

Doris Feiertag, BSc

Evolution der Flechtengattung *Trapeliopsis (Trapeliaceae)*

MASTERARBEIT

zur Erlangung des akademischen Gradeses Master of Science

 $Masterstudium\ Pflanzenwissenschaften$

eingereicht an der

Technischen Universität Graz

Betreuer Ao.Univ.-Prof. Mag. Dr.rer.nat. Martin Grube Institut für Biologie

Zweitbetreuer Mag. Dr.rer.nat. Bakk.rer.nat. Philipp Resl Institut für Biologie

Graz, August 2018

Inhaltsverzeichnis

Danksagung	4
1. Zusammenfassung	6
Abbildungsverzeichnis	7
Tabellenverzeichnis	7
Abkürzungsverzeichnis	8
2. Einleitung	9
2.1 Allgemeines zu Flechten	9
2.2 Systematik der Flechtengattung Trapeliopsis	
2.3. Kurzcharakterisierung der untersuchten Arten	
2.4 Molekulare Marker	
2.5 Phylogenetische Stammbaumberechnungen	
2.6 Sekundärmetabolite in Flechten	
3. Material und Methoden	
3.1 Belegmaterial	
3.2 Morphologische Untersuchungen	
3.3 Präparation und Isolation genomischer DNA	
3.4 Auswahl geeigneter Primer für PCR	
3.4.1 Primerdesign	
3.5 Polymerase Kettenreaktion (PCR)	
3.5.1 Konzentrationsbestimmung von Nukleinsäuren	
3.5.2 Agarosegel- Elektrophorese	
3.6 Sequenzierung	
3.6.1 Überprüfung der gewonnenen Daten	
3.7 Phylogenetische Analysen	
3.7.1 Sequenzalignments	
3.7.2 Die Auswahl eines geeigneten Substitutionsmodells	
3.7.3 Berechnung der Stammbäume	
3.7.4 Maximum Likelihood Methode (ML)	
3.7.5 Bootstrapping	
3.8 Analytische Methoden	
3.8.1 Dünnschichtchromatographie (TLC)	
3.8.2 Tüpfelanalyse	

4. Ergebnisse	36
4.1 Ergebnisse der PCR	36
4.2 Ergebnisse der phylogenetischen Analysen	37
4.3 Ergebnisse der Dünnschichtchromatographie (TLC)	57
5. Diskussion	61
5.1. Morphologische Untersuchungen	61
5.2. Präparation und Isolation genomischer DNA	62
5.3. Phylogenetische Analysen	63
5.4. Dünnschichtchromatographie (TLC)	64
5.5. Tüpfelanalyse	65
5.6. Schlussbemerkungen	66
6. Literaturverzeichnis	67
7. Anhang	73

Danksagung

An dieser Stelle möchte ich mich bei all jenen bedanken, die durch ihre fachliche und persönliche Unterstützung zum Gelingen dieser Masterarbeit beigetragen haben.

An erster Stelle bedanke ich mich bei meinem Betreuer Ao.Univ.-Prof. Mag. Dr.rer.nat. Martin Grube, der mich mit seiner kreativen Art zu lehren inspiriert und mich mit fachlicher Kompetenz und mentaler Unterstützung durch diese Arbeit begleitet hat.

Mein besonderer Dank gilt auch meinem Zweitbetreuer Mag. Dr.rer.nat. Bakk.rer.nat. Philipp Resl für seine Hilfsbereitschaft und Motivation.

Weiters bedanke ich mich bei Mag.rer.nat. Theodora Gößler ("Dorli") und Mag.rer.nat. Ing. Sigrun Kraker ("Sigrun") für die praktische und mentale Unterstützung und kompetente Betreuung im Labor.

Für die, zur Verfügung gestellten Sequenzen von Dr. Samantha Fernández-Brime, Kevin Schneider, MSc. und Philipp Resl, möchte ich mich ebenfalls herzlich bedanken.

Bedanken möchte ich mich auch bei Ass.-Prof. Mag. Dr. phil. Walter Obermayer für seine fachliche Beratung und Hilfe.

Ein spezieller Dank ergeht an Dr. Fernando Fernández Mendoza, der jederzeit für eine kompetente Auskunft und aufmunternde Worte zur Verfügung stand.

Dankend erwähnen möchte ich auch noch Patrick "Star" für seine uferlosen Vorträge über Gott und die Welt.

Auf einem Stein, den leicht die halbe Hand bedeckt, ist für des Forschers Aug' ein Garten angelegt.

> "An Florens Freunde" von Leopold von Trattinnick 1792 in Hormayrs Archiv.

1. Zusammenfassung

Die Systematik der Flechten wurde im Laufe der Geschichte anhand ihrer morphologischen Merkmale erfasst. Besonders bei Gruppen von Krustenflechten zeigte sich durch molekulare Befunde häufig, dass sich dabei nicht immer die tatsächliche Evolution widerspiegelt. Hier wurde die Gattung *Trapeliopsis* genauer untersucht, deren Systematik einige Fragen offenließ. Zu deren Klärung wurden fünf Genloci sequenziert, um die Sequenzen in einem phylogenetischen Framework zu analysieren. Bei den Analysen ließ sich zum einen feststellen, dass sich die Genloci über weite Strecken kongruent zueinander verhalten und zum anderen zeigte sich, dass sich die morphologisch basierten Merkmale nicht mit den phylogenetischen Verwandtschaften decken. Diese Ergebnisse führen zu Überlegungen, dass in manchen Flechtengruppen die morphologische Plastizität größer ist als erwartet und die, durch die Sequenzunterschiede angedeuteten Artgrenzen, nicht widerspiegelt. Es ist naheliegend, dass verschiedene Umweltfaktoren in manchen primitiv organisierten Krustenflechten maßgeblich zur morphologischen Gestalt beitragen.

Abstract

Throughout the history of lichen systematics, a mainstay of classification were morphological characteristics. Especially in groups of crustose lichens, molecular findings often showed that morphology does not actually reflect evolution. Here, the genus *Trapeliopsis* was examined in more detail, whose systematics sometimes showed some inconsistencies. Five gene loci were sequenced and integrated into a phylogenetic framework. The results of the analyses revealed also in this genus that the gen loci mostly behave congruently to each other and the morphologically based characteristics do not similar with the phylogenetic relationships. These facts suggest that in some lichen groups the morphological plasticity may be greater than the differences indicated by the phylogenetic relationships. In this case, various environmental factors may contribute to the morphological shapes in primitively organized crustose lichens.

Abbildungsverzeichnis

- Abbildung 1: Beispiele für die drei morphologischen Wuchsformen der Flechten.
- Abbildung 2: Schematischer Aufbau eines Flechtenthallus anhand eines Querschnitts.
- Abbildung 3: Habitus verschiedener Trapeliopsis Arten.
- Abbildung 4: Beispiele für unterschiedliche Farbgebungen von Flechten durch Flechtensäuren.
- Abbildung 5: Konsensusbaum IQ Tree Berechnung
- Abbildung 6: Konsensusbaum RAxML GUI Berechnung
- Abbildung 7: partitionierter Konsensusbaum IQ Tree Berechnung
- Abbildung 8: ITS IQ Tree Berechnung
- Abbildung 9: LSU IQ Tree Berechnung
- Abbildung 10: mtSSU IQ Tree Berechnung
- Abbildung 11: RPB 1 IQ Tree Berechnung
- Abbildung 12: EF 1 a IQ Tree Berechnung
- Abbildung 13: Laufmittel C: Detektion der Spots bei 254nm und 366nm.
- Abbildung 14: Laufmittel C; Kontrollplatte der Terpenoide mit der Referenzprobe (K= *Lepraria finkii*) für Zeorin.
- Abbildung 15: C⁺ rot Reaktion zum Nachweis von Gyrophorsäure und Lecanorsäure.

Tabellenverzeichnis

- Tabelle 1: Standardprimer für PCR.
- Tabelle 2: Liste der Primer des ersten Primerdesigns.
- Tabelle 3: Liste der Primer des zweiten Primerdesigns.
- Tabelle 4: GenBank Zugangsnummern der zur Verfügung gestellten Sequenzen.
- Tabelle 5: Protokoll des verwendeten Mastermixes.
- Tabelle 6: Übersicht der verwendeten Substitutionsmodelle, berechnet mit IQ Tree.
- Tabelle 7: Übersicht der log- Likelihood Werte, berechnet mit IQ Tree.
- Tabelle 8: Auswertung der TLC anhand eines Chemoprofils.

Abkürzungsverzeichnis

BLAST, basic local alignment search tool ddH2O, doppelt destilliertes Wasser DNA, Desoxyribonukleinsäure, ds DNA doppelsträngige DNA EF1α, elongation factor 1α, Alpha- Untereinheit des Elongationsfaktor-1- Komplexes GZU, Herbarium im Bereich für Pflanzenwissenschaften/Botanik der Karl-Franzens-Universität ID, Identifikationsnummer ITS, Internal transcribed spacer; Abschnitt der ribosomalen DNA LSU, large subunit = große Untereinheit der Ribosomen (auch 28S) ML, Maximum Likelihood mtSSU, mitochondrial small subunit = kleine Untereinheit der Ribosomen (auch 18S) NCBI, National Center for Biotechnology Information PCR, Polymerase Kettenreaktion RPB1, große Untereinheit der nukleären RNA-Polymerase II s.n., sine numero, keine Beleg- oder GenBanknummer vorhanden TBE Puffer, TRIS-Borat-EDTA-Puffer TLC, Dünnschichtchromatographie Tm (°C), Schmelztemperatur in °C

2. Einleitung

Die Verwendung von genetischen Informationen, von DNA-Sequenzen einzelner Gene, wie auch komplett entschlüsselter Genomsequenzen von Arten gewinnt in der Ökologie und Evolutionsforschung zunehmend an Bedeutung. Die Vorgänge der Evolution schreiben sich in Veränderungen auf der Ebene von Nukleotidsequenzen nieder. Die phylogenetische Systematik stützt sich daher nicht auf Typologie oder Gemeinsamkeiten der Phänotypen, sondern verlässt sich auf die Verwandtschaft homologer DNA-Sequenzen. Damit lässt sich die Stammesgeschichte als zeitliche Abfolge von Verzweigungen einzelner Verwandtschaftslinien ausdrücken.

Mit Hilfe der DNA-Sequenzierung können mittlerweile innerhalb kurzer Zeit umfassende Sequenzdaten oder auch ganze Genomsequenzen von einzelnen Organismen oder von symbiotischen Gemeinschaften generiert werden. Dies ist insbesondere in jenen Organismengruppen hilfreich, bei denen phänotypische Merkmale bislang nur begrenzte Einblicke in Verwandtschaftsbeziehungen gewährten. Dies betrifft auch die durch Merkmalsarmut gekennzeichneten Krustenflechtengruppen. Das Interesse dieser Arbeit galt daher Flechtensymbiosen, deren systematische Gliederung immer wieder Fragen aufwarf und deren Klärung noch im Schatten des wissenschaftlichen Interesses lag. Ein Beispiel dafür ist die Familie *Trapeliaceae* mit ihrer wichtigsten Gattung *Trapeliopsis. Trapeliopsis* ist zwar eine unscheinbare Krustenflechtengattung, aber sie ist ein Indikator für besondere Mikroklimafaktoren und damit für die Biodiversität auch anderer Mikroorganismengruppen von Bedeutung.

Da die phänotypische Variation in der Familie der *Trapeliaceae* durch Übergänge verbunden ist, erschwert dies das Erkennen von evolutionären Mustern auf morphologischer Ebene. Deshalb wurde die Phylogenie verschiedener *Trapeliopsis* Arten mit Hilfe von DNA-Sequenzdaten rekonstruiert, um die Evolution der morphologischen und chemischen Variation zu erkennen und damit in Beziehung zur Ökologie und geographischen Verbreitung setzen zu können.

2.1 Allgemeines zu Flechten

Flechtensymbiosen sind keine natürliche Verwandtschaftsgruppe, sondern eine Lebensweise von Pilzen, die im Laufe der Evolution vielfach entstanden ist. Sie sind definiert als stabile symbiontische Lebensgemeinschaften zwischen einem Pilz (Mykobiont) und einem oder mehreren photosynthetischen Partnern (Photobiont), der entweder eine Grünalge (85%) oder ein Cyanobakterium sein kann (Nash et al., 2010). Diese aufeinander abgestimmte Lebensgemeinschaft von Organismen zeigt den evolutionären Vorteil der Aufgabenteilung.

Die Algen bzw. Cyanobakterien versorgen den Pilz mit notwendigen Kohlenhydraten, umgekehrt liefern Cyanobakterien aus der Luft fixierten Stickstoff an ihren Symbiosepartner. Des Weiteren bietet das Pilzgeflecht, welches den Photobionten umhüllt Schutz vor Sonneneinstrahlung, Dehydrierung und Tierfraß. In der Systematik nahmen sie früher aufgrund ihrer Morphologie eine gesonderte Stellung ein. Ihre Einteilung erfolgte vor allem auch nach Wuchsform des Flechtenkörpers in drei Hauptgruppen: Krusten-, Blatt- und Strauchflechten. Mittlerweile sind sie aber gut in das phylogenetische Konzept der Pilze eingegliedert (Lutzoni et al., 2001). Dabei zeigt sich auch, dass primäre Wuchsformen vielfach parallel in der Evolution entstanden sind.

Abbildung 1: Beispiele für die drei morphologischen Wuchsformen der Flechten. 1. Krustenflechte: *Xanthoria parietina* (Heiligen Wasser 30.03.2017); 2. Blattflechte: *Peltigera sp.* (Heiligen Wasser 30.03.2017); 3. Strauchflechte: *Cladonia sp.* (Reinischkogel 26.04.2017).

Flechten sind Organismen, die einen wesentlichen Beitrag zu Ökosystemen auf der ganzen Erde leisten (Elbert et al., 2012). Oftmals sind sie unter den ersten, die Gesteine besiedeln und durch Auflösen ihrer Substratunterlage Platz für höhere Pflanzen schaffen, Tieren als Nahrung dienen oder den Boden vor Erosionen schützen (Lange, 1992).

In jüngster Zeit wurden bakterielle Gemeinschaften als stabile, spezifische und strukturell integrierte Partner der Flechtensymbiose identifiziert, deren Rolle im Vergleich zu den bekannten Funktionen der Pilz- und Algenpartner weitgehend unbekannt war. Diese Untersuchungen zeigten, dass das Potenzial von Flechten-assoziierten Bakterien mit dem Pilz- und Algenpartner zu interagieren von der Nährstoffversorgung mit Stickstoff, Phosphor und Schwefel über Resistenzen gegenüber biotischen und abiotischen Faktoren bis zur Unterstützung bei der Photosynthese oder Entgiftung von Metaboliten reicht (Grube et al., 2014).

Mit einer Artenzahl von etwa 25.000 und ihrer speziellen Interaktion der Symbiose sind Flechten in der Lage, weltweit extreme Standorte zu besiedeln (Wirth et al., 2013). Diese Lebensräume erstrecken sich von tropischen Regenwäldern über Hochgebirgsregionen bis hin zu antarktischen Gebieten. Während höhere Pflanzen in solchen Regionen an ihre Grenzen stoßen, haben Flechten und andere Kryptogamen eine einzigartige Überlebensstrategie entwickelt. Bei Perioden der Austrocknung gehen sie reversibel in einen kryptobiotischen Zustand über. Durch die Reaktivierung ihres Stoffwechsels stellen Kalt- und Trockengebiete für diese Symbiose keine Stresssituation dar, wie man üblicherweise meinen möchte. Tatsächlich haben sich Flechten wesentlich größeren Herausforderungen zu stellen, wenn sie beispielsweise im Schatten höherer Temperaturen und dauerhafter Luftfeuchtigkeit, wie etwa im Unterwuchs tropischer Tieflandregenwälder, wachsen.

Flechten sind durch ihre formgebenden Pilzpartner charakterisiert. Eine Lichenisierung ist nur möglich, wenn der Pilz mit dem passenden Symbiosepartner vergesellschaftet ist. Die sexuelle Fortpflanzung ist dem Pilzpartner vorbehalten und erfolgt durch Bildung von Fruchtkörpern (Apothecien oder Perithecien) in denen die Meiosporen gebildet werden. Eine asexuelle Vermehrung des Pilzes wird durch ungeschlechtlich gebildete Ausbreitungsorgane ermöglicht (Boenigk & Wodniok, 2014).

Die vegetative Vermehrung über Soredien (Diasporen), Isidien (Auswüchse des Thallus) oder Thallusbruchstücke, gewährleistet bei vielen Flechten eine gemeinsame Weitergabe von Pilzen und Algen. Ein großer Nachteil der vegetativen Vermehrung besteht darin, dass dadurch (bis auf Mutationen) keine Neukombination des Erbgutes erfolgt und eine Anpassung der Flechte an sich ändernde Umweltbedingungen nur langsam stattfinden kann.

In der angewandten Wissenschaft gelten Flechten als Bioindikatoren für den Grad der Luftverschmutzung. Obwohl Flechten eine hohe Widerstandsfähigkeit gegenüber natürlichen Umwelteinflüssen entwickelt haben, reagieren sie sehr empfindlich auf Lebensraumveränderungen bzw. Veränderungen ihres Mikrohabitats, die meist durch den Menschen verursacht werden.

Abbildung 2: Schematischer Aufbau eines Flechtenthallus anhand eines Querschnitts. Die obere Rinde dient als Schutzschicht, die Photosynthese findet in der Algenzone statt. Das Mark besteht aus einem Hyphengeflecht. Die untere Rinde bietet ebenfalls Schutz und die Rhizinen verankern den Thallus auf dem Substrat. (Quelle: http://www.alyvea.com/micro/lichens.php)

2.2 Systematik der Flechtengattung Trapeliopsis

Die Flechtengattung *Trapeliopsis* umfasst weltweit rund neunzehn Arten (Index Fungorum, 2018). Sie wird als Krustenflechte in die Familie der *Trapeliaceae* eingeordnet und ist durch lecideoide, festsitzende Apothecien mit biatorinen Apothecienrand, die an der Basis eine Verengung aufweisen, gekennzeichnet (Wirth et al., 2013). Die apikal mehr oder weniger verdickten Paraphysen bilden Anastomosen aus. Das Erscheinungsbild des Thallus ist sehr variabel und kann daher von schuppig, membranartig dünn bis zu warzig areoliert oder squamulos bis folios erscheinen. Diese Merkmale gelten in dieser Gattung als artspezifisch. Der Photobiont ist eine coccoide Grünalge. Die Asci sind keulenförmig, zylindrisch geformt und beinhalten acht Sporen, die Ascosporen sind ellipsoid geformt. Bazilliforme, hyaline Konidien und eingesenkte Pyknidien mit zylindrischen oder fädigen Pyknosporen tragen ebenfalls zum morphologischen Erscheinungsbild von *Trapeliopsis* bei (Nash et al., 2004). Die Ansprüche an Habitat und Substrat sind ebenso vielfältig wie das äußere Erscheinungsbild der Flechte. Es reicht

von Silikatgestein, Holz oder sandigen Lehmböden bis hin zu Torf und Moorgebieten. Zu den nachgewiesenen Inhaltsstoffen zählen Gyrophorsäure und Lecanorsäure (Wirth et al., 2013).

2.3. Kurzcharakterisierung der untersuchten Arten

Trapeliopsis flexuosa (Fr.) Coppins & P. James, Lichenologist 16 (3): 258 (1984) [MB#106510]. Basionym: *Biatora flexuosa* Fr.. Sched. Crit. Lich. Suec. 2, 8: 11 (1826); *Lecidea flexuosa* (Fr.) Nyl.; Ilustration: Brodo et al. (2001), p. 686.

Thallus:	Krustos, warzig-areoliert oder geringfügig schuppig, meist mit Soredien.
Areolen:	Konturen regelmäßig oder unregelmäßig eingeschnitten, Durchmesser:
	0,1-0,4mm, in der Regel stark gewölbt.
Oberfläche:	Grau-grün bis matt oliv-grün.
Sorale:	Punktiform, oftmals im Zentrum einzelner Areolen, konfluent, meist dunkler oder gleichfarbig wie nicht soredierte Thallusteile.
Apothecien:	Selten, manchmal rund, festsitzend mit Verengung an der Basis, 0,3-0,7mm im Durchmesser.
Substrat:	Bis zur Baumgrenze auf Holz, an Pfählen, Stümpfen, Brettern, an saurer Borke (v.a. Koniferen), meist an lichtreichen, luftfeuchten bis trockenen Orten.
Tüpfelanalyse:	K-, C+ rot, KC+ rot, P-, UV
Sekundärmetabolite:	Gyrophorsäure

Trapeliopsis glaucopholis (Nyl. *ex* Hasse) Printzen & McCune, Lichen Flora of the Greater Sonoran Desert Region 2: 539 (2004) [MB#366013].

Basionym: *Lecidea glaucopholis* Nyl. *ex* Hasse, Lich. S. Calif., ed. 2: 14 (1898); Type: U.S.A.: California, Los Angeles co., San Gabriel Mts., auf zersetztem Granit und Erde auf 1000m, 1897, H.E. Hasse (FH, Lectotype).

Thallus:	Schuppig, mit Loben oder areoliert, zentral oder am Rand.
Oberfläche:	Hellgrau bis dunkel bläulich-grau, manchmal blass grün oder beige.
Apothecien:	Gebogen, selten rund, meist festsitzend mit einer verengten Basis, sehr
	selten zwischen den Loben, Durchmesser: 0,6-2,00mm.

Substrat:	Auf sauren Böden über 1500m.
Tüpfelanalyse:	Thallus K-, C+ rot, KC+ rot, P-, UV
Sekundärmetabolite:	Gyrophorsäure

Trapeliopsis granulosa (Hoffm.) Lumbsch, Lecideaceae exsiccatae: no. 99 (1983) [MB#114444].

Basionym: *Verrucaria granulosa* Hoffm., Descr. Adumbr. Pl. Crypt. Lich., 2, 1: 21, tab.30 (1794); Synonym: *Lecidea granulosa* (Hoffm.) Ach.; Illustration: Brodo *et al.* (2001), p.687.

Thallus:	Krustos, warzig-areoliert.
Areolen:	Isodiametrisch im Umriss, unregelmäßig eingeschnitten, 0,1-0,45mm im
	Durchmesser, mäßig bis stark konvex.
Oberfläche:	Hell, gräulich-grün oder ocker-beige Tönung, gewöhnlich sorediert.
Sorale:	Unregelmäßig im Umriss, oft konfluent, meist in der gleichen Farbe wie
	nicht soredierte Thallus-Partien oder heller und mit rosa-beige Tönung.
Apothecien:	Am Rande biegsam, selten rund, festsitzend mit einer verengten Basis oder
	leicht angedrückt.
Substrat:	Verrottetes oder verkohltes Holz, Koniferenrinde.
Tüpfelanalyse:	Thallus K-, C+ rot, KC+ rot, P-, UV
Sekundärmetabolite:	Gyrophorsäure

Trapeliopsis gelatinosa (Flörke) Coppins & P. James, The Lichenologist 16 (3): 258 (1984) [MB#106511].

Thallus:	Dünn und membranartig, feinkörnig, dunkel grün-braun bis grün-grau.
Sorale:	Hellgrün, Durchmesser: 0,2-0,7mm.
Apothecien:	0,2-1mm im Durchmesser, vom Excipulum ausgeschlossen oder als dünner heller Rand, der die Scheibe nicht überschreitet.
Substrat:	Auf schattigen Torf- oder Lehmböden, hauptsächlich in Bereichen mit
	überhängenden Kräutern oder kleineren Sträuchern.

Tüpfelanalyse: Thallus: C-, K-, KC-, Pd-, UV-.

Sekundärmetabolite: Gyrophorsäure

Trapeliopsis steppica McCune & F. J. Camacho, The Bryologist 105 (1): 83 (2002) [MB#476626]. Illustration: McCune et al. (2002), p.80.

Thallus:	Lobuliert oder areoliert an Mittelteilen oder am Rand.
Oberfläche:	Cremefarben bis hellgrau, öfter mittelgrau, gewöhnlich mit einer dumpfen
	oberflächlichen nekrotischen Schicht, gelegentlich etwas bereift, sorediert.
Apothecien:	Selten, gleich wie bei Trapeliopsis glaucopholis.
Substrat:	Auf Erde und Erde auf Felsen oder Moos auf Felsen in Grasland,
	Strauchsteppen.
Tüpfelanalyse:	Thallus K-, C+ rot, KC+ rot, P-, UV
Sekundärmetabolite:	Gyrophorsäure

Trapeliopsis wallrothii (Flörke ex Spreng.) Hertel & Gotth. Schneid., Bibliotheca Lichenologica 13: 153 (1980) [MB#124696].

Illustrations: Brodo et al. (2001) p.687, Dobson (2005) p.433, James et al. (2003) p.536, Thor & Arviddson (1999) p.334, Wirth (1995) p.926.

Thallus:	Dicht schuppig, mit ausgeprägten kurzen, flachen bis konvexen
	Randlappen, weißlich oder blass-grau, oft mit verstreuten Clustern von
	groben, unregelmäßigen Isidien, die nach Abrieb kleine, kreisförmige
	Narben hinterlassen.
Apothecien:	Durchmesser: 1-2mm, oft abwesend, mit rosa-braunen bis stumpfgrün-
	grauen, oft schwach pruinösen Scheiben, Scheibenränder biegsam und
	blass.
Substrat:	Auf gut entwässertem Boden und Rasen, in der Regel zwischen
	hervorstehenden Felsen, Erdbänken und Mauern, die der Sonne ausgesetzt
	sind.

Tüpfelanalyse:Thallus: C+ rot, K-, KC+ rot, Pd-, UV+.

Sekundärmetabolite: Gyrophorsäure

Trapeliopsis pseudogranulosa Coppins & P. James, The Lichenologist 16 (3): 259 (1984) [MB#106512].

Illustrations: Dobson (2005) p.433, van Herk & Aptroot (2004) p.371, Wirth (1995) p.926.

Thallus:	Oft breit gestreut und großflächig bis 20cm, grau oder grün-weiß, teilweise
	fleckig orange pigmentiert.
Areolen:	Körnig, die sich zu einer leicht rissigen, körnigen Kruste verbinden,
	Durchmesser: 0,04-0,2mm.
Sorale:	Grün-weiß, in manchen Bereichen orange pigmentiert. Zunächst gewölbt
	und einzeln, später verschmolzen und grobe, unregelmäßige Flecken
	bildend.
Soredien:	Mehlig, Durchmesser: 18-25µm.
Substrat:	Auf verschiedenen feuchten, sauren Böden, insbesondere Torf oder über
	verrottenden Bryophyten, verrottendem Holz und Pflanzenresten, oft in
	alten Wäldern.
Tüpfelanalyse:	Thallus, Sorale, Apothecien: C+ rot, Pd-, UV-; orange pigmentierte
	Bereiche des Thallus und der Sorale: K+ purpur.
Sekundärmetabolite:	Gyrophorsäure und unidentifizierte Anthrachinone.

Trapeliopsis glaucolepidea (Nyl.) Gotth. Schneid., Bibliotheca Lichenologica 13: 148 (1980) [MB#124689].

Thallus: Schuppig, Schuppen verstreut oder zusammenhängend, mit aufsteigenden, meist soredierten Spitzen, grau-weiß bis gelblich-grün.
 Sorale: Blassgrau oder grünlich-grau, lippenförmig.

Apothecien:	Durchmesser: 1,0-2,5mm, festsitzend, zunächst flach und ausgeprägt,
	später gebogen mit eingeschlossenem Excipulum; Scheibe matt hellgrau
	bis dunkelgrau oder matt rötlich-braun, Rand oft heller.
Substrat:	Auf reinem Torf und Torfmoorwäldern, selten auf alten Ameisenhügeln.
Tüpfelanalyse:	Thallus und Sorale: C-, K-, KC-, Pd-, UV+/-, unidentifizierte UV+
	Substanzen.

Trapeliopsis percrenata (Nyl.) Gotth. Schneid., Bibliotheca Lichenologica 13: 151 (1980) [MB#124691].

Thallus:	Gleich wie bei T. glaucolepidea, mit schmäleren Schuppen.
Sorale:	Breit und lippenförmig.
Apothecien:	Gleich wie bei T. glaucolepidea, aber etwas schmäler und dunkler.
Substrat:	Auf schattigem, feuchtem, verrottetem Holz, auf umgestürzten Stämmen
	und Zaunpfählen.

Trapeliopsis viridescens (Schrad.) Coppins & P. James, The Lichenologist 16 (3) (1984) [MB#106513].

Thallus:	Oft ein lepröses Aussehen.
Sorale:	Hellgrün, unregelmäßig und zusammenlaufend (oder Sorale verbreitern
	sich vom Ansatz).
Apothecien:	Durchmesser: 0.2-0,6mm oder tuberkulat und bis 1mm, grün-schwarz oder
	schwarz, flach bis konvex; Excipulum unauffällig.
Substrat:	Auf verrottenden Stämmen und Stümpfen, sehr selten.
Tüpfelanalyse:	Thallus: C+ rot, KC+ rot, Pd-, UV+/
Sekundärmetabolite:	Gyrophorsäure und unbekannte Substanzen,

Trapeliopsis bisorediata McCune & F. J. Camacho, The Bryologist 105 (1): 80 (2002) [MB#484366].

Illustration: McCune et al. (2002), p. 80.

Thallus:	Mosaik aus dicht gedrängten, ziemlich dicken Areolen.			
Areolen:	Flach bis halbkugelförmig, dicht am Substrat anliegend, 0,1-0,7mm			
	Durchmesser.			
Oberfläche:	Weiß bis hellgrau bereift oder an unbereiften Stellen bräunlich.			
Sorale:	(1) diffus, schlecht abgegrenzt, mit feinen Soredien in Thallusfarbe, (2)			
	abgerundet und gut definiert, oft in der Mitte der Areolen.			
Apothecien:	Keine, aber gelegentlich mit einigen abortiven, marginalen			
	apothecienartigen Strukturen mit ausgehöhlten oder sordierten Zentren.			
Substrat:	Auf Böden in Strauchsteppen und Grasland.			
Tüpfelanalyse:	Thallus K-, P-, C+ rot, KC+ rot, UV			
Sekundärmetabolite:	Gyrophorsäure und weitere unbekannte Substanzen.			

Trapeliopsis "altaica" (ined.)

Thallus:	Granulös, areoliert, mit verengter Basis, undeutlich bereift, weißlich, grau-		
	grün bis gelblich-grün.		
Apothecien:	Im Material keine vorhanden.		
Areolen:	Aus feinen Schüppchen zusammengesetzt.		
Sorale:	Stellenweise sorediös aufgebrochen.		
Substrat:	Auf oberflächlich verkohltem Holz.		
Sekundärmetabolite:	Gyrophorsäure		

Trapeliopsis "carbonicola" (ined.)

Thallus: Unbereift und breit auf dem Substrat aufsitzend.

Apothecien:	Im Material keine vorhanden.
Areolen:	Körnig zusammengesetzt, lösen sich stellenweise sorediös auf.
Sorale:	Stellenweise aufgebrochen.
Substrat:	Auf angekohltem Holz.
Sekundärmetabolite:	Gyrophorsäure

Abbildung 3: Habitus verschiedener *Trapeliopsis* Arten. 1. DT105 *Trapeliopsis granulosa* (1:200); 2. DT108 *Trapeliopsis glaucopholis* (1:300); 3. DT141 *Trapeliopsis sp.* (1:500); 4. DT142 *Trapeliopsis sp.* (1:200).

2.4 Molekulare Marker

Als molekulare Marker können verschiedene Genregionen, mit unterschiedlich konservierten Sequenzen, genutzt werden. Die in dieser Arbeit verwendeten Genloci zählen zu den Standardmarkern für phylogenetische Fragestellungen von Pilzen. Die genaue Länge der Sequenzen ist unterschiedlich und hängt von der Wahl der Primer ab.

Die ITS Region (Internal Transcribed Spacer) ist ein Marker der ribosomalen DNA, befindet sich zwischen der SSU- und der LSU Region und enthält zwei nicht kodierende variable Bereiche (ITS1 und ITS2), die durch die deutlich konserviertere 5.8S Region unterbrochen werden. ITS ist, mit einer Länge von 600-800bp, der gängigste Barcodelokus für Pilze (Schoch et al., 2012).

Einen weiteren Marker des Kerngenoms bildet die LSU rDNA (large subunit). Mit einer Länge von rund 3500bp beinhaltet sie mehrere hochkonservierte Bereiche, die durch zwölf D-Domänen unterbrochen werden.

Bei der mitochondrialen mtSSU (small subunit) rDNA handelt es sich um einen wenig konservierten gebräuchlichen Marker bei phylogenetischen Fragestellungen in Bezug auf Pilze.

Das proteinkodierende Gen RPB1 ist neben zehn kleineren Untereinheiten eine der beiden Hauptuntereinheiten der RNA Polymerase II. Unter proteinkodierenden Genen gilt sie als single copy gene, wodurch Probleme mit Paralogen vermieden werden. RPB1 verfügt über mehrere variable Regionen (Stockinger et al., 2014).

Das Gen EF1 α (elongation factor 1 α) ist ein kerncodiertes Proteinsynthesegen mit einigen hochkonservierten Bereichen (Hoppe & Kutschera, 2009).

2.5 Phylogenetische Stammbaumberechnungen

Die durch das Alignment der homologen DNA-Sequenzabschnitte erkennbaren Mutationen stellen Unterschiede dar, die für die Rekonstruktion der Phylogenie einer Organismengruppe herangezogen werden. Dazu werden DNA Substitutionsmodelle verwendet, in denen die Wahrscheinlichkeiten für die Mutationen definiert sind. In der Rekonstruktion wird nun eine Topologie ermittelt, die mit einem minimalen Aufwand an Mutationen möglich ist. Die idealen Substitutionsmodelle und ihre Parameter sollten für jeden Gen-Ort durch Tests ermittelt werden, denn sie können die Stammbaumrekonstruktion maßgeblich beeinflussen. Für jeden Gen-Ort kann nun eine eigene phylogenetische Hypothese entwickelt werden, die sich von jenen anderer Gen-Orte unterscheiden kann. Die Kongruenz zwischen den Stammbaumtopologien kann ermittelt werden. Üblicherweise erwartet man, dass innerhalb von Arten wegen des horizontalen Austauschs von Allelen im Rahmen der sexuellen Rekombination die Kongruenz gering ist. Zwischenartlich und in älteren Abstammungslinien sollte die Kongruenz hingegen höher sein. Bei dieser Betrachtungsweise werden allerdings bestimmte Phänomene, die in der Evolution von Flechtenpilzen eine Rolle spielen nicht berücksichtigt, wie etwa ein zwischen den Arten aufrechterhaltener Polymorphismus von Allelen. Daher sind diese Methoden zur Artabgrenzung umstritten. Eine alternative Herangehensweise, um die Information multipler Gen-Orte in eine Stammbaumrekonstruktion einzuschließen, ist das Verknüpfen aller Sequenzalignments der Gen-Orte und eine gemeinsame phylogenetische Analyse. So wird versucht, ein möglichst genaues Abbild der Phylogenie zu ermitteln. Dieses Abbild wird dann mit den anderen, phänotypischen Informationen verglichen, die in der Klassifikation von Flechten von Bedeutung sind.

2.6 Sekundärmetabolite in Flechten

Das Wissen um Flechtenstoffe bildet die Grundlage der Chemosystematik, die unter anderem zur Bestimmung und Charakterisierung von Arten herangezogen werden kann. Flechten produzieren neben den primären Metaboliten eine breite Palette an organischen Verbindungen (Elix, 1996). Zu den Primärmetaboliten zählen Lipide, Proteine, Kohlenhydrate und weitere organische Verbindungen, die für den Stoffwechsel der Flechte unerlässlich sind. Einige dieser Metaboliten werden vom Pilzpartner der Flechte produziert, andere von den Algen- oder Cyanobakterienpartnern der Flechte. Die meisten sekundären Metaboliten werden aber alleine vom Pilz synthetisiert, wie durch Versuche, bei denen beide Symbiosepartner getrennt und in Reinkulturen gezogen wurden, herausgefunden wurde (Steinegger & Hänsel, 2013).

Es handelt sich dabei um extrazelluläre, amorphe Pigmente oder kristalline Ablagerungen, die von den Flechtenhyphen sezerniert werden und ein relativ niedriges Molekulargewicht aufweisen. Meist sind sie wasserunlöslich, können aber mit organischen Lösungsmitteln extrahiert werden. Flechtenstoffe können in erstaunlich hohen Stoffkonzentrationen, von 0,1-10% des Trockengewichtes des Thallus, manchmal sogar bis zu 30% vorhanden sein (Galun, 1988). Viele dieser Stoffe sind farblos im Thallus oder der Medulla eingelagert, doch einige sind durch ihre auffallend gelbe oder orange Farbgebung auch an verschiedenen Arten in ihrer natürlichen Umgebung bereits ersichtlich (Abb. 4).

Die Farbpigmente sind meist in der oberen Rinde lokalisiert, während farblose Kristalle eher in der pilzdominierenden Schicht zu finden sind. Unter dem Mikroskop weisen diese Stoffwechselprodukte einzigartige Strukturgebilde auf, die wiederum der weiteren Identifikation dienen können. Die Bedeutung der Flechtensäuren ist bis heute nur teilweise geklärt (Rikkinen, 1995). Viele dieser außergewöhnlichen Naturstoffe, die man bis vor kurzem nur auf Flechten beschränkt glaubte, zeigen auch biologische Aktivitäten. Zahlreiche Flechten wurden seit den 1940er und 1950er Jahren auf antibakterielle Wirkung untersucht (Vartia, 1973), dabei fand man mehrere Flechtenverbindungen, die vorwiegend gegen grampositive Bakterien aktiv sind. Beispielsweise wurde Usninsäure als topisches, antibakterielles Mittel eingesetzt und zeigte in vitro eine antimikrobielle Wirkung gegen Grampositive (Stoll et al., 1950; Lauterwein et al., 1995). Das Potential, diese Stoffe zu bilden, konnte in jüngster Zeit auch bei *Aspergillus* Arten (Parietin) nachgewiesen werden (Chen et al., 2017). Heute sind >800 dieser Flechtenstoffe näher beschrieben (Elix, 2014). Man geht aber davon aus, dass es weit mehr gibt, denn von weiteren 800 existieren dünnschichtchromatographische Daten (Obermayer pers. comm., 2018).

Abbildung 4: Beispiele für unterschiedliche Farbgebungen von Flechten durch Flechtensäuren. 1. *Chrysothrix candelaris* (Reinischkogel 26.04.2017); 2. *Ophioparma ventosa* (Rappold 30.04.2017); 3. *Xanthoria elegans* ("Zum heiligen Wasser" Gallmannsegg 30.07.2017); 4. *Caloplaca sp.* (Ternbachalm 08.04.2017); 5. *Cladonia sp.* (Reinischkogel 26.04.2017); 6. *Teloschistes sp.* (https://pixabay.com/de/flechten).

Ihre Bildung geht auf drei Hauptsynthesewege zurück: den Acetat- Polymalonatsyntheseweg, Shikimisäuresyntheseweg und den Mevalonsäuresyntheseweg (Esser, 2000).

Die Ordnung *Agyriales* und somit für diese Arbeit und *Trapeliopsis* signifikanten Flechtensäuren umfassen in erster Linie das Depsid Lecanorsäure, (ein Zweifachester der Orsellinsäure) und das Tridepsid Gyrophorsäure (Asahina & Kutani, 1925). Beide werden als Polyketide über den Acetat-Polymalonatweg gebildet.

Neben den klassischen Flechtenstoffen sind auch amorphe Pigmente bekannt. Die Charakterisierung mit der Dünnschichtchromatographie ist bei diesen Stoffen nicht möglich, da sie mit diesem Verfahren nicht aufgetrennt werden können. Um welche Substanzen es sich dabei handelt, ist deshalb bis heute nicht geklärt. Hypothesen, welche auf Polymerisierung, Veresterung durch entsprechende OH-Gruppen, Säureresten oder Bindung an Polysaccharide beruhen, konnten noch nicht bestätigt werden (Grube pers. comm., 2018).

3. Material und Methoden

3.1 Belegmaterial

Ein Großteil der verwendeten Belege wurde aus dem Herbarium am Institut für Biologie/Pflanzenwissenschaften Graz (GZU) bezogen. Weitere Belege, aus denen DNA isoliert wurde, wurden mir dankenswerter Weise aus privaten Sammlungen zur Verfügung gestellt.

Kerry Knudsen (Flechtenkurator am UCR Herbarium in Kalifornien)
Prof. Dr. Göran Thor (Uppsala)
Mag. Dr.rer.nat. Bakk.rer.nat. Philipp Resl (München)
Prof. Dr. Toby Spribille (Edmonton)
Ass. -Prof. Mag. Dr.phil. Walter Obermayer (Graz)

Einige Belege stammten von eigenen Aufsammlungen in den Ostalpen (Sattelhaus, Rappold).

Bei der Auswahl bzw. Anforderung der Belege wurde bis auf ein paar Ausnahmen vorwiegend auf Proben zurückgegriffen, die nicht älter als 15 Jahre waren um sicherzustellen, dass genügend DNA Material in den Proben vorhanden ist, um eine effiziente Extraktion der DNA zu gewährleisten.

3.2 Morphologische Untersuchungen

Der erste Arbeitsschritt umfasste ausführliche mikroskopische Untersuchungen (WILD M3Z, Leica mit integrierter Digitalkamera F301, Nikon) und fotographische Darstellungen mit dem Fotomikroskop (AXIOPHOT, Zeiss) sowie die Bestimmung aller Belege mit Fachliteratur (z.B. Printzen & McCune, 2004, 2007). Morphologische Merkmale der verschiedenen Arten liegen dieser Klassifikation zu Grunde.

3.3 Präparation und Isolation genomischer DNA

Für die DNA-Isolationen wurde Material aus allen Flechtenbelegen unter einer Stereolupe (Leica, Wien) abpräpariert. Nach Überführung in Eppendorfgefäße zusammen mit 2-3 Stück Tungsten Carbid Beads (3mm) wurden die entnommenen Proben für mehrere Stunden bei -80°C tiefgefroren. Nach ausreichendem Zerkleinern im Tissue Lyser II (Qiagen, Deutschland) erfolgte die Aufreinigung mit DNeasy Plant Mini Kit (Qiagen, Wien) laut Quick-Start Anwendungsprotokoll. Um einen effizienteren Zellaufschluss zu gewährleisten, wurde eine Abänderung des Protokolls bei Anwendungsschritt 2 durchgeführt. Die Inkubationszeit betrug daher eine Stunde anstatt der angegebenen zehn Minuten.

3.4 Auswahl geeigneter Primer für PCR

Bei PCR-Primern handelt es sich um 18-25 Nukleotide lange DNA Stücke, die komplementär zum DNA Strang binden und somit den Startpunkt für die gewünschten Amplifikationen des Genabschnitts bilden. Bei der Polymerase Kettenreaktion werden dafür zwei Primer benötigt, wobei der Vorwärtsprimer an das 5'-Ende der gegebenen Sequenz und der Rückwärtsprimer an das 3'-Ende bindet.

Im Rahmen dieser Arbeit wurden für verschiedene Genregionen vorerst verschiedene Primerpaare getestet. Die Auswahl bezog sich dabei auf zwei Kriterien. Zum einen wurde die langjährige und gute Erfahrung mit standardisierten Oligonukleotiden berücksichtigt und zum anderen wurde aus ökonomischen Gründen auf Primer zurückgegriffen, die bereits im Labor Verwendung fanden (Tab.1).

Genregion	Primer	Sequenz (5'-3')	Tm (°C)	Referenz
ITS	ITS1 F	CTTGGTCATTTAGAGGAAGTAA	57	White et al., 1990
ITS	ITS2	GCTGCGTTCTTCATCGATGC	68,2	White et al., 1990
ITS	ITS3	GCATCGATGAAGAACGCAGC	62	White et al., 1990
ITS	ITS4	TCCTCCGCTTATTGATATGC	62	White et al., 1990
EF1a	EF983	GCYCCYGGHCAYCGTGAYTTYAT	64,8	Rehner and Buckley, 2005
EF1a	EF1953	CCRGCRACRGTRTGTCTCAT	62	Rehner and Buckley, 2005
EF1a	EF1567	ACHGTRCCRATACCACCRATCTT	54	Rehner and Buckley, 2005
LSU	LRasc F	CCT CAG TAA CGG CGA G	52	Schneider et al., 2015
LSU	LRasc R	AGG CTT CGT CAC GGA C	52	Schneider et al., 2015
LSU	LR0R	ACCCGCTGAACTTAAGC	52	Rehner & Samuels, 1994
LSU	LR7	TACTACCACCAAGATCT	48	Vilgalys & Hester, 1990
МСМ	MCM7	ACIMGIGTITCVGAYGTHAARCC	49	Schmitt et al., 2009
МСМ	MCM7	GAYTTDGCIACICCIGGRTCWCCCAT	55	Schmitt et al., 2009
mtSSU	mtSSU	AGTGGTGTACAGGTGAGTA	56	Lohtander et al., 2002
mtSSU	mtSSU 3R	ATGTGGCACGTCTATAGCCC	64	Zoller et al., 1999
mtSSU	MSU 7	GTCGAGTTACAGACTACAATCC	57	Zhou & Stanosz, 2001
mtSSU	MSU 1	GATGATGGCTCTGATTGAAC	58	Zhou & Stanosz, 2001
RPB1	FRPB	ADTGYCCYGGYCATTTYGGT	55	Hofstetter et al., 2007
RPB1	RPB1 Cr	CCNGCDATNTCRTTRTCCATRTA	68	Matheny et al., 2002

Tabelle 1: Standardprimer für PCR.

3.4.1 Primerdesign

Da bei einer beträchtlichen Anzahl von PCR-Probedurchgängen mit standardisierten Primerpaaren trotz mehrmaliger Abänderung verschiedener Parameter des PCR-Protokolls, wie Annealingtemperatur oder höhere Mg⁺-Konzentration bzw. Anwendung von Touchdown-PCRs, keine verwertbaren PCR-Produkte gewonnen werden konnten, wurde auf das Design von neuen, spezifischen Primern zurückgegriffen. Verwendet wurde ein Alignment aller bis dato gewonnenen Sequenzen mit Standardprimern, Sequenzen aus der NCBI GenBank (Tab. 4; Resl et al., 2015) und Sequenzen, die mir von Dr. Samantha Fernández-Brime und Kevin Schneider, MSc. zur Verfügung gestellt wurden. Dies erfolgte zuerst visuell, später mit Hilfe des Programms Geneious 7.1.9. Dabei wurde nach folgenden Kriterien vorgegangen:

- Die Länge der PCR-Primer sollte zwischen 18-25 Basen betragen und einen Anteil von 40-60% an Guanidin und Cytosin beinhalten.
- Um Fehlhybridisierungen und Frameshifts zu vermeiden, durften nicht mehr als vier gleiche Basen aneinandergereiht werden.
- Die Schmelztemperatur sollte zwischen 55-65°C liegen, wobei bei beiden Primern auf einen möglichst geringen Temperaturunterschied geachtet wurde.
- Um eine bessere Elongation und Bindung zu gewährleisten, sollte am 3'-Ende des Primers ein C oder G sitzen (Mülhardt, 2006).

Die Überprüfung der ausgewählten Primersequenzen auf GC-Gehalt, Hairpin-Strukturen und Dimere erfolgte mit dem Computerprogramm Geneious 7.1.9. Die nach dem oben beschriebenen Schema entworfenen Primer wurden bei der Firma Microsynth in Auftrag gegeben (Tab. 2). Die anhand der neu designten Primer erhaltenen Sequenzen konnten dazu verwendet werden, um weitere spezifische Primer zu designen. Dies sollte eine noch adäquatere Bindung der Primer gewährleisten um noch fehlende Sequenzdaten zu vervollständigen (Tab. 3).

Genregion	Primer	Sequenz (5'-3')	Tm (°C)	Referenz
ITS	ITS Trap F	AAAGTCGTAACAAGGTCTCCGT	59,6	diese Arbeit
ITS	ITS Trap R	AATGACGCTCGAACAGGCAT	60,4	diese Arbeit
EF1a	EF Trap F	CAAGGATGGCCAGACTCGYGAG	62,9-65,4	diese Arbeit
EF1a	EF Trap R	CTGKAGAGGMAGACGAAGGGG	59,2-64,2	diese Arbeit
LSU	LR Trap F1	TGTCTGATGAGCGTWAATTCCG	58,8	diese Arbeit
LSU	LR Trap R1	CCGGTCTAAGTTCCTTGGAACA	60	diese Arbeit
LSU	LR Trap F2	CTTGGAACAGGACGTCACAG	59	diese Arbeit
LSU	LR Trap R2	GGCTGTCTGGATGAATCGAC	59	diese Arbeit
mtSSU	mtSSU Trap F	CGCGGTAATACGTGGRAGACTA	60-61,6	diese Arbeit
mtSSU	mtSSU Trap R	GGCACGTCTATAGCCCACAATA	60	diese Arbeit
RPB1	RPB1 Trap F	GACAGTGTGTCATAACTGTGGY	58,3-59,5	diese Arbeit
RPB1	RPB1 Trap R	AGATCATCCTCACCACGCATAC	60	diese Arbeit
RPB2	RPB2 Trap F	GGTTTGGTCTGCCCGGC	64	diese Arbeit
RPB2	RPB2 Trap R	AGGGTTGGCTTCAGGGAG	60	diese Arbeit

Tabelle 2: Liste der Primer des ersten Primerdesigns.

Genregion	Primer	Sequenz (5'-3')	Tm (°C)	Referenz
ITS	ITS Trap F2	AAANGTCGTAACAAGGTCTCCGTAG	60,8-62,8	diese Arbeit
ITS	ITS Trap R2	AGCYGGGCTCGAGGGGTKTAATGA	66,6-70,1	diese Arbeit
EF1a	EF1 Trap F2	GGTATYTCCAAGGACGGTCAGACTC	62.9 - 63.9	diese Arbeit
EF1a	EF1 Trap R2	AGACGAAGGGGCTTGTCAGTRG	61.7 - 64.5	diese Arbeit
LSU	LR Trap F3	AGTTTCTTCCCCNAAGGCCTCTAAT	61.1 - 63.6	diese Arbeit
LSU	LR Trap R3	GCAGCTCTAAATGGGTGGTAAATTT	60,1	diese Arbeit
mtSSU	mtSSU Trap F2	ACCAACAGGATTAGATACCCYAGCA	60.9 - 63.4	diese Arbeit
mtSSU	mtSSU Trap R2	CCAGATGGACTTGTCTTATTCCCTT	60,3	diese Arbeit
RPB1	RPB1 Trap F2	TCTCCGTTACCGAGATTCYAARAGG	60.2 - 63.6	diese Arbeit
RPB1	RPB1 Trap R2	CAGATCCATCAACAGATATGCTTGG	59,8	diese Arbeit
RPB2	RPB2 Trap F2	CCTATAGGGCGAGANTGGCAAGAT	61.9 - 63.3	diese Arbeit
RPB2	RPB2 Trap R2	AATGACAAAYAGYGGTCGGCAGAC	61.4 - 66.1	diese Arbeit

Tabelle 3: Liste der Primer des zweiten Primerdesigns.

Tabelle 4: GenBank Zugangsnummern der zur Verfügung gestellten Sequenzen.

ID	Taxon	ITS	LSU	mtSSU	RPB1	EF1a
T1030	Trapeliopsis aeneofusca	KR017051		KR017341	KR017417	
T1033	Trapeliopsis colensoi	KR017052		KR017346	KR017418	
T1034	Trapeliopsis granulosa	s.n.		s.n.		
T937	Trapeliopsis aeneofusca	KR017143		KR017397	KR017414	
T940	Trapeliopsis colensoi	KR017144		KR017398	KR017415	KR017594
T942	Trapeliopsis flexuosa	KR017145			KR017416	KR017595
T943	Trapeliopsis flexuosa	KR017146	KR017232	KR017399		KR017596
T945	Trapeliopsis gelacnosa	KR017147		KR017400	KR017419	
T946	Trapeliopsis glaucolepidea	KR017148		KR017401	KR017420	
T947	Trapeliopsis glaucolepidea	KR017149		KR017402	KR017421	KR017597
T948	Trapeliopsis glaucopholis	KR017233		KR017403	KR017422	KR017598
T949	Trapeliopsis granulosa	KR017150		KR017404	KR017423	KR017599
T950	Trapeliopsis haumanii	KR017151		KR017405	KR017424	
T951	Trapeliopsis percrenata	KR017152		KR017406	KR017425	KR017600
T952	Trapeliopsis percrenata	KR017153		KR017407	KR017426	KR017601
T954	Trapeliopsis steppica	KR017154		KR017408	KR017427	
T955	Trapeliopsis viridescens	KR017155		KR017409		KR017593
T956	Trapeliopsis wallrothii	KR017156		KR017410		
T959	Trapeliopsis viridescens			KR017593		KR017583
T960	Parainoa subconcolor	KR017133	KR017236	KR017412		
T1099	Trapelia corccola	KR017135		KR017382	KR017465	KR017576
KS018	Trapelia coarctata	KR017066	KP794971	KR017301		
KS019	Trapelia glebulosa	KR017067	KR017166	KR017362	KR017474	KR017542
KS020	Trapelia glebulosa		KR017157	KR017302		KR017612
KS021	Trapelia glebulosa	KR017068	KR017158		KR017481	KR017635
KS022	Trapelia glebulosa	KR017069	KR017159	KR017354	KR017436	KR017543
KS023	Trapelia coarctata		KR017160	KR017303	KR017482	KR017610
KS024	Trapelia coarctata	KR017096	KR017161		KR017483	KR017544
KS028	Trapelia obtegens	KR017070	KR017162			KR017545
KS030	Trapelia glebulosa	KR017075	KR017163			
KS032	Trapeliopsis granulosa	KR017077	KR017164	KR017304		KR017607

KS033	Trapeliopsis granulosa	KR017082	KP794972	KR017305		KR017546
KS034	Trapeliopsis sp.	KR017083	KR017165	KR017363	KR017433	KR017547
KS036	Trapeliopsis granulosa	KR017084	KR017168	KR017306		
KS038	Trapeliopsis pseudogranulosa	KR017071	KR017169	KR017307	KR017428	
KS046	Trapelia coarctata	KR017072	KR017170	KR017353	KR017435	KR017548
KS047	Trapelia glebulosa	KR017053	KR017171		KR017437	KR017549
KS057	Trapelia obtegens	KR017057	KR017172	KR017308		
KS061	Trapelia coarctata	KR017098		KR017309	KR017453	KR017606
KS062	Trapelia coarctata	KR017058	KR017173	KR017310	KR017438	KR017550
KS064	Trapelia coarctata	KR017097		KR017311		
KS065	Trapeliopsis granulosa	KR017059	KR017174	KR017312		
KS066	Trapeliopsis granulosa	KR017060	KR017175	KR017313	KR017434	
KS070	Trapeliopsis gelacnosa	KR017078		KR017314	KR017476	KR017608
KS076	Trapeliopsis granulosa	KR017079		KR017315		KR017591
KS081	Trapelia glebulosa	KR017080	KR017176	KR017316	KR017429	
KS083	Trapelia glebulosa	KR017081	KR017177	KR017356	KR017478	KR017551
KS097	Trapeliopsis altaica	s.n.	s.n.	s.n.	s.n.	s.n.
P104	Trapeliopsis sp.	KR017117	KR017178	KR017318	KR017479	KR017553
P109	Trapelia macrospora	KR017102		KR017319		KR017555
P133	Trapelia antarccca			KR017326	KR017452	KR017559
P141	Trapelia coarctata	KR017092		KR017328	KR017463	KR017560
P116	Placopsis clavifera	KR017054		KR017320		KR017626
P118	Placopsis gelida	KR017055		KR017321		KR017627
P243	Trapeliopsis gymnidiata	s.n.		s.n.		
R07	Rimularia badioatra	KR017116		KR017203	KR017667	
SF002	Trapeliopsis gmynidata	s.n.		s.n.		
SF003	Trapeliopsis wallrothii	s.n.		s.n.		
SF004	Trapeliopsis wallrothii	s.n.		s.n.		
KS026	Trapelia placodioides	s.n.				s.n.
KS027	Trapelia placodioides	s.n.	s.n.	s.n.		s.n.
P291	Trapelia aff. placodioides	s.n.				
P227	Trapelia placodioides	s.n.		s.n.	s.n.	s.n.
X112	Trapelia glebosa	AF274081	AF274103	AF431962	DQ366259	
X132	Trapelia involuta	AF274080				
X143	Trapelia coarctata			AY212874		
X145	Trapeliopsis percrenata			AY212876		
X131	Trapelia chiodectonoides		AY212847	AY212873	DQ870999	
X133	Lambiella psephota		DQ871012	DQ871019	DQ870992	
T162	Xylographa lagoi			KR017278	KR017431	KR017631
T2402	Xylographa septentrionalis			KR017297		KR017620
T1323	Trapeliopsis steppica		KR017238	KR017386		
T1151	Xylographa parallela			KR017295		KR017614
T1112	Trapeliopsis granulosa	s.n.		s.n.		
CP4286	Trapeliopsis granulosa	s.n.	s.n.	s.n.	s.n.	
P108	Anamylopsora pulcherrima	KR017064		KR017241	KR017449	KR017554
P78	Baeomyces rufus	KJ462264	KJ462341	KJ462396		KR017567
P128	Baeomyces heteromorphus	KR017128	KR017183	KR017323	KR017450	KR017558
X147	Anamylopsora pulcherrima	AF274089				
T1088	Ainoa mooreana	KJ462262	KJ462339	KJ462394	s.n.	s.n.
X126	Baeomyces placophyllus		AF356658			

3.5 Polymerase Kettenreaktion (PCR)

Die PCR ist eine, durch die beide Primer eingegrenzte, enzymatische Amplifikation von DNA-Sequenzen, mit der es in der Molekularbiologie möglich ist, selbst geringste Mengen an DNA für weitere Bearbeitungen zu vervielfältigen. Die PCRs wurden mit den Geräten Eppendorf Mastercycler Nexus Gradient Thermal Cycler flex lid (Eppendorf, Deutschland) und G-Storm (Alpha Metrix Biotech, Deutschland) durchgeführt.

Der Ablauf der PCR erfolgt nach folgendem Grundschema:

1. Denaturierung: Auftrennen der doppelsträngigen DNA in Einzelstränge durch Erhitzen auf 98°C.

2. Annealing: Anlagern spezifischer Oligonukleotide am 5´- und 3´-Ende des zu amplifizierenden Bereiches der als Einzelstränge vorliegenden DNA.

3. Elongation: Verlängern der angelagerten Oligonukleotide mittels einer DNA- abhängigen DNA-Polymerase bei Anwesenheit freier Desoxynucleosid-Triphosphate (dNTPs), bis die Polymerase vom Strang abfällt oder die Reaktion durch Temperaturerhöhung unterbrochen wird (Müller, 2001).

Dieser Zyklus wird in der Regel 35-mal wiederholt, wobei dem ersten Zyklus ein langer Denaturierungsschritt vorangestellt wird. Dem letzten Zyklus folgt ein langer Elongationsschritt. Die PCRs wurden für die Genregionen ITS, LSU, mtSSU, RPB1 und EF1α durchgeführt. Die genauen Parameter sind in Anhang 1 festgehalten.

Der für die Reaktionen verwendete Mastermix entsprach dem Protokoll des Herstellers (Tab. 5) und beinhaltete die KAPA3G Plant DNA-Polymerase 250U (2,5U/µL) und einen gebrauchsfertigen KAPA3G Plant PCR Puffer mit inkludierten dNTPs.

Komponenten	10µL Reaktion	Endkonzentration
PCR-Wasser (ddH ₂ O)	ad 10µL	N/A
2X KAPA Plant PCR Puffer	5,0µL	1x
25 mM MgCl ₂	nach Bedarf	>1.5mM ³
10 µM Vorwärts-Primer	0,3µL	0.3µM
10 µM Rückwärts-Primer	0,3µL	0.3µM
Template-DNA	1,0µL	nach Bedarf
2.5 U/µL KAPA3G Plant DNA Polymerase	0,08 µL	1 U

Tabelle 5: Protokoll des verwendeten Mastermixes.

3.5.1 Konzentrationsbestimmung von Nukleinsäuren

Die Konzentration der dsDNA wurde anschließend spektrophotometrisch in einem Nanophotometer P330 der Firma Implen bei 260nm vermessen. Als Leerprobe diente der Elutionspuffer der vorangegangenen Aufreinigung der DNA. Eine Absorption A260=1 entspricht 50 µg ml-1 doppelsträngiger DNA, 40 µg ml-1 RNA bzw. 33 µg ml-1 einzelsträngiger Oligonukleotide. Die Reinheit der DNA wurde durch Messung der Absorption bei 280 nm bestimmt. DNA ist von hoher Reinheit, wenn der Absorptionsquotient A260/A280 zwischen 1,7 und 2 liegt und beträgt somit 70-95% (Jansohn & Rothhämel, 2012). Eine weitere Kontrolle erfolgte anhand des Peakmaximums bei 260nm. Diese Absorptionseigenschaft kommt durch die Verbindung der Desoxyribosestränge anhand von Wasserstoffbrückenbindungen zwischen den Basen Adenin und Thymin bzw. Guanin und Cytosin (Purin und Pyrimidin) zustande.

3.5.2 Agarosegel- Elektrophorese

Um DNA-Fragmente von 5-25kb Länge voneinander zu trennen und identifizieren zu können, stellt die Gel-Elektrophorese mit Agarosegelen eine einfache und effektive analytische Methode dar (Mülhardt, 2006). Das Prinzip der Gelelektrophorese beruht auf der Trennung von Fragmenten anhand ihrer Größe. Das DNA-Molekül ist aufgrund seiner Phosphatgruppen negativ geladen und bewegt sich daher in einem elektrischen Feld mit konstanter Geschwindigkeit in Richtung Anode. Die quervernetzten Polymerketten der Gelmatrix beeinflussen das Laufverhalten der verschieden großen Moleküle. Da große Moleküle langsamer durch das Gel laufen als kleinere, liegen diese nach einiger Zeit im elektrischen Feld getrennt vor (Watson 2011).

Zur Überprüfung der PCRs wurden 1% ige Agarosegele verwendet. Zum Anfärben der DNA wurde Midori Green zugesetzt und in einen Elektrophoreseschlitten gegossen. Durch Einsetzen von Kämmen wurden im Gel Taschen ausgespart, in welche Aliquote der PCR-Produkte nach Aushärten geladen werden. Nach Erstarren des Gels wurde der Schlitten in die mit 1x TBE gefüllte Gel-Elektrophoresekammer überführt und je Geltasche mit einer Probe, bestehend aus 2 μ l PCR-Produkt und 2 μ l Gelladepuffer (Xylencyanol FF BioRad) zur visuellen Verfolgung der DNA-Migration, beladen.

Weiters wurde eine Kammer mit einem Größenstandard (1kb Standard, Thermo Fisher SCIENTIFIC, Deutschland), die der Abschätzung von Fragmentgröße dient, beladen. Zum Auftrennen der DNA-Fragmente wurde eine Spannung von 90V, je nach Größe der Gel-Elektrophoresekammer, zwischen 16 und 30 Minuten angelegt.

Die durch das Midori Green angefärbten DNA-Fragmente konnten anschließend in einer Gel Doc Station der Firma Intas durch UV-Licht bei einer Wellenlänge von 254 nm dokumentiert werden.

3.6 Sequenzierung

Die PCR Produkte wurden je nach Konzentration der Banden 1:4 oder 2:3 mit ddH₂O in Single Tubes pipettiert und mit Barcodes zur späteren Identifikation versehen. Die dazugehörigen Primer wurden zu je 3µl pro Probe ebenfalls separat vorbereitet und zur anschließenden Sequenzierung an die Firma Microsynth (Wien) übergeben. Die gewonnenen Sequenzdaten wurden anschließend als Download zur Verfügung gestellt.

3.6.1 Überprüfung der gewonnenen Daten

Die gewonnenen Sequenzen wurden mit Sequenzen aus NCBI GenBank (Benson et al., 2013) verglichen. Dazu wurde der heuristische Suchalgorithmus BLAST (Version ncbi-blast 2.7.1) mit der Option megablast "high similar sequences" verwendet. Dabei vergleicht BLAST die eingegebenen Nukleotidsequenzen mit bereits vorhandenen Einträgen aus der Datenbank. Als Ergebnisse werden eine Liste von Sequenzen mit ähnlichen Sequenzabschnitten und der dazu berechneten Homologie angezeigt.

Dies geschieht anhand von Score und E-Werten. Beim Score handelt es sich um eine quantitative Bewertung der Ähnlichkeit zwischen Suchsequenz und den gefundenen Sequenzen. Der E-Wert gibt an, mit welcher Wahrscheinlichkeit die Sequenzähnlichkeit zufällig ist. Anhand dieser Parameter konnte anschließend entschieden werden, ob es sich um die untersuchte *Trapeliopsis* Art handelte oder ob etwaige Kontaminationen vorlagen.

3.7 Phylogenetische Analysen

3.7.1 Sequenzalignments

Ein Alignment der Sequenzen wurde mit ClustalW im Programm MEGA (Molecular Evolutionary Genetics Analysis) Version 7.0.20 erstellt. Das Alignment wurde danach manuell optimiert. Für die nachfolgenden phylogenetischen Berechnungen wurden zusätzlich NCBI GenBank Sequenzen (Tab. 4) in die Alignments einbezogen.

Die Auswahl aus NCBI GenBank berücksichtigte auch Sequenzen, die als Außengruppe in Frage kommen können. Mit der Referenzgruppe, die verwandtschaftlich möglichst nahe, aber doch außerhalb der zu untersuchenden Gruppe steht, ist eine Orientierung des Stammbaums möglich. Dadurch können apomorphe von plesiomorphen Merkmalen unterschieden werden (Storch et al., 2013). Die Berechnungen erfolgten sowohl separat für jedes einzelne Gen als auch mit einem konkatenierten Multialignment.

3.7.2 Die Auswahl eines geeigneten Substitutionsmodells

Für die phylogenetischen Untersuchungen war die Auswahl eines geeigneten Substitutionsmodells essentiell, da dies maßgeblich die Stammbaumberechnung beeinflusst. Um die potentiellen Modelle zu testen, wurde in dieser Arbeit ein Test mit dem Programm ModelFinder (Kalyaanamoorthy et al., 2017), das in IQ TREE v1.6.1 (Quang Minh et al., 2017), integriert ist, durchgeführt. Die Modelle unterscheiden sich in verschiedenen Parametern, die z.B. die Wahrscheinlichkeiten von Transversionen und Transitionen, als auch Parallel- und Rückmutationen berücksichtigen.

3.7.3 Berechnung der Stammbäume

Die Rekonstruktion der Bäume erfolgte mit zwei verschiedenen Programmen.

 RAxML v8.2.0 (Rax= Randomized Accelerated Maximum Likelihood) (Stamatakis, 2014) unter Verwendung von raxmlGUI 1.5b2 (GUI= graphical user interface) (Silvestro & Michalak, 2012). Als Substitutionsmodell wurde bei RAxML GUI das GTR (generalised time reversible) Modell herangezogen, das die Substitutionsparameter selbständig optimiert.

2. IQ Tree gilt als eine elegante Alternative zu RAxML, die besonders für umfangreiche phylogenomische Daten entwickelt wurde. Um die beste Anzahl von CPU Kernen für die Beschleunigung der Analyse zu ermitteln, wurde dieser Parameter als -nt AUTO hinzugefügt. Bei beiden Programmen wurde die Konfidenz der Stammbäume mittels Bootstrapanalyse untersucht (siehe unten). Es wurde dafür jeweils mit 1000 Wiederholungen gearbeitet.

Die weitere Bearbeitung und Beschriftung der Bäume erfolgte im Programm Fig Tree v1.4.3 (Rambaut, 2006-2016).

3.7.4 Maximum Likelihood Methode (ML)

Die Rekonstruktion der Bäume basierte bei beiden Programmen auf der Maximum Likelihood Methode. Bei der Analyse wird für vorgegebene Topologien eines Stammbaums seine negative log-Likelihood mit Hilfe des gewählten Substitutionsmodells berechnet. Die Likelihood errechnet sich aus den Produkten der Substitutionswahrscheinlichkeiten der homolog positionierten Nukleotide im Alignment (Windzio, 2013). Die Topologie wird solange verändert und optimiert, bis der Baum mit der höchsten Likelihood für den jeweiligen Datensatz gefunden wird (Hall, 2001).

3.7.5 Bootstrapping

Beim Bootstrapping handelt es sich um eine Resampling-Analyse, mit der ein Konfidenzwert für die Topologie eines phylogenetischen Baumes festgestellt wird. Dies geschieht durch Erstellen einer größeren Anzahl von gleich großen Pseudodatensätzen, die erzeugt werden, indem nach Zufallsprinzipien Spalten aus den vorliegenden Daten und andere Spalten ersetzt bzw. gelöscht

werden. Dabei können Positionen im Alignment einmal, zweimal oder gar nicht ausgewählt werden.

Je nachdem, wie oft eine Verzweigung in der Baumtopologie auftritt, wird ihr ein prozentueller Wert zugewiesen, der einer Konfidenz entspricht (Knoop & Müller, 2009). Ein Konfidenzwert von über 70% wird als moderate Unterstützung angesehen, Werte über 90% gelten als hohe Unterstützung für eine Verzweigung (Felsenstein, 1985).

3.8 Analytische Methoden

3.8.1 Dünnschichtchromatographie (TLC)

Die Anfänge der Chromatographie werden Michail Semjonowitsch Zwet zugeschrieben, der als erster die Auftrennung eines Chlorophyllextraktes im Jahre 1903 beschrieb. Erst drei Jahrzehnte später wurden anhand dieser Methode theoretische Grundlagen und chromatographische Kenngrößen ausgearbeitet und damit in weiterer Folge ein wichtiges Instrument zur Inhaltsstofferkennung geschaffen (Kaltenböck, 2008). Diese war vor der Entwicklung der molekularbiologischen Methoden als Chemosystematik eine wichtige Stütze in der Flechtenkunde. Die heute verwendete Methodik beruht auf flechtenspezifischen Entwicklungen durch Culberson und Kristinsson (1970), Culberson (1972), Culberson und Ammann (1978) und White und James (1985) Eine zusammenfassende Übersicht und Informationsquelle bei der Identifizierung von Flechtenarten liefert der Katalog der Flechtenstoffe von Elix (2014).

Die Dünnschichtchromatographie ist ein chemisch-physikalisches Trennverfahren und basiert auf dem Prinzip der Auftrennung eines Stoffgemisches durch die unterschiedliche Verteilung von zwei nicht miteinander mischbaren Phasen. Das Fließmittel und der Flechtenstoff bilden dabei die mobile Phase, das Kieselgel-Pulver die stationäre Phase.

Zur Untersuchung der Flechtenstoffe wurden folgende Laufmittelgemische verwendet:

A: 180ml Toluol, 45ml Dioxan, 5ml Eisessig

B':140ml Hexan, 72ml MTBE, 18ml Ameisensäure

C: 170ml Toluol, 30ml Eisessig

Die Präparation des benötigten Materials erfolgte unter einer Stereolupe in Eppendorfgefäßen. Nach Zugabe von Aceton wurde die Lösung mit Kapillarröhrchen auf die vorbereiteten und beschrifteten Kieselgel-Platten (F254 der Firma Merck) aufgetragen. Als Referenzprobe diente ein Extrakt aus einer Mischung von *Cladonia symphycarpia* (Norstictsäure), *Hypocenomyce scalaris* (Lecanorsäure) und *Umbilicaria deusta* (Gyrophorsäure), die eine Unterscheidung der wichtigsten Flechtenstoffe in *Trapeliopsis* ermöglichten.

Nach Überprüfung der Qualität des Auftragens unter UV-Licht, Auftrocknen der Restfeuchtigkeit und Entfernen von etwaigen Verschmutzungen, wurden die Platten in die Lösungsmitteltanks überführt und diese während der Laufzeit luftdicht verschlossen.

Die Laufhöhe der Silica-Platten betrug 15cm anstatt der in der Literatur genannten 10cm. Nach Erreichen der Laufhöhe und sorgfältigem Trocknen erfolgte eine erste Auswertung erkennbarer Spots bei Tageslicht. Alle vorhandenen Spots wurden unter UV-Licht bei 254nm und 366nm detektiert. Eine Kennzeichnung möglicher Fettsäuren erfolgte im weiteren Schritt durch Eintauchen der Platten in ein bereitgestelltes Gefäß mit Leitungswasser.

Nach abermaligem Trocknen wurden im letzten Schritt durch eine Behandlung mit 10% iger Schwefelsäure und Erwärmen der Silica Platten auf einer Heizbank bei rund 125°C wichtige Terpenoide, Depside oder Depsidone sichtbar gemacht.

Danach erfolgte nach Abkühlen der Platten eine nochmalige Kontrolle unter UV-Licht und ein abermaliges Markieren der neu entstandenen Spots. Gegenlichtaufnahmen für Auswertungen und Dokumentation der Spots wurden einige Tage später gemacht, da zu diesem Zeitpunkt die Intensität der Farbgebung am höchsten ist.

Da wiederholt bei verschiedenen Proben intensive Terpenoidspots aufschienen, wurden diese Proben mit Material von *Lepraria finkii* als Referenz für Zeorin verglichen.

3.8.2 Tüpfelanalyse

Die Tüpfelanalyse ist eine einfache qualitative Methode zum Nachweis bestimmter Flechtenstoffe. Dünnschichtchromatographie gewährleistet eine höhere Spezifität und Sensitivität, aber mit der Tüpfelanalyse ist eine grobe Lokalisierung von reaktiven Stoffen innerhalb der Thalli möglich. Sie wurde daher als weitere Nachweismethode verwendet. Die Präparation des Materials erfolgte anhand eines Schnittes durch den Thallus unter dem Stereomikroskop. Nach Zugabe einer kleinen Menge an Natriumhypochlorit (Reagenz C) erfolgte eine kurzfristige Farbreaktion (Rotfärbung) bei Anwesenheit von Gyrophorsäure und deren Vorstufe, der Lecanorsäure.

Bei jedem Beleg wurde eine Überprüfung an drei verschiedenen Stellen durchgeführt, um eine Verfälschung der Reaktion durch unzureichende Zugänglichkeit der Prüfchemikalie durch den Cortex bzw. die Zellwände oder eine Beeinflussung der Reaktion durch vorhandene Substanzen in der Belegprobe weitgehend auszuschließen.

4. Ergebnisse

4.1 Ergebnisse der PCR

Die Ergebnisse der PCR-Durchläufe waren unterschiedlich erfolgreich. Die anfänglichen Amplifikationen mit Standardprimern (Tab.1) ergaben nur bei den DNA-Markern ITS und LSU zufriedenstellende Ergebnisse. Eine große Anzahl der DNA-Isolationen für die Marker RPB1, EF1 α und mtSSU konnten erst mit den neuen Primern (Tab. 2 und 3) amplifiziert werden. Die Gene RPB2 und MCM wurden zwar in die anfänglichen Sequenzierungen integriert, lieferten aber trotz spezifischer Primer keine ausreichenden Ergebnisse und waren daher für weitere Analysen nicht mehr relevant. Die gesamte Anzahl an gewonnenen Sequenzen betrug 676. Die Aufteilung unter den verschiedenen Genen wurde in Anhang 3 erfasst.
4.2 Ergebnisse der phylogenetischen Analysen

Gen	Substitutionsmodell
ITS	TIM2+F+G4
LSU	TIMe+G4
mtSSU	TPM2+F+G4
RPB1	K2P+I+G4
EF 1α	TIM2e+R4
konkateniertes Alignment	TIM2e+R5

Tabelle 6: Übersicht der verwendeten Substitutionsmodelle, berechnet mit IQ Tree.

Tabelle 7: Übersicht der log- Likelihood Werte, berechnet mit IQ Tree.

Konsensusbaum	log- Likelihood
ITS	-12419.275
LSU	-15201.971
mtSSU	-7469.884
RPB1	-10467.647
ΕF 1α	-8619.243
konkatenierter Baum	-61945.537

Abbildung 5ff: Konsensusbaum 2/3 IQ Tree Berechnung

Abbildung 5ff: Konsensusbaum 3/3 IQ Tree Berechnung

Abbildung 6ff: Konsensusbaum 2/3 RaxML Gui Berechnung

Abbildung 6ff: Konsensusbaum 3/3 RaxML Gui Berechnung

Abbildung 7: partitionierter Konsensusbaum 1/3 IQ Tree Berechnung

Abbildung 7ff: partitionierter Konsensusbaum 2/3 IQ Tree Berechnung

Abbildung 7ff: partitionierter Konsensusbaum 3/3 IQ Tree Berechnung

Abbildung 8ff: ITS 2/2 IQ Tree Berechnung

Abbildung 9: LSU 1/2 IQ Tree Berechnung

Abbildung 9ff: LSU 2/2 IQ Tree Berechnung

Abbildung 10ff: mtSSU 2/2 IQ Tree Berechnung

Abbildung 11: RPB1 1/2 IQ Tree Berechnung

Abbildung 11ff: RPB1 2/2 IQ Tree Berechnung

Abbildung 12: EF1a 1/2 IQ Tree Berechnung

Abbildung 12ff: EF1a 2/2 IQ Tree Berechnung

4.3 Ergebnisse der Dünnschichtchromatographie (TLC)

Auf Basis der chemischen Ergebnisse wurden Sequenzen von Material, das weder Lecanorsäure noch Gyrophorsäure aufwies, aus den phylogenetischen Berechnungen der Stammbäume ausgeschlossen (Abb. 13).

Abbildung 13: Laufmittel C: Detektion der Spots bei 254nm und 366nm. Rot gekennzeichnet: Probe 34 ohne Nachweis von Gyrophorsäure. K= *Cladonia symphycarpia* für Norstictsäure, *Hypocenomyce scalaris* für Lecanorsäure und *Umbilicaria deusta* für Gyrophorsäure. u= unbekannter Spot.

Abbildung 14: Laufmittel A; Kontrollplatte der Terpenoide mit der Referenzprobe (K= *Lepraria finkii*) für Zeorin. u= unbekannter Flechtenstoff.

Tabelle 8: Auswertung der TLC anhand eines Chemoprofils von identifizierten und unbekannten Spots. X= deutlich erkennbarer Spot, O= kein sichtbarer Spot. Die Reihung ergibt sich aus der Abfolge der verwendeten Laufmittel: A, B', C. Belege, die nicht eindeutig identifiziert werden konnten, wurden von weiteren Analysen ausgeschlossen.

					Substanz	Substanz	Substanz	Substanz	Substanz
ID	Gyrophorsäure	Lecanorsäure	Terpenoid I	Terpenoid II	(blau)	(gelb)	(weiß)	(rot)	(orange)
DT006	XXX	OXO	000		XXX	OXX			
DT008	XXX	OXO	000		OXO	XXX			
DT009	XXX	OXO	000						
DT010	XXX	OXO	000		OXO				
DT011	XXX	OXO	000						
DT012	XXX	OXO	000		OXX				
DT014	XXX	OXO	000		OXX				
DT015	XXX	000	000					OOX	
DT016	XXX	OXO	000						
DT017	XXX	OXO	000			XXX			
DT018	XXX	000	000		XXO				
DT019	XXX	000	000						
DT022	XXX	OXO	000			OXO			
DT023	XXX	OXO	000		XXX	OXX			
DT024	XXX	000	000						
DT026	XXX	OXO	000			XXX	XXX		
DT027	XXX	OXO	000			XXX	XXX		

DT030	XXX	OXO	000		XXX		
DT031	XXX	OXO	000		XXX		
DT036	XXX	OXO	000				
DT037	XXX	OXO	000				
DT039	XXX	OXO	000				
DT040	XXX	OXO	000				
DT041	XXX	OXO	000		XXX		OOX
DT042	XXX	OXO	000	XXX	XXX		
DT043	XXX	OXO	000		OOX		
DT046	XXX	OXO	000				
DT047	XXX	000	000		OOX		
DT048	XXX	000	000				
DT050	XXX	000	000	XXX	OXX		
DT051	XXX	000	000				
DT052	XXX	000	000				
DT053	XXX	OXO	000				
DT054	XXX	OXO	000				
DT055	XXX	000	000				
DT056	XXX	OXO	000	XOX	XXX		
DT057	XXX	OXO	000				
DT058	XXX	OXO	000		OOX		
DT059	XXX	OXO	000				
DT060	XXX	OXO	000				
DT061	XXX	OXO	000	XXX	XXX		
DT062	XXX	OXO	000		OXX		
DT063	XXX	OXO	000		OXO		XXX
DT066	XXX	OXO	000			OOX	
DT067	XXX	OXO	000				
DT068	XXX	OXO	000				
DT069	XXX	OXO	000				
DT070	XXX	OXO	000				
DT071	XXX	OXO	000		XXX		
DT073	XXX	OXO	XXX		OXX		
DT074	XXX	OXO	XXX		OOX		
DT075	XXX	OXO	000				
DT076	XXX	OXO	000	XXX	XXX		
DT077	XXX	OXO	XXX				
DT078	XXX	OXO	000	XXX	XXX		
DT079	XXX	OXO	000	OOX			
DT080	XXX	OXO	000				XOO
DT082	XXX	000	000	XXO	OXX	OOX	
DT083	XXX	OXO	000		OXO		
DT084	XXX	OXO	000	OXX	OXX		
DT085	XXX	OXO	000	XXX	OXX		
DT086		080	000	XXX	XXX		
	XXX	040					
DT088	XXX XXX	OXO	000				
DT088 DT089	XXX XXX XXX	0X0 0X0 0X0	000				
DT088 DT089 DT091	XXX XXX XXX XXX	0X0 0X0 0X0 0X0	000 000 000				
DT088 DT089 DT091 DT092	XXX XXX XXX XXX XXX XXX	0X0 0X0 0X0 0X0 0X0	000 000 000 000	XXX			

DT096	XXX	000	000			OXO		
DT098	XXX	OXO	000			OXO		
DT099	XXX	OXO	000		OXO	OXX	OOX	OXX
DT100	XXX	OXO	000			OXX	OOX	
DT101	XXX	000	000					
DT102	XXX	000	000					
DT105	XXX	OXO	XXX	XXX			OOX	OXX
DT106	XXX	OXO	XXX	XXX				
DT107	XXX	OXO	XXX	XXX				
DT108	XXX	OXO	XXX		XXX			
DT109	XXX	OXO	000			OOX	OOX	
DT110	XXX	OXO	000					
DT111	XXX	OXO	000			OXX		
DT112	XXX	OXO	000			OXO		
DT113	XXX	OXO	000		OXX	OXX	OOX	
DT114	XXX	OXO	000		OXX	OXO		
DT115	XXX	OXO	000		XXX			
DT116	XXX	OXO	000					
DT117	XXX	OXO	000					
DT118	XXX	OXO	000	XXX				
DT119	XXX	OXO	000					
DT120	XXX	OXO	000				OOX	
DT122	XXX	OXO	000		XXX	XOO		
DT123	XXX	OXO	000	XXX				
DT124	XXX	000	000					
DT125	XXX	OXO	000		XXX	XXX		
DT127	XXX	OXO	000			XXX		
DT128	XXX	OXO	000			XXX		
DT129	XXX	OXO	000			XOX		
DT130	XXX	OXO	000					
DT132	XXX	OXO	000			OOX		
DT134	XXX	OXO	000		XXX	XXX		
DT136	XXX	000	000					
DT137	XXX	OXO	000					
DT138	XXX	OXO	000			OOX		
DT139	XXX	OXO	000			OOX		
DT140	XXX	000	000			OXX		
DT141	XXX	OXO	000		XOO	XXX		
DT142	XXX	OXO	000					
DT144	XXX	000	000	XXX				
DT145	XXX	OXO	000			XXX		
DT146	XXX	OXO	000					
DT147	XXX	OXO	XXX		XXX	XXX		
DT148	XXX	OXO	000			XXX		
DT149	XXX	OXO	000					
DT151	XXX	OXO	000			XXX		
DT152	XXX	OXO	000					
DT153	XXX	OXO	000					

5. Diskussion

5.1. Morphologische Untersuchungen

Die genaue mikroskopische Untersuchung der in der Arbeit aufgenommenen Belege zeigte deutlich, dass sich die Merkmale oft nicht konsistent mit den in der Literatur angegebenen Bestimmungsmerkmalen für entsprechende Arten deckten. Viele Belege zeigten mitunter innerhalb einzelner Thalli Variationen, die man verschiedenen Arten zuordnen könnte. Andererseits scheint auch hier eine ausgeprägte phänotypische Plastizität vorzuherrschen, d.h. unterschiedliche phänotypische Erscheinungsformen in Abhängigkeit vorherrschender Umweltbedingungen an Standorten. Solche Plastizität scheint in Krustenflechten möglicherweise verbreiteter zu sein als bislang angenommen (Muggia et al., 2014). Eine Vielzahl an äußeren Faktoren können auf das Wachstum der Flechten einwirken. So spielen ökologische Einflüsse wie Luftfeuchtigkeit, Sonneneinstrahlung oder Temperatur eine ebenso große Rolle in der Entwicklung der Thalli, wie standortbedingte, physiologische Bedingungen. Flechten mit kompliziert - etwa mit deutlicher Schichtung bzw. von blättrigem oder strauchigem Wuchs aufgebauten Thalli sind hier möglicherweise weniger betroffen als Flechten, die einfach strukturierte, krustige Thalli besitzen. Zu Letzteren zählt eindeutig auch die Gattung Trapeliopsis, bei der die Algen in flächigen Gruppen oder mehr oder weniger kohärent in einer undeutlichen Schicht liegen, aber keine deutliche Oberrinde oder Markschicht vorliegt. Diese primitive Organisation erlaubt fließende Übergänge zwischen glatten zu areolierten bis granulosen Thalli oder solchen mit zu Soredien entwickelten Thallusoberflächen. Je nachdem, wie man bei morphologischen Untersuchungen diese Aspekte der Variation mit einbezieht, kommt man zu unterschiedlichen Bestimmungsergebnissen.

Welche Bedingungen nun im Detail zu den morphologischen Variationen führten, muss noch näher untersucht werden. Die Beobachtungen legen nahe, dass hier sowohl das Alter der Thalli wie auch die mittelfristigen mikroklimatischen Bedingungen am Standort eine wichtige Rolle spielen könnten. Zweifellos unterliegt auch ein Flechtenthallus mechanischem Stress durch periodisch wechselnde Feuchtigkeitsbedingungen und damit verbundener Austrocknung und Quellung. Dieser periodisch auftretende mechanische Stress könnte eine Rolle bei der Bildung von Thallusareolen spielen. Die beobachtete, unterschiedlich ausgeprägte Areolierung der Thalli kommt möglicherweise dadurch zustande, dass sich die Hyphen des Thallus bei Trockenheit voneinander lösen und zu Rissbildungen im vormals glatten Thallus führen. Anhaltende Luftfeuchtigkeit hingegen könnte zur Ausbildung von glatten Thalli beitragen. Veränderte Bedingungen, die das Algenwachstum begünstigen, könnten zur Bildung körniger Thallusstrukturen beitragen. Es wird daher angenommen, dass die morphologischen Merkmale zu einem gewissen Maß mikroklimatischen Gegebenheiten folgen und keine stabilen, genetisch vererbten Merkmale darstellen. Die weiter unten diskutierten phylogenetischen Analysen stützen diese These. Damit würden *Trapeliopsis* Arten zu Flechten zählen, die extrem empfindlich auf mikroklimatische Bedingungen reagieren.

Eine längerfristige Beobachtung unter Berücksichtigung verschiedener klimatischer Bedingungen wäre notwendig, um tatsächlich festzustellen, ob *Trapeliopsis* je nach Wachstumsbedingungen bestimmte morphologische Muster ausprägt. Die hier beschriebenen Annahmen sollten auch eingehend in einem experimentellen Ansatz überprüft werden. Hier könnte man mit *Trapeliopsis* bewachsene Gesteinsproben zwischen den klimatisch unterschiedlichen Standorten transplantieren und die potentiellen morphologischen Veränderungen dokumentieren.

5.2. Präparation und Isolation genomischer DNA

Eine Schwierigkeit in dieser Arbeit bestand darin, dass bei manchen Belegen für molekulare Untersuchungen nur sehr geringe Mengen an Material zur Verfügung stand. Da es sich bei der Gattung *Trapeliopsis* um eine Krustenflechte handelt, war das Material mitunter schwer vom Substrat zu trennen. Um das Probenmaterial nicht zu sehr zu beschädigen, konnten Substratbeimengungen nicht komplett entfernt werde. Besonders bei sehr kleinen Proben wirken sich derartige Beimengungen umso deutlicher auf die Qualität der DNA-Extraktion aus.

Als weiterer und wichtiger kritischer Punkt sollte erwähnt werden, dass auch bei sehr sorgfältiger und genauer Präparation Beimengungen von anderen, zum Teil einwachsenden Flechten nicht ausgeschlossen werden konnten, welche in weiterer Folge zu einem Hintergrundsignal in den Rohsequenzdaten führte und in Folge aus weiteren Analysen ausgeschlossen wurden.

5.3. Phylogenetische Analysen

Die Berechnungen der phylogenetischen Stammbäume basierte auf zwei Methoden, die momentan zum Standard derartiger Analysen zählen. Zu Beginn wurden die Datensätze mit RaxML GUI berechnet, welche auf dem GTR Modell basieren und automatisch das optimale Substitutionsmodell in die Berechnungen einschließt. Anschließend erfolgte die Berechnung der gleichen Datensätze mit IQ Tree. Stellt man diese beiden Programme gegenüber, lieferten die Berechnungen mit IQ Tree weitaus bessere Unterstützungswerte für Clades. Dies kann damit begründet werden, dass IQ Tree vor der Analyse verschiedene Modelle testet (mit dem Programm Modelltest), wobei aus einer großen Anzahl von verschiedenen Substitutionsmodellen das am besten geeignete für die eigentliche Analyse verwendet wird. Damit wird auch einer Überparametrisierung vorgebeugt, bei der es unter Verwendung eines zu komplizierten Modells, zu Problemen führt. Zusätzlich wurde beim Multigenalignment eine Partitionierung der Einzelgene vorgenommen, was wiederum eine noch effizientere Berechnung erlaubte.

Die Einzelgenbäume wurden ebenfalls mit beiden Programmen berechnet. Für diese Arbeit wurden aber nur die von IQ Tree berechneten Bäume eingeschlossen. Die Ergebnisse mit IQ Tree wiesen weit weniger Topologiekonflikte zwischen den Gen-Orten auf und zeichneten sich insgesamt durch eine robustere Topologie aus. Die Robustheit der phylogenetischen Rekonstruktionen konnte durch die hohe Zahl an Clades mit Bootstrap-Werten über 70% bestätigt werden.

Bei der Auswertung von EF1a Sequenzdaten findet sich eine Gruppe von *Trapeliopsis* Arten in der Außengruppe wieder, was aber die Relationen der Innengruppe nicht weiter beeinflusst. Da dieses Gen hochkonserviert ist, ist die Aussagekraft dieses Locus ohnedies nur begrenzt. *Trapeliopsis granulosa* und *Trapeliopsis pseudogranulosa* konnten mit den Genloci mtSSU, RPB1 und EF1a großteils in einem Clade zusammengefasst werden, eine eindeutige Artabgrenzung zwischen diesen beiden Taxa konnte damit aber nicht bestätigt werden. Das gleiche Bild findet sich auch bei *Trapeliopsis flexuosa* wieder, wo keine klare Trennung zu anderen Arten ersichtlich war. Es konnte hingegen eine engere Verwandtschaftsbeziehung zwischen *Trapeliopsis glaucopholis, Trapeliopsis steppica* und *Trapeliopsis walrothii* aufgezeigt werden, was eine frühere phylogenetische Hypothese bestätigte (Resl, et al., 2015; McCune et al., 2002). Ähnliches trifft auch für die Verwandtschaft der Arten *Trapeliopsis colensoi, Trapeliopsis glaucolepidea, Trapeliopsis percrenata* und *Trapeliopsis viridescens* zu. Hier ist allerdings die Zahl der verwendeten Proben relativ gering und ein umfangreicheres Sampling

wäre für genauere Analysen notwendig, aber auch damit dürfte sich nach eigener Ansicht am allgemeinen Ergebnis der schlechten Auflösung von Arten nicht viel ändern.

Die Bestimmung der verschiedenen Arten wurde so übernommen, wie ursprünglich auf den Originalbelegen angegeben. Im Laufe dieser Arbeit wurden aber jene Belege aussortiert und nicht berücksichtigt, deren Bestimmung nicht eindeutig nachvollzogen werden konnte. Eine weitere Möglichkeit, um Namen klar zuzuordnen, wäre die Einbindung von Typusbelegen gewesen, was aber einerseits der zeitliche Rahmen nicht zuließ und zum anderen wegen der Spärlichkeit des Materials oder seinem zu hohen Alter für DNA Untersuchungen, unterblieb. Auch hätte die fallweise mögliche Typusuntersuchung wohl wenig an der Beobachtung einer hohen morphologischen Plastizität, die einer Artbestimmung anhand morphologischer Merkmale entgegensteht, verändert.

5.4. Dünnschichtchromatographie (TLC)

Proben, die nach Detektion der Spots weder Gyrophorsäure noch Lecanorsäure enthielten, wurden nicht weiter berücksichtigt; die meisten stellten sich nach näherer Untersuchung auch nicht als Vertreter von *Trapeliopsis* heraus. Es kann aber nicht ausgeschlossen werden, dass zu geringe Konzentrationen dieser beiden Flechtenstoffe in den Proben vorlagen. Bis jetzt gibt es keine Informationen, in wie weit hier auch Umweltbedingungen zur Synthese der Depside beitragen.

Weiters war zu beachten, dass außer im Laufmittel B', eine ungenügende Auflösung von Gyrophorsäure und Lecanorsäure durch eine annähernd gleiche Laufhöhe der Laufmittel A und C zustande kam, diese Spots aber trotzdem durch die höhere Dichte der Gyrophorsäure und die daraus resultierende intensive Färbung bzw. Abgleich mit der Referenzprobe identifiziert werden konnten. Fettsäuren waren teilweise vorhanden, jedoch in zu geringen Konzentrationen, was eine Auswertung unmöglich machte.

Die Detektion der Terpenoide lieferte ein interessantes Ergebnis. Diese Stoffe sollten in Zukunft näher untersucht werden, da sie durchaus auch bioaktive Wirkung (etwa durch Einbau in Biomembranen) aufweisen können. Sie traten vorwiegend in hohen Konzentrationen bei der Art *Trapeliopsis granulosa* auf und zeigten sich als kräftige, farblich charakteristische, meist paarig, auf gleichen Höhen auftretende Spots (Abb. 14). Die Vermutung, dass es sich dabei um das Terpenoid Zeorin handle, konnte durch den Vergleich mit einer zeorinhältigen Referenzprobe (*Lepraria finkii*) ausgeschlossen werden, da sich weder die Laufhöhen noch die Farbgebungen deckten. Eine genaue Identifikation dieser Spots hätte wegen der hohen Vergleichszahl an möglichen Terpenoiden den Rahmen dieser Arbeit gesprengt. Eine Fraktion von immer wiederkehrenden Spots, von denen die meisten aber nicht eindeutig identifizierbar waren, wurden mit Hilfe der Laufhöhe und charakteristischen Fluoreszenzmustern anhand eines Chemoprofils ausgewertet (Tab.8). Insgesamt lässt sich nach den chemischen Untersuchungen beobachten, dass (1) die Produktion der typischen Depside (Lecanor- und Gyrophorsäure) in den Mengen variiert, dass (2) Terpenoide unbekannter Struktur in vielen Proben zusätzlich auftraten und (3) viele weitere unbekannte Stoffe sporadisch auftraten. Diese Inhaltstoffe scheinen, wie ein Vergleich mit den Stammbäumen zeigt, jedoch kein klares evolutionäres Muster zu haben.

5.5. Tüpfelanalyse

Die Durchführung einer Tüpfelanalyse war nicht immer übereinstimmend mit den Ergebnissen der Dünnschichtchromatographie. Die Farbnuancen reichten von Orange, Orangerot bis Rot (Abb. 15). Da die Deutlichkeit der Reaktion immer mit der vorhandenen Konzentration des Flechtenstoffes zusammenhängt und in manchen Fällen nur Bruchteile von Sekunden andauert, waren diese bei einigen Proben nicht eindeutig zu bestimmen. Auch die unterschiedlichen Farbgebungen der Reaktion selbst könnten darauf beruhen. Die an drei Stellen pro Thallus durchgeführten Tüpfelreaktionen wiesen jedoch darauf hin, dass die Inhaltsstoffe lokal mit unterschiedlichen Konzentrationen im Thallus auftraten.

Abbildung 15: Kurzzeitig rote Reaktion (C+) mit Natriumhypochlorid zum Nachweis von Gyrophorsäure und Lecanorsäure.

Der Grund für diese Unterschiede könnte an Entwicklungsstadien innerhalb der Thalli gelegen haben. Eine Annahme ist, dass sich manche Flechtenstoffe in Abhängigkeit vom Alter der Flechtenpartner bilden könnten. Auch könnten ökologische Faktoren beitragen, etwa die Lichtintensität oder die Beschaffenheit des Substrates, vielleicht auch die geographische Lage oder sogar der Sammelzeitpunkt.

5.6. Schlussbemerkungen

Abschließend sei bedacht, dass Rekonstruktionen von Phylogenien im Grunde Hypothesen sind, mit denen Rückschlüsse auf die evolutionären Zusammenhänge von Arten ermöglicht werden. Man möge dabei aber im Auge behalten, dass Lücken in der Datenerhebung das korrekte Nachzeichnen der Entwicklungslinien von den Vorfahren zu ihren heutigen Nachkommen erschwert. Diese Arbeit ist ein Beispiel dafür, dass in bestimmten Flechten eine frappant hohe phänotypische Plastizität auftritt, die offenbar im Gegensatz zu vielen Arbeiten steht, in denen bislang kryptische Taxa innerhalb morphologisch gut umschriebener Flechten gefunden werden. Während in jenen Fällen aber im Nachhinein diagnostische Merkmale zur Bestimmung gefunden wurden, schien dies innerhalb der Gattung *Trapeliopsis* bis auf weiteres nicht möglich, obwohl die phylogenetische Analyse und Sequenzdivergenz durchaus auf das Vorhandensein verschiedener Arten rückschließen lässt. Hier dürfte es sich allerdings tatsächlich um kryptische Arten handeln.

6. Literaturverzeichnis

- Asahina, Y.; Kutani, N. (1925): Über die Gyrophorsäure. Journal of the Pharmaceutical Society of Japan 519: 423–429.
- Benson, D. A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D. J.; Ostell, J.; Sayers,E. W. (2013): GenBank. Nucleic Acids Research, 41(Database issue): D36–D42.
- Boenigk, J.; Wodniok, S. (2014): Biodiversität der Erdgeschichte. Springer, Berlin.
- Brodo, I. M.; Sharnoff S. D.; Sharnoff S. (2011): Lichens of North America. Yale University Press, London.
- Chen, A. J., Hubka, V.; Frisvad, J.C.; Visagie, C.M.; Houbraken, J.; Meijer, J.M.; Varga, J.;
 Demirel, R.; Jurjević, Ž.; Kubátová, A.; Sklenář, F.; Zhou, Y.G.; Samson, R.A. (2017):
 Polyphasic taxonomy of *Aspergillus* section *Aspergillus* (formerly *Eurotium*), and its occurrence in indoor environments and food. Studies in Mycology 88: 37–135.
- Elbert, W.; Weber, B.; Burrows, S.; Steinkamp, J.; Büdel, B.; Andreae, M. O.; Pöschl, U. (2012): Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience 5: 459–462.
- Elix, J. (1996): Biochemistry and secondary metabolites. In: Lichen Biology (Nash III, T.H., ed.). Cambridge University Press, Cambridge, pp. 154–181.
- Elix, J. (2014): A catalogue of standardized chromatographic data and biosynthetic relationships for lichen substances. 3rd ed. Canberra.
- Esser, K. (2000): Kryptogamen: Cyanobakterien, Algen, Pilze, Flechten. 3. Aufl. Springer, Berlin.
- Felsenstein, J. (1985): Confidence limits on phylogenies: an approach using bootstrap. Evolution 39: 783–791.
- Galun, M. (1988): Effects of symbiosis on the mycobiont. In: Galun, M. (ed.) CRC Handbook

of Lichenology. Vol. II. CRC Press, Boca Raton FL. pp. 145–152.

- Grube, M.; Cernava, T.; Soh, J.; Fuchs, S.; Aschenbrenner, I.; Lassek, I.; Wegener, U.; Becher, D.; Riedel, K.; Sensen, C. W.; Berg, G. (2014): Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. The ISME Journal 9: 412–424.
- Hall, B. G. (2001): Phylogenetic trees made easy. Sinauer Associate, Sunderland MA.
- Hofstetter, V.; Miadlikowska, J.; Kauff, F.; Lutzoni, F. (2007): Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: A case study of the Lecanoromycetes (Ascomycota). Molecular Phylogenetics and Evolution 44: 412–426.
- Hoppe, T.; Kutschera, U. (2009): In the shadow of Darwin: Anton de Bary's origin of myxomycetology and a molecular phylogeny of the plasmodial slime molds. Theory in Biosciences 129: 15–23.
- Huneck, S.; Yoshimura, I. (1996): Identification of lichen substances. Springer, Berlin.
- Hoang, T. D.; Chernomor, O.; von Haeseler, A.; Quang Minh, B.; Sy Vinh, L. (2017): UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522.
- Index Fungorum (2018): http://www.indexfungorum.org
- Jansohn, M.; Rothhämel, S. (2012): Gentechnische Methoden: Eine Sammlung von Arbeitsanleitungen für das molekularbiologische Labor. 5. Auflage. Springer, Heidelberg.

Kaltenböck, K. (2008): Chromatographie für Einsteiger. Wiley-VCH, Weinheim.

- Kalyaanamoorthy, S.; Quang M. B.; Wong, T.; von Haeseler, A.; Jermiin, L. (2017):ModelFinder: fast model selection for accurate phylogenetic estimates, Nature Methods 14: 587–589.
- Knoop, V.; Müller, K. (2009): Gene und Stammbäume. Ein Handbuch zur molekularen Phylogenetik. Springer, Heidelberg.

- Lange, O. L. (1992): Pflanzenleben unter Streß. Flechten als Pioniere der Vegetation an Extremstandorten der Erde. Rostra Universitatis Wirceburgensis, Würzburg.
- Lauterwein, M.; Oethinger, M.; Belsner, K.; Peters, T.; Marre, R. (1995): In vitro activities of the lichen secondary metabolites vulpinic acid, (+) -usnic acid and (-n) -usnic acid against aerobic and anaerobic microorganisms. Antimicrobial Agents and Chemotherapy 39: 2541–2543.
- Lohtander, K.; Oksanen, I.; Rikkinen, J. (2002): A phylogenetic study of *Nephroma* (lichenforming Ascomycota). Mycological Research 106: 777–787.
- Lutzoni, F.; Pagel, M.; Reeb, V. (2001): Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411: 937–940.
- Matheny, P. B.; Liu, Y.J.; Ammirati, J. F.; Hall, B. D. (2002): Using RPB1 sequences to improve phylogenetic inference among mushrooms (*Inocybe*, Agaricales). American Journal of Botany 89: 688–698.
- McCune, B.; Camach, F.; Ponzetti, J. (2002): Three new species of *Trapeliopsis* on soil in Western North America. The Bryologist 105: 78–85.
- Muggia, L.; Pérez-Ortega, S.; Fryday, A.; Spribille, T.; Grube, M. (2014): Global assessment of genetic variation and phenotypic plasticity in the lichen-forming species *Tephromela atra*. Fungal Diversity 64: 233–251.
- Müller, H.-J. (2001): Polymerase-Kettenreaktion (PCR) Das Methodenbuch. Springer, Heidelberg.

Mülhardt, D. C. (2006): Der Experimentator. Molekularbiologie/Genomics. Springer, München.

Nash, T. H. (2010): Lichen biology. Cambridge University Press, Cambridge.

Nei, M.; Kumar, S. (2000): Molecular evolution and phylogenetics. Oxford University Press, New York.

- Quang, M. B.; Trifinopoulos, J.; Schrempf, D.; Schmidt, H. (2017): IQ-TREE version 1.6.0: Tutorials and manual. http://www.iqtree.org/doc/iqtree-doc.pdf (28. Dec. 2017).
- Printzen, C.; McCune, B. (2004): *Trapeliopsis*. In: Nash, T. H.; Ryan, B. D.; Diederich, P.; Gries, C.; Bungartz, F. (eds): Lichen Flora of the Greater Sonoran Desert Region. Vol. 2. Arizona State University, Tempe AZ, pp. 538-541
- Printzen, C.; McCune, B. (2007) *Trapeliopsis.* In: T. H. Nash, III; Gries, C.; Bungartz, F. (eds): Lichen Flora of the Greater Sonoran Desert Region. Vol. 3. Arizona State University, Tempe AZ, pp. 398–399.
- Rambaut, A. (2006-2016): Fig Tree v1.4.3, Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/ (6. Aug. 2018).
- Rehner, S. A.; Buckley, E. (2005): A *Beauveria* phylogeny inferred from nuclear ITS and EF1α sequences: evidence for cryptic diversification and links to *Cordyceps* teleomorphs. Mycologia 97: 84–98.
- Rehner, S. A.; Samuels, G. J. (1994): Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625–634.
- Resl, P.; Schneider, K.; Westberg, M.; Printzen, C.; Palice, Z.; Göran, T.; Fryday, A.; Mayrhofer, H.; Spribille, T. (13. Mai 2015): Diagnostics for a troubled backbone: testing topological hypotheses of trapelioid lichenized fungi in a large-scale phylogeny of *Ostropomycetidae (Lecanoramycetes)*. Fungal Diversity 73: 239–258.
- Rikkinen, J. (1995): What's behind the pretty colours? A study on the photobiology of lichens. Helsinki. Bryobrothera 4: 1–239.
- Schmitt, I.; Crespo, A.; Divakar, P. K.; Fankhauser, J. D.; Herman-Sackett E.; Kalb K.; Nelsen M. P.; Nelson, N. A.; Rivas-Plata, E.; Shimp, A. D.; Widhelm, T.; Lumbsch, H. T. (2009): New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23: 35–40.

- Schneider, K.; Resl, P.; Westberg, M.; Spribille, T. (2015): A new, highly effective primer pair to exclude algae when amplifying nuclear large ribosomal subunit (LSU) DNA from lichens. Lichenologist 47: 269–275.
- Schoch, C. L.; Seifert, K. A.; Huhndorf, S.; Robert, V.; Spouge, J. L.; Levesque, C. A.; Chen,
 W.; Miller, A. N. (2012): Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences USA 109: 6241–6246.
- Silvestro, D.; Michalak, I. (2012): RaxmlGUI: A graphical front-end for RAxML. Evolution 12: 335–337.
- Stamatakis, A. (2014): RAxML version 8: a tool for phylogenetic analysis and post analysis of large phylogenies. Bioinformatics 30: 1312–131.
- Steinegger, E.; Hänsel, R. (2013): Lehrbuch der Pharmakognosie auf phytochemischer Grundlage. Springer, Heidelberg.
- Stockinger, H.; Peyret-Guzzon, M.; Koegel, S.; Bouffaud, M.-L.; Redecker, D. (2014): The largest subunit of RNA polymerase II as a new marker gene to study assemblages of arbuscular mycorrhizal fungi in the field. PLoS ONE 9: e107783.
- Stoll A.; Brack A.; Renz J. (1950): Die Wirkung von Flechtenstoffen auf Tuberkelbakterien und auf einige andere Mikroorganismen. Zeitschrift für allgemeine Pathologie und Bakteriologie 13: 729–751.
- Storch, V.; Welsch, U.; Wink, M. (2013): Evolutionsbiologie. Springer, Berlin.
- Vartia, K. O. (1973): Antibiotics in lichens. In: Ahmadjian V.; Hale M. E. (eds) The Lichens. Academic Press, New York, pp. 547–561.
- Vilgalys, R.; Hester, M. (1990): Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. Journal of Bacteriology 172: 4238–4246.

- Watson, J. D.; Baker, T. A.; Bell, S. P.; Gann, A.; Levine, M.; Losick, R. (2011): Watson Molekularbiologie. Pearson, München.
- Windzio, M. (2013): Regressionsmodelle für Zustände und Ereignisse. Springer, Wiesbaden.
- White, T. J.; Bruns, T.; Lee, S.; Taylor, J. (1990): Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.; Gelfand, D.; Sninsky, J.; White, T. (eds) PCR Protocols: a Guide to Methods and Applications. Academic Press, Orlando FL, pp. 315–322.
- Wirth, V.; Hauck M.; Schultz M. (2013): Die Flechten Deutschlands Band 1. Ulmer Verlag, Stuttgart.
- Wirth, V.; Hauck M.; Schultz M. (2013): Die Flechten Deutschlands Band 2. Ulmer Verlag, Stuttgart.
- Zhou, S.; Stanosz, G. R. (2001): Primers for amplification of mt SSU rDNA, and a phylogenetic study of *Botryosphaeria* and associated anamorphic fungi. Mycological Research 105: 1033–1044.
- Zoller, S.; Scheidegger, C.; Sperisen, C. (1999): PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511–516.
7. Anhang

Anhang 1: Verwendete PCR- Programme.

ITS	ITS
Temp: Calculated	Temp: Calculated
98°C, 3:00min	98°C, 3:00min
start cycles 35 times	start cycles 35 times
98°C, 0:30min	98°C, 0:30min
52°C, 0:25min	54°C, 0:30min
72°C, 1:00min	72°C, 1:00min
End cycle	End cycle
72°C, 7:00min	72°C, 7:00min
store 10°C	store 10°C
END	END
ITS	ITS
Temp: Calculated	Temp: Calculated
98°C, 5:00min	98°C, 3:00min
td 60°C to 51°C \rightarrow 10 cycles	start cycles 35 times
30 cycles	98°C, 0:30min
98°C, 0:20min	50°C, 0:30min
50°C, 0:15min	72°C, 1:00min
72°C, 0:30min	End cycle
End cycle	72°C, 7:00min
72°C, 7:00min	store 10°C
store 10°C	END
END	
ITS	
Temp: Calculated	
98°C, 5:00min	
td 58°C to 49°C \rightarrow 10 cycles	
30 cycles	
98°C, 0:20min	
48°C, 0:15min	
72°C, 0:30min	
End cycle	
72°C, 7:00min	
store 4°C	
END	

mtSSU	mtSSU
Temp: Calculated	Temp: Calculated
98°C, 3:00min	98°C, 3:00min
start cycles 35 times	start cycles 35 times
98°C, 0:30min	98°C, 0:30min
54°C, 0:30min	52°C, 0:30min
72°C, 1:00min	72°C, 1:00min
End cycle	End cycle
72°C, 7:00min	72°C, 7:00min
store 10°C	store 10°C
END	END
EF1 α	EF1 α
Temp: Calculated	Temp: Calculated
98°C, 3:00min	98°C, 3:00min
start cycles 35 times	start cycles 35 times
98°C, 0:30min	98°C, 0:30min
52°C, 0:25min	54°C, 0:30min
72°C, 1:00min	72°C, 1:00min
End cycle	End cycle
72°C, 7:00min	72°C, 7:00min
store 10°C	store 10°C
END	END
LSU	LSU
Temp: Calculated	Temp: Calculated
98°C, 5:00min	98°C, 3:00min
td 60°C to 51°C \rightarrow 10 cycles	start cycles 35 times
30 cycles	98°C, 0:30min
98°C, 0:20min	52°C, 0:30min
50°C, 0:15min	72°C, 1:00min
72°C, 0:30min	End cycle
End cycle	72°C, 7:00min
72°C, 7min	store 10°C
store 10°C	END
END	
RPB1	RPB1
Temp: Calculated	Temp: Calculated
98°C, 3:00min	98°C, 3:00min
start cycles 35 times	start cycles 35 times

98°C, 0:30min	98°C, 0:30min
52°C, 0:30min	54°C, 0:30min
72°C, 1:00min	72°C, 1:00min
End cycle	End cycle
72°C, 7:00min	72°C, 7:00min
store 10°C	store 10°C
END	END

Anhang 2: Beispiele für Belege, die nach PCR und TLC nicht als *Trapeliopsis* Arten identifiziert werden konnten. 1. DT031 Trapeliopsis sp. (1:300); 2. DT093 Trapeliopsis glaucolepidea (1:500); 3. DT068 Trapeliopsis pseudogranulosa (1:500); 4. DT150 Trapeliopsis sp. (1:300).

Anhang 3: Belegliste

ID	Taxon	Beleg Nr.	Sammler	Datum
DT001	Trapeliopsis sp.	11220	M. Caceres & A. Aptroot	12.03.2012
DT002	Trapeliopsis sp.	11707	M. Caceres & A. Aptroot	13.03.2012
DT003	Trapeliopsis sp.	11236	M. Caceres & A. Aptroot	12.03.2012
DT004	Trapeliopsis sp.	15322	M. Caceres & A. Aptroot	17.11.2012
DT005	Trapeliopsis gelatinosa	66493	A. Aptroop	21.10.2006
DT006	Trapeliopsis granulosa	8949/2	D. Soukup	15.09.1999
DT007	Trapeliopsis gelatinosa	74491	J. Hafellner, A. Hafellner	11.10.2009
DT008	Trapeliopsis granulosa	2689	M. Schultz	10.10.2015
DT009	Trapeliopsis sp.	6238	W. Obermayer	14.08.1994
DT010	Trapeliopsis sp.	6237	W. Obermayer	14.07.1994
DT011	Trapeliopsis granulosa	8445	C. Printzen	26.06.2003
DT012	Trapeliopsis pseudogranulosa	9901	B. Coppins, P. James	17.07.2004
DT013	Trapeliopsis flexuosa	89701	B. Coppins, P. James	10.07.2005
DT014	Trapeliopsis	32533	B. Mc Cune	-
DT015	steppica/glaucopholis Tranglionsis fleruosa	8476	C Printzen	27.06.2003
DT015	Trapeliopsis steppica	29994	B Mc Cupe	-
DT010	Trapeliopsis steppica	2688	M Schultz	10 10 2015
DT018	Trapeliopsis granulosa	8444	C. Printzen	26.06.2003
DT019	Trapelionsis sp.	s.n.	W. Obermaver	28.07.2000
DT020	Trapeliopsis sp.	11842	R. Haugan	03.09.2013
DT021	Trapeliopsis placodioides	11253	R. Haugan	13.04.2012
DT022	Trapeliopsis granulosa	94166	M. Clifford, Wetmore C.M.	26.06.2005
DT023	Trapeliopsis granulosa	11916	R. Haugan	09.10.2013
DT024	Trapeliopsis sp.	95/783	P.L. Nimis, J. Pölt, M. Tretjach	13.05.1995
DT025	Trapeliopsis sp.	7782	M. & H. Mayrhofer	25.08.1988
DT026	Trapeliopsis sp.	s.n.	D. Feiertag	28.10.2016
DT027	Trapeliopsis granulosa	s.n.	D. Feiertag	28.10.2016
DT028	Trapeliopsis sp.	13-94	J. Pölt	23.09.1993
DT029	Trapeliopsis sp.	s.n.	D. Feiertag	17.03.2017
DT030	Trapeliopsis sp.	s.n.	D. Feiertag	12.10.2016
DT031	Trapeliopsis sp.	s.n.	W. Obermayer	28.07.2000
DT032	Trapeliopsis gelatinosa	JK11-L474	J.T. Klebsland	28.10.2011
DT033	Trapeliopsis percrenata	11809	E. Timdal	28.08.2010
DT034	Trapeliopsis wallrothii	PO02/10	E. Timdal	23.05.2002
DT035	Trapeliopsis glaucolepidea	11591	R. Haugan	28.08.2013
DT036	Trapeliopsis pseudogranulosa	11255	R. Haugan	13.04.2012
DT037	Trapeliopsis pseudogranulosa	7558	R. Haugan	11.05.2007
DT038	Trapeliopsis flexuosa	11930	E. Timdal	22.06.2011
DT039	Trapeliopsis flexuosa	12379	E. Timdal	06.07.2011
DT040	Trapeliopsis flexuosa	11933	R. Haugan	17.09.2013
DT041	Trapeliosis glaucolepidea	12373	R. Haugan	15.11.2013
DT042	Trapeliopsis sp.	137-80	P. Döbbeler, H. Mayrhofer	07.10.1979
DT043	Trapeliopsis sp.	23-92	J. Pölt	18.08.1991

DT044	Trapeliopsis sp.	13-84	J. Pölt	23.09.1993
DT045	Trapeliopsis sp.	10-94	J. Pölt	27.02.1958
DT046	Trapeliopsis sp.	03-96	H. Mayrhofer, M. Matzer, W. Obermayer	31.07.1996
DT047	Trapeliopsis sp.	33441	J. Hafellner	26.08.1994
DT048	Trapeliopsis sp.	1-93	J. Pölt, C.F. Wetmore, A. Vezda	07.07.1992
DT049	Trapeliopsis sp.	4-86	W. Möschl, H. Pittoni	15.07.1974
DT050	Trapeliopsis sp.	67-92	K. Schittengruber	19.08.1944
DT051	Trapeliopsis sp.	14373	J. Hafellner, A. Ochsenhofer	23.08.1984
DT052	Trapeliopsis sp.	57-89	R. Rosentreter, B. McCane	19.08.1988
DT053	Trapeliopsis granulosa/flexuosa	17-2011	W. Obermayer	14.11.2010
DT054	Trapeliopsis sp.	58-91	R. Rosentreter, A. DeBolt	28.03.1990
DT055	Trapeliopsis flexuosa	11203	R. Haugan	01.07.2012
DT056	Trapeliopsis flexuosa	11331	R. Haugan, E. Timdal	04.10.2012
DT057	Trapeliopsis flexuosa	10704	R. Haugan	08.09.2011
DT058	Trapeliopsis flexuosa	JK09-L014	J.T. Klebsland	11.04.2009
DT059	Trapeliopsis flexuosa	10703	R. Haugan	08.09.2011
DT060	Trapeliopsis flexuosa	JK12-L211	J.T. Klebsland	29.08.2012
DT061	Trapeliosis flexuosa	10894	R. Haugan	27.11.2011
DT062	Trapeliopsis flexuosa	JK12-L163	J.T. Klebsland	06.08.2012
DT063	Trapeliopsis flexuosa	10946	E. Timdal	10.04.2009
DT064	Trapeliopsis gelatinosa	12074	R. Haugan	12.09.2013
DT065	Trapeliopsis gelatinosa	JK10-L453	J.T. Klebsland	31.08.2010
DT066	Trapeliopsis pseudogranulosa	11794	R. Haugan	20.08.2013
DT067	Trapeliopsis pseudogranulosa	JK12-L135	J.T. Klebsland	28.06.2012
DT068	Trapeliopsis pseudogranulosa	JK11-L006	J.T. Klebsland	17.04.2011
DT069	Trapeliopsis pseudogranulosa	JK07-L337	J.T. Klebsland	30.12.2007
DT070	Trapeliopsis pseudogranulosa	11791	E. Timdal, S. Rui	20.08.2010
DT071	Trapeliopsis granulosa	JK12-L172	J.T. Klebsland	09.08.2012
DT072	Trapeliopsis granulosa	11483	R. Haugan	02.09.2012
DT073	Trapeliopsis granulosa	10261	R. Haugan	09.07.2011
DT074	Trapeliopsis granulosa	11558	R. Haugan	12.08.2012
DT075	Trapeliopsis pseudogranulosa	JK11-L376	J.T. Klebsland	06.09.2011
DT076	Trapeliopsis granulosa	JK10-L030	J.T. Klebsland	10.04.2010
DT077	Trapeliopsis granulosa	11481	M. Bendiksby, R. Haugan, J.T. Klebsland, E. Timdal, M. Westberg	15.06.2012
DT078	Trapeliopsis granulosa	12075	R. Haugan	11.09.2013
DT079	Trapeliopsis granulosa	WP104	P. Resl	05.06.2013
DT080	Trapeliopsis granulosa	WP169	P. Resl	-
DT081	Trapeliopsis wallrothii	WP170	P. Resl	2014
DT082	Trapeliopsis sp.	36	G. Thor	2015
DT083	Trapeliopsis granulosa	30928	G. Thor 02.10.2	
DT084	Trapeliopsis altaica	s.n.	T.Goward	11.09.2014
DT085	Trapeliopsis granulosa	14412a	J. Hermansson	10.06.2005
DT086	Trapeliopsis flexuosa/granulosa	18802	H. Mayrhofer	22.08.2009
DT087	Trapeliopsis gelatinosa	65850	J. Hafellner	18.08.2005

DT088	Trapeliopsis steppica	142009	J.C. Lendemer	00.00.2008
DT089	Trapeliopsis flexuosa	74164	J. Hafellner	04.07.2009
DT090	Trapeliopsis gelatinosa	80106	J. Hafellner, L. Muggia	08.07.2012
DT091	Trapeliopsis gelatinosa	74553	J. Hafellner	26.10.2009
DT092	Trapeliopsis granulosa	65841	J. Hafellner	28.08.2005
DT093	Trapeliopsis glaucolepidea	6715	J. Vondrak	30.10.2008
DT094	Trapeliopsis viridescens	52600	R.C. Harris	17.05.2006
DT095	Trapeliopsis gelatinosa	13084	J.C. Lendemer	15.06.2008
DT096	Trapeliopsis glaucolepidea	65857	J. Hafellner	18.08.2005
DT097	Trapeliopsis glaucolepidea	65582	J. Hafellner	03.09.2005
DT098	Trapeliopsis glaucopholis	14792	J.C. Lendemer, K. Knudson	05.10.2008
DT099	Trapeliopsis pseudogranulosa	80841	J. Hafellner	30.08.2008
DT100	Trapeliopsis pseudogranulosa	3078	M. Kukwa	12.04.2004
DT101	Trapeliopsis viridescens	2675	J.C. Lendemer	24.04.2004
DT102	Trapeliopsis viridescens	Jun.13	M. Schwahn	27.03.2009
DT103	Trapeliopsis gelatinosa	16443	J.C. Lendemer	11.05.2009
DT104	Trapeliopsis gelatinosa	66071	J. Hafellner	10.07.2006
DT105	Trapeliopsis granulosa	34337	G. Thor	01.11.2016
DT106	Trapeliopsis granulosa	34218	G. Thor	01.11.2016
DT107	Trapeliopsis granulosa	34378	G. Thor	01.11.2016
DT108	Trapeliopsis glaucopholis	15615	K. Knudsen	09.02.2013
DT109	Trapeliopsis steppica	7118	K. Knudsen	09.09.2006
DT110	Trapeliopsis glaucopholis	17417	K. Knudsen	24.04.2015
DT111	Trapeliopsis flexuosa	2374	K. Knudsen	10.02.2005
DT112	Trapeliopsis steppica	9277	K. Knudsen	03.12.2007
DT113	Trapeliopsis glaucopholis	15779	K. Knudsen	17.05.2013
DT114	Trapeliopsis steppica	15546	K. Knudsen	05.02.2013
DT115	Trapeliopsis granulosa	1801.1	K. Knudsen	04.10.2004
DT116	Trapeliopsis flexuosa	17700	K. Knudsen	14.08.2015
DT117	Trapeliopsis bisorediata	760	K. Knudsen	07.01.2004
DT118	Trapeliopsis bisorediata	2151	K. Knudsen	17.01.2004
DT119	Trapeliopsis glaucopholis	14509	K. Knudsen	29.12.2011
DT120	Trapeliopsis granulosa	18294.3	K. Knudsen	19.04.2016
DT121	Trapeliopsis glaucopholis	15695	K. Knudsen	02.03.2013
DT122	Trapeliopsis granulosa	16312	K. Knudsen	08.11.2013
DT123	Trapeliopsis bisorediata	6425	K. Knudsen	03.06.2006
DT124	Trapeliopsis flexuosa	18482	K. Knudsen	07.11.2016
DT125	Trapeliopsis granulosa	41479	T. Spribille	2016
DT126	Trapeliopsis steppica	41009	T. Spribille	03.07.2015
DT127	Trapeliopsis flexuosa	41385	T. Spribille	11.05.2016
DT128	Trapeliopsis flexuosa	41383	T. Spribille	11.05.2016
DT129	Trapeliopsis granulosa	41377	T. Spribille	11.05.2016
DT130	Trapeliopsis flexuosa	41378	T. Spribille	11.05.2016
DT131	Trapeliopsis sp.	40348	T. Spribille	-
DT132	Trapeliopsis sp.	40637	T. Spribille	-

DT133	Trapeliopsis flexuosa	40477	T. Spribille	31.03.2014
DT134	Trapeliopsis sp.	41307	T. Spribille	29.04.2016
DT135	Trapeliopsis sp.	40868	T. Spribille	2014
DT136	Trapeliopsis pseudogranulosa	40367	T. Spribille	14.09.2013
DT137	Trapeliopsis gelatinosa	40699	T. Spribille	12.04.2014
DT138	Trapeliopsis granulosa	41375	T. Spribille	11.05.2016
DT139	Trapeliopsis granulosa	41047	T. Spribille	11.07.2015
DT140	Trapeliopsis sp.	41313	T. Spribille	-
DT141	Trapeliopsis sp.	41319	T. Spribille	-
DT142	Trapeliopsis sp.	40716	T. Spribille	24.08.2014
DT143	Trapeliopsis flexuosa	27773	T. Spribille	-
DT144	Trapeliopsis pseudogranulosa	29895	T. Spribille	-
DT145	Trapeliopsis pseudogranulosa	32119	T. Spribille	28.08.2009
DT146	Trapeliopsis granulosa	40423	T. Spribille	21.09.2013
DT147	Trapeliopsis granulosa	41436	T. Spribille	-
DT148	Trapeliopsis sp.	40430	T. Spribille	26.09.2013
DT149	Trapeliopsis granulosa	41480	T. Spribille	2016
DT150	Trapeliopsis sp.	40333	T. Spribille	14.09.2013
DT151	Trapeliopsis sp.	40708	T. Spribille	2014
DT152	Trapeliopsis sp.	40715	T. Spribille	24.08.2014
DT153	Trapeliopsis carbonicola	41364	T. Spribille	07.05.2016

Anhang 4: Tabellenübersicht der gewonnenen Sequenzen.

ID	ITS	LSU	mtSSU	RPB1	EF 1a
DT001	Х	Х	Х		Х
DT002	Х	Х	Х		Х
DT003	Х		Х		Х
DT004	Х	Х	Х		Х
DT005	Х	Х	Х		Х
DT006	Х	Х	Х		Х
DT007	Х	Х	Х	Х	Х
DT008	Х	Х	Х	Х	Х
DT009	Х	Х	Х	Х	Х
DT010	Х	Х	Х	Х	Х
DT011	Х	Х	Х		
DT012	Х	Х	Х	Х	Х
DT013	Х	Х	Х	Х	Х
DT014	X	X	X	Х	Х
DT015	Х	Х	X		Х
DT016	X	X	X	Х	Х
DT017	Х	Х	X	Х	Х
DT018	Х	Х	Х		Х
DT019	Х	Х	Х		Х
DT020	X	X	X	Х	Х
DT021	Х	Х	Х		
DT022	Х	Х	X	Х	Х
DT023	Х	Х			Х
DT024	Х	Х	Х		Х

DT025	Х	Х	Х		
DT026	X	X	X	X	x
DT027	x	x	x	x	x
DT028	x x	x x	x v	x x	v
DT020	v	x	x	x	v
DT029	A v	A V	X X	A V	A v
DT030	A V	A V	X V	Λ	A V
DT031	Α	X	X		X
DT032	v	A	A		A
D1033	X	X	X		X
D1034	X	X	X	X	X
D1035	X	X	X	X	X
D1030	X	X	X	X	X
D1037	X	X	X	X	X
D1038	X	X	X		X
D1039	X	Х	Х	Х	X
D1040	X	X	X	X	X
DT041	X	Х	X		X
DT042	X	X	X		X
D1043	X	Х	Х		X
DT044	X	X	X		X
DT045	X	Х	X		X
DT046	X	X	X	X	X
DT047	X	X	X		X
D1048	X	X	X		X
D1049	X		X		X
D1050	X	X	X		X
D1051	X	X	X		X
D1052	X	X	X		X
D1055	X	X	X		X
D1054	X	X	X	v	X
DT055	X	X	X	Λ	X
DT050	A v	x	x		A v
DT057	A V	A V	A V		A V
DT050	A V	A V	X V		A V
D1059	<u>А</u>	<u>А</u>	<u>А</u>		<u>А</u>
DT000	X	X	X	X	X
D1001	X	X	X	X	X
D1002	X	X	X	X	X
D1005	X	X	X	v	X
D1004	A v	A V	X V	X	A V
DT066	A V	A V	X X	A V	A V
DT067	x	x	x	x	v
DT068	A V	A V	A V	X	A V
D1000	A v	A V	X V	X	A V
D1009	A v	A v	X V	A V	A v
DT070	A v	x	x	x	A v
DT072	A v	A V	A V	Λ	Α
DT072	A V	A	X Y	v	v
DT073	N V	X X	X Y	X X	A V
DT075	A v	A V	A V	A V	A V
DT076	x	x	X	X X	x
DT077	x v	x v	X X	x	x v
DT078	X	X	X	X	X
DT079	x	x	x	X	x
DT080	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X	X	X	X
	I				

DT081		Х		Х	Х
DT082	Х	Х	Х	Х	Х
DT083	Х	Х	Х	Х	Х
DT084	x		X	X	x
DT085	X	Х	X	Х	X
DT086	X	X	X	X	X
DT087	X			Х	X
DT088	X	Х	Х	Х	Х
DT089	Х		Х	Х	Х
DT090	Х		Х	Х	Х
DT091	Х		Х	Х	Х
DT092	Х				Х
DT093	Х		Х		Х
DT094	Х	Х	Х		Х
DT095	Х		Х	Х	Х
DT096	Х	Х	Х		Х
DT097	Х	Х	Х	Х	Х
DT098	Х	Х	Х	Х	Х
DT099	Х		Х	Х	Х
DT100	X		Х		X
DT101	Х		Х		X
DT102	X	Х			X
DT103	Х		Х		Х
DT104	Х		Х		Х
DT105	Х	Х	Х	Х	Х
DT106	Х	Х	Х	Х	Х
DT107	Х	Х	Х	Х	Х
DT108	Х	Х	Х	Х	Х
DT109	Х	Х	Х	Х	Х
DT110	X	Х	Х	Х	X
DT111	Х	Х	Х	Х	X
DT112	X	Х	Х	X	X
DT113	X	Х	Х	Х	X
DT114	X	X	X	X	X
DT115	X	X	X	X	X
DT110	X	X	X	X	X
DT110	X	X	X	X	X
DT110	X	X	X	v	X
DT119 DT120	Α	A V	X V	A V	A v
DT120		Λ	Λ	Λ	Λ
DT122	x	x	x	x	x
DT122	x	x	X	X	x
DT123	x	X	X	A	x
DT125	x	X	X	x	x
DT125	X	X	X	A	X
DT120	X		X	X	X
DT128	X	X	X	X	x
DT129	X	X	X	X	X
DT130	X	X	X		X
DT131			X	Х	X
DT132	X	X	X	X	X
DT133			X	Х	X
DT134	X	X	X	X	X
DT135	Х		Х		Х
DT136	X		X	X	X

DT137	Х		Х	Х	Х
DT138	Х	Х	Х	Х	Х
DT139	Х	Х	Х	Х	Х
DT140	Х	Х	Х	Х	Х
DT141	Х	Х	Х	Х	Х
DT142	Х	Х	Х	Х	Х
DT143	Х	Х	Х	Х	Х
DT144	Х	Х	Х	Х	Х
DT145	Х	Х	Х	Х	Х
DT146	Х	Х	Х	Х	Х
DT147	Х	Х	Х		Х
DT148	Х	Х	Х	Х	Х
DT149	Х	Х	Х	Х	Х
DT150			Х	Х	Х
DT151	Х	Х	Х	Х	х
DT152	X	X	X	X	X
DT153	Х	Х	Х	Х	Х

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtliche und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

09.08.2018

Datum

Doris Faiendag

Unterschrift