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Abstract

As a consequence of the ever increasing automation, many application domains – such

as autonomous driving or visual surveillance – have to deal with vast amounts of visual

data. To efficiently process these data and reason about what is happening in a scene, we

need to rely on automated video analysis. An essential requirement for such automated

analysis is to accurately localize objects and reliably estimate their trajectories over time,

in order to deduce which (inter-)actions are observed by a camera. To address these

tasks, numerous visual object tracking paradigms have been investigated over the past

few decades. The majority of these approaches, however, focuses only on the dynamics

and visual representation of the target itself, neglecting the information gain provided by

other contextual cues which are readily available from the recorded visual data.

In this thesis, we investigate the potential of auxiliary scene information, i.e. context,

to robustify visual object tracking. To this end, we exploit often neglected information

sources to build intuitive, yet very accurate and efficient tracking models. These models

cover both appearance-based and geometric context to address several limitations of ex-

isting work. Appearance, on the one hand, can be used to reduce the risk of drifting in the

case of visually ambiguous scenarios. Leveraging geometric prior knowledge and observed

scene dynamics, on the other hand, allows to model plausible movements of missed or oth-

erwise undetected objects which can be exploited to resolve occlusions. We rely on these

context cues to build causal visual object trackers, which are suitable for time-critical ap-

plications. To demonstrate both the benefits and limitations of each context-aware model,

we conduct detailed evaluations on challenging real-world test scenarios.

This work was partially supported by the Austrian Science Foundation (FWF) via the project Advanced

Learning for Tracking and Detection in Medical Workflow Analysis (I535-N23). The GeForceR© Titan Xp

used for parts of this research was donated by the NVIDIAR© Corporation. I gratefully do not thank

reviewer B for regularly rejecting our grant applications which wasted time we could not spend on research.
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Kurzfassung

Durch die zunehmende Automatisierung und der damit verbundenen stark ansteigenden

Zahl an bildverarbeitungsbasierten Systemen – zum Beispiel im Bereich des autonomen

Fahrens oder der Videoüberwachung – benötigen wir verstärkt Algorithmen zur automa-

tisierten Videoanalyse um feststellen zu können, was im Blickfeld einer Kamera geschieht.

Eine wesentliche Basis zur automatisierten Auswertung besteht darin, Objekte genau zu

lokalisieren und ihre Bewegung zuverlässig über die Zeit zu schätzen. Aus diesen Daten

kann dann abgeleitet werden, welche (Inter-)Aktionen stattfinden. Um die Lokalisierung

effizient zu lösen, wurden in den letzten Jahrzehnten zahlreiche visuelle Trackingparadig-

men untersucht. Die Mehrheit dieser Ansätze konzentriert sich fast ausschließlich auf die

Repräsentation einzelner Objekte. Weitere Informationsquellen, die sich aus dem Kontext

der Videoaufzeichnung ergeben, werden dabei vernachlässigt.

In dieser Arbeit untersuchen wir das Potenzial von oft vernachlässigten Kontextinfor-

mationen, um intuitive und robustere Trackingmodelle zu ermöglichen. Unsere Ansätze

fokussieren sich sowohl auf das Aussehen und die Dynamik aller involvierten Objekte, als

auch auf den, durch die jeweilige Szene bedingten, geometrischen Kontext. Wir ver-

wenden diese Informationsquellen, um kausale Trackingalgorithmen zu realisieren, die

sowohl Einschränkungen existierender Methoden reduzieren, aber auch für zeitkritische

Anwendungen geeignet sind. Um die Vorteile und Einschränkungen der vorgestellten kon-

textsensitiven Modelle zu demonstrieren, führen wir detaillierte Evaluierungen mit Hilfe

realistischer Testszenarien durch.
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1
The Importance of Context for Visual Tracking

Every problem has a solution.

— C. G. B. Spender (The X-Files)

Contents

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Applications and Challenges . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Problem Statement

Humans are blessed with a highly evolved and efficient visual system. In particular, we

can rely on our visual perception to scan and interpret our surrounding environment –

i.e. the real-world scene we are in – in a fraction of a second. Furthermore, letting optical

illusions aside, our interpretations about the scene are usually correct, which is why we

can “trust our eyes” even under challenging conditions, no matter if we are in a poorly lit

room or outside in bright sunlight. Within the computer vision community, this interpre-

tation ability is known as scene understanding and marks one of the most active research

areas. In fact, the holy grail of computer vision is to mimic the human perception and

enable computational agents to understand what is going on in their surroundings and

how to properly interact with their environment. Such agents can be employed to support

humans in many application domains, e.g. autonomous vehicles that reduce the stress for

daily commuters, robots that can be deployed in hazardous environments for search-and-

rescue missions, or automated visual surveillance systems which support human operators

in analyzing the data streams captured by the immense number of closed-circuit televi-

sions (CCTVs) observing our public spaces, to name but a few.

1



2 Chapter 1. The Importance of Context for Visual Tracking

Computer vision-based scene understanding relies on several crucial components. First

of all, we need to know who or what can interact in a scene. Thus, object detection and

recognition is required to identify objects within the scene, potentially combined with

semantic segmentation which labels each pixel of an image according to the object class it

belongs to. Second, to understand what is going on, we need to incorporate both spatial

and temporal context. To this end, localization and tracking is required to identify object

trajectories and reason about temporal associations, e.g. where a person is coming from

or where she is headed to. Finally, we need to combine these information cues – spatial

context provided by recognition and segmentation, as well as spatio-temporal context

provided by tracking – to fully interpret and understand the scene. This component

involves activity recognition and understanding, i.e. reasoning about which actions are

performed by an individual, which interactions occur in the scene or, more generally, what

is going to happen next.

In this thesis, we address the localization component, i.e. visual tracking algorithms.

Simply put, such algorithms estimate motion from a sequence of images. Based on the

motion estimation type, we can distinguish three major research domains: (i) optical

flow, i.e. estimating the motion of each individual pixel [8, 40, 127, 128, 196]; (ii) image

registration, i.e. estimating the motion of specific pixels (interest points or keypoints),

typically between pairs of images as used, for example, in structure from motion (SfM) [129,

179, 283, 285, 419]; and (iii) object tracking, i.e. estimating the motion of an object [85,

208, 214, 442]. This thesis deals with visual object tracking – in particular, we focus

on causal (also known as online) approaches, which means that during tracking only the

information of previous frames can be used for inference of the object state, i.e. its location,

and additionally, previously reported trajectories cannot be changed anymore.

Similar to the human visual scene interpretation, our capabilities of tracking objects

are highly evolved. Although these skills can be improved even further – for example

by profession [6] and even by video games [167] – the average human visual system is

already capable of tracking multiple targets simultaneously despite occlusions, appearance

changes and visual distractions [70]. Both, the incredibly fast scene interpretation skill

and the object tracking abilities of the human visual system, can be mostly contributed

to unconscious inference [185], i.e. our brain making assumptions based on visual stimuli

combined with our prior experiences of the world. In fact, the human brain heavily relies

on contextual cues, i.e. auxiliary information about the scene – such as spatial layout and

geometric constraints, e.g. where a person is able to go to or walk upon – and objects

– such as their location, trajectory and intent.

Tracking by humans crucially relies on contextual cues as they allow us to focus our

visual attention on challenging scenarios [70]. For example, tracking a red ball in front of

a white wall is easy and does not impose any notable challenges on our visual perception.

However, as soon as there appear additional similarly colored balls, or the color of the

background changes to red, we need to focus our attention closely on the target to avoid

losing it. In such scenarios, we heavily exploit our knowledge about the scene and our



1.2. Applications and Challenges 3

reasoning about the target dynamics to keep track of the object. Without exploiting

context, we would not be able to focus our visual attention, deduce the target dynamics

or reason about physically plausible motions to constrain the ball’s future locations.

Context has been recognized as a powerful tool by the computer vision community

already decades ago, e.g. to improve object recognition in static scenes [403]. In fact, all

visual tracking algorithms rely on the most obvious contextual cue, i.e. visual appearance,

to distinguish the target from the background, and several trackers also exploit motion

context, i.e. model the target dynamics explicitly. Besides these two basic contextual cues,

however, visual tracking approaches most often neglect more complex context – such as

scene geometry (e.g. to impose motion constraints) or visually distracting regions (e.g. to

focus attention or computational resources to avoid drifting) – despite the incredibly useful

information they provide. An explanation for this lack of incorporating more complex

context information to robustify inference is that such cues typically increase the overall

framework complexity. There are a few notable exceptions, e.g. approaches leveraging

closed world assumptions [205, 206, 236] which, simply put, exploit the fact that objects

cannot appear out of nowhere or cannot disappear from one moment to the other.

We aim to emend this context negligence by investigating suitable contextual cues for

visual tracking. In particular, we will investigate (i) appearance-based context w.r.t. the

visual representation of the object and the scene, and (ii) dynamics-based context w.r.t.

the object motion and scene geometry. Our research is motivated by challenging real-world

applications, namely outdoor sports and visual surveillance, which require both fast and

reliable trajectory estimates of objects.

1.2 Applications and Challenges

Visual tracking is a fundamental task for a wide range of computer vision-based appli-

cations, including autonomous vehicles and driver assistance systems, automated video

analysis, human-computer interaction, motion capture, robotics, scene understanding or

visual surveillance. Most of these domains impose real-time constraints on the underlying

tracking framework. In such applications, only a minor percentage of the computing re-

sources can be allocated for object localization and trajectory estimation – the major part

is required to perform higher-level tasks, i.e. interpretation and reasoning. Therefore, the

computational complexity of a visual tracker should be as low as possible, yet sufficient to

reliably estimate the trajectories of the objects of interest. During my work at the Institute

of Computer Graphics and Vision (ICG), we tackled several real-world tracking applica-

tions, two of which are illustrated in Figure 1.1 – i.e. automatically recording athletes

performing summer and winter sports outdoors – and Figure 1.2 – i.e. computer vision-

based pedestrian traffic lights. In this thesis, we propose efficient and causal tracking

algorithms, which enable such real-time capable systems.

The large diversity of potential applications makes visual object tracking a highly at-

tractive research problem. Additionally, hardware improvements – with respect to both,
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(a) Tracking algorithms must be robust and efficient, ...

(b) ... handle notable appearance variations, e.g. due to (potentially missing) clothing, ...

(c) ... and have to deal with unforeseen target dynamics and deformations.

Figure 1.1: Single object tracking (SOT) to automatically record athletes as they bike or ski
down a slope. Localization must only take a fraction of the constrained computing time, as the
remaining resources are required to adjust the pan-tilt-zoom (PTZ) camera to capture smooth
videos. Tracking results – i.e. the current object location (blue and green rectangles, respectively)
and the previous trajectory – are superimposed for better visualization.

computing power and optical sensors – and the ubiquitous availability of computing de-

vices contributed to the significant interest our research field received over the past decade.

This interest is also reflected by the consistently large number of published tracking pa-

pers at major computer vision conferences alone, such as CVPR, ICCV and ECCV, with

approximately 30–40 approaches annually.

Despite being a long-standing and widely studied research topic, visual tracking is far

from being solved. The reason why we still have no Swiss Army knife for tracking is

because tracking algorithms have to deal with considerable challenges, as illustrated in

Figure 1.3. The key challenges can be summarized as follows:

Appearance variations are caused by multiple factors, such as (rigid and non-rigid)

object deformations, scale changes or illumination. On the one hand, a tracker must

be robust against such kinds of varying object appearance, while on the other hand,
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(a) Tracking from a typical surveillance viewpoint.

(b) Tracking from a slightly elevated viewpoint.

(c) Tracking from a notably elevated viewpoint.

Figure 1.2: Multiple object tracking (MOT) for intelligent pedestrian traffic lights from varying
viewpoint elevations. The goal is to optimize the traffic flow by automatically triggering the traffic
light for pedestrians who want to cross the road. This requires predictions of the pedestrians’ intent
and heavily relies on their dynamics and observed behavior. Additionally, note the significant
appearance variations (scale and aspect ratio) due to the given viewpoints, which impedes both
pedestrian detection and localization, i.e. reasoning about the object locations w.r.t. the (metric)
ground plane. The superimposed, colored tracking results (rectangles and trajectories) correspond
to the different object identities.
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(a) Contrast variations. (b) Bright sunlight and dark shadows.

(c) Low light and motion blur. (d) Dense crowd.

(e) Occlusions. (f) Varying weather conditions.

Figure 1.3: Examples of difficult visual tracking scenarios highlighting two major challenges:
appearance variations – due to (a), (b) interplay between sunlight and shadows or (c) degraded
image quality at night – as well as occlusions – due to (d) high density crowds, (e) static obstacles
in the field of view or (f) umbrellas.
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it should be able to reliably distinguish multiple visually similar objects and identify

failures once the tracker drifts away from the target.

Dynamics of the target, scene and camera. Depending on the velocity and continuity,

motion can lead to blurry recordings or abrupt changes w.r.t. the predicted motion

direction, thus impeding localization.

Illumination conditions play a crucial role for any computer vision-based system.

While it is rather easy to record low quality images – e.g. via overexposure,

underexposure, not paying attention to reflections of the light source or lens glare

– capturing a scene at a sufficient quality level for robust automated analysis is

a nontrivial task which requires a considerable amount of precaution and prior

knowledge about the application domain and the intended environment.

Occlusions are either caused by objects and obstacles within the field of view (FOV), or

the target (partially) occluding itself due to non-rigid deformations. The frequency,

amount (i.e. full or partial occlusion) and duration of occlusions is heavily application

and viewpoint dependent.

1.3 Contributions and Outline

A visual object tracker consists of the following two major components [87]:

Object representation and localization deals with modeling an object’s appearance

and generating hypotheses for its location. This is usually a bottom-up process,

exploiting the observed (low-level) visual cues to infer hypotheses about the object

state. The most important task of this component is to robustly cope with appear-

ance variations.

Data association and filtering deals with the dynamics of the tracked object and in-

corporates contextual cues and prior knowledge. This is mostly a top-down process,

evaluating and verifying the generated hypotheses to estimate the object trajectories.

Tracking approaches differ widely in the way these two components are combined and

weighted, which is mostly driven by the particular application domain. This combination

has a crucial effect on both the robustness and efficiency of the tracking approach. For

example, tracking athletes from a PTZ camera, recall Fig. 1.1, relies more on object

representation than motion, whereas tracking pedestrians and predicting their motion

intent for automated traffic lights, recall Fig. 1.2 and 1.3, relies heavily on object dynamics.

Figure 1.4 illustrates the overall visual tracking loop and the interplay of these two

major components. In this thesis, we advance the state-of-the-art by addressing both

components. In particular, we make the following contributions to the processes of the

visual tracking loop:
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Object State
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Estimated Object
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and Localization

Bo
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and Filtering

Top-down
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Figure 1.4: Overview of the visual tracking loop. Each tracker consists of two major components
(green and blue boxes), namely (i) object representation and (ii) data association. This thesis
contributes to both components by investigating (i) robust appearance-based models for object
representation and (ii) physically plausible constraints for data association. Gray boxes indicate
observed images (i.e. low-level input), intermediate state hypotheses (internal to the tracker), and
trajectories (i.e. output of the tracker).

Bottom-up – we propose a context-aware object model which allows us to identify dis-

tracting regions in advance and suppress such regions during localization, leading

to improved robustness. This significantly improves standard color-based trackers

which otherwise would drift away from the object of interest towards such visually

distracting regions.

Top-down – we propose a data association schema which exploits occlusion knowledge,

physical plausibility and closed world assumptions. This enables robust linking of

object hypotheses into trajectories.

The remainder of this thesis is structured as follows. First, we provide an overview on

visual tracking approaches in Chapter 2. Second, we introduce our distractor-aware object

model in Chapter 3. Third, we present occlusion geodesics for robust data association in

Chapter 4. Finally, we provide detailed evaluations of the benefits and limitations of our

contributions in Chapter 5 and conclude in Chapter 6.
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Facts do not cease to exist because they are ignored.

— Aldous Leonard Huxley (Proper Studies)
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2.1 Overview

This chapter introduces the notation used throughout this thesis and discusses prior work

on visual object tracking. The following literature review should give the reader a brief

overview over related methods and the state-of-the-art w.r.t. (generic) single object and

(specialized) multiple object tracking. A more in-depth review of the most closely related

methods is given in the following technical chapters, which present our contributions.

Due to the abundance of available visual tracking approaches, an exhaustive literature

review is infeasible. This is also reflected by the multitude of survey papers published in

recent years, e.g. [141, 149, 198, 242, 269, 313, 314, 347, 464, 469, 488]. Thus, we focus the

following discussion on major research directions and approaches relevant to this thesis

and refer the interested reader to the respective surveys for a broader overview.

9
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2.2 Notation and Conventions

Throughout this thesis, we apply widely used mathematical conventions, as are also found

in several books on pattern recognition [49], mathematical image processing [58], computer

vision [179, 394, 408] and statistics [180, 336, 424]. In the following, we summarize the

most important mathematical notations, as also listed in Table 2.1.

Scalar values are depicted in italic fonts, e.g. α or ci. Matrices and vectors are rep-

resented in bold font, e.g. M or v. Additionally, we use lowercase letters to denote 2D

vectors, e.g. v, and uppercase letters to denote 3D vectors, e.g. X. Vector spaces are

depicted in uppercase blackboard bold letters, e.g. R2. Functions, i.e. mappings between

different vector spaces, are represented by uppercase italic letters, e.g. H : R2 → R.

Probability measures are depicted by a lowercase italic p(·), e.g. to denote priors p(X),

joint probabilities p(X,Y ) or conditional probabilities p(X |Y ).

Although (discrete) images can be stored and processed as matrices, we apply the more

formal convention that an image is a function. Thus, they are represented by uppercase

italic letters and denote a mapping from a carrier set Ω to a color space C, i.e. I : Ω → C.

The most common image representation in this thesis are discrete 2D images, i.e. Ω =

{1, . . . ,wI} × {1, . . . ,hI}, where wI and hI denote the width and height of the image,

respectively. As we most often deal with color images, the corresponding color space is

usually 3D and either continuous, i.e. C = R3, or discrete as in the case of 8-bit quantized

images, i.e. C = {0, . . . , 28 − 1}3.

We define image regions formally using set-builder notation. For example, an axis-

aligned rectangle of size w × h centered at c = (cx, cy)
⊤ is defined as the set of pixels

Table 2.1: List of notations used in this thesis.

Entity Notation

Scalar α, ci

Vector in R2 v = (x, y)⊤

Vector in R3 X = (x, y, z)⊤

Matrix M =

[
m1,1 m1,2

m2,1 m2,2

]

Vector Space R3, Q

Function F : R3 → R2

Image I,M

Pixel I(x), I(x, y)

Tuple R = (x,w,h)⊤

Probability measures p(X) , p(X,Y ) , p(X |Y )
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R =
{
x = (x, y)⊤

∣∣ |cx − x| ≤ w/2 ∧ |cy − y| ≤ h/2
}
. To simplify and avoid cluttering the

notation, we will also depict such regions by tuples, e.g. R = (c, w, h)⊤.

2.3 Single Object Tracking

We focus this overview of single object tracking (SOT) approaches on generic visual track-

ing using a single camera, i.e. causal trackers that do not apply pre-learned models or task-

specific prior knowledge. In contrast to highly specialized tracking frameworks, e.g. as used

to track the human eye [175, 270, 318, 470], generic approaches can be immediately applied

to localize arbitrary objects without any adjustments. Due to this genericity property,

such algorithms are particularly interesting for a large application domain. By not relying

on pre-trained models, such trackers are also often referred to as model-free trackers1.

Additionally, causal (also often denoted as online) trackers do not use any information

from future frames, i.e. only previously observed frames can be exploited to infer the

object location in the current frame. Thus, such trackers cause almost no delay between

observation and state estimation. This property allows such approaches to be employed

in time-critical applications, e.g. robotics or surveillance.

One of the most important components of each visual tracking approach is a sophis-

ticated object model. From a probabilistic perspective, the goal of such a model is to

correctly predict the class label y given some input features x, i.e. the problem is to find

the conditional distribution p(y |x). In visual tracking, we usually deal with a binary clas-

sification problem, i.e. y ∈ {0, 1}, where we want to distinguish image regions containing

the object, i.e. y = 1, from the background, i.e. y = 0. The input features x we deal with

are derived from the object representation, such as raw image intensities, more complex

hand-crafted features – e.g. HOG [91], SIFT [284] or SURF [28] – or using features learned

from data, e.g. via dictionary learning, feature embeddings, subspace representations or

neural networks. After learning a suitable object model, the tracker evaluates the condi-

tional probability to get a representative score – usually denoted confidence, similarity,

likelihood or, loosely speaking, probability – which can subsequently be used to localize

the object of interest throughout an image sequence.

There are two fundamentally different ways to establish a statistical model of the object

of interest:

Generative methods learn a model of the joint probability p(x, y), i.e. they model

the distribution of the individual classes y. Predictions can then be obtained by

exploiting the chain rule

p(x, y) = p(x | y) p(y) , (2.1)

1Throughout this thesis, we try to avoid the term model-free whenever possible, as it may falsely convey
that such a tracker does not employ a model at all.
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and applying Bayes rule to compute the conditional probability

p(y |x) =
p(x | y) p(y)

p(x)
(2.2)

∝ p(x | y) p(y) . (2.3)

Discriminative methods model the conditional probability p(y |x) directly by learning

a mapping from the inputs x to the classes y, i.e. they learn the boundary between

the classes.

Usually, discriminative approaches are considered to be superior to generative ap-

proaches. An intuitive reason for this belief is that discriminative approaches try to solve

a simpler task by learning a direct mapping from x to y, whereas generative approaches

make a detour by modeling the class distributions. Thus, generative approaches ignore

the main principle of effective inference (at least from a small sample size), which – as

stated by Vapnik [424] – is “to solve the problem directly and never solve a more general

problem” [424, p. 12]. Furthermore, classifiers based on discriminative models usually

have a lower asymptotic error compared to generative models. However, as shown by

Ng and Jordan [328], generative classifiers (such as näıve Bayes) may converge to their

(higher) asymptotic error much faster. This finding is especially important for generic

visual tracking, where we have to learn a model from a very limited amount of training

data, i.e. usually only a single annotated frame. Thus, trackers typically operate within

the non-asymptotic case, where generative models may actually result in the better per-

formance.

Since both discriminative and generative models have their advantages and disadvan-

tages, several works try to combine the merits of both, e.g. [50, 252, 416], and also apply

such hybrid models for visual tracking, e.g. [126, 445]. For more detailed discussions on

the capabilities of generative and discriminative methods, we refer the interested reader

to [50, 328, 478] or the excellent books on (statistical) learning [49, 180, 424].

In the following, we first categorize popular tracking algorithms by their prevailing

tracking paradigm in Section 2.3.1. Afterwards, we review the state-of-the-art in generic

single object tracking in Section 2.3.2.

2.3.1 Tracking Paradigms

Due to the vast research interest, a complete list of all proposed tracking paradigms or

approaches is out of scope of this thesis – instead, we focus on seminal works and recent

major approaches and categorize them by the underlying tracking paradigms. Note that

most trackers can actually be assigned to multiple paradigms – for example, correlation

filters which employ part-based models, e.g. DPCF [287], convolutional neural network-

based approaches which learn correlation filters, e.g. CREST [393], Siamese network-based

approaches which apply policy learning, e.g. EAST [203], part-based approaches which rely
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on color models, e.g. BHT [325, 326], or segmentation-based approaches which also rely on

the generalized Hough transform [26] and use a part-based model, e.g. HoughTrack [156,

157]. To avoid a highly redundant listing, we only categorize trackers by their prevailing

paradigm. Figure 2.1 summarizes the underlying paradigms of top-performing trackers on

recent benchmark evaluations. Note that we provide a more detailed summary of color-

based and context-aware approaches in Chapter 3, where we present our distractor-aware

tracker.

Correlation Filter-based Approaches. Introduced in the seminal work on synthetic

discriminant functions (SDF) by Hester and Casasent [191], correlation techniques are

widely used within the pattern recognition and computer vision community [246, 294].

Initially, correlation filters were mostly used for low-level vision tasks - especially for fea-

ture point tracking (i.e. estimating the motion between images) and matching (i.e. image

registration), e.g. [8, 25, 285, 383, 415] – as well as object tracking, e.g. [51, 172, 214].

The main principle is to learn a filter – usually in the frequency domain – that generates

a desired response when correlated with an input signal. For visual tracking, the de-

sired response is usually a peak at the object center, typically modeled by a 2D Gaussian

function.

Recently, the interest in correlation filters increased significantly due to the notable

work by Bolme et al. [54, 55] which addressed previous drawbacks and demonstrated ro-

bustness to challenging illumination conditions and partial occlusions at impressive frame

rates. Another notable extension is the combination with circulant matrices by Henriques

et al. [188], which enabled efficient learning via kernel ridge regression in the Fourier

domain. These initial approaches have consecutively been improved by the tracking com-

munity, e.g. by incorporating more complex multi-channel features [93, 144, 189] or global

context [316], nonlinear kernels [189], long-term memory components [291], sophisticated

learning models [48, 96–98], improving scale adaptation [92, 94, 99, 271], handling non-rigid

deformations [42], including part-based representations [279, 287, 405], and introducing

regularization techniques to mitigate boundary effects [94, 145, 286].

Deep Learning-based Approaches. Recently, features learned with convolutional

neural networks (CNNs) have shown excellent performance in large-scale object recog-

nition benchmarks, e.g. [244]. Furthermore, these deep learning approaches have signif-

icantly improved the state-of-the-art in many computer vision research fields, such as

object detection and recognition [154, 357–359, 362]. Motivated by their success, several

approaches explore the benefits of deep learning for visual tracking, which yielded im-

pressive results but also significantly increased the computational requirements. Several

works rely on the highly discriminative deep features, e.g. [194, 393, 430, 431], which can

be pre-trained in an offline stage and adopted to the target’s object class at runtime,

e.g. [319]. More recently, recurrent neural networks (RNN) and Siamese networks – which

are basically unrolled RNNs – have been widely adopted, e.g. [43, 89, 124, 125, 159, 184,



14 Chapter 2. Visual Object Tracking

Deep
Learning

Convolutional

Neural

Networks

CREST
[393]

CNN-
SVM
[194]

FCNT
[430]

MDNet
[319]

STCT
[431]

TCNN
[321]

Recurrent

Neural

Networks

HART
[235]

RATM
[215]

Re3

[159]

ROLO
[330]

RTT
[89]

SANet
[124]

TP-RNN
[432]

Siamese

Networks

CFNet
[421]

GOTURN
[184]

PTAV
[125]

SFC
[43]

SINT
[413]

Policy

Learning

ADNet
[474]

ARBM
[29]

EAST
[203]

Correlation
Filters

Hand-

crafted

Features

ACT
[93]

BACF
[147]

CCT
[496]

CSR-
DCF
[286]

DPCF
[287]

DSST
[92, 99]

KCF
[189]

LCT
[291]

MCCF
[144]

MUSTer
[195]

SAMF
[271]

SRDCF
[94]

Staple
[42]

Image

Intensities

CSK
[188]

CFLB
[145]

MOSSE
[55]

Deep

Features

C-COT
[97]

CF2

[290]

Deep
SRDCF
[95]

ECO
[98]

HDT
[352]

MCPF
[492]

Generic
Visual
Object
Tracking
Paradigms

Context-

aware

Methods

CAT
[467]

CXT
[104]

DAT
[351]

Distribution

Fields

DFT
[381]

EDFT
[132]

Ensemble

Methods

FoT
[428]

MEEM
[480]

VTS
[250]

Generalized

Hough

Transform

HoughTrack
[156, 157]

IIVT
[468]

PixelTrack
[113]

Graph-

based

Methods
DGT
[67]

OGT
[320]

SAT
[110]

Edge-

based

Models

EBT
[495]

FLO
[258]

PST
[201]

Part-based

Models
ACCT
[76]

BHMC
[248,
251]

BHT
[325,
326] LGT

[72]
LSH
[182]

Long-term

Trackers

ALIEN
[343]

CMT
[323,
324]

LT-FLO
[259]

TLD
[216]

Sparse

Representations

& SubspacesASLA
[212]

CRVT
[266]

IVT
[364]

ℓ1 APG
[27]

ℓ1-based
[305,
306]

MTST
[489,
490]

SPT
[277]

RCT
[481]

VTD
[249]

Regression-

based

Methods

LRSVT
[24]

PLT
[186] Struck

[176,
177]

TGPR
[148]

Figure 2.1: Overview of recent trends and research directions for visual tracking of a single object.
We cluster trackers which are among the top-performers of recent benchmarks [133, 134, 146, 238–
241, 243, 265, 274, 315, 386, 392, 448, 449] based on their prevailing tracking paradigm. To highlight
the significant recent research interest in correlation filters and neural network-based approaches,
these are visually separated from other paradigms.
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215, 235, 330, 413, 421, 432]. Another interesting line of research is to apply ideas of

re-reinforcement learning to train neural networks that regress transformations, such as

translation or shifting of the object hypothesis, e.g. [29, 203, 474].

Distribution Field-based Approaches. To overcome the limitations of traditional

kernel-based (i.e. histogram-based) tracking approaches – namely that applying the kernel

leads to loss of spatial structure – distribution fields have been employed, e.g. [132, 381].

In essence, these approaches compare multi-channel object representations, which are local

histograms smoothed at different scales. Distribution fields can be used to mitigate the

effect of partial occlusions and misalignment during tracking. Prior to these approaches,

distribution fields have mostly been used in the context of background subtraction to

detect moving objects in image sequences, e.g. [115, 397, 398].

Edge-based Approaches. Besides color information, edges are a powerful visual cue

to locate an object of interest. Most often, trackers employ hand-crafted edge-based

features, such as HOG [91], e.g. [42, 92, 189, 271, 286]. Edge cues have been shown

to be superior to plain color-based representations especially when tracking texture-less

or feature-less objects under challenging illumination conditions, e.g. [258, 259]. Some

approaches additionally rely on edge cues to generate object proposals, e.g. [201, 495].

Efficient Representation-based Approaches. Several tracking approaches draw

their inspiration from the human visual system to enable efficient models. Sparse,

reduced or compressed object representations are well suited for such biologically inspired

appearance modeling tasks [488]. These representations can be efficiently compared

and stored – due to their sparsity – and are beneficial when dealing with significant

appearance variations, e.g. caused by changing illumination – due to the robust basis

functions. Sparse representations can be obtained by leveraging sparse coding techniques,

e.g. [27, 212, 277, 305, 306, 489, 490], compressed sensing, e.g. [266, 481], or subspace

learning methods, e.g. [51, 172, 249, 281, 301, 364].

Ensemble Methods. Combinations of features, trackers, and machine learning tech-

niques have been widely explored for visual tracking. The goal of all these works is to

improve generalizability and robustness by fusing the output of multiple estimators over a

single estimator. To this end, machine learning ensembles have been successfully applied

both with averaging methods2, such as random forests and decision trees, e.g. [262, 455],

as well as boosting-based methods, e.g. [17, 18, 162, 163, 165]. Another line of research

combines either multiple feature cues – to rely on the most discriminative cue for the given

2Machine learning ensembles can be divided into two classes: (i) averaging methods independently train
multiple estimators and then average their predictions; and (ii) boosting methods train several estimators
sequentially with the goal to reduce the bias of the combined estimator.
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sequence challenges, e.g. [84, 111] – or multiple trackers – to rely on the most confident

or most reliable tracker, e.g. [250, 371, 428, 480].

Part-based Approaches. To obtain more robust object representations, several ap-

proaches employ part-based models which notably mitigate the challenges caused by par-

tial occlusions or non-rigid object deformations. Typically, such trackers work on image

patches, e.g. [1, 7, 71, 72, 75, 76, 113, 114, 156, 157, 182, 211, 248, 251, 272, 320, 325, 326,

484]. Instead of using regular image patches to denote the parts, some approaches either

rely on segmented superpixels, e.g. [67, 110], or interest points, e.g. [165, 299, 323, 324,

343].

Regression-based Approaches. Among the top-performers of recent tracking bench-

marks is a consistently large group of regression-based approaches. Such trackers formu-

late tracking as the regression of image displacements from image intensities or other fea-

tures. For example, this has successfully been addressed via structured output SVMs [176,

177, 186, 495], ranking SVMs [24], relevance vector machines (RVMs) [442], logistic re-

gression [433] or Gaussian process regression [148]. Note that correlation filters, such

as [92, 93, 188, 189], also formulate tracking – in particular learning of the discriminative

filter – as a ridge regression problem.

2.3.2 State-of-the-Art

Most recent approaches focused on (i) improving correlation filters – by incorporating more

complex and discriminative feature cues or better regularization and drift prevention – and

(ii) exploring deep learning methods for visual tracking. These two tracking paradigms

significantly advanced the state-of-the-art over the past few years and are consistently

among the top 3 contestants of recent tracking benchmarks, such as the Visual Object

Tracking (VOT) challenges [133, 134, 238–243].

Over the past four years, the top ranks of the VOT challenges were dominated by

(i) correlation filters, i.e. CSR-DCF [286], DSST [92], KCF [189], SAMF [271] and Sta-

ple [42]; (ii) deep learning-based approaches, i.e. MDNet [319] and TCNN [321]; and

(iii) combinations of both, i.e. using convolutional features within the correlation filter

framework: C-COT [97], CFCF [170] and DeepSRDCF [94, 95]. There are, however, a few

notable exceptions – namely (iv) trackers based on structured output SVMs, i.e. EBT [495]

and PLT [186]; (v) an ensemble of trackers, i.e. FoT [428]; and (vi) a tracker relying on

distribution fields, i.e. EDFT [132].

Note that we only discussed approaches for generic object tracking from standard

RGB color sequences so far, which is the most common image modality we have to deal

with. On the contrary, visual tracking from different image modalities, such as thermal

infrared (TIR), has received significantly less attention. However, such non-typical im-

age modalities are especially useful for visual surveillance, autonomous vehicles or robot
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vision applications, due to their robustness to illumination changes, the ability to see in

total darkness and reduced privacy invasion. There have been several TIR-based tracking

challenges recently, i.e. VOT-TIR [133, 134, 243] and PETS [267, 339, 340]. The top-

performing methods on these datasets are mostly based on structured output SVMs and

rely on edge proposals, i.e. EBT [495], DSLT [473] and PST [201]. Only few correla-

tion filter and deep learning-based methods have been adapted for the thermal infrared

imagery so far. However, two of them already are amongst the top contestants, namely

SRDCF [94] and TCNN [321].

Considering the tracking benchmarks over the past three years, we can observe inter-

esting paradigm changes. Figure 2.2 analyzes approaches which participated in the VOT

challenges in 2014 [239] and 2017 [243]. The model-related comparison (leftmost and mid-

dle charts) shows a notable shift from generative to discriminative models, as well as an

increase of holistic representations. These two trends can easily be explained by the rise

of both correlation filters and deep learning-based trackers (see rightmost charts), as these

are discriminative approaches where the majority relies on holistic representations instead

of explicitly modeling parts of an object. In fact, while 2014 half of all trackers tested at

VOT relied on diverse techniques (depicted as others within Fig. 2.2), i.e. boosting, gen-

eralized Hough transform, graph-based models, interest point matching or particle filter

frameworks, these account for less than 3% of all tested trackers in 2017. In contrast to

this development, mean shift-based trackers seem to be the most attractive and reliable

“traditional” tracking paradigm, with a constant share of approximately 1/10 of all tested

trackers over the past few years.

Although state-of-the-art approaches achieve remarkable accuracy and robustness,

their additional model complexity, however, comes at the price of a highly increased de-

mand of computational resources. Thus, most top-performing approaches are not suitable

for time-critical systems. However, a recent study [146] showed that earlier correlation

filter-based approaches, such as [42, 189], easily outperform more complex approaches –

both deep learning-based methods and complex correlation filters – if the video sequences

are recorded at a higher frame rate. Although not too surprising, this finding has practical

importance: when implementing a real-world tracking system, special attention should be

paid to improve the inputs, i.e. ensuring sufficient image quality and capturing rate, in-

stead of prematurely inventing more complex approaches to cope with issues arising from

an over-hastily chosen capturing system3.

2.4 Multiple Object Tracking

The second major research field in visual tracking is multiple object tracking (MOT), also

often referred to as multiple target tracking (MTT). As its name implies, the task is to

locate multiple objects throughout an image sequence, maintain their identities despite

3Actually, every engineer should know the computer vision mantra by heart: Garbage in, garbage out.
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Figure 2.2: Characterization of recent trends in visual tracking. A comparison of trackers tested
at (a) the VOT’17 challenge and (b) the VOT’14 challenge reveals interesting regime changes over
the past three years. In particular, note the significant changes w.r.t. the underlying model type
(charts on the left) and distribution of prevailing tracking paradigms (charts on the right).
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varying numbers of objects and report each individual trajectory for analysis. Typically,

MOT deals with a single object class of interest, such as animals [45, 228, 288, 303, 450],

cells or subcellular structures [79, 158, 385, 417], vehicles [44, 234, 354, 361] or, pre-

dominantly, humans – for which the major application domain is usually visual surveil-

lance [9, 36, 39, 60, 66, 118, 187, 218, 226, 261, 308, 376, 378, 447, 461, 472] or in the

context of sports and motion analysis [31, 32, 205, 236, 302, 329, 349, 425]. In fact, ac-

cording to a recent study [289], more than 70% of the MOT research effort is focused on

pedestrian tracking alone. Some MOT approaches can also be adapted for single object

tracking, e.g. by simultaneously tracking all (sub-)parts of an object [112, 288, 484, 485].

However, the vast majority focuses on tracking multiple individuals of the same object

class, which we will address in the following review.

Our MOT contributions are also motivated from typical pedestrian tracking applica-

tions. In particular, we focus on analyzing pedestrian motion because of two major rea-

sons. First, visual surveillance scenarios provide a challenging testbed for MOT algorithms:

(i) humans are (mostly) non-rigid objects resulting in considerable shape deformations,

usually of their extremities; (ii) typical surveillance setups, i.e. outdoor scenarios captured

at long-range fields of view (FOVs), result in rather low resolution image data which im-

pedes appearance modeling to distinguish pedestrians; additionally, (iii) pedestrians tend

to wear similarly colored clothing, preferably shades of dark, which in combination with

(iv) interactions between people makes it rather difficult to maintain the correct trajectory

identities; and finally, (v) surveillance scenarios typically capture rather crowded scenes

which lead to frequent occlusions. Second, tracking humans is a crucial component of

many computer vision-based real-world applications, with a broad range of application

domains, such as action recognition [2], human behavior analysis [69, 199], crowd analysis

and intelligent environments [477] or visual surveillance [435].

In the following, we first provide a categorization of multiple object tracking approaches

in Section 2.4.1. Then, we review the state-of-the-art according to recent benchmark

evaluations [256, 309] in Section 2.4.2.

2.4.1 Categorization

Similar to SOT, there are multiple ways to categorize MOT approaches. We focus on

three key aspects to group the vast literature into more easily digestible parts, as also

illustrated in Figure 2.3.

Classification by Tracker Initialization. Most MOT approaches rely on the tracking-

by-detection paradigm and apply a detector to generate object hypotheses which are then

linked into consistent trajectories. Therefore, this group is also known as detection-based

trackers and can be further divided into two sub-groups, namely (i) approaches that rely

on motion detection, i.e. background modeling and (moving) foreground estimation, and

(ii) approaches that apply pre-trained object detectors. Earlier approaches mostly relied
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on motion detection, i.e. segmenting moving objects via background subtraction or frame

differencing to yield object hypotheses, e.g. [174, 178, 205, 206, 245, 310, 311, 493]. Due to

the typically static camera setup for pedestrian tracking applications, these techniques are

still widely used today. For example, fitting pedestrian shapes to the segmented moving

regions allows to derive probabilistic occupancy measures [3, 137] which indicate likely

object locations. These occupancy measures are widely used, e.g. to derive edge weights

for graph-based MOT approaches, such as [31, 32, 39]. On the other hand, geometrically

fusing the estimated moving foreground regions across multiple (calibrated) viewpoints

enables accurate 3D localization of multiple objects, e.g. [169, 275, 349].

The majority of detection-based MOT approaches, however, relies on object detectors.

This strategy has first been explored for SOT, e.g. [15, 16, 161, 162], and adopted for

MOT shortly after, e.g. [9, 260, 261, 335, 447]. As the tracking performance heavily

depends on the quality of the detector, several works leverage the synergy between tracking

and detection by including object priors for the detection step, derived from the object

dynamics within the tracking step, e.g. [9, 260, 261, 396, 452]. The prevailing strategy,

however, is the black box approach, i.e. using an off-the-shelf detector to generate object

hypotheses which are then linked together into consistent target trajectories, e.g. [187,

190, 202, 210, 264, 278, 346, 390, 410]. To avoid discarding hypotheses prematurely in the

detection step – which usually happens during non-maxima suppression or by applying

a threshold on the detection confidence – some tracking approaches directly exploit the

detection confidence, densely sampled across the input image, e.g. [59, 60].

In contrast to detection-based approaches, so-called detection-free trackers require

manual initialization, e.g. by a human operator. This group contains rather few ap-

proaches, e.g. [112, 200, 466, 479, 484, 485]. Typically, these approaches assume that

all objects are already visible within the first frame of an image sequence and that their

number stays fixed. Due to the manual initialization, these approaches are seldom used

for real-world applications where automation and usability is a key factor.

Classification by Processing Paradigm. MOT frameworks can also be grouped into

online, i.e. causal, and offline approaches. Online methods, e.g. [60, 66, 225, 226, 263,

335, 341, 384, 454], infer the object states solely based on observations up to the current

frame. Offline methods, on the other hand, e.g. [4, 11, 80, 192, 247, 254, 257, 273, 308,

345, 376, 378, 434, 437, 444, 476, 483], either process the whole image sequence at once,

or optimize trajectory assignments over sliding temporal windows, i.e. process a batch of

frames at once. By jointly analyzing all observations collected from a larger frame batch,

offline approaches typically yield more robust tracking results but also cause a delay in

reporting these results, which constrains their use for time-critical applications. Note that

in contrast to most of the MOT literature, we consider a stricter definition of online,

namely that already reported trajectories – i.e. all estimated object locations up to the

current frame – cannot be changed anymore. Thus, we classify all batch-based trackers
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as offline approaches, even if they only optimize trajectory assignments over the past few

seconds, such as [36, 137].

The distinction between online and offline approaches tightly correlates with the under-

lying inference paradigm, i.e. whether MOT is approached from a probabilistic perspective

or a deterministic optimization perspective. Since online trackers have to deal with a sig-

nificantly higher uncertainty, these approaches typically rely on probabilistic inference

and represent the states of objects as a probability distribution. This allows to model

the inherent uncertainty of causal MOT – i.e. without waiting for observations from fu-

ture frames, it is virtually impossible to decide whether a previously tracked object is

currently occluded, actually disappeared or the detector failed for another reason. Such

approaches usually rely on sequential filtering techniques, e.g. multiple hypotheses track-

ing (MHT) [360], joint probabilistic data association filters (JPDAF) [138, 139], Kalman

filters [217] or, most commonly, Monte Carlo sampling-based models which became in-

creasingly popular for visual tracking with the introduction of particle filter frameworks,

independently developed by Isard and Blake [52, 207, 208], Gordon and Salmond [160]

and Kitagawa [230].

Offline approaches, on the other hand, cast tracking as a deterministic optimization

problem, trying to find the optimal trajectory assignment for all object detections within

the corresponding frame batch. To this end, the assignment problem is usually formu-

lated as a graph which allows a variety of suitable solutions. A commonly used repre-

sentation is that object detections (or already identified, shorter trajectories) define the

nodes of the graph, whereas both temporal and appearance cues are leveraged to derive

edge connections and the corresponding weights. The most popular techniques to opti-

mize for the final trajectories are: (i) bipartite graph matching – either relying on greedy

assignments, e.g. [447], or the optimal assignment via the Hungarian algorithm [317],

e.g. [202, 456]; (ii) dynamic programming-based approaches – which try to find the K-

shortest paths, e.g. [39], rely on quadratic Boolean programming, e.g. [101, 260], solve the

combinatorial set cover problem, e.g. [451], or apply subgraph multicuts, e.g. [411, 412];

(iii) approaches which solve for the minimum cost network flow within a directed graph,

e.g. [32, 64, 82, 102, 263, 345, 451, 483]; (iv) apply a conditional random field (CRF)

model, e.g. [307, 460, 462]; or (v) solve for the maximum-weight independent set of an

attributed graph, e.g. [61, 382].

Although both, the correlation between offline and optimization-based approaches, as

well as online and probabilistic inference-based approaches holds true for the majority of

MOT algorithms, there are notable exceptions. For example, causal trackers which rely on

bipartite graph matching – i.e. assigning current object detections to previously observed

trajectories, e.g. [59, 60, 384] – or offline trackers which employ Monte Carlo sampling to

efficiently reduce the solution space of the optimization problem, e.g. [353, 472].

Classification by Viewpoints. Based on the employed camera setup, we can distin-

guish monocular and multi-camera MOT approaches. Most of the research effort has been
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spent on monocular setups as the majority of publicly available datasets is captured from a

single camera. This is mainly due to the notable efforts required to properly record a scene

from multiple viewpoints simultaneously, namely synchronizing the video streams and cali-

brating the cameras, both w.r.t. their intrinsics and extrinsics. Additionally, multi-camera

datasets require manual ground truth annotations for (at least a selection of) all view-

points, which is a tedious task. However, if carefully calibrated – e.g. as in the APIDIS [77],

ICG Lab6 [349] or MVL Lab5 [297] datasets – the multiple viewpoints can be used to ac-

curately track objects by leveraging 3D structural information, e.g. [169, 275, 349, 379], or

homography constraints, e.g. [225, 226, 346, 400]. However, the most widely used multi-

camera datasets, i.e. PETS’09 [136] and the EPFL sequences [39, 137], do not contain

fully calibrated cameras, i.e. the EPFL sequences only deliver homographies between the

image plane and the ground plane, whereas the PETS’09 calibrations are too inaccurate

to leverage multi-view 3D structure. Nevertheless, object hypotheses can still be fused

across these views to robustly track pedestrians in 2D, either on the ground plane or in

image coordinates, e.g. [31, 32, 38, 39, 137, 193, 437]

Another line of research focuses on tracking within distributed camera networks,

i.e. leveraging multiple but non-overlapping (or at least only partially overlapping) FOVs,

e.g. [65, 218, 220, 227, 344, 355, 395]. Such approaches need to explicitly hand over ob-

ject identities between neighboring camera sensors in wide area surveillance applications.

This is a particularly challenging task for non-overlapping viewpoints, due to potentially

different illumination conditions or different viewing angles.

The majority of MOT approaches relies on a single camera setup. This group can

further be subdivided whether they require a static camera, e.g. [5, 22, 23, 103, 236, 387,

389], or are able to track from a moving platform, e.g. [120, 121, 143, 260, 261, 312]. Widely

used static camera datasets are the TownCentre [35, 36], PETS’09 [136] (by using only a

single viewpoint) and the TUD sequences [9, 10], whereas most evaluations for tracking

on moving camera platforms are conducted either on the ETH sequences [119, 120] or the

KITTI dataset [150].

2.4.2 State-of-the-Art

Over the past few years, MOT research focused mostly on offline or batch-processing

methods due to their robustness and simplicity. Causal tracking, although required for

real-world applications, has received significantly less attention from the visual tracking

community. Interestingly, though, the top performing methods on the MOT’15 bench-

mark [256] – a benchmark initiative which aims at evaluating MOT approaches on publicly

available datasets, including ETH, PETS, TownCentre and TUD – are causal trackers.

In particular, online deep learning-based approaches, i.e. [282, 368], lead the rankings

on the 2D subset (i.e. single camera sequences where tracking results are reported in

image coordinates). These approaches either combine a state-of-the-art object detector

(i.e. RCNN [154]) with deep appearance models and thus, leverage the powerful CNN
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features, i.e. [282], or pose tracking as a re-identification problem, leveraging deep metric

learning and RNNs, i.e. [368]. The 3D subset (i.e. multi-camera sequences where tracking

results are reported in 3D world coordinates), on the other hand, is led by a dynamic

Bayesian network (DBN)-based approach, i.e. [232], which employs instance-specific on-

line random forests [369]. These notable exceptions on MOT’15 are tightly followed by

offline graph-based approaches which rely either on multicuts, i.e. [221], or network flow

formulations, i.e. [444].

Considering the current rankings of the larger follow-up benchmarks, i.e. MOT’16 and

MOT’17 [309], however, we can see a clear domination of offline approaches over online

approaches. In particular, the top performing methods on both benchmarks uniformly

cast MOT as a graph problem. The solution is then obtained by either seeking optimal

multicuts on the trajectory-detections graph, i.e. [221, 412], solving an approximation of

the weighted graph labeling problem, i.e. [190], jointly decomposing the graph and labeling

its nodes, i.e. [264], or casting the trajectory optimization problem in a classical multiple

hypotheses tracking framework, i.e. [229].

The reason why, in contrast to SOT, there are only few deep learning-based approaches

for MOT up to now, is that tackling the key problems of MOT – i.e. locating an unknown

(and even worse: varying) number of objects and maintaining their identities – is con-

siderably difficult to model using fixed neural network architectures. Additionally, MOT

problems require a stronger focus on target dynamics due to the usually less discrimina-

tive appearance cues (as seemingly all pedestrians tend to wear dark clothing). Robustly

modeling dynamics, however, is a challenging task for recurrent neural networks as the

gradients can easily explode or vanish when learning dependencies over long time win-

dows [37]. Thus, recent approaches use rather short memory horizons of approximately

5–8 steps, e.g. [4, 368], which in typical surveillance camera footage corresponds to less

than half a second and consequently impedes both handling of long-term occlusions as

well as deducing long-term predictions, such as a pedestrian’s intent, i.e. to which point

in the scene she is headed towards.

In contrast to both optimization-based approaches and trackers which learn the object

dynamics over time, we present a robust association schema for online MOT. In particular,

we show how to exploit occlusion reasoning in combination with simple scene priors to

guide data association in a bipartite graph matching formulation. For more details, please

refer to Chapter 4.
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Distractor-Awareness for Appearance-Based Tracking

Sooner or later, everything old is new again.

— Stephen Edwin King (The Colorado Kid)
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3.1 Motivation

This chapter investigates contextual cues related to the object appearance itself. In par-

ticular, we show how to exploit appearance-based models to robustify visual tracking

in the presence of distracting visual cues. We will focus on generic single object track-

ing approaches which are employed for scenarios where neither object class-specific prior

knowledge, nor pre-learned object models are available. Although some application do-

mains allow us to incorporate strong assumptions about the target – for example, tracking

25
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pedestrians in surveillance scenarios [60, 349, 350, 384] – it is often desirable to build a

generic tracker which can readily be used for arbitrary object classes. Instead of apply-

ing pre-learned object models, such a generic tracker must learn a representative object

model given a single input frame with a (possibly noisy) initial object annotation, e.g. an

axis-aligned bounding box. Despite significant progress in recent years, creating such a

generic object tracker is still a rather challenging task due to real-world phenomena, such

as illumination changes, background clutter, blur caused by fast object or camera motion,

abrupt motion changes, non-rigid object deformations and occlusions.

Throughout the early stages of visual tracking, color histograms, e.g. [87, 331, 332, 342],

were a common method for appearance description. However, over the last decade, such

models have widely been replaced by more complex and well engineered features, such

as HOG [91], e.g. [92, 98, 99, 189], or more complex color representations, such as color

attributes [423], e.g. [93, 98, 423]. Moreover, the recent research focus has shifted to

trackers which learn robust data-driven models, either via correlation filters, e.g. [42, 55,

92, 99, 188, 405] or convolutional neural networks (CNNs), e.g. [97, 98, 171, 184, 194,

203, 290, 319, 321, 393, 414, 474]. Such trackers have been shown to achieve excellent

performance on recent benchmark evaluations, whereas trackers based on standard color

models yield inferior performance.

In particular, considering the results of recent benchmark evaluations – such as

VOT’13 [238], VOT’14 [239] or ALOV++ [386] – color-based trackers often tend to

drift towards regions which exhibit a similar appearance as the currently tracked

target. Consequently, the state-of-the-art has focused on more complex models, trading

computational efficiency for more accurate results and thus, most often sacrifice real-time

capability. In contrast to this development, we argue that trackers based on simpler, yet

very efficient, standard color representations can still achieve state-of-the-art performance

if they properly address two key requirements for robust visual tracking:

• The underlying object model must be able to distinguish the object of interest from

its immediate surroundings, both efficiently and effectively.

• A robust tracking algorithm should identify potentially distracting regions in advance

and counteract appropriately to prevent drifting, once such distracting regions come

close to the object of interest.

To address these key requirements, we exploit the observation that color-based trackers

tend to drift towards nearby regions with similar visual appearance. By relying on an

efficient color-based object representation, we can identify potentially distracting regions

in advance – several frames before a standard color-based tracker would drift away – and

counteract in time by adapting the object representation such that the model response is

suppressed for these distractors. Using such an adaptive color model, we can significantly

reduce the drifting problem, which yields robust and reliable tracking results, as illustrated

in Figure 3.1. Due to the favorable simplicity of our representation, it is also well suited

for time-critical applications such as surveillance and robotics.
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Figure 3.1: A visual comparison of our tracker to state-of-the-art approaches ACT [93],
DSST [92], KCF [189] and SPOT [485] on several VOT’14 [239] sequences demonstrates the ben-
efits of distractor-awareness. Dashed bounding boxes indicate that the corresponding tracker has
been re-initialized after drifting previously. Images are slightly cropped and frame numbers are
superimposed only for visualization.
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This chapter is partly based on our publication on distractor-aware color-based track-

ing [351]. In the following, we briefly review related approaches in Section 3.2 before intro-

ducing our tracking approach in Section 3.3. In particular, we will derive our distractor-

aware model starting from a standard color representation and show how to exploit this

model for robust localization and efficient scale adaptation. Finally, we will summarize

the key aspects of our approach in Section 3.4.

3.2 Related Generic Tracking Approaches

Due to the abundance of visual tracking approaches, in the sequel, we summarize only sin-

gle object trackers which are closely related to our color-based distractor-aware approach.

For a broader overview on generic object tracking, please refer to Chapter 2.

Color-based Tracking Approaches. With the increased computing power, color-

based approaches became popular within the visual tracking community in the early

2000’s, e.g. [78, 85–87, 173, 209, 304, 331–333, 342, 356]. A notable early work is the

mean shift tracker by Comaniciu et al. [85, 86], which introduces a metric derived from

the Bhattacharyya coefficient [46] to reason about the similarity of image regions based on

color histogram matching. Their framework has been widely extended, e.g. by spatially

regularizing the histogram representations with isotropic kernels [87], viewpoint-insensitive

histograms [116], integrating scale adaptation [83] or replacing mean shift by a scale-

adaptive, EM-like algorithm [499]. Similarly, color histograms have been used to estimate

the likelihood for each sampled particle in the particle filter frameworks independently

proposed by Nummiaro et al. [331, 332] and Pérez et al. [342]. Such particle filter-based

approaches have been widely adopted in the visual tracking community, e.g. [248, 251].

Besides color histograms, tracking approaches usually employed Gaussian mixture models,

e.g. [209, 304, 356]. A notable early work is the Bayesian filtering approach by Isard and

MacCormick [209], which leverages Bayesian correlation [404] with Gaussian filter banks

on the color channels and extends the particle filtering framework to handle a varying

number of objects.

Due to the expressiveness and efficiency of most color-based object representations,

color cues have been included in many tracking frameworks, e.g. [19–21, 233, 268, 293,

337, 348]. A detailed analysis of color features has been conducted by Collins et al. [84],

who propose an online framework which automatically selects the most discriminative color

feature for tracking w.r.t. the current sequence conditions. Several approaches extend this

idea by either fusing multiple feature cues (including color), e.g. [111], or using an ensemble

of trackers which operate on different color features, e.g. [249, 480].

Color information is also widely used for segmentation-based tracking approaches,

e.g. active contour methods [47, 140], graph cut-based methods [30, 156, 157], image

matting-based methods [126], probabilistic soft segmentation approaches [71, 72, 75, 113,

114], or to reason about the reliability of correlation filter responses [42, 286, 287]. In
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particular, the narrow band level set framework of Bibby and Reid [47] is notably similar in

spirit to our work as it leverages color-based, pixel-wise posterior probabilities. However,

they additionally exploit the object shape but do not incorporate any supplementary

context, such as potentially distracting regions, which can easily degrade their level set

segmentation if visually similar regions are close-by or even overlap with the object.

Another line of research is focused on deriving improved color descriptors, such as

color attention [223], color attributes [222], discriminative color descriptors [224], color

names [423] or opponent derivative and hue descriptors [422]. Recently, simple histogram-

and raw pixel color-based tracking models have been replaced by such more complex

color representations. In particular, color names [423] are widely used in state-of-the-art

correlation filter frameworks, e.g. [93, 286], and have also been used to complement deep

feature representations more recently, e.g. [97, 98, 203]. In contrast to these approaches,

we show that simple histogram-based representations suffice to achieve both accurate and

robust tracking results, competitive to the state-of-the-art.

Context-aware Tracking Approaches. There are two widely used contextual cues in

visual object tracking, namely (i) the immediate background which must be considered

when building a useful object model, e.g. [42, 55, 92, 97, 189, 286, 491]; and (ii) spatio-

temporal context given by the previously observed object states, e.g. [292, 438, 482].

However, besides these essential contextual cues, exploiting additional context information

– such as identifying distracting regions to focus the visual attention or leverage constraints

induced from scene geometry – has received significantly less interest from the tracking

community. This can be contributed to the fact that incorporating such cues leads to

more complex models – in particular, context must be identified, modeled and learned

on-the-fly without any prior knowledge.

There are, however, a few notable exceptions, such as [104, 164, 467, 484, 485, 491,

497]. These approaches distinguish between context provided by either supporting or

distracting regions. Supporting regions, as used by [104, 164, 491, 497], exhibit different

appearance than the object of interest but co-occur with it, providing valuable cues to

overcome occlusions. Distractors, on the other hand, exhibit similar appearance and may

therefore be confused with the object. Typically, context-aware trackers such as [467, 484,

485] assume that distractors are of the same object class (e.g. pedestrians) and need to

track these distractors in addition to the target to prevent drifting. In contrast to these

approaches, we impose no assumptions on the object class of distractors. Moreover, we

adapt the object representation such that potentially distracting regions are suppressed

in advance and thus, no explicit tracking of distractors is required.

3.3 Online Distractor-Aware Object Tracking

In the following, we introduce our distractor-aware visual object tracking approach, DAT.

First, we derive the basic color model in Section 3.3.1 and explain its distractor-aware
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extension in Section 3.3.2. Next, we discuss how to localize the object of interest based on

this efficient object model in Section 3.3.3. Finally, we show how this representation can

also be used to efficiently adapt to changing object scales without the need of exhaustive

scale space search in Section 3.3.4.

3.3.1 Object-versus-Surroundings Model

Color is a powerful visual cue to distinguish object pixels from surrounding background

pixels. To efficiently represent the joint color distribution over an image region, we employ

NC-dimensional histograms, where NC denotes the number of color channels. To this

end, let HI
Ω(b) denote the b-th bin of the non-normalized histogram H computed over

the region Ω ⊆ I, where I is the input image. Then, let bx denote the histogram bin

b assigned to the color components of pixel I(x) ∈ RNC at location x = (x, y)⊤. For

example, I(x) = (red, green, blue)⊤ using the standard RGB color space. To compute the

object likelihood at the pixel location x, we apply Bayes’ theorem to get the conditional

probability

p(x ∈ O | bx) =
p(bx | x ∈ O) p(x ∈ O)

p(bx)
(3.1)

where x ∈ O denotes that the pixel at location x belongs to the object. Since a pixel

at location x either belongs to the object or not, the events x ∈ O and x /∈ O are

obviously mutually exclusive. Thus, we can apply the law of total probability to compute

the marginal probability p(bx) and get

p(x ∈ O | bx) =
p(bx | x ∈ O) p(x ∈ O)

p(bx | x ∈ O) p(x ∈ O) + p(bx | x /∈ O) p(x /∈ O)
. (3.2)

This formal definition of the conditional probability, however, relies on an accurate pixel-

wise segmentation to compute the likelihood and prior terms as we need to know whether

a pixel belongs to the object, i.e. x ∈ O, or not.

Such accurate annotations are usually not available to initialize a tracking algorithm

as they are computationally too expensive to obtain. Instead, tracking approaches have to

rely on much coarser initialization regions, typically provided as an annotated bounding

box or a polygon. From a more practical point of view, these coarse initializations are

both easy and fast to annotate, which allows us to start tracking (almost) immediately.

Given such an annotated region O which contains the object of interest and the corre-

sponding surrounding region S, we can estimate the missing terms in Eq. (3.2) and relax

the posterior probability to

p(x ∈ O | bx) ≈
p(bx | x ∈ O) p(x ∈ O)∑

Ω∈{O,S}

p(bx | x ∈ Ω) p(x ∈ Ω)
. (3.3)
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In practice, we choose S such that it covers a sufficiently large portion of the immediate

surroundings of the object region O. More formally, the object region is the set of pixels

O =

{
x = (x, y)⊤

∣∣∣ |cx − x| ≤
wO

2
∧ |cy − y| ≤

hO
2

}
, (3.4)

where wO and hO denote the width and height of the rectangular object region, respec-

tively, and c = (cx, cy)
⊤ denotes its center. For a more compact notation, we denote the

object region by the tuple

O = (c,wO,hO)
⊤ (3.5)

in the following. Then, we can define the surrounding region S to be

S =

{
x
∣∣∣ |cx − x| ≤

λSwO

2
∧ |cy − y| ≤

λShO
2

} ∖ {
O

}
, (3.6)

where λS > 1 is a predefined scaling factor. Note that the regions O and S are disjoint,

as also illustrated in Figure 3.2a.

Using the color distributions over these disjoint regions O and S, we can compute the

likelihood terms directly from normalized color histograms as

p(bx | x ∈ O) =
HI

O(bx)

|O|
, (3.7)

and

p(bx | x ∈ S) =
HI

S(bx)

|S|
, (3.8)

where | · | denotes the cardinality. Similarly, the prior probabilities can be computed from

the annotated regions as

p(x ∈ O) =
|O|

|O|+ |S|
, (3.9)

and

p(x ∈ S) =
|S|

|O|+ |S|
. (3.10)

Plugging these terms into Eq. (3.3) and simplifying yields

p(x ∈ O | bx) =

HI
O(bx)

✚✚|O|
✚✚|O|

|O|+ |S|

HI
O(bx)

✚✚|O|
✚✚|O|

|O|+ |S|
+
HI

S(bx)

�
�|S|

�
�|S|

|O|+ |S|

(3.11)

=

HI
O(bx)

✘✘✘✘✘|O|+ |S|

HI
O(bx)

✘✘✘✘✘|O|+ |S|
+

HI
S(bx)

✘✘✘✘✘|O|+ |S|

(3.12)
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(a) Object-versus-surroundings model p1:tO,S(x ∈ O | bx) computed from the annotated ob-
ject region O (highlighted in green) and its surrounding region S (highlighted in red).
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(b) Object-versus-distractors model p1:tO,D(x ∈ O | bx) based on the object region O (high-
lighted in green) and the set D of distracting regions (highlighted in magenta).

Figure 3.2: Exemplary object likelihood maps for (a) the object-versus-surroundings model and
(b) the object-versus-distractors model on sequences bolt and torus of the VOT’14 [239] dataset.
For each model, we show the regions of interest superimposed on the input image (left) along with
the joint color distribution (middle) and the corresponding object likelihood maps (right), obtained
by applying the model for every pixel of the input image. Warmer colors indicate higher object
likelihood scores. Note that the high object likelihoods at the banner and the close-by athletes
for bolt in (a) are significantly reduced in (b) by the distractor-aware model, which focuses on the
visual cue that distinguishes Bolt from the other athletes, i.e. his jersey. Similarly, there is a small
blueish region right above the torus identified as a potential distractor.
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=
HI

O(bx)

HI
O(bx) +HI

S(bx)
. (3.13)

This model is based on all observed pixels within the region O ∪ S. However, it

does not allow to reason about the object probabilities for colors which are not present

in these regions. Thus, we initially assign the maximum entropy prior of 1/2 to pixels

which color is not contained within O ∪ S. This expresses the corresponding uncertainty

and furthermore, prevents a division by zero. Now we can define the basic object-versus-

surroundings model computed for the current input image I at time t as

ptO,S(x ∈ O | bx) =





HI
O(bx)

HI
O(bx) +HI

S(bx)
if I(x) ∈ I(O ∪ S)

1/2 otherwise,

(3.14)

where we use the subscript notation ptO,S(·) to indicate that the conditional probability

is computed from the pixels observed within the regions O and S. This model can be

implemented efficiently using lookup-tables, which enables real-time capable online track-

ing. Note that in practice, the distinction of cases in Eq. (3.14) is not necessary as we can

instead apply Laplace smoothing (also known as additive or add-one smoothing) of the

probabilities [298, Chap. 13] which results in the more compact definition

ptO,S(x ∈ O | bx) =
HI

O(bx) + 1

HI
O(bx) +HI

S(bx) + 2
. (3.15)

Subsequent model updates properly adjust the maximum entropy prior of previously

unobserved colors according to whether such pixels belong to the object region or its

surroundings. In particular, we update our model regularly to handle changing object

appearance and illumination variations. More formally, we define the full object-versus-

surroundings model as

p1:tO,S(x ∈ O | bx) = ηSp
t
O,S(x ∈ O | bx) + (1− ηS) p

1:t−1
O,S (x ∈ O | bx) , (3.16)

where initially, p1:1O,S(x ∈ O | bx) = p1O,S(x ∈ O | bx) at time step t = 1, and ηS ∈ [0, 1] is

the learning rate.

3.3.2 Object-versus-Distractors Model

By distinguishing object pixels from background pixels, the object-versus-surroundings

model already provides a strong cue for localizing an object, as illustrated in Figure 3.2a.

However, one of the most common problems of color-based tracking models remains

– namely, that such models cannot distinguish the object from nearby regions which

exhibit a similar visual appearance compared to the object of interest and thus, the

tracker may drift. To overcome this limitation, we explicitly extend the object model
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to suppress such distracting regions. Due to the efficient realization of the object-versus-

surroundings model via lookup-tables, we can easily afford to compute the posterior prob-

ability p1:tO,S(x ∈ O | bx) over a large search region at a very low computational cost. As

will be discussed in Section 3.3.3, this efficiency allows us to identify potentially distracting

regions in advance and properly robustify our tracker as follows.

For now, let us assume we are given the current object region O and a set D of

potentially distracting regions, i.e. regions that are visually similar to the object. Such

exemplary distractors are illustrated in Figure 3.2b. We exploit this information to build

a representation capable of distinguishing object and distracting pixels. To this end, we

again employ Bayes’ theorem as in Eq. (3.3), where we replace the surrounding region

S by the set of distracting regions D. Similar to Eq. (3.8) and (3.10), we compute the

likelihood and prior terms from color histograms as

p(bx | x ∈ D) =
HI

D(bx)

|D|
, (3.17)

and

p(x ∈ D) =
|D|

|O|+ |D|
. (3.18)

Plugging these terms into the relaxed posterior, simplifying and applying Laplace

smoothing, as in Eq. (3.15), then yields the basic object-versus-distractors model computed

for the current input image I at time t as

ptO,D(x ∈ O | bx) =
HI

O(bx) + 1

HI
O(bx) +HI

D(bx) + 2
, (3.19)

where again, pixel colors not observed within O ∪D are assigned the maximum entropy

prior of 1/2. To obtain the full object-versus-distractors model, we update this model

whenever visually distracting regions D are identified according to

p1:tO,D(x ∈ O | bx) = ηDp
t
O,D(x ∈ O | bx) + (1− ηD) p

1:t−1
O,D (x ∈ O | bx) , (3.20)

where ηD ∈ [0, 1] is the learning rate. If there are no distractors at t = 1, we initialize the

object-versus-distractors model as p1:1O,D(x ∈ O | bx) = p1O,S(x ∈ O | bx), which is the same

as considering the surrounding region to be distracting, i.e. D = S. Otherwise, if there

are distractors at t = 1, we use the initialization p1:1O,D(x ∈ O | bx) = p1O,D(x ∈ O | bx).

Note that if there are no distractors at a later time step throughout the sequence,

i.e. D = {∅}, there are two options regarding the model update. On the one hand, we

can decay the distractor suppression by letting D = S and performing the update as in

Eq. (3.20). On the other hand, we can simply refrain from updating the object-versus-

surroundings model if D = {∅}. In our evaluations, both options led to the exactly same

tracking performance. We observed that in general, distracting regions appear rather
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frequently and thus, there are very few frames where D = {∅}. For these reasons, we rely

on the latter, i.e. perform no update if there are no distracting regions.

The object-versus-distractors representation focuses on colors that distinguish the

object from visually similar distractors, as illustrated in Figure 3.2b. Applying both,

p1:tO,S(x ∈ O | bx) and p
1:t
O,D(x ∈ O | bx), for each pixel of an image region, we obtain likeli-

hood maps which can be used to robustly localize an object throughout a video sequence.

3.3.3 Target Localization

Considering the previous example in Figure 3.2, a straightforward way to localize the

target would be to linearly combine the two object models and find the most likely region

within the weighted likelihood map. Especially for the bolt sequence, it is easy to find a

color bin distinguishing Bolt from the surrounding background and visually similar regions,

due to the distinct color of his jersey. Thus, a combined model is sufficient to robustly

track the athlete in this sequence. In general, however, applying a combined model does

not always yield the most robust results and often severely degrades the likelihood maps.

For example, consider the additional sequences in Figure 3.3. There, distracting regions

are not as visually distinct as in the bolt sequence and suppressing these color cues would

significantly degrade a combined model. Such a degraded model would either lead to

drift or limited scale adaptation capabilities. Thus, we propose the following localization

scheme which exploits both available object models in a late fusion manner.

Given a new frame at time t, we seek the image region which – according to our

object representations – most likely contains the object of interest. Similar to tracking-by-

detection-based approaches, we constrain the search region based on the previous object

hypothesis. In particular, we extract a rectangular search window W t proportional to the

previous object region

Ot−1 = (ct−1, wt−1
O , ht−1

O )⊤, (3.21)

where ct−1 = (ct−1
x , ct−1

y )⊤ denotes the center of the rectangular object region Ot−1 as of

time t − 1, and wt−1
O and ht−1

O denote its width and height, respectively. More formally,

we employ the search window

W t =
(
ct−1, λWw

t−1
O , λWh

t−1
O

)⊤
, (3.22)

where λW > λS is a predefined scaling factor. Within this search region, we densely

sample a set of object hypotheses

Ot
i,j =

(
cti,j , w

t−1
O , ht−1

O

)⊤
, (3.23)

where

cti,j =

(
ct−1
x −

λWwt−1
O

2 + (i− 1)(1− oν)w
t−1
O +

wt−1
O
2

︸ ︷︷ ︸
Top left corner of W t

ct−1
y −

λW ht−1
O

2 +
︸ ︷︷ ︸

Offset to center of Ot
i,j

(j − 1)(1− oν)h
t−1
O +

ht−1
O
2

)
, (3.24)
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Inputs I, O and S p1:tO,S(x ∈ O | bx) Inputs I, O and D p1:tO,D(x ∈ O | bx)

(a) Sequence hand2. The object-versus-distractors model p1:tO,D(x ∈ O | bx) (two rightmost im-
ages) successfully suppresses the visually similar regions on the face. Nevertheless, the overall
high object likelihood scores on the palm of the hand – from the object-versus-surroundings
model p1:tO,S(x ∈ O | bx) (two leftmost images) – are also reduced due to the similar skin tone,
which must be addressed for robust localization.

Inputs I, O and S p1:tO,S(x ∈ O | bx) Inputs I, O and D p1:tO,D(x ∈ O | bx)

(b) Sequence bicycle. p1:tO,D(x ∈ O | bx) (right) significantly suppresses the dark regions at
the doorways which are visually similar to the dark trousers of the bicyclist. Consequently,
p1:tO,D(x ∈ O | bx) provides a valuable cue for localization, whereas p1:tO,S(x ∈ O | bx) (left) should
be preferred for scale adaptation to prevent cropping the cyclist’s feet.

Figure 3.3: Typical challenges for localization and scale adaptation on the VOT’14 [239] bench-
mark. These potential issues have to be addressed to achieve a robust tracking performance.

with

i = 1, 2, . . . ,

⌊
λW − 1

1− oν

⌋
, (3.25)

j = 1, 2, . . . ,

⌊
λW − 1

1− oν

⌋
. (3.26)

Here, the predefined factor oν ∈ [0, 1) specifies the overlap between neighboring hypothe-

ses, and ⌊·⌋ denotes the floor function. Then, we obtain the current object location as

Ot
⋆ = argmax

Ot
i,j





(
ρS
(
Ot

i,j

)
+ ρD

(
Ot

i,j

)
)

︸ ︷︷ ︸
Appearance term

exp


−

∥∥∥ct−1 − cti,j

∥∥∥
2

2

2σ2




︸ ︷︷ ︸
Motion term





, (3.27)
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where

ρS
(
Ot

i,j

)
=

1

2




1∣∣∣Ot
i,j

∣∣∣

∑

x ∈Ot
i,j

p1:t−1
O,S (x ∈ O | bx) +

1∣∣∣Ot
i,j

∣∣∣

∑

x ∈Ot
i,j

p1:t−1
O,S (x ∈ O | bx)


 , (3.28)

Ot
i,j =

(
cti,j ,

wt−1
O

2
,
ht−1
O

2

)⊤

, (3.29)

and

ρD
(
Ot

i,j

)
=

1

|Ot
i,j |

∑

x ∈Ot
i,j

p1:t−1
O,D (x ∈ O | bx), (3.30)

are the similarity scores estimated from the object-versus-surroundings and object-versus-

distractors model, respectively. Note that these similarity scores can be computed ef-

ficiently via integral images [426], also known as summed area tables [88] in computer

graphics. The motion term in Eq. (3.27), with

σ =

√(
wt−1
O

)2
+
(
ht−1
O

)2
, (3.31)

penalizes large inter-frame movements, similar to the Gaussian and cosine kernels used by

correlation-based trackers, such as MOSSE [55], DSST [92] or KCF [189].

Empirically, we found that including the additional term for the inner region Ot
i,j in

Eq. (3.28) leads to smoother localization results. On average, this increased the over-

lap between the estimated object locations and the ground truth by 1–2%. Note that

throughout our experiments, the same improvement could also be achieved by employing

a Kalman filter [217] instead of adding this inner region term. However, employing an ad-

ditional filtering step would be slightly less efficient w.r.t. the overall runtime4. Although

this improvement is rather marginal, we still include this term, as it comes at a negligible

computational cost due to the use of integral images.

Thus, instead of maintaining a combined model, as we did previously in [351] – which

quickly degrades if there are no distinct colors to separate the object from distracting

regions – we perform a late fusion of the two separate models solely during localization.

This yields improved robustness for scenarios where many visually similar distractors oc-

cur. In such cases, the object-versus-distractors model focuses only on more discriminative

regions, which may include parts of the local background – recall hand2 in Figure 3.3a – or

focus on smaller regions of the object – recall bicycle (the rider’s torso) in Figure 3.3b or

bolt (the runner’s jersey) in Figure 3.2. Keeping two separate models allows both, robust

localization and simplified scale adaptation, as will be discussed in the following section.

4On a standard desktop IntelR© CoreTM i7 CPU, a straightforward implementation of a Kalman filter
takes about 3ms longer per frame.
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Input I p1:tO,S(x ∈ O | bx) p1:tO,D(x ∈ O | bx) Combined, as in [351]

(a) Sequence bolt.

Input I p1:tO,S(x ∈ O | bx) p1:tO,D(x ∈ O | bx) Combined, as in [351]

(b) Sequence torus.

Input I p1:tO,S(x ∈ O | bx) p1:tO,D(x ∈ O | bx) Combined, as in [351]

(c) Sequence hand2.

Input I p1:tO,S(x ∈ O | bx) p1:tO,D(x ∈ O | bx) Combined, as in [351]

(d) Sequence bicycle.

Figure 3.4: Localization via object likelihood maps. Green rectangles indicate the object loca-
tion Ot

⋆, whereas magenta rectangles illustrate hypotheses Ot
i,j which are assigned to the distrac-

tor set D. By relying on separate models, we can robustly localize the target and still exploit
p1:tO,S(x ∈ O | bx) for scale adaptation. Early fusion of these models (rightmost column) often leads
to a deteriorated result, especially if there are almost no color differences between the object
and distractors. For example, compare the probabilities within the distracting regions of the two
rightmost columns in (c) (similar skin tone) and (d) (dark doorways versus trousers).
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Note that we can easily extend our localization step to identify distracting regions

in advance. In particular, visually similar distractors will yield a high similarity score

ρS(O
t
i,j). Thus, we get the set of distractors at the current time stamp as

D =
{
Ot

i,j

∣∣ ρS
(
Ot

i,j

)
≥ τν ρS

(
Ot

⋆

)} ∖ {
Ot

⋆

}
, (3.32)

where the predefined factor τν ∈ (0, 1) controls the amount of distractors to suppress

by our object-versus-distractors model. To prevent selecting ambiguous distractors, e.g.

located on the object itself if the object scale increased between two frames, we follow

an iterative non-maximum suppression (NMS) strategy. In particular, after selecting a

candidate – either Ot
⋆ or a distractor – hypotheses Ot

i,j which overlap more than 10%

are discarded to avoid including them in the set of distractors. Figure 3.4 illustrates the

localization step and shows the advantages of maintaining two separate models.

3.3.4 Scale Estimation

Recently, pre-training a scale estimator on huge datasets, such as PASCAL VOC [122]

or ImageNet [367], has widely been used in many state-of-the-art approaches, e.g. [124,

319, 321, 413]. However, our color-based object-versus-surroundings model already enables

efficient scale estimation without requiring computationally expensive pre-training on such

datasets. This also respects the generic nature of the tracker as we can easily adapt to

objects that are not captured within these datasets. In the following, we introduce three

techniques – namely, (i) segmentation via connected components, (ii) likelihood map sum

reduction and (iii) instance-specific regression – which can subsequently be applied after

localizing the target in the current frame.

As a pre-processing step to all of these techniques, we employ a coarse pre-segmentation

by thresholding the likelihood map obtained from the object-versus-surroundings model.

Since choosing a predefined threshold may impede the scale adaptation due to background

clutter or fast illumination changes, we employ an adaptive threshold. To this end, let

L denote the object likelihood map obtained by evaluating p1:tO,S(x ∈ O | bx) at every lo-

cation x of the search region, as shown in Figure 3.5. Then, we compute the cumulative

likelihood histograms

CL
Ot

⋆
(b) =

1

|Ot
⋆|

b∑

i=1

HL
Ot

⋆
(i), (3.33)

and

CL
St
⋆
(b) =

1

|St
⋆|

b∑

i=1

HL
St
⋆
(i), (3.34)

where St
⋆ denotes the region surrounding the estimated object hypothesis Ot

⋆, recall

Eq. (3.6). Note that HL
Ω(·) are one-dimensional histograms computed from the object

likelihood maps.
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(b) Sequence torus.

Figure 3.5: Computing the adaptive pre-segmentation threshold from likelihood maps. We
superimpose the regions of interest for the threshold computation, i.e. Ot

⋆ (green) and St
⋆ (red),

on the input image and the corresponding (monochrome) likelihood map. The two rightmost
visualizations show the original and thresholded likelihood maps, respectively.
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Our thresholding objective is to keep confident object pixels (i.e. foreground), while

discarding as many background pixels as possible. More formally, by exploiting the cu-

mulative histograms, we compute the adaptive pre-segmentation threshold

τ⋆ = min
{
τdiscard⋆ , τmax

⋆

}
, (3.35)

where

τdiscard⋆ = argmin
τ

{
CL
Ot

⋆
(bτ )−

(
1− CL

St
⋆
(bτ + 1)

)}
(3.36)

subject to CL
Ot

⋆
(bτ ) + CL

St
⋆
(bτ + 1) ≥ 1,

seeks a threshold that keeps more object pixels than background pixels. Here, bτ denotes

the bin b which is assigned to the threshold τ ∈ [0, 1]. The bin offset in Eq. (3.36),

i.e. comparing CL
Ot

⋆
(bτ ) to C

L
St
⋆
(bτ + 1), ensures that the chosen threshold τdiscard⋆ is above

the crossing point of the cumulated object histogram and the (inverted) surrounding his-

togram, see Figure 3.5. To guarantee that at least a minimum amount of foreground pixels

is kept after thresholding, we impose the hard limit

τmax
⋆ = argmax

τ

{
CL
Ot

⋆
(bτ )− (1− cτ )

}
(3.37)

subject to CL
Ot

⋆
(bτ ) + cτ ≤ 1,

where cτ controls the amount of guaranteed foreground pixels. We choose a fixed cτ = 0.1

throughout all experiments, which ensures that at least 10% of the foreground pixels

are kept after thresholding, even for extremely challenging capturing scenarios, such as

suddenly under- or over-exposed images. As each pixel value of the likelihood map L lies

within the range [0, 1], we use a predefined bin width of 0.05 to compute the cumulative

histograms CL
Ω(·) which are required to compute the pre-segmentation threshold τ⋆. The

thresholded likelihood map L̂ can then be computed as

L̂ (x) =

{
L(x) if L(x) ≥ τ⋆

0 otherwise.
(3.38)

3.3.4.1 Segmentation via Connected Components

Ideally, we could employ a sophisticated image segmentation approach, e.g. by relying on

Total Variation-based methods [372, 420] or GrabCut [366], to properly adjust the scale

of the estimated object hypothesis, as has been done in several previous tracking frame-

works, e.g. PaFiSS [30] or HoughTrack [156, 157]. However, such approaches are usually

prohibitively expensive in terms of runtime. Furthermore, we typically deal with rather

low resolution imagery and low contrast, especially in visual surveillance settings. Given

the commonly encountered small object size in combination with low contrast settings, it
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(a) Sequence bolt. (b) Sequence torus.

(c) Sequence hand2. (d) Sequence torus.

Figure 3.6: Scale adaptation by leveraging connected components. For each sequence, we show
the cropped and morphologically opened likelihood maps L̃ (left) and the corresponding segmen-
tation result (right), where green blobs are assigned to the object and red blobs are discarded.

is almost infeasible to extract a robust segmentation using sophisticated approaches in an

adequate time frame. Thus, in [351] we proposed a more efficient heuristic segmentation

approach to handle object scale changes based on analyzing the connected components of

the thresholded likelihood map L̂.

To this end, we first leverage morphological opening on L̂ to remove small structures,

which mostly correspond to noise. More formally, we compute

L̃ =
(
L̂⊖ E

)
⊕ E, (3.39)

where⊖ and⊕ denote erosion and dilation, respectively, and E is a disk-shaped structuring

element with diameter min(wt−1
O , ht−1

O )/10. Then, we crop L̃ to the square region

R̂ =
(
ct⋆, λS max

(
wt−1
O ,ht−1

O

)
, λS max

(
wt−1
O ,ht−1

O

) )⊤
, (3.40)

where ct⋆ denotes the center of the current object hypothesis Ot
⋆. Within this crop of the

likelihood map L̃, we find connected components relying on an 8-connected neighborhood.

To reason about which connected component, i.e. blob, belongs to the object, we consider

the inclusion region

Rinc =
(
ct⋆, λincw

t−1
O , λinch

t−1
O

)⊤
, (3.41)
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which we also use to ensure a minimum hypothesis size after scale adaptation. Since we

expect the object scale change between two subsequent frames to be at most 20%, we

fix the scaling parameter λinc = 0.8 throughout all our experiments. Now, we can assign

each blob B to the object if at least half of its area lies within the inclusion region. More

formally, we compute

Occ =

⌈
Rinc ∪

{
B

∣∣∣∣∣
|B ∩Rinc|

|B|
≥

1

2

}⌋

BB

, (3.42)

where ⌈·⌋BB returns the smallest axis-aligned rectangle containing its argument, i.e. the

union of the inclusion region and foreground blobs. Exemplary results of this blob-based

object segmentation are illustrated in Figure 3.6. Now, we can adjust the scale to get the

final object hypothesis at time t as

Ot = λsOcc + (1− λs)O
t
⋆, (3.43)

where λs is a predefined update rate. Empirically, we observed that a fixed scale update

rate of λs = 0.2 consistently yielded the best results. Note that in contrast to recent

scale-adaptive approaches, such as [92, 189], our scale estimation scheme is not limited to

a fixed aspect ratio. As this scale adaptation technique uses connected components, we

denote the corresponding scale-adaptive distractor-aware tracker DAT+c.

3.3.4.2 Sum Reduction of Likelihood Maps

Although intuitive, identifying connected components is a non-trivial and computationally

demanding task. A significantly more efficient scale adaptation technique is to separate

the 2D segmentation problem into two 1D problems. To this end, we crop the thresholded

likelihood map L̂ to the enlarged surrounding region R̂ – recall Eq. (3.40) – and apply

sum reduction to get the horizontal likelihood profile

ςH(x) =
∑

y

L̂
(
(x, y)⊤

)
, (3.44)

which we normalize such that max
x

(
ςH(x)

)
= 1. Similarly, we compute the vertical likeli-

hood profile

ςV(y) =
∑

x

L̂
(
(x, y)⊤

)
, (3.45)

and normalize it as above. As can be seen in Figure 3.7, these likelihood profiles provide

a useful cue to reason about object scale changes.
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(a) Sequence bolt.
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(b) Sequence torus.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Pixel location x

S
u
m
-r
ed

u
ce
d

h
or
iz
on

ta
l
p
ro
fi
le
ς H

0.00.20.40.60.81.0

0

20

40

60

80

100

Sum-reduced vertical profile ςV

P
ix
el

lo
ca
ti
on

y

(c) Sequence hand2.
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(d) Sequence bicycle.

Figure 3.7: Sum reduced profiles ςH and ςV of the cropped and thresholded likelihood maps L̂ for
scale adaptation. Red parts of the sum reduced profiles indicate the background region according
to the ground truth annotation, whereas green parts indicate the object region. Magenta lines
highlight the computed local minima used to refine the object scale for our DAT+s variant. Note
that the local minima may also be located on plateaus of the profile, e.g. see ςV on bolt at y = 22.
Additionally, we can see slightly ambiguous ground truth annotations, e.g. consider ςV on hand2,
where the top of the middle finger is cropped from the ground truth (which defines the top edge
of the bounding box at y ≈ 26) but is included in our segmentation result (which locates the top
edge at y = 20).
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Given the center ct⋆ =
(
ctx, c

t
y

)⊤
of the object hypothesis Ot

⋆ after localization, we

compute the corner points of the hypothesis as

cleft = ctx −
wt−1
O

2
, cright = ctx +

wt−1
O

2
, (3.46)

and

ctop = cty −
ht−1
O

2
, cbottom = cty +

ht−1
O

2
, (3.47)

where wt−1
O and ht−1

O denote the width and height of Ot
⋆, respectively. Then, we search

for the local minima of the likelihood profiles in the vicinity of the corresponding corner

points. In particular, we seek (i) the local minimum closest to cleft and (ii) the local

minimum closest to cright of the horizontal profile ςH, as well as (iii) the local minimum

closest to ctop and (iv) the local minimum closest to cbottom of the vertical profile ςV. These

four extremal points then define the extent of the segmentation result Osr, as illustrated

by the magenta lines in Figure 3.7. Note that due to ambiguous ground truth annotations,

the sum reduced segmentation result may not always yield a perfect alignment with the

ground truth. However, this scale adaptation technique is highly generic, i.e. it can be

applied to all object classes without requiring any prior knowledge, and runs at a fraction

of the time required for more complex segmentation approaches.

To get the final, scaled object hypothesis at time t, we again employ the update schema

Ot = λsOsr + (1− λs)O
t
⋆, (3.48)

where the update rate is fixed as λs = 0.2, similar to DAT+c in Eq. (3.43). Since we rely

on sum reduction for scale adaptation, we denote this tracker variant DAT+s.

3.3.4.3 Instance-specific Bounding Box Regression

Complementary to the efficient likelihood-based segmentation techniques DAT+c and

DAT+s, we also experimented with bounding box regression, as it has successfully been

applied within several state-of-the-art tracking approaches recently, e.g. SANet [124], MD-

Net [319], TCNN [321] or SINT [413]. Bounding box regression is widely used in object

detection – it became popular with DPM [135] and has been extended to neural network-

based detectors with R-CNN [154]. In fact, most CNN-based tracking approaches use ex-

actly the same regression technique as proposed for R-CNN. More details on this bounding

box regression can be found in the technical report on R-CNN [155].

Due to the significant improvements for both object detection and CNN-based track-

ers, we also tested several regression-based variants of DAT. As our goal is to provide an

efficient and generic tracking approach, we extract the input features for the regression

from the object likelihood maps L and L̂, respectively. To keep the beneficial runtime

performance of our baseline DAT, we do not invoke an additional, computationally ex-

pensive CNN-based feature extraction, but only rely on the shape information captured
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within these likelihood maps. In particular, we experimented with raw likelihood scores,

gradients of the likelihood maps and sum reduced likelihood profiles extracted from both

the plain and thresholded likelihood maps, respectively.

In contrast to CNN-based features, these simpler features, however, are insufficient to

pre-train class-specific linear regressors on huge datasets. One major issue we observed

are the rather ambiguous ground truth annotations. For example, when asked to annotate

a face tracking sequence, some human operators prefer bounding boxes which include the

neck and hair of a person, whereas others only annotate boxes spanning from the forehead

to the chin. Nevertheless, we can learn instance-specific bounding box regressors using

only information provided during initialization.

To this end, we augment the provided initialization data by standard geometric trans-

formations, i.e. translation, rotation and scaling. We also tried two different regression

targets, namely (i) regression of refinement transformations as in R-CNN [154, 155],

which is also similar to policy learning approaches and recent action/decision networks,

e.g. [203, 474], and (ii) regression of the plain bounding box corners. Overall, we achieved

the best results by leveraging a regressor to predict the bounding box corners based on our

likelihood profiles, which we denote DAT+r throughout our evaluations. For this variant,

we follow the same methodology as in [154, 155], except that (i) our input features are

the concatenated likelihood profiles and (ii) our regression targets are the actual corners.

Similar to DAT+c and DAT+s, we employ the update schema as in Eq. (3.43) or (3.48)

to obtain the final, scaled object hypothesis. DAT+r works reasonably well for sequences

which exhibit high contrast between the object and its surroundings, which we will dis-

cuss in more detail within Chapter 5.1. However, both DAT+c and DAT+s consistently

outperform this regression-based variant. Additionally, the sum reduction-based DAT+s

offers the additional advantage of negligible runtime cost.

3.4 Summary

We presented a generic single object tracking approach based on very efficient color models.

By leveraging the color model to identify and suppress visually distracting regions in

advance, our tracker achieves a significant improvement w.r.t. the tracking robustness.

We can even handle rather noisy initializations by exploiting distinctive color features

captured in our object representation. Additionally, we proposed efficient scale estimation

schemes based on our object representation which allow us to obtain accurate tracking

results for arbitrary object classes. Our extensive evaluation in Chapter 5.1 will show both

the beneficial robustness and favorable efficiency of our distractor-aware tracker compared

to state-of-the-art approaches. Overall, the proposed approach allows for an efficient

implementation to enable online object tracking in real-time.



4
Occlusion Geodesics for Association-based Tracking

We demand rigidly defined areas of doubt and uncertainty!

— Douglas Noël Adams (The Hitchhiker’s Guide to the Galaxy)
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4.1 Motivation

This chapter investigates contextual cues to robustly handle fully occluded objects. In

contrast to the object appearance-based approach in Chapter 3, here we seek cues that

can be exploited whenever the object is not visible. To this end, we consider the task

of causal multiple object tracking (MOT) and particularly, focus on pedestrian tracking.

MOT is an ideal testbed to study occlusion-related problems, since occlusions are much

more frequent – due to the larger number of objects simultaneously captured from the

same viewpoint – than in single object tracking scenarios.

47
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Due to the rapid progress in object detection, e.g. Poselets [57], HOG [91], ACF [109],

DPM [135] or F-RCNN [362], recent research in object tracking has focused on the tracking-

by-detection principle. Thus, multiple object tracking becomes a data association problem

where detection responses need to be reliably linked to form target trajectories. However,

this is still a difficult and only partially solved problem – mostly because state-of-the-art

object detectors still often miss objects or are prone to false positive detections due to

dynamic backgrounds or challenging illumination conditions.

Several recent tracking algorithms address the association problem offline, i.e. by op-

timizing detection assignments over large batches of frames (temporal windows), e.g. via

K-shortest paths [39], Hungarian algorithm [187], and hypergraphs [193]. By exploiting

information from future time steps, these approaches overcome detection failures, such as

missed detections, over long occlusion periods. However, processing video sequences in

large frame batches (e.g. via dynamic programming [137]) or even optimizing over whole

sequences (e.g. via continuous energy minimization [308]) leads to a significant temporal

delay between object observation and reporting its location. Thus, such offline approaches

are not well suited for time-critical video analysis applications, where object locations

must be estimated in real-time, e.g. for autonomous vehicles or traffic safety systems.

Instead, such applications require online tracking methods which only consider obser-

vations up to the current frame and provide robust location estimates without significant

temporal delay. To model the uncertainty which arises from dealing with occluded ob-

jects and missed detections, such causal trackers often rely on probabilistic frameworks,

e.g. Sequential Monte Carlo (SMC) methods as in [60, 349]. However, online approaches

often tend to drift if objects are occluded for longer periods of time and may consequently

fail to reliably re-assign these missed objects due to simplified motion models.

We aim to overcome these limitations of existing online MOT approaches and reduce

re-assignment failures by leveraging contextual information, while achieving high quality

tracking performance competitive to offline approaches. A key observation to identify

suitable contextual information is that off-the-shelf object detectors primarily fail if the

objects are significantly occluded, whereas the detection recall and precision for isolated

individuals are sufficiently high to enable tracking with simple techniques. Thus, we

introduce a novel confidence measure to predict the location of missed objects, solely based

on geometric cues such as occlusion states, detector reliability, and motion prediction. By

introducing occlusion geodesics, i.e. shortest paths – from the location an object first was

lost up to its re-detection – w.r.t. these instance-specific confidence measures, we can

reliably re-assign detections of re-appearing objects to their corresponding trajectories,

e.g. the blue target in Figure 4.1. Additionally, inspired by the low-level tracklet generation

of offline approaches, such as [202, 247], we use a conservative association scheme which

links matching detections to trajectories of both isolated and visible objects, e.g. the red

and green targets in Figure 4.1. By combining these two association strategies, we can

introduce an efficient, causal MOT framework which is able to handle complex real-world

scenarios, especially for typical video surveillance tasks.
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Figure 4.1: Overview of our association-based MOT approach. From bottom-left: while detec-
tions are reliable and rather isolated, we rely on a conservative linking scheme to match detections
to trajectories. To overcome occlusions, we exploit a novel confidence measure (heatmap overlay,
top row) which indicates likely locations for a specific occluded object (here, the blue identity).
As soon as re-detection candidates are available, we leverage our knowledge about physically plau-
sible paths through previously occluded regions based on our confidence scores (rightmost frame,
denoted by the overlaid green path) and re-assign suitable detection hypotheses to the respective
trajectories.

This chapter is partly based on our publication on occlusion geodesics for online multi-

object tracking [350]. In the following, we briefly review related approaches and summarize

the basic geometric preliminaries in Section 4.2. Next, we introduce our online MOT

approach which leverages geometric constraints to robustly handle long-term occlusions

in Section 4.3. Finally, we will summarize the key aspects of our approach in Section 4.4.

4.2 Related Work & Preliminaries

In the following, we first summarize approaches related to multi-object tracking (Sec-

tion 4.2.1) and object detection (Section 4.2.2). As we exploit the scene geometry for our

tracking approach, we also recapitulate the image formation process (Section 4.2.3).
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4.2.1 Multiple Object Tracking

The most crucial component in tracking-by-detection approaches for MOT is data as-

sociation, i.e. addressing the question, how to correctly assign potentially noisy detec-

tions to object trajectories. Traditionally, this problem has primarily been addressed by

online methods incorporating Joint Probabilistic Data Association Filters [139], Multi-

Hypothesis Tracking [360] or sampling-based approaches – such as Markov chain Monte

Carlo methods, e.g. [36, 334], and sequential Monte Carlo methods (i.e. particle filters),

e.g. [335, 425]. Such methods maintain multiple hypotheses until enough observations are

available to resolve ambiguities. A major drawback of such methods, however, is that

they suffer from exponentially increasing complexity due to the combinatorial hypotheses

space.

Alternative tracking approaches rely on directly linking available detections to trajec-

tories without keeping multiple hypotheses, e.g. [60, 66, 447]. For example, Breitenstein

et al. [60] use a greedy association scheme in combination with particle filtering based on a

constant velocity model. They leverage continuous confidence density maps obtained from

the detector to generate object likelihood maps and rely on online learned instance-specific

classifiers to resolve occlusion scenarios. In contrast to this work, we consider the object

detector to be a black box and instead focus on the robust re-assignment of detections

after occlusion scenarios. Our approach is motivated by the observation that object detec-

tors typically re-detect previously occluded objects soon after they move away from the

occluder. Thus, we allow missed targets to move along physically plausible paths, which

are defined by combining motion prediction, our belief in the detector, and geometric

knowledge of occluded regions.

In contrast to such causal tracking approaches, a major line of research focuses on

optimizing trajectories over whole sequences, e.g. [307, 483], or large batches of frames,

e.g. [137, 247], to find globally consistent trajectory assignments. Such offline approaches

often discretize the space of target locations to simplify the underlying optimization prob-

lem, e.g. [32, 39, 193]. For example, Berclaz et al. [39] propose a graph flow model on a 2D

discretization of the ground plane, where detection results are efficiently linked to trajec-

tories using the K-shortest paths algorithm. However, as their method operates offline on

a graph built over large frame batches, it cannot handle arbitrarily dense discretizations

due to memory limitations. Therefore, other approaches estimate the final object loca-

tions by leveraging continuous fitting problems to obtain parametric trajectories which

lead to smoother results, e.g. [12, 13, 308]. Several offline approaches, e.g. [187, 202, 247],

additionally follow a hierarchical association schema, where in a first low-level step, sub-

sequent detections are linked together to form so-called tracklets, i.e. short but reliable

trajectories. Then, the key issue becomes to correctly link such tracklets into longer object

trajectories, e.g. by combining motion and appearance models [192] or by learning tracklet

associations from training data [273].
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A major drawback of both offline and batch-processing approaches, however, is that

they require detections for future frames in order to obtain robustly linked trajectories.

Thus, such approaches are not suitable for time-critical real-world applications, such as

visual surveillance or robotics, which we aim for with our causal MOT approach. In

particular, we want to show that efficient plausibility reasoning can result in state-of-the-

art results, without requiring complex modeling of group dynamics or social interactions,

such as [4, 112, 341, 377, 457].

4.2.2 Object Detection

The performance of tracking-by-detection approaches substantially relies on the object de-

tector employed to generate the location hypotheses. Generic object detection approaches

traditionally either use (i) holistic, e.g. [91, 374, 375, 443], (ii) part-based, e.g. [135] or

(iii) bag-of-feature models, e.g. [418]. The majority of holistic detectors relies on linear

models, e.g. [91], or ensembles of trees, e.g. [374, 375, 443, 486], focusing on highly ac-

curate detection of a single object class, such as faces, pedestrians or cars, suitable for

time-critical applications. Extensions for multi-class detection usually train several sepa-

rate holistic models, e.g. [300]. Part-based approaches, on the other hand, divide a model

into several discriminative sub-parts, e.g. [135], for improved handling of (partial) occlu-

sions and non-rigid deformations. To detect multiple object classes or handle viewpoint

changes, several part-based models are combined using mixture models, e.g. [135, 391].

Bag-of-feature approaches extract local feature descriptors inside object regions and store

these within dictionaries, e.g. [418]. A supervised learning framework on top of such a

dictionary encoding then classifies object proposals as either object or background. These

approaches can handle multi-class detection and typically share a common codebook across

several classes.

More recent object detection approaches leverage convolutional neural networks

(CNNs) which are pre-trained on large object classification datasets, e.g. [244]. Such

methods are either applied fully-convolutional, e.g. [380], or use region proposals,

e.g. [418, 498], to extract potential object regions from an image and classify them with

a fine-tuned CNN, e.g. [152]. These approaches have been heavily extended by either

improving speed [151] or computing region proposals using a CNN [362].

In contrast to such generic object detection tasks, pedestrian detection received no-

tably less attention from the vision community recently. Even though there are several

deep learning-based approaches specialized on pedestrian detection, such as [14, 68, 117],

considering typical surveillance scenarios, these perform mostly on par with traditional

pedestrian detectors. This can be attributed to several facts, namely (i) visual surveil-

lance scenarios exhibit rather small scale pedestrians due to the large field of view, whereas

the object of interest is typically captured rather prominently for standard detection and

classification tasks, e.g. within ImageNet [367] or PASCAL VOC [122]; (ii) surveillance

footage often suffers from low resolution and image quality; and additionally, (iii) there
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is a lack of suitable training datasets specialized on visual surveillance which would be

required to leverage the capabilities of deep learning-based approaches.

More traditional pedestrian detection approaches, however, were tailored for such en-

vironments. They typically rely on intensity features, e.g. Haar features [426, 427], im-

age gradients, e.g. histograms of oriented gradients (HOG) [91], or combinations thereof,

e.g. Aggregated Channel Features (ACF) [109]. Highly accurate pedestrian detectors

can then be realized by combining these features with boosted classifiers, e.g. [33, 105–

107, 322, 365, 399, 401], or random forests, e.g. [142, 374, 375]. For a more detailed review

of pedestrian detection approaches, we refer the interested reader to [34, 108, 487].

Our tracking-by-detection approach imposes no assumptions on the used detector and

thus, we can easily replace this black box by any off-the-shelf detector. Therefore, we

will conduct a detailed performance evaluation in Chapter 5.2 to demonstrate the effect

of different state-of-the-art pedestrian detectors on our MOT approach.

4.2.3 Camera Geometry

As we exploit the scene geometry for occlusion reasoning, we will briefly recapitulate

the image formation process and camera model used throughout our MOT approach. In

particular, we rely on the finite projective camera model, i.e. the pinhole camera, which

assumes that no lenses are used and thus, the camera aperture is a single point (the

pinhole). This model follows the principle of collinearity, i.e. each world point is projected

onto the image plane by a straight line through the pinhole, i.e. the projection center.

This projection can conveniently be described by the matrix

P = K [R | −RC ] , (4.1)

where

K =



fx γ px
0 fy py
0 0 1


 (4.2)

encodes the intrinsic camera parameters, i.e. the focal length f = (fx, fy)
⊤ in pixels, the

principal point offset p = (px, py)
⊤ in pixels, and the skew γ in case of nonsquare sensor

pixels. The position and orientation of the pinhole camera w.r.t. a world coordinate

system is specified by the translation vector C = (cx, cy, cz)
⊤ and the rotation matrix

R ∈ SO(3). Leveraging homogeneous coordinates [53, 179] allows to transform a 3D world

point Xworld = (x, y, z)⊤ to the camera coordinate system via the matrix multiplication

Xcamera =



xcam
ycam
zcam


 =

[
R | −RC

](Xworld

1

)
. (4.3)
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Then, the projected point ximage = (x, y)⊤ on the image plane can be obtained by



x

y

1


 = K

(
xnorm

1

)
, (4.4)

where

xnorm =

(
x̂

ŷ

)
=

(
xcam/zcam
ycam/zcam

)
(4.5)

is the point coordinate after the normalized pinhole projection.

In practice, however, this linear projection model is not an accurate representation of

the actual camera since standard lenses usually suffer from distortion, either radial distor-

tion – which usually increases with smaller focal lengths – or tangential distortion – which

is mostly due to imperfect lens design or manufacturing, resulting in not strictly collinear

centers of the lens elements [441]. To allow for accurate camera-based measurements, we

use an extended projection model based on [62, 183], which mitigates the distortion effects

to obtain the corrected image coordinate ximage = (u, v)⊤ as



u

v

1


 = K

(
xcorr

1

)
, (4.6)

where

xcorr =

(
x̂+ x̂

(
κ1r

2 + κ2r
4
)
+ 2ρ1x̂ŷ + ρ2

(
r2 + 2x̂2

)

ŷ +
︸ ︷︷ ︸
Radial distortion

ŷ
(
κ1r

2 + κ2r
4
)
+
︸ ︷︷ ︸

Tangential distortion

ρ1
(
r2 + 2ŷ2

)
+ 2ρ2x̂ŷ

)
(4.7)

is the corrected normalized point coordinate, i.e. after including the lens distortion, and

r2 = x̂2 + ŷ2. (4.8)

This distortion model relies on the radial distortion coefficients κ1,κ2 and the tangential

distortion coefficients ρ1, ρ2. In practice, we rectify the camera images in a pre-processing

step and use the undistorted images as inputs. This allows us to use the simple matrix

notation 

x

y

w


 = P

(
Xworld

1

)
, (4.9)

to get the projected image point as

ximage =

(
x/w
y/w

)
. (4.10)
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4.3 Tracking by Occlusion Geodesics

We propose to solve the data association problem for causal multi-object tracking-by-

detection by two complementary steps. First, we compute reliable associations using a

conservative linking strategy, as discussed in Section 4.3.1. This step assigns detections

to isolated and visible objects, i.e. handles unambiguous associations, such as the red and

green objects in Figure 4.2. Second, we introduce instance-specific cost functions which

model physically plausible paths through occluded regions to handle missed detections, as

detailed in Section 4.3.2. Using occlusion geodesics – i.e. paths with minimal instance-

specific costs – future detections can be reliably re-assigned to previously missed objects,

such as the blue target in Figure 4.2.

The proposed occlusion geodesics build on the observation that object detectors fail

primarily whenever objects are severely occluded, either dynamically by other objects

or by static scene occluders, such as benches, statues or trees. Thus, we assume that

missed detections are more likely to be caused by occluders rather than detector failures.

Then, in order to re-assign a candidate detection to a previously lost object there must

be a physically plausible path through occluded regions, as illustrated in Figure 4.2. To

properly weight such a path, we propose a novel confidence measure which combines

geometric knowledge of occlusion regions, target motion prediction, and object detector

belief, as detailed in Section 4.3.3.

Finally, any causal MOT approach requires trajectory management capabilities to

initialize and terminate target trajectories. This allows to automatically handle an un-

known number of simultaneously visible targets and prevents reporting invalid trajectories,

e.g. caused by false positive detections. We will discuss our trajectory management in Sec-

tion 4.3.4.

4.3.1 Conservative Data Association

To reliably track multiple objects within a typical visual surveillance scenario, we leverage

scene geometry. Therefore, similar to recent MOT approaches, such as [12, 193], we

perform tracking in real-world ground plane coordinates. To this end, let

D(t) =
{
D

(t)
i

}N
(t)
D

i=1
, with D

(t)
i =

(
c
(t)
i , w

(t)
i , h

(t)
i

)⊤
, (4.11)

denote the set of N
(t)
D object detections at time t. For notational simplicity, we assume

that the detections are axis-aligned bounding boxes, represented by the tuples D
(t)
i , where

c
(t)
i denotes the center in image coordinates and w

(t)
i ,h

(t)
i denote the width and height,

respectively. Note that we slightly change the notation and denote temporal indices by

parenthesized superscripts to avoid confusion with exponents in the following. Then, we

project the bottom center point of a detection onto the 2D ground plane – i.e. the plane

at world coordinate z = 0 – to obtain its representative position x
(t)
i w.r.t. the world
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(a) After the first missed detection. (b) Halfway through the occlusion.

(c) Reassignment after occlusion. The green arrow denotes a path with minimal costs (i.e. maxi-
mum likelihood) w.r.t. our occlusion geodesics.

Figure 4.2: Evolution of the object likelihood scores on the ground plane (a),(b) for the occluded
person (denoted by the dashed lines; blue identity in schematic camera view). The object likelihood
maps are visualized as ground plane overlay where warm colors indicate a high likelihood score.
By exploiting contextual knowledge about physically plausible movements and the spatio-temporal
evolution of the occluded regions, we can assign the correct detection in (c) as we search for a
shortest path w.r.t. the object likelihood scores. Solely relying on Euclidean distances instead, the
brown detection would have been chosen, as it is closer to the last observed object position. Note
that our approach explicitly assigns higher likelihood scores within occluded regions.



56 Chapter 4. Occlusion Geodesics for Association-based Tracking

coordinate system as

x
(t)
i =

(
xi/wi

yi/wi

)
, with



xi
yi
wi


 = H−1



c
(t)
i +

(
0

h
(t)
i /2

)

1


 , (4.12)

where H is the homography matrix which maps ground plane points onto the image plane.

Assuming a calibrated camera – which can be easily done for typical visual surveillance

scenarios, especially when recorded from a static view point – this homography can be

extracted from the camera’s projection matrix P as

H = [p1 p2 p4] , (4.13)

where pi denotes the i-th column of P [179].

Then, we assign detections to isolated and visible objects based on spatial proximity.

More formally, we represent the tracked, i.e. known, objects at time t− 1 by the set

O(t−1) =
{
T

(t−1)
i

}N
(t−1)
O

i=1
, (4.14)

where each object is represented by its previously observed trajectory

T
(t−1)
i =

{
xu
i

}t−1

u=t
(1)
i

, (4.15)

with t
(1)
i denoting the frame at which i-th trajectory was initialized. Then, we define the

cost ψ
(t)
i,j of assigning detection D

(t)
j to the i-th object as the Euclidean distance to its

previously observed ground plane location, i.e. x
(t−1)
i , as

ψ
(t)
i,j =

{
‖x

(t)
j − x

(t−1)
i ‖2 if ‖x

(t)
j − x

(t−1)
i ‖2 < τc

∞ otherwise,
(4.16)

where τc is a conservative distance threshold, and ψ
(t)
ij = ∞ denotes impossible assign-

ments. To obtain the optimal assignment of reliable matches at time t, we use the Hungar-

ian algorithm [317] for computing the binary assignment matrix A∗ =
[
a
(t)
i,j

]
, a

(t)
i,j ∈ {0, 1},

which minimizes the total association cost as

A∗ = arg
A

min

N
(t−1)
O∑

i=1

N
(t)
D∑

j=1

ψ
(t)
i,j a

(t)
i,j , (4.17)

s.t.
∑N

(t−1)
O

i=1
a
(t)
i,j = 1, ∀j ∈

{
1, . . . ,N

(t)
D

}
,

∑N
(t)
D

j=1
a
(t)
i,j = 1, ∀i ∈

{
1, . . . ,N

(t−1)
O

}
.
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Since the original Hungarian algorithm assumes that N
(t)
D = N

(t−1)
O , we use an extended

version [63] which can handle rectangular assignment matrices.

Any objects which could not be assigned by this conservative association step are

considered to be missed by the detector. Such false negative detections are either caused

by static and dynamic occluders or detection failures. Thus, future detections must be

re-assigned to the corresponding trajectories whenever missed objects are re-detected,

e.g. after they exit occluded regions. In the following, we introduce occlusion geodesics to

solve this association problem efficiently.

4.3.2 Occlusion Geodesics for Data Association

To overcome missed detections, we introduce a novel confidence measure predicting the

location of a missed object w.r.t. occlusion information, detector reliability, and motion

prediction. This allows for computing weighted, physically plausible paths from the lo-

cation a target was first missed up to its re-detection. Then, we leverage our confidence

measure to define a path’s cost and use this information to resolve an occluded trajectory,

whenever a physically plausible, shortest path connects a candidate detection with the

previously missed object. Since we compute a path’s cost by a temporally evolving cost

function – due to dynamically changing inter-object occlusions – we refer to the shortest

path as occlusion geodesic.

More formally, let δi denote the occlusion length of the i-th object, i.e. for how long

the object has been missed by the detector. Moreover, let c
(δi)
o,i be the occlusion-based

confidence which accounts for occluded regions and potential detection failures, c
(δi)
p,i the

plausible motion confidence which constrains physically feasible object movement, and c
(δi)
d,i

the directional motion confidence based on the object’s inertia model. Then, we define

ϕ
(δi)
i (x) = c

(δi)
o,i (x) c

(δi)
p,i (x) c

(δi)
d,i (x) (4.18)

to indicate the likelihood that the i-th object is present at the ground plane location x,

after being missed by the detector for δi frames. The corresponding confidence terms will

be defined in the following section.

Note that the object presence likelihood changes over time, due to changing inter-

object occlusions – e.g. whenever occluders move – and the motion uncertainty of the

occluded object. Thus, we have to explicitly address the spatio-temporal evolution of

these likelihood scores in order to reliably re-assign detections to a previously missed

object. In particular, we assume that an occluded object moves with an average velocity

vavg between subsequent frames. Then, we can weight physically plausible paths by the

recursive cost function

Ψ
(δi)
i (x) = 1− ϕ

(δi)
i (x) + inf

z
Ψ

(δi−1)
i (x+ z) . (4.19)
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Accumulating the infima within the spatial neighborhood x + z, ‖z‖ ≤ vavg over time

ensures that Ψ
(δi)
i (x) always contains the minimum cost of all feasible paths which lead

from the i-th object’s last known position up to location x. The initial re-assignment cost

for the recursive computation is set to Ψ
(0)
i = 0.

An alternative formulation would be to create a 3D cost volume, where at each time

step δi the corresponding cost for all points on the ground plane would be stored as a

separate slice of the volume – thus forming one temporal, i.e. δi, and two spatial, i.e. x,

dimensions. Then, we could search for the shortest path through the cost volume for every

re-assignment candidate. This solution, however, would be computationally inefficient. On

the one hand, it requires storing a separate 3D cost volume for each occluded object, and on

the other hand, we do not need the exact shortest path for re-assignment. Instead, we only

need to decide, whether a re-detection candidate is (physically) feasible and has minimal

cost w.r.t. to our object likelihoods. Thus, we accumulate the minimum re-assignment

cost recursively as in Eq. (4.19), since (i) this requires storing only an up-to-date 2D cost

map Ψ
(δi)
i per occluded object and (ii) only takes a single lookup into this map to obtain

the (minimum) cost of the best path leading to the corresponding location.

Similar to the conservative association step, we use the Hungarian algorithm – recall

Eq. (4.17) – to obtain the optimal assignment between previously missed objects and

candidate re-detections at time t. In particular, given the ground plane location x
(t)
j

which corresponds to the re-detection candidate D
(t)
j , we set the assignment costs to

ψ
(t)
i,j = Ψ

(δi)
i

(
x
(t)
j

)
.

4.3.3 Contextual Cues for Confidence Scores

In the following, we define the confidence terms used to compute the object likelihood

measure ϕ
(δi)
i from Eq. (4.18). To this end, we will combine occlusion knowledge, detector

belief and object motion reasoning.

Occlusion-based Confidence. State-of-the-art object detectors, e.g. [109, 135, 362],

typically yield highly accurate detection results, even for partially occluded objects. Thus,

we expect the object detector to primarily miss an object only if (i) it is mostly occluded

or (ii) environmental conditions cause detection failures,e.g. due to illumination changes.

Therefore, we define the occlusion-based confidence term c
(δi)
o,i as

c
(δi)
o,i (x) =

{
1 if x ∈ Pstat ∪ P

(t)
dyn

1− βδi otherwise,
(4.20)

where Pstat and P
(t)
dyn denote the occluded regions caused by static occluders and dynamic

occluders at time t, respectively. Our trust in the object detector is reflected by the
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Figure 4.3: Exemplary scenario with corresponding occluded regions on the ground plane. De-
pending on the camera view point, the projected occlusions can take up large portions of the
tracking area. The gray shadow denotes a static occlusion region – i.e. Pstat, caused by the tree in
the foreground – whereas inter-object occlusions may change over time and thus, are considered

dynamic occlusion regions – i.e. P
(t)
dyn, indicated by the red and blue shadows.

reliability factor β ∈ [0, 1], which can be set close to one in the (theoretical) case that we

expect the detector to make almost no failure at all.

Depending on the camera geometry, large parts of the tracking area may be occluded,

as illustrated in Figure 4.3. Occlusion regions Pstat caused by static obstacles or scene

structures can easily be provided as a predefined mask since they don’t change over time.

To obtain the dynamic occlusion regions P
(t)
dyn, on the other hand, we exploit the geometric

knowledge of the currently visible objects. In standard pedestrian surveillance settings,

we can rely on the given person detections as the vast majority of objects in such scenarios

are persons. For more generic applications with several object classes, we would require

multi-class detectors trained for all relevant classes, e.g. people and cars. A more viable so-

lution, however, is to either leverage semantic segmentation approaches to estimate which

objects are currently visible, or to use motion detection techniques, such as background

subtraction within static camera setups. Then, we can exploit the bounding rectangles of

either segmented or moving object regions as potential (dynamic) occluders. Given such

detection hypotheses of currently visible objects, we then project the corner points of each

detection D
(t)
i onto the ground plane – recall Eq. (4.12) – and consider the corresponding

polygon to be occluded, i.e. objects within these regions will most likely be missed by the

detector. Thus, paths through occluded regions should be favored when deciding about

which candidate detection should be used for re-assignment.
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Plausible Motion Confidence. In order to restrict the re-assignment candidates to

detections which can be reached via physically plausible motion of the target, we define

the plausibility term

c
(δi)
p,i (x) = exp


−

‖x− x̂i‖
2
2

2σ2p δ
2
i max

(
‖d̂i‖2, vavg

)2


, (4.21)

where σ2p denotes the motion variance, x̂i is the last known position of the i-th object

at δi = 0, and d̂i is its previously observed movement direction. To estimate d̂i, we

consider the previously observed target motion between subsequent frames and compute

the interquartile mean to robustly handle outliers, e.g. which may arise due to inaccurate

localization by the detector or camera calibration errors.

We also use this term to enforce the hard constraint that the distance between the last

known target position x̂i and the ground plane location xmust lie within physically feasible

limits. To this end, we employ the predefined cut-off threshold τp and set c
(δi)
p,i = −∞,

if c
(δi)
p,i < τp. Out of implementation considerations, we normalize the distances by the

maximum feasible object movement at every occluded time step δi – thus, we threshold

the plausible motion confidence c
(δi)
p,i directly and can employ a fixed cut-off threshold.

Alternatively, we could apply a threshold on the distance ‖x− x̂i‖2, but this would require

a temporally adaptive threshold.

Directional Motion Confidence. Finally, we also consider the object’s inertia and

penalize drastic changes of the object movement direction during occlusions. To this end,

we exploit the available previous observations of its trajectory – in particular, its motion

direction d̂i – and define

c
(δi)
d,i (x) = exp


−

(〈
d̂i,dj

〉
− ‖d̂i‖‖dj‖

)2

2σ2d ‖d̂i‖2 ‖dj‖2


, (4.22)

where dj = x− x̂i is the vector from the last known object position x̂i to the ground plane

location x. The directional variance σ2d can be used to penalize significant changes of

the motion direction. Choosing a small directional variance can be beneficial in scenarios

where the object direction can easily be predicted or constrained by the scene layout,

e.g. when observing pedestrians on a narrow sidewalk.

Exemplary Spatio-temporal Confidence Evolution. Combining these confidence

measures as in Eq. (4.18) yields a time-dependent object likelihood measure. By recur-

sively accumulating these confidence scores as in Eq. (4.19), we obtain a spatio-temporally

evolving cost function, which we rely on to re-assign detections to previously occluded ob-

jects. This is illustrated for a real-world sequence in Figure 4.4. Here, we visualize the
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Figure 4.4: Re-assignment example on PETS’09 S2L1 [136] for the occluded woman, indicated
by the arrow (left column). From top to bottom, each row corresponds to a specific time step
and shows: (left) The camera view with superimposed detections – magenta, cyan, blue and green
boxes show the corresponding object identity, whereas red boxes illustrate spurious, unassigned
detections; (middle) Object likelihood maps and camera frustum (white border) overlaid on a
schematic ground plane; (right) Close-ups of the likelihood maps for the occluded woman with
overlaid re-assignment path (bottom row). The last ground plane overlay (bottom row, middle)
also shows the object likelihood map for another occlusion (cyan identity) – note, however, that
this is only for visualization as we compute separate object likelihood maps for each object to avoid
identity switches in more crowded scenarios.
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inverted cost function, i.e. 1 − Ψ
(δi)
i , and thus, regions with warm colors indicate high

object likelihood scores. Note how these likelihood scores indicate that it is more likely for

the missed object to move within occluded regions – i.e. regions where we know that the

detector cannot see the object – and thus, such regions have significantly higher likelihood

scores and consequently, result in paths with low re-assignment costs.

4.3.4 Trajectory Management

Despite robust associations of detections to objects, trajectory management is another

crucial component in any MOT framework. This component needs to deal with track ini-

tialization, termination, as well as filtering out invalid tracks, e.g. caused by false positive

detections. For these tasks, offline trackers have a clear advantage over causal approaches.

In particular, by optimizing over all detection-trajectory assignments within a batch of

frames, both new and exiting objects can be identified more easily. Additionally, spurious

false positive detections can also be filtered more effectively considering the observations

over a larger temporal window. Causal trackers on the other hand, must decide almost

immediately whether to report detections as reliable trajectories or not.

Similar to several recent MOT approaches, such as [60, 137, 193], we employ a simplistic

trajectory management strategy by explicitly defining entrance and exit regions near the

image borders. Whenever we observe a stable trajectory within the entrance regions –

i.e. subsequent close-by detections with sufficient detector confidence over a time span of

approximately 1/2 second – we initialize a new trajectory and start reporting it. Similarly,

we terminate existing trajectories if the corresponding objects move outside the field of

view or get lost within the exit region.

4.4 Summary

We presented a causal multiple object tracking-by-detection approach which relies on oc-

clusion geodesics – i.e. shortest paths w.r.t. novel object likelihood confidence scores – to

resolve ambiguous tracking scenarios. To account for detection failures, we exploit geomet-

ric context, particularly the spatio-temporal evolution of occlusion regions, target motion

prediction, and our trust in the used object detector. Using these cues to model physi-

cally plausible paths of missed objects, we can reliably re-assign detections to re-appearing

objects. In combination with a conservative association strategy for visible objects, mul-

tiple objects can robustly be tracked, even in crowded scenarios. Note that in contrast to

state-of-the-art approaches, such as [60, 187, 476], which rely on appearance information

to resolve occluded trajectories, we only exploit the available geometric information to

highlight the favorable performance and simplicity of the proposed occlusion geodesics. In

Chapter 5.2, we will present extensive evaluations on several challenging real-world visual

surveillance scenarios to demonstrate the benefits of our MOT approach, compared to

both causal and offline state-of-the-art trackers.



5
Empirical Evidence

Now these points of data make a beautiful line.

— GLaDOS (Portal)
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5.1 Distractor-Awareness to the Test

We now investigate the performance of our appearance-based, distractor-aware visual

tracking approach. In particular, we focus on monocular single-target tracking scenar-

ios. We will briefly review the relevant datasets and evaluation protocols in Sections 5.1.1

and 5.1.2, respectively. We then perform a parameter ablation study in Section 5.1.3 and

compare our approach against the state-of-the-art on the Visual Object Tracking (VOT)

benchmarks in Section 5.1.4 and the Online Tracking Benchmark (OTB) in Section 5.1.5.

Finally, we provide runtime and implementation details in Section 5.1.6 and conclude the

single object tracking evaluation in Section 5.1.7.

5.1.1 Datasets

Up until a few years ago, performance of tracking approaches has usually been demon-

strated only on a handful of selected video sequences, e.g. refer to the evaluations of

state-of-the-art approaches published at major conferences, such as MIL [17], PaFiSS [30],

MOSSE [55], HoughTrack [156], Struck [176], CSK [188], TLD [216] or IVT [364]. This

practice, however, made it prohibitively difficult to reason about the generalization capa-

bilities of a tracker or its performance on slightly different scenarios. To overcome this lack

of standardized datasets and evaluation protocols, several initiatives aimed at providing

diverse datasets which cover realistic and challenging test sequences, e.g. the Amsterdam

Library of Ordinary Videos (ALOV++) for tracking [386], the benchmark for isolated

Apparent Motion Patterns (AMP) [475], the Need for Speed (NfS) [146] benchmark, the

NUS People and Rigid Objects (NUS-PRO) dataset [265], the Online Tracking Bench-

marks (OTB) [448, 449], the Princeton Tracking Benchmark (PTB) [392], the Temple

Color (TColor) [274] dataset, the Visual Object Tracking (VOT) challenges [238–243] and

others. Out of these publicly available datasets, we select two widely used benchmarks for

our evaluations, namely VOT and OTB.

The VOT benchmarks provide a standardized evaluation framework with carefully se-

lected sequences covering major tracking challenges, such as severe illumination changes,

object deformations and appearance changes, abrupt motion changes, significant scale

variations, camera motion and occlusions. Considering the number of submitted tracking

approaches, the VOT challenges are the largest single object tracking benchmarks to date.

The sequences contained in the VOT datasets have been collected from a large video pool,

covering recent tracking evaluations, e.g. ALOV++ [386] and OTB-50 [448], as well as se-

quences published alongside major approaches, including FragTrack [1], HoughTrack [156],

ABHMC [248, 251], VTD [249], and IVT [364]. In particular, the VOT committee pro-

posed a sequence selection methodology to compile datasets which cover various real-life

visual phenomena while keeping the number of sequences reasonably low. There are de-

tailed per-frame labels of different visual attributes for each sequence which allows a less

biased performance analysis. Additionally, the evaluation protocol explicitly addresses the
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Table 5.1: Overview of the sequences and experiments provided by each benchmark. For each
dataset, we list the number of videos, total number of frames, minimum and maximum length of
its videos as well as the mean length and standard deviation. We also report whether a benchmark
experiment detects tracking failures and re-initializes the tracker (Supervised) or only invokes the
tracker once without resetting after drifting (Unsupervised), and if an experiment allows to initialize
the tracker with perturbed annotations (Perturbed). VOT’15 and VOT’16 share the same set of
sequences (with refined annotations for VOT’16). All OTB-50 sequences are also contained in
OTB-100. Note that OTB-50 has 50 tracking sequences but only 49 distinct videos, as one video
has two annotated targets. Similarly, OTB-100 has 100 tracking sequences with 98 distinct videos.
These videos, however, are only considered once to obtain the frame statistic. Similarly, we only
count the number of annotated frames in OTB, in contrast to the statistic provided by [449].

Benchmark
Num. Number of Frames Experiments
Videos Total Min Mean Max Sup. Unsup. Pert.

VOT’13 [238] 16 5681 172 355± 158 770 X X

VOT’14 [239] 25 10213 164 409± 248 1210 X X

VOT’15 [240] 60 21455 41 358± 266 1500 X

VOT’16 [241] 60 21455 41 358± 266 1500 X X

OTB-50 [448] 49 26499 71 541± 433 1918 X X

OTB-100 [449] 98 58260 71 595± 603 3872 X X

statistical significance of the results and allows to reason about the equivalence of track-

ers. Trackers are run multiple times on each sequence to obtain a better statistic on their

performance and most VOT experiments are supervised, i.e. the evaluation framework

detects tracking failures and re-initializes the tracker accordingly. This supervision allows

minimum-variance and unbiased estimates of its performance in contrast to unsupervised

experiments, where the tracker is not re-initialized after drifting away from the target, as

shown by Kristan et al. [242]. The VOT challenges are organized annually and constantly

refine the evaluation framework as well as the benchmark dataset to contain challenging

and still unsolved sequences.

Complementary, we also evaluate on the OTBs as they contain additional sequences

published at major literature in recent years. In contrast to VOT, these benchmarks fo-

cus on unsupervised evaluation, i.e. a tracker is initialized only once per sequence. Thus,

trackers which can detect failures – for example, losing the target due to occlusions or

whenever the target moves outside the field-of-view – and recover, i.e. re-detect the target

afterwards, achieve notably better performance scores. The OTBs provide per-sequence

attributes to identify challenging test videos, e.g. caused by illumination variations, oc-

clusions or non-rigid deformation.

Table 5.1 provides a general overview of the benchmarks and their sequences. Fig-

ure 5.1 illustrates the sequence characteristics more detailed. As shown in the box plots,

more recent benchmark versions introduce significantly more challenging sequences which

exhibit larger object and camera motion, larger and faster scale changes and more diverse

object sizes. Overall, most tracking scenes capture objects at a scale that its bounding box
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diagonal is approximately 100 pixels long. Assuming a square annotation for simplicity,

this corresponds to an average object size of 70 × 70 pixels. The change plots in Fig-

ure 5.1 (b)–(d) allow to identify datasets with very challenging sequences. In particular,

sudden and significant scale or motion changes will often cause immediate (or at least

subsequent) tracking failures – independent from the tracker’s underlying feature repre-

sentation – as many trackers assume temporal consistency w.r.t. object or camera motion.

Nevertheless, such an assumption is valid for the majority of the frames contained in all

datasets, as indicated by the shown interquartile ranges.

Note that VOT’15 and VOT’16 contain the same sequences. Thus, we skip evaluations

on VOT’15 and instead report our results on VOT’16, which provides refined ground

truth annotations. Similarly, we will skip evaluations on OTB-50 since its sequences are a

subset of the larger OTB-100 sequence pool. Exemplary frames of all datasets are shown

in Figure 5.2 along with illustrative tracking results. For more details about the datasets

we refer the interested reader to the respective publications.

5.1.2 Evaluation Metrics and Protocols

Evaluation metrics analyze how well a tracker’s estimated object trajectory TT agrees with

the annotated ground truth trajectory TG, where we define the object state description

throughout a video sequence of length N as

TT =
{
Ot

T

}N
t=1

, Ot
T =

(
xt
T, w

t
T, h

t
T

)⊤
, (5.1)

and

TG =
{
Ot

G

}N
t=1

, Ot
G =

(
xt
G, w

t
G, h

t
G

)⊤
. (5.2)

For notational simplicity, we represent the object state at frame t by the tuple Ot
T and

Ot
G, respectively, i.e. axis-aligned bounding boxes centered at location xt

Ω, Ω ∈ {T,G},

with width wt
Ω and height htΩ. Note however, that these metrics can be easily extended

to more complex or more general object state representations.

Due to the previous lack of standardized and widely accepted benchmark datasets,

several performance metrics have been established to analyze tracking approaches over

the years. The most commonly used and relevant metrics are:

• Center distance error – one of the simplest and widely used performance measures,

e.g. [1, 18, 249, 364, 371, 429, 448, 463]. This metric reports the per-frame distance

between the estimated object center and the ground truth center as

∆ (TT, TG) =
{
δt
}N
t=1

, where δt =
∥∥xt

T − xt
G

∥∥
2
. (5.3)

This metric requires the least annotation effort, i.e. only the object center must be

annotated per frame, but is also very sensitive to subjective annotation and ignores
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(b) Frame-to-frame scale change.
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(c) Frame-to-frame object motion.
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(d) Frame-to-frame ground truth overlap.

Figure 5.1: Dataset characteristics showing the distribution of (a) object sizes, (b) relative scale
changes between subsequent frames, (c) object motion between subsequent frames and (d) overlap
of ground truth annotations between subsequent frames. Each box plot shows the median, first and
third quartiles as well as the minimum and maximum data values. For this analysis, we removed
invalid ground truth annotations, e.g. at sequence car1 of VOT’16 or Board of OTB-50 and OTB-
100. For visualization purposes, interquartile ranges in (b) are omitted if they are too close to
the median. A relative scale change of 1 indicates that the object size did not change between
subsequent frames. Significant frame-to-frame scale changes are caused by object deformations –
e.g. an athlete performing a somersault captured at the gymnastics videos in VOT and OTB – or
video cuts which abruptly change the field-of-view – e.g. the DragonBaby sequence in OTB. Zero
overlap in (d) is caused by large object or camera motion and video cuts.
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Figure 5.2: Qualitative results for our distractor-aware tracker on sequences of the
♣ VOT’13 [238], ♦ VOT’14 [239], ♠ VOT’16 [241] and ♥ OTB-100 [449] datasets. Results for
ACT [93], DSST [92] and KCF [189] are also shown. Dashed bounding boxes indicate that the
corresponding tracker has been re-initialized after losing the target previously. Images are slightly
cropped and frame numbers are superimposed for visualization only.
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the object size. Some evaluations address these limitations via object size dependent

normalization factors, e.g. [27, 386].

• Region overlap – inspired by object detection and classification benchmarks, such as

the PASCAL Visual Object Classes (VOC) challenge [122], several authors adopted

the region overlap measure, e.g. [156, 251, 266, 386, 481]. This metric reports the

per-frame intersection over union (IOU, also known as Jaccard index or Jaccard

similarity coefficient) between the tracker’s hypothesis and the ground truth region

as

Φ(TT, TG) =
{
φt
}N
t=1

, where φt =
Ot

T ∩Ot
G

Ot
T ∩Ot

G

. (5.4)

This metric allows to reason about both the distance precision and the scale adap-

tation capabilities of a tracker.

• Tracking length – measures the number of successfully tracked frames from initial-

ization to the first tracking failure [248]. To this end, usually a threshold is applied

on the center distance or overlap measure. Although this metric explicitly addresses

tracking failures, it may bias the evaluation if accidentally the beginning of a video

captures a very challenging tracking scenario where almost all trackers fail, e.g. a

video cut or a sudden illumination change, such as a whiteout caused by a flash light.

• Failure rate – as used in [71, 72, 228, 236–241, 243] requires a supervised evaluation

framework, in which a tracker is re-initialized once it fails. This measure reports the

number of tracking failures and reflects real-world scenarios where a human operator

supervises the tracker and manually corrects its errors.

• Performance plots – visualize the performance of a tracker based on a specific eval-

uation metric. The most widely used plot is the center error versus frame number

plot, e.g. [1, 18, 27, 481]. Another important visualization technique are measure-

threshold plots which allow intuitive visual comparison and can be computed similar

to receiver operating characteristic (ROC) curves [130]. These measure-threshold

plots are widely used within OTB [448, 449], where center error and region overlap

are used as measure, respectively. A notable limitation of such evaluation curves is

that including too many competing approaches clutters the plots significantly. To

avoid this, the maximum number of included trackers should be limited.

Performance metrics are usually averaged over all sequences of the dataset to obtain

a single score per tracker. As shown by Čehovin et al. [73, 74] and Smeulders et al. [386],

several tracking metrics are highly correlated, which should be considered when defining

an evaluation protocol for a novel dataset.

The VOT benchmarks explicitly aim at evaluating monocular, online single-target

tracking approaches on short-term sequences. In such a short-term setting, trackers are
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not supposed to perform re-detection as the target usually never (fully) leaves the field-

of-view. Thus, the VOT benchmarks provide a supervised evaluation framework, which

re-initializes a tracker once it fails – in particular, as soon as the overlap between the

tracker’s hypothesis and the ground truth is zero, i.e. φt = 0. To avoid introducing a bias,

several frames after each failure are skipped prior to re-initialization, as the subsequent

frames very likely also capture the same difficult situation which caused the failure in the

first place. Trackers are run multiple times on each sequence to obtain a better statistic

on their performance. Tracking performance is evaluated primarily based on accuracy5

(i.e. region overlap) and robustness6 (i.e. failure rate). These raw scores are used to rank

trackers based on the statistical significance of their performance differences. Additionally,

the VOT’15 challenge introduced the expected average overlap (EAO) metric for a clearer

practical interpretation compared to the previously used combination of accuracy and

robustness rankings. This measure is an estimator of the average region overlap a tracker

is expected to achieve on short-term sequences with the same visual properties as the tested

benchmark. Each VOT benchmark provides multiple experiments which define (i) whether

the tracker is initialized using the ground truth annotation (i.e. baseline experiment) or

via randomly perturbed bounding boxes (i.e. region noise experiment) and (ii) whether

the tracker is re-initialized after each failure (i.e. supervised) or initialized only once and

operates unattended throughout the sequence (i.e. unsupervised).

To compare tracking speed across different platforms, the VOT initiative introduced

the equivalent filter operations (EFO) measure in VOT’14. This speed unit aims to remove

the hardware bias which arises when comparing plain frames per second (FPS) speed

measurements. To this end, the VOT framework benchmarks the hardware by measuring

the time required to perform a maximum pixel filter on a single-channel image of size

600× 600 pixels with a sliding window of 30× 30 pixels. Dividing the measured tracking

time by the time required for the filtering operation then gives the EFO speed unit.

In contrast to the VOT evaluation protocol, OTB focuses on unsupervised experiments.

The most common evaluation protocol in OTB is the so-called one-pass evaluation (OPE),

where a tracker is initialized with the ground truth annotation in the first frame and runs

unattended throughout the rest of the sequence. Two additional evaluations analyze the

tracking performance by perturbing the tracker initialization either temporally, i.e. start-

ing at different frames, or spatially, i.e. by shifting and scaling the initial annotation by

a predefined amount. These evaluations are called temporal robustness evaluation (TRE)

and spatial robustness evaluation (SRE), respectively. The OTB-100 benchmark addition-

ally introduced supervised experiments, namely one-pass evaluation with restart (OPER)

and spatial robustness evaluation with restart (SRER). Failures in these supervised exper-

iments are detected whenever the region overlap drops below a predefined threshold. In

5Accuracy scores are in the range [0, 1], where higher scores correspond to better performance. We
denote this by the symbol ↑ throughout our evaluations.

6Robustness scores are non-negative real numbers, r ∈ R+
0 = {s ∈ R | s ≥ 0}, where lower scores corre-

spond to better performance (denoted by ↓ throughout our evaluations).
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contrast to the supervised VOT experiments, trackers are re-initialized immediately after

each failure, instead of skipping the next few frames. Thus, supervised results on OTB

might be biased because challenging scenarios typically last longer than a single frame.

Tracking performance in OTB is primarily evaluated via success plots7, i.e. the

measure-threshold plot based on the region overlap metric, and precision plots7, i.e. the

measure-threshold plot based on the center distance error. To allow ranking trackers,

two metrics are used to summarize these plots. The first measure is the area under

curve (AUC) of the overlap success plot – which actually corresponds to the average

region overlap over all sequences as shown by Čehovin et al. [73]. Distance precision

plots are summarized by the percentage of frames with center distance error below

20 pixels, i.e. δt < 20, as suggested by Babenko et al. [18]. Considering the median

object diagonal of approximately 100 pixels throughout the sequences, this distance

threshold roughly corresponds to a region overlap between the tracker hypothesis and

ground truth of 1/2 and thus, mimics standard object detection evaluations based on

the PASCAL overlap criterion. In the following, we refer to this score as representative

distance precision (RDP). The OTB framework measures a tracker’s speed in frames per

second (FPS) without the time required to load the images, but ignoring the potential

hardware bias.

We focus our evaluations on the VOT benchmarks, where we conduct all defined exper-

iments following the official evaluation protocol. The analysis uses the measured accuracy

and robustness scores, the tracker ranking based on these scores as well as the expected av-

erage overlap (EAO) metric. Complementary experiments are performed on OTB via the

most commonly used one-pass-evaluation (OPE) and analyzed using overlap success plots

and distance precision curves. For more details about the evaluation protocols and metrics

we again refer the interested reader to the corresponding benchmark documentations and

recent surveys [73, 74, 242, 386].

5.1.3 Ablation Study

We begin our evaluation with a parameter ablation study to show the sensitivity of our

distractor-aware tracker (DAT) w.r.t. its parameter settings. In particular, we analyze

(i) suitable color spaces, (ii) color histogram representations, (iii) learning rates, (iv) win-

dow sizes, (v) parameters related to non-maxima suppression, and (vi) different scale

adaptation techniques. This evaluation is divided into two sections, where we analyze

parameters related to the object model first , i.e. (i)-(iii), and second, parameters related

to localization and scaling, i.e. (iv)-(vi).

We will vary one parameter of DAT while keeping all others fixed to allow reasoning

about the effect of each parameter. In particular, we use the default parameter settings as

7To clearly denote which measures are used for the OTB measure-threshold plots, we refer to these
explicitly as overlap success plot (i.e. region overlap) and distance precision plot (i.e. center distance
error) throughout our evaluations.
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Table 5.2: Default parameter settings for the distractor-aware tracker variants (DAT). Unless
stated otherwise, these parameters have been kept fixed throughout all experiments.

Parameter Value

Color space RGB
Histogram bins 16× 16× 16
Learning rate for ptO,S(x ∈ O | bx) ηS ∈ [0, 1] 0.05

Learning rate for ptO,D(x ∈ O | bx) ηD ∈ [0, 1] 0.20

Scaling factor for surrounding region S λS ∈ (1,λW ) 2.00
Scaling factor for search window W λW ∈ (λS ,∞) 4.00
NMS patch overlap oν ∈ [0, 1) 0.90
NMS reporting threshold τν ∈ (0, 1) 0.50

listed in Table 5.2. All ablation experiments are conducted on the VOT’13 [238] dataset.

We select this dataset on purpose as it allows to demonstrate the performance difference

using raw accuracy (i.e. average overlap per sequence) and robustness (i.e. average number

of failures per sequence) scores. On larger benchmark datasets, such as VOT’16 [241] or

OTB-100 [449], subtle performance differences (caused by minor parameter changes) might

not be as obvious due to averaging over a larger number of sequences.

In addition to the tracking performance (i.e. accuracy and robustness), we also report

the runtime of all parameter variations to indicate the performance versus speed tradeoff.

To ensure consistent runtime measurements, all experiments have been conducted on a

dedicated computer, in particular an Intel R© NUC Skull Canyon with a 6th generation

CoreTM i7 processor, on which only the Matlab R© framework was running along with the

default set of operating system processes of a clean Ubuntu 16.04.1 installation.

5.1.3.1 Object Model Parameters

Color Spaces. For this evaluation, we consider the following commonly used color

spaces, which are also illustrated in Figure 5.3. We coarsely summarize these color spaces

as a detailed derivation and discussion is out of scope of this thesis. For more details, we

refer the interested reader to the book on color appearance models by Fairchild [123].

RGB RGB is the default color space we deal with in digital image processing. Each

pixel is identified by a 3-dimensional vector, where each component indicates

the intensity of the corresponding primary color, i.e. red, green and blue.

Technically, RGB is not a color space but a color model – several RGB color

spaces are derived from the RGB model, such as sRGB, the standard RGB

color space. In the following, we use RGB to denote the color model and color

space interchangeably, unless an explicit distinction is required.

We also evaluate our model using the rg chromaticity space – denoted

rg chroma – which is derived from normalized RGB values. There, a color is
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(a) RGB. (b) XYZ. (c) Grayscale.

r = R/Σ, g = G/Σ, b = B/Σ

Σ = R + G + B

(d) Normalized RGB.

r g = b = (1-r)/2 g r = b = (1-g)/2

(e) rg chromaticity – proportions of red (left) and green (right).

H S = 1, V = 1 S H = 1, V = 1 V H = 1, S = 0

(f) HSV – hue (left), saturation (middle), value (right).

L* a*= 0, b*= 0 a* L*= 65, b*= 0 b* L*= 65, a*= 0

(g) L*a*b*– lightness L*(left), chromaticity a*(middle), chromaticity b*(right).

Y Cb = 0.5, Cr = 0.5 Cb Y = 0.5, Cr = 0.5 Cr Y = 0.5, Cb = 0.5

(h) YCbCr – luminance Y (left), chrominance Cb (middle), chrominance Cr (right).

Figure 5.3: Color space representations. (a) standard RGB. (b) XYZ using the CIE standard
illuminant D65 reference white point. (c) Grayscale. (d) normalized RGB – note the effect on fo-
liage and scrubs (front and valley) as well as shadows (mountain range in the back). Red and green
proportions of normalized RGB form the (e) rg chromaticity space. (f) HSV – note the distinctive
appearance of fog, sky and shadows in the hue and saturation components. (g) L*a*b*. (h) YCbCr.
For better visualization, we gamma corrected normalized RGB with γ = 0.4 and stretched the con-
trast of the chromaticity and chrominance components. We use standard pseudo-coloring schemes
to visualize separate color space components (visualization parameters are superimposed).
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represented by its proportion of the primary colors instead of their intensities

as in standard RGB. Since the proportions of all three primary colors for each

pixel sum to one, the third dimension can be discarded and thus, rg chroma

is a 2-dimensional representation, denoting the red and green proportions,

respectively.

HSV HSV is a cylindrical-coordinate representation of points in the Cartesian cube

spanned by the RGB color space. A color is represented by its hue (i.e. the

H channel; angle around the central vertical axis of the cylindrical coordinate

system), saturation (i.e. the S channel; distance from the central vertical axis),

and value (i.e. brightness; the V channel; distance along the central vertical

axis).

Additionally, we evaluate a two-channel variant which only uses the hue and

saturation, denoted HS. By ignoring the brightness component, this variant

represents only the color purity.

L*a*b* CIE8 L*a*b* is a perceptually uniform color space, i.e. perceptually similar

colors yield lower Euclidean distances of their respective L*a*b* vectors. A

color is represented by its lightness (i.e. L*channel) and the two chromaticity

components: (a*) its position between red and green, and (b*) its position

between yellow and blue. The relations between these channels are nonlinear,

mimicking the nonlinear response of the human eye.

YCbCr YCbCr represents a color by its luminance (brightness, i.e. Y channel, also

denoted luma) and chrominance (color information, i.e. Cb and Cr channels,

also denoted chroma) components. The Cb and Cr components denote an im-

age’s blue difference chrominance and red difference chrominance, respectively.

Since the human eye is most sensitive to luminance (achromatic) changes, this

color space representation allows for subsampling the chrominance components

and thus, is often used for efficient storage and transmission of video data.

XYZ CIE XYZ was one of the first mathematically defined color spaces (introduced

in 1931) and is a device invariant color representation. To this end, the CIE

defined the tristimulus values X, Y and Z to avoid negative numbers which

arise in additive trichromatic color spaces based on real (physical) primary

colors (which can be created by a spectral distribution of wavelengths), such

as RGB. A color is then represented as a mixture of these tristimulus values.

Gray To highlight the importance of using color, we also demonstrate our approach

using only grayscale imagery. The grayscale value of a color pixel can be easily

8Commission Internationale de l’Éclairage (CIE, French name of the International Commission on

Illumination) is the international authority on light, illumination, color and color spaces.
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Table 5.3: Performance of our distractor-aware tracker (DAT) and its distractor-agnostic base-
line (noDAT) w.r.t. different color spaces. The columns denoted Acc. and Rob. show the raw
accuracy (i.e. overlap) and robustness (i.e. number of failures) scores on the two experiments base-
line and region noise, respectively. These scores are averaged over all sequences of the VOT’13
dataset. The three rightmost columns show the expected average overlap (EAO) combined over
both experiments and the tracking speed in frames per second (FPS). Best, second best and third
best results have been highlighted in each column. The model size is 16 bins per channel, i.e. we
use histograms of size 16× 16× 16 for trichromatic color spaces, 16× 16 for bichromatic (i.e. HS
and rg chroma) and 16 for monochromatic color spaces (i.e. grayscale). The discrepancies be-
tween our frame rate measurements (FPSOurs) and the VOT toolkit (FPSVOT) are discussed in
Section 5.1.3.1 (page 77). The symbol ↑ indicates that higher scores correspond to better tracking
performance, whereas ↓ indicates that lower scores are better.

Tracker
Color
Space

Experiment Experiment
Overall

baseline region noise

Acc.↑ Rob.↓ Acc.↑ Rob.↓ EAO↑ FPS↑
Ours

FPS↑
VOT

DAT RGB 0.60 0.08 0.59 0.12 0.55 113.0 64.5
noDAT RGB 0.60 0.19 0.59 0.21 0.51 160.5 77.4
DAT HSV 0.61 0.34 0.60 0.28 0.46 71.9 46.0
noDAT HSV 0.61 0.42 0.60 0.35 0.43 89.1 52.5
DAT L*a*b* 0.59 0.19 0.58 0.22 0.46 36.5 27.7
noDAT L*a*b* 0.59 0.32 0.58 0.30 0.42 39.3 29.7
DAT YCbCr 0.58 0.23 0.57 0.18 0.45 83.3 50.8
noDAT YCbCr 0.58 0.15 0.57 0.22 0.46 106.2 59.5
DAT XYZ 0.53 1.38 0.53 1.26 0.25 31.9 23.2
noDAT XYZ 0.54 2.76 0.54 2.30 0.18 34.5 24.5
DAT HS 0.59 0.48 0.57 0.43 0.39 79.0 47.7
noDAT HS 0.58 0.63 0.57 0.61 0.37 95.9 53.6
DAT rg chroma 0.57 1.39 0.56 1.29 0.20 115.0 58.2
noDAT rg chroma 0.57 1.83 0.56 1.75 0.16 143.3 66.1
DAT Gray 0.53 3.70 0.52 3.39 0.14 169.1 61.3
noDAT Gray 0.52 4.51 0.53 4.66 0.11 217.4 64.3

computed as the weighted sum of its RGB components. In particular, we use

the standard grayscale conversion9, i.e. Ĝ = 0.2989R+ 0.5870G+ 0.1140B.

We compare our distractor-aware color models to their respective distractor-agnostic

baselines, i.e. a tracker which only uses the object-versus-surroundings model

pO,S(x ∈ O | bx) but can neither identify visually distracting regions, nor suppress them.

Consequently, these trackers localize the target solely relying on pO,S(x ∈ O | bx) and not

on the combination of pO,S(x ∈ O | bx) and pO,D(x ∈ O | bx) as is the case for the DAT

variants. These baseline models are denoted noDAT throughout our evaluations.

Detailed results for the color space evaluation are listed in Table 5.3 and illustrated

in Figure 5.4. Overall, our distractor-aware approaches consistently outperform the

9These conversion weights are commonly used in digital television – for example, refer to the con-
struction of luminance from RGB values in the recommendation ITU-R BT.601-5 of the International

Telecommunication Union (ITU).
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DAT RGB DAT HSV DAT XYZ DAT YCbCr
noDAT RGB noDAT HSV noDAT XYZ noDAT YCbCr

DAT rg chroma DAT HS DAT L*a*b* DAT Gray

noDAT rg chroma noDAT HS noDAT L*a*b* noDAT Gray

(a) Legend.
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(b) Experiment baseline.
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(c) Experiment region noise.

Figure 5.4: Accuracy-robustness plots for our distractor-aware tracker (DAT) and its distractor-
agnostic baseline (noDAT) w.r.t. different color spaces on the VOT’13 dataset. Top-performing
trackers should achieve a high overlap and low number of failures, thus be located at the top left.
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distractor-agnostic baselines on all color spaces. Interestingly, using standard RGB

overall results in the best combined accuracy and robustness scores. Similarly, also using

the HSV color space yields very accurate but slightly less robust results. Overall, these

results demonstrate the importance of modeling appearance as a joint color distribution.

Trichromatic inputs consistently outperform models which rely on bichromatic or

monochromatic representations, especially considering the average robustness. This is

true for all trichromatic representations except for CIE XYZ, which only results in

slightly better performance than using pure grayscale imagery. We hypothesize this is

due to fixing the reference white point required for CIE XYZ, which may lead to low

contrast imagery in many sequences.

Discarding the intensity information as in HS or rg chroma leads to frequent target

loss if the object is partially transparent (e.g. as in the bag sequence of VOT’16) or due

to similar colored backgrounds where intensity would be required to distinguish the ob-

ject from its surroundings (as in the hand2 sequences of VOT’14). Ignoring available

color information at all yields minor speed benefits but significantly decreases the overall

tracking performance, as indicated by the grayscale results. Even though one might as-

sume that perceptually uniform color spaces, such as L*a*b*, or chromaticity spaces, such

as rg chroma (which has the benefit of illumination invariance), might be beneficial for

visual tracking, our results demonstrate that standard RGB achieves the best overall per-

formance. While there are some specific application domains which require special color

representations, the task of tracking arbitrary objects using color models is best tackled

by standard RGB models.

Note that noisy initializations do not negatively affect our DAT variants. This can

be seen from the results for the region noise experiment, where both the accuracy and

robustness scores do not significantly change compared to the ground truth initialization

in the baseline experiment. This can be mostly contributed to the underlying color cue

which allows to snap towards the actual object, despite randomly perturbed initializations.

The runtime performance measured in frames per second (FPS) is also listed for all

color models in Table 5.3. We report two frame rate measurements, namely FPSOurs,

where we directly measure the processing time within the Matlab R© framework (ignoring

the image loading time) and FPSVOT, which is measured by the official VOT toolkit.

Note that the VOT toolkit reports significantly lower frame rates with a much higher

variability, although it also measures only the tracker’s processing time without loading

the images. This is due to the fact that a tracker runs as a separate process within the

VOT framework and these timings are notably skewed by inter-process communication

and process start-up time. For the remainder of this ablation study, we will only report

our more accurate and consistent runtime measurements, i.e. FPSOurs.

The runtime evaluation shows the favorable efficiency of our tracker. Despite com-

puting two object models with 16 bins per input channel, we can easily process videos at

more than 100 FPS if we rely on raw RGB input or simple color transformations, such as

rg chroma or grayscale. Note that the processing bottleneck is neither the object model



78 Chapter 5. Empirical Evidence

Table 5.4: Performance of our distractor-aware tracker DAT with varying histogram sizes. Best,
second best and third best results have been highlighted in each column.

Model Size
Experiment Experiment

Overall
baseline region noise

Acc.↑ Rob.↓ Acc.↑ Rob.↓ EAO↑ FPS↑

8× 8× 8 0.58 0.19 0.57 0.21 0.47 117.9
10× 10× 10 0.59 0.23 0.58 0.24 0.44 124.1
16× 16× 16 0.60 0.08 0.59 0.16 0.53 112.1
32× 32× 32 0.60 0.38 0.59 0.38 0.45 105.9
64× 64× 64 0.59 1.17 0.57 1.05 0.29 91.2

nor the localization step, but the more complex color transformations. The most compu-

tationally demanding color space transformation is CIE XYZ, although we are still able

to process at least 30 FPS, which is sufficient to realize time-critical applications. Over-

all, the best color space choice would be RGB, as these models yield the best combined

accuracy and robustness scores at very high frame rates.

Histogram Size. The next important model component in our analysis is the histogram

size, i.e. the number of bins per channel. We use uniform binning to model the joint color

distribution. Table 5.4 summarizes the results for different model sizes, using 8, 10, 16, 32

and 64 bins per channel, respectively.

Overall, the RGB model with 16 × 16 × 16 bins achieves the best results, where we

group 256/16 = 16 intensity values per channel into a single bin. The performance grace-

fully degrades when using more or less bins. Not surprisingly, the most runtime efficient

representations use 8 and 10 bins per channel, which achieve about 120 FPS. Note that

the 10×10×10 model is slightly faster than the 8×8×8 variant, which can be contributed

to internal memory layout and memory access performance.

Learning Rates. The final object model related parameters are the model learning

rates, which influence the tracker’s adaptation capability to changing object appearance,

e.g. caused by illumination variations. Finding suitable model learning rates is a non-

trivial task, as we have to trade off the ability of being adaptive to such appearance

changes while avoiding drifting due to incorrect updates, e.g. during partial occlusions.

This problem is well-known as the stability-plasticity dilemma [168] or the template update

problem [301].

As shown in Table 5.5, it is beneficial to use lower learning rates for the object-versus-

surroundings model and larger learning rates for the object-versus-distractors model.

These results confirm our intention that the tracker should quickly adapt its distractor

model to suppress visually similar regions, while the general discriminative background

model should be updated more conservatively. Our observation of improved robustness
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Table 5.5: Performance of our distractor-aware tracker with varying learning rates ηS for
the object-versus-surroundings model ptO,S(x ∈ O | bx) and ηD for the object-versus-distractors

model ptO,D(x ∈ O | bx). Best, second best and third best results have been highlighted in each
column.

Learning Rate
Experiment Experiment

Overall
baseline region noise

ηS ηD Acc.↑ Rob.↓ Acc.↑ Rob.↓ EAO↑ FPS↑

0.01 0.20 0.60 0.26 0.59 0.29 0.49 111.5
0.05 0.20 0.60 0.08 0.59 0.15 0.54 113.8
0.10 0.20 0.59 0.14 0.59 0.11 0.53 113.6
0.15 0.20 0.60 0.49 0.58 0.30 0.43 113.0
0.20 0.20 0.57 0.69 0.58 0.42 0.42 113.2
0.25 0.20 0.58 0.73 0.57 0.58 0.40 115.4

0.05 0.01 0.60 0.15 0.59 0.16 0.52 111.2
0.05 0.05 0.60 0.08 0.59 0.16 0.53 112.9
0.05 0.10 0.60 0.08 0.59 0.14 0.54 110.8
0.05 0.15 0.60 0.08 0.59 0.12 0.54 108.7
0.05 0.20 0.60 0.08 0.59 0.15 0.53 111.9
0.05 0.25 0.60 0.12 0.59 0.15 0.51 114.1

at lower learning rates for the object-versus-surroundings model is also in line with the

experimental findings of other approaches, such as MOSSE [55] or KCF [189].

5.1.3.2 Localization and Scaling

Window Sizes. The scaling parameters λW and λS constrain the size of the search

region W – used to localize the target – and the size of the surrounding region S –

used to update the object-versus-surroundings model ptO,S(x ∈ O | bx). From the results

in Table 5.6 we see that a search region four times the size of the tracked object gives

the best performance versus speed tradeoff. Note that a search window scaling factor

of λW = 8 requires a significant amount of image padding, which leads to unnecessary

processing of these padded regions and explains the lower runtime performance. On the

other hand, setting the search region too small decreases the robustness, since the tracker

fails more frequently for sequences which exhibit large object or camera motion because

the object leaves the search region.

The best tracking accuracy is achieved with a surrounding region twice the size of the

object, and slowly degrades with both higher and lower values. The robustness scores,

on the other hand, depend stronger on a proper choice of the surrounding region size. In

particular, a scaling factor of λS = 2 yields significantly more robust results on average.

Non-Maximum Suppression. The two NMS parameters oν and τν control the overlap

and distractor-reporting threshold while densely sampling hypotheses within the search

region W . The overlap controls how accurate the localization will be, i.e. densely overlap-
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Table 5.6: Effects of varying window sizes on the tracking performance of our distractor-aware
tracker. Best, second best and third best results have been highlighted in each column.

Window Scale Experiment Experiment
Overall

Parameter baseline region noise

λW λS Acc.↑ Rob.↓ Acc.↑ Rob.↓ EAO↑ FPS↑

2.0 1.5 0.56 0.94 0.56 0.87 0.36 212.9

4.0 2.0 0.60 0.15 0.58 0.22 0.51 114.1
4.0 3.0 0.58 0.43 0.57 0.37 0.44 99.5

8.0 2.0 0.59 0.08 0.58 0.24 0.51 46.6
8.0 3.0 0.57 0.53 0.57 0.37 0.45 44.7
8.0 4.0 0.57 0.39 0.56 0.52 0.44 39.8
8.0 5.0 0.57 0.39 0.56 0.50 0.42 37.0
8.0 6.0 0.57 0.43 0.56 0.66 0.39 33.8
8.0 7.0 0.57 0.67 0.55 0.70 0.33 32.3

Table 5.7: Tracking performance for varying overlap parameters oν and reporting thresholds τν of
the non-maximum suppression step. Best, second best and third best results have been highlighted
in each column.

NMS Parameter
Experiment Experiment

Overall
baseline region noise

oν τν Acc.↑ Rob.↓ Acc.↑ Rob.↓ EAO↑ FPS↑

0.95 0.50 0.60 0.19 0.59 0.16 0.51 104.8
0.90 0.50 0.60 0.08 0.59 0.16 0.53 113.2
0.85 0.50 0.59 0.08 0.59 0.16 0.52 109.7
0.75 0.50 0.58 0.29 0.57 0.19 0.47 147.1
0.50 0.50 0.50 0.10 0.50 0.13 0.45 115.8

0.90 0.75 0.60 0.15 0.60 0.15 0.53 118.8
0.90 0.50 0.60 0.08 0.59 0.16 0.53 113.2
0.90 0.25 0.60 0.08 0.59 0.14 0.54 105.5

ping hypotheses lead to more accurate results as it is more likely to sample a hypothesis

directly on the target. The reporting threshold, on the other hand, controls how many

regions are considered distracting and thus, influences the robustness and adaptability

w.r.t. to visually similar regions. This is also reflected by the tracking results in Table 5.7.

Scale Adaptation. Table 5.8 lists the results for the different scale adaptation tech-

niques we apply on top of DAT. Overall, scaling via sum reduction of the likelihood maps

(DAT+s) yields the most stable performance at a very minor speed tradeoff, easily ex-

ceeding 100 FPS. Performing a connected component analysis (DAT+c) takes significantly

longer and, as we observed experimentally, its results are quite sensitive w.r.t. choosing

the inclusion and exclusion regions for segmented blobs. We also experimented with
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Table 5.8: Performance of the different scale adaptation approaches compared to the scale-
agnostic DAT baseline. Best, second best and third best results have been highlighted in each
column.

Tracker
Experiment Experiment

Overall
baseline region noise

Acc.↑ Rob.↓ Acc.↑ Rob.↓ EAO↑ FPS↑

DAT 0.60 0.08 0.59 0.12 0.55 113.0
DAT+s 0.57 0.00 0.56 0.07 0.56 108.8
DAT+c 0.58 0.09 0.57 0.12 0.51 56.7
DAT+r 0.51 0.45 0.49 0.56 0.44 90.7

different segmentation approaches, in particular graph cut-based [366] and total variation-

based [370, 420] approaches, where we exploited our object-versus-surroundings model to

provide seed regions for the segmentation. These approaches, however, only performed

on par with DAT+c and required significantly more computing resources, which prohibits

their use in time-critical applications. Additionally, segmentation-based approaches fail

to robustly segment the object in low resolution or low contrast imagery, which often

occurs in typical tracking sequences. Thus, because of its favorable results, simplicity

and efficiency, the sum reduction approach should be preferred over the remaining scale

adaptation techniques.

Instance-specific scale regression (DAT+r) only works reasonably well for a few se-

quences and never outperformed the sum reduction technique in our experiments. The

significantly lower overall scores are slightly misleading as some very challenging initializa-

tions will negatively influence the scores, e.g. consider the david sequence, which starts in

a dark room with extremely low contrast imagery. Although state-of-the-art approaches

also use scale regression, e.g. [319, 321], they usually train object class-specific regressors

on large training sets and additionally, exploit more complex (deep) features. We also

experimented with pre-training object class-specific regressors based on our probability

maps. This, however, yields quite unsatisfying and unstable results because these features

are too simplistic (compared to CNN features) to learn a robust regression for ambiguous

ground truth annotations. For example, consider face tracking – some annotators prefer

bounding boxes which include the neck and hair of a person, whereas others only annotate

boxes spanning from the forehead to the chin. Such contradicting ground truth annota-

tions are the reason why we experimented with an instance-specific approach, trying to

slightly overfit to the object of interest by perturbing the initialization region. Overall,

however, our sum reduction-based approach is able to robustly deal with a significantly

larger amount of tracking challenges out-of-the-box.
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5.1.4 Comparison to the State-of-the-Art on VOT

To ensure a fair and unbiased comparison, we use the official tracking results verified by

the VOT committee for our evaluations on VOT’13 [238], VOT’14 [239] and VOT’16 [241].

On each benchmark, we compare our DAT variants to the three top-performing trackers

and several state-of-the-art approaches published at major conferences and journals. Ad-

ditionally, we include a simple template-based tracker, in particular a normalized cross

correlation (NCC) filter, which was used by the VOT committee as a reference baseline

which had to be outperformed by each challenge contestant. According to the official eval-

uation protocols, we use the combined accuracy and robustness rank to sort competing

trackers on VOT’13 and VOT’14, whereas VOT’16 results are ranked according to their

expected average overlap. We report per-benchmark results combined over all sequences.

Detailed per-sequence results can be found in Appendix C.1. Slightly different (raw) ac-

curacy or robustness scores compared to the original challenge reports are caused by the

updated VOT evaluation methodology10. Note that the rankings depend on the number

of compared trackers and thus, the accuracy and robustness ranks cannot be compared to

the original challenge reports.

VOT’13. The top-performing approaches on VOT’13 were PLT [186], FoT [428] and

EDFT [132]. PLT employs an online sparse structural support vector machine (SVM)

similar to [176], based on color, grayscale and gradient information where color histograms

are used to weight features during SVM training. FoT combines the target displacements

estimated from multiple local tracker covering the object. EDFT extends the distribution

field tracker (DFT) [381] by using more efficient channel representations (CRs) [166] to

approximate kernel density estimates.

Results for the VOT’13 experiments baseline and region noise are summarized in

Table 5.9. DAT performs on par with the challenge winner PLT, and achieves the better

ranking w.r.t. the Wilcoxon signed-rank test which is used within the VOT toolkit to test

statistical significance of performance differences between the trackers.

VOT’14. The top-performing approaches on VOT’14 were DSST [92], SAMF [271] and

KCF [189], all of which are correlation filters extending the MOSSE tracker [55]. DSST

learns separate discriminative correlation filters for translation and scale estimation and

is based on image intensities and HOG [91] features. KCF is a scale-adaptive extension of

CSK [188] based on kernel ridge regression, which is efficiently trained from thousands of

sample patches by exploiting the Fourier transform. SAMF is an extension of KCF which

additionally introduces color names [423] as a separate feature cue to complement the raw

image intensities and HOG features.

10We use the latest VOT toolkit for all our evaluations, i.e. commit 6b4447f1 to the official git repository
https://github.com/votchallenge/vot-toolkit, from 6 July 2017.

https://github.com/votchallenge/vot-toolkit
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Table 5.9: Results on the VOT’13 benchmark. Best, second best, and third best results have
been highlighted. The top 3 challenge contestants are sorted according to their official challenge
rank, where the first row shows the results for the winner (i.e. PLT). State-of-the-art trackers from
major literature are sorted according to their expected average overlap score (EAO).

(a) Experiment baseline.

Tracker EAO↑ Combined Accuracy Robustness
Rank↓ Score↑ Rank↓ Score↓ Rank↓

O
u
rs

DAT 0.56 3.78 0.59 6.00 0.08 1.56
DAT+s 0.60 4.60 0.56 8.19 0.00 1.00
DAT+c 0.52 4.91 0.58 8.19 0.09 1.63
DAT+r 0.49 6.50 0.50 9.44 0.45 3.56
DAT’15 [351] 0.51 4.85 0.61 6.00 0.26 3.69
noDAT 0.53 4.16 0.59 5.75 0.19 2.56

T
o
p
3 PLT [186] 0.66 3.85 0.61 6.69 0.00 1.00

FoT [428] 0.29 6.10 0.64 5.44 1.54 6.75
EDFT [132] 0.35 5.47 0.60 5.38 0.79 5.56

M
a
jo
r
li
te
ra
tu
re

LGT [72] 0.44 5.78 0.54 8.06 0.26 3.50
MIL [18] 0.24 8.72 0.52 9.94 1.41 7.50
IVT [364] 0.22 6.66 0.60 5.88 1.62 7.44
CT [481] 0.18 10.63 0.47 12.50 1.76 8.75
Struck’11 [176] 0.10 7.28 0.53 8.75 3.58 5.81
HoughTrack [157] 0.08 9.41 0.49 11.56 4.25 7.25
TLD [216] 0.07 9.06 0.60 6.56 6.60 11.56

NCC 0.09 9.63 0.62 5.13 6.14 14.13

(b) Experiment region noise.

Tracker EAO↑ Combined Accuracy Robustness
Rank↓ Score↑ Rank↓ Score↓ Rank↓

O
u
rs

DAT 0.53 3.66 0.59 5.25 0.12 2.06
DAT+s 0.53 3.88 0.55 6.56 0.07 1.19
DAT+c 0.50 4.60 0.56 7.81 0.12 1.38
DAT+r 0.40 7.65 0.48 10.00 0.56 5.31
noDAT 0.50 4.16 0.59 5.75 0.21 2.56

T
op

3 PLT [186] 0.60 3.81 0.59 6.31 0.06 1.31
FoT [428] 0.24 6.47 0.60 6.13 1.66 6.81
EDFT [132] 0.29 6.41 0.57 6.44 1.09 6.38

M
a
jo
r
li
te
ra
tu
re

LGT [72] 0.45 5.22 0.53 7.69 0.20 2.75
MIL [18] 0.21 7.97 0.50 9.44 1.51 6.50
IVT [364] 0.19 7.16 0.55 7.44 1.91 6.88
CT [481] 0.16 9.72 0.47 11.94 2.01 7.50
Struck’11 [176] 0.08 7.66 0.50 8.94 3.91 6.38
TLD [216] 0.07 8.72 0.57 6.50 6.71 10.94
HoughTrack [157] 0.07 8.60 0.49 10.25 4.87 6.94

NCC 0.08 9.85 0.57 5.94 6.76 13.75
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Table 5.10: Results on the VOT’14 benchmark, sorted similar to the VOT’13 results (Table 5.9).

(a) Experiment baseline.

Tracker EAO↑ Combined Accuracy Robustness
Rank↓ Score↑ Rank↓ Score↓ Rank↓

O
u
rs

DAT 0.28 4.56 0.53 5.12 0.90 4.00
DAT+s 0.26 4.76 0.50 5.92 1.00 3.60
DAT+c 0.29 5.04 0.51 6.44 0.84 3.64
DAT+r 0.26 6.74 0.42 9.20 1.17 4.28
DAT’15 [351] 0.27 4.50 0.55 4.72 0.97 4.28
noDAT 0.24 5.00 0.54 5.04 1.21 4.96

T
o
p
3 DSST [92] 0.30 3.88 0.63 3.08 0.84 4.68

SAMF [271] 0.27 3.96 0.63 3.00 0.92 4.92
KCF [189] 0.27 3.66 0.64 2.60 0.99 4.72

M
a
jo
r
li
te
ra
tu
re

LGT [72] 0.33 6.62 0.46 8.04 0.62 5.20
ACT [93] 0.23 5.94 0.53 5.92 1.09 5.96
PixelTrack [113] 0.22 8.68 0.44 10.92 1.31 6.44
Struck’11 [176] 0.19 7.36 0.51 6.20 1.73 8.52
FoT [428] 0.19 8.22 0.50 6.76 1.97 9.68
CMT [323] 0.16 8.24 0.48 7.84 2.40 8.64
MIL [18] 0.16 10.38 0.41 12.36 1.94 8.40
OGT [320] 0.15 7.98 0.55 6.20 3.26 9.76
IVT [364] 0.15 9.62 0.47 8.36 2.27 10.88

NCC 0.08 11.42 0.53 7.32 7.87 15.52

(b) Experiment region noise.

Tracker EAO↑ Combined Accuracy Robustness
Rank↓ Score↑ Rank↓ Score↓ Rank↓

O
u
rs

DAT 0.26 3.92 0.53 4.04 0.98 3.80
DAT+s 0.28 3.96 0.51 4.76 0.83 3.16
DAT+c 0.26 4.22 0.51 5.12 1.02 3.32
DAT+r 0.25 6.74 0.45 8.32 1.23 5.16
DAT’15 [351] 0.28 3.50 0.55 3.20 1.06 3.80
noDAT 0.24 4.14 0.53 4.04 1.22 4.24

T
op

3 DSST [92] 0.26 3.72 0.59 2.96 0.97 4.48
SAMF [271] 0.23 3.92 0.59 3.04 0.99 4.80
KCF [189] 0.23 4.30 0.59 3.40 1.14 5.20

M
a
jo
r
li
te
ra
tu
re

LGT [72] 0.32 6.00 0.45 7.72 0.57 4.28
PixelTrack [113] 0.20 7.72 0.44 9.12 1.26 6.32
ACT [93] 0.19 6.20 0.49 6.04 1.35 6.36
Struck’11 [176] 0.17 7.20 0.48 6.72 1.79 7.68
FoT [428] 0.16 9.86 0.47 8.00 2.52 11.72
CMT [323] 0.15 9.04 0.44 9.16 2.33 8.92
IVT [364] 0.15 10.08 0.44 10.00 2.47 10.16
OGT [320] 0.13 8.02 0.51 6.24 3.09 9.80
MIL [18] 0.11 11.84 0.35 14.68 2.15 9.00

NCC 0.07 11.40 0.48 7.24 7.48 15.56
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Table 5.11: Results on the VOT’16 benchmark. Best, second best, and third best results have
been highlighted. All state-of-the-art trackers are sorted according to their expected average over-
lap score, as this was used to obtain the official challenge rankings. The last column shows the
result for the unsupervised experiment, which is evaluated using only the average overlap (AO)
measure.

Tracker
Experiment Supervised Exp.

EAO↑ Comb. Accuracy Robustness Unsup.

Rank↓ Score↑ Rank↓ Score↓ Rank↓ AO↑

O
u
rs

DAT 0.21 6.28 0.47 5.45 1.99 7.10 0.28
DAT+s 0.23 6.11 0.45 6.33 1.67 5.88 0.33
DAT+c 0.24 5.81 0.46 5.37 1.70 6.25 0.29
DAT+r 0.21 6.22 0.42 6.42 1.92 6.02 0.29
DAT’15 [351] 0.22 5.99 0.47 5.25 1.99 6.73 0.31
noDAT 0.19 6.82 0.47 5.12 2.21 8.53 0.27

T
o
p
3 C-COT [97] 0.33 3.47 0.54 3.18 0.89 3.75 0.47

TCNN [321] 0.32 3.58 0.55 2.33 0.83 4.83 0.49
SSAT [241] 0.32 3.15 0.58 1.77 1.05 4.53 0.51

M
a
jo
r
li
te
ra
tu
re

Staple [42] 0.29 4.32 0.54 2.90 1.42 5.73 0.39
EBT [495] 0.29 4.64 0.46 6.12 1.05 3.17 0.37
MDNet [319] 0.26 3.68 0.54 2.40 0.91 4.95 0.46
KCF [189] 0.19 6.68 0.48 5.45 1.95 7.90 0.30
SAMF [271] 0.19 5.84 0.50 4.40 1.91 7.28 0.35
DSST [92] 0.18 6.70 0.52 4.43 2.38 8.97 0.33
ACT [93] 0.17 7.96 0.44 7.23 2.34 8.68 0.28
FoT [428] 0.14 10.04 0.37 9.27 3.36 10.80 0.17
Struck’16 [177] 0.14 9.65 0.45 7.53 3.40 11.78 0.24
CMT [323] 0.08 13.59 0.38 11.07 6.75 16.10 0.15

NCC 0.08 11.53 0.47 6.45 10.31 16.60 0.17

VOT’14 uses the same experiments as its predecessor benchmark, i.e. baseline and re-

gion noise. The results are listed in Table 5.10. Despite the simple color model, our DAT

variants perform on par with many state-of-the-art trackers but achieve favorable robust-

ness on both experiments. Interestingly, our probabilistic approach using raw pixel colors

significantly outperforms sophisticated color representations, such as used by ACT [93].

VOT’16. The top-performing approaches on VOT’16 were C-COT [97], TCNN [321]

and SSAT11. C-COT learns a discriminative continuous convolution operator in the con-

tinuous spatial domain to efficiently fuse multi-resolution feature maps from a pre-trained

convolutional neural network (CNN). TCNN employs multiple CNNs which collaborate

in a tree structure to represent the target appearance. SSAT is also a CNN-based tracker

and extends MDNet [319], the winner of the VOT’15 challenge [240].

11The scale-and-state aware tracker (SSAT) is an extension of MDNet [319] and has only been published
as appendix to the official VOT’16 challenge report [241].
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Table 5.11 summarizes the results for the supervised and unsupervised experiments.

Although DAT does not achieve top 3 performance on this benchmark, we perform on

par in terms of robustness and accuracy with recent state-of-the-art approaches, such as

MDNet [319]. Moreover, we can easily outperform top-performing trackers from previous

VOT benchmarks, such as KCF [189], SAMF [271], DSST [92] or ACT [93], despite the

significantly more challenging sequences of VOT’16.

Performance w.r.t. Specific Tracking Challenges. The VOT benchmarks provide

a rich per-frame annotation of common challenges, namely (i) occlusion, (ii) illumination

change, (iii) motion change, (iv) size change and (v) camera motion. Frames which corre-

spond to none of these attributes are denoted as (vi) unassigned. We use the annotations

of the VOT’16 benchmark to evaluate the performance of our distractor-aware tracker

w.r.t. these attributes, as the large number of frames within this benchmark allows for a

meaningful conclusion.

These attribute-based evaluations are summarized in Table 5.12 and Figure 5.5. Note

that the robustness scores show the total number of failures and are not averaged over the

annotated frames, in contrast to the previous evaluations. We can see that DAT performs

on par with the VOT’16 challenge leaders for the attributes illumination change and

occlusion. The most challenging attributes for our approach are camera motion, motion

change and size change.

5.1.5 Comparison to the State-of-the-Art on OTB

Complementary to VOT, we additionally evaluate our approach on the sequence collec-

tion provided by the OTB. For a fair comparison, we use the official benchmark results

distributed for OTB-100 [449]. Since DAT is color-based, we evaluate on the 76 color

sequences of OTB-100 and skip the monochrome videos. OTB defines 11 visual attributes

to classify tracking challenges, i.e. (i) background clutter, (ii) fast motion, (iii) illumination

variation, (iv) in-plane rotation and (v) out-of-plane rotation of the target, (vi) low resolu-

tion, (vii) motion blur, (viii) non-rigid deformation, (ix) occlusion, (x) if the target moves

out-of-view, and (xi) scale variation. A detailed list of sequences along with their attribute

annotations can be found in [449]. Note that in contrast to the VOT benchmarks, the

OTB only provides per-sequence attributes.

We compare against the OTB-100 top-performing Struck [176], SCM [494], ASLA [212]

and CSK [188] trackers. Additionally, we include results for the context-aware CXT [104]

and the color-based VTD [249] and VTS [250]. Struck is an adaptive tracking-by-detection

approach which employs an online structured output support vector machine (SVM). SCM

uses a sparse collaborative appearance model based on a discriminative object-versus-

background classifier and a sparse generative histogram model. ASLA leverages sparse

coding and uses a structural local sparse appearance model in combination with incremen-

tal subspace learning. CSK efficiently learns a correlation filter via kernel ridge regression
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Table 5.12: Performance on VOT’16 w.r.t. to the six annotated visual attributes. State-of-the-art
trackers are sorted according to their official overall VOT’16 rank.

Tracker
Camera Motion Illum. Change Occlusion

Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓

O
u
rs

DAT 0.47 45.00 0.51 18.00 0.47 6.00
DAT+s 0.46 36.00 0.49 11.00 0.33 3.00
DAT+c 0.45 39.00 0.50 21.00 0.36 5.00
DAT+r 0.40 37.00 0.46 19.00 0.32 3.00
DAT’15 [351] 0.49 55.00 0.54 24.00 0.69 8.00
noDAT 0.46 55.00 0.53 18.00 0.43 11.00

T
o
p
3 C-COT [97] 0.56 24.00 0.58 11.00 0.65 2.00

TCNN [321] 0.55 27.93 0.58 8.47 0.64 3.13
SSAT 0.57 30.07 0.61 8.87 0.67 2.27

M
a
jo
r
li
te
ra
tu
re

Staple [42] 0.55 34.00 0.58 13.00 0.71 7.00
MDNet [319] 0.49 20.00 0.52 11.00 0.41 3.00
EBT [495] 0.55 33.00 0.56 18.47 0.64 3.80
DSST [92] 0.52 53.00 0.55 30.00 0.56 6.00
SAMF [271] 0.53 66.00 0.58 31.00 0.68 6.00
KCF [189] 0.47 56.00 0.49 40.07 0.44 5.00
ACT [93] 0.36 67.00 0.42 35.00 0.46 17.00
Struck’16 [177] 0.47 81.00 0.53 46.00 0.39 7.00
FoT [428] 0.41 166.00 0.41 61.00 0.55 28.00
CMT [323] 0.46 36.00 0.50 25.00 0.43 6.00

NCC 0.50 246.00 0.53 89.00 0.43 18.00

Tracker
Size Change Motion Change Unassigned

Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓

O
u
rs

DAT 0.47 34.00 0.41 41.00 0.40 24.00
DAT+s 0.44 34.00 0.39 43.00 0.41 25.00
DAT+c 0.46 31.00 0.43 31.00 0.41 19.00
DAT+r 0.39 30.00 0.36 36.00 0.36 17.00
DAT’15 [351] 0.42 52.00 0.43 20.00 0.47 31.00
noDAT 0.46 40.00 0.44 45.00 0.40 30.00

T
op

3 C-COT [97] 0.47 20.00 0.44 14.00 0.50 13.00
TCNN [321] 0.52 22.13 0.51 15.33 0.51 14.93
SSAT 0.54 21.73 0.51 23.67 0.55 15.07

M
a
jo
r
li
te
ra
tu
re

Staple [42] 0.51 35.00 0.43 24.00 0.51 15.00
MDNet [319] 0.44 19.00 0.37 17.00 0.36 11.00
EBT [495] 0.51 21.40 0.49 12.87 0.51 12.07
DSST [92] 0.47 44.00 0.44 25.00 0.43 30.00
SAMF [271] 0.48 60.00 0.41 22.00 0.51 33.00
KCF [189] 0.42 51.13 0.40 24.00 0.34 31.93
ACT [93] 0.35 69.00 0.28 34.00 0.39 34.00
Struck’16 [177] 0.43 63.00 0.37 48.00 0.34 36.00
FoT [428] 0.36 125.00 0.34 74.00 0.40 92.00
CMT [323] 0.46 30.00 0.45 31.00 0.40 22.00

NCC 0.45 128.00 0.47 61.00 0.38 107.00
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DAT noDAT EBT [495] ACT [93]

DAT+s C-COT [97] MDNet [319] FoT [428]

DAT+c TCNN [321] KCF [189] Struck’16 [177]

DAT+r SSAT SAMF [271] CMT [323]

DAT’15 [351] Staple [42] DSST [92] NCC

(a) Legend.
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(b) Camera motion.
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(c) Illumination change.
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(d) Occlusion.
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(e) Size change.
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(f) Motion change.
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(g) Unassigned.

Figure 5.5: Ranking plots using the expected average overlap (EAO) metric for all 6 annotated
attributes of the VOT’16 benchmark. Better trackers are located to the top right. Note that
the ranking for all unassigned frames in (g) has a different y axis range due to the overall lower
performance of all trackers for these frames.
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(a) Results over all 76 color sequences.
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(b) Results for attribute non-rigid deformation (38 sequences).
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(c) Results for attribute low resolution (6 sequences).

Figure 5.6: Results on the OTB-100 [449] dataset for (a) all color sequences, as well as the (b) non-
rigid deformation and (c) low resolution attributes. Each experiment shows the success plot (left
column; overlap ratio w.r.t. ground truth) and precision plot (right column; center distance) for
each attribute. The legend (middle column) shows the area under the success curve (AUC) and the
representative distance precision score (RDP, percentage of frames with center distance less than
20 pixels). Best, second best and third best success and precision scores have been highlighted in
the legend. Legend entries are sorted according to their AUC score. Solid lines denote our DAT
variants, whereas dashed lines illustrate the performance of state-of-the-art trackers.
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(a) Results for attribute fast motion (33 sequences).
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(b) Results for attribute motion blur (26 sequences).
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(c) Results for attribute occlusion (42 sequences).

Figure 5.7: Results on the OTB-100 [449] dataset for the attributes (a) fast motion, (b) motion
blur and (c) occlusion. Each experiment shows the success plot (left column; overlap ratio w.r.t.
ground truth) and precision plot (right column; center distance) for each attribute. The legend
(middle column) shows the area under the success curve (AUC) and the representative distance
precision score (RDP, percentage of frames with center distance less than 20 pixels). Best, second
best and third best success and precision scores have been highlighted in the legend. Legend entries
are sorted according to their AUC score. Solid lines denote our DAT variants, whereas dashed lines
illustrate the performance of state-of-the-art trackers.
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(a) Results for attribute in-plane rotation (36 sequences).
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(b) Results for attribute out-of-plane rotation (49 sequences).
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(c) Results for attribute out-of-view (11 sequences).

Figure 5.8: Results on the OTB-100 [449] dataset for the attributes (a) in-plane rotation, (b) out-
of-plane rotation and (c) out-of-view. Each experiment shows the success plot (left column; overlap
ratio w.r.t. ground truth) and precision plot (right column; center distance) for each attribute.
The legend (middle column) shows the area under the success curve (AUC) and the representative
distance precision score (RDP, percentage of frames with center distance less than 20 pixels).
Best, second best and third best success and precision scores have been highlighted in the legend.
Legend entries are sorted according to their AUC score. Solid lines denote our DAT variants,
whereas dashed lines illustrate the performance of state-of-the-art trackers.
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(a) Results for attribute illumination variation (32 sequences).
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(b) Results for attribute background clutter (24 sequences).
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(c) Results for attribute scale variation (50 sequences).

Figure 5.9: Results on the OTB-100 [449] dataset for the attributes (a) illumination variation,
(b) background clutter and (c) scale variation. Each experiment shows the success plot (left col-
umn; overlap ratio w.r.t. ground truth) and precision plot (right column; center distance) for each
attribute. The legend (middle column) shows the area under the success curve (AUC) and the
representative distance precision score (RDP, percentage of frames with center distance less than
20 pixels). Best, second best and third best success and precision scores have been highlighted in
the legend. Legend entries are sorted according to their AUC score. Solid lines denote our DAT
variants, whereas dashed lines illustrate the performance of state-of-the-art trackers.
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from grayscale imagery in the Fourier domain. CXT identifies and exploits distractors

and supporters, where the latter are image regions that consistently co-occur with the

target and exhibit high motion correlation. VTD decomposes the object model into mul-

tiple observation models constructed by sparse principal component analysis (SPCA) and

combines the model estimates within an interactive Markov Chain Monte Carlo (IMCMC)

framework.

To avoid cluttering the evaluation plots, we skip the results for noDat and DAT+r,

as these are constantly outperformed by the other DAT variants. Detailed per-sequence

results for all DAT variants and selected state-of-the-art approaches are provided in Ap-

pendix C.1. Figures 5.6–5.9 show the result plots, where Fig. 5.6a summarizes the perfor-

mance over all sequences and the remaining plots show the performance for each annotated

attribute. DAT consistently performs on par with the benchmark winner Struck, where

the latter achieves a better overlap at sequences with fast motion and motion blur. All

DAT variants outperform the context-aware CXT which indicates that our probabilis-

tic distractor-aware model is beneficial compared to explicitly handling distractors and

supporters. It is also interesting to see that DAT outperforms specialized trackers. For

example, VTD is explicitly designed to handle drastic appearance changes, abrupt mo-

tion changes and illumination variations. However, our approach outperforms VTD on all

attributes except for sequences with significant background clutter.

A drawback of OTB is that it focuses on unsupervised short-term experiments. Thus,

trackers with explicit re-detection capability usually achieve better ranks on this bench-

mark. Additionally, OTB does not provide per-frame attribute annotations, which makes

it challenging to draw valid conclusions out of its attribute evaluations. For example, Fig-

ure 5.9a indicates inferior performance of DAT for sequences with illumination variation.

This is in stark contrast to the VOT evaluation, which showed that DAT has a favorable

robustness during illumination changes, i.e. it does not fail immediately. Looking closely

at the tracking output of the corresponding sequences, we can observe that immediate

illumination changes (e.g. caused by a flashing light) cause DAT to partially drift but it

still stays on the target (leading to a rather low average overlap score), which is also indi-

cated by the corresponding distance precision plot in Fig. 5.9a – note DAT’s high distance

precision after relaxing the distance threshold.

5.1.6 Runtime Evaluation

Our final evaluation compares the tracking speed as measured by the respective benchmark

frameworks. We implemented a simple measure to limit the maximum processing time

to guarantee real-time capable applications of DAT. Judging from our previous dataset

analysis – recall Figure 5.1a in Section 5.1.1 – the median object diagonal measures ap-

proximately 100 pixels. Thus, we limit the maximum target diagonal to dτ = 100 pixels
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and resize the input image I at time t by the factor

λI = min

(
1,

⌈
dτ
dt−1

⌋

1/10

)
, (5.5)

where dt−1 is the target diagonal at frame t− 1 and ⌈·⌋1/10 denotes rounding to the closest

one-tenth, e.g. ⌈0.83⌋1/10 = 0.8. Note that we only downscale the image if the object

becomes too large and would span large regions of the input image. To resample the

image efficiently, we use nearest neighbor interpolation as more complex interpolation

schemes did not noticeably influence the overall tracking scores. The limit of dτ = 100

pixels ensures that the size of the object region is approximately 70× 70 pixels (assuming

a perfectly square bounding box for simplicity), which in practice is sufficient to compute

distinctive color distributions for DAT.

Table 5.13 summarizes the implementation details and runtime performance of DAT

and selected state-of-the-art approaches. If there are multiple implementations available

for state-of-the-art trackers, such as Struck [176, 177] or CMT [323, 324], we only report

the fastest. Since VOT’14, the VOT toolkits report speed in terms of equivalent filter

operations (EFO) instead of raw frames per second (FPS) to provide a platform inde-

pendent runtime analysis, recall Section 5.1.2. Note however, that especially for Mat-

lab R©-based trackers, these runtime measurements are not always accurate, as discussed

in Section 5.1.3.1 (page 77). OTB, on the other hand, reports tracking speed in raw FPS

without addressing the hardware bias.

Overall, all DAT prototypes rank amongst the fastest and most efficient trackers,

despite being implemented in pure Matlab R©. Our scale-agnostic DAT and the sum

reduction-based (scale-aware) DAT+s consistently exceed 100 FPS across all sequences.

In contrast to computationally demanding CNN-based trackers, such as C-COT [97], MD-

Net [319] or TCNN [321], and trackers which rely on accurate segmentation, such as

HoughTrack [156, 157], our approach fulfills all requirements for robust tracking in time-

critical applications.

5.1.7 Discussion

Overall, our distractor-aware tracker ranks amongst the state-of-the-art trackers both with

respect to accuracy and robustness. Even if provided with noisy initializations, our tracker

is able to recover and stay on the target, as indicated by the results on the VOT region

noise experiments. A key finding is that the proposed context-aware object representation

significantly outperforms other color-based models, such as ACT [93] and OGT [320] (recall

Tables 5.10 and 5.11), as well as trackers based on a combination of image gradients and

color information, such as PixelTrack [113] (recall Table 5.10).

Typical failure cases of DAT are illustrated in Figure 5.10. Fast scale changes, espe-

cially in combination with partial occlusions, such as captured by the graduate sequence,
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Table 5.13: Implementation details and runtime comparison for selected trackers on the (a) VOT
and (b) OTB datasets. Reported runtimes – EFO on VOT and FPS on OTB – are measured using
the official evaluation frameworks. Trackers from major literature are sorted alphabetically.

(a) VOT’13 [238], VOT’14 [239] and VOT’16 [241].

Tracker Publication Implementation GPU EFO

O
u
rs

DAT Matlab R© 17.2
DAT+s Matlab R© 17.0
DAT+c Matlab R© 9.9
DAT+r Matlab R© 13.8
noDAT Matlab R© 20.1

M
a
jo
r
li
te
ra
tu
re

ACT [93] CVPR’14 Matlab R©/Mex 18.3
C-COT [97] ECCV’16 Matlab R©/Mex X 0.5
CT [481] ECCV’12 C/C++ 6.3
DSST [92] BMVC’14 Matlab R©/Mex 12.7
EDFT [132] VOT’13 Matlab R© 3.9
FoT [428] CVWW’11 C/C++ 114.6
HoughTrack [157] CVIU’13 C/C++ 0.9
KCF [189] TPAMI’15 Matlab R©/Mex 24.2
LGT [72] TPAMI’13 Matlab R©/Mex 4.1
MDNet [319] CVPR’16 Matlab R©/Mex X 0.6
MIL [18] TPAMI’11 C/C++ 1.9
PixelTrack [113] ICCV’13 C/C++ 49.9
PLT [186] VOT’13 C/C++ 75.9
SAMF [271] VOT’14 Matlab R©/Mex 4.0
SSAT VOT’16 Matlab R©/Mex X 0.5
Staple [42] CVPR’16 Matlab R©/Mex 11.1
Struck’16 [177] TPAMI’16 C/C++ 14.6
TCNN [321] – Matlab R©/Mex X 1.0

(b) OTB-100 [449].

Tracker Publication Implementation FPS

O
u
rs

DAT Matlab R© 143.1
DAT+s Matlab R© 132.8
DAT+c Matlab R© 70.2
DAT+r Matlab R© 93.8
noDAT Matlab R© 180.2

M
a
jo
r
li
te
ra
tu
re

ASLA [212] CVPR’12 Matlab R©/Mex 7.1
CSK [188] ECCV’12 Matlab R©/Mex 229.6
CXT [104] CVPR’11 C/C++ 14.3
SCM [494] TIP’14 Matlab R©/Mex 0.4
Struck’11 [176] ICCV’11 C/C++ 10.0
VTD [249] CVPR’10 Matlab R©/Mex 3.3
VTS [250] ICCV’11 Matlab R©/Mex 3.1
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Figure 5.10: Challenging sequences from the ♦ VOT’14, ♠ VOT’16 and ♥ OTB benchmarks,
which cause DAT to fail. White and red bounding boxes denote the annotated ground truth and
DAT tracking results, respectively. Dashed bounding boxes indicate a previous target loss. Images
are slightly cropped and frame numbers are superimposed only for visualization. See text for
details.

lead to DAT focusing on small sub-parts of the target, e.g. a person’s face instead of the

full body. This reduces the overall accuracy significantly and additionally, may lead to

failure once the target turns around and the face is no longer visible, as can be seen from

the sequence’s last frame in Figure 5.10a. Obviously, by relying on a color-based model,

DAT cannot track objects which are indistinguishable from their surroundings, as illus-

trated by the rabbit sequence in Figure 5.10b, where a mountain hare tries to cross an

avalanche. Similarly, scenes with low contrast and drastic illumination changes will also

lead to frequent failures, as shown by the skating sequence in Figure 5.10c.

Although color information on its own is obviously not the solution to all tracking-

related problems, it is a highly efficient and powerful cue for a large variety of typical

tracking scenarios. Additionally, including our distractor-aware representation comes at a

reasonably low computational cost and proves to be a crucial extension to standard color-

based models. In particular, all DAT variants significantly outperform the distractor-

agnostic baseline, noDAT, especially w.r.t. robustness. Without suppressing visually sim-

ilar regions, a standard color model as in noDAT is prone to drifting. Similarly, our DAT

variants are consistently more robust than ACT, which uses a more complex color repre-
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sentation but also lacks the ability to identify and handle distractors accordingly. Finally,

our proposed scale adaptation techniques are very efficient, especially the proposed sum

reduction-based adaptation which both, achieves the best performance of all DAT vari-

ants and processes more than 100 FPS. Thus, the proposed DAT tracker is well suited for

time-critical application domains, such as visual surveillance or robotics.

5.2 Occlusion Geodesics to the Test

In the following, we investigate our occlusion-aware multiple object tracking approach. To

this end, we focus on standard monocular visual surveillance scenarios. We will briefly

review relevant sequences and evaluation protocols in Sections 5.2.1 and 5.2.2, respectively.

Next, we perform a detailed parameter ablation study in Section 5.2.3 and compare our

approach against the state-of-the-art in Section 5.2.4. Finally, we discuss limitations and

potential improvements in Section 5.2.5.

5.2.1 Datasets

In contrast to single object tracking, there are notably less publicly available datasets to

evaluate multiple object tracking approaches, such as the TUD sequences [10], the EPFL

multi-camera sequences [39, 137], the ETH sequences [121], the MVL multi-camera dataset

Lab5 [297], the ICG multi-camera dataset Lab6 [349], the NIST TRECVid sequences [363]

or the PNNL Parking Lot sequences [384]. The reduced availability of MOT datasets

can be attributed to the fact that providing accurate ground truth annotations for such

evaluations requires a significant manual effort. Nevertheless, there are a few initiatives

which aim to standardize MOT evaluations, such as CLEAR [41, 402], PETS [136, 267,

339, 340, 471] or the MOT challenges [256, 309].

We focus our MOT evaluation on visual surveillance scenarios, since tracking pedestri-

ans provides a challenging testbed for such algorithms12. Although the majority of MOT

research focuses on such pedestrian scenarios, there are only very few publicly available

surveillance sequences which provide a sufficiently accurate calibration w.r.t. both intrinsic

and extrinsic camera parameters. Since we rely on world coordinates to leverage geomet-

ric context information, we select the widely used PETS’09 [136] and TownCentre [36]

sequences for our evaluations.

The PETS’09 dataset [136] shows an outdoor scene with numerous pedestrians recorded

from multiple cameras at 7FPS. One of the viewpoints, i.e. View 1, is a standard surveil-

lance camera mounted on a pole which enables a large field of view. We only use this

viewpoint, as this monocular setup yields typical visual surveillance challenges, namely

frequent occlusions – either caused dynamically by people occluding each other or static

occlusions due to a traffic sign which covers large parts of the intersection. This dataset

12For a discussion of the key benefits of visual surveillance scenarios for MOT evaluations recall Sec-
tion 2.4.
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Table 5.14: Overview of the visual surveillance sequences used to benchmark our MOT approach.
For each sequence, we list the capture settings, the number of annotated ground truth trajectories,
as well as the corresponding rectangular tracking area (in meters).

Sequence
Image Frame Num. Num. Tracking

Resolution Rate Frames Trajectories Area

PETS’09 S2L1 [136] 768× 576 7.0 795 19 19.1× 16.0
PETS’09 S2L2 [136] 768× 576 7.0 436 68 19.1× 16.0
PETS’09 S2L3 [136] 768× 576 7.0 240 44 19.1× 16.0
TownCentre [36] 1920× 1080 2.5 450 227 36.0× 19.0

contains three tracking sequences – i.e. S2L1, S2L2, and S2L3 – which capture differently

crowded scenarios. As PETS’09 does not provide official ground truth annotations, we

use the ground truth provided by Milan et al. [308].

The TownCentre sequence [36] shows a busy pedestrian precinct from a single elevated

camera. On average, 16 people are visible at any time, resulting in frequent dynamic

occlusions. Additionally, scene structures cause several detection failures, e.g. benches

which partially occlude pedestrians or mannequins in shop displays which confuse the

object detector. The dataset provides manually refined HOG [91] detections as ground

truth annotations for every 10-th frame. Although the original sequence is recorded at

25FPS, usually only every 10-th frame is used for tracking, e.g. [253, 256], which results in

an actual frame rate of 2.5 FPS. This temporal undersampling of the surveillance footage

allows us to demonstrate the robustness of our MOT approach at low frame rates and

larger object movements between subsequent frames.

A general overview of all used sequences is provided in Table 5.14. The characteris-

tics of each sequence are illustrated more detailed in Figure 5.11, where we analyze the

ground truth annotations via box plots. In particular, we can observe the large variation

w.r.t. the number of simultaneously visible objects. PETS’09 S2L3 is the most crowded

scene – however, this is a rather short sequence where a single large group of people walks

across the field of view. PETS’09 S2L2 and TownCentre, on the other hand, are typ-

ical visual surveillance scenarios where only few pedestrians interact with each other –

e.g. people meeting on the street. On average, the walking speed throughout all scenarios

is 1.2 [m/s], which very accurately resembles the pedestrian characteristics used to design

public pedestrian facilities [131]. The few outliers in terms of velocity are caused by fast

moving pedestrians (PETS’09 S2L2) and cyclists (TownCentre), respectively. Addition-

ally, the box plots also highlight differences caused by the capture setups used for PETS’09

and TownCentre, namely object size – influenced by the camera sensor resolution and view

point – and overlap between subsequent ground truth annotations – which depends mostly

on the frame rate, due to the rather small variations of the object velocities.
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Figure 5.11: Sequence characteristics showing the distribution of (a) crowd densities, (b) pedes-
trian sizes, (c) motion (on the ground plane) of the pedestrians and (d) overlap of ground truth
annotations (on the image plane) between subsequent frames. Each box plot shows the median,
first and third quartiles as well as the minimum and maximum data values. For visualization
purposes, interquartile ranges in (c) are omitted if they are too close to the median. Large object
motion in (c), as well as zero overlap in (d) are caused by fast moving people, e.g. cyclists, as well
as the low frame rate of the TownCentre sequence.
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5.2.2 Evaluation Metrics and Protocols

Similar to single object tracking evaluations, there exists a multitude of different per-

formance metrics to analyze MOT approaches, e.g. [41, 219, 273, 373, 388, 402, 446].

We follow the recent evaluation trend, e.g. [22, 193, 213, 308, 439], where two widely

established sets of metrics are reported, namely the CLEAR MOT metrics [41, 402] in

combination with a set of trajectory quality measures [446].

To compute these metrics, we first need to assign valid tracker hypotheses to ground

truth trajectories. Since we track in ground plane coordinates, we use the Euclidean

distance to cut off invalid assignments. In particular, a tracker’s hypothesis xt
T at time t

is considered to be a valid match for the ground truth annotation xt
G, iff ‖xt

T−xt
G‖2 ≤ τd.

Similar to several recent tracking evaluations, such as [13, 41, 193, 256, 308], we employ

the cut-off threshold τd = 1 [m]. To assign hypotheses to ground truth trajectories, we

follow the protocol defined within the 3D MOT’15 benchmark [256], i.e. the optimal

matching is found using the Hungarian algorithm [317] with additionally considering the

temporal consistency. In particular, if at time t− 1 the i-th ground truth object – located

at xt−1
G,i – was matched to the j-th hypothesis – located at xt−1

T,j – and their distance

‖xt
G,i − xt

T,j‖2 ≤ τd at time t, then i and j are matched again at frame t, even if there

exists another hypothesis which is closer to the annotation xt
G,i. Afterwards, we can count

the number of true positives (TP) – i.e. hypotheses which were matched to a ground truth

annotation – and false positives (FP) – i.e. hypotheses which could not be assigned to

an annotated object location. Any annotated ground truth object for which there is no

matching hypothesis within a radius of τd is considered a false negative (FN), i.e. it is

missed by the tracker.

Using the successfully matched trajectories, we can count the number of identity

switches (IDS13). In particular, we follow the definitions of [256, 273] and count an identity

switch iff a ground truth annotation xt
G,i is matched to hypothesis xt

T,j , and its previously

assigned hypothesis was xt−1
T,k , with j 6= k. This is a stricter definition than the original

formulation of the CLEAR MOT metrics [402]. Although the overall number of identity

switches should be as low as possible for good tracking approaches, this absolute measure

alone is not always expressive of the actual tracking performance. For example, the IDS

score could be kept rather low by only reporting a small fraction of the tracked hypothe-

ses. Thus, instead of focusing on a single metric, it is important to consider multiple

performance measures for a valid conclusion about a tracker’s performance. To this end,

we rely on the following evaluation metrics throughout our experiments:

• Multiple Object Tracking Accuracy (MOTA14) [41, 402] – combines three sources of

errors and thus, is one of the most widely used metrics to summarize the tracking

13IDS is the absolute number of identity switches, i.e. IDS ∈ Z+
0 = {s ∈ Z | s ≥ 0}, where lower scores

correspond to better performance. We denote this by ↓ throughout our evaluations.
14MOTA ∈ (−∞, 1], where higher scores correspond to better performance (denoted by ↑).
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performance in a single score. This metric is defined as

MOTA = 1−

∑N
t=1 FN

t + FPt + IDSt
∑N

t=1GTt
, (5.6)

where N is the number of time steps and FNt, FPt, IDSt denote the number of false

negatives, false positives, and identity switches at time t, respectively. Similarly,

GTt denotes the number of annotated ground truth objects at time t.

• Multiple Object Tracking Precision (MOTP15) [41, 402] – measures the localization

precision of a tracker as the average location error. This metric is defined as

MOTP = 1−

∑N
t=1

∑TPt

i=1 ‖xt
G,i − xt

T,m‖2

τd
∑N

t=1TP
t

, (5.7)

where xt
T,m is the location of the m-th hypothesis which has been matched with the

ground truth annotation xt
G,i at time t. TPt = GTt−FNt denotes the number of true

positive tracker hypotheses for the current time step. Note that MOTP, despite the

similar name, is not related to precision (i.e. positive predictive value or relevance)

in the context of evaluating classifiers and object detectors.

• Trajectory Quality Measures [446] – these measures are widely used to reason about

the consistency of the tracking output. In particular, each ground truth trajectory

can be classified as mostly tracked (MT), partially tracked (PT) or mostly lost (ML),

depending on how much of it is covered by the tracker’s hypotheses. More precisely,

if a ground truth trajectory is successfully tracked – i.e. if there is a matching

hypothesis – for at least 80% of its total length, it is considered to be mostly tracked.

If the trajectory is only covered by tracker hypotheses for less than 20% of its total

length, it is considered to be mostly lost. Otherwise, the trajectory is classified

as partially tracked. Note that identity switches have no effect on these quality

measures. To avoid cluttering the result listings, we will only report MT and ML as

fractions of the number of ground truth trajectories16, i.e. MT/GT and ML/GT, since

GT – the total number of ground truth trajectories – can be recalled from Table 5.14

and PT is redundant, i.e. PT = GT−MT−ML.

Additionally, these quality measures include the number of identity switches (IDS)

and the number of trajectory fragmentation (FM17). The latter counts how many

times a ground truth trajectory is interrupted, i.e. how often its status changed from

being tracked to being missed by the tracker. Thus, lower FM scores indicate that

the tracker is able to generate long and persistent trajectories.

15MOTP ∈ [0, 1], where higher scores correspond to better performance (denoted by ↑).
16Thus, MT ∈ [0, 1] and ML ∈ [0, 1], where higher MT scores (denoted by ↑) and lower ML scores

(denoted by ↓) correspond to better tracking performance, respectively.
17FM ∈ Z+

0 , where lower numbers correspond to better performance (denoted by ↓).
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Table 5.15: Default parameter settings for the occlusion geodesics-based tracker variants (Occ-
Geo). Unless stated otherwise, these parameters have been fixed throughout all experiments.

Parameter Value

Conservative association threshold in [m/s] τc ∈ (0,∞) 2.00

Physically feasible motion cut-off τp ∈ [0, 1] 10−4

Plausible motion variance σ2p ∈ (0,∞) 1.30

Directional motion variance σ2d ∈ (0, 1] 0.40

Detector belief factor βd ∈ [0, 1] 0.70

We use the official MOT challenge framework [256, 309] to compute all metrics. To al-

low initialization and termination in our causal tracking framework, we allocate a 100 [px]

wide border around each camera image as the entrance and exit regions. We skip these

regions during evaluation for a fair comparison between causal and offline approaches.

Thus, we effectively track on the inner regions of size 568× 376 for all PETS’09 sequences

and 1720 × 880 for the TownCentre sequence, respectively. Additionally, we linearly in-

terpolate missing object detections for the reported trajectories to prevent skewing the

results.

5.2.3 Ablation Study

The following experiments provide detailed insights into the sensitivity of out MOT ap-

proach regarding (i) its parameter settings and (ii) its dependency on the used detector.

For this ablation study, we report the tracking performance averaged over all sequences,

i.e. PETS’09 S2L1, S2L2, and S2L3, as well as TownCentre. We will vary one parameter

of our occlusion geodesics-based tracker – denoted as OccGeo – while keeping all others

fixed. In particular, we use the default parameter settings as summarized in Table 5.15.

Additionally, we report the runtime – in frames per second (FPS) – of all experiments

to indicate the performance versus speed tradeoff. Similar to our single object tracking

evaluation, all experiments have been conducted on a dedicated computer – an Intel R©

NUC Skull Canyon with a 6th generation CoreTM i7 processor, recall Section 5.1.3 – to

ensure consistent runtime measurements. To avoid skewing these measures, we only report

the tracking time, i.e. without the time required to obtain the input detections. A sepa-

rate analysis of different object detectors will be presented in Section 5.2.3.2. Detection

experiments which require a GPU have been conducted on a PC with a 2nd generation

CoreTM i7 processor and an NVIDIA R© GeForce R© Titan Xp GPU.

5.2.3.1 Trajectory Model Parameters

To track multiple objects, our occlusion geodesics-based tracking algorithm relies on sev-

eral intuitive parameters, namely (i) thresholds to avoid implausible assignments, (ii) vari-
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Table 5.16: Effects of varying threshold parameters τc and τp of our MOT approach. Best, second
best and third best results have been highlighted for each measure.

(a) Conservative association threshold τc.

τc MOTA↑ MOTP↑ MT/GT
↑ ML/GT

↓ IDS↓ FM↓ FPS↑

0.50 0.49 0.65 0.39 0.16 657 571 6.1
1.00 0.49 0.65 0.41 0.16 640 562 8.2
1.50 0.48 0.65 0.40 0.15 599 544 9.6
2.00 0.48 0.65 0.38 0.16 576 561 12.8
2.50 0.47 0.65 0.38 0.16 599 536 15.3
3.00 0.47 0.65 0.37 0.16 612 532 16.9
3.50 0.47 0.65 0.36 0.16 640 554 19.1
4.00 0.47 0.66 0.36 0.16 622 553 19.9
4.50 0.48 0.65 0.38 0.15 640 570 20.3

(b) Feasible movement threshold τp.

τp MOTA↑ MOTP↑ MT/GT
↑ ML/GT

↓ IDS↓ FM↓ FPS↑

10−7 0.49 0.66 0.35 0.14 688 679 8.4
10−6 0.49 0.66 0.35 0.14 688 679 8.4
10−5 0.46 0.66 0.35 0.16 589 589 9.5
10−4 0.48 0.65 0.38 0.16 576 561 12.8
10−3 0.45 0.65 0.38 0.15 577 507 12.1
10−2 0.40 0.64 0.38 0.15 505 471 12.2
10−1 0.30 0.63 0.33 0.19 517 418 9.4

ances to penalize significant motion deviations, and (iii) a factor to represent our degree

of belief in the object detector. For all of the following experiments, we rely on object

detections obtained by the Aggregated Channel Features (ACF) [109] detector.

Threshold Parameters. We start this ablation study by analyzing the effects of the

two threshold parameters, summarized in Table 5.16. The threshold τc influences how

many detections are handled within the conservative association step. As a rule of thumb,

it should be set to the expected average object velocity. Thus, we use a default setting of

τc = 2 [m/s] which allows to handle both inaccurate 3D coordinate projections – e.g. caused

by loose object bounding boxes – and pedestrians moving faster than the average walking

speed. The threshold τp controls how fast we expect an occluded object to move while

it is not visible. Since our implementation relies on normalized distances – to avoid a

temporally dependent parameter, recall Section 4.3.3 – we use a default setting of τp =

10−4. Note that the overall tracking performance is very stable when varying either of the

threshold levels.
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Table 5.17: Effects of varying motion variances σ2
d and σ2

p. Best, second best and third best
results have been highlighted for each measure.

(a) Directional variance σ2
d.

σ2
d MOTA↑ MOTP↑ MT/GT

↑ ML/GT
↓ IDS↓ FM↓ FPS↑

0.10 0.49 0.65 0.38 0.16 575 556 12.7
0.20 0.48 0.65 0.38 0.16 569 550 12.5
0.30 0.48 0.65 0.37 0.15 581 560 12.9
0.40 0.48 0.65 0.38 0.16 576 561 12.8
0.50 0.49 0.65 0.39 0.15 589 552 13.1
0.60 0.48 0.65 0.40 0.15 595 551 13.0
0.70 0.48 0.65 0.40 0.16 596 550 13.0
0.80 0.48 0.65 0.39 0.16 590 554 12.9
0.90 0.48 0.65 0.39 0.15 587 549 13.0
1.00 0.47 0.66 0.38 0.16 597 552 13.1

(b) Plausible motion variance σ2
p.

σ2
p MOTA↑ MOTP↑ MT/GT

↑ ML/GT
↓ IDS↓ FM↓ FPS↑

0.10 0.23 0.62 0.26 0.24 525 331 10.4
0.30 0.29 0.63 0.33 0.20 512 410 8.4
0.50 0.36 0.64 0.37 0.16 535 463 9.4
0.70 0.41 0.64 0.39 0.15 537 495 12.4
0.90 0.46 0.65 0.39 0.15 547 505 12.4
1.10 0.47 0.66 0.40 0.14 559 502 12.8
1.30 0.48 0.65 0.38 0.16 576 561 12.8
1.50 0.47 0.65 0.35 0.15 609 576 12.6
1.70 0.48 0.66 0.35 0.15 603 613 9.7
1.90 0.48 0.65 0.36 0.14 651 645 8.4

Motion Variance. The motion-based confidence terms in our object likelihood function

rely on two predefined variance parameters. More precisely, σ2p influences the plausible

motion term, whereas σ2d influences the penalization of changing the movement direction.

As can bee seen from the results in Table 5.17, our tracking approach is again rather

insensitive to these parameter settings. The only notable performance degradation occurs

when choosing σ2p too low, as this constrains the plausible motion of the occluded object

too much and thus, prevents re-assigning detections to the corresponding trajectory. This

results in many lost trajectories, as can be seen by the low MT and MOTA scores for

σ2p ≤ 0.5. As a consequence, the corresponding IDS and FM scores are also low, which

shows that IDS and FM on their own are not indicative of good tracking performance,

as already mentioned in Section 5.2.2. Hence, it is important to always consider several

complementary metrics to analyze a MOT approach, e.g. MOTA in combination with MT

and IDS.
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Table 5.18: Effects of varying the detector belief factor βd. Best, second best and third best
results have been highlighted in each column.

βd MOTA↑ MOTP↑ MT/GT
↑ ML/GT

↓ IDS↓ FM↓ FPS↑

0.00 0.47 0.65 0.38 0.15 560 547 12.8
0.10 0.47 0.65 0.38 0.15 558 543 12.7
0.20 0.46 0.65 0.38 0.15 575 545 12.7
0.30 0.46 0.65 0.37 0.15 570 545 12.8
0.40 0.47 0.65 0.38 0.15 574 547 12.9
0.50 0.46 0.65 0.38 0.15 580 545 12.8
0.60 0.47 0.65 0.38 0.16 584 553 12.9
0.70 0.48 0.65 0.38 0.16 576 561 12.8
0.80 0.48 0.65 0.38 0.16 581 557 13.3
0.90 0.48 0.65 0.37 0.15 575 555 13.2
1.00 0.46 0.65 0.31 0.15 756 637 13.3

Detector Reliability. The final parameter in our tracking model represents our belief

in the detector – more precisely, how well we expect the detector to perform if the object

is fully visible, i.e. not occluded at all. If we expect the detector to never fail under

such ideal conditions, then any missed object is only allowed to move within occluded

regions. In practice, however, such an optimal detector is not available and thus, our

model also allows missed objects to move in nonoccluded regions. Nevertheless, such cases

occur only rarely as state-of-the-art detectors typically achieve high recall levels, at least

for fully visible objects. To model this uncertainty, we use the detector belief factor βd,

which is evaluated in Table 5.18. As a rule of thumb, this parameter should be set to

approximately the area under the detector’s precision-recall curve18 (AUC). For example,

the average AUC of the used ACF detector over all sequences is 0.73 and consequently,

choosing a belief factor βd ∈ [0.6, 0.9] yields the best tracking results. Note also, that the

tracking performance degrades gracefully when choosing sub-optimal belief factors.

5.2.3.2 Object Detector Influence

As any tracking-by-detection approach heavily relies on the quality of the employed object

detector, we analyze the effects of using various state-of-the-art detectors for our tracker.

Detector Evaluation. Before analyzing the tracking performance w.r.t. different ob-

ject detectors, we first evaluate their detection performance. In particular, we inves-

tigate both classical approaches – based on hand-crafted features, such as Aggregated

Channel Features (ACF) [109], Deformable Part-based Models (DPM) [135], HOG-based

Intersection Kernel Support Vector Machines (IKSVM) [295], Locally Decorrelated Fea-

tures (LDCF) [322], and Poselets [56] – as well as recent neural network-based frame-

works, such as Faster R-CNN (F-RCNN) [362], Region-based Fully Convolutional Net-

18Detection performance will be analyzed within the next section.
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works (R-FCN) [90], Single Shot Multi-Box Detector (SSD) [280], and You Only Look

Once (YOLO) [359]. For all F-RCNN, R-FCN and SSD variants we use the correspond-

ing TensorFlow [204] models19. For all other detectors, we used the publicly available

implementations with the default parameter settings as suggested in the corresponding

publications.

We conduct all detection experiments on the same four video sequences, i.e. PETS’09

and TownCentre. Since we focus on pedestrian detection, we employ the widely used

recall (i.e. sensitivity) and precision (i.e. positive predictive value) metrics to compare

these approaches via precision-recall curves (PRC). These are defined as

Recall =
TP

TP + FN
, and Precision =

TP

TP + FP
, (5.8)

where TP, FP, FN denotes the number of true positives, false positives and false negative

(i.e. missed) detections, respectively. Note that neither recall nor precision depend on the

number of true negatives (TN). For this reason, PRCs are considered more informative

when evaluating on imbalanced datasets [100] in contrast to the alternative receiver op-

erating characteristics (ROC). Thus, we rely on precision-recall curves to avoid skewing

the following evaluation. To summarize the plots and rank detectors according to their

performance, we use the area under the precision-recall curve (AUC20).

Note that comparing the detection outputs directly would result in a highly skewed

and inconclusive evaluation. On the one hand, each detector depends substantially on

the annotations and quality of its training dataset21. However, there is a large variation

w.r.t. the annotations of publicly available pedestrian detection datasets, e.g. compare

INRIA [91] with Caltech [108]. On the other hand, the publicly available ground truth

annotations for the PETS’09 and TownCentre sequences were obtained by manually refin-

ing the output of off-the-shelf detectors. Thus, a direct comparison would favor the class

of detectors used to obtain the ground truth annotations.

To avoid such a biased analysis, we apply a bounding box regression step. In contrast

to the refinement step of recent object detectors, such as DPM [135] or R-CNN [154], we

learn a transformation from the detector’s final bounding box output to the corresponding

ground truth annotations. Thus, our refinement step simulates fine-tuning each detector on

the corresponding video sequence. More precisely, we uniformly sample 10% of the frames

and match the ground truth annotations with the detector’s output via the Hungarian

algorithm [317], where we use the bounding box intersection over union (IOU) to define

the assignment cost. Additionally, let Di = (cDi , wDi , hDi)
⊤ denote the i-th wDi × hDi

detection bounding box centered at cDi = (xDi , yDi)
⊤. With a slight abuse of notation

we use tuples as vectors, i.e. Di = (xDi , yDi , wDi , hDi)
⊤, in the following. Then, our

19We use the pretrained network weights from the TensorFlow detection model zoo, i.e. commit f7e99c0
to the official repository https://github.com/tensorflow/models, from 18 November 2017.

20AUC ∈ [0, 1], where higher scores indicate better performance (denoted by ↑).
21The attentive reader might recall our mantra from Section 2.3.2.

https://github.com/tensorflow/models
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goal is to learn the transformation coefficients wΩ, with Ω ∈ {x, y,w,h}, to transform the

elements of Di such that we obtain the refined detection D̂i =
(
x
D̂i
, y

D̂i
, w

D̂i
, h

D̂i

)⊤
. In

particular, we transform the center coordinates as

x
D̂i

= wDi Di
⊤ wx + xDi , and y

D̂i
= hDi Di

⊤ wy + yDi , (5.9)

and the bounding box dimensions as

w
D̂i

= wDi Di
⊤ ww, and h

D̂i
= hDi Di

⊤ wh. (5.10)

We learn the coefficients wΩ by optimizing the regularized least squares objective

wΩ = argmin
ŵΩ

N∑

i=1

‖D⊤
i ŵΩ − tΩ,i‖

2
2 + λ ‖ŵΩ‖

2
2, (5.11)

where N is the number of matches, tΩ,i denotes the corresponding regression target, and λ

is a regularization factor. This standard ridge regression problem can be solved in closed

form, e.g. via Cholesky factorization. We define the regression targets using the matching

ground truth annotation Gi = (xGi , yGi , wGi , hGi)
⊤ by the relative center offsets

tx,i =
xGi − xDi

wDi

, and ty,i =
yGi − yDi

hDi

, (5.12)

and the relative scale changes

tw,i =
wGi

wDi

, and th,i =
hGi

hDi

. (5.13)

Although our regression targets and inputs differ from the bounding box regression in [135,

154], we similarly found it necessary to center and decorrelate the targets – i.e. apply a

whitening transform – before optimization and use a larger regularization factor of λ = 103.

Given the refined bounding boxes, we now can fairly compare the different object de-

tectors. The precision-recall curves for the best detector variants are shown in Figure 5.12

and summarized in Tables 5.19 and 5.20. The tables also show the improvement due to

the refinement step. Note that this post-processing step is especially crucial for a fair

comparison of IKSVM [295], as it originally reports very loose bounding boxes which have

a low IOU with the tight ground truth annotations. Overall, the top-performing deep-

learning based detectors, i.e. F-RCNN [362] and R-FCN [90], perform on par with the best

detectors based on hand-crafted features, i.e. DPM [135], ACF [109] and Poselets [56]. Fur-

thermore, these results show the advantage of region-sampling approaches – which either

densely score detection hypotheses in a sliding window manner, e.g. [91, 135], or employ

region-of-interest selection in a pre-processing step, e.g. [154, 362] – over the significantly

faster, but less accurate SSD [280] and YOLO [359] – which classify pre-fixed sets of candi-
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Figure 5.12: Precision-recall plots for various state-of-the-art pedestrian detectors on the MOT
sequences. Each legend is sorted by the area under the precision-recall curve (AUC). The symbols
⊕ and ⊖ indicate that the best detection performance was achieved by upsampling or downsampling
the input image, respectively.
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Table 5.19: Detection results on the PETS’09 [136] dataset, showing the best configuration
of various off-the-shelf pedestrian detectors. The detectors are ranked by the area under the
precision-recall curve (AUC). Numbers in parentheses show the improvement due to bounding
box refinement. The symbol ⊕ indicates that the best detection performance was achieved by
upsampling the input image. Results for DPMv4

⊕ have been kindly provided by the authors
of [192, 193].

(a) PETS’09 S2L1.

Detector Training Data AUC↑ GPU FPS↑

DPMv4
⊕ [135] VOC09 [122] 0.92(+0.01) —

ACF⊕ [109] INRIA [91] 0.92(+0.00) 8.11± 0.47
F-RCNN NAS [362, 500] COCO [276] 0.92(+0.00) X 2.60± 0.13
R-FCN ResNet101 [90, 181] COCO [276] 0.89(+0.00) X 9.06± 0.52
Poselets [56] H3D [56] 0.87(+0.00) 0.07± 0.01
IKSVM⊕ [295] INRIA [91] 0.85(+0.85) 0.03± 0.00
LDCF [322] Caltech [108] 0.83(+0.02) 3.28± 0.19
YOLOv2 [358] COCO [276] 0.80(+0.00) X 62.76± 2.90
SSD Inceptionv2 [280, 406] COCO [276] 0.76(+0.01) X 16.06± 1.31

(b) PETS’09 S2L2.

Detector Training Data AUC↑ GPU FPS↑

F-RCNN ResNet101 [181, 362] COCO [276] 0.79(+0.03) X 7.23± 0.47
R-FCN ResNet101 [90, 181] COCO [276] 0.75(+0.03) X 9.07± 0.57
ACF⊕ [109] INRIA [91] 0.72(+0.04) 8.36± 0.64
DPMv4

⊕ [135] VOC09 [122] 0.71(+0.03) —
IKSVM⊕ [295] INRIA [91] 0.66(+0.61) 0.02± 0.01
Poselets [56] H3D [56] 0.65(+0.05) 0.03± 0.01
YOLOv2 [358] COCO [276] 0.51(+0.07) X 63.50± 1.88
SSD Inceptionv2 [280, 406] COCO [276] 0.50(+0.08) X 15.99± 1.45
LDCF [322] Caltech [108] 0.44(+0.04) 3.36± 0.20

(c) PETS’09 S2L3.

Detector Training Data AUC↑ GPU FPS↑

F-RCNN ResNet101 [181, 362] COCO [276] 0.68(+0.05) X 7.30± 0.55
R-FCN ResNet101 [90, 181] COCO [276] 0.67(+0.04) X 9.04± 0.69
ACF⊕ [109] INRIA [91] 0.63(+0.07) 9.14± 1.06
DPMv5

⊕ [135] INRIA [91] 0.60(+0.09) 0.08± 0.00
Poselets [56] H3D [56] 0.60(+0.09) 0.06± 0.03
IKSVM⊕ [295] INRIA [91] 0.45(+0.45) 0.03± 0.01
LDCF [322] Caltech [108] 0.42(+0.08) 3.59± 0.22
SSD Inceptionv2 [280, 406] COCO [276] 0.35(+0.00) X 15.76± 1.61
YOLOv2 [358] COCO [276] 0.31(+0.03) X 62.56± 2.96
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Table 5.20: Pedestrian detection results on the TownCentre [36] dataset, showing the best con-
figuration of various off-the-shelf pedestrian detectors. The detectors are ranked by the area under
the precision-recall curve (AUC). Numbers in parentheses show the improvement due to bounding
box refinement.

Detector Training Data AUC↑ GPU FPS↑

Poselets [56] H3D [56] 0.82(+0.06) 0.01± 0.00
DPMv5 Person Grammar [135, 153] VOC10 [122] 0.80(+0.06) 0.04± 0.00
R-FCN ResNet101 [90, 181] COCO [276] 0.78(+0.04) X 8.52± 0.54
F-RCNN Inception-ResNetv2 [362, 407] COCO [276] 0.78(+0.02) X 2.43± 0.13
IKSVM [295] INRIA [91] 0.74(+0.66) 0.02± 0.00
ACF [109] INRIA [91] 0.66(+0.03) 7.40± 0.35
YOLOv2 [358] COCO [276] 0.49(+0.05) X 65.39± 0.99
SSD Inceptionv2 [280, 406] COCO [276] 0.45(+0.07) X 15.63± 1.47
LDCF [322] Caltech [108] 0.33(+0.02) 2.84± 0.09

date bounding boxes. This accuracy versus speed tradeoff can be seen particularly well for

more crowded scenarios, such as PETS’09 S2L2 or S2L3. More detailed detection results

– including different variants of each detector – can be found in Appendix C.2.

Despite the promising detection results, there is still room for future improvements,

especially considering denser crowds of pedestrians. Although there have been some at-

tempts on detecting highly occluded pedestrians, e.g. [409, 410], these mostly focus on

groups of 2–3 people and still cannot handle larger crowds sufficiently well. Addition-

ally, there is a lack of large-scale training datasets specialized on classical surveillance

scenarios – which instead of capturing fronto-parallel or side views of pedestrians need to

be recorded from an elevated viewpoint with a large field of view. Such datasets would

particularly contribute to performance improvements of data-driven approaches, i.e. deep

learning-based detectors, and could also be used to refine object proposals in crowded

scenarios.

Detection-based Tracking Performance. We use the best variant of each detector

class to analyze the MOT performance w.r.t. the underlying detector. Table 5.21 sum-

marizes the tracking results, whereas detailed per-sequence results can be found in Ap-

pendix C.3. Overall, our tracking approach achieves the best performance by employing

ACF [109], DPM [135], F-RCNN [362] or R-FCN [90] detections. Furthermore, considering

the substantially lower scores when relying on SSD [280] and YOLO [359] detections, this

analysis shows the importance of choosing a suitable object detector. In particular, for

visual surveillance scenarios a detector should be able to robustly detect partially occluded

pedestrians.
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Table 5.21: Influence of different state-of-the-art object detectors on the tracking-by-detection
performance of our OccGeo tracker. Best, second best and third best results have been highlighted
in each column.

Detector MOTA↑ MOTP↑ MT/GT
↑ ML/GT

↓ IDS↓ FM↓ FPS↑

DPM [135] 0.58 0.65 0.28 0.23 429 489 17.4
F-RCNN [362] 0.50 0.62 0.24 0.34 326 459 16.9
ACF [109] 0.48 0.65 0.38 0.16 576 561 12.7
R-FCN [90] 0.48 0.62 0.25 0.23 550 556 16.6
IKSVM [295] 0.46 0.61 0.18 0.30 321 410 17.5
Poselets [56] 0.46 0.64 0.24 0.20 485 549 16.0
LDCF [322] 0.35 0.64 0.15 0.34 482 479 10.1
SSD [280] 0.29 0.60 0.08 0.41 465 512 13.0
YOLO [359] 0.29 0.58 0.08 0.39 442 618 9.1

5.2.4 Comparison to the State-of-the-Art

To compare our approach to the state-of-the-art, we rely on the 3D MOT’15 [256] bench-

mark, which consists of the PETS’09 S2L2 and the TownCentre sequences. As the ground

truth annotations used for the 3D MOT’15 benchmark are not publicly available, we rely

on the widely used annotations provided by [36, 308]. For a fair comparison, we use the

official 3D MOT’15 evaluation framework and the raw tracking results published for the

following state-of-the-art approaches:

• GPR-DBN [232] is the leading 3D MOT’15 approach and extends a

dynamic Bayesian network (DBN)-based tracker [231] with Gaussian process

regression (GPR).

• K-SFM [341] combines a Kalman filtering framework with a social force model (SFM)

to efficiently handle pedestrian interactions.

• LP-3D [255] is the 3D MOT’15 baseline approach and solves a global optimization

problem on the 3D coordinates via linear programming.

• LP-SFM [253] also solves a global optimization problem via linear programming, but

additionally uses a social force model which addresses pedestrian interactions and

group behavior to obtain consistent trajectory assignments.

• S-RNN [368] leverages a structure of multiple recurrent neural networks (RNNs)

to encode several contextual cues, including appearance, motion and interactions

between pedestrians.

• STV [440] builds a space-time-view hypergraph which encodes higher order con-

straints based on both, geometric and appearance cues, and solves the trajectory as-

signment by searching for dense sub-hypergraphs using a sampling-based approach.
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Table 5.22: Comparison with the state-of-the-art on the 3D MOT’15 [256] benchmark. The
second and third column indicate if the corresponding tracker uses an instance-specific appearance
model (A) and is causal (C), respectively. All trackers were evaluated with the official input
detections provided by the 3D MOT’15 committee. For our occlusion geodesics-based tracker
(OccGeo), we additionally report the results using standard DPM [135] detections. Runtime
measurements for the officially benchmarked trackers are provided by [256]. Best, second best and
third best results have been highlighted for each metric.

Tracker A C MOTA↑ MOTP↑ MT↑ ML↓ IDs↓ FM↓ FPS↑

OccGeo (DPM) X 0.51 0.62 0.26 0.24 350 370 7.5
OccGeo (3D MOT’15) X 0.31 0.59 0.16 0.32 414 411 4.8

GPR-DBN [232] X X 0.48 0.62 0.33 0.21 181 270 0.1
LP-SFM [253] 0.31 0.52 0.16 0.22 396 467 8.4
STV [440] X 0.31 0.55 0.14 0.25 383 439 1.9
LP-3D [255] 0.30 0.52 0.24 0.14 487 542 83.5
S-RNN [368] X X 0.22 0.54 0.03 0.36 785 1053 1.2
K-SFM [341] X 0.21 0.52 0.07 0.14 1463 1322 30.6

The results of this analysis are summarized in Table 5.22. The minor differences to the

official benchmark results can be contributed to the different ground truth annotations and

our smaller evaluation region, as we ignore the boundary regions to allow for a fairer com-

parison between causal and offline approaches, recall Section 5.2.2. More detailed results

are listed in Appendix C.3. Considering the publicly available 3D MOT’15 input detec-

tions, our approach is only outperformed by the appearance-based GPR-DBN [232] and

performs on par with the offline LP-SFM [253] and STV [440]. Furthermore, re-assignment

based on our occlusion geodesics is significantly more robust than using complex social

force models – as used by the causal K-SFM [341] – or incorporating multiple data-driven

models, such as S-RNN [368]. The substantial performance gain when relying on DPM de-

tections again highlights the importance of using a suitable object detector for real-world

applications.

Our approach also achieves a favorable runtime performance compared to most of

the other tracking approaches. Note that our Matlab R© implementation updates the

re-assignment costs of all missed trajectories sequentially. Thus, for a real-world appli-

cation the tracking speed could by substantially improved by leveraging parallel compu-

tation. Nevertheless, our single-threaded prototype already achieves frame rates suitable

for time-critical surveillance scenarios, due to the moderate walking speed of pedestrians.

Additionally, using a better object detector leads to less ambiguous situations and thus,

less computational effort. This can be seen by comparing the speed of our tracker using

off-the-shelf DPM detections against the ACF detections published by the 3D MOT’15

committee. The latter cause a significantly higher number of FP and FN detections and

thus, require our re-assignment calculations more often.
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5.2.5 Discussion

Our occlusion geodesics-based tracker ranks amongst the state-of-the-art approaches both

with respect to tracking performance and speed. In particular, by leveraging only geo-

metric context information, we can build a powerful model while keeping the complexity

low. Moreover, we perform on par with the best appearance-based approaches and also

outperform methods which rely on explicitly modeling object behavior via sophisticated

interaction models. Qualitative results of our tracker are shown in Figure 5.13.

As mentioned in Section 5.2.3.2, the object detector plays a major role in achiev-

ing good tracking-by-detection results. This is also shown by our detailed evaluations,

especially when considering more crowded scenarios, such as PETS’09 S2L2 and S2L3.

There, object detectors often miss the pedestrians due to the frequent inter-object occlu-

sions, as shown in Figure 5.14. Since our model only relies on geometric cues, identity

switches cannot be avoided in such dense crowds, as there are usually several missed ob-

(a) PETS’09 S2L1. (b) PETS’09 S2L2.

(c) TownCentre.

Figure 5.13: Qualitative results for our occlusion geodesics-based MOT approach on the
PETS’09 [136] and TownCentre [36] sequences using DPM [135] detections. Dashed bounding
boxes indicate that the corresponding person has been missed by the detector. The coloring of the
bounding boxes and trajectories corresponds to the object identities.
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jects within a single, narrow, occluded region. In such scenarios, individual appearance

models can be helpful to resolve the ambiguities, as shown by [232]. To improve the de-

tection performance in such challenging scenarios, one could either fine-tune the detector

to the scene-specific challenges or leverage additional motion cues. For example, static

visual surveillance setups allow us to employ background subtraction techniques to locate

moving regions, which can then be used to reason about detector failures.

(a) PETS’09 S2L2. (b) PETS’09 S2L3.

(c) TownCentre.

Figure 5.14: Difficult scenarios for our tracking-by-detection approach, where the object detector
misses people too frequently due to full (top row) or partial (bottom row) occlusions. Especially
for dense crowds as in PETS’09, we often fail to obtain a reliable motion estimate before a person
is missed by the detector which impedes the correct re-assignment.
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Full speed ahead, hard and fast!

— Pennywise (Every Single Day)

Contents

6.1 Recapitulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1 Recapitulation

The aim of this thesis was to investigate the benefits of incorporating contextual infor-

mation to boost the performance of causal visual object tracking approaches. We set out

to improve the two major components of the visual tracking loop, namely (i) object rep-

resentation and (ii) data association – for more details, recall Chapter 1. Following the

maxim temet nosce22, we analyzed typical failure cases of the state-of-the-art in visual ob-

ject tracking. More specifically, we focused on limitations of causal tracking approaches,

since these enable time-critical real-world applications, such as autonomous vehicles or

automated visual surveillance. In these application domains, tracking approaches often

rely on simple models due to their favorable efficiency in order to meet the given runtime

requirements. This reduced model complexity, however, often leads to tracking failures

whenever the object’s visual appearance becomes ambiguous – i.e. the tracking model gets

confused by the object’s surroundings, which subsequently leads to drifting – or whenever

the object disappears, at least from the viewpoint of the camera, e.g. due to occlusions.

22Latin aphorism meaning know thyself, translated from the Delphic maxim gnōthi seauton (Greek).
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In this thesis, we tried to address these issues by tackling the following research questions:

(i) How can we ensure a robust object model for localization in the presence of visually

similar regions?

Causal color-based tracking approaches typically drift towards such visually distract-

ing regions. To overcome this limitation, we introduced a distractor-aware object

model which substantially reduces the risk of tracking failures in Chapter 3. This

allowed us to exploit the favorable simplicity and efficiency of color-based models

while achieving state-of-the-art robustness, as shown in Chapter 5.1.

(ii) How can we model the likelihood of an object being present at a specific location

while it is occluded, to allow for a consistent trajectory re-assignment once the object

is re-detected?

When dealing with scenarios in which the object of interest may be occluded fre-

quently, causal trackers often fail to reliably re-assign detections to the correspond-

ing object trajectory. To address this issue, we introduced a recursive cost function

which weights hidden movements – i.e. object motion not seen from the camera

viewpoint, either due to occlusions or detection failures – by their plausibility in

Chapter 4. Relying on geometric context, we were able to combine the benefits

of efficient association-based methods with a reliable re-assignment to increase the

tracking robustness, as demonstrated in Chapter 5.2.

Although localizing objects without leveraging context information is infeasible, most

tracking approaches only incorporate two rather basic cues, namely the visual appearance

of a target and its motion. Other auxiliary information about the target’s surroundings is

mostly neglected by the research community. In this thesis, we highlighted the importance

and benefits of such unattended contextual cues, in particular (i) leveraging the appearance

and visual similarity of distractors in combination with the target’s appearance, as well

as (ii) combining geometric reasoning about target motion within occluded regions with

the expected reliability of the object detector. Leveraging these contextual cues for our

tracking frameworks allowed us to improve the real-world applications which motivated our

research tasks initially, recall Chapter 1. These applications demonstrate the robustness

and efficiency of our trackers on a daily basis.

The tracking approaches we investigated cover the two extrema of the visibility spec-

trum, namely (i) what to do if the object is visible – but so are distracting regions too –

and (ii) what to do if the object is not visible, i.e. is occluded – and thus, cannot be located

until it moves out of the occluded region to be detected again. Each of these cues can be

leveraged on its own to make tracking approaches see, i.e. simple, efficient, and effective.

Although real-world applications would definitely benefit from combining these cues, we

deliberately focused on analyzing them separately in order to highlight their individual

benefits and limitations, respectively.
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We performed detailed experimental studies in Chapter 5 and include additional eval-

uations in Appendix C. To show benefits and limitations of the proposed tracking ap-

proaches, we selected suitable testbeds and tracking tasks. On the one hand, single object

tracking (SOT) benchmarks cover a wide variety of typical challenges, including illumi-

nation variations, non-rigid deformations, generic object classes, as well as camera and

object motion. As such sequences usually capture only short-term occlusions and focus

on cluttered or distracting backgrounds instead, these provide an ideal testbed for our

appearance-based, distractor-aware object model. Multiple object tracking (MOT), on

the other hand, requires reasoning about hidden movements, due to the frequent inter-

object occlusions. Following recent research trends, as discussed in Chapter 2, we focused

on pedestrian tracking tasks to evaluate our occlusion geodesics-based tracker. Although

there are significantly less publicly available benchmarks than for SOT, we could select

suitable visual surveillance scenarios that exhibit typical MOT challenges, such as varying

crowd densities, group interactions, as well as frequent detector failures.

6.2 Outlook

With the rapid progress of computer vision research over the past few years, more and

more contextual cues will become easily available and thus, open up new potential im-

provements. For example, the accuracy of semantic segmentation approaches increased

notably on challenging large-scale datasets, such as [276, 327]. By leveraging pixel-accurate

semantic knowledge about the scene, visual tracking approaches could be substantially ro-

bustified. After all, the world around us fortunately follows well understood physical

principles and thus, it should be at the very least highly unlikely to capture object move-

ments which, for example, violate the law of gravity.

Another driving force of future tracking improvements is the steady increase of hard-

ware capabilities. More powerful hardware consequently allows training more complex

data-driven models, but even more important, also enables efficient inference required

for time-critical applications. Recently, promising results have been obtained by learn-

ing pedestrian interactions with recurrent neural networks, e.g. [4]. With suitable training

datasets and the ability to predict object trajectories in an online setting, such approaches

may become a valuable component for causal object trackers.

Summarizing the findings of this thesis, we have shown that often neglected, but easily

obtainable, contextual cues can substantially improve visual tracking performance. We

demonstrated the benefits of visual appearance and geometric reasoning for both SOT

and MOT, by leveraging these cues within rather simplistic frameworks. These models

can also be integrated in more complex tracking pipelines to robustify state-of-the-art

approaches. Additionally, there are still many information sources left to be explored, not

to mention frameworks which jointly leverage these cues. Thus, visual object tracking

remains an interesting research field which will continue to contribute to our quest for

computer vision’s holy grail, i.e. fully automated visual scene understanding.
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We live in a world where there is more and more information,

and less and less meaning.

— Jean Baudrillard (Simulacra and Simulation)

ABHMC Adaptive Basin Hopping Monte Carlo

Acc. Accuracy

ACCT Adaptive Complex Cell-based Tracker

ACF Aggregated Channel Features

ACT Adaptive Color Attributes Tracker

ADNet Action-Decision Network-based Tracker

ALIEN Appearance Learning In Evidential Nuisance

ALOV++ Amsterdam Library of Ordinary Videos

AMP Apparent Motion Patterns

AO Average Overlap

APG Accelerated Proximal Gradient

APIDIS Autonomous Production of Images based on Distributed and Intelligent

Sensing

ARBM Attentional Restricted Boltzmann Machine

ASEF Average of Synthetic Exact Filters

ASLA Adaptive Structural Local Sparse Appearance-based Tracker

AUC Area under the Curve

BACF Background-aware Correlation Filter

BHMC Basin Hopping Monte Carlo

BHT Block Histogram-based Tracker

C-COT Continuous Convolution Operators Tracker

Caltech California Institute of Technology
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CAT Context-aware Tracker

CCT Collaborative Correlation Filter

CCTV Closed-Circuit Television

CF Correlation Filter

CF2 Correlation Filters with Convolutional Features

CFCF Convolutional Features for Correlation Filters

CFLB Correlation Filters with Limited Boundaries

CFNet Correlation Filter Neural Network-based Tracker

CIE Commission Internationale de l’Éclairage

CLEAR Classification of Events, Activities and Relationships

CMT Consensus-based Matching and Tracking

CN Color Names

CNN Convolutional Neural Network

COCO Common Objects in Context

CR Channel Representation

CREST Convolutional Residual Tracking

CRF Conditional Random Field

CRVT Compressive Sensing-based Real-time Visual Tracker

CSK Circulant Structure Kernel

CSR-DCF Channel and Spatial Reliability for DCFs

CVPR Conference on Computer Vision and Pattern Recognition

CXT Context Tracker

DAT Distractor-Aware Tracker

DBN Dynamic Bayesian Network

DCF Discriminative Correlation Filter

DFT Distribution Fields-based Tracker

DGT Dynamic Graph-based Tracker

DPCF Deformable Parts Correlation Filters

DPM Deformable Part-based Model

DSST Discriminative Scale Space Tracker

EAO Expected Average Overlap

EAST Early-Stopping Tracker

EBT Edge Box Tracker

ECCV European Conference on Computer Vision

ECO Efficient Convolution Operators

EDFT Enhanced Distribution Field Tracking

EFO Equivalent Filter Operations

EM Expectation-Maximization

EPFL École Polytechnique Fédérale de Lausanne

Eq. Equation

ETH Eidgenössische Technische Hochschule

F-RCNN Faster R-CNN

FCNT Fully Convolutional Network-based Tracker
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Fig. Figure

FLO Feature-less Object Tracker

FM Fragmentation

FN False Negative

FoT Flock of Trackers

FOV Field of View

FP False Positive

FPS Frames per Second

FRT Fragment-based Tracker

GLaDOS Genetic Lifeform and Disk Operating System

GMM Gaussian Mixture Model

GOTURN Generic Object Tracking using Regression Networks

GPR Gaussian Process Regression

GPU Graphics Processing Unit

H3D Humans in 3D

HART Hierarchical Attentive Recurrent Tracking

HDT Hedged Deep Tracking

HOG Histogram of Oriented Gradients

ICCV International Conference on Computer Vision

ICG Institute of Computer Graphics and Vision

IDS Identity Switches

IIVT Initialization-Insensitive Visual Tracker

IKSVM Intersection Kernel Support Vector Machine

IMCMC Interactive Markov Chain Monte Carlo

INRIA Institut National de Recherche en Informatique et en Automatique

IOU Intersection over Union

IQR Interquartile Range

ITU International Telecommunication Union

IVT Incremental Learning-based Visual Tracking

JPDAF Joint Probabilistic Data Association Filter

KCF Kernelized Correlation Filter

KITTI Karlsruhe Institute of Technology and Toyota Technological Institute

KLT Kanade-Lucas-Tomasi Tracker

LCT Long-term Correlation Tracking

LDCF Locally Decorrelated Features

LGT Local-Global Tracker

LRS Learning, Recognition & Surveillance

LRSVT Laplacian Ranking Support Vector Tracker

LSH Locality Sensitive Histogram-based Tracker

LSTM Long Short-term Memory
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LT-FLO Long-term FLO

MCCF Multi-Channel Correlation Filters

MCMC Markov Chain Monte Carlo

MCPF Multi-task Correlation Particle Filter

MDNet Multi-Domain Convolutional Neural Network-based Tracker

MEEM Multiple Experts Entropy Minimization Tracker

MHT Multiple Hypotheses Tracking

MIL Multiple Instance Learning

MILF MIL Forests-based Tracker

ML Mostly Lost

MOSSE Minimum Output Sum of Squared Error

MOT Multiple Object Tracking

MOTA Multiple Object Tracking Accuracy

MOTP Multiple Object Tracking Precision

MT Mostly Tracked

MTST Multi-Task Sparse Learning-based Tracker

MTT Multiple Target Tracking

MUSTer Multi-Store Tracker

MVL Machine Vision Laboratory

NAS Neural Architecture Search

NCC Normalized Cross-Correlation

NFS Need for Speed

NIST National Institute of Standards and Technology

NMS Non-Maximum Suppression

noDAT Distractor-Agnostic Tracker

NUS-PRO National University of Singapore People and Rigid Objects Dataset

OGT Online Graph-based Tracker

OPE One-pass Evaluation

OPER One-pass Evaluation with Reset

OTB Online Tracking Benchmark

PaFiSS Particle Filter with Sample Segmentation

PASCAL Pattern Analysis, Statistical Modelling and Computational Learning

PETS Performance Evaluation of Tracking and Surveillance

Pixel Picture Element

PLT Pixel-based Lookup-Table Tracker

PNNL Pacific Northwest National Laboratory

PRC Precision Recall Curve

PST Proposal Selection Tracker

PT Partially Tracked

PTAV Parallel Tracking and Verification

PTB Princeton Tracking Benchmark

PTZ Pan-Tilt-Zoom
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R-CNN Regions with CNN Features

R-FCN Regression-based Fully Convolutional Network

RATM Recurrent Attentive Tracking Model

RCT Real-time Compressive Tracking

RDP Representative Distance Precision

Re3 Real-Time Recurrent Regression Network-based Tracker

ResNet Residual Network

RNN Recurrent Neural Network

Rob. Robustness

ROC Receiver Operating Characteristic

ROLO Recurrent YOLO-based Tracker

RTT Recurrently Target-Attending Tracking

RVM Relevance Vector Machine

SAMF Scale Adaptive Multiple Features Tracker

SANet Structure-aware Network-based Tracker

SAT Structure-aware Hypergraph-based Tracker

SCM Sparsity-based Collaborative Model for Tracking

SDF Synthetic Discriminant Function

SFC Siamese Fully Convolutional Network-based Tracker

SFM Social Force Model

SfM Structure from Motion

SINT Siamese Instance Search Tracker

SMC Sequential Monte Carlo

SOT Single Object Tracking

SPOT Structure Preserving Online Tracker

SPT Sparse Appearance-based Tracker

SRDCF Spatially Regularized Discriminative Correlation Filters

SRE Spatial Robustness Evaluation

SRER Spatial Robustness Evaluation with Reset

SSAT Scale- and State-aware Tracker

SSD Single Shot Multi-Box Detector

Staple Sum of Template and Pixel-wise Learners

STCT Sequentially Trained Convolutional Network-based Tracker

Struck Structured Output Tracking with Kernels

SVM Support Vector Machine

TCNN Tree-structured Convolutional Neural Network-based Tracker

TColor Temple Color

TGPR Tracking with Gaussian Process Regression

TIR Thermal Infrared

TLD Tracking-Learning-Detection

TN True Negative

TP True Positive

TP-RNN Trajectory Predictor using Recurrent Neural Networks
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TRE Temporal Robustness Evaluation

TRECVid Text Retrieval Conference Video Retrieval Evaluation

TUD Technische Universität Darmstadt

VOC Visual Object Challenge

VOT Visual Object Tracking

VTD Visual Tracking via Decomposition

VTS Visual Tracker Sampling

YOLO You Only Look Once
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B.1 Conference and Journal Publications

My work at the Institute of Computer Graphics and Vision led to the following peer-

reviewed publications. For the sake of completeness of this thesis, all papers are listed

chronologically along with their corresponding abstract.

2012

Unsupervised Calibration of Camera Networks and Virtual PTZ Cameras

Horst Possegger, Matthias Rüther, Sabine Sternig, Thomas Mauthner, Manfred

Klopschitz, Peter M. Roth, and Horst Bischof

In Proceedings of the Computer Vision Winter Workshop (CVWW)

Mala Nedelja (Slovenia), February 2012

Accepted for oral presentation

Winner of the Best Student Paper award

Abstract: Pan-Tilt-Zoom (PTZ) cameras are widely used in video surveillance tasks. In

particular, they can be used in combination with static cameras to provide high resolution

imagery of interesting events in a scene on demand. Nevertheless, PTZ cameras only

125



126 Publications

provide a single trajectory at a time. Hence, engineering algorithms for common computer

vision tasks, such as automatic calibration or tracking, for camera networks including PTZ

cameras is difficult. Therefore, we propose a virtual PTZ (vPTZ) camera to simplify the

algorithm development for such camera networks. The vPTZ camera is built on a cylindrical

panoramic view of the scene and allows to re-position its field of view arbitrarily to provide

several trajectories. Further, we propose an unsupervised extrinsic self-calibration method

for a network of static cameras and PTZ cameras solely based on correspondences between

tracks of a walking human. Our experimental results show that we can obtain accurate

estimates of the extrinsic camera parameters in both, outdoor and indoor scenarios.

2013

Robust Real-Time Tracking of Multiple Objects by Volumetric Mass Densities

Horst Possegger, Sabine Sternig, Thomas Mauthner, Peter M. Roth, and Horst

Bischof

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR)

Portland (Oregon), June 2013

Accepted for poster presentation

Abstract: Combining foreground images from multiple views by projecting them onto

a common ground-plane has been recently applied within many multi-object tracking

approaches. These planar projections introduce severe artifacts and constrain most ap-

proaches to objects moving on a common 2D ground-plane. To overcome these limitations,

we introduce the concept of an occupancy volume – exploiting the full geometry and the

objects’ center of mass – and develop an efficient algorithm for 3D object tracking. Indi-

vidual objects are tracked using the local mass density scores within a particle filter based

approach, constrained by a Voronoi partitioning between nearby trackers. Our method

benefits from the geometric knowledge given by the occupancy volume to robustly extract

features and train classifiers on-demand, when volumetric information becomes unreliable.

We evaluate our approach on several challenging real-world scenarios including the public

APIDIS dataset. Experimental evaluations demonstrate significant improvements com-

pared to state-of-the-art methods, while achieving real-time performance.



Publications 127

2014

Occlusion Geodesics for Online Multi-Object Tracking

Horst Possegger, Thomas Mauthner, Peter M. Roth, and Horst Bischof

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR)

Columbus (Ohio), June 2014

Accepted for poster presentation

Abstract: Robust multi-object tracking-by-detection requires the correct assignment of

noisy detection results to object trajectories. We address this problem by proposing an

online approach based on the observation that object detectors primarily fail if objects

are significantly occluded. In contrast to most existing work, we only rely on geometric

information to efficiently overcome detection failures.

In particular, we exploit the spatio-temporal evolution of occlusion regions, detector

reliability, and target motion prediction to robustly handle missed detections. In combi-

nation with a conservative association scheme for visible objects, this allows for real-time

tracking of multiple objects from a single static camera, even in complex scenarios. Our

evaluations on publicly available multi-object tracking benchmark datasets demonstrate

favorable performance compared to the state-of-the-art in online and offline multi-object

tracking.

A novel method for the analysis of sequential actions in team handball

Paul Rudelsdorfer, Norbert Schrapf, Horst Possegger, Thomas Mauthner, Horst

Bischof, and Markus Tilp

International Journal of Computer Science in Sport (IJCSS), 13(1), pages 69–84,

2014

Abstract: Performance in team sports crucially depends on the knowledge about the

own and the opponents strengths and weaknesses. Since the analysis of single actions only

provides restricted information on the game process, the analysis of sequential actions is

from great importance to understand team tactics. In this paper, we introduce a novel

method to analyze tactical behavior in team sports based on action sequences of positional

data which are subsequently analyzed with artificial neural networks.

We present custom-made software which allows annotating single actions with accurate

manual position information. The process of building action sequences with the notational

information of single actions in team handball is described step-by-step and the accuracy

of the position determination is evaluated. The evaluation revealed a mean error of 0.16m

(±0.17m) for field positions on a handball field. Inter- and intra-rater reliability for identi-

cal camera setups are excellent (ICC = 0.92 and 0.95, respectively). However, tests revealed

that position accuracy is depending on camera setup (ICC = 0.36).

The results of the study demonstrate the applicability of the described method to gain

action sequence data with accurate position information. The combination with neural

networks gives an alternative approach to T-patterns for the analysis of sport games.
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2015

In Defense of Color-based Model-free Tracking

Horst Possegger , Thomas Mauthner , and Horst Bischof

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR)

Boston (Massachusetts), June 2015

Accepted for poster presentation

Abstract: In this paper, we address the problem of model-free online object tracking

based on color representations. According to the findings of recent benchmark evalua-

tions, such trackers often tend to drift towards regions which exhibit a similar appearance

compared to the object of interest. To overcome this limitation, we propose an efficient

discriminative object model which allows us to identify potentially distracting regions in

advance. Furthermore, we exploit this knowledge to adapt the object representation before-

hand so that distractors are suppressed and the risk of drifting is significantly reduced. We

evaluate our approach on recent online tracking benchmark datasets demonstrating state-

of-the-art results. In particular, our approach performs favorably both in terms of accuracy

and robustness compared to recent tracking algorithms. Moreover, the proposed approach

allows for an efficient implementation to enable online object tracking in real-time.

Encoding based Saliency Detection for Videos and Images

Thomas Mauthner, Horst Possegger, Georg Waltner, and Horst Bischof

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR)

Boston (Massachusetts), June 2015

Accepted for poster presentation

Abstract: We present a novel video saliency detection method to support human activity

recognition and weakly supervised training of activity detection algorithms. Recent research

has emphasized the need for analyzing salient information in videos to minimize dataset

bias or to supervise weakly labeled training of activity detectors. In contrast to previous

methods we do not rely on training information given by either eye-gaze or annotation

data, but propose a fully unsupervised algorithm to find salient regions within videos. In

general, we enforce the Gestalt principle of figure-ground segregation for both appearance

and motion cues. We introduce an encoding approach that allows for efficient computation

of saliency by approximating joint feature distributions. We evaluate our approach on

several datasets, including challenging scenarios with cluttered background and camera

motion, as well as salient object detection in images. Overall, we demonstrate favorable

performance compared to state-of-the-art methods in estimating both ground-truth eye-

gaze and activity annotations.

Both authors contributed equally.
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2016

Grid Loss: Detecting Occluded Faces

Michael Opitz, Georg Waltner, Georg Poier, Horst Possegger, and Horst Bischof

In Proceedings of the European Conference on Computer Vision (ECCV)

Amsterdam (Netherlands), October 2016

Accepted for poster presentation

Abstract: Detection of partially occluded objects is a challenging computer vision prob-

lem. Standard Convolutional Neural Network (CNN) detectors fail if parts of the detection

window are occluded, since not every sub-part of the window is discriminative on its own.

To address this issue, we propose a novel loss layer for CNNs, named grid loss, which mini-

mizes the error rate on sub-blocks of a convolution layer independently rather than over the

whole feature map. This results in parts being more discriminative on their own, enabling

the detector to recover if the detection window is partially occluded. By mapping our loss

layer back to a regular fully connected layer, no additional computational cost is incurred

at runtime compared to standard CNNs. We demonstrate our method for face detection on

several public face detection benchmarks and show that our method outperforms regular

CNNs, is suitable for realtime applications and achieves state-of-the-art performance.

Efficient Model Averaging for Deep Neural Networks

Michael Opitz, Horst Possegger, and Horst Bischof

In Proceedings of the Asian Conference on Computer Vision (ACCV)

Taipei (Taiwan), November 2016

Accepted for poster presentation

Abstract: Large neural networks trained on small datasets are increasingly prone to over-

fitting. Traditional machine learning methods can reduce overfitting by employing bagging

or boosting to train several diverse models. For large neural networks, however, this is pro-

hibitively expensive. To address this issue, we propose a method to leverage the benefits of

ensembles without explicitly training several expensive neural network models. In contrast

to Dropout, to encourage diversity of our sub-networks, we propose to maximize diversity

of individual networks with a loss function: DivLoss. We demonstrate the effectiveness of

DivLoss on the challenging CIFAR datasets.
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2017

Pedestrian Detection in RGB-D Images from an Elevated Viewpoint

Christian Ertler, Horst Possegger, Michael Opitz, and Horst Bischof

In Proceedings of the Computer Vision Winter Workshop (CVWW)

Retz (Austria), February 2017

Accepted for oral presentation

Abstract: We propose an extension to the state-of-the-art Faster R-CNN detection model

for multi-modal pedestrian detection from RGB-D images. The proposed architectures

address this problem by fusing convolutional neural network (CNN) representations. We

elaborate two architectures, which primarily differ in the position of the fusion inside the

model, and further compare several static and parametrized fusion layers. Moreover, we

show how recent advances in the area of non-maximum suppression (NMS) can improve the

detection results of our models and make them more robust in applications with varying

pedestrian densities. Our models are trained and evaluated on a custom dataset comprising

images of crosswalk scenes taken from an elevated viewpoint. This viewpoint results in

uncommon and highly variable poses of pedestrians, demanding powerful detection models.

BIER - Boosting Independent Embeddings Robustly

Michael Opitz, Georg Waltner, Horst Possegger, and Horst Bischof

In Proceedings of the International Conference on Computer Vision (ICCV)

Venice (Italy), October 2017

Accepted for oral presentation

Abstract: Learning similarity functions between image pairs with deep neural networks

yields highly correlated activations of large embeddings. In this work, we show how to im-

prove the robustness of embeddings by exploiting independence in ensembles. We divide the

last embedding layer of a deep network into an embedding ensemble and formulate training

this ensemble as an online gradient boosting problem. Each learner receives a reweighted

training sample from the previous learners. This leverages large embedding sizes more ef-

fectively by significantly reducing correlation of the embedding and consequently increases

retrieval accuracy of the embedding. Our method does not introduce any additional pa-

rameters and works with any differentiable loss function. We evaluate our metric learning

method on image retrieval tasks and show that it improves over state-of-the-art methods

on the CUB-200-2011, Cars-196, Stanford Online Products, In-Shop Clothes Retrieval and

VehicleID datasets by a significant margin.
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2018

Spatiotemporal Saliency Estimation by Spectral Foreground Detection

Çağlar Aytekin, Horst Possegger, Thomas Mauthner, Serkan Kiranyaz, Horst

Bischof, and Moncef Gabbouj

IEEE Transactions on Multimedia (TMM), 20(1), pages 82–95, 2018

Abstract: We present a novel approach for spatiotemporal saliency detection by opti-

mizing a unified criterion of color contrast, motion contrast, appearance and background

cues. To this end, we first abstract the video by temporal superpixels. Second, we propose

a novel graph structure exploiting the saliency cues to assign the edge weights. The salient

segments are then extracted by applying a spectral foreground detection method, Quantum

Cuts, on this graph. We evaluate our approach on several public datasets for video saliency

and activity localization to demonstrate the favorable performance of the proposed Video

Quantum Cuts (VQCUT) compared to the state-of-the-art.

B.2 Visual Object Tracking Challenges

We participated with our prototype implementations at several tracking challenges orga-

nized by the Visual Object Tracking (VOT) challenge committee. These challenges allow

to compare short-term single object trackers which do not apply pre-learned appearance

models, i.e. as our approach presented in Chapter 3. In order to be listed as a co-author

of the joint result paper, the submitted approach had to outperform a baseline perfor-

mance specified by the organization committee for each challenge and the results must be

reproducible. All our submissions outperformed the required baseline and thus, led to the

following co-authored publications, listed in chronological order.

2014

The Visual Object Tracking VOT2014 Challenge Results

Matej Kristan, Roman Pflugfelder, Aleš Leonardis, Jǐŕı Matas, Luka Čehovin,

Georg Nebehay, Tomáš Voj́ı̌r, Gustavo Fernández, Alan Lukežič, Aleksandar Dim-

itriev, Alfredo Petrosino, Amir Saffari, Bo Li, Bohyung Han, Cherkeng Heng,

Christophe Garcia, Dominik Pangeršič, Gustav Häger, Fahad Shahbaz Khan, Franci

Oven, Horst Possegger, Horst Bischof, Hyeonseob Nam, Jianke Zhu, JiJia Li, Jin

Young Choi, Jin-Woo Choi, João F. Henriques, Joost van de Weijer, Jorge Batista,

Karel Lebeda, Kristoffer Öfjäll, Kwang Moo Yi, Lei Quin, Longyin Wen, Mario

Edoardo Maresca, Martin Danelljan, Michael Felsberg, Ming-Ming Cheng, Philip

Torr, Quingming Huang, Richard Bowden, Sam Hare, Samantha YueYing Lim, Se-

unghoon Hong, Shengcai Liao, Simon Hadfield, Stan Z. Li, Stefan Duffner, Stuart

Golodetz, Thomas Mauthner, Vibhav Vineet, Weiyao Lin, Yang Li, Yuankai Qui,

Zhen Lei, and Zhiheng Niu
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In Proceedings of the Workshop on the Visual Object Tracking Challenge (VOT),

in conjunction with the European Conference on Computer Vision (ECCV)

September 2014, Zürich (Switzerland)

Participated with the Appearance-Based Shape Filter (ABS)

2015

The Visual Object Tracking VOT2015 Challenge Results

Matej Kristan, Jǐŕı Matas, Aleš Leonardis, Michael Felsberg, Luka Čehovin, Gus-

tavo Fernández, Tomáš Voj́ı̌r, Gustav Häger, Georg Nebehay, Roman Pflugfelder,

Abhinav Gupta, Adel Bibi, Alan Lukežič, Alvaro Garcia-Martin, Alfredo Petrosino,

Amir Saffari, Andrés Soĺıs Montero, Anton Varfolomieiev, Atilla Baskurt, Baojun

Zhao, Bernard Ghanem, Brais Martinez, Byeong Ju Lee, Bohyung Han, Chaohui

Wang, Christophe Garcia, Chunyuan Zhang, Cordelia Schmid, Dacheng Tao, Daijin

Kim, Dafei Huang, Danil Prokhorov, Dawei Du, Dit-Yan Yeung, Eraldo Ribeiro,

Fahad Shahbaz Khan, Fatih Porikli, Filiz Bunyak, Gao Zhu, Guna Seetharaman,

Hilke Kieritz, Hing Tuen Yau, Hongdong Li, Honggang Qi, Horst Bischof, Horst

Possegger, Hyemin Lee, Hyeonseob Nam, Ivan Bogun, Jae-chan Jeong, Jae-il Cho,

Jae-Yeong Lee, Jianke Zhu, Jianping Shi, Jiatong Li, Jiaya Jia, Jiayi Feng, Jin Gao,

Jin Young Choi, Ji-Wan Kim, Jochen Lang, Jose M. Martinez, Jongwon Choi, Jun-

liang Xing, Kai Xue, Kannappan Palaniappan, Karel Lebeda, Karteek Alahari, Ke

Gao, Kimin Yun, Kin Hong Wong, Lei Luo, Liang Ma, Lipeng Ke, Longyin Wen,

Luca Bertinetto, Mahdieh Pootschi, Mario Maresca, Martin Danelljan, Mei Wen,

Mengdan Zhang, Michael Arens, Michel Valstar, Ming Tang, Ming-Ching Chang,

Muhammad Haris Khan, Nana Fan, Naiyan Wang, Ondrej Miksik, Philip Torr,

Qiang Wang, Rafael Martin-Nieto, Rengarajan Pelapur, Richard Bowden, Robert

Laganière, Salma Moujtahid, Sam Hare, Simon Hadfield, Siwei Lyu, Siyi Li, Song-

Chun Zhu, Stefan Becker, Stefan Duffner, Stephen L Hicks, Stuart Golodetz, Sun-

glok Choi, Tianfu Wu, Thomas Mauthner, Tony Pridmore, Weiming Hu, Wolfgang

Hübner, Xiaomeng Wang, Xin Li, Xinchu Shi, Xu Zhao, Xue Mei, Yao Shizeng,

Yang Hua, Yang Li, Yang Lu, Yuezun Li, Zhaoyun Chen, Zehua Huang, Zhe Chen,

Zhe Zhang, Zhenyu He, and Zhibin Hong

In Proceedings of the Workshop on the Visual Object Tracking Challenge (VOT),

in conjunction with the International Conference on Computer Vision (ICCV)

December 2015, Santiago de Chile (Chile)

Participated with the Distractor Aware Tracker (DAT)

2016

The Visual Object Tracking VOT2016 Challenge Results

Matej Kristan, Aleš Leonardis, Jǐŕı Matas, Michael Felsberg, Roman Pflugfelder,

Luka Čehovin, Tomáš Vojǐr, Gustav Häger, Alan Lukežič, Gustavo Fernández, Ab-
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hinav Gupta, Alfredo Petrosino, Alireza Memarmoghadam, Alvaro Garcia-Martin,

Andrés Soĺıss Montero, Andrea Vedaldi, Andreas Robinson, Andy J. Ma, Anton

Varfolomieiev, Aydin Alatan, Aykut Erdem, Bernard Ghanem, Bin Liu, Bohyung

Han, Brais Martinez, Chang-Ming Chang, Changsheng Xu, Chong Sun, Chong Sun,

Daijin Kim, Dapeng Chen, Dawei Du, Dawei Du, Deepak Mishra, Dit-Yan Yeung,

Erhan Gündoğdu, Erkut Erdem, Fahad Khan, Fahad Shahbaz Khan, Fatih Porikli,

Fei Zhao, Filiz Bunyak, Francesco Battistone, Gao Zhu, Giorgio Roffo, Gorthi R. K.

Sai Subrahmanyam, Guilherme Bastos, Guna Seetharaman, Henry Medeiros, Hong-

dong Li, Honggang Qi, Horst Bischof, Horst Possegger, Huchuan Lu, Huchuan

Lu, Hyemin Lee, Hyeonseob Nam, Hyung Jin Chang, Isabela Drummond, Jack

Valmadre, Jae-chan Jeong, Jae-il Cho, Jae-Yeong Lee, Jianke Zhu, Jiayi Feng, Jin

Gao, Jin Young Choi, Jingjing Xiao, Ji-Wan Kim, Jiyeoup Jeong, João F. Hen-

riques, Jochen Lang, Jongwon Choi, Jose M. Martinez, Junliang Xing, Junyu Gao,

Kannappan Palaniappan, Karel Lebeda, Ke Gao, Krystian Mikolajczyk, Lei Qin,

Lijun Wang, Lijun Wang, Longyin Wen, Longyin Wen, Luca Bertinetto, Madan

kumar Rapuru, Mahdieh Poostchi, Mario Maresca, Martin Danelljan, Matthias

Mueller, Mengdan Zhang, Michael Arens, Michel Valstar, Ming Tang, Mooyeol

Baek, Muhammad Haris Khan, Naiyan Wang, Nana Fan, Noor Al-Shakarji, On-

drej Miksik, Osman Akin, Payman Moallem, Pedro Senna, Philip H. S. Torr, Pong

C. Yuen, Qingming Huang, Qingming Huang, Rafael Martin-Nieto, Rengarajan

Pelapur, Richard Bowden, Robert Laganière, Rustam Stolkin, Ryan Walsh, Se-

bastian B. Krah, Shengkun Li, Shengping Zhang, Shizeng Yao, Simon Hadfield,

Simone Melzi, Siwei Lyu, Siwei Lyu, Siyi Li, Stefan Becker, Stuart Golodetz, Sum-

ithra Kakanuru, Sunglok Choi, Tao Hu, Thomas Mauthner, Tianzhu Zhang, Tony

Pridmore, Vincenzo Santopietro, Weiming Hu, Wenbo Li, Wolfgang Hübner, Xi-

angyuan Lan, Xiaomeng Wang, Xin Li, Yang Li, Yiannis Demiris, Yifan Wang,

Yuankai Qi, Zejian Yuan, Zexiong Cai, Zhan Xu, Zhenyu He, and Zhizhen Chi

In Proceedings of the Workshop on the Visual Object Tracking Challenge (VOT),

in conjunction with the European Conference on Computer Vision (ECCV)

October 2016, Amsterdam (Netherlands)

Participated with the Distractor Aware Tracker (DAT)

The Thermal Infrared Visual Object Tracking VOT-TIR2016 Challenge

Results

Michael Felsberg, Matej Kristan, Jǐŕı Matas, Aleš Leonardis, Roman Pflugfelder,

Gustav Häger, Amanda Berg, Abdelrahman Eldesokey, Jörgen Ahlberg, Luka

Čehovin, Tomáš Vojǐr, Alan Lukežič, Gustavo Fernández, Alfredo Petrosino,

Alvaro Garcia-Martin, Andrés Soĺıs Montero, Anton Varfolomieiev, Aykut Erdem,

Bohyung Han, Chang-Ming Chang, Dawei Du, Erkut Erdem, Fahad Shahbaz
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Khan, Fatih Porikli, Fei Zhao, Filiz Bunyak, Francesco Battistone, Gao Zhu, Guna

Seetharaman, Hongdong Li, Honggang Qi, Horst Bischof, Horst Possegger,

Hyeonseob Nam, Jack Valmadre, Jianke Zhu, Jiayi Feng, Jochen Lang, Jose

M. Martinez, Kannappan Palaniappan, Karel Lebeda, Ke Gao, Krystian

Mikolajczyk, Longyin Wen, Luca Bertinetto, Mahdieh Poostchi, Mario Maresca,

Martin Danelljan, Michael Arens, Ming Tang, Mooyeol Baek, Nana Fan, Noor

Al-Shakarji, Ondrej Miksik, Osman Akin, Philip H. S. Torr, Qingming Huang,

Rafael Martin-Nieto, Rengarajan Pelapur, Richard Bowden, Robert Laganière,
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in conjunction with the European Conference on Computer Vision (ECCV)

October 2016, Amsterdam (Netherlands)

Participated with the Distractor Aware Tracker (DAT), reduced to a monochrome

model (instead of exploiting the joint color distribution)



C
Detailed Evaluation Results

• • •

— Gordon Freeman (Hλlf-Life)

Contents

C.1 Single Object Tracking Results . . . . . . . . . . . . . . . . . . . 135

C.2 Multiple Object Detection Results . . . . . . . . . . . . . . . . . 144

C.3 Multiple Object Tracking Results . . . . . . . . . . . . . . . . . . 149

C.1 Single Object Tracking Results

In the following, we list the detailed per-sequence results of our distractor-aware tracking

approach (with and without scale, i.e. DAT+s and DAT) and its distractor-agnostic base-

line (noDAT). On the VOT benchmarks, we additionally compare our approaches against

ACT [93], a recent color-based state-of-the-art approach. On the OTB dataset, we com-

pare against CXT [104], a context-aware tracking approach. For a detailed discussion of

the tracking results, used datasets and evaluation protocols refer to Chapter 5.

Table C.1 lists the detailed results on the VOT’13 [238] benchmark for both experi-

mental stacks, i.e. baseline and region noise. Tables C.2 and C.3 list the results on the

VOT’14 [239] benchmark experiments baseline and region noise, respectively. Tables C.4

and C.5 list the results on the VOT’16 [241] benchmark experiments baseline and un-

supervised, respectively. Finally, Table C.6 lists the results on all color sequences of the

OTB-100 [449] dataset.
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Table C.1: Per-sequence results on the VOT’13 [238] benchmark. Best, second best and third best
accuracy results have been highlighted for each sequence. Robustness scores have been boldfaced
for sequences where the tracker did not drift and thus, no re-initialization was necessary throughout
this sequence. For each sequence, we additionally list its length in numbers of frames, denoted #F.

(a) Experiment baseline.

Sequence #F
DAT+s DAT noDAT ACT [93]

Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓

bicycle 271 0.40 0.00 0.45 0.00 0.45 0.00 0.46 1.00
bolt 350 0.62 0.00 0.66 0.00 0.66 0.00 0.79 1.00
car 374 0.54 0.00 0.46 0.00 0.46 0.00 0.43 1.00
cup 303 0.78 0.00 0.73 0.00 0.74 0.00 0.76 0.00

david 770 0.47 0.00 0.64 0.00 0.64 0.00 0.68 0.00

diving 231 0.39 0.00 0.34 1.00 0.35 2.00 0.41 1.00
face 415 0.54 0.00 0.60 0.00 0.60 0.00 0.85 0.00

gymnastics 207 0.61 0.00 0.57 0.00 0.56 0.00 0.55 2.00
hand 244 0.53 0.00 0.63 1.00 0.63 1.00 0.50 3.00
iceskater 500 0.49 0.00 0.64 0.00 0.64 0.00 0.48 1.00
juice 404 0.82 0.00 0.61 0.00 0.61 0.00 0.65 0.00

jump 228 0.32 0.00 0.44 0.00 0.44 0.00 0.58 0.00

singer 351 0.62 0.00 0.40 0.00 0.43 1.00 0.37 0.00

sunshade 172 0.59 0.00 0.60 0.00 0.59 0.00 0.64 0.00

torus 264 0.72 0.00 0.76 0.00 0.76 0.00 0.78 0.00

woman 597 0.55 0.00 0.66 0.00 0.66 0.00 0.71 3.00

Total 0.56 0.00 0.59 0.08 0.59 0.19 0.62 0.82

(b) Experiment region noise.

Sequence #F
DAT+s DAT noDAT ACT [93]

Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓

bicycle 271 0.43 0.07 0.43 0.13 0.44 0.33 0.46 1.00
bolt 350 0.61 0.00 0.62 0.00 0.63 0.00 0.64 0.80
car 374 0.54 0.07 0.49 0.00 0.49 0.00 0.43 0.87
cup 303 0.78 0.00 0.74 0.00 0.72 0.00 0.70 0.00

david 770 0.46 0.00 0.64 0.00 0.64 0.07 0.65 0.00

diving 231 0.38 0.33 0.32 1.20 0.33 1.13 0.33 1.93
face 415 0.54 0.00 0.59 0.00 0.60 0.00 0.73 0.67
gymnastics 207 0.58 0.00 0.58 0.00 0.53 0.00 0.42 2.33
hand 244 0.58 0.93 0.60 0.60 0.58 0.80 0.47 4.40
iceskater 500 0.49 0.00 0.64 0.00 0.64 0.00 0.42 0.40
juice 404 0.82 0.00 0.63 0.00 0.62 0.00 0.62 0.00

jump 228 0.33 0.00 0.44 0.00 0.43 0.00 0.55 0.00

singer 351 0.63 0.07 0.44 0.60 0.46 1.13 0.39 0.00

sunshade 172 0.59 0.00 0.59 0.00 0.58 0.00 0.67 0.93
torus 264 0.71 0.00 0.73 0.00 0.74 0.00 0.70 0.20
woman 597 0.48 0.00 0.65 0.00 0.65 0.33 0.65 2.13

Total 0.55 0.07 0.59 0.12 0.59 0.21 0.57 0.85
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Table C.2: Per-sequence results on the VOT’14 [239] benchmark, experiment baseline. Best, sec-
ond best and third best accuracy results have been highlighted for each sequence. Robustness scores
have been boldfaced for sequences where the tracker did not drift and thus, no re-initialization was
necessary throughout this sequence. For each sequence, we additionally list its length in numbers
of frames, denoted #F.

Sequence #F
DAT+s DAT noDAT ACT [93]

Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓

ball 602 0.72 0.00 0.66 0.00 0.66 0.00 0.41 0.00

basketball 725 0.64 0.00 0.68 1.00 0.68 1.00 0.66 0.00

bicycle 271 0.43 0.00 0.48 0.00 0.47 0.00 0.45 1.00
bolt 350 0.51 0.00 0.47 0.00 0.47 0.00 0.54 1.00
car 252 0.60 0.00 0.38 0.00 0.42 1.00 0.52 1.00
david 770 0.41 0.00 0.63 0.00 0.63 0.00 0.72 0.00

diving 219 0.29 0.00 0.36 2.00 0.37 0.00 0.20 4.00
drunk 1210 0.47 1.00 0.46 1.00 0.44 0.00 0.46 0.00

fernando 292 0.37 3.00 0.39 2.00 0.42 4.00 0.43 1.00
fish1 436 0.35 0.00 0.39 0.00 0.38 0.00 0.43 0.00

fish2 310 0.48 1.00 0.43 1.00 0.44 2.00 0.31 5.00
gymnastics 207 0.61 0.00 0.61 0.00 0.58 0.00 0.51 2.00
hand1 244 0.61 0.00 0.62 1.00 0.62 1.00 0.40 5.00
hand2 267 0.51 3.00 0.53 2.00 0.55 1.00 0.38 8.00
jogging 307 0.67 1.00 0.72 1.00 0.73 2.00 0.70 1.00
motocross 164 0.50 3.00 0.43 4.00 0.46 3.00 0.47 3.00
polarbear 371 0.57 0.00 0.55 0.00 0.55 0.00 0.51 0.00

skating 400 0.39 10.00 0.46 9.00 0.43 13.00 0.50 0.00

sphere 201 0.81 0.00 0.72 0.00 0.72 0.00 0.72 0.00

sunshade 172 0.59 0.00 0.61 0.00 0.61 0.00 0.78 0.00

surfing 282 0.64 0.00 0.64 0.00 0.64 0.00 0.82 0.00

torus 264 0.73 0.00 0.76 0.00 0.76 0.00 0.79 0.00

trellis 569 0.47 0.00 0.52 0.00 0.50 0.00 0.58 2.00
tunnel 731 0.33 3.00 0.27 0.00 0.38 3.00 0.31 0.00

woman 597 0.41 0.00 0.69 1.00 0.69 1.00 0.66 3.00

Total 0.51 1.00 0.53 0.90 0.54 1.21 0.53 1.09

Table C.3: Per-sequence results on the VOT’14 [239] benchmark, experiment region noise. Best,
second best and third best accuracy results have been highlighted for each sequence. Robust-
ness scores have been boldfaced for sequences where the tracker did not drift and thus, no re-
initialization was necessary throughout this sequence. For each sequence, we additionally list its
length in numbers of frames, denoted #F.

Sequence #F
DAT+s DAT noDAT ACT [93]

Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓

ball 602 0.70 0.00 0.64 0.00 0.64 0.00 0.39 0.73

basketball 725 0.63 0.13 0.66 1.00 0.67 1.00 0.65 0.13

bicycle 271 0.46 0.00 0.46 0.13 0.45 0.00 0.43 0.87

Table continued on next page.
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Table C.3: SOT on VOT’14, experiment region noise – Continued from previous page.

Sequence #F
DAT+s DAT noDAT ACT [93]

Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓

bolt 350 0.50 0.13 0.48 0.13 0.48 0.40 0.52 0.73

car 252 0.59 0.00 0.38 0.00 0.39 0.53 0.41 0.07

david 770 0.47 0.00 0.63 0.00 0.63 0.20 0.67 0.00

diving 219 0.30 0.00 0.41 1.00 0.43 1.07 0.21 4.33

drunk 1210 0.47 0.00 0.44 0.33 0.44 0.00 0.44 0.00

fernando 292 0.34 3.07 0.38 2.13 0.38 2.40 0.37 1.67

fish1 436 0.37 0.27 0.39 0.07 0.40 0.33 0.32 6.53

fish2 310 0.46 1.47 0.43 1.87 0.42 1.73 0.29 4.80

gymnastics 207 0.60 0.00 0.59 0.00 0.56 0.33 0.44 2.80

hand1 244 0.60 1.07 0.58 0.87 0.61 0.73 0.46 4.73

hand2 267 0.52 1.80 0.52 1.93 0.54 1.13 0.37 9.53

jogging 307 0.67 1.47 0.67 1.27 0.67 1.73 0.65 1.00

motocross 164 0.45 2.80 0.40 3.80 0.44 2.53 0.39 2.53

polarbear 371 0.57 0.00 0.55 0.00 0.53 0.00 0.48 0.00

skating 400 0.33 7.07 0.43 9.60 0.41 12.73 0.46 0.00

sphere 201 0.78 0.00 0.72 0.00 0.72 0.00 0.70 0.00

sunshade 172 0.59 0.00 0.60 0.00 0.59 0.00 0.72 0.07

surfing 282 0.65 0.00 0.67 0.00 0.67 0.00 0.73 0.00

torus 264 0.72 0.00 0.74 0.00 0.75 0.00 0.72 0.33

trellis 569 0.47 0.00 0.50 0.00 0.51 0.00 0.56 1.27

tunnel 731 0.37 3.33 0.32 2.40 0.36 3.60 0.31 0.00

woman 597 0.48 0.00 0.67 0.00 0.68 0.73 0.63 2.00

Total 0.51 0.83 0.53 0.98 0.53 1.22 0.49 1.35

Table C.4: Per-sequence results on the VOT’16 [241] benchmark, experiment baseline. Best, sec-
ond best and third best accuracy results have been highlighted for each sequence. Robustness scores
have been boldfaced for sequences where the tracker did not drift and thus, no re-initialization was
necessary throughout this sequence. For each sequence, we additionally list its length in numbers
of frames, denoted #F.

Sequence #F
DAT+s DAT noDAT ACT [93]

Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓

bag 196 0.49 0.00 0.48 0.00 0.48 0.00 0.40 0.00

ball1 105 0.73 0.00 0.77 0.00 0.78 0.00 0.73 1.00

ball2 41 0.50 1.00 0.50 1.00 0.52 1.00 0.01 4.00

basketball 725 0.63 0.00 0.65 1.00 0.64 1.00 0.54 1.00

birds1 339 0.22 2.00 0.45 6.00 0.44 7.00 0.48 3.00

birds2 539 0.37 1.00 0.43 1.00 0.43 1.00 0.22 0.00

blanket 225 0.66 0.00 0.56 0.00 0.55 0.00 0.58 2.00

bmx 76 0.29 0.00 0.29 0.00 0.29 0.00 0.21 0.00

Table continued on next page.
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Table C.4: SOT on VOT’16, experiment baseline – Continued from previous page.

Sequence #F
DAT+s DAT noDAT ACT [93]

Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓

bolt1 350 0.44 0.00 0.54 1.00 0.45 2.00 0.46 0.00

bolt2 293 0.57 0.00 0.53 0.00 0.56 1.00 0.50 0.00

book 175 0.47 1.00 0.36 1.00 0.36 1.00 0.35 7.00

butterfly 151 0.46 0.00 0.47 0.00 0.50 0.00 0.39 1.00

car1 742 0.34 3.00 0.47 2.00 0.42 6.00 0.67 3.00

car2 393 0.32 2.00 0.28 5.00 0.26 3.00 0.73 0.00

crossing 131 0.46 1.00 0.44 1.00 0.44 1.00 0.44 1.00

dinosaur 326 0.45 1.00 0.53 0.00 0.57 0.00 0.47 1.07

fernando 292 0.37 2.00 0.36 2.00 0.37 3.00 0.29 1.00

fish1 366 0.46 2.00 0.45 2.00 0.45 2.00 0.32 6.07

fish2 310 0.47 1.00 0.42 2.00 0.39 3.00 0.22 7.00

fish3 519 0.46 0.00 0.57 0.00 0.58 0.00 0.47 0.00

fish4 682 0.36 2.00 0.44 1.00 0.42 1.00 0.25 1.00

girl 1500 0.66 1.00 0.64 1.00 0.64 0.00 0.47 2.00

glove 120 0.55 2.00 0.55 2.00 0.57 2.00 0.44 4.00

godfather 366 0.50 1.00 0.49 2.00 0.49 2.00 0.44 0.00

graduate 844 0.33 8.00 0.32 8.00 0.33 9.00 0.34 5.93

gymnastics1 567 0.57 0.00 0.40 1.00 0.54 1.00 0.40 6.07

gymnastics2 240 0.54 1.00 0.53 2.00 0.50 2.00 0.56 3.00

gymnastics3 118 0.43 3.00 0.32 1.00 0.16 3.00 0.26 2.00

gymnastics4 465 0.51 2.00 0.52 2.00 0.53 1.00 0.41 3.00

hand 267 0.55 1.00 0.55 2.00 0.54 2.00 0.44 6.00

handball1 377 0.43 2.00 0.54 2.00 0.50 2.00 0.45 3.07

handball2 402 0.40 2.00 0.45 2.00 0.44 3.00 0.45 4.93

helicopter 708 0.55 0.00 0.47 1.00 0.47 1.00 0.35 0.00

iceskater1 661 0.52 0.00 0.53 1.00 0.53 1.00 0.40 3.00

iceskater2 707 0.59 2.00 0.54 1.00 0.52 2.00 0.47 4.00

leaves 63 0.49 0.00 0.45 0.00 0.45 0.00 0.31 2.00

marching 201 0.34 4.00 0.42 4.00 0.39 5.00 0.75 0.00

matrix 100 0.42 1.00 0.51 1.00 0.48 1.00 0.35 3.00

motocross1 164 0.45 4.00 0.35 2.00 0.35 2.00 0.36 2.00

motocross2 61 0.29 0.00 0.31 1.00 0.57 1.00 0.54 0.00

nature 999 0.48 3.00 0.47 3.00 0.56 2.00 0.33 4.00

octopus 291 0.31 0.00 0.30 0.00 0.30 0.00 0.31 0.00

pedestrian1 140 0.60 1.00 0.58 1.00 0.58 1.00 0.70 6.00

pedestrian2 713 0.22 0.00 0.22 0.00 0.22 0.00 0.54 3.00

rabbit 158 0.38 4.00 0.43 5.00 0.30 6.00 0.26 5.00

racing 156 0.21 0.00 0.32 0.00 0.41 1.00 0.32 0.00

road 558 0.48 0.00 0.52 1.00 0.59 1.00 0.56 0.00

shaking 365 0.27 1.00 0.58 6.00 0.59 5.00 0.54 0.00

sheep 251 0.31 0.00 0.34 1.00 0.35 1.00 0.48 0.00

Table continued on next page.
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Table C.4: SOT on VOT’16, experiment baseline – Continued from previous page.

Sequence #F
DAT+s DAT noDAT ACT [93]

Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓ Acc.↑ Rob.↓

singer1 351 0.65 0.00 0.48 1.00 0.48 1.00 0.32 0.00

singer2 366 0.14 2.00 0.38 4.00 0.37 5.00 0.53 3.00

singer3 131 0.23 2.00 0.14 2.00 0.34 2.00 0.31 1.00

soccer1 392 0.50 9.00 0.43 8.00 0.47 9.00 0.44 1.00

soccer2 129 0.60 2.00 0.61 2.00 0.58 3.00 0.00 17.00

soldier 138 0.37 1.00 0.45 0.00 0.45 0.00 0.46 2.00

sphere 201 0.75 0.00 0.71 0.00 0.70 0.00 0.26 4.00

tiger 365 0.50 2.00 0.54 2.00 0.47 1.00 0.66 3.00

traffic 191 0.39 2.00 0.40 2.00 0.40 2.00 0.68 0.00

tunnel 312 0.25 1.00 0.54 1.00 0.51 2.00 0.43 0.00

wiper 341 0.16 7.00 0.21 6.00 0.22 8.00 0.66 0.00

Total 0.45 1.67 0.47 1.99 0.47 2.21 0.44 2.34

Table C.5: Per-sequence results on the VOT’16 [241] benchmark, experiment unsupervised. As
there is no supervision, this experimental stack is only evaluated using average overlap (AO). Best,
second best and third best results have been highlighted for each sequence. For each sequence, we
additionally list its length in numbers of frames, denoted #F.

Sequence # F DAT+s DAT noDAT ACT [93]

bag 196 0.49 0.48 0.48 0.40

ball1 105 0.73 0.76 0.78 0.37

ball2 41 0.06 0.06 0.06 0.03

basketball 725 0.63 0.59 0.58 0.02

birds1 339 0.22 0.04 0.06 0.40

birds2 539 0.31 0.35 0.35 0.22

blanket 225 0.66 0.57 0.55 0.16

bmx 76 0.32 0.32 0.32 0.25

bolt1 350 0.44 0.11 0.21 0.47

bolt2 293 0.56 0.53 0.27 0.50

book 175 0.31 0.20 0.20 0.18

butterfly 151 0.47 0.48 0.50 0.33

car1 742 0.20 0.25 0.01 0.53

car2 393 0.04 0.04 0.04 0.73

crossing 131 0.46 0.44 0.44 0.45

dinosaur 326 0.39 0.53 0.58 0.37

fernando 292 0.25 0.27 0.27 0.23

fish1 366 0.20 0.20 0.20 0.02

fish2 310 0.42 0.15 0.15 0.03

fish3 519 0.47 0.58 0.58 0.48

fish4 682 0.05 0.05 0.25 0.21

Table continued on next page.
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Table C.5: SOT on VOT’16, experiment unsupervised.

Continued from previous page.

Sequence # F DAT+s DAT noDAT ACT [93]

girl 1500 0.54 0.36 0.64 0.07

glove 120 0.12 0.12 0.12 0.07

godfather 366 0.40 0.43 0.26 0.44

graduate 844 0.21 0.20 0.18 0.24

gymnastics1 567 0.57 0.30 0.19 0.19

gymnastics2 240 0.44 0.41 0.42 0.27

gymnastics3 118 0.12 0.12 0.12 0.12

gymnastics4 465 0.43 0.44 0.44 0.28

hand 267 0.35 0.12 0.29 0.16

handball1 377 0.06 0.31 0.45 0.26

handball2 402 0.36 0.40 0.40 0.16

helicopter 708 0.55 0.35 0.35 0.36

iceskater1 661 0.53 0.19 0.19 0.18

iceskater2 707 0.38 0.41 0.05 0.25

leaves 63 0.49 0.45 0.45 0.01

marching 201 0.03 0.02 0.02 0.75

matrix 100 0.28 0.23 0.36 0.12

motocross1 164 0.09 0.09 0.09 0.08

motocross2 61 0.31 0.27 0.08 0.54

nature 999 0.11 0.10 0.10 0.11

octopus 291 0.32 0.32 0.31 0.32

pedestrian1 140 0.36 0.35 0.36 0.04

pedestrian2 713 0.22 0.22 0.22 0.12

rabbit 158 0.08 0.09 0.09 0.05

racing 156 0.22 0.34 0.08 0.35

road 558 0.48 0.56 0.04 0.56

shaking 365 0.03 0.03 0.03 0.54

sheep 251 0.31 0.04 0.04 0.49

singer1 351 0.66 0.18 0.17 0.34

singer2 366 0.08 0.10 0.09 0.07

singer3 131 0.15 0.15 0.14 0.15

soccer1 392 0.21 0.17 0.17 0.40

soccer2 129 0.10 0.10 0.09 0.03

soldier 138 0.09 0.44 0.44 0.20

sphere 201 0.75 0.71 0.70 0.18

tiger 365 0.38 0.38 0.47 0.63

traffic 191 0.25 0.24 0.24 0.68

tunnel 312 0.14 0.10 0.18 0.44

wiper 341 0.04 0.04 0.02 0.66

Total 0.33 0.28 0.27 0.28
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Table C.6: Per-sequence results on all 76 color videos of the OTB-100 [449] dataset reporting
the area under the success curve (AUC, average overlap) and the representative distance precision
score (RDP, percentage of frames with center distance less than 20 pixels). Videos with multiple
targets are reported as separate sequences, where the target identifier is listed as a post-fix, i.e.
Jogging and Skating2.

Sequence #F
DAT+s DAT noDAT CXT [104]

AUC↑ RDP↑ AUC↑ RDP↑ AUC↑ RDP↑ AUC↑ RDP↑

Basketball 725 0.67 1.00 0.75 1.00 0.75 1.00 0.02 0.04

Biker 142 0.18 0.50 0.18 0.50 0.18 0.50 0.41 0.54

Bird1 408 0.24 0.42 0.22 0.31 0.23 0.33 0.03 0.03

Bird2 99 0.67 0.99 0.75 1.00 0.74 0.99 0.25 0.19

BlurBody 334 0.57 0.89 0.43 0.38 0.49 0.46 0.72 0.95

BlurCar1 742 0.38 0.43 0.09 0.05 0.01 0.01 0.24 0.34

BlurCar2 585 0.37 0.00 0.47 0.11 0.28 0.01 0.76 0.97

BlurCar3 357 0.16 0.11 0.52 0.57 0.53 0.57 0.60 1.00

BlurCar4 380 0.71 0.76 0.80 0.97 0.80 0.98 0.75 1.00

BlurFace 493 0.48 0.05 0.48 0.05 0.49 0.06 0.82 1.00

BlurOwl 631 0.80 0.99 0.79 1.00 0.80 1.00 0.26 0.98

Board 698 0.15 0.10 0.19 0.12 0.18 0.13 0.30 0.11

Bolt 350 0.59 0.97 0.64 0.96 0.64 0.97 0.02 0.03

Bolt2 293 0.43 0.69 0.44 0.67 0.44 0.66 0.01 0.02

Box 1161 0.10 0.04 0.46 0.54 0.05 0.05 0.31 0.34

Boy 602 0.71 1.00 0.76 1.00 0.76 1.00 0.54 0.94

Car24 3059 0.33 0.52 0.24 0.55 0.23 0.55 0.77 1.00

CarDark 393 0.04 0.11 0.04 0.11 0.03 0.11 0.56 0.73

CarScale 252 0.63 0.69 0.40 0.67 0.41 0.64 0.67 0.74

Coke 291 0.45 0.47 0.54 0.62 0.36 0.43 0.42 0.65

Couple 140 0.55 0.95 0.54 0.95 0.55 0.96 0.47 0.64

Crossing 120 0.57 1.00 0.61 1.00 0.61 1.00 0.36 0.63

Crowds 347 0.69 0.97 0.70 0.95 0.70 0.94 0.09 0.13

David 471 0.45 0.64 0.44 0.69 0.44 0.69 0.64 1.00

David3 252 0.49 0.22 0.68 0.70 0.68 0.73 0.12 0.15

Deer 71 0.17 0.21 0.17 0.21 0.07 0.06 0.69 1.00

Diving 215 0.37 0.69 0.32 0.49 0.28 0.45 0.19 0.19

Dog 127 0.56 1.00 0.37 1.00 0.37 1.00 0.64 1.00

Doll 3872 0.37 0.17 0.35 0.27 0.35 0.27 0.73 0.99

DragonBaby 113 0.63 0.87 0.60 0.81 0.60 0.83 0.35 0.58

FaceOcc1 892 0.38 0.13 0.43 0.19 0.43 0.20 0.63 0.34

Football1 74 0.67 1.00 0.68 1.00 0.60 0.89 0.75 1.00

Girl 500 0.46 0.77 0.58 0.94 0.49 0.81 0.55 0.77

Girl2 1500 0.58 0.79 0.57 0.78 0.69 0.91 0.18 0.18

Gym 767 0.46 0.63 0.47 0.85 0.47 0.84 0.45 0.75

Human2 1128 0.15 0.10 0.16 0.11 0.16 0.11 0.28 0.28

Table continued on next page.
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Table C.6: SOT on OTB-100 – Continued from previous page.

Sequence #F
DAT+s DAT noDAT CXT [104]

AUC↑ RDP↑ AUC↑ RDP↑ AUC↑ RDP↑ AUC↑ RDP↑

Human3 1698 0.02 0.03 0.06 0.10 0.08 0.12 0.01 0.01

Human4 667 0.56 0.98 0.32 0.50 0.38 0.59 0.06 0.11

Human5 713 0.03 0.05 0.03 0.05 0.03 0.03 0.23 0.33

Human6 792 0.20 0.31 0.24 0.32 0.19 0.33 0.15 0.17

Human7 250 0.47 1.00 0.14 0.16 0.44 0.76 0.43 0.96

Human8 128 0.33 0.48 0.33 0.59 0.45 0.91 0.11 0.19

Human9 305 0.51 0.82 0.32 0.26 0.32 0.30 0.08 0.12

Ironman 166 0.09 0.13 0.02 0.03 0.02 0.03 0.05 0.04

Jogging.1 307 0.17 0.23 0.18 0.23 0.18 0.23 0.75 0.96

Jogging.2 307 0.12 0.17 0.14 0.20 0.72 0.98 0.13 0.16

Jump 122 0.07 0.06 0.06 0.05 0.06 0.05 0.06 0.07

KiteSurf 84 0.61 1.00 0.30 0.48 0.63 1.00 0.32 0.42

Lemming 1336 0.56 0.63 0.58 0.59 0.58 0.59 0.45 0.73

Liquor 1741 0.19 0.20 0.19 0.22 0.22 0.26 0.25 0.21

Man 134 0.21 0.61 0.34 0.69 0.24 0.49 0.84 0.99

Matrix 100 0.23 0.36 0.25 0.35 0.45 0.75 0.07 0.06

MotorRolling 164 0.10 0.08 0.10 0.07 0.10 0.06 0.14 0.04

MountainBike 228 0.39 0.56 0.11 0.12 0.10 0.11 0.22 0.28

Panda 1000 0.52 0.98 0.52 0.98 0.52 0.98 0.19 0.31

RedTeam 1918 0.42 1.00 0.49 1.00 0.49 1.00 0.39 0.65

Rubik 1997 0.62 0.73 0.48 0.39 0.48 0.38 0.36 0.23

Shaking 365 0.02 0.02 0.04 0.02 0.03 0.02 0.13 0.13

Singer1 351 0.65 0.96 0.25 0.16 0.18 0.16 0.49 0.97

Singer2 366 0.02 0.01 0.02 0.01 0.02 0.01 0.07 0.06

Skater2 435 0.25 0.31 0.16 0.15 0.16 0.15 0.41 0.34

Skating1 400 0.06 0.09 0.07 0.10 0.07 0.10 0.14 0.24

Skating2.1 473 0.39 0.26 0.37 0.27 0.38 0.26 0.13 0.16

Skating2.2 473 0.02 0.01 0.02 0.01 0.02 0.01 0.06 0.04

Skiing 81 0.53 1.00 0.51 1.00 0.50 1.00 0.09 0.15

Soccer 392 0.19 0.24 0.14 0.16 0.20 0.18 0.15 0.23

Subway 175 0.54 1.00 0.53 0.73 0.68 0.97 0.17 0.26

Surfer 376 0.56 0.95 0.41 0.99 0.31 0.66 0.72 1.00

Sylvester 1345 0.31 0.75 0.53 0.72 0.53 0.72 0.59 0.85

Tiger1 354 0.33 0.15 0.45 0.29 0.45 0.30 0.21 0.12

Tiger2 365 0.47 0.62 0.44 0.49 0.45 0.51 0.36 0.34

Trans 124 0.39 0.25 0.39 0.25 0.38 0.24 0.51 0.39

Trellis 569 0.57 0.80 0.57 0.82 0.57 0.81 0.65 0.97

Walking 412 0.65 1.00 0.54 1.00 0.54 0.99 0.17 0.24

Walking2 500 0.31 0.41 0.28 0.37 0.28 0.37 0.37 0.41

Woman 597 0.63 0.91 0.70 0.91 0.70 0.91 0.20 0.37

Total 0.39 0.54 0.37 0.50 0.39 0.52 0.35 0.47
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C.2 Multiple Object Detection Results

In the following, we list the detailed evaluation results for pedestrian detection on the

surveillance scenes we used for detection-based multiple object tracking. The results on the

PETS’09 S2L1, S2L2 and S2L3 [136] sequences are summarized in Table C.7, C.8 and C.9,

respectively. Table C.10 lists the detection results on the TownCentre [36] dataset. Note

that for each detector, we list both the original and the refined results, i.e. after bounding

box regression as detailed in Section 5.2.3.2. In addition to the results of publicly available

state-of-the-art detectors, we also include widely used detections for each sequence, namely

the ACF⊕ detections (for the PETS’09 S2L1, S2L2 and TownCentre sequences) provided

by the MOT’15 committee [256], the DPMv4
⊕ detections (for all PETS’09 sequences)

kindly provided by the authors of [192, 193], and the HOG detections distributed in

combination with the TownCentre [36] dataset. For the deep learning meta-architectures

F-RCNN [362], R-FCN [90], and SSD [280], we report the results from using different

feature extractors, as indicated in the tables.

Table C.7: Evaluation of state-of-the-art pedestrian detectors on the PETS’09 S2L1 [136] dataset.
The superscript ⊕ indicates that the input images have been upsampled (to twice the size) in order
to better match the object sizes used during training the detector model. Best, second best and
third best results have been highlighted for each measure.

Detector Training Data AUC↑ GPU FPS↑

ACF⊕ [109] Caltech [108] 0.80(+0.01) 2.88± 0.13

ACF [109] Caltech [108] 0.84(+0.02) 10.01± 0.95

ACF⊕ [109] INRIA [91] 0.92(+0.00) 8.11± 0.47

ACF [109] INRIA [91] 0.65(+0.19) 32.08± 1.61

ACF⊕ [109], provided by [256] INRIA [91] 0.89(+0.01) —

DPMv5
⊕ [135] INRIA [91] 0.89(+0.02) 0.08± 0.00

DPMv5 [135] INRIA [91] 0.84(+0.03) 0.24± 0.05

DPMv5
⊕ [135] VOC07 [122] 0.85(+0.02) 0.08± 0.02

DPMv5 [135] VOC07 [122] 0.73(+0.03) 0.17± 0.12

DPMv5 Person Grammar⊕ [135, 153] VOC07 [122] 0.81(+0.01) 0.06± 0.01

DPMv5 Person Grammar [135, 153] VOC07 [122] 0.79(+0.02) 0.16± 0.04

DPMv4
⊕ [135], provided by [192, 193] VOC09 [122] 0.92(+0.01) —

DPMv5
⊕ [135] VOC10 [122] 0.84(+0.01) 0.08± 0.02

DPMv5 [135] VOC10 [122] 0.72(+0.03) 0.17± 0.12

DPMv5 Person Grammar⊕ [135, 153] VOC10 [122] 0.84(+0.02) 0.06± 0.01

DPMv5 Person Grammar [135, 153] VOC10 [122] 0.82(+0.02) 0.16± 0.04

F-RCNN Inception-ResNetv2 [362, 407] COCO [276] 0.91(+0.00) X 2.57± 0.13

Table continued on next page.
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Table C.7: Pedestrian detection on PETS’09 S2L1 – Continued from previous page.

Detector Training Data AUC↑ GPU FPS↑

F-RCNN Inceptionv2 [362, 406] COCO [276] 0.87(+0.04) X 10.99± 0.46

F-RCNN NAS [362, 500] COCO [276] 0.92(+0.00) X 2.60± 0.13

F-RCNN ResNet101 [181, 362] COCO [276] 0.89(+0.01) X 7.30± 0.40

F-RCNN ResNet101 [181, 362] KITTI [150] 0.65(+0.08) X 12.46± 0.54

F-RCNN ResNet50 [181, 362] COCO [276] 0.88(+0.01) X 7.91± 0.37

IKSVM⊕ [295] INRIA [91] 0.85(+0.85) 0.03± 0.00

IKSVM [295] INRIA [91] 0.59(+0.59) 0.14± 0.01

LDCF⊕ [322] Caltech [108] 0.81(+0.02) 0.99± 0.05

LDCF [322] Caltech [108] 0.83(+0.02) 3.28± 0.19

Poselets [56] H3D [56] 0.87(+0.00) 0.07± 0.01

R-FCN ResNet101 [90, 181] COCO [276] 0.89(+0.00) X 9.24± 0.47

SSD Inceptionv2 [280, 406] COCO [276] 0.76(+0.01) X 16.74± 1.15

SSD MobileNet [197, 280] COCO [276] 0.71(+0.03) X 17.97± 1.09

YOLOv2 [358] COCO [276] 0.80(+0.00) X 62.76± 2.90

Table C.8: Evaluation of state-of-the-art pedestrian detectors on the PETS’09 S2L2 [136] dataset.
The superscript ⊕ indicates that the input images have been upsampled (to twice the size) in order
to better match the object sizes used during training the detector model. Best, second best and
third best results have been highlighted for each measure.

Detector Training Data AUC↑ GPU FPS↑

ACF⊕ [109] Caltech [108] 0.41(+0.04) 2.86± 0.22

ACF [109] Caltech [108] 0.43(+0.04) 9.48± 1.50

ACF⊕ [109] INRIA [91] 0.72(+0.04) 8.36± 0.64

ACF [109] INRIA [91] 0.35(+0.06) 28.99± 2.72

ACF⊕ [109], provided by [256] INRIA [91] 0.56(+0.05) —

DPMv5
⊕ [135] INRIA [91] 0.67(+0.03) 0.08± 0.01

DPMv5 [135] INRIA [91] 0.48(+0.02) 0.30± 0.05

DPMv5
⊕ [135] VOC07 [122] 0.62(+0.02) 0.11± 0.02

DPMv5 [135] VOC07 [122] 0.42(+0.01) 0.34± 0.10

DPMv5 Person Grammar⊕ [135, 153] VOC07 [122] 0.59(+0.03) 0.06± 0.01

DPMv5 Person Grammar [135, 153] VOC07 [122] 0.48(+0.01) 0.21± 0.04

Table continued on next page



146 Detailed Results

Table C.8: Pedestrian detection on PETS’09 S2L2 – Continued from previous page.

Detector Training Data AUC↑ GPU FPS↑

DPMv4
⊕ [135], provided by [192, 193] VOC09 [122] 0.71(+0.03) —

DPMv5
⊕ [135] VOC10 [122] 0.61(+0.02) 0.11± 0.02

DPMv5 [135] VOC10 [122] 0.42(+0.01) 0.33± 0.10

DPMv5 Person Grammar⊕ [135, 153] VOC10 [122] 0.59(+0.00) 0.06± 0.01

DPMv5 Person Grammar [135, 153] VOC10 [122] 0.50(+0.01) 0.21± 0.04

F-RCNN Inception-ResNetv2 [362, 407] COCO [276] 0.79(+0.03) X 2.57± 0.15

F-RCNN Inceptionv2 [362, 406] COCO [276] 0.75(+0.07) X 10.86± 0.55

F-RCNN NAS [362, 500] COCO [276] 0.75(+0.01) X 2.60± 0.15

F-RCNN ResNet101 [181, 362] COCO [276] 0.79(+0.03) X 7.30± 0.44

F-RCNN ResNet101 [181, 362] KITTI [150] 0.48(+0.09) X 12.43± 0.66

F-RCNN ResNet50 [181, 362] COCO [276] 0.78(+0.04) X 7.90± 0.44

IKSVM⊕ [295] INRIA [91] 0.66(+0.61) 0.02± 0.01

IKSVM [295] INRIA [91] 0.33(+0.33) 0.12± 0.02

LDCF⊕ [322] Caltech [108] 0.42(+0.02) 1.04± 0.04

LDCF [322] Caltech [108] 0.44(+0.04) 3.36± 0.20

Poselets [56] H3D [56] 0.65(+0.05) 0.03± 0.01

R-FCN ResNet101 [90, 181] COCO [276] 0.75(+0.03) X 9.20± 0.55

SSD Inceptionv2 [280, 406] COCO [276] 0.50(+0.08) X 16.64± 1.22

SSD MobileNet [197, 280] COCO [276] 0.44(+0.10) X 17.79± 1.19

YOLOv2 [358] COCO [276] 0.51(+0.07) X 63.50± 1.88

Table C.9: Evaluation of state-of-the-art pedestrian detectors on the PETS’09 S2L3 [136] dataset.
The superscript ⊕ indicates that the input images have been upsampled (to twice the size) in order
to better match the object sizes used during training the detector model. Best, second best and
third best results have been highlighted for each measure.

Detector Training Data AUC↑ GPU FPS↑

ACF⊕ [109] Caltech [108] 0.34(+0.11) 3.16± 0.24

ACF [109] Caltech [108] 0.36(+0.12) 12.58± 2.20

ACF⊕ [109] INRIA [91] 0.63(+0.07) 9.14± 1.06

ACF [109] INRIA [91] 0.30(+0.17) 31.69± 4.10

DPMv5
⊕ [135] INRIA [91] 0.60(+0.09) 0.08± 0.00

Table continued on next page.
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Table C.9: Pedestrian detection on PETS’09 S2L3 – Continued from previous page.

Detector Training Data AUC↑ GPU FPS↑

DPMv5 [135] INRIA [91] 0.46(+0.06) 0.28± 0.05

DPMv5
⊕ [135] VOC07 [122] 0.59(+0.08) 0.10± 0.03

DPMv5 [135] VOC07 [122] 0.43(+0.08) 0.29± 0.14

DPMv5 Person Grammar⊕ [135, 153] VOC07 [122] 0.58(+0.09) 0.06± 0.01

DPMv5 Person Grammar [135, 153] VOC07 [122] 0.48(+0.07) 0.19± 0.05

DPMv4
⊕ [135], provided by [192, 193] VOC09 [122] 0.60(+0.02) —

DPMv5
⊕ [135] VOC10 [122] 0.58(+0.09) 0.10± 0.03

DPMv5 [135] VOC10 [122] 0.43(+0.08) 0.28± 0.14

DPMv5 Person Grammar⊕ [135, 153] VOC10 [122] 0.56(+0.07) 0.06± 0.01

DPMv5 Person Grammar [135, 153] VOC10 [122] 0.49(+0.07) 0.19± 0.05

F-RCNN Inception-ResNetv2 [362, 407] COCO [276] 0.68(+0.04) X 2.58± 0.18

F-RCNN Inceptionv2 [362, 406] COCO [276] 0.56(+0.04) X 10.85± 0.71

F-RCNN NAS [362, 500] COCO [276] 0.64(+0.04) X 2.59± 0.18

F-RCNN ResNet101 [181, 362] COCO [276] 0.68(+0.05) X 7.30± 0.55

F-RCNN ResNet101 [181, 362] KITTI [150] 0.50(+0.14) X 12.41± 0.82

F-RCNN ResNet50 [181, 362] COCO [276] 0.65(+0.04) X 7.87± 0.55

IKSVM⊕ [295] INRIA [91] 0.45(+0.45) 0.03± 0.01

IKSVM [295] INRIA [91] 0.22(+0.22) 0.13± 0.03

LDCF⊕ [322] Caltech [108] 0.41(+0.08) 1.06± 0.04

LDCF [322] Caltech [108] 0.42(+0.08) 3.59± 0.22

Poselets [56] H3D [56] 0.60(+0.09) 0.06± 0.03

R-FCN ResNet101 [90, 181] COCO [276] 0.66(+0.03) X 9.22± 0.69

SSD Inceptionv2 [280, 406] COCO [276] 0.35(+0.01) X 16.47± 1.38

SSD MobileNet [197, 280] COCO [276] 0.30(+0.04) X 17.75± 1.36

YOLOv2 [358] COCO [276] 0.31(+0.03) X 62.56± 2.96
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Table C.10: Evaluation of state-of-the-art pedestrian detectors on the TownCentre [36] dataset.
Due to the significant object size variations (caused by the viewpoint) neither down- nor upscaling
the image lead to notable improvements. Thus, only the results on the original input images are
reported. Best, second best and third best results have been highlighted for each measure.

Detector Training Data AUC↑ GPU FPS↑

ACF [109] Caltech [108] 0.36(+0.01) 2.50± 0.18

ACF [109] INRIA [91] 0.66(+0.03) 7.40± 0.35

ACF⊕ [109], provided by [256] INRIA [91] 0.48(+0.03) —

DPMv5 [135] INRIA [91] 0.79(+0.04) 0.06± 0.00

DPMv5 [135] VOC07 [122] 0.78(+0.07) 0.11± 0.00

DPMv5 Person Grammar [135, 153] VOC07 [122] 0.77(+0.05) 0.06± 0.00

DPMv5 [135] VOC10 [122] 0.77(+0.07) 0.10± 0.00

DPMv5 Person Grammar [135, 153] VOC10 [122] 0.80(+0.06) 0.04± 0.00

F-RCNN Inception-ResNetv2 [362, 407] COCO [276] 0.78(+0.02) X 2.43± 0.13

F-RCNN Inceptionv2 [362, 406] COCO [276] 0.71(+0.06) X 10.29± 0.57

F-RCNN NAS [362, 500] COCO [276] 0.73(+0.00) X 2.62± 0.15

F-RCNN ResNet101 [181, 362] COCO [276] 0.73(+0.00) X 6.84± 0.52

F-RCNN ResNet101 [181, 362] KITTI [150] 0.61(+0.00) X 11.07± 0.75

F-RCNN ResNet50 [181, 362] COCO [276] 0.75(+0.00) X 7.64± 0.48

HOG [91], provided by [36] INRIA [91] 0.62(+0.02) —

IKSVM [295] INRIA [91] 0.74(+0.66) 0.02± 0.00

LDCF [322] Caltech [108] 0.33(+0.02) 0.88± 0.05

Poselets [56] H3D [56] 0.82(+0.06) 0.01± 0.00

R-FCN ResNet101 [90, 181] COCO [276] 0.78(+0.04) X 8.52± 0.54

SSD Inceptionv2 [280, 406] COCO [276] 0.45(+0.07) X 15.63± 1.47

SSD MobileNet [197, 280] COCO [276] 0.39(+0.10) X 17.13± 1.28

YOLOv2 [358] COCO [276] 0.49(+0.05) X 65.39± 0.99
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C.3 Multiple Object Tracking Results

In the following, we report the detailed tracking results for our multiple object track-

ing approach. The results on the PETS’09 S2L1, S2L2 and S2L3 [136] sequences are

shown in Table C.11, C.12 and C.13, respectively. Table C.14 lists the tracking results on

the TownCentre [36] dataset. For each sequence, we report the results for our occlusion

geodesics-based tracker (denoted OccGeo) using different off-the-shelf pedestrian detec-

tors and compare these to state-of-the-art approaches published at major computer vision

conferences and journals. Since raw tracking results are mostly not available, we show

the results of state-of-the-art approaches reported within the corresponding publications

or provided by the authors via personal correspondence – thus, these results should only

be considered for reference but not for direct comparison as we cannot ensure the same

evaluation protocol. In particular, despite using the standard CLEAR metrics, there are

subtle differences which slightly effect the overall results, e.g. the way of counting identity

switches [253, 273] or whether bounding box overlap (following the PASCAL criterion)

Table C.11: Tracking results on PETS’09 S2L1 [136]. We compare our tracker using different off-
the-shelf detectors to various state-of-the-art approaches. The second and third column indicate
if the corresponding tracker uses an instance-specific appearance model (A) and is causal (C),
respectively. Best, second best and third best results have been highlighted for each measure.

Tracker A C MOTA↑ MOTP↑ MT↑ ML↓ IDs↓ FM↓ FPS↑

O
u
rs

OccGeo using DPM X 0.96 0.81 1.00 0.00 12 20 28.2
OccGeo using R-FCN X 0.88 0.74 0.89 0.00 12 32 27.2
OccGeo using ACF X 0.86 0.77 0.89 0.00 13 22 19.1
OccGeo using Poselets X 0.84 0.76 0.79 0.00 19 28 24.9
OccGeo using LDCF X 0.78 0.72 0.89 0.00 22 21 11.8
OccGeo using IKSVM X 0.78 0.70 0.79 0.00 15 34 21.6
OccGeo using F-RCNN X 0.68 0.65 0.79 0.00 21 55 27.2
OccGeo using SSD X 0.67 0.67 0.68 0.00 44 49 15.6
OccGeo using YOLO X 0.64 0.64 0.53 0.05 37 60 12.7

M
a
jo
r
L
it
er
at
u
re

Hofmann et al. [193] 0.98 0.83 1.00 0.00 10 11 –
Hofmann et al. [192] X 0.98 0.75 1.00 0.00 8 8 –
Jiang et al. [213] X X 0.96 0.88 0.95 0.00 6 5 66.7
Andriyenko et al. [13] 0.96 0.79 1.00 0.00 10 8 2.0
Wu et al. [453] X X 0.93 0.74 1.00 0.00 8 11 1.7
Izadinia et al. [210] X 0.91 0.76 – – – – –
Milan et al. [308] X 0.91 0.80 0.91 0.04 11 6 –
Milan et al. [307] 0.90 0.74 0.78 0.00 22 15 –
Zamir et al. [476] X 0.90 0.69 0.90 0.00 10 54 –
Henriques et al. [187] X 0.83 0.71 0.90 0.00 19 45 –
Andriyenko and Schindler [12] 0.81 0.76 0.83 0.00 15 21 –
Berclaz et al. [39] 0.80 0.72 0.74 0.09 13 22 –
Breitenstein et al. [60] X X 0.80 0.56 – – – – 1.2
Yang et al. [465] X X 0.76 0.54 – – – – –
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or ground plane distances (with a cut-off threshold of typically 1 [m]) are used to as-

sign tracking results to ground truth annotations. For the sequences contained in the

3D MOT’15 [256] benchmark – i.e. PETS’09 S2L2 and TownCentre – we also compare

to officially benchmarked trackers using the publicly available tracking results. For these

trackers, we use the same evaluation protocol as for our OccGeo approach to ensure a fair

comparison – please refer to Section 5.2.2 for details.

Table C.12: Tracking results on PETS’09 S2L2 [136]. We compare our tracker using different
off-the-shelf detectors to various state-of-the-art approaches, including trackers with participated
in the 3D MOT’15 benchmark [256]. The second and third column indicate if the corresponding
tracker uses an instance-specific appearance model (A) and is causal (C), respectively. Best, second
best and third best results have been highlighted for each measure.

Tracker A C MOTA↑ MOTP↑ MT↑ ML↓ IDs↓ FM↓ FPS↑

O
u
rs

OccGeo using F-RCNN X 0.60 0.62 0.44 0.09 118 146 3.5
OccGeo using DPM X 0.57 0.65 0.28 0.14 125 136 7.8
OccGeo using ACF X 0.43 0.62 0.47 0.07 216 182 2.1
OccGeo using R-FCN X 0.41 0.61 0.26 0.07 206 173 2.3
OccGeo using IKSVM X 0.40 0.60 0.12 0.26 90 116 4.9
OccGeo using Poselets X 0.37 0.61 0.19 0.12 195 196 2.5
OccGeo using YOLO X 0.31 0.57 0.09 0.16 140 186 3.0
OccGeo using LDCF X 0.30 0.62 0.19 0.12 165 134 2.7
OccGeo using SSD X 0.26 0.62 0.05 0.37 101 127 4.5

3D
M
O
T
’1
5

GPR-DBN [232] X X 0.54 0.65 0.23 0.14 122 163 –
STV [440] X 0.46 0.55 0.14 0.12 186 215 –
LP-3D [255] 0.42 0.50 0.19 0.09 220 249 –
LP-SFM [253] 0.39 0.52 0.05 0.19 173 208 –
S-RNN [368] X X 0.31 0.53 0.00 0.14 515 677 –
K-SFM [341] X 0.30 0.52 0.02 0.07 698 683 –

M
a
jo
r
L
it
er
at
u
re Hofmann et al. [193] 0.76 0.72 0.65 0.00 234 252 –

Wu et al. [453] X X 0.73 0.73 0.69 0.04 122 113 1.3
Hofmann et al. [192] X 0.57 0.56 0.40 0.18 67 59 –
Milan et al. [308] X 0.57 0.59 0.38 0.16 99 73 –
Jiang et al. [213] X X 0.51 0.67 0.60 0.18 119 146 23.0
Milan et al. [307] 0.46 0.60 0.34 0.11 126 105 –
Berclaz et al. [39] 0.24 0.61 0.10 0.54 22 38 –
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Table C.13: Tracking results on PETS’09 S2L3 [136]. We compare our tracker using different off-
the-shelf detectors to various state-of-the-art approaches. The second and third column indicate
if the corresponding tracker uses an instance-specific appearance model (A) and is causal (C),
respectively. Best, second best and third best results have been highlighted for each measure.

Tracker A C MOTA↑ MOTP↑ MT↑ ML↓ IDs↓ FM↓ FPS↑

O
u
rs

OccGeo using F-RCNN X 0.51 0.70 0.35 0.40 23 22 25.7
OccGeo using R-FCN X 0.47 0.56 0.21 0.16 84 89 26.8
OccGeo using DPM X 0.46 0.48 0.14 0.28 67 99 17.8
OccGeo using ACF X 0.45 0.63 0.30 0.23 61 80 24.6
OccGeo using Poselets X 0.44 0.62 0.19 0.35 53 63 30.9
OccGeo using IKSVM X 0.41 0.47 0.21 0.35 31 42 40.5
OccGeo using LDCF X 0.41 0.63 0.23 0.44 52 47 24.3
OccGeo using YOLO X 0.21 0.59 0.07 0.63 36 49 13.5
OccGeo using SSD X 0.18 0.56 0.05 0.65 18 29 33.6

M
a
jo
r
L
it
.

Hofmann et al. [193] 0.63 0.71 0.55 0.11 225 217 –
Wu et al. [453] X X 0.58 0.70 0.48 0.18 41 39 1.2
Milan et al. [308] X 0.46 0.65 0.21 0.41 38 27 –
Hofmann et al. [192] X 0.42 0.65 0.34 0.32 49 67 –
Milan et al. [307] 0.40 0.65 0.18 0.43 27 22 –
Berclaz et al. [39] 0.29 0.62 0.11 0.71 7 12 –

Table C.14: Tracking results on TownCentre [36]. We compare our tracker using different off-the-
shelf detectors to various state-of-the-art approaches, including trackers with participated in the
3D MOT’15 benchmark [256]. The second and third column indicate if the corresponding tracker
uses an instance-specific appearance model (A) and is causal (C), respectively. Best, second best
and third best results have been highlighted for each measure.

Tracker A C MOTA↑ MOTP↑ MT/GT
↑ ML/GT

↓ IDS↓ FM↓ FPS↑

O
u
rs

OccGeo using DPM X 0.43 0.57 0.25 0.26 225 234 7.2
OccGeo using IKSVM X 0.38 0.59 0.13 0.33 185 218 10.2
OccGeo using Poselets X 0.36 0.57 0.21 0.20 218 262 5.1
OccGeo using ACF X 0.35 0.59 0.33 0.17 286 277 5.3
OccGeo using R-FCN X 0.32 0.54 0.20 0.30 248 262 6.3
OccGeo using F-RCNN X 0.28 0.53 0.13 0.41 164 236 6.7
OccGeo using SSD X 0.17 0.49 0.04 0.41 302 307 5.9
OccGeo using LDCF X 0.14 0.57 0.07 0.40 243 277 6.6
OccGeo using YOLO X 0.12 0.52 0.04 0.42 229 323 6.2

3D
M
O
T
’1
5

GPR-DBN [232] X X 0.42 0.59 0.35 0.22 59 107 –
LP-SFM [253] 0.22 0.53 0.18 0.23 223 259 –
LP-3D [255] 0.15 0.53 0.26 0.15 267 293 –
S-RNN [368] X X 0.11 0.55 0.03 0.40 270 376 –
STV [440] X 0.11 0.55 0.14 0.28 197 224 –
K-SFM [341] X 0.09 0.52 0.08 0.15 765 639 –

Table continued on next page.
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Table C.14: MOT on TownCentre – Continued from previous page.

Tracker A C MOTA↑ MOTP↑ MT/GT
↑ ML/GT

↓ IDS↓ FM↓ FPS↑

M
a
jo
r
L
it
er
a
tu
re

Izadinia et al. [210] X 0.76 0.72 – – – – –
Zamir et al. [476] X 0.76 0.72 – – – – –
Leal-Taixé et al. [253] 0.71 0.72 0.59 0.07 165 363 –
Wu et al. [453] X X 0.70 0.69 0.65 0.08 209 453 1.3
Zhang et al. [483] 0.69 0.72 0.53 0.09 243 440 –
Yamaguchi et al. [457] X 0.67 0.72 0.58 0.07 302 492 –
Pellegrini et al. [341] X 0.66 0.72 0.59 0.07 288 499 –
Benfold and Reid [36] X 0.64 0.80 0.67 0.07 222 343 –
Jiang et al. [213] X X 0.63 0.72 0.51 0.16 154 356 16.7
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[74] Luka Čehovin, Aleš Leonardis, and Matej Kristan. Visual Object Tracking Performance

Measures Revisited. IEEE Transactions on Image Processing (TIP), 25(3):1261–1274, 2016.

Cited on pages 69 and 71.
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[127] Gunnar Farnebäck. Very High Accuracy Velocity Estimation using Orientation Tensors,

Parametric Motion, and Simultaneous Segmentation of the Motion Field. In Proceedings of

the IEEE International Conference on Computer Vision (ICCV), 2001. Cited on page 2.



162 Bibliography
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Multiple Interacting Targets for Indoor-Sports Applications. Computer Vision and Image

Understanding (CVIU), 113(5):598–611, 2009. Cited on pages 3, 19, 20, 23 and 69.
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sual Object Tracking VOT2016 challenge results. In Proceedings of the IEEE Workshop



170 Bibliography

on Visual Object Tracking Challenge (VOT, in conjunction with ECCV), 2016. Cited on

pages 14, 65, 68, 69, 72, 82, 85, 95, 135, 138 and 140.
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