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Abstract

For tunnels with shielded TBM advance an annular gap between rock mass and segmental

lining is created. This gap has to be backfilled as soon as possible. The properties of the used

backfill material crucially affect the load-bearing behaviour of the overall system consisting of

rock mass, backfill and segmental lining. In German-speaking parts of Europe the segmental

linings are often dimensioned by means of the elastic bedded frame model method. When

applying this method, the lining segments are discretised as straight or curved beams, using

elastic bedding springs to simulate the subsoil reaction. The spring stiffness is defined by the

bedding modulus. Hence, the bedding modulus constitutes an important input parameter

when dimensioning the lining segments.

In this thesis, the bedding condition for circular tunnels was investigated using numerical

simulations. The study demonstrated that at present analytical approaches deliver unsa-

tisfying results for a considerable number of calculations when compared to the numerical

investigation.

Hence, a new calculation method was established. Originating on the basic formulation of the

bedding modulus as the relation between stresses and the corresponding deformations (kr =

pi/ur) a closed form solution was developed. The method provides the separate consideration

of the backfill layer and the rock mass. This allows the calculation of the deformations on the

inner surface of the annular gap by means of common approaches. Subsequently, the bedding

modulus can be determined.

A very satisfying agreement was obtained when comparing the results of the new calculation

method and the numerical results. This proved the correctness of the new approach and

allows a closed-form and straightforward calculation method for the determination of the

radial bedding modulus.



Kurzfassung

Beim Ausbruch von Tunneln mittels Schildmaschinen entsteht herstellungsbedingt ein Ring-

spalt zwischen Ausbruchslaibung und Tübbingausbau, welcher mit einem geeigneten Mate-

rial verfüllt werden muss. Dabei beeinflussen die Eigenschaften des verwendeten Materials

das Tragverhalten des Systems Gebirge-Tübbingschale maßgeblich. Die Dimensionierung der

Tübbinge erfolgt im deutschsprachigen Raum häufig unter der Verwendung des elastisch ge-

betteten Stabzugs. Dabei werden die einzelnen Segmente durch geradlinige oder gekrümmte

Stäbe diskretisiert und das umliegende Gebirge über radiale Bettungsfedern dargestellt. Die

Federsteifigkeit wird dabei mithilfe des Bettungsmoduls beschrieben. Der radiale Bettungsmo-

dul stellt somit einen maßgebenden Parameter bei der Dimensionierung der Tübbingschalen

dar.

In dieser Arbeit wurde das Bettungsverhalten von kreisrunden Tunnelbauwerken mithilfe nu-

merischer Simulationen untersucht und den derzeitigen Bettungsansätzen gegenübergestellt.

Dabei zeigte sich, dass die analytischen Bettungsansätze nur für wenige Fälle zufriedenstel-

lende Ergebnisse liefern, was eine unwirtschaftliche Dimensionierung der Tübbingschalen zur

Folge haben kann.

Auf Basis der getrennten Betrachtung von Gebirge und Verpressmaterial wurde eine neue Me-

thode zur Berechnung des Bettungsmoduls aufgestellt. Mit diesem Ansatz können die Verfor-

mungen am Übergang zwischen Tübbing und Verpressmaterial analytisch ermittelt werden.

Zunächst werden die Verschiebungsverläufe mittels bereits bekannter Formelwerke berech-

net. Anschließend kann mit der allgemeinen Definition des Bettungsmoduls als Verhältnis

zwischen Spannung und zugehöriger Verformung (kr=pi/ur), dieser mithilfe der berechneten

Verformungen ermittelt werden.

Die Gegenüberstellung der analytischen und numerischen Ergebnisse zeigte eine äußerst zu-

friedenstellende Übereinstimmung und bestätigte folglich die Richtigkeit der neuen Berech-

nungsmethode. Somit ist eine direkte Berechnung des radialen Bettungsmoduls möglich.
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1 Introduction

For single or double shield TBM driven tunnels, segmental linings are frequently used as

support. The segmental lining is installed within the protection of the shield. In order

to allow curved alignments and to reduce frictional forces, the shield is smaller than the

cutterhead and also may be designed conical. The herewith caused gap between rock mass

and shield is termed steering gap. The size of the steering gap is governed by the required

curve radius and the rock deformations, since they might lead to a jamming of the TBM.

Since the lining segments are assembled within the shield, the gap between segments and rock

mass is larger than between rock mass and shield. In order to enable a sufficient load-bearing

behaviour the annular gap is filled as soon as possible. Once established, the bedding transfers

the stresses between segmental linings and the rock mass. The used material crucially affects

the stress redistribution behaviour. For TBMs in hard rock pea gravel, a fine-grained and

closely-graded gravel, is pneumatically injected. The pea gravel exhibits a very low stiffness

compared to the rock mass, and therefore, plays a decisive role for the bedding conditions.

In German-speaking parts of Europe the segmental linings are usually designed numerically

using 2D continuum models or analytically by means of the so-called elastic bedded frame

model method. When dimensioning using the bedded frame model method the bedding

modulus represents one of the most important input parameters. The bedding modulus is

not only affected by the surrounding subsoil or rock mass parameters, but also takes tunnel

geometry as well as ground pressure into account. Consequently, a proper determination

of the bedding modulus is often unfeasible. For a circular tunnel cross-section analytical

approaches are adopted from soft ground conditions. Accordingly, the dimensioning of the

segmental lining is subject to a considerable number of simplifications. Hence, the lack of

more detailed approaches might lead to an uneconomic design.
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2 State of the Art

When dimensioning using bedded frame model methods, the segmental lining is discretised

as straight or curved elements, using elastic bedding springs to simulate the subsoil reaction

(see Figure 2.1).

r0 r0 r0

kr

Segmental lining

Beam elements

radial bedding
springs

Figure 2.1: Discretisation of tunnel lining segments and surrounding subsoil.

This calculation procedure relates to the subgrade reaction method, which applies the bedding

modulus k to describe the relation between bedding stresses and deformations (σ = k · u).

In case of the dimensioning of segmental linings the radial bedding kr constitutes the relation

between radial bedding stresses σr and corresponding radial deformations ur at the interface

between subsoil and frame and is expressed as follows:

kr =
σr
ur

(2.1)

Therefore, the bedding modulus can be calculated if the bedding stresses σr and the defor-

mations ur are known. Originating on ”Theory of the Pierced Plate” the determination of

these parameters is enabled under the consideration of following assumptions:

• Homogeneous, isotropic and infinite plate

• Primary stress disregarded
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• Lateral pressure coefficient K0 equals 1.0

• Plane strain conditions (εz = 0)

• Linear-elastic material behaviour

• Constant internal pressure distribution along the circumferential direction

Figure 2.2 shows the Model of the Pierced Plate. The internal pressure pi is applied on the

interior edge of the plate and creates an expansion of the tunnel radius r0, since primary

stress-free conditions are assumed.

r0

pi

ur

Figure 2.2: Model of the Elastic Pierced Plate.

Lamé (1852) derived a closed-form solution for the Elastic Pierced Plate. For the given

problem a simplification of the original approach, which has been taken from Seeber (1999)

is applied:

ur =
pi · r0
E
· (1 + ν) (2.2)

where: ur ..... radial displacements [m]

pi ..... internal pressure [MPa]

r0 ..... tunnel radius [m]

E ..... Young’s modulus [MPa]

ν ..... Poisson’s ratio [-]

Equation 2.2 considers outward facing deformations positive.

In that case the relation between the radial internal pressure pi and the respective deforma-

tion ur defines the radial bedding modulus kr.

kr =
pi
ur

(2.3)



Chapter 2. State of the Art 4

where: kr ..... bedding modulus [MPa/m]

ur ..... radial displacements [m]

pi ..... internal pressure [MPa]

By substituting ur of Equation 2.2 using the expression of Equation 2.3, Equation 2.4 can be

provided:

kr =
E

r0
· 1

1 + ν
(2.4)

Implementing the relation between Young’s modulus E and stiffness modulus Es (Equation

2.6) delivers the alternative:

kr =
Es
r0
· 1− 2ν

1− ν
(2.5)

Es = E · 1− ν
(1 + ν)(1− 2ν)

(2.6)

It is apparent that the deformational behaviour of the rock mass governs the bedding modulus.

However, it has to be kept in mind that additionally to the assumptions regarding the ”Theory

of the Pierced Plate”, further simplifications apply:

• Backfill layer not implemented

• Shear bond between the rock mass and lining segments not implemented

• Mechanical properties and geometry of lining segments not considered

Due to the numerous assumptions a simplified calculation approach, which considers a cor-

rection factor f , has been established in practical applications:

kr = f · Es
r0

(2.7)

where: kr ..... bedding modulus [MPa/m]

f ..... correction factor [-]

Es ..... stiffness modulus [MPa]

r0 ..... tunnel radius [m]

By examining Equation 2.5 it appears that f theoretically must be smaller than 1.0. In

order to cover the various influencing factors and to guarantee that the bedding modulus is

on the safe side, the parameter f is estimated. A wide range of recommendations for the

correction factor f can be found in literature. In 1964 values between f = 2/3 to f = 3.0
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were suggested as initial recommendations by Duddeck & Schulze (1964). Windels (1966)

suggested values between f = 1.0 to f = 1.5. Wissmann (1968) evaluated the bedding

modulus using a different methodology. With an equally loaded and infinite stripe surface

he obtained a correction factor f ≈ 1.0, which correlates to recommendations derived from

the pierced plate.

In 1980 the German EBT recommendations (Duddeck, 1980) have determined following val-

ues:

for shallow tunnels (h < 2d): f = 1.0 (2.8)

for deep tunnels (h > 3d): f = 0.5 (2.9)

where d is the tunnel diameter and h the overburden height on the crown. In spite of the

numerous recommendations the application of f = 1 has become common practice (Behnen

et al., 2013) and the bedding modulus is calculated with:

kr =
Es
r0

(2.10)

In order to capture the influence of a backfill layer, Equation 2.10 has to be reformulated

since it is only applicable if the backfill material exhibits an equal or higher stiffness modulus

than the surrounding subsoil. The modified approach is based on two consecutive layers with

constant thickness. Thus, the bedding modulus is based on the composed deformations:

kr =
pi

uag + urm
(2.11)

where: kr ..... bedding modulus [MPa/m]

pi ..... internal pressure [MPa]

uag ..... radial displacements of the annular gap [m]

urm ..... radial displacements of the rock mass [m]

The deformations are calculated:

ur = uag + urm =
pi · d1
Es,ag

+
pi · d2
Es,rm

(2.12)

By substituting uag and urm in Equation 2.11 with 2.12 the ”Extended approach” (Equation

2.13) is given:

kr =
1

d1
Es,ag

+
d2

Es,rm

(2.13)
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where: kr ..... bedding modulus [MPa/m]

d1 ..... annular gap width [m]

d2 ..... influence depth of rock mass [m]

Es,ag ..... stiffness modulus of the backfill material [MPa]

Es,rm ..... stiffness modulus of the rock mass [MPa]

Figure 2.3 shows the principle of the ”Extended approach” with consecutive layers.

Lining segments

Pea gravel layer 

d2d1

E  s,ag

E  s,rm

p  i p  i

Figure 2.3: Principal of consecutive layers.

The influence depth d2 has to be estimated. Literature provides values for d2 between one and

two times the excavation radius (Behnen et al., 2013). Thienert & Pulsfort (2011) suggest

an influence depth of approximately one radius using the following equation:

d2 = r0 − d1. (2.14)

Under hard rock conditions, where the stiffness modulus of the rock mass Es,rm significantly

exceeds the stiffness modulus of the backfill material Es,ag, the bedding is primarily affected

by the backfill material (Behnen et al., 2013). Thus, Equation 2.13 reduces to:

kr =
Es,ag
d1

(2.15)

where: kr ..... bedding modulus [MPa/m]

d1 ..... annular gap width [m]

Es,ag ..... stiffness modulus of the backfill material [MPa]
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3 Definition of Objectives

At present, the design methodology for the segmental lining using the bedded frame model

method is subject to a number of simplifications. When using the ”Extended approach”

incorporating the backfill layer, the influence depth of the rock mass has to be estimated,

primary stress conditions are disregarded and the materials are assumed to behave linear

elastically. This only represents a selection of simplification measures which have been in-

troduced for the formulation of the current applied approaches. Their influence, however, is

not sufficiently explored. Nevertheless, these approaches form the basis of the dimensioning

of the segmental linings. Consequently, an improved approach (including the mechanical

properties of the backfill layer and the rock mass, as well as annular gap width, tunnel radius

and primary stress conditions) could provide a more appropriate dimensioning.

This work focuses on the bedding conditions within hard rock conditions using pea gravel

as backfill material. The objective is the investigation of the influencing parameters on the

bedding modulus by means of numerical methods. Accordingly, the incorporation of all

influencing factors in the calculation methodology is targeted. Hence, a new analytical calcu-

lation method for the bedding modulus shall be introduced and confirmed by the numerical

simulations.
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4 Methodology

Following steps were performed to reach the previously stated aims:

• Establishment of a numerical model based on the elastic pierced plate.

• Verification of the numerical model using simple analytical approaches.

• Investigation of the bedding modulus incorporating the pea gravel layer.

• Development of a closed form solution for the determination of the bedding modulus.

The numerical study was carried out using the software FLAC3D (Itasca Consulting Group

Inc., 2017). The evaluation and post processing of the numerical output was executed using

MATLAB (MathWorks Inc., 2017).

4.1 Numerical model setup and post processing

The numerical model represents a pierced plate. A circular tunnel was located in the center

of the model. Since the system is symmetric, a vertical plane of symmetry was introduced to

reduce the computing effort.

In order to minimise the influence of the external boundary conditions and therefore to

increase the reliability of the model two methods were adopted. The horizontal and vertical

expansion factor was set in a range between 30 to 50 times the tunnel radius r0, which

represents a very conservative value. Additionally an external force boundary condition,

which corresponds to the actual primary stress state, was applied. This guarantees small

displacements at the external boundaries and results in a more accurate rock mass behaviour.

The symmetry axis of the overall system, as well as the longitudinal direction were fixed in the

horizontal direction with a stiff boundary. Figure 4.1 shows the numerical models. The left

Figure illustrates the overall system including the external boundary conditions. The Figure
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in the center and the right Figure show the models without and with the incorporation of

the backfill layer.

r0

pi

r0

pi

Stiff boundary

Force boundary

r0

z

xy

Figure 4.1: Left: Overall system of the numerical model with boundary conditions, middle:

model without pea gravel, right: model incorporating the pea gravel layer

Table 4.1 describes the constitutive models, which were applied for the given tasks.

Table 4.1: Constitutive models

Material Constitutive Model Description Input parameters

Rock mass Mohr-Coulomb Mohr-Coulomb failure criterion ϕ, c, ψ, σt, E, ν

with tension cutoff,

linear elastic stress-strain

relationship and perfect plasticity

Pea gravel Linear-Elastic linear elastic stress-strain E, ν

relationship

The tunnel support was simulated as internal pressure pi varying from 1.0 to 0.0 MPa, which
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was applied at the excavation boundary. The internal pressure was applied in ten loadsteps.

The numerical simulation procedure is listed below:

1. Initializing the primary stress state and zeroing the deformations.

2. Excavation of the cavity and simultaneous application of the internal pressure of 1 MPa

at the excavation boundary reaching equilibrium.

3. Stepwise decrease of the applied internal pressure reaching equilibrium after each load-

step.

The progressive plastification at the excavation boundary required decreasing loading con-

ditions. A full relaxation without support pressure at the beginning of the numerical in-

vestigation also causes the largest deformations during this step. Consequently, the largest

plastic area is formed with an internal pressure of 0 MPa. Due to the fact that plastification

is irreversible, the numerical investigation delivers unreliable results for the subsequent cal-

culations. Hence, the decrease of the internal loading in order to capture realistic results is

inevitable.

The evaluation of the bedding modulus was performed using the incremental deformations

between the loadsteps with their corresponding incremental internal pressure ∆pi of 0.1 MPa.

This allows the consideration of nonlinear displacement development under plastified rock

mass conditions. Accordingly, the bedding modulus was calculated using the secant modulus:

kr = f(pi) =
∆pi
∆ur

(4.1)

∆pi = pi(n+ 1)− pi(n) (4.2)

∆ur = f(pi) = ur(n+ 1)− ur(n) (4.3)

4.2 Verification of the numerical model using simple

analytical approaches without a backfill layer

The numerical input was verified using the simplified model, which disregards the backfill

layer. A primary stress-free condition was assumed (p0 = 0) and the internal pressure was
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applied directly on the excavation boundary. To incorporate the rock mass the constitutive

model “Mohr-Coulomb” and the parameter set from Table 4.2 were used. The bedding

modulus was evaluated by inserting the obtained displacements in Equation 4.1.

Table 4.2: Material parameters for Verification

Property Symbol Unit Value

Density ρ kg ·106/m3 0.0027

Young’s modulus E MPa 10000

Poisson’s ratio ν - 0.25

Friction angle ϕ ◦ 35

Cohesion c MPa 5

Tensile strength σt MPa 100

Dilation angle ψ ◦ 0

Lateral pressure coefficient K0 - 1

The comparison of the numerical and analytical results proved the applicability of the nu-

merical model. Analytical deformations were calculated using Equation 4.4 (Lamé, 1852).

This approach is based on the Theory of the Elastic Pierced Plate. The sign convention

determines inward facing deformations as positive.

ur = (p0 − pi) ·
r0
E
· (1 + ν) (4.4)

In addition, the simulation was performed with a primary stress state. The results correlated

when using the equation of Lamé (1852) (Equation 4.4) for elastic rock mass conditions and

Equation 4.5 (Salençon, 1969) for plastified rock mass.

Salençon assumes a cylindrical cavity in an infinite medium. The body forces are disregarded,

an isotropic and homogeneous material is assumed and the yield criterion is based on the

Mohr-Coulomb failure criterion (Salençon, 1966, 1969). These assumptions correspond to the

established numerical model. Within the plastic zone a loosening of the rock mass is taken

into account. This is considered by the loosening factor kψ, which is governed by the dilation

angle ψ. A possible softening of the rock mass within the plastic zone remains disregarded.

It must be considered that this approach is inapplicable for a displacement evaluation under

elastic rock mass conditions.

ur =
r

2G
·X (4.5)
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with:

X = (2ν − 1)

(
p0 +

σUCS
k − 1

)
+

+

(
(1− ν) · (k2 − 1)

k + kψ

)(
pi +

σUCS
k − 1

)(
rp
ro

)(k−1) (rp
r

)(kψ+1)
+

+

(
(1− ν)

(kψ · k + 1)

k + kψ
− ν

)(
pi +

σUCS
k − 1

)(
r

ro

)(k−1)

(4.6)

where: G ..... shear modulus [MPa]

k ..... passive lateral pressure coefficient [-]

kψ ..... loosening factor [-]

p0 ..... primary stress [MPa]

pi ..... internal pressure [MPa]

r ..... control variable [m]

r0 ..... tunnel radius [m]

rp ..... plastic radius [m]

ur ..... radial displacements [m]

ν ..... Poisson’s ratio [-]

σUCS ..... Unconfined compressive strength [MPa]

Figure 4.2 shows the comparison of the numerical and analytical results. The bedding mod-

ulus is depicted on the ordinate, whereas the ordinate shows the applied internal pressure.

Three different primary stress conditions are presented. The blue circles show an excellent

agreement of the numerical and analytical results under elastic rock mass conditions. As

can be seen under plastified conditions (red triangles and green squares) a minor discrepancy

between the solutions can be identified. This is due to the limitations of the numerical model.

Figure 4.3 illustrates the material state, which was obtained for a lateral pressure coefficient

of 1.0. The red-colored elements represent the plastified area. As can be seen a non-uniform

distribution of the plastification occurs. This is caused by the mesh, which shows varying

zone depths of the single elements along the circumferential direction. Consequently, this

slightly affects the resulting deformations.

Despite these drawbacks the numerical calculations delivered appropriate results and the

deviations were not significant. Hence, the applicability of the numerical model was verified

for various primary stress conditions.
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Figure 4.2: Comparison between the numerical and analytical solution.

Figure 4.3: Numerical model showing a non-uniform distribution of plastification for a lateral

pressure coefficient K0 equal 1.0.
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4.3 Investigation of the radial bedding modulus incorporating

a backfill layer using at present analytical approaches

The influence of pea gravel on the bedding modulus was investigated using the numerical

model, which incorporates the backfill layer at the interior excavation boundary. The internal

pressure was applied on the interior surface of the annular gap. The bedding reaction is

governed by the geometry of the tunnel as well as the annular gap, their material properties,

support pressure and primary stress state. In order to obtain a representative set of numerical

calculations the mechanical material properties were varied as listed in Table 4.3. In order

to prevent the rock mass failing in tension, which may occur due to the internal pressure pi

for shallow tunnels, a high tensile strength σt of 100 MPa was assumed.

Table 4.3: Variation of the mechanical material properties

Material Property Symbol Value Unit

Rock mass Young’s modulus Erm 1000 - 100000 MPa

Poisson’s ratio νrm 0.2 - 0.4 -

Friction angle ϕ 10 - 35 ◦

Cohesion c 5.0 - 15.0 MPa

Tensile strength σt 100 MPa

Dilation angle ψ 0 ◦

Pea gravel Young’s modulus Eag 30 - 150 MPa

Poisson’s ratio νag 0.2 - 0.25 -

The numerical study indicated distinct differences in the deformational behaviour between

elastic and plastified rock mass as expected. Table 4.4 lists the varied parameters and their

qualitative influence. It appears that the bedding reaction with elastic rock mass conditions

is governed by the geometry of the tunnel, the annular gap width, as well as by the elas-

tic properties. In contrast, with plastified conditions all investigated parameters affect the

bedding reaction.
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Table 4.4: Investigated parameters and their influence on the bedding modulus

Parameter Elastic rock mass Plastified rock mass

Tunnel radius x x

Annular gap width x x

Primary stress – x

Lateral pressure coefficient – x

Internal pressure – x

Elastic properties of rock mass and pea gravel x x

Strength properties of rock mass – x

x ... bedding reaction affected

– ... bedding reaction not affected

4.4 Results and discussion on performed investigations

Figures 4.4 and 4.5 illustrate the results of two selected calculations compared to the ana-

lytical approaches. The analytical results were calculated using the ”Extended approach”

(Equation 2.13) with d2 = r0 − d1 (Thienert & Pulsfort, 2011) and Equation 2.15 (Behnen

et al., 2013). The abscissas shows the applied internal pressure pi, the bedding modulus kr

is depicted on the ordinate. With elastic rock mass conditions a good agreement between

the numerical and analytical solutions was reached (Figure 4.4). Correlating results were

obtained for a pea gravel of low stiffness within a stiff rock mass. However, the accuracy

of the results depends on the stiffness ratio (Es,rm/Es,ag) between the materials. Therefore,

the knowledge of the limiting stiffness ratio is required in order to obtain reliable results. A

quantification of this ratio is hardly feasible due to further influencing parameters, such as

Poisson’s ratio and geometry. In contrast to elastic rock conditions, with plastified conditions

both analytical approaches deviate significantly from the numerical solutions (Figure 4.5).

The comparison showed that the actual bedding resistance is lower to a considerable extend

than assumed in the analytical approximations. Hence, the results demonstrate the limita-

tions of the at present applied analytical approaches, most notably in terms of plastified rock

mass conditions.

In order to illustrate the order of magnitude of the theoretical influence depth d2, a back-

analysis was performed. To back-calculate the influence depth d2, the ”Extended approach”
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(Equation 2.13) was used and reformulated as shown in Equation 4.7:

d2 =

(
1

kr
− d1
Es,ag

)
· Es,rm (4.7)

Figure 4.6 illustrates a typical development of the back-calculated normalised influence depth.

For a constant stress state and a constant stiffness moduli ratio (Es,rm/Es,ag) with constant

Poisson’s ratios the distribution of the influence depth remains the same. A linear relationship

can be identified for stiffness moduli ratios above 50 to 100. Nonlinear development appears

for low ratios under plastified rock mass conditions (data not shown). The data in Figure 4.6

presents different primary stress states, whereby the blue circles show the elastic rock mass

behaviour. A shift of the data upwards occurs only for plastified rock mass (red triangles and

green squares).

As expected, the influence depths d2 for stiff rock masses are lower. However, as can be seen

in Figure 4.6 negative results can be obtained. This leads to the conclusion that the applied



Chapter 4. Methodology 17

Figure 4.6: Typical development of the influence depth d2 for different primary stress condi-

tions.

analytical approaches are not suitable for the evaluation of the bedding modulus.

As already explained in chapter 2 the ”Extended approach” (Equation 2.13) is based on two

consecutive layers with constant thickness. In addition, following assumptions have been

made for the formulation of this approach:

• Application of Hooke’s law.

• Assumption of plain strain conditions.

• Load propagation is disregarded.

Figure 4.7 shows the principle of consecutive layers under consideration of the load propaga-

tion. Due to the circular cross section and the spatial stress condition within the materials

the radial stresses decrease with increasing distance from the tunnel center. Neglecting this

stress development leads to an overestimation of the radial stresses and the corresponding

deformations when using the ”Extended approach”. Subsequently, the bedding reaction of

the single layers is underestimated.

The ”Extended approach” consists of two parts which describe the total deformations ur,

namely the deformations of the backfill layer uag and the deformations of the rock mass urm



Chapter 4. Methodology 18

E  s,ag

E  s,rm

p  i

p  i

p * i

Figure 4.7: Principle of consecutive layers under consideration of the load propagation.

(see Equation 2.11). In order to obtain the analytical bedding modulus the total deforma-

tions ur are relevant, the composition of these is not an issue. When applying the ”Extended

approach” the deformations of the backfill layer are calculated with the given parameters, and

as explained above, overestimated. Therefore, when back-calculating the influence depth d2

(by using the total deformations ur, which were provided by numerical methods) the defor-

mations of the rock mass can become negative. Consequently, negative influence depths can

be obtained.

The following example demonstrates the shortcomings of the given analytical approach. The

annular gap width and stiffness moduli are known, the bedding modulus was evaluated

by means of numerical investigation using the general definition of the bedding modulus

kr = pi/ur.

Annular gap width: d1 = 0.2 m

Young’s modulus of the pea gravel: Eag = 50 MPa

Young’s modulus of the rock mass: Erm = 20 000 MPa

Bedding modulus: kr = 255 MPa/m

kr =
1

d1
Es,ag

+
d2

Es,rm

→ d2 =

(
1

kr
− d1
Eag

)
· Erm

d2 =

(
1

255
− 0.2

50

)
· 20000 = −1.57 [m]

Due to the unsatisfying results using the state of the art analytical approaches, the application

of these has to be disapproved.
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4.5 Establishment of a new calculation method based on

displacement evaluation using familiar closed-form

solutions

In this section a new calculation method is presented. The method allows the evaluation

of the deformations ur on the interior surface of the annular gap. Originating on the basic

formulation of the bedding modulus (Equation 2.3) a closed-form solution can be developed.

The method suggests a separate consideration of the pea gravel layer and the surrounding

rock mass.

Figure 4.8 illustrates the system sketch of the new calculation method. The separate treat-

ment of the layers allows the determination of the deformational behaviour of the pea gravel

by means of the model of the thick-walled tube. The corresponding equations of the thick-

walled tube were derived by Lamé (1852). When evaluating the deformations of the pea

gravel the internal pressure pi is known, the acting external stress pa is derived under the

consideration of the rock mass deformations ur,rm. These are calculated using at present

given analytical approaches. The correct assessment of the emerging radial stresses at the

interface between pea gravel and rock mass (pa = pi,rm) is of decisive importance in order to

obtain reliable results when applying this method.

pi

ri

pi,rm

r0

pa pi,rm

r0 u (r )r 0

pi

ri

pi,rm

r0

pa

pi

ri

r0

pa

u (r )r 0u (r )r i

pi,rm

r0 ur,rm

Model of the 
thick-walled tube

pi

ri

r0

pa

u (r )r 0u (r )r i

pi

ri

r0

pa

u (r )r 0
u (r )r i

Figure 4.8: System sketch of the new calculation method for the bedding modulus.

Six calculation steps have to be undertaken for determining the bedding modulus. Figure 4.9

provides an overview:
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Figure 4.9: Graphical representation of the calculation steps.

4.5.1 Estimation of the effective support pressure acting on the rock mass

When considering the overall system, it is known that the internal pressure pi is applied on

the interior edge of the pea gravel layer (see Figure 4.10). Consequently, the support pressure

which acts on the rock mass differs from the internal pressure. This pressure is designated

as the effective support pressure pi,rm. Initially an accurate determination of the effective

support pressure is not possible, since it is governed by the interaction of rock mass and
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Figure 4.10: Visualisation of the interal pressure pi and the effective support pressure pi,rm.

backfill material. Hence, it is estimated as follows:

pi,rm = pi ·
r2i
r20

(4.8)

4.5.2 Calculation of the rock mass displacements

The second step is determining the rock mass deformation ur,rm which establishes under the

effective support pressure pi,rm (Figure 4.11). While constituting the calculation procedure

good results were obtained using Equations 4.4 (Lamé, 1852) under elastic and 4.5 (Salençon,

1969) under plastified rock mass conditions when compared to numerical investigations. Ac-

cordingly, the internal pressure pi of the equations was substituted by the effective support

pressure pi,rm. Of course, the rock mass deformations can be evaluated using other state of

the art approaches which can be found in literature (for instance such as Feder & Arwanitakis

(1976)).

4.5.3 Back-calculation of the acting external stress

In the third step the model of the thick-walled tube is used (Figure 4.12). Lamé (1852) derived

the corresponding equations under the consideration of a linear-elastic material behaviour.

When applying this model for the given problem, plane strain conditions (εz = 0) are assumed.

Hence, the deformations are affected by the external stress pa, as well as the internal pressure
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pi, the elastic properties and the geometry. The deformations on the exterior surface ur(r0)

can be calculated using Equation 4.9.

ur(r0) =
r0

Eag · (r20 − r2i )
· [2 · pi · r2i · (1− ν2ag)

− pa · (1 + νag) · (1− 2 · νag) · (1− 2 · νag) · r20

+ (1 + νag) · r2i ]

(4.9)

The internal pressure, the geometry of the backfill layer, as well as the elastic material

properties are known. The deformations of the exterior surface ur(r0) are gained with the

previous calculated rock mass deformations ur,rm. The external stress pa remains as the only

unknown parameter of the equation. Hence, a reformulation of Equation 4.9 delivers a first

estimation of the external stress:

pa =
(r20 − r2i ) · Eag · (−ur,rm) + 2 · r0 · r2i · (νag − 1) · (νag + 1) · pi

r0 · (r20 · (2 · νag − 1)− r2i ) · (νag + 1)
(4.10)

While doing so, the sign convention of the thick-walled tube has to be considered:

• Positive for an expansion of the radius.

• Negative for inward facing deformations.

Therefore, the deformations ur,rm are considered negative for inward oriented deformations

in Equation 4.10.



Chapter 4. Methodology 23

4.5.4 Iteration of the displacement calculation of the rock mass and

revaluation of the external stress

Figure 4.13 shows the stresses, which act on the system. As can be seen, the effective support

pressure pi,rm and the external stress pa act both at the interface between annular gap and

rock mass. Accordingly, they have to be equal in order to fulfil the criteria action equals

reaction. However, the calculated external stress pa is larger than the estimated effective

support pressure pi,rm. This follows from the fact that the previous calculations is subject to

the estimation of the effective support pressure. In order to obtain the correct pressure the

calculation steps two and three have to be iterated. Therefore, the effective support pressure

pi,rm is equals the external stress pa for the determination of the rock mass deformations.

pi

ri

pi,rm

r0

pa

Figure 4.13: Overview of the on the system acting pressures.

4.5.5 Calculation of the radial displacements on the interior surface of the

annular gap

With the assessed radial stress at the interface between pea gravel and rock mass, the de-

formations on the interior pea gravel surface are calculated. Therefore, the equation of the

thick-walled tube is applied:

ur(ri) =
ri

Eag · (r20 − r2i )
· [pi · ((1 + νag) · (1− 2 · νag) · r2i + (1 + νag) · r20)

− 2 · pa · r20 · (1− ν2ag)]
(4.11)
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4.5.6 Evaluation of the bedding modulus

Finally the evaluation of the bedding modulus is done. The calculated deformation represents

the total deformation which is established in terms of the overall system consisting of rock

mass and pea gravel. However, the incremental deformation which results from the pressure

increase is significant. Therefore, the bedding modulus has to be calculated as the secant

modulus between two stress levels. The incremental deformations ∆ur(ri) are implemented

into the basic formulation:

kr =
∆pi
∆ur

(4.12)

kr

pi ur

Figure 4.14: New calculation approach originated from the model of the thick-walled tube.
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5 Results

In order to proof the applicability of the new calculation method a comparison of the numer-

ical and analytical results was performed. The verification was performed using incremental

internal pressures ∆pi of 0.1 MPa. For the evaluation of the radial stress at the interface

between pea gravel and rock mass one iteration process proved to be sufficient. Any further

iteration steps do not improve the results.

For calculations with elastic rock mass conditions an excellent agreement between numerical

and analytical calculations was reached. A minor discrepancy between the solutions was iden-

tified under plastified conditions. The deviations were always below 10% for the investigated

cases. However, the larger deviations occurred at the transition from elastic to plastified rock

mass. This is caused by the non-uniform distribution of the plastification, which occurs due

to the varying zone depths of the elements along the circumferential direction.

Figures 5.1 and 5.2 illustrate the comparison between analytical and numerical solutions.

The circles indicate the numerical solution, whereas the triangles show the analytical results.

Each figure presents three different calculations of varied pea gravel stiffness. The left Figure

presents the results for a rock mass of poor stiffness under low stress conditions. Figure 5.2

shows the comparison for a stiff rock under high stress conditions, where plastification occurs.

The comparison verified the correctness of the new calculation method. However, it has to

be considered that the application limits are subject to the approaches, which are used for

the displacement calculation. Therefore, this approach is only suitable, if linear elasticity and

the Mohr-Coulomb failure criterion are appropriate for describing the subsoil behaviour.
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Figure 5.1: Comparison of the results show-

ing an excellent agreement with

elastic rock mass conditions.
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6 Application Example

This example demonstrates the application of the new calculation method, which was pre-

sented in this work. Following parameters are assumed:

Tunnel geometry:

Tunnel radius: r0 = 5 m

Annular gap width: d1 = 0.20 m

Rock mass:

Primary stress: p0 = 21 MPa

Lateral pressure coefficient: K0 = 1.0

Support pressure (internal pressure): pi = 0.55 MPa

Young’s modulus: Erm = 5000 MPa

Poisson’s ratio: νrm = 0.3

Friction angle: ϕ = 35◦

Cohesion: c = 5 MPa

Pea gravel:

Young’s modulus: Eag = 50 MPa

Poisson’s ratio: νag = 0.20

The inner radius of the annular gap is given as: ri = r0 − d1 = 5− 0.2 = 4.8 m.

In order to evaluate the secant modulus an incremental stress of 0.1 MPa is assumed. There-

fore, the displacements with an internal pressure of 0.50 MPa and 0.60 MPa are calculated.
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6.1 Analytical calculation of the bedding modulus

For reasons of simplicity only the calculation steps of an internal pressure of 0.50 MPa is

presented. A summary of the results can be found in Table 6.1. Following steps have to be

performed:

1. Estimation of the effective support pressure acting on the rock mass

In a first step the effective support pressure pi,rm which develops due to the assumed internal

pressure pi has to be estimated:

pi,rm = pi ·
r2i
r20

= 0.45 · 4.82

5.02
= 0.4608 [MPa]

2. Displacement calculation of the rock mass

Subsequently the rock mass deformations considering the effective support pressure is calcu-

lated. Under application of the closed-form solution of Salençon (1969), rock mass deforma-

tions ur,rm of 0.0306 m are obtained.

3. Back-calculation of the external stress

The back-calculation of the external stress pa is performed using the reformulated equation

of the thick-walled tube:

pa =
(r20 − r2i ) · Eag · (−ur,rm) + 2 · r0 · r2i · (νag − 1) · (νag + 1) · pi

r0 · (r20 · (2 · νag − 1)− r2i ) · (νag + 1)

pa =
(52 − 4.82) · 50 · −0.0961 + 2 · 5 · 4.82 · (0.2− 1) · (0.2 + 1) · 0.45

5 · (52 · (2 · 0.2− 1)− 4.82) · (0.2 + 1)

pa = 0.4977 [MPa]

4. Iteration of the calculation steps two and three

The iteration of calculation steps two and three using pi,rm = pa gives rock mass deformations

ur,rm of 0.0304 m and an external stress pa of 0.5944 MPa.

5. Calculation of the radial displacements

The evaluation of the radial displacements on the inner radius of the annular gap follows:
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ur(ri) =
ri

Eag · (r20 − r2i )
· [pi · ((1 + νag) · (1− 2 · νag) · r2i + (1 + νag) · r20)

− 2 · pa · r20 · (1− ν2ag)]

ur(ri) =
4.8

50 · (52 − 4.82)
· [0.45 · ((1 + 0.2) · (1− 2 · 0.2) · 4.82 + (1 + 0.2) · 52)

− 2 · 0.4771 · 52 · (1− 0.22)]

ur(ri) = −0.0289 [m]

The negative results indicate inward facing deformations when considering the sign convention

of the applied equations.

Table 6.1 lists the results of both calculations:

Table 6.1: Application example - Results

Parameter Symbol pi = 0.50 MPa pi = 0.60 MPa Unit

Effective support pressure pi,rm 0.4608 0.5530 MPa

Rock mass deformations ur,rm 0.0306 0.0302 m

External stress pa 0.4977 0.5944 MPa

Iterated rock mass deformations ur,rm 0.0304 0.0301 m

Iterated external stress pa 0.4976 0.5944 MPa

Pea gravel deformations pi -0.0289 -0.0283 m

Hence, the incremental deformations for a load increase from 0.50 MPa to 0.60 MPa can be

calculated:

∆ur = | − 0.0289| − | − 0.0283| = 6.9185 · 10−4 [m]

6. Determination of the bedding modulus

The final step is the determination of the bedding modulus using the secant modulus:

kr =
∆pi
∆ur

=
0.1

0.00069
= 145 [MPa/m]
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6.2 Comparison of analytical and numerical results

The numerical incremental deformations were given with ∆ur,num. = 7.07 · 10−4 [m] for the

presented example. The bedding modulus was calculated:

kr =
∆pi
∆ur

=
0.1

0.00071
= 141 [MPa/m]

Figure 6.1 shows the comparison of the analytical and numerical solutions. For an improved

presentation of the results the bedding moduli for further support pressures is shown.
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Figure 6.1: Application example - Comparison of the results.
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7 Conclusion & Outlook

Aim of this thesis was the investigation of influencing parameters on the bedding modulus

by means of numerical simulations and their incorporation in the state of the art calcula-

tion methodologies. However, the numerical results indicated significant discrepancies when

compared to analytical solutions. A back-analysis of the theoretical rock mass influence

depth d2 of the ”Extended approach” (Equation 2.13) provided negative values for d2 and

thus, demonstrated that the given approach cannot be applied for the determination of the

bedding modulus without restrictions. Hence, an alternative calculation method, using fa-

miliar closed-form solutions, was presented. The main advantage of the presented method,

compared to the conventional approach, is the incorporation of the strength properties of the

subsoil and the primary stress state. This enables an improved description of the bedding

modulus.

Nevertheless, the proposed closed-form solution is subject to simplifications. Since the

method originates on the basic formulation kr = pi/ur, a more appropriate description of

the deformation behaviour should be sought. This should be realised for both layers, the

rock mass and the backfill material. As an example, the equation according to Feder & Ar-

wanitakis (1976) also includes a decreased shear strength of the rock mass within the plastic

area as well as lateral pressure coefficients K0 6= 1.0. Concerning the backfill layer, future

focus should be put on the incorporation of the stiffness moduli, which correspond to the

respective loading conditions, in order to capture non-linear material behavior.
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to fill the annular gap / tübbingbemessung unter berücksichtigung der eigenschaften des

ringspaltmaterials. Geomechanics and Tunnelling, 4 (6), 665–680.



Bibliography 33

Windels, R. (1966). Spannungstheorie zweiter ordnung für den teilweise gebetteten kreisring.

Die Bautechnik, 43 (8), 265–274.

Wissmann, W. (1968). Zur statischen berechnung beliebig geformter stollen und tun-

nelauskleidungen mit hilfe von stabwerkprogrammen. Der Bauingenieur, 43 (1), 1–8.


	Introduction
	State of the Art
	Definition of Objectives
	Methodology
	Numerical model setup and post processing
	Verification of the numerical model using simple analytical approaches without a backfill layer
	Investigation of the radial bedding modulus incorporating a backfill layer using at present analytical approaches
	Results and discussion on performed investigations
	Establishment of a new calculation method based on displacement evaluation using familiar closed-form solutions
	Estimation of the effective support pressure acting on the rock mass
	Calculation of the rock mass displacements
	Back-calculation of the acting external stress
	Iteration of the displacement calculation of the rock mass and revaluation of the external stress
	Calculation of the radial displacements on the interior surface of the annular gap
	Evaluation of the bedding modulus


	Results
	Application Example
	Analytical calculation of the bedding modulus
	Comparison of analytical and numerical results

	Conclusion & Outlook

