19] as security add-on for IEEE
802.11s. SAE [19], developed especially for 802.11s-based,
multi-hop capable mesh networks, is fully integrated in the
latest wpa supplicant version, a free SW implementation of the
IEEE 802.11i supplicant on Linux. However, wpa supplicant
and SAE are still under development and currently only
support pre-shared keys for IEEE 802.11s networks.

III. WIRELESS SW UPDATE SYSTEM FOR ECUS

In this section we describe the considered wireless SW
update system for ECUs. Similarly to [5], we focus on an
automotive wireless SW update system based on an IEEE
802.11s multi-hop mesh network, as it is applicable for dif-
ferent application scenarios: (i) a typical workshop scenario
where several vehicles located inside and around the workshop
building are repaired and maintained (e.g., receiving new SW
for several ECUs) by mechanics at the same time (Fig. 1);
(ii) vehicle development, where development engineers have to
update the SW of one or more ECUs several times to evaluate
and test newly developed features; (iii) the use in the assembly
line, where the SW of many or all ECUs of the vehicle is
initially installed or updated to the latest version; and (iv)
remote updates from home, where new SW can be installed on
the ECU of a vehicle without the need of physically bringing
it to the workshop.

Depending on the application scenario, the wireless SW
update is performed by different users with different exper-
tise (development engineers as expert users, mechanics as
trained users, and, in case of remote updates, vehicle owners
as untrained user) in different environments. Therefore, the
considered wireless SW update system must fulfill different
security requirements and address different security aspects
depending on the considered application scenario. In Sect. IV
we propose a structured security analysis that can be used
to address different application scenarios at once and results
in a secure system configuration. Additionally, we take into
account that a modern vehicle consists of different types of
ECUs with, in case of a failure, different impact on vehicle
safety. To address this in a structured way we classify ECUs
accordingly:

• Uncritical - Class 1: Mainly ECUs related to enter-
tainment/infotainment. Hardly any effect on vehicle
safety and performance. Lowest criticality level.

• Body and comfort - Class 2: All ECUs related to the
body CANs of a vehicle (e.g., window lift or heating,
ventilation and air conditioning). No (direct) influence
on vehicle dynamics or driving. Medium criticality
level.

• Powertrain, chassis, driver assistance - Class 3:
Complex and safety-critical systems that control safety
features of a vehicle and have strong impact on vehicle
dynamics and driving. (Very) high criticality level.

Please note that the security concept presented in Sect. V
mainly focuses on the security threats, aspects, and require-
ments with respect to a typical workshop scenario. Dedicated
security concepts for the other scenarios, however, will apply
similar security mechanisms and will be defined following the
ideas presented in Sect. V.

SecUp uses an IEEE 802.11s mesh network to interconnect
the vehicles (via the WVI), the diagnostic tester (DT), and
different handheld devices such as smartphones and tablets.
In such a mesh network, data can be directly exchanged
between two nodes but can also be forwarded by some (relay)

630

129

Chapter 9 – Publications

nodes in a multi-hop network. For a typical workshop scenario
as shown in Fig. 1, data (e.g., a new SW version to be
installed on one or more vehicles), which shall be sent from
the DT to a vehicle in the workshop, can be forwarded
by other vehicles to reach its final destination. The multi-
hop capability of IEEE 802.11s guarantees a good wireless
coverage and simplifies the extension of the wireless network.
Additionally, the data can be routed through the network by
using different paths (i.e., forwarded by different nodes). The
resulting redundancy increases the reliability of the network.
A IEEE 802.11s network also supports multi-cast data stream,
that can be exploited to realize parallel SW updates, where a
SW binary first is transferred to the WVIs of several vehicles
in parallel and second installed on the concerned ECUs. In
[20] our framework enabling secure and efficient automotive
wireless SW updates is also described in detail and more
insight on the involved nodes, the interconnections between
these nodes, the benefits of parallel SW updates and the users
of the wireless SW update system is given.

To secure the wireless IEEE 802.11s network in a
lightweight way, we utilize wpa supplicant, a generic secu-
rity framework for different types of wireless networks and
SAE [19], developed especially for 802.11s-based, multi-hop
capable mesh networks. SAE is fully integrated in the latest
wpa supplicant version and thus can be used to secure our
wireless IEEE 802.11s mesh network.

SAE offers an authentication mechanism based on pre-
shared keys. Using pre-shared keys means to have the same
key on every wireless node. For example, the same key is
used on a whole fleet of vehicles: by breaking one node the
pre-shared key, used for a whole fleet of vehicles, may be
extracted. Because of that, pre-shared keys must be used with
caution and applying security only on the network layer is not
enough to guarantee secure wireless SW updates. Therefore
a cross-layer solution is required in the final security concept
using the open11s security features as first layer of security.

IV. SECURITY ANALYSIS OF THE SW UPDATE SYSTEM

In this section we present a structured system analysis that
can be used to address all aforementioned application scenarios
and ECU types. We perform a system-centric security analysis
as basis for the security concept and to evaluate the resulting
security concept using an attack-centric approach (Sect. VI).
Thereby our approach can also be used to support the new
cybersecurity standard SAE-J3061 [21]. SAE-J3061 is closely
following the well known and wide spread functional safety
standard ISO 262626 [22] and is covering the whole lifecycle
of a vehicle. The standard was mainly defined for the auto-
motive domain, but it can also be applied in other industries.
In [23] we described in more detail how the structured system
analysis can be used to support SAE-J3061.

The structured system analysis presented in this paper is an
adapted version of the SHIELD MM approach [3], [12]. The
latter is typically used to evaluate security, privacy, and de-
pendability aspects of an entire system. Contrary to SHIELD,
we treat privacy aspects as part of security instead of analyzing
both of them individually. Additionally, dependability is out of

scope for our security analysis and we propose instead a linear
scale to support users when applying the security analysis
(Sect. IV-A).

The analysis is performed in three main steps. First a
security goal value on the above scale must be defined for
every application and every ECU class. This goal value will
be used at a later stage to compare it with the computed score
values and thereby to find the best system configuration. It
is important to note that the configuration with the highest
security score does not necessarily have to be the best choice:
adding strong security mechanisms may – beside costs – lead
to significant delays in the system that may, in the worst case,
permanently impair its functionality.

In the second step (i) the system is divided into subsystems
and into components, (ii) a weighting of the subsystems and
the components is performed, and (iii) for every component
feasible system parameters are identified. A system parameter
of a component can be seen as one possible way to configure
the component. An example component would be the data
en- and decryption unit. Possible system parameters for this
example component could be different encryption mechanisms
and different key lengths. By varying the system parameters,
different system configurations can be defined. Note that only
meaningful and realistic configurations shall be used. There
is no benefit in computing the system score for any possible
system configuration.

In the third step the security score of the entire system is
computed by first calculating the score for each subsystem and
finally for the entire system. For this purpose, the equations
defined as part of the SHIELD MMs are used [3]. Instead
of directly using the security value (Si) of a component, the
equation is based on the criticality (Ci) of the component:

C =

√∑

i

c2i ∗ wi∑
i wi

with (1)

wi =

(
Wi

max(Wi)

)2

and Si = 100− Ci (2)

with C being the resulting criticality value of the analyzed
(sub)system, ci the criticality of each of the components of the
subsystem, Wi the weight values of the components (between
0 and 100), and wi the normalized weight values (between 0
and 1). The resulting values can now be compared with the
predefined goal values and the best system configuration can
be chosen (e.g., the configuration closest to the goal value).

A. Defining the Security Goal Values

The security goal value is defined within a range from 0,
meaning no security, up to 100, which can be expressed as
“hundred percent secure” (both theoretical limits). Following
the guidelines presented in the SHIELD publications [3], [12],
a security expert performing the SHIELD analysis has to
choose the security goal values for each considered scenario
upfront. The defined goal values are compared with the results
of the subsequently performed analysis and these goal values
can also be used to express which security level is needed
for a certain application. However, no insight is given in [3]

631

130

Paper C – 19th Euromicro Conference on Digital System Design

TABLE I. ECU CLASSIFICATION AND SECURITY GOAL VALUE FOR
EACH SCENARIO ACCORDING TO THE IMPACT ON VEHICLE SAFETY

Assembly
line

Vehicle
development Workshop

Remote
update

Class 1 50 60 50 75
Class 2 55 60 60 80
Class 3 60 60 70 90

TABLE II. WEIGHTS OF THE WIRELESS SW UPDATE SUBSYSTEMS

Subsystem Wi (0-100) wi(0-1)

WVI 70 1
Wireless architecture 60 0.73
Diagnostic tester 50 0.51

or [12] on how these values shall be chosen. This leads to
incomparable results because security experts will use different
(subjective) rating schemes. One important improvement of our
adapted security analysis w.r.t. the underlying SHIELD MM
approach is that we provide a scale which can be used to
predefine the security goals more easily. Therefore, a linear
scale (0-100) is used and some characteristic security levels
SL are defined (e.g., very weak equals SL=5, average equals
SL=50 and good security equals SL=75). For each value we
describe the attacker abilities and available resources and map
it to a certain security level (e.g., good security: experts need
time and access to the vehicle to break the system).

We also use this scale to choose the goal values for
the four application scenarios (wireless SW updates in a
typical workshop scenario, during vehicle development, in
the assembly line, or remotely from home) and the three
different ECU classes. The resulting security goal values are
presented in Table I. The remote update scenario requires the
highest security level because the update is done in public by
untrained users. SW updates in workshops or in the assembly
line are performed by trained users in a (highly) secure
environment and therefore the required level is lower compared
to the remote scenario. In the vehicle development phase the
main threat is industrial espionage, where an attacker tries to
eavesdrop the currently developed SW when transferred and
installed over the air. Never the less, independently from the
ECU class, we have to ensure that this is not possible at all.

B. Decomposing the Wireless SW Update System

The considered wireless SW update system can be divided
into three subsystems (see Fig. 1 and Table II) and a weighting
of the subsystems is performed. The weight values are in a
range from 0, (meaning not relevant for security), and 100,
(very relevant). As shown in Table II, the weight values are
normalized (between 0 and 1) for further calculations using
Eq. 2. Guidelines and an example of how to choose the weight
values are presented in [3].

In the next step the subsystems are further divided into
components. In Table III one component of the WVI subsystem
is presented. The component describes the type of WVI w.r.t.
the connection of the WVI with the in-vehicle communication
system. For the workshop scenario a plug-in solution (e.g.,
using the OBD interface of a vehicle) for the WVI is more
suitable because it guarantees that also older vehicles can be
maintained. However, a plug-in WVI is more critical w.r.t.

TABLE III. WVI type COMPONENT AND POSSIBLE PARAMETERS

Component /
Parameter Si Description

WVI type Either a plug-in solution (e.g., via OBD)
or fully integrated in the IVCS (e.g., as ECU)

Integrated 85
WVI is fully integrated and cannot be
removed easily

Plug-in with
trusted DT 75

The WVI can only be used in connection
to an trusted DT (e.g., using certificates)

Plug-in
location 75

The WVI can only be used in a certain area
or building (e.g., only within a workshop)

Plug-in
normal 45

The WVI can be used without any additional
security checks

security than a fully integrated WVI solution (e.g., a WVI
can be stolen and hijacked by an attacker). Additional security
checks using location information (e.g., a WVI can only be
used when inside a workshop building) can be applied to
make the WVI plug-in solutions more secure. These possible
variations are the system parameters of the component.

C. System Configuration and Security Requirements

A system configuration contains all identified components
with a chosen system parameter for each component. Based
on this set of system parameters, first the security score of
each subsystem is calculated and then the subsystem scores
are used to compute the security score of the entire system.
Sample configurations (non-exhaustive list of possible WVI
components and parameters) for the workshop as well as the
remote update scenario are presented in Table IV.

The system parameters are chosen w.r.t. the functional re-
quirements of the specific application scenarios: the workshop
scenario requires to maintain different types, brands and ages
of vehicles (backward compatibility as key factor) and a plug-
in WVI must hence be used. Contrary to that, remote SW up-
dates are only relevant for modern/future vehicles and therefore
only a fully integrated WVI is considered. Such considerations
are applied for every component and system parameter and
a few reasonable system configurations can be identified per
application scenario. For each of these system configurations
first the scores of the subsystems are computed. Based on
that, the entire system security score can be calculated by
combining the results of the WVI subsystem (see Table IV for
a sample configuration) with the computed results of the other
subsystems. The security score is computed for all reasonable
system configurations and finally one system configuration is
chosen for each application scenario. We suggest to take the
system configuration closest to the goal value.

The final system configurations can now be used to extract
the security requirements and in further consequence to start
defining the security concept. The subsystem configuration
presented in Table IV can be converted into security require-
ments by analysing and combining the components and the
corresponding system parameters:

• Req.1: The user must have physical access to the
(inside of the) vehicle to authorize the WVI. In the
workshop scenario this requirement is fulfilled by
plugging in the WVI.

632

131

Chapter 9 – Publications

TABLE IV. SAMPLE CONFIGURATION OF THE WVI SUBSYSTEM FOR
THE WORKSHOP AND THE REMOTE SOFTWARE UPDATE SCENARIO

Component Wi
Workshop Remote
Parameter Si Parameter Si

WVI type 85 Plug-in trusted 75 Integrated 85
Key Storage 70 Secure Memory 80 HSM 90
Authorization 60 Physical Access 75 Physical Access 75
Subsystem score 76 83

• Req.2: All required keys must be stored in a dedicated
and secure memory (workshop scenario); remote: us-
ing a HW security module (HSM).

• Req.3 (for the workshop scenario only): The WVI must
only connect to trusted DTs (e.g., using public key in-
frastructure (PKI) enabling secure digital signatures).

V. OVERVIEW OF THE SECUP SECURITY CONCEPT

SecUp is based on the secure system configuration resulting
from the above analysis and addresses all security aspects
stated in Sect. II as well as the security-related requirements
in Sect. IV-C (extracted from the secure system configuration).

A. Key Management and Exchange

As illustrated in Fig. 2, our security concept for trustworthy
wireless software updates for vehicles is using different keys
and security mechanisms. In the following these keys are
summarized and their usage is described:

Master key pair (RSA or ECC): The master key pair
(consisting of a private and a public key) is mainly used
to handle the authentication between the DT and the WVIs.
Additionally, it will be used to exchange the session key
(required for multi-cast data streams and hence enabling secure
parallel SW updates) and to exchange critical, vehicle-specific
data (e.g., seed and corresponding key needed to authorize a
SW update on ECU level).

Session key (AES): This key will be used to encrypt multi-
cast data (e.g., a SW binary sent to several vehicles).

Network key: This key is needed to interconnect all
nodes using the wireless IEEE 802.11s network. As mentioned
previously the network authentication is based on SAE [19]
and network security as well as network authentication can be
seen as the fundamental security level.

ECU authorization key: To unlock an ECU (authorization
step) typically a seed & key mechanism is used: The ECU
creates a seed (e.g., a 4 byte random number), sends the seed
to the WVI and internally computes the corresponding ECU-
key using a secret algorithm. Meanwhile, the WVI will forward
the seed to the DT (encrypted, using the public master key of
the DT). The DT will decrypt the message, compute the ECU-
key using the received seed, and send the encrypted ECU-key
back to the WVI. After decryption, the WVI will forward the
ECU-key to the ECU and the latter will compare the received
ECU-key with the internally computed key. The WVI is now
authorized to install new SW on the ECU.

User PIN: To use the DT (the wireless update system), a
user will have to authenticate himself directly on the DT or

WVIA

Generate
Session key

A
DT

Session
key

User PIN code
to authenticate

ECU SW
binarybbbi

Data encrypted
& signed using
the Session key

Session key
distribution using
individual Master
keys

DT
11

4

5

6Authentication
between DT and WVI

using Master keys

Network key to
join the wireless

network2

3

Fig. 2. Usage of different keys in the security concept. Parallel updates,
where an ECU SW binary is installed on both vehicles simultaneously, can
be performed using a secure, IEEE 802.11s based multi-cast.

on a WVI by using a smartcard and entering a user-specific
PIN code. Different user profiles will be used to distinguish
between different user roles (e.g., in a workshop some users
will only be allowed to run wireless diagnostics, while others
will also be allowed to perform wireless SW updates).

In a typical workshop scenario, where a mechanic wants to
maintain a vehicle (e.g., running wireless diagnostics and
installing new ECU SW), he will first have to authenticate
himself on the DT (Fig. 2, step 1©) using the user PIN and
connect the WVI with the vehicle using the OBD interface,
usually located in the cabin of a vehicle. Thereby, Req.1 (The
user must have physical access to the (inside of the) vehicle
to authorize the WVI) is fulfilled.

After connecting the vehicle and the WVI, the latter will
power up and join the wireless network (Fig. 2, step 2©)
using the network key. The IEEE 802.11s network is secured
using SAE. The latter is based on pre-shared keys (same
key on every node) and hence cannot be considered as fully
secure. Therefore, additional authentication and encryption
mechanisms are applied on the application layer.

In the next step, the WVI will establish a secure connection
to the DT (Fig. 2, step 3©). Following the requirement Req.3
(The WVI must only connect to trusted DTs) defined in Sect.
IV-C, the authentication phase (on application layer) between
the WVI and the DT is based on PKI. This means that a key
pair consisting of a private and a public key (asymmetric keys)
is used on every device ensuring an unambiguous identification
between all nodes without using the same (symmetric) key on
all WVIs respectively on all vehicles. The asymmetric keys
(e.g., based on RSA or ECC) are used as “master key pair”
in our concept and are stored on a secure memory (following
Req.2: All required keys must be stored in a dedicated and
secure memory).

To exchange the public master keys, a secure pairing of the
nodes must be performed. In this phase the own (generated)
key pair as well as the public master key of the other device
must be securely stored on the devices (the WVI stores the
public master key of the DT and vice versa). This is required

633

132

Paper C – 19th Euromicro Conference on Digital System Design

and important to prove the identity of the devices later on.
Note that the exchange of the public master keys is critical
and can only be done by authorized users (before a WVI can
be used properly).

A new and unpaired WVI will initially boot in a specific
mode, where it creates an IEEE 802.11s network with a
random key, which is created in the production phase and
shipped with the WVI. An authorized user will use this key
to interconnect the new WVI with the DT (on network layer,
IEEE 802.11s) and furthermore to handle the initial master
key generation as well as distribution: after connecting to the
WVI, another onetime password can be used to trigger the
computation of the master key pair on a WVI, to store the
public master key of the DT in the secure memory of the
WVI, and to share the public master key of the WVI with the
DT.

Alternatively, the master key pair is already computed when
the WVI is produced. A onetime password can be used to
initially exchange the keys (public master key and network
key) via a wired connection between DT and WVI (e.g., using
a USB connection). The DT and the WVIs (one by one, every
WVI will have its own key pair) will exchange the public
master keys and store them securely.

In [24] the security levels of symmetric and asymmetric
keys are compared: Asymmetric keys equivalent to AES-256bit
symmetric keys require either RSA key pairs with 15360bit
(which is computationally infeasible in embedded systems
today) or ECC key pairs with 512bit key length. Therefore, the
use of asymmetric keys offering a similar security level (e.g., to
encrypt the binary before sending via the wireless network),
is significantly more expensive with respect to (computing)
power and time [24] and shall only be used when necessary.
Additionally, to enable efficient as well as secure multi-cast
data streams the same (symmetric) key must be used on all
concerned devices.

Because of that, we additionally use symmetric keys (AES,
256bit) as “session keys” besides the asymmetric master key
in our concept. A session key is generated by the DT (Fig.
2, step 4©) and encrypted using the public master Key of the
concerned WVIs (which shall be part of the session, e.g., to
receive the same SW binary). Finally, the encrypted session
key is distributed to the WVIs using the wireless IEEE 802.11s
network (Fig. 2, step 5©). Each WVI can now use its private
master key to decrypt the session key.

To securely and efficiently exchange data between the DT
and one or more WVIs, the symmetric, AES-based session key
is used (Fig. 2, step 6©).

B. Vehicle Integrity and Authentication

Authentication between the WVI and the DT can be
achieved by first connecting to the wireless network using the
pre-shared network key and by then using the master keys of
the WVI and the DT.

Once the WVI has joined the wireless network, it will
listen for DT beacons. The beacon informs the WVI about the
presence of the DT and the available services. The WVI will

then try to establish a secure connection with the DT (sending
its digital signature) and the DT will answer (after proving
the identity of the WVI) with a message containing its digital
signature and the encrypted session key. The WVI can then
check the identity of the DT by using the stored public master
key of the DT. After approving the identity of the DT, a secure
connection between the DT and the WVI is established.

In our concept we propose to use a timeout for the session
key: If the session is inactive (e.g., lunch break in a workshop
but session still established) for a predefined period (e.g., 1h), a
re-authentication is required. Additionally, a maximum validity
period (e.g., one working day or 12h) for a session key shall
be used due to security reasons.

Based on the predefined user profiles, an authenticated user
can use the secure connection between the DT and the WVI
to run wireless diagnostics (standard user) as well as to install
new SW on the vehicle (empowered user, verified by the DT).

C. Data Integrity

To ensure the integrity of the transferred data, Hash-based
Message Authentication Codes (HMAC) or Cipher-based Mes-
sage Authentication Codes (CMAC) can be used. In our
security concept we propose to compute the HMAC/CMAC
for every message using the session key.

Additionally, after the whole SW binary has been trans-
ferred from the DT to the WVI(s), the DT will compute the
hash of the entire SW binary, encrypt it using the public master
key of (every) WVI, sign the message using its private master
key, and finally send it to the WVI. The WVI will use the
locally and securely stored public master key of the DT to
prove that the message was signed by the DT, and its own
master key to encrypt the message (to extract the hash of the
SW binary). Finally the WVI can now ensure that the entire
SW binary was not altered while transferred via the wireless
network.

D. Data Confidentiality

The confidentiality of the transferred data can be ensured
by encrypting the data using the session key (e.g., encryption
of the SW binary) or the public master key of the receiving
node (e.g., to encrypt the session key).

The session key is generated on the DT and distributed
to all concerned WVIs via the wireless network. After the
distribution of the session key, it can be used to encrypt/decrypt
multi-cast data.

VI. SECURITY CONCEPT EVALUATION USING STRIDE

The STRIDE approach can be used to analyze the security
of a system (attack-centric approach, see Sect. II-A) by iden-
tifying a number of potential security threats and grouping
them into six categories: Spoofing, Tampering, Repudiation,
Information disclosure, Denial of service, and Elevation of
privilege. To apply STRIDE, each part of the system needs
to be analyzed and all potential threats that fall into the
STRIDE categories, are determined for every component or

634

133

Chapter 9 – Publications

process. Based on these threats, suitable countermeasures can
be defined.

This approach, however, can also be used to evaluate a
security concept of a system. In this paper we propose to use
the attack-centric STRIDE approach to evaluate SecUp, which
was defined based on the results of the structured, system-
centric security analysis described in Sect. IV. Due to space
restrictions we do not to present the complete evaluation, but
specifically focus on two groups of the STRIDE threat model
and thereby on the three most critical and challenging security
threats. In the following, these threats are described, possible
consequences are stated, and relevant countermeasures w.r.t.
SecUp are presented.

A. STRIDE Threats: Spoofing Identity & Tampering

The concept of spoofing identity allows unauthorized (and
malicious) nodes/devices/users/code to use the identity of
authorized entities and hence their security credentials. With
respect to secure wireless SW updates, we identified identity
spoofing of the WVI or the DT as the most critical threats.

By spoofing the identity of the WVI (Threat T1), an
attacker can indeed potentially try to register for new SW
updates. In such a case, the malicious WVI will connect to the
DT, request new SW versions, receive these SW binaries and
store them for later (unauthorized) SW updates (e.g., tuning
or activating fee-based features of a vehicle).

Even more critical threats can arise if an attacker success-
fully spoofs the identity of a DT (Threat T2): The malicious
DT can connect to a WVI (already plugged-in to a vehicle) and
use the connection to the vehicle to (i) read vehicle- and driver-
specific data (endangering the privacy of the user) or to (ii)
install new malicious SW on ECUs of the vehicle (endangering
the safety of the driver and other road users).

Another way to install malicious SW on a vehicle is to
alter the data while the latter is transferred over the air from
the DT to the target WVI (Threat T3). An attacker first breaks
the network level authentication to join the wireless network
and then applies a path diversion attack [13] can be applied to
ensure that all packets are routed via the malicious node. As
a result, an attacker is then able to start tampering with the
transferred data.

B. Analyzing the identified Threats w.r.t. SecUp

The identified and considered STRIDE threats are summa-
rized in Table V. To successfully perform an attack following
threats T1-T3, an attacker has to first overcome the authenti-
cation step on the network level; i.e., breaking the SAE-based
security mechanism (to the best of our knowledge, however,
no successful attacks exist today) or find out the pre-shared
network key. For the latter, an attacker can try to extract the
network key from an already paired WVI. The keys, however,
are stored in a secure memory and extracting them requires
significant expertise, effort, and time.

We now describe how potential attacks w.r.t. threats T1-
T3 can look like, in the unlikely case that an attacker is able
to overcome the security mechanisms on the network level

and the corresponding SecUp countermeasures. The identified
threats, possible consequences, and the SecUp countermea-
sures are also summarized in Table V.

Thread T1 & T2: An attacker can try to connect to a DT
by spoofing the identity of a WVI (T1) or to connect to a WVI
by spoofing the identity of a DT (T2). Therefore, an attacker
would need to fake the digital signature of the malicious node
(acting either like a WVI or DT). In our security concept strong
authentication mechanisms based on RSA or ECC signatures
are used. These mechanisms are considered as very secure [24]
and therefore breaking the system within a reasonable time is
not possible (an attacker will not stay unnoticed while running
such an attack within a workshop). An attacker can also try to
pair the malicious WVI and the DT. However, only privileged
users (e.g., the head of a workshop) are allowed to do that and
physical access to the DT is hence required.

Thread T3: To successfully install malicious SW on an
ECU by altering the transferred data, an attacker has to first
ensure that all data packets are forwarded by the malicious
device (e.g., realized using a path diversion attack [13]). The
malicious node can then alter the data before forwarding the
data packet.

According to our concept, HMAC or CMAC is applied on
every data message to ensure the integrity of the transferred
data. To overcome that, an attacker needs to find a way to break
the HMAC/CMAC or to figure out the AES 256bit Session key
(stored in secure memory on all devices). Additionally, after
transferring the entire SW binary to the target WVI(s), the
DT will compute the hash of the entire SW binary, encrypt it
as well as sign it using the master keys of the DT/WVI, and
send this to the WVI. Practically, this means that an attacker
will additionally need to break the RSA/ECC-based digital
signatures. Today, no attacks to break such digital signatures
in reasonable time are known.

As a result of the performed STRIDE evaluation focused on
spoofing and tampering, we can state that an attacker following
T1, T2 or T3 will not have a realistic chance to break the
system in a reasonable time.

VII. CONCLUSION

In this paper we propose SecUp, a security concept for ef-
ficient and trustworthy wireless software updates for vehicles.
SecUp is based on the results of the presented structured sys-
tem analysis, which can be used to analyze several application
scenarios (e.g., wireless SW updates performed in a workshop,
in the vehicle development or in a assembly line, as well as
remote SW updates from home) at once and results in secure
system configurations. These secure system configurations are
used to extract the related security requirements and finally to
define SecUp.

We evaluated SecUp using the STRIDE threat model and
thereby proved its applicability for efficient and trustworthy
wireless automotive SW updates.

We are currently working on a secure HW prototype of
the WVI. That will be used to evaluate the impact of different
security mechanisms such as RSA vs. ECC or HMAC vs.

635

134

Paper C – 19th Euromicro Conference on Digital System Design

TABLE V. IDENTIFIED THREATS, POSSIBLE CONSEQUENCES AND SECUP COUNTERMEASURES

Threat Threat description Consequences SecUp countermeasure

Threat T1 Spoofing the identity of a
WVI

Steal a SW binary; Unauthorized SW updates Authentication on network (SAE) and application layer (RSA, ECC); secure
pairing (physical access to DT required)

Threat T2 Spoofing the identity of the
DT

Exploit connected WVI: Read user-specific data,
install malicious SW

Authentication on network (SAE) and application layer (RSA, ECC);
insider information required to overcome ECU seed & key

Threat T3 Altering the SW while being
transferred to the WVI

Negatively impair the wireless link; worst case:
install malicious SW

Authentication on network (SAE) and application layer (RSA, ECC); Data
encryption (AES); Data integrity: HMAC or CMAC per packet plus hash
of SW binary after complete data transfer

CMAC on system performance. Additionally, we are planning
to compare the performance of different security functions
implemented in SW (e.g., a Java security library) and HW
(e.g., using a Trusted Platform Module chip). Furthermore we
will evaluate the impact of SAE authentication and encryption
(security on network level) on the performance (e.g. of the
wireless IEEE 802.11s network utilizing a real IEEE 802.11s
testbed consisting of 12 network nodes.

ACKNOWLEDGMENT

We are particularly grateful to Josef Noll from the SHIELD
project for the discussions about the SHIELD MM approach
and possible adaptions of it. Also we want to thank our col-
leagues from Volvo Trucks Dhasarathy (Dhas) Parthasarathy
and Jonas Hagerskans for providing us an ECU to test and
demonstrate the SW update process using real hardware.

The research from DEWI project (www.dewi-project.eu)
leading to these results has received funding from the
ARTEMIS Joint Undertaking under grant agreement n◦

621353. The authors acknowledge the financial support of the
COMET K2 - Competence Centres for Excellent Technologies
Programme of the Austrian Federal Ministry for Transport,
Innovation and Technology (BMVIT), the Austrian Federal
Ministry of Science, Research and Economy (BMWFW), the
Austrian Research Promotion Agency (FFG), the Province of
Styria and the Styrian Business Promotion Agency (SFG).

REFERENCES

[1] Redbend Software, “Updating Car ECUs Over-The-Air (FOTA),” White
Paper, pp. 1–14, 2011.

[2] Valasek, Chris and Miller, Charlie , “Remote Exploitation of an Unal-
tered Passenger Vehicle,” White Paper, p. 93, 2015.

[3] I. Garitano, S. Fayyad, and J. Noll, “Multi-metrics approach for security,
privacy and dependability in embedded systems,” Wirel. Pers. Commun.,
vol. 81, no. 4, pp. 1359–1376, Apr. 2015.

[4] B. Potter, “Microsoft sdl threat modelling tool,” Network Security, pp.
15–18, 2009.

[5] M. Steger, M. Karner, J. Hillebrand, W. Rom, E. Armengaud, M. Hans-
son, C. A. Boano, and K. Romer, “Applicability of ieee 802.11s for au-
tomotive wireless software updates,” in Telecommunications (ConTEL),
2015 13th International Conference on, July 2015, pp. 1–8.

[6] H. Liu, X. Liang, L. Fang, B. Zhang, and J. wen Zhao, “A secure
and efficient authentication protocol based on identity based aggregate
signature for electric vehicle,” in Wireless Communication and Sensor
Network (WCSN), 2014 International Conference on, Dec 2014.

[7] M. S. Idrees, H. Schweppe, Y. Roudier, M. Wolf, D. Scheuermann, and
O. Henniger, “Secure automotive on-board protocols: A case of over-
the-air firmware updates,” Lecture Notes in Computer Science, vol. 6596
LNCS, pp. 224–238, 2011.

[8] S. M. Mahmud, S. Shanker, and I. Hossain, “Secure software upload in
an intelligent vehicle via wireless communication links,” in Intelligent
Vehicles Symposium, 2005. Proceedings. IEEE, June 2005, pp. 588–593.

[9] D. K. Nilsson and U. E. Larson, “Secure firmware updates over the air
in intelligent vehicles,” IEEE International Conference on Communica-
tions, pp. 380–384, 2008.

[10] D. Nilsson, P. Phung, and U. E. Larson, “Vehicle ECU classification
based on safety-security characteristics,” Road Transport Information
and Control - RTIC 2008 and ITS United Kingdom Members’ Confer-
ence, IET, pp. 1–7, 2008.

[11] N. Gabe, “Over-the-air updates on varied paths,” Automotive News,
2016-01-25.

[12] J. Noll, I. Garitano, S. Fayyad, E. Asberg, and H. Abie&, “Measurable
security, privacy and dependability in smart grids,” Journal of Cyber
Security, vol. 3, pp. 371–398, 2015.

[13] W. K. Tan, S.-G. Lee, J. H. Lam, and S.-M. Yoo, “A security analysis
of the 802.11s wireless mesh network routing protocol and its secure
routing protocols,” Sensors, vol. 13, no. 9, p. 11553, 2013.

[14] M. S. Islam, M. A. Hamid, and C. S. Hong, “SHWMP: A Secure Hybrid
Wireless Mesh Protocol for IEEE 802.11s Wireless Mesh Networks,”
in Transactions on Computational Science VI. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 95–114.

[15] J. Ben-Othman and Y. I. Saavedra Benitez, “IBC-HWMP: a novel secure
identity-based cryptography-based scheme for Hybrid Wireless Mesh
Protocol for IEEE 802.11s,” Concurrency and Computation: Practice
and Experience, vol. 25, no. 5, pp. 686–700, 2013.

[16] M. Sbeiti, A. Wolff, C. Wietfeld, and I. Technology, “PASER: Position
Aware Secure and Efficient Route Discovery Protocol for Wireless
Mesh Networks,” in International Conference on Emerging Security
Information, Systems and Technologies - SECURWARE, no. c, 2011.

[17] M. Sbeiti and C. Wietfeld, “One stone two birds: On the security and
routing in wireless mesh networks,” in Wireless Communications and
Networking Conference (WCNC), 2014 IEEE, April 2014.

[18] “open80211s – an open-source implementation of the
recently ratified ieee 802.11s wireless mesh standard,”
https://github.com/o11s/open80211s/wiki/HOWTO.

[19] D. Harkins, “Simultaneous authentication of equals: A secure,
password-based key exchange for mesh networks,” in Sensor Technolo-
gies and Applications, 2008. SENSORCOMM ’08. Second International
Conference on, Aug 2008, pp. 839–844.

[20] M. Steger, M. Karner, J. Hillebrand, W. Rom, C. Boano, and K. Roe-
mer, “Generic Framework Enabling Secure and Efficient Automotive
Wireless SW Updates,” in IEEE ETFA 2016 – 21st IEEE International
Conference on Emerging Technologies and Factory Automation, 2016,
pp. 1–8.

[21] SAE, “SAE J3061: SURFACE VEHICLE RECOMMENDED PRAC-
TICE - Cybersecurity Guidebook for Cyber-Physical Vehicle Systems,”
SAE International, Tech. Rep., 2016.

[22] ISO, “ISO 26262: Road vehicles – Functional safety – Part 1: Vocab-
ulary,” ISO, Tech. Rep., 2011.

[23] M. Steger, M. Karner, J. Hillebrand, W. Rom, and K. Roemer, “A
Security Metric for Structured Security Analysis of Cyber-Physical
Systems Supporting SAE J3061,” in CPSData – Second International
Workshop on modeling, analysis and control of complex Cyber-Physical
Systems, 2016, pp. 1–8.

[24] Kerry Maletsky, “RSA vs ECC Comparison for Embedded Systems,”
White Paper, Atmel, p. 5, 2015.

636

135

Chapter 9 – Publications

Paper D

M. Steger, C.A. Boano, M. Karner, J. Hillebrand, W. Rom, and K. Römer. Generic
Framework Enabling Secure and Efficient Automotive Wireless SW Updates.
In Proceedings of the 21st International Conference on Emerging Technologies and Factory
Automation (ETFA)., pages 1–8. Berlin, Germany. November 2016.

Summary. In this paper a generic framework enabling wireless software updates as well
as wireless diagnostics that is meant to support the whole life-cycle of a modern vehicle
is proposed. The proposed framework considers the requirements coming from different
application scenarios (i.e., vehicle development, vehicle assembly line, maintenance in
workshops, and wireless remote updates and diagnostics). The paper highlights, that all
addressed scenarios require fast, efficient, reliable, and secure wireless software updates.
To enable efficient and fast wireless software updates, the proposed framework supports
parallel software updates, where the same software binary will be installed on different
vehicles and ECUs simultaneously. Additionally, the paper provides an overview on the
defined security concept, explains the employed authentication and encryption mechanisms
and describes how the integrity of the transferred data as well as of the entire vehicle is
ensured. The proposed framework is finally evaluated by employing a developed vehicle
and ECU model as well as by by connecting the implemented framework to a real vehicle
to run wireless diagnostics.

My contributions. As main author of this paper I developed the wireless automotive
software update framework and performed the related system evaluation. I wrote the vast
majority of this paper in collaboration and discussion with the co-authors, who eminently
supported the design and the description of the entire update framework as well as provided
beneficial input regarding the system evaluation.

c©2016 IEEE.
ISBN: 978-1-5090-1314-2.
DOI: 10.1109/ETFA.2016.7733575.

Link: http://ieeexplore.ieee.org/document/7733575/.

Copyright: The IEEE does not require individuals working on a thesis to obtain a
formal reuse license, provided that the requirements listed below are followed:

1. The following IEEE copyright/ credit notice should be placed prominently in the
references: c©[year of original publication] IEEE. Reprinted, with permission,
from [author names, paper title, IEEE publication title, and month/year of
publication];

2. Only the accepted version of an IEEE copyrighted paper can be used when
posting the paper or your thesis on-line;

136

http://ieeexplore.ieee.org/document/7733575/

Paper D – 21st International Conference on Emerging Technologies and Factory
Automation

3. In placing the thesis on the author’s university website, please display the fol-
lowing message in a prominent place on the website: In reference to IEEE copy-
righted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity’s name goes here]’s products
or services. Internal or personal use of this material is permitted. If inter-
ested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistri-
bution, please go to http://www.ieee.org/publications_standards/
publications/rights/rights_link.html to learn how to obtain a Li-
cense from RightsLink.

137

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Chapter 9 – Publications

Generic Framework Enabling Secure and Efficient
Automotive Wireless SW Updates

Marco Steger∗, Michael Karner∗, Joachim Hillebrand∗, Werner Rom∗, Carlo Boano†, and Kay Römer†

∗Virtual Vehicle Research Center, Graz, Austria
†Institute for Technical Informatics, Graz University of Technology, Graz, Austria

Email: marco.steger@v2c2.at

Abstract—Future vehicles will be wirelessly connected to
nearby vehicles, to the road infrastructure and to the Internet
in order to enable new comfort features, safety functions and a
number of new vehicle-specific services. The latter will include
a fast, secure, and reliable way to remotely diagnose and
reconfigure a vehicle as well as to install new software on the
electronic control units integrated in a vehicle. Such wireless
software updates are beneficial for both automotive OEMs and
customers, as they allow to enable new features of the vehicle
remotely and to fix software bugs by installing a new software
version over the air. Wireless diagnostics and software updates
are required in several stages of a vehicle’s lifetime: from the
manufacturing stage on the assembly line and the maintenance
in a workshop to the remote download of up-to-date software
directly by the car owner. To support this process over a whole
vehicle’s lifetime, a generic framework is needed. In this paper
we propose a generic framework enabling secure and efficient
wireless automotive SW updates and hence supporting a vehicle’s
whole lifetime. We describe the IEEE 802.11s network used as
wireless medium to interconnect vehicles and diagnostic devices
in a reliable, trustworthy and fast way and propose a dedicated
cross-layer security concept applying strong authentication as
well as encryption mechanisms.

I. INTRODUCTION

A modern vehicle includes a growing number of electronic
control units (ECU) allowing to incorporate new features and
services. Enabling these features and services, however, re-
quires elaborate and complex software (SW) implementations
installed on these ECUs, potentially introducing a growing
number of bugs in the automotive software.

New concepts allowing efficient automotive SW updates are
required to fix such SW bugs, as well as to enable the remote
installation of new features and to support the development
and maintenance of modern vehicles. Efficient and secure
SW updates can be beneficial over the whole life-cycle of a
modern vehicle and can significantly reduce the time needed
for vehicle maintenance.

In this paper we propose a generic framework enabling wire-
less SW updates as well as wireless diagnostics that is meant
to support the whole life-cycle of a modern vehicle. Thereby,
the proposed framework considers the requirements coming
from different application scenarios (i.e., vehicle development,
vehicle assembly line, maintenance in workshops, and wireless

remote updates and diagnostics). In all these scenarios, the
wireless SW updates have to be fast, efficient, reliable, and
secure. To enable efficient and fast wireless SW updates, our
framework will support parallel SW updates, where the same
SW binary will be installed on different vehicles and ECUs
simultaneously.

Additionally, we present a security concept that uses strong
authentication and encryption mechanisms and also ensures
the integrity of the transferred data as well as of the entire
vehicle protecting the diagnostic devices, the transferred data,
the vehicles and the OEM backbone from unauthorized access.

The vehicles and the diagnostic devices are interconnected
using an IEEE 802.11s mesh network [1]. In [2] we already
proved the applicability of IEEE 802.11s for automotive appli-
cations. The mesh characteristics of an IEEE 802.11s network
increases the reliability as well as the flexibility of the network
thanks to its multi-hop capability and the resulting redundant
paths. The IEEE 802.11s standard also supports multicast data
streams, which can be used to realize parallel and therefore
efficient SW updates by sending a SW binary through the
wireless network to several vehicles simultaneously.

After reviewing related work in the next section, we describe
our generic framework and highlight the role of involved
devices as well as users in the considered application scenarios
in Section III. Thereafter, in Section IV, we illustrate the
properties and advantages of the employed IEEE 802.11s [1]
network, explain how it enables the construction of a large
mesh network and illustrate how to exploit its characteristics
to perform reliable and efficient wireless SW updates. Section
V provides an overview of the performed security analysis
as well as the resulting security concept. The results of the
performed framework evaluation can be found in Section VI.

The key contribution of this paper is the introduction of a
generic framework for wireless automotive SW updates that is
applicable for different application scenarios, namely: wireless
SW updates in the vehicle development, in the assembly line,
during maintenance in workshops, as well as wireless remote
updates. Our framework addresses the efficiency aspect by
enabling parallel SW updates using IEEE 802.11s multicast
data streams, and security by presenting a novel robust security
concept for wireless SW updates.978-1-5090-1314-2/16/$31.00 c©2016 IEEE

c©2016 IEEE. Reprinted, with permission. From IEEE Emerging Tech-
nologies and Factory Automation (ETFA), September 2016.

138

Paper D – 21st International Conference on Emerging Technologies and Factory
Automation

II. RELATED WORK

Wireless automotive SW updates were already addressed in
previous work. In [3] the advantages of wireless SW updates
compared to traditional wired SW updates are highlighted and
a high-level architecture for over-the-air updates is presented.
Technical details such as a description of the wireless medium
or required security mechanisms, however, are not covered.

Idrees et al. [4] proposed a system for wireless over-the-
air updates, where a HW Security Module (HSM) is used for
data encryption, data integrity, as well as key management
on both the wireless interface and all ECUs of a vehicle.
Data encryption and verification is handled directly on the
concerned ECU. This approach, however, requires an HSM on
every ECU, which leads to significant extra costs. Additionally,
the proposed system does not describe the specific type and
properties of the wireless link.

Nilsson et al. [5], [6] have proposed a system, where a
vehicle is connected to a portal server via an Internet link to
install new automotive SW over the air. The authors highlight
the importance of the security aspects data integrity and data
confidentiality for wireless SW updates. However, neither the
wireless network nor the used wireless protocol and the data
flow in the network have been addressed.

Mahmud et al. [7] have proposed an architecture for secure
SW updates in which the integrity of data is ensured by
sending multiple copies of the SW. The proposed solution,
however, is dedicated to unicast links between one vehicle
and an OEM sever and relies on a number of prerequisites
and assumptions (e.g., ensuring secure SW updates by sending
multiple copies).

Although the authors are addressing several security aspects,
the solutions described above are only applicable for wireless
point-to-point links and only the remote SW update scenario is
covered. Multicast data streams and hence parallel SW updates
cannot be realized.

Tesla is currently the only OEM providing a solution for
wireless remote updates over the air. To this end, Tesla is
using a dedicated wireless link (mainly 3G, but a vehicle can
also be connected to the user’s Wi-Fi at home) to securely
transfer new SW from the manufacturer servers to a vehicle
[8]. This point-to-point connection (i.e., between server and
vehicle), however, cannot be used to simultaneously install
SW in different vehicles and on several ECUs in parallel.

The authors of [4]–[7] have specifically focused on secure
wireless SW updates and highlighted a number of security
threats and aspects, namely:

• Vehicle integrity and authentication
• Data integrity
• Data confidentiality
• Key management and exchange
Different from previous work, our security concept pre-

sented in Section V-A addresses all these aspects at once.

A. IEEE 802.11s Mesh Network
Our generic framework for wireless SW updates is based on

an IEEE 802.11s mesh network. The IEEE 802.11s standard

provides multicast data streams and therefore we can realize
parallel SW updates in our framework.

To the best of our knowledge there are no other wireless SW
update solutions based on IEEE 802.11s available, however,
IEEE 802.11s is used in other automotive applications.

For example, in [9] and [10], IEEE 802.11s is used as a
backbone network for V2X (vehicle to vehicle and vehicle to
infrastructure communication) networks. The main idea is to
replace the wired connections between the RSUs (road side
units) and the V2X servers by wireless ones. In [2] we proved
the applicability of IEEE 802.11s for an automotive appli-
cation by performing different experiments in an automotive
environment. These experiments, however, were not dedicated
to wireless SW updates but focusing on reliable wireless data
transfer in an automotive context.

In Section IV we describe the mesh characteristics of the
used IEEE 802.11s network in more detail and highlight the
advantages of the latter w.r.t. wireless automotive SW updates.

B. IEEE 802.11s Security

Several contributions have focused on the security aspects of
IEEE 802.11s and proposed possible improvements and exten-
sions. These aspects, however, have only been discussed out-
side of the automotive domain. Tan et al. [11] have described
internal as well as external attacks on IEEE 802.11s networks.
Security requirements for systems based on IEEE 802.11s
were extracted and these requirements were used to evaluate
different approaches. The results of this evaluation have shown
that none of the evaluated approaches (e.g., [12] and [13]) was
able to satisfy the desired security requirements.

Sbeiti et al. [14] have proposed to use GPS positioning to
mitigate a wide range of potential attacks. The system uses a
combination of digital signatures, lightweight authentication
trees and symmetric block ciphers called PASER. In [15]
the same authors also evaluate and compare other approaches
for secure IEEE 802.11s networks to PASER. They highlight
the inefficiency of these approaches w.r.t. time (delay of
about 70ms per-hop) and power as well as their sensitivity
to blackhole and wormhole attacks. However, the use of GPS,
as proposed in [14] and [15], is not feasible inside a workshop
building or the assembly line and therefore PASER is not
applicable for our wireless SW update system.

Although several approaches to create secure IEEE 802.11s
networks exist [11]–[15], none of these approaches is fulfilling
both the efficiency requirements of our framework for wire-
less SW updates and the immunity against possible attacks.
Because of that, our security concept described in Section V
is using a lightweight security mechanism based on pre-shared
keys on the network layer and additional strong authentication
as well as encryption mechanisms on the application layer.

In particular, our security concept is based on a structured
security analysis. In [16] we have described the security
analysis in detail and showed how it can be used to analyze
an automotive application w.r.t. the new automotive security
standard SAE J3016 [17]. A security concept enabling wireless
SW updates, however, was not part of this work.

139

Chapter 9 – Publications

III. FRAMEWORK DESCRIPTION AND SYSTEM OVERVIEW

In this section we first describe the considered application
scenarios for wireless SW updates and diagnostics in more
detail (Section III-A). Thereafter, in Section III-B, we list the
involved nodes, devices, and tools and sketch the data flow
between these entities in our framework.

A. Considered Application Scenarios

In this section we use the following descriptions of the con-
sidered application scenarios to identify the scenario-specific
requirements as well as its peculiarities and describe the
corresponding environment w.r.t. the user education, available
infrastructure, and security concerns. In Table I these aspects
are summarized.

In the vehicle development scenario, development engi-
neers have to update the SW of one or more ECUs several
times to evaluate and test newly developed features. A flexible
and efficient framework for SW updates and vehicle diagnos-
tics is required to support the development engineers in their
work. Vehicle development activities will primarily take place
in a restricted environment and performed by expert users.

Vehicle assembly is performed in a highly automated and
secure environment where many working steps are performed
by machines and robots. Before a vehicle can leave the
assembly line, the latest SW version shall be installed on all
integrated ECUs. Therefore, the SW of many vehicles must
be updated – ideally in parallel – to install the latest SW
on the ECUs of these vehicles. Because of the high number
of vehicles as well as the high degree of automation, the
scalability, reliability and efficiency of the SW update system
are very important.

In a typical workshop scenario mechanics will diagnose,
repair and maintain several vehicles. Therefore, the mechanics
(trained users) will connect to a vehicle, run some diagnostic
functions, look for Diagnostic Trouble Codes (DTC) on the
ECUs and perform necessary repairs. If new SW is available
for a vehicle, the mechanics additionally install the new SW.
Parallel SW updates would be very beneficial especially when
large vehicle recalls (e.g., due to a critical SW bug) are
necessary: a mechanic can connect to several vehicles in
parallel and install the new SW simultaneously.

Remote SW updates are mainly relevant for future vehi-
cles with an integrated wireless interface to the vehicle. To
remotely install new SW on a vehicle, the vehicle owner will
first be informed about the possible update. In the next step,
the user will choose a suitable time slot for the SW update
(the vehicle cannot be used while a SW update is performed
due to safety reasons). The data will then be transferred to the
vehicle either via a dedicated 3G/4G connection or when the
vehicle owner connects the vehicle to his home WLAN.

In Table I we collected the application-scenario-specific
information w.r.t. wireless SW updates. Thereby we focus
on the user and his education, important requirements w.r.t.
reliability, efficiency, etc., as well as the required security level.

SW updates in the assembly line as well as in the vehicle
development phase are performed in secured areas by expert

TABLE I
INVOLVED USERS, ASPECTS AND REQUIRED SECURITY LEVEL W.R.T.

WIRELESS SW UPDATES IN THE CONSIDERED APPLICATION SCENARIOS.

Scenario User Aspects Security Level

Development Development
engineer; expert Flexible, efficient Medium

Assembly line Operator; expert Scalable, reliable,
efficient Medium

Workshop Mechanic;
trained user

Efficient, backward
compatibility High

Remote
Vehicle driver
or owner;
untrained user

Easy to use Very high

users. Therefore, security is still an important issue (e.g.,
industrial espionage) but not as critical as in the remote SW
update case, were a SW update is performed in public or
at the users home, potentially using an insecure network by
an untrained user. Especially the assembly line as well as
the workshop scenario require a very efficient and fast way
to install SW updates. High flexibility by easily extending
the transmission range of the wireless network is especially
required during vehicle development due to the big variety of
system evaluations, function tests and diagnostics performed
in this phase.

B. System Overview

To interconnect the vehicle with the wireless network, a
reliable and secure interface is required. This Wireless Vehicle
Interface (WVI) is the core component of our framework
for wireless SW updates. Independent from the application
scenario, the WVI interconnects the in-vehicle communication
system, consisting of different automotive bus systems (e.g.,
CAN) and ECUs, with the wireless network and therefore with
the outside world.

We see two different types of WVIs: either a fully integrated
device or a plug-in solution. The plug-in WVI can be tem-
porarily connected to the vehicle via the OBD interface. This
is mainly relevant for the workshop scenario, where the plug-
in property and the use of standardized protocols for the in-
vehicle communication are ensuring backward compatibility.
The fully integrated WVI is either realized as a dedicated
ECU or as a component of a smart gateway interconnecting
different bus systems and therefore part of the in-vehicle
communication system.

The Diagnostic Tester (DT) is either a dedicated device
(e.g., tool in a workshop) or more likely a SW application
running on a laptop, PC or server. The DT provides informa-
tion about the vehicle configuration (e.g., type and CAN IDs of
the ECUs), availability of new SW versions, as well as keys to
authorize a SW update. The information is either stored locally
on the device or can be acquired using a dedicated and trusted
connection to an OEM server. Additionally, a DT supports
various diagnostic functions. In the remote SW update scenario
the DT will be located at a facility of the OEM and a secure
Internet link (e.g., a VPN tunnel) between the WVI and the
DT will be established.

140

Paper D – 21st International Conference on Emerging Technologies and Factory
Automation

DT

CGW
ECU

OBD

ECU

ECU ECU

ECU

WVI

A

B

CM
Link
Path

Fig. 1. IEEE 802.11s wireless mesh network applied in a typical workshop
scenario. A mechanic M can connect to a vehicle either directly (e.g., vehicle
B) or using a multi-hop path (e.g., vehicle C via vehicle B and vehicle A).

Handheld devices can be used to trigger, monitor, and
validate the SW update process. Additionally, they can be used
by mechanics in a workshop or by a development engineer in
the vehicle development phase to run wireless diagnostics and
to monitor the vehicle bus.

C. Setup Phase and Data Flow

In Figure 1 a typical workshop scenario is sketched, where
mechanics maintain vehicles by using handhelds to run wire-
less diagnostics and trigger wireless SW updates. We will use
the illustrated scenario to explain the setup phase and the data
flow in our framework: similar procedures are used in the other
scenarios. To simplify the description of the processes below,
we will not cover the performed security steps. However, in
Section V-A we will refer to this example again to illustrate
our security concept.

A mechanic first connects a WVI to the vehicle to be
maintained using the OBD interface. The WVI powers up
and joins the wireless IEEE 802.11s network. The WVI
now waits for beacons advertising the presence of a DT.
These beacons are broadcasted periodically and once the WVI
receives those beacons, it will establish a connection to the DT.
Also handhelds can connect to the WVI by sending beacons.
The mechanic can now use the connected handheld device to
run wireless diagnostic and, if a new SW version is available,
will trigger a wireless SW update. Therefore, the SW will be
transferred from the DT to the WVI. Note that a new SW
version is not stored on the handheld devices due to security
reasons.

Our generic framework supports different SW update
modes: most likely the SW binary will first be fully transferred
from the DT to the WVI. The latter will then verify the
received binary, and install the binary on the ECU using the
Unified Diagnostic Service (UDS) protocol [18] (two-stage
approach). When using the direct-programming mode, the DT
will send packets containing UDS-complaint data chunks to
the WVI and the latter unpacks the data and forwards it to the
ECU. Therefore, the WVI only acts as a gateway forwarding
the data and the DT has to take care about authorization with
the ECU, data transfer, and verification of the SW update.
Our framework can also support delta downloads, where only
the difference between the current and the new SW version is
sent to the ECU. This mode, however, requires that also the

Fig. 2. WVI prototype based on a BeagleBone Black (left) and the Volvo
ECU used to test the SW update (right).

ECU itself supports this delta download mode (which is not
yet fulfilled by current ECUs).

To perform a SW update on several vehicles in parallel, a
mechanic will register a vehicle for a certain SW update and
the DT will then automatically start the update process when
all vehicles are registered and ready to receive the new SW.

D. Prototype Implementation

We developed prototypes of WVI, DT, and handheld device
to evaluate the framework, the data flow, and the individual
components.

The WVI prototype is shown in Figure 2 and consists of
a BeagleBone Black (BBB) board and an additional, self-
designed PCB, the DEWI1 cape. This cape includes the
required HW interfaces (i.e., CAN and OBD) and the cor-
responding transceivers to connect the WVI with a vehicle.
Additionally, the cape is handling the battery management
of the WVI and provides some means to measure the power
consumption of the board as well as of the individual radio.
The WVI SW is mainly developed in Java and the Java Native
Interface (JNI) is used to control the HW-related parts.

The DT is implemented in Java and the implementation
was tested on a dual-core laptop running Win7 as well as on
a PC running Debian Linux. We developed a GUI providing
different modes such as ECU programming, OBD diagnostics,
and CAN bus monitoring.

A Nexus 7 tablet running Android is used as handheld de-
vice. The current version of the developed Android application
allows to connect to a WVI and a DT simultaneously, to
monitor the vehicle bus, and to exchange status information
with the DT. Currently, we are extending the application
to fully support the defined security mechanisms. The new
version of the application can then be used to trigger, monitor
and validate the SW update process.

1The ARTEMIS project DEWI (Dependable Embedded Wireless Infrastruc-
ture) focuses on the area of wireless sensor / actuator networks and wireless
communication. With its four industrial domains (Aeronautics, Automotive,
Rail, and Building) and 21 industry-driven use cases, DEWI will provide and
demonstrate solutions for wireless seamless connectivity and interoperability
in smart infrastructures [19]. (For further details see www.dewi-project.eu)

141

Chapter 9 – Publications

IV. WIRELESS IEEE 802.11S NETWORK

Our generic framework supporting efficient and secure
wireless SW updates as well as wireless diagnostics uses an
IEEE 802.11s network to interconnect the devices described in
Section III. Contrary to other standards out of the IEEE 802.11
protocol family, where an access point is used to interconnect
the nodes of a network, the IEEE 802.11s protocol is based
on a mesh network, and each node can directly communicate
with other nodes in its transmission range or use other nodes in
between to forward a data packet to its final destination [20].
Because of the mesh characteristics of IEEE 802.11s, a data
packet can use different paths when sent through the network
and this redundancy increases the reliability of IEEE 802.11s
networks.

Additionally, the transmission range of the network can be
increased by adding relay nodes at the edge of the network.
Thanks to the multihop capability of mesh networks, an
IEEE 802.11s network can even be used in difficult environ-
ments (for wireless communications) and thus can fulfill the
requirements of the considered application scenarios.

For example, in a typical workshop scenario, wireless links
will be affected by the shielding of the vehicles and other
(metal) objects: if the direct link between a DT and a vehicle
is too weak to send a packet directly from the DT to the WVI,
other vehicles parked in between may be used to forward the
data packet to the target vehicle (also illustrated in Figure 1).

A. Links and Paths in IEEE 802.11s

Figure 1 illustrates a mesh network with five nodes in
a typical workshop scenario. The Hybrid Wireless Mesh
Protocol (HWMP), used as the default routing algorithm in
IEEE 802.11s networks, automatically finds the best (reliable
and fast) route between all nodes in the network [20]. In
an IEEE 802.11s network we have to distinguish between
links and paths. An established link between two nodes (e.g.,
vehicles B and C) means that the nodes are in transmission
range of each other. However, this doesn’t always mean that
data between these nodes is exchanged directly. If a link is
weak (e.g., several packets are lost when sent directly from
vehicle B to vehicle C) the HWMP tries to find a better way
to route the packets through the network. In IEEE 802.11s
these routes are called paths (e.g., between vehicle A and B
or mechanic M and DT).

B. Multicast in IEEE 802.11s

In our framework we use open11s [21], an open source
implementation of the IEEE 802.11s standard available for
Linux. open11s is still under development and doesn’t include
all features described in the IEEE 802.11s standard. However,
as open11s is open-source, missing features can be added
using (self-implemented) patches.

The IEEE 802.11s standard also describes multicast data
streams in the mesh network. Such a multicast can be
used to send data packets from one node to several other
nodes in a network. In our framework we use multicasts

to transfer and install a new SW version on several vehi-
cles simultaneously (i.e., parallel SW updates). Although the
IEEE 802.11s standard defines multicast data streams, the
current open11s implementation does not support multicasts
yet. We are currently evaluating the reliability of experimental
patches enabling multicast data exchange for open11s in our
IEEE 802.11s testbed consisting of twelve nodes. In parallel
we plan to develop our own reliable multicast and to compare
the performance of the different approaches using our wireless
testbed.

The framework for wireless SW updates and diagnostics
as well as the corresponding security concept presented in
Section V, however, is already designed and implemented in
a way that it will fully support parallel SW updates.

V. SECURITY AND TRUST

Security is a critical aspect of wireless SW updates. Depend-
ing on the application scenario, different levels of security are
required (as described in Section III-A). In this section we
briefly describe how security is addressed in our framework
and illustrate the required steps towards a security concept
for wireless SW updates. These steps can be summarized as
follows:

1) Security analysis of the framework resulting in a secure
system configuration.

2) Extraction of the security requirements from the secure
system configuration.

3) Definition of a security concept based on the security
requirements and the peculiarities of the application
scenario.

4) Evaluation of the defined security concept using the
STRIDE threat model [22].

We used the DEWI security metric [16] to perform a
structured security analysis. The DEWI security metric is
based on the SHIELD multi-metrics approach [23], [24] and
can be used to analyze the different application scenarios
described in Section III at once. The analysis results in a secure
system configuration for every application scenario and the
security-related requirements can be directly extracted from
these secure system configurations. In [16] we described the
DEWI security metric in more detail and presented a case
study illustrating its usage.

A. Security Concept

The security concept is based on the results of the struc-
tured security analysis using the DEWI security metric: the
secure system configurations and the corresponding security
requirements.

As described in Section II, our security concept applies
security mechanisms on the network as well as on the ap-
plication layer. We utilize wpa supplicant, a generic security
framework for different types of wireless networks, to secure
the wireless IEEE 802.11s network in a lightweight way
based on existing mechanisms provided by the current open11s
implementation. SAE [25], developed especially for 802.11s-
based, multi-hop capable mesh networks, is fully integrated

142

Paper D – 21st International Conference on Emerging Technologies and Factory
Automation

in the latest wpa supplicant version and thus can be used to
secure our wireless IEEE 802.11s mesh network.

On the application layer different keys and security mecha-
nisms are used. Thereby our security concept addresses the
four security aspects stated in Section II: vehicle integrity
and authentication, data integrity, data confidentiality, key
management and exchange.

Vehicle integrity and authentication require strong authen-
tication mechanisms. Additionally we have to avoid that an
attacker can endanger a whole fleet of vehicles by breaking
one vehicle and extracting the shared authentication key. Thus,
a unique key shall be used on every vehicle. In our concept we
are using a key pair consisting of a private and a public key
(asymmetric keys) on the WVI as well as the DT ensuring an
unambiguous authentication between all nodes without using
the same (symmetric) key on all vehicles. This master key pair
is used to handle the authentication between a WVI and a
DT and to encrypt as well as sign unicast data.

Secure multicasts needed to enable parallel SW updates,
however, require symmetric keys for data encryption and
verification. A data packet sent from the DT to several vehicles
must be encrypted using a shared key. This shared session key
is created by the DT and then sent from the DT to each WVI
using a unicast data packet encrypted with the public master
key of the WVI and signed with the private master key of the
DT. The session key can then be used to encrypt and sign the
multicast data packets and hence ensuring data confidentiality
as well as data integrity.

All keys used in our security concept must be kept secret
and therefore stored securely on the devices to ensure that an
attacker cannot extract the keys (e.g., by stealing a WVI). In
our concept, keys are either stored in dedicated secure memory
or a trusted platform module is used to securely hold the keys.

We illustrate a typical workshop scenario in Section III-B
and Figure 1. We now refer to the same scenario and discuss
the related steps w.r.t. security:

1) User authentication: the mechanic authenticates with
the system using a smartcard and a PIN code. Different
user profiles can be used to authorize different features:
a normal mechanic can use the system to run wireless
diagnostics only. A privileged user can additionally
perform wireless SW updates.

2) WVI power up: after connecting the WVI to the ve-
hicle, the WVI powers up and tries to connect to the
IEEE 802.11s network. Therefore, a shared network key
is used.

3) Authentication with the DT: the master keys of the DT
and the WVI are used to authenticate with each other.

4) Parallel SW update: to enable parallel SW updates,
the DT first creates a session key and sends it to
every concerned vehicle’s WVI (unicast). Now the DT
can send the SW binary to the WVIs. Thereby every
transferred packet is encrypted and signed using the
session key (multicast).

5) Data verification: after transferring the whole binary
to the WVIs, the DT computes the hash value of the

Vehicle and ECU Model

Vehicle model
§ OBD2 simulator
§ CAN traffic simulator

ECU model
§ UDS compliant

O DP

Default

Program Diagnostic
HW interface

Fig. 3. Vehicle and ECU model consisting of a vehicle model, simulating
traffic on a CAN bus and supporting some OBD requests, and an ECU model,
implemented as state machine and supporting UDS (required for SW updates)

entire binary, signs and encrypts the hash value using the
master key and sends it to the WVIs (unicast). The WVIs
can verify the received SW binary using the received
hash before installing it on the concerned ECUs.

A more detailed description as well as a STRIDE based
evaluation of our security concept can be found in [26].

VI. FRAMEWORK EVALUATION

In this section, we present an evaluation of our framework
for secure and efficient wireless SW updates and diagnostics.
The evaluation is performed in three steps: first we use
our developed Vehicle and ECU Model (VEM) to perform
fundamental experiments and communication tests, as well as
to test the behavior in case of errors (Section VI-B). In the
second step, we wirelessly connect to a real vehicle and run
wireless diagnostics (Section VI-C). Finally, we evaluate our
framework by installing a new SW binary on an automotive
ECU provided by our project partners Volvo Trucks (Section
VI-D).

A. Vehicle and ECU Model

We use the VEM to perform fundamental system evalu-
ations, analysis of new features, and communication tests.
Furthermore, the VEM can also be used to evaluate the be-
havior of the developed system in case of errors (e.g., sending
unexpected frames) and communication problems (e.g., lost,
delayed or duplicated CAN frames).

As illustrated in Figure 3, the developed VEM consists of
a fundamental communication model of a vehicle as well as a
simplified model of an ECU and is implemented in C/C++. A
developed HW interface library can be used to communicate
with a vehicle via the OBD or CAN interface.

The vehicle model can be used (i) to simulate the traffic
on a CAN bus and (ii) to create a response for certain OBD
requests. Bus traffic simulation is done by using log files taken
from different vehicles by connecting our WVI to the OBD
interface of the vehicles to collect the timestamps, CAN-IDs,
and payloads of all received CAN frames. The vehicle model
parses such a log file and writes the collected messages on the
CAN accordingly.

The ECU model is implemented as state machine covering
different diagnostic sessions described in the UDS standard
[18]. This state machine is also sketched in Figure 3. By
default, the ECU will power up and stay in operational mode,

143

Chapter 9 – Publications

DT

RN

OBD
data

OBD
dataOBD

data

Fig. 4. Evaluation of the wireless diagnostic feature: connecting a real vehicle
with the DT located in the second floor via a relay node (RN) located in the
first floor.

where the ECU is performing its dedicated task. A UDS
diagnostic session control command can be used to switch the
ECU in the programming session or in the extended diagnostic
session [18]. Depending on the state of the ECU (i.e., on
the current UDS session) different diagnostic commands are
available. An authorization step, often based on a seed & key
mechanism, must be performed to empower the programming
session. If the ECU is in the extended diagnostic or program-
ming session and the session is inactive (i.e., no UDS messages
received for a predefined time), the ECU falls back to the
default session.

Our current ECU model supports all programming-related
commands, as well as the diagnostic session control, security
access, ECU reset, and tester present commands as defined in
the UDS standard [18].

B. Framework development and evaluations using the VEM

The first experiments and evaluations were performed using
the developed VEM. Therefore, the VEM is connected with
the WVI using (i) a virtual CAN bus, where the VEM and the
WVI implementation is running on the same BBB board or
(ii) using a CAN connection between the WVI prototype and
the VEM, running on a second BBB.

In both cases (i.e., WVI and VEM on the same BBB or
VEM and WVI on their own BBB) we can test the wireless
diagnostic as well as the ECU programming part of the
developed system using the VEM. Therefore, the VEM can be
used to continuously evaluate and test the currently developed
versions of the DT and WVI prototypes.

C. Wireless diagnostics in a real vehicle

We also evaluate our framework by running wireless di-
agnostics on a real vehicle using our WVI prototype. As
illustrated in Figure 4, the DT, running on a PC located on
the second floor of our company building, is connected to the
WVI via another WVI prototype, located on the first floor and
acting as Relay Node (RN).

Using this experimental setup, we are able to monitor
the CAN bus that is available at the OBD connector of
the vehicle and use different OBD requests to read vehicle-
specific parameters such as the current engine temperature or
the current engine speed (RPM). However, some particular

OBD requests/responses were heavily delayed or lost during
transmission. We performed additional measurements using
the described scenario to get accurate numbers for the Packet
Error Rate (PER). Therefore we sent 10000 UDP packets
with 8 bytes payload and a period of 100ms from the WVI,
connected to the vehicle, to the DT, located in the office.
An acknowledgment packet with the same size is then sent
back to the WVI. This experiment was performed without any
retransmission mechanisms on application layer and results in
a PER of 0.43% for messages sent from the WVI to the DT.
0.83% of all packets sent back from the DT to the WVI were
also lost. In total we lost 0.65% of all transferred packets.

Further investigations using our IEEE 802.11s testbed are
planned to evaluate and increase the reliability of the network.

D. Wireless SW update using a real ECU

The SW update process was evaluated using a demo ECU
provided by our project partner Volvo T rucks. Due to orga-
nizational and especially safety reasons, a SW update test in
a real vehicle is not possible yet in the current stage of the
project.

As shown in Figure 2, the WVI is directly connected to
the demo ECU using a twisted-pair cable. The demo ECU is
UDS-compliant and can be programmed in two steps: first a
secondary bootloader is installed and executed. Afterwards the
application binary can be installed. A reboot of the ECU is
used to complete the SW update process.

Volvo Trucks provided different SW versions periodically
writing CAN frames on the bus when in operational (default)
mode. Every version uses its own CAN-ID and therefore we
can easily verify if a new version is installed on the demo
ECU or not.

The first version of the WVI HW causes some problems
when connecting to the Volvo demo ECU using the CAN
bus. Seconds after connecting our WVI to the demo ECU, the
latter got caught in a reset loop due to a bad CAN bus state.
After investigating and fixing the problem by replacing the
CAN transceiver chips, we are now able to connect our WVI
(revision 2) to the demo ECU and install new SW versions on
it without any problems.

The SW update process for the Volvo ECU is done in two
steps. First the Secondary Bootloader (SBL) is transferred to
the ECU and then a UDS command is used to launch this
SBL on the latter. In the second step, the actual application
binary is transferred and installed on the ECU. Our framework
support both the use of an SBL and the application binary as
well as an approach, where the application binary is directly
installed without using an SBL.

In Table II the times needed to transfer the SBL and the
application from the DT to the WVI and then from the WVI
to the ECU are shown. The table shows that the wireless
data transfer (including data transfer, integrity check, and
acknowledgments) is 12 times faster then the wired one using
the CAN bus. Thus, it make sense that the WVI autonomously
control the data transfer to the ECU once the binary was
received from the DT (i.e., no permanent wireless connection

144

Paper D – 21st International Conference on Emerging Technologies and Factory
Automation

TABLE II
TIME NEEDED TO TRANSFER THE BINARIES FROM THE DT TO THE WVI
VIA THE IEEE 802.11S LINK AND THEN SEND IT TO THE ECU VIA CAN

Binary type Binary size Time on 11s link Time on CAN
SBL 67KB 0.503s 6.268s
Application 375 KB 2.527s 30.664s

to the DT needed). The WVI then informs the DT when the
SW is installed on the ECU successfully or any problems
occur.

VII. CONCLUSION

In this paper we proposed a generic framework enabling
secure and efficient wireless SW updates for vehicles. The
framework is designed such that it can fulfill the needs of
several application scenarios: vehicle development, vehicle
assembly line, vehicle maintenance, and wireless remote up-
dates. The proposed framework enables parallel SW updates,
where the SW of several vehicles is updated simultaneously.
We also describe the properties and characteristics of the
IEEE 802.11s standard and its applicability for performing
wireless SW updates. Furthermore, we describe our approach
to enable secure automotive SW updates and especially focus
on the resulting security concept.

We are currently working on the extension and improvement
of the open11s implementation with specific focus on reliable
and secure multicasts and the stability of the paths in the
network. The revised version of open11s will then be used
to evaluate the performance of our system w.r.t. parallel SW
updates.

ACKNOWLEDGMENT

We are particularly grateful to our colleagues from Volvo
Trucks for their great support regarding the demo ECU.

The research from DEWI project (www.dewi-project.eu)
leading to these results has received funding from the
ARTEMIS Joint Undertaking under grant agreement n◦

621353. The authors acknowledge the financial support of the
COMET K2 - Competence Centres for Excellent Technologies
Programme of the Austrian Federal Ministry for Transport,
Innovation and Technology (BMVIT), the Austrian Federal
Ministry of Science, Research and Economy (BMWFW), the
Austrian Research Promotion Agency (FFG), the Province of
Styria and the Styrian Business Promotion Agency (SFG).

REFERENCES

[1] IEEE, “Local and metropolitan area networks-Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY):Amendment
10: Mesh Networking,” IEEE, Tech. Rep., 2011.

[2] M. Steger, M. Karner, J. Hillebrand, W. Rom, E. Armengaud, M. Hans-
son, C. A. Boano, and K. Romer, “Applicability of ieee 802.11s for au-
tomotive wireless software updates,” in Telecommunications (ConTEL),
2015 13th International Conference on, July 2015, pp. 1–8.

[3] Redbend Software, “Updating Car ECUs Over-The-Air (FOTA),” White
Paper, pp. 1–14, 2011.

[4] M. S. Idrees, H. Schweppe, Y. Roudier, M. Wolf, D. Scheuermann, and
O. Henniger, “Secure automotive on-board protocols: A case of over-
the-air firmware updates,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6596 LNCS, pp. 224–238, 2011.

[5] D. K. Nilsson and U. E. Larson, “Secure firmware updates over the air
in intelligent vehicles,” IEEE International Conference on Communica-
tions, pp. 380–384, 2008.

[6] D. Nilsson, P. Phung, and U. E. Larson, “Vehicle ECU classification
based on safety-security characteristics,” Road Transport Information
and Control - RTIC and ITS United Kingdom Members’ Conference,
IET, pp. 1–7, 2008.

[7] S. M. Mahmud, S. Shanker, and I. Hossain, “Secure software upload in
an intelligent vehicle via wireless communication links,” in Intelligent
Vehicles Symposium. Proceedings. IEEE, June 2005, pp. 588–593.

[8] N. Gabe, “Over-the-air updates on varied paths,” Automotive News,
2016-01-25.

[9] D. T. Tuan, S. Sakata, and N. Komuro, “Priority and admission control
for assuring quality of I2V emergency services in VANETs integrated
with Wireless LAN Mesh Networks,” ICCE 2012, pp. 91–96, 2012.

[10] S. Chakraborty and S. Nandi, “IEEE 802.11s mesh backbone for
vehicular communication: Fairness and throughput,” IEEE Transactions
on Vehicular Technology, vol. 62, no. 5, pp. 2193–2203, 2013.

[11] W. K. Tan, S.-G. Lee, J. H. Lam, and S.-M. Yoo, “A security analysis
of the 802.11s wireless mesh network routing protocol and its secure
routing protocols,” Sensors, vol. 13, no. 9, p. 11553, 2013.

[12] M. S. Islam, M. A. Hamid, and C. S. Hong, “SHWMP: A Secure Hybrid
Wireless Mesh Protocol for IEEE 802.11s Wireless Mesh Networks,” in
Transactions on Computational Science VI. Springer Berlin Heidelberg,
2009, pp. 95–114.

[13] J. Ben-Othman and Y. I. Saavedra Benitez, “IBC-HWMP: a novel secure
identity-based cryptography-based scheme for Hybrid Wireless Mesh
Protocol for IEEE 802.11s,” Concurrency and Computation: Practice
and Experience, vol. 25, no. 5, pp. 686–700, 2013.

[14] M. Sbeiti, A. Wolff, C. Wietfeld, and I. Technology, “PASER: Position
Aware Secure and Efficient Route Discovery Protocol for Wireless
Mesh Networks,” in International Conference on Emerging Security
Information, Systems and Technologies - SECURWARE, 2011.

[15] M. Sbeiti and C. Wietfeld, “One stone two birds: On the security and
routing in wireless mesh networks,” in Wireless Communications and
Networking Conference (WCNC), 2014 IEEE, April 2014.

[16] M. Steger, M. Karner, J. Hillebrand, W. Rom, and K. Romer, “A Security
Metric for Structured Security Analysis of Cyber-Physical Systems
Supporting SAE J3061,” in CPSData – Second International Workshop
on modeling, analysis and control of complex Cyber-Physical Systems,
2016, pp. 1–8.

[17] SAE, “SAE J3061: Surface Vehicle Recommended Practive - Cybersecu-
rity Guidebook for Cyber-Physical Vehicle Systems,” SAE International,
Tech. Rep., 2016.

[18] ISO, “Road vehicles Unified diagnostic services (UDS) Specification
and requirements,” ISO 2006, Tech. Rep., 2006.

[19] W. Rom, P. Priller, J. Koivusaari, M. Komi, R. Robles, L. Dominguez,
J. Rivilla, and W. Van Driel, “DEWI – Wirelessly into the Future,”
in 2015 Euromicro Conference on Digital System Design (DSD), Aug
2015, pp. 730–739.

[20] G. R. Hiertz, D. Denteneer, S. Max, R. Taori, J. Cardona, L. Berlemann,
and B. Walke, “IEEE 802.11s: The WLAN mesh standard,” IEEE
Wireless Communications, pp. 154–160, 2010.

[21] “open80211s – An open-source implementation of the
recently ratified IEEE 802.11s wireless mesh standard,”
http://open80211s.org/open80211s/.

[22] B. Potter, “Microsoft SDL threat modelling tool,” Network Security, pp.
15–18, 2009.

[23] I. Garitano, S. Fayyad, and J. Noll, “Multi-metrics approach for security,
privacy and dependability in embedded systems,” Wirel. Pers. Commun.,
vol. 81, no. 4, pp. 1359–1376, Apr. 2015.

[24] J. Noll, I. Garitano, S. Fayyad, E. Asberg, and H. Abie&, “Measurable
security, privacy and dependability in smart grids,” Journal of Cyber
Security, vol. 3, pp. 371–398, 2015.

[25] D. Harkins, “Simultaneous authentication of equals: A secure, password-
based key exchange for mesh networks,” in Second International Con-
ference on Sensor Technologies and Applications. SENSORCOMM ’08.,
Aug 2008, pp. 839–844.

[26] M. Steger, C. Boano, M. Karner, J. Hillebrand, W. Rom, and K. Romer,
“SecUp: Secure and Efficient Wireless Software Updates for Vehicles,”
in Under Submission, 2016, pp. 1–8.

145

Chapter 9 – Publications

Paper E

M. Steger, A. Dorri, S.S. Kanhere, K. Römer, R. Jurdak, and M. Karner. Secure Wire-
less Automotive Software Updates using Blockchains – A Proof of Concept.
In Proceedings of the 21st International Forum on Advanced Microsystems for Automotive
Applications (AMAA)., pages 137–149. Berlin, Germany. September 2017.

Summary. In this paper an automotive security architecture utilizing Blockchain is
proposed. The proposed architecture is able to tackle the implicated security and privacy
challenges of future connected vehicles. The Blockchain-based security architecture can be
utilized to perform over-the-air updates for smart vehicles remotely as well as to securely
distribute the latest software to service centers or vehicle assembly lines where the latest
software image is installed on the ECU of a vehicle locally. The proposed architecture
ensures a secure as well as tamper-proof data exchange and protect the privacy of the
end user. Thus, the proposed security architecture is not only applicable for protecting
wireless automotive software updates but can also be utilized in a more general manner
to secure a wide range of (future) automotive services. The proposed architecture is
evaluated using a proof-of-concept implementation of a wireless software update system
providing a secure as well as efficient communication between all involved parties. This
implementation is used to i) show the applicability of a Blockchain-based architecture for
wireless automotive software updates, ii) analyze the packet overhead of the architecture
due to the use of Blockchain, iii) highlight its advantages compared to centralized (e.g.,
certificate-based architecture), and iv) evaluate the added latency compared to locally
performed wireless software updates.

My contributions. I am one of the main authors of this paper and wrote several sections
in collaboration and discussion with the co-authors. In particular, I developed the proof-
of-concept implementation of the Blockchain architecture as well as a certificate-based
architecture used as baseline system, and carried out the architecture evaluation (including
a comparison with the baseline system). Ali Dorri significantly contributed to this paper
by providing all his expertise about the Blockchain and played a vital role when defining
the blockchain-based security architecture. Furthermore, he supported the development
of the proof-of-concept implementation by providing input w.r.t. to Blockchain internals.

c©2017 Springer International Publishing.
ISBN: 978-3-319-66972-4.
DOI: 10.1007/978-3-319-66972-4 12.

Link: https://doi.org/10.1007/978-3-319-66972-4_12.

Copyright: From the Springer License Terms and Conditions:

146

https://doi.org/10.1007/978-3-319-66972-4_12

Paper E – 21st International Forum on Advanced Microsystems for Automotive
Applications

• “With reference to your request to reprint in your thesis material on which
Springer Science and Business Media control the copyright, permission is
granted, free of charge. [...]”

• “This License includes use in an electronic form, provided its password protected
or on the University’s Intranet or repository. [...]”

• “Permission free of charge on this occasion does not prejudice any rights we might
have to charge for reproduction of our copyrighted material in the future.”

• “You may not alter or modify the material in any manner. Abbreviations, ad-
ditions, deletions and/or any other alterations shall be made only with prior
written authorization of the author(s) and/or Springer Science + Business Me-
dia.”

147

Chapter 9 – Publications

Secure Wireless Automotive Software
Updates Using Blockchains: A
Proof of Concept

Marco Steger, Ali Dorri, Salil S. Kanhere, Kay Römer, Raja Jurdak
and Michael Karner

Abstract Future smart vehicles will employ automotive over-the-air updates to
update the soft ware in the embedded electronic control units. The update process
can affect the safety of the involved users, thus requires a comprehensive and
elaborate security architecture ensuring the confidentiality and the integrity of the
exchanged data, as well as protecting the privacy of the involved users. In this
paper, we propose an automotive security architecture employing Blockchain to
tackle the implicated security and privacy challenges. We describe our
proof-of-concept implementation of a Blockchain-based software update system,
use it to show the applicability of our architecture for automotive systems, and
evaluate different aspects of our architecture.

Keywords Automotive security architecture � Blockchains � Wireless software
update � Over-the-air updates � Security � Privacy � Scalability

M. Steger (&) � M. Karner
Virtual Vehicle Research Center, Inffeldgasse 21/a, 8010 Graz, Austria
e-mail: marco.steger@v2c2.at

M. Karner
e-mail: michael.karner@v2c2.at

A. Dorri � S.S. Kanhere
School of Computer Science and Engineering (CSE), University of New South Wales
(UNSW), Sydney, Australia
e-mail: alidorri.ce@gmail.com

S.S. Kanhere
e-mail: salil.kanhere@unsw.edu.au

K. Römer
Institute for Technical Informatics, Graz University of Technology, Graz, Austria
e-mail: roemer@tugraz.at

R. Jurdak
Commonwealth Scientific and Industrial Research Organisation (CSIRO), DATA61,
Brisbane, Australia
e-mail: Raja.Jurdak@data61.csiro.au

© Springer International Publishing AG 2018
C. Zachäus et al. (eds.), Advanced Microsystems for Automotive Applications 2017,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-66972-4_12

137

c©2018 Springer-Verlag Berlin Heidelberg. Reprinted, with kind per-
mission from Springer Science and Business Media. Originally published in
Advanced Microsystems for Automotive Applications 2017: Smart Systems
Transforming the Automobile, Lecture Notes in Mobility, 2018.

148

Paper E – 21st International Forum on Advanced Microsystems for Automotive
Applications

1 Introduction

Future vehicles will utilize wireless communication networks to interact with other
vehicles and road users in close proximity, roadside units like traffic lights and
overhead displays at motorways, as well as the Internet. Thereby future connected
vehicles will become part of the Internet of Things (IoT) and offer a plethora of
beneficial services and applications to the users (e.g., the vehicle owner and driver)
as well as the vehicle manufacturers (i.e., the OEM) and their suppliers. However,
this high degree of connectivity also raises a wide range of new security threats as
well as privacy concerns and will require a comprehensive security architecture.
The importance of the latter was recently shown by different hackers attacking
modern vehicles via their wireless interfaces (Valasek and Miller 2015; Foster et al.
2015).

Wireless over-the-air (OTA) software (SW) updates will be one of the key
features of future connected vehicles and will allow adapting or upgrading the
functionality of the vehicle or fixing bugs in the embedded SW installed on its
electronic control units (ECU) remotely (Hossain and Mahmud 2007; Khurram
et al. 2016). Such updates can be very beneficial for both the OEM (i.e., car
manufacturer) as well as the end user (i.e., the vehicle owner) as they obviate the
need for taking the vehicle to a service center to receive the latest SW version.
However, OTA updates are very critical with repect to security as they require full
access to the in-vehicle communication system to allow the installation of new SW
images on all ECUs of a vehicle.

Because of their high potential and impact, automotive OTA updates have
increasingly attracted the attention of the research community. Researchers have
proposed various security architectures and concepts allowing trustworthy OTA
updates for vehicles (Hossain and Mahmud 2007; Idrees et al. 2011; Nilsson and
Larson 2008). In particular, existing work mainly focus on protecting a vehicle
from unauthorized access and the injection of malicious SW. Other authors propose
methods allowing secure and efficient SW updates performed locally in a service
center or during vehicle assembly Steger et al. (2016), (2016). However, none of the
aforementioned solutions address secure OTA distribution of SW from the OEM to
all concerned vehicles while ensuring the privacy of the end user. Such a SW
distribution process requires a highly scalable security architecture protecting the
confidentiality as well as the integrity of the transferred data and furthermore
retaining the privacy of the involved users.

In this paper, we propose an automotive security architecture utilizing
Blockchain (BC) to tackle the implicated security and privacy challenges of future
connected vehicles. Our BC-based security architecture can be utilized to perform
OTA updates for smart vehicles remotely as well as to securely distribute the latest
SW to service centers or vehicle assembly lines where the latest SW image is
installed on the ECU of a vehicle locally. The proposed architecture ensures a
secure as well as tamper-proof data exchange and protect the privacy of the end

138 M. Steger et al.

149

Chapter 9 – Publications

user. Thus, our architecture is not only applicable for protecting wireless automo-
tive SW updates, but can also be utilized in a more general manner to secure a wide
range of (future) automotive services.

The proposed architecture is evaluated using a proof-of-concept implementation
of a wireless SW update system providing a secure as well as efficient communi-
cation between all involved parties: the SW provider (e.g., an automotive supplier)
creating the latest SW, the OEM verifying, adapting (e.g., to fit specific vehicle
variant) and finally distributing the SW, the cloud storage where the SW is stored,
local SW update providers such as a service center, and the connected vehicle itself.
We use this implementation to (i) show the applicability of our BC-based archi-
tecture for wireless automotive SW updates, (ii) analyze the packet overhead of the
architecture due to the use of BC, (iii) highlight its advantages compared to cen-
tralized (e.g., certificate-based architecture), and (iv) evaluate the added latency
compared to locally performed wireless SW updates.

2 Background

In this chapter, we present an overview of wireless SW updates and thereby
describe the technical process as well as the scenarios where these updates can be
most beneficial. Furthermore, we give some technical insights on BC, its initial
usage as essential part of the crypto-currency Bitcoin, and explain required adap-
tions to use it in typical IoT as well as automotive applications.

2.1 Wireless Automotive Software Updates

A smart vehicle consists of dozens of ECUs performing different tasks such as
controlling the window lifters, the engine, the windscreen wipers, etc. These ECUs
are interconnected to each other via the in-vehicle communication system realized
using different wired buses (e.g., CAN or LIN). A central vehicle gateway
(CGW) is used to interconnect these bus systems as shown in Fig. 1. To wirelessly
communicate with the vehicle and all its integrated ECUs, the vehicle has to be
equipped with a Wireless Vehicle Interface (WVI) allowing full access to the
in-vehicle communication system. Hence, a WVI is also required when a new SW
version should be installed on one of the ECUs of a vehicle.

To perform a wireless SW update, the so-called Diagnostic Tester (DT), which
possess all required keys to authorize the SW update and the new SW version,
connects to the vehicle using its WVI. In the next step, the DT can use automotive
diagnostic protocols such as Unified Diagnostic Services (UDS) to (i) initialize and
authorize the SW update, (ii) transfer the binary to the ECU, and (iii) install it on the
control unit. This procedure can be used locally in a service center, where the DT
and the vehicle with a connected WVI are interconnected using a wireless local area

Secure Wireless Automotive Software Updates using Blockchains … 139

150

Paper E – 21st International Forum on Advanced Microsystems for Automotive
Applications

network such as Wi-Fi, but also remotely, where a diagnostic service of the OEM
communicates with the WVI via the Internet. Both scenarios are sketched in Fig. 1.
Local SW updates will mainly take place in service centers during vehicle main-
tenance, in the vehicle assembly line, and during vehicle development, where
engineers will test and compare new SW versions.

A SW update for a vehicle already out in the field (i.e., already sold) is often
required due to a (critical) bug in the automotive SW installed on one of its ECUs.
The SW of an automotive ECU is often implemented by a supplier company and
not by the OEM itself. Thus, in case of a bug fix, the latest (i.e., fixed) SW version
is created by the supplier, hereinafter referred to as SW Provider (SWP), then sent
to the OEM, and finally distributed to all concerned vehicles. The SW update
procedure can either be directly handled between the OEM and the vehicle, or the
latest SW is first sent to a service center, where the SW is then installed on the ECU
locally. The described example is also sketched in Fig. 1.

2.2 Blockchains

BC technology was first introduced in 2008 as essential part of Bitcoin (Nakamoto
2008), the first cryptocurrency network. Since then, BC have been broadly used in
nonmonetary applications (e.g., healthcare data exchange (Yue et al. 2016)) due to
its security, privacy, and decentralization features. The secure nature of BC origi-
nates from the consensus algorithm employed for appending new blocks into the
BC. The privacy of the involved users is ensured by utilizing changeable public
keys (PK) representing the user. The BC is managed in a distributed fashion by all
participating nodes which form an overlay network, thus not requiring any central
management.

In a classical BC system the integration of a new block into the BC is done by the
consensus algorithm employed to solve computational- and/or memory-expensive,
cryptographic puzzles. Such classical systems, however, suffer from some significant

Fig. 1 A new SW version is created by the SW provider (SWP), verified and distributed by the
OEM and finally installed on the concerned ECU of a vehicle

140 M. Steger et al.

151

Chapter 9 – Publications

limitations mainly caused by the extensive consensus algorithm, namely: (i) high
resource consumption, and (ii) high latency.

These limitations are especially critical for a broad range of embedded appli-
cations, IoT services, and also resource-constraint ECUs. To tackle the aforemen-
tioned limitations, we developed LSB, a Lightweight Scalable BC (Dorri et al.
2017). In LSB, the resource-expensive consensus algorithm is replaced by a
timing-based algorithm. Furthermore, LSB divides the network into clusters, which
distributedly manage the public BC. Each cluster consists of numerous cluster
members (CM) and is managed by one cluster head (CH). Each CH maintains a
local copy of the BC and is interconnected to other CHs by the overlay network.

The BC consists of chained blocks containing different and application-specific
transactions. To chain the blocks, the newest block contains the hash of the last
chained block. A new block is created once the running pool, a local data structure
of the CH containing new transactions (i.e., not included in a block yet), has
reached a predefined size. In the next step, the new block is broadcasted to the other
CHs using the overlay network and finally added to the BC of the other CHs. More
detailed descriptions on this process can be found in Dorri et al. (2017).

3 Architecture Enabling Wireless Software Updates

Wireless automotive SW updates must be performed in a secure and dependable
way as failed, malfunctioning, or malicious updates will significantly influence the
operation of the vehicle and therefore the safety of the passengers. Besides the
safety aspect with respect to the involved users (i.e., vehicle driver and owner),
privacy considerations are also relevant in certain SW update scenarios (especially
remote updates). A suitable automotive security architecture must ensure that a
vehicle can receive the latest SW for its ECUs without exposing unrelated personal
information about the vehicle and its users. Furthermore, such an architecture must
protect the exchanged data at any time to (i) keep required (authorization) keys,
mainly required to unlock the ECU, secret, (ii) maintain the confidentiality of the
SW image, and (iii) ensure the integrity of the transferred data to avoid manipu-
lation. These requirements are valid for the entire chain shown in Fig. 1: first the
image is sent from the SWP to the OEM, second the SW image is forwarded to
concerned vehicles and local SW update providers, and third the image is installed
on the ECU (e.g., using a local wireless network in a service center).

While the local update scenario is already covered by security concepts such as
Steger et al. (2016), the security of the SW distribution from a SWP to an OEM and
then further to the vehicles is still an open issue. Some OEMs like Tesla (Gabe
2016) currently perform OTA updates using VPN tunnels between the OEM server
infrastructure and the vehicle itself. Although this approach is suitable to protect the
transferred data, it also requires a dedicated point-to-point link between the OEM
and the vehicle which can potentially be critical with respect to the privacy of the
end user. Other automotive security architectures use certificates to establish trust

Secure Wireless Automotive Software Updates using Blockchains … 141

152

Paper E – 21st International Forum on Advanced Microsystems for Automotive
Applications

within the network (Woo et al. 2016; Aslam and Zou 2009) or (Mallissery et al.
2014). However, we believe that these centralized approaches are not suitable for
highly distributed scenarios encompassing thousands of vehicles around the globe
and therefore propose to use a BC-based automotive security architecture instead.

3.1 Blockchain-Based Architecture Securing Wireless
Software Updates

Our BC-based architecture described in this section is able to fulfill the afore-
mentioned security, privacy, and scalability requirements. In the following, we will
focus on the secure SW image distribution from the SWP and the OEM to the target
vehicles as shown in Fig. 1. Our architecture presented in Fig. 2, protects the
transfer of SW images and also ensures the privacy of the involved users.

Our architecture is based on the design presented in Dorri et al. (2017).
However, several adaptations were required to ensure that our architecture can meet
the needs of the automotive domain. Additionally, different stakeholders and roles
are involved in automotive scenarios compared to typical smart home applications.

As shown in Fig. 2, these roles are SW providers, OEMs, cloud storages (CS),
and vehicular interfaces (VI) representing either smart connected vehicles or local
SW update providers such as service centers or vehicle assembly lines.

The cloud storage is essential for our architecture as it serves as a repository for
storing new SW images sent by the SWP or the OEM, and furthermore handles the
data download to the VIs. In our architecture, the cloud storage provides a
sophisticated authentication mechanism to ensure that only authorized entities can
write, adapt, and download a specific SW image.

All aforementioned entities are interconnected using the overlay network. This
clustered network allows unicast as well as broadcast data streams and is able to

Fig. 2 The proposed BC-based architecture to securely interconnect all involved parties

142 M. Steger et al.

153

Chapter 9 – Publications

provide suitable message flows for all different data exchanges involved in the SW
distribution process. As described in Sect. 2.2, the overlay network basically
interconnects different (e.g., geographical) clusters encompassing one CH and
numerous CMs. Thereby, a CH acts as gateway for messages sent from a CM of a
specific cluster (e.g., CM1 in cluster A) to CM or CH of another cluster (e.g., CM2
in cluster B). In our architecture, a CM and a CH can occupy specific roles such as
acting as OEM, CS, or VI. However, as a CH besides its dedicated role also has to
maintain its local BC, it is very unlikely that a vehicle would act as a CH due to its
resource constraints and the fact that a vehicle is mobile and therefore not able to be
connected to the overlay at all times. Our architecture uses two types of messages:
(i) transactions and (ii) blocks for implementing OTA updates.

Transactions are used to initialize the BC system (genesis transaction) and to
handle the SW distribution process (update transaction). The latter is required to
inform the OEM (i.e., when sent by the SWP) as well as the concerned VIs (i.e.,
when sent by the OEM) about newly available SW. Update transactions, thus, play
a vital role in our architecture as they contain required information for both the
OEMs and the VIs: it contains the identities of the SWP as well as of the OEM (i.e.,
their PKs and signatures), the transaction ID (i.e., hash representation of the
transaction), the ID of the previously created transaction (the genesis transaction for
the very first update transaction), and the metadata field. The metadata field is used
by the SWP and the OEM and includes information about the SW update itself as
well as the location where the new image is stored.

A BC-block consists of several transactions as well as a link to the previous
block that chain these blocks together. It is created every time the running pool of a
CH reaches a predefined size. Each block has a unique ID and is signed with the
private key of the creating CH. After creation, the block is broadcasted to all other
CHs of the overlay for verification and then chained to the local BC.

3.2 Employing Our Architecture to Distribute New SW

The proposed automotive security architecture can be employed to securely dis-
tribute a new SW image to the target vehicles. We will now sketch the corre-
sponding process, explain all involved steps and utilized message types, and show
that our architecture is able to protect the entire process and all involved users.

In the vehicle assembly, the OEM will store its PK on each assembled vehicle
and the vehicle will generate a secret key pair (e.g., an RSA key pair consisting of a
private and a public key). Both the PK of the OEM and the key pair will be securely
stored on the WVI in a tamper-proof storage. While a vehicle is assembled it can
also create a genesis transaction, an initial transaction required to participate in the
BC. This process can be highly OEM-dependent and will therefore not be described
in more detail. However, we suggest that this transaction include information about
the vehicle type (e.g., vehicle variant) and that the transaction is signed by the
OEM. Or, as an alternative, a dedicated token including the aforementioned data

Secure Wireless Automotive Software Updates using Blockchains … 143

154

Paper E – 21st International Forum on Advanced Microsystems for Automotive
Applications

and the signature of the OEM is created at this point in time. This transaction/token
is required later to request new SW stored on a cloud storage.

A SW distribution process is triggered by a SWP when a new image is created
potentially due to a necessary bug fix. Once the new SW is developed, the SWP will
create a store request including the signature of the SWP and send it to the cloud
storage. The latter will verify the request, locally initialize the process, and send a store
response including the signature of the storage and a file descriptor required as refer-
ence for the data upload process back to the SWP. Please note that the SW can also be
created by the OEM itself. In this case the OEM would upload the SW to the CS. The
rest of the process is similar to that described above, except that the OEM will take over
the tasks performed by the SWP. Once the data is stored on the cloud storage, the SWP
creates an update transaction including information about the location of the image on
the cloud storage, adds the PK of the concerned OEM, signs the transaction with its
private key and finally broadcasts the transaction to the overlay network. Please note
that the transaction is not valid yet as the second signature is missing and therefore it is
not added in the running pool of the CHs.

In the next step the OEM receives the update transaction, verifies it, validates,
and if required adapts the SW image stored on the cloud storage, and finally also
signs the update transaction. The transaction which is now valid is again broad-
casted to the overlay and locally stored by the CHs. The CHs will also send the
transaction to all CMs in its cluster to inform vehicles about the new SW.

Finally, the valid transaction is received by the target VIs (i.e., vehicles or local
SW update providers). After validating the transaction and parsing the metadata, the
VIs will send a signed download request including the token signed by the OEM
(e.g., stored on the WVI when a vehicle was assembled) to the cloud storage to
receive the new SW version. The CS will validate the request, use the token to
verify that the vehicle is applicable for the new SW, and is finally utilizing a unicast
data stream to send the image to the VI, where the SW is installed.

4 Proof of Concept

In this section, we describe the implementation of the BC-based security archi-
tecture presented in the previous section. The implemented framework consists of
two main building blocks (Fig. 3). First, the overlay network used by the SWP to
send the latest SW to the OEM and employed by the OEM to distribute the verified
SW version to the concerned vehicles as well as local distributors (e.g., service
centers). Second, the local update process required to install the latest SW on the
ECU. This step is executed by the WVI, which receives the latest SW either from
the OEM via a remote connection or locally from a DT.

The implementation of the overlay encompasses the development of the CH and
the CM as well as a local test suit to set up overlay test topologies (mainly on local
host) consisting of several instances of the CHs and CMs. All the above is
implemented in Java.

144 M. Steger et al.

155

Chapter 9 – Publications

Our implementation allows us to evaluate different scenarios for different
overlay topologies and numbers of VIs. We have also implemented a baseline
system which is similar to the state of the art, wherein a dedicated Certificate
Authority (CA) is employed to verify certificates used by the SWP as well as the
OEM.

The local SW update building block is based on the wireless automotive SW
update framework we presented in Steger et al. (2016). This framework allows to
perform local SW updates in a secure and dependable way by employing IEEE
802.11 s to interconnect the DT and the vehicle with an integrated or connected
WVI (via OBD).

Our WVI prototype, as shown in Fig. 4a, consists of a BeagleBone Black board
(BBB), an additional communication cape (i.e., a printed circuit board allowing the
BBB to connect to a vehicle via CAN/OBD), and the corresponding SW imple-
mentation (Java and C). The DT prototype is also realized in Java and can therefore
be used on a normal PC but also on a BBB. Both prototypes provide different SW
update mechanisms and allow different diagnostic functions.

Fig. 3 Proof-of-concept implementation encompassing prototypes of the CHs and the CMs. The
overlay control allows to design different test scenarios by utilizing serval CH and CM instances,
assigning specific roles to these instances and defining the topology of the overlay

Fig. 4 a The WVI prototype based on a BeagleBone Black and our developed communication
cape; b target ECU: Infineon AURIX ECU in the AURIX application kit TC277 TFT

Secure Wireless Automotive Software Updates using Blockchains … 145

156

Paper E – 21st International Forum on Advanced Microsystems for Automotive
Applications

The vehicles’ WVI and the DT are interconnected using an IEEE 802.11 s mesh
network. We chose this protocol as the mesh characteristics of an IEEE 802.11 s
network increases the flexibility as well as the reliability of the network due to its
multi-hop capability and the resulting redundancy.

As target ECU for the SW update we use an Infineon AURIX ECU, an auto-
motive multi-core ECU, assembled in the AURIX application kit TC277 (Fig. 4b).

5 Evaluation

We used our proof-of-concept implementation to show the applicability of our
architecture to fulfill the needs of an automotive OTA SW update system. Thereby,
we evaluated the (packet) overhead when using BC and compared the duration of
the BC-based SW distribution with the time required to install a SW update locally
on an ECU. Furthermore, we compared our architecture with the baseline
certificate-based system outlined in Sect. 5. We used this evaluation to compare the
total number of packets exchanged as well as the latency incurred in the SW
distribution process.

5.1 Overhead Due to the Use of Blockchains

In the first evaluation step we analyzed the overhead added by the BC. Therefore, we
collected the number of exchanged packets and grouped them into data-related,
BC-related, and packets required to initialize the system. The overhead is affected by
the number of VIs, the size of the binary, and the number of performed updates. Our
evaluation for a 32 KB binary and 100 SW updates per VI reveals an added overhead
of 3.4% for 20 VIs connected to the overlay and up to 7.3% if only 1 VI is updated.
Neglecting the initialization packets, the overhead is only 3.3% for twenty VIs.

5.2 Latency Comparison: Local SW Update Versus SW
Distribution Using BC

In this experiment, we compared the latency added by the BC-based SW distri-
bution and the latency of the SW update process itself. For this, we measured the
latency of a local wireless SW update using the framework presented in Steger et al.
(2016) as well as the time required for the last step of a remote SW update, where a
new SW update is installed on an ECU by the WVI using the vehicle bus system.

The results are presented in Table 1 and show that the installation of a new
image on the ECU using the wired in-vehicle bus system takes more than five times

146 M. Steger et al.

157

Chapter 9 – Publications

longer than the SW distribution from an emulated SWP to the VI using our
BC-based system and that the SW distribution process using our experimental setup
is about six times faster than the local SW update process. Note that the SW
distribution was performed using a LAN network architecture. Therefore, the SW
distribution latency does not include any additional latency caused by typical
Internet links. The latency of local SW update and the SW installation can also vary
depending on the used ECU, the employed security mechanisms, etc.

5.3 Comparison of BC- and Certificate-Based Approaches

We evaluated the number of exchanged packets as well as the latency of our
BC-based system compared to a certificate-based approach. Therefore, we used an
overlay network consisting of up to ten HW nodes (several BBBs, Raspberry Pi3’s,
and a Laptop) interconnected by the overlay network and performed measurements
using different network topologies and different numbers of VIs.

The evaluation results presented in Figs. 5 and 6 show that both approaches have
quite similar properties with respect to the added latency as well as the total number
of exchanged packets and that our BC-based approach is slightly better than
certificated-based approach in both aspects.

The performed experiments and measurements showed that (i) BC approxi-
mately add 3% packet and 14% latency overhead compared to a pure OTA SW
update, (ii) BC has lower latency and uses fewer packets than a certificate-based
system, and (iii) show the applicability of our architecture for automotive
applications.

Table 1 Comparison of the latency of the SW distribution, a local wireless SW update, and the
installation of a new SW image on an ECU performed by the WVI

SW distribution Wireless local update WVI installation

2682.3 ± 8.3 ms 16271.0 ± 323.4 ms 13831.7 ± 228.3 ms

Fig. 5 Exchanged packet count comparison with respect to the number of VIs and number of updates

Secure Wireless Automotive Software Updates using Blockchains … 147

158

Paper E – 21st International Forum on Advanced Microsystems for Automotive
Applications

6 Conclusion

In this paper, we proposed a security architecture based on BC for smart-connected
vehicles able to support a broad range of (future) automotive applications and
services. Our architecture provides a secure and trustworthy interconnection
between all involved parties while ensuring the privacy of the involved users. We
evaluated our architecture using a proof-of-concept implementation of a wireless
SW update system and use the latter to show the applicability of our architecture as
well as its benefits compared to a certificate-based system. We plan to further refine
our architecture, to improve our implementation, and to perform more detailed
evaluations employing more nodes in the next months.

References

Aslam B, Zou C (2009) Distributed certificate and application architecture for VANETs. In: IEEE
military communications conference, pp 1–7

Dorri A, Kanhere S, Jurdak R (2017) Towards an optimized blockchain for IoT. In: Proceedings of
the second international conference on internet-of-things design and implementation (IoTDI
’17). ACM, pp 173–178

Foster D, Prudhomme A et al (2015) Fast and vulnerable: a story of telematic failures. In: USENIX
workshop on offensive technologies

Gabe N (2016) Over-the-air updates on varied paths, automotive news
Hossain I, Mahmud S (2007) Analysis of a secure software upload technique in advanced vehicles

using wireless links. In: Intelligent Transportation Systems Conference, pp 1010–1015
Idrees M, Schweppe H et al (2011) Secure automotive on-board protocols: a case of over-the-air

firmware updates. Lecture Notes in Computer Science. LNCS, vol 6596, pp 224–238
Khurram M, Kumar H et al (2016) Enhancing connected car adoption: security and over the air

update framework. In: IEEE world forum on internet of things (WF-IoT), vol 3, pp 194–198
Mallissery S, Pai M et al (2014) Improving the PKI to build trust architecture for VANET by using

short-time certificate mngt. and Merkle Signature Scheme. In: Asia-Pacific conference on
computer aided system engineering, pp 146–151

Fig. 6 Comparison of the SW distribution duration for different numbers of involved VIs

148 M. Steger et al.

159

Chapter 9 – Publications

Nakamoto S (2008) Bitcoin: a peer-to-peer electronic cash system. http://www.bitcoin.org/bitcoin.
pdf

Nilsson D, Larson U (2008) Secure firmware updates over the air in intelligent vehicles. In: IEEE
conference on communications, pp 380–384

Steger M, Karner M et al (2016) Generic framework enabling secure and efficient automotive
wireless SW updates. In: IEEE international conference on emerging technologies and factory
automation (ETFA), vol 21, pp 1–8

Steger M, Karner M et al (2016) SecUp: secure and efficient wireless software updates for
vehicles. In: IEEE conference on digital system design (DSD), pp 628–636

Valasek C, Miller C (2015) Remote exploitation of an unaltered passenger vehicle, White Paper,
p 93

Woo S, Jo H et al (2016) A practical security architecture for in-vehicle CAN-FD. IEEE Trans
Intell Transp Syst 17:2248–2261

Yue X, Wang H et al (2016) Healthcare data gateways: found healthcare intelligence on
blockchain with novel privacy risk control. J Med Syst 40:1–8

Secure Wireless Automotive Software Updates using Blockchains … 149

160

Paper F – 20th International Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems

Paper F

M. Steger, C.A. Boano, K. Römer, M. Karner, J. Hillebrand, and W. Rom. CESAR:
a Testbed Infrastructure to Evaluate the Efficiency of Wireless Automotive
Software Updates. In Proceedings of the 20th International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM)., pages 311–315. Mi-
ami, USA. November 2017.

Summary. This paper proposes CESAR, a configurable testbed infrastructure that allows
to evaluate the effectiveness and efficiency of wireless automotive software updates in
an automated and repeatable way. CESAR allows to investigate the software update
procedure in its entirety, to emulate different software update scenarios, and to evaluate
the impact of different network as well as security configurations on the updates efficiency.
The proposed testbed infrastructure can be further used to analyze different ECU types,
software update techniques (e.g., the parallel or partial transfer of a firmware), and wireless
communication standards (e.g., the use of single-hop or multi-hop networks). A series of
case studies presented in this paper are illustrating how CESAR can be used to evaluate
the impact of different security configurations, update techniques, and network protocols
on the efficiency of an automotive software update process.

My contributions. I am the main author of this paper and developed the entire testbed
infrastructure as well as carried out the presented case studies using CESAR. I wrote
the vast majority of this paper in collaboration and discussion with the co-authors, who
provided detailed feedback regarding the design of the testbed infrastructure as well as
the corresponding descriptions. Carlo Boano was significantly supporting this paper by
improving the structure of the paper, by helping me defining several case studies, and by
(re-)writing and improving certain sections of the paper (i.e., related work and introduc-
tion).

c©2017 ACM.
ISBN: 978-1-4503-5162-1.
DOI: 10.1145/3127540.3127580.

Link: https://dl.acm.org/citation.cfm?id=3127580.

Copyright: According to the ACM author rights, authors can include partial or
complete papers of their own (and no fee is expected) in a dissertation as long as
citations and DOI pointers to the Versions of Record in the ACM Digital Library are
included. Authors can use any portion of their own work in presentations and in the
classroom (and no fee is expected). Authors can post the accepted, peer-reviewed
version prepared by the author – known as the ”pre-print” – to the following sites,
with a DOI pointer to the definitive version in the ACM Digital Library:

161

https://dl.acm.org/citation.cfm?id=3127580

Chapter 9 – Publications

• On the author’s own home page;

• On the author’s institutional repository;

• In any repository legally mandated by the agency funding the research on which
the work is based.

162

Paper F – 20th International Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems

CESAR: A Testbed Infrastructure to Evaluate the Efficiency
of Wireless Automotive Software Updates

Marco Steger‡, Carlo A. Boano†, Kay Römer†, Michael Karner‡, Joachim Hillebrand‡ and Werner Rom‡
‡Virtual Vehicle Research Center, Graz, Austria

†Institute for Technical Informatics, Graz University of Technology, Austria
{marco.steger, michael.karner, joachim.hillebrand, werner.rom}@v2c2.at – {cboano, roemer}@tugraz.at

ABSTRACT
Connected vehicles allow to update the software (SW) running on
their integrated electronic control units (ECUs) over-the-air. Such
updates are complex procedures that involve several steps, such
as the authentication with a remote device, the secure and reliable
wireless transfer of the new binary, as well as its installation and
verification on the target ECU. Each of these aspects affects the
efficiency of the entire SW update process, and it is important to
evaluate the impact of different solutions on the functionality of
a vehicle and to compare their performance on real hardware. In
this paper we present CESAR, a configurable testbed infrastructure
that allows to evaluate the efficiency of an automotive SW update
system in a highly automated way. CESAR allows to specify differ-
ent update mechanisms, security configurations, wireless protocols
used for the data transfer, and to carefully define the scenario of
interest (i.e., pin down the number of wireless vehicle interfaces, the
network topology, and the target ECU). Furthermore, CESAR can
be used to measure the efficiency of a SW update on real hardware,
and to derive insights about the weaknesses of a system under test
or about the interaction of a specific SW with a given ECU.

KEYWORDS
Automotive Software, IEEE 802.11s, OTA Updates, Testbeds.

1 INTRODUCTION
The ability to wirelessly connect a vehicle to the Internet, to the road
infrastructure, or to other vehicles, allows vehicle manufacturers
(OEMs) to provide a plethora of new safety functions, comfort
features, and services. Among others, automotive OEMs have the
possibility to remotely diagnose a vehicle, as well as to install new
SW on the ECUs over-the-air, which allows to reduce warranty
costs [12]. Besides enabling performance improvements and bug
fixes without the need of expensive vehicle recalls, wireless SW
updates allow OEMs to upgrade or enable new features remotely.

The use of over-the-air (OTA) SW updates is not only limited to
the remote download of up-to-date SW directly by the car owners
(e.g., Tesla OTA updates [4]), but can also be exploited in several
other stages of a vehicle’s lifetime: from the vehicle development
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSWiM ’17, November 21–25, 2017, Miami, FL, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5162-1/17/11. . . $15.00
https://doi.org/10.1145/3127540.3127580

and the manufacturing stage on the assembly line, to the mainte-
nance in a service center [13]. In all these scenarios, the vehicle
uses its wireless vehicle interface (WVI) to connect to a diagnostic
tester (DT) device holding the new SW binary, authorization keys,
as well as other information that is required to perform the update.
The update procedure itself can be conducted using automotive
diagnostic protocols such as Unified Diagnostic Services (UDS) [1].

Due to their potential impact, OTA updates have increasingly
attracted the attention of several researchers, who started analyzing
the vulnerabilities of automotive eco-systems [6], and providing
solutions to orchestrate secure SW updates [14]. Among others, the
research community has proposed architectures to protect a vehicle
from the injection of malicious SW [9, 10], and techniques to ensure
reliable (wireless) inter/intra-vehicle communication [15, 17]. Most
of the existing works, however, focus only on single aspects of an
automotive SW update and not on the entire update process.

Need to evaluate SW updates in their entirety. The update
procedure involves multiple steps ranging from the authentication
with the DT and the wireless data transfer, to the installation and
verification of the new binary on the target ECU. All of these aspects
are interconnected and affect the overall efficacy and efficiency of
a SW update, which should be always studied in its entirety. The
latter requires a deep investigation of the main aspects affecting the
efficiency of a SW update, such as: i) the wireless network topology
and the number of involved nodes, ii) the applied security configu-
ration, iii) the employed SW update mechanism, and iv) the target
ECU and the properties of the connection to the WVI.

Need for suitable automotive testbeds.All these aspectsmust
be evaluated in a systematic and repeatable way on real hardware
(HW) to study their inter-dependency and to show the applicability
of the tested SW update system. Towards this goal, it is necessary
that the testbed supports not only a number of WVIs, but also their
connection to one or more ECUs using automotive standard HW
and SW interfaces, as well as means to install and verify the SW
running on the ECU by means of diagnostic standards.

Our contributions. In this paper we present CESAR, a Config-
urable testbed infrastructure that allows to evaluate the effective-
ness and Efficiency of wireless automotive Software updates in an
Automated and Repeatable way. CESAR allows to investigate the
SW update procedure in its entirety, to emulate different SW update
scenarios (e.g., SW updates in a service center or in the assembly
line), and to evaluate the impact of different network as well as
security configurations on the update’s efficiency. The proposed
testbed infrastructure can be further used to analyze different ECU
types, SW update techniques (e.g., the partial transfer of firmware),
and wireless communication standards (e.g., multi-hop networks).

c©2017 ACM. Reprinted, with permission. Not for redistribution. The
definitive version was published in Proceedings of the 20th International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems (MSWiM), November 2017.

163

Chapter 9 – Publications

TN
TN

TN

TNTN

CESAR Wireless
Backbone

Local access Remote access

VPN TN

Vehicular bus

ECU

TN

ECUWVI

Testbed Control
PC (TBC)

Figure 1: CESAR architecture: TNs interconnected via a
backbone network allowing to connect ECUs or vehicles.

CESAR provides configuration profiles containing different node
configurations (emulating different real-world scenarios), sets of
parameters (e.g., key length, vehicle bus bit-rate), as well as SW
update techniques. After describing its design and implementation
in the next section, we show in Sect. 3 a series of case studies
illustrating how CESAR can be used to evaluate the impact of
different security configurations, update techniques, and network
protocols on the efficiency of an automotive SW update process.

2 CESAR: DESIGN AND IMPLEMENTATION
We describe next the design and implementation of CESAR, starting
from the general requirements of such a testbed infrastructure.

2.1 Testbed Requirements
A proper testbed infrastructure should support the evaluation of
the entire automotive SW update process and allow to study the
impact of different aspects on its efficiency while reducing manual
intervention and allowing remote access. The employed testbed
nodes must be able to support different roles (i.e., act as WVI, as
DT, or as rogue node) and should be connectable to one or more
ECUs from different vendors (which requires automotive HW/SW
interfaces, as well as diagnostic protocols on top). Furthermore, the
testbed should be able to scale up to 100 nodes while providing
multiple configuration profiles that allow the user to choose between
different network topologies and wireless communication stacks
(e.g., IEEE 802.11n or 11s). These configuration profiles should in-
clude different security configurations and allow the user to choose
between different security parameters, such as the authentication
scheme or the key length. Ideally, also the installation effort is kept
to a minimum by reusing existing network infrastructures.

2.2 Testbed Architecture
The architecture of CESAR is shown in Fig. 1: at the heart of CESAR
are several testbed nodes (TNs) connected to each other wirelessly
and to a testbed control PC (TBC) through a wired back-channel.

Testbed nodes. Each TN is configurable and can hence assume
different roles within the testbed: it can act as a DT, WVI, relay
node, or even as rogue node – a node that is compromised by an
attacker. Depending on the assigned role, a TN runs a dedicated SW
implementation on top of a given HW platform. The latter allows to
connect a TN to an ECU using automotive bus systems (e.g., CAN
or FlexRay) and easily install a new software.

ECU connection. By using automotive standards, CESAR al-
lows to connect ECUs of different manufacturers and types, hence
giving a user the ability to install SW on an ECU and to verify the
success of an update procedure. In the simplest case, where different

ECU SW versions periodically send CAN frames with different IDs,
the verification is done on the TN acting as WVI by monitoring
the CAN bus. This simple but efficient mechanism can be used for
all target ECUs, even if there is no way to adapt the bootloader or
flashing mechanism of the ECU. For more detailed tests, advanced
features like computing the hash of the entire memory on the ECU
after a SWupdate can be very beneficial. Therefore, we provide such
features on our main target ECU, which allows CESAR to monitor
the state of the ECU (via CAN) while a SW update is performed.

Configurability. CESAR provides configuration profiles allow-
ing a simple configuration of the testbed and all its nodes. A con-
figuration profile is a set of configuration files that can contain i)
specific security and/or network configurations, ii) a certain node
setting allowing to emulate specific real-world SW update scenarios,
iii) a set of system parameters such as the vehicle bus bit rate or the
employed authentication mechanism, and iv) specific SW update
mechanisms. By utilizing the TBC, a developer can easily switch
between different experimental settings and redo an experiment
later by selecting this configuration profile again.

Remote monitoring. The TBC also allows other devices to
access the testbed remotely. We developed a GUI that allows to
monitor the state of the TNs, to set basic parameters (e.g., the
wireless channel), to individually control TNs (e.g., reset TNs), and
to select specific configuration profiles for planned experiments.

Prototype testing. CESAR allows to analyze the performance
of different SW versions in a highly automated manner by storing
and administrating all developed SW prototypes in a centralized
repository. A developer can choose a specific SW version by using
a specific configuration profile: prototypes are then automatically
distributed to the TNs and locally configured.

SW architecture. The SW architecture of CESAR is shown in
Fig. 2, and encompasses the implementations of different testbed
features, the SW update system under test, and the interfaces used
to interconnect the devices and the implemented prototypes. The
testbed-specific SW blocks on the TBC are needed to i) (remotely)
control the testbed and the running experiments, ii) retrieve spe-
cific versions of the developed DT/WVI prototypes from a GIT
repository, and iii) automatically collect, pre-process and store the
results of the experiments. On the TNs, testbed-specific SW blocks
are required to i) assign the role of the TN, ii) locally configure
the TN (e.g., vehicle bus bit-rate when connecting to an ECU), iii)
enable/configure local parts of the testbed (e.g., monitoring the ve-
hicle bus or storing debug information w.r.t. the wireless network),
and iv) collect the results of an experiment and send it to the TBC.

2.3 Implementation
CESAR currently makes use of twelve TNs deployed on the ceiling
of our office building, covering an area of approximately 350m2.

Testbed nodes. Each TN consists of a BeagleBone Black (BBB)
board running Debian Linux and a TL-WN722Wi-Fi stick, connected
via USB and enabling wireless connectivity between the TNs (either
IEEE 802.11n or 11s). We connect each BBB to a custom-made PCB
board allowing the TNs to support up to two CAN connections at
the same time [14]. UDS is used to perform the actual SW update
procedure. Given the popularity of CAN and UDS, CESAR allows
to connect a TN to almost any ECU on the market.

164

Paper F – 20th International Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems

Laptop (Windows) PC (Linux) BBB (Linux) BBB (Linux) ECU (e.g., AURIX)

MQTT MQTT MQTT MQTTWI DP WI DP

T
ar

ge
t

E
C

U
(E

C
U

 c
o

n
fi

g.
,

va
li

d
at

o
r,

m

o
n

it
o

r)

Application
(Verify, Diagnose)

B
o

o
tl

o
ad

e
r

(F
la

sh
 u

p
d

at
e

m
ec

h
an

is
m

s)

W
V

I p
ro

to
ty

p
e

(S
W

 U
p

d
at

e

m
ec

h
an

is
m

s,
 C

A
N

&

 O
B

D
 s

u
p

p
o

rt
,

w
ir

e
l.

d
ia

g
n

o
st

ic
s)

D
T

p
ro

to
ty

p
e

(P
ar

al
le

l &
 p

ar
ti

al

u
p

d
at

e
s,

 v
e

h
ic

le

an
d

 E
C

U
 in

fo
)

T
e

st
b

e
d

 n
o

d
e

(C
o

n
fi

g
. i

n
te

rf
ac

e
s,

ru

n
 e

xp
e

ri
m

e
n

ts
,

lo
gg

in
g)

T
es

tb
e

d
 n

o
d

e
(C

o
nf

ig
. i

n
te

rf
a

ce
s,

ru

n
 e

xp
e

ri
m

e
n

ts
,

lo
gg

in
g

)

T
e

st
b

e
d

 G
U

I
(M

o
n

it
o

r
&

 c
o

n
tr

o
l

C
E

SA
R

 e
xp

e
ri

m
e

n
t)

P
ro

to
ty

p
e

d

e
ve

lo
p

m
e

n
t

(D
T

, W
V

I,
 E

C
U

b

o
o

tl
o

ad
e

r)

TBC
(TN configuration,

control experiment,
collect results)

GIT repository

VBWNVPN

WI Wireless Interface DP Diagnostic protocol Wireless Network WN Vehicle BusVBLegend: Ethernet backbone

Figure 2: Software architecture. Main blocks of the testbed (green blocks, single solid line) and of the update system under test
(orange blocks, dashed line). Interface are shown in blue and the employed devices using a gray block and double solid line.

ECUCANBBB
1

2
3

4 5

6

7

9

8
12

11

10

TBC

Figure 3: Position of the twelve nodes used in our testbed.

We connected the testbed nodes to two different types of ECU:
the Volvo FlexECU, a prototype ECU used by Volvo Trucks and other
automotive OEMs to test new vehicular features, and the Infineon
AURIX ECU, a multi-core ECU used in various research and industry
projects. In contrast to the Volvo FlexECU, which we had to use
as black-box device without the possibility to develop our own
ECU application SW, the AURIX comes with a free development
tool-chain and can be powered via the I/O pins of the BBB board.
This allowed us to easily connect the AURIX to the TN and to have
full control on both the ECU application SW and the bootloader.

Backbone network and TBC. Each BBB board is connected to
the backbone network using its Ethernet interface. To minimize the
cabling effort, we exploit the existing 100 Mb/s LAN infrastructure
of our office building. The TNs are decoupled from the rest of
the company network infrastructure by using a dedicated subnet
supporting up to 250 static IPv4 addresses. Each BBB board uses its
Ethernet interface as a back-channel to communicate with the TBC.
The latter is a desktop computer running Debian Linux equipped
with a dual Ethernet card to connect to both the TNs and the office
network infrastructure. This allows the TBC to access the Internet
and other company services, such as a GIT server for source code
management. To interact with the TNs, the TBC runs a Message
Queue Telemetry Transport (MQTT) server. The MQTT publish-
subscribe protocol allows to address all TNs at once (e.g., to start a
measurement) and to configure a TN individually (e.g., assigning a
specific role). Our implementation also allows to access the TBC
remotely by using a VPN connection to the company network.

3 CASE STUDIES
We illustrate next a few use cases showing how CESAR can be used
to study the efficiency of automotive wireless SW updates and to
analyze the impact of different system configurations.

3.1 Impact of different Security Mechanisms
We first use CESAR to analyze the impact of different security
mechanisms and key lengths on the duration of a SW update.

Impact of network and application layer security. We se-
lect different security configuration profiles at both application
and network layer, and let CESAR automatically configure the
testbed nodes with the specified security settings, while measuring
the update duration and the detailed, per-step latency, using the
logging ability of the DTs and the WVIs. We employ security mech-
anisms on the application layer implemented in SW utilizing the
Java Bouncy Castle, whereas we use simultaneous authentication
of equals (SAE) to protect the network layer1. We use the testbed
deployment shown in Fig. 3 and configure node 9 to work as a
DT and node 8 to act as WVI with a Volvo FlexECU connected via
CAN. We choose this configuration, as it ensures a direct stable link
between the DT and the WVI2. We perform a wireless SW update
of a binary of 445 kB and measure the duration of the following
steps ten times: i) Init: including WVI discovery, connection and
authentication process between WVI and DT, and SW update ini-
tialization and authorization step on the ECU; ii) Upload: wireless
data transfer from DT to WVI; iii) Download: data download via
CAN and validation of the installed SW on the ECU.

Table 1 shows the measured overall duration and the per-step-
latency w.r.t. the used security mechanisms and reveals that the
data transfer from the WVI to the ECU via CAN takes the largest
portion: about 75% of the overall duration with all security features
enabled, and up to 87% if these mechanisms are disabled. The results
also expose that the security functions have a significant impact on
the update duration: plus 18.5% when all mechanisms are enabled.

Impact of the key length on the update duration. We use
the aforementioned experimental setup and configure CESAR to
disable the security mechanisms on the network layer. Different
configuration profiles are then used to evaluate the impact of the
key length on the update duration. Specifically, we use different key
lengths for both the RSA-based authentication and AES-based data
encryption, and perform 10 sequential wireless SW updates using
the AURIX ECU for each configuration. Table 2 shows the duration
of a SW update depending on the employed key length: varying the
key length of the RSA-based authentication has a stronger impact
on the update duration than different AES encryption key lengths.
1For more details on the utilized security mechanisms, we refer the reader to [13].
2CESAR would also allow a more difficult setup with links of intermediate quality.

165

Chapter 9 – Publications

Table 1: Duration in ms of the different wireless SW update
steps depending on the employed security mechanism.

Security Total Init&Auth. Upload Download
Appl. + Net. 49195.4 4782.3 6585.4 37817.7
Application 47167.1 4859.7 5414.2 36885.3
Network 43745.6 2277.7 3756.0 37703.3
None 41528.6 2277.9 2445.0 36797.5

Table 2: Impact of the key length on the update duration
RSA AES Duration Delta
1024 128 16271.0 ± 323.4 ms -
1024 256 16375.1 ± 222.3 ms 104.1 ms (+0,6%)
2048 128 18342.7 ± 357.4 ms 2071.7 ms (+12.7%)
2048 256 18359.1 ± 292.3 ms 2088.1 ms (+12.8%)

Table 3: Update duration w.r.t different update mechanisms.
Traditional Parallel Partial

20768.8 ± 882.4 ms 25881.8 ± 324.5 ms 3570.7 ± 1189.3 ms

3.2 Impact of different ECU Hardware
We illustrate CESAR’s ability to support ECUs of different vendors
by connecting aWVI device to both a Volvo FlexECU and an AURIX
ECU via CAN (at 500 kb/s). We employ node 9 as DT and node 8
as WVI according to the testbed deployment shown in Fig. 3. As
the Volvo FlexECU can only be used as a black-box, we create a
dummy application for the AURIX that has the same binary size
as the one available for the Volvo FlexECU (i.e., a size of 445 kB).
We then run twenty wireless SW updates on each of the two ECUs,
and let CESAR measure their average duration a discussed earlier.

The gathered results show that the AURIX ECU can be updated
about three times faster than the Volvo FlexECU: the SW update
takes indeed 20.77±0.88 and 48.68±0.81 seconds on the AURIX and
the FlexECU, respectively. This is due to (i) the higher CPU power
and faster storage modules of the AURIX ECU, and (ii) the fact that
the FlexECU uses a two-stage update procedure encompassing a
secondary bootloader and the application SW itself.

3.3 Impact of different Update Techniques
CESAR can also be used to evaluate the efficiency of different SW
update mechanisms: traditional, parallel, and partial updates.

Parallel updates.We first compare the duration of the update
process when using traditional SW updates sequentially with the
duration of a parallel SW update. A parallel SW update is performed
on two or more ECUs integrated in two or more vehicles at the same
time. For an experiment within CESAR this means that new SW is
installed on several (in this particular experiment two) ECUs at the
same time by one DT (node 9). Therefore, each ECU is connected to
a testbed node acting as WVI (nodes 8 and 11) and the SW update
is first done sequentially (first node 8 is updated and then node 11)
and then in parallel, meaning on both ECUs at the same time.

Table 3 shows that the overall duration of one parallel SW update
(for two ECUs) is increased by about 25% compared to a traditional
wireless SW update (for one of the ECUs). This overhead is due to
the fact that not all steps of a SW update can be done in parallel.
However, carrying out parallel SW updates is significantly faster
(approximately 75% quicker) compared to a sequential updates.

Table 4: Update duration w.r.t. different network protocols.
802.11s duration 802.11n duration TN RSSI
16590.4 ± 286.1 ms 16545.0 ± 360.8 ms 6 -83 dBm
16943.0 ± 453.1 ms 16504.7 ± 238.4 ms 4 -87 dBm
16918.2 ± 518.4 ms 21274.8 ± 4632.9 ms 2 -90 dBm
17620.1 ± 1696.6 ms Unreachable 1 >90

Partial updates. A SW update is often only changing specific
parameters of an ECU, leavingmost of the remaining SWuntouched.
For this reason, it may be advisable to only update the changed SW
portion, instead of the entire binary. We compare next the duration
of a traditional SW update with a custom implementation of a
partial update in which only the portion of code that has changed
is installed. We prepare two SW applications with a parameter field
stored in a dedicated memory section of the AURIX ECU of size 1
kB: this parameter field is the only difference between the binaries.
When utilizing a partial SW update, only this section is transferred
to the ECU. Instead, when using a traditional SW update, the entire
binary (of size 445 kB) needs to be transferred. The case study was
performed using node 9 as DT and node 8 as WVI connected to
an AURIX ECU. We performed twenty SW updates using both the
traditional and the partial SW update mode.

Table 3 highlights that, as expected, the SW update duration is
significantly reduced: the partial update is about six times faster.
This decrease in duration of 83% is especially due to the lower
amount of data transferred from the WVI to the ECU via CAN.

3.4 Impact of different Network Protocols
In this case study, we evaluate the efficiency of SW updates of two
different wireless protocols: IEEE 802.11n and IEEE 802.11s. The key
difference between these two protocols is the ability to build mesh
networks: IEEE 802.11n is the traditional, access point based Wi-Fi
protocol. Instead, IEEE 802.11s allows to form multi-hop networks
increasing the reliability and availability of the entire network.

In our experimental setup illustrated in Fig. 3, we select node
11 as DT and different TNs (nodes 1, 2, 4, and 6) connected to an
AURIX ECU. For the IEEE 802.11n evaluation, the DT node is also
acting as wireless access point. It is important to highlight that,
in this configuration, the links between 11 and the other TNs are
of different quality. Furthermore, node 1 is the furthest away, and
is not in the communication range of node 11. As a result, when
employing IEEE 802.11n, no communication can be established
between the two nodes. In contrast, when using IEEE 802.11s, the
nodes can decide to hop through additional nodes to use only very
good links and maximize the reliability of communications.

We then perform ten SW updates for each configuration and let
CESAR measure the SW update duration (Table 4). For good links
(node 4 and 6), both protocols nearly exhibit the same performance.
For node 4, IEEE 802.11n, on average, is about 400 ms faster than
IEEE 802.11s. The experimental results show an average path length
of 1.06 hops when using IEEE 802.11s. This means that IEEE 802.11s
has employed some multi-hop paths during the SW update process
(due to lost packets) leading to a slightly increased packet latency.
In case of intermediate links (node 2), IEEE 802.11s outperforms
IEEE 802.11n by a factor of 25%.

166

Paper F – 20th International Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems

3.5 Connectivity issues of IEEE 802.11s
CESAR can also be used to investigate the connectivity of wireless
nodes and thereby, as presented in this case study, to reveal scal-
ability issues. When configuring CESAR to use IEEE 802.11s, we
observed that some TNs were not reachable by other nodes, despite
being in close proximity. The observed issue is critical as typical
SW update scenarios can encompass several vehicles in a dynamic
environment frequently joining and leaving the network. To ana-
lyze the problem, snapshots of the connectivity in the network (i.e.,
link and path information) were captured using CESAR. These tests
reveal two major problems of the default open11s implementation
caused by its limited neighbor table size:
Inefficient network structure. In IEEE 802.11s, peer links are es-
tablished between two nodes if i) the nodes can hear each other and
ii) the nodes have a free spot in their neighbor table. Hence, the net-
work topology of 11s is mainly influenced by the sequence of nodes
joining the network (and not if a node is close or far away) and
thus leads to inefficient links affecting the network performance.
Isolated node. In the worst case the limited neighbor table size
(e.g., size=3) can even lead to isolated nodes: a node (e.g., node 5)
willing to join an already established network, will fail to connect
as the other nodes (e.g., nodes 1 to 4) already have three neigh-
bors stored in their neighbor table. The nodes will decline the join
requests and node 5 will be isolated from the network.

We solved this issue by adapting the latest open11s implementa-
tion: i) adding new messages to inform the network about isolated
nodes, and ii) implementing algorithms to solve the isolated node
problem. The adapted open11s version can be chosen and config-
ured by CESAR besides the default open11s version.

4 RELATEDWORK
In this section, we summarize the body of existing works focusing
on wireless automotive SW updates and compare the functionality
of existing automotive testbeds to the ones offered by CESAR.

Wireless automotive SW updates. Most of the work on au-
tomotive OTA updates has focused on security aspects and pro-
posed security architectures protecting a vehicle from malicious
updates [9, 11] or investigated remote SW updates [7, 10]. These
works, however, do not consider other scenarios where updates
are performed locally (such as within a service center), nor allow
testing of advanced update mechanisms such as the parallel transfer
of a binary. Solutions are also often evaluated only through simula-
tion [5, 11] or formal methods [9, 10, 13], and very few systems are
evaluated on real HW. In this and our previous works [8, 14], auto-
motive ECUs are used to evaluate a SW update framework, verify
the update process, and compare different update mechanisms.

Automotive testbeds. Several infrastructures have been pro-
posed to test automotive SW updates. Drolia et al. [3] have designed
a testbed consisting of several automotive ECUs interconnected by
CAN. Although the testbed provides a basic SW update function, it
is not capable of evaluating the entire wireless SW update process.
In [16] and [2], authors have proposed Vehicle-to-Vehicle testbeds
(either indoor [16] or outdoor [2]) to simulate different V2V scenar-
ios. However, these testbed do not support automotive ECUs and
cannot be used to evaluate any aspect w.r.t wireless SW updates.

5 CONCLUSIONS
In this paper we propose CESAR, a testbed infrastructure that allows
to investigate the efficiency and dependability of an entire wireless
automotive SW update process. After describing the testbed archi-
tecture and design, we show through a series of case studies that
CESAR allows to derive insights about the impact of different secu-
rity configurations, update techniques, and network protocols on
the efficiency of an automotive SW update process. In the future, we
plan to use CESAR to evaluate the reliability of IEEE 802.11s and to
run different attacks on the SW update framework presented in [13],
in order to evaluate its robustness and expose its weaknesses.
Acknowledgments.Thisworkwas partially funded by the SCOTT
project. SCOTT (http://www.scott-project.eu) has received funding
from the Electronic Component Systems for European Leadership
Joint Undertaking under grant agreement No 737422. This joint
undertaking receives support from the European Unions Horizon
2020 research and innovation programme and Austria, Spain, Fin-
land, Ireland, Sweden, Germany, Poland, Portugal, Netherlands,
Belgium, Norway. SCOTT is also funded by the Austrian Federal
Ministry of Transport, Innovation and Technology (BMVIT) under
the program “ICT of the Future” between May 2017 and April 2020.
More information at https://iktderzukunft.at/en/. The authors also
acknowledge the financial support of the COMET K2 Program of
the Austrian Federal Ministries BMVIT and BMWFW, the Province
of Styria, and the Styrian Business Promotion Agency (SFG).

REFERENCES
[1] ISO 14229:2006(E). 2006. ISO 14229:2006: Road vehicles – Unified diagnostic

services (UDS) – Specification and requirements. (2006).
[2] M. Cesana, L. Fratta, M. Gerla, E. Giordano, and G. Pau. 2010. C-VeT the UCLA

Campus Vehicular Testbed: Integration of VANET and Mesh Networks. In Proc.
of the European Wireless Conference.

[3] U. Drolia, Z. Wang, S. Vemuri, M. Behl, and R. Mangharam. 2011. AutoPlug –
An automotive test-bed for Electronic Controller Unit Testing and Verification.
In Proc. of the IEEE Intelligent Transportation Systems Conference (ITSC).

[4] N. Gabe. 2016. Over-the-Air Updates on Varied Paths. Automotive News (2016).
[5] I. Hossain, S.M. Mahmud, and M.H. Hwang. 2010. Performance Evaluation of

Mobile Multicast Session Initialization Techniques for Remote SW Upload in
Vehicle ECUs. In Proc. of the IEEE Vehicular Technology Conference.

[6] K. Koscher et al. 2010. Experimental Security Analysis of a Modern Automobile.
In Proc. of the IEEE Symposium on Security and Privacy.

[7] M. Khurram et al. 2016. Enhancing Connected Car Adoption: Security and OTA
Update Framework. In Proc. of the 3rd World Forum on Internet of Things.

[8] M. Steger et al. 2017. An Efficient and Secure Automotive Wireless Software
Update Framework. Under submission (2017).

[9] M.S. Idrees et al. 2011. Secure Automotive On-board Protocols: A Case of Over-
the-air Firmware Updates. (2011).

[10] D.K. Nilsson and U.E. Larson. 2008. Secure Firmware Updates Over the Air in
Intelligent Vehicles. IEEE Conference on Communications (2008).

[11] R. Petri et al. 2016. Evaluation of Lightweight TPMs for Automotive SW Updates
over the Air. In Proc. of the Conference on Embedded Security in Cars.

[12] Redbend Software. 2011. Updating Car ECUs Over-The-Air (FOTA). (2011).
[13] M. Steger, C.A. Boano, M. Karner, J. Hillebrand, W. Rom, and K. Roemer. 2016.

SecUp: Secure and Efficient Wireless Software Updates for Vehicles. In Proc. of
the Conference on Digital System Design (DSD).

[14] M. Steger, M. Karner, J. Hillebrand, W. Rom, C.A. Boano, and K. Roemer. 2016.
Generic Framework Enabling Secure and Efficient Automotive Wireless SW
Updates. In Proc. of the Conf. on Emerging Technologies and Factory Automation.

[15] I. Studnia, V. Nicomette, E. Alata, Y. Deswarte, M. Kaâniche, and Y. Laarouchi.
2013. Survey on Security Threats and Protection Mechanisms in Embedded
Automotive Networks. In Proc. of the Conf. on Dependable Systems and Networks.

[16] W. Vandenberghe, I. Moerman, P. Demeester, and H. Cappelle. 2011. Suitability of
the wireless testbed w-iLab.t for VANET research. In Proc. of the 18th Symposium
on Communications and Vehicular Technology in the Benelux.

[17] T.L. Willke, P. Tientrakool, and N.F. Maxemchuk. 2009. A Survey of Inter-Vehicle
Communication Protocols and their Applications. IEEE Communications Surveys
& Tutorials 11, 2 (2009).

167

Chapter 9 – Publications

Paper G

M. Steger, C.A. Boano, T. Niedermayr, K. Römer, M. Karner, J. Hillebrand, and W. Rom.
An Efficient and Secure Automotive Wireless Software Update Framework. To
appear in IEEE Transactions on Industrial Informatics (TII), 2018.

Summary. In this paper, SecUp, a generic framework enabling wireless software updates
and diagnostics is proposed. SecUp supports the whole life-cycle of a modern vehicle con-
sidering the requirements coming from different application scenarios and enables efficient
as well as fast wireless software updates by allowing – besides providing basic automo-
tive wireless software update functionality – beneficial features such as parallel software
updates (where the same software binary will be installed on different vehicles and ECUs
simultaneously) and partial software updates (where only changed parts of the software
are transferred to the ECU). The paper first describes the role of involved devices and
users in the considered application scenarios and provides an overview on the performed
security analysis as well as the resulting security concept. Thereafter, the developed proto-
types of the core nodes are presented, different automotive ECUs used to evaluate SecUp
are described, and the developed features allowing parallel or partial software updates
are explained. The evaluation of SecUp is performed in two steps: first, SecUp’s security
concept and its impact on the system performance is analyzed. Second, the evaluation
of the proposed framework and the its advanced update mechanisms is described and the
corresponding results are presented.

My contributions. As main author of this paper I wrote the vast majority of this paper
supported by all co-authors, who supported the paper by numerous discussions regarding
the structure of this paper as well as the different evaluation steps w.r.t security and
efficiency. Thomas Niedermayr significantly supported the design of the bootloader for
the AURIX ECU (i.e., our main demonstrator ECU) and implemented large parts of this
bootloader. I carried out all presented case studies and developed all essential parts of the
wireless update framework except of the demonstrator ECU.

c©2017 IEEE.
ISSN: 1551-3203.
DOI: 10.1109/TII.2017.2776250.

Link: http://ieeexplore.ieee.org/document/8141933/.

Copyright: The IEEE does not require individuals working on a thesis to obtain a
formal reuse license, provided that the requirements listed below are followed:

1. The following IEEE copyright/ credit notice should be placed prominently in the
references: c©[year of original publication] IEEE. Reprinted, with permission,
from [author names, paper title, IEEE publication title, and month/year of

168

http://ieeexplore.ieee.org/document/8141933/

Paper G – IEEE Transactions on Industrial Informatics

publication];

2. Only the accepted version of an IEEE copyrighted paper can be used when
posting the paper or your thesis on-line;

3. In placing the thesis on the author’s university website, please display the fol-
lowing message in a prominent place on the website: In reference to IEEE copy-
righted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity’s name goes here]’s products
or services. Internal or personal use of this material is permitted. If inter-
ested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistri-
bution, please go to http://www.ieee.org/publications_standards/
publications/rights/rights_link.html to learn how to obtain a Li-
cense from RightsLink.

169

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Chapter 9 – Publications

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS – SPECIAL SECTION ON INDUSTRIAL COMMUNICATION TECHNOLOGIES AND SYSTEMS 1

An Efficient and Secure Automotive Wireless
Software Update Framework

Marco Steger, Carlo Alberto Boano, Member, IEEE, Thomas Niedermayr, Michael Karner, Joachim Hillebrand,
Kay Roemer, Werner Rom

Abstract—Future vehicles will be wirelessly connected to
nearby vehicles, to the road infrastructure, and to the Internet,
thereby becoming an integral part of the Internet of Things. New
comfort features, safety functions, and a number of new vehicle-
specific services will be integrated in future smart vehicles.
These include a fast, secure, and reliable way to diagnose and
reconfigure a vehicle, as well as the installation of new software on
its integrated electronic control units. Such wireless software up-
dates are beneficial for both automotive carmaker and customers,
as they allow to securely enable new features on the vehicle and
to fix software bugs by installing a new software version over the
air. A secure and dependable wireless software update process is
valuable in the entire lifetime of a modern vehicle as it can be used
already during vehicle development and manufacturing process
on the assembly line, as well as during vehicle maintenance in a
service center. Additionally, future vehicles will allow to remotely
download up-to-date software on the electronic control units.

To support this process over the entire vehicle’s lifetime, a
generic framework is needed. In this paper, SecUp, a generic
framework enabling secure and efficient wireless automotive
software updates is proposed. SecUp utilizes IEEE 802.11s as
wireless medium to interconnect vehicles and diagnostic devices
in a dependable and fast way. Additionally, SecUp is enabling
beneficial wireless software update features such as parallel and
partial software updates to increase the efficiency, and comprises
advanced security mechanisms to prevent abuse and attacks.

Index Terms—Automotive systems, Generic framework, IEEE
802.11s, SecUp, Security concept, Wireless software updates

I. INTRODUCTION

MODERN vehicles include a growing number of elec-
tronic control units (ECU) in order to incorporate new

services. The latter require elaborate and often distributed
software (SW) implementations on the integrated ECUs of a
vehicle, which increase the complexity of the SW. Further-
more, the growing connectivity and distribution of vehicular
systems is potentially introducing a growing number of bugs
in automotive SW implementations and associated functions.

Fixing such SW bugs as well as upgrading the ECU SW to
enable new features requires new concepts allowing efficient
automotive SW updates. Thereby, these concepts are support-
ing the development and maintenance of modern vehicles.
Efficient and secure SW updates can be beneficial over the
entire life-cycle of a modern vehicle and will significantly
reduce the time needed for vehicle maintenance.

In this paper, SecUp, a generic framework enabling wireless
SW updates and diagnostics is proposed. Contrary to existing

M. Steger, M. Karner, J. Hillebrand, and W. Rom are working at the
VIRTUAL VEHICLE research center.

C. Boano, T. Niedermayr, and K. Roemer are working at the Institute for
Technical Informatics, Graz University of Technology, Austria.

works only focusing on wireless remote updates such as [1],
[2], [3], [4], SecUp supports the entire life-cycle of a modern
vehicle considering the requirements coming from different
application scenarios (i.e., vehicle development, assembly,
and maintenance in a service center). In all these scenarios,
wireless SW updates performed locally in a dedicated area
(e.g., the service center or assembly line) have to be fast,
efficient, and secure. To enable efficient and fast wireless
SW updates, SecUp supports – besides the basic automotive
wireless SW update functionality – beneficial features such as
parallel SW updates (where the same SW binary is installed on
different vehicles and ECUs simultaneously) and partial SW
updates (where only changed parts of the SW are installed).

Additionally, SecUp utilizes a comprehensive security con-
cept based on strong authentication and encryption mecha-
nisms to guarantee secure wireless SW updates. This security
concept also ensures the integrity of the transferred data
and of the entire vehicle. As a result, SecUp is protecting
the diagnostic devices, the transferred data, the vehicles, and
the OEM (Original Equipment Manufacturer, i.e., the vehicle
manufacturer) backbone from unauthorized access.

The key contribution of this paper is the introduction of
SecUp, a generic framework allowing efficient and secure
wireless SW updates applicable for different automotive ap-
plication scenarios, namely: (i) SW updates in the vehicle
development, (ii) in the assembly line, as well as (iii) during
maintenance in service centers. SecUp allows not only basic
wireless SW updates, but additionally addresses the efficiency
aspect by enabling parallel and partial SW updates. Further-
more, SecUp is built upon a novel security concept.

This paper is structured as follows. After reviewing related
work in Section II, SecUp and its architecture are described
in Section III. Additionally, the advantages of the employed
IEEE 802.11s network are listed, proving its applicability to
perform efficient and reliable wireless SW updates. In Section
IV the roles of involved devices and users in the considered
application scenarios is highlighted. Section V provides an
overview on the performed security analysis as well as the
resulting security concept. In Section VI, the developed proto-
types of the core nodes are presented and different automotive
ECUs used to evaluate SecUp are described. At the same time
the developed features allowing parallel or partial SW updates
are presented. To evaluate SecUp, first, in Section VII, SecUp’s
security concept and its impact on the system performance is
analyzed. Second, the evaluation of SecUp is described and the
corresponding results are presented in Section VIII. Finally, a
conclusion is given in Section IX.

c©2017 IEEE. Reprinted, with permission. To appear in IEEE Transac-
tions on Industrial Informatics (TII) in 2018.

170

Paper G – IEEE Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS – SPECIAL SECTION ON INDUSTRIAL COMMUNICATION TECHNOLOGIES AND SYSTEMS 2

II. RELATED WORK

The benefits of automotive over-the-air (OTA) updates com-
pared to traditional (i.e., wired) SW updates are listed in [1]
and a high-level architecture for these updates is presented.
However, a description of the wireless medium, required se-
curity mechanisms or other technical details are not included.
The authors of [5] described the SW update process for ECUs
based on international standards. However, this work is not
addressing a wireless approach for such updates at all.

Other authors of previous works such as [2], [3], [4], [6],
[7], [8] only focus on remote SW updates for vehicles and
the corresponding security issues but neither consider other
scenarios where updates are performed locally (e.g., within a
service center), nor allow advanced SW update mechanisms
such as parallel SW updates. A system allowing OTA updates
was presented by Idrees et al. [2]. This system utilizes a
Hardware Security Module (HSM) for data encryption, key
management as well as to ensure data integrity on both the
wireless interface and all ECUs of a vehicle. Therefore, a
HSM is required on every ECU, which leads to significant
extra costs. Additionally, the authors do not give any insight
regarding the specific type or the properties of the wireless
link. The authors of [9] also propose to use security HW
modules on the ECUs and the vehicle gateway to secure
OTA updates. Thereby, the authors focus on how to integrate
these modules in the ECUs and evaluate the resulting resource
overhead. The paper also contains a high-level description of
an architecture for OTA updates, however, no implementations
details or evaluation results are given. Nilsson et al. [3],
[4] propose a system allowing automotive OTA updates by
connecting a vehicle to a portal server using an Internet link.
Thereby the authors list important security aspects, especially
data integrity and data confidentiality, w.r.t. OTA updates but
neither describe the utilized wireless network nor address the
data flow in the network. In [7] an architecture for secure
wireless SW updates sending multiple copies of the SW to
ensure data integrity is presented. However, this solution is
only addressing point-to-point links between one vehicle and
an OEM server and relies on numerous prerequisites (e.g.,
ensuring data integrity of OTA updates by sending multiple
copies). The authors of [8] also propose to send a SW binary
two times to a vehicle to secure the update process without
providing a detailed description on the actual SW update
framework or other technical insights.

Although previous works are proposing different systems
allowing remote OTA updates and addressing the correspond-
ing security aspects, the listed solutions are only addressing
unicast links (i.e., a point-to-point connection between the
OEM and a specific vehicle) and hence, novel features such
as parallel or partial SW updates cannot be realized. Contrary
to these works, SecUp allows to install the latest SW on
several vehicles simultaneously and provides efficient SW
update mechanisms (i.e., parallel or partial SW updates).

To date (2017), Tesla is the only car manufacturer providing
a solution for automotive OTA updates. A wireless network
(either based on 3G/4G or a Wi-Fi network connecting the
vehicle to the Internet) is utilized to transfer the latest SW from

the servers of the OEM to a Tesla vehicle [10]. However, this
point-to-point connection between the OEM and the vehicle
cannot be used to simultaneously install SW in different
vehicles and on several ECUs in parallel.

The authors of [2], [3], [4], [7] were mainly focusing on
different security aspects of automotive SW updates and have
listed a number of relevant security threats, namely: data
confidentiality, data integrity, key exchange and management,
and vehicle integrity and authentication. Different from pre-
vious work, the security concept proposed in this paper and
presented in Section V-B addresses all these aspects at once.

A. IEEE 802.11s mesh networking and its security features

The proposed framework for wireless SW updates proposed
utilizes a IEEE 802.11s network to interconnect vehicles and
diagnostic HW. Today, it is the only solution using 11s as
medium for wireless SW updates, however, the protocol is
utilized in other automotive applications: the authors of [11]
and [12] are using IEEE 802.11s as a backbone network
for vehicle-to-vehicle and vehicle-to-infrastructure communi-
cation (V2X) networks to interconnect V2X entities and road
side units. In [13] different wireless communication protocols
such as IEEE 802.11 (Wi-Fi), Bluetooth Low Energy (BLE),
IEEE 802.15.4 (ZigBee) and IEEE 802.11s are compared
with each to find the most suitable protocol for wireless SW
updates in an automotive environment. Thereby, the authors
focus on different aspects such as throughput, scalability as
well as extendability, show that IEEE 802.11s is the only
protocol able to satisfy all investigated aspects, and point
out weaknesses of other protocols (e.g., BLE and ZigBee
offering insufficient throughput). Although the authors reveal
the applicability of IEEE 802.11s for wireless automotive
SW updates, the paper does not include any descriptions of
a framework enabling these kind of updates. The benefits
of utilizing an IEEE 802.11s network to perform wireless
automotive SW updates are listed in Section III-B.

Several contributions mainly focusing on the security as-
pects of IEEE 802.11s have proposed different extensions
and improvements. However, these aspects were not discussed
w.r.t. automotive applications. Tan et al. [14] describe internal
as well as external attacks on IEEE 802.11s networks and
list relevant security requirements. The authors state that
Simultaneous Authentication of Equals (SAE) [15] used in
IEEE 802.11s is able to mitigate external attacks. However, a
range of internal attacks is not prevented by SAE and therefore
additional security features are required.

In [16] GPS positioning is used to mitigate a wide range
of potential attacks on IEEE 802.11s. The proposed system
called PASER is compared to other approaches for secure
IEEE 802.11s networks in [17], and the authors show, beside
others, the inefficiency of these approaches w.r.t. time and
power. The use of GPS, as proposed in [16] and [17], however,
is not applicable within the assembly line or a service center
and therefore PASER cannot be utilized by SecUp.

The approaches proposed in [14], [18], [19], [16], [17]
allow the creation of secure IEEE 802.11s networks, however,
none of these approaches is able to fulfill both the efficiency
requirements of wireless SW updates and the immunity against

171

Chapter 9 – Publications

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS – SPECIAL SECTION ON INDUSTRIAL COMMUNICATION TECHNOLOGIES AND SYSTEMS 3

possible attacks. The defined security concept presented in
Section V is fulfilling both aspects by utilizing security
mechanism on the network as well as the application layer.
In particular, the proposed security concept is based on a
structured security analysis. In [20] the latter was described
in detail. This paper also showed how the analysis can be
utilized to design automotive applications w.r.t. SAE J3016
[21], the new security standard in the automotive domain.

III. FRAMEWORK AND ARCHITECTURE

This section describes the architecture of SecUp. A system
overview is given in Section III-A and the utilized wireless
network is addressed in Section III-B.

A. System Architecture and Core Nodes

Secure and efficient wireless SW updates will, indepen-
dently from the application scenario, require a reliable and fast
wireless network. Furthermore, a dependable smart gateway
interface is needed for each vehicle to interconnect the latter
with the wireless network in a reliable and secure way. This
interface is the most critical component of SecUp and is called
Wireless Vehicle Interface (WVI). A WVI interconnects the
vehicular communication infrastructure (i.e., automotive bus
systems such as Controller Area Network (CAN)) and the
ECUs of a vehicle with a wireless network and in further
consequence with the Internet.

A WVI can be realized either as a fully integrated device
(i.e., a smart bus gateway or a dedicated ECU) or as a plug-in
solution. The latter can be temporarily connected to a vehicle
using its On-Board Diagnostics (OBD) interface and is mainly
utilized in service center scenarios, where the plug-in property
of the WVI and the utilization of standardized in-vehicle
communication protocols are ensuring backward compatibility
as well as OEM-independence. In future vehicles the WVI
will be part of the in-vehicle communication system, thereby
enabling new services and functions which require to access
data generated by or stored in the vehicle.

The so-called Diagnostic Tester (DT) can be seen as source
of new SW versions within the wireless SW update framework.
It can use a backbone link to the OEM to obtain the latest
available SW as well as required information about the vehicle
such as the vehicle configuration (e.g., types and IDs of
the ECUs) or required authorization keys. Depending on the
scenario and other general conditions, a DT can either be a
dedicated device (e.g., tool in a service center) or more likely
a SW application running on a laptop, PC, or server. Addition-
ally, a DT typically supports various diagnostic functions. In
typical OTA update scenarios, the DT application is running on
a server of the car manufacturer and a secure Internet link (e.g.,
a VPN tunnel) between the WVI and the DT is established.

In SecUp, hand-held devices connected to the wireless SW
update system are used by mechanics in a service center or
by engineers during the vehicle development phase i) to run
wireless diagnostics, ii) to monitor messages exchanged on the
different bus systems of a vehicle, and iii) to trigger, monitor,
and validate the SW update process.

CGW
ECU3

ECU5

ECU4 ECU6

ECU7

WVI

LIN
CAN

DT

Keys

SW images

Vehicle info

Secured network

Secured device /
interface

Fig. 1. An IEEE 802.11s network applied in a typical service center scenario.
Mechanics use handhelds to run wireless diagnostics or wireless SW updates.

B. Wireless IEEE 802.11s network

To interconnect all involved nodes described in Section
III-A, SecUp utilizes an IEEE 802.11s network. According
to [13], this protocol is most suitable for wireless automotive
SW updates and outperforms other wireless standards such as
BLE or ZigBee in different important aspects like throughput,
scalability as well as extendability. IEEE 802.11s is based on
a mesh network topology, where each node will either directly
communicate with other nodes in its transmission range or use
other nodes in between to forward a data packet to the intended
destination. The mesh characteristics of IEEE 802.11s allow
a data packet to take different paths when sent through the
network. This implicit redundancy increases the reliability of
IEEE 802.11s networks. Similarly, the transmission range of
a network can be increased by adding relay nodes (e.g., other
vehicles or devices) at the edge of the network.

The multihop capability of IEEE 802.11s is a key advantage
that significantly increases the reliability and the availability
of such a mesh network, and this allows the use of an
IEEE 802.11s network also in harsh radio environments.

A modern service center, as sketched in Figure 1 and
further described in Section IV-B, is a typical example of a
harsh environment, as wireless links can be affected by the
shielding of vehicles or other (metal) objects, which potentially
decreases the reliability of data transmission / collection. An
IEEE 802.11s network, however, is able to provide a stable
communication: if a direct link between the vehicle and the
DT is too weak to exchange a packet, other vehicles or
IEEE 802.11s relay nodes located in between will forward
the data packets to the target vehicle or the DT.

The IEEE 802.11s standard includes multicast data streams
in mesh networks. Such a multicast can be used to send data
packets from one node to several other nodes in a network.
SecUp can hence potentially use such layer two multicasts to
transfer and install a new SW version on several vehicles si-
multaneously (i.e., to carry out parallel SW updates). Although
the IEEE 802.11s standard defines multicast data streams, the
current open11s implementation [22] used in the developed
framework does not support multicasts on layer two yet and
therefore multicast is implemented on higher layers.

IV. SUPPORTING THE ENTIRE VEHICLE LIFETIME

In this section, the considered scenarios for wireless SW
updates are listed first. Thereafter, an illustration of wireless
SW updates in a service center is given in Section IV-B.

172

Paper G – IEEE Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS – SPECIAL SECTION ON INDUSTRIAL COMMUNICATION TECHNOLOGIES AND SYSTEMS 4

A. Wireless software update scenarios
SecUp can satisfy the requirements of wireless SW updates

in the following scenarios: i) during vehicle development,
ii) in the assembly line, and iii) in a service center. In the
following, the scenario-specific requirements are highlighted,
and information about involved users, available infrastructure,
and related security concerns are given.

1) Vehicle development: during the vehicle development
phase, engineers will have to update the SW of one or more
ECUs of a test vehicle several times to analyse, compare, and
evaluate newly developed features. Therefore, the development
engineers require a flexible and efficient system enabling
wireless SW updates as well as vehicle diagnostics. Vehicle
development activities will mainly take place in restricted ar-
eas and will be performed by engineers (i.e., expert users). The
wireless solution offers several advantages in this scenario, as
it enables fast and flexible SW updates while allowing the
usage of hand-held devices like tablets or smartphones.

2) Vehicle assembly: this step is performed in a highly
automated and secure environment where many operations are
performed by machines and robots. Before a vehicle can leave
the assembly line, the latest SW is installed on all integrated
ECUs of a vehicle. Therefore, the SW of many vehicles must
be updated – ideally in parallel – to install the latest SW on
all ECUs. Because of the high number of vehicles as well
as the high degree of automation, scalability, reliability and
efficiency of the SW update system are very important.

3) Vehicle maintenance: in a service center mechanics will
diagnose, repair, and maintain several vehicles. Therefore, a
mechanic will connect to a vehicle to run diagnostic functions,
to check if there are any Diagnostic Trouble Codes (DTC) sent
by the vehicle and its ECUs, and to perform the necessary
repairs. Thereby, the mechanic will also check if new SW
is available for one or several ECUs of the vehicle and
install it. Simultaneous wireless SW updates would be very
beneficial especially if large vehicle recalls (e.g., due to a
critical software bug) are necessary: a mechanic can connect
to several vehicles in parallel and install the new software
simultaneously. Additionally, a wireless solution can be very
beneficial in service centers as a mechanic will not have to use
heavy diagnostic equipment (e.g., a PC and a battery contained
in a solid metal case), but can run wireless diagnostics and SW
updates utilizing a lightweight hand-held device instead.

4) Remote SW updates: mainly relevant for future vehicles
with an integrated WVI, either realized as bus gateway or as
dedicated ECU, allowing wireless connectivity via 3G/4G or
Wi-Fi. The current version of SecUp is mainly focusing on
SW updates performed in local environments, however, the
developed SW updates mechanisms could also be used when
connecting the vehicle to the wireless network of the user.

Scenario-specific particularities are summarized in the fol-
lowing: SW updates in the assembly line or during the vehicle
development phase are performed by expert users in secured
and restricted areas. In these use cases security is an important
issue (e.g., industrial espionage) but not as critical as in OTA
scenarios, where the update is performed by an untrained
user at the users’ home or in public, potentially utilizing a
compromised device or an insecure network. Especially the

service center and the assembly line scenarios require a very
efficient and fast way to install SW updates. During vehicle
development high flexibility by easily extending the transmis-
sion range of the wireless network is especially required due
to the big variety of function tests, system evaluations, and
diagnostics performed during this phase.
B. Wireless software updates in a service center

In this section the required steps to install latest SW on
a vehicle’s ECU are described by utilizing a typical service
center scenario as shown in Figure 1. In this sketched example,
mechanics maintain vehicles by using handhelds to run wire-
less diagnostics and to perform wireless SW updates. Similar
procedures and schemes apply in the other update scenarios.
The main goal of this section is to explain the basic SW update
procedure without providing details on the involved security
mechanisms, as this is described in Section V-B.

1) Connecting the vehicle to the SW update system: a me-
chanic first connects a WVI to the vehicle (i.e., if the vehicle
doesn’t have an integrated WVI) using its OBD interface. The
WVI joins the IEEE 802.11s network and will connect to a
DT once a periodically broadcasted beacon advertising the
presence of the DT was received. The same principle is used
by the handhelds to connect to the DT (i.e., after receiving a
DT beacon) as well as to WVIs (i.e, by sending beacons). It is
important to note that in case of an update, the SW is directly
transferred from the DT to the WVI and is never stored on
the handheld devices due to security reasons.

2) Gathering information about the vehicle: once the con-
nections between the DT, the handheld device and the WVI
are established, the DT starts to gather information about the
vehicle by retrieving the Vehicle Identification Number (VIN).
With the retrieved VIN, the DT can either query its local
database or access an OEM server to obtain vehicle-specifics
including vehicle model and variants, the integrated ECUs
including ECU-IDs and the CAN-IDs, as well as available
SW versions. This information is often condensed in so-called
Open Diagnostic data eXchange (ODX) [23] files.

3) Performing the wireless SW update: if new SW for
a vehicle is available, the SW binary will first be fully
transferred from the DT to the WVI. The latter will then verify
the received SW binary and start to install the binary on the
ECU utilizing the Unified Diagnostic Service (UDS) protocol
[24]. Besides this basic SW update mechanism, SecUp also
supports partial SW downloads, where only the difference
between the current and the new SW version is sent to the
ECU. This feature can significantly reduce the duration of
a SW update, however, it has to be supported by the ECU
(see also Section VI-D3). To perform a SW update on several
vehicles in parallel, a mechanic will first register vehicles for
a certain SW update on the DT, which will then automatically
start the update once all vehicles are ready to receive the
SW. Parallel SW updates can again significantly shorten the
duration of wireless SW updates and thereby reduce costs as
several vehicles are addressed simultaneously.

V. SECURITY AND TRUST

Security is a critical aspect of wireless SW updates, as an
attacker can compromise involved devices and protocols to

173

Chapter 9 – Publications

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS – SPECIAL SECTION ON INDUSTRIAL COMMUNICATION TECHNOLOGIES AND SYSTEMS 5

reveal sensitive data and keys. Depending on the application
scenario, different attack vectors have to be considered and
therefore different levels of security are required.

SecUp’s security concept is built on a system-centric design
employing a measurable security approach as described in
[25]. The used design approach, the DEWI1 security metric,
is based on a structured system decomposition rather then a
traditional approach where first attack vectors are analyzed and
second corresponding countermeasures are implemented.

Such a system-centric design encompasses the following
essential steps: i) security analysis of the framework resulting
in a secure system configuration, ii) extraction of the security
requirements from the secure system configuration, iii) Secu-
rity concept definition based on these requirements and the
peculiarities of the application scenario, and iv) evaluation
of the defined security concept using the STRIDE threat
model [26]. [20] provides more detailed information and also
highlights that this approach can be aligned with the new SAE
security standard SAE-J3061 [21].

In the following the most important revealed security threats
are stated and thereafter, in Section V-B, the security concept
is described in more detail. This description also shows how
the SecUp’s security concept is able to mitigate these threats.
More detailed information can be found in [27].

A. Security threats and attack vectors

A system allowing wireless automotive SW updates is a
worthwhile target for a wide range of attacks. In the following
we will collect and describe critical external as well as internal
threats and show in a later step that the security mechanisms
employed by SecUp are able to prevent these threats.

An external attacker can try to eavesdrop the wireless chan-
nel to reveal transferred authorization keys and the latest SW
itself, or tamper with the transferred data to install malicious
SW on the ECU of a vehicle (Threat T1).

Besides the aforementioned external attacks (e.g., commit-
ted by a hacker without access to the wireless network), there
are also a range of internal threats performed by insiders
such as a rogue mechanic in a service center or other users
fraudulently using the wireless network. These insider threats
encompass theft of equipment such as a WVI to perform
unauthorized SW updates (e.g., tuning; T2), to extract secret
keys stored on the device (T3), or spoofing the identity of an
WVI or a DT (T4) to gather keys, the SW, or vehicle access.

To mitigate all (aforementioned) threats, SW update frame-
works like SecUp must i) employ strong authentication
schemes to establish trust between the involved devices, ii)
use strong encryption as well as message authentication codes
(MAC) to protect confidentiality as well as the integrity of the
transferred data, iii) securely store sensitive data and secret
keys in dedicated memory or HW security modules (HSM).

B. Security concept

The security concept presented in this section is built upon
the results of the system analysis utilizing the DEWI security

1EU project Dependable Embedded Wireless Infrastructure (DEWI).

WVI

Handheld

<PIN &
NFC>

DT DB

User

<Block
chain>

OEM

SW

<RSA auth.>

<AES enc.>

1
2

4

5

11s <SAE>
3

SW

Fig. 2. Security architecture and flow. New SW is first securely distributed
by the OEM [28] and stored on the DT. To secure the local update 2) a user
authentication is performed, 3) a secured wireless network is established, 4)
strong authentication is used between the core nodes, and 5) symmetric keys
are used to securely transfer the new SW to the WVI.

metrics. The resulting security concept is based on security
mechanisms on the network as well as on the application layer.

On the network layer, wpa supplicant, a generic secu-
rity framework for different types of wireless networks, is
utilized to secure the IEEE 802.11s mesh network. The
wpa supplicant is part of the current open11s implementation
and allows to secure the network in a lightweight way by
using SAE [15]. SAE was developed especially for 802.11s-
based, multihop capable mesh networks, is fully integrated
in the latest wpa supplicant version, and is able to mitigate
a wide range of external attacks [14]. However, SAE is not
providing suitable countermeasures against internal attacks,
where attackers use nodes already connected to the wireless
network (e.g., a compromised device or a rogue user such as
a mechanic in a service center; threats T2-T4) to launch an
attack. Therefore, additional security features are employed on
the application layer to prevent internal attacks and thereby
to address the four important security aspects, namely, vehicle
integrity and authentication, data integrity, data confidentiality,
key management and exchange.

To ensure the integrity of a vehicle, especially when
equipped with a WVI, strong authentication mechanisms must
be applied to keep unauthorized users from accessing the
vehicular bus system. Additionally, it is even more important
to avoid that an attacker endangers a whole fleet of vehicles by
breaking one vehicle and extracting a shared (i.e., symmetric)
authentication key. The developed concept is based on unique
asymmetric key pairs consisting of a private and a public key
used on the WVIs, handhelds, as well as DTs to ensure an
unambiguous authentication between all nodes.

In a classic Public Key Infrastructure (PKI) the public keys
are exchanged (e.g., over the Internet) and then used to encrypt
data or to verify digital signatures. To allow a user to check
if a public key really belongs to a certain entity, classic PKI
systems employ a third party, the Certificate Authority (CA).
As a consequence, each node requires an Internet connection
to communicate with a CA.

In SecUp, a different approach has been chosen: to keep
the system local (i.e., only the DT is connected to the Internet
and/or the OEM backbone), a security concept without a
CA was designed. However, such a concept requires that
public keys are initially exchanged and then securely stored.
This pairing step is performed in a controlled environment
(e.g., close proximity to the DT) using a dedicated media or
mechanism (e.g., SecUp supports NFC and the use of one-time
passwords) by authorized users (e.g., head of a service center).

174

Paper G – IEEE Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS – SPECIAL SECTION ON INDUSTRIAL COMMUNICATION TECHNOLOGIES AND SYSTEMS 6

The pairing only has to be done once: first, a master key pair
is created on each device and securely stored in dedicated
memory or in a Trusted Platform Module (TPM). Second, the
public keys are exchanged and then securely stored. After the
initial pairing step, the master keys can be used to handle the
authentication between the involved nodes and, additionally,
to sign as well as to encrypt unicast packets.

As a WVI securely stores the public key of the DT (and
vice versa), digital RSA (cryptosystem by Rivest, Shamir und
Adleman) signatures (RSA signature with 2048bit key length
and SHA-256 hash) can be used to authenticate the involved
parties. In the authentication step (e.g., performed on a daily
basis), the entities agree on a symmetric session key2 which is
used to ensure confidentiality and integrity of the data transfer.
Please note that in SecUp, i) data packets are protected using
session keys and not by utilizing the master keys as the use
of symmetric keys is more efficient, and ii) timestamps and
nonce are employed to protect exchanged messages and thus to
mitigate common attacks such as replay attacks, similar to TLS
and other common secure message transmission protocols.

Secure multicast data streams required to allow parallel SW
updates, however, need symmetric keys to verify and encrypt
data. Data sent from a DT to several vehicles must be signed
and encrypted using a shared key. This shared session key
is created by the DT and then distributed individually to all
WVIs using a unicast packet signed with the private master
key of the DT. In further consequence, multicast data packets
are encrypted and signed using the session key to ensure the
confidentiality and the integrity of the exchanged data.

By utilizing the master key pairs and the (shared) symmetric
session key, the security aspects authentication, confidentiality,
and integrity can be solved w.r.t. the vehicle itself, as well
as on data exchange level (unicast as well as multicast). To
prevent an attacker from extracting the utilized keys (e.g., by
stealing a WVI), these keys must be stored securely on the
devices and kept secret all the time. Therefore, keys used in
SecUp are stored in dedicated secure memory or TPMs.

C. Application of the security concept to a use case
The service center scenario sketched in Section IV-B will

again be used to illustrate how to secure wireless SW updates
by applying the defined security concept (see also Figure 2):

1) User authentication: mechanics authenticate with the
system using a NFC smartcard and a PIN code. Different
user profiles are used to authorize different modes: normal
mechanics can use SecUp to run wireless diagnostics only. A
privileged user can additionally perform wireless SW updates.

2) Interconnecting the WVI: after connecting the WVI to a
vehicle, the WVI powers up and connects to the IEEE 802.11s
network using a shared network key.

3) Authentication between WVI and DT: the master keys of
the WVI and the DT are used to authenticate with each other.

4) Parallel SW updates: first, the DT creates a session key
and distributes it to all concerned WVIs (unicast). Second, the
DT sends the fragmented SW binary to the WVIs by signing
and encrypting every packet using the session key (multicast).

2Advanced Encryption Standard (AES) in Galois/Counter Mode (GCM) –
AES-GCM

5) Data verification: to ensure data integrity, the DT first
computes the hash value of the SW binary. Then the DT signs
and encrypts the hash value using the master keys and sends
it to the concerned WVIs (unicast). Hence, these WVIs use
the transferred hash to verify the received SW binary before
installing it on the concerned ECUs. Please note that the
genuineness of new SW (i.e., that SW is really coming from
the OEM) is verified by the DT before a new SW binary is
stored in the local database of the DT. However, this secure
SW distribution process (see [28]) is out of the scope of this
paper. In the current concept, the WVI is not verifying the
genuineness again, as the DT already verified it.

D. Formal security concept evaluation

The defined security concept was first formally evaluated
using the Microsoft STRIDE threat model [26]. STRIDE is
an attack-centric approach that can be used to analyze the
security of a system by identifying a number of potential se-
curity threats and grouping them into six categories: Spoofing,
Tampering, Repudiation, Information disclosure, Denial of
service, and Elevation of privilege. To apply STRIDE, each
part of the system is analyzed and all potential threats for every
component or process are determined. Based on these threats,
suitable countermeasures can be defined in a subsequent step.
SecUp’s security concept evaluation was performed in a sim-
ilar way: first a list of potential STRIDE threats was created,
and a prioritization of these threats was performed w.r.t. like-
liness and severity. Second, these threats were (theoretically)
applied to the security concept and its security features to
prove that suitable countermeasures exist to avoid all of these
threats. In [27] the evaluation process is described in more
detail and the results of the formal analysis are presented.

Due to space constraints a complete threat analysis and a
system evaluation w.r.t these identified threats is not possible.
However, in the following the threats T1-T4 described in
Section V-A are used to show the security features of SecUp.
Threat T1 is addressing confidentiality and integrity of ex-
changed data. In SecUp, exchanged data is secured by i) SAE
on network level, used to protect the IEEE 802.11s network
and mitigating external attacks, and ii) security features on
the application layer encompassing per-packet encryption and
integrity checks as well as a final verification of the transferred
SW binary by sending the hash value of the binary (encrypted
and signed by the DT) to the WVI.

Threats T2 and T3 are addressing theft of equipment (e.g., a
plug-in WVI or a handheld in a service center). SecUp allows
wireless SW updates within dedicated areas like a service
center: after an initial pairing step between the DT and a new
WVI, the used equipment is forming a trusted network and SW
updates will only be allowed when a WVI is connected to a
trusted DT. A stolen WVI can therefore not be used to perform
unauthorized SW updates (T2), as the WVI will not allow an
attacker to perform an update without being connected to the
trusted DT. The attacker can in a second step try to spoof the
identity of the trusted DT (T4), however, due to the employed
authentication step using digital signatures, also this attempt
will fail. An attacker can also use stolen equipment to read or

175

Chapter 9 – Publications

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS – SPECIAL SECTION ON INDUSTRIAL COMMUNICATION TECHNOLOGIES AND SYSTEMS 7

replace keys stored on the device, however, will fail as SecUp
utilizes TPMs to securely store keys and other sensitive data.

VI. IMPLEMENTED PROTOTYPES AND DEMONSTRATORS

In this section the implemented HW and SW prototypes of
the core nodes of the wireless SW update system are described
and the utilized demonstrator ECUs are presented.

A. The developed WVI prototype

The developed WVI prototype consists of a BeagleBone
Black (BBB) board and a developed Printed Circuit Board
(PCB). This PCB can be mounted on the BBB using the
designated header pins and encompasses the required HW
interfaces (i.e., CAN and OBD) as well as the corresponding
transceivers to interconnect a WVI and a vehicle. The PCB
is also responsible for the battery management of a WVI: the
battery is used as power supply of the WVI when the ignition
of the vehicle is off and no power is provided via the OBD
interface of the vehicle. The SW implementation of the WVI is
mainly done in Java and the Java Native Interface (JNI) is used
to interact with the HW-related parts of the WVI prototype.

A key aspect of the developed security concept is to
use strong authentication mechanisms between the involved
devices (i.e., WVIs, handhelds, and DTs). The corresponding
authentication keys must be kept secret to guarantee a trust-
worthy system. Especially the plug-in WVI is critical, as an
attacker can steal such a device and try to extract the secret
keys. To avoid that, a TPM can be used on the WVI to securely
store secret keys and other sensitive material. Although, the
TPM is currently only used to store RSA keys and to handle
the authentication between the WVI and the DT, it would also
allow the use of certificates in future versions of SecUp.

1) Trusted platform module integration: The used TPM
from NXP is connected to the WVI via Inter-Integrated Circuit
(I2C) bus. The I2C protocol required to exchange data between
the TPM and the WVI was not fully supported by the I2C
library available on the BBB. Because of that, an additional
I2C bus using normal I/O pins was implemented on the
BBB to fulfill the requirements of the TPM w.r.t. the I2C
communication protocol. The disadvantage of this approach,
however, is that the communication between the TPM and the
BBB is rather slow: about 7 kBaud.

In Section VII-A the impact of the slow bus connection
between the WVI and the TPM is evaluated by first comparing
the performance of the integrated TPM with the software-
based cryptography library Java Bouncy Castle (JBC) and
second using an oscilloscope to analyze the timing behavior of
the TPM when performing different cryptographic operations.

B. Prototypes and implementation of the DT and handhelds

The DT implementation was developed in Java and tested
on both a dual-core laptop running Win7 as well as on a BBB
running Debian Linux (the system evaluation was performed
by an BBB running as DT). The latest DT implementation sup-
ports different modes such as ECU programming, monitoring
of the CAN bus, and OBD diagnostics.

A Nexus 7 Android tablet is used as hand-held device. It
can be connected to a WVI and a DT simultaneously, thereby
empowering the hand-held device to monitor the bus systems
of the vehicle, to run OBD requests, and to trigger SW updates.

C. Volvo FlexECU used for basic framework evaluation

The Volvo FlexECU is a prototyping ECU mainly used
to test new applications. The ECU offers several connectors
(i.e., CAN interface, power supply, and enable pin) and comes
inside a solid metal case. The bootloader of the ECU contains
an UDS stack and thus supports a UDS-compliant SW update
process. A reset must be triggered to access the bootloader
when the ECU is already running its application SW.

This ECU was used to perform basic evaluations of the SW
update framework (Section VIII). Two slightly different SW
versions, one periodically sending CAN frames with ID 1001
and the other with ID 2001, were used to test the developed
framework and to run some basic performance analysis. Due
to the different CAN-IDs it is easy to validate that a new SW
version was correctly installed on the ECU.

D. Infineon AURIX as advanced ECU demonstrator

The Volvo ECU is not suitable to test advanced features
such as delta or partial wireless SW updates as neither the
FlexECU HW nor the SW running on the ECU can be adapted
or extended. Because of that, a second demonstrator ECU
based on an Infineon AURIX was developed. Utilizing AURIX
brings several advantages and offers more freedom to develop
advanced SW update features, as the default bootloader can be
modified or even a new AURIX bootloader can be developed.

1) AURIX platform description: the developed demonstra-
tor ECU consists of an Infineon AURIX multi-core ECU inte-
grated in the AURIX application kit TC277 TFT. It is a high
performance ECU compliant to support safety requirements
up to ASIL-D3, the highest automotive safety level [29]. The
AURIX ECU is based on a 32 bit scalar TriCore CPU running
at up to 300 MHz in the full automotive temperature range {-
40, +170}◦C. It is equipped with up to 4MB flash and 472KB
RAM memory and comes with high speed CAN transceivers,
a safety processor and watchdog, as well as dedicated closely-
coupled memory areas per core.

2) Flash-over-CAN mechanism for AURIX: this mechanism
is the basis for wireless SW updates as it encompasses the
transfer of new SW from the WVI to the AURIX ECU
utilizing the CAN bus as well as the installation of this SW
on the ECU. AURIX does not provide such a mechanism by
default. Therefore an extended AURIX bootloader enabling a
reliable flash-over-CAN mechanism was developed. The latter
basically consists of three main components: i) a CAN driver
handling the data transfer over CAN, ii) a flash driver required
to program and erase the flash memory, and a iii) controller
coordinating the programming sequence.

The CAN driver itself is already implemented in the AURIX
basic SW and must only be configured to support the right
bitrate (e.g., 1Mbit/s) of the bus. The flash driver is responsible

3Automotive Safety Integrity Levels (ASIL) defined from A to D

176

Paper G – IEEE Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS – SPECIAL SECTION ON INDUSTRIAL COMMUNICATION TECHNOLOGIES AND SYSTEMS 8

for programming and erasing the data as well as the program
flash memory of the ECU and basically consists of two main
functions: erasing of sections and programming of pages. The
flash driver is able to erase one or more consecutive sections
and can write single pages or use the burst programming mode
to write multiple consecutive pages of the flash memory. The
controller component was developed compliant to the UDS
standard and is started each time the AURIX bootloader is
called (e.g., after a HW or SW reset). It initializes the CAN
driver and checks for programming requests. If no such request
was received, it starts the ECU’s application SW or reboots
if no application SW is present. Otherwise, if a programming
request was found, the controller handles the data transfer as
well as the installation of the new application SW.

New application SW can be installed on AURIX by first
sending a programming request containing the start address
of the SW to the ECU. Second, an authorization step based
on a typical Seed & Key mechanism is performed and then an
UDS-compliant programming session is started on the ECU.
In the third step, the SW is transferred to the ECU block-
by-block using the corresponding UDS commands. The ECU
receives a block, stores it in a temporary buffer and finally
utilizes the flash driver to write it to the flash memory. After
transferring all blocks to the ECU, the new SW version is
validated by computing the Cyclic Redundancy Check (CRC)
over the new SW blocks. Finally, the ECU reboots and starts
the new application.

3) Partial SW updates: transferring the SW binary to the
ECU via CAN bus is, according to Section VII-C and the
results shown in Table I, by far the most time consuming step
when performing a wireless SW update. Speeding up this step
will significantly decrease the duration of a SW update.

One way to achieve this is to utilize partial SW updates. The
basic idea behind partial SW updates is to only update the parts
of the software that have changed compared to the currently
installed SW version. The possible benefit can be up to nearly
100% in case of a simple parameter value change: a normal
SW update will require to download the entire new binary to
the ECU regardless of whether the old and the new binary are
very similar (i.e., just one or a few parameters have changed)
or if the new version has a lot of new features and is therefore
much bigger in size. Partial SW updates will, in contrast,
only download the changed parts of the binary (i.e., one or
several memory blocks). In flash architectures, the available
memory is divided into different sections, sometimes even with
different sizes. To manipulate a section, a flash driver first has
to erase the entire flash section before it can be filled with new
content. Therefore, it is not possible to just update the value
of one parameter stored in a specific section, but the entire
memory section has to be rewritten. For partial SW updates
this fact leads to two different approaches:

Delta download: only relevant (i.e., the changed) parts of a
SW section are sent to the ECU. On the ECU the affected
section is copied into RAM memory, the flash section is
erased by the flash driver, the content of the section (in
RAM) is modified using the received delta bytes, and finally
the resulting section content is written to the flash memory
again. This approach on the one hand minimizes the amount

Sectio
n

 1 (4K
B

)
Sectio

n
 2 (4

K
B

)
Sectio

n
 3 (4

K
B

)
Sectio

n
 4 (4

K
B

)

Sectio
n

 5 (8
K

B
)

...

Sectio
n

 N

(25
6K

B
)

Big flash
sections for
SW unlikely
to change

Small
sections for

frequent
updates

Fig. 3. Flash memory is divided into sections with different block sizes.

of data to be transferred to the ECU, but on the other hand
significantly increases the complexity at ECU level.

Partial SW update: instead of only transferring delta bytes,
the entire section is transferred to the ECU. Although, this
limits the benefit of a partial SW update as more data must
be sent to the ECU, it is very simple to implement.

To decide whether to use delta downloads or to utilize partial
SW updates, different factors such as section size, bitrate of
the bus, as well as the bus load must be taken into account.

For AURIX ECUs the partial SW update approach was
chosen as its flash memory is divided into sections with
different sizes (see Figure 3) and as the SW developer can
utilize a linker file to influence where specific parts of the
SW binary are stored in the flash memory. When developing
new AURIX SW, the binary shall be divided into different
sections and mapped to the ECU flash memory accordingly as
illustrated in Figure 3: areas that are most likely unchanged in
the vehicle’s lifetime (e.g., basic ECU functionality) and areas
that are subject to change (e.g., blocks containing parameters
or optional features). The latter will be located in one or
several small sections (mostly a few KBs) of the flash memory.

VII. EVALUATION OF THE SECURITY CONCEPT

In this section the impact of the employed security mecha-
nisms on the system performance is evaluated.

A. Evaluating the performance of the integrated TPM

In SecUp a TPM is integrated in the WVI to securely store
secret keys and sensitive data. The used TPM is capable to
store keys and to perform cryptographic operations such as
RSA encryption/decryption or RSA/AES key creation. The
TPM can also be used for symmetric data encryption and
signing. Therefore all cryptographic tasks required by the
defined security concept are supported by the TPM. However,
they can also be performed by the used Java SW-library JBC.

In a first evaluation step the performance of the TPM and the
JBC is compared. Therefore, the authentication step between
a WVI and a DT is performed 20 times first using the TPM
and second utilizing JBC and thereby the duration of these
operations was measured. The authentication step including
different RSA operations (i.e., data encryption/decryption and
signing) can be performed by the TPM, the JBC library, or as
hybrid solution utilizing both in a combined way.

The gathered results show that the JBC outperforms
the TPM: min/max/avg duration when using the TPM
(6328/6588/6415.5ms) and JBC (575/701/635.8ms), respec-
tively. However, the most important advantage of the TPM
is its ability to securely store sensitive data and keys.
Because of that, the final concept uses a hybrid solution
(3525/3690/3577.9ms) where the fast JBC library is combined

177

Chapter 9 – Publications

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS – SPECIAL SECTION ON INDUSTRIAL COMMUNICATION TECHNOLOGIES AND SYSTEMS 9

with the secure storage of the TPM. As the performance
difference between JBC and the TPM, a HW chip dedicated
to perform cryptographic operations, is not really obvious in
the first place, an additional evaluation was performed to get
to the bottom of this issue.

As mentioned in Section VI-A1, the I2C bus connecting
the TPM with the WVI was realized using the I/O pins of
the BBB and therefore the speed of the bus is rather slow (7
kBaud). To evaluate the impact of the slow bus connection on
the overall performance of the TPM, several RSA operations
(RSA encryption/decryption with 2048 bit key, 208 byte data)
were performed and meanwhile the timing behavior of the
TPM was analyzed using an oscilloscope. The measurements
clearly show that the I2C bus has an significant impact on
the overall performance as the time required for the data
exchange between the TPM and the WVI is about 45% for
RSA decryption and up to 87% for RSA encryption of the
overall duration of the operation. The measurements reveal
that either a faster I2C bus or a different bus such as Serial
Peripheral Interface (SPI) would help to significantly decrease
the overall duration. In the current setup, the TPM shall only
be used to store keys and to perform the authentication, but not
for symmetric encryption using AES (i.e., hybrid solution).

B. Impact of security mechanism on the network layer

In this section, the impact of SAE on the system perfor-
mance is analyzed by evaluating the Round Trip Time (RTT)
and the code size of the IEEE 802.11s kernel module.

The first evaluation step is about evaluating the RTT – the
time needed to send a request packet from node A to node B
plus the time needed to transfer the response packet from node
B back to node A. For this experiment five IEEE 802.11s nodes
were used. Static paths through the network were defined
to force multi-hop routes with different lengths (from direct
connections to multi-hop routes with up to four hops). For each
measurement with different path lengths involved and either
SAE on or off, 10000 messages were sent from node A to node
B. To measure the RTT, up to five BBBs (BBB0 to BBB4)
were used to send UDP packets from BBB0 to BBB4 and
back, using zero to three boards (BBB 1, 2, and 3) in between
to forward the data. On BBB0 and BBB4, a UDP server-client
application was used to i) send the request (BBB0), ii) receive
this request and send the response (BBB4), and iii) to receive
this response (BBB0). An adapted version of IEEE 802.11s
was used to detect the exchanged UDP test packets. On BBB0
and BBB4 the received and sent timestamps were added to the
test packets. These packets were collected on BBB0 during a
test, and were used in a subsequent evaluation to compute the
network layer RTT (by removing the time spent on application
layer; only relevant for BBB0 and BBB4, as packet forwarding
on BBBs 1-3 is only done on network layer).

In Figure 4 the results of these measurements are shown.
The green, continuous line shows the RTT for different num-
bers of hops with SAE on and the blue, dashed line for the
measured RTT with SAE disabled. Figure 4a shows that each
hop significantly increases the RTT median (similar results
were obtained when analyzing the average RTT). Additionally

2

4

6

8

9

1hop 2hops 3hops 4hops 0.5

1

1.5

2Median(AES)
Median(None)

1 hop 2 hops 3 hops 4 hops

Delta(Median)

R
TT

 [
m

s]

D
e

lt
a

R
TT

 [
m

s]

Fig. 4. Impact of SAE on network layer: SAE enabled vs. SAE disabled
(i.e., None). Median (a), and delta(median)=median(SAE)-median(None) (b)
of the RTT measurements using 10000 UDP packets are shown.

the delta of the median values is presented in Figure 4b: each
hop increases the RTT, as a packet has to be encrypted and
decrypted at each hop in between node A and node B.

In a second evaluation step, the impact of SAE on the code
size of the MAC80211 kernel module was analyzed using the
source code of this module (by default with SAE) of a standard
3.19 Linux kernel: first, the module with SAE included was
compiled, and second, all the SAE-related source code was
removed and the resulting module was compiled (and tested)
once again. The results of the evaluation show that the impact
of SAE on the code size of the IEEE 802.11s kernel module
is about 5% w.r.t lines of code (LOC) (58545 LOC without
SAE, 61354 LOC with SAE) and 3% w.r.t. the size in memory
(774 KB without and 801 KB with SAE).

C. Impact of security mechanisms on the SW update duration

To secure and protect SecUp, different security mecha-
nisms on network and on application layer are used. These
mechanisms have an impact on the overall performance of
the developed system. Latency measurements in the scope
of real wireless SW updates using the Volvo FlexECU were
performed to assess this impact. In the following, all steps
required to successfully perform a wireless SW update using
the developed framework are listed: i) WVI discovery and
connection establishment, ii) authentication process between
WVI and DT, iii) SW update initialization (mainly w.r.t.
the ECU), iv) authorization on the ECU using a Seed&Key
procedure, v) wireless data transfer from the DT to the WVI,
vi) data download to the ECU via CAN, and vii) validation
of the downloaded SW on the ECU.

Each step adds latency to the overall duration of a wireless
SW update and the per-step-latency differs depending on the
used security mechanisms. For this experiment the FlexECU
and the corresponding binaries consisting of the application
SW (378KB) plus the secondary bootloader (67KB) were used.
On the application layer, security mechanisms implemented in
SW utilizing the Java Bouncy Castle (JBC) were employed.

The gathered evaluation results presented in Table I reveal
that i) the data transfer via CAN comprises most of the SW
update duration (75% if all security mechanisms are enabled
and up to 87% if disabled) and ii) that the employed security
features increase the overall time required to carry out the
wireless SW update by 20%. Although this duration increase
is quite significant, it must be accepted as all security mech-
anisms are required to guarantee a secure system execution.

178

Paper G – IEEE Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS – SPECIAL SECTION ON INDUSTRIAL COMMUNICATION TECHNOLOGIES AND SYSTEMS 10

VIII. FRAMEWORK EVALUATION

In this section, the evaluation of SecUp and its wireless
SW update mechanisms is presented. The performed evalua-
tion is the first available analysis of a wireless SW update
framework providing advanced SW update mechanisms as
well as allowing secure and efficient SW updates in different
(local) scenarios such as an assembly line or a service center.
Therefore, no suitable benchmark is available to compare
the gathered results. A basic system evaluation was already
presented in [30]: a developed Vehicle and ECU Model (VEM)
was used to perform fundamental experiments, system evalu-
ations, and communication tests. Furthermore, the VEM was
used to evaluate the behavior of the developed system in case
of errors (e.g., sending unexpected frames) and communication
problems (e.g., lost, delayed or duplicated CAN frames). This
evaluation also included an analysis of the wireless network,
where the DT is connected to a real vehicle and run wireless
diagnostics using the developed WVI prototype. Thereby, the
evaluation results were used to prove the applicability of IEEE
802.11s as media for wireless SW updates.

A. Wireless SW update analysis using Volvo FlexECU

The SW update process was first analyzed using the Flex-
ECU, provided by Volvo Trucks and described in Section
VI-C, connected to a WVI. This ECU is programmed in two
steps: first, the secondary bootloader (SBL) is transferred to
the ECU and then launched on the ECU using a specific UDS
command. Second, the application binary is sent to the ECU
and installed on it. SecUp supports both the use of an SBL
and the application binary as well as an approach where the
application binary is directly installed without using an SBL.

In Table II the duration of the wireless data transfer, where
the SBL and the application SW is transferred from the DT to
the WVI, is compared with time required to install the SBL
and the application SW on the ECU via CAN. The measured
SW update duration using the Volvo ECU is also used as a
benchmark for the evaluation of AURIX and its implemented
SW update features. The results reveal that the wireless data
transfer (including data transfer, integrity check, etc.) is 12
times faster than forwarding the binary using CAN and thereby
corresponds to the results presented in Table I. Thus, it makes
sense that the WVI autonomously controls the data transfer to
the ECU once the binary was received from the DT (i.e., no
permanent wireless connection to the DT needed). The WVI
then informs the DT when the SW is installed on the ECU
successfully or when any problems occur.

B. Wireless SW update analysis using AURIX ECU

The AURIX ECU described in Section VI-D was used
to further evaluate SecUp and its features. Therefore, the
SW implementation of SecUp’s core nodes, the DT and the
WVI, were running on BBBs. These BBBs are connected
to a measurement PC via USB to control the measurements
and to collect the results. Per measurement campaign (i.e.,
one per mode) 20 wireless SW updates were performed and
the duration of each single step, as already described in

Section VII-C, was measured. These steps are then grouped
in i) Connection-related, including the DT discovery and
the authentication between DT and WVI, ii) ECU-related,
encompassing the initialization of the SW update and the
corresponding authorization step between WVI and ECU, iii)
Upload, i.e., the wireless data transfer, and iv) Download, the
data transfer via CAN as well as the installation of the SW on
the ECU. This setup allows to compare the overall duration of
a SW update w.r.t. the used update mechanism and additionally
to analyze the latency added by each step.

To compare the SW update duration of both the Volvo
FlexECU and the AURIX ECU, a SW binary for AURIX
was created using Hightec Studio, the recommended SW
development tool for AURIX. The resulting .hex file (i.e.,
the binary) was developed to have the same size as the
Volvo FlexECU secondary bootloader (SBL) plus the size
of the application SW (i.e., 67 KB + 378 KB = 445 KB).
Although the .hex file contains all the information needed
for the wireless SW update, the file format is not suitable
to directly analyze the binary w.r.t. to partial SW updates and
therefore a parser was developed to transform the .hex file
in a so-called .phex (i.e., parsed hex) file format. In a .phex
file, each line represents a block of the SW binary and it can
therefore be used to check if a partial SW update is possible by
comparing the lines of the SW versions. A further advantage
of this file format is that the .phex file is smaller than the
corresponding .hex file: the binary used for the evaluations
is originally stored in a .hex file with 445 KB and can be
transformed to a .phex file of about 316 KB.

1) Volvo FlexECU and AURIX ECU comparison: in a
first evaluation step the SW update duration using both the
FlexECU and AURIX are compared. The results presented in
Table III show that AURIX can be updated more than twice as
fast. This is due to: i) the initialization process on ECU level
(i.e., start a programming session and handle authorization) is
ten times faster on AURIX compared to the FlexECU due to
the higher CPU power available, ii) the wireless data transfer
is about 30% faster as the .phex is 29% smaller than the sum
of SBL plus application SW, and iii) the data transfer on CAN
(both ECUs are using a CAN bus with 500 Kbits/s) and the
storage of the binary is close to three times faster on AURIX
as the Volvo ECU first has to store and start the SBL and then
load, store, and start the application SW.

2) Partial SW update evaluation: this experiment shows the
benefits of a partial SW update compared to a traditional SW
update. A SW update is often required due to a necessary bug
fix or to update/adapt a parameter field of the ECU. In these
cases, most parts of the SW remain unchanged and only some
bytes have to be changed. To illustrate this, two different SW
applications for AURIX were developed. The size of the .hex
files of both versions is still 445 KB and they are utilizing
a parameter field of 1024 byte in total. This parameter field
is stored in a dedicated memory section of the AURIX ECU
(see also Figure 3) and is the only difference between the SW
versions. When utilizing partial SW updates, only the section
containing the parameter field (1 KB) must be transferred to
the ECU instead of transferring the entire binary.

In Table III the impact on the SW update duration is shown:

179

Chapter 9 – Publications

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS – SPECIAL SECTION ON INDUSTRIAL COMMUNICATION TECHNOLOGIES AND SYSTEMS 11

TABLE I
DURATION OF ALL REQUIRED STEPS IN MS OF A WIRELESS SW UPDATE W.R.T. SECURITY MECHANISMS ON NETWORK AND APPLICATION LAYER

Nw/Appl Total Discovery Authentication Init SW update Seed&Key Upload Download Validation
on/on 49193,3 3.2 (<0.1%) 2366,4 (4.8%) 1900,8 (3.9%) 509,8 (1.0%) 6585,4 (13.4%) 37315,3 (75.9%) 502,4 (1.0%)
off/on 47167,1 3.1 (<0.1%) 2360,4 (5.0%) 1992,0 (4.2%) 504,2 (1.1%) 5414,2 (11.5%) 36380,2 (77.1%) 505,1 (1.1%)
on/off 43745,6 3,2 (<0.1%) 1,88 (<0.1%) 1761,9 (4.0%) 510,7 (1.2%) 3756,0 (8.6%) 37200,2 (85.0%) 503,1 (1.2%)
off/off 41528,6 3.6 (<0.1%) 0,66 (<0.1%) 1764,67 (4.3%) 509,0 (1.2%) 2445,0 (5.9%) 36294,8 (87.4%) 502,7 (1.2%)

TABLE II
SW UPDATE DURATION: SW IS TRANSFERRED FROM A DT TO A WVI

UTILIZING IEEE 802.11S AND THEN FORWARDED TO A ECU VIA CAN

Binary type Binary size On 11s On CAN Update duration
SBL 67KB 0.503s 6.268s 6.771s
Application 375 KB 2.527s 30.664s 33.191s

a partial SW update is about six times faster compared to the
normal update using an AURIX ECU (i.e., a duration decrease
of 83%). This is mainly due to the fact that less data has to
be transferred wirelessly from the DT to the WVI (a speed-
up of 98%) as well as from the WVI to the ECU via CAN
(about twenty times faster). The benefit of a partial SW update,
however, strongly depends on the memory architecture of an
ECU as well as on the difference of two SW versions.

3) Parallel SW update evaluation: in the last evaluation
step parallel SW updates are analyzed. These updates can be
very beneficial in situations (see scenarios described in Section
IV) where the same SW version shall be installed on ECUs
integrated in several vehicles. This is of particular importance
for the assembly line as well as for service centers when big
vehicle recalls (e.g., due to a SW bug) are necessary, because
the update can be performed on all vehicles simultaneously.

In the performed experiment two WVIs prototypes, each
connected to an AURIX ECU, were wirelessly connected to
the same DT. Instead of performing the SW update sequen-
tially, the SW binary was installed on both ECUs in parallel.

The evaluation results presented in Table III show that the
parallel update duration is increased by about 25% compared
to a normal wireless SW update. This is due to the fact,
that the required steps cannot by parallelized completely.
However, parallel SW updates are still way faster (in this
case 75% faster) compared to performing normal SW updates
sequentially (i.e., performing a SW update two times in a row).

IX. CONCLUSION

In this paper SecUp, a generic framework enabling se-
cure and efficient wireless SW updates is proposed. SecUp
is designed and implemented to fulfill the requirements of
several application scenarios: vehicle development, vehicle
assembly line, vehicle maintenance, and OTA updates. SecUp
encompasses efficient wireless SW update features such as
parallel SW updates, where the SW of several vehicles is
updated simultaneously, and partial SW updates, where only
the changed parts of a SW binary are transferred and installed
on an ECU. This paper also includes a description of the
properties of the utilized IEEE 802.11s network and illustrates
the designed cross-layer security concept used by SecUp.

A comparison of the developed SW update mechanisms
show the benefits of utilizing advanced update features.

ACKNOWLEDGMENT

This work was partially funded by the SCOTT project,
which received funding from the ECSEL Joint Undertaking
under grant agreement No 737422. This joint undertaking
is supported by EUs Horizon 2020 research and innovation
program and Austria. SCOTT is also funded by the Austrian
Federal Ministry BMVIT under the program “ICT of the
Future” (05-2017 - 04-2020). The authors also acknowledge
financial support by the COMET K2 Program of the BMVIT,
BMWFW, FFG, the Province of Styria, and SFG.

REFERENCES

[1] Rudolf von Stokar, “Updating Car ECUs Over-The-Air (FOTA),” Red
Bend Software, Tech. Rep. RedBend-01-2011, 2011.

[2] M. S. Idrees, H. Schweppe, Y. Roudier, M. Wolf, D. Scheuermann, and
O. Henniger, “Secure automotive on-board protocols: A case of over-
the-air firmware updates,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6596 LNCS, pp. 224–238, 2011.

[3] D. K. Nilsson and U. E. Larson, “Secure firmware updates over
the air in intelligent vehicles,” IEEE International Conference on
Communications, pp. 380–384, 2008.

[4] D. Nilsson, P. Phung, and U. E. Larson, “Vehicle ECU classification
based on safety-security characteristics,” Road Transport Information
and Control - RTIC, pp. 1–7, 2008.

[5] K. H. Peter Subke and V. Marquart, “ODX-based flash solution,” CAN
Newsletter, vol. 3, pp. 42–46, 2015.

[6] M. Khurram, H. Kumar, A. Chandak, V. Sarwade, N. Arora, and
T. Quach, “Enhancing connected car adoption: Security and over the
air update framework,” pp. 194–198, Dec 2016.

[7] S. M. Mahmud, S. Shanker, and I. Hossain, “Secure software upload in
an intelligent vehicle via wireless communication links,” in Intelligent
Vehicles Symposium. Proceedings. IEEE, June 2005, pp. 588–593.

[8] I. Hossain and S. M. Mahmud, “Analysis of a secure software upload
technique in advanced vehicles using wireless links,” in Intelligent
Transportation Systems Conference, 2007. ITSC 2007. IEEE. IEEE,
2007, pp. 1010–1015.

[9] R. Petri, M. Springer, D. Zelle, I. McDonald, A. Fuchs, and C. Krauss,
“Evaluation of lightweight tpms for automotive sw updates over the air,”
in Embedded Security in Cars Conference. escar, 2016.

[10] N. Gabe, “Over-the-air updates on varied paths,” Automotive News,
2016-01-25.

[11] D. T. Tuan, S. Sakata, and N. Komuro, “Priority and admission control
for assuring quality of I2V emergency services in VANETs integrated
with Wireless LAN Mesh Networks,” ICCE 2012, pp. 91–96, 2012.

[12] S. Chakraborty and S. Nandi, “IEEE 802.11s mesh backbone for
vehicular communication: Fairness and throughput,” IEEE Transactions
on Vehicular Technology, vol. 62, no. 5, pp. 2193–2203, 2013.

[13] M. Steger, M. Karner, J. Hillebrand, W. Rom, E. Armengaud, M. Hans-
son, C. A. Boano, and K. Roemer, “Applicability of IEEE 802.11s for
automotive wireless software updates,” in 13th International Conference
on Telecommunications (ConTEL), July 2015, pp. 1–8.

[14] W. K. Tan, S.-G. Lee, J. H. Lam, and S.-M. Yoo, “A security analysis
of the 802.11s wireless mesh network routing protocol and its secure
routing protocols,” Sensors, vol. 13, no. 9, p. 11553, 2013.

[15] D. Harkins, “Simultaneous authentication of equals: A secure, password-
based key exchange for mesh networks,” in Second International
Conference on Sensor Technologies and Applications. SENSORCOMM
’08., Aug 2008, pp. 839–844.

180

Paper G – IEEE Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS – SPECIAL SECTION ON INDUSTRIAL COMMUNICATION TECHNOLOGIES AND SYSTEMS 12

TABLE III
DURATION OF ALL REQUIRED STEPS IN MS OF A WIRELESS SW UPDATE. COMPARISON BETWEEN THE VOLVO ECU AND THE AURIX MODES.

ECU/mode Total Connection-related ECU-related Upload Download
Volvo/normal 48681.0 2369.7 (4.9%) 2410.6 (5.0%) 6585.4 (13.5%) 37315.3 (76.7%)
AURIX/normal 20768.8 2340.2 (11.3%) 205.4 (1.0%) 4597.0 (22.1%) 13626.3 (65.6%)
AURIX/partial 3570.7 2351.7 (65.9%) 216.7 (6.1%) 347.1 (9.7%) 655.2 (18.3%)
AURIX/parallel 25881.8 3868.3 (14.9%) 262.9 (1.0%) 7378.5 (28.5%) 14372.2 (55.5%)

[16] M. Sbeiti, A. Wolff, C. Wietfeld, and I. Technology, “PASER: Position
Aware Secure and Efficient Route Discovery Protocol for Wireless
Mesh Networks,” in International Conference on Emerging Security
Information, Systems and Technologies - SECURWARE, 2011, pp. 63–
70.

[17] M. Sbeiti and C. Wietfeld, “One stone two birds: On the security and
routing in wireless mesh networks,” in Wireless Communications and
Networking Conference (WCNC), 2014 IEEE, April 2014.

[18] M. S. Islam, M. A. Hamid, and C. S. Hong, “SHWMP: A Secure Hybrid
Wireless Mesh Protocol for IEEE 802.11s Wireless Mesh Networks,” in
Transactions on Computational Science VI. Springer Berlin Heidel-
berg, 2009, pp. 95–114.

[19] J. Ben-Othman and Y. I. Saavedra Benitez, “IBC-HWMP: a novel secure
identity-based cryptography-based scheme for Hybrid Wireless Mesh
Protocol for IEEE 802.11s,” Concurrency and Computation: Practice
and Experience, vol. 25, no. 5, pp. 686–700, 2013.

[20] M. Steger, M. Karner, J. Hillebrand, W. Rom, and K. Roemer, “A
Security Metric for Structured Security Analysis of Cyber-Physical
Systems Supporting SAE J3061,” pp. 1–8, 2016.

[21] SAE, “SAE J3061: Surface Vehicle Recommended Practive - Cybersecu-
rity Guidebook for Cyber-Physical Vehicle Systems,” SAE International,
Tech. Rep. 01-2016, 2016.

[22] “open80211s – An open-source implementation of the
recently ratified IEEE 802.11s wireless mesh standard,”
https://github.com/o11s/open80211s/wiki/, accessed: 2017-11-30.

[23] ISO, “ISO 22901-1: Road vehicles – Open diagnostic data exchange
(ODX) – Part 1: Data model specification,” ISO, Tech. Rep. 2008-11,
2008.

[24] ——, “ISO 14229: Road vehicles – Unified diagnostic services (UDS) –
Specification and requirements,” ISO, Tech. Rep. 14229:2006(E), 2006.

[25] I. Garitano, S. Fayyad, and J. Noll, “Multi-Metrics Approach for
Security, Privacy and Dependability in Embedded Systems,” Wirel. Pers.
Commun., vol. 81, no. 4, pp. 1359–1376, Apr. 2015.

[26] B. Potter, “Microsoft SDL Threat Modelling Tool,” Network Security,
vol. 2009, no. 1, pp. 15 – 18, 2009.

[27] M. Steger, C. Boano, M. Karner, J. Hillebrand, W. Rom, and K. Roemer,
“SecUp: Secure and Efficient Wireless Software Updates for Vehicles,”
pp. 628–636, 2016.

[28] M. Steger, A. Dorri, S. S. Kanhere, K. Roemer, R. Jurdak, and
M. Karner, Secure Wireless Automotive Software Updates Using
Blockchains: A Proof of Concept. Cham: Springer International
Publishing, 2018, vol. 23, pp. 137–149.

[29] ISO, “ISO 26262: Road vehicles – Functional safety – Part 1: Vocabu-
lary,” ISO, Tech. Rep. 26262-1:2011, 2011.

[30] M. Steger, M. Karner, J. Hillebrand, W. Rom, C. Boano, and K. Roemer,
“Generic framework enabling secure and efficient automotive wireless
SW updates,” pp. 1–8, Sept 2016.

Marco Steger received the Masters degree in In-
formation and Computer Engineering from Graz
University of Technology, Graz, Austria, in 2013,
with a thesis titled ”Development and Evaluation of
C2X Applications” done in cooperation with BMW,
Munich, Germany.

He is currently a Senior Researcher with the
VIRTUAL VEHICLE Research Center in Graz, Aus-
tria. His research interests include wireless auto-
motive communication networks, security in wire-
less/mobile/automotive networks, wireless sensor

networks, and Car-to-X applications.

Carlo Alberto Boano (M2009) received the dou-
ble Masters degree in Computer Engineering from
Politecnico di Torino, Turin, Italy, and KTH Stock-
holm, Stockholm, Sweden in 2009, and the Doctoral
degree sub-auspiciis praesidentis in Information and
Communication Technology from Graz University
of Technology, Graz, Austria, in 2016, with a thesis
on dependable WSNs.

He is currently an Assistant Professor with the In-
stitute for Technical Informatics of Graz University
of Technology, Graz, Austria. His research interests

encompass the design of dependable networked embedded systems and the
robustness of IoT communication protocols against environmental influences.

Thomas Niedermayr received the Masters degree in
Information and Computer Engineering from Graz
University of Technology, Graz, Austria, in 2017,
with a thesis titled ”Enabling Wireless Automotive
SW Updates for the Infineon AURIX ECU”.

His current research focuses on the development
of Embedded and Automotive systems.

Kay Roemer received the Dipl.-Inf. degree in Com-
puter Science from University of Frankfurt/Main,
Germany, in 1999, and the Doctoral (Dr.sc.ETH) de-
gree in Computer Science from ETH Zurich, Zurich,
Switzerland, in 2005.

Kay Roemer is currently a Professor and the
Director with the Institute for Technical Informatics,
Graz University of Technology, Graz, Austria. He
was a Professor with the University of Luebeck,
Luebeck, Germany, and a Senior Researcher with
ETH Zurich, Zurich, Switzerland. His research in-

terests include wireless networking, fundamental services, operating systems,
programming models, dependability, and deployment methodology of net-
worked embedded systems, in particular IoT, cyber-physical systems, and
sensor networks.

Karner Michael received the Ph.D. degree in Elec-
trical Engineering from Graz University of Technol-
ogy, Graz, Austria in 2011.

Since 2011, he has been with VIRTUAL VEHI-
CLE, Graz, Austria. As Lead Researcher and Project
Manager, he is working in several large international
industrial research projects. His research interests in-
clude wireless technologies, cyber-physical systems,
functional and active safety - especially with focus
on simulation/co-simulation based analysis and ver-
ification.

Joachim Hillebrand studied Electrical and Commu-
nications Engineering at Graz University of Technol-
ogy, Austria, where he received his Dipl.-Ing. degree
in 2000.

Today, he leads the Embedded Systems Group at
VIRTUAL VEHICLE, Graz, Austria. Before joining
VIRTUAL VEHICLE in 2009, he held research
positions with NTT DoCoMo Eurolabs and BMW
Research and Technology, Munich, Germany. His
research interests include automotive E/E architec-
tures as well as wireless and wired vehicle data

communication.

181

Bibliography

[1] I. 14229:2006(E). ISO 14229:2006: Road vehicles – Unified diagnostic services (UDS)
– Specification and requirements, 2006.

[2] I. T. G. 802.11n. Local and metropolitan area networks. Amendment to Part 11:
Amendment 11n: Enhancements for Higher Throughput Mesh Networking. Technical
report, IEEE, 2009.

[3] C. E. Andrade, S. D. Byers, V. Gopalakrishnan, E. Halepovic, M. Majmundar, D. J.
Poole, L. K. Tran, and C. T. Volinsky. Managing massive firmware-over-the-air up-
dates for connected cars in cellular networks. In Proceedings of the 2Nd ACM Inter-
national Workshop on Smart, Autonomous, and Connected Vehicular Systems and
Services, CarSys ’17, pages 65–72, New York, NY, USA, 2017. ACM.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxon-
omy of dependable and secure computing. Dependable and Secure Computing, IEEE
Transactions on, 1(1):11–33, Jan 2004.

[5] P. Azzoni, F. Rogo, C. Coveri, M. Steger, W. Rom, A. Fiaschetti, F. Liberati, and
J. Noll. Applying shield in new domains. In A. Fiaschetti, J. Noll, P. Azzoni, and
R. Uribeetxeberria, editors, Measurable and Composable Security, Privacy, and De-
pendability for Cyberphysical Systems: The SHIELD Methodology, pages 415–452.
CRC Press, 2017.

[6] B. Steurich and M. Klimke and Ines Pedersen. Automotive ecus: Architecture consid-
erations to implement secure software updates over the air. In White Paper Infineon
Technologies published in Embedded computing (Online Resource; last visited 2018-
01-22), 2017.

[7] S. Brown and C. J. Sreenan. Software updating in wireless sensor networks: A survey
and lacunae. Journal of Sensor and Actuator Networks, 2(4):717–760, 2013.

[8] M. Cesana, L. Fratta, M. Gerla, E. Giordano, and G. Pau. C-vet the ucla campus
vehicular testbed: Integration of vanet and mesh networks. In Proc. of the European
Wireless Conference, 2010.

[9] R. N. Charette. This car runs on code. IEEE spectrum, 46(3):3, 2009.

[10] M. L. Chiang and T. L. Lu. Two-stage diff: An efficient dynamic software update
mechanism for wireless sensor networks. In 2011 IFIP 9th International Conference
on Embedded and Ubiquitous Computing, pages 294–299, 2011.

182

Bibliography

[11] Cozybit. open80211s – An open-source implementation of the recently ratified IEEE
802.11s wireless mesh standard. http://open80211s.org/open80211s/, 2015.

[12] A. Dorri, S. S. Kanhere, and R. Jurdak. Towards an optimized blockchain for iot.
In Proceedings of the Second International Conference on Internet-of-Things Design
and Implementation, pages 173–178. ACM, 2017.

[13] A. Dorri, M. Steger, S. S. Kanhere, and R. Jurdak. Blockchain: A distributed solution
to automotive security and privacy. IEEE Communications Magazine, 55(12):119–
125, December 2017.

[14] U. Drolia, Z. Wang, S. Vemuri, M. Behl, and R. Mangharam. Autoplug – an auto-
motive test-bed for electronic controller unit testing and verification. In Proc. of the
IEEE Intelligent Transportation Systems Conference (ITSC), 2011.

[15] Drozhzhin, Alex. Tesla Model S was hacked remotely. Kaspersky lab (online blog;
last accessed 2018-01-13, 2016.

[16] M. J. Dworkin. Recommendation for block cipher modes of operation: Galois/counter
mode (gcm) and gmac. Special Publication (NIST SP)-800-38D, 2007.

[17] X. Fan, F. Susan, W. Long, and S. Li. Security analysis of zigbee. White Paper, 2017.

[18] J. Fitzpatrick. The Difference Between WEP, WPA, and WPA2 Wi-Fi Passwords.
How-To Geek (Online resource; last visited 2017-12-10), September 21, 2016.

[19] N. Gabe. Over-the-Air Updates on Varied Paths. Automotive News, 2016.

[20] J. Gapper. Software is steering auto industry. Financial Times, February 18, 2015.

[21] I. Garitano, S. Fayyad, and J. Noll. Multi-metrics approach for security, privacy and
dependability in embedded systems. Wirel. Pers. Commun., 81(4):1359–1376, Apr.
2015.

[22] Greenberg, Andy. Hackers Cut a Corvette’s Brakes Via a Common Car Gadget.
Wired (online magazine; last accessed 2017-12-13, 2015.

[23] S. Gupta and R. Dham. Improving Security with Bluetooth Low Energy 4.2, 2016.

[24] P. Hank, S. Müller, O. Vermesan, and J. Van Den Keybus. Automotive ethernet: In-
vehicle networking and smart mobility. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’13, pages 1735–1739, San Jose, CA, USA,
2013. EDA Consortium.

[25] D. Harkins. Simultaneous Authentication of Equals: A Secure, Password-Based Key
Exchange for Mesh Networks. In Second International Conference on Sensor Tech-
nologies and Applications. SENSORCOMM ’08., pages 839–844, Aug 2008.

[26] I. Hossain and S. Mahmud. Analysis of a secure software upload technique in advanced
vehicles using wireless links. In Proc. of the Intelligent Transportation Systems Con-
ference, 2007.

183

http://open80211s.org/open80211s/

Bibliography

[27] I. Hossain, S. Mahmud, and M. Hwang. Performance evaluation of mobile multicast
session initialization techniques for remote sw upload in vehicle ecus. In Proc. of the
IEEE Vehicular Technology Conference, 2010.

[28] I. Hossain and S. M. Mahmud. Analysis of group key management protocols for secure
multicasting in vehicular software distribution network. In Third IEEE International
Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob 2007), pages 25–25, Oct 2007.

[29] IEEE. Local and metropolitan area networks-Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY):Amendment 10: Mesh Networking.
Technical report, IEEE, 2011.

[30] IEEE. Standard for local and metropolitan area networks–part 15.4: Low-rate wireless
personal area networks (lr-wpans). Technical report, IEEE, Sept 2011.

[31] Infineon. Automotive Security – Trusted Driving. https://www.infineon.com/
cms/en/applications/automotive/automotive-security/. Accessed:
2018-03-05.

[32] ISO. ISO 22901-1: Road vehicles – Open diagnostic data exchange (ODX) – Part 1:
Data model specification. Technical report, ISO, 2008.

[33] ISO. ISO 26262: Road vehicles – Functional safety – Part 1: Vocabulary. Technical
report, ISO, 2011.

[34] Kemp, Leanne . Putting bling on the blockchain: The Everledger stor. Swiss Re
Institute (online resource; last accessed 2018-01-13, 2017.

[35] H. Liu, X. Liang, L. Fang, B. Zhang, and J. wen Zhao. A secure and efficient authen-
tication protocol based on identity based aggregate signature for electric vehicle. In
Wireless Communication and Sensor Network (WCSN), 2014 International Confer-
ence on, pages 353–357, Dec 2014.

[36] M. Khurram et al. Enhancing connected car adoption: Security and ota update
framework. In Proc. of the 3rd World Forum on Internet of Things, 2016.

[37] M. Steger et al. An Efficient and Secure Automotive Wireless Software Update Frame-
work. Under submission, 2017.

[38] A. Mahmood, N. Javaid, and S. Razzaq. A review of wireless communications for
smart grid. Renewable and Sustainable Energy Reviews, 41(Supplement C):248 – 260,
2015.

[39] S. M. Mahmud, S. Shanker, and I. Hossain. Secure software upload in an intelli-
gent vehicle via wireless communication links. In Intelligent Vehicles Symposium.
Proceedings. IEEE, pages 588–593, June 2005.

[40] P. Morgner, S. Mattejat, Z. Benenson, C. Mueller, and F. Armknecht. Insecure to
the Touch: Attacking ZigBee 3.0 via Touchlink Commissioning. In Proceedings of
the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks,
WiSec ’17, pages 230–240, New York, NY, USA, 2017. ACM.

184

https://www.infineon.com/cms/en/applications/automotive/automotive-security/
https://www.infineon.com/cms/en/applications/automotive/automotive-security/

Bibliography

[41] M.S. Idrees et al. Secure Automotive On-board Protocols: A Case of Over-the-air
Firmware Updates. In Proc. of the 3rd Conference on Communication Technologies
for Vehicles (Nets4Cars/Nets4Trains), 2011.

[42] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[43] D. Nilsson and U. Larson. Secure firmware updates over the air in intelligent vehicles.
IEEE Conference on Communications, 2008.

[44] D. Nilsson, P. Phung, and U. E. Larson. Vehicle ECU classification based on safety-
security characteristics. Road Transport Information and Control - RTIC, pages 1–7,
2008.

[45] J. Noll, I. Garitano, S. Fayyad, E. Asberg, and H. Abie&. Measurable security, privacy
and dependability in smart grids. Journal of Cyber Security, 3:371–398, 2015.

[46] Y. Onuma, M. Nozawa, Y. Terashima, and R. Kiyohara. Improved software updat-
ing for automotive ecus: Code compression. In 2016 IEEE 40th Annual Computer
Software and Applications Conference (COMPSAC), volume 2, pages 319–324, June
2016.

[47] K. H. Peter Subke and V. Marquart. ODX-based flash solution. CAN Newsletter,
pages 42–46, 2015.

[48] B. Potter. Microsoft SDL threat modelling tool. Network Security, pages 15–18, 2009.

[49] R. Petri et al. Evaluation of lightweight tpms for automotive sw updates over the air.
In Proc. of the Conference on Embedded Security in Cars, 2016.

[50] Redbend Software. Updating Car ECUs Over-The-Air (FOTA). White Paper,
page 14, 2011.

[51] Rudolf von Stokar. Updating Car ECUs Over-The-Air (FOTA), 2013.

[52] SAE. SAE J3061: Surface Vehicle Recommended Practive - Cybersecurity Guidebook
for Cyber-Physical Vehicle Systems. Technical report, SAE International, 2016.

[53] A. Sari and M. Karay. Comparative Analysis of Wireless Security Protocols: WEP vs
WPA. In International Journal of Communications, Network and System Sciences,
volume 9, 2015.

[54] J. Scarpati. Wireless security protocols: The difference between WEP, WPA, WPA2.
TechTarget (Online resource; last visited 2017-12-10), January, 2017.

[55] G. Shi, Z. Ke, F. Yan, J. Hu, W. Yin, and Y. Jin. A vehicle electric control unit over-
the-air reprogramming system. In International Conference on Connected Vehicles
and Expo (ICCVE), pages 48–51, Oct 2015.

[56] B. SIG. Specification of the Bluetooth System. Version 4.2. Architecture & Termi-
nology Overview. Technical report, Bluetooth SIG, 2014.

185

Bibliography

[57] M. Steger, C. Boano, M. Karner, J. Hillebrand, W. Rom, and K. Roemer. SecUp: Se-
cure and Efficient Wireless Software Updates for Vehicles. In Proc. of the Conference
on Digital System Design (DSD), Limassol, Cyprus, 2016. IEEE.

[58] M. Steger, C. A. Boano, K. Römer, M. Karner, J. Hillebrand, and W. Rom. CESAR:
a Testbed Infrastructure to Evaluate the Efficiency of Wireless Automotive Software
Updates. In Proceedings of the 20th ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM), pages 311–315.
ACM, Nov. 2017.

[59] M. Steger, A. Dorri, S. S. Kanhere, K. Roemer, R. Jurdak, and M. Karner. Se-
cure wireless automotive software updates using blockchains: A proof of concept. In
C. Zachaeus, B. Mueller, and G. Meyer, editors, Advanced Microsystems for Automo-
tive Applications 2017: Smart Systems Transforming the Automobile, pages 137–149.
Springer International Publishing, Cham, 2018.

[60] M. Steger, M. Karner, J. Hillebrand, W. Rom, E. Armengaud, M. Hansson, C. Boano,
and K. Roemer. Applicability of IEEE 802.11s for Automotive Wireless SW Updates.
In Proc. of the 13th Conference on Telecommunications, 2015.

[61] M. Steger, M. Karner, J. Hillebrand, W. Rom, C. Boano, and K. Roemer. Generic
Framework Enabling Secure and Efficient Automotive Wireless SW Updates. In Proc.
of the Conf. on Emerging Technologies and Factory Automation, 2016.

[62] M. Steger, M. Karner, J. Hillebrand, W. Rom, and K. Roemer. A Security Metric
for Structured Security Analysis of Cyber-Physical Systems Supporting SAE J3061.
In CPSData – Second International Workshop on modeling, analysis and control of
complex Cyber-Physical Systems, pages 1–8, 2016.

[63] Valasek, Chris and Miller, Charlie . Remote Exploitation of an Unaltered Passenger
Vehicle. White Paper, page 93, 2015.

[64] W. Vandenberghe, I. Moerman, P. Demeester, and H. Cappelle. Suitability of the
wireless testbed w-ilab.t for vanet research. In Proc. of the 18th Symposium on Com-
munications and Vehicular Technology in the Benelux, 2011.

[65] N. Vidgren, K. Haataja, J. L. Patino-Andres, J. J. Ramı́rez-Sanchis, and P. Toiva-
nen. Security Threats in ZigBee-Enabled Systems: Vulnerability Evaluation, Practical
Experiments, Countermeasures, and Lessons Learned. In 46th Hawaii International
Conference on System Sciences, pages 5132–5138, Jan 2013.

[66] R. W. World. Bluetooth vs BLE – difference between Bluetooth and BLE (Blue-
tooth Low Energy). http://www.rfwireless-world.com/Terminology/
Bluetooth-vs-BLE.html. Accessed: 2017-11-13.

186

http://www.rfwireless-world.com/Terminology/Bluetooth-vs-BLE.html
http://www.rfwireless-world.com/Terminology/Bluetooth-vs-BLE.html

	Introduction
	Wireless Automotive Software Updates
	Locally-performed Wireless Software Updates
	Problem Statement
	Contributions
	Structure

	Background
	Automotive ECUs and In-vehicle Communication
	Automotive Standards and Protocols
	Open Diagnostic data eXchange (ODX)
	Protocol Stack for In-Vehicle Usage
	Unified Diagnostics Protocol (UDS)

	Blockchain Technology
	How Blockchain Works
	Lightweight Scalable Blockchain

	The SAE J3061 Automotive Security Standard
	SHIELD Multi-Metrics

	Related Work and Research Challenges
	Existing Solutions for Automotive Wireless Software Updates
	Securing Wireless Automotive Software Updates
	Increasing the Efficiency of Wireless Software Updates
	Evaluating LSU Frameworks Experimentally
	Secure End-to-end Solution for Automotive LSUs

	End-to-end Solution for Local Software Updates
	Local Software Update Scenarios
	Requirements for an End-to-end Solution for LSUs
	Requirements for Secure Software Distribution
	Requirements for EASE-UP

	End-to-End Software Update Procedure
	Secure Software Distribution
	Designed Architecture for Secure Software Distribution
	Formal Architecture Evaluation
	Proof-of-concept Implementation

	EASE-UP: Framework for Secure and Efficient LSUs
	Architecture
	Core Nodes
	Example of a LSU

	EASE-UP Networking Aspects
	Selecting the Wireless Network for LSUs
	Selection Criteria
	Potential Wireless Protocols for LSUs
	Comparison of Wireless Protocols
	IEEE 802.11s as Selected Wireless Network for LSUs

	Wireless Software Update Protocol
	Basic Software Update Protocol

	Advanced Software Update Mechanisms
	Parallel Software Update
	Partial Software Update

	EASE-UP Security Aspects
	Measurable Security Design Approach
	DEWI Security Metric
	Evaluation of the DEWI Security Metric

	Security Concept for Wireless Software Updates
	Security Requirements for Wireless Software Updates
	Multi-layer Security Concept
	Security Features of the Developed Update Protocol
	Hybrid Security Solution
	Fulfillment of Security Requirements
	Formal Security Concept Evaluation

	Evaluating EASE-UP
	Testbed Infrastructure
	Testbed Requirements
	CESAR – Comprehensive Testbed Infrastructure

	Efficiency Evaluation – Case Studies
	Performance of Software Update Mechanisms
	Network-related Evaluations
	Impact of Security Mechanisms on Efficiency

	Conclusions and Future Work
	Contributions
	Limitations and Future Work

	Publications
	Bibliography

