
Joachim Lesser, BSc

NFC extension for Catrobat

Master’s Thesis

Graz University of Technology

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Supervisor: Dipl.-Ing. Dr.techn. Christian Schindler

Graz, May 2018

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Abstract

The need for software developers and people with programming skills is
increasing continuously. It is often demanding and difficult, especially for
children, to start learning programming. The Catrobat project was launched
with the aim to bring children in contact with software development and
show them that programming is enjoyable. Catrobat is a visual programming
language particularly developed for smartphones. It shows young people
the capabilities of everyday technology. Further various built-in hardware
sensors and features in smartphones are supported.

The goal of this thesis is to illustrate the capabilities of Near Field Communi-
cation (NFC) to young people, being implemented as a Catrobat extension,
which should enable Catrobat users to learn something about NFC and its
usage. With the help of the implemented NFC features, user should be able
to read the content and the ID of NFC tags as well as to write new content
to tags. The content and the ID of NFC tags can also be used to handle
conditions in the program logic.

To guarantee a good user experience, an application has to be stable and
flawless. Catrobat meets this requirement through obligating the developers
of the application to use Test-Driven Development (TDD). Since emulated
Android devices are not able to work with NFC hardware simulation, an
external testing tool is necessary to test the implemented NFC features. This
testing tool is an Arduino based server with several sensors, a NFC Shield
for NFC tag emulation and an Ethernet shield. It is connected to the Jenkins
network and therefore suitable for every Catrobat developer.

v

Contents

Abstract iv

1 Introduction 3
1.1 Motivation . 4

1.2 Problem Statement . 5

1.3 Thesis Outline . 6

2 Background 9
2.1 Catrobat . 9

2.2 Test-Driven Development . 11

2.3 Arduino . 18

2.4 NFC . 19

3 Catrobat 27
3.1 Why Test-Driven Development 27

3.2 Software Tests . 28

3.3 Hardware Tests . 36

3.4 Workflow . 38

3.5 Use Arduino in Pocket Code 43

4 Implementation 47
4.1 NFC . 47

4.2 Arduino Hardware Testing Box 56

5 Conclusion and Outlook 75
5.1 Implemented Features . 76

5.2 Lessons Learned . 78

5.3 Future Work . 80

Bibliography 81

vii

List of Figures

2.1 Screenshots of Pocket Code . 10

2.2 ISO7810 dimensions. 23

3.1 Google Trend: Robotium VS Espresso 32

3.2 Pocket Code Workflow . 40

3.3 Arduino Bluetooth wiring . 44

3.4 Enable Arduino bricks . 45

3.5 Arduino device variable . 46

4.1 NFC device sensor variables . 49

4.2 SetNfcTag brick . 51

4.3 SetNfcTag brick . 52

4.4 Tag message in formula editor 52

4.5 Pairing selection . 55

4.6 NFC pairing activated . 55

4.7 Search for Bluetooth devices . 55

4.8 Hardware testing box . 57

4.9 Solidworks HardwareTestingBox 60

4.10 3D printed mount parts . 62

4.11 Audio board schematic circuit 63

4.12 Audio board print plan . 64

4.13 Arduino Ethernet Shield . 65

4.14 Arduino NFC Shield . 67

4.15 Circuit vibration sensor . 71

4.16 Circuit vibration and light sensor board 73

ix

1

List of Figures

Glossary

ADB Android Debug Bridge
ADC Analog to Digital Converter
API Application Programming Interface
AUT Application under test
AVD Android Virtual Device
CI Continuous Integration
CNC Computerized Numerical Control
IDE Integrated Development Environment
IEC International Electrotechnical Commission
IMU Internal Measurement Unit
IoT Internet of Things
ISO International Organisation for Standardization
kB Kilobyte
NDEF NFC Data Exchange Format
NFC Near Field Communication
P2P peer-to-peer
PCD Proximity Coupling Device
PICC Proximity Integrated Circuit Card
PWM Pulse-width modulation
REST Representational State Transfer
RFID Radio Frequency Identification
Rx Receiver
SD Solid Disk
SS Slave Select
SUT System Under Test
TNF Type Name Format
Tx Transmitter
URI Universal Resource Identifier
UUID Universally Unique Identifier
UX User Experience

2

1 Introduction

The number of smartphone users worldwide is increasing year per year1.
This is comprehensible since smartphones bring a lot of advantages in the
modern world. No other smart device is as versatile and portable and as
well integrated into the daily life as the smartphone. Even laptops and
tablets are not that mobile to be used during a short bus ride or in the
tramway.

Especially for young people good smartphones are becoming more and
more important and indispensable. At this point it is necessary to show
young people that smartphones can not only be used for gaming or sharing
pictures but also for acquiring new skills and extending one’s knowledge.

This is the reason why the Catrobat project was founded by Professor Slany
at the Graz University of Technology. Catrobat is a visual programming
language for teenagers who are new to the field of software development.
They do not need a laptop or desktop computer for programming, only
a functioning smartphone. Nonetheless Catrobat has that many features
implemented and supports a wide range of programmable hardware, that
even experienced junior developers can use it. Some of these supported
features are face detection, the gyroscope of the phone which measures the
tilt, or code blocks for the Lego robot NXT.

The major difference between Catrobat and common programming lan-
guages is the code design. In Catrobat it is not necessary to memorize
the programming language specific commands, since all commands are
available as drag and drop able bricks. This means that programs are not
coded the usual way, but instead they are a combination of various bricks.

1https://www.statista.com/statistics/330695/number-of-smartphone-users-
worldwide/

3

1 Introduction

In the course of this thesis a new brick is added which extends the hardware
features by Near Field Communication. Further an automated testing system
for hardware features is integrated.

1.1 Motivation

Related to the increasing number of smartphone users the amount of An-
droid phones shipments is rising 2. This is relevant since the integrated
development environment (IDE) for Catrobat, by the name of Pocket Code,
is available for Android. Catrobat is in the same way as Android an open
source project. This means that the source code is free available and can be
viewed and copied by everyone. With a market share of about 85% Android
is the most widespread operation system for smartphones worldwide.

The philosophy of Catrobat is to delight children and youth for program-
ming. They should also be encouraged to express themselves in a cre-
ative way with the new media. This promotes the skills of connecting
logical processes, creating creative solutions and solving problems with a
programming-approach.
Learning programming by playing a game includes a fun factor that could
keep the motivation higher than simply studying conventional program-
ming languages.

Through this thesis it is possible to bring these young programmers in
contact with the widely used Near Field Communication (NFC) technology.
NFC is already integrated into the daily life of many people. It is used for
payments in the supermarkets, for entry controls, to transmit small amounts
of data like contact information or website links and it can also be used for
fast pairing of Bluetooth devices.
The possibility to write and read NFC tags in Pocket Code introduces this
technique and its capabilities to young people. Writing to tags is made
possible through a preselected range of common used NFC message types

2https://www.statista.com/statistics/272307/market-share-forecast-for-smartphone-
operating-systems/

4

1.2 Problem Statement

like HTTPS, MailTo or text. This enables Pocket Code users to exchange
information with the help of NFC tags.

The second part of this thesis aims to help the developers of Pocket Code.
It is quite time consuming to test features of a mobile application manually
with every pull request, software update or release. Unfortunately not all
hardware features of Pocket Code can be tested on an emulated device. It is
necessary to install the application on a physical device to test the hardware
input and output.
Some of this manual testing can be automatized by using external hardware
sensors. In combination with an easy to use interface this is suitable for all
developers that work on Pocket Code.

1.2 Problem Statement

This thesis deals with two fundamental questions.
The first issue is how to enable children and young people to explore
the Near Field Communication (NFC) technology with its advantages and
potential but also its restrictions.
For this question the relevant and usable features of NFC are elaborated
relating to Pocket Code. Several extensions for Pocket Code are necessary.

The second question is how to enable automated testing for Pocket Code
hardware related features.
All Catrobat developers are committed to write tests before the productive
code to fulfil the Test-Driven Development (TDD) guidelines. Since not all
available features in Pocket Code can be tested meaningfully on an emulated
device a solution with external hardware is needed to enable TDD.

These two issues are connected with each other, since TDD is a way to
improve the quality of a software. It is necessary to offer a stable and less
error prone application to enhance the user experience. Children and young
adults are quickly disinterested in buggy software which stands in contrast
to the Catrobat philosophy of delighting them for programming. Because of
this a special testing tool for automated hardware testing is indispensable.

5

1 Introduction

1.3 Thesis Outline

This thesis is structured as follows.
In Chapter 2 all essential background information is provided, starting
with a short look into Catrobat and following with the Test-Driven Devel-
opment (TDD). Since TDD is crucial in Catrobat it is explained in more
detail. Therefore the three relevant testing frameworks for Catrobat are
explained. Further Jenkins is presented because it is the used continuous
integration tool. The next section shows how an Arduino works, because
this microcontroller will be the basis of the external testing server. As main
topic of this thesis Near Field Communication (NFC) is explained in detail.
Starting with the NFC device types and operating modes, followed by the
structure of the NFC Data Exchange Format (NDEF) and the NFC ISO norm
14443. Finally the radio controller PN532 as special part of the hardware
testing box is presented.

Chapter 3 deals with Catrobat in detail. It starts with a clarification why
TDD is that important for the project. Subsequently the different types of
tests and testing frameworks are discussed with a focus on a comparison
of Robotium and Espresso. Furthermore the pros and cons of the emulated
device and the real device are listed. To understand in which development
states the hardware testing box tests have to executed, the ticket workflow
of Catrobat is shown. As last section in this chapter the usage of Arduino in
Pocket Code is presented.

In Chapter 4 all implemented NFC features are expounded. Starting with
the NFC sensor variables which are newly available device variables that
contain information about the last read NFC tag. Followed by the SetNfcTag

brick that allows to write to tags during program runtime. Subsequently
the implementation of a NFC automated Bluetooth pairing is presented.
Next the Arduino hardware testing box is explained in detail, starting
with the construction of the container and followed by a listing of each
component. At first the hardware and software implementation of the audio
shield is explained, followed by the evaluated Ethernet shield and NFC
shield. As last components the light and vibration sensor hardware and
software implementations are explained. The final section deals with the

6

1.3 Thesis Outline

debugging of the hardware testing box which provides an instruction for
future developers.

Finally in Chapter 5 a conclusion of this thesis with the implemented
features and the new findings are presented. At last some ideas for possible
future work are propagated.

7

2 Background

This chapter provides information about techniques and hardware used
in this master thesis. It describes a.) the free open source software (FOSS)
project Catrobat (C. Contributors, 2017), b.) the Extreme Programming (XP)
(Beck, 2000) practice Test-Driven Development (TDD) (Langr, 2004) and
the use of three different testing frameworks, c.) the role of Continuous
Integration (CI) using Jenkins (J. Contributors, 2017a), d.) use of Arduino
(Arduino Contributors, 2017b) and finally e.) Near Field Communication
(NFC).

2.1 Catrobat

“Catrobat is a visual programming language and set of creativity tools for
smartphones, tablets, and mobile browsers”1.
It is specifically designed for teenagers aged between thirteen and eighteen.
The integrated development environment (IDE) Pocket Code enables the
user to directly create programs on Android and iOS devices. Catrobat
programs can be executed in the IDE on the mobile device or on any
HTML5 capable (mobile) browsers. Such programs can be animations,
music videos games, or other apps using the internal device sensors such
as GPS location, surrounding volume, inclination and so forth. With Pocket
Code programs for external hardware like Arduino, Raspberry Pi, Lego NXT
or remote control flying drones, and wheel driven robots can be created.
Catrobat is a block based visual programming language where each block
represents a separate functionality. Blocks are ordered in lists which are
part of graphical objects and can be arranged to form a certain program.

1https://www.catrobat.org/

9

2 Background

Figure 2.1: Screenshots of Pocket Code in the ’add brick’ menu and the object ’Vogel’

A main focus for the development of Catrobat code is on using Extreme
Programming practices according to Beck (2000), which is a combination
of Test-Driven Development (Langr, 2004) with Collective Code Ownership
along with other agile methods, like Continuous Integration and Ping-Pong-
Pair-Programming. The code styling is regulated via Clean Code methods,
which are described by Martin (2009), and several other standards like
Simple Design to ensure a high quality code as well as an always up to date
documentation.
To efficiently coordinate the work of the project members all tasks regarding
development of new features, bug fixes and all other adaptations are stored
as ticket. As ticketing system Jira2 is used in combination with a Kanban
board3 to visualize the work in progress, what has to be done and what is
already done.

2https://www.atlassian.com/software/jira
3https://www.atlassian.com/agile/kanban

10

2.2 Test-Driven Development

2.2 Test-Driven Development

This master thesis is about hardware features and hardware testing. There-
fore Test-Driven Development as specified by Langr (2004) plays an impor-
tant role.

TDD can be seen as a circular workflow. The developer starts with writing
a test for a feature which has to be implemented. Since the feature is not
implemented yet the test must fail. The next step is to add functionality
to the previously written test so the test runs successfully. Therefore only
the actual needed parts should be implemented. Once the test passes it is
time to refactor the written code of the feature and the test. When this is
done, the next test has to be implemented regardless of whether the existing
feature is extended or a new one is created. By following these simple three
rules a circular workflow accrues which can provide a lot of benefits for
the developer and the whole project such as tested code and a simple and
testable architecture.
By continuously practising the radical refactoring the quality of the code
can be improved significantly (Nagappan et al., 2008). Code duplication and
other code smells like hard coded values are prevented since refactoring is
done continuously in small chunks. Another good aspect is the focus on the
core feature which is under development. It gets harder to drift off and fall
into the trap of feature creep when applying TDD and complying to Clean
Code.
Clean Code according to Martin (2009) includes to use no abbreviations, no
comments and carefully considered and appropriate names for variables,
methods and so on. Further no duplicated code and a well-wrought design
for the system is an essential part. As a result of this the code has to be
self-explained and clear especially for foreign developers.

In probably every big software project with various Developers, several chal-
lenges and problems occur which must be handled to be longtime successful.
TDD can be a key to provide a solution for these challenges. Catrobat has
a high turnover rate because it is solely developed by volunteers. Most of
them are students and hence work on the project for their bachelor or master
thesis. So it is common, that members only work for a limited amount of
time on the project before leaving again. Another challenge is the knowledge

11

2 Background

transfer before they leave since they often are hard to contact after finishing
their work on the project.
Because of this circumstances TDD is so important to run the project success-
fully. The high staff turnover rate is easier manageable if no or at least less
knowledge gets lost about the written code. If features need to be changed
or get superfluous, it is easier to find the affected classes via changing the
test to the new requirements and follow the normal TDD circle, namely
fixing the test via fixing the functional code.

There are three challenges using Test-Driven Development. As already
mentioned a simple design is necessary to be able to test single components.
When the software is test-driven developed from scratch, the developers are
forced to use a good design.
Second, tests must be automated. They must be executed periodically on a
test system and they have to run on the client of the developer that they can
profit therefrom. To achieve test runs on a regular basis, they should run on
a continuous integration system which can build the software and execute
the test on a defined schedule. Such a continuous integration system is used
in the Catrobat project. The Jenkins server is not only configured to build
and execute the tests on regular basis but is configured to start all tests
when a pull request is issued by a developer. A pull request is a request for
merging a feature where its developer thinks it should be integrated into
the code base.
Finally the developers need a lot of practice to write good and useful
tests in adequate time. This can be the biggest obstacle when starting
with TDD, because it takes time to master writing tests especially before
the functional implementation. In Android to test the functionality of a
feature the recommended framework is JUnit4. If tests are related to the
user interface, frameworks like Robotium5 or Espresso6 are required.

4http://junit.org/junit4/index.html
5https://github.com/RobotiumTech/robotiumv
6https://developer.android.com/training/testing/espresso/index.html

12

2.2 Test-Driven Development

2.2.1 JUnit

Writing tests is alleviated by testing frameworks and by default the xUnit
framework is a framework which shares features regardless of Programming
language. For Android Development Java is the language of choice, therefore
tests are written using the JUnit framework. JUnit7 is as a simple testing
framework developed by Erich Gamma and Kent Beck (2000) as a tool for
Extreme Programming.

According to Krümmel and Ried (2011) it is common practice to put the test
code in own test classes which are separated from the functional code but
reside in the same package. It is a common convention to choose the name
as a composite of the tested class and the 'Test'-postfix. For each method to
test at least one own testing method must be available. A testing method is
concerned to test a single functionality of a class. Therefore a class under
test must be tested by multiple testing methods to verify its compliance
to the specification and validate its functionality. To speed up tests and
during development of tests, preconditions for all tests in a test class can be
defined.

To keep tests clear and help the test reader to quickly ascertain the verified
behaviour, the structure of the test logic should follow a four phase sequence.
As described by Meszaros (2007) this sequence is divided into the setup,
exercise, verify and teardown phase.
The setup is the precondition for a system under test (SUT). It is called prior
the requested logic is executed. In this context the fixture setup sets up the
so called test fixture, which consists of the test objects and their state.
The exercise phase can only be executed after the fixture setup phase is
completed. Here the SUT logic, which has to be tested, is simulated by the
test. This means that here the actual software parts are executed to test the
behaviour.
The verification alias result verification phase follows after the exercise SUT
phase. The behaviour of the SUT with the verification of the actual outcome
compared to the expected outcome is displayed as a Boolean result, pass or
fail.
The last step is the teardown phase. The fixture teardown destroys the

7http://junit.org/junit4/index.html

13

2 Background

test fixture which was created by the test prior. This step is regarding
organizational reasons, because teardown has nothing to do with a test as
documentation and the clear test logic should not be disguised.

To combine tests, which for instance belong to the same category, it is pos-
sible to arrange them in suits. They offer the possibility to group single
test classes to a bundle, which allows to run the containing tests succes-
sively. JUnit works with annotations for methods to distinguish test methods
from boilerplate code or helper methods. The most commonly used anno-
tations are listed below with along with a small explanation to get a quick
overview of JUnit possibilities. As explained by Krümmel and Ried (2011)
following annotations have to be written immediate above the test method’s
signature.

• @Test

Marks the method as test case which in turn is executed by the testrunner.
• @Test(expected=...Exception.class)

Marks the method as test case with the condition that the test only succeeds,
if the defined exception is thrown.

• @Test(timeout=...ms)

Marks the method as test case with the condition that the test only succeeds,
if the runtime is smaller than the defined value.

• @Before

Runs the annotated method before each test method is executed. This
enables the developer to create a common setup method for all test cases.

• @After

Runs after each called test method to do clean-up/teardown operations.

Annotations for classes are used to define the test runner or bundles of tests
(Krümmel and Ried, 2011).

• @RunWith(... .class)

If a different test runner should be used, the class executing the tests can be
defined here. For instance this is used to run parameterized8 tests.

• @Suite.SuiteClasses(... .class, ...)

A definition of classes that belong to this suite.

8https://github.com/junit-team/junit4/wiki/parameterized-tests

14

2.2 Test-Driven Development

The following assert methods are used inside the test methods to verify
the outcome of method calls on the classes under test (Krümmel and Ried,
2011).

Assert Method Behaviour
assertEquals(Object exp,

Object act)

Checks, based on the equals-method of
the object, if the objects are equivalent.
Can also be used for floats, doubles or
arrays.

assertEquals(float exp,

float act, float delta)

Checks equivalence of doubles or floats
within the difference of delta.

assertFalse(boolean

condition)

Verifies if condition is false.

assertNotNull(Object

object)

Checks if the object is unequal null.

assertNotSame(Object

unexp, Object act)

Verifies if two references point to differ-
ent objects.

assertNull(Object object) Checks if the object is null.
assertSame(Object exp,

Object act)

Verifies if two references point to the
same object.

assertTrue(boolean

condition)
Verifies if condition is true.

2.2.2 Robotium

Robotium is an open source test framework based on the Android test
framework (Vogel, 2016b). Robotium tests are derived from the Activity-

InstrumentationTestCase2 class. In contrast to JUnit, Robotium is a specific
Android framework created by R. Contributors (2017) for user interface (UI)
testing with integration in Android Studio and Eclipse. Robotium can be run
with automated build systems, e.g., Gradle9, Maven10 or Ant11 on physical
Android devices and Emulators which makes these UI tests eligible to be
run in a continuous integration (CI) build chain. Robotium provides full

9https://gradle.org/
10https://maven.apache.org/
11http://ant.apache.org/

15

2 Background

support for hybrid and native applications. It primarily uses the solo class
for testing. Only minimal knowledge of the tested application is required,
so it can be used for testing applications with available source code and
even applications where the implementation details are not known and only
an APK file available becomes testable. It supports various Android features
like toasts, activities, menus and context menus also multiple Android
activities are handled automatically by the framework. Even for beginners
in test development it is easy to write meaningful and solid tests, because
of the simple click on item principle. The readability of Robotium test cases
is much better compared to the standard instrumentation tests.

2.2.3 Espresso

Another user interface (UI) testing framework used in the Catrobat project’s
Android development is the Espresso framework. Espresso is an open source
instrumentation based API which uses the JUnit test runner, more exactly
the AndroidJUnitRunner(Android Contributors, 2016). With release 2.0 it
became part of the Android Support Repository (Vogel, 2016a) and can run
according to the Android Contributors (2016) on devices running Android
2.3.3 and higher.
Within a single target app Espresso provides APIs for UI tests to simulate
user interaction. The framework can also be used for black-box testing,
but unleashes its full power only when the codebase under test is known
(Community, 2017). Test actions are automatically synchronized with the UI
of the application. The framework determines when the main thread is idle
and improves the reliability of the test by waiting to run the test commands
at the proper time when the observed background activities have finished.
This frees the developer from having to add any waits in the test code.
Stated by Vogel (2016a) Espresso basically consists of the following three
components:

• ViewMatchers
The ViewMatchers find view objects in the view hierarchy.

• ViewActions
With the ViewActions actions like clicking can be performed on the

views.

16

2.2 Test-Driven Development

• ViewAssertions
The last checks asserts about view existence in the view hierarchy

2.2.4 Jenkins

Jenkins is a cross-platform, continuous integration and continuous deliv-
ery application (Kohsuke, 2016). The goal is to increase productivity of
development by building the whole application continuously, running all
configured tests and providing feedback of the build and test results.
This automation server software is written in Java (W. Contributors, 2017)
and runs in any Enterprise JavaBeans container. It is released under the
MIT License12 and is therefore open-source. Jenkins is delivered with Win-
stone13, a minimal servlet container, but can also be used with completely
fully functional J2EE style servlet containers such as Tomcat or Jetty. By
default various build-tools are supported like Apache Ant, Maven or Gradle
and commonly used version control systems like CVS, GIT or Subversion.
It comes along with support for automated testing tools like JUnit14 or
Emma15.
There exist over 1300 plugins (J. Contributors, 2017b) to extend the function-
ality of Jenkins. It can control other compilers beside Java to also adminis-
trate, e.g., .NET, PHP, Python or Ruby based Projects. It has a REST-based
API, so it can be controlled from other programs.
The main reason to use Jenkins is that continuous builds (J. Contributors,
2017a) and tests of software alleviate integration of and changes to the
project. By defining your build pipelines and integrating various testing and
deployment technologies, it provides a powerful way to continuously deliver
software. At the time of writing this Master Thesis, Jenkins is according
to a statistic of Maple and Shelajev (2016) the most widely used tool for
continuous integration.

12https://jenkins.io/license/
13http://winstone.sourceforge.net/
14https://wiki.jenkins-ci.org/display/JENKINS/JUnit+Plugin
15https://wiki.jenkins-ci.org/display/JENKINS/Emma+Plugin

17

2 Background

2.3 Arduino

Arduino is a platform consisting of easy to use open source soft- and
hardware (Arduino Contributors, 2017b).

The Arduino software is a cross-platform Java integrated development envi-
ronment (IDE) based on the IDE Processing16. The programming language
is based on Wiring17.

Arduino boards are programmed via the universal serial bus (USB). Since
there is a bootloader preinstalled on the microcontroller, no external pro-
gramming device is needed. The code editor of the Arduino IDE has a gcc
compiler with additional avr-gcc and Arduino-libraries. Therefore the code
can be written in a kind of C and C++ dialect. The IDE is able to compile
the code and upload the binary directly to the board connected via USB. In-
stead of the common main function a program needs two functions to work
properly, namely setup() and loop(). Readily identifiable the setup() is
called once at the start of the program. This happens after uploading the
compiled code to the board, by pressing the reset or power on the board.
The loop() function runs continuously while the board is turned on.
The hardware of common Arduino boards is based on Atmel-AVR 8-bit
microcontrollers. The power is supplied over USB (5V) or via an external
power adapter (7-12V, ≥ 250mA).
Arduino boards provide digital I/O pins from the microcontroller. Some
of them are able to output pulse-width modulation (PWM) signals. It has
also a number of pins for Analog input and pins for 3.3V and 5V power
supply. These pins can be used to control various electronic circuits. Because
of the large number of different sensors and motors Arduino projects are
diverse and can become complex. The range of project reaches from small
circuits on a breadboard to embedded Internet of Things (IoT) applications
to wearables or 3D printing. One reason for the Arduino platform’s pop-
ularity (S. Contributors, 2017) is that it can be easily used by electronic
and programming novices and is still flexible enough for advanced users.
Therefore it can be used by freshmen to get in touch with the topic as
well as sophisticated nerds to create any kind of standalone or integrated

16https://processing.org/
17http://wiring.org.co/

18

2.4 NFC

application. Another advantage is that Arduino boards are relatively cheap
compared to other microcontroller platforms.

2.4 NFC

Near Field Communication (NFC) is an international communication stan-
dard based on radio frequency identification (RFID) technology. It is built on
some of the RFID standards (Igoe, Coleman, and Jepson, 2014) with the goal
to create a platform for multiple kinds of data and more complex exchanges
between participants. Since it works as an extension, NFC readers can still
read from and write to passive RFID tags.
NFC has a wide area of applications with the purpose to exchange data,
e.g., swap records, exchange information and even initiate longer term com-
munications through other technologies. Since NFC connections operate
only on short range (less than 10 cm) and low power, there are almost no
interferences with other devices. It is for short messages, initiating long term
connection or exchanging credentials but not for high-speed communication.
NFC devices can send simple or complex messages without the need for
pairing or exchanging passwords. This may be risky, but when using NFC,
the communicating devices only offers the basic exchange mechanism and
the content is controlled, i.e., what and to whom data is sent.

According to Coskun, Ok, and Ozdenizci (2013) there are three main types
of NFC devices.

• NFC-enabled mobile phone
Most smartphones are equipped with NFC technology which in-

creases acceptance, and potential use of this technology. These smart-
phones support all different NFC operation modes, which are briefly
explained below.

• NFC reader
As the name indicates, NFC readers receive data from other NFC

components. One of the most frequently used NFC readers are contactless
pay terminals in stores and supermarkets.

• NFC tag

19

2 Background

NFC Tags are passive RFID tags, which means that they have only a
small memory and no integrated power source.

Like RFID, NFC operations need a initiator and a target. Through the
possibility to use smart or at least programmable devices it differs from
RFID in the variety of use cases and capabilities. NFC targets can create
unique content per message exchange and not only static data. To handle
the exchanges, there exist three different operating modes for NFC enabled
mobile devices.

• reader/writer
This mode enables smartphones to exchange data with NFC tags.

• peer-to-peer
Here data is directly exchanged between two NFC-enabled mobile

devices.
• card emulation

This mode enables to smartphone to be used as a smart card,
e.g.,simulate a credit card to pay contactless in at NFC reader pay termi-
nal.

The communication modes of NFC and regular RFID devices can be sepa-
rated into:

• passive communication
If the target has no own power source and gets their energy from

radio frequency energy supplied by the initiator it is called passive
communication mode.

• active communication
In contrast to passive mode, in an active communication the initiator

and the target have their own power source.

2.4.1 NDEF

The versatility of NFC comes from its format, the NFC Data Exchange
Format (NDEF). This is one of the main benefits in comparison to RFID,
because this common data format is used by all NFC devices, independent
of the hardware. It is defined by the NFC Forum. At every data exchange,

20

2.4 NFC

Table 2.1: NDEF Record.
7 6 5 4 3 2 1 0

MB ME CF SR IL TNF
TYPE LENGTH

PAYLOAD LENGTH 3
PAYLOAD LENGTH 2
PAYLOAD LENGTH 1
PAYLOAD LENGTH 0

ID LENGTH
TYPE

ID
PAYLOAD

one NDEF message is sent. This NDEF message consists of at least one
NDEF record (Coskun, Ok, and Ozdenizci, 2013). This records can have a
payload up to 232 − 1 bytes.

In Table 2.1 the bit wise structure of such a record is visualized. To under-
stand the abbreviations and structure, it is following explained in detail.

• MB
Bit no. 7, the MSB of the bit field is the Message Begin (MB) flag. It

indicates the start of an NDEF message.
• ME

Bit No. 6 is the Message End (ME) flag.
• CF

Bit No. 5, the Chunk Flag (CF), indicates if it is the first or middle
record chunk of a split payload.

• SR
Bit No. 4, the Short Record (SR) flag, indicates a short record. The

payload field is only 8 bit long (a single octet/byte) and can be set to a
value between 0 and 255 meaning that the length of the records can be
up to 255 bytes only.

• IL
Bit No. 3, the ID Length (IL) flag, if set indicates that the ID LENGTH

field is has 8 bits and hence hold values between 0 to 255 meaning the

21

2 Background

length of the ID can be up to 255 bytes.
• TNF

Bits No.2− 0, the Type Name Format (TNF), form a three bit field
which describes the content of the TYPE field. The represented content
is one of these seven possibilities: a.) empty (0x00); b.) NFC Forum well-
known type(0x01); c.) Media-type(0x02); d.) absolute URI(0x03); e.) NFC
Forum external Type(0x04); f.) unknown(0x05) or g.) unchanged(0x06).

• TYPE LENGTH
The TYPE LENGTH field has a size of eight bits. The stored value is

an unsigned integer and specifies how many TYPE octet fields the record
contains.

• PAYLOAD LENGTH
This field holds up to 32 bits (eight bytes). It is an unsigned integer

and specifies the number of PAYLOAD bytes. The number of PAYLOAD
LENGTH bits is affected by the SR flag, if the SR flag is set only eight
bits (one byte), the PAYLOAD LENGTH 0 field, are used to specify the
payload length and hence only up to 255 bytes can be used in as a
payload.

• ID LENGTH
This field holds eight bits. It is an unsigned integer and specifies the

number of ID field bytes.
• TYPE

This field holds eight bits. It specifies the type of the payload.
• ID

This field holds up to eight bits The ID field contains a URI reference
which is used as an identifier.

• PAYLOAD
The PAYLOAD field contains the payload for NDEF user applica-

tions.

2.4.2 ISO/IEC 14443

The norm 14443 of the international organisation for standardization (ISO)
and the international electronical commission (IEC) specifies the physical
and data relevant properties regarding the transmission between the reader

22

2.4 NFC

Figure 2.2: ISO7810 dimensions. ID-1 is used in ISO14443

and the contactless chip-card (GmbH, 2012). In this norm the reader is called
proximity coupling device (PCD) and the contactless chip-card is called
proximity integrated circuit card (PICC).

ISO/IEC 14443 norm specifications are separated into four parts.

The first ISO/IEC 14443 part (ISO/IEC, 1997) specifies the physical prop-
erties of the PICC. The norm says that the physical characteristics and the
nominal dimensions have to be same as specified in ISO/IEC 7810 for card
type ID-1. The specifications of the dimensions in ISO/IEC 7810 is displayed
in figure 2.2, which shows that ID-1 meets the standard credit card dimen-
sions. ID-3 has the dimensions of a passport, ID-2 of an identification card
and ID-000 of a SIM card. There are additional characteristics specified in
ISO/IEC 14443− 1. Starting with the dynamic bending and torsional stress
requirements, verified with testing methods from ISO/IEC 10373, as well
as the requirement that the PICC has to function normally after (ISO/IEC,
1997, p.2):

”exposure of either face to medium-energy Xradiation, with
energy 100 keV, of a cumulative dose of 0.1 Gy per year [. . .]
exposure to a magnetic field of 12 A/m at 13, 56 MHz [. . .]

23

2 Background

exposure to a electric field of average level [. . .]
testing in accordance with the test methods described in ISO/IEC
10373 (IEC 1000− 4− 2 : 1995), where the test voltage is 6kV
[. . .]
exposure to a static 640 kA/m magnetic field [. . .]
over an ambient temperature range of 0 °C to 50 °C”

Part two is about the radio frequency power and signal interface (ISO/IEC,
1999). Here the ISO/IEC 14443 defines the frequency with 13, 56 MHz
+− 7kHz. The consecutive operations of the initial dialogue of the PICC
and the PCD are defined from ISO/IEC (1999, p.7) as follows:

”- activation of the PICC by the RF operating field of the PCD
- PICC waits silently for a command from PCD
- transmission of a command by PCD
- transmission of a response by PICC”

To couple the PICC, the PCD has to produce an energizing radio frequency
field. This field shall be regulated for communication. There are differences
between type A and type B communication.

Type A is defined to use amplitude-shift keying in the downlink and uplink
between the PCD and the PICC. Amplitude-shift keying is a kind of am-
plitude modulation, which uses deviations in the amplitude of the carrier
wave to represent digital data.
Type B is defined to use amplitude-shift keying in the downlink from the
PCD and binary phase shift keying for the uplink.

The third part of the ISO/IEC 14443 (ISO/IEC, 2001) norm describes the
communication at the data exchange between a PICC and a PCD. That
includes the polling when a PICC enters a PCD operating field, the initial
request command content and the answer to request command content. As
well as the byte format of the frames and the timing , the initial dialogue
from ISO/IEC 14443− 2 used for the communication. Further it defines
the methods for anti-collision, to detect and communicate with only one
proximity integrated circuit card among multiple other PICCs. Additionally
required parameters for the communication initialization between the PCD
and a PICC are also defined just as optional tools to facilitate and speed up
anti-collision process resting upon application criteria.

24

2.4 NFC

The fourth and last part of ISO/IEC 14443 (ISO/IEC, 2000) specifies the
transmission protocol. The appropriate transmission protocol for the contact-
less environment here is defined as a half-duplex block. With half-duplex
the communication is limited to one direction at a time, which allows each
party to communicate non-simultaneously with the other party.
Further on the protocol activation and deactivation sequence is defined.
The norm describes the different application of the transmission protocol
for PICCs type A and type B.

2.4.3 PN532

A radio controller is the hardware core part of NFC communication regard-
ing Igoe, Coleman, and Jepson (2014). One widely used NFC controller is
the PN532. This popular NFC frontend was patented in 2007 by NXP (2007).
As microcontroller basis a 80C51 core with 1 kilobyte (kB) of random access
memory (RAM) and 40 kB of read only memory (ROM) is included.
Altogether this highly integrated transceiver module supports six distinct
operating modes (NXP, 2012, p.1):

”

• ISO/IEC 14443A/MIFARE Reader/Writer
• FeliCa Reader/Writer
• ISO/IEC 14443B Reader/Writer
• ISO/IEC 14443A/MIFARE Card MIFARE Classic 1K or MI-

FARE Classic 4K card emulation mode
• FeliCa Card emulation
• ISO/IEC 18092, ECMA 340 Peer-to-Peer

”

According to the product data sheet of PN532 (NXP, 2012), the following
features and benefits are present:
For ISO/IEC 14443A/MIFARE compatible transponders and cards, a de-
coder and demodulator for signals is implemented. A demodulator is the
counterpart to the sender. It modulates the baseband signal to a device

25

2 Background

specific format that the receiver can handle the input correctly.
The PN532 handles all error and framing detections of ISO/IEC 14443A.
It supports higher transfer speeds at contactless communication in both
directions with up to 424 kilobit/s using MIFARE. MIFARE Classic 1K and
4K card emulation mode is supported.
The PN532 provides the same functionality for FeliCa as for ISO/IEC
14443A/MIFARE to demodulate and decode the signals, handle the error
and framing detection as well high speed communication.
Except the anti-collision, which have to be implemented in the firmware,
PN532 supports the ISO/IEC 14443 B Reader/Writer communication scheme
for layer 2 and layer 3. Other layers must be implemented in the firmware
as well.
Both card interface schemes, FeliCa and ISO/IEC 14443A/MIFARE, can
send Reader/Writer commands, which the PN532 in card emulation mode
is capable to answer. For Reader/Writer or Card/proximity integrated cir-
cuit card(PICC) modes, it is possible to connect an external antenna to the
PN532 without supplementary active components.
Following host interfaces are supported by the PN532 (NXP, 2012, p.2):

”

• SPI
• I2C
• High Speed UART (HSU)

”

To allow the direct connection of the device to a battery, an low-dropout
voltage regulator is embedded.

26

3 Catrobat

One principle of the project is to develop in a test-driven way. This is an
intransigent requirement, therefore all developers in the Catrobat team are
encouraged to satisfy this. The tests can be separated into three categories.
First are common JUnit tests, actual at Framework Version 4.1., which are
mostly standard in a lot of projects. The second and little trickier test class
is the User Interface (UI) testing, which was handled by using the Robotium
Framework. These tests simulate user input by clicking on specific objects
or positions on the screen. In this way it navigates through the interface and
checks displayed text and dialogs on the screen.

Beside the previously mentioned tests categories using given frameworks,
there is also the need for a bit more complicated testing class namely the
hardware tests. These tests have to examine the real hardware and theirs
functionality, like checking if the mobile phone really plays the sound when
it should.

3.1 Why Test-Driven Development

Why does Catrobat is so strict on using Test-Driven Development (TDD)?
There are already several publications about the benefits of TDD published
on the Institute of Software Technology at the Graz University of Technology.
Therefore this question is answered only in short here referring to these
sources for further information.
In the work ’Aspects of Test-Driven Development’ from Pulkit (2013) it is
written that TDD has a positive influence on the quality of software design.
This assertion is based on an experiment with three developer teams. One
team had to follow the test first strategy, one the test last and the third team

27

3 Catrobat

had to write no tests at all. The outcome showed that the test first team
completed the most requested features of the three teams. Furthermore the
quality of the code was the best at the test first team. They had the smallest
methods, modules and classes, what decreases the complexity and they had
the highest code coverage rate.
In the Master’s thesis of Slavec (2016) about ’Integration of controlling
Arduino boards via Bluetooth with Pocket Code for iOS using test-driven
development’ he describes testing as a way to increase the satisfaction of
the customer by writing more reliable software. A further important point
about testing regarding Slavec (2016, p. 12) is that the quality estimation is
only enhanced by successful tests, if they previously failed, what illustrates
the removal of a fault.
Taking these advantages and the high fluctuation of people at the project
into account, the decision to require TTD results as very clever to keep
the code and testing quality high to guarantee a long-time success of the
project.

3.2 Software Tests

Until January 2017 all user interface (UI) tests were written with the
Robotium Framework (R. Contributors, 2017). Fortunately the number of
tests, JUnit and UI, grows all the time. Because of the size of the application,
there were about 1180 JUnit and over 1500 Robotium tests. Unfortunately
some tests that should be tested with JUnit were written as UI tests, which
have less impact on smaller project but have a large impact here, because in
January 2017 all Robotium tests took already more than twelve hours to run
once. To make the tests feasible again, the management and development of
the project decided to switch to Espresso tests (Community, 2017). In the
subsequent section 3.2.1 the reasonableness of this decision is explained,
based on a Master Thesis with the topic ’Comparison of GUI testing tools
for Android applications’ from Lämsä (2017).

28

3.2 Software Tests

3.2.1 Robotium vs Espresso

Since the constantly growing number of user interface tests for the Pocket
Code application the runtime of all test suites became impracticable long. For
traceability reasons of the decision to switch to Espresso, following the two
testing frameworks are compared regarding their assets and drawbacks. As
there are hardly any scientific papers that treat with the direct comparison
of Robotium and Espresso, the Master Thesis of Lämsä (2017) was the most
profitable source and the comparison is therefore build on that outcome.

The functionality overview of Robotium is already summarized in chapter
2.2.2, additionally following is necessary to mention.
Robotium is derived from the instrumentation framework, which is a low
level user interface testing tool with the opportunity to test single activities.
The instrumentation framework gives the test developer lots of power but
writing tests is very unwieldy. To abstract this difficult to use framework
Robotium was built.
Same as Espresso it is an open source project that accesses methods and
classes which are publicly accessible at the application under test(AUT)
because the tests and the productive/tested code are in the same project.
Robotiums instrumented tests are executed in the same process as the
application. It is built on the deprecated ActivityInstrumentationTestCase2

and the deprecated JUnit3 version of JUnit. Through the derivation of the
instrumentation framework the only interactions that can be tested are
within the specific application.
The interaction of a test with the device is possible within the Solo class.
It provides various methods for the interaction and it is initialized by
committing an instrumentation framework instance. A click on the Pocket
Code play button is done with the command:

solo.clickOnView(solo.getView(R.id.button_play));

For test code development the same integrated development environment
(IDE) as for the productive Android source code is used. The standard IDE
for developing Android software is the Android Studio from IntelliJ1.

1https://developer.android.com/studio/index.html

29

3 Catrobat

The procedure of test execution is the same as with Espresso. To run the
test by use of the Android debug bridge (ADB) the AndroidJUnit Runner is
used. At the first step .apk file is created by build the code.
The second step is the transfer of the application to the device.
Up next the .apk is installed and executed.
Finally the test suite is executed and the results of the tests are displayed in
the IDE.

All these steps are done automatically by the Gradle file and Android Studio.
The only thing the developer has to do is starting the test or a test suite.
This makes it very comfortable to run the software tests.

Espresso works in a similar way as Robotium. It is deliberated for functional
user interface tests especially for navigation within the AUT. It can also not
be used outside the AUT. Writing tests in Espresso is fairly easy due to the
fact that the tests are only executed if the application is stable. That implies
that the developer does not need to think about timing of a progress when
starting an intent.(Lämsä, 2017, p. 14)
The Espresso library comes with the Android Testing Support library2.
Further it uses the AndroidJUnitRunner that allows developing tests com-
parable to JUnit test. These tests and the AUT are loaded by the test runner
into the device, where the packages are executed. In contrast to Robotium
version 3 and 4 of JUnit are supported.
It is also derived from the instrumentation framework which limits the
execution of the tests to the actual AUT. Although Espresso is the only
Android testing framework which autonomous handles the synchronization
while testing. This eliminates every wait and sleep in the test code. This
is accomplished by waiting for the main thread to be idle before continue
executing the code. This approach is very fail secure, because all UI display
updates in Android are handled by the main thread3.
The structuring with annotations in Espresso tests is the same as for JUnit,
which is already described in detail in chapter 2.2.1.
Test scripts using the Espresso library look quite different to Robotium test
code. Here the action is a method performed on the view object. The same
action as previous displayed in Robotium code, which clicks on the Pocket

2https://github.com/google/android-testing-support-library
3https://developer.android.com/training/testing/ui-testing/espresso-testing.html

30

3.2 Software Tests

Code play button, looks like this:

onView(withId(R.id.button_play)).perform(click());

The direct comparison of those two testing frameworks shows many similar-
ities, like the derivation. Both are based on the instrumentation framework,
which restricts them to AUT because they can only run in the process of
the application. This makes it also necessary to run these tests on a real or
emulated device.
The more current JUnit version is supported by Espresso, namely JUnit4.
Both support Android UI testing starting with API Level 8 (Android 2.2)
and they use the AndroidJUnitRunner to execute commands through the
ADB.
Robotium is unlike Espresso a 3rd party tool but both use Java as test
development language.
Espresso can only be used for white box testing, Robotium in contrast can
be used for black and white box testing.
The general trend, according to Google trend, goes to Espresso as dis-
played in Figure 3.1. The continuous downwards trend of Robotium is
unmistakeable recognizable.

The most likely reason for that is the very different execution time. Espres-
sos unique attribute regarding thread security is the crucial superiority.
Lämsä (2017, p. 51) says

”Espresso proved to be significantly faster than the other tools
in driving the UI of the applications”

To compare the execution time of various UI testing tool, he took several
Android applications and UI testing frameworks, among Robotium and
Espresso, and wrote equivalent tests for each application. The logged exe-
cution time and the robustness of each framework were then displayed in
tables to compare them.
The first logged test suites for the applications ’Amaze File Manager’ and
’Notes’ revealed that Robotium tests took 488 seconds and the Espresso tests
only 179 (Lämsä, 2017, p. 52). This points out that Robotium tests took 2.72
times longer than Espresso tests.

31

3 Catrobat

Figure 3.1: Google Trend: Robotium VS Espresso

It also turned out that another weakness of Robotium compared to Espresso
is the reliability. With 1200 tests in the Espresso test suite and 1265 tests in
the Robotium test suite the number of tests that fail (without a good reason)
is about four times higher at Robotium tests (Lämsä, 2017, p. 65).

The biggest difference between Espresso and Robotium is however the
number of waits in the code. Since there are none waits necessary in Espresso
the output for number of waits for the two applications was 0 to 13.

Unfortunately it is not possible to deliver a meaningful comparison of the
complete runtime of Robotium and Espresso tests for Pocket Code, because
still not all Robotium tests are rewritten for Espresso and a main focus was
also to convert unreasonable UI tests to JUnit if possible, to get an extra
performance boost.
Anyway the execution time of Robotium and JUnit tests before the switching
was more than twelve hours and had a high false negative (fails without a
good reason) rate. Espresso and JUnit tests need only a fraction of that time
and the amount of failing tests makes a dent.

32

3.2 Software Tests

3.2.2 Emulator vs Real Device

All written software tests that are developed have to be executed somewhere
on a Android device. There are two different possibilities to run the test, on
a real hardware device or on an emulated device.
The Android Emulator can be used, according to the official documentation
of Android Contributors (2018), to simulate several Android devices like
tablets, smartphones, Wear OS or Android TV on the computer without
any physical Android component. This is feasible trough Android Virtual
Devices (AVD), which can be configured regarding the used Android ver-
sion, size, form factor and multiple other hardware characteristics. This
way all relevant device types (the application is designed to run on) can be
modelled as a separate AVD and used for testing.
Every virtual device created this way acts as an independent device. User
data, installed apps and also SD card data are stored permanently to the
AVD directory and is loaded when the emulator is launched.
In contrast the tests can also be executed on a real device. This includes all
smartphones and tablets with enabled USB-Debugging in the developer op-
tions in the settings. The device only needs to be connected to the computer
with this option enabled.
To make a decision what option should be preferred following the advan-
tages regarding certain issues are confronted in Table 3.1. This table is a
merged list from G. Contributors (2018) and Android Contributors (2018).

Beside these strong points both kinds also have their specific disadvantages.
This negative points are listed in Table 3.2

After looking at the pros and cons of using real devices and emulators for
testing Android software, it points out that both testing in both is mandatory
to be able to guarantee a high quality and strong standard.
For this reasons Catrobat makes use of both techniques. The Emulator is
irreplaceable for continuous integration since the Jenkins servers have to be
able to make multiple test code executions simultaneous when several pull
requests are made. In this case the performance factor is improved through
parallelization.
On the other hand the emulator has very distinct boundaries when it goes

33

3 Catrobat

Table 3.1: Advantages of Real Devices VS Emulated Devices for specific issues
Issue Real Device Emulated Device
Availability Strict performance testing is-

sues like for waiter remote or-
dering applications with a con-
tinuous runtime of 8h cannot
be emulated.

AVDs can be used for free, they
just need to be downloaded and
they are ready to run.

Situation
based

Only real devices can be used
testing applications in real sit-
uation context like handling
during a sport activity or in
the rain.

In particular situations there is
no time to test in real situation
context or specific phones are not
available, then the simulation of
these circumstances could be the
best option

Device spe-
cific feeling

Testing usability issues like
color, size or brightness at day
and night gives a good look
and feel of the application.

The wide variety of different
Android devices for testing can
hardly be covered with real de-
vices. This is a perfect situation to
use multiple AVDs for free.

Web Appli-
cation

It is more expressive to test
web applications on real de-
vices relating to reliability.

Testing of opening web applica-
tions is easier since only the URL
needs to be copied and pasted.

Make
screen-
shots of
bugs

The interoperability can be
tested more meaningful and
making screenshots is a stan-
dard feature on smartphones

Screenshots can either be captured
by the computer OS or withing the
Android Emulator.

Validation
of battery
scenarios

It is easily possible to test var-
ious battery scenarious.

In the Android Emulator the bat-
tery status can be adjusted in the
settings, like the state of charge,

Interrupt
handling

Incoming interrupts can easily
be simulated and tested.

The later versions of the Android
Emulator also simulate interrupts
like incomming phone calls or
SMS.

Color read-
out

Checking the displayed color
on a real device is more mean-
ingful

This can hardly be tested on the
emulated device, because sunlight
and reflection behaves different on
the computer screen.

Performance Since only the software is ex-
ecuted real devices are faster
than emulators

Emulators have to simulate the
hardware and the software, what
makes them slower than real
phones34

3.2 Software Tests

Table 3.2: Disadvantages of Real Devices VS Emulated Devices
Real Devices Emulated Devices
Building a proper testing cluster
with different devices is quite ex-
pensive.

Not all hardware features can
be simulated, like NFC or using
headphones

Each test device must also be
maintained.

Performance issues can hardly be
tested on emulated devices.

Devices are or sometimes bound
to specific countries and therefore
they are hard to get.

Test execution takes longer, since
emulated devices are slower than
real ones.

Real devices can be harder to
connect with the computer and
the IDE what can cause time-
consuming problems.

Factors like battery consumption
or overheating cannot be tested.

To test with real devices a USB
port is used permanently. This can
be another point of failure.

Setting up well configured emula-
tors is costly in terms of time.

Adequate security is necessary, es-
pecially if expensive devices are
used, to prevent theft.

Unexpected behaviour like defect
hardware components cannot be
simulated.

35

3 Catrobat

to test hardware features. Near Field Communication (NFC) is only testable
on real devices. The topic of this Master Thesis is the NFC extension for
Catrobat. Due to the fact that the Catrobat project is built on test-driven
development it is mandatory to also connect a real smartphone to the
Jenkins servers to be able to test NFC features.

Summarizing this section, testing on real devices is the preferred method
when it comes to test implemented hardware features. For testing functional
code the Android Emulator is a powerful tool. The UX decisions in this
project are made by the UX team therefore this usually important aspect
can be neglected when it comes to the automation of testing.

3.3 Hardware Tests

A special feature of Pocket Code is the possibility to work with almost
all sensors and features of a smartphone. To test some of these hardware
features the Arduino hardware testing box is necessary. The construction of
the box is explained in detail in section 4.2 in the Implementation part of
this thesis.
This section explains how to make use of the hardware testing box in
Espresso tests. Since testing the functionality of hardware is most reasonable
in the stage activity, this cannot be done by JUnit tests but UI tests.
The hardware testing box IP address is configured to be in the subnet of
the Jenkins servers. This is necessary for the test servers to be able to work
with the box. For Pocket Code developers this means that new hardware
tests can either only be executed on the Jenkins or the one who wants to
verify/falsify new tests can use the second box, which can be configured to
work in any network. The configuration of the box is explained in detail in
section 4.2.6.

The box can be used to test five hardware features of a smartphone.
In Pocket Code this testing functionality is located in the public class
SensorTestArduinoServerConnection.java.
The first testable functionality is the reading of NFC tags. Therefor the
Espresso test need to call the Java function emulateNfcTag(boolean writ-

able, String tagId,String ndefMsg) what describes the content of the

36

3.3 Hardware Tests

tag, which is then emulated by the Arduino hardware testing box. A NFC
tag must contain information about if it is writeable or not. This is for the
emulation in Pocket Code of minor importance, since there is no impact on
the testing for now.
Further the tag ID has to be specified as hex string. This ID is important for
the mapping of read tags to already known tags. In Pocket Code known
tags can be used in program logic with the WhenNfcBrick, which is executed
if the previously set NFC tag ID equals the ID of the new NFC intent.
The last parameter of the function is the NFC message. The emulation is
preconfigured to add the message as universal resource identifier (URI).
This NFC Data Exchange Format (NDEF) message enables the represen-
tation resources over a network like websites or network files. A detailed
explanation of NDEF is available in section 2.4.1. The content of the last
NFC intent NDEF message and the tag ID as well can also be used/accessed
via the NFC sensor variables, which is explained later in detail in section
4.1.1.

The second testable feature is the vibration. For this purpose the Arduino
hardware testing box checks if the smartphone actually vibrates. The Java
function checkVibrationSensorValue(int expected, int timeoutMillis)

for verification/falsification takes two parameters. The value expected is
0 (OFF) if there is no vibration expected and 1 (ON) if there should be a
vibration. timeoutMillis describes for how many milliseconds the function
should try to get a positive response from the Arduino box.
Additionally the function calibrateVibrationSensor() should be called
prior the actual checking, to guarantee a accurate result.

The third functionality to test is the LED light of the smartphone. The
handling in Java is similar to the vibration check.
checkLightSensorValue(int expected, int timeoutMillis) checks for a
number of timeoutMillis milliseconds if the 0 (OFF) or 1 (ON) value of
expected is returned from the Arduino hardware test. Here is no prior
calibration necessary, since the read sensor values are significant.

Checking if an audio signal is transmitted via the auxiliary output of the
smartphone is the fourth testable hardware functionality. The
checkAudioSensorValue(int expected, int timeoutMillis) function in

37

3 Catrobat

SensorTestArduinoServerConnection.java is like the light check. The pa-
rameters are the same and there is no calibration necessary for the Java
developers. Though the runtime of the check on the Arduino lasts two
seconds, because the audio signal is detected via the wave oscillation of the
signal where two seconds are necessary to function properly.

The last feature is the check of the network access. This is tested automat-
ically by running any of the previous tests. Since the Arduino hardware
testing box acts as a server, the smartphone has to establish a socket connec-
tion to send the specific requests. Therefore the WLAN connection of the
smartphone is coincident used and checked.
More details regarding the background of the hardware tests on the Arduino
hardware testing box can be found in section 4.2

3.4 Workflow

In Pocket Code there is a strict workflow which every developer has to go
through. Every work respectively issues or problems have to be committed
as a so called ticket. The used ticketing system for the Catrobat project is
Jira4.
A ticket has to contain all necessary information about the work to be done.
This can be a description of a new feature which has to be implemented as
well as a report of a bug which must be fixed.
Bugs can be reported by everyone without a Jira account. To create a ticket
of another type, the project lead has to create a Jira account and grant the
required rights.
Every developer needs a ticket to start the productive work. This ticket goes
through the predefined workflow displayed in Figure 3.2.

The blue coloured states have a dual function. The first role is to act as a
queue for following (yellow) progress states. This is like a ’to do’ state prior
the progress states. The second role is a ’done’ state after the progress states.
The yellow coloured states are ’in progress’ markers. This means that it is
actively worked on the ticket, either through writing code, creating a design

4https://www.atlassian.com/software/jira

38

3.4 Workflow

or reviewing code and/or design.
The green coloured states are final states. Tickets in a final state need no
further processing. There are three final states, the successful done MERGED

and the denied DUPLICATE and REJECTED states.

During the Jira workflow these following states are passed through:

• ISSUES POOL
The Jira workflow starts with the ISSUES POOL. Here are all new

created tickets as well as older tickets that are not merged, rejected or not
a duplicate. The ISSUES POOL is cleaned up at least once a year at the so
called ticket party, where members of each sub-teams come together to
discuss the need of every single ticket. This is necessary, to keep the work
order oversee able.
Tickets from the issue pool can then be moved to the final states DUPLICATE,
if for example a bug is reported twice, or REJECTED, if for example a fea-
ture request is denied, and it can also be moved to the BACKLOG queue.
These transitions can only be accomplished by administrators, which
are the coordinators of the project, and senior members, which gain this
status by working for Catrobat since more than 1000 hours.

• BACKLOG
The BACKLOG has multiple purposes. It serves as container for tick-

ets which are relevant for the next release or planning game. The effort
estimation has to be performed on the tickets as well as the prioritization
of these. To be able to do effective effort estimation, prior a detailed ticket
description has to be added with well-defined acceptance criteria.
To get this detailed information, sometimes the interaction with the UX
consultants is necessary. This is the case, if layout relevant changes or
extensions are planned like new bricks, changes in the menu and so on.
Finally the BACKLOG is a reserve if the READY FOR DEVELOPMENT container
is empty before the next planning game.
Thus tickets from the BACKLOG can be forwarded to the queue states UX

BACKLOG or READY FOR DEVELOPMENT as well as to the final states REJECTED
and DUPLICATE.
The transition to the READY FOR DEVELOPMENT state can only be accom-
plished by administrators because the team has to discuss the need and

39

3 Catrobat

Figure 3.2: Pocket Code Workflow

40

3.4 Workflow

realization of each ticket. The forwarding to the final states and the UX

BACKLOG can be carried out by administrators and seniors.
• READY FOR DEVELOPMENT

READY FOR DEVELOPMENT is a queue similar to the former BACKLOG.
It only contains tickets that are well described, prioritized and effort
estimated.
Every member of the team can access this queue and assign single tickets
to themselves and forward them to IN DEVELOPMENT, but only adminis-
trators and sensors can put them back to the BACKLOG.

• IN DEVELOPMENT
This state describes that the ticket is actual worked on. It has to

be assigned to exactly one member, but can be processed by multiple
members. Here the main work of the developers is done. All defined
ticket, respectively issue specifications have to be implemented under
abidance of all development restrictions like agile software development.
A ticket may only be in the IN DEVELOPMENT state during it is actively
worked on. If the work on a ticket is paused for longer time it has to be
put back to READY FOR DEVELOPMENT that other developers can continue
working on it. As soon as the development phase is completed, the ticket
has to be set to READY FOR CODE REVIEW by the developer. Finally a GIT
pull-request can be applied.

• READY FOR CODE REVIEW
The READY FOR CODE REVIEW state is a queue between the IN DEVELOPMENT

and IN CODE REVIEW states. The assigned developer can put it back to IN

DEVELOPMENT but only administrators and seniors can conduct the code
review and therefore only they can forward the ticket to IN CODE REVIEW.

• IN CODE REVIEW
The status is set to IN CODE REVIEW, if a code reviewer (as previ-

ously mentioned an administrator or senior member) actively checks
the code. If the review of the ticket is not finished it can be set back to
READY FOR CODE REVIEW. Otherwise if the review is finished and there
are changes necessary, the ticket is put back to READY FOR DEVELOPMENT.
If the implementation is okay and there are no UX adaptations, the ticket
is forwarded to READY FOR MERGE. If there has been any UX adaptations
it forwarded to READY FOR UX REVIEW.

• READY FOR UX REVIEW

41

3 Catrobat

This queue is processed by members of the usability team. One
member is assigned to the ticket and the status has to be changed to IN

UX REVIEW.
• IN UX REVIEW

The usability team member does the review and the changes can
then be accepted and the ticket forwarded to READY FOR MERGE or de-
clined and the ticket is put back to READY FOR DEVELOPMENT.

• READY FOR MERGE
READY FOR MERGE is the last queue state in the implementation work-

flow. Only senior members and administrators have the permission to
merge a feature branch into the develop or master branch. To avoid
problems, it is necessary to have the merged feature up to date with the
current codebase of the branch it is merged to.

• MERGED
The status of the ticket is set to MERGED, if the feature is successfully

merged into the master branch. In most cases the ticket workflow ends
here and the work is done. In some cases the already merged features
need further treatment for example if a fix does not eliminates the problem
on specific devices.

• DUPLICATE
A ticket gets marked as DUPLICATE as soon as it is unmistakeable

that another ticket with the same content already exists. Duplicates occur
sometimes if the same bug is reported by different persons with an
different description. Especially non-programmers tend to use unequal
descriptions for the same thing. Only administrators and seniors can set
the ticket status to DUPLICATE. The duplicates should be unmasked at the
latest at the next planning game when the issue is discussed by several
members. Once a ticket is set to the final state DUPLICATE, it cannot be
touched and changed anymore.

• REJECTED
The REJECTED state is similar to the DUPLICATE state. This status can

only be set by administrators and seniors. The decision to reject a ticket is
mostly made during the ticket party or the planing game. In contrast to
the DUPLICATE state the ticket can still be edited and moved back to the
ISSUES POOL for further processing.

• UX BACKLOG

42

3.5 Use Arduino in Pocket Code

Tickets with impact on the user interface respectively the user expe-
rience go through some more stages. Before such a ticket is set to READY

FOR DEVELOPMENT the design and behaviour for the corresponding ele-
ments has to be drafted by members of the usability team. Therefore the
ticket is moved to the UX BACKLOG by an senior member or administrator.
Usability team members can then access this queue to do their work.

• UX REJECTED
If the planned features or changes, described in the ticket, do not go

along with the opinion of the usability team, they are set to UX REJECTED.
Therefore this queue is to decide if the ticked is moved back to the
BACKLOG either of the project or of the UX team. Anyhow there are changes
necessary in the specification of the ticket.

• UX DEVELOPMENT
The developers of the user experience team have to take tickets from

the UX BACKLOG and set their state to UX DEVELOPMENT before they start
processing the orders. The UX developer can set the state of the ticket to
any UX state.

• UX DONE
UX DONE is the last state of the UX workflow. If a ticket is set UX

DONE, the usability part is approved. This is requirement for UX tickets to
be forwarded from the BACKLOG to READY FOR DEVELOPMENT.
If the ticket is in UX DONE, it can be forwarded by usability team members
to the BACKLOG or put back to the UX BACKLOG for further adaptations.

3.5 Use Arduino in Pocket Code

Pocket Code supports the control of a number of external devices like Rasp-
berry Pi, Lego NXT and Arduino. Following the usage of Arduino in Pocket
Code is explained representative for all other supported features, since the
steps are similar and the Arduino hardware is a essential part of this thesis.
All external hardware is connected via Bluetooth to the smartphone except
for Raspberry Pi, which is connected via wireless local area network. Most
Arduino boards do not support Bluetooth out of the box. There is a spe-
cial Arduino BT (Bluetooth) microcontroller (Arduino Contributors, 2018)
which has a build-in Bluetooth module WT11-A. This Arduino BT is like the

43

3 Catrobat

Figure 3.3: Arduino Bluetooth wiring

Diecimila Arduino board. It can be powered with 2.5V up to maximum 12V.
It has 14 digital pins and 6 analog pins. The factory Bluetooth connection
setting is named ARDUINOBT with password 12345. However this product
is already retired from the official Arduino range of goods.
Another solution is to make a standard board Bluetooth capable. The best
way to do so is using an external Bluetooth module. A common module for
this is the HC-05 Wireless Bluetooth Serial Module (Reichelt, 2018).
It works with serial communication and is powered with 5V by the Arduino.
For the serial communication, between the board and the module, the Rx
and Tx pins are used. The via Bluetooth received data is send through the
Tx (Transmitter) pin on the module to a Rx (Receiver) pin in the Arduino.

44

3.5 Use Arduino in Pocket Code

Figure 3.4: Enable Arduino bricks

Vice versa data is send through the Arduino Tx to the Bluetooth module
Rx and finally to the Bluetooth connected device. The described wiring of a
HC-05 module is displayed in Figure 3.3.
The factory Bluetooth connection is named ’HC−05−’ followed by the
MAC-address and the standard password is 1234.
The first step to write an Arduino program in Pocket Code is to enable the
Arduino bricks in the main menu settings. This setting is displayed in Figure
3.4 on the left. As soon as the checkbox is enabled, an additional category
is available when pressing the add brick button in the script activity. This
Arduino category and the content of the same is shown in Figure 3.4 in the
middle screenshot and the right one.
Both bricks can set actions by changing the output value of a pin. At first the
requested pin number has to be entered. In the second place the value of the
requested pin. Digital pins can only be set to 0 (LOW) and 1 (HIGH). If a higher
number is entered, it is interpreted as HIGH. The power width modulation
pins, in other words the analog pins, can handle values from 0 to 255. 255 is
the maximum value, because Arduino is a 8-bit microcontroller (28 = 256).
In the background the Arduino commands digitalWrite() respectively

45

3 Catrobat

Figure 3.5: Arduino device variable and connection

analogWrite() are executed with the typed in parameters.
The second Arduino functionalities in Pocket Code are the device variables
arduino analog pin and arduino digital pin. As complement to the pre-
vious explained write commands, these variables can be used to read out
input pins. In Figure 3.5 the left screenshot shows these two variables in
the device variables folder. The middle screenshot shows the digital pin
number input field in the formula editor for the readout of a digital pin
value to control a IF condition. Here only the pin number needs to be
entered and the requested values are then send from the Arduino to the
smartphone. The device variables are equivalent to the Arduino commands
digitalRead() and analogRead().
As soon as the play button is pressed to start the stage activity, Pocket
Code checks if an Arduino is connected. If there is no active connection,
the pairing activity starts before the stage activity. In Figure 3.5 on the right
screenshot this activity is displayed with a highlighting of the Arduino Blue-
tooth module. As previously mentioned the name of the device is ’HC−05−’
followed by the MAC-address ’20 : 13 : 08 : 09 : 02 : 91’. After choosing a
device and entering the password the stage activity starts and the program
is executed.

46

4 Implementation

Since the kick-off of the Catrobat project in 2010, Test-Driven Development
became more and more important. It is a non-negotiable matter regarding
this project.
With the main focus on implementing only testable code, the extension with
Near Field Communication (NFC) features is described in this chapter. To
test NFC and other hardware features like sound or the integrated flash-
light as best as possible, a special solution is shown. Therefore this chapter
further describes in detail how an Arduino board, equipped with sensors, is
used as server to check all hardware activities of a smartphone that cannot
be tested on the Jenkins server on an emulated device.

4.1 NFC

Near Field Communication is already well-integrated into daily routines.
According to Coskun, Ok, and Ozdenizci (2013) it is an enabler for ubiq-
uitous computing which simplifies human - machine as well as human -
human interaction and the application areas are still increasing.
To add Pocket Code to this application area, the following chapters describe
an extended integration of NFC technology. Instead of recognising tags only,
the application is also enhanced by reading and creating of NDEF messages
during runtime in the stage activity.

4.1.1 NFC sensor variables

Pocket Code has a very powerful formula editor. Beside standard arithmetic
operations he has the opportunity to use specific values corresponding

47

4 Implementation

the actual object like transparency or position settings as numerical values.
Various functions like mathematical functions with logarithm, trigonometric
functions, string related functions like length and concatenation and list
functions. Further Boolean operators like AND, NOT, TRUE, FALSE and compar-
ison operators like 6= and ≥. Moreover user variables and user lists can be
accessed through the formula editor and therefore used in calculations. The
last container is summarized with the name device variables.

Device variables are further divided into several subcategories. The stan-
dard category is called device sensors. This collection provides all internal
measurement unit (IMU) sensor values as acceleration in x,y or z, compass
or inclination and also global position system (GPS) related sensor values
for latitude and longitude.
Other standard subcategories are touch detection, face detection and date
and time.
Beside this phone related sensors, Pocket Code is compatible Lego NXT,
Lego EV3, Phiro, Arduino, Parrot AR Drone and the Parrot Jumping Sumo
drone. For each of these external hardware devices several sensor variables
are provided.

When Near Field Communication was activated there have not been any
NFC related variables yet. To be able to work in the stage activity with
current read NFC values new sensor variables have to be added.
The first important NFC sensor variable is the last read NFC tag identifi-
cation (ID). It is available with the same being called name nfc tag id. To
provide a meaningful value the SensorHandler class has to be changed to
allow a string as return value, because a NFC tag ID is usually displayed as
hexadecimal value. To store the ID of the last read NFC tag, the NfcHandler
class is used. It processes each NFC intent and is therefore perfect to store
the last read values. The ID is delivered as byte array, following converted
into hexadecimal numbers and finally stored as string with this format. This
string then looks like 0687CB75AE1000, which is the seven byte UID of a
Maestro debit card.

The payload of the read NFC tag is written into the nfc tag message device
sensor variable. Therefore the NFC intent is scanned towards NFC Data Ex-
change Format (NDEF) messages. More information about NDEF messages
can be found in subsection 2.4.1 NDEF. When the tag contains multiple

48

4.1 NFC

Figure 4.1: NFC device sensor variables

messages, due to display reasons only the first message is used. Its payload
is concatenated character by character. This only happens, if the tag is not
encrypted and the NDEF messages are stored in plain text, otherwise the
sensor variable is set to an empty string.
The NDEF type of the message is not readout in the Pocket Code application,
because this information is considered irrelevant for children which start to
learn programming.

It was previously mentioned that the sensor variable is stored each time
the NfcHandler is called to process the intent. Additional it is important to
annotate when a NFC intent is processed in Pocket Code.
To act in java on a NFC intent at all, a NFC adapter object from the library
android.nfc.NfcAdapter has to be initialized. This adapter is used to enable
a foreground dispatch for the current activity. This means that when a NFC
tag is read, the intent is not processed by the operation system, but by the
current running activity. Important to consider on enabling the foreground
dispatch, when leaving the activity, it has be disabled. Otherwise it leads to
unexpected behaviour.
In Pocket Code the foreground dispatch is enabled in the NfcTagFragment

49

4 Implementation

and in the StageActivity. As a consequence the two NFC device sensor
variables are updated, if a tag is read in the NfcTagFragment and when the
Pocket Code program is started and therefore in the StageActivity.

4.1.2 Set NFC tag brick

The former NFC implementations in Pocket Code target to read from a NFC
tag. The first NFC extension was the WhenNfcBrick. The Brick has a spinner
that allows selecting NFC tags from a list, which is filled with scanned tags
that have been added to the NFC fragment list previously. The chosen tag is
the condition that the attached bricks are executed, as soon as the chosen
tag is scanned in the stage activity.

The above in subsection 4.1.1 described device sensor variable nfc tag-

message was the next step to use some advantages of NFC tags and NFC
Data Exchange Format (NDEF) messages in Pocket Code.
To tap more potential from NFC it is necessary to further extend the range
of function of the application. The reading of NFC tags is a powerful prop-
erty in combination with using them as variables in a running program.
Nonetheless it is a useful extension to enable Pocket Code users to write to
NFC tags.
Such functionality is provided by a new brick. Each new brick underlies
design criteria and has to be coordinated with the user experience (UX)
team of the Catrobat project. The decided layout is, as displayed in figure
4.2, a brick with three lines. The first line is composed out of a TextView
label with the text ’Set next NFC tag to’ and an EditText element. EditText
elements open the formula editor when tapped. This is displayed in fig-
ure4.4. The layout is stored in the Extensible Markup Language (XML) file
brick set nfc tag.xml.
The second line is a simple TextView label with the text ’as NDEF record
type’. It contains a scrollable spinner with NDEF record types.
As default value, when the brick is added to the script, the EditText element
contains the string ’www.catrobat.org’ and the spinner is set to HTTPS.

All selectable elements from the spinner are explained in table 4.1.

50

4.1 NFC

Figure 4.2: SetNfcTag brick layout

Table 4.1: SetNfcTagBrick spinner NDEF record types
ID Name TNF Type
0 Text TNF MIME MEDIA ”text/plain”
1 HTTP TNF WELL KNOWN RTD URI
2 HTTPS TNF WELL KNOWN RTD URI
3 SMS TNF EXTERNAL TYPE nfclab.com:smsService
4 Phonenumber TNF WELL KNOWN RTD URI
5 Mailto TNF WELL KNOWN RTD URI
6 External type NFC Forum external type catrobat.com:catroid
7 Empty TNF EMPTY {}
ID Payload[0] Final NDEF message with ’www.catrobat.org’,

’+436641234567’ or ’contact@catrobat.org’
0 message[0] · · · text/plainwww.catrobat.org
1 0x03 · · ·U·www.catrobat.org
2 0x04 · · ·U·www.catrobat.org
3 smsMessage[0] · · (nfclab.com:smsServicesms:+436641234567?body=

SMS from Catrobat
4 0x05 · · ·U·+436641234567
5 0x06 · · ·U·contact@catrobat.org
6 {} · · · catrobat.com:catroid
7 {} · · ·

51

4 Implementation

Figure 4.3: SetNfcTag brick Figure 4.4: Tag message in formula editor

The final brick with extended spinner is shown in figure 4.3.
As displayed in table 4.1, there are different type name format (TNF) types
used. TNF WELL KNOWN are standard NDEF types which are identified by the
reader through the payload prefix. Every NFC capable mobile operating
system has predefined actions like at ’0x04’ open the browser with the
unified resource identifier (URI) string from the message plus a HTTPS://

prefix. With the prefix ’0x06’ the standard mail client program is opened
and the mail address in the payload is set as receiver.
The spinner option External Type is a Pocket Code specific setting. Android
has the opportunity to refer to a Google Play Store applications. If an
application should be able to be referenced, a specific intent filter has to be
added to the Android manifest file. In Pocket Code the manifest file has
been extended by following lines:

<intent-filter>

<action android:name="android.nfc.action.NDEF_DISCOVERED" />

<category android:name="android.intent.category.DEFAULT" />

52

4.1 NFC

<data

android:scheme="vnd.android.nfc"

android:host="ext"

android:pathPrefix="/catrobat.com:catroid" />

</intent-filter>

The pathPrefix in the last line allows Android to refer to Pocket Code when
an intent with the domain catrobat.com and type catroid is called. This
means, when a NFC tag has the TNF ’NFC Forum external type’ with type
catrobat.com:catroid, the payload is in this particular case negligible, the
operating system opens Pocket Code if it is installed. Otherwise, if it is not
already installed, it opens the Google Play Store direct with the download
site of Pocket Code.

To handle the usage of multiple SetNfcTag bricks a special queue is necessary.
Since the application runs on multiple threads and the brick can be used by
several objects at the same time, it has to be a thread secure synchronized
queue. Java provides such a requested data structure, called BlockingDeque.
Each time a SetNfcTag brick is executed, the corresponding NDEF message
is added last to the queue.
The onNewIntent function in the stage activity, which is executed each
time a NFC tag is read, checks if the queue is not empty and runs the
NfcHandler.writeTag function with the polled NDEF message.
Finally the phone specific NFC control sound is played, as soon as the
writing process is completed.

Consequently Pocket Code is now equipped with useful NFC extensions to
read NDEF messages from NFC tags and able to create new NDEF messages,
which can be written to any writeable NFC tag, in a child friendly way.

4.1.3 NFC tag Bluetooth pairing

The principle idea behind NFC technology is always to simplify things
and/or speed things up. One common usage of NFC in everyday life is to
shorten up the pairing of Bluetooth devices.
Pocket Code has multiple brick extensions to be able to control various

53

4 Implementation

Table 4.2: Bluetooth Secure Simple Pairing record
Description Content
Record type Bluetooth Secure Simple Pairing record
Type Name Format (TNF) Multipurpose Internet Mail Extensions
Type application/vnd.bluetooth.ep.oob
MAC address 98 : D3 : 31 : 90 : 96 : 5E
Complete local name PHIRO−00− 041

hardware. One of those supported hardware is the Phiro Pro of Robotix
Learning Solution1. This robotic car is a platform that targets to help teach
computer science for children ages 9 and above2. To run the Pocket Code
program on the Phiro, a Bluetooth connection has to established. This is
done by switching to Bluetooth mode on the vehicle and subsequent the
right Bluetooth universally unique identifier (UUID) has to be chosen.
This pairing process is easy to accomplish, if the number of found Bluetooth
devices is little or even limited to a single Phiro robot. Though the field
of application targets also to be used in school classes, where multiple
Phiros and other Bluetooth-able devices are in range. It can lead to time-
consuming problems if pupils connect to wrong devices. Furthermore it can
be demotivating for young people in learning time if the hardware shows
now reaction.
To handle this problem, NFC tags can be used to store information about
the Bluetooth connection to enable an easy pairing process.
The content of such a so called Bluetooth Secure Simple Pairing record is
shown in Table 4.2. A NFC tag sticker with the appropriate information can
be put on every Phiro which eliminates the risk to pair the wrong device.
To support this simplified Bluetooth pairing process in Pocket Code, some
adaptations have to be done.
The task was to create a button in the ConnectBluetoothDeviceActivity
to allow the users to activate and deactivate the pairing option via NFC.
Regarding the guidelines of the Catrobat project, all visual modifications
must be done in agreement with the user experience (UX) team. The final
layout of the not activated button is displayed in Figure 4.5. It is the same

1http://robotixedu.com/
2http://robotixedu.com/phiro/

54

4.1 NFC

Figure 4.5: Pairing
selection

Figure 4.6: NFC pairing
activated

Figure 4.7: Search for Blue-
tooth devices

as the already existing scanButton. The layout of the pressed button is
displayed in Figure 4.6. In comparison the searchButton disappears when
pressed, as displayed in Figure 4.7.

The ConnectBluetoothDeviceActivity (Figure 4.5) starts every time if a
Pocket Code program is executed for the first time and if it contains Lego,
Phiro and/or Arduino bricks. By default the NFC foreground dispatch is
disabled when ConnectBluetoothDeviceActivity starts. Briefly explained a
foreground dispatch in Android controls where an intent is processed. A
more detailed explanation can be found in Subsection 4.1.1.
The foreground dispatch is deliberately only enabled when the ”Easy Pairing
with NFC” Button (Figure 4.6) is pressed because of the following reasons.
The user is informed that this functionality is now available and enabled. On
the other hand NFC pairing is neither necessary nor used for all Bluetooth
devices.
This is meaningful, because the NFC adapter has to be enabled to dispatch
the foreground. As a consequence the NFC functionality has to be activated.
If a user wants to connect a Bluetooth device without any NFC activity,
a pop-up with NFC network settings would be annoying and misleading.

55

4 Implementation

Because of this the NFC adapter is only enabled on an explicit request of
the user, by pressing the ”Easy Pairing with NFC” Button.

By pressing the enabled/green ”Easy Pairing with NFC” button again, the
foreground dispatch is disabled again.
If the smartphone has no NFC chip, the button is coloured red and when
pressed it displays the hint that there is no NFC adapter available.

The pairing with the Phiros is secured with a standard password. This
password has to be entered at the first pairing process, when it is paired
via the Bluetooth settings. Because of security reasons it is not possible
to add the password information to the NFC tag. It is not convenient to
force the user to enter a password, if the NFC pairing process should be a
simplification.

The used solution for this problem is to store the password hard-coded in
Pocket Code. The converted password byte array is then added at the
android.bluetooth.BluetoothDevice.ACTION PAIRING REQUEST

if the android.bluetooth.BluetoothDevice.PAIRING VARIANT PIN is neces-
sary.

4.2 Arduino Hardware Testing Box

Android thus Android Studio provides good possibilities to use virtual
hardware within an emulator, but as in subsection 3.2.2 already shown,
a hardware device is needed to improve the stability of an application. It
is essential to simulate hardware intends in Android and therefore this
method is preferred at writing Pocket Code tests.
Beside the ability to test with simulated hardware intends the Pocked Code
application should also be automatically tested with real hardware. Because
there is no ready to use solution available, it was necessary to create a
special solution for the Catrobat project.

The idea of the hardware testing box is, to have a compact server mounted
with all necessary sensors. This server box should be in the same local area
sub-network as the Jenkins testing server. The wired Ethernet connection
allows the Jenkins server to communicate with the sensor server.

56

4.2 Arduino Hardware Testing Box

Figure 4.8: Hardware testing box with all necessary sensors

To keep the costs and the space consumption low, an Arduino Mega 25603

forms the basis computing unit. Since Pocket Code covers a wide range
of hardware features like flash light, vibration, play sound and read/write
NFC, the functionality of these features also needs to be controlled by
automatic tests.
The Arduino has to be capable to test each of these functionalities. For
that reason multiple extension shields are needed additionally. The first
requirement is to make the Arduino network-compatible to act as a server.
In the Arduino store a plug-and-play Ethernet shield has been offered
with the corresponding library Ethernet.h. The NFC-Shield is bought from
www.seeedstudio.com and combined with the library PN532. The audio
shield as well as the shield with light and vibration sensor is self-made.

4.2.1 Container Construction

In the planning phase of the container, the first step was to collect all
requirements towards the testing box and dimensions of the used parts.

3https://www.arduino.cc/en/Main/ArduinoBoardMega

57

4 Implementation

Length and width of the Arduino parts in comparison to the dimension of
modern smartphones is negligible because they are far bigger. The height
was determined by measuring the fully assembled Arduino components
and shields.
As next step the position of flash light LED on the smartphone must be
measured precisely. Since the angular of divergence of the flash light is
small, the position of the photocell is important. For the NFC antenna only a
small hole is necessary. The cable which connects the shield and the antenna
has a plug on both ends, what makes it possible to just put the wire through
top of the box and connect the antenna element afterwards.
The vibration sensor by contrast is soldered with the cable. Its hole in the
top therefore has to be bigger.
The audio cable for the audio measures has the 3.5mm jack on the box
outside end and is soldered on the shield. Therefore it is necessary to make
a hole large enough that the jack fits through.

Additional to the basis height of the fully assembled Arduino components it
is important to consider the position of the sensors. The final height inside
the box must be large enough to be able to easily put the sensors through
the designated holes in the top panel.

The next design criterion was the access to the interior of the box.
The easiest way to realize would be a screwed on bottom plate. On this plate
the Arduino could be fixed to guarantee the security of the hardware. While
taking into account that the cables are long enough, it could be possible to
thread the sensors through the top of the box before putting the Arduino
into and fasten the bottom in place. Since here is only one part of the box
flexible, it is easy to make the box robust.
This design is not feasible because of the used NFC antenna. The cable to
connect the shield with the antenna is only about twelve centimetres4 long
and there is no longer cable available. This makes it very uncomfortable
to connect the cable with the antenna or the shield every time the box is
opened for any reason.

The problem with the short NFC antenna cable can be avoided by making
the top plate detachable. This option makes it easier to connect the sensors
with the shield when the box is put together. It is also easier to disconnect

4https://www.seeedstudio.com/NFC-Antenna-p-1805.html

58

4.2 Arduino Hardware Testing Box

the sensors controlled when the box is opened for any reason.
The drawback of this solution is the maintainability of the Arduino and
the access to the pins especially of the lower shields. If the lowest shield is
glued to the base there is access hardly possible. If the hardware is screwed
on the base, good fine-motor skills are needed, because only thin screws
can be used which fit the small bores in the shield.

This leads to the insight that from the maintainability point of view the most
sustainable solution has to be a box where each single side can be detached
separately. This should also motivate future developers to handle the box
and fix possible problems regarding the Arduino hardware testing box. For
example when a shield breaks, a sensor outside the box is damaged or new
hardware should be added.

Before creating a detailed construction plan, the material for the walls and
the inner frame had to be determined.
A good material to tinker with would be wood. It is an easy to get sus-
tainable commodity and, depending on the timber species, easy to process.
Furthermore it is cheap, sturdy and the tools for the processing process are
widely used and easy to get. If the wood is handled right, the result could
also look like a high quality design product.
The problem with wood on the other hand is that stable hardwood is diffi-
cult to handle and the solid wood plates are too large in diameter. Also the
box should look special and modern to represent the characteristics of the
Catrobat project.

One main property of the project is that it is open source. Considering this
aspect in the design of the box, it is a good statement to make the walls
transparent. Normal glass is not an option, because it breaks too easy during
processing or usage and it is too expensive.
The resulting decision is to use acrylic glass. It is cheaper and more flexible
than normal glass. Nonetheless it is relatively difficult to process to get a
satisfying result.
After the wall material is determined, the material for the inner frame has
to be chosen. Since the outer parts should be screwed on the frame, acrylic
glass is not an option, because it would get scratched while drilling the
female thread for the screw. Wood is also not the ideal material as frame,
because the female threads wear off fast and the screws loose grip.

59

4 Implementation

Figure 4.9: Hardware testing box plan in Solidworks

A light and affordable matter but still robust, perfect for this use case, is
aluminium. It is available at the hardware store5 as bar with different thick-
nesses. To be as precise as possible the whole box is planned in Solidworks
Student Edition6. The final construction plan is displayed in fig The final
dimensions for the acrylic glass box are 100 x 160 x 80 mm (length x depth
x height) with a wall thickness of 2 mm. To gain the needed accuracy at
the production process a computerized numerical control (CNC) machine is
used. For that all wall elements are exported in the Drawing Interchange
File Format (DXF) separately. These files are imported into Estlcam7.
Estlcam is a CNC software, which can generate tap files. It allows to place
the previous exported Solidworks files on a plane and set specific CNC
settings like diameter and rotation speed of the mill cutter, the speed the
machine moves in x, y and z direction and how many millimetres in depth
it has to take at once.

5https://www.obi.at/profile/ba-stange-vierkant-natur-10-mm-x-10-mm-x-1000-
mm/p/2437523

6http://www.solidworks.at/sw/education/student-software-3d-mcad.htm
7http://estlcam.com/

60

4.2 Arduino Hardware Testing Box

The final tap code consists of one command per line, which describes where
to move in the three-dimensional space(X,Y,Z) and with what speed(F). The
following code snippet describes the drilling of one whole for the screw.
The variables I and J are polar coordinates.

G00 X10.0000 Y69.4527 Z5.0000

G00 Z0.5000

G01 Z-1.0000 F50

G02 X9.4527 Y70.0000 I0.0000 J0.5473 F300

G02 X10.0000 Y70.5473 I0.5473 J0.0000

G02 X10.5473 Y70.0000 I0.0000 J-0.5473

G02 X10.0000 Y69.4527 I-0.5473 J0.0000

G01 Z-2.0000 F50

The produced tap file is executed on the computer of the CNC machine.
A software named Mach38 interprets and controls the motors. After a few
failures where the acrylic glass coalesce with the mill cutter, it turned out
that it is possible to get the hang of the problem by using soap water to
cool the material during the processing process. The Arduino-, NFC- and
Ethernet-shields are fixed on the bottom plate with multiple threaded rods
and nuts to adjust the height.

The mounting system for the smartphone on the top has the specification
to hold a LG Nexus 4 or a LG Nexus 5. To manage this, the retainer has
to be adjustable, because the LG Nexus 4 has dimensions of 133.9 x 68.7 x
9.1 mm and the LG Nexus 5 has dimensions of 137.9 x 69.2 x 8.6 mm. This
results in a difference of 0.5 mm in the width and 4 mm on the long side
of the phone. The used solution for this problem was to use a 3D printed
retainer on each edge, which is fixed with the screw of the top acrylic glass
plate. Each part is adjustable about the recess for the screw with 2.5 x 0.3
mm (long side x short side). In Figure 4.10 the printed retainers are shown.
The colour orange is chosen in the style of the Catrobat cat.

For the final part of the container the 3D printer is needed once more.
The vibration sensor needs to be pressed against the smartphone to measure
the vibration correct. The sensor should not be placed on an inflexible object,

8http://www.machsupport.com/software/mach3/

61

4 Implementation

Figure 4.10: 3D printed mount parts

because this prevents the transfer of the vibration from the smartphone to
the sensor.
It took a couple of tries, until a solution was flexible enough to obtain good
sensor measures on the one hand and fix the sensor at the position on the
other.
The answer for this problem is a retainer, which holds the sensor on 3 sides
with enough gaps. Additional a self-bent spring at the bottom pushes the
vibration sensor against the smartphone. This spring is initially printed as
two even stripes connected with the middle part of the retainer. Under heat
and pressure they are curved to function as spring.

The finished box with the screws on the outside, the smartphone retainer on
the top, the Arduino shields inside, without a smartphone, has a dimension
of 108 x 168 x 100 mm (length x depth x height) and a weight of 391 gram.

4.2.2 Audio Shield

The general purpose of the audio shield is to detect if sound signals are
send via the auxiliary output of the phone.
It is not meaningful to directly connect the audio output from the phone
with the Arduino, because the basic audio signal is a wave consisting of
positive and negative wave parts. This leads to an electrical AC audio signal,

62

4.2 Arduino Hardware Testing Box

Figure 4.11: Audio board schematic circuit

which cannot be handled by the Arduino, because the analog to digital
converter can measure only positive voltages.

To begin with the hardware implementation, the circuit layout is displayed
in Figure 4.11. It is a simple solution with three resistors and one capacitor.
As connection between the phone and the audio shield a 3.5 mm auxiliary
cable is used. One end of this cable is cut off and the wires are spliced to
get the mono signal wire and the auxiliary ground. Further the spliced end
of the cable is soldered on the shield.
The jack has to be outside of the box. The auxiliary input plug on the used
Nexus 4 is on the top of the phone, therefore the hole for the cable is beside
the recess for the USB and Ethernet connection. The length of the cable is
chosen that it can reach any possible auxiliary input plug position in case
the used mobile device changes.
The board is 55.88 mm x 35.56 mm (length x depth) in size with 24 drills for
pins to be solid attached to the Ethernet shield below. The Eagle software
files are available on the Catrobat Confluence page.

Within the software implementation the processing of the incoming audio
signal is handled. The pin drills on the audio shield are named respective
the Arduino board convention, thereof it is obvious in Fig4.12 that the
auxiliary signal goes to the analog input 0 on the Arduino. This signal is
an integer between 0 and 1023 related to the frequency of the audio signal
level.
Pocket Code can play sounds in the sound fragment and in the stage activity.

63

4 Implementation

Figure 4.12: Audio board print plan

To handle time delays, such as the start of the stage activity when the play
button is pressed, the audio signal is measured for a time period of two
seconds. A sufficient accuracy for the frequency of measures for this appli-
cation is ten samples per second. The Nyquist-Shannon sampling theorem
supports this sampling frequency, because the used sounds change the pitch
less often, therefore a higher measure rate per second has no advantage.
Fewer measures in contrast corrupt the result, because peaks in the signal
are missed in some cases.
The check if a sound is played respectively received is done with the com-
putation of the variance σ2.

σ2 =
∑n

i=1 (sound(i)− sound)2

n

To calculate the variance, the first step is to collect a set of samples by calling
sound(), in this case two seconds with ten measures per second are collected,
which results in a set of 20 measures n = 20.
The next step is to calculate the mean value sound by summing up the
measures.
The second last step is to sum up the squared difference of the measures and
the mean value, which is finally divided by the number of measurements n
to obtain the variance.

64

4.2 Arduino Hardware Testing Box

Figure 4.13: Arduino Ethernet Shield

4.2.3 Ethernet Shield

The Arduino Ethernet Shield is the connecting element between the Arduino
and the Jenkins server. It is a plug and play shield delivered with a library
(Ethernet.h) which allows the Arduino to connect with a local area network.
The board acts as a server to accept incoming connections from the Jenkins.
Its capacity is limited to four concurrent connections.
There are few hardware specifications which are worth mentioning.
The Arduino Ethernet Shield uses a standard W5100 Ethernet controller
chip9 as basis.

The Shield communicates with the Arduino board with the SPI bus. Therefor
the Arduino Mega2560 has the Slave Select (SS) pin per default on pin 10
(Arduino Contributors, 2017a). This SS pin is responsible for enabling or
disabling specific devices. When the SS pin is high, the Ethernet shield
ignores the master, When the SS pin low, the shield communicates with the
master. The MAC addresses of the Ethernet Shields must be enabled to join
the Jenkins server local area network subnet to establish a connection.
The Arduino hardware testing box assigned Internet Protocol (IP) address
is 192,168,8,8. The Zentrale Informations Dienst (ZID) of the TU Graz au-

9http://www.wiznet.io/product-item/w5100/

65

4 Implementation

Table 4.3: Sensor specific commands receivable with the Ethernet shield
Command Identifier

NFC tag emulation 0
Vibration measurement 1

Light measurement 2
Vibration calibration 3
Audio measurement 4

thorized the MAC addresses 90:a2:da:0f:15:57 and 90:a2:da:0f:15:0f
in the firewall settings to join the Jenkins sub network.

The software implementation is done by means of the Ethernet.h library
provided functions.
In the setup() function the EthernetServer object is instantiated with the
above described IP and MAC settings.
In the loop() function the EthernetServer object is checked continuous,
with a small time delay, if it got a request from a client. In our case the
requester is the mobile phone testing device connected with the Jenk-
ins server. It requests a sensor check from the Arduino and therefore an
EthernetClient object is created. The request of this client is checked and
processed. This means the sensor specific commands are executed.
The five possible commands are listed in Table 4.3

After all computation is done, the response of the check is sent to the
EthernetClient object and the connection is terminated. This ends one
iteration of the loop() function and the process starts again with waiting
for the next incoming request.

4.2.4 NFC Shield

To test some of the new implemented NFC features in Pocket Code, Java
provides the possibility to simulate NFC intents. This feature is nice to begin
with when writing tests for NFC, but the tests can only be executed on
devices with a NFC adapter.
Therefore it is impractical for the use in combination with running the tests

66

4.2 Arduino Hardware Testing Box

Figure 4.14: Arduino NFC Shield V2.0b

on an emulated Android device. This also means that this tests cannot be
run on the Jenkins servers by default.
As for the testing of the other hardware features described in this chapter,
a hardware device is needed. But not all NFC features of Pocket Code can
be tested with program driven intents. An intent provides the opportunity
(Android Contributors, 2017) to launch activities at any time during runtime.
Intents mainly consist out of a passive data structure which describe the
execution of an action. The described functionality excludes the possibility
to test the SetNfcTag brick with intents only.

At this part the need for an external NFC device comes up. There exist
several NFC extensions for Arduino. Some of them have the reader fixed on
the shield, which is not usable for this specific solution, because the smart
phone is outside the container.
The standard Arduino NFC reader has to be connected via seven wires.
One for power (3.3V), ground (GND), reset (RST), serial data (SDA), master
output slave input (MOSI), master input slave output (MISO) and serial
clock (SCK). The usage of this NFC reader makes the wiring inside the box
confusing and clutters the organized layout.
Another solution could be the NFC Shield V2.0b from seeedstudio. As
described by SurveyMonkey (2017) it uses the ICSP headers for SPI. That

67

4 Implementation

implies that the applied Arduino Mega2560 is compatible with the shield.
The communication frequency is, as standard for NFC, 13.56MHz.
Through using the SPI protocol, the shield needs only four pins for full
control, instead of seven, like the standard Arduino NFC reader does.
Further the antenna is wired with only one cable. A drawback is that the
length of the cable is only twelve centimetres. However the cable has simple
push- and pull-plugs on both ends, which make it easy to connect the shield
to the antenna.

A further specification of the shield is that it is connected with 5 volt and its
average power consumption is 100 milliamperes.
The range of the antenna is specified with 5 cm, which is far more than
needed in this setup.
Further it supports peer-to-peer(P2P) communication, which means that
it is able to communicate with another NFC shield as equally privileged
participant via the antenna. Therefore the ISO14443 Type A and Type B
protocols are supported. A detailed description of ISO14443 is in section
2.4.2.
Same as at the Ethernet shield, this board has the SPI SS on Pin D10.
Therefore one of the boards has to be modified. The simplest solution,
which is chosen for this project, is to disconnect the D10 pin from one shield
through bending them aside. Afterwards a cable connects pin D10 on the
board with pin D9 on the Arduino.
The second option was more difficult and risky. The NFC shield offers the
opportunity to remove the SS pad on the connection to pin D10 and solder
it on the D9 pad. Additionally the connection to pin D10 has to be scraped
off.

The integration into the Arduino code is handled with the three additional
libraries PN532 SPI.h, emulatetag.h and NdefMessage.h. In the Arduino
setup() function the SPI handling is done. The Ethernet shield and the
NFC shield are connected with SPI to the main board. But only one shield
can be active with Arduino at a time. Thus the Ethernet shield pin D10 has
to be set to HIGH if the NFC shield is used with pin D10 and vice versa.

Additional to the identifier number from table 4.3 a NFC emulation com-
mand needs further information. This information has to be send at a single

68

4.2 Arduino Hardware Testing Box

Table 4.4: NFC command structure from the Ethernet client
length 1 byte 1 byte 6 byte max 128 bytes

description ID writeable tag UID NDEF message
example 1 0 0 123456 https://www.catrobat.org
example 2 0 1 987654 https://www.tugraz.at/home/

blow after the identifier 0 from the Ethernet client for instance the Jenkins
server. The layout of the needed request is shown in the table 4.4.

4.2.5 Light and Vibration Sensor

There two more testable hardware features left. One is the flashlight LED of
the camera and the second feature is the vibration of the smartphone. They
are integrated on a single shield together with an additional functionality,
namely the status led. To combine this three functionalities, at first each
feature has to be considered on its own.

To measure light a photo-resistor is used as sensor. A photo-resistor is a
resistor whose resistance is controlled via the input of light. In the dark
the resistor value is at its maximum and it decreases with increasing light
intensity.
Here a 10kΩ photo-resistor is used in combination with a 10kΩ pull-up
resistor prior. The pull-up resistor is a normal resistor which is used to hold,
if the light is turned off, the input voltage level on the ADC pins above
the specified threshold of 500. ADC pins on a microcontroller are able to
convert analog voltage into a digital number, therefore the name analog to
digital converter (ADC). If the flashlight LED of the smartphone is turned
on, the input voltage level drops to low value below the threshold.

To avoid inaccurate measures the positioning of the light is of the greatest
importance. Smartphone flashlights have a small angular for the light ex-
pansion. In combination with the very small distance, between the build in
sensor on the topside of the hardware testing box and the smartphone, of a
few millimetres there is hardly a margin in positioning.
Fortunately the position of the flashlight LED on the used phones (Nexus

69

4 Implementation

4, Nexus 5) is very similar what makes it possible to use both phones for
testing.

The vibration measurement is accomplished with an accelerometer. The
used sensor module from Neuhold-Elektronik10 has a size of 20x20 mm.
The board consists of a ADXL330KCPZ, a voltage controller, a reverse
polarity protection diode, a tantalum capacitor and ceramic capacitors.
The description of the used acceleration sensor ADXL330KCPZ from the
manufacturer Analog Devices is described in (A. D. Contributors, 2007, p.1)
in the following way:

”The ADXL330 is a small, thin, low power, complete three axis
accelerometer with signal conditioned voltage outputs, all on a
single monolithic IC. The product measures acceleration with
a minimum full-scale range of ±3g. It can measure the static
acceleration of gravity in tilt-sensing applications, as well as
dynamic acceleration resulting from motion, shock, or vibration.”

The sensor is very sensitive regarding all inclination changes and even small
movements, like the vibration of a smartphone, are determined. The mod-
ule is hold in position in a 3D printed mounting. The sensor has enough
mobility in this mounting and is pressed toward the smartphone with a
spring, which is also printed as part of the mount.
After holding the sensor module against a vibrating phone, an evaluation of
the analog sensor values turned out that the most vibration was on the z-axis.
Due to this here only the z-axis measurements are used for determining a
vibration. Each vibration check collects a set of 2048 samples in an average
time of 2.3 seconds, because of a 1 millisecond delay after each analog read
of the z-value. After the collection, the minimal and maximal values are
searched by iterating of the collected data array. Finally the maximal minus
the minimal value has to be greater than a threshold.
To ensure a flawless usage of the sensor, the threshold to determine a vibra-
tion has to be set dynamically. Therefore the function vibrationCalibration

has a similar behaviour as even described, but has to be run in a non-
vibrating situation. It stores the difference of the minimum and maximum
value as threshold for the vibration check.
The schematic setup of the vibration sensor circuit is displayed in figure

10https://www.neuhold-elektronik.at/catshop/product info.php?products id=3586

70

4.2 Arduino Hardware Testing Box

Figure 4.15: Circuit diagram for vibration sensor

4.15. The resistor value calculation is done step by step.

• The voltage over resistor R4 is chosen to be 20% of V+, which results in
5V × 0.2 = 1V.

• With a VCE of 5V the transistor BC547 is specified, regarding the datasheet
(Corporation, 2002), for a collector current (IC) of 2mA.

• Assuming that the transistor base current (IB) is zero, the source voltage
must be divided to gain a supply voltage of 2.5V for the analog to digital
converter pin A11.
By this specification the values of the resistors R2 and R4 can be calculated
with Ohm’s law

R =
U
I

.
• R2:

RBase =
VResistor

IBase
⇒ R2 =

5V − 1V
0.002A

= 2000Ω

• R4:

R4 =
1V

Ic + Ib
=

1V
0.002A

= 500Ω

• For the lowest amplification, the base current equals

IC

Bmin
=

0.002
200

= 10µA

71

4 Implementation

• The current of the base voltage divider is chosen to be 10 times the base
current

I1 = I3 = 10µA× 10 = 100µA

By this specification the values of the resistors R1 and R3
• R3:

R3 =
(1V + 0.7V)

100µA
= 17kΩ

• R1:

R1 =
(5V − 1.7V)

10µA + 100µA)
= 30kΩ

• Finally the amplification can be calculated:

A =
d(Vadc

d(Vz axis
=

R2
R4

=
2000
500

= 4

To save space, the light measurement, the vibration measurement and the
status LED have to be assembled on one board. The schematic of this
combined multi-function board is displayed in Figure 4.16.
The connecting points 5V, GND, A10, A11 and D39 are the connectors
to the respective power, ground, analog and digital pins on the Arduino.
The PHOTO RESISTOR is the 10kΩ photo-resistor with the 10kΩ pull-up
resistor prior.
The VIBRATION SENSOR is the board with the soldered ADXL330KCPZ.
The DEBUG LED is the red status LED, which is turned every time an
Ethernet-connection is established with the Arduino.

4.2.6 Debug Hardware Testing Box

This final section describes for future developers how the hardware testing
box can be debugged easily.
As first component the Arduino integrated development environment (IDE)
(Arduino Contributors, 2017b) has to be installed. The installer also creates
a library subfolder in the personal OS user folder which will be needed

72

4.2 Arduino Hardware Testing Box

Figure 4.16: Circuit diagram for vibration and light sensor board

later on.
If the Arduino is connected via a USB type B cable with the computer the
IDE can be started. The right port has to be chosen under the menu ”tools”
and ”port”. After that the Serial Monitor can be started and the output of
the Arduino gets already be printed in the monitor window.
The source code of the hardware testing box is available on GitHub11. To
activate the debug output, which is deactivated on the running box for
performance reasons, the ”sensorserver.ino” file needs to be compiled and
uploaded to the Arduino with the uncommented code line:

#define DEBUG_SERIAL

Further a static IPv4 address has to be assigned appropriate the network
subnet mask. This IP address has to be entered in the IPAddress object:

IPAddress server_ip_(192, 168, 8, 9);

11https://github.com/Catrobat/Arduino/HardwareTestingBox

73

4 Implementation

To enable a successful compiling of the code additional libraries are nec-
essary. These are located in the GitHub subfolder libraries. All subfolders
in this libraries folder need to be copied to the Arduino libraries. As pre-
vious mentioned this folder can be found in the current user directory
”Arduino/libraries/”. Once they are copied, they must be imported to the
IDE by selecting them in ”Sketch→Include library→Contributed libraries”.
Now they can be used for compiling. After compiling and uploading this to
the box it is ready for testing/debugging.
A faster way to send network requests, than executing Java test code, is
to use a telnet client. For debugging during this thesis, the open source
software PuTTY12 has been used. When using such a tool, the connection
type has to be set to ”Telnet”, the host IP address the IP address of the box
and the port is originally set to 6789 on the box.
As soon as the connection is established the commands to check the phone
can be sent. The listing with the possible commands is displayed in Table
4.3. The structure of NFC commands is explained in Table 4.4.
During debugging it can happen that the Ethernet Shield returns 0,0,0,0
as the actual IP address. This happens if it is not connected properly to the
Arduino board. The best way to fix this is to plug the Ethernet Shield off
and on.

12https://www.putty.org/

74

5 Conclusion and Outlook

This final chapter starts with a summary about Test-Driven Development
(TDD) and why it is that important for the project. The subsequent sections
describe the implemented features, which were finally merged into the
project, followed by the lessons learned and finally an outlook on possible
future work regarding this topic.

Testing is an essential factor for the success of this project. Through the high
fluctuation of people it is a crucial advantage that the documentation of the
source code is done via writing tests for every class and in the best case for
every function. This does not erase all possible errors but the error detection
rate during the development phase is higher than without testing.
In order to get the greatest success out of testing, TDD is the approach
of choice in Catrobat for writing code. To test code in a meaningful way,
it is important to design interfaces rather than starting with the beneath
functional implementation. This allows to mock objects if relations are tested
and enables testing with focus on single functions. Thereby failing tests
show accurate which part of the code is flawed, since the dependencies are
simulated and do not need to be debugged.
Through developing in a test-driven way the clean code standards are easier
to meet, since the methods are kept small and clear. The continuous code
refactoring eliminates code duplication and raises the code quality and
readability.

For beginners it can be very time consuming and annoying to write tests for
everything and before implementing the feature. The mindset of thinking in
interfaces instead of functionality takes some time. Fortunately the available
testing frameworks are easy to use and after a short work in the testing
procedures become very intuitive. Espresso is very powerful therefore and
multiple times faster than the previously used Robotium testing framework.

75

5 Conclusion and Outlook

The tests are shortened in runtime and length, which has a huge positive
impact for the developers and the continuous integration team.
For executing tests the Android emulator is a very powerful tool. It is possi-
ble to simulate some hardware intents and the performance of emulators
is only little worse than the performance of real hardware devices. There
is a wide range of devices that can be simulated for free, which enables
to run the tests on multiple platforms and Android API levels. The only
disadvantage appears when using the emulator because then the hardware
functionality is restricted, since there is no possibility to work with NFC. For
this reason a physical device is necessary to enable TDD for all hardware
features.

5.1 Implemented Features

As a follow-up, an overview of the results of the implemented features is
presented starting with the Near Field Communication (NFC) extensions for
Pocket Code and followed by an evaluation of the hardware testing box.

5.1.1 NFC

The first of the three implemented NFC features in Pocket Code are the
sensor variables. The nfc tag id device variable is useful to control condi-
tions by checking the ID of the last read tag. It has a similar functionality to
the WhenNfc brick when filtered on a specific tag ID. The advantage of this
sensor variable however is, that a condition can also be checked regarding
two or more specific tag IDs.
The nfc tag message device variable brings a completely new feature to
Pocket Code, since this is the first possibility to work with the content
of NFC tags. This device variable contains the content of the NFC Data
Exchange Format (NDEF) record of the last read NFC tag. To display this
content in the stage activity the ShowVariable brick can be used with this
variable. Same as the nfc tag id device variable the nfc tag message can
also be used for conditions to trigger content specific behaviour independent
of the NFC tag ID.

76

5.1 Implemented Features

The second new NFC feature is the SetNfcTag brick. This brick allows
Pocket Code to actively write to NFC tags. The ID of an NFC tag is defined
by the manufacturer, but the content of writeable tags can be set by the users.
To enable Pocket Code users for this powerful capability, the SetNfcTag

brick was added to the control brick panel. The NDEF supports multiple
record types and the most common and useful eight types are available
in the spinner of the brick. By using this functionality, users can easily
exchange data through writeable NFC tags. This could be a website link,
an email address, a phone number or a plain text. A special new available
feature is the NDEF external type format.
Through adding a new intent-filter with /catrobat.com:catroid to
the Pocket Code Android manifest file the application can be opened,
respectively found, in the Google Play Store via an accordingly formatted
NFC tag.

The third NFC feature, implemented for Pocket Code users, is the NFC
tag Bluetooth pairing. This pairing was planned for an easier connection
establishment between the smartphone and the Phiro robot. The setup for
this part consisted of a Phiro, a writeable NFC tag sticker and a smartphone.
With the use of a 3rd party application the Bluetooth connection details of
the Phiro can be written to the NFC tag. To improve the pairing process
which can be done by skipping the authorisation, the required password for
the connection has to be stored in Pocket Code. As a result only the NFC
tag needs contact to the phone once and the devices are paired.
This feature worked quite well, however it was not merged into the develop

branch, because the use case disappeared since the Phiro manufacturers
plan to switch from Bluetooth to a wireless local area network as connection
technique.
Consequently this is the only NFC feature that is still not available in Pocket
Code.

5.1.2 Hardware testing box

The Arduino hardware testing box is a really innovative tool for automatized
smartphone application testing. Five hardware features can be tested with
one compact box. It is only necessary to put the smartphone, the testing box

77

5 Conclusion and Outlook

and the computer, which executes the tests into the same local area network.
Developers who want to use the hardware testing box can either execute
their tests on the Jenkins server, which is permanently connected to one box
or they can configure the reserve box to their needs in their network.
This may be an obstacle for some developers but there is no easier way.
A little disadvantage of emulated devices is the manual maintenance of
the phone. From time to time the smartphone freezes because running
tests stresses the phone more than a normal usage. Combined with the
continuous charging the durability of the phone is noticeably shortened.
This is the price to pay for having an automated hardware testing tool.
The audio and light measurements work completely flawless, but the vibra-
tion sensor is slightly vulnerable to oscillation caused by anything other
than the vibrating phone. Depending of the placement of other objects or
persons or other things that effect vibration such as writing powerfully on a
keyboard or being to close to the air conditioner, the oscillation can falsify
the measurement, especially if the sensor is not at its designated position
because someone moved the phone out of the mount.
The NFC shield is very powerful and supports various operations but also
has its small flaws. The reason for that is that smartphones only react to new
NFC tags in their electro magnetic field, which is meaningful for ordinary
use cases since it is not necessary to read the same NFC tag several times
when added only once. Each read tag is associated with an intent that
should normally only be executed once. The problem with the used tag
emulator is, that the smartphone does not recognize if the value of the tag
changes, since its physical position stays unchanged. As a consequence the
emulated NFC tags can only cause an intent every few minutes, when the
NFC electro magnetic field of the phone is refreshed.
Having that in mind the execution of tests with emulated NFC tags can be
timed to avoid this flaw.

5.2 Lessons Learned

The following section presents my personal experiences regarding the prac-
tical work of this thesis.
Before joining the Catrobat team I have never worked with Test-Driven

78

5.2 Lessons Learned

Development (TDD). So far testing was not that important for me and that
is why test-first development changed my mindset. It took several coding
sessions until I got used to this kind of work. In the beginning I often
distrusted the test outcomes if they still failed after implementing the piece
of the productive code. I often searched for possible errors in the tests, but
usually the tests were right and the errors were in the new implemented
functions. This showed me the advantages of TDD because it was quite easy
to find the errors if only a few lines of code were added.
The largely well-named and structured tests were very helpful when I in-
vestigated into other features. It was also the first time I was forced to write
with Clean Code methods. That pushed my code readability also for other
projects noticeably.

In the course of this master’s thesis I also had my first contact with Arduino.
This is a powerful microcontroller with a wide area of application. Nev-
ertheless, it is strongly limited regarding multithreading. Multithreading
usually prevents busy states were external sensor commands can get lost.
Maybe a Raspberry Pi could handle that in a more sophisticated way.

Also the used tools for the construction of the hardware testing box container
were completely new to me. It was exciting to work with a computerized
numerical control milling machine and also the 3D printer was an uncharted
territory for me. The milling was extremely difficult with acrylic glass that I
would prefer to use a laser cutter next time.

In the two years I worked at the Catrobat project, two Nexus 4 got broken.
They were charged continuously what caused an expansion of the battery.
Blessedly it did not caught fire. To prevent this behaviour in future phones
we decided to root the used smartphones and install a battery charge control
application. This restricts the battery charge to a maximum of 80% and stops
charging until the battery discharges to 60% before charging again up to
80%.

79

5 Conclusion and Outlook

5.3 Future Work

This thesis was planned to handle an isolated part of Pocket Code. The
Near Field Communication (NFC) implementations support all relevant
NFC features for children and teenagers which start with programming.
Nonetheless it will be necessary to advertise these features at Pocket Code
events and hand out NFC tags. Standard writeable NFC tags are fairly cheap,
however most teenagers may not own writeable tags. It is also important
to upload a few more programs with various NFC features to the Pocket
Code game store. These games can serve as a guide how to use these NFC
features.

The Arduino hardware testing box is a bit more predestined for future
works. Beside the regular maintenance it is open for changes or extensions.
A possible extension could be an automatized testing of the bluetooth
connectivity. That would require a hack into the rooted smartphone, to be
able to delete the existing Bluetooth pairing connections information before
the new pairing test, but this seems to be an interesting topic.

A good case of application for the reserve box would be to use it for iOS
hardware device testing. On the hardware side this would require some
adaptations on the mounting parts and the light sensor position to fit the
iPhone, but it would be possible with reasonable effort and could enable
TDD for future iOS developers.

80

Bibliography

Beck, Kent (2000). Extreme Programming Explained: Embrace Change. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc. isbn: 0-201-
61641-6 (cit. on pp. 9, 10, 13).

Community, GooglePlus (2017). Espresso. url: https://google.github.io/
android-testing-support-library/docs/espresso/ (cit. on pp. 16,
28).

Contributors, Analog Devices (2007). ADXL330. Small, Low Power, 3-Axis
±3 g i MEMS® Accelerometer. data-sheet. Analog Devices. url: http://
www.analog.com/media/en/technical-documentation/data-sheets/

ADXL330.pdf (cit. on p. 70).
Contributors, Android (2016). Testing UI for a Single App. url: https://

developer.android.com/training/testing/ui-testing/espresso-

testing.html (visited on 05/05/2017) (cit. on p. 16).
Contributors, Android (2017). Intent. url: https://developer.android.

com/reference/android/content/Intent.html (cit. on p. 67).
Contributors, Android (2018). Run Apps on the Android Emulator. url: https:

//developer.android.com/studio/run/emulator.html (cit. on p. 33).
Contributors, Arduino (2017a). Ethernet / Ethernet 2 library. url: https:

//www.arduino.cc/en/Reference/Ethernet (cit. on p. 65).
Contributors, Arduino (2017b). What is Arduino? url: https://www.arduino.

cc/en/Guide/Introduction (cit. on pp. 9, 18, 72).
Contributors, Arduino (2018). Getting Started with the Arduino BT. url: https:

//www.arduino.cc/en/Guide/ArduinoBT (cit. on p. 43).
Contributors, Catrobat (2017). Catrobat. url: https://www.catrobat.org/

(cit. on p. 9).
Contributors, Guru99 (2018). Real Device Vs Emulator Testing: Ultimate Show-

down. url: https://www.guru99.com/real- device- vs- emulator-
testing-ultimate-showdown.html (cit. on p. 33).

81

https://google.github.io/android-testing-support-library/docs/espresso/
https://google.github.io/android-testing-support-library/docs/espresso/
http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL330.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL330.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL330.pdf
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/studio/run/emulator.html
https://developer.android.com/studio/run/emulator.html
https://www.arduino.cc/en/Reference/Ethernet
https://www.arduino.cc/en/Reference/Ethernet
https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Guide/ArduinoBT
https://www.arduino.cc/en/Guide/ArduinoBT
https://www.catrobat.org/
https://www.guru99.com/real-device-vs-emulator-testing-ultimate-showdown.html
https://www.guru99.com/real-device-vs-emulator-testing-ultimate-showdown.html

Bibliography

Contributors, Jenkins (2017a). Jenkins Documentation. url: https://jenkins.
io/doc/ (cit. on pp. 9, 17).

Contributors, Jenkins (2017b). Plugins Index. url: https://plugins.jenkins.
io/ (cit. on p. 17).

Contributors, Robotium (2017). Robotium. User scenario testing for Android.
url: https://github.com/RobotiumTech/robotiumv (cit. on pp. 15, 28).

Contributors, Scanandmake (2017). Arduino Accessible robotics. url: https:
//scanandmake.com/arduino/ (cit. on p. 18).

Contributors, Wikipedia (2017). Jenkins (software). url: https://en.wikipedia.
org/wiki/Jenkins_(software) (cit. on p. 17).

Corporation, Fairchild Semiconductor (2002). BC546/547/548/549/550. (Vis-
ited on) (cit. on p. 71).

Coskun, Vedat, Kerem Ok, and Busra Ozdenizci (2013). Professional NFC
Application Development for Android. 1st. Birmingham, UK, UK: Wrox
Press Ltd. isbn: 9781118380093 (cit. on pp. 19, 21, 47).

GmbH, DATACOM Buchverlag (2012). ISO 14443. Ed. by Klaus Lipinski.
url: http://www.itwissen.info/ISO-14443-ISO-14443.html (visited
on 12/11/2017) (cit. on p. 23).

Igoe, Tom, Don Coleman, and Brian Jepson (2014). Beginning NFC: Near
Field Communication with Arduino, Android, and PhoneGap. O’Reilly Me-
dia. isbn: 9781449372064. url: http://shop.oreilly.com/product/
0636920021193.do (cit. on pp. 19, 25).

ISO/IEC (1997). Identification cards - Contactless integrated circuit(s) cards -
Proximity cards Part 1: Physical characteristics. ISO/IEC 14443:– 1. Inter-
national Organization for Standardization. url: https://nfc-wisp.
wikispaces.com/file/view/fcd-14443-1.pdf (cit. on p. 23).

ISO/IEC (1999). Identification cards - Contactless integrated circuit(s) cards -
Proximity cards Part 2: Radio frequency power and signal interface. ISO/IEC
14443:– 2. International Organization for Standardization. url: https:
//nfc-wisp.wikispaces.com/file/view/fcd-14443-2.pdf (cit. on
p. 24).

ISO/IEC (2000). Identification cards - Contactless integrated circuit(s) cards -
Proximity cards Part 4: Transmission protocol. ISO/IEC 14443:– 4. Inter-
national Organization for Standardization. url: https://nfc-wisp.
wikispaces.com/file/view/fcd-14443-4.pdf (cit. on p. 25).

ISO/IEC (2001). Identification cards - Contactless integrated circuit(s) cards -
Proximity cards Part 3: Initialization and anticollision. ISO/IEC 14443:–

82

https://jenkins.io/doc/
https://jenkins.io/doc/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://github.com/RobotiumTech/robotiumv
https://scanandmake.com/arduino/
https://scanandmake.com/arduino/
https://en.wikipedia.org/wiki/Jenkins_(software)
https://en.wikipedia.org/wiki/Jenkins_(software)
http://www.itwissen.info/ISO-14443-ISO-14443.html
http://shop.oreilly.com/product/0636920021193.do
http://shop.oreilly.com/product/0636920021193.do
https://nfc-wisp.wikispaces.com/file/view/fcd-14443-1.pdf
https://nfc-wisp.wikispaces.com/file/view/fcd-14443-1.pdf
https://nfc-wisp.wikispaces.com/file/view/fcd-14443-2.pdf
https://nfc-wisp.wikispaces.com/file/view/fcd-14443-2.pdf
https://nfc-wisp.wikispaces.com/file/view/fcd-14443-4.pdf
https://nfc-wisp.wikispaces.com/file/view/fcd-14443-4.pdf

Bibliography

3. International Organization for Standardization. url: http://www.
icedev.se/proxmark3/docs/ISO-14443-3.pdf (cit. on p. 24).

Kohsuke, Kawaguchi (2016). Meet Jenkins. Ed. by Larry Shatzer. url: https:
//wiki.jenkins- ci.org/display/JENKINS/Meet+Jenkins (cit. on
p. 17).

Krümmel, Nadja and Malte Ried (2011). Kurzanleitung JUnit. Technische
Hochschule Mittelhessen, Campus Giessen, Institut für SoftwareArchitek-
tur. url: https://homepages.thm.de/~hg11260/mat/junit.pdf (visited
on 05/05/2017) (cit. on pp. 13–15).

Lämsä, Tomi (2017). “Comparison of GUI testing tools for Android appli-
cations.” MA thesis. University of Oulu, Department of Information
Processing Science (cit. on pp. 28–32).

Langr, Jeff (2004). Agile Java(TM): Crafting Code with Test-Driven Development.
Upper Saddle River, NJ, USA: Prentice Hall PTR. isbn: 0131482394 (cit.
on pp. 9–11).

Maple, Simon and Oleg Shelajev (2016). Java Tools and Technologies Landscape
Report 2016. url: https : / / zeroturnaround . com / rebellabs / java -

tools-and-technologies-landscape-2016/ (cit. on p. 17).
Martin, Robert C. (2009). Clean Code: A handbook of agile software craftsmanship.

Prentice Hall (cit. on pp. 10, 11).
Meszaros, Gerard (2007). XUnit Test Patterns. Refactoring Test Code. Addison-

Wesley Professional (cit. on p. 13).
Nagappan, Nachiappan et al. (2008). “Realizing quality improvement through

test driven development: results and experiences of four industrial
teams.” In: Empirical Software Engineering 13.3, pp. 289–302. issn: 1573-
7616. doi: 10.1007/s10664-008-9062-z. url: https://doi.org/10.
1007/s10664-008-9062-z (cit. on p. 11).

NXP (2007). PN532 User Manual. url: http://www.nxp.com/documents/
user_manual/141520.pdf (cit. on p. 25).

NXP (2012). PN532/C1. url: www.nxp.com/documents/short_data_sheet/
PN532_C1_SDS.pdf (cit. on pp. 25, 26).

Pulkit, Chouhan (2013). “Aspects of Test-Driven Development.” MA thesis.
Institute of Software Technology Graz University of Technology (cit. on
p. 27).

Reichelt (2018). ARDUINO HC-05-6. url: https://www.reichelt.de/www.
reichelt.at/Entwicklerboard-Zubehoer/ARDUINO-HC-05-6/3/index.

html?ACTION=3&GROUPID=8244&ARTICLE=170172 (cit. on p. 44).

83

http://www.icedev.se/proxmark3/docs/ISO-14443-3.pdf
http://www.icedev.se/proxmark3/docs/ISO-14443-3.pdf
https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins
https://homepages.thm.de/~hg11260/mat/junit.pdf
https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/
https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/
https://doi.org/10.1007/s10664-008-9062-z
https://doi.org/10.1007/s10664-008-9062-z
https://doi.org/10.1007/s10664-008-9062-z
http://www.nxp.com/documents/user_manual/141520.pdf
http://www.nxp.com/documents/user_manual/141520.pdf
www.nxp.com/documents/short_data_sheet/PN532_C1_SDS.pdf
www.nxp.com/documents/short_data_sheet/PN532_C1_SDS.pdf
https://www.reichelt.de/www.reichelt.at/Entwicklerboard-Zubehoer/ARDUINO-HC-05-6/3/index.html?ACTION=3&GROUPID=8244&ARTICLE=170172
https://www.reichelt.de/www.reichelt.at/Entwicklerboard-Zubehoer/ARDUINO-HC-05-6/3/index.html?ACTION=3&GROUPID=8244&ARTICLE=170172
https://www.reichelt.de/www.reichelt.at/Entwicklerboard-Zubehoer/ARDUINO-HC-05-6/3/index.html?ACTION=3&GROUPID=8244&ARTICLE=170172

Bibliography

Slavec, Marc (2016). “Integration of controlling Arduino boards via Bluetooth
with Pocket Code for iOS using test-driven development.” MA thesis.
Institute of Software Technology Graz University of Technology (cit. on
p. 28).

SurveyMonkey (2017). NFC Shield V2.0. url: http://wiki.seeed.cc/NFC_
Shield_V2.0/ (cit. on p. 67).

Vogel, Lars (2016a). Android user interface testing with Espresso. url: http://
www.vogella.com/tutorials/AndroidTestingEspresso/article.html

(visited on 05/05/2017) (cit. on p. 16).
Vogel, Lars (2016b). Android user interface testing with Robotium. url: http:

//www.vogella.com/tutorials/Robotium/article.html (cit. on p. 15).

84

http://wiki.seeed.cc/NFC_Shield_V2.0/
http://wiki.seeed.cc/NFC_Shield_V2.0/
http://www.vogella.com/tutorials/AndroidTestingEspresso/article.html
http://www.vogella.com/tutorials/AndroidTestingEspresso/article.html
http://www.vogella.com/tutorials/Robotium/article.html
http://www.vogella.com/tutorials/Robotium/article.html

