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Abstract

Experimental data have revealed that neural activity and synaptic dynamics are
driven to a surprisingly large extend by spontaneous processes that are not corre-
lated with the history of neural activity or the network inputs. If exposed to the
same stimulus, neurons respond with quite different activity patterns. Also, neural
networks in the brain undergo permanent rewiring that continues in the adult
brain and is driven to a large extend by synapse-autonomous processes. These
variabilities in synapse and neuron dynamics are seemingly the results of intrinsic
stochastic processes, such as random opening and closing of ion channels and
spontaneous decay of proteins in synapses and neurons. These results suggest that
the brain operates in a regime of high levels of variability, which is not compatible
with the classic theory of computation that works with deterministic elements. It
has been proposed previously that a Bayesian theory of brain function provides
a possible solution to this problem. Bayesian statistics is an elegant mathematical
framework to include internal and external noise sources in a single model and to
derive rules for neuron and synapse dynamics that best function in the presence
of these noise sources. In this thesis the Bayesian framework is applied to models
of recurrent spiking neural networks and synaptic rewiring. This approach leads
to rules for neuron and synapse dynamics that enable powerful self-organization
capabilities in spiking neural networks. First, this modeling framework is applied to
a cortical network motif, a network with lateral inhibition and recurrent excitatory
connections. The emerging network model and learning rules install capabilities
of a hidden Markov model, a well-known statistical model for sequential data, in
the network. Computer simulations demonstrate the ability of these networks to
automatically detect and acquire sequential patterns in their inputs and enables
them to spontaneously reverberate the sequential structure underlying the learned
input patterns. The same theoretical framework is then applied to the synaptic
dynamics and rewiring of spiking networks. The learning rules that emerge in this
case optimize the network through rewiring and synaptic plasticity by performing
a guided random walk that automatically adapts the network to solve complex
learning tasks. This model is applied to a task for unsupervised and reward-based
learning and is able to reproduce a number of experimental finding on spontaneous
rewiring and compensation for lesions and perturbations in the brain. These results
provide an important step towards understanding the role of noise in the brain and
the processes that underlie its self-organization capabilities.
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Zusammenfassung

Experimentelle Daten zeigen, dass neuronale Aktivität und synaptische Dynamik
zu einem überraschend großen Anteil von autonomen Prozessen, welche nicht
mit der Netzwerkaktivität korreliert sind, getrieben werden. Werden Neuronen
mehrmals demselben Eingangs-Stimulus ausgesetzt, antworten sie mit sehr unter-
schiedlichen Aktivitätsmustern. Außerdem konnte experimentell nachgewiesen
werden, dass das Gehirn sich permanent umorganisiert, indem synaptische Ver-
bindungen auf- und abgebaut werden. Diese permanente Umorganisation bleibt
auch im erwachsenen Gehirn aufrecht. Dieser hohe Anteil an Variabilität in der
Dynamik von Synapsen und Neuronen ist scheinbar das Resultat von intrinsi-
scher Stochastizität, wie zum Beispiel dem zufälligen Öffnen und Schließen von
Ionenkanälen, oder dem spontanen Zerfall von Proteinen innerhalb der Neuronen
und Synapsen. Diese Ergebnisse deuten darauf hin, dass das Gehirn in einem
Regime sehr starker Variabilität operiert. Dies ist nicht kompatibel mit der klas-
sischen Berechnungstheorie, die auf deterministischen Elementen aufgebaut ist.
Als möglicher Lösungsansatz für dieses Problems wurden Bayes‘sche Modelle
vorgeschlagen, welche es erlauben Zufallsquellen innerhalb des Netzwerkes und
in seinen Eingängen in einem Modell abzubilden. In dieser Dissertation wird die
Bayes‘sche Rahmentheorie auf rekurrente neuronale Netzwerke angewandt. Dieser
Ansatz führt zu einem Regelwerk für die Netzwerkdynamik, welches Neuronen
und Synapsen zur Selbstorganisation befähigt. Zuerst wird dieses Modell auf ein
rekurrentes Netzwerk angewandt, welches ein statistisches Modell für sequenzielle
Daten approximiert. In Computersimulationen wird gezeigt, dass dieses Netz-
werkmodell selbständig in der Lage ist sequenzielle Muster in seinen Eingängen
zu erkennen und die darunterliegende zeitliche Struktur spontan wiederzugeben.
Dieselbe Rahmentheorie wird danach auf die synaptische Dynamik und Umorga-
nisation von Verbindungen angewandt. Daraus resultieren Lernregeln, welche die
Verbindungen des Netzwerkes automatisch umorganisieren, indem sie eine zielge-
richtete Dynamik ausführen, die von einem Zufallsprozess überlagert ist. Dieses
Modell für synaptische Plastizität erlaubt es den Netzwerken komplexe Lernaufga-
ben zu lösen. Danach wird dieses Modell auf Lernen ohne Supervision und Lernen
mit Belohnung angewandt. Die daraus resultierenden Netzwerkmodelle sind in
der Lage experimentelle Ergebnisse zu Selbstorganisation und Kompensation von
Lesionen und Perturbationen zu reproduzieren. Diese Ergebnisse sind ein wichti-
ger Schritt um die Rolle von Zufallsprozessen im Gehirn und seine Fähigkeit zur
Selbstorganisation zu verstehen.
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Chapter 1
Introduction

Contents

1.1 Bayesian models of the brain . . . . . . . . . . . . . . . . . . . . . 2

1.2 Spiking neuron models . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Publications not included in this thesis . . . . . . . . . . . . . . . 6

1.5 Related work and future developments . . . . . . . . . . . . . . . 6

The human brain is a vast network of around 86 billion neurons connected by
trillions of synapses (Herculano-Houzel, 2012; Azevedo et al., 2009). Our under-
standing of this incredibly complex organ is still very limited, but the knowledge
has been growing fast in recent years fueled by innovative experimental methods
such as two-photon microscopy or patch-clamp recording, that allow us to take a
close look at living neural tissue and even larger sections of a complete living brain
(Tao et al., 2015; Packer et al., 2013). At the same time new methods have emerged
in statistics and machine learning that provide the computational backbone to
automatically analyse large-scale experimental data (T. J. Sejnowski et al., 2014).

One striking result that has emerged from these new methods is the surprisingly
large variability in biological neural systems. Experimental data show that biological
neurons are rather unreliable, in the sense that they respond with quite different
activity patterns to repeated presentations of the same input stimulus (Fiser et al.,
2004). This variability is driven, to a large extend, by intrinsic neural properties, for
example, by the stochastic opening and closing of ion channels and the unreliability
of synaptic release sites (Faisal et al., 2008; Yarom and Hounsgaard, 2011; Clarke,
2012; McDonnell and Ward, 2011; Borst, 2010; Yarom and Hounsgaard, 2011).
Another source of variability in the brain is the permanently ongoing rewiring of
synaptic connections between neurons (A. J. Holtmaat et al., 2005; Loewenstein
et al., 2011; Rumpel and Triesch, 2016). Synapses in the mammalian brain come and
go on time scales of hours or days. The dynamics that underlies this process was
found to be surprisingly stochastic, i.e. purely stochastic contributions to network
rewiring explain more than 50 % of the total synaptic dynamics (Dvorkin and
N. E. Ziv, 2016).

Whether this variability plays a functional role in the brain or not is subject to
an ongoing debate (see Yarom and Hounsgaard, 2011 and Maass, 2014 for a
review), but its abundant presence in vivo suggests that the mammalian brain
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1 Introduction

functions in this noisy regime. This poses an intellectual challenge to computational
neuroscience: How can networks of neurons serve a computational function in the
presence of such strong noise sources or maybe even benefit from them?

Several authors have suggested that Bayesian models are a suitable theoretical
framework to tackle this problem (Knill and Pouget, 2004; Doya, 2007). Bayesian
models support integrating uncertainties from sensory inputs and intrinsic vari-
abilities of the neural network, and derive network dynamics and learning rules
that function in the presence of these uncertainties. This thesis develops a Bayesian
approach to learning and self-organization in recurrent spiking neural networks.
We provide a rigorous theoretical analysis of the resulting models for synapse and
neuron dynamics deduced from this framework and demonstrate the stability of
their network dynamics and learning behavior in noisy environments using in
silico experiments.

1.1 Bayesian models of the brain

Bayesian theory uses probabilities to model uncertainty (Neal, 2012). In contrast to
conventional statistical models (the frequentist approach), where probabilities are only
used to model uncertainty in the observations, a Bayesian approach also maintains
an estimate about the uncertainty of the model. For example, consider a sequence
of observations or measurements X = {x1,x2, . . . }. In the frequentist approach
one would estimate the parameters θ of a conditional probability distribution
p (X | θ) that keeps track of how likely outcomes of the measurements are (e.g.
mean and variance of a normal distribution). In addition, the Bayesian framework
maintains a belief about the uncertainty of the parameters, which is captured in a
prior distribution p (θ).

Bayes’ theorem enables us to draw conclusions in the realm of uncertainty. For
the example outlined above we can recover the distribution over values for the
parameters θ for a given set of observations X using the simple relation

p (θ | X) =
p (X | θ) p (θ)

∑θ′ p (X | θ′) p (θ′)
=

p (X | θ) p (θ)

p (X)
. (1.1)

Instead of a fixed value for the parameters θ we recover a probability distribution
p (θ | X) that informs us about how likely each outcome of the parameters is
for the given data X and prior distribution p (θ). A Bayesian theory of the brain
assumes that all conclusions are drawn based on Bayesian inference, not just on
the level of cognition, but more importantly also unconscious processes follow
this strategy (Knill and Pouget, 2004; Doya, 2007). Probably the first to describe
the ability of the human brain to draw this kind of unconscious conclusions was
Hermann von Helmholtz in his seminal book “Handbuch der physiologischen Optik”
where we noted

2



1.1 Bayesian models of the brain

“Indessen mag es erlaubt sein, die psychischen Acte der gewöhnlichen Wahrneh-
mung als unbewusste Schlüsse zu bezeichnen, da dieser Name sie hinreichend
von den gewöhnlich so genannten bewussten Schlüssen unterscheidet, und
wenn auch die Aehnlichkeit der psychischen Thätigkeit in beiden bezweifelt
worden ist, und vielleicht auch bezweifelt werden wird, doch die Aehnlichkeit
der Resultate solcher unbewussten und der bewussten Schlüsse keinem Zweifel
unterliegt."

translation (Helmholtz and Southall, 2005):

“Still it may be permissible to speak of the psychic acts of ordinary perception
as unconscious conclusion, thereby making a distinction of some sort

between them and the common so-called conscious conclusion. And while it is
true that there has been, and probably always will be, a measure of doubt as to
the similarity of the psychic activity in the two cases, there can be no doubt as
to the similarity between the results of such unconscious conclusions and those

of conscious conclusions.” Helmholtz, 1867

To date, numerous experimental studies support Helmholtz’ intuition about sensory
perception (Liu et al., 1995; Eagle and Blake, 1995; Knill, 1998; Ee et al., 2003),
and similar results have been found for sensorimotor integration (Wolpert et al.,
1995; Harris and Wolpert, 1998; Beers et al., 2001; Beers et al., 2002). Furthermore,
several models have been proposed to ground the Bayesian brain hypothesis on
computational neuron models (briefly discussed in Sec. 1.5). These models are
concerned with the question of how random variables and their uncertainties
are represented in neurons or populations of neurons (Knill and Pouget, 2004;
Doya, 2007). A successful Bayesian neuron model has to be able to compute the
elementary operations of probability calculus, i.e. marginals (the denominator of
Eq. (1.1)) and conditionals (the numerator of Eq. (1.1)).

In this thesis I explore an approach to Bayesian inference in neural networks that
has entered the literature under the name neural sampling. The neural sampling
hypothesis makes the natural assumption that uncertainties are encoded in the
variability of neural activity. This approach has been explored in a number of
studies on Bayesian inference (Buesing et al., 2011; Pecevski et al., 2011; Savin and
Deneve, 2014; Hennequin et al., 2014) and learning (Nessler et al., 2013; Pecevski
and Maass, 2016). In this theoretical framework each neuron or population of
neurons represents a binary variable and their activity encodes one particular
outcome of that variable. In contrast to approaches based on convolutional codes
(reviewed in Sec. 1.5) where all possible solutions and their likelihoods are encoded
simultaneously in a deterministic neuron model, the network randomly switches
between different solutions but spends most time in the most likely states. The
neurons therefore use the time domain to encode uncertainties, such that the time
spend in a certain state corresponds to the likelihood of that particular state. This
has the advantage that the model inherently uses the noisy of neural responses to
explore different solutions.

3



1 Introduction

Furthermore, neural sampling provides simple means to compute marginals by
just observing a subset of the state space (encoded by a subpopulation of neurons).
The state space of the remaining network is naturally marginalized over by just
allowing the network to sample from its intrinsic probability distribution. Also,
conditional distributions can be computed easily by fixing the activity of a subset
of neurons and observing the activity of the remaining network (Buesing et al.,
2011). A potential problem of neural sampling is that the convergence to a state
with high probability may take quite long. However, we show in this thesis using
computer simulations that sampling in spiking neural networks is fast enough to
solve quite complex tasks on biologically realistic time scales. We further extend
the sampling model to learning problems, such that also synaptic efficacies and
network connectivities realize a sampling process from a posterior distribution
using a similar theoretical framework.

1.2 Spiking neuron models

The main emphasis of this thesis is on analyzing the dynamics of spiking neuron
and synapse models during learning in the presence of intrinsic noise.

The most common form of communication between neurons in the mammalian
brain is through brief stereotypical current pulses called action potentials (or
spikes). When a neuron receives a sufficiently strong stimulus that depolarizes
the membrane potential near the axon hillock, an action potential is triggered that
propagates across the axon to adjacent neurons. Action potentials are “all-or-none”
events, meaning that their waveform is independent of the stimulus amplitude
that arrives at the soma of the neuron (Barnett and Larkman, 2007) (although
experimental data exists which show that the waveform can be modulated after
the generation of a spike, see e.g., Sasaki et al., 2011). It is therefore commonly
believed that the information conveyed from one neuron to the other is encoded by
the timing of action potentials, the frequency or the probability of triggering an
action potential (Abeles, 1991; Maass, 1997).

Spiking neuron models capture the generation of action potentials. They were
pioneered by Alan Lloyd Hodgkin and Andrew Fielding Huxley (Hodgkin et al.,
1952). These early models captured the main electrical features of spike initiation
and propagation in a set of cable equations. They were later simplified and refined
to also include basic properties of synaptic transmission leading to simple models
such as the leaky integrate and fire neuron model, which captures neuron dynamics
and spike generation in an abstract form (Gerstner and Kistler, 2002). Although,
they come at some degree of biological detail, spiking neuron models are designed
to capture particular features of biological neurons while others are simplified or
completely suppressed. In this thesis I focus on point neuron models, that capture
the membrane potential only at a single point (the soma) while assuming linear
interactions with synaptic inputs.

4



1.3 Organization of the thesis

Noise can be captured in a spiking neuron model using an activation function
f (u(t)) of the membrane potential u(t), that denotes the firing probability of a
neuron at time t. Spikes are then generated according to a Poisson process with
rate f (u(t)). This approach provides a simple model for the spike generation with
a fixed firing threshold when the membrane potential is superimposed by noise
(Gerstner and Kistler, 2002). We use this type of neuron models in all studies
presented in this thesis. In the next section I give an overview over the studies
provided in the main section of this thesis.

1.3 Organization of the thesis

All results presented in this thesis are based on publications to which I have
contributed as first- or co-first author during my PhD studies. A detailed statement
about the author contributions is given at the beginning of each chapter. I present
in each chapter only the main results, while methods and materials are kept in
separate appendices provided at the end of this thesis.

In Chapter 2 we address the question of how recurrent networks of spiking neurons
can learn and maintain stable network function in the presence of noise. We
reanalysis a network architecture and learning rules that were proposed in Nessler
et al., 2013. The network consists of excitatory neurons with lateral inhibition, a
network motif that is commonly observed in the mammalian cortex. We show
that if one takes also the experimentally observed excitatory lateral connections
into account, then network dynamics and learning in this model realize inference
and learning of a hidden Markov model, a well-known model for sequential data.
We show that these networks are able to learn sequential input patterns and to
spontaneously reverberate these patterns.

In Chapter 3 we investigate the question of how neural networks can learn with
unreliably synaptic connectivities. We present a theoretical framework that de-
scribes the dynamics of synapses as stochastic processes. This model suggests that
synapses in the brain do not solve learning problems by converging to a fixed-point
solution, as suggested by many other computational models of synaptic plasticity,
but it maintains a stochastic equilibrium of connections and their synaptic strengths.
We call this model synaptic sampling.

Finally, in Chapter 4 we present a model that combines the synaptic sampling
model for stochastic rewiring in Chapter 3 with a framework for reward-based
learning. We perform a number of experiments that mimic common experimental
paradigms from the neuroscience literature. We show that our model is able to
qualitatively reproduce the statistics of the experimentally found synapse motility.
Furthermore, our model is able to cope with the experimentally observed high
levels of spontaneous synapse motility (Dvorkin and N. E. Ziv, 2016), and even
benefits from the enhanced exploration driven by the strong variability.
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1 Introduction

1.4 Publications not included in this thesis

In (Pecevski et al., 2014) we introduce NEVESIM, a simulation tool that is optimized
for event-based simulation of neural circuits. It was used to implement the neural
sampling in continuous time. I contributed to developing and testing of the software.
The paper that was published in Frontiers in Neuroinformatics. (Kappel et al., 2015b)
is a conference paper that preceded (Kappel et al., 2015a). It provides the basic idea
behind synaptic sampling and first experimental results. In (Rueckert et al., 2016)
we explored a model for mental planning in spiking neural networks. I contributed
to conducting the experiments and the theoretical analysis of this study which was
published in Scientific Reports. In (Yu et al., 2016) we extend the synaptic sampling
model to include a momentum term and link the resulting model to a Hamiltonian
sampling process. I contributed to conducting the experiments and developing
the theory of this study which is currently submitted for publication. In (Bellec
et al., 2017) we apply the synaptic sampling model to deep learning models and
extend the theory to the case where a fixed number of synapses is maintained.
This case is interesting for neuromorphic hardware applications to efficiently use
the computational resources. I contributed to developing the theory of this study,
which is submitted for publication.

1.5 Related work and future developments

In this thesis we focus on the neural sampling approach to the Bayesian Brain
hypothesis. However, a number of alternative approaches have been proposed.
Here, I will discuss two of them: Convolutional codes and predictive coding.

Convolutional codes provide a simple mechanism to encode random variables in
neural networks. In this approach (usually deterministic) neurons are assigned to a
tuning function that represents their preferred outcome of a random variable (Zemel
et al., 1998; Zemel and Dayan, 1997; Barber et al., 2003; Pouget et al., 2003; Eliasmith
and Anderson, 2004; R. P. Rao, 2004). The outcomes of random variables are
encoded in the population activity of multiple neurons, where the activity of each
neuron represents the likelihood that its assigned preferred outcome corresponds
to the value of the random variable. Likelihood values and uncertainties can be
directly read out from the activity amplitudes (or firing rates). Probability calculus
in these networks usually requires a suitable wiring pattern between populations
representing the random variables. E.g. for computing conditional probabilities the
neurons have to compute an element-wise multiplication of population activities.

The predictive coding hypothesis states that neural responses are the outcomes of a
permanently ongoing alignment of bottom-up sensory inputs and top-down pre-
dictions based on more abstract representations in higher brain areas (Clark, 2013).
To achieve this alignment across levels of a hierarchy, higher brain areas maintain
networks, the outcomes of which are matched against the upward information

6



1.5 Related work and future developments

stream from lower areas which provide the mismatch between prediction and actual
experiences in the form of prediction-error signals (Clark, 2013). Neural activity
is, according to this hypothesis, a manifestation of a hierarchical inference process.
There exists a close relationship to Bayesian inference and several authors have
used this framework or the closely related free energy minimization principle to
develop predictive coding models (R. Rao and Ballard, 1999; Friston, 2009; Friston,
2008; Lee and Mumford, 2003; Huang and R. P. Rao, 2011).

The predictive coding hypothesis is compatible with neural sampling and com-
bining these two frameworks would be an interesting topic for future research. In
this approach, predictive coding would be on the computational level describing
providing a more abstract view on brain function, while neural sampling would
provide the algorithmic level that provides details to how the predictive coding
model is implemented (Marr and Poggio, 1976). This approach can be further
extended using the developments that have emerged in the context of the predictive
coding framework, such as active sensing (Friston et al., 2011; Fitzgerald et al.,
2014) where the loop to sensing organs is closed using the predictive coding theory,
which suggests that attention is focused on areas in the sensory domain which best
minimize prediction errors.
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Chapter 2
STDP in winner-take-all circuits approximates
hidden Markov model learning
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Abstract. In order to cross a street without being run over, we need to be able
to extract very fast hidden causes of dynamically changing multi-modal sensory
stimuli, and to predict their future evolution. We show here that a generic cortical
microcircuit motif, pyramidal cells with lateral excitation and inhibition, provides
the basis for this difficult but all-important information processing capability. This
capability emerges in the presence of noise automatically through effects of STDP
on connections between pyramidal cells in Winner-Take-All circuits with lateral
excitation. In fact, one can show that these motifs endow cortical microcircuits
with functional properties of a hidden Markov model, a generic model for solving
such tasks through probabilistic inference. Whereas in engineering applications
this model is adapted to specific tasks through offline learning, we show here
that a major portion of the functionality of hidden Markov models arises already
from online applications of STDP, without any supervision or rewards. We demon-
strate the emergent computing capabilities of the model through several computer
simulations. The full power of hidden Markov model learning can be attained
through reward-gated STDP. This is due to the fact that these mechanisms enable a
rejection sampling approximation to theoretically optimal learning. We investigate
the possible performance gain that can be achieved with this more accurate learning
method for an artificial grammar task.

Acknowledgments and author contributions. This chapter is based on the ma-
nuscript
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2 STDP in winner-take-all circuits approximates hidden Markov model learning

David Kappel, Bernhard Nessler, Wolfgang Maass (2014). “STDP Installs
in Winner-Take-All Circuits an Online Approximation to Hidden Markov
Model Learning.” PLoS Computational Biology.

To this study, I contributed as first author. The study was conceived by DK, BM
and WM, with the theory being developed by DK and BM. The experiments were
designed by DK, BM and WM, and were conducted by DK. The manuscript was
written by DK, BM and WM. The authors thank Stefan Habenschuss and Johannes
Bill for helpful comments on the manuscript.

2.1 Introduction

An ubiquitous motif of cortical microcircuits is ensembles of pyramidal cells (in
layers 2/3 and in layer 5) with lateral inhibition (Berger et al., 2009; Okun and
Lampl, 2008; Avermann et al., 2012). This network motif is called a winner-take-all
(WTA) circuit, since inhibition induces competition between pyramidal neurons
(Douglas and Martin, 2004). We investigate in this article which computational
capabilities emerge in WTA circuits if one also takes into account the existence of
lateral excitatory synaptic connections within such ensembles of pyramidal cells
(Fig. 2.1A). This augmented architecture will be our default notion of a WTA circuit
throughout this paper.

We show that this network motif endows cortical microcircuits with the capability
to encode and process information in a highly dynamic environment. This dynamic
environment of generic cortical mircocircuits results from quickly varying activity
of neurons at the sensory periphery, caused for example by visual, auditory, and
somatosensory stimuli impinging on a moving organism that actively probes the
environment for salient information. Quickly changing sensory inputs are also
caused by movements and communication acts of other organisms that need to
be interpreted and predicted. Finally, a generic cortical microcircuit also receives
massive inputs from other cortical areas. Experimental data with simultaneous
recordings of many neurons suggest that these internal cortical codes are also
highly dynamic, and often take the form of characteristic assembly sequences or
trajectories of local network states (Han et al., 2008; Luczak et al., 2009; Luczak
et al., 2007; Ji and Wilson, 2007; Fujisawa et al., 2008; C. D. Harvey et al., 2012).
We show in this article that WTA circuits have emergent coding and computing
capabilities that are especially suited for this highly dynamic context of cortical
microcircuits.

We show that spike-timing-dependent plasticity (STDP) (Caporale and Dan, 2008;
Markram et al., 2011), applied on both the lateral excitatory synapses and synapses
from afferent neurons, implements in these networks the capability to represent the
underlying statistical structure of such spatiotemporal input patterns. This implies
the challenge to solve two different learning tasks in parallel. First it is necessary to
learn to recognize the salient high-dimensional patterns from the afferent neurons,
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2.1 Introduction

which was already investigated in (Nessler et al., 2013). The second task consists in
learning the temporal structure underlying the input spike sequences. We show
that augmented WTA circuits are able to detect the sequential arrangements of
the learned salient patterns. Synaptic plasticity for lateral excitatory connections
provides the ability to discriminate even identical input patterns according to the
temporal context in which they appear. The same STDP rule, that leads to the
emergence of sparse codes for individual input patterns in the absence of lateral
excitatory connections (Nessler et al., 2013) now leads to the emergence of context
specific neural codes and even predictions for temporal sequences of such patterns.
The resulting neural codes are sparse with respect to the number of neurons that are
tuned for a specific salient pattern and the temporal context in which it appears.

The basic principles of learning sequences of forced spike activations in general
recurrent networks were studied in previous work (Rezende et al., 2011; Brea et al.,
2011) and resulted in the finding that an otherwise local learning rule (like STDP)
has to be enhanced by a global third factor which acts as an importance weight, in
order to provide a – theoretically provable – approximation to temporal sequence
learning. The possible role of such importance weights for probabilistic computa-
tions in spiking neural networks with lateral inhibition was already investigated
earlier in (Shi and Griffiths, 2009).

In this article we establish a rigorous theoretical framework which reveals that
each spike train generated by WTA circuits can be viewed as a sample from
the state space of a hidden Markov model (HMM). The HMM has emerged in
machine learning and engineering applications as a standard probabilistic model
for detecting hidden regularities in sequential input patterns, and for learning to
predict their continuation from initial segments (Rabiner, 1989; Murty and Devi,
2011; Bishop, 2006). The HMM is a generative model which relies on the assumption
that the statistics of input patterns X = (x1 . . .xM) over M time steps is governed
by a sequence of hidden states S = (s1 . . . sM), such that the mth hidden state sm
“explains” or generates the input pattern xm. We show that the instantaneous state
sm of the HMM is realized by the joint activity of all neurons of a WTA circuit, i.e.
the spikes themselves and their resulting postsynaptic potentials. The stochastic
dynamics of the WTA circuit implements a forward sampler that approximates exact
HMM inference by propagating a single sample from the hidden state sm forward
in time (Bishop, 2006; Koller and Friedman, 2009).

We show analytically that a suitable STDP rule in the WTA circuit – notably
the same rule on both the recurrent and the feedforward synaptic connections –
realizes theoretically optimal parameter acquisition in terms of an online expectation-
maximization (EM) algorithm (Celeux and Diebolt, 1985; Neal and G. E. Hinton,
1998), for a certain pair S,X if the stochastic network dynamics describes the state
sequence S upon the input sequence X . We further show that when the STDP rule
is applied within the approximative forward sampling network dynamics of the
WTA circuit, it instantiates a weak but well defined approximation of theoretically
optimal HMM learning through EM. This is remarkable insofar as no additional
mechanisms are needed for this approximation – it is automatically implemented
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2 STDP in winner-take-all circuits approximates hidden Markov model learning

through the stochastic dynamics of the WTA circuit, in combination with STDP. In
this paper we focus on the analysis of this approximation scheme, its limits and its
behavioral relevance.

We test this model in computer simulations that duplicate a number of experimental
paradigms for evaluating emergent neural codes and behavioral performance in rec-
ognizing and predicting temporal sequences. We analyze evoked and spontaneous
dynamics that emerges in our model network after learning an object sequence
memory task as in the experiments of (Berdyyeva and Olson, 2009; Warden and
Miller, 2010). We show that the pyramidal cells of a WTA circuit learn through
STDP to encode the hidden states that underlie the input statistics in such tasks,
which enables these cells to recognize and distinguish multiple pattern sequences
and to autonomously predict their continuation from initial segments. Furthermore,
we find neural assemblies emerging in neighboring interconnected WTA circuits
that encode different abstract features underlying the task. The resulting neural
codes resemble the highly heterogeneous codes found in the cortex (Rigotti et al.,
2013). Furthermore, neurons often learn to fire preferentially after specific predeces-
sors, building up stereotypical neural trajectories within neural assemblies, that are
also commonly observed in cortical activity (Han et al., 2008; Luczak et al., 2007;
Luczak et al., 2009; W. Xu et al., 2007).

Our generative probabilistic perspective of synaptic plasticity in WTA circuits
naturally leads to the question whether the proposed learning approximation is
able to solve complex problems beyond simple sequence learning. Therefore we
reanalyze data on artificial grammar learning experiments from cognitive science
(Conway and Christiansen, 2005), where subjects were exposed to sequences of
symbols generated by some hidden artificial grammar, and then had to judge
whether subsequently presented unseen test sequences had been generated by the
same grammar. We show that STDP learning in our WTA circuits is able to infer
the underlying grammar model from a small number of training sequences.

The simple approximation by forward sampling, however, clearly limits the learning
performance. We show that the full power of HMM-learning can be attained in
a WTA circuit based on the rejection sampling principle (Bishop, 2006; Koller and
Friedman, 2009). A binary factor is added to the STDP learning rule, that gates
the expression of synaptic plasticity through a subsequent global modulatory
signal. The improvement in accuracy of this more powerful learning method
comes at the cost that every input sequence has to be repeated a number of
times, until one generated state sequence is accepted. We show that a significant
performance increase can be achieved already with a small number of repetitions.
We demonstrate this for a simple and a more complex grammar learning task.
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2.2 Approximate hidden Markov model learning in spiking neural networks

Fig. 2.1: Illustration of the network model. A: The structure of the network. It consists of K excita-
tory neurons (blue) that receive feedforward inputs (green synapses) and lateral excitatory
all-to-all connections (blue synapses). Interneurons (red) install soft winner-take-all behavior
by injecting a global inhibition to all neurons of the circuit in response to the network’s spiking
activity. B: The Bayesian network representing the HMM over M time steps. The prediction
model (blue arrows) is implemented by the lateral synapses. It determines the evolution of
the hidden states sm over time. The observation model (green arrows) is implemented by
feedforward connections. The inference task for the HMM is to determine a sequence of
hidden states S = (s1 . . . sM) (white), given the afferent activity X = (x1 . . .xM) (gray).
C: The STDP window that is used to update the excitatory synapses. The synaptic weight
change is plotted against the time difference between pre- and postsynaptic spike events.

2.2 Approximate hidden Markov model learning in
spiking neural networks

We first define the spiking neural network model for the winner-take-all (WTA) cir-
cuit considered throughout this paper. The architecture of the network is illustrated
in Fig. 2.1A. It consists of stochastic spiking neurons, which receive excitatory
input from an afferent population (green synapses) and from lateral excitatory
connections (blue synapses) between neighboring pyramidal neurons. To clarify
the distinction between these connections, we denote the synaptic efficacies of
feedforward and lateral synapses by different weight matrices W ∈ RK×N and
V ∈ RK×K, respectively, where N denotes the number of afferent neurons and K
the size of the circuit (i.e., the number of pyramidal cells in the circuit). In addition,
all neurons within the WTA circuit project to interneurons and in turn all receive
the same common inhibition i(t). Thus the membrane potential of neuron k at time
t is given by

uk(t) = ûk(t)− i(t) with ûk(t) =
N

∑
i=1

wki · xi(t) +
K

∑
j=1

vkj · yj(t) + bk, (2.1)
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with xi(t) = ∑
t′

ε
(
t− t′

)
and yj(t) = ∑

t′
ε
(
t− t′

)
, (2.2)

where wki · xi(t) and vkj · yj(t) denote the time courses of the excitatory postsynaptic
potentials (EPSP) under the feedforward and lateral synapses, where wki and vkj
are the elements of W and V respectively, and bk is a parameter that controls the
excitability of the neuron. The two sums in (2.1) describe the time courses of the
membrane potential in response to synaptic inputs from feedforward and lateral
synapses. In equation (2.2) we used the assumption of additive EPSPs, where ε (t)
denotes a kernel function that determines the time course of an EPSP (Gerstner
and Kistler, 2002). The sums run over all spike times of the presynaptic neuron.
For the theoretical analysis we used a single exponential decay for the sake of
simplicity, throughout the simulations we used double exponential kernels, if not
stated otherwise. Our theoretical model can be further extended to other EPSP
shapes (see Appendix B for details).

As proposed in (Jolivet et al., 2006), we employ an exponential dependence between
the membrane potential and the firing probability. Therefore the instantaneous
rate of neuron k is given by νk(t) = ν̂ · euk(t), where ν̂ is a constant that scales the
firing rate. The inhibitory feedback loop i(t) in equation (2.1), that depresses the
membrane potentials whenever the network activity rises, has a normalizing effect
on the circuit-wide output rate. Although, each neuron k generates spikes according
to an individual Poisson process, this inhibition couples the neural activities and
thereby installs the required competition between all cells in the circuit. We model
the effect of this inhibition in an abstract way, where we assume, that all WTA
neurons receive the same inhibitory signal i(t) such that the overall spiking rate of
the WTA circuit stays approximately constant. Ideal WTA behavior is attained if the
network rate is normalized to the same value at any point in time, i.e. ∑K

l=1 νl(t) = ν̂.
Using this, we find the circuit dynamics to be determined by

νk(t) = ν̂ · euk(t) = ν̂ · eûk(t)−i(t) = ν̂ · eûk(t)

∑K
l=1 eûl(t)

, with i(t) = log
K

∑
l=1

eûl(t). (2.3)

This ideal WTA circuit realizes a soft-max or soft WTA function, granting the
highest firing rate to the neuron with the highest membrane potential, but still
allowing all other neurons to fire with non-zero probability.

Recapitulation of hidden Markov model theory

In this section we briefly summarize the relevant concepts for deriving our theoreti-
cal results. An exhaustive discussion on hidden Markov model theory can be found
in (Rabiner, 1989; Murty and Devi, 2011; Bishop, 2006). Throughout the paper, to
keep the notation uncluttered we use the common short-hand notation p (z) to
denote p (Z = z), i.e. the probability that the random variable Z takes on the value
z. If it is not clear from the context, we will use the notation p (z ≡ k) to remind
the reader of the underlying random variable, that is only implicitly defined.
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2.2 Approximate hidden Markov model learning in spiking neural networks

The HMM is a generative model for input pattern sequences over M time steps
X = (x1 . . .xM) (the input patterns are traditionally called observations in the
context of HMMs). It relies on the assumption that a sequence of hidden states
S = (s1 . . . sM) and a set of parameters θ exist, which govern the statistics of X .
This assumption allows to write the joint distribution of X and S as

p (S,X | θ) =
M

∏
m=1

p (xm | sm,θ) p (sm | sm−1,θ) , (2.4)

where we suppress an explicit representation of the initial state s0, for the sake
of brevity. The joint distribution (2.4) factorizes in each time step into the observa-
tion model p (xm | sm,θ) and the state transition or prediction model p (sm | sm−1,θ)
(Bishop, 2006). This independence property is illustrated by the Bayesian network
for a HMM in Fig. 2.1B.

The HMM is a generative model and therefore we can recover the distribution
over input patterns by marginalizing out the hidden state sequences p (X | θ) =∫

p (S ′,X | θ)dS ′. Learning in this model means to adapt the model parameters θ
such that this marginal distribution p (X | θ) comes as close as possible to the em-
pirical distribution p∗ (X) of the observable input sequences. A generic method for
learning in generative models with hidden variables is the expectation-maximization
(EM) algorithm (Dempster et al., 1977), and its application to HMMs is known
as the Baum-Welch algorithm (Baum and Petrie, 1966). This algorithm consists
of iterating two steps, the E-step and the M-step, where the model parameters θ
are adjusted at each M-step (for the updated posterior generated at the preceding
E-step). A remarkable feature of the algorithm is that the fitting of the model to the
data is guaranteed to improve at each M-step of this iterative process. Whereas the
classical EM algorithm is restricted to offline learning (where all training data are
available right at the beginning), there exist also stochastic online versions of EM
learning.

In its stochastic online variant (Celeux and Diebolt, 1985; Neal and G. E. Hinton,
1998) the E-step consists of generating one sample S from the posterior distribution
p (S | X ,θ), given one currently observed input sequence X . Given these sampled
values for S, the subsequent M-step adapts the model parameters θ such that
the probability p (S,X | θ) increases. The adaptation is confined to acquiring the
conditional probabilities that govern the observation and the prediction model.

It would be also desirable to realize the inference and sampling of one such
posterior sample sequence S in a fully online processing, i.e. generating each
state sm in parallel to the arrival of the corresponding input pattern xm. Yet this
seems to be impossible as the probabilistic model according to (2.4) implies a
statistical dependence between any sm and the whole future observation sequence
xm+1 . . .xM. However, it is well known that the inference of p (S | X ,θ) can be
approximated by a so-called forward sampling process (Bishop, 2006; Koller and
Friedman, 2009), where every single time step sm of the sequence S is sampled
online, based solely on the knowledge of the observations x1,x2, . . . ,xm received
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2 STDP in winner-take-all circuits approximates hidden Markov model learning

so far, rather than the observation of the complete sequence X . Hence sampling
the sequence S is approximated by propagating a single sample from the HMM
state space forward in time.

Forward sampling in WTA circuits

In this section we show that the dynamics of the network realizes a forward sampler
for the HMM. We make use of the fact that equations (2.1), (2.2) and (2.3) realize a
Markov process, in the sense that future network dynamics is independent from
the past, given the current network state (for a suitable notion of network state).
This property holds true for most reasonable choices of EPSP kernels. For the
sake of brevity we focus in the theoretical analysis on the simple case of a single
exponential decay with time constant τ.

We seek a description of the continuous-time network dynamics in response to
afferent spike trains over a time span of length T that can be mapped to the state
space of a corresponding HMM with discrete time steps. Although the network
works in continuous time, its dynamics can be fully described taking only those
points in time into account, where one of the neurons in the recurrent circuit
produces a spike. This allows to directly link spike trains generated by the network
to a sequence of samples from the state space of a corresponding HMM.

Let the M spike times produced during this time window be given by t̂1 . . . t̂M.
The neuron dynamics are determined by the membrane time courses (2.2). For
convenience let us introduce the notation ym := (ym1 . . . ymK), with ymj := yj(t̂m)
and by analogy xm := (xm1 . . . xmN), with xmi := xi(t̂m).

Due to the exponentially decaying EPSPs the synaptic activation ym at time t̂m is
fully defined by the synaptic activation ym−1 at the time of the previous spike t̂m−1,
and the identity of the neuron that spiked in that previous time step, which we
denote by a discrete variable zm−1 ∈ {1 . . . K}. We thus conclude that the sequence
of tuples {zm,ym, ∆m} (with ∆m := t̂m+1 − t̂m) fulfills the Markov condition, i.e.
the conditional independence p (sm | x1 . . .xm, sm−1) = p (sm | xm, sm−1) and thus
fully represents the continuous dynamics of the network (see Appendix B). We call
sm := {zm,ym, ∆m} the network state. The corresponding HMM forward sampler
follows a simple update scheme that samples a new state sm given the current
observation xm and the previous state sm−1. This dynamic is equivalent to the WTA
network model.

This state representation allows us to update the network dynamics online, jumping
from one spike time t̂ to the next. Using this property, we find that the dynamics of
the network realizes a probability distribution over state sequences S = (s1 . . . sM),

16



2.2 Approximate hidden Markov model learning in spiking neural networks

given an afferent sequence X = (x1 . . .xM), which can be written as

q (S | X ,θ) =
M

∏
m=1

p (sm | xm, sm−1,θ)

=
M

∏
m=1

p (zm | xm,ym,θ) p (ym | zm−1,ym−1, ∆m−1) p (∆m−1) ,

(2.5)

where θ = {W ,V , b1 . . . bK} is the set of network parameters. The factorization
and independence properties in (2.5) are induced by the state representation
and the circuit dynamics. We assume here that the lateral inhibition within the
WTA circuit ensures that the output rate of the whole circuit is normalized, i.e.
∑l νl(t) = ν̂ at all times t. This allows to introduce the distribution over the inter-
spike-time intervals ∆m independent from X (see Appendix B for details). Note,
that ∆m determines the interval between spikes of all circuit neurons, realized
by a homogeneous Poisson process with a constant rate ν̂. The second term in the
second line of (2.5) determines the course of the membrane potential, i.e. it assures
that ym follows the membrane dynamics. Since the EPSP kernels are deterministic
functions this distribution has a single mass point, where (2.2) is satisfied. The
first factor in the second line of (2.5) is given by the probability of each individual
neuron to spike. This probability depends on the membrane potential (2.1), which
in turn is determined by xm, ym and the network parameters θ. Given that the
circuit spikes at time t̂m, the firing probability of neuron k can be expressed as a
conditional distribution p (zm ≡ k | xm,ym,θ) = euk(t̂m). The lateral inhibition in
(2.1) ensures that this probability distribution is correctly normalized. Therefore,
the winner neuron k ∈ {1 . . . K} is drawn from a multinomial distribution at each
spike time.

For the given architecture the functional parts of the network can be related directly
to hidden Markov model dynamics. In Appendix B we show in detail that by
rewriting p (zm | xm,ym,θ) the membrane potential (2.1) can be decomposed into
three functional parts

p (zm ≡ k | xm,ym,θ) = euk(t̂m)

=

observation︷ ︸︸ ︷
exp

(
N

∑
i=1

wki · xmi

)
·

prediction︷ ︸︸ ︷
exp

(
K

∑
j=1

vkj · ymj + bk

)
exp

(
i
(
t̂m
))︸ ︷︷ ︸

normalization

.

(2.6)

The lateral excitatory connections predict a prior belief about the current network
activity and the feedforward synapses match this prediction against the afferent
input. The inhibition i(t̂m) implements the normalization that is required to make
(2.6) a valid multinomial distribution. The functional parts of the membrane po-
tential can be directly linked to the prediction and observation models of a HMM,
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where the network state is equivalent to the hidden state of this HMM. The WTA
circuit realizes a forward-sampler for this HMM, which approximates sampling
from the posterior distribution p (S | X ,θ) in an online fashion (Koller and Fried-
man, 2009). Its sampling is carried out step by step, i.e. it generates through each
spike a new sample from the network state space, taking only the previous time
step sample into account. Furthermore this forward sampling requires no addi-
tional computational organization, but is achieved by the inherent dynamics of the
stochastically firing WTA circuit.

2.3 STDP instantiates a stochastic approximation to EM
parameter learning

Formulating the network dynamics in terms of a probabilistic model is beneficial for
two reasons: First, it gives rise to a better understanding of the network dynamics
by relating it to samples from the HMM state space. Second, the underlying model
allows us to derive parameter estimation algorithms and to compare them with
biological mechanisms for synaptic plasticity. For the HMM, this approach results
in an instantiation of the EM algorithm (Dempster et al., 1977; Bishop, 2006) in a
network of spiking neurons (stochastic WTA circuit). In Appendix B we derive this
algorithm for the WTA circuit and show that the M-step evaluates to weight updates
that need to be applied whenever neuron k emits a spike at time t̂, according to

∆wki(t̂) = ξ ·
(
e−wki xi(t̂)− 1

)
and ∆vkj(t̂) = ξ ·

(
e−vkj yj(t̂)− 1

)
, (2.7)

where ξ is a positive constant that controls the learning rate. Note that the update
rules for the feedforward and the recurrent connections are identical, and thus all
excitatory synapses in the network are handled uniformly. These plasticity rules
(2.7) are equivalent to the updates that previously emerged as theoretically optimal
synaptic weight changes, for learning to recognize repeating high-dimensional
patterns in spike trains from afferent neurons, in related studies (Nessler et al., 2010;
Habenschuss et al., 2013; Nessler et al., 2013). The update rules consist of two parts:
A Hebbian long-term potentiating (LTP) part that depends on presynaptic activity
and a constant depression term. The dependence on the EPSP time courses (2.2)
makes the first part implicitly dependent on the history of presynaptic spikes. The
STDP window is shown in Fig. 2.1C for α-shaped EPSPs. Potentiation is triggered
when the postsynaptic neuron fires after the presynaptic neuron. This term is
commonly found in synaptic plasticity measured in biological neurons, and for
common EPSP windows it closely resembles the shape of the pre-before-post part
of standard forms of STDP (Caporale and Dan, 2008; Markram et al., 2011). The
dependence on the current value of the synaptic weight has a local stabilizing effect
on the synapse. The depressing part of the update rule is triggered whenever the
postsynaptic neuron fires independent of presynaptic activity. It contrasts LTP and
assures that the synaptic weights stay globally in a bounded regime. It is shown
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in Fig. 4 of (Nessler et al., 2013) that the simple rule (2.7) reproduces the standard
form of STDP curves when it is applied with an intermediate pairing rate.

While these M-step updates emerge as exact solutions for the underlying HMM, the
WTA circuit implements an approximation of the E-step, using forward sampling
from the distribution in equation (2.5). In the following experiments we will first
focus on this simple approximation, and analyze what computational function
emerges in the network using the STDP updates (2.7) without any third signal
related to reward or a “teacher”. In the last part of the Results section we will
introduce a possible implementation of a refined approximation, and assess the
advantages and disadvantages of this method.

Learning to predict spike sequences through STDP

In this section we show through computer simulations that our WTA circuits learn
to encode the hidden state that underlies the input statistics via the STDP rule
(2.7). We demonstrate this for a simple sequence memory task and analyze in
detail how the hidden state underlying this task is represented in the network. The
experimental paradigm reproduces the structure of object sequence memory tasks,
where monkeys had to memorize a sequence of movements and reproduce it after
a delay period (Shima and Tanji, 2000; Isoda and Tanji, 2003; Berdyyeva and Olson,
2009; Warden and Miller, 2010). The task consisted of three phases: An initial cue
phase, a delay phase and a recall phase. Each phase is characterized by a different
input sequence, where the cue sequence defines the identity of the recall sequence.
We used four cue/recall pairs in this experiment.

The structure of this task is illustrated in Fig. 2.2A. The graph represents a finite
state grammar that can be used to generate symbol sequences by following a path
from Start to Exit. In this first illustrative example the only stochastic decision is
made at the beginning, randomly choosing one of the four cue phases with equal
probabilities while the rest of the sequence is deterministic. On each arc that is
passed, the symbol next to the arc is generated, e.g. AB-delay-ab is one possible
symbolic sequence. Note that all symbols can appear in different temporal contexts,
e.g. A appears in sequence AB-delay-ab and in BA-delay-ba. The delay symbol is
completely unspecific since it appears in all four possible sequences. Therefore
this task does not fulfill the Markov condition with respect to the input symbols,
e.g. knowing that the current symbol is delay does not identify the next one as it
might be any of a,b,c,d. Only additional knowledge about the temporal context of
the symbol allows to uniquely identify the continuation of the sequence.

This additional knowledge can be represented in a hidden state that encodes the
required information, which renders this task a simple example of a HMM. The
hidden states of this HMM have to encode the input patterns and the temporal
context in which they appear in order to maintain the Markov property throughout
the sequences, e.g. a distinct state sB,AB encodes pattern B when it appears in
sequence AB-delay-ab. The temporal structure of the hidden state can be related to
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Fig. 2.2: Emergence of working memory encoded in neural assemblies through weak HMM learning in a
WTA circuit through STDP. A: Illustration of the input encoding for sequence AB-delay-ab. The upper plot shows
one example input spike train (blue dots) plotted on top of the mean firing rate (100 out of 200 afferent neurons
shown). The lower panel shows the finite state grammar graph that represents the simple working memory task.
The graph can be used to generate symbol sequences by following any path from Start to Exit. In the first state
(Start) a random decision is made, which of the four paths to take. This decision determines all arcs that are passed
throughout the sequence. On each arc that is passed the symbol next to the arc is emitted (and provided as input
to the WTA circuit in the form of some 200-dimensional rate pattern). B,C: Evoked activity of the WTA circuit for
one example input sequence before learning (B) and for each of the four sequences after learning (C). The network
activity is averaged and smoothed over 100 trial runs (gray traces), the blue dots show the spiking activity for one trial
run. The input sequences are labeled by their pattern symbols on top of each plot. The neurons are sorted by the
time of their highest average activity over all four sequences, after learning. For each sequence a different assembly
of neurons becomes active in the WTA circuit. Dotted black lines indicate the boundaries between assemblies. Since
the 4 assemblies that emerged have virtually no overlap, the WTA circuit has recovered the structure of the hidden
states that underlie the task. D: The lateral weights vkj that emerged through STDP. The neurons are sorted →
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→ using the same sorting algorithm as in (B,C). The black dotted lines correspond to assembly
boundaries, neurons that fired on average less than one spike per sequence are not shown. Each
neuron has learned to fire after a distinct set of predecessors, which reflects the sequential order of
assembly firing. The stochastic switches between sequences are represented by enhanced weights
between neurons active at the sequence onsets.

the finite state grammar in Fig. 2.2A. The arcs of the grammar directly correspond
to the hidden states, i.e. given knowledge about the currently visited arc allows
us to complete the sequence. The symbols next to the arcs define the observation
model, i.e. the most likely symbol throughout each state. In this simple symbolic
HMM the observation model is in fact deterministic, since exactly one symbol is
allowed in each state.

In the neural implementation of this task, the symbolic sequences are presented to
the WTA circuit encoded by afferent spike trains. Every symbol A,B,C,D,a,b,c,d,delay
is represented by a rate pattern with fixed length of 50ms, during which each affer-
ent neuron emits spikes with a symbol-specific, fixed Poisson rate (see Appendix B).
One example input spike train encoding the symbolic sequence AB-delay-ab is
shown in the top panel of Fig. 2.2A. The input spike times are not kept fixed
but newly drawn for each pattern presentation. This input encoding adds extra
variability to the task, which is not directly reflected by the simple symbolic finite
state grammar. Still, the statistics underlying the input sequences X follow the
dynamics of a HMM of the form (2.4), and therefore our WTA circuit and the spike
trains that encode sequences generated by the artificial grammar share a common
underlying model.

The observation model p (xm | sm,θ) of that HMM covers the uncertainty induced
by the noisy rate patterns by assigning a certain likelihood to each observed input
activation xm. The hidden state representation has to encode the context-dependent
symbol identity and the temporal structure of the sequences, i.e. the duration of
each individual symbol. In our continuous-time formulation the hidden state is
updated at the time points t̂1 . . . t̂M. Therefore, throughout the presentation of a
rate pattern of 50ms length, several state updates are encountered during which
the hidden state has to be maintained. In principle this can be done by allowing
each hidden state to persist over multiple update steps by assigning non-zero
probabilities to p (sm = k | sm−1 = k, θ). However, this approach is well known to
result in a poor representation of time as it induces an exponential distribution over
the state durations, which is inappropriate in most physical systems and obviously
also for the case of deterministic pattern lengths, considered here (Rabiner, 1989;
Bishop, 2006). The accuracy of the model can be increased at the cost of a larger state
space by introducing intermediate states, e.g. by representing pattern B in sequence
AB-delay-ab by an assembly of states sB,AB,1, sB,AB,2, . . . that form an ordered state
sequence throughout the pattern presentation. Each of these assemblies encodes a
specific input pattern, the temporal context and its sequential structure throughout
the pattern, and with sufficiently large assemblies the temporal resolution of the
model achieves reasonable accuracy. We found that this coding strategy emerges
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unsupervised in our WTA circuits through the STDP rule (2.7).

To show this, we trained a WTA circuit with N = 200 afferent cells and K = 100
circuit neurons by randomly presenting input spike sequences until convergence. In
this experiment, the patterns were presented as a continuous stream of input spikes,
without intermediate pauses or resetting the network activity at the beginning
of the sequences. Training started from random initial weights, and therefore the
observation and prediction model had to be learned from the presented spike
sequences. Prior to learning the neural activity was unspecific to the patterns and
their temporal context (see Fig. 2.2B). Fig. 2.2C shows the evoked activities for
all four sequences after training. The output of the network is represented by the
perievent time histogram (PETH) averaged over 100 trial runs and a single spike
train that is plotted on top. To simplify the interpretation of the network output
we sorted the neurons according to their preferred firing times (see Appendix B).
Each sequence is encoded by a different assembly of neurons. This reflects the
structure of the hidden state that underlies the task. Since the input is presented
as continuous spike train, the network has also learned intermediate states that
represent a gradual blending between patterns. About 25 neurons were used to
encode the information required to represent the hidden state of each sequence.

This coding scheme installs different representations of the patterns depending on
the temporal context they appeared in, e.g. the pattern delay within the sequence
AB-delay-ab was represented by another assembly of neurons than the one in the
sequence BA-delay-ba. Small assemblies of about five neurons became tuned for each
pattern and temporal context. This sparse representation emerged through learning
and is not merely a consequence of the inherent sparseness of the WTA dynamics.
Prior to learning all WTA neurons are broadly tuned and show firing patterns
that are unordered and nonspecific (see Fig. 2.2B). After learning their afferent
synapses are tuned for specific input patterns, whereas the temporal contexts in
which they appear are encoded in the excitatory lateral synapses. The latter can
be seen by inspecting the synaptic weights vkj shown in Fig. 2.2D. They reflect the
sparse code and also the sequential order in which the neurons are activated. They
also learned to encode the stochastic transitions at the beginning of the cue phase,
where randomly one of the four sequences is selected. These stochastic switches
are reflected in increased strength of synapses that connect neurons activated at
the end and the beginning of the sequences.

The behavior of the circuit is further examined in Fig. 2.3. The average network
activity over 100 trial runs of the neurons that became most active during sequence
AB-delay-ab are shown in Fig. 2.3A. In addition the spike trains for 20 trials are
shown for three example neurons. The same sorting was applied as in Fig. 2.2.
Using the hidden state encoded by the network it should be possible to predict the
recall patterns after seeing the cue, if it correctly learned the input statistics. We
demonstrate this by presenting incomplete inputs to the network. After presentation
of the delay pattern the input was turned off and the network was allowed to run
freely. The delay pattern was played three times longer than in the training phase
(150ms). During this time the network was required to store its current state (the
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Fig. 2.3: Spontaneous replay of pattern sequences. A,B: The output behavior of a trained network
for sequence AB-delay-ab. The network input is indicated by pattern symbols on top of the
plot and pattern borders (gray vertical lines). A: The average firing behavior of the network
during evoked activity. The 30 circuit neurons that showed highest activity for this sequence
are shown. The remaining neurons were almost perfectly silent. The network activity is av-
eraged over 100 trial runs and neurons are sorted by the time of maximum average activity.
Detailed spiking activities for three example neurons that became active after the delay pat-
tern are shown. Each plot shows 20 example spike trains. B: Spontaneous completion of
sequence AB-delay-free. After presenting the cue sequence AB and the delay pattern for
150ms the afferent input was turned off, letting the network run driven solely by lateral con-
nections. During this spontaneous activity, the neurons are activated in the same sequential
order as in the evoked trials. Detailed spiking activity is shown for the same three exam-
ple neurons as in (A). C: Histograms of the rank order correlation between the evoked and
spontaneous network activity for all four sequences, computed over 100 trial runs. The se-
quential order of neural firing is reliably reproduced during the spontaneous activity and thus
the structure of the hidden state is correctly completed.
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identity of the cue sequence). After this delay time the input was turned off – no
spikes were generated by the afferent neurons during this phase, the network was
purely driven by the lateral connections. Since the delay time was much longer
than the EPSP windows the network had to keep track of the sequence identity
in its activity pattern throughout this time to solve the task. Fig. 2.3B shows the
output behavior of the network for sequence AB-delay-free (where free denotes a
100ms time window with no external input). After the initial sequence AB was
presented, a small assembly of neurons became active that represents the delay
pattern that was associated with that specific sequence. After the delay pattern was
turned off, the network completed the hidden state sequence using its memorized
activity, which can be seen by comparing the evoked and spontaneous spike trains
in Fig. 2.3A and B, respectively.

In order to quantify the ability of the network to reproduce the structure of the
hidden state, we evaluated the similarity between the spontaneous and evoked
network activity using the rank order correlation coefficient, which is a similarity
measure normalized between −1 and 1, where 1 means that the order is perfectly
preserved. This measure has been previously proposed to detect stereotypical
temporal order in neural firing patterns (Luczak et al., 2009). Fig. 2.3C shows the
histograms over the correlation coefficients for all four sequences. The histograms
were created by calculating the rank order correlation between the spontaneous
sequences and the PETH of the evoked sequences. It can be seen that the temporal
order of the evoked sequence was reliably reproduced during the free run. To
that end, for each of the input sequences, a stable representation has been trained
into the network, that is encoded in the lateral synapses. This structure emerged
completely unsupervised using the local STDP rule, solely from the intrinsic
dynamics of the network.

Mixed selectivity emerges in multiple interconnected WTA circuits

The first experiment demonstrated that through STDP, single neurons of a WTA
circuit get tuned for distinct input patterns and the temporal context in which
they appear. The neural code that emerged is reminiscent of some features found
in cortical activity of monkeys solving similar tasks, namely the emergence of
context cells that respond specifically to certain symbols when they appear in a
specific temporal context (Barone and Joseph, 1989; Shima and Tanji, 2000; Shima
et al., 2006). However, the overall competition of a single WTA circuit hinders the
building of codes for more abstract features, which are also found in the cortex in
the very same experiments where neurons in the same cortical area encode different
functional aspects of stimuli and actions. They seem to integrate information on
different levels of abstraction which results in a diverse and rich neural code, where
close-by neurons are often tuned to different task-related features (Rigotti et al.,
2013).

We show that our model reproduces this mixed selectivity of cortical neurons
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if multiple interconnected WTAs are trained on a common input. The strong
competition is restricted to neurons within every single WTA, whereas there is no
competition between neurons of different circuits and lateral connections allow
full information exchange between the circuits. Therefore, the model is extended
by splitting the network into smaller WTA groups, each of which receives input
from a distinct inhibitory feedback loop that implements competition between
members of that group. In addition all neurons receive lateral excitatory input
from the whole network. Every WTA group still follows the dynamics of a forward
sampler for a HMM. Each of these WTA circuits adapts its synaptic weights through
STDP to best represent the observed input spike sequences. In addition, the lateral
connections between WTA groups introduce a coupling between the network states
of individual groups. The dynamics of the whole network of WTA circuits can be
understood as a forward sampler for a coupled HMM (Brand, 1997), where every
WTA group encodes one multinomial variable of a compound state such that from
one time step to the next all single state variables have influence on each other
(Brand, 1997; Koller and Friedman, 2009).

In the first experiment we have seen that the WTA circuit learned to use about 25%
of the available neurons to encode each of the four sequences. We have also seen
that the network used small assemblies of neurons to represent each of the patterns
in favor of a finer temporal resolution. This implies that WTA circuits of different
size can learn to decode the input sequence on different levels of detail, where small
circuits only learn the most salient features of the input sequences. To show this we
trained a network with 10 WTA groups of random size between 10 and 50 units,
giving a total network size of K = 318, on the simple object sequence memory
task (Fig. 2.2A). The neural code that emerges in this network after training is
shown in Fig. 2.4. The output rates of the circuit neurons were measured during
the presentation of pattern a appearing in the sequence AB-delay-ab, BA-delay-ba,
shown in Fig. 2.4A,B respectively. Three classes of neurons can be distinguished: 10

neurons were tuned to pattern a in the context AB-delay-ab only (shown in red), 12

neurons were tuned to pattern a exclusievly in the context BA-delay-ba (shown in
blue) and 5 additional neurons encode pattern a independent of its context (green),
i.e. they get activated by the pattern a in both sequences AB-delay-ab and BA-delay-ba.
The remaining neurons were not significantly tuned for pattern a (average firing
rate during pattern a was less than 10Hz, not shown in the plot).

To pinpoint the computational function that emerged in the network we compared
the spontaneous activity of individual neurons from different WTA circuits. Spike
trains for one context-specific and one non-specific neuron are compared in Fig. 2.4C
and D, respectively. Both panels show spike raster plots over 20 trial runs and
averaged neuron activities (PETH) for sequences AB-delay-free and BA-delay-free. The
neuron in Fig. 2.4C belongs to a small WTA group with a total size of 15 neurons
and shows context unspecific behavior, whereas the neuron in Fig. 2.4D which
belongs to a larger WTA group (42 neurons) is context specific (see Fig. 2.4A,B).
This behavior is also reproduced during the free run, when the neurons are only
driven by their lateral synapses. The neuron in Fig. 2.4D remains silent during
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Fig. 2.4: Mixed selectivity in networks of multiple interconnected WTA circuits. A,B: Mean firing
rate of the circuit neurons for evoked activity during pattern a in sequence AB-delay-ab (A)
and BA-delay-ba (B). A threshold of 10Hz (dashed line) was used to distinguish between
neurons that were active or inactive during the pattern. Firing rates of neurons that were not
context selective are shown in green, that of neurons selective for starting sequences AB
and BA are shown in red and blue, respectively. Neurons that did not fall in one of these
groups are not shown. C,D: Spike trains of one context selective (D) and one non-selective
(C) neuron are presented for spontaneous completion of sequence AB-delay-ab (upper)
and BA-delay-ba (lower) (cue phase is not shown). Spike raster plots over 20 trial runs and
corresponding averaged neural activity (PETH) are shown. The two neurons encode the
input on different levels of abstraction. The neuron in panel (D) shows context cell →
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→ behavior, since it encodes pattern a only if it occurs in the context of sequence ab. During ba
it remains (almost) perfectly silent. The neuron in (C) is not context selective, but nevertheless fires
reliably during the time slot of pattern a during the free run by integrating information from other
(context selective) neurons. It belongs to a WTA circuit with 15 neurons, for which the network state
projection is shown in panel (E). E,F: Linear projection of the network activity during the delay phase
to the first two components of the jPCA, for a single WTA circuit with 15 neurons (E) and for the whole
network (F). 10 trajectories are plotted for each sequence (AB-delay-ab red, BA-delay-ba green, CD-
delay-cd blue, DC-delay-dc yellow). The dots at the beginning of each line, indicate the onsets of the
delay state, i.e. the beginning of the trajectories. The plots have arbitrary scale. The projection of the
WTA circuit in (E) does not allow a linear separation between all four sequences, whereas the activity
of the whole network (F) clusters into four sequence-specific regions. The network neurons use this
state representation to modulate their behavior during spontaneous activity.

BA-delay-free and thus shows the properties of context cells observed in the cortex,
whereas the neuron in Fig. 2.4C is active during both sequences. Still, during
spontaneous replay that neuron correctly reproduces the temporal structure of the
input sequences. In sequences starting with AB the neural activity peaks at 50ms
after the onset of the free run – the time pattern a was presented in the evoked
phase. If the sequence starts with BA this behavior is modulated and the activity is
delayed by roughly 50ms, to the time point a would appear in the recall phase. The
required information to control this modulation was not available within the small
WTA group the neuron belongs to, but provided by neighboring context-specific
neurons from other groups.

To see this we trained a linear classifier on the evoked activity during the delay
phase of AB-delay-ab and BA-delay-ba (see Appendix B for details). If the neu-
rons reliably encode the sequence identity a separating plane should divide the
K-dimensional space of network activities between the sequences. Training the
classifier only on the 15-dimensional state space of the group the neuron in Fig. 2.4C
belongs to, did not reveal such a plane (the classification performance was 72.5%).
Therefore, this small WTA circuit did not encode the required memory item to
distinguish between the two sequences after the delay phase. However, the whole
network of all WTA groups reliably encoded this information and the classifier
trained on the K-dimensional state space could distinguish between the delay
phases of AB-delay-ab and BA-delay-ba with 100% accuracy.

To illustrate the different emergent representations, we compared linear projections
of the state of the small WTA group with 15 neurons and the state of the whole
network in Fig. 2.4E,F, respectively. The plots show the network activity during
the delay phase for all four sequences. Each line corresponds to a trajectory of
the evoked network activity, where the line colors indicate the sequence identity.
The state trajectories were projected onto the first two dimensions of the dynamic
principal component analysis (jPCA), that was recently introduced as an alternative
to normal PCA that is applicable to data with rotational dynamics (Churchland
et al., 2012). Empirically, we found this analysis method superior to normal PCA
in finding linear projections that separate the network states for different input
sequences. One explanation for this lies in the dynamical properties of WTA
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circuits. Due to the global normalization which induces a constant network rate,
the dynamics of the network are roughly energy-preserving. Since this implies that
the corresponding linear dynamical system is largely non-expanding/contracting,
a method that identifies purely rotational dynamics such as the jPCA was found to
be beneficial here.

Fig. 2.4E shows the first two jPCA components of the neural activities during the
delay phase for the WTA circuit with 15 neurons, which the neuron in Fig. 2.4C
belongs to. This circuit was not able to distinguish between all four input sequences,
since it activated the same neurons to encode them. This is also reflected in the
jPCA projections shown in Fig. 2.4E, which show a large overlap for sequences
AB-delay-ab and BA-delay-ba. On the other hand, the network state comprising all
K neurons reliably encoded the sequence identities (see Fig. 2.4F). The delay state
for each sequence spans an area in the 2-D projection and therefore the network
found a state space that allows a linear separation between the sequences. Such a
representation is important since the neuron model employs a linear combination
of the network state in the membrane dynamics (2.1) and therefore provides the
information required by the neurons in Fig. 2.4C,D to modulate their spontaneous
behavior.

Trajectories in network assemblies emerge for stationary input patterns

Information about transient stimuli is often kept available over long time spans in
trajectories of neural activity in the mammalian cortex (Han et al., 2008; Luczak
et al., 2007; W. Xu et al., 2007; Jin et al., 2009) and in songbirds (Fiete et al., 2010;
Kozhevnikov and Fee, 2007; Hahnloser et al., 2002). In the previous experiment we
saw that our model is in principle capable to develop such trajectories in neural
assemblies (see Fig.2.3B), which emerged to encode salient input patterns and
the temporal structure throughout them. However, in that experiment the input
sequences comprised a rich temporal structure, since each pattern was only shown
for a 50ms time bin which might have facilitated the development of these activity
patterns. In this section we study whether a similar behavior also emerges when
the input signal is stationary over long time spans.

In analogy to the previous experiment we generated two input sequences A-delay
and B-delay. The patterns A, B were played for 100ms and the pattern delay for
500ms. As in all other experiments, the patterns were rate patterns, i.e. each input
neuron fired with a constant Poisson rate during the pattern and spike times
were not kept fixed throughout trials. One example input spike train is shown in
Fig. 2.5A.

Although the input was stationary for 500ms during the delay pattern, we could
still observe the emergence of neural trajectories in the network after training.
Again, we used a network composed of multiple interconnected WTA circuits to
learn these patterns. We employed a network of 20 WTA groups of random size
in the range from 10 to 100 neurons. The total network had a size of K = 704
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Fig. 2.5: Neural trajectories emerge for stationary input patterns. A: A network was trained with
an extended delay phase of 500ms. Input spike trains of a single run for sequence A-delay
(25 out of 100 afferent neurons). Throughout the delay phase the afferent neurons fire with
fixed stationary Poisson rates. B: The output behavior for sequence A-delay averaged over
100 trial runs. The circuit neurons are sorted according to their mean firing time within the
sequences (120 out of 704 neurons are shown). C: Histograms of the rank order correlation
between the evoked and spontaneous network activity. The sequential order of neural firing
is preserved during spontaneous activity. D,E: Homeostatic plasticity enhances the forma-
tion of this sequential structure. The output behavior of the network trained with STDP and
the homeostatic plasticity mechanism is shown. Approximately 50% of the neurons encode
each of the two sequence. The neurons learn to fire at a specific point in time within the
delay patterns, building up stable trajectories.

circuit neurons and we used N = 100 afferent cells. Fig. 2.5B shows the sorted
average output activity after training. For each of the two sequences a distinct
assembly of neurons emerged and the neurons composing these assemblies fired in
a distinct sequential order. Fig. 2.5C shows the rank order correlations between the
evoked and spontaneous activities. The trajectories of neural firing were reliably
reproduced during spontaneous activity, but only about 100 neurons were used for
each of the two assemblies, leaving the remaining 500 neurons (almost) perfectly
silent.

The emergence of these trajectories can be further enhanced using a homeostatic
intrinsic plasticity mechanism which enforces that on average all network neurons
participate equally in the representation of the hidden state. This can be achieved
by a mechanism that regulates the excitability bk of each neuron, such that the
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Fig. 2.6: Fast learning of an artificial grammar. A: The artificial grammar from (Conway and Chris-
tiansen, 2005; Gomez and Gerken, 1999) represented as a finite state grammar graph.
Grammatical sequences are generated by following a path from Start to Exit. If a node
has more than one outgoing arc one is chosen at random with equal probability to continue
the path. B: Convergence of the network performance on that task. The blue curve shows
the evolution of the mean classification performance against the number of training samples,
when forward sampling was used. The blue shaded area indicates the standard deviation
over 20 trial runs. After 80 training samples the network exceeds human performance re-
ported in (Conway and Christiansen, 2005). Using rejection sampling with 10 samples on
average (red curve) does not significantly outperform forward sampling on this task.

overall output rate νk of neuron k (measured over a long time window) converges
to a given target rate νk = 1

K ν̂. (see (Habenschuss et al., 2012) and Appendix B).
Augmenting the dynamics of the network with this intrinsic plasticity rule prevents
neurons from becoming inactive if their synaptic weights decrease and by that
assures that each neuron joins one of the assemblies. This can be seen in Fig. 2.5C,D
which shows the output activity after training with STDP augmented with the
homeostatic mechanism. The neurons formed a fixed ordered sequence and thus
showed a clear preference for a certain point in time within the pattern. Even
though the delay pattern had no salient temporal structure (the rates of all afferent
neurons were constant throughout the pattern) these trajectories were formed by
imprinting the sequential order of the neural activity into the lateral excitatory
connections. As in the first experiment each neuron has learned to fire after a
distinct group of preferred predecessors, resulting in neural trajectories through
the network. Therefore, the time that has elapsed since the delay pattern started
could be inferred from the neural population activity. In addition the identity of
the initial pattern was also memorized, since about half of the population became
active for each of the two sequences.
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Learning the temporal structure of an artificial grammar model

The finite state grammar used in the previous experiments (Fig. 2.2A) did not
utilize the full expressive power of HMMs since it only allowed stochastic switches
at the beginning of each sequence. In this section we consider the problem of
learning more general finite state grammars in WTA circuits, a problem that has
also been extensively studied in cognitive science in artificial grammar learning
(AGL) experiments (Reber, 1967). Fig. 2.6A shows the artificial grammar that was
used in (Conway and Christiansen, 2005) to train subjects using different stimulus
modalities (visual, auditory and tactile). There it was shown that humans can
acquire the basic statistics of such grammars extremely fast. On this particular task
humans showed a performance of 62% to 75% percent (depending on the stimulus
modality that was used) after only a few dozens of stimulus presentations (Conway
and Christiansen, 2005).

We show that our network model can extract the basic structure of this grammar.
This internal representation can be subsequently used to classify unseen sequences
as grammatical or not. Through STDP the network adapts the parameters θ such
that they reflect the statistics underlying the training sequences, and the emergent
HMM can then be used to evaluate the sequence likelihood p (X | θ). The ability of
the network to distinguish between grammatical and ungrammatical sequences was
assessed by applying a threshold on the sequence log-likelihood, an approximation
of which was computed over a single sample S from (2.5) (see Appendix B). The
threshold was assigned to the mean of the log-likelihood values computed for
all test sequences. Likelihoods that laid above that threshold were reported as
grammatical.

In this experiment we used a sparse input coding, where only a small subset of
afferent neurons is activated for each of the symbols. This representation could
be realized by another WTA circuit used as input for the network to decode more
complex input patterns. We trained a single WTA circuit with K = 10 neurons
on this sparse input. Using this model, we were able to achieve high learning
speeds. In each training iteration one of the 12 training data sets from (Conway
and Christiansen, 2005) (using only the first sequence of each match/mismatch
pair) was chosen at random and presented to the network. For testing we used the
20 test sequences from (Conway and Christiansen, 2005) to evaluate the learning
performance. Training was interrupted after every 10th sequence presentation
to assess the classification performance. The resulting learning curve is shown
in Fig. 2.6B. The classification rate of 75% that was reported in the behavioral
experiment was exceeded after only 80 iterations. By training the network beyond
this point performances up to 85% were reached. Note that none of the training
sequences appeared in the test set. Therefore the network has not just learned a
fixed set of sequences, but extracted relevant statistical features that allowed it to
generalize to new data.
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2.4 A refined EM approximation using rejection sampling

So far in all experiments the simple forward sampling approximation was used
for learning the model parameters. Although this learning paradigm has shown to
be surprisingly powerful, it is limited and will not be sufficient if the network is
required to learn more complex tasks or acquire probabilistic models with a high
level of detail. In this section we derive the refined approximation toward evaluating
the HMM E-Step in a recurrent WTA circuit based on rejection sampling.

Exactly solving the E-step requires to evaluate the posterior probability of S, given
by

p (S | X ,θ) =
p (S,X | θ)

p (X | θ) with p (X | θ) =
∫

p
(
S ′,X

∣∣ θ)dS ′, (2.8)

where p (S,X | θ) is the HMM joint distribution, given by equation (2.4). A stochas-
tic EM update is realized by drawing a state sequence from the posterior for which
the M-step parameter updates are performed. However, directly sampling from
(2.8) is not possible for a spiking neural network, since it requires the integration
of information over the whole state sequence and thus, looking into the future.
This can be seen by noting that the integral in (2.8) runs over the state space of
the whole sequence. To that end, the network is not able to sample from this
distribution directly. Nevertheless, it is possible to indirectly evaluate (2.8) using
samples generated from (2.5), which can be expressed by

p (S | X ,θ) = q (S | X ,θ) · r(S)
〈 r(S ′) 〉q(S′ |X ,θ)

, (2.9)

where 〈 · 〉q(S |X ,θ) denotes the expected value over q (S | X ,θ), which in this
context is called a proposal distribution since it is used to propose samples, which are
then used to indirectly evaluate the target distribution p (S | X ,θ). The scalar r (S)
is the importance weight between the target and the proposal distribution, which is
used to scale the influence of the sample S (Bishop, 2006; Koller and Friedman,
2009; Neal, 1993).

The expectation in the denominator of (2.9) is again not easy to evaluate, since it
requires us to integrate over multiple sequences. The most pragmatic solution to
this problem is to approximate this term using a single sample from the proposal
distribution 〈 r(S ′) 〉q(S′ |X ,θ) ≈ r(S). Under this approximation the importance
weight in (2.9) cancels out and we arrive at the trivial approximation p (S | X ,θ) ≈
q (S | X ,θ), i.e. each sample from the proposal distribution is accepted as a valid
sample from the posterior. This is the forward sampling approximation that was
used so far throughout all experiments.

In order to improve this approximation we use the stochasticity of the network,
which assures that different state sequences S are proposed if the same input
sequence X is presented several times. Rejection sampling utilizes this stochasticity
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and preferentially selects sequences with high likelihood throughout the whole
input. The required information to do this selection is a global quantity that must
be tracked over the whole sequence. The probability to accept a state sequence S is
directly proportional to the importance weight r(S), which computes to

r (S) =
M

∏
m=1

p (xm | sm−1,θ) . (2.10)

Note that (2.10) can be easily computed forward in time, since in each time step, it
only needs to be updated using the instantaneous input likelihood p (xm | sm−1,θ).
Further note that this is a measure for surprise or prediction error – the probability
of observing the current input given the previous state. The information to decide
whether to accept S is the accumulated prediction error over the whole sequence.
This approach also naturally extends to the case of multiple interconnected WTAs.
There, the contributions to the importance weight of every single circuit have to
be multiplied in every time step and therefore, a possible rejection is in that case
effective for the whole network of all WTAs at once.

Since the importance weights need to be accumulated over the whole sequence of
spike events of length M, the weight update rules (2.7) can not be applied instanta-
neously. In the neural implementation we achieved this using a synaptic eligibility
trace as proposed in (Izhikevich, 2007). Instead of updating the weights directly
they are tagged and consolidation of the tags is delayed until the whole sequence is
read. The probability to accept these tags is proportional to the importance weights,
i.e.

p (accept sequence S) = c · r (S) , (2.11)

where c is a constant that scales the acceptance rate. If a sequence S is accepted,
the synaptic tags are consolidated. If the circuit decides not to accept, the synaptic
weight changes for the whole sequence have to be discarded. This result is ana-
lytically similar to (Brea et al., 2011), where the importance weights (2.10) were
introduced by weighting the eligibility traces with a deterministic scalar factor
(importance sampling). Here, in the rejection sampling framework a stochastic
variant of this method is used. The advantage of the rejection sampling method
is that it is not necessary to explicitly compute the normalization in (2.8). The
normalization can be approximated by replaying in every training iteration the
input sequence multiple times until it gets accepted once, instead of using a con-
stant number of replays as with importance sampling. In practice however it is
necessary to adapt the parameter c throughout learning in order to get a reasonable
number of replays. We used a simple linear tracking mechanism for c throughout
the experiments (see Appendix B). A performance comparison of these different
sampling approximations is provided at the end of the Results section.

We assume that the circuit interacts with a mechanism that allows the replay of the
afferent stimulus multiple times. By enforcing that each input is accepted once, we
guarantee that the network learns the statistics of all input sequences with equal
accuracy. This view allows us to make an interesting theoretical prediction: when
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Fig. 2.7: Rejection sampling enhances the classification performance of the network. A: The
grammar graph used for this task. A three letter sequence composed of As and Bs identifies
the last symbol, C or D. Therefore, the most salient information is provided at the end of the
sequence. B: The classification rate on this task is plotted for forward (green) and rejection
sampling (red). The error bars indicate the standard deviation over 10 trial runs. Rejection
sampling significantly increases the classification performance on this task. C,D: Compari-
son of the time courses of the instantaneous input log likelihood for a legal input sequence
BBAC (C) and an illegal sequence BBAD (D). Input patterns are indicated by the pattern
symbols on top of the plots. The upper plot shows the output spike trains of the network, the
lower plot shows the traces of the instantaneous input likelihood plotted in the log domain,
which indicates the ability of the network to predict the continuation of the afferent spike
train. The trace in (D) shows a strong negative peak at the illegal transition at 150ms. The
prediction model that emerged through STDP augmented with rejection sampling, enables
the network to detect illegal sequences.

an input is not well represented by the network it is more likely to be rejected and
therefore, the number of rejected and resampled sequences represents a notion of
novelty. Literally speaking, the network pays more attention to novel inputs, by
resampling them multiple times (see Appendix B for details).
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Rejection sampling enhances the learning capabilities of STDP

In the following experiments we investigate the possible performance gain that can
be achieved if the network has access to this rejection sampling mechanism. We
have previously seen that the grammar from Fig. 1 in (Conway and Christiansen,
2005) can be learned almost perfectly using pure forward sampling. However, this
data set had a very simple structure. To distinguish between grammatical and
ungrammatical sequences only required the analysis of the local statistics of the
input. E.g. it is easy to see that the sequence DEAC is not grammatical since it
contains the bigram DE, which never appears in the training data. Each of the
ungrammatical sequences contains at least one illegal bigram and thus can be
classified based on a simple model of symbol transitions. This simple structure was
already recovered with the online learning scheme and therefore using rejection
sampling on that task did not result in a significant performance increase (see
Fig. 2.6).

To demonstrate the advantage of rejection sampling, we created a grammar that
required integration of information over a longer time span, shown in Fig. 2.7A.
Although this grammar only allows to create four sequences AABC, BBAC, ABAD
and BABD, the underlying structure is more complex than in the previous tasks.
The identity of the last symbol can only be inferred if the identity and context of
the first symbol is integrated and memorized over the whole sequence. To that end,
the rejection sampling algorithm that allows the network to propagate information
over the whole sequence, should bring a definite benefit over forward sampling for
this task.

The quantity that is needed to update the importance weights (2.10) and also to
estimate the sequence likelihood for classifying grammatical against ungrammat-
ical inputs, is given by the instantaneous input likelihood p (xm | sm−1,θ) (see
Appendix B). As pointed out earlier, this quantity is a measure for surprise, i.e.
the probability of observing the current input pattern given the network state.
The ability of the network to exploit this prediction error to classify sequences is
illustrated in Fig. 2.7. The input-output behavior of a network after training with
rejection sampling is shown for the grammatical sequence BBAC and the ungram-
matical sequence BBAD, in Fig. 2.7C,D respectively. The bottom plots show traces
of the instantaneous input log-likelihood. Throughout the grammatical sequence in
Fig. 2.7C the trace stays near baseline, which indicates that the network is capable of
predicting the sequence. Within the patterns, the trace only shows small deviations
due to input noise. Switches between the input patterns e.g. at the border from
pattern A to C cause modest levels of surprise, due to the sudden change of the
network state. However, the illegal transition to pattern D in Fig. 2.7D causes a
strong negative peak. At this point the network is not capable of predicting the
final pattern. Thus the input is assigned to a low overall sequence likelihood and
will therefore be classified as ungrammatical.

In the rejection sampling algorithm this quantity is also used throughout training,
to learn preferably from sequences that are best capable of predicting the input
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sequences. To quantify the advantage of this method over online learning we
compared the performance on the AGL task. As in the previous experiment, the
ability of the network to distinguish between grammatical and ungrammatical
sequences was evaluated by applying a threshold on the sequence likelihood. The
threshold was assigned to the mean of the log-likelihood values computed for all
tested sequences. The network parameters were tuned such that the number of
rejected samples in each iteration, averaged over the whole training session was
equal to the desired number of samples (see Appendix B). The classification errors
are compared in Fig. 2.7B for learning with forward and rejection sampling. The
parameter c that scales the number of rejected samples was tracked to give an
average number of 10 rejected samples per iteration. Despite this relatively small
number of times the sequences is resampled, it can be seen that the performance on
this task significantly increased with rejection sampling. Online learning achieved a
classification rate of 68.38± 12.52%. With rejection sampling the network achieved
84.30± 5.98% classification rate. Hence we confirmed, that having access to the
rejection sampling mechanism allows the network to learn the input statistics
with higher levels of accuracy. Furthermore, for the example given here, this was
achieved with a relatively small average number of resampled state sequences.

Comparison of the convergence speed and performance of the
approximate algorithms

In order to give a quantitative notion of how the sampling approximations affect the
learning performance, we applied the methods to solve a generic HMM learning
task. To allow a direct comparison with standard machine learning algorithms for
HMMs, we used a time-discrete version of our model in this section. Therefore, we
set the inter-spike-intervals ∆m to a fixed constant value and used rectangular EPSP
kernels of the same length. With this modification our model is equivalent to a
discrete input, discrete state HMM, commonly considered in the machine learning
literature (Bishop, 2006). We created random HMMs and used them to generate a
training and a test data set. Using this data we compared the training performance
of different approximation algorithms.

The accuracy of the rejection sampling algorithm crucially depends on how the
parameter c in equation (2.11) is selected. If it is set to a very large constant
value, every sample gets accepted and we arrive at the simple forward sampling
approximation. We compared this forward sampling algorithm with the simple
tracking algorithm that was used in the previous experiment and with the optimal
mechanism, which computes c over a batch of sampled sequences (see Appendix B).
In addition we compared these methods with the importance sampling algorithm
considered in (Brea et al., 2011), where the scalar values of the importance weights
were directly used to weight synaptic tags. All sampling methods were compared
for an average number of 10 and 100 resampled sequences. Furthermore we applied
standard EM learning for HMMs (the Baum-Welch algorithm) as reference method
(Baum and Petrie, 1966; Bishop, 2006).
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Fig. 2.8: Comparison of the convergence speed and learning performance of different sam-
pling methods. Comparison of the sampling approximations to standard HMM learning.
The performance is assessed by the log likelihood averaged over 50 trial runs. The plots
show average convergence properties of: forward sampling (solid blue), importance sam-
pling over 10 (dashed yellow) and 100 trials on average (solid yellow), rejection sampling
over 10 (dashed red) and 100 trials (solid red), rejection sampling with the simple linear
tracking of c over 10 (dashed green) and 100 trials on average (solid green), and the Baum-
Welch algorithm (solid black). With increased number of samples the performance of the
algorithm converges towards the solution of the standard EM algorithm. There was no sig-
nificant performance difference between rejection and importance sampling. The simple
tracking mechanism for the rejection sampler is outperformed by the exact algorithm, but
still a significant performance gain with increased number of samples can be observed.

The results of the eight different training algorithms are compared in Fig. 2.8. The
figure shows the log-likelihood on the test data averaged over the 50 learning
trials. As can be seen, pure forward sampling shows poor performance on this task
compared with Baum-Welch learning, but with increasing number of samples the
approximation approaches the performance of the exact EM updates. Interestingly
we found that importance sampling and rejection sampling show almost the same
performance. We believe that the reason for this lies in the high variance of the
importance weights. The weights of consecutive samples can differ several orders
of magnitude. After normalization, effectively only the sample with the highest
importance weight has non-zero influence on the weight updates. Therefore the two
algorithms are numerically almost identical for the task considered here. Using the
tracking mechanism for c resulted in decreased performance compared to the exact
algorithm. Still, a significant performance gain can be observed with increased
average number of samples.
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2.5 Discussion

We have shown that STDP in WTA circuits with lateral excitatory connections
implements the capability to represent the statistical structure underlying time-
varying input patterns. The different types of excitatory synapses in the network
serve different computational functions. Lateral connections recurrently feed back
past network spikes which are used to predict a prior belief about the current
network activity. The feedforward synapses match this prediction against the belief
inferred from afferent inputs. The sparse code that emerges in this circuit allows to
represent the activity of the whole network as samples from the state space of a
HMM, implementing a forward sampler, which provides the circuit with a simple
online approximation to exact HMM inference.

We have focused in this article on an idealized version of the STDP rule that
implements the maximization step of the EM algorithm for the HMM. Similar rules
also emerged in earlier studies as stochastic approximations to EM implemented in
networks of spiking neurons (Nessler et al., 2010; Habenschuss et al., 2013; Nessler
et al., 2013; Keck et al., 2012), for learning instantaneous afferent spike patterns. The
only structural difference in the network architecture for temporal models is the
presence of lateral excitatory connections. We have shown that if a WTA circuit is
passively exposed to spatiotemporal rate patterns STDP implements a crude online
approximation of EM. The emerging neural codes represent the hidden states that
underlie the spatiotemporal input patterns. Different neurons are activated for
the same input pattern if it appears in different temporal contexts. Furthermore,
we have shown that if multiple WTA circuits are recurrently interconnected the
network activity becomes more diverse and encodes various abstract features.

Throughout our analysis we realized the WTA dynamics using a feedback loop,
where the required inhibition was given in its theoretically optimal form, accord-
ing to equation (2.3). This optimal inhibition predicted by our model is strongly
correlated with the activation of excitatory neurons within the WTA circuit. Such
strong balance and correlation between excitation and inhibition has been observed
in the cortex in vivo (Okun and Lampl, 2008; Haider et al., 2006). A consequence
of this inhibitory feedback in our network model is that the total output rate is
constant. Yet individual neurons in the network may exhibit complex behavior, and
our experimental results have shown that they exploit a wide dynamical range.
Furthermore it has been shown in (Nessler et al., 2013) that the assumption of a
constant overall output rates can be lifted for the case of WTA circuits without
lateral synapses. The only requirement identified there was that the circuit-wide
output rate and the input had to be stochastically independent, which was theo-
retically shown and experimentally verified in an experiment where the network
rate was modulated with a global oscillation throughout learning. The constant
output rate considered in the present study is the simplest case which is compatible
with our model. Identifying a more general class of rate functions which can be
incorporated into our theoretical framework will be the subject of future work.
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The activity patterns that emerge in our WTA circuits share important features with
experimentally observed cortical dynamics. One feature is that neurons become
tuned for mixtures of different task-relevant aspects as commonly observed in
cortical neurons (Rigotti et al., 2013; Barone and Joseph, 1989; Shima and Tanji,
2000). The neural assemblies that encode these temporal features imprint their
stereotypical sequential activation pattern within the lateral synapses. Another
common feature is the emergence of stereotypical firing sequences during evoked
and spontaneous activity, which is also found in cortical activity (Han et al., 2008;
Luczak et al., 2007; W. Xu et al., 2007). This analysis also provides a theoretical
foundation for the results that were reported recently in (Klampfl and Maass,
2013). There, a similar network of stochastic WTA circuits was used to learn spike
patterns superimposed with Poisson noise, and similar stimulus-specific assemblies
emerged. But no theoretical framework was provided there.

The network of multiple interconnected WTA circuits has a very interesting theo-
retical interpretation as it implements in that case a forward sampler for a coupled
HMM (Brand, 1997), where multiple HMMs run in parallel to jointly encode the
hidden state. In our experiment this coupling between neighboring WTA circuits
allowed them to reproduce typical sequences of hidden states in the absence of
input, even if some circuits did not have enough expressive power to store this
information. An interesting future extension of this model would be to present
different coupled stimuli (e.g. speech and audio from a common source) to different
WTA groups in this circuit. Individual WTA circuits would then learn the temporal
structure of these stimuli and the lateral excitatory synapses between WTA circuits
would detect relevant correlations between them.

We have also shown that STDP installs in WTA circuits capabilities that go beyond
just learning afferent sequences. From few presentations the network extracted
relevant statistical properties underlying the afferent patterns. We demonstrated this
on an artificial grammar learning task. The network extracted parts of the structure
of this grammar, which allowed it to subsequently classify unseen sequences as
stemming from the same grammar or not. Interestingly, the learning speed and
classification performance achieved with the forward sampling approximation, in
the early learning phase, is comparable to the performance reported for humans on
the same task (Conway and Christiansen, 2005). This is also interesting because the
network considered here is similar to the single recurrent network (SRN) previously
suggested as a model for artificial grammar learning (Elman, 1990; Jordan, 1997).
The context layer, that is used in the SRN to store the hidden layer activity from
previous time steps, is implicitly implemented in the lateral synapses of our WTA
circuit. The SRN was successfully used to model human capabilities in artificial
grammar learning tasks (Cleeremans and McClelland, 1991) (but see (Boucher
and Dienes, 2003; Pothos, 2007), for alternative theories and models of artificial
grammar learning).

We have also exhibited a strategy to increase the computational power of WTA
circuits by using more advanced learning methods. The rejection sampling algo-
rithm that was proposed here is one possible solution to this problem. It enables
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the network to learn the temporal statistics with a much higher degree of accuracy,
but at the same time it considerably increases the complexity of learning. Each
input sequence must be replayed multiple times and thus, the convergence speed
is decreased since many sampled paths will be rejected (in the experiment we
resampled each path 10 times on average, therefore the learning time increased
10-fold). This makes learning possible on a long time scale only. However, the
two mechanisms – pure forward sampling and rejection sampling – should not be
seen as mutual exclusive strategies. Possibly both mechanisms could be found in
biological systems. STDP might subserve to learn a quick preliminary representa-
tion of novel input statistics, while more complex models could emerge on a long
time scale by selectively modulating the learning rate with global information. We
demonstrated that in some cases a significant increase in learning performance can
be achieved with only a small average number of resampled sequences. The experi-
mental results suggest that for learning temporal sequences and simple grammars
the pure implementation of STDP in WTA circuits is sufficient, whereas third-factor
STDP rules become relevant for learning complex temporal structures.

Related work

The close relation between HMMs and recurrent neural networks was previously
discovered and employed for deriving models for Bayesian computation in the
cortex. These studies targeted the implementation of Bayesian filtering (R. P. Rao,
2004; Bobrowski et al., 2009), capturing the forward message of the belief propaga-
tion algorithm in a rate-based neural code, or using a two-state HMM to capture
the dynamics of single neurons (Deneve, 2008a; Boerlin and Deneve, 2011). In the
present study we directly analyzed spikes produced by WTA circuits in terms of
samples from the state space of a HMM. For the HMM this results in an arguably
weaker form of inference than belief propagation, but led in a straightforward
manner to an analysis of learning in the network.

The emergence of predictive population codes in recurrent networks through
synaptic plasticity and their importance for sequence learning was previously
suggested and experimentally verified (Abbott and Blum, 1996; R. Rao and T.
Sejnowski, 2001). In (Deneve, 2008b) it was shown that spiking neurons can learn
the parameters of a 2-state HMM using synaptic plasticity, thereby implementing
an online EM algorithm (Stiller and Radons, 1999; Mongillo and Deneve, 2008). In
(Rezende et al., 2011) learning of temporal models was implemented through a
variational approximation, and revealed STDP-like learning rules. In (Brea et al.,
2011) it was shown that a network of neurons can learn to encode and reproduce a
sequence of fixed spike times. The learning rules were derived using an importance
sampling algorithm that yielded synaptic updates similar to the third-factor STDP
rule presented here.

The crucial difference between (Brea et al., 2011) and our approach is the usage of
WTA circuits as building blocks for the recurrent network instead of individual
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neurons. Due to the possibility to use multiple WTAs our model has the freedom to
factorize the multinomial HMM state space into smaller coupled variables, whereas
(Brea et al., 2011) always fully factorizes the state space down to single binary
variables. However, under the assumption of linear neurons the state-transition
probabilities in all these models are always represented by only K2 recurrent
synapses. Thus the expressive power of all these models (with the same number
of neurons) should be more or less identical. The optimal factorization of the
state space may strongly depend on the task. Our experiments suggest that the
restriction on the number of possible activity patterns due to the usage of WTAs
seems minor compared to the crucial advantage of their intrinsic stabilizing effects
of the network’s activity. To the best of our knowledge this stabilization is the
reason why the pure forward sampling learning approach performed so well in
our experiments.

Contribution to a principled understanding of computation and
plasticity in cortical microcircuits

The theoretical framework that we have introduced in this article provides a new
and more principled understanding for the role of STDP in a generic cortical micro-
circuit motif (ensembles of pyramidal cells with lateral excitation and inhibition):
Even in the absence of global signals related to reward, STDP installs in these
microcircuit motifs an approximation to a HMM through forward sampling. The
underlying theoretical analysis provides a new understanding of the role of spikes
in such WTA circuits as samples from a (potentially very large) set of hidden states
that enable generic cortical microcircuits to detect generic neural codes for afferent
spike patterns that can reflect their temporal context and support predictions of
future stimuli.

A remarkable feature of our model is that it postulates that noise in neural responses
plays a very important role for the emergence of such “intelligent” temporal pro-
cessing: We have shown that it provides in WTA circuits the basis for enabling
probabilistic inference and learning through sampling, i.e. through an “embodi-
ment” of probability distributions through neural activity. Thus stochasticity of
neural responses provides an interesting alternative to models for probabilistic in-
ference in biological neural systems through belief propagation (see (Lochmann and
Deneve, 2011) for a review), i.e. through an emulation of an inherently deterministic
calculation.

The rejection sampling algorithm that was proposed here as a method for emulating
the full power of HMM learning requires in addition a mechanism that allows to re-
play input patterns multiple times. Such replay of complex spatiotemporal patterns
is well documented in the hippocampus and was proposed as a mechanism for
memory consolidation in the cortex (Buhry et al., 2011). This view is also supported
by findings that showed that coordinated reactivation of temporal patterns can
be observed in the cortex (Hoffman and McNaughton, 2002; Ji and Wilson, 2007;
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Fujisawa et al., 2008; Peyrache et al., 2009). In our framework, samples generated by
the WTA circuit must be replayed several times until the network produces a spike
train that provides a sequence of hidden states that gives satisfactory explanations
and predictions for all segments of the sequence. The number of times a sequence
is replayed is proportional to the prediction error accumulated over the sequence,
which is a measure for the sample quality. Thus, sequences that are novel and to
that end not well represented in the network should be replayed more often and
thus, they get more attention in the learning process. This view is supported by
experimental data that revealed that transient novel experiences are replayed more
prominently than familiar stimuli (Ribeiro et al., 2004; Cheng and L. M. Frank, 2008;
S. Xu et al., 2012).

Altogether our results show that hidden Markov models provide a promising
theoretical framework for understanding the emergence of all-important capabilities
of the brain to understand and predict hidden states of complex time-varying
sensory stimuli.
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Chapter 3
Network plasticity as Bayesian inference

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Learning a posterior distribution through stochastic synaptic plas-
ticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Synaptic sampling improves the generalization capability of a
neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Spine motility as synaptic sampling . . . . . . . . . . . . . . . . . 54

3.5 Fast adaptation of synaptic connections and weights to a changing
input statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Inherent network compensation capability through synaptic sam-
pling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Abstract. General results from statistical learning theory suggest to understand
not only brain computations, but also brain plasticity as probabilistic inference. But
a model for that has been missing. We propose that inherently stochastic features of
synaptic plasticity and spine motility enable cortical networks of neurons to carry
out probabilistic inference by sampling from a posterior distribution of network
configurations. This model provides a viable alternative to existing models that
propose convergence of parameters to maximum likelihood values. It explains how
priors on weight distributions and connection probabilities can be merged optimally
with learned experience, how cortical networks can generalize learned information
so well to novel experiences, and how they can compensate continuously for
unforeseen disturbances of the network. The resulting new theory of network
plasticity explains from a functional perspective a number of experimental data
on stochastic aspects of synaptic plasticity that previously appeared to be quite
puzzling.
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3.1 Introduction

We reexamine in this article the conceptual and mathematical framework for
understanding the organization of plasticity in networks of neurons in the brain.
We will focus on synaptic plasticity and network rewiring (spine motility) in this
article, but our framework is also applicable to other network plasticity processes.
One commonly assumes, that plasticity moves network parameters θ (such as
synaptic connections between neurons and synaptic weights) to values θ∗ that are
optimal for the current computational function of the network. In learning theory,
this view is made precise for example as maximum likelihood learning, where
model parameters θ are moved to values θ∗ that maximize the fit of the resulting
internal model to the inputs x that impinge on the network from its environment
(by maximizing the likelihood of these inputs x). The convergence to θ∗ is often
assumed to be facilitated by some external regulation of learning rates, that reduces
the learning rate when the network approaches an optimal solution.

This view of network plasticity has been challenged on several grounds. From the
theoretical perspective it is problematic because in the absence of an intelligent
external controller it is likely to lead to overfitting of the internal model to the inputs
x it has received, thereby reducing its capability to generalize learned knowledge to
new inputs. Furthermore, networks of neurons in the brain are apparently exposed
to a multitude of internal and external changes and perturbations, to which they
have to respond quickly in order to maintain stable functionality.

Other experimental data point to surprising ongoing fluctuations in dendritic
spines and spine volumes, to some extent even in the adult brain (A. Holtmaat
and Svoboda, 2009) and in the absence of synaptic activity (Yasumatsu et al., 2008).
Also a significant portion of axonal side branches and axonal boutons were found
to appear and disapper within a week in adult visual cortex, even in the absence of
imposed learning and lesions (Stettler et al., 2006). Furthermore surprising random
drifts of tuning curves of neurons in motor cortex were observed (Rokni et al.,
2007). Apart from such continuously ongoing changes in synaptic connections and
tuning curves of neurons, massive changes in synaptic connectivity were found to
accompany functional reorganization of primary visual cortex after lesions, see e.g.
(Yamahachi et al., 2009).
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We therefore propose to view network plasticity as a process that continuously
moves high-dimensional network parameters θ within some low-dimensional
manifold that represents a compromise between overriding structural rules and
different ways of fitting the internal model to external inputs x. We propose
that ongoing stochastic fluctuations (not unlike Brownian motion) continuously
drive network parameters θ within such low-dimensional manifold. The primary
conceptual innovation is the departure from the traditional view of learning as
moving parameters to values θ∗ that represent optimal (or locally optimal) fits
to network inputs x. We show that our alternative view can be turned into a
precise learning model within the framework of probability theory. This new model
satisfies theoretical requirements for handling priors such as structural constraints
and rules in a principled manner, that have previously already been formulated
and explored in the context of artificial neural networks (MacKay, 1992; Bishop,
2006), as well as more recent challenges that arise from probabilistic brain models
(Pouget et al., 2013). The low-dimensional manifold of parameters θ that becomes
the new learning goal in our model can be characterized mathematically as the high
probability regions of the posterior distribution p∗(θ|x) of network parameters θ.
This posterior arises as product of a general prior pS (θ) for network parameters
(that enforces structural rules) with a term that describes the quality of the current
internal model (e.g. in a predictive coding or generative modeling framework: the
likelihood pN (x|θ) of inputs x for the current parameter values θ of the network
N ). More precisely, we propose that brain plasticity mechanisms are designed to
enable brain networks to sample from this posterior distribution p∗(θ|x) through
inherent stochastic features of their molecular implementation. In this way synaptic
and other plasticity processes are able to carry out probabilistic (or Bayesian)
inference through sampling from a posterior distribution that takes into account
both structural rules and fitting to external inputs. Hence this model provides
a solution to the challenge of (Pouget et al., 2013) to understand how posterior
distributions of weights can be represented and learned by networks of neurons in
the brain.

This new model proposes to reexamine rules for synaptic plasticity. Rather than
viewing trial-to-trial variability and ongoing fluctuations of synaptic parameters as
the result of a suboptimal implementation of an inherently deterministic plasticity
process, it proposes to model experimental data on synaptic plasticity by rules that
consist of three terms: the standard (typically deterministic) activity-dependent
(e.g., Hebbian or STDP) term that fits the model to external inputs, a second
term that enforces structural rules (priors), and a third term that provides the
stochastic driving force. This stochastic force enables network parameters to sample
from the posterior, i.e., to fluctuate between different possible solutions of the
learning task. The stochastic third term can be modeled by a standard formalism
(stochastic Wiener process) that had been developed to model Brownian motion.
The first two terms can be modeled as drift terms in a stochastic process. A
key insight is that one can easily relate details of the resulting more complex
rules for the dynamics of network parameters θ, which now become stochastic
differential equations, to specific features of the resulting posterior distribution

45



3 Network plasticity as Bayesian inference

p∗(θ|x) of parameter vectors θ from which the network samples. Thereby, this
theory provides a new framework for relating experimentally observed details of
local plasticity mechanisms (including their typically stochastic implementation on
the molecular scale) to functional consequences of network learning. For example,
one gets a theoretically founded framework for relating experimental data on spine
motility to experimentally observed network properties, such as sparse connectivity,
specific distributions of synaptic weights, and the capability to compensate against
perturbations (Marder, 2011).

We demonstrate the resulting new style of modeling network plasticity in three
examples. These examples demonstrate how previously mentioned functional
demands on network plasticity, such as incorporation of structural rules, automatic
avoidance of overfitting, and inherent and immediate compensation for network
perturbances, can be accomplished through stochastic local plasticity processes. We
focus here on common models for unsupervised learning in networks of neurons:
generative models. We first develop the general learning theory for this class
of models, and then describe applications to common non-spiking and spiking
generative network models. Both structural plasticity (see (May, 2011; Caroni et al.,
2012) for reviews) and synaptic plasticity (STDP) are integrated into the resulting
theory of network plasticity.

We present a new theoretical framework for analyzing and understanding local
plasticity mechanisms of networks of neurons in the brain as stochastic processes,
that generate specific distributions p(θ) of network parameters θ over which these
parameters fluctuate. This framework can be used to analyze and model many
types of learning processes. We illustrate it here for the case of unsupervised
learning, i.e., learning without a teacher or rewards. Obviously many learning
processes in biological organisms are of this nature, especially learning processes in
early sensory areas, and in other brain areas that have to provide and maintain on
their own an adequate level of functionality, even in the face of internal or external
perturbations.

A common framework for modeling unsupervised learning in networks of neurons
are generative models, which date back to the 19th century, when Helmholtz
proposed that perception could be understood as unconscious inference (Hatfield,
2002). Since then the hypothesis of the “generative brain” has been receiving
considerable attention, fueling interest in various aspects of the relation between
Bayesian inference and the brain (R. P. N. Rao et al., 2002; Doya et al., 2007; Pouget
et al., 2013). The basic assumption of the “Bayesian brain” theory is that the activity
z of neuronal networks in the brain can be viewed as an internal model for hidden
variables in the outside world that give rise to sensory experiences x (such as the
response x of auditory sensory neurons to spoken words that are guessed by an
internal model z). The internal model z is usually assumed to be represented by
the activity of neurons in the network, e.g., in terms of the firing rates of neurons,
or in terms of spatio-temporal spike patterns. A network N of stochastically firing
neuron is modeled in this framework by a probability distribution pN (x, z|θ) that
describes the probabilistic relationships between N input patterns x = x1, . . . ,xN
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3.2 Learning a posterior distribution through stochastic synaptic plasticity

and corresponding network responses z = z1, . . . ,zN , where θ denotes the vector
of network parameters that shape this distribution, e.g., via synaptic efficacies and
network connectivity. The marginal probability pN (x|θ) = ∑z pN (x, z|θ) of the
actually occurring inputs x = x1, . . . ,xN under the resulting internal model of
the neural network N with parameters θ can then be viewed as a measure for
the agreement between this internal model (which carries out “predictive coding”
(Winkler et al., 2012)) and its environment (which generates the inputs x).

The goal of network learning is usually described in this probabilistic genera-
tive framework as finding parameter values θ∗ that maximize this agreement, or
equivalently the likelihood of the inputs x (maximum likelihood learning):

θ∗ = arg max
θ

pN (x|θ). (3.1)

Locally optimal parameter solutions are usually determined by gradient ascent on
the data likelihood pN (x|θ).

3.2 Learning a posterior distribution through stochastic
synaptic plasticity

In contrast, we assume here that not only a neural networkN , but also a prior pS (θ)
for its parameters are given. This prior pS can encode both structural constraints
(such as sparse connectivity) and structural rules (e.g., a heavy-tailed distribution
of synaptic weights). Then the goal of network learning becomes:

learn the posterior distribution p∗(θ|x) defined (up to normalization)
by

pS (θ) · pN (x|θ) .
(3.2)

The patterns x = x1, . . . ,xN are assumed here to be regularly reoccurring network
inputs.

A key insight (see Fig. 3.1 for an illustration) is that stochastic local plasticity
rules for the parameters θi enable a network to achieve the learning goal (3.2): The
distribution of network parameters θ will converge after a while to the posterior
distribution p∗(θ) = p∗(θ|x) – and produce samples from it – if each network
parameter θi obeys the dynamics

dθi = b
(

∂

∂θi
log pS (θ) +

∂

∂θi
log pN (x|θ)

)
dt +

√
2b dWi , (3.3)

where the learning rate b > 0 controls the speed of the parameter dynamics.
Eq. (3.3) is a stochastic differential equation (see (Gardiner, 2004)), which differs
from commonly considered differential equations through the stochastic term
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3 Network plasticity as Bayesian inference

Fig. 3.1: Maximum likelihood (ML) learning vs. synaptic sampling. A,B,C: Illustration of ML learn-
ing for two parameters θ = (θ1, θ2) of a neural network N . A: 3D plot of an example likeli-
hood function. For a fixed set of inputs x it assigns a probability density (amplitude on z-axis)
to each parameter setting θ. B: This likelihood function is defined by some underlying neural
network N . C: Multiple trajectories along the gradient of the likelihood function in (A). The
parameters are initialized at random initial values (black dots) and then follow the gradient
to a local maximum (red triangles). D: Example for a prior that prefers small values for θ. E:
The posterior that results as product of the prior (D) and the likelihood (A). F: A single tra-
jectory of synaptic sampling from the posterior (E), starting at the black dot. The parameter
vector θ fluctuates between different solutions, the visited values cluster near local optima
(red triangles). G: Cartoon illustrating the dynamic forces (plasticity rule (3.3)) that enable→

48



3.2 Learning a posterior distribution through stochastic synaptic plasticity

→ the network to sample from the posterior distribution p∗(θ|x) in (E). Magnification of one synaptic
sampling step dθ of the trajectory in (F) (green). The three forces acting on θ: the deterministic drift
term (red) is directed to the next local maximum (red triangle), it consists of the first two terms in
Eq. (3.3); the stochastic diffusion term dW (black) has a random direction. See Sec. C.2 for figure
details.

dWi that describes infinitesimal stochastic increments and decrements of a Wiener
process Wi. A Wiener process is a standard model for Brownian motion in one
dimension (more precisely: the limit of a random walk with infinitesimal step size
and normally distributed incrementsW t

i −W s
i ∼ Normal(0, t− s) between times

t and s). Thus in an approximation of (3.3) for discrete time steps ∆t the term
dWi can be replaced by Gaussian noise with variance ∆t (see Eq. (3.7)). Note that
Eq. (3.3) does not have a single solution θi(t), but a continuum of stochastic sample
paths (see Fig. 3.1F for an example) that each describe one possible time course of
the parameter θi.

Rigorous mathematical results based on Fokker-Planck equations (see Appendix C
for details) allow us to infer from the stochastic local dynamics of the parameters
θi given by a stochastic differential equation of the form (3.3) the probability that
the parameter vector θ can be found after a while in a particular region of the
high-dimensional space in which it moves. The key result is that for the case
of the stochastic dynamics according to Eq. (3.3) this probability is equal to the
posterior p∗(θ|x) given by Eq. (3.2). Hence the stochastic dynamics (3.3) of network
parameters θi enables a network to achieve the learning goal (3.2): to learn the
posterior distribution p∗(θ|x). This posterior distribution is not represented in the
network through any explicit neural code, but through its stochastic dynamics,
as the unique stationary distribution of a Markov process from which it samples
continuously. In particular, if most of the mass of this posterior distribution is
concentrated on some low-dimensional manifold, the network parameters θ will
move most of the time within this low-dimensional manifold. Since this realization
of the posterior distribution p∗(θ|x) is achieved by sampling from it, we refer to
this model defined by Eq. (3.3) (in the case where the parameters θi represent
synaptic parameters) as synaptic sampling.

The stochastic term dWi in Eq. (3.3) provides a simple integrative model for a
multitude of biological and biochemical stochastic processes that effect the efficacy
of a synaptic connection. The mammalian postsynaptic density comprises over
1000 different types of proteins (Coba et al., 2009). Many of those proteins that
effect the amplitude of postsynaptic potentials and synaptic plasticity, for example
NMDA receptors, occur in small numbers, and are subject to Brownian motion
within the membrane (Ribrault et al., 2011). In addition, the turnover of important
scaffolding proteins in the postsynaptic density such as PSD-95, which clusters
glutamate receptors and is thought to have a substantial impact on synaptic efficacy,
is relatively fast, on the time-scale of hours to days, depending on developmental
state and environmental condition (Gray et al., 2006). Also the volume of spines at
dendrites, which is assumed to be directly related to synaptic efficacy (Engert and
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3 Network plasticity as Bayesian inference

Bonhoeffer, 1999; Ho et al., 2011) is reported to fluctuate continuously, even in the
absence of synaptic activity (Yasumatsu et al., 2008). Furthermore the stochastically
varying internal states of multiple interacting biochemical signaling pathways in
the postsynaptic neuron are likely to effect synaptic transmission and plasticity
(Bhalla and Iyengar, 1999).

The contribution of the stochastic term dWi in (3.3) can be scaled by a temperature
parameter

√
T, where T can be any positive number. The resulting stationary

distribution of θ is proportional to p∗(θ)
1
T , so that the dynamics of the stochastic

process can be described by the energy landscape log p∗(θ)
T . For high values of

T this energy landscape is flattened, i.e., the main modes of p∗(θ) become less
pronounced. For T → 0 the dynamics of θ approaches a deterministic process
and converges to the next local maximum of p∗(θ). Thus the learning process
approximates for low values of T maximum a posteriori (MAP) inference (Bishop,
2006). We propose that this temperature parameter T is regulated in biological
networks of neurons dependent on the developmental state, environment, and
behavior of an organism. One can also accommodate a modulation of the dynamics
of each individual parameter θi by a learning rate b(θi) that depends on its current
value (see Appendix C).

Online synaptic sampling

For online learning one assumes that the likelihood pN (x|θ) = pN (x1, . . . ,xN |θ)
of the network inputs can be factorized:

pN (x1, . . . ,xN |θ) =
N

∏
n=1

pN (xn|θ), (3.4)

i.e., each network input xn can be explained as being drawn individually from
pN (xn|θ), independently from other inputs.

The weight update rule (3.3) depends on all inputs x = x1, . . . ,xN , hence synapses
have to keep track of the whole set of all network inputs for the exact dynamics
(batch learning). In an online scenario, we assume that only the current network
input xn is available for synaptic sampling. One then arrives at the following
online-approximation to (3.3)

dθi = b
(

∂

∂θi
log pS (θ) + N

∂

∂θi
log pN (xn|θ)

)
dt +

√
2b dWi . (3.5)

Note the additional factor N in the rule. It compensates for the N-fold summation
of the first and last term in (3.5) when one moves through all N inputs xn. Although
convergence to the correct posterior distribution cannot be guaranteed theoretically
for this online rule, we show in Appendix C that the rule is a reasonable approxi-
mation to the batch-rule (3.3). Furthermore, all subsequent simulations are based
on this online rule, which demonstrates the viability of this approximation.
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3.3 Synaptic sampling improves the generalization capability of a neural network

Relationship to maximum likelihood learning

Typically, synaptic plasticity in generative network models is modeled as maximum
likelihood learning. Time is often discretized into small discrete time steps ∆t.
For gradient-based approaches the parameter change ∆θML

i is then given by the
gradient of the log likelihood multiplied with some learning rate η:

∆θML
i = η

∂

∂θi
log pN (xn|θ) . (3.6)

To compare this maximum likelihood update with synaptic sampling, we consider
a version of the parameter dynamics (3.5) for discrete time (see Appendix C for a
derivation):

∆θi = η

(
∂

∂θi
log pS (θ) + N

∂

∂θi
log pN (xn|θ)

)
+
√

2η νt
i , (3.7)

where the learning rate η is given by η = b ∆t and νt
i denotes Gaussian noise with

zero mean and variance 1, drawn independently for each parameter θi and each
update time t. We see that the maximum likelihood update (3.6) becomes one term
in this online version of synaptic sampling. Equation (3.7) is a special case of the
online Langevin sampler that was introduced in (Welling and Teh, 2011).

The first term ∂
∂θi

log pS (θ) in (3.7) arises from the prior pS (θ), and has apparently
not been considered in previous rules for synaptic plasticity. An additional novel
component is the Gaussian noise term νt

i (see also Fig. 3.1G). It arises because the
accumulated impact of the Wiener process Wi over a time interval of length ∆t
is distributed according to a normal distribution with variance ∆t. In contrast to
traditional maximum likelihood optimization based on additive noise for escaping
local optima, this noise term is not scaled down when learning approaches a local
optimum. This ongoing noise is essential for enabling the network to sample from
the posterior distribution p∗(θ) via continuously ongoing synaptic plasticity (see
Fig. 3.1F).

3.3 Synaptic sampling improves the generalization
capability of a neural network

The previously described theory for learning a posterior distribution over pa-
rameters θ can be applied to all neural network models N where the derivative

∂
∂θi

log pN (xn|θ) in (3.5) can be efficiently estimated. Since this term also has to be
estimated for maximum likelihood learning (3.6), synaptic sampling can basically
be applied to all neuron and network models that are amenable to maximum
likelihood learning. We illustrate salient new features that result from synaptic
sampling (i.e., plasticity rules (3.5) or (3.7)) for some of these models. We begin
with the Boltzmann machine (Ackley et al., 1985), one of the oldest generative

51



3 Network plasticity as Bayesian inference

Fig. 3.2: Priors for synaptic weights improve generalization capability. A: The training set, consisting of five
samples of a handwritten 1. Below a cartoon illustrating the network architecture of the restricted Boltzmann ma-
chine (RBM), composed of a layer of 784 visible neurons x and a layer of 9 hidden neurons z. B: Examples from
the test set. It contains many different styles of writing that are not part of the training set. C: Evolution of 50 ran-
domly selected synaptic weights throughout learning (on the training set). The weight histogram (right) shows the
distribution of synaptic weights at the end of learning. 80 histogram bins were equally spaced between -4 and 4. D:
Performance of the network in terms of log likelihood on the training set (blue) and on the test set (red) throughout
learning. Mean values over 100 trial runs are shown, shaded area indicates std. The performance on the test set
initially increases but degrades for prolonged learning. E: Evolution of 50 weights for the same network but with a
bimodal prior. The prior pS (w) is indicated by the blue curve. Most synaptic weights settle in the mode around 0, but
a few larger weights also emerge and stabilize in the larger mode. Weight histogram (green) as in (C). F: The log
likelihood on the test set maintains a constant high value throughout the whole learning session, compare to (D).

neural network models. It is currently still extensively investigated in the context
of deep learning (G. Hinton et al., 2006; Salakhutdinov and G. Hinton, 2012). We
demonstrate in Fig. 3.2D,F the improved generalization capability of this model
for the learning approach (3.2) (learning of the posterior), compared with maxi-
mum likelihood learning (approach (3.1)), which had been theoretically predicted
by (MacKay, 1992) and (Bishop, 2006). But this model for learning the posterior
(approach (3.2)) in Boltzmann machines is now based on local plasticity rules. Note
that the Boltzmann machine with synaptic sampling samples simultaneously on
two different time scales: In addition to sampling for given parameters θ from
likely network states in the usual manner, it now samples simultaneously on a
slower time scale according to (3.7) from the posterior of network parameters θ.

A Boltzmann machine employs extremely simple non-spiking neuron models
with binary outputs. Neuron yi outputs 1 with probability σ(∑j wijyj + bi), else 0,
where σ is the logistic sigmoid σ(u) = 1

1+e−u , with synaptic weights wij and bias
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3.3 Synaptic sampling improves the generalization capability of a neural network

parameters bi. Synaptic connections in a Boltzmann machine are bidirectional, with
symmetric weights (wij = wji). The parameters θ for the Boltzmann machine consist
of all weights wij and biases bi in the network. For the special case of a restricted
Boltzmann machine (RBM), maximum likelihood learning of these parameters
can be done efficiently (G. E. Hinton, 2002), and therefore RBM’s are typically
used for deep learning. An RBM has a layered structure with one layer of visible
neurons x and a second layer of hidden neurons z. Synaptic connections are formed
only between neurons on different layers (Fig. 3.2A). The maximum likelihood
gradients ∆wML

ij = ∂
∂wij

log pN (x|θ) and ∆bML
i = ∂

∂bi
log pN (x|θ) can be efficiently

approximated for this model, for example

∂

∂wij
log pN (xn|θ) ≈ zn

i xn
j − ẑn

i x̂n
j , (3.8)

where xn
j is the output of input neuron j while input xn is presented, and x̂n

j its
output during a subsequent phase of spontaneous activity (“reconstruction phase”);
analogously for the hidden neuron zj (see Appendix C).

We integrated this maximum likelihood estimate (3.8) into the synaptic sampling
rule (3.7) in order to test whether a suitable prior pS (w) for the weights improves
the generalization capability of the network. The network received as input just five
samples x1, . . . ,x5 of a handwritten Arabic number 1 from the MNIST dataset (the
training set, shown in Fig. 3.2A) that were repeatedly presented. Each pixel of the
digit images was represented by one neuron in the visible layer (which consisted of
784 neurons). We selected a second set of 100 samples of the handwritten digit 1
from the MNIST dataset as test set (Fig. 3.2B). These samples include completely
different styles of writing that were not present in the training set. After allowing
the network to learn the five input samples from Fig. 3.2A for various numbers
of update steps (horizontal axis of Fig. 3.2D,F), we evaluated the learned internal
model of this network N for the digit 1 by measuring the average log-likelihood
log pN (x|θ) for the test data. The result is indicated in Fig. 3.2D,F for the training
samples by the blue curves, and for the new test examples, that were never shown
while synaptic plasticity was active, by the red curves.

First, a uniform prior over the synaptic weights was used (Fig. 3.2C), which
corresponds to the common maximum likelihood learning paradigm (3.8). The
performance on the test set (shown on vertical axis) initially increases but degrades
for prolonged exposure to the training set (length of that prior exposure shown on
horizontal axis). This effect is known as overfitting (Bishop, 2006; MacKay, 1992). It
can be reduced by choosing a suitable prior pS (θ) in the synaptic sampling rule
(3.7). The choice for the prior distribution is best if it matches the statistics of the
training samples (MacKay, 1992), which has in this case two modes (resulting from
black and white pixels). The presence of this prior in the learning rule maintains
good generalization capability for test samples even after prolonged exposure to
the training set (red curve in Fig. 3.2F).

The improved generalization capability of the network is a result of the prior
distribution. It is well known that the prior in Bayesian inference allows to effectively
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3 Network plasticity as Bayesian inference

prevent overfitting by making solutions that use fewer or smaller parameters more
likely. Similar results would therefore emerge in any other implementation of
Bayesian learning in neural networks. A thorough discussion on this topic which is
known as Bayesian regularization can be found in (MacKay, 1992; Bishop, 2006).

As a consequence, the choice of the prior distribution can have a significant impact
on the learning result. In Appendix C we compared a set of different priors and
demonstrate this effect more systematically. There it can also be seen that if the
choice of the prior is bad, the learning performance can even get worse than in the
case without a prior.

3.4 Spine motility as synaptic sampling

In the following sections we apply our synaptic sampling framework to networks
of spiking neurons and biological models for network plasticity. The number and
volume of spines for a synaptic connection is thought to be directly related to its
synaptic weight (Loewenstein et al., 2011). Experimental studies have provided
a wealth of information about the stochastic dynamics of dendritic spines (see
e.g. (Trachtenberg et al., 2002; Zuo et al., 2005; A. J. Holtmaat et al., 2005; A.
Holtmaat and Svoboda, 2009; Loewenstein et al., 2011; Loewenstein et al., 2015)).
They demonstrate that the volume of a substantial fraction of dendritic spines varies
continuously over time, and that all the time new spines and synaptic connections
are formed and existing ones are eliminated. We show that these experimental data
on spine motility can be understood as special cases of synaptic sampling. The
synaptic sampling framework is however very general, and many different models
for spine motility can be derived from it as special cases. We demonstrate this here
for one simple model, induced by the following assumptions:

1. We restrict ourselves to plasticity of excitatory synapses, although the frame-
work is general enough to apply to inhibitory synapses as well.

2. In accordance with experimental studies (Loewenstein et al., 2011), we require
that spine sizes have a multiplicative dynamics, i.e., that the amount of change
within some given time window is proportional to the current size of the
spine.

3. We assume here for simplicity that a synaptic connection between two neurons
is realized by a single spine and that there is a single parameter θi for each
potential synaptic connection i.

The last requirement can be met by encoding the state of the synapse in an abstract
form, that represents synaptic connectivity and synaptic plasticity in a single
parameter θi. We define that negative values of θi represent a current disconnection
and positive values represent a functional synaptic connection. The distance of the
current value of θi from zero indicates how likely it is that the synapse will soon
reconnect (for negative values) or withdraw (for positive values), see Fig. 3.3A. In
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3.4 Spine motility as synaptic sampling

addition the synaptic parameter θi encodes for positive values the synaptic efficacy
wi, i.e., the resulting EPSP amplitudes, by a simple mapping wi = f (θi).

A large class of mapping functions f is supported by our theory (see Sec. C.4 for
details). The second assumption which requires multiplicative synaptic dynamics
supports an exponential function f in our model, in accordance with previous
models of spine motility (Loewenstein et al., 2011). Thus, we assume in the following
that the efficacy wi of synapse i is given by

wi = exp(θi − θ0) , (3.9)

see Fig. 3.3C. Note that for a large enough offset θ0, negative parameter values θi
(which model a non-functional synaptic connection) are automatically mapped onto
a tiny region close to zero in the w-space, so that retracted spines have essentially
zero synaptic efficacy. The general rule for online synaptic sampling (3.5) for the
exponential mapping (3.9) can be written as (see Sec. C.4)

dθi = b
(

∂

∂θi
log pS (θ) + Nwi

∂

∂wi
log pN (xn|w)

)
dt +

√
2b dWi . (3.10)

In equation (3.10) the multiplicative synaptic dynamics becomes explicit. The gradi-
ent ∂

∂wi
log pN (xn|w), i.e., the activity-dependent contribution to synaptic plasticity,

is weighted by wi. Hence, for negative values of θi (non-functional synaptic connec-
tion), the activities of the pre- and post-synaptic neurons have negligible impact
on the dynamics of the synapse. Assuming a large enough θ0, retracted synapses
therefore evolve solely according to the prior pS (θ) and the random fluctuations
dWi. For large values of θi the opposite is the case. The influence of the prior

∂
∂θi

log pS (θ) and the Wiener process dWi become negligible, and the dynamics is
dominated by the activity-dependent likelihood term. Large synapses can therefore
become quite stable if the presynaptic activity is strong and reliable (see Fig. 3.3B).
Through the use of parameters θ which determine both synaptic connectivity and
synaptic efficacies, the synaptic sampling framework provides a unified model
for structural and synaptic plasticity. The prior distribution can have significant
impact on the spine motility, encouraging for example sparser or denser synap-
tic connectivity. If the activity-dependent second term in Eq. (3.10), that tries to
maximize the likelihood, is small (e.g., because θi is small or parameters are near a
mode of the likelihood) then Eq. (3.10) implements an Ornstein Uhlenbeck process.
This prediction of our model is consistent with a previous analysis which showed
that an Ornstein Uhlenbeck process is a viable model for synaptic spine motility
(Loewenstein et al., 2011).

The weight dynamics that emerges through the stochastic process (3.10) is illus-
trated in the right panel of Fig. 3.3D. A Gaussian parameter prior pS (θi) results in
a log-normal prior pS (wi) in a corresponding stochastic differential equation for
synaptic efficacies wi (see Sec. C.4 for details).

The last term (noise term) in our synaptic sampling rule (3.10) predicts that elimi-
nated connections spontaneously regrow at irregular intervals. In this way they can
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Fig. 3.3: Integration of spine motility into the synaptic sampling model. A: Illustration of the parametrization
of spine motility. Values θ > 0 indicate a functional synaptic connection. B: A Gaussian prior pS (θ), and a few
stochastic sample trajectories of θ according to the synaptic sampling rule (3.10). Negative values of θ (gray area)
are interpreted as non-functional connections. Some stable synaptic connections emerge (traces in the upper half),
whereas other synaptic connections come and go (traces in lower half). All traces, as well as survival statistics
shown in (E,F), are taken from the network simulation described in detail in the next section and Appendix C. C:
The exponential function maps synapse parameters θ to synaptic efficacies w. Negative values of θ, corresponding
to (retracted) spines are mapped to a tiny region close to zero in the w-space. D: The Gaussian prior in the θ-space
translates to a log-normal distribution in the w-space. The traces from (B) are shown in the right panel transformed
into the w-space. Only persistent synaptic connections contribute substantial synaptic efficacies. E,F: The emergent
survival statistics of newly formed synaptic connections, (i.e., formed during the preceding 12 hours) evaluated at
three different start times throughout learning (blue traces, axes are aligned with start times of the analyses). The
survival statistics exhibit in our synaptic sampling model a power-law behavior (red curves, see Sec. C.5). The time-
scale (and exponent of the power-law) depends on the learning rate b in equation (3.10), and can assume any value
in our quite general model (shown is b = 10−4 in (E) and b = 10−6 in (F)).
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test whether they can contribute to explaining the input. If they cannot contribute,
they disappear again. The resulting power-law behavior of the survival of newly
formed synaptic connections (Fig. 3.3E,F) matches corresponding new experimental
data (Loewenstein et al., 2015) and is qualitatively similar to earlier experimental
results which revealed a quick decay of transient dendritic spines (Yang et al.,
2009; Zuo et al., 2005; A. J. Holtmaat et al., 2005). Functional consequences of this
structural plasticity are explored in the following sections.

3.5 Fast adaptation of synaptic connections and weights
to a changing input statistics

We will explore in this and the next section implications of the synaptic sampling
rule (3.10) for network plasticity in simple generative spike-based neural network
models.

The main types of spike-based generative neural network models that have been
proposed are (Brea et al., 2013; Boerlin et al., 2013; Nessler et al., 2013; Habenschuss
et al., 2013). We focus here on the type of models introduced by (Nessler et al.,
2013; Habenschuss et al., 2013; Kappel et al., 2014), since these models allow an
easy estimation of the likelihood gradient (the second term in (3.10)) and can
relate this likelihood term to STDP. Since these spike-based neural network models
have non-symmetric synaptic connections (that model chemical synapses between
pyramidal cells in the cortex), they do not allow to regenerate inputs x from internal
responses z by running the network backwards (like in a Boltzmann machine).
Rather they are implicit generative models, where synaptic weights from inputs to
hidden neurons are interpreted as implicit models for presynaptic activity, given
that the postsynaptic neuron fires.

We focus in this section on a simple model for an ubiquitous cortical microcircuit
motif: an ensemble of pyramidal cells with lateral inhibition, often referred to as
Winner-Take-All (WTA) circuit. It has been proposed that this microcircuit motif
provides for computational analysis an important bridge between single neurons
and larger brain systems (Carandini, 2012). We employ a simple form of divisive
normalization (as proposed by (Carandini, 2012); see Appendix C) to model lateral
inhibition, thereby arriving at a theoretically tractable version of this microcircuit
motif that allows us to compute the maximum likelihood term (second term in
(3.10)) in the synaptic sampling rule. We assumed Gaussian prior distributions
pS (θi), with mean µ and variance σ2 over the synaptic parameters θi (as in Fig. 3.3B).
Then the synaptic sampling rule (3.10) yields for this model

dθi = b
(

1
σ2 (µ− θi) + Nwi S(t) (xi(t)− α ewi)

)
dt +

√
2b dWi , (3.11)

where S(t) denotes the spike train of the postsynaptic neuron and xi(t) denotes
the weight-normalized value of the sum of EPSPs from presynaptic neuron i at
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3 Network plasticity as Bayesian inference

Fig. 3.4: Adaptation of synaptic connections to changing input statistics through synaptic sampling. A:
Illustration of the network architecture. A WTA circuit consisting of ten neurons z receives afferent stimuli from input
neurons x (few connections shown for a single neuron in z). B: The STDP learning curve that arises from the
likelihood term in equation (3.11). C: Measured STDP curve that results from a related STDP rule for a moderate
pairing frequency of 20 Hz, as in (Sjöström et al., 2001). (Figure adapted from (Nessler et al., 2013)). D,E: Each
sensory experience was modeled by 200 ms long spiking activity of 1000 input neurons, that covered some 3D data
space with Gaussian tuning curves (the results do not depend on the finite dimension of the data space, we chose 3
dimension for easier visualization). Insets show the firing activity of randomly chosen 50 of the 1000 input neurons
for the sample data points marked by green circles. Objects in the environment were represented by Gaussian
clusters (ellipses) in this finite dimensional data space. F: During learning phase 1 (3 hours) only samples from SE
were presented to the network, in phase 2 (which lasted 1 hour) samples from EE. Shortly after the transition from
SE to EE the number of newly formed synaptic connections significantly increases (compare to Fig. 1h in (Yang et al.,
2009)). G: Comparison of the survival of synapses for a network with persistent exposure to EE (EE-EE condition)
and a network that was returned to SE (EE-SE condition). Newly formed synaptic connections are transient and
quickly decay after formation. A significantly larger fraction of synapses persists if the network continuously receives
EE inputs (compare to Fig. 2c in (Yang et al., 2009)). The dots show the means of measurements taken every 30
minutes, the lines represent two-term exponential fits (r2 = 1). The results in (F, G) show means over 5 trial runs.
Error bars indicate STD.
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3.5 Fast adaptation of synaptic connections and weights to a changing input statistics

time t (i.e., the summed EPSPs that would arise for weight wi = 1; see Appendix C
for details). α is a parameter that scales the impact of synaptic plasticity depend-
ing on the current synaptic efficacy. The resulting activity-dependent component
S(t)(xi(t)− α ewi) of the likelihood term is a simplified version of the standard
STDP learning rule (Fig. 3.4B, C), like in (Nessler et al., 2013; Klampfl and Maass,
2013). Synaptic plasticity (STDP) for connections from input neurons to pyrami-
dal cells in the WTA circuit can be understood from the generative aspect as
fitting a mixture of Poisson (or other exponential family) distributions to high-
dimensional spike inputs (Nessler et al., 2013; Habenschuss et al., 2013). The factor
wi = exp(θi − θ0) had been discussed in (Nessler et al., 2013), because it is com-
patible with the underlying generative model, but provides in addition a better
fit to the experimental data of (Sjöström et al., 2001). We examine in this section
emergent properties of network plasticity in this simple spike-based neural network
under the synaptic sampling rule (3.11).

It is well documented that cortical dendritic spines are transient and that spine
turnover is enhanced by novel experience and training (Yang et al., 2009; Hofer
et al., 2009; Kuhlman et al., 2014). For example, enhanced spine formation as a con-
sequence of sensory enrichment was found in mouse somatosensory cortex (Yang
et al., 2009). In this study the animals were exposed to a new sensory environment
by adding additional objects to their home cage. This sensory enrichment resulted
in a rapid increase in the formation of new spines. If the exposure to the enriched
environment was only brief, the newly formed spines quickly decayed.

We wondered whether these experimentally observed effects also emerge in our
synaptic sampling model. As in (Yang et al., 2009) we exposed the network to
different sensory environments to study these effects. Sensory experiences typically
involve several processing steps and interactions between multiple brain systems,
and precise knowledge about their cortical representation is still missing. Therefore
we used here a simple symbolic representation of the sensory environment. We
represented each sensory experience by a point in some finite dimensional space
which is covered by the tuning curves of a large number of input neurons. Their
spike output was then communicated to the WTA circuit in the form of 200 ms-long
spike patterns of the 1000 input neurons (see Fig. 3.4D,E and Appendix C for
details). Independently drawn sensory experiences were presented sequentially
and synaptic sampling according to (3.11) was applied continuously to all synapses
from the 1000 input neurons to the ten neurons in the WTA circuit.

Each environment was represented as a mixture of Gaussians (clusters) of points
in the finite-dimensional sensory space. Each cluster could represent for example
different sensory experiences with some object in the environment. Consequently
we modelled an enriched environment (EE) simply by adding a few new clusters
to the standard environment (SE). In phase 1 the network was exposed to an
environment with 3 clusters (standard environment (SE), see Fig. 3.4D). After 3

hours the network input was enriched by adding 4 additional clusters (enriched
environment (EE), see Fig. 3.4E). We found that exposure to EE significantly
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3 Network plasticity as Bayesian inference

Fig. 3.5: Inherent compensation for network perturbations. A: A spike-based generative neural network (illus-
trated at the bottom) received simultaneously spoken and handwritten representations of the same digit (and for
tests only spoken digits, see (B)). Stimulus examples for spoken and written digit 2 are shown at the top. These
inputs are presented to the network through corresponding firing rates of “auditory” (xA) and “visual” (xV) input
neurons. Two populations zA and zV of 40 neurons, each consisting of four WTA circuits like in Fig. 3.4, receive
exclusively auditory or visual inputs. In addition, arbitrary lateral excitatory connections between these “hidden” neu-
rons are allowed. B: Assemblies of hidden neurons emerge that encode the presented digit (1 or 2). Top panel
shows PETH of all neurons from zV for stimulus 1 (left) and 2 (right) after learning, when only an auditory stimulus
is presented. Neurons are sorted by the time of their highest average firing. Although only auditory stimuli are pre-
sented, it is possible to reconstruct an internally generated “guessed” visual stimulus that represents the same digit
(bottom). C: First three PCA components of the temporal evolution of a subset θ′ of network parameters θ. Two →
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3.6 Inherent network compensation capability through synaptic sampling

→ major lesions were applied to the network. In the first lesion (transition to red) all neurons that
significantly encode stimulus 2 were removed from the population zV . In the second lesion (transition
to green) all currently existing synaptic connections between neuron in zA and zV were removed,
and not allowed to regrow. After each lesion the network parameters θ′ migrate to a new manifold. D:
The generative reconstruction performance of the “visual” neurons zV for the test case when only an
auditory stimulus is presented was tracked throughout the whole learning session, including lesions
1 and 2 (bottom panel). After each lesion the performance strongly degrades, but reliably recovers.
Insets show at the top the synaptic weights of neurons in zV at 4 time points t1, . . . , t4, projected back
into the input space like in Fig. 3.4E. Network diagrams in the middle show ongoing network rewiring
for synaptic connections between the hidden neurons zA and zV . Each arrow indicates a functional
connection between two neurons. To keep the figure uncluttered only subsets of synapses are shown
(1% randomly drawn from the total set of possible lateral connections). Connections at time t2 that
were already functional at time t1 are plotted in gray. The neuron whose parameter vector θ′ is tracked
in (C) is highlighted in red. The text under the network diagrams shows the total number of functional
connections between hidden neurons at the time point.

increased the rate of new synapse formation as in the experimental result of (Yang
et al., 2009) (Fig. 3.4F).

Most of the newly formed synapses decayed within a few hours after return
to the standard environment (EE-SE situation, see Fig. 3.4G). In this case only
about about 8% become stable. A fraction of about 30% becomes stable when the
enriched environment was maintained (EE-EE situation). These results qualitatively
reproduce the findings from mouse barrel cortex (compare Figures 1h and 2c in
(Yang et al., 2009)). Note that we used here relatively large update rates b to keep
simulation times in a feasible range, which results in spine dynamics on the time
scale of hours instead of days as in biological synapses (Yang et al., 2009).

3.6 Inherent network compensation capability through
synaptic sampling

Numerous experimental data show that the same function of a neural circuit is
achieved in different individuals with drastically different parameters, and also that
a single organism can compensate for disturbances by moving to a new parameter
vector (Tang et al., 2010; Grashow et al., 2010; Marder and Taylor, 2011; Marder, 2011;
Prinz et al., 2004). These results suggest that there exists some low-dimensional
submanifold of values for the high-dimensional parameter vector θ of a biological
neural network that all provide stable network function (degeneracy). We propose
that the previously discussed posterior distribution of network parameters θ pro-
vides a mathematical model for such low-dimensional submanifold. Furthermore
we propose that the underlying continuous stochastic fluctuation dW provides a
driving force that automatically moves network parameters (with high probability)
to a functionally more attractive regime when the current solution performs worse
because of perturbations, such as lesions of neurons or network connections. This
compensation capability is not an add-on to the synaptic sampling model, but an
inherent feature of its organization.
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3 Network plasticity as Bayesian inference

We demonstrate this inherent compensation capability in Fig. 3.5 for a generative
spiking neural network with synaptic parameters θ that regulate simultaneously
structural plasticity and synaptic plasticity (dynamics of weights) as in Fig. 3.3
and 3.4. The prior pS (θ) for these parameters is here the same as in the preceding
section (see Fig. 3.4G on the left). But in contrast to the previous section we consider
here a network that allows us to study the self-organization of connections between
hidden neurons. The network consists of eight WTA-circuits, but in contrast to
Fig. 3.4 we allow here arbitrary excitatory synaptic connections between neurons
within the same or different ones of these WTA circuits. This network models multi-
modal sensory integration and association in a simplified manner. Two populations
of “auditory” and “visual” input neurons xA and xV project onto corresponding
populations zA and zV of hidden neurons (each consisting of one half of the WTA
circuits, see lower panel of Fig. 3.5A). Only a fraction of the potential synaptic
connections became functional (see Fig. S2A in Sec. C.7) through the synaptic
sampling rule (3.11) that integrates structural and synaptic plasticity. Synaptic
weights and connections were not forced to be symmetric or bidirectional.

As in the previous demonstrations we do not use external rewards or teacher-inputs
for guiding network plasticity. Rather, we allow the model to discover on its own
regularities in its network inputs. The “auditory" hidden neurons zA on the left in
Fig. 3.5A received temporal spike patterns from the auditory input neurons xA that
were generated from spoken utterings of the digit 1 and 2 (which lasted between
320 ms and 520 ms). Simultaneously we presented to the “visual" hidden neurons
zV on the right for the same time period a (symbolic) visual representation of the
same digit (randomly drawn from the MNIST database like in Fig. 3.2).

The emergent associations between the two populations zA and zV of hidden
neurons were tested by presenting auditory input only and observing the activity
of the “visual” hidden neurons zV . Fig. 3.5B shows the emergent activity of the
neurons zV when only the auditory stimulus was presented (visual input neurons
xV remained silent). The generative aspect of the network can be demonstrated
by reconstructing for this case the visual stimulus from the activity of the “visual”
hidden neurons zV . Fig. 3.5B shows reconstructed visual stimuli from a single run
where only the auditory stimuli xA for digits 1 (left) and 2 (right) were presented to
the network. Digit images were reconstructed by multiplying the synaptic efficacies
of synapses from neurons in xV to neurons in zV (which did not receive any input
from xV in this experiment) with the instantaneous firing rates of the corresponding
zV-neurons.

Interestingly we found that synaptic sampling significantly outperforms the pure
deterministic STDP updates introduced in (Kappel et al., 2014), which do not
impose a prior distribution over synaptic parameters. The structural prior that
favors solutions with only a small number of large synaptic weights seems to
be beneficial for this task as it allows to learn few but pronounced associations
between the neurons (see Sec. C.7).

In order to investigate the inherent compensation capability of synaptic sampling,
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we applied two lesions to the network within a learning session of 8 hours. In the
first lesion all neurons (16 out of 40) that became tuned for digit 2 in the preceding
learning (see Fig. 3.5D and Sec. C.7) were removed. The lesion significantly impaired
the performance of the network in stimulus reconstruction, but it was able to recover
from the lesion after about one hour of continuing network plasticity according to
Eq. (3.11) (Fig. 3.5D). The reconstruction performance of the network was measured
here continuously through the capability of a linear readout neuron from the visual
ensemble to classify the current auditory stimulus (1 or 2).

In the second lesion all synaptic connections between hidden neurons that were
present after recovery from the first lesion were removed and not allowed to regrow
(2936 synapses in total). After about two hours of continuing synaptic sampling 294

new synaptic connections between hidden neurons emerged. These made it again
possible to infer the auditory stimulus from the activity of the remaining 24 hidden
neurons in the population zV (in the absence of any input from the population xV),
at about 75% of the performance level before the second lesion (see bottom panel
of Fig. 3.5D).

In order to illustrate the ongoing network reconfiguration we track in Fig. 3.5C
the temporal evolution of a subset θ′ of network parameters (35 parameters θi
associated with the potential synaptic connections of the neuron marked in red in
the middle of Fig. 3.5D from or to other hidden neurons, excluding those that were
removed at lesion 2 and not allowed to regrow). The first three PCA components
of this 35-dimensional parameter vector are shown. The vector θ′ fluctuates first
within one region of the parameter space while probing different solutions to
the learning problem, e.g., high probability regions of the posterior distribution
(blue trace). Each lesions induced a fast switch to a different region (red,green),
accompanied by a recovery of the visual stimulus reconstruction performance (see
Fig. 3.5D).

The random fluctuations were found to be an integral part of the fast recovery form
lesions. In Sec. C.7 we analyzed the impact of the diffusion term in (3.11) on the
learning speed. We found that it acts as a temperature parameter that allows to
scale the speed of exploration in the parameter space (see also Appendix C for a
detailed derivation).

Altogether this experiment showed that continuously ongoing synaptic sampling
maintains stable network function also in a more complex network architecture.
Another consequence of synaptic sampling was that the neural codes (assembly
sequences) that emerged for the two digit classes within the hidden neurons zA
and zV (see Fig. S2B in Sec. C.7) drifted over larger periods of time (also in the
absence of lesions), similarly as observed for place cells in (Y. Ziv et al., 2013) and
for tuning curves of motor cortex neurons in (Rokni et al., 2007).
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3.7 Discussion

We have shown that stochasticity may provide an important function for network
plasticity. It enables networks to sample parameters from some low-dimensional
manifold in a high-dimensional parameter space that represents attractive com-
binations of structural constraints and rules (such as sparse connectivity and
heavy-tailed distributions of synaptic weights) and a good fit to empirical evidence
(e.g., sensory inputs). We have developed a normative model for this new learning
perspective, where the traditional gold standard of maximum likelihood optimiza-
tion is replaced by theoretically optimal sampling from a posterior distribution
of parameter settings, where regions of high probability provide a theoretically
optimal model for the low-dimensional manifold from which parameter settings
should be sampled. The postulate that networks should learn such posterior distri-
butions of parameters, rather than maximum likelihood values, had been proposed
already for quite some while for artificial neural networks (MacKay, 1992; Bishop,
2006), since such organization of learning promises better generalization capability
to new examples. The open problem how such posterior distributions could be
learned by networks of neurons in the brain, in a way that is consistent with exper-
imental data, has been highlighted in (Pouget et al., 2013) as a key challenge for
computational neuroscience. We have presented here such a model, whose primary
innovation is to view experimentally found trial-to-trial variability and ongoing
fluctuations of parameters such as spine volumes no longer as a nuisance, but as a
functionally important component of the organization of network learning, since it
enables sampling from a distribution of network configurations. The mathematical
framework that we have presented provides a normative model for evaluating such
empirically found stochastic dynamics of network parameters, and for relating
specific properties of this “noise” to functional aspects of network learning.

Reports of trial-to-trial variability and ongoing fluctuations of parameters related to
synaptic weights are ubiquitous in experimental studies of synaptic plasticity and
its molecular implementation, from fluctuations of proteins such as PSD-95 (Gray
et al., 2006) in the postsynaptic density that are thought to be related to synaptic
strength, over intrinsic fluctuations in spine volumes and synaptic connections
(Yasumatsu et al., 2008; A. J. Holtmaat et al., 2005; Stettler et al., 2006; Yamahachi
et al., 2009; A. Holtmaat and Svoboda, 2009; Loewenstein et al., 2011; Loewenstein
et al., 2015), to surprising shifts of neural codes on a larger time scale (Rokni
et al., 2007; Y. Ziv et al., 2013). These fluctuations may have numerous causes,
from noise in the external environment over noise and fluctuations of internal
states in sensory neurons and brain networks, to noise in the pre- and postsynaptic
molecular machinery that implements changes in synaptic efficacies on various
time scales (Ribrault et al., 2011). One might even hypothesize, that it would be
very hard for this molecular machinery to implement synaptic weights that remain
constant in the absence of learning, and deterministic rules for synaptic plasticity,
because the half-life of many key proteins that are involved is relatively short, and
receptors and other membrane-bound proteins are subject to Brownian motion.
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In this context the finding that neural codes shift over time (Rokni et al., 2007;
Y. Ziv et al., 2013) appears to be less surprising. In fact, our model predicts (see
Appendix C) that also stereotypical assembly sequences that emerge in our model
through learning, similarly as in the experimental data of (C. D. Harvey et al., 2012),
are subject to such shifts on a larger time scale. However it should be pointed out
that our model is agnostic with regard to the time scale on which these changes
occur, since this time scale can be defined arbitrarily through the parameter b
(learning rate) in Eq. (3.3).

The model that we have presented makes no assumptions about the actual sources
of noise. It only assumes that salient network parameters are subject to stochastic
processes, that are qualitatively similar to those which have been studied and
modeled in the context of Brownian motion of particles as random walk on the
microscale. One can scale the influence of these stochastic forces in the model by a
parameter T that regulates the “temperature” of the stochastic dynamics of network
parameters θ. This parameter T regulates the tradeoff between trying out different
regions (or modes) of the posterior distribution of θ (exploration), and staying for
longer time periods in a high probability region of the posterior (exploitation). We
conjecture that this parameter T varies in the brain between different brain regions,
and possibly also between different types of synaptic connections within a cortical
column. For example, spine turnover is increased for large values of T, and network
parameters θ can move faster to a new peak in the posterior distribution, thereby
supporting faster learning (and faster forgetting). Since spine turnover is reported
to be higher in the hippocampus than in the cortex (Attardo et al., 2015), such higher
value of T could for example be more adequate for modeling network plasticity in
the hippocampus. This model would then also support the hypothesis of (Attardo
et al., 2015) that memories are more transient in the hippocampus. In addition T
is likely to be regulated on a larger time scale by developmental processes, and
on a shorter time scale by neuromodulators and attentional control. The view that
synaptic plasticity is stochastic had already been explored through simulation
studies in (Rokni et al., 2007; Ajemian et al., 2013). Artificial neural networks were
trained in (Ajemian et al., 2013) through supervised learning with high learning
rates and high amounts of noise both on neuron outputs and synaptic weight
changes. The authors explored the influence of various combinations of noise levels
and learning rates on the success of learning, which can be understood as varying
the temperature parameters T in the synaptic sampling framework. In order to
measure this parameter T experimentally in a direct manner, one would have to
apply repeatedly the same plasticity induction protocol to the same synapse, with
a complete reset of the internal state of the synapse between trials, and measure
the resulting trial-to-trial variability of changes of its synaptic efficacy. Since such
complete reset of a synaptic state appears to be impossible at present, one can only
try to approximate it by the variability that can be measured between different
instances of the same type of synaptic connection.

We have shown that the Fokker-Planck equation, a standard tool in physics for
analyzing the temporal evolution of the spatial probability density function for
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particles under Brownian motion, can be used to create bridges between details
of local stochastic plasticity processes on the microscale and the probability dis-
tribution of the vector θ of all parameters on the network level. This theoretical
result provides the basis for the new theory of network plasticity that we are
proposing. In particular, this link allows us to derive rules for synaptic plasticity
which enable the network to learn, and represent in a stochastic manner, a desir-
able posterior distribution of network parameters; in other words: to approximate
Bayesian inference.

We find that resulting rules for synaptic plasticity contain the familiar term for
maximum likelihood learning. But another new term, apart from the Brownian-
motion-like stochastic term, is the term ∂

∂θi
log pS (θi) that results from a prior

distributions pS (θi), which could actually be different for each biological parameter
θi and enforce structural requirements and preferences of networks of neurons
in the brain. Some systematic dependencies of changes in synaptic weights (for
the same pairing of pre- and postsynaptic activity) on their current values had
already been reported in (Liao et al., 1992; Bi and Poo, 1998; Sjöström et al., 2001;
Montgomery et al., 2001). These can be modeled as impact of priors. Other potential
functional benefits of priors (on emergent selectivity of neurons) have recently
been demonstrated in (Xiong et al., 2014) for a restricted Boltzmann machine. An
interesting open question is whether the non-local learning rules of their model
can be approximated through biologically more realistic local plasticity rules, e.g.
through synaptic sampling. We have also demonstrated in Fig. 3.3 and Fig. 3.4
that suitable priors can model experimental data from (Loewenstein et al., 2015)
and (Yang et al., 2009) on the survival statistics of dendritic spines. The transient
behavior of synaptic turnover in our model fits a two-term exponential function,
the long-term (stationary) behavior is well described by a power-law. Both findings
are in accordance with experimental data.

The results reported in (Fiser et al., 2010) suggest that learned neural representations
integrate experience with a priori beliefs about the sensory environment. The model
presented here could be used to further investigate this hypothesis. Also the Fokker-
Planck formalism was previously applied to describe the dynamics of dendritic
spines in hippocampus (O’Donnell et al., 2011). The methods described there to
integrate experimental data into computational models could be combined with
the synaptic sampling framework to further improve the fit to biology.

Finally, we have demonstrated in Fig. 3.4 and 3.5 that suitable priors for network
parameters θi that model spine volumes endow a neural network with the capa-
bility to respond to changes in the input distribution and network perturbations
with a network rewiring that maintains or restores the network function, while
simultaneously observing structural constraints such as sparse connectivity.

Our model underlines the importance of further experimental investigation of
priors for network parameters. How are they implemented on a molecular level?
What role does gene regulation have in their implementation? How does the history
of a synapse affect its prior? In particular, can consolidation of a synaptic weight θi
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be modeled in an adequate manner as a modification of its prior? This would be
attractive from a functional perspective, because according to our model it both
allows long-term storage of learned information and flexible network responses to
subsequent perturbations.

Besides the use of parameter priors, dropout (G. E. Hinton et al., 2012) and dropcon-
nect (Wan et al., 2013) can be used to avoid overfitting in artificial neural networks.
In particular, dropconnect, which drops randomly chosen synaptic connections
during training, is reminiscent of stochastic synaptic release in biological neuronal
networks. In synaptic sampling, synaptic parameters are assumed to be stochas-
tic, however, this stochastic dynamics evolves on a much slower time scale than
stochastic release, which was not modeled in our simulations. An interesting open
question is whether synaptic sampling combined with stochastic synaptic release
would further improve generalization capabilities of spiking neural networks in a
similar manner as dropconnect for artificial neural networks.

We have focused in the examples for our model on the plasticity of synaptic weights
and synaptic connections. But the synaptic sampling framework can also be used
for studying the plasticity of other synaptic parameters, e.g., parameters that control
the short term dynamics of synapses, i.e., their individual mixture of short term
facilitation and depression. The corresponding parameters U, D, F of the models
from (Varela et al., 1997; Markram et al., 1998) are known to depend in a systematic
manner on the type of pre- and postsynaptic neuron (Markram et al., 2004), in-
dicative of a corresponding prior. However also a substantial variability within the
same type of synaptic connections, had been found (Markram et al., 2004). Hence
it would be interesting to investigate functional properties and experimentally
testable consequences of stochastic plasticity rules of type (3.5) for U, D, F, and to
compare the results with those of previously considered deterministic plasticity
rules for U, D, F (see e.g., (Natschlaeger et al., 2001)).

Early theoretical work on activity-dependent formation and elimination of synapses
has been used to model ocular dominance in the visual cortex (Elliott and N. R.
Shadbolt, 1998; Elliott and N. Shadbolt, 1998). Theoretical models for structural
plasticity have also shown that simple plasticity models combined with mechanisms
for rewiring are able to model cortical reorganization after lesions (Butz and Ooyen,
2013; Butz et al., 2014). In (Deger et al., 2012) a model was presented that combines
structural plasticity and STDP. This model was able to reproduce the existence of
transient and persistent spines in the cortex. A recently introduced probabilistic
model of structural plasticity was also able to reproduced the statistics of the
number of synaptic connections between pairs of neurons in the cortex (Fauth
et al., 2015). Furthermore a simple model of structural synaptic plasticity has been
introduced that was able to explain cognitive phenomena such as graded amnesia
and catastrophic forgetting (Knoblauch et al., 2014). In contrast to these previous
studies, the goal of the current work was to establish a model of structural plasticity
that follows from a first functional principle, that is, sampling from the posterior
distribution over parameters.
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We have demonstrated that this framework provides a new and principled way of
modeling structural plasticity (May, 2011; Caroni et al., 2012). The challenge to find
a biologically plausible way of modeling structural plasticity as Bayesian inference
has been highlighted by (Pouget et al., 2013). In addition, the proposed framework
does not treat rewiring and synaptic plasticity separately, but provides a unified
theory for both phenomena, that can be directly related to functional aspects of
the network via the resulting posterior distribution. We have shown in Fig. 3.3 and
3.4 that this rule produces a population of persistent synapses that remain stable
over long periods of time, and another population of transient synaptic connections
which disappear and reappear randomly, thereby supporting automatic adaptation
of the network structure to changes in the distribution of external inputs (Fig. 3.4)
and network perturbation (Fig. 3.5).

On a more general level we propose that a framework for network plasticity
where network parameters are sampled continuously from a posterior distribution
will automatically be less brittle than previously considered maximum likelihood
learning frameworks. The latter require some intelligent supervisor who recognizes
that the solution given by the current parameter vector is no longer useful, and
induces the network to resume plasticity. In contrast, plasticity processes remain
active all the time in our sampling-based framework. Hence network compensation
for external or internal perturbations is automatic and inherent in the organization
of network plasticity.

The need to rethink observed parameter values and plasticity processes in biological
networks of neurons in a way which takes into account their astounding variability
and compensation capabilities has been emphasized by Eve Marder (see e.g. (Prinz
et al., 2004; Marder and Goaillard, 2006; Marder, 2011)) and others. This article has
introduced a new conceptual and mathematical framework for network plasticity
that promises to provide a foundation for such rethinking of network plasticity.
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Chapter 4
Reward-based self-configuration of neural circuits
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Abstract. Synaptic connections between neurons in the brain are dynamic because
of continuously ongoing spine dynamics, axonal sprouting, and other processes. In
fact, it was recently shown that the spontaneous synapse-autonomous component
of spine dynamics is at least as large as the component that depends on the history
of pre- and postsynaptic neural activity. These data are inconsistent with common
models for network plasticity, and raise the questions how neural circuits can
maintain a stable computational function in spite of these continuously ongoing
processes, and what functional uses these ongoing processes might have. We show
that spontaneous synapse-autonomous processes, in combination with reward
signals such as dopamine, can explain the capability of networks of neurons in
the brain to configure themselves for specific computational tasks, and to compen-
sate automatically for later changes in the network or task. Furthermore we show
theoretically and through computer simulations that stable computational perfor-
mance is compatible with continuously ongoing synapse-autonomous changes.
After reaching good computational performance it causes primarily a slow drift
of network architecture and dynamics in task-irrelevant dimensions, as observed
for neural activity in motor cortex and other areas. On the more abstract level
of reinforcement learning the resulting model gives rise to an understanding of
reward-driven network plasticity as Bayesian policy sampling.
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4.1 Introduction

The connectome is dynamic: Networks of neurons in the brain rewire themselves
on a time scale of hours to days (A. J. Holtmaat et al., 2005; Stettler et al., 2006; Yang
et al., 2009; A. Holtmaat and Svoboda, 2009; N. E. Ziv and Ahissar, 2009; Minerbi
et al., 2009; Kasai et al., 2010; Loewenstein et al., 2011; Loewenstein et al., 2015;
Rumpel and Triesch, 2016; Chambers and Rumpel, 2017; Ooyen and Butz-Ostendorf,
2017). This rewiring is to a large extent driven by the growth and shrinking of
dendritic spines, which is known to take place even in the absence of neural activity
(Yasumatsu et al., 2008). The recent study of (Dvorkin and N. E. Ziv, 2016), which
includes in Fig. 8 a reanalysis of mouse brain data from (Kasthuri et al., 2015),
showed that this spontaneous component is surprisingly large, at least as large as
the impact of pre- and postsynaptic neural activity.

Other experimental data show that not only the connectome, but also the dynamics
and function of neural circuits is subject to continuously ongoing changes. Contin-
uously ongoing drifts of neural codes were reported in (Y. Ziv et al., 2013; Driscoll
and C. Harvey, 2016). Further data show that the mapping of inputs to outputs
by neural networks that plan and control motor behavior are subject to a random
walk on a slow time-scale of minutes to days, that is conjectured to be related to
stochastic synaptic rewiring and plasticity (Beers et al., 2013; Chaisanguanthum
et al., 2014).

We address two questions that are raised by these data:

i) How can stable network performance be achieved in spite of the experimen-
tally found continuously ongoing rewiring and activity-independent synaptic
plasticity in neural circuits?

ii) What could be a functional role of these processes?

Similar as (Statman et al., 2014; Loewenstein et al., 2015) we model spontaneous
synapse-autonomous spine dynamics of each potential synaptic connection i
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4.2 Synaptic sampling for reward-based synaptic plasticity and rewiring

through a stochastic process that modulates a corresponding parameter θi. One
can then describe the network configuration, i.e., the current state of the dynamic
connectome and the strengths of all currently functional synapses, at any time
point by a vector θ that encodes the current values θi for all potential synaptic
connections i. The stochastic dynamics of this high-dimensional vector θ defines
a Markov chain whose stationary distribution (illustrated in Fig. 4.1D) provides
insight into questions that address the relation between properties of local synaptic
processes and the computational function of a neural network.

We propose the following answer to question i): As long as most of the mass of
this stationary distribution lies in regions or low-dimensional manifolds of the
parameter space that produce good performance, stable network performance can
be assured in spite of continuously ongoing movement of θ. Fig. 4.1F, Fig. 4.2I,
and Fig. 4.4G suggest that when a computational task has been learnt, most of the
subsequent dynamics of θ takes place in task-irrelevant dimensions, such as the
axis along the ridge of the stationary distribution of Fig. 4.1D.

The same model also provides an answer to question ii): Stochastic dynamics of the
parameter vector θ enables the network not only to find in a high-dimensional space
regions with good network performance, but also to compensate immediately and
automatically for changes in the network or task. We analyze how the strength of
the stochastic component of synaptic plasticity affects this compensation capability,
and arrive at the conclusion that compensation works best if it is as large as in
experimental data (Dvorkin and N. E. Ziv, 2016).

On the more abstract level of reinforcement learning, our theoretical framework for
reward-driven network plasticity suggests a new algorithmic paradigm for network
learning: Bayesian policy sampling. Compared with the familiar policy gradient
learning (Williams, 1992; Baxter and Bartlett, 2000; J. Peters and Schaal, 2006) this
paradigm is more consistent with experimental data that suggest a continuously
ongoing drift of network parameters.

The resulting model for reward-gated network plasticity builds on the approach
from (Kappel et al., 2015a) for unsupervised learning, that was only applicable to a
specific neuron model and a specific STDP-rule. Since the new approach can be
applied to arbitrary neuron models, in particular also to large data-based models
of neural circuits and systems, it can be used to explore how data-based models for
neural circuits and brain areas can attain and maintain a computational function.

4.2 Synaptic sampling for reward-based synaptic
plasticity and rewiring

We first address the design of a suitable theoretical framework for investigating the
self-organization of neural circuits for specific computational tasks in the presence
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4 Reward-based self-configuration of neural circuits

Fig. 4.1: Illustration of the theoretical framework. A: A neural network scaffold N of excitatory
(blue triangles) and inhibitory (purple circles) neurons. Potential synaptic connections (bro-
ken blue arrows) of only two excitatory neurons are shown to keep the figure uncluttered.
Synaptic connections (black connections) from and to inhibitory neurons are assumed to be
fixed for simplicity. B: A reward landscape for two parameters θ = {θ1, θ2} with several local
optima. C: Example prior that prefers small values for θ1 and θ2. D: The posterior distribution
p∗(θ) that results as product of the prior from panel (C) and the expected discounted reward
of panel (B). E: Illustration of the dynamic forces (plasticity rule Eq. (4.5)) that act on θ in
each sampling step dθ (black) while sampling from the posterior distribution. The determinis-
tic term (red), which consists of the first two terms (prior and reward expectation) in Eq. (4.5),
is directed to the next local maximum of the posterior. The stochastic term dW (green) of
Eq. (4.5) has a random direction. F: A single trajectory of Bayesian policy sampling from the
posterior distribution of panel (D) under Eq. (4.5), starting at the black dot. The parameter
vector θ fluctuates between different solutions, and moves primarily along the task-irrelevant
dimension θ2.
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4.2 Synaptic sampling for reward-based synaptic plasticity and rewiring

of spontaneous synapse-autonomous processes and rewards. There exist well-
established models for reward-modulated synaptic plasticity, see e.g. (Frémaux
et al., 2010), where reward signals gate common rules for synaptic plasticity, such
as STDP. But these rules are lacking two components that we need here:

• an integration of rewiring with plasticity rules that govern the modulation of
the strengths of already existing synaptic connections

• a term that reflects the spontaneous synapse-autonomous component of
synaptic plasticity and rewiring.

In order to illustrate our approach we consider a neural network scaffold, see
Fig. 4.1A, with a large number of potential synaptic connections between excitatory
neurons. Only a subset of these potential connections is assumed to be functional
at any point in time. For simplicity we assume that only excitatory connections are
plastic, but the model can be easily extended to also reflect plasticity of inhibitory
synapses. For each potential synaptic connection i, we introduce a parameter θi that
describes its state both for the case when this potential connection i is currently not
functional (this is the case when θi ≤ 0) and when it is functional (i.e., θi > 0). More
precisely, θi encodes the current strength or weight wi of this synaptic connection
through the formula

wi =

{
exp(θi − θ0) if θi > 0 (functional synaptic connection)
0 if θi ≤ 0 (non-functional potential connection)

, (4.1)

with a positive offset parameter θ0 that regulates the initial strength of new func-
tional synaptic connections (we set θ0 = 3 in our simulations). The exponential
function in Eq. (4.1) turns out to be useful for relating the dynamics of θi to experi-
mental data on the dynamics of synaptic weights. The volume – or image brightness
in Ca-imaging – of a dendritic spine is commonly assumed to be proportional to the
strength wi of a synapse (A. J. Holtmaat et al., 2005). The logarithm of this estimate
for wi was shown in Fig. 2i of (A. Holtmaat et al., 2006) and also in (Yasumatsu
et al., 2008; Loewenstein et al., 2011) to exhibit a dynamics similar to that of an
Ornstein-Uhlenbeck process, i.e., a random walk in conjunction with a force that
draws the random walk back to its initial state. Hence if θi is chosen to be propor-
tional to the logarithm of wi, it is justified to model the spontaneous dynamics of θi
as an Ornstein-Uhlenbeck process. This is done in our model, as we will explain
after Eq. (4.5) and demonstrate in Fig. 4.2c. The logarithmic transformation also
ensures that additive increments of θi yield multiplicative updates of wi, which
have been observed experimentally (Loewenstein et al., 2011).

Altogether our model needs to create a dynamics for θi that is not only consistent
with experimental data on spontaneous spine dynamics, but is for the case θi > 0
also consistent with rules for reward-modulated synaptic plasticity as in (Frémaux
et al., 2010). This suggests to look for plasticity rules of the form

dθi = β × (deterministic plasticity rule)× dt +
√

2βT dWi , (4.2)
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4 Reward-based self-configuration of neural circuits

where the deterministic plasticity rule could for example be a standard reward-
based plasticity rule. We will argue below that it makes sense to include also a
prior in this deterministic component of rule (4.2), both for functional reasons and
in order to fit data on spontaneous spine dynamics. The stochastic term dWi in
Eq. (4.2) is an infinitesimal step of a random walk, more precisely for a Wiener
process Wi. A Wiener process is a standard model for Brownian motion in one
dimension (Gardiner, 2004). The term

√
2βT scales the strength of this stochastic

component in terms of a “temperature” T and a learning rate β, and is chosen
to be of a form that supports analogies to statistical physics. The presence of this
stochastic term makes it unrealistic to expect that θi converges to a particular value
under the dynamics defined by Eq. (4.2). In fact, in contrast to many standard
differential equations, the stochastic differential equation or SDE (4.2) does not
have a single trajectory of θi as solution, but an infinite family of trajectories that
result from different random walks.

We propose to focus – instead of the common analysis of the convergence of weights
to specific values as invariants – on the most prominent invariant that a stochastic
process can offer: the longterm stationary distribution of synaptic connections
and weights. The stationary distribution of the vector θ of all synaptic parameters
θi informs us about the statistics of the infinitely many different solutions of a
stochastic differential equation of the form (4.2). In particular, it informs us about
the fraction of time at which particular values of θ will be visited by these solutions.
We show that a large class of reward-based plasticity rules produce in the context
of an equation of the form (4.2) a stationary distribution of θ that can be clearly
related to reward expectation for the neural network, and hence to its computational
function.

More precisely, if one allows rewiring then the concept of a neural network be-
comes problematic, since the definition of a neural network typically includes its
synaptic connections. Hence we refer to the set of neurons of a network, its set of
potential synaptic connections, and its set of definite synaptic connections – such
as in our case connections from and to inhibitory neurons (see Fig. 4.1A) – as a
network scaffold. A network scaffold N together with a parameter vector θ that
specifies a particular selection of functional synaptic connections out of the set of
potential connections and particular synaptic weights for these defines a concrete
neural network, to which we also refer as network configuration.

We want to address the question which reward-based plasticity rules achieve in the
context with other terms in Eq. (4.2) that the resulting stationary distribution of
network configurations has most of its mass on highly rewarded network configu-
rations. A key observation is that if the first term on the right-hand-side of (4.2) can
be written for all potential synaptic connections i in the form ∂

∂θi
log p∗(θ), where

p∗(θ) is some arbitrary given distribution and ∂
∂θi

denotes the partial derivative
with respect to parameter θi, then these stochastic processes

dθi = β
∂

∂θi
log p∗(θ) dt +

√
2βT dWi . (4.3)
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4.2 Synaptic sampling for reward-based synaptic plasticity and rewiring

give rise to a stationary distribution that is proportional to p∗(θ)
1
T . Hence, a rule

for reward-based synaptic plasticity that can be written in the form ∂
∂θi

log p∗(θ),
where p∗(θ) has most of its mass on highly rewarded network configurations θ,
achieves that the network will spend most of its time in highly rewarded network
configurations. This will hold even if the network does not converge to or stay in any
particular network configuration θ (see Fig. 4.1D,F for an illustration). Furthermore
the role of the temperature T in (4.3) becomes clearly visible in this result: if T is
large the resulting stationary distribution flattens the distribution p∗(θ), whereas
for 0 < T < 1 the network will remain for larger fractions of the time in those
regions of the parameter space where p∗(θ) achieves its largest values. In fact, if the
temperature T converges to 0, the resulting stationary distribution degenerates to
one that has all of its mass on the network configuration θ for which p∗(θ) reaches
its global maximum, as in simulated annealing (Kirkpatrick and Vecchi, 1983).

We will focus on target distributions p∗(θ) of the form

p∗(θ) ∝ pS(θ) × V(θ) , (4.4)

where ∝ denotes proportionality up to a positive normalizing constant. pS(θ) can
encode structural priors of the network scaffold N . For example, it can encode a
preference for sparsely connected networks. This happens when pS(θ) has most of
its mass near 0, see Fig. 4.1C for an illustration. But it could also convey genetically
encoded or previously learnt information, such as a preference for having strong
synaptic connections between two specific populations of neurons. The term V(θ) in
Eq. (4.4) denotes the expected discounted reward associated with a given parameter
vector θ (see Fig. 4.1B). Eq. (4.3) for the stochastic dynamics of parameters takes
then the form

dθi = β

(
∂

∂θi
log pS (θ) +

∂

∂θi
logV(θ)

)
dt +

√
2βT dWi . (4.5)

When the term ∂
∂θi

logV(θ) vanishes, this equation models spontaneous spine
dynamics. We will make sure that this term vanishes for all potential synaptic
connections i that are currently not functional, i.e., where θi ≤ 0. If one chooses a
Gaussian distribution as prior pS (θ), the dynamics of (4.5) amounts in the case

∂
∂θi

logV(θ) = 0 to an Ornstein-Uhlenbeck process. This process was previously
already proposed as simple model for experimentally observed spontaneous spine
dynamics (Loewenstein et al., 2011; Loewenstein et al., 2015; Statman et al., 2014).
We use in our simulations for the prior pS (θ) a Gaussian distribution that prefers
small but nonzero weights. Hence our model (4.5) is consistent with previous
models for spontaneous spine dynamics.

Thus altogether we arrive at a model for the interaction of stochastic spine dynamics
with reward where the usually considered deterministic convergence to network
configurations θ that represent local maxima of expected reward V(θ) (e.g. to
the local maxima in Fig. 4.1B) is replaced by a stochastic model. If the stochastic
dynamics of θ is defined by local stochastic processes of the form (4.5), as indicated
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4 Reward-based self-configuration of neural circuits

Fig. 4.2: Reward-based routing of input patterns. A: Illustration of the network scaffold. A population of 20 model
MSNs (blue) receives input from 200 excitatory input neurons (green) that model cortical neurons. Potential synaptic
connections between these 2 populations of neurons were subject to reward-based synaptic sampling. In addition,
fixed lateral connections provided recurrent inhibitory input to the MSNs. The MSNs were divided into two groups,
each projecting exclusively to one of two target areas T1 and T2. Reward was delivered whenever the network
managed to route an input pattern Pi primarily to that group of MSNs that projected to target area Ti. B: Illustration
of the model for spine dynamics. Five potential synaptic connections at different states are shown. Synaptic spines
are represented by circular volumes with diameters proportional to 3

√
wi for functional connections, assuming a

linear correlation between spine-head volume and synaptic efficacy wi (Matsuzaki et al., 2001). C: Dynamics of
weights wi in log-scale for 10 potential synaptic connections i when the activity-dependent term ∂

∂θi
logV(θ)dt →
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→ in Eq. (4.5) is set equal to zero. Consistent with experimental date (see e.g. Fig. 2i of (A. Holt-
maat et al., 2006)) the dynamics is in this case consistent with an Ornstein-Uhlenbeck process in the
logarithmic scale. Weight values are plotted relative to the initial value at time 0. D, E: Dynamics of
a model synapse when a reward-modulated STDP pairing protocol as in (Yagishita et al., 2014) was
applied. D: Reward delivery after repeated firing of the presynaptic neuron before the postsynaptic
neuron resulted in a strong weight increase (left). This effect was reduced without reward (right), and
prevented completely if no presynaptic stimulus was applied. Values in (D) and (E) represent per-
centage of weight changes relative the pairing onset time (dashed line, means and s.e.m. over 50
synapses). Compare with Fig. 1F,G in (Yagishita et al., 2014). E: Dependence of resulting changes
in synaptic weights in our model as a function of the delay of reward delivery. Gray shaded rectangle
indicates the time window of STDP pairing application. Reward delays denote time between paring
and reward onset. Compare to Figure 1O in (Yagishita et al., 2014). F: The average reward achieved
by the network increased quickly during learning according to Eq. (4.5) (mean over 5 independent
trial runs; shaded area indicates s.e.m.). G: Synaptic parameters kept changing throughout the ex-
periment in (F). The magnitude of the change of the synaptic parameter vector θ is shown (mean ±
s.e.m. as in (F); Euclidean norm, normalized to the maximum value). The parameter change peaks
at the onset of learning, but remains high (larger than 80% of the maximum value) even when stable
performance has been reached. H: Spiking activity of the network during learning. Activities of 20 ran-
domly selected input neurons and all MSNs are shown. 3 salient input neurons (belonging to pools
S1 or S2 in (I)) are highlighted. Most neurons have learnt to fire at a higher rate for the input pattern
Pj that corresponds to the target area Tj to which they are projecting. Bottom: reward delivered to the
network. I: Dynamics of network rewiring throughout learning. Snapshots of network configurations
for the times t indicated below the plots are shown. Gray lines indicate active connections between
neurons; connections that were not present at the preceding snapshot are highlighted in green. All
output neurons and two subsets of input neurons that fire strongly in pattern P1 or P2 are shown (pools
S1 and S2, 20 neurons each). Numbers denote total counts of functional connections between pools.
The connectivity was initially dense and then rapidly restructured and became sparser. Rewiring took
place all the time throughout learning.

in Fig. 4.1E, the resulting stochastic model for network plasticity will spend most
of its time in network configurations θ where the posterior p∗(θ), illustrated in
Fig. 4.1D, approximately reaches its maximal value. This provides on the statistical
level a guarantee of stable network function, in spite of ongoing stochastic dynamics
of all the parameters θi.

4.3 Reward-based rewiring and synaptic plasticity as
Bayesian policy sampling

We assume that the network scaffold N receives reward signals r(t) at certain times
t, corresponding for example to dopamine signals in the brain (see (Collins and M. J.
Frank, 2016) for a recent discussion of related experimental data). The expected
discounted reward V(θ) that occurs in the second term of Eq. (4.5) is the integral
over all future rewards r(t), while discounting more remote rewards exponentially,
see Eq. (D.1) in Appendix D. Fig. 4.1B shows a hypothetical V(θ)-landscape over
two parameters θ1, θ2. The posterior p∗(θ) shown in Fig. 4.1D is then proportional
to the product of V(θ) (panel b) and the prior (panel c).

The computational behavior of the network configuration, i.e., the mapping of
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network inputs to network outputs that is encoded by the parameter vector θ,
is referred to as a policy in the context of reinforcement learning theory. When
the parameter dynamics is given solely by the second term in the parenthesis of
Eq. (4.5), ∂

∂θi
logV(θ), we recover for the case θi > 0 deterministic policy gradient

learning (Williams, 1992; Baxter and Bartlett, 2000; J. Peters and Schaal, 2006). These
parameters (and therefore the policy) are gradually changed through Eq. (4.5) such
that the expected discounted reward V(θ) is increased: The parameter dynamics
follows the gradient of logV(θ), i.e., dθi

dt = β ∂
∂θi

logV(θ), where β > 0 is a small
learning rate.

For the simulations described below we took a network scaffold N consisting of
spiking neurons (see Network model in Appendix D). In this case, the derivative

∂
∂θi

logV(θ) gives rise to synaptic updates at a synapse i that are essentially given by
the product of the current reward signal r(t) and an eligibility trace that depends on
pre- or postsynaptic firing times, see Synaptic dynamics for the reward-based synaptic
sampling model in Appendix D. Such plasticity rules have previously been proposed
by (Seung, 2003; Xie and Seung, 2004; Izhikevich, 2007; Pfister et al., 2006; Florian,
2007; Legenstein et al., 2008; Urbanczik and Senn, 2009). For non-spiking neural
networks, a similar update rule was first introduced by Williams and termed the
REINFORCE rule (Williams, 1992). In fact, when one discretizes time and assumes
that rewards and parameter updates are only realized at the end of each episode,
the REINFORCE rule is recovered.

In contrast to policy gradient, reinforcement learning in the presence of the stochas-
tic last term in Eq. (4.5) cannot converge to any network configuration. Instead,
the dynamics of Eq. (4.5) produces continuously changing network configurations,
with a preference for configurations that both satisfy constraints from the prior
pS(θ) and provide a large expected reward V(θ), see Fig. 4.1D,F. Hence this type
of reinforcement learning samples continuously from a posterior distribution of
network configurations. This is rigorously proven in Theorem 2 of Appendix D. We
refer to this reinforcement learning model as Bayesian policy sampling, and to the
family of reward-based plasticity rules that are defined by Eq. (4.5) as reward-based
synaptic sampling.

Another key difference to previous models for reward-gated synaptic plasticity
and policy gradient learning is, apart from the stochastic last term of Eq. (4.5),
that the deterministic first term of Eq. (4.5) also contains a reward-independent
component ∂

∂θi
log pS(θ) that arises from a prior pS(θ) for network configurations.

In our simulations we consider a simple Gaussian prior pS(θ) with mean 0 that
encodes a preference for sparse connectivity (see Eq. (D.12)).

It is important that the dynamics of disconnected synapses, i.e., of synapses i with
θi ≤ 0 or equivalently wi = 0, does not depend on pre- or postsynaptic neural
activity since non-functional synapses do not have access to such information. This
is automatically achieved through our ansatz ∂

∂θi
logV(θ) for the reward-dependent

component in Eq. (4.5), since a simple derivation shows that it entails that the factor
wi appears in front of the term that depends on pre- and postsynaptic activity, see
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Eq. (B.18). Instead, the dynamics of θi depends for θi ≤ 0 only on the prior and
the stochastic term dWi. This results in a distribution over waiting times between
downwards and upwards crossing of the threshold θi = 0 that was found to be
similar to the distribution of inter-event times of a Poisson point process, see (Ding
and Rangarajan, 2004) for a detailed analysis. This theoretical result suggest a
simple approximation of the dynamics of Eq. (4.5) for currently non-functional
synaptic connections, where the process (4.5) is suspended whenever θi becomes
negative, and continued with θi = 0 after a waiting time that is drawn from an
exponential distribution. As in (Deger et al., 2016) this can be realized by letting
a non-functional synapse become functional at any discrete time step with some
fixed probability (Poisson process). We have compared in Fig. 4.4C the resulting
learning dynamics of the network for this simple approximation with that of the
process defined by Eq. (4.5).

4.4 Reward-based learning of task-dependent routing of
information

Experimental evidence about gating of spine dynamics by reward signals in the
form of dopamine is available for the synaptic connections from the cortex to the
entrance stage of the basal ganglia, the medium spiny neurons (MSNs) in the
striatum (Yagishita et al., 2014). They report that the volumes of their dendritic
spines show significant changes only when pre- and postsynaptic activity is paired
with precisely timed delivery of dopamine (see (Yagishita et al., 2014), Fig. 1 E-G,
O). More precisely, an STDP pairing protocol followed by dopamine uncaging
induced strong LTP in synapses onto MSNs, whereas the same protocol without
dopamine uncaging lead only to a minor increase of synaptic efficacies.

MSNs can be viewed as readouts from a large number of cortical areas, that become
specialized for particular motor functions, e.g. movements of the hand or leg. We
asked whether reward gating of spine dynamics according to the experimental data
of (Yagishita et al., 2014) can explain such task dependent specialization of MSNs.
More concretely, we asked whether it can achieve that two different distributed
activity patterns P1, P2 of upstream neurons in the cortex get routed to two different
ensembles of MSNs, and thereby to two different downstream targets T1 and T2 of
these MSNs (see Fig. 4.2A,H,I). We assumed that for each upstream activity pattern
Pj a particular subset Sj of upstream neurons is most active, j = 1, 2. Hence this
routing task amounted to routing synaptic input from Sj to those MSNs that project
to downstream neuron Tj.

We applied to all potential synaptic connections i from upstream neurons to MSNs a
learning rule according to Eq. (4.5), more precisely, the rule for reward-gated STDP
(Eq. (B.18), Eq. (D.11) and Eq. (D.13)) that results from this general framework. The
parameters of the model were adapted to qualitatively reproduce the results from
Figures 1F,G of (Yagishita et al., 2014) when the same STDP protocol was applied
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to our model (see Fig. 4.2D,E). The parameter values are reported in Tab. D.1 in
Appendix D. If not stated otherwise, we applied these parameters in all following
experiments.

Our simple model consisted of 20 inhibitory model MSNs with lateral recurrent
connections. These received excitatory input from 200 input neurons. The synapses
from input neurons to model MSNs were subject to our plasticity rule. Multiple
connections were allowed between each pair of input neuron and MSN (see Ap-
pendix D). The MSNs were randomly divided into two assemblies, each projecting
exclusively to one of two downstream target areas T1 and T2. Cortical input x(t)
was modeled as Poisson spike trains from the 200 input neurons with instantaneous
rates defined by two prototype rate patterns P1 and P2, see Fig. 4.2H. The task was
to learn to activate T1-projecting neurons and to silence T2-projecting neurons
whenever pattern P1 was presented as cortical input. For pattern P2, the activation
should be reversed: activate T2-projecting neurons and silence those projecting
to T1. This desired function was defined through a reward signal r(t) that was
proportional to the ratio between the mean firing rate of MSNs projecting to the
desired target and that of MSNs projecting to the non-desired target area (see
Appendix D).

Fig. 4.2H shows the firing activity and reward signal of the network during seg-
ments of one simulation run. After about 80 minutes of simulated biological time,
each group of MSNs had learned to increase its firing rate when the activity pattern
Pj associated with its projection target Tj was presented. Fig. 4.2F shows the average
reward throughout learning. After 3 hours of learning about 82% of the maximum
reward was acquired on average, and this level was maintained during prolonged
learning.

Fig. 4.2G shows that the parameter vector θ kept moving at almost the same speed
even after a high plateau of rewards had been reached. Hence these ongoing
parameter changes took place in dimensions that were irrelevant for the reward-
level.

Fig. 4.2I provides snapshots of the underlying “dynamic connectome” (Rumpel and
Triesch, 2016) at different points of time. New synaptic connections that were not
present at the preceding snapshot are colored green. One sees that the bulk of the
connections maintained a solution of the task to route inputs from S1 to target area
T1 and inputs from S2 to target area S2. But the identity of these connections, a task-
irrelevant dimension, kept changing. In addition the network always maintained
some connections to the currently undesired target area, thereby providing the
basis for a swift built-up of these connections if these connections would suddenly
also become rewarded. This simulation experiment showed that reward-gated spine
dynamics as analyzed in (Yagishita et al., 2014) is sufficiently powerful from the
functional perspective to rewire networks so that each signal is delivered to its
intended target.
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4.4 Reward-based learning of task-dependent routing of information

Fig. 4.3: The temperature parameter controls the exploration speed of policy sampling. A: Illustration of the
double-T-maze. At the junctions (s1 and s2) a left-or-right decision had to be taken to navigate the maze. The arrow
marks the entry to the maze. The four exits (e1, . . . , e4) were associated with a reward between 0 and 1 (numbers
on top). B: Illustration of the network that was used to solve this task. Two input neurons encoded the current state
(s1 or s2) within the task. A single action neuron a encoded the action in each state (go right if the neuron fires
above a threshold, else go left). Broken lines with arrows indicate potential synaptic connections. The network had
two synaptic parameters θ1 and θ2 which encoded the connectivity and synaptic weights w1 and w2 between input
neurons s1 and s2 and the output neuron a, respectively. C: A single successful trial run showing the spike train for
input neurons and the response of the output neuron. The trace of the reward is shown on top. D: Histogram of
final states over 100 trial runs for different temperatures. For T = 0.1 most trajectories ended in exit e1. The network
was not able to find the optimal policy in most cases. A temperature increase enhanced parameter exploration. For
T = 5 most state trajectories ended in exit e3, which corresponds to the optimal policy for this maze. Average results
over 200 independent learning experiments are shown, errorbars indicate 95% confidence interval. E: Average
reward throughout learning for one experiment run. F: Example temporal evolution of the synaptic efficacies wi
throughout learning (same run shown in (F)). G: Surface plot of average rewards associated to configurations of
network parameters θ = (θ1, θ2). The trajectory of synaptic parameters throughout learning (corresponding to the
efficacies shown in (F)) are projected onto the surface (black trace). The synaptic parameters converged to a setting
with high reward.
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4.5 Bayesian perspective on policy sampling

We have previously noted in Eq. (4.5) that our model can integrate structural
priors pS (θ) into its continuously ongoing policy sampling. Network parameters
θ are sampled from the posterior distribution p∗(θ) that combines the structural
constraints pS (θ) with the expected discounted reward V(θ). In this sense the
network carries out Bayesian inference over network configurations. One intriguing
question, which we pursue in this section, is whether our model can learn to solve
a decision making tasks.

Solway and Botvinick have proposed an interesting abstract model for goal-directed
decision making through probabilistic inference along with a neural network
implementation that could realize this model (Solway and Botvinick, 2012). Their
neural network implements an internal model of the environment and predicts
reward values associated with configurations of the environment. Specialized
subnetworks in their model are constructed to carry out Bayesian inference to decide
which actions to take in order to obtain future rewards. The learning problem of
how the model is fit to the environment was not addressed in (Solway and Botvinick,
2012). We consider in Fig. 4.3A a decision making task that is equivalent to the one
considered in (Solway and Botvinick, 2012) (lower right panel of their Fig. 1). This
decision making task is nontrivial because an optimal decision at the first branching
point s1 depends on the planned decision at the second branching level s2. An
action sequence (right, left) is optimal for this maze. This task is solved in the model
of (Solway and Botvinick, 2012) by employing a probabilistic generative model for
reward, that is implemented in their neural network through a subnetwork that
carries out probabilistic inference by approximating belief propagation (see Fig. 8

in (Solway and Botvinick, 2012)). We demonstrate in Fig. 4.3 that both suitable
network configurations and parameters of a minimal neural network model for
decision making in this maze – see Fig. 4.3b – emerge through reward-based
learning in our model. But our learning approach is independent of the precise
network architecture – synaptic parameters subject to the dynamics Eq. (4.5) are
always attracted to network configurations that lead to high rewards. Random
exploration is driven by the temperature parameter T that scales the amplitude of
the noise in the synaptic dynamics (Eq. (4.5)). In Fig. 4.4f we have already shown
that a brief temperature increase amplifies spine formation. Using this task, we
further investigated parameter search strategies employed by the synapses and the
role of the temperature in enhancing exploration.

An action neuron a in our network (see Fig. 4.3b) encoded the left-or-right decision
that was required in each stage (arbitrarily defined to go right if the neuron was
active and go left else). The action neuron received input x(t) from two neurons s1
and s2 that encoded the current state of the task. The states corresponded to the
two junctions s1 and s2 that were visited when traveling the maze. We assumed that
each neuron si fires only when the corresponding junction in the maze is reached.
Therefore the network had only two synaptic parameters θ1 and θ2. The action
neuron a determined the path through the maze, going right if the firing rate was

82
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above a threshold of 60 Hz and left otherwise. At the end of each trial a reward
was delivered by setting r(t) to the reward amplitude associated with the taken exit
according to Fig. 4.3a. Fig. 4.3C shows one representative trial run after learning
that led to maximal reward (exit e3).

Fig. 4.3D shows the histogram of the exits taken after learning. The bar plots show
average numbers over the last 100 trials of 200 independent learning experiments
(see Appendix D). The policy that was learned depended on the temperature
parameter T. The optimal policy for this task is to always take exit e3. Initially
both synaptic parameters θ1 and θ2 were set close to zero where exit e1 was taken
most of the time. This already led to a reward of 0.5 (see Fig. 4.3G). Exploration is
driven by the stochastic nature of the neural network and can be further enhanced
by the temperature parameter T. For T = 0.1 exploration was mostly driven by
the stochastic activity of the network. This randomness was sufficient to find
the optimal policy in 43.5± 5.6% of the trials. For a large temperature of T = 5,
exploration was enhanced and the optimal policy was found in 66.9± 5.0% of the
trials. A further increase of the temperature led to a performance decrease.

Fig. 4.3E shows the average reward throughout learning for 4 hours (4800 trials)
and Fig. 4.3F,G show the corresponding evolution of the synaptic parameters for
one learning experiment. The synaptic parameters were initialized close to zero
and then slowly explored the parameter space. After about 3 hours of learning
the region of highest reward was found. The average reward that is associated
with different parameter settings is shown in Fig. 4.3G. Red corresponds to high
reward, blue to low reward (see Appendix D). The synaptic connections randomly
retracted and reappeared while the parameter space was explored. The most highly
rewarded network configuration is one where the synaptic connection from neuron
s1 to a is strong, and the one from s2 is retracted. After this configuration was
reached a synaptic connection from s2 to a still randomly reappeared from time to
time and then decayed again.

4.6 A model for task-dependent self-configuration of a
recurrent network of spiking neurons

We next asked, whether our simple integrated model for reward-modulated
rewiring and synaptic plasticity of neural circuits according to Eq. (4.5) could
also explain the emergence of specific computations in recurrent networks of spik-
ing neurons. As paradigm for a specific computational task we took a simplified
version of the task that mice learned to carry out in the experimental setup of
(A. J. Peters et al., 2014). There a reward was given whenever a lever was pressed
within a given time window so that it crossed two given thresholds. This task is
particular suitable for our context, since spine turnover and changes of network
activity were continuously monitored in (A. J. Peters et al., 2014) while the animals
learned this task.
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4 Reward-based self-configuration of neural circuits

Fig. 4.4: Reward-based self-configuration and compensation capability of a recurrent neural network. A:
Network scaffold and task schematic. Symbol convention as in Fig. 4.1A. A recurrent network scaffold of excitatory
and inhibitory neurons (large blue circle); a subset of excitatory neurons received input from afferent excitatory
neurons (indicated by green shading). Caption of Fig. 4.4 continued: From the remaining excitatory neurons, two
pools D and U were randomly selected to control lever movement (blue shaded areas).Bottom inset: stereotypical
movement that had to be generated to receive a reward. B: Spiking activity of the network at learning onset and
after 22 hours of learning. Activities of random subsets of neurons from all populations are shown (hidden: excitatory
neurons of the recurrent network, which are not in pool D or U). Bottom: lever position inferred from the neural →
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→ activity in pools D and U. Rewards are indicated by red bars. Gray shaded areas indicate cue
presentation. C: Task performance quantified by the average time from cue presentation onset to
movement completion. The network was able to solve this task in less than 1 seconds on average
after about 8 hours of learning. A task change was introduced at time 24 h (asterisk; function of
D and U switched), which was quickly compensated by the network. Using a simplified version of
the learning rule, where the re-introduction of non-functional potential connections was approximated
using exponentially distributed waiting times (green), yielded similar results (see also panel e). If the
connectome was kept fixed after the task change at 24 h performance was significantly worse (black).
D: Trial-averaged network activity (top) and lever movements (bottom). Activity traces are aligned to
movement onsets (arrows). Y-axis of trial-averaged activity plots are sorted by the time of highest firing
rate within the movement at various times during learning: sorting of the first and second plot is based
on the activity at t = 0 h, third and fourth by that at t = 22 h, fifth is resorted by the activity at t = 46
h. Network activity is clearly restructured through learning with particularly stereotypical assemblies
for sharp upward movements. Bottom: average lever movement (black) and 10 individual movements
(gray). E: Turnover of synaptic connections for the experiment shown in (D). Y-axis is clipped at 3000.
Turnover rate during the first two hours was around 12.000 synapses (∼ 25%) and then decreased
rapidly. Another increase in spine turnover rate can be observed after the task change at time 24 h. F:
Histograms of time intervals between disappearance and reappearance of synapses (waiting times)
for the exact (upper plot) and approximate (lower plot) learning rule. G: Relative fraction of potential
synaptic connections that were stably non-functional, transiently decaying, transiently emerging or
stably function during the re-learning phase for the experiment shown in (D). H: PCA of a random
subset of the parameters θi. The plot suggests continuing dynamics in task-irrelevant dimensions
after the learning goal has been reached (indicated by red color). When the function of the neuron
pools U and D was switched after 24 h, the synaptic parameters migrated to a new region. All plots
show means over 5 independent runs (error bars: s.e.m.).

We adapted the learning task of (A. J. Peters et al., 2014) in the following way
for our model (see Fig. 4.4A). The beginning of a trial was indicated through the
presentation of a cue input pattern x(t): a fixed, randomly generated rate pattern
for all 200 input neurons that lasted until the task was completed, but at most
10s. When the lever position crossed the threshold +5 after first crossing a lower
threshold -5 (black horizontal lines in Fig. 4.4A,B) within 10 s after cue onset a
400 ms reward window was initiated during which r(t) was set to 1 (red vertical
bars in Fig. 4.4b). Unsuccessful trials were aborted after 10 seconds and no reward
was delivered. After each trial a brief holding phase of random length was inserted,
during which input neurons were set to a background input rate of 2 Hz.

As network scaffold N we took a generic recurrent network of excitatory and
inhibitory spiking neurons with connectivity parameters for connections between
excitatory and inhibitory neurons according to data from layer 2/3 in mouse cortex
(Avermann et al., 2012). The network consisted of 60 excitatory and 20 inhibitory
neurons (see Fig. 4.4A). Half of the excitatory neurons could potentially receive
synaptic connections from the 200 excitatory input neurons. From the remaining
30 neurons we randomly selected one pool D of 10 excitatory neurons to cause
downwards movements of the lever, and another pool U of 10 neurons for upwards
movements. We refer to the 40 excitatory neurons that were not members of D or
U as hidden neurons. All excitatory synaptic connections from the external input
(cue) and between the 60 excitatory neurons (including those in the pools D and
U) in the network were subjected to reward-based synaptic sampling. Thus, the
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network had to learn without any guidance, except for the reward in response to
good performance, to create after the onset of the cue first higher firing in pool D,
and then higher firing in pool U. This task was challenging, since the network had
no information which neurons belonged to pools D and U. Moreover, the synapses
did not “know” whether they connected to hidden neurons, neurons within a
pool, hidden neurons and pool-neurons, or input neurons with other neurons. The
plasticity of all these different synapses was gated by the same global reward signal.
Since the pools D and U were not able to receive direct synaptic connections from
the input neurons, the network also had to learn to communicate the presence of
the cue pattern via disynaptic connections from the input neurons to these pools.

Network responses before and after learning are shown in Fig. 4.4B. Initially, the
rewarded goal was only reached occasionally, while the turnover of synaptic
connections (number of synaptic connections that became functional or became
non-functional in a time window of 2 hours) remained very high (see Fig. 4.4E).
After about 3 h, performance improved drastically (Fig. 4.4C), and simultaneously
the turnover of synaptic connections slowed down (Fig. 4.4E). After learning for
8 hours, the network was able to solve the task in most of the trials, and the
average trial duration (movement completion time) had decreased to less than 1

second (851± 46 ms, Fig. 4.4C). Improved performance was accompanied by more
stereotyped network activity and lever movement patterns as in the experimental
data of (A. J. Peters et al., 2014): compare our Fig. 4.4D with Fig. 1b and Fig. 2j
of (A. J. Peters et al., 2014). In Fig. 4.4D we show the trial-averaged activity of
the 60 excitatory neurons before and after learning for 22 hours. The neurons are
sorted in the first two plots of Fig. 4.4D by the time of maximum activity after
movement onset times before learning, and in the 3rd plot resorted according to
times of maximum activity after 22 hours of learning (see Appendix D). These plots
show that reward-based learning led to a restructuring of the network activity: an
assembly of neurons emerged that controlled a sharp upwards movement. Also,
less background activity was observed after 22 hours of learning, in particular for
neurons with early activity peaks. Lower panels in Fig. 4.4D show the average lever
movement and 10 individual movement traces at the beginning and after 22 hours
of learning. Similar as in (A. J. Peters et al., 2014) the lever movements became more
stereotyped during learning, featuring a sharp upwards movement at cue onset
followed by a slower downwards movement in preparation for the next trial.

Next we tested whether similar results could be achieved with a simplified version
of the stochastic synapse dynamics while a potential synaptic connection i is
non-functional, i.e., θi ≤ 0. Eq. (4.5) defines for such non-functional synapses
an Ornstein-Uhlenbeck process, which yields a heavy-tailed distribution for the
waiting time until reappearance (Fig. 4.4F, top). We tested whether similar learning
performance can be achieved if one approximates the distribution by an exponential
distribution, for which we chose a mean of 12 h. The small distance between the
blue and green curve in Fig. 4.4C shows that this is in fact the case for the overall
computational task that includes a task switch at 24 h that we describe below.
This holds in spite of the fact that the approximating exponential distribution is
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less heavy-tailed (Fig. 4.4F, bottom). Altogether these results show that rewiring
and synaptic plasticity according to Eq. (4.5) yields self-organization of a generic
recurrent network of spiking neurons so that it can control an arbitrarily chosen
motor control task.

4.7 Compensation for network perturbations

We wondered whether this model for the task of [Peters et al., 2014] would in
addition be able to compensate for a drastic change in the task, an extra challenge
that had not been considered in the experiments of (A. J. Peters et al., 2014). To test
this we suddenly interchanged after 24 h the actions that were triggered by the
pools D and U. D now caused upwards and U downwards lever movement.

We found that our model compensated immediately (see the faster movement in
the parameter space depicted in Fig. 4.4H) for this perturbation and reached after
about 8 h a similar performance level as before (Fig. 4.4C). This compensation
phase was accompanied by a substantial increase in the turnover of synaptic
connections similar as in experiments for learning of a new task, see e.g. (T. Xu
et al., 2009) (Fig. 4.4E). The turnover rate also remained slightly elevated during
the subsequent learning period. Furthermore, a new assembly of neurons emerged
that now triggered a sharp onset of activity in the pool D (compare the activity
neural traces at h = 22 and h = 46 in Fig. 4.4D). Drifts of neural codes also emerge
in our model during phases of the experiment without perturbations, while the
task performance stays constant, similar to experimental data in (Driscoll and C.
Harvey, 2016) (see Fig. D.1 in Appendix D).

If rewiring was disabled after the task change at 24 h the compensation was
significantly delayed and overall performance declined (see black curve in Fig. 4.4C).
Here, we disallowed any turnover of potential synaptic connections such that the
connectivity remained the same after 24 h. This result suggests that rewiring is
necessary for adapting to the task change. In Fig. 4.4G we further analyzed the
profile of synaptic turnover for the different populations of the network scaffold
in Fig. 4.4A. The synaptic parameters were measured immediately before the task
change at 24 h and compared to the connectivity after compensation at 48 h for the
experiment shown in Fig. 4.4C (blue). Most synapses (66-75%) were non-functional
before and after the task change (stable non-functional). About 20% of the synapses
changed their behavior and either became functional or non-functional. Most
prominently a large fraction (21.9%) of the synapses from hidden neurons to U
became non-functional while only few (5.9%) new connections were introduced.
The connections from hidden to D showed the opposite behavior. This modification
of the network connectome reflects the requirement to reliably route information
about the presence of the cue pattern encoded in the activity of hidden neurons to
the pool D (and not to U) to initiate the lever movement after the task change.
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A structural difference between stochastic learning models such as Bayesian policy
sampling and learning models that focus on convergence of parameters to a
(locally) optimal setting becomes apparent when one tracks the temporal evolution
of the network parameters θ over larger periods of time during the previously
discussed learning process (Fig. 4.4H). Although performance no longer improved
after 5 hours, both network connectivity and parameters kept changing in task-
irrelevant dimensions. For Fig. 4.4H we randomly selected 5% of the roughly 47000

parameters θi and plotted the first 3 principal components of their dynamics. The
task change after 24 hours caused the parameter vector θ to migrate to a new
region within about 8 hours of continuing learning. Again we observe that Bayesian
policy sampling keeps exploring different equally good solutions after the learning
process has reached stable performance.

Relative contributions of spontaneous and activity-dependent synaptic
processes

(Dvorkin and N. E. Ziv, 2016) analyzed the correlation of sizes of postsynaptic
densities and spine volumes for synapses that shared the same pre- and postsy-
naptic neuron, called commonly innervated (CI) synapses, and also for synapses
that shared in addition the same dendrite (CISD). Activity-dependent rules for
synaptic plasticity, such as Hebbian or STDP rules – on which previous models
for network plasticity relied – suggest that the strength of CI and especially CISD
synapses should be highly correlated. But both data from ex-vivo (Kasthuri et
al., 2015) and neural circuits in culture (Dvorkin and N. E. Ziv, 2016) show that
postsynaptic density sizes and spine volumes of CISD synapses are only weakly
correlated, with correlation coefficients between 0.23 and 0.34. Thus even with a
conservative estimate that corrects for possible influences of their experimental
procedure, more than 50% of the observed synaptic strength appears to result from
activity-independent stochastic processes (Fig. 8E of (Dvorkin and N. E. Ziv, 2016)).
A smaller data set (based on 17 CISD pairs instead of the 72 pairs, 10 triplets, and 2

quadruplets in the ex-vivo data from (Kasthuri et al., 2015)) had previously been
analyzed for correlations of synapse strengths of CISD synapses in (Bartol Jr et al.,
2015). They found that the spine volumes differed in these pairs on average by a
factor around 2. Their data also contained a CISD triplet, depicted at the bottom
of Fig. 4B, that apparently had larger differences but was excluded from the data
analysis.

We asked how such a strong contribution of activity-independent synaptic dynamics
affects network learning capabilities, such as the ones that were examined in Fig. 4.4.
We were able to carry out this test because many synaptic connections between
neurons that were formed in our model consisted of more than one synapse (to
be precise: 49% of connections consisted of multiple synapses). We classified pairs
of synapses that had the same pre- and postsynaptic neuron as CI synapses (one
could also call them CISD synapses, since the neuron model did not have different
dendrites), and pairs with the same postsynaptic but different presynaptic neurons
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Fig. 4.5: Contribution of spontaneous and neural activity-dependent processes to synaptic dynamics A,B:
Evolution of synaptic weights wi plotted against time for a pair of CI synapses in (A), and non-CI synapses in (B),
for temperature T = 0.5. C: Pearson’s correlation coefficient computed between synaptic weights of CI and non-CI
synapses of a network with T = 0.5 after 48 h of learning as in Fig. 4.4D-G. CI synapses were only weakly, but
significantly stronger correlated than non-CI synapses. D: Impact of T on correlation of CI synapses (x-axis) and
learning performance (y-axis). Each dot represents averaged data for one particular temperature value, indicated
by the color. Values for T were 1.0, 0.75, 0.5, 0.35, 0.2, 0.15, 0.1, 0.01, 0.001, 0.0. These values are proportional to
the small vertical bars above the color bar. The performance (measured in movement completion time) is measured
after 48 hours for the learning experiment as in Fig. 4.4D-G, where the network changed completely after 24 h.
Good performance was achieved for a range of temperature values between 0.01 and 0.5. Too low (< 0.01) or too
high (> 0.5) values impaired learning. Means + s.e.m. over 5 independent trials are shown. E: Synaptic weights
of 100 pairs of CI synapses that emerged from a run with T = 0.5. Pearson’s correlation is 0.239, comparable to
the experimental data in Fig. 8A-D of (Dvorkin and N. E. Ziv, 2016). F: Estimated contributions of activity history
dependent (green), spontaneous synapse-autonomous (blue) and neuron-wide (gray) processes to the synaptic
dynamics for a run with T = 0.15. The resulting fractions are very similar to those in the experimental data, see
Fig. 8E of (Dvorkin and N. E. Ziv, 2016).
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as non-CI synapses. Example traces of synaptic weights for CI and non-CI synapse
pairs of our network model from Fig. 4.4 are shown in Fig. 4.5A,B. CI pairs were
found to be more strongly correlated than non-CI pairs (Fig. 4.5C). However also
the correlation of CI pairs was quite low, and varied with the temperature parameter
T in Eq. (4.5), see Fig. 4.5D. The correlation was measured in terms of the Pearson
correlation (covariance of synapse pairs normalized between -1 and 1).

Since, the correlation of CI pairs in our model depends on the temperate T, we
analyzed the model of Fig. 4.4 for different temperatures (the temperature had been
fixed at T=0.1 throughout the experiments for Fig. 4.4). In Fig. 4.5D the Pearson cor-
relation coefficient for CI synapses is plotted together with the average performance
achieved on the task of Fig. 4.4D-G for networks with different temperatures T. The
best performing temperature region for the task (0.01 ≤ T ≤ 0.5) roughly coincided
with the region of experimentally measured values of Pearson’s correlation for
CI-synapses. Fig. 4.5E shows the correlation of 100 CI synapse pairs that emerged
from a run with T = 0.5. We found a value of r = 0.239 in this case. This value is
in the order of the lowest experimentally found correlation coefficients in (Dvorkin
and N. E. Ziv, 2016) (both in culture and ex-vivo, see Fig. 8A-D in (Dvorkin and
N. E. Ziv, 2016)). For T = 0.15 we found the best task performance and the closest
match to experimentally measured correlations when the results of (Dvorkin and
N. E. Ziv, 2016) were corrected for measurement limitations: A correlation coeffi-
cient of r = 0.46± 0.034 for CI synapses and 0.08± 0.015 for non-CI synapse pairs
(mean ± s.e.m. over 5 trials, 2-tailed p-value below 0.005 in all trials).

(Dvorkin and N. E. Ziv, 2016) further analyzed the ratio of contributions from
different processes to the measured synaptic dynamics. They analyzed the con-
tribution of neural activity history dependent processes, which amount for 36%
of synapse dynamics in their data, and that of neuron-wide processes that were
not specific to presynaptic activity, but specific to the activity of the postsynaptic
neuron (8%). Spontaneous synapse-autonomous processes were found to explain
56% of the observed dynamics (see Fig. 8E in (Dvorkin and N. E. Ziv, 2016)). The
results from our model, that are plotted in Fig. 4.5F, match these experimentally
found values quite well. Altogether we found that the results of (Dvorkin and
N. E. Ziv, 2016) are best explained by our model for a temperature parameter
between T = 0.5 (corresponding to their lowest measured correlation coefficient)
and T = 0.15 (corresponding to their most conservative estimate). This range
of parameters coincided with well-functioning learning behavior in our model,
which included a test of compensation capability for a change of the task after
24 h (Fig. 4.5D). Hence our model suggests that a large component of stochastic
synapse-autonomous processes, as it occurs in the data, supports efficient network
learning and compensation for changes in the task.
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4.8 Discussion

Recent experimental data ((Dvorkin and N. E. Ziv, 2016), where in Fig. 8 also mouse
brain data from (Kasthuri et al., 2015) were reanalyzed) suggest that common mod-
els for learning in neural networks of the brain need to be revised, since synapses
are subject to powerful processes that do not depend on pre- and postsynaptic
neural activity. In addition, experimentally found network rewiring has so far not
been integrated into models for reward-gated network plasticity. We have presented
a theoretical framework that enables us to investigate and understand reward-based
network rewiring and synaptic plasticity in the context of the experimentally found
high level of activity-independent fluctuations of synaptic connectivity and synap-
tic strength. We have shown that the analysis of the stationary distribution of
network configurations, in particular the Fokker-Planck equation from theoretical
physics, allows us to understand how large numbers of local stochastic processes
at different synapses can orchestrate global goal-directed network learning. This
approach provides a new normative model for reward-gated network plasticity.

We have shown in Fig. 4.2 that the resulting model is consistent with experimental
data on dopamine-dependent spine dynamics reported in (Yagishita et al., 2014),
and that it provides an understanding how these local stochastic processes can
produce function-oriented cortical-striatal connectivity. We have shown in Fig. 4.4
that this model also elucidates reward-based self-organization of generic recurrent
neural networks for a given computational task. We chose as benchmark task the
production of a specific motor output in response to a cue, like in the experiments
of (A. J. Peters et al., 2014). Similarly as reported in (A. J. Peters et al., 2014), the
network connectivity and dynamics reorganized itself in our model, just driven by
stochastic processes and rewards for successful task completion, and reached a high
level of computational performance. Furthermore it maintained this computational
function in spite of continuously ongoing further rewiring and network plasticity.
A quantitative analysis of the impact of stochasticity on this process has shown
in Fig. 4.5 that the network learns best when the component of synaptic plasticity
that does not depend on neural activity is fairly large, as large as reported in the
experimental data of (Kasthuri et al., 2015; Dvorkin and N. E. Ziv, 2016).

Our approach is based on experimental data for the biological implementation
level of network plasticity, i.e., for the lowest level of the Marr hierarchy of models
(Marr and Poggio, 1976). However, we have shown that these experimental data
have significant implications for understanding network plasticity on the top level
("what is the functional goal?") and the intermediate algorithmic level ("what is
the underlying algorithm?") of the Marr hierarchy. They suggest for the top level
that the goal of network plasticity is to sample from a posterior distribution of
network configurations. This posterior should integrate functional demands with
priors that represent structural constraints as well as results of preceding learning
experiences and innate programs. In other words, our model suggests to view
reward-gated network plasticity as Bayesian inference on a slow time scale. This
Bayesian perspective also creates a link to previous work on Bayesian reinforcement
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learning (Vlassis et al., 2012; Rawlik et al., 2013). The experimental data suggest
for the intermediate algorithmic level of the Marr hierarchy a strong reliance on
stochastic search ("synaptic sampling"). The essence of the resulting model for
reward-gated network learning is illustrated in Fig. 4.1: The traditional view of
deterministic gradient ascent (policy gradient) in the landscape (panel b) of reward
expectation is first modified through the integration of a prior (panel c), and then
through the replacement of gradient ascent by continuously ongoing stochastic
sampling (Bayesian policy sampling) from the posterior distribution of panel d,
which is illustrated in panels e and f.

This model makes a number of experimentally testable predictions. Continuously
ongoing stochastic sampling of network configurations suggests that synaptic
connectivity does not converge to a fixed point solution but rather undergoes
permanent modifications (Fig. 4.4G). This prediction is compatible with reports
of continuously ongoing spine dynamics and axonal sprouting even in the adult
brain (A. Holtmaat and Svoboda, 2009; Yasumatsu et al., 2008; Stettler et al.,
2006; Yamahachi et al., 2009; Loewenstein et al., 2011; A. J. Holtmaat et al., 2005;
Loewenstein et al., 2015). These continuously ongoing parameter changes predict
continuously ongoing changes in the assembly sequences that accompany and
control a motor response (see Fig. 4.4D). Our model predicts, that these changes
do not impair the performance of the network, but rather induce the network to
explore different but equally good solutions when exposed for many hours to
the same task (see Fig. 4.4G). Such continuously ongoing drifts of neural codes in
functionally less relevant dimensions have already been observed experimentally in
some brain areas (Y. Ziv et al., 2013; Driscoll and C. Harvey, 2016). Our model also
predicts that the same computational function is realized by the same neural circuit
in different individuals with drastically different parameters, a feature which has
already been addressed in (Tang et al., 2010; Grashow et al., 2010; Marder, 2011;
Prinz et al., 2004). In fact, this degeneracy of neural circuits is thought to be an
important property of biological neural networks (Marder, 2011; Prinz et al., 2004;
Marder and Goaillard, 2006). In addition, our model predicts that neural networks
automatically compensate for disturbances by moving their continuously ongoing
sampling of network configurations to a new region of the parameter space, as
illustrated by the response to the disturbance marked by ∗ in Fig. 4.4G.

In conclusion the mathematical framework presented in this article provides a prin-
cipled way of understanding the complex interplay of deterministic and stochastic
processes that underlie the implementation of goal-directed learning in neural
circuits of the brain. It also offers a solution to the problem how reliable network
computations can be achieved with a “dynamic connectome” (Rumpel and Triesch,
2016). We have argued that the stationary distribution of the high-dimensional
parameter vector θ that results from large numbers of local stochastic processes
at the synapses provides a time-invariant perspective of salient properties of a
network. Standard reward-gated plasticity rules can achieve that this stationary
distribution has most of its mass on regions in the parameter space that provide
good network performance. The stochastic component of synaptic dynamics can
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4.8 Discussion

flatten or sharpen the resulting stationary distribution, depending on whether
the scaling parameter T (“temperature”) of the stochastic component is larger or
smaller than 1. A functional benefit of this stochastic component is that the network
keeps exploring its parameter space even after a well-performing region has been
found. This enables the network to migrate quickly and automatically to a better
performing region when the network or task change. We found in the case of the
motor learning task of Fig. 4.4 that a temperature T around 0.15, which lies in the
same range as related experimental data (see Fig. 4.5d), suffices to provide this
functionally important compensation capability.
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Appendix B
Appendix to Chapter 2: STDP in winner-take-all
circuits approximates hidden Markov model
learning

B.1 Spiking network model

In this section we provide additional details to the derivations of the network model
and its stochastic dynamics. For the sake of simplicity, throughout the theoretical
analysis we use a simple EPSP kernel of the form

ε (s) = exp (−s/τ) ·Θ(s). (B.1)

Thus, a kernel with a single exponential decay with time constant τ. Here, Θ(s)
determines the Heaviside step function which is 1 for s > 0 and zero else.

The derivation provided here can be extended to more complex EPSP shapes, if
two prerequisites are fulfilled. First, a suitable Markov state must be found that
describes the dynamics of the EPSP kernel, i.e. a state sm must exist for which we
can write p (sm | sm−1, sm−2, . . . ,θ) = p (sm | sm−1,θ). In fact, this property holds
true for any deterministic function, although the required Markov state can be very
complex. Second, the statistics of the EPSPs induced by the kernel must be readily
described by an exponential family distribution. For this latter requirement the
same considerations as for the afferent synapses apply, which have been addressed
in (Nessler et al., 2010; Habenschuss et al., 2013; Nessler et al., 2013). The simplest
case for which these conditions are fulfilled is the one considered in the last
experiment where rectangular EPSPs and constant inter-spike intervals ∆m of the
same length were used. In that case the network state collapses to sm = zm, which
follows a multinomial distribution as considered in (Nessler et al., 2010).

B.2 Details to: Forward sampling in WTA circuits

We show here that the WTA circuit correctly implements forward sampling in a
HMM. In particular we show that a HMM with an observation model from the
exponential family can be directly mapped to the network dynamics. Many of the
theoretical details for the special case of stationary input patterns were analyzed in
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(Nessler et al., 2010; Habenschuss et al., 2013; Nessler et al., 2013), here we focus on
the derivations specific for the network with lateral excitatory connections.

First we define a HMM with observations xm and hidden state sm = {zm,ym, ∆m}
to reflect the dynamics of the WTA circuit. The HMM joint distribution is given by
equation (2.4). Each time step m factorizes into the observation model p (xm | sm,θ)
and the prediction model p (sm | sm−1,θ). We assume a mixture of exponential family
distributions for the observation model. Many interesting distributions are members
of this family, e.g. the Poisson or the Normal distribution. The network output zm
determines which mixture component is responsible for the observation xm. In its
generic form the likelihood of the N-dimensional observations xm given mixture
component k can be written as

p (xm | zm ≡ k,θ) = h(x) (xm) · exp

(
N

∑
i=1

wki · xmi − A(x)
k (W )

)
(B.2)

where h(x) (xm) is a base measure and A(x)
k (W ) is the log-partition function, which

assure that (B.2) is correctly normalized. In this framework xm determines the
sufficient statistics of the input distribution, e.g. the current input rate for the
Poisson distribution, which is estimated by filtering the input spike train with
the EPSP kernel. Since the input and output spike times are independent, given
optimal WTA behavior, we exploit the conditional independence p (xm | sm,θ) =
p (xm | zm,θ). We assume that inputs are homogeneous, meaning that the sums over
all input channels are constant. More precisely, we assume that ∑N

i=1 xi(t) = A(x)
0

and ∑K
j=1 yj(t) = A(y)

0 holds true at all times. These assumptions were never
perfectly fulfilled in the simulations, but nevertheless the algorithm was robust
against deviations from these constraints throughout all experiments. The choice of
the log-partition function determines the member from the exponential family. The
derivations here were done for Poisson distributed inputs but they equally apply
to other members. Given the homogeneity assumption for the input we find the
log-partition to be A(x)

k (w) = ∑N
i=1 ewki (Habenschuss et al., 2013).

The prediction model has to reflect the dynamics of the state sm. At each time point
t̂m the spiking output projects the K-dimensional state ym to the discrete value zm,
which is then projected in the next step to ym+1. Using the independence properties,
that emerge from these dynamics, the prediction model factorizes to

p (sm | sm−1,θ) = p (zm | ym,θ) p (ym | zm−1,ym−1, ∆m−1) p (∆m−1) . (B.3)

The last term determines the distribution over the inter-spike intervals ∆m. Assum-
ing Poisson distributed spike times t̂m this is given by an exponential distribution
with mean ν̂−1, i.e.

p (∆m) =
1
ν̂

e
∆m

ν̂ . (B.4)
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The second part of (B.3) deterministically updates the EPSPs. Using the simple
kernel function (B.1) the lateral EPSPs can be updated online

yj(t̂m + ∆) =

{
e−∆/τ ·

(
yjm + 1

)
, if neuron j spiked at time t̂m

e−∆/τ · yjm, else
. (B.5)

Since Eq. (B.5) is deterministic, p (ym | zm−1,ym−1, ∆m−1) in (B.3) collapses to a
single mass point, where the update equation (B.5) is fulfilled. The second and
third parts of (B.3) project the spiking network output to the K-dimensional space
of the EPSP time courses (2.2). The first part of the prediction model projects it
back to a discrete variable drawn from a multinomial distribution p (zm | ym,θ).
Using Bayes rule, we can decompose this into

p (zm | ym,θ) = p (ym | zm,θ)
p (zm | θ)
p (ym | θ)

. (B.6)

The likelihood term can again be expressed in terms of an exponential family
distribution

p (ym | zm ≡ k,θ) = h(y) (ym) · exp

(
K

∑
j=1

vkj · ymj − A(y)
k (v)

)
. (B.7)

For each neuron k the prior probability to fire is determined by the excitability
parameter, i.e. p (zm ≡ k | θ) = ebk . In (Nessler et al., 2010) a learning rule was
presented for these network parameters, which equally applies to the framework
presented here. For simplicity however, we can assume that all neurons have the
same prior probability to fire, i.e. p (zm ≡ k | θ) = 1

K .

Under the homogeneity condition and if the synaptic weights obey ∑K
j=1 evkj = A(y)

0 ,

the log-partition function A(y)
k (v) becomes constant over k. It has been shown that

this condition emerges automatically from the STDP rules (2.7) (Habenschuss et al.,
2013). Using this, the probability of generating a state sequence S using forward
sampling can be directly linked to the network dynamics. The true posterior
distribution (2.8) and the proposal distribution for forward sampling only differ in
the normalization. Forward sampling is done, by explicitly normalizing the state
update in (2.4) at each time point m (Koller and Friedman, 2009). This normalization
is given by

∫
p (xm | s′m) p (s′m | sm−1)ds′m = p (xm | sm−1), from which we find the

proposal distribution to be given by

q (S | X ,θ) =
M

∏
m=1

p (xm | sm) p (sm | sm−1)

p (xm | sm−1)

=
M

∏
m=1

p (zm | xm,ym,θ) p (ym | zm−1,ym−1, ∆m−1) p (∆m−1) .

(B.8)
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This recovers the result of equation (2.5). The first term of the second line can be
written using (B.2), (B.6) and (B.7)

p (zm ≡ k | xm,ym,θ) =
p (xm | zm ≡ k,θ) p (zm ≡ k | ym,θ)

∑K
l=1 p (xm | zm ≡ l,θ) p (zm ≡ l | ym,θ)

= exp

(
N

∑
i=1

wki · xmi +
K

∑
j=1

vkj · ymj + bk − i(t̂m)

)
,

with i(t̂m) given by (2.3). Here we have used that the marginal in the denominator
of (B.6) does not depend on k and so do A(x)

k (w) and A(y)
k (v) under the conditions

described above. Therefore they cancel out through the normalization (2.3). Com-
paring this result with the neuron dynamics (2.6) and (2.5) it is easy to verify that
the WTA circuit correctly realizes the HMM forward sampler (B.8).

B.3 Details to: STDP installs a stochastic approximation
to EM parameter learning

In this section we derive the optimal updates for the model parameters in terms of
the expectation-maximization (EM)-algorithm and show that the STDP rules (2.7)
are stochastic approximations. The goal of the EM optimization is to minimize the
error between the model likelihood p (X | θ) and the empirical distribution over
input sequences, which we denote by p∗ (X). A natural way to express this error is
the Kullback-Leibler divergence. Thus, the update can be derived by minimizing

KL (p∗ (X) ‖ p (X | θ)) =
∫

p∗
(
X ′
)

log
p∗ (X ′)

p (X ′ | θ)dX ′

= −Hp∗ (X)− 〈 log p (X | θ) 〉p∗ , (B.9)

where Hp∗ (X) is the entropy of the true input distribution and 〈 · 〉p∗ denotes
the expectation with respect to p∗ (X). We are interested in a solution to θ that
minimizes (B.9). Since Hp∗ (X) is constant for a given input sequence X , it can
be ignored and minimizing (B.9) becomes equivalent to maximizing the expected
log-likelihood 〈 log p (X | θ) 〉p∗(X). The derivative of the log-likelihood can be
simplified to

∂

∂θ
log p (X | θ) =

∂

∂θ
log

∫
p
(
X ,S ′

∣∣ θ)dS ′

=
∫

p
(
S ′
∣∣ X ,θ

) ∂

∂θ
log p

(
X ,S ′

∣∣ θ)dS ′ . (B.10)

The integral can again be written in terms of an expectation. The condition for the
maximum likelihood becomes

〈 ∂

∂θ
log p (X ,S | θ) 〉 p̂ = 0 , (B.11)
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where 〈 · 〉 p̂ denotes the expectation with respect to p∗ (X) p (S | X ,θ). The deriva-
tive in this last form can be easily calculated. By inserting the model joint distribu-
tion (2.4) it yields for the model parameters vkj of neuron k

∂

∂vkj
log p (X ,S | θ) =

=
∂

∂vkj
log

M

∏
m=1

p (xm | zm,θ) p (zm | ym,θ) p (ym | zm−1,ym−1, ∆m−1) p (∆m−1)

=
M

∑
m=1

∂

∂vkj
δk,zm

(
K

∑
j=1

vkj · ymj − Ak(v)

)

=
M

∑
m=1

δk,zm

(
ymj − evkj

)
. (B.12)

A similar result can be found for wki. Here, δij is the Kronecker delta, which is one
if i = j and zero otherwise. Inserting this result into (B.11), setting the derivative to
zero and rearranging the terms, we identify the optimal model parameters

w∗ki = log〈 δk,zm · xi(t̂) 〉 p̂ − log〈 δk,zm 〉 p̂
v∗kj = log〈 δk,zm · yj(t̂) 〉 p̂ − log〈 δk,zm 〉 p̂

. (B.13)

In the E-step the expectations 〈 · 〉 p̂ are evaluated. Note that the expectations are
taken over the whole sequence of M output spikes. In the M-step the parameters
are updated to their new values. An estimate of these expectations is computed by
the network generating output spike sequences. A local minimum of (B.9) can be
found by iteratively evaluating the E- and M-step.

We will now show that the STDP protocol introduced here converges stochastically
to the same result as the EM updates (B.13). We will derive this results for the
lateral weights vkj only, since adaption for other parameters is straightforward.
Including the reward mechanism, the weight update consists of two stochastic
processes: the forward sampling and the stochastic decision for the rejection step
(2.11). The updates are made for each output spike of the network and therefore
they will always fluctuate. In our analysis we are interested in the equilibrium
point of these fluctuations for some given target distribution p∗ (X). This can be
expressed for the expected weight update using (2.7),(2.9) and (2.11), for which we
get

〈
∫

q
(
S ′
∣∣ X ,θ

)
∆vkj(t̂) dS ′ 〉p∗ = 0

↔ 〈
∫

q
(
S ′
∣∣ X ,θ

)
· r (S′)

〈 r(S′) 〉q(S′ |X ,θ)
· δk,zm ·

(
e−vkj yj(t̂)− 1

)
dS ′ 〉p∗ = 0 ,
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which by inserting equation (2.10) yields

↔ 〈
∫

p
(
S ′
∣∣ X ,θ

)
· δk,zm ·

(
e−vkj yj(t̂)− 1

)
dS ′ 〉p∗ = 0

↔ 〈 δk,zm · e−vkj yj(t̂)− δk,zm 〉 p̂ = 0

↔ vkj = log〈 δk,zm · yj(t̂) 〉 p̂ − log〈 δk,zm 〉 p̂ .

The last line is equivalent to the solution of the EM-algorithm (B.13).

B.4 Details to: A refined EM approximation using
rejection sampling

Here we present additional details to the rejection sampling algorithm that was
used throughout the numerical experiments. The algorithm requires to evaluate
two quantities that evolve on different time scales. The synaptic weight updates
need to be updated on each spike, whereas the importance weights (2.10) need to
be tracked over a whole input sequence.

The importance weight over sequence S is given by (2.10) which can be verified by
inserting equation (B.8) and (2.4) into (2.10). Using (2.3) we find that this quantity
computes to

r (S) = exp

(
M

∑
m=1

i(t̂m)− log p (xm | θ)− log p (ym | θ)
)

, (B.14)

where the marginals p (xm | θ) and p (ym | θ) are given by

p (xm | θ) =
K

∑
l=1

exp

(
N

∑
i=1

wli · xmi

)
,

p (ym | θ) =
K

∑
l=1

exp

(
K

∑
j=1

vl j · ymj

)
.

(B.15)

The term p (xm | θ) is arbitrary since it cancels out in the rejection sampling
algorithm, but we found that (B.15) achieves better performance including the
dependence on p (xm | θ), when using the the rejection sampler with the simple
tracking mechanism for c. The performance of the rejection sampling algorithm
essentially depends on the variance of the importance weights. The lower this
variance is, the more generated sequences will be accepted. Since the importance
weights are only needed to compare the quality of different proposed hidden state
trajectories, all fluctuations that depend on the feedforward weights and inputs
only, can be discarded. Explicitly subtracting p (xm | θ) allows to minimize the
fluctuations injected by the feedforward synapses. This modification had a large
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impact on reducing the number of rejected trajectories and therefore increased
learning speed.

The likelihood of an input sequence X can be approximated using a set of L paths
S1 . . .SL sampled from (2.5) given by

p (X | θ) = 〈 r(S) 〉q(S |X ,θ) ≈
1
L

L

∑
l=1

r (Sl) := LL(X) . (B.16)

In the simplest approximation the expectation can be taken over a single path.
Thus, we find that the sequence log-likelihood can be directly approximated by
(B.14), i.e.

log p (X | θ) ≈
M

∑
m=1

log p (xm | sm−1,θ) := log L̂(X) . (B.17)

In the AGL experiments this simple approximate likelihood was used to distinguish
between grammatical and non-grammatical sequences.

The probability of generating a sequence S through the state space is given by the
proposal distribution q (S | X ,θ), which was defined in equation (2.5). The bias
between this and the model distribution p (S | X ,θ), is given by the importance
weight r (S), which we have derived earlier (2.10). This bias can be eliminated
using rejection sampling, i.e. accepting the sampled sequences based on a stochastic
decision proportional to the importance weight. In the neural network we imple-
mented this using an eligibility trace of synaptic weight changes (Izhikevich, 2007).
The weight updates were accumulated over the whole input sequence

∆ŵki =
M

∑
m=1

∆wki(t̂m) and ∆v̂kj =
M

∑
m=1

∆vkj(t̂m) . (B.18)

The synaptic weights can be learned by modulating the learning rate ξ when
incorporating the synaptic weight changes (B.18) at the end of a sequence. The
learning rate must be modulated according to the importance weights. In the
simulations we used a stochastic binary decision, whether to accept or reject the
sampled sequence

p (ξ = ξ0 | S) = c · r (S) , p (ξ = 0 | S) = 1− c · r (S) , (B.19)

where ξ0 is a constant learning rate and c is a constant that scales the average
number of rejected samples. The probability of accepting a path S is directly
proportional to the importance weights. Using this, we immediately find that
the mean number of rejected samples L̂X for an input sequence X is inversely
proportional to the sequence likelihood, i.e.

L̂X =
1

c · 〈 r(S′) 〉q(S′ |X ,θ)
=

1
c · p (X | θ) . (B.20)

105



B Appendix to Chapter 2: STDP in winner-take-all circuits approximates HMM learning

The average learning rate assigned to a sampled sequence S depends on the
probability of sampling S from the proposal distribution and the number of times
the sequence is resampled. Using this, (B.20) and (B.19) we find the expected
learning rate associated with a state sequence S to be given by

〈 ξ 〉q(S′ |X ,θ) =
ξ0 · r(S)

〈 r(S′) 〉q(S′ |X ,θ)
. (B.21)

The constant c in (B.19) can be used to control the average number of rejected
samples. We used a simple linear tracking algorithm for c in the logarithmic
domain. Whenever a path was accepted log c was decreased by L∗ · 10−4, if the
path was rejected log c was increased by 10−4. As learning proceeds the network
converges to an equilibrium acceptance rate, determined by L∗. Throughout the
experiments this parameter was tuned to achieve the desired mean number of
samples over the whole training session. A quantitative comparison between
the learning performances achieved with the batch algorithm and this tracking
mechanism, is given in Fig. 2.8.

In the batch version of the algorithm a set of sampled paths with a fixed size L was
used to compute c directly, which was chosen such that the distribution over the L
paths was correctly normalized. Using (B.19) we find this to be fulfilled for

c =
1

∑L
l=1 r (Sl)

. (B.22)

A sequence S was then chosen at random from the set of L sampled sequences.
The importance sampler was realized by directly weighting the synaptic changes
by the scalar value of the normalized importance weight, i.e. ξ = ξ0·r(S)

∑L
l=1 r(Sl)

.

B.5 Simulations and data analysis

All simulations were done in Matlab (Mathworks), directly implementing the
derived equations without discrete time approximations. The population output
rate ν̂ was tuned to give an average output rate of 5-20Hz per neuron. Prior to
learning all weights were set to small equally distributed random values. The
weight updates were incorporated using a constant learning rate ξ = 0.005.

Other than in the theoretical analysis where synaptic delays were neglected for the
sake of simplicity, we used synaptic delays of 5ms for the lateral excitatory synapses
in the numerical experiments. We also used a more realistic double exponential
EPSP kernel of the form (Gerstner and Kistler, 2002)

ε (s) = (exp (−s/τs)− exp (−s/τr)) ·Θ(s) , (B.23)

where τs = 2ms and τr = 20ms are the time constants of the falling and rising edges
of the EPSP kernel, respectively. The above theoretical analysis applies equally to
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this kernel, but would be slightly more complex since each of the two exponential
decay terms comprises a piece of memory which has to be reflected in the network
state sm.

The diagonal of the weight matrix vkk was set to zero and these weights were
excluded from learning. Instead, a refractory mechanism was used with a kernel
given by (Gerstner and Kistler, 2002)

η (s) = η0 · exp
(
−s/τre f r

)
, (B.24)

where η0 = 10 is the maximum amplitude of the refractory kernel, τre f r = 5ms is
the refractory time constant and s is the time elapsed since the last output spike.
Equation (B.24) was subtracted from the membrane potential (2.1).

B.6 Details to: Learning to predict spike sequences
through STDP

The input patterns were generated by drawing for each afferent neuron and each
pattern a value from the Beta distribution with parameters α = 0.2, β = 0.8 and
multiplying this value with the maximum rate of 75Hz. Using these rate patterns,
input spikes were then generated by creating independent spike events from a
Poisson process.

To facilitate the interpretability of the network output, we applied a smoothing
and sorting algorithm. The spike statistics were estimated using the perievent time
histogram (PETH) on the network output (Luczak et al., 2009). The network output
rates were computed for time bins of 1ms and then filtered with a Gaussian filter
function (σ = 10ms) to give the smoothed single-trial estimated rates ν̄k(t). These
spike histograms were averaged over 100 trial runs to give the time estimated rates
νPETH

k (t) for each neuron k. For neuron sorting we evaluated the point in time with
the highest activity

t∗k = arg max
t

νPETH
k (t) . (B.25)

This was used as criterion to determine the rank index of the output neurons for
sorting. The PETHs for all sequences of a learning problem were concatenated
before evaluating the maximum firing time (B.25) to ensure a visual separation
between neurons that fired preferentially during one specific sequence. This neuron
order was also used to sort the rows and columns of the synaptic weight matrix
shown in Fig. 2.2 (neurons that fired on average less than one spike per sequence
were excluded from this plot).

To quantify the similarity between spontaneous and evoked network activity we
used Spearman’s rank correlation (Luczak et al., 2009). The correlations were
computed by evaluating the rank correlation between the PETH computed on a
single spontaneous sequence and the evoked activity averaged over 100 trial runs.
For the evaluation only the neurons that produced at least one spike during the
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spontaneous run were used. The firing rates in Fig. 2.4A,B were estimated over 100

input sequences. Only the time window during which pattern a was present on the
input was analyzed. Neurons that fired with average rates less than 10Hz during
these time windows were excluded from the analysis. Neurons with rates above
10Hz for patterns appearing in one sequence, but not the other, were classified as
context specific. Those that fired rates above 10Hz during both sequences were
classified as context unspecific.

B.7 Details to: Mixed selectivity emerges in multiple
interconnected WTA circuits

Here a linear classifier was used to identify separating planes in the network activity.
We trained a soft-margin support vector machine with linear kernels (Cortes and
Vapnik, 1995; Schölkopf et al., 1999; Bishop, 2006) to classify the network activity
during the delay phase of sequence AB-delay-ab against that of BA-delay-ba. The
resulting linear models were used to classify 50 test samples from each of the two
sequences. Sequences that were at any point in time on the wrong side of the
separating plane were reported as wrongly classified. The mean classification rates
over these test samples were reported.

To illustrate the network state during the holding phase we used the dynamic
PCA (jPCA) method in experiment 2. This method was recently introduced as an
extension to normal PCA, with better applicability to dynamical data (Churchland
et al., 2012). We applied this method on the smoothed network activities ν̄k(t) of
all network neurons. The jPCA identifies the plane that is aligned with the fastest
rotation in the data set. Briefly, the jPCA first uses a preprocessing step in which
normal PCA is performed on the data to reduce the dimensionality. We used the
first 6 PCA components as suggested in (Churchland et al., 2012). Subsequently
a projection from the neural state to its slope is found. A skew-symmetric matrix
is constructed that projects the PCA components into its first order derivatives.
The solution to this constraint optimization problem is a matrix defining the best-
fitting rotational linear dynamical system which can describe the data set (see the
supplementary derivation of (Churchland et al., 2012) for details). The orthogonal
basis of the jPCA is then given by the real plane associated with the eigenvectors
with largest imaginary eigenvalues of this projection matrix. This plane is aligned
with the fastest rotation in the data set.

B.8 Details to: Trajectories in network assemblies emerge
for stationary input patterns

In this experiment we employed homeostatic mechanism to control the excitabilities
bk. A detailed derivation of this intrinsic plasticity was presented in (Habenschuss
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B.9 Details to: Learning the temporal structure of an artificial grammar model

et al., 2012). Following this approach we slowly regulated bk over time to maximizes
the entropy of the network output by demanding that the overall output rate of
each neuron, measured over a long time window T(H), converges to the target rate
1
K ν̂, i.e.

∫ T(H)

0 νk(t)dt = ν̂
K for each neuron k. A stochastic approximation to that can

be achieved by updating the excitabilities bk in (2.1)

∆bk =

{
µ ·
( 1

K − 1
)

if neuron k spikes
µ · 1

K else
, (B.26)

where µ is an update rate we have chosen to be µ = 0.1 in this experiment. This
mechanism assures that all network neurons participate on average equally in the
representation of the hidden state. If µ is chosen small enough this method assures
that all network neurons participate equally in the representation of the hidden
state (Habenschuss et al., 2012).

B.9 Details to: Learning the temporal structure of an
artificial grammar model

Here we used two data sets from (Conway and Christiansen, 2005) - the 12 se-
quences reported there in appendix A for training and the 20 sequences from
table 1 for testing. In each training iteration we randomly drew one example input
sequence from the train set. For testing we created 100 legal and illegal sequences
randomly drawn from the test set. The sequences were encoded using sparse input
patterns, encoded by 10 input neurons, two of which fired with a rate of 100Hz for
50ms for each of the five input pattern, while the others remained silent. All spike
patterns were not kept fixed but generated newly at each occurrence of the pattern
and also during replay for rejection sampling. In the AGL experiments, the initial
network state was reset to zero x0 = 0, y0 = 0 before a new input sequence was pre-
sented. To classify grammatical against non-grammatical sequences the one-sample
approximation of the log-likelihood (B.17) was computed for all test sequences. A
threshold was computed by taking the mean of these log-likelihoods. Sequences
S for which log L̂(S) lied above this threshold were classified as grammatical, all
others as non-grammatical.

B.10 Details to: Comparison of the convergence speed
and performance of the approximate algorithms

In this experiment, random teacher HMMs were generated by drawing initial state,
observation and transition probability tables from a Beta distribution with α = 0.2
and β = 0.8 and then normalizing the tables to proper conditional probabilities.
The models had K = 5 states and N = 10 discrete observations. These models
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B Appendix to Chapter 2: STDP in winner-take-all circuits approximates HMM learning

were then used to generate observation sequences. We drew a training set of 200

and a validation set of 2000 sequences of length M = 25. The complete training
data set was repeatedly present to the network. We refer to the presentation of
the whole batch of training sequences as an epoch. The weight updates for the
WTA circuit were applied at the end of each training sequence. In each epoch
all sequences were presented in random order. For the Baum-Welch algorithm
(which is not an online algorithm) the updates were computed over all sequences
in each epoch (batch learning). We generated 50 trials using 50 different teacher
HMMs. The performance of rejection sampling was assessed for the two algorithms
to evaluate the normalizing constant c – the exact version (B.22) and the linear
tracking algorithm.
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Appendix C
Appendix to Chapter 3: Network plasticity as
Bayesian inference

C.1 Details to: Learning a posterior distribution through
stochastic synaptic plasticity

Here we prove that p∗(θ) = p(θ| x) is the unique stationary distribution of the
parameter dynamics (3.3) that operate on the network parameters θ = (θ1, . . . , θM).
Convergence to this stationary distribution then follows for strictly positive p∗(θ).
In fact, we prove here a more general result for parameter dynamics given by

dθi =

(
b(θi)

∂

∂θi
log pS (θ) + b(θi)

∂

∂θi
log pN (x|θ) + T b′(θi)

)
dt

+
√

2Tb(θi) dWi

(C.1)

for i = 1, . . . , M and b′(θi) := ∂
∂θi

b(θi). This dynamics includes a temperature
parameter T and a sampling-speed factor b(θi) that can in general depend on the
current value of the parameter θi. The temperature parameter T can be used to scale
the diffusion term (i.e., the noise). The sampling-speed factor controls the speed of
sampling, i.e., how fast the parameter space is explored. It can be made dependent
on the individual parameter value without changing the stationary distribution.
For example, the sampling speed of a synaptic weight can be slowed down if it
reaches very high or very low values. Note that the dynamics (3.3) is a special case
of the dynamics (C.1) with unit temperature T = 1 and constant sampling speed
b(θi) ≡ b. We show that the stochastic dynamics (C.1) leaves the distribution

p∗(θ) ≡ 1
Z q∗(θ) (C.2)

invariant, where Z is a normalizing constant Z =
∫

q∗(θ) dθ and

q∗(θ) = p(θ | x) 1
T . (C.3)

Note that the stationary distribution p∗(θ) is shaped by the temperature param-
eter T, in the sense that p∗(θ) is a flattened version of the posterior for high
temperature.
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C Appendix to Chapter 3: Network plasticity as Bayesian inference

The provided proof applies for standard Wiener processes Wi, where process
increments over time t− s are normally distributed with zero mean and variance
t− s:

W t
i −W s

i ∼ Normal(0, t− s) , (C.4)

whereW t
i denotes the value of an instantiation of the process at time t.

Using this we can formulate the following theorem:

Theorem 1. Let p(x,θ) be a strictly positive, continuous probability distribution over
continuous or discrete states x = x1, . . . ,xN and continuous parameters θ = (θ1, . . . , θM),
twice continuously differentiable with respect to θ. Let b(θ) be a strictly positive, twice
continuously differentiable function. Then the set of stochastic differential equations (C.1)
leaves the distribution p∗(θ) invariant. Furthermore, p∗(θ) is the unique stationary distri-
bution of the sampling dynamics.

Proof of Theorem 1

First, note that the first two terms in the drift term of Eq. (C.1) can be written as

b(θi)
∂

∂θi
log pS (θ) + b(θi)

∂

∂θi
log pN (x|θ)

= b(θi)
∂

∂θi
log(pS (θ)pN (x|θ))

= b(θi)
∂

∂θi
log p(x,θ)

= b(θi)
∂

∂θi
log(p(θi|x,θ\i)p(x,θ\i))

= b(θi)

(
∂

∂θi
log(p(θi|x,θ\i) +

∂

∂θi
log p(x,θ\i))

)
= b(θi)

∂

∂θi
log(p(θi|x,θ\i) ,

where θ\i denotes the vector of parameters excluding parameter θi. Hence, the
dynamics (C.1) can be written as

dθi =

(
b(θi)

∂

∂θi
log p(θi|x,θ\i) + T b′(θi)

)
dt +

√
2Tb(θi) dWi (C.5)

(for i = 1, . . . , M). Eq. (C.5) has drift Ak(θ) and diffusion Bik(θ):

Ak(θ) = b(θi)
∂

∂θi
log p(θi|x,θ\i) + T b′(θi) ,

Bii(θ) = 2T b(θi) , (C.6)
Bik(θ) = 0 for i 6= k .
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C.1 Details to: Learning a posterior distribution through stochastic synaptic plasticity

Hence, the Itô stochastic differential equations (C.5) translate into the following
Fokker-Planck equation,

d
dt

pFP(θ, t) = ∑
i
− ∂

∂θi

((
b(θi)

∂

∂θi
log p(θi|x,θ\i) + T b′(θi)

)
pFP(θ, t)

)

+
∂2

∂θ2
i
(T b(θi)pFP(θ, t)) , (C.7)

where pFP(θ, t) denotes the distribution over network parameters at time t. Plugging
in the presumed stationary distribution p∗(θ) = 1

Z q∗(θ) on the right hand side of
Eq. (C.7), one obtains

d
dt

pFP(θ, t) = ∑
i
− ∂

∂θi

(
(b(θi)

∂

∂θi
log p(θi|x,θ\i) + T b′(θi))

q∗(θ)
Z

)

+
∂2

∂θ2
i

(
T b(θi)

q∗(θ)
Z

)

=
1
Z

[
∑

i
− ∂

∂θi

(
(b(θi)

∂

∂θi
log p(θi|x,θ\i) + T b′(θi)) q∗(θ)

)

+
∂

∂θi

(
T b′(θi)q∗(θ) + T b(θi)

∂

∂θi
q∗(θ)

) ]

=
1
Z

[
∑

i
− ∂

∂θi

(
b(θi)

∂

∂θi
log p(θi|x,θ\i) q∗(θ)

)

+
∂

∂θi

(
T b(θi)

∂

∂θi
q∗(θ)

) ]

=
1
Z

[
∑

i
− ∂

∂θi

(
b(θi)

∂

∂θi
log p(θi|x,θ\i) q∗(θ)

)

+
∂

∂θi

(
T b(θi) q∗(θ)

∂

∂θi
log q∗(θ)

) ]
,
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C Appendix to Chapter 3: Network plasticity as Bayesian inference

which by inserting q∗(θ) = p(θ | x) 1
T becomes

d
dt

pFP(θ, t) =
1
Z

[
∑

i
− ∂

∂θi

(
b(θi)

∂

∂θi
log p(θi|x,θ\i) q∗(θ)

)
+

∂

∂θi

(
T b(θi) q∗(θ)

1
T

∂

∂θi
log p(θ|x)

) ]
=

1
Z

[
∑

i
− ∂

∂θi

(
b(θi)

∂

∂θi
log p(θi|x,θ\i) q∗(θ)

)
+

∂

∂θi

(
b(θi) q∗(θ)

∂

∂θi
[log p(θ\i|x) + log p(θi|x,θ\i)]

) ]

=
1
Z

[
∑

i
− ∂

∂θi

(
b(θi)

∂

∂θi
log p(θi|x,θ\i) q∗(θ)

)
+

∂

∂θi

(
b(θi) q∗(θ)

∂

∂θi
log p(θi|x,θ\i)

) ]
= ∑

i
0 = 0 .

This proves that p∗(θ) is a stationary distribution of the parameter sampling dy-
namics (C.5). Under the assumption that b(θi) is strictly positive, this stationary
distribution is also unique. If the matrix of diffusion coefficients is invertible, and
the potential conditions are satisfied, the stationary distribution can be obtained
(uniquely) by simple integration. Since the matrix of diffusion coefficients is diago-
nal in our model, the diffusion coefficient matrix is trivially invertible if all diagonal
elements, i.e. all b(θi), are positive. Also the potential conditions are fulfilled (by
design), as can be verified by substituting (C.6) into Equation (5.3.22) in (Gardiner,
2004),

Zi(θ) = B−1
ii (θ)

(
2Ai(θ)−

∂

∂θi
Bii(θ)

)
=

1
2Tb(θi)

(
2b(θi)

∂

∂θi
log p(θi|x,θ\i) + 2T b′(θi)− 2T b′(θi)

)
=

1
T

∂

∂θi
log p(θi|x,θ\i) ,

and by using that the normalization constant Z is independent of θi we can write

Zi(θ) =
1
T

∂

∂θi
log p(θi|x,θ\i) =

1
T

∂

∂θi

(
log p(θi|x,θ\i) + log p(θ\i|x)− logZT

)
=

1
T

∂

∂θi
log

p(θ|x)
ZT

=
∂

∂θi
log

p(θ|x)1/T

Z =
∂

∂θi
log p∗(θ) .

This shows that Z(θ) = (Z1(θ), . . . , ZM(θ)) is a gradient. Thus, the potential
conditions are met and the stationary distribution is unique, q.e.d.
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C.1 Details to: Learning a posterior distribution through stochastic synaptic plasticity

For strictly positive b(θ), the diffusion matrix B (Eq. (C.6)) is positive definite.
Convergence to the stationary distribution follows then directly for strictly positive
p∗(θ) (see Section 3.7.2 in (Gardiner, 2004)).

Online approximation of the batch learning rule

We show here that the rule (3.5) is a reasonable approximation to the batch-rule
(3.3). According to the dynamics (C.1), synaptic plasticity rules that implement
synaptic sampling have to compute the log likelihood derivative ∂

∂θi
log pN (x|θ).

We assume that every τx time units a different input xn is presented to the network.
For simplicity, assume that x1, . . . ,xN are visited in a fixed regular order. Under
the assumption that input patterns are drawn independently, the likelihood of the
generative model factorizes

pN (x, |θ) =
N

∏
n=1

pN (xn|θ) . (C.8)

The derivative of the log likelihood is then given by

∂

∂θi
log pN (x|θ) =

N

∑
n=1

∂

∂θi
log pN (xn|θ) . (C.9)

Using Eq. (C.9) in the dynamics (C.1), one obtains

dθi =

(
b(θi)

∂

∂θi
log pS (θ) + b(θi)

N

∑
n=1

∂

∂θi
log pN (xn|θ) + T b′(θi)

)
dt

+
√

2Tb(θi) dWi .

(C.10)

Hence, the parameter dynamics depends at any time on all network inputs and
network responses.

This “batch” dynamics does not map readily onto a network implementation
because the weight update requires at any time knowledge of all inputs xn. We
provide here an online approximation for small sampling speeds. To obtain an
online learning rule, we consider the parameter dynamics

dθi =

(
b(θi)

∂

∂θi
log pS (θ) + Nb(θi)

∂

∂θi
log pN (xn|θ) + T b′(θi)

)
dt

+
√

2Tb(θi) dWi .
(C.11)

As in the batch learning setting, we assume that each input xn is presented for a time
interval of τx. Integrating the parameter changes (C.11) over one full presentation
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C Appendix to Chapter 3: Network plasticity as Bayesian inference

of the data x, i.e., starting from t = 0 with some initial parameter values θ(0) up to
time t = Nτx, we obtain for slow sampling speeds (Nτxb(θi)� 1)

θi(Nτx)− θi(0) ≈ Nτx

(
b(θi)

∂

∂θi
log pS (θ) + b(θi)

N

∑
n=1

∂

∂θi
log pN (xn|θ) + T b′(θi)

)
+
√

2Tb(θi) (WNτx
i −W0

i ) .

This is also what one obtains when integrating Eq. (C.10) for Nτx time units (for
slow b(θi)). Hence, for slow enough b(θi), Eq. (C.11) is a good approximation of
optimal weight sampling. The update rule (3.5) follows from (C.11) for T = 1 and
b(θi) ≡ b.

Discrete time approximation

Here we provide the derivation for the approximate discrete time learning rule (3.7).
For a discrete time parameter update at time t with discrete time step ∆t during
which xn is presented, a corresponding rule can be obtained by short integration
of the continuous time rule (C.11) over the time interval from t to t + ∆t:

∆θi = ∆t
(

b(θi)
∂

∂θi
log pS (θ) + Nb(θi)

∂

∂θi
log pN (xn|θ) + T b′(θi)

)
+
√

2Tb(θi) (W t+∆t
i −W t

i )

= ∆t
(

b(θi)
∂

∂θi
log pS (θ) + Nb(θi)

∂

∂θi
log pN (xn|θ) + T b′(θi)

)
+
√

2T∆t b(θi) νt
i ,

(C.12)

where νt
i denotes Gaussian noise νt

i ∼ Normal(0, 1). The update rule (3.7) is
obtained by choosing a constant b(θ) ≡ b, T = 1, and defining η = ∆t b.

Synaptic sampling with hidden states

When there is a direct relationship between network parameters θ and the distri-
bution over input patterns xn, the parameter dynamics can directly be derived
from the derivative of the data log likelihood and the derivative of the parameter
prior. Typically however, generative models for brain computation assume that the
network response zn to input pattern xn represents in some manner the value of
hidden variables that explain the current input pattern. In the presence of hidden
variables, maximum likelihood learning cannot be applied directly, since the state
of the hidden variables is not known from the observed data. The expectation
maximization algorithm (Bishop, 2006) can be used to overcome this problem. We
adopt this approach here. In the online setting, when pattern xn is applied to the
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C.2 Details to: Figure 3.1

network, it responds with network state zn according to pN (z|xn,θ), where the
current network parameters are used in this inference process. The parameters are
updated in parallel according to the dynamics

dθi =

(
b(θi)

∂

∂θi
log pS (θ) + Nb(θi)

∂

∂θi
log pN (xn, zn|θ) + T b′(θi)

)
dt

+
√

2Tb(θi) dWi .

(C.13)

Note that in comparison with the dynamics (C.11), the likelihood term now also
contains the current network response zn. It can be shown that this dynamics leaves
the stationary distribution

p∗(θ) ≡ 1
Z p(θ | x, z)

1
T , (C.14)

invariant, where Z is again a normalizing constant (the dynamics (C.13) is again the
online-approximation). Hence, in this setup, the network samples concurrently from
circuit states (given θ) and network parameters (given the network state zn), which
can be seen as a sampling-based version of online expectation maximization.

C.2 Details to: Figure 3.1

For the example likelihood function in Fig. 3.1A we used a mixture of Gaussian
distributions, of the form

pN (x | θ) = pN (x | θ1) pN (x | θ2) , with (C.15)

pN (x | θ) = c Normal

(
θ
∣∣ µ1, σ2

1
)
+ (1− c)Normal

(
θ
∣∣ µ2, σ2

2
)

, (C.16)

and Normal

(
θ
∣∣ µ, σ2) ∝ exp

(
− 1

2 σ2 (θ − µ)2
)

, (C.17)

where µ1 = 0.3, µ2 = 0.9, σ1 = 0.1, σ2 = 0.2 and c = 0.3. In Fig. 3.1D we used a
prior pS (θ) = pS (θ1)pS (θ2), with pS (θi) given by a normal distribution (µ = 0.3,
σ = 0.35). A learning rate of η = 0.005 was used to sampled trajectories which
had a length of 50 and 300 time steps in Fig. 3.1C and F, respectively. In Fig. 3.1F
the time-discrete version of the synaptic sampling algorithm (3.7) was used, with
N = T = 1. In Fig. 3.1C the same dynamics were used, but the diffusion term and
the contribution of the prior ∂

∂θi
log pS (θ) were set to zero.
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C Appendix to Chapter 3: Network plasticity as Bayesian inference

Fig. C.1: Comparison of the learning performance for different priors. Learning performances
are shown for the training set (blue) and the test set (red). Dots represent average values of
the log likelihood after 10000 training steps. The average values were computed based on
100 individual trial runs for each prior distribution. The error bars indicate STD.

C.3 Details to: Improving the generalization capability of
a neural network through synaptic sampling

Restricted Boltzmann machine (RBM)

For learning the distribution over different writings of digit 1 with different priors
in Fig. 3.2, a restricted Boltzmann machine (RBM) with 748 visible and 9 hidden
neurons was used.

A RBM consists of two layers of neurons, the visible layer x, and the hidden
layer z. Synaptic connections are formed only between neurons on different layers
(Fig. 3.2A). Weights of synaptic connections are assumed to be symmetric, i.e., the
weight value wij denotes both the weight of the connection from visible neuron xj
to hidden neuron zi and the weight of the connection from hidden neuron zi to
visible neuron xj. Neurons in these layers are stochastic non-spiking neurons with
binary output. For given outputs x of visible neurons, each neuron zi in the hidden
layer computes its output in a stochastic manner

zi =

{
1 , with probability σ(∑j wijxj + bhid

i )

0 , with probability 1− σ(∑j wijxj + bhid
i )

, (C.18)

where bhid
i is the bias of hidden neuron zi. Analogously, for given outputs of

hidden neurons z, each neuron zi in the visible layer computes its stochastic output
according to

xi =

{
1 , with probability σ(∑j wjizj + bvis

i )

0 , with probability 1− σ(∑j wjizj + bvis
i )

, (C.19)
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where bvis
i is the bias of visible neuron xi. Typically, for given outputs of hidden

neurons z, the output of the whole visible layer is sampled. In total, the parameter
vector θ for the RBM consists of all weight wij and all biases bhid

i , bvis
i .

Evaluation of model log likelihood

The (non-normalized) log likelihood L̂(x | θ) measure in Fig. 3.2D,F was computed
according to the assumed underlying model, given by the Boltzmann distribution.
For a dataset x = x1, . . . ,xN , we get

L̂(x | θ) = log

(
N

∑
n=1

∑
z

exp

(
∑

i
∑

j
wij xn

j zi + bhid
i zi + bvis

j xn
j

))
, (C.20)

where the sum ∑z runs over all possible states of the hidden neurons. This quan-
tity is equivalent to the exact log likelihood up to a normalizing constant Z , i.e.
L̂(x | θ) = log p(x | θ) + Z . The current sets of network weights and biases were
recorded after every 100 update steps and the log likelihood was evaluated for these
parameter values. The plots in Fig. 3.2C-F show linear interpolations between these
values. The likelihood plots in Fig. 3.2D,F show mean and std over 100 individually
trained RBMs, all trained and evaluated on the same training and test set.

Comparison of the learning performance under different prior
distributions

Here we compare the learning performance and generalization capabilities of
the Boltzmann machine under different prior distributions. In addition to the
uninformative (i.e., uniform) prior on weights we used a set of factorized priors
for individual weights pS (w) = ∏i,j pS (wij). Here we used a scaled version of the
mixture of two Gaussians, given by

Gk := pS (wij) = 0.5 Normal

(
wij
∣∣ k · µ1, k · σ1

)
+ 0.5 Normal

(
wij
∣∣ k · µ2, k · σ2

) , (C.21)

with means µ1 = 1.0, µ2 = 0.0, and standard deviations σ1 = σ2 = 0.15. Therefore,
Gk denotes a scaled version of the prior used in Fig. 3.2E, with G1 being identical
to equation (C.26). In addition we used a log-normal prior with location µ = 0 and
scale σ = 1.2 of the form

pS (wij) =
1

wijσ
√

2π
exp

(
− 1

2σ2 (log wij − µ + θ0)
2
)

. (C.22)

Using these prior distributions we repeated the experiment in Sec. 3.3. A compari-
son of the performance of the Boltzmann machine for different prior distributions
and for the learning scenario without prior is provided in Fig. C.1. The choice
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of the prior can have a significant impact on the learning performance and with
respect to overfitting. Nevertheless, we found that most prior distributions had a
positive impact on the performance on the test set, thereby decreasing overfitting
effects. However, the extreme case of the prior G8 shows that a bad choice for the
prior can result in performance that is worse than without a prior.

Network inputs

Handwritten digit images were taken from the MNIST dataset (LeCun et al., 1998).
In MNIST, each instance of a handwritten digit is represented by a 784-dimensional
vector xn. Each entry is given by the gray-scale value of a pixel in the 28× 28 pixel
image of the handwritten digit. The pixel values were scaled to the interval [0, 1].
In the RBM, each pixel was represented by a single visible neuron. When an input
was presented to the network, the output of a visible neuron was set to 1 with
probability as given by the scaled gray-scale value of the corresponding pixel.

Learning procedure

In each parameter update step the contrastive divergence algorithm of (G. E. Hinton,
2002) was used to estimate the likelihood gradients. Therefore, each update step
consisted of a “wake” phase, a “reconstruction” phase, and the update of the
parameters. The “wake” samples were generated by setting the outputs of the
visible neurons to the values of a randomly chosen digit xn from the training set
and drawing the outputs zn

i of all hidden layer neurons for the given visible output.
The “reconstruction” activities x̂n

j and ẑn
i were generated by starting from this state

of the hidden neurons and then drawing outputs of all visible neurons. After that,
the hidden neurons were again updated and so on. In this way we performed
five cycles of alternating visible and hidden neuron updates. The outputs of the
network neurons after the fifth cycle were taken as the resulting “reconstruction”
samples x̂n

j and ẑn
i and used for the parameter updates (C.23)–(C.25) given below.

This update of parameters concluded one update step.

Log likelihood derivatives for the biases bhid
i of hidden neurons are approximated in

the contrastive divergence algorithm (G. E. Hinton, 2002) as ∂
∂bhid

i
log pN (xn, zn|θ) ≈

zn
i − ẑn

i (the derivatives for visible biases bvis
j are analogous). Using Eq. (3.7), the

synaptic sampling update rules for the biases are thus given by

∆bhid
i = η N (zn

i − ẑn
i ) +

√
2η νt

i , (C.23)

∆bvis
j = η N

(
xn

j − x̂n
j

)
+
√

2η νt
j . (C.24)

Note that the parameter prior does not show up in these equations since no priors
were used for the biases in our experiments. Contrastive divergence approximates

120



C.4 Details to: Spine motility as synaptic sampling

the log likelihood derivatives for the weights wij as ∂
∂wij

log pN (xn, zn|θ) ≈ zn
i xn

j −
ẑn

i x̂n
j . This leads to the synaptic sampling rule

∆wij = η

(
∂

∂wij
log pS (w) + N

(
zn

i xn
j − ẑn

i x̂n
j

))
+
√

2η νt
ij . (C.25)

In the simulations, we used this rule with η = 10−4 and N = 100. Learning
started from random initial parameters drawn from a Gaussian distribution with
standard deviation 0.25 and means at 0 and -1 for weights wij and biases (bhid

i , bvis
j ),

respectively.

To compare learning with and without parameter priors, we performed simulations
with an uninformative (i.e., uniform) prior on weights (Fig. 3.2C,D), which was
implemented by setting ∂

∂wij
log pS (w) to zero. In simulations with a parameter

prior (Fig. 3.2E,F), we used a local prior for each weight in order to obtain local
plasticity rules. In other words, the prior pS (w) was assumed to factorize into priors
for individual weights pS (w) = ∏i,j pS (wij). For each individual weight prior, we
used a bimodal distribution implemented by a mixture of two Gaussians

pS (wij) = 0.5 Normal

(
wij
∣∣ µ1, σ1

)
+ 0.5 Normal

(
wij
∣∣ µ2, σ2

)
, (C.26)

with means µ1 = 1.0, µ2 = 0.0, and standard deviations σ1 = σ2 = 0.15.

C.4 Details to: Spine motility as synaptic sampling

Here we derive the synaptic sampling model for spine motility given in Eq. (3.10),
of the main text. The theory applies for mapping functions f : R→ R which are
continuous, strictly monotonic and twice differentiable, such that they uniquely
map values from θi to wi, i.e. wi = f (θ). One example is the exponential mapping
(3.9) provided in the main text. Further we define f (θ) = ( f (θ1), . . . , f (θM)). Let
w = f (θ) and thus pN (x|w) = pN (x| f (θ)). Then the synaptic sampling dynamics,
with prior pS (θ) = ∏i pS (θi) and likelihood pN (x|w), given by eq. (C.1) can be
rewritten in the from

dθi =

(
b(θi)

∂

∂θi
log pS (θ) + b(θi)

∂

∂θi
log pN (x|w) + T b′(θi)

)
dt

+
√

2T b(θi) dWi (C.27)

=

(
b(θi)

∂

∂θi
log pS (θ) + b(θi) f ′(θ)

∂

∂wi
log pN (x|w) + T b′(θi)

)
dt

+
√

2T b(θi) dWi . (C.28)

Thus, for the parameter dynamics an additional term f ′(θi) =
∂

∂θi
f (θi) has to be

taken into account that scales the effect of spike-triggered weight changes.
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C Appendix to Chapter 3: Network plasticity as Bayesian inference

For the particular choice of the exponential mapping (3.9) this term evaluates to
f ′(θi) = exp(θi − θ0). Inserting this and using the simplifying choices of b(θi) = b
and T = 1, we get

dθi = b
(

∂

∂θi
log pS (θ) + N exp(θi − θ0)

∂

∂wi
log pN (xn|w)

)
dt +

√
2b dWi ,

which is the result (3.10).

Resulting log-normal priors over synaptic weights

Throughout all simulations of the spiking WTA circuits we used independent
Gaussian priors, pS (θ) = ∏i Normal(θi | µ, σ2) for the synaptic parameters θi.
We show here that this choice for the prior pS (θ) together with b(θi) = b and
the exponential parameter mapping wi = exp(θi − θ0) induces a log-normal prior
distribution over the synaptic efficacies wi, parametrized by µ, θ0 and σ, given by

p̂S (wi) =
1

wiσ
√

2π
exp

(
− 1

2σ2 (log wi − µ + θ0)
2
)

. (C.29)

First, we derive this result for general mapping functions f (·), which can be
formalized in the following way: For every f (θ), b(θi) and pS (θ), as defined above,
the stochastic dynamics of w = f (θ) can be described explicitly in the sampling
space of w, and the resulting stochastic differential equations have again the form
(C.1), with a new set of functions b̂(wi) and p̂S (w) = ∏i p̂S (wi), given by (see
proof below)

dwi =

(
b̂(wi)

∂

∂wi
log p̂S (w) + b̂(wi)

∂

∂wi
log pN (x|w) + T b̂′(wi)

)
dt (C.30)

+
√

2T b̂(wi) dWi ,

with p̂S (wi) =
pS
(

f−1(wi)
)

f ′ ( f−1(wi))
=

pS (θi)

f ′(θi)
(C.31)

and b̂(wi) = f ′2
(

f−1(wi)
)

b
(

f−1(wi)
)
= f ′2(θi) b(θi) ,

where f−1(wi) = θi is the inverse function of f (·). Note that since (C.31) is of the
form (C.1), the proof provided in Theorem 1 for the stationary distribution of θ
applies also to w. The unique stationary distribution over the synaptic weights is

therefore given by p∗(w) ≡ 1
Z q∗(w), with q∗(w) = ( p̂S (w) pN (x|w))

1
T .
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C.4 Details to: Spine motility as synaptic sampling

For the choices pS (θi) = Normal(θi | µ, σ2), b(θi) = b and wi = exp(θi − θ0) (thus:
θi = f−1(wi) = log wi + θ0), plugged into the general result (C.31), we get

p̂S (wi) =
pS
(

f−1(wi)
)

f ′ ( f−1(wi))
=

1
wiσ
√

2π
exp

(
− 1

2σ2 (log wi − µ + θ0)
2
)

(C.32)

and b̂(wi) = f ′2
(

f−1(wi)
)

b
(

f−1(wi)
)

= c exp(log wi + θ0 − θ0)
2 = c w2

i . (C.33)

Eq. (C.29) is the log-normal distribution and thus recovers the result (C.29). Note
that (C.33) suggests that the resulting diffusion of the synaptic weights grows
quadratically with the strength of the synaptic efficacies.

Proof

We prove the result (C.31) by deriving the stochastic process that governs w = f (θ).
From (C.28), we identify the drift Ai(θ) and diffusion Bik(θ) according to

Ai(θ) = b(θi)
∂

∂θi
log pS (θ) + b(θi) f ′(θi)

∂

∂wi
log pN (x|w) + T b′(θi) (C.34)

Bii(θ) = 2T b(θi) and Bik(θ) = 0, for i 6= k . (C.35)

Applying the rule for change of variables for stochastic differential equations to
this expression yields (see (Gardiner, 2004), p. 95f)

dwi = d f (θi) =

(
A(θi) f ′(θi) +

1
2

B(θi) f ′′(θi)

)
dt +

√
B(θi) f ′(θi) dWi

=

(
f ′(θi) b(θi)

∂

∂θi
log pS (θ) + f ′2(θi) b(θi)

∂

∂wi
log pN (x|w) (C.36)

+ f ′(θi) b′(θi) + f ′′(θi) b(θi)

)
dt + f ′(θi)

√
2T b(θi) dWi.

By rearranging and expanding the terms we get

dwi =

(
f ′2(θi) b(θi)

(
∂

∂θi
log pS (θ)
f ′ (θi)

− f ′′ (θi)

f ′2 (θi)

)
+ f ′2(θi) b(θi)

∂

∂wi
log pN (x|w)

+ f ′ (θi) b′ (θi) + 2 f ′′ (θi) b (θi)

)
dt +

√
2T f ′2(θi) b(θi) dWi .

Finally, by using the expressions for b̂(w) and p̂(w), taking the derivatives and
comparing the terms we recover the result (C.31)

dwi =

(
b̂(wi)

∂

∂wi
log p̂S (w) + b̂(wi)

∂

∂wi
log pN (x|w) + b̂′(wi)

)
dt

+
√

2T b̂(wi) dWi

which completes the proof.
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C.5 Details to: to Figure 3.3

The survival functions and parameter traces in Fig. 3.3B,D-F were based on the
dynamics of synaptic parameters for prolonged runs of phase 1 of the experiment
reported in Fig. 3.4. The network architecture was as described in Sec. 3.5. The
network inputs were given by different realizations of digit 1 as described in
Sec. 3.6. Learning was done for 108 hours of simulated biological time. In Fig. 3.3F
we used 100× slower learning dynamics (b = 10−6). Each plot shows the survival
of synapses that were newly formed during the preceding 12 hours, i.e. only active
synapses that were retraced 12 hours ago are analyzed. The first 48 hours of learning
were not evaluated. For the power-law fits, we adapted the method reported in
(Loewenstein et al., 2015). Power law functions were given by y = (t + 1)−γ, where
t is the survival time in hours, y is the fraction of remaining synapses and γ is
the decay parameter. To fit γ to the data we measured t1/4, i.e. the time it takes
until 3/4 of the synapses have decayed. The mean over the three trials shown in
Fig. 3.3E,F was then used to evaluated γ. For the fast dynamics in Fig. 3.3E this
yielded t1/4 = 1.23± 0.58 hours and γ = 2.00. For the slow dynamics in Fig. 3.3F
we measured t1/4 = 11.59± 2.54 hours, resulting in γ = 0.64.

C.6 Details to: Fast adaptation to changing input
statistics

Spike-based Winner-Take-All network model

Network neurons were modeled as stochastic spike response neurons with a firing
rate that depends exponentially on the membrane voltage (Jolivet et al., 2006; Mensi
et al., 2011). The membrane potential uk(t) of neuron k is given by

uk(t) = ∑
i

wki xi(t) + βk(t) , (C.37)

where xi(t) denotes the (unweighted) input from input neuron i, wki denotes the
efficacy of the synapse from input neuron i, and βk(t) denotes a homeostatic
adaptation current (see below). The input xi(t) models the influence of additive
excitatory postsynaptic potentials (EPSPs) on the membrane potential of the neuron.
Let t(1)i , t(2)i , . . . denote the spike times of input neuron i. Then, xi(t) is given by

xi(t) = ∑
f

ε(t− t( f )
i ) , (C.38)

where ε is the response kernel for synaptic input, i.e., the shape of the EPSP, that
had a double-exponential form in our simulations:

ε(s) = Θ(s)
(

e
− s

τf − e−
s

τr

)
, (C.39)
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with the rise-time constant τr = 2 ms, the fall-time constant τf = 20 ms. Θ(·) denotes
the Heaviside step function. The instantaneous firing rate ρk(t) of network neuron k
depends exponentially on the membrane potential and is subject to divisive lateral
inhibition Ilat(t) (described below):

ρk(t) =
ρnet

Ilat(t)
exp(uk(t)) , (C.40)

where ρnet = 100 Hz scales the firing rate of neurons. Such exponential relationship
between the membrane potential and the firing rate has been proposed as a good
approximation to the firing properties of cortical pyramidal neurons (Jolivet et al.,
2006). Spike trains were then drawn from independent Poisson processes with
instantaneous rate ρk(t) for each neuron. We denote the resulting spike train of the
kth neuron by Sk(t).

Homeostatic adaptation current

Each output spike caused a slow depressing current, giving rise to the adaptation
current βk(t). This implements a slow homeostatic mechanism that regulates the
output rate of individual neurons (see (Habenschuss et al., 2012) for details). It was
implemented as

βk(t) = γ ∑
f

κ(t− t( f )
k ) , (C.41)

where t( f )
k denotes the f -th spike of neuron k and κ is an adaptation kernel that

was modeled as a double exponential (Eq. (C.39)) with time constants τr = 12 s and
τf = 30 s. The scaling parameter γ was set to γ = -8.

Lateral inhibition

Divisive inhibition (Carandini, 2012) between the K neurons in the WTA network
was implemented in an idealized form (Nessler et al., 2013)

Ilat(t) =
K

∑
l=1

exp(ul(t)) . (C.42)

This form of lateral inhibition, that assumes an idealized access to neuronal mem-
brane potentials, has been shown to implement a well-defined generative network
model (Nessler et al., 2013), see below.
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C Appendix to Chapter 3: Network plasticity as Bayesian inference

Synaptic sampling in spike-based Winner-Take-All networks as
stochastic STDP

It has been shown in (Habenschuss et al., 2013) that the WTA-network defined above
implicitly defines a generative model that is a mixture of Poissonian distributions.
In this generative model, inputs xn are assumed to be generated in dependence on
the value of a hidden multinomial random variable hn that can take on K possible
values 1, . . . , K. Each neuron k in the WTA circuit corresponds to one value k of this
hidden variable. In the generative model, for a given value of hn = k, the value of
an input xn

i is then distributed according to a Poisson distribution with a mean that
is determined by the synaptic weight wki from input neuron i to network neuron
k:

pN (xn
i |hn = k,w) = Poisson(xn

i |αewki) , (C.43)

with a scaling parameter α > 0. In other words, the synaptic weight wki encodes
(in log-space) the firing rate of input neuron i, given that the hidden cause is k. For
a given hidden cause, inputs are assumed to be independent, hence one obtains
the probability of an input vector for a given hidden cause as

pN (xn|hn = k,w) = ∏
i

Poisson(xn
i |αewki) . (C.44)

The network implements inference in this generative model, i.e., for a given input
xn, the firing rate of network neuron zk is proportional to the posterior probability
p(hn = k|xn,w) of the corresponding hidden cause. An online maximum likelihood
learning rule for this generative model was derived in (Habenschuss et al., 2013). It
changes synaptic weights according to

∂

∂wki
log pN (xn |w) ≈ Sk(t) (xi(t)− α ewki) , (C.45)

where Sk(t) denotes the spike train of the postsynaptic neuron and xi(t) denotes
the weight-normalized value of the sum of EPSPs from presynaptic neuron i at
time t (i.e., the summed EPSPs that would arise for weight wki = 1). To define the
synaptic sampling learning rule completely, we also need to define the parameter
prior. In our experiments, we used a simple Gaussian prior on each parameter
pS (θ) = ∏k,i Normal(θki|µ, σ2) with µ = 0.5 and σ = 1. The derivative of the
log-prior is given by

∂

∂θki
log pS (θ) =

1
σ2 (µ− θki) . (C.46)

Inserting Eqs. (C.45) and (C.46) into the general form (3.10), we find that the
synaptic sampling rule is given by

dθki = b
(

1
σ2 (µ− θki) + Nwki Sk(t) (xi(t)− α ewki)

)
dt +

√
2b dWki , (C.47)

which corresponds to rule (3.11) with double indices ki replaced by single parameter
indexing i to simplify notation.
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Simulation details for spiking network simulations

Computer simulations of spiking neural networks (Figs. 3.3, 3.4, and 3.5) were based
on adapted event-based simulation software from (Kappel et al., 2014). In all spiking
neural network simulations, synaptic weights were updated according to the rule
(3.11) with parameters N = 100, α = e−2, and b = 10−4, except for panel 3.3F
where b = 10−6 was used as a control. In the simulations, we directly implemented
the time-continuous evolution of the network parameters in an event-based update
scheme. Before learning, initial synaptic parameters were independently drawn
from the prior distribution pS (θ).

For the mapping (3.9) from synaptic parameters θki to synaptic efficacies wki, we
used as offset θ0 = 3. This results in synaptic weights that shrink to small values
(< 0.05) when synaptic parameters are below zero. In the simulation, we clipped
the synaptic weights to zero for negative synaptic parameters θ to account for
retracted synapses. More precisely, the actual weights ŵki used for the computation
of the membrane potential (C.37) were given by ŵki = max {0, wki − exp(−θ0)} .
To avoid numerical problems, we clipped the synaptic parameters at -5 and the
maximum amplitude of instantaneous parameter changes to 5b.

Network inputs

The spatiotemporal spike patterns in Fig. 3.4 are realizations of Poisson spike trains,
each representing a certain point in the 3-dimensional sensory environment (a
unit cube). Each of the 1000 input neurons was assigned to a Gaussian tuning
curve with σ = 0.3. Tuning curve centers were independently and equally scattered
over the unit cube. For each sensory experience the firing rate of an individual
input neuron was given by the support of sensory experience under the neuron’s
tuning curve (normalized between 0 Hz and 80 Hz). In addition an offset of 2 Hz
background noise was added. The patterns had a duration of 200 ms. During that
time the firing rates of input neurons were kept fixed and independent Poisson
spike trains were drawn.

The two environments (SE and EE) in Fig. 3.4 were realized by Gaussian mixture
models. The means of the Gaussians were randomly placed around the center of
the unit cube (each component was independently drawn from Normal(0.5, 0.2)).
The covariance matrices of the Gaussian cluster centers were randomly given by
0.04I + 0.01ξ, where I is the 3-dimensional identity matrix and ξ is a matrix of
randomly drawn values from Normal(0, 1). Sensory experiences were generated
by randomly selecting one Gaussian cluster (with equal probability) and then
drawing a sample position from the corresponding multivariate Gaussian.
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Learning schedule and data analysis

The network was first exposed to samples from the standard environment (SE,
Fig. 3.4D) for 3 hours (54000 input sample presentations). In the second learning
phase input samples from the enriched environment (EE, Fig. 3.4E) were given for 1

hour (18000 samples). In the third phase samples from either SE (EE-SE condition)
or EE (EE-EE condition) were presented for additional 5 hours (90000 samples, the
two cases are compared in Fig. 3.4G).

Formation rates of synaptic connections shown in Fig. 3.4F represent the number of
spines that were formed during a time window of ∆t = 30 minutes, i.e. the number
of synaptic connections that were not present (θi ≤ 0) at time t− ∆t but at time t.
The SE condition in Fig. 3.4F was evaluated at the end of learning phase 1, the EE
condition was evaluated at the beginning of EE exposure.

For the survival plots in Fig. 3.4G the newly formed synaptic connections at the
end of the EE condition were taken into account (see above). Networks from the
EE-EE or EE-SE condition were compared. The presence of synaptic connections
(θi > 0) was evaluated in intervals of 30 minutes. The plot in Fig. 3.4E,F show mean
values and standard deviations over 5 individual trial runs.

C.7 Details to: Inherent compensation capabilities of
networks with synaptic sampling

Here we provide details to the network model and spiking inputs for the recur-
rent WTA circuits (Fig. 3.5), describe the method that was used to evaluate the
reconstruction performance, and provide further details to the emergent assembly
sequences among the hidden neurons.

Network model

In Fig. 3.5 two recurrently connected ensembles, each consisting of four WTA
circuits, were used. The parameters of neuron and synapse dynamics were as de-
scribed in the previous section. All synapses, lateral and feedforward, were subject
to the same learning rule (3.11). Lateral connections within and between the WTA
Circuit neurons were unconstrained (allowing potentially all-to-all connectivity).
Connections from input neurons were constraint as shown in Fig. 3.5. The lateral
synapses were treated in the same way as synapses from input neurons but had a
synaptic delay of 5 ms.
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Network inputs

Handwritten digit images for Fig. 3.5 were taken from the MNIST dataset (LeCun
et al., 1998). Each pixel was represented by a single afferent neuron. Gray scale
values where scaled to 0 - 50 Hz Poisson input rate and 1 Hz input noise was
added on top. These Poisson rates were kept fixed for each example input digit for
the duration of the input presentation.

The spoken digit presentations in Fig. 3.5 were given by reconstructed cochleagrams
of speech samples of isolated spoken digits from the TI 46 dataset (also used in
(Klampfl and Maass, 2013; Hopfield and Brody, 2001)). Each of the 77 channels
of the cochleagrams was represented by 10 afferent neurons, giving a total of
770. Cochleagrams were normalized between 0 Hz and 80 Hz and used to draw
individual Poisson spike trains for each afferent neuron. In addition 1 Hz Poisson
noise was added on top. We used 10 different utterances of digits 1 and 2 of a
single speaker. We selected 7 utterances for training and 3 for testing. For training,
one randomly selected utterance from the training set was presented together with
a randomly chosen instance of the corresponding handwritten digit. The spike
patterns for the written digits (see above) had the same duration as the spoken
digits. Each digit presentation was padded with 25 ms, 1 Hz Poisson noise before
and after the digit pattern.

For test trials in which only the auditory stimulus was presented, the activity of the
visual input neurons was set to 1 Hz throughout the whole pattern presentation.
The learning rate b was set to zero during these trials. The PETH plots were
computed over 100 trial responses of the network to the same stimulus class (e.g.
presentation of digit 1). Spike patterns for input stimuli were randomly drawn
in each trial for the given rates. Spike trains were then filtered with a Gaussian
filter with σ = 50 ms and summed in a time-discrete matrix with 10 ms bin length.
Maximum firing times were assigned to the time bin with the highest PETH
amplitude for each neuron.

Evaluating the reconstruction performance

The reconstructed visual stimuli were generated by producing an auditory stimulus
via the xA neurons and evaluating the corresponding activity of visual zV neurons.
A sample auditory stimulus from the test set was randomly chosen and spike
patterns were generated as for the training session (see main text). The resulting
spike trains from the zV neurons were smoothed with the EPSP kernel (C.39).
The current strengths of the feedforward synapses were then weighted by these
smoothed responses, evaluated 300ms after stimulus onset. Fig. 3.5B shows two
example reconstructed stimuli. The pixel values were rescaled to the color range of
the images.

The reconstruction performance was assessed by the performance of linear clas-
sifiers trained on the response of zV neurons. The classifiers were trained on 50
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Fig. C.2: Emergent assembly sequences and functional connectivity in a simplified model of multi-modal
sensory integration. A: Only a fraction of the structurally possible connectivity (all to all) emerges as functional
connectivity after learning in the network shown in Fig. 3.5 of the main text. Connection probabilities (number of
functional connections normalized to the number of possible connections) are shown between input and hidden
neurons and between hidden neurons that are recruited for assembly sequences. The colors of the bars match the
direction of the connections (colored arrows). Neurons from assembly sequences that encode the same digit class
are more likely to be connected after learning. B: Neurons within the auditory assembly sequence A(2) fire in a
characteristic sequential order. PETH evaluated at different training times before the lesions are shown. Neurons
are sorted by the time points of highest activity (black dots) after 80 minutes (top) and 160 minutes (bottom) of
learning (plot used for sorting is highlighted by red border). The sequential firing order changes during prolonged
learning.

samples of reconstructed visual stimuli of each digit class, generated by producing
each time fresh Poisson trains in the xA neurons with time-varying firing rates
according to the spoken digit samples, using Matlab’s build-in naive Bayes classifier
method. Additional 50 samples of each class were then used to evaluate the recon-
struction performance (number of correctly labeled samples). The values shown in
Fig. 3.5E are mean values over 20 classifiers, trained and tested for independently
generated Poisson spike trains for xA neurons as described above.

Assembly sequence analysis

To further evaluate the emergent activity patterns and connectivity in the network of
hidden neurons we focused on the emergent assembly sequences within the hidden
neuron (see e.g. (C. D. Harvey et al., 2012) for experimental data on assembly
sequences). Affiliation of neurons to assembly sequences was assessed through
the PETH (see main text). PETHs were computed for both digits over 100 trial
responses from all zA and zV neurons. Neurons were assigned to the assembly
sequence corresponding to the digit for which the neuron showed the maximum
PETH amplitude. Neurons for which the maximum was outside the time interval
[50ms, 450ms] after stimulus onset, were excluded from the analysis (not assigned
to an assembly sequence). We refer to the set of neurons that take part in these
assembly sequences in the visual and auditory populations zA and zV as V(1), A(1)
for digit 1, and V(2), A(2) for digit 2. We find that synaptic plasticity generates
associations between corresponding components of the assembly sequences in
the visual and auditory ensemble, (i.e., between V(1) and A(1), V(2) and A(2))
in spite of the fact that synaptic connections are asymmetric in this model, as in
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Fig. C.3: Comparison between synaptic sampling and approximate HMM learning. A: The stimulus recon-
struction performance of synaptic sampling (blue) and the approximate HMM learning (red). B,C: Comparison of
the lateral synaptic weights that result from synaptic sampling (B) and approximate HMM learning. Insets on the
bottom show the histograms over the synaptic parameters.

most biological networks of neurons. Fig. C.2A shows the connection probabilities
between the pairs of assembly sequences after 160 minutes of training. Assemblies
that encode correlated stimuli are more likely to be connected.

In Fig. C.2B we study the drift of the preferred firing time of neurons within an
assembly sequence that takes place on a larger time scale throughout learning,
due to the stochastic term in the learning rule. The auditory assembly sequence
A(2) is analyzed. Neurons within this assembly sequence fire in a specific order,
as in (C. D. Harvey et al., 2012). Our learning model predicts that this sequential
order changes during larger periods of learning. The result shown in Fig. C.2B
is qualitatively similar to the data reported in (Y. Ziv et al., 2013) for a different
type of learned neural code (place cells). The time scale of these fluctuations can
be regulated through the parameter b (learning rate) in the synaptic sampling rule
(3.3). We had chosen here a faster time scale of hours (rather than days, as in (Y. Ziv
et al., 2013)) in order to achieve tractable computer simulation times.

Comparison to deterministic STDP

Here we compare the synaptic sampling learning to the approximate spike-based
expectation-maximization (EM) algorithm for hidden Markov models implemented
through spiking neurons, which was introduced in (Kappel et al., 2014). The algo-
rithm is a deterministic STDP-like update scheme and realizes the data-dependent
drift term of the synaptic sampling rule (3.11). More precisely we used deterministic
updates of the form

dwi = b N S(t) (xi(t)− α ewi) (C.48)

for the lateral and feedforward synaptic weights of the WTA networks.
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C Appendix to Chapter 3: Network plasticity as Bayesian inference

Fig. C.4: Comparison of the reconstruction performance of networks with different tempera-
tures T for learning. The plots show mean values over 20 individual trial runs as the one
shown in Fig. 3.5. Reconstruction performance was evaluated in an 8 minute interval. Plots
show linear interpolations between these values.

We trained a network using the the approximate HMM learning rule (C.48) on
phase 1 of the learning task in Fig. 3.5. The results are compared in Fig. C.3A.
Approximate HMM learning was not able to learn this task accurately which
results in a low reconstruction performance throughout the whole learning time. In
Fig. C.3B,C we compare the matrices of synaptic weights that result from the two
algorithms. The color ranges are rescaled to the min/max values of the synaptic
weights for each plot. Note that learning rule (C.48) – unlike synaptic sampling –
can produce negative synaptic weights. Due to the prior distribution over synaptic
parameters the representation learned by synaptic sampling is much sparser and
associations are more pronounced which allows for a more reliable recall of input
stimuli.

Impact of the temperature on the reconstruction performance

In Fig. C.4 we analyze the impact of the temperature (parameter T in equation (C.1)
of the main text) on the reconstruction performance in the last phase of the learning
task in Fig. 3.5 (all lateral synapses are removed). The speed of the regrowth of
retracted synapses is determined by the prior and the random fluctuations due to
the Wiener process. Therefore we found that the temperature parameter T has a
large impact on the time it takes until the network recovers from the lesion.
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C.7 Details to: Inherent compensation capabilities of networks with synaptic sampling

With a temperature of zero (deterministic updates) the network requires signifi-
cantly more time until the reconstruction probability starts to increase. The prior
that is close to zero only very slowly drives a sufficient number of synapses above
the threshold. With increasing temperature the speed to recover from the lesion
increases. For too large temperatures (e.g. T = 8) the performance degrades since
the network diffuses quickly from solutions. The optimal value for the temperature
was found to be between T = 2 and T = 4 for this particular learning problem (see
Fig. C.4).
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Appendix D
Appendix to Chapter 4: Reward-based
self-configuration of neural circuits

D.1 Bayesian framework for reward-modulated learning

The classical goal of reinforcement learning is to maximize the expected future
discounted reward V(θ) given by

V(θ) = 〈
∫ ∞

0
e−

τ
τe r(τ) dτ 〉p(r|θ) . (D.1)

In Eq. (D.1) we integrate over all future rewards r(τ), while discounting more
remote rewards exponentially with a discount rate τe, which for simplicity was
set equal to 1 s in this paper. We find (see Eq. (D.10)) that this time constant τe
is immediately related to the experimentally studied time window or eligibility
trace for the influence of dopamine on synaptic plasticity (Yagishita et al., 2014).
The expectation in Eq. (D.1) is taken with respect to the distribution p(r|θ) over
sequences r = {r(τ), τ ≥ 0} of future rewards that result from the given set of
synaptic parameters θ. The stochasticity of the reward sequence r arises from
stochastic network inputs, stochastic network responses, and stochastic reward
delivery. The resulting distribution p(r|θ) of reward sequences r for the given
parameters θ can also include influences of network initial conditions by assuming
some distribution over these initial conditions. Network initial conditions include
for example initial values of neuron membrane voltages and refractory states of
neurons. The role of initial conditions on network learning is further discussed
below when we consider the online learning scenario in Reward-modulated synaptic
plasticity approximates gradient ascent on the expected discounted reward.

There exists a close relationship between reinforcement learning and Bayesian infer-
ence (Vlassis et al., 2012; Rawlik et al., 2013; Botvinick and Toussaint, 2012). To make
this relationship apparent, we define our model for reward-gated network plasticity
by introducing a binary random variable vb that represents the currently expected
future discounted reward in a probabilistic manner. The likelihood pN (vb = 1 | θ)
is determined in this theoretical framework by the expected future discounted
reward Eq. (D.1) that is achieved by a network with parameter set θ (see e.g.,
(Rawlik et al., 2013)):

pN (vb = 1 | θ) ≡ 1
ZV
V(θ) , (D.2)
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where ZV denotes a constant, that assures that Eq. (D.2) is a correctly normalized
probability distribution. Thus reward-based network optimization can be formal-
ized as maximizing the likelihood pN (vb = 1 | θ) with respect to the network
configuration θ. Structural constraints can be integrated into a stochastic model
for network plasticity through a prior pS(θ) over network configurations. Hence
reward-gated network optimization amounts from a theoretical perspective to
learning of the posterior distribution p∗(θ|vb = 1), which by Bayes’ rule is defined
(up to normalization) by pS (θ) · pN (vb = 1 | θ). Therefore, the learning goal can be
formalized in a compact form as evaluating the posterior distribution p∗(θ|vb = 1)
of network parameters θ under the constraint that the abstract learning goal vb = 1
is achieved.

More generally, one is often interested in a tempered version of the posterior

p∗T(θ) ≡
1
Z p∗(θ|vb = 1)

1
T , (D.3)

where Z is a suitable normalization constant and T > 0 is the temperature pa-
rameter that controls the “sharpness” of p∗T(θ). For T = 1, p∗T(θ) is given by the
original posterior, T < 1 emphasizes parameter values with high probability in
the posterior, while T > 1 leads to parameter distributions p∗T(θ) which are more
uniformly distributed than the posterior.

D.2 Analysis of Bayesian policy sampling

Here we prove that the stochastic parameter dynamics Eq. (4.5) samples from the
tempered posterior distribution p∗T(θ) given in Eq. (D.3). In Results we suppressed
time-dependencies in order to simplify notation. We reiterate Eq. (4.3) with explicit
time-dependencies of parameters:

dθi(t) = β
∂

∂θi
log p∗(θ|vb = 1)

∣∣∣∣
θ(t)

dt +
√

2βT dWi , (D.4)

where the notation ∂
∂θi

f (θ)
∣∣∣
θ(t)

denotes the derivative of f (θ) with respect to θi

evaluated at the current parameter values θ(t). By Bayes’ rule, the derivative of the
log posterior is the sum of the derivatives of the prior and the likelihood:

∂

∂θi
log p∗(θ|vb = 1) =

∂

∂θi
log pS (θ) +

∂

∂θi
log pN (vb = 1 | θ)

=
∂

∂θi
log pS (θ) +

∂

∂θi
logV(θ) ,
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which allows us to rewrite Eq. (D.4) as

dθi(t) = β

(
∂

∂θi
log pS (θ)

∣∣∣∣
θ(t)

+

∂

∂θi
logV(θ)

∣∣∣∣
θ(t)

)
dt +

√
2βT dWi , (D.5)

which is identical to the form Eq. (4.5), where the contributions of pS (θ) and V(θ)
are given explicitly.

The fundamental property of the synaptic sampling dynamics Eq. (D.4) is for-
malized in Theorem 2 and proven below. Before we state the theorem, we briefly
discuss its statement in simple terms. Consider some initial parameter setting
θ(0). Over time, the parameters change according to the dynamics (D.4). Since the
dynamics include a noise term, the exact value of the parameters θ(t) at some
time t > 0 cannot be determined. However, it is possible to describe the exact
distribution of parameters for each time t. We denote this distribution by pFP(θ, t),
where the “FP” subscript stands for “Fokker-Planck” since the evolution of this
distribution is described by the Fokker-Planck equation (D.6) given below. Note
that we make the dependence of this distribution on time explicit in this notation.
It can be shown that for the dynamics (D.6), pFP(θ, t) converges to a well-defined
and unique stationary distribution in the limit of large t. Of practical relevance is
the so-called burn-in time after which the distribution of parameters is very close
to the stationary distribution. Note that the parameters will continue to change.
Nevertheless, at any time t after the burn in, we can expect the parameter vector
θ(t) to be situated at a particular value with the probability (density) given by the
stationary distribution, see Fig. 4.1D,F. Any distribution that is invariant under the
parameter dynamics is a stationary distribution. Here, invariance means: when one
starts with an invariant distribution over parameters in the Fokker-Planck equation,
the dynamics are such that this distribution will be kept forever (we will use this
below in the proof of Theorem 2). Theorem 2 states that the parameter dynamics
leaves p∗T(θ) given in Eq. (D.3) invariant, i.e., it is a stationary distribution of the
network parameters. Note that in general, the stationary distribution may not be
uniquely defined. That is, it could happen that for two different initial parameter
values, the network reaches two different stationary distributions. Theorem 2 fur-
ther states that for the synaptic sampling dynamics, the stationary distribution is
unique, i.e., the distribution p∗T(θ) is reached from any initial parameter setting
when the conditions of the theorem apply. We now state Theorem 2 formally. To
simplify notation we drop in the following the explicit time dependence of the
synaptic parameters θ.
Theorem 2. Let p∗(θ | vb = 1) be a strictly positive, continuous probability distribution
over parameters θ, twice continuously differentiable with respect to θ, and let β > 0. Then
the set of stochastic differential equations Eq. (D.4) leaves the distribution p∗T(θ) (D.3) in-
variant. Furthermore, p∗T(θ) is the unique stationary distribution of the sampling dynamics.

137



D Appendix to Chapter 4: Reward-based self-configuration of neural circuits

Proof. The proof is analogous to the one provided in (Kappel et al., 2015a). The
stochastic differential equation Eq. (D.4) translates into a Fokker-Planck equation
(Gardiner, 2004) that describes the evolution of the distribution over parameters
θ

d
dt

pFP(θ, t) = ∑
i
− ∂

∂θi

(
β

∂

∂θi
log p∗(θ | vb = 1)

)
pFP(θ, t) +

∂2

∂θ2
i
(β T pFP(θ, t)) ,

(D.6)
where pFP(θ, t) denotes the distribution over network parameters at time t. To show
that p∗T(θ) leaves the distribution invariant, we have to show that d

dt pFP(θ, t) = 0
(i.e., pFP(θ, t) does not change) if we set pFP(θ, t) to p∗T(θ) on the right hand side
of Eq. (D.6). Plugging in the presumed stationary distribution p∗T(θ) for pFP(θ, t)
on the right hand side of Eq. (D.6), one obtains

d
dt

pFP(θ, t) = ∑
i
− ∂

∂θi

(
β

∂

∂θi
log p∗(θ | vb = 1) p∗T(θ)

)
+

∂2

∂θ2
i
(β T p∗T(θ))

= ∑
i
− ∂

∂θi

(
β p∗T(θ)

∂

∂θi
log p∗(θ | vb = 1)

)
+

∂

∂θi

(
β T

∂

∂θi
p∗T(θ)

)
= ∑

i
− ∂

∂θi

(
β p∗T(θ)

∂

∂θi
log p∗(θ | vb = 1)

)
+

∂

∂θi

(
β T p∗T(θ)

∂

∂θi
log p∗T(θ)

)
,

which by inserting p∗T(θ) = 1
Z p∗(θ | vb = 1)

1
T , with normalizing constant Z ,

becomes

d
dt

pFP(θ, t) =
1
Z ∑

i
− ∂

∂θi

(
β p∗(θ)

∂

∂θi
log p∗(θ | vb = 1)

)
+

∂

∂θi

(
β T p∗(θ)

1
T

∂

∂θi
log p∗(θ | vb = 1)

)
= ∑

i
0 = 0 .

This proves that p∗T(θ) is a stationary distribution of the parameter sampling
dynamics Eq. (D.4). Since β is strictly positive, this stationary distribution is also
unique (see Section 3.7.2 in (Gardiner, 2004)).

The unique stationary distribution of Eq. (D.6) is given by p∗T(θ) =
1
Z p∗(θ|vb = 1)

1
T ,

i.e. p∗T(θ) is the only solution for which d
dt pFP(θ, t) becomes 0, which completes the

proof.

�
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D.3 Network model

D.3 Network model

Plasticity rules for this general framework were derived based on a specific spiking
neural network model, which we describe in the following. All reported computer
simulations were performed with this network model. We considered a general
network scaffoldN of K neurons with potentially asymmetric recurrent connections.
Neurons are indexed in an arbitrary order by integers between 1 and K. We denote
the output spike train of a neuron k by zk(t). It is defined as the sum of Dirac delta
pulses positioned at the spike times t(1)k , t(2)k , . . . , i.e., zk(t) = ∑l δ(t− t(l)k ). Potential
synaptic connections are also indexed in an arbitrary order by integers between
1 and Ksyn, where Ksyn denotes the number of potential synaptic connections in
the network. We denote by prei and posti the index of the pre- and postsynaptic
neuron of synapse i, respectively, which unambiguously specifies the connectivity
in the network. Further, we define synk to be the index set of synapses that
project to neuron k. Note that this indexing scheme allows us to include multiple
(potential) synaptic connections between a given pair of neurons. We included
this experimentally observed feature of biological neuronal networks in all our
simulations. We denote by wi(t) the synaptic efficacy of the i-th synapse in the
network at time t.

Network neurons were modeled by a standard stochastic variant of the spike
response model (Gerstner et al., 2014). In this model, the membrane potential of a
neuron k at time t is given by

uk(t) = ∑
i∈ synk

y
prei(t)wi(t) + ϑk(t) , (D.7)

where ϑk(t) denotes the slowly changing bias potential of neuron k, and y
prei(t)

denotes the trace of the (unweighted) postsynaptic potentials (PSPs) that neuron
prei leaves in its postsynaptic synapses at time t. More precisely, it is defined as
y

prei(t) = z
prei(t) ∗ ε(t) given by spike trains filtered with a PSP kernel of the form

ε(t) = Θ(t) τr
τm−τr

(
e−

t
τm − e−

t
τr

)
, with time constants τm = 20 ms and τr = 2 ms, if

not stated otherwise. Here ∗ denotes convolution and Θ(·) is the Heaviside step
function, i.e. Θ(x) = 1 for x ≥ 0 and 0 otherwise.

The synaptic weights wi(t) in Eq. (D.7) were determined by the synaptic parameters
θi(t) through the mapping Eq. (4.1) for θi(t) > 0. Synaptic connections with
θi(t) ≤ 0 were interpreted as not functional (disconnected) and wi(t) was therefore
set to 0 in that case.

The bias potential ϑk(t) in Eq. (D.7) implements a slow adaptation mechanism of
the intrinsic excitability, which ensures that the output rate of each neuron stays
near the firing threshold and the neuron maintains responsiveness (Desai et al.,
1999; Fan et al., 2005). We used a simple adaptation mechanism which was updated
according to

τϑ
dϑk(t)

dt
= ν0 − zk(t) , (D.8)
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where τϑ = 50 s is the time constant of the adaptation mechanism and ν0 = 5 Hz
is the desired output rate of the neuron. In our simulations, the bias potential
ϑk(t) was initialized at -3 and then followed the dynamics given in Eq. (D.8). This
regularization is a simplified version of the mechanism proposed in (Remme and
Wadman, 2012) to balance activity in networks of excitatory and inhibitory neurons.
We found that this regularization significantly increased the performance and
learning speed of our network model, presumably due to the substantial change
in neural fan-in (due to rewiring as discussed above) that may take place during
learning which is counteracted by such a mechanism.

We used a simple refractory mechanism for our neuron model. The firing rate, or
intensity, of neuron k at time t is defined by the function fk(t) = f (uk(t), ρk(t)),
where ρk(t) denotes a refractory variable that measures the time elapsed since the
last spike of neuron k. We used an exponential dependence between membrane
potential and firing rate, such that the instantaneous firing rate of the neuron k at
time t can be written as

fk(t) = f (uk, ρk) = exp(uk)Θ(ρk − tref) . (D.9)

Furthermore, we denote by f
posti(t) the firing rate of the neuron postsynaptic to

synapse i. If not stated otherwise we set the refractory time tref to 5 ms. In addition,
a subset of neurons was clamped to some given firing rates (input neurons), such
that fk(t) of these input neurons was given by an arbitrary function. We denote the
spike train from these neurons by x(t), the network input.

D.4 Synaptic dynamics for the reward-based synaptic
sampling model

Here, we provide additional details on how the synaptic parameter dynamics
Eq. (4.5) was computed. We will first provide an intuitive interpretation of the
equations and then provide a detailed derivation in the next section. The second
term ∂

∂θi
logV(θ) of Eq. (4.5) denotes the gradient of the expected future discounted

reward Eq. (D.1). In general, optimizing this function has to account for the case
where rewards are provided after some delay period. It is well known that this
distal reward problem can be solved using plasticity mechanisms that make use of
eligibility traces in the synapses that are triggered by near coincident spike patterns,
but their consolidation into the synaptic weights is delayed and modulated by
the reward signal r(t) (Sutton and Barto, 1998; Izhikevich, 2007). The theoretically
optimal shape for these eligibility traces can be derived using the reinforcement
learning theory and depends on the choice of network model. For the spiking
neural network model described above, the gradient ∂

∂θi
logV(θ) can be estimated

through a plasticity mechanism that uses an eligibility trace ei(t) in each synapse i
which gets updated according to

dei(t)
dt

= − 1
τe

ei(t) + wi(t) y
prei(t) (zposti(t)− f

posti(t)) , (D.10)
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where τe = 1 s is the time constant of the eligibility trace. Recall that prei denotes
the index of the presynaptic neuron and posti the index of the postsynaptic neuron
for synapse i. In Eq. (D.10) z

posti(t) denotes the postsynaptic spike train, f
posti(t)

denotes the instantaneous firing rate (Eq. (D.9)) of the postsynaptic neuron and
wi(t) y

prei(t) denotes the postsynaptic potential under synapse i.

The last term of Eq. (D.10) shares salient properties with standard STDP learning
rules, since plasticity is enabled by the presynaptic term y

prei(t) and gated by the
postsynaptic term (z

posti(t)− f
posti(t)) (see (Pfister et al., 2006)). The latter term also

regularizes the plasticity mechanism such that synapses stop growing if the firing
probability f

posti(t) of the postsynaptic neuron is already close to one.

The eligibility trace Eq. (D.10) is modulated by the reward r(t) and integrated in
each synapse i using a second dynamic variable

dgi(t)
dt

= − 1
τg

gi(t) +

(
r(t)
r̂(t)

+ α

)
ei(t) . (D.11)

The variable gi(t) combines the eligibility trace and the reward, and averages over
the time scale τg. α is an arbitrary constant offset on the reward signal. In our
simulations, this offset α was chosen slightly above 0 (α = 0.02) such that small
parameter changes were also present without any reward, as observed in (Yagishita
et al., 2014). In the next section we show that gi(t) approximates the gradient of
the expected future reward with respect to the synaptic parameter, i.e. gi(t) ≈

∂
∂θi

logV(θ) for all t > τg. In our simulations we found that incorporating the
low-pass filtered eligibility traces (Eq. (D.11)) into the synaptic parameters works
significantly better than using the eligibility traces directly for weight updates,
although the latter approach was taken in a number of previous studies (see e.g.
(Pfister et al., 2006; Legenstein et al., 2008; Urbanczik and Senn, 2009)).

r̂(t) in Eq. (D.11) is a low-pass filtered version of r(t) that scales the synaptic
updates. It was implemented through τg

dr̂(t)
dt = −r̂(t) + r(t), with τg = 50 s. This

scaling of the reward signal has the following effect. If the current reward r(t)
exceeds the average reward r̂(t), the effect of the neuromodulatory signal r(t)
will be greater than 1. On the other hand, if the current reward is below average
synaptic updates will be weighted by a term significantly lower than 1. Therefore,
parameter updates are preferred for which the current reward signal exceeds the
average.

Similar plasticity rules with eligibility traces in spiking neural networks have
previously been proposed by several authors (Seung, 2003; Xie and Seung, 2004;
Izhikevich, 2007; Pfister et al., 2006; Florian, 2007; Legenstein et al., 2008; Urbanczik
and Senn, 2009). The main difference to these previous approaches is that the
activity-dependent last term in Eq. (D.10) is scaled by the current synaptic weight
wi(t). This weight-dependence of the update equations induces multiplicative
synaptic dynamics and is a consequence of the exponential mapping Eq. (4.1) (see
derivation in the next section). This is an important property for a network model
that includes rewiring. Note, that for retracted synapses (wi(t) = 0), both ei(t) and
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gi(t) decay to zero (within few minutes in our simulations). Therefore, we find
that the dynamics of retracted synapses is only driven by the first (prior) and last
(random fluctuations) term of Eq. (4.5) and are independent from the network
activity. Thus, retracted synapses spontaneously reappear also in the absence of
reward after a random amount of time.

The first term in Eq. (4.5) is the gradient of the prior distribution. We used a
prior distribution that pulls the synaptic parameters towards θi(t) = 0 such that
unused synapses tend to disappear and new synapses are permanently formed.
Throughout all simulations we used independent Gaussian priors for the synaptic
parameters

pS (θ) = ∏
i

pS (θi(t)) , with pS (θi(t)) =
1

σ
√

2π
exp

(
− (θi(t)− µ)2

2σ2

)
,

where σ is the standard deviation of the prior distribution. Using this, we find that
the contribution of the prior to the online parameter update equation is given by

∂

∂θi
log pS (θ) =

1
σ2 (µ− θi(t)) . (D.12)

Finally by plugging Eq. (D.12) and (D.11) into Eq. (4.5) the synaptic parameter
changes at time t are given by

dθi(t) = β

(
1
σ2 (µ− θi(t)) + gi(t)

)
dt +

√
2βT dWi . (D.13)

If not stated otherwise we used σ = 2 and µ = 0, and a learning rate of β = 10−5.
By inspecting Eq. (D.13) it becomes immediately clear that the parameter dynamics
follow an Ornstein-Uhlenbeck process it the activity-dependent second therm is
inactive (in the absence of reward), i.e. if gi(t) = 0. In this case the dynamics
are given by the deterministic drift towards the mean value µ and the stochastic
diffusion fueled by the Wiener process Wi. The temperature T and the standard
deviation σ scale the contribution of these two forces.

Reward-modulated synaptic plasticity approximates gradient ascent on
the expected discounted reward

We first consider a theoretical setup where the network is operated in arbitrarily
long episodes such that in each episode a reward sequence r is encountered. The
reward sequence r can be any discrete or real-valued function that is positive and
bounded. The episodic scenario is useful to derive exact batch parameter update
rules, from which we will then deduce online learning rules. Due to stochastic
network inputs, stochastic network responses, and stochastic reward delivery, the
reward sequence r is stochastic.

The classical goal of reinforcement learning is to maximize the function V(θ)
of discounted expected rewards Eq. (D.1). Policy gradient algorithms perform
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gradient ascent on V(θ) by changing each parameter θi in the direction of the
gradient ∂ logV(θ)/∂θi. Here, we show that the parameter dynamics Eq. (D.10),
(D.11) approximate this gradient, i.e., gi(t) ≈ ∂ logV(θ)/∂θi for all t > τg.

It is natural to assume that the reward signal r(τ) only depends indirectly on the
parameters θ, through the history of network spikes zk(τ) up to time τ, which
we write as z(τ) = {zk(s) | 0 ≤ s < τ, 1 ≤ k ≤ K}, i.e., pN (r(t), z(t) | θ) =
p (r(t) | z(t)) pN (z(t) | θ). We can first expand the expectation 〈 · 〉p(r|θ) in Eq. (D.1)
to be taken over the joint distribution p(r, z|θ) over reward sequences r and
network trajectories z. The derivative

∂

∂θi
logV(θ) =

1
V(θ)

∂

∂θi
V(θ) =

1
V(θ)

∂

∂θi
〈
∫ ∞

0
e−

τ
τe r(τ) dτ 〉p(r,z|θ) (D.14)

can be evaluated using ∂
∂x 〈 f (a) 〉p(a|x) = 〈 f (a) ∂

∂x log p(a|x) 〉p(a|x):

∂

∂θi
logV(θ) =

1
V(θ) 〈

∫ ∞

0
e−

τ
τe r(τ)

∂

∂θi
log p (r(τ), z(τ) | θ) dτ 〉p(r,z|θ)

=
1
V(θ) 〈

∫ ∞

0
e−

τ
τe r(τ)

∂

∂θi

(
log p (r(τ) | z(τ)) + (D.15)

log pN (z(τ) | θ)
)

dτ 〉p(r,z|θ)

= 〈
∫ ∞

0
e−

τ
τe

r(τ)
V(θ)

∂

∂θi
log pN (z(τ) | θ) dτ 〉p(r,z|θ) . (D.16)

Here, pN (z(τ) | θ) is the probability of observing the spike train z(τ) in the time
interval 0 to τ. For the definition of the network N given above, the gradient

∂
∂θi

log pN (z(τ) | θ) of this distribution can be directly evaluated. Using Eq. (D.7)
and (4.1) we get (Pfister et al., 2006)

∂

∂θi
log pN (z(τ) | θ) =

∂wi

∂θi

∂

∂wi

∫ τ

0
z

posti(s) log ( f
posti(s)) − f

posti(s) ds

≈
∫ τ

0
wi y

prei(s) (zposti(s)− f
posti(s)) ds , (D.17)

where we have used that by construction only the rate function f
posti(s) depends on

the parameter θi.

In Eq. (D.17) we used the approximation ∂wi
∂θi
≈ wi. This expression ignores the

discontinuity of Eq. (4.1) at θi = 0, where the function is not differentiable. In
practice we found that this approximation is quite accurate if θ0 is large enough
such that exp(θi− θ0) is close to zero (which is the case for θ0 = 3 in our simulation).
In control experiments we also used a smooth function wi = exp(θi − θ0) (without
the jump at θi = 0) for which Eq. (D.17) is exact, and found that this yields results
that are not significantly different from the ones that use the mapping Eq. (4.1).
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D.5 Online learning

Eq. (D.16) defines a batch learning rule with an average taken over learning episodes
where in each episode network responses and rewards are drawn according to the
distribution p(r, z|θ). In a biological setting, there are typically no clear episodes
but rather a continuous stream of network inputs and rewards and parameter
updates are performed continuously (i.e., learning is online). The analysis of online
policy gradient learning is far more complicated than the batch scenario, and
typically only approximate results can be obtained that however perform well in
practice, see e.g., (Seung, 2003; Xie and Seung, 2004) for discussions.

In order to arrive at an online learning rule for this scenario, we consider an
estimator of Eq. (D.16) that approximates its value at each time t > τg based on the
recent network activity and rewards during time [t− τg, t] for some suitable τg > 0.
We denote the estimator at time t by Gi(t) where we want Gi(t) ≈ ∂

∂θi
logV(θ)

for all t > τg. To arrive at such an estimator, we approximate the average over
episodes in Eq. (D.16) by an average over time where each time point is treated
as the start of an episode. The average is taken over a long sequence of network
activity that starts at time t and ends at time t + τg. Here, one systematic difference
to the batch setup is that one cannot guarantee a time-invariant distribution over
initial network conditions as we did there since those will depend on the current
network parameter setting. However, under the assumption that the influence of
initial conditions (such as initial membrane potentials and refractory states) decays
quickly compared to the time scale of the environmental dynamics, it is reasonable
to assume that the induced error is negligible. We thus rewrite Eq. (D.16) in the
form (we use the abbreviation PSPi(s) = wi(s) y

prei(s)).

∂

∂θi
logV(θ) ≈ Gi(t) =

1
τg

∫ t+τg

t

∫ t+τg

ζ
e−

τ−ζ
τe

r(τ)
V(θ)

∫ τ

ζ
PSPi(s) (zposti(s) − f

posti(s)) ds dτ dζ ,

where τg is the length of the sequence of network activity over which the empirical
expectation is taken. Finally, we can combine the second and third integral into a
single one, rearrange terms and substitute s and τ so that integrals run into the
past rather than the future, to obtain

Gi(t) ≈
1
τg

∫ t

t−τg

r(τ)
V(θ)

∫ τ

0
e−

s
τe PSPi(τ − s) (z

posti(τ − s) − f
posti(τ − s)) ds dτ ,

(D.18)
We now discuss the relationship between Gi(t) and Eq. (D.10), (D.11) to show
that the latter equations approximate Gi(t). Solving Eq. (D.10) with zero initial
condition ei(0) = 0 yields

ei(t) =
∫ t

0
e−

s
τe PSPi(t− s) (z

posti(t− s) − f
posti(t− s)) ds . (D.19)
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symbol value description
T 0.1 temperature
τe 1 s time constant of eligibility trace
τg 50 s time constant of gradient estimator
α 0.02 offset to reward signals
β 10−5 learning rate
µ 0 mean of prior
σ 2 std of prior

Table D.1: Parameters of the synapse model Eq. (D.10), (D.11) and (D.13). Parameter values were
found by fitting the experimental data of (Yagishita et al., 2014). If not stated otherwise,
these values were used in all experiments.

This corresponds to the inner integral in Eq. (D.18) and we can write

Gi(t) ≈
1
τg

∫ t

t−τg

r(τ)
V(θ) ei(τ) dτ =

〈
r(t)
V(θ) ei(t)

〉
τg

≈
〈

r(t)
r̂(t)

ei(t)
〉

τg

, (D.20)

where 〈·〉τg denotes the temporal average from t− τg to t and r̂(t) estimates the
expected discounted reward through a slow temporal average.

Finally, we observe that any constant α can be added to r(τ)/V(θ) in Eq. (D.16)
since

〈
∫ ∞

0
e−

τ
τe α

∂

∂θi
log pN (z(τ) | θ) dτ 〉p(r,z|θ) = 0 (D.21)

for any constant α (cf. (Williams, 1992; Urbanczik and Senn, 2009)).

Hence, we have Gi(t) ≈
〈(

r(t)
r̂(t) + α

)
ei(t)

〉
τg

. Eq. (D.11) implements this in the

form of a running average and hence gi(t) ≈ Gi(t) ≈ ∂
∂θi

logV(θ) for t > τg. Note
that this result assumes that the parameters θ change slowly on the time-scale
of τg. Simulations using the batch model outlined above and the online learning
model showed qualitatively the same behavior for the parameters used in our
experiments.

D.6 Simulation details

Simulations were preformed with NEST (Gewaltig and Diesmann, 2007) using an
in-house implementation of the synaptic sampling model; additional tests were run
in Matlab R2011b (Mathworks). The code/software described in the paper is freely
available online at [redacted for double-blind review]. The differential equations
of the neuron and synapse models were approximated using the Euler method,
with fixed time steps ∆t = 1 ms. All network variables were updated based on
this time grid, except for the synaptic parameters θi(t) according to Eq. (D.13)
which were updated only every 100 ms to reduce the computation time. Control
experiments with ∆t = 0.1 ms, and 1 ms update steps for all synaptic parameters
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showed no significant differences. If not stated otherwise synaptic parameters were
initially drawn from a Gaussian distribution with µ = −0.5 and σ = 0.5 and the
temperature was set to T = 0.1. Synaptic delays were 1 ms. Synaptic parameter
changes were clipped at ±4× 10−4 and synaptic parameters θi were not allowed to
exceed the interval [−2, 5] for the sake of numerical stability.

Details to: Task-dependent routing of synaptic connections through
the interaction of stochastic spine dynamics with rewards

The number of potential excitatory synaptic connections between each pair of
input and MSN neurons was initially drawn from a Binomial distribution (p = 0.5,
n = 10). The connections then followed the reward-based synaptic sampling
dynamics Eq. (4.5) as described above. Lateral inhibitory connections were fixed
and thus not subject to learning. These connections between MSN neurons were
drawn from a Bernoulli distribution with p = 0.5 and synaptic weights were drawn
from a Gaussian distribution with µ = −1 and σ = 0.2, truncated at zero. Two
subsets of ten neurons were connected to either one of the targets T1 or T2.

To generate the input patterns we adapted the method from (Kappel et al., 2015a).
The inputs were representations of a simple symbolic environment, realized by
Poisson spike trains that encoded sensory experiences P1 or P2. The 200 input neu-
rons were assigned to Gaussian tuning curves (σ = 0.2) with centers independently
and equally scattered over the unit cube. The sensory experiences P1 and P2 were
represented by two different, randomly selected points in this 3-dimensional space.
The stimulus positions were overlaid with small-amplitude jitter (σ = 0.05). For
each sensory experience the firing rate of an individual input neuron was given
by the support of the sensory experience under the input neuron’s tuning curve
(maximum firing rate was 60 Hz). An additional offset of 2 Hz background noise
was added. The lengths of the spike patterns were uniformly drawn from the
interval [750 ms, 1500 ms]. The spike patterns were alternated with time windows
(durations uniformly drawn from the interval [1000 ms, 2000 ms]) during which
only background noise of 2 Hz was presented.

The network was rewarded if the assembly associated to the current sensory
experience fired stronger than the other assembly. More precisely, we used a
sliding window of 500 ms length to estimate the current output rate of the neural
assemblies. Let ν̂1(t) and ν̂2(t) denote the estimated output rates of neural pools
projecting to T1 and T2, respectively, at time t and let I(t) be a function that
indicates the identity of the input pattern at time t, i.e. I(t) = 1 if pattern P1
was present and I(t) = −1 if pattern P2 was present. If I(t)(ν̂1(t) − ν̂2(t)) < 0
the reward was set to r(t) = 0. Otherwise the reward signal was given by r(t) =
S
( 1

5 (I(t)ν̂1(t)− I(t)ν̂2(t)− ν0)
)
, where ν0 = 25 Hz is a soft firing threshold and

S(·) denotes the logistic sigmoid function. The reward was recomputed every 10 ms.
During the presentation of the background patterns no reward was delivered.
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In Fig. 4.2D,E we tested our reward-gated synaptic plasticity mechanism with the
reward-modulated STDP pairing protocol reported in (Yagishita et al., 2014). We
applied the STDP protocol to 50 synapses and reported mean and s.e.m values of
synaptic weight changes in Fig. 4.2D,E. Briefly, we presented 15 pre/post pairings;
one per 10 seconds. In each pre/post pairing 10 presynaptic spikes were presented
at a rate of 10 Hz. Each presynaptic spike was followed (∆t = 10 ms) by a brief
postsynaptic burst of 3 spikes (100 Hz). The total duration of one pairing was thus
1 s indicated by the gray shaded rectangle in Fig. 4.2E. During the pairings the
membrane potential was set to u(t) = −2.4 and Eq. (D.9),(D.10), (D.11) and (D.13)
solved for each synapse. Reward was delivered here in the form of a rectangular-
shaped wave of constant amplitude 1 and duration 300 ms to mimic puff application
of dopamine. Rewards were delivered for each pre/post pairing and reward delays
were relative to the onset of the STDP pairings. Parameters of the synapse model
were chosen to qualitatively match the results of Fig. 1 of (Yagishita et al., 2014) (see
Tab. D.1). These parameters were used in all experiments if not stated otherwise.

Synaptic parameter changes in Fig. 4.2G were measured by taking snapshots of the
synaptic parameter vectors every 4 minutes. Parameter changes were measured in
terms of the Euclidean norm of the difference between two successively recorded
vectors. The values were then normalized by the maximum value of the whole
experiment and averages over 5 trials were reported.

Details to: Bayesian perspective of policy sampling

Each trial run had a duration of 3 seconds. The current phase in the task was
encoded by the activity of the input neurons (s1 and s2) and left-right decisions
are made according to the activity of the output neuron a. For the first 200 ms of
each trial state neuron s1 was active (fires a burst with Poisson rate 100 Hz) which
indicated approaching to the first junction. If the action neuron fired above a firing
threshold of 60 Hz during this phase the right arm of the maze was taken and
otherwise the left one. This phase was followed by a 200 ms time window where the
state neurons remained silent. In the next phase neuron s2 became active for another
200 ms. Here again the left-right decision at the second junction was based on the
activity of the action neuron as in phase 1. This phase was followed by a 400 ms
time window during which reward was presented. The reward amplitude was
given by the value assigned to the exit that was taken (see Fig. 4.3A). The reward
phase was followed by a waiting period until the end of the trial (3 seconds).

Initial synaptic parameters were drawn from a Gaussian distribution with µ = 0
and σ = 0.5 and we used a different prior with µ = 0.5 and σ = 1, to enhance
regrowth of synaptic connections. An additional constant offset potential of u0 = 7
was added to the output neuron’s membrane potential to increase its activity.

Histograms of maze exists in Fig. 4.3D were computed over the last 100 trials of
the experiments. Averages over 200 independent experiments are shown. Fig. 4.3E
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Fig. D.1: Drifts of neural codes while performance remained constant. Trial-averaged network
activity as in Fig. 4.4D evaluated at three different times selected from a time window where
the network performance was stable (see Fig. 4.4C). Each column shows the same trial-
averaged activity plot but subject to different sorting. Rows correspond to one sorting crite-
rion based on one evaluation time.

shows average reward values throughout one experiment of 4 hours learning time.
Averages were taken over windows of 200 successive trial runs.

The surface plot in Fig. 4.3G was realized by setting the synaptic parameters θ =
(θ1, θ2) of the network to fixed values, corresponding to the X- and Y-coordinates
of the grid points and simulating the network for each parameter pair for 100 trials.
The average reward over the 100 trials was assigned to the Z-coordinate. The trace
of synaptic parameters of a single learning experiment (same as in Fig. 4.3F) was
projected onto this surface (black trace).

Details to: A model for task-dependent self-configuration of a
recurrent network of excitatory and inhibitory spiking neurons

Neuron and synapse parameters were as reported above, except for the inhibitory
neurons for which we used faster dynamics with a refractory time tref = 2 ms
and time constants τm = 10 ms and τr = 1 ms for the PSP kernel. The network
connectivity between excitatory and inhibitory neurons was as suggested in (Aver-
mann et al., 2012). Excitatory (pools D, U and hidden) and inhibitory neurons
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were randomly connected with connection probabilities given in Table 2 in (Aver-
mann et al., 2012). Connections include lateral inhibition between excitatory and
inhibitory neurons. The connectivity to and from inhibitory neurons was kept
fixed throughout the simulation (not subject to synaptic plasticity or rewiring). The
connection probability from excitatory to inhibitory neurons was given by 0.575.
The synaptic weights were drawn from a Gaussian distribution (truncated at zero)
with µ = 0.5 and σ = 0.1. Inhibitory neurons were connected to their targets with
probability 0.6 (to excitatory neurons) and 0.55 (to inhibitory neurons) and the
synaptic weights were drawn from a truncated normal distribution with µ = −1
and σ = 0.2. The number of potential excitatory synaptic connections between
each pair of excitatory neurons was drawn from a Binomial distribution (p = 0.5,
n = 10). These connections were subject to the reward-based synaptic sampling
and rewiring described above.

To infer the lever position from the network activity, we weighted spikes from
the neuron pool D with −1 and spikes from U with +1, summed them and then
filtered them with a long PSP kernel with τr = 50 ms (rise) and τm = 500 ms
(decay). The cue input pattern was realized by the same method that was used to
generate the patterns P1 and P2 outlined above. If a trial was completed successfully
the reward signal r(t) was set to 1 for 400 ms and was 0 otherwise. After each
trial a short holding phase was inserted during which the input neurons were set
to 2 Hz background noise. The lengths of these holding phases were uniformly
drawn from the interval [1 s, 2 s]. In Fig. 4.4C-H the reward policy was changed
after 24 hours by switching the decoding functions of the neural pools D and U
and by randomly re-generating the input cue pattern.

To identify the movement onset times in Fig. 4.4D we adapted the method from
(A. J. Peters et al., 2014). Lever movements were recorded at a sampling rate of
5 ms. Lever velocities were estimated by taking the difference between subsequent
time steps and filtering them with a moving average filter of 5 time steps length.
A Hilbert transform was applied to compute the envelope of the lever velocities.
The movement onset time for each trial was then defined as the time point where
the estimated lever velocity exceeded a threshold of 1.5 in the upward movement
direction. If this value was never reached throughout the whole trial the time point
of maximum velocity was used (most cases at learning onset).

The trial-averaged activity traces in Fig. 4.4D were generated by filtering the spiking
activity of the network with a Gaussian kernel with σ = 75 ms. The activity traces
were aligned with the movement onset times (indicated by black arrows in Fig. 4.4D)
and averaged across 100 trials. The resulting activity traces were then normalized
by the neuron’s mean activity over all trials and values below the mean were
clipped. The resulting activity traces were normalized to the unit interval.

Turnover statistics of synaptic connections in Fig. 4.4E were measured as follows.
The synaptic parameters were recorded in intervals of 2 hours. The number of
synapses that appeared (crossed the threshold of θi(t) = 0 from below) or disap-
peared (crossed θi(t) = 0 from above) between two measurements were counted
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and the total number was reported as turnover rate.

For the approximation of simulating retracted potential synaptic connections in
Fig. 4.4C,F we paused evaluation of the SDE (4.5) for θi ≤ 0. Instead, synaptic
parameters of retracted connections where randomly set to values above zero after
random waiting times drawn from an Exponential distribution with a mean of 12

hours. When a connection became functional at time t we set θi(t) = 10−5 and reset
the eligibility trace ei(t) and gradient estimator gi(t) to zero and then continued
the synaptic dynamics according to (4.5). Histograms in Fig. 4.4F were computed
over bins of 2 hours width.

In Fig. D.1 we further analyzed the trial-averaged activity at three different time
points (18 h, 19 h and 20 h) where the performance was stable (see Fig. 4.4C). Drifts
of neural codes on fast time scales could also be observed during this phase of the
experiment.

Details to: Compensation for network perturbations

The black curve in Fig. 4.4C shows the learning curve of a network for which
rewiring was disabled after the task change at 24 h. Here, synaptic parameters
were not allowed to cross the threshold at θi = 0 and thus could not change sign
after 24 h. Apart from this modification the synaptic dynamics evolved according
to Eq. (D.13) as above with T = 0.1.

For the analysis of synaptic turnover in Fig. 4.4G we recorded the synaptic parame-
ters at t1 = 24 h and t2 = 48 h. We then classified each potential synaptic connection
i into one of four classes, stable non-functional: (θi(t1) ≤ 0)∧ (θi(t2) ≤ 0), transient
decaying: (θi(t1) > 0) ∧ (θi(t2) ≤ 0), transient emerging: (θi(t1) ≤ 0) ∧ (θi(t2) > 0)
and stable functional: (θi(t1) > 0) ∧ (θi(t2) > 0).

In Fig. 4.4H we randomly selected 5% of the synaptic parameters θi and recorded
their traces over a learning experiment of 48 hours (1 sample per minute). The
principal component analysis (PCA) was then computed over these traces, treating
the parameter vectors at each time point as one data sample. The high-dimensional
trace was then projected to the first three principal components in Fig. 4.4H, and
colored according to the average movement completion time that was acquired by
the network at the corresponding time points.

Details to: Relative contribution of spontaneous and
activity-dependent processes to synaptic plasticity

Synaptic weights in Fig. 4.5a,b were recorded in intervals of 10 minutes. We selected
all pairs of synapses with common pre- and postsynaptic neurons as CI synapses
and synapse pairs with the same post- but not the same presynaptic neuron as
non-CI synapses. In Fig. 4.5d-f we took a snapshot of the synaptic weights after
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48 hours of learning and computed the Pearson correlation of all CI and non-CI
pairs for random subsets of around 5000 pairs. Data for 100 randomly chosen CI
synapse pairs are plotted of Fig. 4.5E.

In Fig. 4.5F we analyzed the contribution of activity-dependent and spontaneous
processes in our model. (Dvorkin and N. E. Ziv, 2016) reported that a certain
degree of the stochasticity in their results could be attributed to their experimental
setup. The maximum detectable correlation coefficient was limited to 0.76− 0.78,
due to the variability of light fluorescence intensities which were used to estimate
the sizes of postsynaptic densities. Since in our computer simulations we could
directly read out values of the synaptic parameters we were not required to
correct our results for noise sources in the experimental procedure (see p. 16ff and
equations on p. 18 of (Dvorkin and N. E. Ziv, 2016)). This is also reflected in our
data by the fact that we got a correlation coefficient that was close to 1.0 in the
case T = 0 (see Fig. 4.5D). Following the procedure of (Dvorkin and N. E. Ziv,
2016) we estimated in our model the contributions of activity history dependent
and spontaneous synapse-autonomous processes as in Fig. 8E of (Dvorkin and
N. E. Ziv, 2016). Using the assumption of zero measurement error and thus a
theoretically achievable maximum correlation coefficient of r = 1.0 we estimated
the fraction of contributions of specific activity histories to synaptic changes (for
T = 0.15) as 0.46− 0.08 = 0.38 and of spontaneous synapse-autonomous processes
as 1.0 − 0.46 = 0.54. The remaining 8% resulted from processes that were not
specific to presynaptic input, but specific to the activity of the postsynaptic neuron
(neuron-wide precesses).
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