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Abstract

Hard gelatin capsules are besides tablets a commonly used solid oral dosage form. An
industrially used method for capsule filling is the dosator process. The fill weight and the fill
weight variability as the main quality attributes are difficult to control, since the dosator
process is a volume based approach. Therefore excellent process understanding is
necessary. With the help of DEM simulations the impact of critical parameters on the filling
behavior is investigated. For this purpose two different contact models are verified,
calibrated and validated. Contrary to the Hertz model, the results of the Luding model
turned out to be satisfactory. The examined process parameters include the machine speed,
powder bed height, gap width, dosator geometry and bulk density variations. It is shown
that no volumetric filling occurs and a homogeneous bed is necessary in order to reduce fill

weight variations.

Kurzfassung

Zur oralen Einnahme von Medikamenten werden neben Tabletten auch haufig
Gelatinekapseln verwendet. Diese werden mittels des sogenannten Dosatorprozesses
befillt. Sowohl die durchschnittliche Masse als auch deren Variabilitdt sind wichtige
Qualitatskriterien. Diese sind jedoch schwer kontrollierbar, da der Fullprozess auf einem
konstanten Volumen des Dosators basiert. Daher ist ein ausgepragtes Prozessverstandnis
unumganglich, um hohe Qualitaten zu erreichen. Mittels DEM-Simulationen werden
wichtige Prozessparameter und ihre Auswirkungen auf die Flllmenge untersucht. Dafir
wurden zwei Kontaktmodelle auf ihre Eignung zur Reproduktion des Prozesses getestet.
Wahrend sich das Hertz-Modell als unzureichend genau herausstellt, werden mit dem
Luding-Modell angemessene Resultate erzielt. Als Prozessparameter wurden
unterschiedliche Flllgeschwindigkeiten, Pulverbetthdhen, Einstechtiefen,
Dosatorgeometrien und Pulverbettdichten verwendet. Die Ergebnisse zeigen, dass keine
volumetrische Fillung erzielt wird und dass ein homogenes Pulverbett fir geringe

Massenunterschiede notwendig ist.
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1 Introduction

Solid oral dosage forms are most commonly used in pharmaceutical industry, since they are
convenient for the patient and come along with cost effective development (Sastry et al.,
2000). In addition to tablets, hard-shell capsules are a frequently utilized dosage form for
powders. Capsule shells are usually made of gelatin and consist of two parts, the body and
the cap. After the filling of the body, both parts are put together. While dry powder is often
used for filling, many other forms are also possible, including semisolids, liquids, mini tablets
or mini capsules. Given that different fill weights are necessary for every respective drug and
considering the variable bulk density of the particular powder, the volume which has to be
filled into the capsules varies. Therefore different capsule sizes exist, ranging from 5
(0.13 ml) to 000 (1.36 ml). For transferring the powder into the capsule, several ways are
possible. They can be divided into direct and indirect methods. Direct methods, e.g.
weighing in the API, are only applicable if a small quantity of the drug is needed. Industrial
production is most often done by faster indirect filling. In this case a stable plug is formed by
compressing the powder. This is most commonly done by dosator systems or tamping
systems. In addition to the high quantities, which can be produced with automatic systems
(150,000+ capsules/hour), those methods compact the powder and therefore the volume
decreases. Smaller capsules can be used, which leads to better patient convenience, since

they are easier to swallow (Hoag, 2016).

Dosator systems consist of a rotating powder bed with a defined height and a dosator
nozzle. The dosator nozzle is a hollow cylinder with a moving piston inside. The dosing takes

place in five consecutive steps (Fig. 1):

1. The dosator dips into the powder bed until a predefined distance to the container
bottom is reached. In this stage, the powder inside the dosator is precompressed.
The ratio of the powder bed height and the length of the dosator chamber is known
as the precompression ratio.

2. In the second stage, the piston inside the nozzle is moved down in order to compress
the powder until a stable plug is formed. This step can be omitted, if the
precompression of the first step provides sufficient plug stability. (Tan and Newton,
1990a) give an estimation of the necessary compression stress.

Afterwards the dosator is pulled out of the bed, containing the powder plug.

4. The dosator moves out of the container to the top of an empty capsule body.

In the last step the powder is discharged via the piston into the capsule and the cap is

put on the body. The dosator nozzle shifts back to the starting position.
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Fig. 1: Principle of the capsule filling process via the dosator method (Hoag, 2016).

A more detailed process description is provided by (Jones, 2001; Small and Augsburger,
1977). Tamping systems are not considered in this work, but explanations on how they work
are stated in (Jones, 2001; Shah et al., 1983).

Due to the strict regulations in pharmaceutical industry, product uniformity is crucial.
Regarding the dosator process, the capsule fill weight and the fill weight variability are the
critical quality attributes (CQA). The relationships between critical process parameters (CPP)
as well as critical material attributes (CMA) and the CQAs were studied extensively
(Faulhammer et al., 2014a, 2014b; Jolliffe and Newton, 1982; Llusa et al., 2014, 2013; Patel
and Podczeck, 1996; Stranzinger et al., 2017; Tan and Newton, 1990b). Evidently, the capsule
filling performance is highly dependent on both CPPs and CMAs. Obviously the
precompression ratio (and thus the powder bed height and the dosator chamber length) and
the compression ratio are important process parameters, but also the dosator geometry and
the dipping speed are of relevance. In terms of material attributes, the main factors are the
flowability and the compressibility of the powder. Therefore parameters as Hausner’s ratio,
angle of repose, Jenike’s flow factor, Carr’s compressibility and of course the particle size
and shape are relevant CMAs. Particularly for low-dose systems with small dosator
diameters also the wall friction angle shows substantial influence on the fill weight. Another
important requirement for low fill weight variabilities is a constant bulk density of the
powder bed. A constant bulk density is difficult to obtain though, since it is affected by
processing history, machine vibrations, humidity and several other hardly manageable
factors. Furthermore the powder bed in the container is not necessarily homogenous,

especially if cohesive materials are used.

Since the dosator process is highly dependent on many CPPs and CMAs, getting full process
understanding out of experiments is hardly possible. Modeling and simulation can support
experiments to improve process understanding. In general, simulations are able to
determine process variables, which can’t be measured in experiments, e.g. the evolution of
the mass inside the dosator during the dipping step. Therefore a more detailed evaluation of

the process can be performed. Despite the advantages of modeling and simulation, hardly



any studies for the dosator process exist. (Joliffe et al., 1980) investigated the powder
retention in the dosator caused by arching. For this purpose, the arching theories for hopper
design from (Walker, 1966) and (Walters, 1977) were adapted. High wall friction angles
reduce the required compression stress, whilst it increases with higher radius of the dosator
nozzle and bulk density. (Khawam and Schultz, 2011) proposed a theoretical model for
capsule fill weight predictions. The powder density inside the dosator nozzle is calculated by
multiplying the bulk density with precompression and compression factors. However, those
factors are not related to any material properties and have to be determined experimentally.
Furthermore it is assumed that retention always occurs, since arching behavior is not
considered. Also no fill weight variations due to inhomogeneity of the powder bed or

improper plug ejection can be predicted.

A simulation of the dosator process was done by (Loidolt et al., 2017). The dosed mass and
the pressure inside the dosator during the dipping step were recorded for various CMAs. The
results show that the filling of the dosator takes place in three consecutive steps (Fig. 2). In
the first step the dosator gets filled linearly, with very little pressure acting on the powder.
As soon as the whole dosator chamber has moved into the powder bed, a sharp increase of
the pressure is recorded at the start of the second step. In this step the mass remains nearly
constant, until the dosator comes close to the bottom (approx. 1 mm). Now the pressure
rises again as the powder gets compressed into the dosator nozzle (third step). For highly
cohesive powders the boundaries of the steps vanish because additional effects like bridging
get more relevant. However, just a qualitative analysis of the process without comparison to
experimental data was given. Moreover only the dipping of the dosator into the bed is taken
into account, whereas the withdrawal is neglected. Therefore, no considerations about

powder retention are possible.
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Fig. 2: The three steps of dosator filling: (i) volumetric filling step, (ii) intermediate step and (iii) compression step (Loidolt et
al.,, 2017).



This thesis is intended to be a continuation of the work of (Loidolt et al., 2017), examining
parts of the mentioned outlook. First of all the dosator movement is adapted so that the
movement out of the bed is considered too. For this purpose the introduction of a velocity
profile is necessary for a better replication of reality and to avoid unreasonable high
accelerations. Further the suitability of two different contact models for the process is
evaluated by comparison of simulation results with experimental data obtained from
(Faulhammer et al., 2014a). The influences of machine speed, gap width between dosator
nozzle and bottom of the powder bed as well as powder bed height are investigated. Also
different dosator geometries were examined. At last the effects of bed inhomogeneity are

analyzed by creating powder beds with varying bulk densities.



2 Methods
2.1 DEM

The Discrete Element Method (also Distinct Element Method, DEM) introduced by (Cundall
and Strack, 1979) is a numerical simulation method for particle flow. Based on a contact
model, the forces acting between touching particles are determined. By solving Newton’s
second law of motion for every particle, the particle movement is calculated. The open-
source software LIGGGHTS® (Kloss et al., 2012) is used for this purpose. It is based on a soft-
sphere approach, which assumes spherical particles, and instead of taking particle
deformation into account, colliding spheres are allowed to overlap (Fig. 3a). The contact
force is calculated with a spring-dashpot model in normal direction and in tangential
direction respectively (Fig. 3b). According to (Eq. 1) the normal force E,, consists of an normal
overlap &, dependent spring force representing the repulsive contact force, a viscous
damping force acting in the opposite direction of the relative particle velocity v, and a
constant pull off force F,. The normal overlap of the particles equals the sum of the radii
minus the distance between the centers of the two spheres (Eq. 2). The tangential force F; is
calculated by a spring force, which models the shear forces, and an additional damping force
(Eq. 3). The tangential overlap §; takes the tangential displacement of two particles in
contact into account. If the Coulomb criterion (Eq.4) is met, the tangential overlap is
updated via Eq. 5 in every time step. Otherwise it is truncated to fulfill the criterion as stated

in Eq. 6.

Fy = kn6n — ¥nVn + Fo 1
8n = Ry + Ry — |% — %, 2
Fe = —ki6r — Vev; 3
|ki6e| < uF, 4

Ot mnew = Oto1a + VAL 5



Fig. 3: (a) Collision of two spheres generates an overlap ,. (b) Spring-dashpot model in normal and tangential direction,
connected via the friction coefficient p.

2.2 Hertz contact model

The Hertz theory (Hertz, 1881) is a common approach in DEM modeling. The contact force is
determined by using effective parameters, which are calculated via the size and material
parameters of the respective spheres (Eq. 7 - 10). The stiffnesses k,, and k; of the springs
show a dependency with the normal overlap, leading to non-linear behavior (Eq. 11, 12). The
damping coefficients y,, and y; are calculated via (Eq. 13, 14). For more detailed information
and further literature see (Kloss, 2016). In addition to the normal force obtained from the
Hertz model a cohesion model similar as in (Loidolt et al., 2017) was used. A constant
attractive force F, is added based on the granular Bond number Bo (Eq. 15). In total, the
Hertz model needs seven parameters: particle radius R, density p, Young’s modulusY,
Poisson ratio v, coefficient of restitution e, friction coefficient u and Bond number Bo. A

detailed description of how those parameters are determined follows in section 3.2.3.
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2.3 Luding contact model

The Luding model (Luding, 2008) makes use of a loading/unloading hysteresis with three
different stiffnesses (Fig. 4). The total normal force results as sum of the hysteresis force
Fyys, a constant attractive force F, (pull off force) and a viscous damping force. For the
loading case (particles moving towards each other) the hysteresis force increases linear with
the overlap (stiffness k;). In the case of unloading (particles moving away from each other),
the hysteresis force decreases with a higher stiffness k,. The value of k, is calculated via
linear interpolation between k1 and the maximum stiffness EZ, if the overlap is smaller than
the plastic flow limit overlap 6,4, (Eq. 16 - 18). For overlaps larger than &;,,, the stiffness is
limited to IEZ for both loading and unloading. This accounts for an adaption of the plastic
deformation dependent on the contact force and is an approximation to a more realistic
non-linear behavior of particle contacts. When the overlap reaches a certain value 6,, the
hysteresis force turns from repulsive to attractive. The hysteresis force decreases further
(increase of attraction) until the intersection of the two unloading curves is reached. After
that, the force follows the second unloading curve and the hysteresis force rises with the
third stiffness k.. If the contact doesn’t break, but the overlap increases again, the hysteresis
force rises with the respective interpolated k, value (Eg. 19). The viscous damping force is
calculated as damping coefficient y,, times the negative value of the relative velocity —v,, (cf.
Eg. 1). With a constant pull off force, which is added to the normal force, long distance
interactions like Van der Waals forces can be taken into account. The damping coefficient is

determined via (Eq. 20).

The calculation of the tangential force distinguishes between static friction (Coulomb

criterion is met) and dynamic friction. Due to the fact that repulsive as well as attractive



normal forces can occur, the normal force of Coulombs law is modified in such a way that
the cohesion forces are subtracted from the actual normal force (Eq. 21). The tangential
stiffness and the tangential damping coefficient are determined via the friction stiffness and
friction viscosity parameters respectively, which are defined as the fraction of the normal
and the tangential values (Eq. 22-23). Altogether, the Luding model uses ten parameters
additional to radius and density: loading, unloading and cohesive stiffness, plasticity depth,
pull off force, coefficient of restitution, static and dynamic friction coefficients, tangential

stiffness and tangential viscosity.
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Fig. 4: Normal force hysteresis of the Luding contact model (modified from Luding, 2008).

2.4 Simulation setup
2.4.1 Geometric setup

The simulation of the dosator process is divided into two steps, namely the creation of the
powder bed and the actual dosing. During powder bed creation particles are randomly
placed in a simulation box with periodic boundary conditions in x- and y-direction. The
particles settle at a static wall at the bottom of the box due to the influence of gravity. An
initial velocity in z-direction is assigned to every single particle. They are also exposed to a
drag force, which limits the settling velocity to the value of the initial velocity. This settings
ensure a homogeneous bed with a certain bulk density. The powder bed can be used as a
starting point of subsequent dosing simulations with different process parameters. A certain
powder bed height can simply be set by deleting all particles which are above the desired
powder bed height. The multiple usage of the initial powder bed causes an enormous

reduction of the computational effort.

During dosing simulation the dosator is loaded into the simulation box and moves into the
powder bed, until a predefined clearance to the bottom is reached (herein after also
referred to as gap width). After that the dosator moves out of the powder bed until it
reaches the starting position. No additional compression with the piston inside the dosator is
used, since it was also omitted in the experiments of (Faulhammer et al., 2014a), which were
used for validation. During the dosing, the height of the lower edge of the dosator above the
bottom wall (dosator position), as well as the mass and the pressure inside the dosator are

recorded. Fig. 5 shows a cross section of the dosator and the powder bed. Since different



dosator geometries and powder bed heights are simulated, two dimensionless quantities are
introduced, which make the comparison of the results possible. On the one hand the dosator
position is normalized with the powder bed height, taking the gap width z, as reference
point (Eq. 24). On the other hand the bulk density inside the dosator is normalized with the
particle density (density of the material), yielding a relative density (solid fraction) of the
powder inside the dosator chamber. The bulk density is calculated as dosed mass divided by
the dosator volume (Eq. 25). For all cases without variation of the powder bed height and
gap width, the normalized dosator distance and the absolute position are equivalent
measures, since every run has the same starting point and end point. If the dosator

geometry remains unchanged, the same accounts for the relative density and the dosed

mass.
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Fig. 5: Cross section of the geometrical setup. Small particles are black, large particles are white.

2.4.2 Dosator movement

Since the exact velocity profile of the real dosator machine is not known, it is assumed to be
sinusoidal (Eq. 26). The dosator position z is given by Eq. 27. The amplitude ¥ of the velocity

v and the angular frequency w depend on the machine speed n, i.e. the amount of capsules
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produced per hour. The chosen amplitude is obtained from measurements of the mean
velocity U (Eq. 28). During one full rotation (one produced capsule) the dosator has to move
up and down twice, once for the dosing and the second time for the capsule filling. Due to a
lack of detailed information it is assumed, that both movements take equally long. Therefore
the angular frequency can be calculated via Eq. 29. The phase shift 8 is determined from the
starting position of the dosator z; (1 mm above the powder bed with the height h) and the
clearance at the bottom z, (Eq. 30). In Table 1 the parameters for the velocity profile are

shown.

v(t) = ¥ sin(wt + 0)

26
D

z(t)=ze—z(cos(wt+9)—1) 27
. T
v=vrs 28
w = 4mn 59
Zy — Zg) W

9=acos<(0 ﬁe) —1>+7r 30

Table 1: Parameters of the velocity profile for different machine speeds, powder bed heights and gap widths.

capsules _ mm _[mm 1
hour ] T] v [T] @ [E]
500 71.5 112.31 1.75
1500 2145 336.94 5.24
2500 3575 561.56 8.73
h [mm] Zo [mm] Z, [mm] 0 [—]
3.75 4.75 0.6 2.847
5 6 0.2 2.793

5 6 0.4 2.799

5 6 0.6 2.806

5 6 0.8 2.812

5 6 1 2.818
7.5 8.5 0.6 2.734
10 11 0.6 2.673
12.5 13.5 0.6 2.619
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3 Verification, calibration and validation

Nowadays many different simulation approaches with different models are used. A model of
any real system is always a simplification in some way. It depends on the purpose or the goal
of a simulation, which simplifications are acceptable and which not. It has to be ensured,
that the results of the simulations are satisfactory. Extensive testing of the used software
and the models is therefore necessary. Since it is often impossible or at least costly in terms
of time and money to get absolutely valid models, the effort spent for testing is always
dependent on the necessary degree of confidence in the model (Sargent, 2007). In general,
the testing of simulation software can be divided in two main parts, namely verification and
validation. Verification ensures that the implementation of the software and the models is
correct (i.e. the code does what it should do). For this purpose simulation results are usually
compared to analytical solutions. In a broader sense verification includes testing the source
code and the whole software to eliminate implementation errors. A third party software is
used in this work, and therefore only verification of the used contact models is done. In the
validation step, the models are tested for the ability to represent the real system. Usually
validation includes the replication of experiments and comparison of the results. In general,
the correctness of the model can only be ensured within the validated range of parameters,
i.e. no extrapolation is possible. In order to make a successful validation possible, the
parameters of the contact model usually have to be determined in a calibration procedure.
Detailed information on verification and validation of simulation models can be found in
(Kleijnen, 1995; Sargent, 2007).

3.1 Verification

The simulation results were compared to analytical solutions during verification of the Hertz
model and the Luding model. The normal models were evaluated for a single particle-
particle contact and a particle-wall contact. One particle with a predefined initial velocity
was placed above a spatially fixed particle or a fixed wall respectively (Fig. 6a). Every model
was evaluated for three different cases. In case one and two the damping force was turned
off but in case three damping was used. In the first case the initial velocity was chosen high
enough that the particle bounced off after contact. In contrast to that a lower initial velocity
is used in the second case and thus the particle stays in contact. The third case shows the
contact force including a damping force according to Eq. 1. Only the first case was
reproduced analytically, but a qualitative analysis shows the plausibility of the results for the

other two cases.

12



For the verification of the tangential models, a particle was allowed to settle on a wall until
the particle-wall contact is in equilibrium, i.e. the contact force equals zero and the normal
overlap remains constant (Fig. 6b). Now the particle is charged with an initial velocity in
tangential direction (parallel to the wall). The recorded results for the normal model
simulation are the normal contact force and the overlap, whereas for the tangential model

the tangential force and the particle velocity were observed.

a) b)
v
vO
; ()
] \\__J

Fig. 6: Verification setup for the (a) normal model and (b) tangential model.

3.1.1 Hertz normal model

In Fig. 7a the results of the verification of the Hertz normal model for particle-particle
contact are shown. Evidently the simulation results of the first case agree with the analytical
solution. The second case is not shown in this figure for the sake of clarity. However, the
contact force oscillates along the force function, until the equilibrium state is reached, in
which the force equals zero. In the third case, when the viscous damping force is active, the
contact force is increased for the loading part, otherwise it is decreased. Thus the damping
force always acts as expected against the direction of the particle velocity. Fig. 7b shows the
same results for a particle-wall contact. Noticeable are the differences of the contact force
and overlap compared to the particle-particle contact. This behavior can be attributed to Eq.
7, where the radius of the wall is set to infinity. Therefore the effective particle radius is
twice as large as it would be for equal sized particles. The same effect is responsible for the
higher cohesion force, which is calculated via the volume of the reduced sphere, leading to
an eight times larger force. This behavior can easily be avoided by adjusting the material

properties of the wall.
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Fig. 7: Contact force of (a) a single particle-particle contact and (b) a particle-wall contact with and without damping force
for the Hertz normal model.

3.1.2 Hertz tangential model

The results of the verification case for the Hertz tangential model coincide with the analytical
solution (Fig. 8). At the first step the tangential overlap equals zero, therefore the initial
tangential force is determined by the damping part of Eq. 3. With increasing tangential
overlap the force magnitude increases, resulting in a sharp decrease of the velocity. When
the shear force exceeds the Coulomb criterion, the tangential overlap is adjusted in a way to
keep the tangential force constant. As soon as the particle velocity changes its sign, the
tangential overlap is updated by integration over time again. In reality the particle velocity
would decrease gradually until the particle doesn’t move anymore. Due to the nature of the
spring-dashpot model the particle velocity can oscillate in the simulation before the velocity

converges to zero.
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Fig. 8: Tangential force and particle velocity for the Hertz tangential model.

3.1.3 Luding normal model

The verification cases of the Luding normal model for particle-particle contact (Fig. 9a) and
particle-wall contact (Fig. 9b) confirm the proper functionality. For a high initial velocity, the
contact force increases linear with the loading stiffness k4 until the plastic flow limit 8,4, is
reached. Beyond that the maximum stiffness IEZ is used, which furthermore determines the
contact force in the unloading case towards the intersection point with the cohesion force.
The second case with a lower initial velocity shows the interpolation of the unloading
stiffness, which is calculated with the current overlap. The densification of data points
indicates a low particle velocity as well as an oscillation until the equilibrium state at zero
force is reached. In the third case the viscous damping force is active, which leads to an
additional force opposed to the direction of the particle movement. Similar to the Hertz
model the effective radius of the contact is doubled for a particle-wall contact, but in this

model the pull off force is not size dependent.
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Fig. 9: Contact force of a single particle-particle contact (a) and a particle-wall contact (b) with and without damping force
for the Hertz normal model.

3.1.4 Luding tangential model

The Luding tangential model is based on the same principles as the Hertz model, but there
are differences regarding the determination of the model parameters. An extension is the
implementation of dynamic friction. When the Coulomb criterion is met, the tangential
overlap is truncated with respect to the dynamic friction coefficient instead of the static one.
Therefore the shear force jumps to a lower level. Now the Coulomb criterion is fulfilled again
and so the tangential force is calculated in the usual manner (Fig. 10). Regarding this
behavior an adaption of the model is proposed for the future: In the current implementation
the tangential overlap is integrated over time as soon as the shear force is reduced in case
the dynamic friction becomes active. From mechanical point of view it would make more
sense to hold the overlap constant until the spring force is lower than the dynamic friction

force.
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Fig. 10: Verification of the Luding tangential model.

3.2 Calibration of model parameters
3.2.1 Fundamentals of model calibration

According to (Marigo and Stitt, 2015), the applicability of DEM for industrial use is mainly
dependent on the calibration of the model parameters. In general, two ways are possible for
the calibration of the contact model. On the micro scale the Direct Measuring Approach
exists. The physical properties of the material like Young’s modulus, Poisson ratio, coefficient
of restitution or friction coefficient are directly obtained from measurements. Although this
seems to be a somehow straightforward procedure, it comes along with some restrictions.
First of all the used contact model has to be based on these physical quantities. This is the
case for the Hertz model, but not for the Luding model. Furthermore it is not always possible
to measure those properties, especially for small and irregular particles. And even though
the Hertz model is principally based on physical quantities, not every parameter is
necessarily linked to a real quantity, especially when rolling friction or cohesion models are
used.

On the other hand the Bulk Calibration Approach is used for macro scale calibration. The
goal is to choose the model parameters in a way that the bulk behavior is the same as the
one of the real powder. For this purpose different tests with measurable quantities, for
example hopper discharge, angle of repose or rheometer experiments are defined. Those
experiments are replicated in the simulation by changing the model parameters iteratively

until a sufficient result is obtained. No correlation between model parameters and physical
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guantities exists in this case. Due to the macroscopic approach, different sets of parameters
can be able to reproduce the bulk response. This parameter space decreases with a higher

number of experiments (Coetzee, 2017).

Although the Bulk Calibration Approach is widely used in industry, no standard procedure for
the determination of the contact model parameters exists, but calibration of the model is
necessary to obtain reasonable results (Asaf et al., 2007). Trial and error is still the most
common approach despite many disadvantages. Since it lacks a structured strategy many
runs may be necessary until sufficient accuracy is obtained. The success is often dependent
on the experience of the user and for a higher number of contact parameters this method
gets quite unpractical. Furthermore there is no guarantee that the chosen parameters lead
to the best achievable result and it is hardly possible to increase process understanding
(Rackl and Hanley, 2017). A more systematic approach is the so-called one factor at a time
method (OFAT), in which one factor is varied in every run. This method allows the
determination of the influence of every respective parameter on the output (also referred to
as main effects). However, no interaction effects can be taken into account, as for example
the loading and unloading stiffness of the Luding model may interact with each other.
Therefore a more sophisticated approach would be helpful, which is provided by the Design

of Experiments (DoE) method.
3.2.2 Design of Experiments

DoE, introduced by (Fisher, 1936), was originally developed for process optimization, but the
principles can also be applied to the calibration procedure for DEM simulations, as done by
(Johnstone, 2010; Pantaleev et al., 2017; Wilkinson et al., 2017). It allows not only to
determine the influence of the main effects, but to resolve interactions between model
parameters in a reasonable number of runs. There are three aspects taken into account in
the process: factors, levels and the response. Factors are the variable inputs which influence
the experiment. In DEM the contact model parameters are factors. Levels are the respective
values of each factor and the response is the output of the experiment (or simulation). For a
low number of factors and levels a full factorial design can be used, meaning that every
possible combination of values is tested. The number of runs necessary for a full factorial
design is equal to I/, where / is the number of levels, and f is the number of factors. Due to
the exponential relationship, the number of levels is usually low, in most cases only two
levels are chosen. With this restriction a linear impact of the factors on the response is
assumed, whereas a parabolic effect could be described in case of three levels. In the

following context only two level designs are considered.
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For a high number of factors (five or more) usually a fractional factorial design is applied to
avoid too many runs. In contrast to the full factorial design, which is able to resolve every
single interaction independently, the reduction of runs comes along with confounded
interactions. However, usually the main effects and second order interactions (interactions
of two factors) are most relevant for the response, while higher order interactions are
playing a minor role. The resolution of a design gives information about how main effects
are confounded with higher order interactions. It is calculated by adding one to the smallest
order any main effect is confounded with (denoted by Roman numerals). If the main effects
are confounded with fourth order and higher interactions, the resolution is V. With a
resolution of V or higher, it is also ensured, that second order interactions are not
confounded with each other. In case of a resolution IV second order interactions can be
confounded. Therefore designs with a resolution of V should lead to excellent results, but a
resolution of IV may also be adequate for many cases. A resolution of Ill should be avoided
since the main effects are confounded with second order interactions. They are only
applicable for screening designs with a high number of factors to determine which ones have

significant impact on the response.

Based on the results of the particular runs an equation for the response can be derived by
linearization between the levels of each factor (Eq. 31). The average is the arithmetic mean
of all results. The effect of a factor can be calculated as the difference of the arithmetic
means of all runs with high level of the factor and the ones with low level. For interactions
the high level can be determined by multiplying the high levels of all interacting factors, the
same accounts for the low levels. For example, the interaction between the factors A and B
has the high level ABpign = Anign * Bhign- With Eq. 31 it is possible to predict the
response depending on the factors, which can be used for calibration. The factors are
restricted to the range between the low and high level. If different experiments are carried
out for calibration, a simulation design matrix based on DoE principles can be generated and
the response equation can be derived for every experiment. Then an optimization procedure

can be used to find the best fitting model parameters.

R N Z effect ]
= *
esponse = average high e value 31

vel — low level

3.2.3 Applied calibration procedure

A combination of the Direct Measuring Approach and the Bulk Calibration Approach is used

in this study. As suggested by (Coetzee, 2017), at first the particle size and shape were
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defined. These two parameters affect all the other ones, and a change would imply that the
calibration procedure has to be restarted. The particle size distribution is roughly based on
the size parameters of the powder Lactohale 100 stated in (Stranzinger et al., 2017), though
a symmetric distribution with five classes between 100 um and 220 um was chosen (Fig. 11).
The mean diameter is 160 um. Spherical particles are assumed for all simulations. With this
setup up to 700.000 particles were simulated. The solid density of Lactohale 100 is given
with 1539 kg/m3. Those parameters were defined independently of the contact model by
using the Direct Measuring Approach. All other parameters were obtained by making use of

the Bulk Calibration Approach for each model.
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Fig. 11: Particle size distribution

As described above, the inserted particles are given an initial settling velocity. Its value has
substantial impact on the bulk density of the particle bed, which is comparable to different
heights of drop as investigated by (Macrae and Gray, 1961). Therefore the settling velocity is
considered to be a significant factor in addition to the model parameters. Since the powder
in the real dosator is exposed to machine vibrations, it can be assumed that the density of
the bed is somewhere in the range of the tapped density, which is approximately 820 kg/m3

according to (Faulhammer et al., 2014a).

For the calibration of the Hertz model the parameters of (Loidolt et al., 2017) were used as
start value. The value for Young’s modulus wasn’t changed, since a higher stiffness would
require a smaller timestep and therefore more computational effort. On the other hand no
further reduction was possible due to a restriction of the used software. Reducing particle

stiffness is a common approach to increase the size of the timestep (Lommen et al., 2014;
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Malone and Xu, 2008). A DoE study of the simulation bulk density including the remaining
model parameters and the initial settling velocity was performed. It showed that the settling
velocity and the Bond number are the main factors for the bulk density. For this study a
smaller simulation domain was used in order to reduce the amount of particles. Ten
different Bond/velocity pairs were tested and three of them delivered sufficient bulk
densities. With each pair three simulations with different dosator geometries were run and
compared to the experiments of (Faulhammer et al., 2014a). The best agreement was
observed for an initial settling velocity of 0.6 m/s and a Bond number of 400. Then the other
parameters were optimized via DoE to find the best parameter set. The resulting bulk
density was 807.6 kg/ma. The iterative procedure with small geometric setups for the
determination of the bulk density based on DoE allowed a rather fast determination of the
contact parameters with a reasonable amount of runs. The calibration with three dosator
geometries was necessary to find one unique parameter set with general validity which

applies for all three cases. The obtained values for the parameters are stated in Table 2.

Table 2: Model parameters for the Hertz model determined with the Bulk Calibration Approach

m
Y [MPa] v el e Boll vy |

25 0.3 0.45 0.5 400 0.6

In contrast to the Hertz model the calibration of the Luding model was way more
challenging. No initial values were known and a DoE with eleven factors and a resolution of
IV for three different dosator geometries would require a total of 96 simulations. For those
simulations a high and low level value has to be guessed first, possibly leading to completely
wrong starting values. With that in mind only the five parameters which are necessary for
the calculation of the normal spring force and the settling velocity were considered in the
first step. The other five parameters were set to 0.5. Then the effects of the factors on the
bulk density were determined. Based on those results the values of the pull off force,
plasticity depth and settling velocity were fixed. Then a full factorial DoE was executed with
the three stiffness parameters for each of the three dosator geometries. After the best
fitting values were found, a simple OFAT approach was used to optimize the parameters for
damping and tangential forces. With a settling velocity of 0.8 m/s a bulk density of

819.1 kg/m? was obtained. Table 3 shows the parameters for the Luding contact model.
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Table 3: Model parameters for the Luding model determined with the Bulk Calibration Approach

b [o] ke o] ke [o] erE RN el wBH el Al AT v [

m
100 800 33 0.05 -10"> 0.8 0.8 0.3 0.8 0.2 0.8

(Coetzee, 2017) recommends to use different experiments for contact model calibration

than the one which is investigated, if the goal of the simulation is to support process
development and design. Since the objective of this work is the improvement of process
understanding and nothing else than parameter sensitivity studies are executed, the same
experiment can be used. However, the calibration of the powder with standardized

experiments, for example rheometer tests, is part of future work.

3.3 Validation

For the validation of the contact models experimental results of (Faulhammer et al., 2014a)
for Lactohale 100 were used. In total twelve different simulations were run for each model,
using the same process parameters as in the experiments: The machine speed is varied
between 500 and 2500 capsules per hour, the dosator diameter from 1.9 mm to 3.4 mm, the
dosator chamber length is between 2.5 mm and 5 mm and the powder bed height ranges
from 5 mm to 12.5 mm. Table 4 shows the different settings and the results both of the

experiments and the simulations, as well as the relative deviations.

Table 4: Results of the validation runs for both contact models. The Luding contact model shows better agreement with the
experimental data obtained from (Faulhammer et al., 2014a).

Setting Experiment Hertz model Luding model
Run n d cl h m m Deviation m Deviation

[] [eph] [mm] [mm] [mm] [mg] [mg] [%] [mg] [%]
1 2500 1.9 25 5 6.0 5.5 -7.99 5.7 -5.03
2 500 1.9 2.5 5 5.7 5.6 -2.01 5.6 -1.32
3 2500 1.9 2.5 12.5 6.3 5.6 -11.31 5.8 -7.40
4 2500 1.9 5 10 10.4 10.1 -2.93 10.6 1.97
5 500 1.9 5 12.5 10.6 8.9 -16.39 10.5 -1.07
6 1500 2.8 3.75 10 19.0 19.3 1.70 19.5 2.83
7 500 3.4 2.5 5 19.8 19.1 -3.56 19.4 -2.05
8 2500 3.4 2.5 5 19.9 19.1 -4.07 19.6 -1.70
9 2500 34 2.5 12.5 21.3 19.2 -9.77 20.0 -6.28
10 500 3.4 2.5 12.5 20.9 19.1 -8.56 19.9 -4.94
11 500 3.4 5 10 35.6 38.4 7.92 39.0 9.49
12 2500 3.4 5 12.5 37.3 38.5 3.24 39.4 5.61
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The simulation with the Hertz model partially shows large errors with a maximal deviation of
more than 16 %. Especially for the largest powder bed height of 12.5 mm extensive
deviations occur, with exception of the last run. Furthermore it can’t be assumed that the
results are representative for small dosator diameters as can be seen for the first three runs
with the same dosator geometry. The simulation run 2 shows a higher mass than run 1 and
the same mass as run 3, which is not in agreement with the experimental results. The same
applies for runs 4 and 5. Therefore the Hertz model is not suitable to reproduce the dosator
process. An improved cohesion model combined with more extensive model calibration

could possibly lead to better validity.

For the Luding contact model all deviations between simulations and experiments are below
10 %. The average difference is 4.1 % compared to 6.6 % for the Hertz model. It is
conspicuous that all deviations for a chamber length of 2.5 mm are negative, whilst they are
positive for 5 mm chamber length except for run 5. The reason for this effect could be that
the wall friction or wall cohesion parameters are set too low. Since already ten model
parameters had to be determined, no differentiation between material properties of the
powder and the wall has been considered. Regarding the qualitative representation of the
process, the simulation results with the Luding model generally are in accordance with the
experimental data. Only the mass of run 5 is lower than the one of run 4, which is not
conform to the experiments. Since the machine speed and the powder bed height are
different in those runs, it could be possible that the interaction of those parameters is not
sufficiently represented in the simulations. However, the discrepancy is very small, as are the
relative deviations of both runs. All in all the Luding model is valid for a qualitative
simulation of the dosator process for low cohesive powders. As stated in (Loidolt et al., 2017;
Stranzinger et al., 2017), dosing of strong cohesive powders can lead to different behavior.
Therefore further calibration and validation would be necessary, if such powders should be

investigated.

With both contact models two issues occurred. When the dosator moves into the powder
bed, the powder is compressed into the chamber. When the nozzle comes close to the
container bottom the particles can’t escape, resulting in a fairly high overlap. Therefore, high
contact forces occur, which lead to an expansion of the powder when the dosator moves out
of the bed. Not all particles, which were trapped during the dipping step necessarily stay in
the dosator. The reason for this behavior lies in the modeling approach which omits particle
deformation or breakage and the high overlaps always lead to high repulsive forces. This
effect is more apparent for the Hertz model, while the hysteresis in the Luding model
overcomes this problem to a certain extent, if beneficial values for the plasticity depth and

the unloading stiffness are chosen. The second issue, pictured in Fig. 12, is that the powder
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plug extends the dosator chamber due to cohesive bonds. If the powder plug would be
ejected into the capsule body, the dosed mass would be too high. According to (Faulhammer
et al., 2014a) this also happens in experiments, where a nozzle cleaning unit can be used to
remove adhering powder. In the simulations only the particles with its center point inside
the dosator nozzle contribute to the mass. Although both effects have an impact on the

capsule fill weight, they are neglected, because sufficient results were obtained.

Fig. 12: Powder plug inside the dosator after the dipping step.
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4 Results

For the variations of CPPs presented in this section, validation run 8 of the Luding model was
chosen as reference case, since it agrees well with experimental data. The runs 2 and 5 show
even better agreement, but the high machine speed and low powder bed height of run 8
lead to less computational effort. All parameters which are not explicitly stated are
equivalent to the ones in the validation run 8. DoE was not used for the investigation of the
process parameters despite the advantages previously mentioned due to the following

considerations:

- The focus of this work is the determination of the impact of CPPs on the process, i.e.
the main effects, but interactions are of minor interest. DoE is especially advisable for
process optimization, as it was done during calibration of the contact model
parameters. To get an overview of the process, using OFAT is fine.

- In section 4.4, the dosator geometry is varied in different ways. If this investigations
would be based on DoE, the respective factors would not be mutually independent
(no orthogonal simulation matrix) and therefore a separated determination of the
effects is not possible.

- For the number of factors, only a fractional factorial design with two levels would
provide a reasonable amount of simulations due to the exponential scaling of DoE
runs. With the OFAT method it is possible to test every factor with several different

values, the computational effort still remains feasible.

4.1 Machine speed

In Fig. 13 the evolution of the relative density and the pressure inside the dosator for three
different machine speeds (500, 1500 and 2500 capsules per hour) are pictured. One might
expect that higher accelerations could affect powder retention, or higher machine speed
could reduce bridging effects due to higher shear forces. Actually, the machine speed does
not seem to have a significant impact on the dosed mass, which is in accordance with the
results obtained by (Faulhammer et al., 2014a). For microcrystalline cellulose, (Llusa et al.,
2013) recorded the effect of capsule fill speed on machine vibrations. With increasing speed
the powder bed is densified due to the vibrations, leading to higher fill weights. There was
no possibility to consider machine vibrations in the current study. Regarding the filling
behavior, the three stages of dosator filling proposed by (Loidolt et al., 2017) occur, even
though a different contact model is used. The first stage is volumetric filling, in the

intermediate second stage the mass remains nearly constant and in the third stage the
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powder is compressed. The sharp increase in pressure between the first and second stage is

depicted too.

0.7 10°
—— 500 cph —— 500 cph
——1500 cph ——1500 cph
0.6 ——2500 cph " ——2500 cph
_ 104 P
=05
g g
w0 3 |-
C 0.4 =g
(] a
a 5
U3 o
= & 102+
-t .
o a
© 0.2
o
101 L
0.1
0 L | 1 | 1 100 L I I | I |
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
Normalized Dosator Distance [-] Normalized Dosator Distance [-]

Fig. 13: Relative density and pressure inside the dosator for different machine speeds.

4.2 Powder bed height

Obviously the variation of the powder bed height modifies the precompression ratio (ratio of
powder bed height to chamber length), since the chamber length is kept constant. The
height is varied between 3.75 and 12.5 mm, leading to precompression ratios between 1.5
and 5. The results show an increase of dosed powder with higher powder beds. In Fig. 14 the
density and pressure are pictured both with normalized and absolute dosator position. The
top right diagram shows that the filling stages are essentially the same for every case. For
high powder beds, the first stage is comparable short compared to second stage. For the
smallest bed with 3.75 mm the second stage is nonexistent, the compression starts
immediately after filling or maybe even a little bit earlier. Since the mass does not remain
absolutely constant in the second stage, but slightly increases, a longer intermediate stage is
one reason why the dosed mass increases with powder bed height, albeit it plays a minor
role. Interestingly there is a point in the normalized diagram, where all cases coincide. The
dotted line between the two diagrams shows that this point is approximately at the start of
the third stage. Evidently the compression stage starts earlier for higher powder beds, and
therefore the powder in the dosator is more densified. This effect can also be observed in

the pressure diagrams.
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Fig. 14: Relative density for different powder bed heights over the normalized dosator position (top left) and the absolute
position (top right), as well as the pressure inside the dosator over the normalized dosator position (bottom left) and the
absolute position (bottom right).

4.3 Gap width

Fig. 15 pictures the results of the simulations with a different gap width (0.2 to 1 mm). As
expected there is no difference regarding the filling behavior, but the runs with greater gap
width simply stop earlier and therefore the mass decreases. For better visibility the end
points of the respective runs are marked with an ‘x’ in the diagrams. Remarkable is that the
pressure of the lowest gap width is more than an order of magnitude larger than the one of
the highest value. A further increase of the gap width would come along with lower pressure
in the dosator. If the critical compression stress is met, powder retention is no longer
possible, as described by (Tan and Newton, 1990a). On the other hand with a rather small
gap width a highly compressed plug is created. Those plugs can lead to a blockage of the

dosator piston when it is tried to eject them into the capsule (Faulhammer et al., 2014a).
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Fig. 15: Results for different values of the gap width. The end point of each run is marked with an 'x'.

4.4 Dosator geometry
4.4.1 Dosator diameter

For the investigation of the impact of the dosator diameter on the capsule filling process,
dosator nozzles with diameters between 1.9 and 3.4 mm were used. Obviously a bigger
diameter leads to more dosed mass due to the higher volume of the dosator. But the results
in Fig. 16 show that also the powder density inside the dosator increases and the powder is
more compacted. If volumetric filling would occur (doubled dosator volume leads to doubled
mass) as suggested by (Faulhammer et al., 2014a), the relative density would remain
constant. (Stranzinger et al., 2017) already observed in their experiments that volumetric
filling can’t be assumed for the dosator process. The slope in the first stage is higher for
bigger dosator diameters, although the pressure is approximately the same for all cases. This
implies that more powder is filled into the dosator with the same stress acting on the
particles. This effect can be explained with less bridging effects for bigger diameters. On the

other hand more compression is needed for larger dosator nozzles to retain a stable plug.
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Fig. 16: Results of the simulations for different dosator diameters.

4.4.2 Chamber length

Changing the chamber length has an indirect proportional effect on the precompression
ratio. The same precompression ratios as in section 4.2 are used, leading to chamber lengths
between 1 and 3.333 mm. Since the volumetric filling stage ends when the whole dosator
chamber has dipped into the bed, its duration is proportionally longer for lower
precompression ratios (longer dosator chamber). Fig. 17 shows that the impact on the
relative density is rather small, and in contrast to the dosator diameter, lower values cause
higher densities. Therefore a higher precompression ratio leads to more mass, which is in
accordance with the results of the bed height variations although it plays a minor role.
However, the impact of the chamber length seems to be underestimated in the simulation,
as the experiments of (Faulhammer et al., 2014a) and (Stranzinger et al., 2017) indicate a

significantly higher influence on the density. A possible solution for this problem could be
higher wall friction parameters.
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Fig. 17: Relative density and pressure for various chamber lengths. The chamber length was chosen in a way that the
precompression ratios are equal to the ones in section 4.2.

4.4.3 Constant precompression ratio

In the simulations shown in Fig. 18 different powder bed heights from 3.75 to 10 mm were
used. The chamber length was adjusted in a way that the precompression ratio stayed at a
constant value of 2, i.e. the chamber length was half the size of the powder bed height
(1.875 to 5 mm). The density remains nearly the same for every run, a variation between the
highest and lowest value of less than 0.6% was observed. Also the pressure converges
towards the same value at the end of the dipping step. Due to the constant density, it could
be assumed that the precompression ratio can be used for scaling the process, but
(Stranzinger et al., 2017) assert that this is not possible. The results of the simulation are

probably affected by the underestimation of the chamber length effects.
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Fig. 18: Different powder bed heights and chamber length with a precompression ratio of 2 lead to similar results. In the
legend the powder bed height is stated.
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4.4.4 Constant diameter to chamber length ratio

In the following simulations the diameter was varied between 1.9 and 3.4 mm and the
chamber length ranges between 1.4 and 2.5 mm, to keep the ratio of diameter to chamber
length constant at 1.36. The results (Fig. 19) are in accordance with the ones of section 4.4.1.
Since bigger diameters cause less bridging effects and lead to higher densities. Due to the
lower precompression ratio for bigger diameters, stage one gets proportionally longer. The

compression stage starts roughly at the same point for all cases.
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Fig. 19: Results for a constant diameter to chamber length ratio of 1.36. In the legend the diameter is given.

4.4.5 Constant dosator volume

In Fig. 20 the results for different dosator geometries with constant volume are pictured. The
diameters range from 1.9 to 3.4 mm, the chamber length is in between 2.5 and 8 mm. A
powder bed height of 10 mm was chosen instead of the standard value of 5 mm to
theoretically be able to fill all dosators. Evidently the dosator process does not exhibit
volumetric filling, otherwise the results of each run would be identical. There are enormous
differences especially for smaller diameters. Fig. 21 shows that the dosator isn’t filled
properly for a diameter of 1.9 mm. The 2.2 mm dosator still has many voids, which disappear
for larger diameters. The pressure profile doesn’t indicate an end of the first stage for the
two smallest diameters. For these dosators at some point during dosing the powder gets

pushed aside instead of being filled into the dosator nozzle.
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Fig. 20: Simulations with constant volume, but different diameters and chamber lengths confirm that the dosator process is
not volumetric.

Fig. 21: Dosing with constant volume, the dosator diameter is increased from left (1.9 mm) to right (3.4 mm). With long and
thin dosator chambers the powder cannot be dosed satisfactorily.

4.5 Bulk density

The influence of the initial settling velocity on the density of the powder bulk was discussed
earlier. Now this influence is used for the investigation of the effect of varying bulk densities
for constant contact properties. In Fig. 22 the results for settling velocities between 0.6 and
1.0 m/s are shown, giving bulk densities between 790 and 832 kg/m®>. As expected, a higher
bulk density leads to an increase in dosed mass. Due to the denser bed more mass is filled
into the dosator during the first stage of filling. The pressure also rises with higher bulk
density. The variations of the dosed mass in the simulations are rather small, since a
comparable small increase in bulk density of 5% results in less than 1.5% increase in mass.
The density variation in the real process may be bigger and therefore also the variations of
dosed mass may be more important. In a real process the dosator compacts the bed with

every dipping step, and the dosed powder has to be refilled. In this process it is difficult to
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maintain a constant powder bed density especially for cohesive powders. Therefore steady

state is hard to achieve and locally different bulk densities occur.
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Fig. 22: Relative density and pressure inside the dosator for different bulk densities.
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5 Conclusion and outlook

Critical process parameters of a dosator based capsule filling process were investigated in
order to improve process understanding. To achieve this goal, numerical simulation based
on the DEM approach was used. In contrast to experiments the simulation is able to observe
relevant parameters during the dipping step. In this work the development of mass and
pressure inside the dosator were recorded during dipping. Since contact models are needed
in DEM for the calculation of the forces acting on particles, their ability to reproduce
experiments has to be tested. For this purpose the Hertz model and the Luding model were
investigated. First, a verification of the normal and tangential models of both contact models
was performed successfully. Then the model parameters were determined in an iterative
calibration procedure. In the validation step the results of twelve different settings were
compared to experimental results. In opposition to the Hertz model, satisfactory outputs

were obtained with the Luding model, which therefore was used for the process evaluation.

Machine speed doesn’t have a big impact on capsule fill weight for the used material.
However, increasing machine vibrations at higher dosing speeds were not considered. They
could affect the fill weight due to powder densification, if other materials are used. A
significant impact of the powder bed height was recorded, which is in accordance with
literature. It can be expected that the effect increases for more cohesive powders since
compressibility increases. The gap width between the lowest point of the dosator and the
container bottom is a very sensitive parameter, since it determines the compression of the
powder. Little variations lead to a significant change in capsule fill weight and therefore a
constant gap width is essential for low fill weight variabilities. Furthermore the plug
formation is affected, as a small gap causes high compression of the powder in the nozzle.
The highly compressed powder could lead to problems during plug ejection. If the gap is
chosen too high, no sufficient plug formation may happen at all, and in the worst case
powder retention is not possible. Several different dosator geometries were investigated.
Due to the different dosator volumes, the relative density inside the dosator was compared
instead of the dosed mass, in order to get comparable results. The relative density increases
for larger dosator diameters, since bridging effects are of less relevance. In contrast to
literature, a significant influence of the dosator chamber length was not observed. One
reason may be the non-adequate representation of the particle-wall contacts since the same
model parameters were used as for particle-particle contacts. Only small deviations of the
relative density were observed in the study of constant precompression ratio for variable
powder bed heights and variable chamber lengths. Here also the insufficient modelled wall

friction could be the reason for the variations compared to the experiments. The simulations
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with constant diameter to chamber length ratio and constant dosator volume both showed
that larger diameters lead to more densified plugs. No satisfactory filling was possible for
very thin and long dosators. The results for varying the dosator geometry prove that
volumetric filling is generally not obtained. Finally the impact of the bulk density of the
powder bed was investigated. Powder beds with a higher bulk density lead to a higher

capsule fill weight.

Although reasonable results were obtained, several improvements could be made regarding
the modeling of the dosator process. First of all adjusting the wall parameters is necessary to
achieve a more realistic representation of the filling behavior for a variation of the chamber
length. The tangential part of the Luding model should be modified in a way that dynamic
friction is active until the spring force is smaller than the dynamic friction force. Furthermore
the introduction of a rolling friction model could be considered for particle shape correction.
According to literature of dosator experiments (Faulhammer et al., 2014b; Stranzinger et al.,
2017), it takes several minutes (more than 15 minutes for unfavorable process settings) until
a steady state process is achieved due to variations in the powder bed when the dosator
dips into it. Also the created holes have to be filled again. Therefore it may be advantageous
to simulate repeated dosing. Another improvement could be the addition of a moveable
piston inside the dosator, so that plug compression and ejection can be investigated.
Moreover, a calibration of the contact model with different experiments than the dosator
experiment is desirable. When the powder is calibrated successfully with several different

processes, a quantitative analysis for every validated powder is possible.
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6 Nomenclature

Abbreviations

Greek symbols

Damping coefficient
Overlap

Phase shift

Friction coefficient
Poisson ratio
Density

Plasticity depth

Angular velocity

CMA Critical material attributes y

CPP Critical process parameters 10)

CQA Critical quality attributes 0

DEM Discrete element method U

DoE Design of experiments v

OFAT One factor at a time p
¢

Symbols w

cl Dosator chamber length

d Dosator diameter Subscripts

e Coefficient of restitution n

F Force t

f Factor for tangential parameters eff

G Shear modulus max

h Powder bed height hys

k Stiffness o

k Maximum stiffness k

m Mass 14

n Machine speed e

R Particle radius rel

At Time step set

v Velocity 0

Y Maximum velocity

17 Mean velocity 2

Particle position
Y Young’s modulus
z Dosator position
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normal
tangential
effective
maximum
hysteresis
cohesion
stiffness
damping
end
relative
settling
pull off
particle 1, loading

particle 2, unloading
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