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Abstract

In recent developments, GPGPU technologies have become flexible enough
to make GPU-based software renderers feasible. Popular computer graphics
libraries and increasing demands of developers and artists have originally
driven the move towards programmable GPUs, but do still rely on dedi-
cated hardware for some of the functionality, such as rasterization, depth
testing or blending. However, unlike GPGPU frameworks, a specialized
shading language is used for programmable stages (shaders) in the ren-
dering pipeline. Providing a compatible graphics API with an underlying
software implementation requires means of executing those shaders.

In this master’s thesis, a program to compile Direct3D shaders to CUDA
device code has been developed. The input language is not HLSL, a shading
language designed for Direct3D, but a driver-independent low-level inter-
mediate binary format produced by Microsoft’s HLSL compiler. This same
form is also used in the Direct3D API, making it a requirement for sufficient
compatibility. For each shader, a CUDA unit containing C++ or PTX code is
produced, which can later be linked statically or at runtime with a software
renderer.
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1. Introduction

Modern graphics application programming interfaces (APIs) provide means
to implement some parts of their rendering pipeline with small custom
programs to enhance flexibility and allow for a wide range of visual effects.
Programs which execute a programmable section of a rendering pipeline
are commonly referred to as shaders and are usually written in a specialized
shading language. Graphics processing units (GPUs) are capable of running
many shader instances in parallel to accelerate the rendering process. To
utilize those computational capabilities in applications outside of computer
graphics, general-purpose GPU (GPGPU) frameworks have been developed,
such as OpenCL or NVidia CUDA.

Using these technologies, a GPGPU-based software rendering pipeline is
being developed in an ongoing research project. The goal is to evaluate
new rendering algorithms on real application data that was acquired by
recording all calls to the Direct3D API. The graphics pipeline used by
Direct3D comprises a combination of fixed-function and programmable
stages (Blythe, 2006). GPUs often contain dedicated hardware to implement
some of the fixed-function stages efficiently. Application programmers
have limited control over those parts of the pipeline. Replacing the fixed-
function stages with GPU-side programs in CUDA is a major objective
of the research. However, for the correct interpretation of input data, the
evaluation of programmable stages has become essential for state-of-the-art
real-time graphics. In order to make an implementation compatible, shaders
of the same format as used by Direct3D need to be executed. Features for
interoperability with graphics APIs exist for CUDA (NVIDIA Corporation,
2017a) and OpenCL (The Khronos Group, 2010; Houston and Cameron,
2010). However, such features are currently limited to sharing resources
between graphics and GPGPU implementations, but no executable code
in either source or compiled binary form. For these reasons, a program to
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1. Introduction

HLSL source code

Direct3D HLSL compiler

Direct3D intermediate binary code

Graphics driver

File Direct3D cross-compiler

CUDA module

CUDA runtime

GPU machine code

Figure 1.1.: Comparison of work flows for shader compilation

automatically compile Direct3D shaders to CUDA-compatible code has been
developed in this master thesis. In the generated code, the functionality
of a shader will be represented by a function performing the same task in
CUDA 1. As shown in figure 1.1, shaders are translated from an intermediate
form instead of the original source code, which is not always included in
applications using Direct3D.

1.1. Shaders in Computer Graphics

Frequently, controlling a rendering system through a set of configuration
parameters is too restricting for a programmer or an artist. To overcome such
limitations, the operation to be performed by the renderer may be specified
using a programming language, instead of configuring fixed functionality.
Depending on the context, different parts of the rendering process are
feasible to be implemented using shaders. A very common application for
shaders is to calculate the lighting or color of a point on a surface.

1An exception is the hull shader stage, where parts of the same shader may run in
parallel
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1.1. Shaders in Computer Graphics

Shading languages often supply domain-specific features integrated into
a general-purpose language syntax. For example, special data types for
vectors and matrices are usually part of the language instead of being
implemented as user-defined types. Texture samplers, images or atomic
types are also often provided as built-in types. Syntactic constructs designed
for interaction with fixed-function pipeline stages are common as well, such
as syntax to specify the binary interface of a shader, or attributes containing
meta-information that are interpreted by the renderer.

In the real-time computer graphics library OpenGL (Segal and Kurt Ake-
ley, 2016), extensions supported vertex and fragment shaders written in
an assembly language (Beretta, 2013; K. Akeley, 2002), as well as earlier
and more limited forms of programmability, before the OpenGL Shading
Language (GLSL; Kessenich, Baldwin, and Rost, (2016)) was introduced.
Similarly, in Microsoft Direct3D shaders are programmed using the High
Level Shading Language (HLSL). Cg (Mark, Glanville, et al., 2003) is another
shading language intended for real-time rendering, developed by NVidia
and Microsoft, which is intended to be compatible with both Direct3D and
OpenGL. The Vulkan graphics API (The Khronos Vulkan Working Group,
2017) uses a lower-level intermediate representation for shaders instead of
a specific programming language; shading languages are not part of its
specification. This intermediate form, called Standard Portable Intermediate
Representation (SPIR; Kessenich, Ourial, and Krisch, (2017)), is intended
as a format for both shaders and compute kernels (see also 1.2). Other
shading languages for non-real-time rendering exist as well, such as the
Open Shading Language (Gritz, 2016) or the RenderMan Shading Language
(Hanrahan and Lawson, 1990).

As of now, multiple types of shaders are used by the prominent real-time
graphics libraries OpenGL and Direct3D, making a significant portion of
their graphics pipelines programmable. Vertex shaders generally implement
a transformative step for vertex data before it is assembled into primitives.
Typical transformations include, for example, the conversion between co-
ordinate systems, or a procedure required for skeletal animation called
skinning.

Pixel shaders control the color of a rasterized fragment. However, pixel
shader output is treated in an abstract manner and may, especially in the
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1. Introduction

case of multi-pass rendering, represent arbitrary data other than colors.
Since the appearance of those two shader types, more recent developments
have introduced additional types of shaders.

Geometry shaders are an optional pipeline stage that support programmatic
access to geometric primitives, such as triangles or points, and can output
one or more primitives per input primitive. The generation of new primitives
has in many cases been superseded by the use of tessellation shaders.

Tessellation is programmable using two types of shaders, one to control
how finely a patch should be subdivided along each edge and on the inside,
and one to compute attributes of the vertices generated by the tessellator.
In OpenGL, those are called Tessellation Control Shaders and Tessellation
Evaluation Shaders, while in Direct3D the terms Hull Shader and Domain
Shader are used, respectively.

Compute shaders are a step towards general-purpose computing on the
GPU within a graphics API while not requiring an external library. The
same shading language as for other shader types is used. However, there
are some language extensions currently specific to compute shaders, such
as shared memory and new synchronization primitives.

Although real-time graphics APIs intend shaders to be compiled for execu-
tion on a GPU, other implementations are conceivable. Reasons to have a
shader implementation target the CPU, either by a compiler or interpreter,
would be to remove the dependency on dedicated graphics hardware or to
enhance the debugging experience.

While the OpenGL specification only defines the source language for
shaders, Direct3D also specifies the intermediate representation HLSL pro-
grams will be compiled to, which graphics drivers then translate into exe-
cutable code during runtime. The intermediate representation of Direct3D
shaders is the input format for this master thesis’ shader cross-compiler and
will be described in more detail in chapter 3.

4



1.2. Shader Programming versus GPGPU Programming

1.2. Shader Programming versus GPGPU
Programming

By generalizing the programming model beyond the requirements of graph-
ics programming, GPGPU libraries have introduced some differences to
the conventional shader programming model, which will be investigated
in this section. Terminology is different for GPGPU programming, since
there is not necessarily a connection to computer graphics. Programs are
consequently called kernels instead of shaders. Input and output data are
accessed via arrays of arbitrary data types, residing in the main memory
of a GPU. This stands in contrast to shaders that operate on data streams
where elements represent vertices, control points, patches, primitives or
fragments.

For shaders in a rendering pipeline, parallelism is implicit. Programmable
stages are designed in a way that parallel execution is possible and graph-
ics drivers will attempt to run multiple shaders instances in parallel, but
the parallelization is not controlled by the programmer. Instead, drawing
commands are issued by the user of a graphics API, and input data such as
vertex attributes or interpolated fragment data is automatically assigned to
shader instances. On the other hand, for compute kernels, a programmer
explicitly invokes a number of instances (threads), which in case of CUDA
or OpenCL kernels or compute shader instances are organized in a grid of
up to 3 dimensions, that is, each thread has its own spatial index. Input and
output data are passed from and to the kernels as an array containing all
data, each thread then uses its coordinates within the grid to calculate the
address for reading or writing data values.

Shading languages have been described in the previous sections. In case
of OpenCL or CUDA, kernels are written in dialects of existing languages,
such as C, C++ or FORTRAN. Compilation of kernels can occur ahead of
time or at runtime when executing the host program (NVIDIA Corporation,
2017b; NVIDIA Corporation, 2017c). Additionally, CUDA makes use of
a common intermediate language similar to assembly code, called “PTX”
short for parallel thread execution (NVIDIA Corporation, 2017e). Both CUDA
and OpenCL implementations provide a runtime library for compiling or
loading kernels, managing memory and other objects. No dependency on
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1. Introduction

Method Impl. Effort Scalability Ease of Use Performance

Manual
Translation

None Bad Bad High

Graphics In-
terop.

Medium Good Medium Low

GPU-based
Interpreter

High Good Good Low

Compile to
CUDA

High Good Good High

Table 1.1.: Overview of possible implementations

graphics libraries exist, although using both a graphics and a compute
library in the same program is possible, with some interoperability features
being provided by the compute API.

1.3. Possible Implementations

Several approaches to the portability problem have been considered and will
be described in this section. It should also be discussed if the problem can be
solved using libraries or other existing infrastructure. Graphics applications,
especially game engines, frequently use a large number of different shaders
or select between a variety of shading techniques in the same shader (“Uber-
shaders”). Therefore, an important objective is that the solution scales with
the number of shaders used, and also with increasing complexity of a single
shader. Table 1.1 gives an overview of all considered approaches, as well as
an assessment according to the applied selection criteria.

1.3.1. Manual Translation

For each Direct3D shader in use by the original application, a shading
function is written by hand to reproduce the behavior of the shader. If

6



1.3. Possible Implementations

the HLSL source is not available, the shader has to be translated from its
disassembly.

Effort Since no additional program or component has to be implemented,
the up-front effort is low. However, it is proportional to the number of
shaders required.

Advantages If the rendered scene is not complex, this approach is the most
straight-forward.

Disadvantages The effort for rendering complex scenes is high. Addition-
ally, the translation is prone to human errors.

Applicability Scalability and inflexibility are major drawbacks to this method.
Other approaches are preferable for a general purpose software ren-
derer.

1.3.2. CUDA Graphics Interoperability

CUDA is able to share resources such as buffers or textures with the graphics
libraries OpenGL and Direct3D. However, shaders can still only be launched
from Direct3D and use a different programming model, as described in sec-
tion 1.2. In order to run a shader, a rendering call has to be issued. Direct3D
only provides access to the output of shader stages through an optional
stream-output stage or texture render targets (Microsoft Corporation, 2018).
Pass-through shaders are required to obtain the results of other stages in
the pipeline for use in CUDA.

Effort Routines to execute shader stages and obtain the results without
other side-effects need to be created once. Pass-through shaders need
to be written or automatically generated for every different shader
signature (see also section 3.1).

Advantages Since Direct3D is used to run the shaders, correctness of shader
execution is ensured by the graphics driver.

Disadvantages Some pipeline stages will be run with a pass-through con-
figuration redundantly, possibly multiple times, to isolate the desired
shader stage. Performance is likely to be negatively affected by this.
Furthermore, a dependency on Direct3D is introduced by this method.

7



1. Introduction

Applicability While the amount of manual work does not increase with com-
plexity, the performance implications are a drawback. The Direct3D
rendering pipeline is used in a way it is not intended for, leaving this
approach to be considered more of a work-around than a solution.

1.3.3. GPU-side Interpreter

With the high degree of programming flexibility in modern GPUs, imple-
menting an interpreter running as a compute kernel becomes possible. Some
pre-processing might be required for the Direct3D intermediate binary for-
mat. Interpreting instructions introduces some additional data-dependent
branching. However, threads in the same warp would interpret the same
shader, making these conditional branches mostly uniform and not inher-
ently introduce blocking times in addition to the interpreter overhead.

Effort The effort for implementation and testing is estimated to be about
the same as implementing a compiler for the shaders.

Advantages With an interpreter, any shader can be used at runtime by the
renderer. With a compiler, every shader that participates in producing
a frame has to be identified and translated in preparation of the
rendering process.

Disadvantages Despite most branching being uniform, the interpreter would
cause considerable slowdown of shader execution.

Applicability This approach is feasible, but the practical advantages over
using a compiler instead are unclear.

1.3.4. Shader to GPGPU Compiler

Shaders are automatically translated to one or more shading functions in
a programming language usable within CUDA. In order to make the gen-
erated code compatible with C++, the most suitable target languages are
C, C++ and PTX. Additionally, it is possible to generate code in the inter-
nal representation of NVidia’s CUDA compiler, NVVM, which is derived
from the intermediate representation of the LLVM compiler infrastructure

8



1.3. Possible Implementations

(NVIDIA Corporation, 2017d). A PTX back-end for NVVM code is available
in the CUDA toolkit.

Effort Implementation and testing cause a considerable amount of effort
up front, but allows the use of any shader in a CUDA-based renderer
in an automated way afterwards.

Advantages The overhead compared to running the original shader is very
low.

Disadvantages It is necessary to work around a few limitations of the
CUDA API. Those limitations are described in more detail in chapter
5 and section 6.2.

Applicability Scalability and execution performance make this approach
well suited for software rendering. Any of the mentioned target lan-
guages would suffice.

From the options presented, a compiler for automatic translation to CUDA
has been chosen. Its strength lies in the run-time performance of ported
shaders, since no inherent slow-down exists. This makes it possible to
evaluate algorithms designed for interactive rendering speed. Taking the
high scalability and simple workflow into account, it becomes the most
viable option, despite the initial effort required for its implementation.

9





2. Related Work

Automatic code generation for shaders has been a subject of interest for
some time, in order to make authoring of shaders easier and to make
different shading languages or graphics libraries more interchangeable.
This chapter will give an overview of other existing work on this subject.
Furthermore, some related work has been done regarding the run-time
analysis or emulation of shaders or compute kernels, with some similarities
to this project.

2.1. Shader Compilers

In addition to the shading languages described in 1.1, several other GPU
programming systems have been created to exploit the programmability of
modern graphics processors. The Cg shading language (Mark, Glanville,
et al., 2003) along with its host runtime library aims to unify GPU pro-
gramming across different 3D graphics APIs and operating systems. Its
implementation employs a compiler using assembly code as its target lan-
guage, either off-line or during application runtime. While still targeting
GPUs as a platform, the Cg compiler aims at different goals, and the gen-
erated code is similar to the Direct3D bytecode used as a source language
here. Furthermore, Cg is no longer actively developed, and it is not possible
for end users to extend the Cg compiler with new target languages.

In Mark and Proudfoot, (2001), a compiler for the Stanford Real-time
Shading Language (Proudfoot et al., 2001), targeting low-level shader pro-
gramming interfaces (the NV vertex program and NV register combiners
OpenGL extensions) is described. Pipeline stages are not programmed di-
rectly, but instead vertex and fragment programs are derived from a single

11



2. Related Work

shader that specifies the frequency at which values are computed. This
master thesis, in comparison, intends to port shaders bound to a specific
stage of the rendering pipeline to CUDA. Source and target languages are
different as well.

Peercy et al., (2000) achieves programmable shading by translating shaders
written in a newly developed shading language to a multi-pass rendering
procedure in OpenGL, treating each pass as one or more primitive opera-
tions of the shader program. At the time of its publication, programmable
shading was not widely available in real-time graphics APIs. While modern
graphics processors offer a high degree of programming freedom that is
exploited by HLSL and the Direct3D intermediate code, it is useful to keep
in mind that shaders can also be mapped to other programming models, in
case direct translation to GPU device code becomes difficult.

The PixelFlow system (Olano and Lastra, 1998) was one of the first pro-
grammable real-time renderers. Shaders are written in pfman, a program-
ming language similar to the RenderMan shading language. It is imple-
mented with an optimizing compiler generating code for a dedicated SIMD
computer. The pfman compiler differs from this work in its specialization
on the PixelFlow target platform and pfman shading language. Due to its
publication time frame, rendering pipeline stages other than pixel shaders
are not programmable.

An alternative shading language for the Direct3D API called Spark (Foley,
2012) aims at managing complex shaders through modularization. The
per-stage programming model is abstracted so that effects involving mul-
tiple stages of the rendering pipeline can easily be added while keeping
the implementation encapsulated and in one place. Spark source code is
compiled to a set of HLSL shaders along with C++ classes for the client to
configure the pipeline and initiate the rendering process.

As part of its Windows API compatibility layer, the WINE software package
(Julliard, 2017) provides a compiler for Direct3D shaders that translates
their binary form to GLSL. Some 3D graphics engines are capable of com-
piling shaders written in one shading language to another, in order to be
compatible with many platforms. The Unreal Engine provides a library to
translate HLSL shaders to GLSL (Epic Games, Inc., 2017). Unity can gener-
ate GLSL code from HLSL, Cg or Direct3D bytecode (Unity Technologies,

12



2.2. Code generators

2017). While conceptually similar, those tools aim for compatibility with a
different graphics API instead of porting shaders to a GPGPU platform. In
Rhodin, 2010, a PTX back-end for an LLVM-based shader compiler for a
custom shading language is developed. A shader compiler for functional
programming was created by Elliott, (2004).

2.2. Code generators

Automatic generation of code for various shading languages has been em-
ployed frequently in tools that simplify the editing of shading functions.
Various forms of visual shader editors exist already, commonly using dif-
ferent types of shade trees (Cook, 1984). For instance, Jensen et al., (2007)
combines a shade tree editor with an optimizing Cg back-end. In McGuire
et al., (2006), a program to create shade trees on a higher abstraction level
is introduced. McCool et al. developed a C++ framework to perform alge-
braic operations on shaders, with the ability to generate shader code from
recorded calls (M. McCool et al., 2004), based on the Sh shader metapro-
gramming language (M. D. McCool, Qin, and Popa, 2002). Similar to the
program created for this master’s thesis, those shader editing tools imple-
ment automatic generation of the shading code, but starting from a different
shader representation. Before GPGPU frameworks were common, Brook
for GPUs (Buck et al., 2004) provided a means to use a GPU for arbitrary
parallel computations. It provides a compiler that translates kernels into
shader programs and a runtime API to abstract the usage of a graphics li-
brary (Direct3D or OpenGL) to execute the shaders through a rendering call.
An alternative CUDA module compiler targeting PTX assembly language
was developed by Wu et al., (2016).

2.3. Debugging and Instrumentation Tools

For the purpose of debugging or software profiling, tools have been created
which automatically manipulate shaders. Unlike this master’s thesis, shaders
are not translated to another target language, but the required parsing

13



2. Related Work

and code generation poses some similarities. Strengert, Klein, and Ertl,
(2007) developed a GLSL debugger that modifies shaders at source level,
transparent to the user. The program “Total Recall” (Sharif and Lee, 2008)
aids graphics debugging by instrumenting Direct3D shaders to record their
behavior and subsequent emulation of specific shader execution instances
on the CPU. In Duca et al., (2005), another debugger which uses automatic
shader instrumentation has been created.

2.4. Software Renderering on GPUs

Existing software rendering pipelines are good examples of applications
motivating the automatic translation of shaders. Implementing the entire
renderer in software overcomes the limitations imposed on customizability
by fixed-function parts of common real-time graphics libraries.

FreePipe (Liu et al., 2010) implements a fully programmable rendering
pipeline in CUDA with a structure similar to OpenGL or Direct3D.

CUDARaster (Laine and Karras, 2011) implements a graphics pipeline in
CUDA with emphasis on achieving high performance while following the
same rules for rasterization and rendering order as fixed-function units of
graphics processors.

Piko (Patney et al., 2015) is a framework to synthesize implementations
of arbitrary graphics pipelines with programmable shading based on a
description in a domain-specific programming language similar to C++. It
uses LLVM to generate target code for CUDA GPUs or multi-core CPUs.

A complete implementation of a Direct3D driver needs to translate the
shader binaries for its target architecture. This is true even if the API is
implemented without a system-level component but entirely as a user-space
library on top of CUDA. Such a system, intended to evaluate experimental
rendering algorithms on frame data captured from real-world graphics ap-
plications, is the target platform of the translator developed in this master’s
thesis.

14



3. Direct3D Shader Format

Shaders for the Direct3D API are authored in HLSL and compiled to a
hardware-abstracted low-level binary format by Microsoft’s HLSL compiler.
The result is a program in an assembly language for a virtual GPU, as
described in section 3.2. In earlier versions of Direct3D, it was possible for
programmers to write shaders in that assembly language, but that option
has been removed for recent versions. Graphics drivers will perform the final
translation step to machine code at application runtime. Since the binary
format is hardware independent, and the behavior is defined explicitly, it
is possible for applications to use only shader binaries during deployment,
and not ship the HLSL source code. Consequently, it is necessary to use this
binary format instead of HLSL as the input language for this work, in order
to be compatible with all Direct3D shaders.

3.1. Structure

Direct3D shader binaries are organized into self-contained “chunks”, each
describing a set of information needed for loading the shader. One type of
those chunks contains the encoded shader program, others are for example
the signatures of the shader or debug information. Signatures tell a graphics
driver how to link different shader stages together, and which input or
output variables have system value semantics, that is they are generated or
interpreted by fixed-function graphics pipeline stages. Another important
chunk type describes the data layout and binding information for shader re-
sources, such as constant buffers, textures, generic buffer types or unordered
access views (UAVs). Figure 3.1 gives a schematic view of the structure of
shader binaries, using a pixel shader as an example. The remainder of this
section focuses mostly on the contents of the shader code chunk, since this

15



3. Direct3D Shader Format

representation of the program serves as the compiler’s source language.
Information encoded by other chunks is used to derive the public interface
to the generated code, for example the signature of the shading function.

3.2. Shader Models and Instruction Set

Direct3D defines shader models as an abstraction of graphics hardware to
define required features of a GPU. They are used as a basis for the instruc-
tion set of Direct3D’s intermediate code, an assembly language for a virtual
graphics processor (Microsoft Corporation, 2017). The instruction set archi-
tecture can be classified as a load-store architecture with non-destructive
operands. In general, instructions are orthogonal, except if the instruction
operates on specific operand types, such as texturing instructions. One
exception to this classification are constant buffer operands, which can be
used as a source operand to almost every instruction.

Shader models use numbered registers as an abstraction of memory areas
of real graphics hardware. Different types of operands, such as shader input
and output or local variables are modeled as sets of registers, with each set
using a separate numbering starting from 0. In most cases a register refers
to a vector with 4 components, each 32 bits in size; however some special-
purpose operand types are of different size. A register may also refer to an
opaque type, such as textures, samplers, UAVs or shared memory buffers.
All registers for opaque types have their own numbering as well. How the
physical memory is allocated is not specified. Layout of the address space
as well as ordering of concurrent memory accesses by shaders to shared
resources is defined by the implementation.

Instruction opcodes and operands are encoded using any number of 32-bit
tokens, therefore the size of each whole instruction is always a multiple
of 4 bytes; however their length varies widely. Every instruction generally
consist of an opcode comprising one or more tokens, in some cases encod-
ing additional instruction-specific information in the form of attributes or
flags. Such additional data encoded in the opcode is present mostly for a
group of instructions that serve as variable or attribute declarations. The
opcode is followed by any number of operands. Since operands can encode
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3.2. Shader Models and Instruction Set

Direct3D Shader Binary

RDEF ISGN

OSGN

SHDR

cbuffer LightParams
{
float4 LightPos;
float4 LightColor;
float4 Ambient;
float2 Falloff;

}

cbuffer Material
{
float4 Albedo;
float4 SpecularColor;
float SpecularHardness;

}
Resource Bindings:

sampler DiffuseSampler: s0
texture Diffuse(2d, float4): t0
cbuffer LightParams: cb0
cbuffer Material: cb1

v0.xyzw: SV Position
v1.xyzw: TEXCOORD[0]
v2.xyzw: NORMAL
v3.xy: TEXCOORD[1]

o0.xyzw: SV Target[0]

ps_4_0
dcl_globalFlags refactoringAllowed
dcl_constantbuffer cb0[4], immediateIndexed
dcl_constantbuffer cb1[1], immediateIndexed
dcl_sampler s0, mode_default
dcl_resource_texture2d (float ,float ,float ,float) t0
dcl_input_ps linear v1.xyz
dcl_input_ps linear v2.xyz
dcl_input_ps linear v3.xy
dcl_output o0.xyzw
dcl_temps 2
dp3 r0.x, v2.xyzx , v2.xyzx
rsq r0.x, r0.x
mul r0.xyz , r0.xxxx , v2.xyzx
add r1.xyz , -v1.xyzx , cb0 [0]. xyzx

. . .

Other chunk types (optional):

• Patch constant signature
• Statistics
• Debug information
• . . .

Figure 3.1.: Shader binary structure. Note that the code makes up only part of the file
contents. Chunk types are use the same abbreviated names as in the binary file.
RDEF: Resource definitions, ISGN: Input signature, OSGN: Output signature,
SHDR: Shader code 17



3. Direct3D Shader Format

dynamic indexing of arrays, nested operands are possible. In that case, the
encoded dynamic index will come after the array operand in the shader
binary. Operands can take many different forms in Direct3D shader binaries.
Vector components can be write-masked for destination operands while for
source operands, component swizzle or selection of a single component as
a scalar operand is possible. Additionally, different array indexing modes
are supported using either constant or variable offsets or a combination of
the two. An optional modifier may be applied to the operand that calculate
the absolute numeric value or invert its sign. Instead of registers, operands
may also contain immediate data in the form of one or four 32-bit values. A
visualization of the instruction encoding is given by figure 3.2, showcasing a
multiplication instruction with a temporary register as destination, an input
register and a constant buffer operand as sources. The use of an additional
operand for dynamic indexing is also shown.

Most instructions can be categorized as arithmetic, declarations, memory
accesses or data copy, control flow or application specific instructions. Typi-
cal integer and floating-point arithmetic instructions are provided, with an
optional modifier to clamp the result to the range [0,1] existing for many
floating-point operations. Control flow is implemented as structured pro-
gramming constructs, unlike most assembly or machine languages using
conditional and unconditional jumps. For example, instructions to mark
the beginning and end of conditional, loop or switch statements exist. All
data objects used by the program require a declaration instruction to be
present at the start of the program. These declarations abstract the details of
memory allocation and therefore have no similarity to non-virtual computer
architectures. Memory that is shared between shader instances is accessed
using memory load and store or texturing instructions, or atomic opera-
tions. Other application-specific instructions include thread and memory
barriers, geometry shader operations to emit vertices and finish primitives,
screen-space derivative approximation instructions, or discarding pixels.
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Figure 3.2.: Instruction encoding example. The instruction multiplies components of a
dynamically indexed constant buffer vector with the y component of an input
operand and stores the result in a temporary register.
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3.3. Hull Shaders

Hull shaders are programmed as one pipeline stage, but independently
compute output data for each control point as well as once per patch, called
patch constant data. At minimum, the patch constant data contains all
required tessellation factors for a patch. This computation of independent
outputs allows for more parallelism than the amount exposed to shader
programmers. Therefore, a hull shader contains multiple phases designed
to possibly run with a different number of instances. A HLSL compiler can
automatically generate the different phases from source code to maximize
the amount of work that can be done in parallel (Ni et al., 2009, p. 24). Up
to three different phases can exist in a single hull shader. The first phase is
the control point phase, running once for each output control point. The
other two phases are known as fork phase and join phase, and compute the
patch constant data as well as tessellation factors along the edges and for
the interior of a patch, respectively. All phases are contained in a single
shader binary, with special instructions marking the start of each phase. In
addition to phases, hull shaders have a declaration section for declarations
common to phases, as well as setting up some configuration parameters for
the tessellator.

20



4. System Design

Writing a compiler is generally a well understood task, for which many
techniques have been thoroughly researched and are being applied in
productive environments. In this case, the required source language and
ensuing target languages somewhat reduce the implementation complexity.
Most compilers are designed to accept a plain text source program written
in a language described by a context-free or possibly even less restricted
grammar. Working with a binary input format simplifies the parsing step,
since no lexical analysis is required.

A three phase structure has been followed comprising a front end for
parsing the shader binaries, back ends to generate PTX or C++ code or
disassembly and a middle end operating on the internal representation of a
shader. No optimization is performed when translating shaders, since the
generated code will be subject to optimization done by the CUDA toolchain.
In addition to translating the shader code, a C++ header declaring the
interface to the shader is automatically derived for integrating the generated
code in a CUDA application. Direct3D shader intermediate code does not
carry explicit type information, but its instructions imply that their source
and destination operands have a certain data type. Since both C++ and
PTX as target language allow programming in a type-safe manner, type
information is reconstructed based on the implied types of operands.

4.1. Program Structure

In the compiler’s 3-phase implementation, the front-end is responsible for
three related tasks. The chunks contained in a shader binary are parsed
to obtain linkage and resource definition information, then the shader
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4. System Design

program embedded inside a program is decoded according to the instruction
encoding described in chapter 3. In the third place, while decoding the
shader, a tree structure is created that serves as the internal representation
of the input program. This tree form simplifies PTX code generation and
construction of a control flow graph. Other than the shader code itself,
important chunks are the shader signatures and resource definitions. The
former define the binary layout of input and output variables as well as
the per-patch data for tessellation shaders, while resource definition chunks
describe the contents of constant buffers and other shader resources. In
order to allocate those resources in generated code and to provide an
interface to the graphics pipeline implementation, the binary parser needs
to recognize the resource definitions. Similarly, shader signatures determine
the set of input and output parameters that need to be generated for a
function implementing a shader stage or hull shader phase.

Operations performed in the middle phase typically have no control depen-
dencies between each other. Therefore, the middle phase is implemented as
a series of passes sharing a common interface. Each pass generally carries
out a code transformation or computation of additional information about
the shader. The passes are optional and are enabled based on requirements
of the selected back-end and program invocation parameters. Most config-
urations require a control-flow graph to be created. The middle phase is
also capable of converting the source program into static single assignment
(SSA) form. Reconstructing type information for local variables operates on
the SSA representation of shaders.

Code generation back-ends have been implemented for C++ and PTX as
target languages. The program is also capable of disassembling the shader
binary without code generation. For generating code, a visitor pattern
operating on the code tree produced by the parser is used. A more detailed
description of the back-end implementation is given in chapter 5.

4.2. Phases

Different translation targets, the disassembler functionality and other user-
specified options lead to a variety of required behaviors for the compiler.
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4.2. Phases

The described structure of interchangeable modules is capable of adjusting
to such variation. A driver class has been implemented that is responsible
for instantiating a front-end and a back-end object and the required passes
of the middle phase, and for guiding the compilation process.

4.2.1. Front End and Shader Code Representation

The frond-end for shader binaries has been separated into three components
to break down the complexity of parsing the binary file format. First, low-
level input methods are delegated to a separate class. Those input operations
involve reading objects of primitive types, such as integers and character
sequences, and following offsets for structures stored using pointer swiz-
zling. The main parsing routines involve recognizing the different chunks
of the program described earlier. Since the shader instruction encoding is
essentially an additional binary format, a second class has been created
for decoding the program. A hand-written recursive descent parser is used
for both types of binary encodings found in shader files. Using a parser
generator would be difficult with the use of pointer swizzling by the file
format; furthermore, deriving the formal grammar of all chunk types and
the instruction encoding would be a cumbersome task.

Both the instructions of a shader program and its tree structure are repre-
sented in the same class hierarchy. Most of those classes are an abstraction
of a set of instructions which follow a common pattern, for example, a three
operand instruction performing a binary operation or a texture or UAV
memory access. Sequences of instructions without branching are contained
by block objects, which share the same base class as the tree object hierarchy.
The control flow instructions if z, if nz, loop and switch are implemented
as subclasses that hold blocks of instructions the shader program may
branch into, therefore forming a tree which resembles a syntax tree of a
structured programming language. A visual example of such a tree can
be found in figure 4.1. Since instruction operands have a complex struc-
ture, a self-contained operand class has been created instead of storing the
encoding of operands directly within the instruction objects, therefore en-
capsulating the large number of possible operand forms and corresponding
to the mostly orthogonal nature of the instruction set architecture.
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shader phase

block

declarations

block

conditional statement

block

then

block

else

block

loop

block

body

switch

block

case 0

block

case 1

block

default

next

code

Figure 4.1.: An example tree created from shader code. Nodes labeled “block” are sequences
of instruction objects. Non-branching instructions that may be part of blocks
have been omitted.
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4.2.2. Middle End

Converting the programs to SSA form is a central responsibility of the
middle phase. For one of the approaches implemented to derive type infor-
mation, SSA form is a prerequisite. Three transformation pass subclasses
are implemented to build the control flow graph (CFG), convert the shader
code to SSA form and finally SSA destruction. The term “SSA destruction”
commonly refers to the operation that removes the Φ-functions and renames
the arguments and return value of Φ-functions to a common variable name,
which is required for code generation. Deriving type information from the
shader binary also uses the same interface. During that pass, a table is
generated to associate each component of a temporary register with a basic
type, such as integers or floating-point numbers.

Depending on the selected texturing mode, an additional renaming step for
texture and sampler objects may be required. CUDA supports two different
modes of accessing textures. In what is called independent texturing mode,
texture objects are separated from various other controls, such as filtering
and addressing modes, which are held in a sampler object. Textures and
samplers may then be combined arbitrarily for sampling textures. Direct3D
and HLSL always use textures this way. The other texturing mode, used by
default in CUDA, is called unified mode and causes each texture object to
contain a single sampler object to use in sampling instructions. In order to
generate code in unified texturing mode, the transformation pass needs to
detect all texture and sampler uses and rename the objects to a common
texture object also containing the corresponding sampler state.

4.2.3. Back End

Both code generation back-ends are designed in an almost identical manner,
since the main difference lies in what code needs to be generated for each
instruction. Consequently, it is possible to share parts of the implementation
between the back-ends. Per target, a subclass of the back-end interface is
responsible for generating file-level declarations and boilerplate code, as
well as orchestrating code generation for each shader function and the hull
shader phases. A header file is generated for the externally visible names
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required to use the translated shader in a CUDA kernel. For generating
code for a shader phase or function, both back-ends make use of a visitor
class, which traverses the tree structure of the parsed code, and passes
each instruction to a code generator class. A common base class is used for
the code generators of both targets. An auxiliary class collects declaration
instructions as they are visited, in order to simplify accessing the declaration
object when referenced by an operand using its register number. The code
generators each make use of another class that emits C++ statements or PTX
assembly instructions, respectively. As a result, creating formatted textual
output is separated from generating the declarations or statements.
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4.3. Generating SSA Form

4.3. Generating SSA Form

This section goes into detail about constructing a CFG for the shader and
converting it to SSA. For the latter, a number of established algorithms exist
that realize all necessary steps. Some considerations had to be made on how
to integrate the changes from conversion to SSA into the existing shader
code structures.

Some methods of generating the SSA form, including the chosen implemen-
tation, require a control flow graph to be created. The CFG is implemented
as a class for storing per-node data, and another class to hold the set of
node objects and implement the algorithms described in this section. A
single CFG is generated per shader phase in hull shaders and for the main
function otherwise. Since shader functions share registers with their caller
and all call destinations can be statically determined, it is more sensible to
insert edges to a function subgraph for calls than to create a different CFG
for each function.

A rather simple algorithm to identify basic blocks and construct a CFG
exists for code using only conditional and unconditional jump statements
for control flow (Aho et al., 2007, pp. 525-516, 529). Such a format is common
for intermediate code in compiler infrastructures. However, as mentioned
previously, Direct3D shader code does not use jump instructions for control
flow. To avoid creating a custom intermediate code format based on jumps,
a different algorithm has been used to build the CFG.

The following control flow constructs are part of the shader intermediate
code instruction set:

• Conditionals, using if z, if nz, else and endif
• Loops, using loop and endloop, as well as break and continue (all

loops are terminated using break)
• Selection statements, using switch, case and default
• Function calls with late binding, using call and fcall (functions are

denoted using a label instruction)

Constructing the CFG is essentially a depth-first search (DFS) on the code
tree, with some additions to support the break and continue instructions
present in some shaders. In order to set the correct nodes as successors, the
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Figure 4.3.: Class diagram of data structures representing the shader code
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current path of the DFS needs to be walked backwards to find the enclosing
loop or switch block. The implementation uses a recursive function that
generates the CFG for a branch of the program tree and, given as a block
of instructions, returns a pair of references to the first and last node of the
created CFG. After a recursive call for a branch, those nodes are required to
correctly set successors of nodes depending on the control flow instruction
that ends the given block. Figure 4.4 gives an example of this recursive
construction leading up to the complete graph.

In the case of conditional statement instructions, the procedure is straight-
forward: the node created for the input block must have the first node of
the then block as successor, and node for the block following the given one
is set as successor of the then block’s last node; the same is done for the else
branch if it exists. For loop instructions, the first node of the loop body is a
successor of the given block’s node and also a successor of the loop body’s
last node. In a manner similar to conditionals, switch statement instructions
add an edge from the current node to the first node for the block started
by the case label, and another edge from its last block to the block after
the given one. Loop bodies and case blocks may end early with a break
instruction, creating another edge to the successor of the loop body’s or case
block’s last node. Similarly, an edge to the loop body’s first node must be
inserted for blocks ending with continue instructions. Interface calls jump to
a location only known at runtime. Since the caller and callee share the same
set of temporary registers, each possible call target is added as a successor,
and the return statements of those functions have the node of the caller’s
next block added as a successor. For the main routine, return instructions
cause an exit node to be added as successor.

In the process of SSA generation, variables are given a unique name when-
ever appearing as a destination operand of an instruction. Moreover, Φ-
functions are inserted for variables when a point is reached where multiple
different definitions of that variable may have occurred based on the path
taken at runtime. Unique variable names are usually created by adding
a version number to each occurrence of a variable. For the operands of
vectorized instructions, as used for shader binaries, each vector component
of a register constitutes a variable name, operand objects containing one
to four variable names as a result. A 64-bit integer is used to encode the
register and component numbers with their version to form a unique name.
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START

dp4 o0.x, v0.xyzw, cb0[4].xyzw
dp4 o0.y, v0.xyzw, cb0[5].xyzw
dp4 o0.z, v0.xyzw, cb0[6].xyzw
dp4 o0.w, v0.xyzw, cb0[7].xyzw
and r0.x, v4.y, l(31)
iadd r0.x, r0.x, l(-1)
ieq r0.yz, r0.xxxx, l(0, 23, 10, 0)
or r0.y, r0.z, r0.y
if z r0.y

itof r0.y, r0.x
div r0.y, l(1.0, 1.0, 1.0, 1.0), r0.y
mul r1.xyzw, r0.yyyy, v2.xyzw

mov r1.xyzw, l(0,0,0,0)

mov r2.xyzw, r1.xyzw
mov r0.y, r0.x
loop

ige r0.z, l(0), r0.y
breakc nz r0.z

iadd r0.z, r0.y, l(-1)
ieq r3.xyz, r0.zzzz, l(42, 23, 10, 0)
or r0.w, r3.y, r3.x
or r0.w, r3.z, r0.w
if nz r0.w

itof r0.w, r0.z
div r0.w, l(1.0, 1.0, 1.0, 1.0), r0.w
mad r3.xyzw, r0.wwww, v2.xyzw, r2.xyzw
lt r0.w, l(10.0), r3.w
if nz r0.w

mov r0.y, r0.z
continue

mov r2.xyzw, r3.xyzw
break

mov r2.xyzw, r3.xyzw
mov r0.y, r0.z

mov o2.xyzw, r2.xyzw
mov o1.xyzw, v1.xyzw
mov o4.xyzw, v4.xyzw
mov o3.xy, v3.xyxx
ret

EXIT
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Figure 4.4.: A CFG created from one of the test cases, which uses a do-while loop and
conditionals. The basic blocks are numbered to illustrate the intermediate
results of the recursive calls.
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Using a shader program from another test case, figure 4.5 illustrates the
conversion to SSA form. A new instruction with an arbitrary number of
operands is added to the shader instruction set to represent Φ-functions.
Those instructions only exist during the middle phase of translation until
they are removed by SSA destruction.

Standard algorithms have been used to implement the Φ-function insertion
at the CFG’s dominance frontiers and variable renaming, originally devel-
oped by Cytron et al., 1991, pp. 466,470,472. To compute the dominators
of each CFG node, an efficient algorithm created by Cooper, Harvey, and
Kennedy, 2001 is a common solution and was used in this work as well. As
a somewhat special case, any dynamic array indices that may be present in
an operand object need to be regarded as source operands as well during
the renaming step. Since no optimizations were required, the conventional
SSA form is retained throughout all phases. Therefore, the Φ-functions can
be removed directly during SSA destruction.

4.4. Reconstructing Type Information

The PTX assembly language is an abstraction of graphics hardware that
gives its users the ability to write programs in a type-safe way by declaring
registers with a data type. This feature is optional; PTX also supports the
declaration of untyped registers. C++ is naturally type-safe, a reinterpre-
tation of variable contents as a different type has to be enforced using
CUDA C++ language extensions. An attempt has been made to generate
type-safe code for both languages, using typed variables and only forcing
a conversion when the shader binaries reinterpret binary register contents
through instructions expecting a certain type. This case occurs for example
when a shader author uses the HLSL intrinsic functions asfloat or asuint,
but is also sometimes generated by the HLSL compiler, as observed from
manual inspection of shader disassembly.

Other type reconstruction tools have previously been developed to reverse
engineer machine code with decompilers. Mycroft, (1999) converts target
code in register-transfer (RTL) form to SSA and expresses the assignment
of types to renamed variables as a solution to a system of type constraints
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umin r0.xy0,0, v4.yzyy, l(128,255) {r0.x0, r0.y0} ←− min(v4.xy, {128, 255})
and r0.z0, v4.z, l(65535) r0.z0 ←− v4.z⊗ 65535
mov r1.xy0,0, l(0,0,0,0) {r1.x0, r1.y0} ←− {0, 0}
loop loop 0:

phi r1.y1, r1.y0, r1.y2 r1.y1 ←− Φ(r1.y0, r1.y2)
phi r1.x1, r1.x0, r1.x2 r1.x1 ←− Φ(r1.x0, r1.x2)
phi r0.x0, r0.w0, r0.x0 r0.w0 ←− Φ(r0.w0, r0.w1)

uge r0.w1, r1.y1, r0.x0 r0.w0 ←− r1.y0 ≥ r0.x0
breakc nz r0.w1 if r0.w0 6= 0 then exit loop 0
iadd r1.x2, r0.z0, r1.x1 r1.x2 ←− r0.z0 + r1.x0
iadd r1.y2, r1.y1, l(1) r1.y2 ←− r1.y0 + 1
endloop end loop 0
mov o4.y, r1.x1 o4.y←− r1.x1
mov r1.xz1,1, l(0,0,0,0) {r0.x1, r0.z1} ←− {0, 0}
loop loop 1 :

phi r0.w2, r0.w1, r0.w3 r0.w2 ←− Φ(r0.w1, r0.w3)
phi r0.z2, r0.z1, r0.z3 r0.z2 ←− Φ(r0.z1, r0.z3)
phi r0.x2, r0.x1, r0.x3 r0.x2 ←− Φ(r0.x1, r0.x3)

uge r0.w3, r0.z2, r0.y0 r0.w3 ←− r0.z2 ≥ r0.y0
breakc nz r0.w3 if r0.w3 6= 0 then exit loop 1
xor r0.x3, r0.x2, v4.w r0.x3 ←− r0.x2 ⊕ v4.w
iadd r0.z3, r0.z2, l(1) r0.z3 ←− r0.z2 + 1
endloop end loop 1
mov o4.z, r0.x2 o4.z←− r0.x2
mov o0.xyzw, v0.xyzw o0.xyzw←− v0.xyzw
mov o1.xyzw, v1.xyzw o1.xyzw←− v1.xyzw
mov o2.xyzw, v2.xyzw o2.xyzw←− v2.xyzw
mov o4.xw, v4.xw {o4.x, o4.w} ←− {v4.x, v4.w}
mov o3.xy, v3.xy {o3.x, o3.y} ←− {v3.x, v3.y}
ret return

Figure 4.5.: Left: Shader assembly code in SSA form. Versions of temporary variables (single
components of registers) are annotated as subscripts in red. Right: Semantics of
the shader code.
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derived from the target code. Ambiguities are then resolved by user inter-
action. A similar system was developed by Robbins, King, and Schrijvers,
(2016) to decompile target code for an abstracted version of x86 machine
language to a type-safe dialect of the C programming language. It uses an
automatic solver and a system of Horn clauses and constraint handling rules
describing the relationship between source and target code to decompile
programs.

Reconstructing type information for Direct3D shaders is simpler in compar-
ison, as a result of limitations in HLSL. Its type system does not include
pointer or reference types. User-defined structure types are possible if non-
recursive, but will be split into variables of primitive types by the compiler
when used outside constant buffers or UAVs. Memory accesses are not
done directly, but through the special object types texture, constant buffer,
UAV and shared memory, which view memory as arrays with one to four
dimensions accessed by array indices or, in case of textures, a coordinate
vector. It is easy to statically determine the types of texture elements and
constant buffer variables. Contents of other memory objects are currently
considered to have an unknown data type for simplicity. For these reasons,
a simpler approach not involving automated theorem proving or constraint
satisfaction is possible, with a fall-back to partially not type-safe code in
case a conflict arises due to optimizations by the HLSL compiler.

From the typed instructions that Direct3D shader binaries are using, it is
possible to derive the type of variables when the shader has been converted
to SSA form. Each version of a temporary register, which has been assigned
by SSA renaming, is associated with the type produced by the instruction
that uses the particular version as a destination operand. In case of arithmetic
instructions, this is a simple task, since those exist for all basic types and
the type can be derived from the opcode as a result. The resulting type
of instructions accessing resources is in some cases encoded within the
instruction, but can also be detected using the resource definitions provided
by the shader file. In 4.1, the generated type information is shown for some
example instructions in SSA form.

Destination operand types of the data movement instructions mov, movc and
swapc depend on the source operand. In simple cases, that type is already
known when processing such an instruction. However, more complicated
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Instruction Type Information

mov r0.xy0,0, v1.xy
type(r0.x0) := type of
v1 in input signature
type(r0.y0) := type of
v1 in input signature

iadd r1.w1, r1.w0, l(1) type(r1.w1) := int

sample r0.xyzw1,1,0,0, r0.xyxx0,0,0,0, t1.xyzw, s1

type(r0.x1) := T
type(r0.y1) := T
type(r0.z0) := T
type(r0.w0) := T

Table 4.1.: Type information derived from example instructions. T is the resource return
type of t1 (in shader model 4.0) or of the sample instruction (shader model 5.0+)

cases sometimes occur in shaders, for example a mov instruction using the
result of a Φ-function which has been inserted at the start of a successor of
a loop exit. Immediate-value operands have no known data type, instead
a symbolic “immediate” type is propagated through all data movement
instructions until the value is interpreted as a certain type by an instruction.
When a Φ-instruction is encountered, the output operand’s type must be
able to hold all possible input operands. If all input types are equal, that
type is used for the output operand, otherwise the type assigned to the
Φ instruction’s destination is a union. Immediate types encountered as Φ
input types are interpreted as the common type of the other input operands,
if it exists, otherwise default to unions. When a shader contains a loop,
the type of an input operand to a Φ-instruction may depend on its output
operand. In order to resolve potentially conflicting types as described, all
input types to the Φ-function must be known.

Therefore, the result type of a Φ-function depends on all predecessors of
the basic block being processed and possibly also their dominators. Finding
an order to process basic blocks in so that the type of every operand can be
determined when encountered is difficult, if not impossible for the general
case. Instead, the order is not fixed, but basic blocks are processed in a
queue. The queue is initialized with all basic blocks of the shader program,
where the order can be arbitrary. If one or more operand types could not be
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determined because of dependencies, the block is re-entered into the queue.
In SSA form, a definition of a variable may not depend on itself, unless it is
assigned the result of a Φ-function. This special case is handled, therefore
the algorithm will always terminate.

During SSA destruction, a representative variable is used in place of a
Φ-function so that it can be removed before code generation. Its destination
operand and all source operands are replaced by the representative variable
throughout the program. The type of this representative variable must be
able to hold all the types of variables it replaces, which is solved by using
the destination type of the Φ instruction.
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5. Back-End Implementation

At the time of writing, CUDA does not support independent texturing mode,
which would be equivalent to the use of texture objects in Direct3D. For
this reason, code generators must be capable of generating code that uses
unified texturing mode despite the convention of separating textures from
sampler states. To accomplish this, a separate pass as has been implemented
as described earlier, in which all uses of texture resources are detected
and stored as a collection of texture-sampler pairs. For each unique pair of
texture and sampler, a CUDA texture reference in unified mode is generated.
Its name is derived from the texture and ampler registers used; for example,
a unified texture t0 s0 would be generated for a combination of texture and
sampler using the respective registers t0 and s0. Other shader resources
translate to CUDA in very simple ways. Direct3D constant buffers are
equivalent to constant memory in CUDA with an externally visible name.
Buffer objects and read-write buffer objects, called buffer UAVs in shader
assembly, are implemented as objects in the global state space. Texture
UAVs, referred to as read-write textures in HLSL, are supported by CUDA
using surfaces. Dynamic shader linking, using HLSL interfaces, is currently
not implemented by the back-end. Each shader phase translates to a CUDA
function defined as a static struct method. Input and output variables not
used by the shader are included in the function parameter list regardless,
so that the behavior of Direct3D shaders can be emulated, where shaders
with matching signatures can always legally be combined in a pipeline.

5.1. Name mangling

In the generated PTX assembly code, the function names are created us-
ing name mangling, a process where symbol names are derived from the
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ZN12pixel shader5shadeER6float4RK5uint4RKS0 S6 RKj

float4 pixel shader::shade(float4&,const uint4&,const float4&,const float4&,const uint&)

Substitution Table:
12pixel shader5shade S

6float4 S0
R6float4 S1
5uint4 S2
K5uint4 S3
RK5uint4 S4
K6float4 S5
RK6float4 S6

j S7
Kj S8
RKj S9

Figure 5.1.: Name mangling example

namespace, class name, method signature and template arguments of a C++
method or variable. C++ compilers use this process to generate unambigu-
ous names for the linker, which has no understanding of context-dependent
name lookups required by the C++ language. The PTX back-end has to
implement name mangling as well, so that the generated code is compati-
ble with the application binary interface (ABI) used by CUDA object files
compiled from C++. In other words, it is necessary to use the same name
mangling conventions as NVCC, which are specified by the Common Ven-
dor ABI (CodeSourcery, 2017). Since the generated code does not make use
of C++ templates or exception specifications, implementing a subset of the
full name mangling scheme is sufficient.

Mangled C++ names using that ABI are always prefixed by Z, creating
a reserved name, to prevent name collisions. Nested names (not in global
scope) are surrounded by the characters N and E. The name itself is formed
by concatenating all enclosing namespaces, outermost to innermost, with
the C++ identifier. For function names, the encoded function’s signature
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Shader Phase/Type Input Output

Default(main) Input signature Output signature
Control point phase Input signature Output signature
Fork/Join phase Input signature Patch constant signa-

ture
Domain shader Input signature and

patch constant signa-
ture

Output signature

Table 5.1.: Shader signatures for shader types and hull shader phases

is appended to the name for overload resolution. Since return types are
not part of a function overload, they are ignored in name mangling. User-
defined identifiers are prefixed by their length as a decimal number, so
that concatenated names are unambiguous. Built-in types, operator names
and the std namespace use special names without the length prefix. For
example, the type int would be encoded as i, while the CUDA type int4
would be encoded as 4int4. Additionally, names are compressed with a
forward substitution scheme that all user-defined identifiers participate in.
A concrete example of name mangling, including the substitution scheme,
is shown in figure 5.1 on the basis of a typical shading function.

5.2. Code Generator

The back-end class begins code generation by instantiating a code generator
for the target language and a code visitor. Global declarations of a shader,
for example constant buffers or common declarations of a hull shader, are
generated first by dispatching the block of declaration instructions to the
visitor. The shading function parameter list is created by joining the input
and output parameter list obtained from following the rules in table 5.1.

After the function signature has been generated, the function body is dis-
patched to the visitor. For each class of instruction encountered, a call to
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the code generator is issued to produce the statements implementing that
instruction.

The translation of most instructions is self-contained. However, PTX uses
different constructs for control flow than the Direct3D shader code, in the
form of jump instructions and labels as well as conditional execution of
instructions using predicate registers. Control flow cannot be handled within
a single callback method invoked by the visitor. The PTX code generator has
to keep track of the control flow constructs used so that jump instructions
and the corresponding can be emitted at the correct place. A stack can be
used for that purpose; each entry stands for one nesting level and contains
the type of block (e.g. “then”, “else”, “loop”) and labels marking the start
and end of the block.

A common technique for syntax-directed translation of control flow con-
structs is shown in Aho et al., (2007, p. 402). The code generator implements
control flow in a very similar way. For conditionals and loops, figure 5.2
shows the generated PTX code layout.

The Direct3D instruction if z conditionally executes a sequence of instruc-
tions if a given operand is equal to 0, and optionally executes the sequence
following a corresponding else until endif otherwise. It is implemented in
PTX by comparing the translated operand (see 5.3) to 0 and setting a local
predicate register depending on the result. A label to mark the end of the
conditionally executed sequence (leading up to the else or endif) is gener-
ated and remembered (L0), as well as another label (L2) marking the start of
the alternative sequence (between else and endif) if one is present. Based
on the predicate register, a conditional jump is emitted, branching either
to the remembered end label, or the start label of optional the alternative
block. Following the conditional jump, the first sequence is translated. In
case an else instruction is used, it will translate to an unconditional jump to
the end label (L0), followed by the label marking the start of the alternative
sequence. Finally the end label is emitted to complete the if construct.

In the other example, a loop is shown. In Direct3D, loops do not have
a condition but instead execute until they are terminated by a break or
breakc {c|nz} instruction. This translates to the basic PTX code layout of a
start label (L1) followed by the loop body, an unconditional jump back to
the start label, followed by the end label (L0). Conditional break (breakc)
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if z cond
Instruction sequence 1

else

Instruction sequence 2
endif

. . .

.reg .pred tmpreg_ i;
setp .eq .b32 tmpreg_ i, cond, 0x0;
@tmpreg_ i bra L1;

Code for sequence 1
bra L0;

L1:
Code for sequence 2

L0:
. . .

loop

Instruction sequence 1
breakc nz cond-1
Instruction sequence 2
continuec z cond-2
Instruction sequence 3

endloop

. . .

L1:
Code for sequence 1
.reg .pred tmpreg_ i;
setp .ne .b32 tmpreg_ i, cond-1, 0;
@tmpreg_ i bra L0;
Code for sequence 2
.reg .pred tmpreg_ j;
setp .eq .b32 tmpreg_ j, cond-2, 0;
@tmpreg_ j bra L1;
Code for sequence 3;
bra L1;

L0:
. . .

Figure 5.2.: Translation of control-flow structures. Direct3D shader code is shown on the
left, with the corresponding PTX sequence on the right. Placeholders are printed
in italic shape.
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instructions are implemented again with a predicate register that is assigned
the result of a comparison to 0, and a conditional jump to the end label if
the register holds true. Conditional continue (continuec) instructions are
similar but jump to the start label instead of ending the loop. Unconditional
break and continue instructions simply map to an unconditional jump to
the respective label in PTX.

The complex operand encoding of Direct3D shaders does not map directly
to operands of the PTX instruction set architecture, which in most cases
allow just registers and immediate values. Operands located in memory are
accessed with load and store instructions. Furthermore, PTX instructions are
not vectorized except for data movement and memory access instructions,
which can copy up to 128 bits (4 32-bit words) at once. For these reasons,
the code generator has to extract the scalar operations from instructions
that use vector operands. However, the PTX code generator makes use
of the vector load/store operations when possible. In the C++ back-end,
vector instructions are unpacked as well for simplicity. Additional operand
modifiers and array indexing can be translated to C++ expressions. When
generating PTX code, it is necessary to break up complex operands into
multiple instructions, and using a computed value in a register as the
operand to the actual instruction. See 5.3 for details.

Some input operands are not part of the input signature and only defined
with declaration instructions. Those operands are domain point coordinates
and instance identifiers of hull shader phases, geometry or compute shaders.
For compatibility, those input operands are not generated as shading func-
tion parameters, but use an external device-side helper function to obtain
the variable. Additionally, some output operands defined with system-value
semantics are interpreted by some fixed-function parts of the graphics
pipeline, in addition to being copied or interpolated. These system values
are fragment depth (SV Depth), its clamped variants SV DepthLessEqual and
SV DepthGreaterEqual, multi-sample anti-aliasing (MSAA) coverage masks
(SV Coverage) and shader-specified stencil reference values (SV StencilRef).
Callbacks are generated when those output variables are written so that the
software pipeline is able to treat those values accordingly.
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5.3. Example: Translation of a complex
instruction

The code generation process is further illustrated here by showing the
translation of a single instruction step-by-step. The Direct3D instruction
is:

mad o5.xyz , r0.wwww , cb[0][r0.x + 6].xyzx , r1.xyzx

Semantically, it denotes a vectorized fused multiply-add between tempo-
rary variables and a variable from a constant buffer, using source operand
swizzles as well as a write mask to keep the first 3 (x, y and z) components
of the result. The destination operand is an output register, and therefore
passed to the shading function by reference. Since the PTX instruction
set uses a load-store architecture, this means a store operation (into the
.global memory space) needs to be emitted after evaluating the multiply-
add expression. Therefore, the generated scalar PTX multiply-adds will
use temporary registers as destinations, since they cannot access memory
directly. Before generating the actual PTX instructions, the operand names
are generated for each component. A setup sequence is emitted for complex
operands that cannot be represented directly in a PTX instruction. Com-
ponent selection or swizzle are also handled at this point. The temporary
registers used for the memory write serve as the component names of
the destination operand o5.xyz, resulting in the following code pattern:

.reg .f32 tmpreg_10_x , tmpreg_10_y , tmpreg_10_z;
Evaluate multiply-add, store result in {tmpreg 10 x, tmpreg 10 y, tmpreg 10 z}
st .global .v2 .f32 [o5_xyz + 0], {tmpreg_10_x , tmpreg_10_y };
st .global .f32 [o5_xyz + 8], tmpreg_10_z;

As seen in the code listing, memory stores are coalesced into vector store
instructions to write 64 or 128 bits simultaneously when possible.

The operand component names for r0.wwww and r1.xyzx are simply derived
from their SSA names. Statically or dynamically indexed operands, such as
constant buffers, require an operand setup sequence, since only load instruc-
tions in PTX can reference memory addresses. The required address arith-
metic encoded in the operand also needs to be broken down into separate
instructions. As a result, the operand cb[0][r0.x + 6].xyzx requires a setup
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sequence. First the base address of the constant buffer cb0 is loaded into
a temporary register. Then, the index expression r0.x + 6 is evaluated by
translating the dynamic index operand r0.x to its SSA name, and emitting
an addition. Since Direct3D uses a 128 bit (4 32-bit components) granularity
for constant buffers and PTX uses byte addressing, the index expression
also needs to be scaled by 16, resulting in the following setup sequence:

.reg .u64 tmpreg_11;

.reg .u64 tmpreg_12;
cvt .u64 .s32 tmpreg_12 , r0_0_x;
.reg .u64 tmpreg_13;
add .u64 tmpreg_13 , tmpreg_12 , 0x6;
.reg .u64 tmpreg_14;
.reg .u64 tmpreg_15;
mov .u64 tmpreg_15 , cb0;
mul.lo .u64 tmpreg_14 , tmpreg_13 , 0x10;
add .u64 tmpreg_11 , tmpreg_15 , tmpreg_14;
.reg .f32 tmpreg_16_x , tmpreg_16_y , tmpreg_16_z , tmpreg_16_w;
ld .const .v4 .f32 {tmpreg_16_x , tmpreg_16_y , tmpreg_16_z ,

tmpreg_16_w}, [tmpreg_11 + 0];

Finally, the multiply-add instructions themselves are emitted. Since the write
mask disables the w component, only 3 scalar operations are performed.

mad.rn .ftz .f32 tmpreg_10_x , r0_1_w , tmpreg_16_x , r1_6_x;
mad.rn .ftz .f32 tmpreg_10_y , r0_1_w , tmpreg_16_y , r1_6_y;
mad.rn .ftz .f32 tmpreg_10_z , r0_1_w , tmpreg_16_z , r1_6_z;

These steps form the following combined PTX sequence for the Direct3D
instruction:

/* mad o5.xyz , r0.wwww , cb[0][r0.x + 6].xyzx , r1.xyzx */
.reg .f32 tmpreg_10_x , tmpreg_10_y , tmpreg_10_z;
.reg .u64 tmpreg_11;
.reg .u64 tmpreg_12;
cvt .u64 .s32 tmpreg_12 , r0_0_x;
.reg .u64 tmpreg_13;
add .u64 tmpreg_13 , tmpreg_12 , 0x6;
.reg .u64 tmpreg_14;
.reg .u64 tmpreg_15;
mov .u64 tmpreg_15 , cb0;
mul.lo .u64 tmpreg_14 , tmpreg_13 , 0x10;
add .u64 tmpreg_11 , tmpreg_15 , tmpreg_14;
.reg .f32 tmpreg_16_x , tmpreg_16_y , tmpreg_16_z , tmpreg_16_w;
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ld .const .v4 .f32 {tmpreg_16_x , tmpreg_16_y , tmpreg_16_z ,
tmpreg_16_w}, [tmpreg_11 + 0];

mad.rn .ftz .f32 tmpreg_10_x , r0_1_w , tmpreg_16_x , r1_6_x;
mad.rn .ftz .f32 tmpreg_10_y , r0_1_w , tmpreg_16_y , r1_6_y;
mad.rn .ftz .f32 tmpreg_10_z , r0_1_w , tmpreg_16_z , r1_6_z;
st .global .v2 .f32 [o5_xyz + 0], {tmpreg_10_x , tmpreg_10_y };
st .global .f32 [o5_xyz + 8], tmpreg_10_z;
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In the previous chapters, notable implementation details of the shader
translator have been discussed. This chapter focuses verifying the correct
translation of shaders to the CUDA platform. A testing environment has
been developed containing an application to execute translated shaders and
compare the result against a Direct3D-based reference implementation. It
also includes a rudimentary software renderer in order to execute pixel
shaders under same conditions as within Direct3D.

6.1. Test Environment

For shaders tested through execution, a reference platform is required. A
simple application using Direct3D to issue rendering calls and save the
shader output by using either a stream-output or render-to-texture is suffi-
cient. The result is a binary file containing shaded vertex data or an image
for each vertex or pixel shader, respectively. In the testbed, those generated
files are compared against the result of running the cross-compiled versions
of the same shader binaries using CUDA.

Automatic execution of translated shaders for efficient testing follows a set
of static testcase descriptions. Each test case contains a graphics pipeline
configuration together with the shaders used, as well as input vertex data
and required shader resource data, and the reference output. A shader
configuration referenced by one or more test cases also includes the shader’s
signature, which is required to set up the input parameters and run the
shader. Since the generated shaders do not form complete CUDA modules,
they are linked at runtime against a small compute kernel that retrieves the
parameters, packs them into vector objects and calls the shading function,
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then writes the results back to output buffer parameters. Parameter retrieval
depends on the shader signature, therefore a different piece of device code
is used for every unique combination of input and output signatures that
is referenced by a shader. It is possible to generate that code from the
shader signature descriptors for run-time compilation in case the number
of different signatures increases significantly. Currently, code generation is
not necessary here because the shader signatures are kept consistent across
the different test cases.

However, not all shaders are easily testable without replicating large parts
of the Direct3D graphics pipeline, which would go beyond the scope of
this work. For that reason, shader types other than vertex and pixel shaders
are currently not used for testing. In the unified shader models of newer
versions of the Direct3D API, a large part of the available features can be
tested using those types of shaders. The other types differ mostly in their
interface to the graphics pipeline, and are compiled but not executed for
testing.

A basic rasterizer has been implemented so that pixel shaders can be exe-
cuted and to render simple images in software. It uses a tile-based approach
with two levels, where the viewport is divided into 8 by 8 pixel tiles for a
coarse-grained coverage test on the CPU. If a tile contains pixels covered by
the triangle being rasterized, a CUDA kernel is launched with one thread
for each pixel in the tile. On the GPU side, a per-pixel test for inclusion
is performed using a top-left fill convention. The pixel shading function
of the translated shader is then called for all pixels inside the triangle. For
test configurations where no pixel shader is set, the vertex shader output
is simply downloaded from the CUDA device and compared against the
reference data. Otherwise, the rendered image is compared against the
result of the reference platform, and optionally displayed in the output
window.

6.2. Systematic Testing

The following functionality is tested by compiling and executing the shaders,
since they are ubiquitous in shader-based computer graphics applications:

48



6.2. Systematic Testing

• Vector and matrix arithmetic
• If-else, while, do-while and switch statements, including nested vari-

ants
• Bit-field manipulations
• Binary re-interpretation using the asuint and asfloat HLSL intrinsic

functions
• Half-precision variables
• Common mathematical functions (square root, exponentiation, loga-

rithm, trigonometry) and checking for infinity/NaN values
• Texture sampling, texel fetching and texture gather operations

Additionally, the following test cases are checked for successful compila-
tion:

• Read and write of system values which make use of call-back functions
as described in chapter 5

• Use of buffer and texture UAVs
• Some tessellation and geometry shaders

Implementing and using the testing infrastructure revealed some discrepan-
cies between the capabilities of Direct3D and CUDA. Despite being docu-
mented, independent texturing mode is not supported by the CUDA API at
the time of writing. This issue is currently avoided by resorting to unified
texturing mode, although it is not the exact equivalent of what Direct3D
uses. Similarly, depth textures cannot be used with comparison filtering. A
reference depth value can be specified in texturing instructions, but has no
effect at runtime. CUDA surface objects are functionally almost equivalent
to texture UAVs, but do not support all of their associated operations. Some
of the atomic operations that Direct3D permits on texture UAVs are not
accessible to programmers using CUDA surfaces and have therefore not
been implemented (on buffer UAVs, all atomic operations are supported).

When executing tests for the features listed above, the produced results have
been verified to be correct using the Direct3D-based reference application. In
case of shaders that could not be executed in the current testing environment,
translation was successful, and the generated code for the instructions tested
has been checked manually. Two infrequently used features of HLSL, double-
precision support and dynamic binding using interfaces, are not supported
yet.
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6.3. Test Renderings

In the previous section, an assortment of test cases have been used to verify
the correct translation at instruction level. Running the generated code in an
almost isolated way is rather unrelated to typical shader usage in graphics
pipelines. For this reason, some renderings of models have been produced
to test the integration of translated CUDA shaders in a rendering process.
Based on the rasterizer described before, the testing environment has been
extended with a simple software renderer. Using the existing facilities for
loading and executing CUDA kernels, a basic rendering pipeline is set up,
implementing programmable vertex and pixel stages. In combination with
the developed cross-compiler, Direct3D vertex and pixel shaders can be used
in the rendering process without the help of a graphics library. However,
a separate Direct3D-based renderer has been used to produce reference
images for comparing the obtained results.

6.3.1. Detailed Example

The complete process from translation to a rendered image is shown here at
the hands of a diffuse reflectance pixel shader. Listing 6.1 shows the HLSL
source code; the vertex shader has been omitted for brevity throughout this
example.
float4 main(PsInput input)
{

float4 output;
float4 albedo = DiffuseTexture.Sample(DiffuseSampler, input.texcoord);
float3 lightdir = LightPos.xyz - input.cameraSpacePosition.xyz;
float n_dot_l = dot(normalize(lightdir), normalize(input.normal.xyz));
output = albedo * saturate(n_dot_l) * LightColor;
output.xyz = saturate(output.xyz);
output.w = 1.0f;
return output;

}

Listing 6.1: HLSL pixel shader

Translation by the Direct3D HLSL compiler yields the following intermedi-
ate code, in disassembly view:
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ps_5_0
dcl_globalFlags refactoringAllowed
dcl_constantbuffer CB0[2], immediateIndexed
dcl_sampler s0, mode_default
dcl_resource_texture2d (float,float,float,float) t0
dcl_input_ps linear v1.xyz
dcl_input_ps linear v2.xyz
dcl_input_ps linear v3.xy
dcl_output o0.xyzw
dcl_temps 2
add r0.xyz, -v1.xyzx, cb0[0].xyzx
dp3 r0.w, r0.xyzx, r0.xyzx
rsq r0.w, r0.w
mul r0.xyz, r0.wwww, r0.xyzx
dp3 r0.w, v2.xyzx, v2.xyzx
rsq r0.w, r0.w
mul r1.xyz, r0.wwww, v2.xyzx
dp3_sat r0.x, r0.xyzx, r1.xyzx
sample_indexable(texture2d)(float,float,float,float) r0.yzw, v3.xyxx, t0.wxyz, s0
mul r0.xyz, r0.xxxx, r0.yzwy
mul_sat o0.xyz, r0.xyzx, cb0[1].xyzx
mov o0.w, l(1.000000)
ret

Listing 6.2: Pixel shader assembly

From the intermediate code, a shading function in PTX assembly is gen-
erated for rendering using CUDA. The pixel shader code is shown in
abbreviated form in listing 6.3, while the complete code can be found in
appendix C. In the pixel shader listing, usage of Direct3D textures and
samplers has been converted to use CUDA unified texturing mode in order
to circumvent the problems described in 4.2.2 and 5. Effectively, a texture
image and sampler parameters are set for a single CUDA texture object
which is then bound to a unified texture generated for that combination of
texture and sampler.
/* dcl_constantBuffer cb[0][2].xyzw, immediateIndexed */
.const .v4.b32 cb0[2];
/* dcl_resource t0, Texture2D, (float,float,float,float); dcl_sampler, s0, default (unified) */
.global .texref t0_s0;

.visible.func (.align 16 .param.b8 retval[16])
↪→ _ZN12pixel_shader5shadeER6float4RKS0_S3_S3_RK6float2 (.param.b64 o0_SV_TARGET0, .param.b64
↪→ v0_SV_POSITION0, .param.b64 v1_TEXCOORD0, .param.b64 v2_NORMAL0, .param.b64 v3_TEXCOORD1)

{
/* (...) */
/* add r0.xyz, -v1.xyzx, cb[0][0].xyzx */
.reg .u64 tmpreg_7, tmpreg_8, tmpreg_9;
mov.u64 tmpreg_9, cb0;
mul.lo.u64 tmpreg_8, 0x0, 0x10;
add.u64 tmpreg_7, tmpreg_9, tmpreg_8;
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.reg .f32 tmpreg_10_x, tmpreg_10_y, tmpreg_10_z, tmpreg_10_w;
ld.const.v4.f32 {tmpreg_10_x, tmpreg_10_y, tmpreg_10_z, tmpreg_10_w}, [tmpreg_7 + 0];
sub.ftz.f32 r0_0_x, tmpreg_10_x, v1_x;
sub.ftz.f32 r0_0_y, tmpreg_10_y, v1_y;
sub.ftz.f32 r0_0_z, tmpreg_10_z, v1_z;
/* (...) */
/* sample r0.yzw, v3.xyxx, t0.wxyz, s0 */
.reg .f32 tmpreg_11_x, tmpreg_11_y, tmpreg_11_z, tmpreg_11_w;
call.uni (tmpreg_11_x), d3dxc_dFdx_fine, (v3_x);
call.uni (tmpreg_11_y), d3dxc_dFdx_fine, (v3_y);
.reg .f32 tmpreg_12_x, tmpreg_12_y, tmpreg_12_z, tmpreg_12_w;
call.uni (tmpreg_12_x), d3dxc_dFdy_fine, (v3_x);
call.uni (tmpreg_12_y), d3dxc_dFdy_fine, (v3_y);
.reg .f32 tmpreg_13_x, tmpreg_13_y, tmpreg_13_z, tmpreg_13_w;
tex.grad.2d.v4.f32.f32 {tmpreg_13_x, tmpreg_13_y, tmpreg_13_z, tmpreg_13_w}, [t0_s0, {v3_x,
↪→ v3_y}], {tmpreg_11_x, tmpreg_11_y}, {tmpreg_12_x, tmpreg_12_y};

mov.f32 r0_2_y, tmpreg_13_x;
mov.f32 r0_2_z, tmpreg_13_y;
mov.f32 r0_4_w, tmpreg_13_z;
/* mul r0.xyz, r0.xxxx, r0.yzwy */
mul.ftz.f32 r0_3_x, r0_2_x, r0_2_y;
mul.ftz.f32 r0_3_y, r0_2_x, r0_2_z;
mul.ftz.f32 r0_3_z, r0_2_x, r0_4_w;
/* (...) */
ret;

}

Listing 6.3: Pixel shader PTX code (excerpt)

For interfacing with the other rendering code, a C++ header as shown in
listing 6.4 is generated together with the PTX code.

#include "shader_interface.h"

extern "C" {
static const uint32_t global_flags = GLOBAL_FLAG_REFACTORING_ALLOWED;
__constant__ unsigned char cb0[32];
extern texture<float4, cudaTextureType2D, cudaReadModeElementType> t0_s0;
static const unsigned int num_clip_distances = 0u;
static const unsigned int num_clip_distances = 0u;

}

struct pixel_shader
{
__device__ static float4 shade(float4&, const float4&, const float4&, const float4&, const
↪→ float2&);

};

Listing 6.4: C++ header for pixel shader

Using the generated PTX shader, the image in figure 6.1 has been ren-
dered.
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Figure 6.1.: An example using texturing and diffuse lighting

6.3.2. Other Renderings

A few other renderings have been produced to show practical usage of the
developed cross-compiler. Due to the simplified rendering pipeline of the
test environment, rather basic graphical effects had to be used.

The same test models have also been rendered using Direct3D with the same
settings and the source shaders of the examples. A 800 by 600 viewport
has been used in both cases. A visual comparison between the result of the
testing environment’s software renderer and the Direct3D implementation
is shown in figures 6.5, 6.6, 6.7 and 6.8.

Table 6.1 gives a summary of a comparison with the reference implemen-
tation. The relative error is computed per pixel and color channel as the
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Example Different
pixels

Total differ-
ence

Total relative
error

Avg. relative
error

Teapot (spec-
ular)

10 15 0.219742 0.0219742

Bunny (dif-
fuse)

17 51 0.398571 0.0234454

Cube (tex-
ture)

9 27 0.328611 0.0365123

Rock (nor-
mal map)

9424 18963 259.232 0.0275076

Table 6.1.: Summary of differences compared to the Direct3D-based reference implemen-
tation. Columns from left to right: Name, number of different pixels, sum of
intensity differences of all channels, sum of relative errors (difference divided by
pixel intensity) over all channels, relative error averaged over different pixels.

absolute value of the difference divided by the intensity of the reference
output. For the average relative error, that number is divided by the number
of different pixels. Total difference is simply the sum of all absolute differ-
ences over all channels and pixels. The remaining deviations are believed
to be due to numeric differences in the interpolation of pixel shader input
parameters between the software rasterizer and Direct3D.
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Figure 6.2.: A diffuse lighting example. Test model by Batty, (2001), a watertight version of
the ”Stanford Bunny”.
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Figure 6.3.: A specular lighting example. The version of the teapot model used was created
by Knowles, (2017).
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Figure 6.4.: Example using diffuse texture and normal map

(a) Result (b) Difference (c) Reference

Figure 6.5.: Comparison of specular lighting example with reference implementation
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(a) Result (b) Difference (c) Reference

Figure 6.6.: Comparison of diffuse lighting example with reference implementation

(a) Result (b) Difference (c) Reference

Figure 6.7.: Comparison of texturing example with reference implementation

(a) Result (b) Difference (c) Reference

Figure 6.8.: Comparison of texturing example with reference implementation
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7. Conclusion

A compiler for Direct3D intermediate code binaries to CUDA objects that
can be used in GPGPU-based software renderers has been developed. While
not all shader instructions are currently supported, it is possible to translate
shaders based on commonly used constructs. Using the generated code for
shading in a renderer has been shown to be feasible. Nonetheless, integration
of the work in concrete renderer implementations is required to use some of
the shader features, such as screen-space derivatives and other interactions
with fixed-function parts of the graphics pipeline. This chapter will point
out some possibilities for future work and improvements to the existing
tool.

By adding additional back-ends for other target languages, it would be
possible to extend the compiler for other GPGPU technologies or to enable
CPU-side software renderer support. Another possibility is re-purposing
the program as a shader compatibility tool by adding back-ends for shading
languages such as GLSL or SPIR-V. Extensions for other source languages are
in general outside the scope of this work. The internal code representation
mostly reflects the instruction set of Direct3D shader binaries, making the
suitability as a generic intermediate format uncertain. However, support for
shader models older than 4.0 is very likely representable using the current
instruction set, and possibly viable if backwards compatibility to earlier
versions of the Direct3D API becomes a concern.

The back-end could be enhanced with code instrumentation functionality as
well. This way, insertion of additional statements could form a foundation
for debugging and performance profiling tools for the software renderer
target platform. Debugging information is optionally supplied in shader
binaries. Using that data, generated code could be annotated to associate its
instructions or statements with the original HLSL source code.
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Currently, the code generators try to improve readability of the output
by using strongly typed declarations for temporary variables whenever
possible. For the C++ back-end, constant buffers are declared as variables
or data structures instead of a block of uninterpreted data, and generated
operands refer to constant buffers using those names instead of the offsets
used by the shader code. In case this effort is pursued further, a mechanism
to recognize common patterns in the binary code could be implemented to
make the result appear more similar to higher-level code written by humans.
For example, common vector and matrix operations usually generate the
same sequences of instructions, and would then be replaced with a more
familiar arithmetic expression form in C++.

Automatic simplification of shaders has been a research interest in the past.
A shader compiler that generates instances of the same shader at different
levels of detail has been developed by Olano, Kuehne, and Simmons, (2003).
Simplification based on transformation rules for an AST of a shader has
been implemented by Pellacini, (2005). Genetic programming also has been
successfully employed to simplify shaders by Sitthi-Amorn et al., (2011),
using an AST-based program representation as well. A similar system could
be implemented for Direct3D shader binaries, allowing simplifications to
be transparently applied to shaders of existing graphics applications as
well. Instead of the plain form, the already generated SSA representation of
shaders is likely a suitable basis for simplification algorithms.

In order to accelerate shading in a real-time rendering environment, caching
of partial evaluations of pixel shaders has been proposed (Guenter, Knoblock,
and Ruf, 1995). Another technique based on caching is reprojection (Nehab
et al., 2007; Sitthi-amorn et al., 2008), which make use of frame-to-frame
coherency to re-use results or partial results of earlier pixel shader eval-
uations. Future work could involve an extension to the existing program
which modifies shaders to store and load cache-able expression values.
Again, compiled HLSL shaders are suitable for this process even if the
shader source code is not available. The SSA representation is believed to
be helpful for identifying cache-able partial results, as each sub-expression
is assigned a unique name. Data dependencies can be detected using SSA
as well, making it easy to identify parts of the shader program which are
affected by caching values.
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Using such data dependency information, another useful optimization
can be performed automatically, where shaders are separated into partial
programs according to the frequency at which each part has to be computed.
For example, a pixel shader typically consists of both view-dependent and
view-independent parts that could be computed separately at different
frequencies. A similar optimization was done by Ragan-Kelley et al., (2007),
extracting the part of a surface shader independent of lighting to implement
a fast cache-based preview system for editing the lighting of a scene.
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Appendix A.

List of Abbreviations

ABI Application binary interface
API Application programming interface
AST Abstract syntax tree
CFG Control flow graph
DFS Depth-first search
GLSL OpenGL shading language
GPU Graphics processing unit
GPGPU General-purpose graphics processing unit
HLSL High-level shading language
MSSA Multisample anti-aliasing
PTX Portable thread execution
SPIR Standard portable intermediate representation
SSA Static single assignment
UAV Unordered access view
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Appendix B.

Direct3D Shader Instruction Set

B.1. Declarations

dcl constantBuffer
dcl function body
dcl function table
dcl globalFlags
dcl gs instance count
dcl hs fork phase instance count
dcl hs join phase instance count
dcl hs max tess factor
dcl immediateConstantBuffer
dcl indexableTemp
dcl indexRange
dcl input
dcl input control point count
dcl input sgv1

dcl input siv1

dcl input ps2

dcl input ps sgv2

dcl input ps siv2

dcl inputPrimitive
dcl interface
dcl interface dynamicIndexed
dcl maxOutputVertexCount
dcl output

dcl output control point count
dcl output sgv
dcl output siv
dcl outputTopology
dcl resource
dcl resource raw
dcl resource structured
dcl sampler
dcl stream
dcl temps
dcl tessellator domain
dcl tessellator output primitive
dcl tessellator partitioning
dcl tgsm raw
dcl tgsm structured
dcl thread group
dcl uav raw
dcl uav raw glc
dcl uav structured
dcl uav structured glc
dcl uav typed
dcl uav typed glc

1Documented as dcl input sv
2Undocumented
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B.2. Arithmetic and Bit Operations

Single Precision
exp

frc

log

rcp

rsq

sqrt

add

div

dp2

dp3

dp4

eq

ge

lt

max

min

mul

ne

mad

sincos

Double Precision
dadd

deq

dge

dlt

dmax

dmin

dmul

dne

dfma

Integer Arithmetic
iadd

ieq

ige

ilt

imad

imax

imin

imul

ine

ineg

uaddc

udiv

uge

ult

umad

umax

umin

umul

usubss

Bit Operations
bfrev

bfi

countbits

firstbit lo

firstbit hi

firstbit shi

not

and

ishl

ishr

or

ubfe

ushr

xor

Atomic Operations
atomic and

atomic cmp store

atomic iadd

atomic imax

atomic imin

atomic or

atomic umax

atomic umin

atomic xor

imm atomic alloc

imm atomic and

imm atomic cmp exch

imm atomic consume

imm atomic exch

imm atomic iadd

imm atomic imax

imm atomic imin

imm atomic or

imm atomic umax

imm atomic umin

imm atomic xor

B.3. Control Flow
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B.4. Data Move and Conversion

break

breakc

call

callc

case

continue

continuec

default

discard

else

endif

endloop

endswitch

fcall

if

label

loop

switch

ret

retc

nop

B.4. Data Move and Conversion

dmov3

mov

f16tof32

f32tof16

ftod3

ftoi

ftou

itof

utof

itod23

utod23

dtoi23

dtou23

dtof3

round ne

round ni

round pi

round z

dmovc3

movc

swapc

B.5. Memory Access

ld

ld raw

ld structured

ld uav typed

ld 2d ms

store raw

store structured

store uav typed

gather4

gather4 c

gather4 po

gather4 po c

sample

sample b

sample c

sample c lz

sample d

sample l

B.6. Domain-Specific and Miscellaneous

3Unimplemented
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deriv rtx

deriv rty

deriv rtx coarse

deriv rty coarse

deriv rtx fine

deriv rty fine

emit

emit stream

emit then cut

emit then cut stream

lod

resinfo

sampleinfo

samplepos

eval snapped23

eval at sample index23

eval at centroid23

abort2

debug break2

sync

hs control point phase

hs decls

hs fork phase

hs join phase

gather4 feedback23

gather4 c feedback23

gather4 po feedback23

gather4 po c feedback23

ld feedback23

ld ms feedback23

ld uav typed feedback23

ld raw feedback23

ld structured feedback23

sample l feedback23

sample c lz feedback23

sample clamp feedback23

sample b clamp feedback23

sample d clamp feedback23

sample c clamp feedback23

check access fully mapped23
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Appendix C.

Shader Translation Example

An example for translated code is shown in listing C.3. The HLSL source
code, as given by listing C.1, is the shader used for the specular lighting
example (figure 6.3). Listing C.2 shows the shader assembly code (signatures
and resource definitions omitted) generated by the HLSL compiler.

PsOut main(PsInput input)
{

PsOut output;
float4 albedo = DiffuseTexture.Sample(DiffuseSampler, input .texcoord) ;
float3 light dir = LightPos.xyz − input.cameraSpacePosition.xyz;
float n dot l = dot(normalize( light dir ) , normalize(input .normal.xyz)) ;
output. color = albedo ∗ saturate( n dot l ) ∗ LightColor ;
output. color .xyz = saturate(output. color .xyz) ;
output. color .w = 1.0f;
return output;

}

Listing C.1: A test shader written in HLSL

p s 5 0
d c l g l o b a l F l a g s r e f a c t o r i n g A l l o w e d
d c l c o n s t a n t b u f f e r CB0 [ 2 ] , i m m e d i a t e I n d e x e d
d c l s a m p l e r s0 , m o d e d e f a u l t
d c l r e s o u r c e t e x t u r e 2 d ( f l o a t , f l o a t , f l o a t , f l o a t ) t0
d c l i n p u t p s l i n e a r v1 . xyz
d c l i n p u t p s l i n e a r v2 . xyz
d c l i n p u t p s l i n e a r v3 . xy
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d c l o u t p u t o0 . xyzw
d c l t e m p s 2
add r0 . xyz , −v1 . xyzx , cb0 [ 0 ] . xyzx
dp3 r 0 . w, r0 . xyzx , r0 . xyzx
r s q r 0 . w, r0 .w
mul r0 . xyz , r0 .wwww, r 0 . xyzx
dp3 r 0 . w, v2 . xyzx , v2 . xyzx
r s q r 0 . w, r0 .w
mul r1 . xyz , r0 .wwww, v2 . xyzx
d p 3 s a t r0 . x , r0 . xyzx , r 1 . xyzx
s a m p l e i n d e x a b l e ( t e x t u r e 2 d ) ( f l o a t , f l o a t , f l o a t , f l o a t ) r0 . yzw ,
↪→ v3 . xyxx , t0 . wxyz , s0
mul r0 . xyz , r0 . xxxx , r 0 . yzwy
m u l s a t o0 . xyz , r 0 . xyzx , cb0 [ 1 ] . xyzx
mov o0 . w, l ( 1 . 0 0 0 0 0 0 )
r e t

Listing C.2: Direct3D assembly code generated by the HLSL compiler

.version 5.0

.target sm_50, texmode_unified

.address_size 64

/* dcl_constantBuffer cb[0][2].xyzw, immediateIndexed */
.const .v4.b32 cb0[2];

/* dcl_sampler, s0, default */
.const .u32 s0_cmpFunc;

/* dcl_resource t0, Texture2D, (float,float,float,float); dcl_sampler, s0, default (unified) */
.global .texref t0_s0;

.visible.func (.align 16 .param.b8 retval[16])
↪→ _ZN12pixel_shader5shadeER6float4RKS0_S3_S3_RK6float2 (.param.b64 o0_SV_TARGET0, .param.b64
↪→ v0_SV_POSITION0, .param.b64 v1_TEXCOORD0, .param.b64 v2_NORMAL0, .param.b64 v3_TEXCOORD1)

{
/* (...) */

/* add r0.xyz, -v1.xyzx, cb[0][0].xyzx */
.reg .u64 tmpreg_7, tmpreg_8, tmpreg_9;
mov.u64 tmpreg_9, cb0;
mul.lo.u64 tmpreg_8, 0x0, 0x10;
add.u64 tmpreg_7, tmpreg_9, tmpreg_8;
.reg .f32 tmpreg_10_x, tmpreg_10_y, tmpreg_10_z, tmpreg_10_w;
ld.const.v4.f32 {tmpreg_10_x, tmpreg_10_y, tmpreg_10_z, tmpreg_10_w}, [tmpreg_7 + 0];
sub.ftz.f32 r0_0_x, tmpreg_10_x, v1_x;
sub.ftz.f32 r0_0_y, tmpreg_10_y, v1_y;
sub.ftz.f32 r0_0_z, tmpreg_10_z, v1_z;
/* dp3 r0.w, r0.xyzx, r0.xyzx */
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mul.ftz.f32 r0_0_w, r0_0_x, r0_0_x;
mad.rn.ftz.f32 r0_0_w, r0_0_y, r0_0_y, r0_0_w;
mad.rn.ftz.f32 r0_0_w, r0_0_z, r0_0_z, r0_0_w;
/* rsq r0.w, r0.w */
rsqrt.approx.ftz.f32 r0_1_w, r0_0_w;
/* mul r0.xyz, r0.wwww, r0.xyzx */
mul.ftz.f32 r0_1_x, r0_1_w, r0_0_x;
mul.ftz.f32 r0_1_y, r0_1_w, r0_0_y;
mul.ftz.f32 r0_1_z, r0_1_w, r0_0_z;
/* dp3 r0.w, v2.xyzx, v2.xyzx */
mul.ftz.f32 r0_2_w, v2_x, v2_x;
mad.rn.ftz.f32 r0_2_w, v2_y, v2_y, r0_2_w;
mad.rn.ftz.f32 r0_2_w, v2_z, v2_z, r0_2_w;
/* rsq r0.w, r0.w */
rsqrt.approx.ftz.f32 r0_3_w, r0_2_w;
/* mul r1.xyz, r0.wwww, v2.xyzx */
mul.ftz.f32 r1_0_x, r0_3_w, v2_x;
mul.ftz.f32 r1_0_y, r0_3_w, v2_y;
mul.ftz.f32 r1_0_z, r0_3_w, v2_z;
/* dp3_sat r0.x, r0.xyzx, r1.xyzx */
mul.ftz.f32 r0_2_x, r0_1_x, r1_0_x;
mad.rn.ftz.f32 r0_2_x, r0_1_y, r1_0_y, r0_2_x;
mad.rn.ftz.sat.f32 r0_2_x, r0_1_z, r1_0_z, r0_2_x;
/* sample r0.yzw, v3.xyxx, t0.wxyz, s0 */
.reg .f32 tmpreg_11_x, tmpreg_11_y, tmpreg_11_z, tmpreg_11_w;
call.uni (tmpreg_11_x), d3dxc_dFdx_fine, (v3_x);
call.uni (tmpreg_11_y), d3dxc_dFdx_fine, (v3_y);
.reg .f32 tmpreg_12_x, tmpreg_12_y, tmpreg_12_z, tmpreg_12_w;
call.uni (tmpreg_12_x), d3dxc_dFdy_fine, (v3_x);
call.uni (tmpreg_12_y), d3dxc_dFdy_fine, (v3_y);
.reg .f32 tmpreg_13_x, tmpreg_13_y, tmpreg_13_z, tmpreg_13_w;
tex.grad.2d.v4.f32.f32 {tmpreg_13_x, tmpreg_13_y, tmpreg_13_z, tmpreg_13_w}, [t0_s0, {v3_x,
↪→ v3_y}], {tmpreg_11_x, tmpreg_11_y}, {tmpreg_12_x, tmpreg_12_y};

mov.f32 r0_2_y, tmpreg_13_x;
mov.f32 r0_2_z, tmpreg_13_y;
mov.f32 r0_4_w, tmpreg_13_z;
/* mul r0.xyz, r0.xxxx, r0.yzwy */
mul.ftz.f32 r0_3_x, r0_2_x, r0_2_y;
mul.ftz.f32 r0_3_y, r0_2_x, r0_2_z;
mul.ftz.f32 r0_3_z, r0_2_x, r0_4_w;
/* mul_sat o0.xyz, r0.xyzx, cb[0][1].xyzx */
.reg .f32 tmpreg_14_x, tmpreg_14_y, tmpreg_14_z;
.reg .u64 tmpreg_15, tmpreg_16, tmpreg_17;
mov.u64 tmpreg_17, cb0;
mul.lo.u64 tmpreg_16, 0x1, 0x10;
add.u64 tmpreg_15, tmpreg_17, tmpreg_16;
.reg .f32 tmpreg_18_x, tmpreg_18_y, tmpreg_18_z, tmpreg_18_w;
ld.const.v4.f32 {tmpreg_18_x, tmpreg_18_y, tmpreg_18_z, tmpreg_18_w}, [tmpreg_15 + 0];
mul.ftz.sat.f32 tmpreg_14_x, r0_3_x, tmpreg_18_x;
mul.ftz.sat.f32 tmpreg_14_y, r0_3_y, tmpreg_18_y;
mul.ftz.sat.f32 tmpreg_14_z, r0_3_z, tmpreg_18_z;
st.global.v2.f32 [o0_xyzw + 0], {tmpreg_14_x, tmpreg_14_y};
st.global.f32 [o0_xyzw + 8], tmpreg_14_z;
/* mov o0.w, l(0x3f800000) */
.reg .f32 tmpreg_19_w;
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mov.f32 tmpreg_19_w, 1.00000;
st.global.f32 [o0_xyzw + 12], tmpreg_19_w;
/* ret */
.reg .f32 tmpreg_20_x, tmpreg_20_y, tmpreg_20_z, tmpreg_20_w;
ld.global.v4.f32 {tmpreg_20_x, tmpreg_20_y, tmpreg_20_z, tmpreg_20_w}, [o0_xyzw + 0];
st.param.v4.f32 [retval + 0], {tmpreg_20_x, tmpreg_20_y, tmpreg_20_z, tmpreg_20_w};
ret;

}

Listing C.3: Generated PTX code. Declarations of temporary registers and parameter
retrieval code have been omitted.
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#include "shader_interface.h"

extern "C" {
static const uint32_t global_flags =

GLOBAL_FLAG_REFACTORING_ALLOWED;
__constant__ unsigned char cb0 [32];
extern texture <float4 , cudaTextureType2D ,

cudaReadModeElementType > t0_s0;
static const unsigned int num_clip_distances = 0u;
static const unsigned int num_clip_distances = 0u;

}

struct pixel_shader
{

__device__ static float4 shade(float4&, const float4&,
const float4&, const float4&, const float2 &);

};

Listing C.4: Generated C++ interface for the PTX code

75





Bibliography

Aho, Alfred V. et al. (2007). Compilers: Principles, Techniques and Tools. 2nd
edition. Addison-Wesley. isbn: 0-321-48681-1 (cit. on pp. 27, 40).

Akeley, K. et al. (2002). ARB vertex program. url: https://www.khronos.
org/registry/OpenGL/extensions/ARB/ARB%5C vertex%5C program.txt
(visited on 04/24/2017) (cit. on p. 3).

Batty, Christopher (2001). url: https : / / cs . uwaterloo . ca /∼c2batty /
bunny watertight.obj (visited on 09/17/2017) (cit. on p. 55).

Beretta, B. et al. (2013). ARB fragment program. url: https://www.khronos.
org/registry/OpenGL/extensions/ARB/ARB%5C fragment%5C program.
txt (visited on 04/24/2017) (cit. on p. 3).

Blythe, David (2006). “The Direct3D 10 System.” In: ACM SIGGRAPH 2006
Papers. SIGGRAPH ’06. Boston, Massachusetts: ACM, pp. 724–734. isbn:
1-59593-364-6. doi: 10.1145/1179352.1141947. url: http://doi.acm.
org/10.1145/1179352.1141947 (cit. on p. 1).

Buck, Ian et al. (2004). “Brook for GPUs: Stream Computing on Graphics
Hardware.” In: ACM SIGGRAPH 2004 Papers. SIGGRAPH ’04. Los Ange-
les, California: ACM, pp. 777–786. doi: 10.1145/1186562.1015800. url:
http://doi.acm.org/10.1145/1186562.1015800 (cit. on p. 13).

CodeSourcery et al. (2017). Itanium C++ ABI (Revision: 1.86). url: http:
//refspecs.linux- foundation.org/cxxabi- 1.86.html (visited on
04/23/2017) (cit. on p. 38).

Cook, Robert L. (1984). “Shade Trees.” In: SIGGRAPH Comput. Graph. 18.3,
pp. 223–231. issn: 0097-8930. doi: 10.1145/964965.808602. url: http:
//doi.acm.org/10.1145/964965.808602 (cit. on p. 13).

Cooper, Keith D., Timothy J. Harvey, and Ken Kennedy (2001). “A Simple,
Fast Dominance Algorithm.” In: Software: Practice and Experience 4, pp. 1–
10. url: http://www.hipersoft.rice.edu/grads/publications/dom14.
pdf (cit. on p. 32).

77

https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB%5C_vertex%5C_program.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB%5C_vertex%5C_program.txt
https://cs.uwaterloo.ca/~c2batty/bunny_watertight.obj
https://cs.uwaterloo.ca/~c2batty/bunny_watertight.obj
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB%5C_fragment%5C_program.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB%5C_fragment%5C_program.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB%5C_fragment%5C_program.txt
http://dx.doi.org/10.1145/1179352.1141947
http://doi.acm.org/10.1145/1179352.1141947
http://doi.acm.org/10.1145/1179352.1141947
http://dx.doi.org/10.1145/1186562.1015800
http://doi.acm.org/10.1145/1186562.1015800
http://refspecs.linux-foundation.org/cxxabi-1.86.html
http://refspecs.linux-foundation.org/cxxabi-1.86.html
http://dx.doi.org/10.1145/964965.808602
http://doi.acm.org/10.1145/964965.808602
http://doi.acm.org/10.1145/964965.808602
http://www.hipersoft.rice.edu/grads/publications/dom14.pdf
http://www.hipersoft.rice.edu/grads/publications/dom14.pdf


Bibliography

Cytron, Ron et al. (1991). “Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph.” In: ACM Trans. Program.
Lang. Syst. 13.4, pp. 451–490. issn: 0164-0925. doi: 10.1145/115372.
115320. url: http://doi.acm.org/10.1145/115372.115320 (cit. on
p. 32).

Duca, Nathaniel et al. (2005). “A Relational Debugging Engine for the
Graphics Pipeline.” In: ACM Trans. Graph. 24.3, pp. 453–463. issn: 0730-
0301. doi: 10.1145/1073204.1073213. url: http://doi.acm.org/10.
1145/1073204.1073213 (cit. on p. 14).

Elliott, Conal (2004). “Programming Graphics Processors Functionally.”
In: Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell. Haskell
’04. Snowbird, Utah, USA: ACM, pp. 45–56. isbn: 1-58113-850-4. doi:
10.1145/1017472.1017482. url: http://doi.acm.org/10.1145/1017472.
1017482 (cit. on p. 13).

Epic Games, Inc. (2017). HLSL Cross Compiler — Unreal Engine. url: https://
docs.unrealengine.com/latest/INT/Programming/Rendering/ShaderDevelopment/
HLSLCrossCompiler/ (visited on 05/07/2017) (cit. on p. 12).

Foley, Timothy John (2012). “Spark: Modular, Composable Shaders for
Graphics Hardware.” PhD thesis. Stanford University. url: http://
purl.stanford.edu/wz483vv5440 (cit. on p. 12).

Gritz, Larry (2016). Open Shading Language 1.7 Language Specification. url:
https://github.com/imageworks/OpenShadingLanguage/raw/master/
src/doc/osl-languagespec.pdf (visited on 06/05/2017) (cit. on p. 3).

Guenter, Brian, Todd B. Knoblock, and Erik Ruf (1995). “Specializing
Shaders.” In: Proceedings of the 22Nd Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’95. New York, NY, USA:
ACM, pp. 343–350. isbn: 0-89791-701-4. doi: 10.1145/218380.218470.
url: http://doi.acm.org/10.1145/218380.218470 (cit. on p. 60).

Hanrahan, Pat and Jim Lawson (1990). “A Language for Shading and
Lighting Calculations.” In: SIGGRAPH Comput. Graph. 24.4, pp. 289–298.
issn: 0097-8930. doi: 10.1145/97880.97911. url: http://doi.acm.org/
10.1145/97880.97911 (cit. on p. 3).

Houston, Mike and Christopher Cameron (2010). cl khr d3d10 sharing. url:
https://www.khronos.org/registry/OpenCL/extensions/khr/cl khr
d3d10 sharing.txt (visited on 05/22/2017) (cit. on p. 1).

Jensen, Peter Dahl Ejby et al. (2007). “Interactive Shader Development.”
In: Proceedings of the 2007 ACM SIGGRAPH Symposium on Video Games.

78

http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320
http://dx.doi.org/10.1145/1073204.1073213
http://doi.acm.org/10.1145/1073204.1073213
http://doi.acm.org/10.1145/1073204.1073213
http://dx.doi.org/10.1145/1017472.1017482
http://doi.acm.org/10.1145/1017472.1017482
http://doi.acm.org/10.1145/1017472.1017482
https://docs.unrealengine.com/latest/INT/Programming/Rendering/ShaderDevelopment/HLSLCrossCompiler/
https://docs.unrealengine.com/latest/INT/Programming/Rendering/ShaderDevelopment/HLSLCrossCompiler/
https://docs.unrealengine.com/latest/INT/Programming/Rendering/ShaderDevelopment/HLSLCrossCompiler/
http://purl.stanford.edu/wz483vv5440
http://purl.stanford.edu/wz483vv5440
https://github.com/imageworks/OpenShadingLanguage/raw/master/src/doc/osl-languagespec.pdf
https://github.com/imageworks/OpenShadingLanguage/raw/master/src/doc/osl-languagespec.pdf
http://dx.doi.org/10.1145/218380.218470
http://doi.acm.org/10.1145/218380.218470
http://dx.doi.org/10.1145/97880.97911
http://doi.acm.org/10.1145/97880.97911
http://doi.acm.org/10.1145/97880.97911
https://www.khronos.org/registry/OpenCL/extensions/khr/cl_khr_d3d10_sharing.txt
https://www.khronos.org/registry/OpenCL/extensions/khr/cl_khr_d3d10_sharing.txt


Bibliography

Sandbox ’07. San Diego, California: ACM, pp. 89–95. isbn: 978-1-59593-
749-0. doi: 10.1145/1274940.1274959. url: http://doi.acm.org/10.
1145/1274940.1274959 (cit. on p. 13).

Julliard, Alexandre et al. (2017). WINE. Version 2.0.1. url: https://www.
winehq.org/ (cit. on p. 12).

Kessenich, John, Dave Baldwin, and Randi Rost (2016). The OpenGL Shading
Language. url: https://www.khronos.org/registry/OpenGL/specs/gl/
GLSLangSpec.4.50.pdf (visited on 05/30/2017) (cit. on p. 3).

Kessenich, John, Boaz Ourial, and Raun Krisch (2017). SPIR-V Specification.
url: https://www.khronos.org/registry/spir-v/specs/1.2/SPIRV.
pdf (visited on 05/30/2017) (cit. on p. 3).

Knowles, Pyarelal (2017). url: http://goanna.cs.rmit.edu.au/∼pknowles/
models/wt teapot.obj (visited on 09/17/2017) (cit. on p. 56).

Laine, Samuli and Tero Karras (2011). “High-performance Software Ras-
terization on GPUs.” In: Proceedings of the ACM SIGGRAPH Symposium
on High Performance Graphics. HPG ’11. Vancouver, British Columbia,
Canada: ACM, pp. 79–88. isbn: 978-1-4503-0896-0. doi: 10.1145/2018323.
2018337. url: http://doi.acm.org/10.1145/2018323.2018337 (cit. on
p. 14).

Liu, Fang et al. (2010). “FreePipe: A Programmable Parallel Rendering
Architecture for Efficient Multi-fragment Effects.” In: Proceedings of the
2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games.
I3D ’10. Washington, D.C.: ACM, pp. 75–82. isbn: 978-1-60558-939-8. doi:
10.1145/1730804.1730817. url: http://doi.acm.org/10.1145/1730804.
1730817 (cit. on p. 14).

Mark, William R., R. Steven Glanville, et al. (2003). “Cg: A System for
Programming Graphics Hardware in a C-like Language.” In: ACM Trans.
Graph. 22.3, pp. 896–907. issn: 0730-0301. doi: 10.1145/882262.882362.
url: http://doi.acm.org/10.1145/882262.882362 (cit. on pp. 3, 11).

Mark, William R. and Kekoa Proudfoot (2001). “Compiling to a VLIW Frag-
ment Pipeline.” In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardware. HWWS ’01. Los Angeles, California, USA:
ACM, pp. 47–56. isbn: 1-58113-407-X. doi: 10.1145/383507.383526. url:
http://doi.acm.org/10.1145/383507.383526 (cit. on p. 11).

McCool, Michael D., Zheng Qin, and Tiberiu S. Popa (2002). “Shader
Metaprogramming.” In: Proceedings of the ACM SIGGRAPH/EUROGRAPH-
ICS Conference on Graphics Hardware. HWWS ’02. Saarbrucken, Germany:

79

http://dx.doi.org/10.1145/1274940.1274959
http://doi.acm.org/10.1145/1274940.1274959
http://doi.acm.org/10.1145/1274940.1274959
https://www.winehq.org/
https://www.winehq.org/
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.50.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.50.pdf
https://www.khronos.org/registry/spir-v/specs/1.2/SPIRV.pdf
https://www.khronos.org/registry/spir-v/specs/1.2/SPIRV.pdf
http://goanna.cs.rmit.edu.au/~pknowles/models/wt_teapot.obj
http://goanna.cs.rmit.edu.au/~pknowles/models/wt_teapot.obj
http://dx.doi.org/10.1145/2018323.2018337
http://dx.doi.org/10.1145/2018323.2018337
http://doi.acm.org/10.1145/2018323.2018337
http://dx.doi.org/10.1145/1730804.1730817
http://doi.acm.org/10.1145/1730804.1730817
http://doi.acm.org/10.1145/1730804.1730817
http://dx.doi.org/10.1145/882262.882362
http://doi.acm.org/10.1145/882262.882362
http://dx.doi.org/10.1145/383507.383526
http://doi.acm.org/10.1145/383507.383526


Bibliography

Eurographics Association, pp. 57–68. isbn: 1-58113-580-7. url: http:
//dl.acm.org/citation.cfm?id=569046.569055 (cit. on p. 13).

McCool, Michael et al. (2004). “Shader Algebra.” In: ACM Trans. Graph.
23.3, pp. 787–795. issn: 0730-0301. doi: 10.1145/1015706.1015801. url:
http://doi.acm.org/10.1145/1015706.1015801 (cit. on p. 13).

McGuire, Morgan et al. (2006). “Abstract Shade Trees.” In: Proceedings of the
2006 Symposium on Interactive 3D Graphics and Games. I3D ’06. Redwood
City, California: ACM, pp. 79–86. isbn: 1-59593-295-X. doi: 10.1145/
1111411.1111425. url: http://doi.acm.org/10.1145/1111411.1111425
(cit. on p. 13).

Microsoft Corporation (2017). Shader Model 5 Assembly. url: https://msdn.
microsoft.com/en-us/library/windows/desktop/hh447232.aspx (vis-
ited on 05/30/2017) (cit. on p. 16).

Microsoft Corporation (2018). Graphics Pipeline (Windows). url: https://
msdn.microsoft.com/en-us/library/windows/desktop/ff476882(v=vs.
85).aspx (visited on 01/18/2018) (cit. on p. 7).

Mycroft, Alan (1999). “Type-Based Decompilation (or Program Reconstruc-
tion via Type Reconstruction).” In: Proceedings of the 8th European Sympo-
sium on Programming Languages and Systems. ESOP ’99. London, UK, UK:
Springer-Verlag, pp. 208–223. isbn: 3-540-65699-5. url: http://dl.acm.
org/citation.cfm?id=645393.651886 (cit. on p. 32).

Nehab, Diego et al. (2007). “Accelerating Real-time Shading with Reverse
Reprojection Caching.” In: Proceedings of the 22Nd ACM SIGGRAPH/EU-
ROGRAPHICS Symposium on Graphics Hardware. GH ’07. San Diego,
California: Eurographics Association, pp. 25–35. isbn: 978-1-59593-625-7.
url: http://dl.acm.org/citation.cfm?id=1280094.1280098 (cit. on
p. 60).

Ni, Tianyun et al. (2009). “Efficient Substitutes for Subdivision Surfaces.” In:
ACM SIGGRAPH 2009 Courses. SIGGRAPH ’09. New Orleans, Louisiana:
ACM, 13:1–13:107. doi: 10.1145/1667239.1667252. url: http://doi.
acm.org/10.1145/1667239.1667252 (cit. on p. 20).

NVIDIA Corporation (2017a). CUDA Driver API :: CUDA Toolkit Documenta-
tion. url: http://docs.nvidia.com/cuda/cuda-driver-api/group%5C %
5C CUDA%5C %5C GRAPHICS.html#group%5C %5C CUDA%5C %5C GRAPHICS
(visited on 05/30/2017) (cit. on p. 1).

NVIDIA Corporation (2017b). NVCC :: CUDA Toolkit Documentation. url:
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.

80

http://dl.acm.org/citation.cfm?id=569046.569055
http://dl.acm.org/citation.cfm?id=569046.569055
http://dx.doi.org/10.1145/1015706.1015801
http://doi.acm.org/10.1145/1015706.1015801
http://dx.doi.org/10.1145/1111411.1111425
http://dx.doi.org/10.1145/1111411.1111425
http://doi.acm.org/10.1145/1111411.1111425
https://msdn.microsoft.com/en-us/library/windows/desktop/hh447232.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh447232.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476882(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476882(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476882(v=vs.85).aspx
http://dl.acm.org/citation.cfm?id=645393.651886
http://dl.acm.org/citation.cfm?id=645393.651886
http://dl.acm.org/citation.cfm?id=1280094.1280098
http://dx.doi.org/10.1145/1667239.1667252
http://doi.acm.org/10.1145/1667239.1667252
http://doi.acm.org/10.1145/1667239.1667252
http://docs.nvidia.com/cuda/cuda-driver-api/group%5C_%5C_CUDA%5C_%5C_GRAPHICS.html#group%5C_%5C_CUDA%5C_%5C_GRAPHICS
http://docs.nvidia.com/cuda/cuda-driver-api/group%5C_%5C_CUDA%5C_%5C_GRAPHICS.html#group%5C_%5C_CUDA%5C_%5C_GRAPHICS
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html%5C#cuda-compilation-trajectory
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html%5C#cuda-compilation-trajectory
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html%5C#cuda-compilation-trajectory


Bibliography

html%5C#cuda-compilation-trajectory (visited on 05/30/2017) (cit. on
p. 5).

NVIDIA Corporation (2017c). NVRTC (Runtime Compilation) :: CUDA Toolkit
Documentation. url: http://docs.nvidia.com/cuda/nvrtc/index.html
(visited on 05/30/2017) (cit. on p. 5).

NVIDIA Corporation (2017d). NVVM IR :: CUDA Toolkit Documentation. url:
http://docs.nvidia.com/cuda/nvvm-ir-spec/index.html (visited on
05/30/2017) (cit. on p. 9).

NVIDIA Corporation (2017e). PTX ISA :: CUDA Toolkit Documentation. url:
http://docs.nvidia.com/cuda/parallel-thread-execution/ (visited
on 01/22/2018) (cit. on p. 5).

Olano, Marc, Bob Kuehne, and Maryann Simmons (2003). “Automatic
Shader Level of Detail.” In: Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS Conference on Graphics Hardware. HWWS ’03. San Diego,
California: Eurographics Association, pp. 7–14. isbn: 1-58113-739-7. url:
http://dl.acm.org/citation.cfm?id=844174.844176 (cit. on p. 60).

Olano, Marc and Anselmo Lastra (1998). “A Shading Language on Graph-
ics Hardware: The Pixelflow Shading System.” In: Proceedings of the
25th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’98. New York, NY, USA: ACM, pp. 159–168. isbn: 0-89791-
999-8. doi: 10.1145/280814.280857. url: http://doi.acm.org/10.1145/
280814.280857 (cit. on p. 12).

Patney, Anjul et al. (2015). “Piko: A Framework for Authoring Programmable
Graphics Pipelines.” In: ACM Trans. Graph. 34.4, 147:1–147:13. issn: 0730-
0301. doi: 10.1145/2766973. url: http://doi.acm.org/10.1145/2766973
(cit. on p. 14).

Peercy, Mark S. et al. (2000). “Interactive Multi-pass Programmable Shad-
ing.” In: Proceedings of the 27th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’00. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., pp. 425–432. isbn: 1-58113-208-5.
doi: 10.1145/344779.344976. url: http://dx.doi.org/10.1145/344779.
344976 (cit. on p. 12).

Pellacini, Fabio (2005). “User-configurable Automatic Shader Simplification.”
In: ACM Trans. Graph. 24.3, pp. 445–452. issn: 0730-0301. doi: 10.1145/
1073204.1073212. url: http://doi.acm.org/10.1145/1073204.1073212
(cit. on p. 60).

81

http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html%5C#cuda-compilation-trajectory
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html%5C#cuda-compilation-trajectory
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html%5C#cuda-compilation-trajectory
http://docs.nvidia.com/cuda/nvrtc/index.html
http://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/
http://dl.acm.org/citation.cfm?id=844174.844176
http://dx.doi.org/10.1145/280814.280857
http://doi.acm.org/10.1145/280814.280857
http://doi.acm.org/10.1145/280814.280857
http://dx.doi.org/10.1145/2766973
http://doi.acm.org/10.1145/2766973
http://dx.doi.org/10.1145/344779.344976
http://dx.doi.org/10.1145/344779.344976
http://dx.doi.org/10.1145/344779.344976
http://dx.doi.org/10.1145/1073204.1073212
http://dx.doi.org/10.1145/1073204.1073212
http://doi.acm.org/10.1145/1073204.1073212


Bibliography

Proudfoot, Kekoa et al. (2001). “A Real-time Procedural Shading System for
Programmable Graphics Hardware.” In: Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH
’01. New York, NY, USA: ACM, pp. 159–170. isbn: 1-58113-374-X. doi:
10.1145/383259.383275. url: http://doi.acm.org/10.1145/383259.
383275 (cit. on p. 11).

Ragan-Kelley, Jonathan et al. (2007). “The Lightspeed Automatic Interactive
Lighting Preview System.” In: ACM SIGGRAPH 2007 Papers. SIGGRAPH
’07. San Diego, California: ACM. doi: 10.1145/1275808.1276409. url:
http://doi.acm.org/10.1145/1275808.1276409 (cit. on p. 61).

Rhodin, Helge (2010). “A PTX Code Generator for LLVM.” Bachelor’s Thesis.
Saarland University (cit. on p. 13).

Robbins, Ed, Andy King, and Tom Schrijvers (2016). “From MinX to MinC:
Semantics-driven Decompilation of Recursive Datatypes.” In: Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’16. St. Petersburg, FL, USA: ACM,
pp. 191–203. isbn: 978-1-4503-3549-2. doi: 10.1145/2837614.2837633.
url: http://doi.acm.org/10.1145/2837614.2837633 (cit. on p. 34).

Segal, Mark and Kurt Akeley (2016). The OpenGL Graphics System: A Specifica-
tion. url: https://khronos.org/registry/OpenGL/specs/gl/glspec45.
core.pdf (visited on 05/30/2017) (cit. on p. 3).

Sharif, Ahmad and Hsien-Hsin S. Lee (2008). “Total Recall: A Debugging
Framework for GPUs.” In: Proceedings of the 23rd ACM SIGGRAPH/EU-
ROGRAPHICS Symposium on Graphics Hardware. GH ’08. Sarajevo, Bosnia
and Herzegovina: Eurographics Association, pp. 13–20. isbn: 978-3-
905674-09-5. url: http://dl.acm.org/citation.cfm?id=1413957.
1413960 (cit. on p. 14).

Sitthi-Amorn, Pitchaya et al. (2011). “Genetic Programming for Shader
Simplification.” In: ACM Trans. Graph. 30.6, 152:1–152:12. issn: 0730-0301.
doi: 10.1145/2070781.2024186. url: http://doi.acm.org/10.1145/
2070781.2024186 (cit. on p. 60).

Sitthi-amorn, Pitchaya et al. (2008). “Automated Reprojection-based Pixel
Shader Optimization.” In: ACM SIGGRAPH Asia 2008 Papers. SIG-
GRAPH Asia ’08. Singapore: ACM, 127:1–127:11. isbn: 978-1-4503-1831-0.
doi: 10.1145/1457515.1409080. url: http://doi.acm.org/10.1145/
1457515.1409080 (cit. on p. 60).

82

http://dx.doi.org/10.1145/383259.383275
http://doi.acm.org/10.1145/383259.383275
http://doi.acm.org/10.1145/383259.383275
http://dx.doi.org/10.1145/1275808.1276409
http://doi.acm.org/10.1145/1275808.1276409
http://dx.doi.org/10.1145/2837614.2837633
http://doi.acm.org/10.1145/2837614.2837633
https://khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
https://khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
http://dl.acm.org/citation.cfm?id=1413957.1413960
http://dl.acm.org/citation.cfm?id=1413957.1413960
http://dx.doi.org/10.1145/2070781.2024186
http://doi.acm.org/10.1145/2070781.2024186
http://doi.acm.org/10.1145/2070781.2024186
http://dx.doi.org/10.1145/1457515.1409080
http://doi.acm.org/10.1145/1457515.1409080
http://doi.acm.org/10.1145/1457515.1409080


Bibliography

Strengert, Magnus, Thomas Klein, and Thomas Ertl (2007). “A Hardware-
aware Debugger for the OpenGL Shading Language.” In: Proceedings
of the 22Nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics
Hardware. GH ’07. San Diego, California: Eurographics Association,
pp. 81–88. isbn: 978-1-59593-625-7. url: http://dl.acm.org/citation.
cfm?id=1280094.1280108 (cit. on p. 14).

The Khronos Group (2010). cl khr gl sharing. url: https://www.khronos.
org/registry/OpenCL/extensions/khr/cl khr gl sharing.txt (visited
on 05/22/2017) (cit. on p. 1).

The Khronos Vulkan Working Group (2017). Vulkan 1.0.50 - A Specification.
url: https://www.khronos.org/registry/vulkan/specs/1.0/pdf/
vkspec.pdf (visited on 05/30/2017) (cit. on p. 3).

Unity Technologies (2017). Unity - Manual: Shading Language used in Unity.
url: https://docs.unity3d.com/Manual/SL-ShadingLanguage.html
(visited on 05/07/2017) (cit. on p. 12).

Wu, Jingyue et al. (2016). “Gpucc: An Open-source GPGPU Compiler.”
In: Proceedings of the 2016 International Symposium on Code Generation
and Optimization. CGO 2016. Barcelona, Spain: ACM, pp. 105–116. isbn:
978-1-4503-3778-6. doi: 10.1145/2854038.2854041. url: http://doi.
acm.org/10.1145/2854038.2854041 (cit. on p. 13).

83

http://dl.acm.org/citation.cfm?id=1280094.1280108
http://dl.acm.org/citation.cfm?id=1280094.1280108
https://www.khronos.org/registry/OpenCL/extensions/khr/cl_khr_gl_sharing.txt
https://www.khronos.org/registry/OpenCL/extensions/khr/cl_khr_gl_sharing.txt
https://www.khronos.org/registry/vulkan/specs/1.0/pdf/vkspec.pdf
https://www.khronos.org/registry/vulkan/specs/1.0/pdf/vkspec.pdf
https://docs.unity3d.com/Manual/SL-ShadingLanguage.html
http://dx.doi.org/10.1145/2854038.2854041
http://doi.acm.org/10.1145/2854038.2854041
http://doi.acm.org/10.1145/2854038.2854041

