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Zusammenfassung

Im ersten Teil wird eine kurze Einführung in das Gebiet der Lithium-Ionen-Batterien
gegeben. Aufbau und Funktionsweise dieses Batterietyps, sowie dessen Verwendung
im Automobilbereich werden thematisiert. Weiters �ndet sich eine Beschreibung des
Batterie-Alterungs-Experiments ALICe, welches während seiner Laufzeit statistisch be-
gleitet und dessen Ergebnisse nach Beendigung des Experiments einer eingehenden statis-
tischen Analyse unterzogen wurden.

Der zweite Teil befasst sich mit den Grundlagen der multiplen linearen Regression und
der Versuchsplanung. Er bietet eine ausführliche Beschreibung des theoretischen Hin-
tergrundes der verwendeten statistischen Methoden und Kenngröÿen.

Der dritte Teil beinhaltet die Analyse des eingesetzten Versuchsdesigns, das vom
ursprünglich geplanten Design bezüglich der Designpunkte und des parametrisierten
Modells abweicht. Die Auswirkungen dieser Änderungen auf die E�zienz werden ein-
gehend studiert und evaluiert. Die im Experiment gewonnenen Daten werden darüber
hinaus genutzt, um das eigentliche Ziel des Experiments, nämlich die Auswahl und
die Parametrisierung eines geeigneten multiplen linearen Regressionsmodells (MLR) für
die Beschreibung des Zusammenhanges zwischen Batterienutzung und Batteriealterung
durchzuführen. Neben einer ausführlichen Darstellung der Resultate der statistischen
Analysen bietet dieses Kapitel auch eine kritische Diskussion der erzielten Ergebnisse.

Diese Arbeit wurde in Zusammenarbeit mit dem 'Kompetenzzentrum - Das virtuelle
Fahrzeug, Forschungsgesellschaft mbH' durchgeführt.
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Abstract

We start with a short introduction into the topic of lithium batteries and discuss com-
position, mode of operation and usage in the automotive context of this battery type.
Furthermore, this chapter also provides an overview of the battery aging experiment
ALICe, which was supervised from the viewpoint of statistics and experimental design
during its term and whose results were thoroughly evaluated after its termination.

The second part is concerned with the basics of both multiple linear regression and
experimental design and gives a rather detailed discussion of the theoretical background
and the statistics used.

The third part deals with the analysis of the actual experimental setting used within
the project. The main focus is on the impact of deviations of the experimental design
and of the model to be parametrized on the e�ciency of the initial setting. Additionally,
the data gained in the experiment are used to accomplish the intended goal of the
experiment, namely to select and parametrize a suitable multiple linear regression model
(MLR) to describe the relationship between battery usage and battery aging. In addition
to a comprehensive presentation of the results of the statistical analysis, this part also
comprises a critical discussion of the obtained results.

This thesis was realized in cooperation with the VIRTUAL VEHICLE Research Center
(ViF).
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1 Introduction

1.1 Motivation

Due to the �niteness of fossil fuels and the heavy (negative) impact of the emissions
(exhaust fumes and noise) of combustion engines on our environment and therefore on
ourselves, the call for environmentally friendly power trains respectively energy sources
is becoming louder and louder.

At the moment the electric power trains constitute the most promising alternative. One
possibility for storing the energy needed in this case is the use of batteries. Lithium
ion batteries seem to meet the demands of electric mobility better than other battery
types, because of a high energy density, hardly any memory e�ect, and only a slow loss
of charge when not in use (Wikipedia [38]).

In addition to the above mentioned aspects, the question of longevity is, for economical
reasons, crucial for the successful application in the automotive industry.

This work is concerned with the evaluation of the experimental design (constructed by
W. Prochaska and G. Pregartner) and with the statistical analysis of the data produced
by a preliminarily conducted experiment, which aims to investigate the topic of battery
aging.

The lifespan of a battery depends on a large number of in�uential factors and there
exists no comprehensive mechanistic understanding of the relationship between these
factors and the process of cell aging. Due to the complex nature of the process under
investigation, there is an obvious need for the use of statistical methods. The design
as well as the analysis of the experiment can therefore only be conducted on a sound
statistical basis.

This work is embedded in the K2 project E3T3 (ALiCe), which is currently carried out
at the VIRTUAL VEHICLE Research Center in Graz.
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1 Introduction

Figure 1.1: Schematic composition of a Li-ion cell (Wikipedia [39])

1.2 Li-ion cells

1.2.1 Technological aspects

The electrodes, the electrolyte and the separator constitute the main parts of a cell. The
separator prevents short-circuit through physical contact of the electrodes, but allows
the migration of Li` ions.

The electrodes have the capability to reversibly uptake the Li` ions. The direction of
uptake and release depends on whether the battery is charged or discharged. During
discharging, the Li` ions move out of the graphite anode and move into the cathode
material. During charging, the process is reversed. Because of this seesaw of ions, the
technology is also referred to as rocking-chair technology.

The anode consists of a graphite layer (often denoted as C6), laminated on a copper
current collector.

The cathode consists in most cases of an aluminum foil, which is laminated with one
metal oxide or a blend of metal oxides or metal phosphates. Examples are:

� LCO = Lithium Cobalt Oxide (LiCoO2), the �rst commercially used material
invented by SONY in the early nineties. Although widely used, the material is
thermally not stable and therefore rather unsafe.

� LMO = Lithium Manganese Oxide (LiMn2O4). A high-energy material, today
often used in notebooks.
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1 Introduction

� NCM= Lithium Nickel Cobalt Manganese Oxide (Li[NiaCobMnc]O2 with a`b`c “
1). A high energy material, today often used in automotive applications.

� LFP = Lithium Iron Phosphate (LiFePO4). A high-power but low-energy material,
used in hybrid electric vehicles where power is more important than range. The
safest cathode material at the moment.

The liquid electrolyte in lithium-ion batteries serves as a conductive medium for the Li`

ions and allows them to move freely between the electrodes. The electrolyte consists
of a mixture of organic carbonate solvents and contains a lithium salt (e.g. LiPF6) to
increase the lithium conductivity.

A reason for the usage of these non-aqueous electrolytes is, that the cell voltage is large
enough to electrolyze aqueous solutions.

Furthermore, lithium reacts heavily with entering water, causing �re - and even explosion
hazard. Therefore the interior of a lithium cell is totally free of water (H2O < 10 ppm).
In order to prevent water entry, the hull is sealed and impermeable.

In the charged state, the potential di�erence between anode and cathode (cell voltage)
is in the range from 3 to 4 Volt, depending on the cathode material. In the case of a cell
based on LiCoO2 it is about 3.7 V.

The lithium-ion �ow in the cell is necessary to compensate for the external current
�ow which occurs when the cell is charged or discharged (to close the circuit). During
discharge, the intercalated lithium atoms emit electrons thus becoming positively, singly
charged ions Li`. The emitted electrons �ow through the external circuit from the anode
to the cathode and simultaneously an equal amount of lithium ions moves in the same
direction through the electrolyte. At the cathode, the lithium ions do not reabsorb the
electrons, this is done by compounds which are part of the positive electrode. That
means, that in the discharged state, the lithium is still present at the cathode in form
of ions.

The following example gives a look at what is going on in a LMO cell:

Anode (discharge): LixC6 Ñ C6 ` xLi` ` x e´

Cathode (discharge): LiyMn2O4 ` xLi` ` x e´ Ñ Liy`xMn2O4

Redox-equation: LiyMn2O4 ` LixC6 Ñ Liy`xMn2O4 ` C6

Metallic lithium is not involved in any of these reactions.

During this (redox-) process, the electrodes alter chemically triggering a potential change,
which results in a changing cell voltage (see �gure 1.2).

3



1 Introduction

Figure 1.2: Open-circuit cell voltage (electrode potential di�erence) of the cell used in the ALiCe
project at di�erent states of charge (SoC). SoC = 0% ... cell discharged; SoC = 100%
... cell charged. Upper curve: charge direction; lower curve: discharge direction (ViF
[34]).

1.2.2 Aging causes

As already mentioned, the design was set up prior to the beginning of this Master's
thesis. We will brie�y discuss the question which factors for what reason have been
selected and how the design window (i.e. range of the factors) has been chosen.

The chemical expertise, which �owed in the process of designing the experiment, stems
from three major sources:

1. Pre-existing knowledge at VIRTUAL VEHICLE.

2. Extensive literature search.

3. A preliminary experiment (for further details, see the Master's thesis of G. Pre-
gartner [24]).

Initial assumptions:

These assumptions constitute a kind of 'qualitative mechanistic modeling' of the pro-
cesses running inside the cell. Factors under consideration are:

(a) Temperature. As already found by S. Arrhenius in the 19-th century, every 10˝C
increase in temperature causes doubling of the reaction rate of many chemical reactions
(Wikipedia [37]). This a�ects both, desirable as well as undesirable chemical reactions.
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1 Introduction

Low temperatures. Di�usion-processes become slow. This doesn't cause damages
during discharging (the negative e�ect in this case is a reversible reduction in cell capa-
city - see �gure 1.3), but during charging, due to the current �ow which is forced into
the battery by the externally applied voltage. Harmful alternative reactions instead of
the desired ones can be triggered, especially at the anode. If the process of chemical
conversion of the Li` ions on the surface of the graphitic electrode during charging
happens faster than di�usion into the graphitic particles, metallic lithium is accumulating
on the surface of the anode. This process is called plating.

Figure 1.3: Discharge curves, showing the impact of temperature on cell capacity (Vezzini [31]).

Plating causes the growth of Li-dendrites, which can, in the extreme case, cause a short
circuit. In less drastic cases, plating contributes to aging, because lithium ions get
lost, e.g. due to the formation of unsolvable lithium compounds at the interface to the
electrolyte. This loss of Li` ions results in a loss of capacity. From this it follows
that the lower the temperature, the lower the charge current (CC) has to be in order to
prevent aging. Hence, the in�uence of the charge current on aging is heavily temperature
dependent. This is an example for a two-factor-interaction which we should observe in
the data. If the charge current is too high at all, the temperature inside the battery will
increase, causing local problems.

In the case of discharging, plating cannot happen, but the discharge current (DC) can
cause local temperature increase. Especially DC-peaks are problematic. To take this
aspect into account, the DC is pulsed to cover the dynamics of the automotive use case.

(b) Dynamics. From pulsing the DC, three factors arise: the peak discharge current
(PDC), the average discharge current (ADC) and the frequency of pulses (F). It's not
much known about the e�ects of dynamics, but:

� energy (E “ I2Rt, where I denotes the PDC, R the internal resistance and t the

5



1 Introduction

pulse duration) which is brought in by the DC, especially by DC peaks, causes
local temperature increase

� high voltage peaks, caused by high PDC values, can cause detrimental side reac-
tions

� in addition, the lithium uptake into the graphite particles causes particle expansion
- the faster the uptake is, the faster the particles have to expand. That means, the
higher the PDC, the higher the risk of particle cracking (see �gure 1.4).

Figure 1.4: Cross-sectional SEM image of the subsurface region of the graphite electrode cycled
between 0.0 and 3.0 V at a linear scan rate of 5 mV/s, showing the presence of cracks
resulting in partial delamination of graphite layers at the SEI-graphite interface (ViF
[34])

(c) Degree of utilization.

Two factors are investigated in this context (see �gures 1.5 & 1.6):

1. The delta state of charge (dSoC), which speci�es the di�erence between the max-
imum and the minimum SoC levels of charge and discharge.

2. The average state of charge (SoC), which speci�es the arithmetic mean of the
maximum and minimum levels of charge and discharge de�ned.

The range between the maximum charge level (maxSoC) and the minimum charge level
(minSoC), is the SoC range of the individual load point (see �gure 1.6).

In the context of the experiment, the factor SoC represents the center around which
the batteries actual state of charge is oscillating: SoC = maxSoC`minSoC

2 . It has an
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1 Introduction

Figure 1.5: One cycle of charging and discharging in the case of a typical load point of the given
experiment (ViF [34]).

Figure 1.6: SoC change during discharging (ViF [35])

in�uence on particle structure and hence a�ects the sensitivity of the graphitic particles
to changes of other factors.

The dSoC, or SoC swing, can cause mechanical damage to the graphitic particles. The
larger the di�erence between maximum and minimum state of charge, the larger are
expansion and contraction of the particles - cracks can happen to occur (see �gure
1.4).

Additionally, the larger the dSoC, the larger is the voltage �uctuation at the electrodes
and hence the risk of side reactions (limited electrochemical stability window of the
electrolyte).

Another source of aging is the so-called solid electrolyte interphase (SEI) (see �gure 1.4),
a layer which is formed during initial charging by decomposing solvent on the graphitic
electrode. The SEI slows down further electrolyte decomposition dramatically but is
nevertheless getting thicker and thicker with time and thus increasing the internal cell
resistance.

(d) Other sources of aging.

There are, of course, many more in�uencing factors. Under real world conditions, some
of them are controllable while others are not (see �gure 1.7). The factors used in the
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1 Introduction

experiment are chosen only amongst the controllable factors, all the others are held
constant if possible.

Figure 1.7: Fishbone diagram of in�uencing factors (ViF [33])

1.3 The Experiment

After discussing several in�uences, it had to be decided which one to choose and how to
test for their impact on cell aging. The critical question of proper experimental design is
a challenging science and will be discussed more deeply in chapter 2. At this point, we
give a brief outline of the experiment that is actually run at VIRTUAL VEHICLE.

At the beginning, one has to choose the range of interest for each factor. The temperature
T, for example, ranges between ´10 and `40 degrees Celsius in the experiment. Then
it has to be decided, which levels of the factors within their chosen ranges should be
considered.

The experimental settings have to be chosen such that the statistical signi�cance of the
results is as high as possible. Therefore the combinations of the factor levels have to be
selected (in the following often called Load Points or LP) on a sound statistical basis
by employing proper design construction methods (e.g. usage of orthogonal designs or
methods for creating optimal designs). There exists a vast literature on the topic of
designing and analyzing experiments - see for example the books by Montgomery [21]
and Pukelsheim [25].

The factors and factor levels which have been chosen are listed in table 1.1.

8
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In addition, it has to be taken into account, that there exist constraints which prohibit
the application of certain factor level combinations. On one hand, this has inherent
physical reasons, which means that some factor level combinations are simply not possi-
ble (e.g. PDC lower than ADC) and on the other hand, one wants to avoid load points
which would cause wrong side reactions.

One such example is the interaction of average discharge current, frequency and delta-
state-of-charge (see �gure 1.8). Due to physical reasons, the admissible test space covers
not the whole cuboid. Instead, it is the area, which is enclosed by the red lines and the
colored surface.

In total fourteen di�erent constraints have been applied (see table 1.2), heavily reducing
the number of eligible factor level combinations.

Moreover, due to limited resources, only a fraction of feasible factor level combinations
can be realized.

Therefore, a classical orthogonal design can't be applied. Due to the complexity of
the proper load point selection, a computer generated experimental design, a so called
optimal design, is used.

After �guring out, how many and which of the feasible load points to use, the actual
experiment can be put into e�ect.

The basic idea is to charge and discharge the batteries continuously (see �gure 1.9)
according to the chosen settings (factor level combinations) until a speci�c criterion
indicates that the batteries end of life (EoL) is reached. One such sequence of charging
and discharging is called a cycle. Therefore, the repeated application of cycles is called

9



1 Introduction

Figure 1.8: Admissible test space (ViF [33]).

Figure 1.9: Repeated cycles of charging and discharging (ViF [32])

10



1 Introduction

cycling. In the context of the actual experiment, a battery is said to have reached its
end of life, if

1. the capacity of the cell has fallen below 70% of its initial capacity and/or

2. the internal resistance of the cell has reached a level above 300% of its initial
internal resistance.

To establish the relation between several factors and the lifespan of the batteries, a linear
regression approach has been chosen. That means, we assume a linear model describing
the relationship between the chosen factors and the batteries end of life in an adequate
way. More on the topic of linear modeling can be found in the next chapter.

At intervals of several weeks, the cycling has to be interrupted to assess capacity loss and
resistance gain in order to stop the experiment when the EoL is reached and furthermore,
to get data on the characteristics of capacity decay and resistance increase. This is done
by applying the so called Reference Test Procedure (RTP) - see �gure 1.10. If the cells
EoL is not reached yet, cycling is commenced again. This sequence of cycling and testing
is repeated until at least one of the EoL criteria is reached.

Figure 1.10: Reference Test Procedure

The data, which is gained this way, will hopefully not only lead to the building of a
mathematical model, abstractly describing the relationship between several factors and
the lifespan of batteries, but also, based on the mathematical model, allows for physical
interpretations of factors e�ects. In the end, the goal is, to �nd a model, which empowers
an industrial user to optimize his operational strategy giving a reasonable battery life.

11
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Table 1.2: Constraints applied in constructing the set of candidate points.

12



2 Statistical concepts and methods

2.1 The need for statistical modelling

Mathematical modelling is a generic tool for the description of systems, which stem
from a great variety of scienti�c �elds as well as engineering disciplines. There exists
a vast literature on this topic - see for example the introductory book by Velten [30].
The goal of modelling is to explain a system in terms of its parts (white box model)
or at least its behaviour (black box model). White box models describe for example
mechanical systems, i.e. systems for which all relevant components and their behaviour
is known. Such a model can be used to study the e�ects of di�erent parts of the system
and to use this knowledge to make predictions about the systems behaviour. Black box
models constitute the other end of the model spectrum. In this case, the systems are too
complex to be understood in a mechanistic way, for example the response of plants to
di�erent nutrition regimes. Only the relationship between input and output is modelled
- this knowledge is used for predicting the output (response variable(s)) given a certain
input (independent variable(s)).

To be able to cope with the great variability of systems under investigation, many
di�erent forms of models exist. Below, some model categories are shown (this categories
can of course overlap):

The model can be

� linear - all operators in the model are of a linear type,

� discrete or continuous,

� deterministic or stochastic. The latter means, that randomness is involved.

� static or dynamic. The latter means, that there is time dependency involved.

In the case of the Li-ion battery, we will consider the relationship between its end of
life (EoL) and seven di�erent input variables, namely: t1 “ temperature (T ), t2 “
charge current (CC), t3 “ average discharge current (ADC), t4 “ peak discharge cur-
rent (PDC), t5 “ frequency pF q, t6 “ state of charge (SoC) and t7 “ delta state of
charge (dSoC), which has been discussed in more detail in chapter 1. t “ pt1, ..., t7q P T
represents the experimental conditions, which can freely be chosen by the experimenter
from the experimental domain T . In this case, obviously, T Ď R7. Additionally, the
experimental domain does not only depend on the number of independent variables, but

13



2 Statistical concepts and methods

also on their ranges and on further constraints prohibiting certain treatment combina-
tions.

The battery is, at least in the case of the end of life, a stochastic system. There is some
randomness due to factors which are unknown or at least cannot be controlled properly.
A deterministic system will always produce the same output for a given input, there
is no uncertainty involved (e.g. the relationship among voltage, current and resistance:
V “ R ¨ I).

A stochastic system doesn't behave like this - a repeated certain input will produce
di�erent outputs - this is modelled by a noise term. The noise term makes the di�erence
between statistical and deterministic modelling, and, due to the stochastic nature of
the system under investigation, the goal is now to predict the expected outcome of an
experiment and not to exactly predict the outcome of a single experiment.

In this modelling context, the battery is considered as a black box, and one only tries
to model the input dependency of its lifespan, without considering its inner life (no
mechanistic interrelationship �ows into the process of modelling). To create a black box
model, one has to estimate not only the functional relationship between in- and output
variables but also the parameters in the chosen function.

Due to the afore mentioned fact, that the true functional relationship EoL “ fpt1, ..., t7q
is unknown, the experimenter has to choose an (hopefully) appropriate function to ap-
proximate f . Low order polynomial models have proven to be the proper choice in most
cases as approximating functions. Great care has to be taken, to avoid under- and es-
pecially over�tting, when choosing this function (the topic of model evaluation will be
discussed in detail in section 2.3.3).

2.2 Multiple Linear Regression

This section is intended to comprise a short overview of the mathematical background of
multiple linear regression methodology, especially in the light of unbalanced data and is,
as not explicitly stated otherwise, based on the lecture notes of Stadlober [27], Stadlober
[28] and the books by Montgomery [21], Montgomery et al. [22], Fahrmeir et al. [6] and
Jørgensen [14].

At the beginning of the project, it was decided to explain the in�uence of several di�erent
factors (the independent variables ti) on several properties of the batteries (the response
or dependent variables), by means of linear regression.

In the context of this work, the response is always the batteries end of life (EoL), which
is derived from the measurements of battery characteristics like cell capacity or internal
resistance and the seven independent variables are t1, ..., t7 already mentioned above.

14



2 Statistical concepts and methods

For linear regression one tries to �t a straight line (simple linear regression or SLR) or
a (hyper-) plane (multiple linear regression or MLR) to the given data as best possible
(least-squares-method). Thus, a model of the following form is assumed (classical linear
model with normally distributed errors)

yi “ β0 `

k
ÿ

j“1

βjxij ` εi for i “ 1, . . . , n (2.1)

where k indicates the number of regressors, i.e. k “ 1 means simple linear regression and
k ą 1 means multiple linear regression. The subscript i denotes the i ´ th observation
of the experiment, whose output consists of n observations in total. The number of
observations, which is necessary to be able to estimate all model parameters properly,
must exceed k, so n ě k ` 1 has to be valid. Furthermore, εi is an unobserved random
variable, that stands for the noise term in the i´ th observation. All εi are independent

of each other and are identically and normally distributed: εi
iid
„ Np0, σ2q.

The notion 'linear' indicates that the model is linear in the parameters βj , which are
called regression coe�cients in this context, but not necessarily in the independent (or
regressor respectively predictor) variables xij for which any functional form is possible.
The parameter β0 is called intercept and it is the expected value of the response when
all regressors equal zero.

Now, lets have a look at the regression model lm.ex, which was stated at the beginning
of the ongoing experiment based on considerations which are discussed to some extent
in chapter 1:

y “β0 ` β1T ` β2CC ` β3ADC ` β4PDC ` β5F ` β6SoC ` β7dSoC`

β8T
2 ` β9ADC

2 ` β10SoC
2 ` β11dSoC

2 ` β12T
3 ` β13T ¨ C`

β14T ¨ PDC ` β15CC ¨ PDC ` β16CC ¨ dSoC ` β17PDC ¨ F` (2.2)

β18PDC ¨ SoC ` β19PDC ¨ dSoC ` β20F ¨ dSoC ` β21SoC ¨ dSoC`

β22T ¨ F ` β23T ¨ SoC ` β24F ¨ SoC ` ε.

This is a model in 7 variables, but we have 24 regressors - this regressors are functions of
the 7 variables. If we let x1 “ T , x2 “ CC, ... , x7 “ dSoC, x8 “ T 2, ... , x24 “ F ¨SoC
then the model can again be written as

y “ β0 `

24
ÿ

j“1

βjxj ` ε.

This is the familiar form (2.1) of a linear regression model, which we already encountered
at the beginning of this chapter.

Using some additional notation, (2.1) can also be written as:
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y “ gptqTβ ` ε

with x “ gptq “ p1, x1, . . . , xkq and β “ pβ0, . . . , βkq. g is called the regression function
and x the regression vector. In addition to the term experimental domain T , the term
regression range X “ tgptq | t P T u Ď Rk`1 is introduced at this point, which will come
up again in the subsection about optimal designs.

From (2.1) it follows, that the expected value or mean of each observation equals

Epyiq “ β0 `
k
ř

j“1
βjxij .

Due to the fact, that all errors are assumed to be normally and identically distributed
with variance σ2, the distributions of the observations are therefore given by

yi
ind
„ Npβ0 `

k
ř

j“1
βjxij , σ

2q.

It simpli�es calculus, to write model (2.1) in matrix notation:

y “ Xβ ` ε , ε „ Np0, σ2Iq (2.3)

where

y “

¨

˚

˚

˚

˝

y1

y2
...
yn

˛

‹

‹

‹

‚

, X “

¨

˚

˚

˚

˝

1 x11 ¨ ¨ ¨ x1k

1 x21 ¨ ¨ ¨ x2k
...

...
. . .

...
1 xn1 ¨ ¨ ¨ xnk

˛

‹

‹

‹

‚

, β “

¨

˚

˚

˚

˝

β0

β1
...
βk

˛

‹

‹

‹

‚

and ε “

¨

˚

˚

˚

˝

ε1
ε2
...
εn

˛

‹

‹

‹

‚

.

Next, the already mentioned method of least squares, which is typically used for esti-
mating the unknown model parameters βj will be introduced.

2.2.1 Least Squares Method

Provided that n ą k observations on the response y are available, the model parameters
can be estimated as follows:

The idea is, to choose the β's in model (2.1) such that the sum of squared errors

S “
n
ÿ

i“1

ε2i “
n
ÿ

i“1

pyi ´ pβ0 `

k
ÿ

j“1

βjxijqq
2 (2.4)
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is minimized.

In matrix notation (2.3), equation (2.4) can be written as follows:

S “
n
ř

i“1
ε2i “ ε

T ε “ py ´XβqT py ´Xβq “ yTy ´ 2βTXTy ` βTXTXβ.

Now we have to �nd the vector of estimates

β̂ “ argmin
βPRk`1

S “ argmin
βPRk`1

pyTy ´ 2βTXTy ` βTXTXβq.

In the case of β̂, the following equation must hold:

BS

Bβ

ˇ

ˇ

ˇ

ˇ

β̂

“ ´2XTy ` 2XTXβ̂
!
“ 0. (2.5)

Rewriting equation (2.5) yields XTXβ̂ “ XTy. That leads to

β̂ “ pXTXq´1XTy (2.6)

which is the least squares estimator (LSE).

De�nition 2.1. An estimator W : Rn Ñ Rp is called a linear estimator, if a matrix
M P Rpˆn exists, such that W pyq “My for all y P Rn.

The LSE (2.6) is, according to de�nition 2.1, obviously a linear estimator.

The process of parameter estimation is calledmodel �tting. The vector β̂ contains the
estimated parameter values, which are used to parametrize the model.

The resulting, �tted linear regression model can be written as follows:

ŷ “ Xβ̂ “ XpXTXq´1XTy “ Hy. (2.7)

The nˆ n matrix H is called the hat- or predictor-matrix.

ŷ constitutes the vector of the estimated response values, which is therefore also called
vector of �tted values.

The so called residuals ei are the di�erences between the �tted values ŷi and the
corresponding observed values yi. In vector notation this can be written as

e “ y ´ ŷ. (2.8)
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The residual serves as an estimator for the unobservable error ε. The residuals can be
used for estimating the error variance σ2 by means of the residual (or error) sum of
squares:

SSE “
n
ÿ

i“1

e2
i .

If the model has (including intercept) k ` 1 parameters, than the SSE has n ´ pk ` 1q
degrees of freedom. The expected value of SSE , EpSSEq can be shown to be equal to
σ2pn´ pk ` 1qq. Therefore

σ̂2 “
SSE

n´ pk ` 1q
(2.9)

is an unbiased estimator of σ2.

The term on the right-hand side of equation (2.9) is called the mean squared error or
MSE .

De�nition 2.2. Let Θ denote the parameter space, that contains all possible values of
a parameter vector θ. An estimator θ̂ is called an unbiased estimator for a parameter
vector θ P Θ if and only if Eθpθ̂q “ θ for all θ P Θ.

De�nition 2.3. An estimator θ̂ is called a best unbiased estimator for a parameter θ P Θ
if and only if θ̂ is unbiased and V arθpθ̂q ď V arθpθ̃q for all other unbiased estimators for
θ, θ̃, holds.

The following theorem, which is taken from Fahrmeir et al.[5] sums up some of the most
important results on linear regression:

Theorem 2.1. Gauÿ-Markov-Theorem

Let y “ Xβ ` ε with Epyq “ Xβ and Covpyq “ σ2I, then the following holds for the
LSE β̂:

1. Epβ̂q “ β. Therefore, β̂ is an unbiased estimator of β.

2. The covariance matrix of β̂ is given by Covpβ̂q “ Eppβ̂´Epβ̂qqpβ̂´Epβ̂qqT q “
σ2pXTXq´1. The i-th element of the main diagonal of this symmetric matrix,
is the variance of the i-th estimated parameter β̂i and its pijq-th element is the
covariance between β̂i and β̂j.

3. The LSE β̂ is the best linear unbiased estimator (BLUE). That means, that the
following holds for all linear estimators β̃ with Epβ̃q “ β:

� In general, V arpλT β̂q ď V arpλT β̃q for each linear combination with λ P

Rk`1.
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� From this it follows, that especially V arpβ̂iq ď V arpβ̃iq , i “ 0, . . . , k.

In terms of the above-mentioned theorem, the best possible linear prediction of the mean
response to a given vector of regressors x, is xT β̂.

Looking at the Gauÿ-Markov-Theorem, we can see, that the assumption of normally
distributed errors is not a necessary precondition for the validity of the theorem. In
addition, we assume the errors to be normally distributed (model (2.3)). Therefore, the
estimator β̂ for the parameters, which constitutes a linear combination of the normally
distributed observations, is itself normally distributed. Under this assumption, we can
deduce the following distributional properties of the estimators:

1. β̂ „ Nk`1pβ, σ
2pXTXq´1q

2. β̂ and σ̂2 are independent

3. pn´ pk ` 1qq
σ̂2

σ2
„ χ2

n´pk`1q

Statistical properties of the residuals:

According to (2.7) and (2.8), the vector of residuals e equals pI ´Hqy.

From this it follows, that:

� Epeq “ 0

� covpeq “ σ2pI ´Hq ñ

� V arpeiq “ σ2p1 ´ hiiq for i “ 1, . . . , n with hii denoting the i-th diagonal
element of H

� the residuals are not uncorrelated

� the residuals have heteroscedastic variances

Due to the fact, that the residuals are correlated and have heteroscedastic variances,
they can not simply be used as a mean for evaluating the model assumptions. To make
better use of the residuals, we have to standardize or studentize them. Given that the
model assumptions hold, we achieve homoscedasticity this way, but still have correlation.
If the model is properly speci�ed, correlation is usually weak and thus can be neglected.
More on the topic of model evaluation can be found in section 2.3.3.

If the model assumptions are valid, the standardized residuals

ri “
ei

σ̂
?

1´ hii
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have homoscedastic variances and can therefore be used to test for homoscedasticity of
the error terms. Since ei shows up in the calculation of σ̂, ei and σ̂ are not independent
and thus, despite the fact that ei is normally distributed and pn ´ pk ` 1qqσ̂2{σ2 „

χ2
n´pk`1q, the standardized residuals are not t-distributed. To get rid of the problem of

dependency, estimates are used, which are based upon the data set without the respective
observation.

Studentized Residuals

Xpiq and ypiq denote the design matrix, lacking the i´th row of regressors and the
vector of observations, with the i´th observation left out. Based on Xpiq and ypiq, the
parameters of the linear model are estimated as shown above for the case of the complete
data. The parameters and residuals estimated this way are contained in the parameter
vector β̂piq and in the vector of residuals epiq, respectively. They are used to calculate

the predictor ŷpiq “ xTi β̂piq, the residual epiq “ yi ´ ŷpiq and the estimated variance

σ̂2
piq “

eT
piqepiq

n´ k ´ 2
.

It can easily be shown, that

epiq „ Np0, σ2p1` xTi pX
T
piqXpiqq

´1xiqq.

It can further be shown, that epiq and σ̂
2
piq are independent.

In addition, we already know that pn´ k ´ 2q
σ̂2
piq

σ2
„ χ2

n´k´2.

Putting all this together, we get the studentized residual r˚i and its distribution:

r˚i “
epiq

σ̂piqp1` x
T
i pX

T
piqXpiqq

´1xiq1{2
“

ei

σ̂piq
?

1´ hii
“

σ̂

σ̂piq
ri „ tn´k´2

The studentized residuals are used for checking the model assumptions, and, in addition,
knowing the distribution of the studentized residuals is helpful in identifying observations
that are not in good agreement with the �tted model, given that the model is speci�ed
correctly.

2.2.2 Hypothesis Testing

In this section, a short overview on tests about model parameters is given. These pro-
cedures require the model assumptions stated in (2.3) to be true. The distributions of
the model parameters, which are used for constructing the tests, depend on the validity
of these assumptions.
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Sum of Squares, Analysis of Variance (ANOVA) and the Signi�cance of Regression

In the context of linear modeling, it has to be the �rst step in testing, to check whether
there exists the assumed linear relationship between response and regressors.

The hypotheses used for testing the signi�cance of this relationship are:

H0 : β1 “ β2 “ ... “ βk “ 0 vs. H1 : βi ‰ 0 for at least one i “ 1, . . . , k

In order to do this test, we partition the total sum of squares SST , which re�ects the
total variation in the data set, into a sum of squares due to regression (or the model)
and a sum of squares due to the noise (or error) in the data :

SST “ SSR ` SSE

where SST “
n
ř

i“1
pyi ´ ȳq

2 denotes the total sum of squares, SSR “
n
ř

i“1
pŷi ´ ȳq

2 denotes

the variation in the data which can be explained by the model and SSE “
n
ř

i“1
pyi ´ ŷiq

2

denotes the variation in the data which cannot be explained by the model.

Often, the sum of squares are scaled by dividing them by their respective degrees of
freedom (df). This scaled sums of squares are termed mean squares:

Source of Variation Sum of Squares df Mean Squares

Total SST n´ 1 MST “ SST {pn´ 1q

Regression SSR k MSR “ SSR{k

Error SSE n´ k ´ 1 MSE “ SSE{pn´ k ´ 1q

Under the null hypothesis, SSE{σ and SSR{σ are independent and distributed as χ2
n´k´1

and χ2
k respectively.

From this it follows, that

F “
SSR{k

SSE{pn´ k ´ 1q
“
MSR
MSE

H0
„ Fk,n´k´1.

Therefore, we reject H0 for a given signi�cance level α, if we have F ą F1´α,k,n´k´1.

Multiple R2 is a quantity usually considered in this context:

R2 “
SSR
SST

“ 1´
SSE
SST

.
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It is a measure of the proportion of the total variability in the data, which is explained
by the model. Unfortunately, R2 increases if the number of model terms increases, even
if the added terms are statistically insigni�cant. Therefore, a large value of R2 does
not necessarily tell that the regression model under consideration is a proper one. To
overcome this problem, it is better to use a version of R2, which is corrected for model
size. This is the so called adjusted multiple R2:

R2
adj “ 1´

SSE{pn´ k ´ 1q

SST {pn´ 1q
.

In many cases, in which unnecessary terms are added to the model, R2
adj does not increase

but does, in contrary, even decrease. If there is a great discrepancy between R2 and R2
adj ,

it is very likely, that there are unnecessary terms in the model. That, in turn implies,
that, if R2 and R2

adj are in good agreement, it is likely that the considered model is a
good choice. Several tests can be applied, to get a better impression of the signi�cance
of groups and, especially, of individual model terms.

Tests on Groups of Model Terms

To test the signi�cance of individual model terms, we look at the following hypotheses
and test statistic, respectively:

H0 : βi “ 0 vs. HA : βi ‰ 0 which is tested using t “
β̂i

b

σ̂2pXTXq´1
ii

Due to the assumptions of model (2.3), β̂i is normally distributed, with mean βi, which
is, under H0, equal to zero, and variance σ2pXTXq´1

ii . Furthermore, we know that

pn ´ pk ` 1qq
σ̂2

σ2
„ χ2

n´pk`1q and that β̂ and σ̂2 are independent. From this it follows,

that t is tn´k´1-distributed.

Therefore, we reject H0 for a given signi�cance level α if |t| ą t1´α{2,n´k´1. If we can
not reject H0, there is evidence that xi is not necessary to model the data.

A way to test, whether a group of predictor variables is signi�cant, given that another
group of predictors is already in the model, is the use of so called extra sums of

squares. Let for example the pk ` 1q dimensional vector of regression coe�cients β be
partitioned in the following way: β “ pβ1,β2q, with βi denoting subvectors such that
the dimension l of β2 ful�lls 1 ď l ă k and let SSRpβ1q indicate the SSR with respect to
a model which just includes the parameters which are contained in β1. To test, whether
β2 contributes signi�cantly to the model, the following test can be applied:
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F “
SSRpβ2|β1q{l

MSE

H0
„ Fl,n´k´1

with SSRpβ2|β1q “ SSR ´ SSRpβ1q denoting the extra sum of squares due to β2, with
df equal to the number of parameters in this vector and provided that β1 is already part
of the model. Under the null hypothesis, SSRpβ2|β1q{σ and SSE{σ are independent
and distributed as χ2

l and χ
2
n´k´1 respectively. We reject the null hypothesis β2 “ 0 for

a given con�dence level α, if we have F ą F1´α,k,n´k´1 which implicates, that there is
evidence in the data, that at least one of the parameters in β2 is unequal to zero.

Test for Lack of Fit

As last step, the topic of testing for lack of �t is discussed. This is a test, whether the
relationship is linear, i.e. one wants to test whether

H0 : EpYiq “ β0 ` β1xi1 ` ¨ ¨ ¨ ` βp´1xipp´1q

(the assumed model in this case) holds. Replication of at least one single point (e.g. the
center point in the case of the central composite design - see page 40 for more details)
allows to calculate what is called sum of squares due to pure error (SSPE). This is
another type of estimator for σ2 which does no longer depend on the assumed model,
i.e. this type of error estimation does now depend solely on the true (but unknown)
model. In this case, it is possible to partition the SSE , calculated with respect to the
model assumed, into two quantities:

SSE “ SSPE ` SSLOF . (2.10)

The latter quantity on the right hand side of the equation (2.10) is called sum of squares
due to lack of fit.

Let m be the number of pairwise di�erent design points and n ą m the number of
independent observations. Then dfpSSPEq “ n ´ m and dfpSSLOF q “ m ´ p. The
test statistic of the lack of �t test then has the following form and is, given H0 holds,
distributed as follows:

FLOF “
MSLOF
MSPE

„ Fm´p,n´m.
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Con�dence Intervals

An essential prerequisite for constructing such intervals is that the assumptions of the er-
ror distribution, stated in (2.3) hold. That means, the observations from the experiment
can be described by model (2.1).

Therefore, the estimator β̂ for the parameters is normally distributed with mean β and
covariance matrix σ2pXTXq´1.

Utilizing this knowledge, concerning the distribution of β̂, we cannot only construct
con�dence intervals for the parameters βi, but additionally also for the response and
its mean. If we let xpre “ p1, x1, . . . , xkq denote a particular regressor, we can give
con�dence intervals for the mean response µpre “ βTxpre as well as for the response

ypre “ β
Txpre`ε using the distribution of the estimated mean response µ̂pre “ β̂

T
xpre.

At this point, we already know, that

t “
β̂i ´ βi

b

σ̂2pXTXq´1
ii

„ tn´k´1 for i “ 0, . . . , k (2.11)

and, because µ̂pre is also normally distributed with Epµ̂preq “ βTxpre and V pµ̂preq “
σ2xTprepX

TXq´1xpre, we have

t “
µ̂pre ´ µpre

b

σ̂2xTprepX
TXq´1xpre

„ tn´k´1. (2.12)

To get a prediction interval for a future observation ypre “ βTxpre ` ε, we have to look

at the error of prediction, ε̂pre “ ypre ´ β̂
T
xpre for which

ε̂pre „ Np0, σ2 ` σ2xTprepX
TXq´1xpreq

proves to be valid. From this, it follows, that

t “
ypre ´ β̂

T
xpre

b

σ̂2 ` σ̂2xTprepX
TXq´1xpre

„ tn´k´1. (2.13)

Due to the duality between two sided test statistics and con�dence intervals, such
intervals can be constructed by inverting the corresponding tests:
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� Con�dence intervals for Model Parameters:
From inverting (2.11), we get the following 100p1´ αq percent con�dence interval
for the regression coe�cients βi, i “ 0, . . . , k:

β̂i ´ tα{2,n´k´1

b

σ̂2pXTXq´1
ii ď βi ď β̂i ` tα{2,n´k´1

b

σ̂2pXTXq´1
ii

� Con�dence interval for the mean response:
From inverting (2.12), we get the following 100p1´ αq percent con�dence interval
for the mean response:

µpre P rµ̂pre ˘ tα{2,n´k´1

b

σ̂2xTprepX
TXq´1xpres

� Prediction interval for a future observation:
From inverting (2.13), we get the following 100p1´ αq percent prediction interval
for a future observation:

ypre P rµ̂pre ˘ tα{2,n´k´1

b

σ̂2p1` xTprepX
TXq´1xpreqs

Con�dence intervals constructed this way still work properly if only small departures
from the distribution assumptions occur.
In addition, it can be shown, that the test statistics and con�dence intervals found,
using the assumption of normally distributed error terms, asymptotically still prove to
be valid, even if the error terms deviate from the normal distribution.
This means, that given a su�ciently large amount of observations, the test statistics
and the con�dence intervals developed, can still be used, even if the error terms are no
longer normally distributed.

2.3 Experimental Design and Model Selection

2.3.1 Unbalanced Datasets

Replication of an experimental design means, that the whole design is independently
repeated, e.g. if we have two replicates, each of the experimental conditions is applied
to two di�erent subjects (not to confuse with repeated measurements).

Replication of a design has two advantages:

1. It allows to estimate the experimental error without assuming a certain model.
This error estimate is needed in determining, whether the chosen model �ts the
data well or not (lack of �t test). In addition, this error is used in assessing,
whether di�erences in observations are statistically signi�cant.

25



2 Statistical concepts and methods

2. Let σ2 denote the variance of a single observation. Due to the fact that σ2
ȳi “

σ2

n
,

using the sample means ȳi for estimating the true mean responses improves accu-
racy the higher the number of replicates is.

If all experimental conditions under consideration are replicated an equal number of
times the design is said to be balanced.

The problem of giving a sound statistical analysis of a model is complicated by having
an unbalanced design. This is often not a planned result, but a common complication
which often arises in conducting an experiment due to unpredictable factors, e.g. caused
by problems like cells, which do not work properly - i.e. not all of them yield usable
observations.

If, in the course of analysis of such data, its unbalancedness is not taken into account,
i.e. the data is analyzed as it was balanced, the results of the analysis can be severely
distorted and therefore suggest misleading conclusions.

Motulsky et al. [23] point out, that one of the problems, which arises in the context of
unbalanced data, is, that unequal weight is given to the several treatments. They also
mention, that averaging the replicated responses in order to treat the mean as a single
data point, is no proper remedy: "If you have di�erent numbers of replicates for di�erent
values, then you de�nitely should not average the replicates and �t to the means. The
results will be wrong." In the case of a balanced design, using the averaged replicates as
well as the replicates itself yields the same parameters but di�erent error estimates and
therefore di�erent con�dence intervals. Their conclusion is to use the replicates and not
to average them.

But how can this be done? What does theory tell us and what types of remedies exist?

Two di�erent approaches can be distinguished:

I.) Approximate Methods:

If the data is su�ciently close to the balanced case it might be possible to apply approx-
imate procedures to transform the unbalanced set of data into a balanced one. In this
case, one has to keep in mind, that this leads to an approximate analysis too. Thus,
we have to look at the trade-o� between the great ease of analysis in the case of bal-
anced data and the error which is additionally introduced by making the unbalanced
data balanced.

� Trimming down the dataset. If almost all experimental conditions are repli-
cated equally often and only relatively few conditions are applied more frequently,
setting aside observations which belong to the latter case, is indeed a reasonable
approach. One strategy is to randomly choose the observations which should be
excluded from analysis, and, instead of discarding these observations, we use them
for interchange with the observations used in the analysis and the conduction of
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repeated analyses to get an impression of whether there exists a signi�cant in�u-
ence of single observations, i.e. if con�icting results arise. This problem is not very
likely in cases, were only few observations are excluded and the variability amongst
observations with respect to the same experimental conditions is relatively small.
If we observe great impact of an observation, it should be treated as an outlier
and set aside anyway. Another strategy to reduce the number of observations is,
to keep the smallest and the largest value and in addition, if more than two ob-
servations are needed, the observations which are most evenly distributed within
the interval in between the most extreme (smallest/largest) observations. In the
case of three observations needed, this means to keep in addition the observation
which lies closest to the average of the most extreme observations.

� Estimation of missing observations. If almost all experimental conditions
are replicated equally often and only relatively few conditions are applied less
frequently, estimating the missing observations which belong to the latter case, is
now obviously the less in�uential manipulation. How can this estimation be done?
In the context of factorial experiments, Yates [41] suggested to use estimates such
that the resulting error sum of squares for the design is minimized. To get these
estimates, the error sum of squares is written as a function of the (unknown)
missing observations. Di�erentiating with respect to the missing observations,
setting the di�erentials to zero and solving the resulting equations with respect
to the unknowns, yields the estimates of the missing observations. Analyzing the
design which is balanced by using these estimates, is done in the same way as with
any other balanced dataset, with the exception, that the error degrees of freedom
have to be reduced by the number of estimated observations Giri [3].

� Further techniques are the method of unweighted means and the weighted
squares of means method. These methods are based on the sums of squares of
cell means.

II.) Exact Method. Approximate methods cannot be applied in all situations, e.g.
situations in which the di�erences in the numbers of observations per experimental con-
dition vary considerably and/or empty cells occur. In the case of conducting ANOVA,
based on unbalanced data sets, there exist di�erent types of sums of squares, which
help in adjusting for unbalancedness. There are in total four di�erent types of sums
of squares, which are called Type I, Type II, Type III and Type IV (Goodnight [10]).
More on this topic can be found for example in Littell et al. [17] or in the supplemental
materials of the book by Montgomery [21] which can be found on the corresponding
textbook website.

From a generic point of view, the problem of unbalanced designs can be seen as a
generalization of the balanced case. Therefore, the balanced case has to be viewed as a
special case, which is embedded in the theory of unbalanced designs. See for example
the book of Searle [26] which deals with this approach.
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Since only approximate methods are applied in the analyses which are part of this work,
we will not go deeper into theory and application of the exact methods.

2.3.2 Model Selection

Prior to setting up the experimental design, regressors have been de�ned, which might
be suitable to describe the relationship between in- and output. This process, which
is outlined in more detail in chapter 1 and in section 2.1, leads to the formulation of a
model that is intended to serve as a starting point for further analysis.

The data, describing this relationship, which is gathered in the course of the experiment
(applied input and measured response) is then used to �t the model to the actual rela-
tionship, by removing regressors which do not prove to have any signi�cant in�uence on
the response and by calculating the proper parameter estimates for those, who prove to
be necessary. That means, we are trying to trim down the model to an extent, so that
we end up with a model that includes all meaningful regressors and leaves out all, which
do not prove to have an e�ect.

One issue which should always be kept in mind when using regression analysis is what
can be expected to be achieved by utilizing this method. Especially in the case of a black
box model, no mechanistic explanation of the relationship between in- and output can
be found by using regression. C. Geyer concisely pointed out this fact in his lecture notes
(Geyer [9]): "All of this is related to our slogan about 'regression is for prediction, not
explanation. If you can't decide which model is 'best' and are honest enough to admit
that lots of other models are equally good, then how can you claim to have found the
predictors which 'explain' the response? Of course, if you really understand 'correlation
is not causation, and regression isn't either,' then you know that such 'explanations' are
bogus anyway. Thus it is silly to get excited about exactly which model is chosen as
the 'best' by some model selection procedure (any procedure)! When many models are
equally good, the speci�c features of any one of them can't be very important."

There exist several di�erent selection criteria, which are used as a measure for de-
scribing how well a model suits the goal of the modelling procedure. The goal is, not
surprisingly, to �nd a model, which approximates the underlying relationship to a de-
gree, which allows to make reasonable predictions about the systems' behaviour under
conditions that lie within the feasible operating range (see Chapter 1).

In order to avoid under- and especially over�tting, a trade-o� between model complexity
and model �t has to be found. Especially in the case, where a large number of potential
regressors are available, this is a task of high complexity, and therefore it is not easy
to �nd a de�nite, unambiguous result. In order to reduce the uncertainty about the
outcome of the selection procedure to a reasonably small extent, many di�erent criteria
are considered simultaneously.
Over�tting is likely to occur, when many potential regressors are available. Therefore,
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special care has to be taken to avoid this problem. On Wikipedia [40], the following
description can be found:

� Over�tting occurs, when a statistical model describes random error or noise instead
of the underlying relationship.

� The reason for this is that the model is excessively complex.

� That means the model has too many parameters relative to the number of obser-
vations.

� Such a model has poor predictive performance, as it can exaggerate minor �uctu-
ations in the data.

There exist several di�erent selection criteria. In this paper we use the following:

Adjusted multiple R2. This is a measure of the proportion of the total variability in
the data, which is explained by the model. This measure should therefore be as high as
possible. Despite the fact, that it is corrected for model size, it still favors models which
are unnecessarily complex. This criterion is discussed in more detail on page 22.

Mallow's Cp. Let p denote the number of regressors of the full model. If a reduced
model, possessing q ă p regressors is su�ciently complex to explain the underlying
relationship, the standardized sum of squared errors due to this model, MSEpqq, should
therefore be an unbiased estimator of the error variance. Otherwise, due to bias, the
estimation should tend to values larger than the true one. In addition, the standardized
sum of squared errors due to the full model, MSEppq, is still an unbiased estimator of
the error variance. The Cp statistic compares the two measures of error variance in the
following way:

Cppqq “
SSEpqq

MSEppq
´ pn´ 2qq.

In the case, that the bias of the reduced model equals zero, the following equation
obviously holds:

EpCppqq|bias “ 0q “
pn´ qqσ2

σ2
´ pn´ 2qq “ q.

Therefore, plotting Cppqq for varying values of q with respect to q, yields a diagram,
where the best models in terms of this criterion show Cp values close to the bisectrix.

Akaike Information Criterion. This criterion is very frequently used in the context
of maximum likelihood estimators. The theory behind is a 'little bit' more challenging
than in the case of the two criteria discussed above. A good introduction to this topic can
be found in the book by Konishi et al. [15] on which the following summary is based:
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Akaike proposed, that the goodness of a model should be measured in terms of its pre-
diction capability. Based on this reasoning, he decided to measure the distance between
the predictive distribution fpxq which is given by the model and the true distribution
gpxq and to use this as a measure of the predictive power of the model. Akaike based
this measure on the Kullback-Leibler information (divergence) (Kullback-Leibler
[16]):

Let x “ px1, . . . , xnq denote a n-dimensional vector consisting of n independent obser-
vations from a population with unknown distribution function Gpxq (true distribution
function). In addition, the model, which has been speci�ed by the researcher is associated
with the distribution function F pxq. The goodness of the model is measured by assess-
ing how close F pxq is to Gpxq. Letting fpxq and gpxq denote the respective probability
(density) functions, this can be done by using the Kullback-Leibler information:

Ipg; fq “ EG

„

log
gpXq

fpXq



“

$

’

’

&

’

’

%

8
ş

´8

log
gpxq

fpxq
gpxqdx, for continuous distributions,

ř8
i“1 log

gpxiq

fpxiq
gpxiq, for discrete distributions,

with EGr s denoting the expected value with respect to the true distribution.

It is obvious, that, the smaller (closer to zero) Ipg; fq is, the smaller is the dis-
crepancy between model and reality. Due to the decomposition of Ipg; fq “

EGrlogpgpXqqs ´ EGrlogpfpXqqs, we can see, that, because EGrlogpgpXqqs is a con-
stant, which depends exclusively on the true model, it is su�cient, to just look at the
latter quantity on the right hand side to compare di�erent models. Therefore, since
Ipg; fq ě 0, the larger EGrlogpfpXqqs, the smaller Ipg; fq and the better the model.

The problem we are facing now is, that EGrlogpfpXqqs depends on the unknown true
distribution. To overcome this problem, we have to estimate this quantity. In order to
do this, we replace Gpxq with an empirical distribution function Ĝpxq with support x
by de�ning ĝpxiq “ 1{n for i “ 1, . . . , n. This yields

EĜrlog fpXqs “

8
ż

´8

log fpxqĝpxqdx “
n
ÿ

i“1

ĝpxiq log fpxiq “
1

n

n
ÿ

i“1

log fpxiq. (2.14)

If the number of observations, n, approaches in�nity, (2.14) converges, according to the
law of large numbers, to the expectation of log fpXq:

1

n

n
ÿ

i“1

log fpxiq ÝÝÝÑ
nÑ8

EGrlog fpXqs.
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Therefore, (2.14) can be used as an estimate of EGrlogpfpXqqs. In addition, we can
see, that (2.14) is nothing else than n´1 times the log-likelihood of the observed data
with respect to the density function fpxq which is associated with the model under
consideration. Hence, n´1 times the frequently used log-likelihood can be seen as an
approximation to the Kullback-Leibler information!

In the process of model selection, we deal with the situation that multiple models exist,
with fj , j “ 1, . . . , nm, denoting the respective probability (density) functions. These
models arise from the preliminary selection of potential regressors, and therefore the best
model under all possible combinations of this regressors should be found. Parametriza-
tion of these models gives nm di�erent estimated parameter vectors θ̂j of model-speci�c
dimension nj .

Using the K-L information for comparing the di�erent parametrized models, accord-
ing to the argumentation above, is done by calculating the expected log-likelihood
EGrlogpfjpX|θ̂jqqs for each of the models under consideration, which can be approxi-

mated by using
1

na

řna
i“1 log fjpzi|θ̂jq, with zi , i “ 1, . . . , na , denoting na additional

observations, which are independent from the �rst n observations xi gathered during the
experiment and used for model parametrization.

The statements, given above, unfortunately do not indicate that comparing the maxi-
mum likelihoods lpθ̂jq of di�erent models, which are calculated using the �rst n obser-
vations xi, can be a su�cient method for selecting the most appropriate model under
all available ones. This problem arises due to the fact, that lpθ̂jq is a biased estimator
of n ¨ EGrlogpfjpX|θ̂jqqs with a bias that depends on the number of model terms nj .
This bias stems from the fact, that the observations used for parametrization of the
models are again used in comparing these models by using this data for calculating the
maximum log-likelihoods lpθ̂jq of the respective models.

From this it follows, that we need a bias correction for the log-likelihood.

The bias is de�nded by:

bpg; fq “ EGpxq

«

n
ÿ

i“1

log fpXi|θ̂pXqq ´ nEGpzq

”

log fpZ|θ̂pXqq
ı

ff

,

with Gpxq denoting the true joint distribution of the sample X “ pX1, . . . , Xnq
T and

Gpzq denoting the true distribution G, with respect to an additional univariate random
variable Z.

Based on the considerations, discussed so far, Akaike de�ned his information criterion
as follows:

AIC “ ´2rlog´likelihoodpstatistical modelq ´ biass.
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The factor ´2 which shows up in the formula for the AIC comes into play due to
information theoretical reasons (connection to Kullback-Leibler Information). If one
wants to go deeper into this matter, one could for example read the original paper by
Akaike [1] or the commented version by deLeeuw [4].

Akaike derived, given the validity of several regularity conditions, a formula for the bias.
This formula gives the approximate bias, which is calculated with respect to the true (but
unknown) distribution Gpxq. To overcome the problem of not knowing the distribution
Gpxq, he additionally derived an asymptotic bias estimator and showed, that, under the
assumption that the true model is contained within the set of models to choose from,
the bias can be approximated by the number of parameters in the model. This yields
the familiar formula for the AIC of a model under consideration:

AIC “ ´2rlog´likelihoodpstatistical modelq ´ ps,

with p denoting the number of parameters in the model.

The formula above can be interpreted in a simple, heuristic way: The AIC rewards
goodness of �t (the higher the likelihood, the better the �t) and penalizes complexity
(the penalty term rises with the number of model parameters) to avoid over�tting.
Therefore, the AIC is in favor of the model, that shows the lowest AIC value.

Unfortunately, the penalty term seems not to be large enough to serve as a reliable
means against over�tting. Therefore, other information criteria, like the BIC, which will
be discussed next, penalize complexity more strongly.

It is important, to point out, that the AIC does not provide information about the
overall quality of a model. If all models under consideration do not �t well, the AIC will
not indicate this problem and just relying on the AIC would therefore lead to choosing
an improper model.

Bayesian Information Criterion. The BIC was developed by Gideon E. Schwarz
in 1978. He was born in Austria in 1933 and emigrated to Israel, where he became a
professor of statistics at the Hebrew University. The BIC, as the name already suggests,
is based on a Bayesian argument - it should be noted, that AIC and BIC are justi�ed
by using totally di�erent arguments. The BIC is given by:

BIC “ ´2 ¨ log´likelihoodpstatistical modelq ` p ¨ logpnq,

with p denoting the number of parameters in the model and n denoting the number of
observations made during the experiment.

Formally, the AIC and the BIC look quite similar. The BIC also rewards goodness
of �t in the same way, the AIC does (the higher the likelihood, the better the �t) and
penalizes complexity (the penalty term also rises with the number of model parameters)
to avoid over�tting. Therefore, the BIC is, like the AIC in favor of the model, that
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shows the lowest value of the criterion. But there exists an important di�erence - the
BIC penalty term penalizes model complexity much stronger, than the corresponding
AIC term. Now, the number of model terms is multiplied by logpnq instead of 2, as it
is the case for the AIC. Therefore, the BIC is in favour of less complex models than
the AIC. Due to this property, we decided to use the Bayesian information criterion.

The four criteria mentioned above (adjusted multiple R2,Mallow1s Cp, AIC and BIC),
can, amongst others, now be used in the process of model selection to choose the most
suitable model amongst the more or less large set of potential models. There exist several
di�erent procedures, some of them will be described in the following.

Forward Selection. This algorithm starts with the model that shows the lowest pos-
sible level of complexity. This is the model which consists of the intercept only. Then,
regressors are added one at a time, by comparing all regressors which are not already
in the model. This is done in a way, that the incorporation of the regressor which is
�nally chosen leads to the highest improvement of the goodness of the model in terms
of the criterion used. This procedure stops, when no further improvement of the model
is achievable.

Backward Selection. This algorithm starts with the model which shows the highest
level of complexity possible. This is the model which consists of all regressors under
consideration. Then, step by step, one regressor after the other is excluded in a way,
that leads to the highest stepwise improvement of the goodness of the model in terms of
the criterion used. This procedure stops, when no further improvement of the model is
achievable.

Bidirectional Selection. A combination of the two afore mentioned procedures, i.e.
it considers at each step whether a single regressor should be dropped or added in order
to improve the goodness of the model.

All Subset Selection. If the number p of potential regressors is not too large (i.e. less
than 40), an exhaustive search, which yields the best model of each size (from 1 to p)
in terms of the criteria mentioned above can be performed. To keep the needed amount
of computation reasonably low, a break and bound algorithm is used (Furnival & Wilson
[8]), which is, for example implemented in the R-routine leaps. The algorithm uses a
certain feature of the residual sum of squares: a bigger model has always a smaller sum of
squares than a smaller submodel - this can be used to avoid evaluation of many potential
models and thus speed up the search tremendously. Due to the fact that, in the case of
linear regression and given a certain model size, the Cp-statistic, the adjusted R2, the
AIC and the BIC are all monotone functions of the residual sum of squares, the result
of the algorithm doesn't depend on a speci�c selection criterion.
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2.3.3 Model Diagnostics

As already mentioned, several assumptions are made, when applying linear regression.
Only when all of them are ful�lled, the conclusions drawn from the model prove to be
valid. If one or more of the assumptions are violated, the conclusions drawn can be biased
or even misleading. Therefore, checking the validity of the underlying assumptions is a
crucial step in statistical analysis.

The assumptions we have to check, are:

� Linear relationship between regressor- and response variables.

� The errors are normally distributed.

� The errors are independent of each other.

� The distributions of the errors are homoscedastic (homogeneity of variances).

In addition, outliers have to be detected and treated, and, depending on the experi-
mental design, one might have to check for multicollinearity.

What actions can be taken in the case of detected violations to obtain data which suits
linear regression? The data can be transformed. There exist many di�erent transfor-
mations that can be applied. Very common is the usage of the so called Box-Cox-
(power)-transformations (Box & Cox [2]). In the case of a response y ą 0, this type of
transformation has the following generic representation:

y˚pλq “

$

&

%

yλ ´ 1

λ
, if λ ‰ 0,

logpyq, if λ “ 0,

with λ denoting the transformation parameter. The underlying assumption of this trans-
formation is, that given a certain set of observed data, pyi,xiq, i “ 1, ..., n, there exists
a parameter λ, which can be estimated by using a certain technique, such that

y˚i pλq
ind
„ Npxi

Tβ, σ2q.

Therefore, the Box-Cox-transformation can be used to transform for normality and lin-
earity. But transforming the data doesn't always yield the result to be expected. In
such cases, other types of regression should be considered, the generalized linear model
for example or nonlinear regression.

There exist several means for checking the assumptions, the most common are graphical
methods which are utilizing the residuals.
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The residuals ri “ yi ´ ŷi are the estimates for the unobservable error terms εi and, in
order to make good use of these quantities, they have to be standardized or studentized.
For more details on these topics, see the corresponding sections on pages 19 to 20.

Linearity assumption. To check, whether there are unappreciated nonlinearities in the
relationship between regressors and response, one can draw a scatter plot of standardized
(or studentized) residuals versus �tted values. If the model assumptions are ful�lled, the
residuals should be randomly distributed around zero, no particular pattern should be
recognizable. If this plot shows something unexpected, e.g. a curved structure, the model
should by all means be over-worked, because it would likely yield severe, misleading
interpretations.

The assumption of normally distributed errors. To check this assumption, a so
calledQQ-Plot can be applied. In this plot, the quantiles of the empirical distribution of
the residuals ri are plotted versus the quantiles of the corresponding normal distribution.
Let F denote the cumulative distribution function of the true underlying distribution
and X1, . . . , Xn a random sample of size n. It can be shown, that

Xpiq « F´1

ˆ

i

n` 1

˙

, with i “ 1, . . . , n and Xpiq denoting the i-th order statistic.

Therefore, the pi{pn ` 1qq-th quantiles of the normal distribution with the estimated
parameters µ̂ “ r̄ and σ̂ “ s are plotted versus the i-th order statistic of the residuals
rpiq.

If the resulting graph shows no major deviation from a straight line, then there is no
evidence for a departure from the normality assumption.

In addition, there exist many di�erent tests of normality amongst which the Shapiro-
Wilk test is one of the most powerful.

Independence of errors. If violated, the errors are called autocorrelated. Au-
tocorrelated errors yield autocorrelated residuals allowing for detection of this type of
deviation. This is a problem predominantly associated with time series, i.e. in the con-
text of regression analysis this means that the measurements used for the analysis are
taken over a certain time period at several distinct points in time.

Autocorrelation is often caused by using a misspeci�ed model, e.g. important regressors
are not included in the model.

In regression analysis, autocorrelation has the consequence that the Gauÿ-Markov-
Theorem is no longer valid. This means, that the estimators are no longer BLUE. This
doesn't e�ect the coe�cient estimates itself, but distorts the estimation of their stan-
dard errors and therefore falsi�es the statistical analysis concerning their signi�cance,
the estimation of con�dence intervals and, in the end, the whole conclusion drawn from
the model.
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Several tools are available to test for autocorrelation. There exist graphical methods
as well as statistical tests. The most common test for �rst-order autocorrelation is
the Durbin-Watson statistic. The Breusch-Godfrey test (Urban & Mayerl [29])
constitutes a more elaborated type of test, which allows in addition to test for the
occurrence of autocorrelation of higher orders and can also cope with the presence of lags
of the dependent variables. Graphical methods are, for example, plotting the residuals
in the chronological order of their appearance. Such a plot shows distinct patterns in
case of positive or negative autocorrelation.

Homogeneity of variances. Heteroscedasticity can be detected by means of graphical
methods as well as statistical tests. One such graphical method is plotting the studen-
tized residuals versus the �tted values. The existence of variance inhomogeneity is likely,
if a distinct pattern is shown. For example, if a funnel shaped pattern is visible, one can
conclude that, depending on the orientation of the "funnel", the variances of the errors
grow or shrink with increasing magnitude of the �tted values. In addition, there exist
several di�erent statistical tests for heteroscedasticity, e.g. the Levene-test, the Fligner-
test, the Breusch-Pagan-test, etc. A remedy, often applied to �x this problem is the
above mentioned transformation of the data.

The issue of multicollinearity. The more the regressors are correlated, the larger the
variance of the parameter estimates. Thus, it is desirable to have independent variables,
which show as little correlation as possible in order to get reliable estimates. If the
regressors are totally uncorrelated, the variances are as small as possible. This case is
referred to as orthogonal design.
On the other hand, if we have highly correlated regressors, the estimates become very
unreliable. A number, which quanti�es the amount of linear association between a given
regressor xj and the rest of the regressors, is the so called variance in�ation factor:
V IFj “ p1 ´ R2

j q
2, with R2

j denoting the coe�cient of determination of a regression
of xj on all the other regressors. A V IFj ą 10 tells us, that there exists a serious
multicollinearity problem.
To minimize this type of problem in the ongoing battery life experiment, the whole
experiment is based on an optimal experimental design. The term "optimal" refers to
the e�ort of keeping the contribution of the design to the variance of the parameter
estimates as small as possible by using a computer-aided method of design construction.
More on the topic of optimal designs can be found in subsection 2.3.5.

Outliers: detection and treatment

There doesn't exist a generally accepted de�nition of this notion, but it is commonly
considered as an observation which shows an eye-catching distance to what one would
expect in the context of the assumed model. Outliers can occur due to several reasons:

1. by chance

2. measurement errors

3. model assumptions do not hold
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Outliers constitute a problem, which could cause serious damage to the validity of a
regression analysis. They at least in�ate the estimated value of the error variance, which
will, concerning the estimated parameters, result in biased statistical tests and in�ated
con�dence intervals. In addition, depending on their "position" (stronger in�uence in the
border area of the range of the values than in its centre), they can exert an unduly large
in�uence on the parameter estimation itself and therefore lead to a poorly parametrized
model.

How can outliers be detected? One mean is checking the studentized residuals. If its value
is unexpectedly large for observation i, then this observation might be an outlier. Due
to the fact that, given the assumed model is correct, the distribution of the studentized
residuals is known, statistical tests can be applied. This procedure is, due to several
reasons, not working very well. A graphical representation of the studentized residuals
constitutes a better means of outlier detection.

Because outliers often show a disproportionate in�uence on the outcome of a regression
analysis, the estimation of this kind of in�uence of a data point is another widely used
tool for assessing whether an observation should be considered as an outlier (but: not
all outliers are highly in�uential points and vice versa).
Which types of measures are used to quantify this in�uence? Two very common char-
acteristics are given as follows:

The leverage score of the in�uence of observation i is de�ned as the i´th diagonal
element hii of the hat-matrix H. This value falls between 1{n and 1. The closer to 1,
the more in�uential the observation can be. If hii ą 2p{n, one should have a closer look
at the corresponding observation.
The Cook-distance Di is de�ned as:

Di “
pŷpiq ´ ŷq

T pŷpiq ´ ŷq

p ¨ σ̂2
for i “ 1, . . . , n.

The subscript piq denotes, that the respective quantity is determined using all but the
i´th observation, whereas in the case of ŷ all observations are used. Di quanti�es the
e�ect of deleting the observation by measuring the standardized distance between these
two quantities, which is in case of Di ą 1 considered critical (thresholds di�erent to 1
have also been suggested). There exist also other common measures of in�uence, namely
DFFITS and DFBETA - more on this topic can be found, for example in Montgomery
et al. [21].

The treatment of outliers embraces several di�erent strategies. One is, if the outlier is
likely due to an erroneous measurement or a faulty experiment, to exclude the observa-
tion from regression analysis. This strategy should be chosen with caution - all excluded
observations should at least be mentioned in the documentation of the experiment and
the reason for their exclusion should be pointed out comprehensively. Another way of
treatment is the method of robust regression, e.g. quantile regression. This methods are
much less sensitive to outliers, but show other disadvantages like reduced e�ciency.
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2.3.4 Experimental Design

In the battery aging experiment, as well as very frequently in scienti�c work in general,
the goal is to investigate and mathematically model some cause and e�ect relationship
between quantities of speci�c interest. Due to, at least in most cases, limited resources,
the experimenter has to �nd a trade-o� between validity of the results and costs of the
experiments needed. Therefore, if planning of the experiments is possible, the topic of
design of experiments (DOE) constitutes a big issue.

The �rst, and most crucial step is, to precisely formulate the questions, which the ex-
perimenter wants to investigate. In the case of planned experiments, statistics provides
sophisticated methods for setting up the experiments such that not only the gathered
data is suitable to work on answers to the questions under investigation, but also to
allocate the given resources best possible.

That means, the design should depend on the question(s) stated and ful�ll all, or at
least the �rst three of the following requirements:

� The data produced has to be suitable to do the statistical tests needed to investigate
the hypotheses which have been stated previously or come up in the course of the
statistical analysis of the data.

� The number of experiments should be the minimum number needed in order to
investigate the stated problem accurately.

� The precision of the results of the statistical analysis should not fall below a pre-
de�ned level.

� The data produced has to be suitable to investigate the type of relationship between
in- and output or parametrize an already given model.

As already mentioned, due to the stochastical nature of the data generating process,
which underlies many experimental settings, the data generated in those cases show con-
siderable variation whose magnitude depends on the error associated with the underlying
process. This variation in�uences the process of parameter estimation in a way, that the
estimators also show a distribution, which now not only depends on the inherent error of
the underlying process but also on the design of the experiment. According to Theorem
2.1, the parameter estimators are distributed as follows: β̂ „ Nk`1pβ, σ

2pXTXq´1q.
Obviously, the errors of the estimators' distributions depend not only on σ2 but also on
pXTXq´1 and thus on the design matrix X (see also the subsection on multicollinearity).
One of the goals of DOE is to keep the variability of the estimators as low as possible
which in turn maximizes the reliability of the statistical analysis.

Special desirable design properties are:
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� Orthogonality. In the case of an orthogonal design, XTX is a diagonal matrix.
In such a design, the regressor variables are linearly independent of each other
and the variance of the estimators is minimized. The opposite constitute designs
with highly correlated regressor variables (multicollinearity). Correlation of the
regressors can in�ate the estimators variance to an extent, that reliable statistical
analysis can become impossible. In this case, regressors have to be removed from
analysis in order to su�ciently reduce the correlation of the regressors.

� Rotatability. If a design has this property, the variance of a predicted response
ŷpxq to a given point x (in the design space) does only depend on the points distance
from the center of the design and not on its direction. Therefore, the prediction
variance is constant on spheres. This is a desirable property for response surface
designs for quadratic models.

Due to the fact, that very often only little is known about the in�uential factors and
their impact on the output, a frequently used approach is to start with a screening phase
to determine the important in�uences by means of a (fractional) factorial design. After
that screening procedure has been employed, one sets up an experimental design, which
is capable to yield data suitable to parametrize a more sophisticated model. Which
designs are considered suitable, depends on two factors - the experimental region, which
has to be explored and the model which should be parametrized. There exist a lot of
classical designs, which, in many cases are the method of choice. Examples are:

� Full Factorial Designs. This family of designs possibly constitutes the most
important one. The term 'full' indicates that those designs consist of all possible
factor level combinations. These designs are orthogonal and allow to identify main
e�ects and interactions. A drawback is, that these designs quickly become outsized
and therefore impractical due to growing numbers of factors and/or number of
factor levels. This is why the most commonly used designs of this type are the
2k and the 3k designs, with k denoting the number of di�erent factors, 2 or 3
indicating the number of levels considered for each factor and 2k or 3k denoting
the needed number of experimental runs respectively. In the case of a 2k design
all k main e�ects and all possible interactions can be estimated, but it o�ers no
possibility to �t models in which the factors show up with an order greater than
one. Quadratic models can be �t, using a 3k design and in general, l ` 1 factor
levels of a factor A are necessary in order to estimate the parameter for the model
term Al.

� Fractional Factorial Designs. To overcome the problem of the exploding num-
ber of runs, fractions of full factorial designs can be used. The drawback in this
case is, that these designs no longer allow to estimate all e�ects separately, i.e.
the e�ects are, to some extend confounded (aliased). The amount of aliasing is
determined by how much the full factorial design is reduced. This design type is
very frequently used for screening experiments.
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� Central Composite Design. Extending the 2k design by including center points,
allows to test for curvature and constitutes an economical alternative to 3k designs.
A CCD consists of a full or fractional 2k and in addition some center runs (all
factors are set to their middle (or center) levels) and 2k axial runs for each of the
factors (all but one of the factors are set to their middle level and the remaining one
is set to some especially chosen levels, called α and ´α). These design parts can,
as well, be applied sequentially. The factorial can be used to estimate linear and
interaction e�ects, the center points to test for curvature (which in addition allow
for an independent error estimation) and the axial points to estimate quadratic
e�ects.

Coded design variables. When constructing designs, classical as well as optimal,
usually the range of the factors used, is transformed to a certain interval, in most cases
to the interval r´1, 1s, i.e. the coded factors are therefore dimensionless. In this context
one speaks of using coded design variables. The factors, of course, exist originally in
their natural coding, i.e. they are given with respect to their proper unit of measurement.
Let the interval ra, bs be the range of a factor F in natural coding and x be an arbitrary
number in ra, bs. Now, the transformation is done as follows:

xc “
x´ pa` bq{2

pb´ aq{2
.

Factors are transformed to get orthogonal designs, which allow to estimate the e�ects
independently of each other and to make the e�ects of di�erent factors comparable, i.e.
the estimated e�ects do not longer depend on the magnitudes of the factors in natural
units which allows to determine the relative size (or importance) of factor e�ects.

The classical designs have many advantageous features, but there exist also some draw-
backs. They cannot be applied on irregular shaped experimental regions, i.e. each such
design needs a speci�cally shaped design space (e.g. a hypercube in the case of the fac-
torial designs). Secondly, there do not exist classical designs for any model one intends
to parametrize. In such cases, the use of optimal designs, which can be constructed by
means of computer algorithms constitutes the remedy of choice.

2.3.5 Optimal Designs

As already mentioned, classical designs are not always appropriate. The reasons for
applying an optimal design instead are manifold, some of the main motivations are:

� There exists no classical design to parametrize the chosen model.

� The experimental region T (also known as design region or design space - see page
13 for more details) is not suitable for classical designs, i.e. it is irregular shaped
due to constraints concerning forbidden factor combinations.
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� The number of experiments, which can be performed is, due to economical re-
strictions lower than what is needed for conducting the corresponding classical
design.

� One wants to incorporate experiments, which have been carried out preliminarily.

� One wants to adapt the design during experimentation, to incorporate growing
knowledge about the system under investigation.

At this point a short review concerning experimental designs is given to understand the
idea of the optimality of a design.

In creating optimal designs, one strives for �nding minimum variance unbiased linear
estimators (the 'optimal' estimators). In the context of the discussion of the classical
linear model given so far (see (2.1)), the emphasis lies on the variance minimality of the
parameter estimators. That means, that the question of how to choose the regression
vectors xi, i “ 1, . . . , n, and the design matrix X “ px1, . . . ,xnq

T respectively, will now
be in the focus of our interest, since the covariance matrix of β̂ is given by σ2pXTXq´1.

Now, the de�nition of an experimental design in the context of design optimization will
be given (Pukelsheim [25]):

De�nition 2.4. An experimental design for sample size n, ξn, is given by a �nite
number of l ď n distinct regression vectors x1, . . . ,xl in the regression range X , and
non-zero integers n1, . . . , nl such that

ř

iďl ni “ n. The set, which consists of all possible
designs of size n is called Ξn.

The values ni give the number of times the according vectors xi show up in the full
design with design matrix X “ px1, . . . ,xnq, i.e. the design ξn tells the experimenter
to conduct ni single experiments, applying conditions according to the regression vector
xi.

De�nition 2.5. The l distinct regression vectors xi, which show up in the design ξn
constitute what is called the support of ξn, supp ξn “ tx1, . . . ,xlu.

De�nition 2.6. The vectors that appear in supp ξn are used to compute the so called
moment matrix of the design, Mpξnq “

ř

iďl pni{nqxix
T
i “ XTX{n.

As will soon become clear,Mpξnq plays the central role in the process of design optimiza-
tion. The problem with the optimization of experimental designs in the case of �nite
sample size n is, that one often ends up with discrete optimization problems, which can
hardly be solved. Therefore, the theoretical concept of so called experimental designs
for in�nite sample size, ξ, emerged. As can be shown for any design ξ with an in�nite
support, constructed to parametrize a model with k` 1 parameters, there exists a �nite
design ξ̃ with l ď pk ` 2qpk ` 1q{2` 1 distinct support points, such that Mpξ̃q “ Mpξq
(Melas [18]). Therefore, dealing with approximate designs with a �nite support only is
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su�cient.
The idea is, to consider the design ξ as a distribution on X assigning its whole mass to
just l points. In the case of a �nite design, the l rational weights wi “ ni{n, i “ 1, . . . , l,
are placed on the xi P supp ξn and in the case of an in�nite design, the l weights assigned
to the elements of the support are allowed to vary freely in the closed interval r0, 1s under
the condition, that

ř

iďl ξpxiq “
ř

iďl wi “ 1.

Such a generalized design ξ is therefore determined by l ě 1 vectors xi carrying nonzero
weights wi:

ξ “

ˆ

x1 . . . xl
w1 . . . wl

˙

.

This l vectors are called the support points of ξ, and thus again constituting the support
of ξ, supp ξ. The set of all such designs is denoted by Ξ.

The moment matrix of such a general design ξ P Ξ is therefore consequently de�ned to
be the pk ` 1q ˆ pk ` 1q matrix given by

Mpξq “
ÿ

xPsupp ξ

ξpxqxxT “

ż

X
xxTdξ.

Finally, to make a design for in�nite sample size realizable, it has to be approximated by
a design for �nite sample size. Such apportionment methods, can for example be found
in Pukelsheim [25].

How are optimal designs constructed? As already mentioned, the task is to minimize
the variability of the parameter estimators. It can be shown, that the joint con�dence
region for the parameters constitute a (hyper-) ellipsoid, i.e. the whole information about
the 'uncertainty' regarding the parameter estimation is contained in this ellipsoid and
can be represented by its volume, the area of its surface or the lengths of its axes.
Thus simultaneous minimization of the estimators' variances is equal to minimizing this
ellipsoid. It can further be shown, that shape and volume of the con�dence ellipsoid are
determined by Covpβ̂q “ σ2n´1pMpξqq´1. Therefore di�erent optimization methods,
which make use of various characteristics of the con�dence ellipsoid, are present.

There exist many di�erent optimality criteria, which asses the variance and covariance
of the estimators in their own, unique way. The most common criteria are the so called
alphabetic optimality criteria, amongst which the D-, A-, G- and E-optimality criterion
are the most widely used.

In the course of this work, two optimality criteria (which are the most commonly
used criteria) have been applied.
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D-Criterion. Using this criterion, one tries to minimize the product of the squared
lengths of the ellipsoids axes which is proportional to the volume of the con�dence
ellipsoid. The smaller this volume is, the smaller is the variance of the predictors, the
correlation between them and the variance of the predicted response.

Minimizing the volume is equivalent to maximizing the determinant of the moment
matrix or, equivalently, minimizing the determinant of the variance-covariance matrix
Covpβ̂q. This is why this criterion is named D- or Determinant-Criterion. As already
stated, Covpβ̂q equals σ2n´1pMpξqq´1. Therefore, if σ2 and n are �xed, it remains to
deal with the determinant of Mpξq, which, in the case of a �nite design is proportional
to XTX.

In the theory of in�nite designs, the D-optimal design ξ˚ is de�ned as follows:

ξ˚ “ argmax
ξ P Ξ

p|Mpξq|q.

A drawback of this approach is, that it can happen, that, due to minimization of the
ellipsoids volume, one axis is much shorter than the others, which in turn means, that it
might be the case, that just one parameter is estimated e�ciently, while the others are
not.

G-Criterion. Using this criterion, one tries to minimize the maximum scaled prediction
variance over the whole experimental region - that's why this criterion is called G- or
Global-Criterion. Thus a G-optimal design ξ˚G P Ξ is one, that satis�es

sup
xPX

ˆ

n ¨ varpŷpξ˚G,xqq

σ2

˙

“ inf
ξPΞ

sup
xPX

xTMpξq´1x

with varpŷpξ,xqq denoting the variance of a predicted mean value with respect to a
certain experimental design ξ and a certain regression vector x.

A crucial advantage of both, the D- and the G-Criterion is, that they are inde-
pendent of linear transformations of the factor ranges, i.e. that they do not depend on
units of scale.

A well-known result developed by Kiefer and Wolfowitz connects the D- and G-Criterion
(Melas [18]):

Theorem 2.2. Kiefer-Wolfowitz Equivalence Theorem

Given that the assumptions of the classical linear model with normally distributed ho-
moscedastic errors hold, the following conditions are equivalent in the class of approxi-
mate designs:

1. ξ˚ is a D-optimal design.
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2. ξ˚ is a G-optimal design.

3. sup
xPX

`

xTMpξ˚q´1x{n
˘

“ k ` 1

Therefore, a design ξ˚ is D-optimal if and only if point 3 of theorem 2.2 is ful�lled - this
constitutes an important necessary and su�cient criterion for D-optimality.

Two �nite designs ξ1 and ξ2 can be compared with each other by computing a quan-
tity named relative-e�ciency, which compares their 'goodness' with respect to the D-
criterion. This quantity is computed as

RE “

ˆ

|XT
1 X1|

|XT
2 X2|

˙1{p

,

with X1 and X2 denoting the respective design matrix and p the number of model pa-
rameters. Taking the p-th root gives, in the case of uncorrelated estimators, the average
D-e�ciencies of the p parameter estimators and enhances therefore interpretability.

A resulting RE value of d indicates, that ξ1 has to be replicated about 1{d times to yield
the same e�ciency as ξ2. But, comparing two designs by this measure is of very limited
bene�t. The goal is to �nd a design which is as e�cient as possible, and therefore,
only comparing the design to that which proves to be the most e�cient design under
all designs possible is of interest in the end. Most e�cient in this context means most
e�cient in terms of D-optimality and therefore, this most e�cient design is called D-
optimal. It is denoted by ξ˚ and the quantity computed is the so called D-e�ciency :

Deff “

ˆ

|XTX|

|nMpξ˚q|

˙1{p

,

with X denoting the design matrix of the design ξ, whose D-e�ciency is computed and
p the number of model parameters. Again, we can interpret p1{Deff ´ 1q as the amount
of additional observations needed in order to make ξ as e�cient as ξ˚.

This works �ne in theory, but in practice, one of course encounters usually the problem
of not knowing the optimal design.

Compared to the D-e�ciency, the G-e�ciency can, due to the Kiefer-Wolfowitz Equiva-
lence Theorem, be calculated more easily. Since we know, that, in case of the G-optimal
design, sup

xPX

`

xTMpξ˚q´1x{n
˘

“ k ` 1 the G-e�ciency of a design ξ is given as

Geff “
k ` 1

sup
xPX

xTMpξq´1x{n
.
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In case of the D-e�ciency, only lower bounds can be given, one of these bounds is a
result of the Kiefer-inequality (see Pukelsheim [25]):

Deff ě e1´1{Geff .

Algorithms for D-optimal Design-Construction

As already explained, a design for in�nite sample size can usually not be used due to the
fact, that the weights can be irrational numbers. A second problem one encounters when
trying to �nd the D-optimal design is, that in order to do this one would have to make
a search over the whole experimental region, which would result in a computationally
intractable task.

Therefore, in order to obtain a speci�c design for conducting an experiment, several
algorithms exist, which yield more or less good approximations to the D-optimal design.
In most cases these algorithms use a so called point exchange method. These al-
gorithms need a prede�ned set of points which are termed candidate points, i.e. a list
of points which are selected from the experimental region by constructing a grid over
the experimental region, with mesh size depending on the chosen levels of the factors
under consideration and avoiding all factor combinations which are not allowed due to
the constraints under consideration.

Based on a randomly chosen, non-singular start-design these algorithms exchange one
or more design points for the same number of candidate points in each step, in order
to achieve an improvement in the chosen optimality criterion. The algorithm stops,
when substantial improvement is no longer possible or a prede�ned number of iterations
is reached. Unfortunately, there is no guarantee that the algorithm did not just �nd
a local optimum and therefore it is highly recommended to repeat the search several
times.

The main disadvantage is, that no other design than one that is covered by the candidate
points can be found this way, and therefore, the result can almost never be the optimal
design, but a more or less good approximation.

Examples are:

� Fedorov's Exchange Algorithm (Fedorov [7])

� k-Exchange Algorithm (Johnson and Nachtsheim [13])

� Mitchell's DETMAX algorithm (Mitchell [20])

In addition, other types of algorithms exist, which are based on di�erent construction
principles, for example:
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� Coordinate exchange methods. They do not require a list of candidate points and
modify the design points by doing a coordinate-wise optimization for each design
point (Meyer and Nachtsheim [19]).

� Genetic algorithms. A type of iterative heuristic search based on the model of
biologic evolution - for more information on this topic see for example Heredia-
Langner et al. [12].

Due to the fact, that the experimental design used in the ongoing experiment has been
constructed by applying the R-routine optFederov (Wheeler [36], who named his routine
(by mistake?) Federov instead of Fedorov), which makes use of Fedorov's Exchange
Algorithm, this algorithm is now explained in more detail:

Fedorov's Exchange Algorithm

It exchanges points by simultaneously adding and deleting points (a so called rank-2 ex-
change algorithm). At each step, it exchanges a point of the design matrix with a point
of the candidate set in order to increase the determinant of the resulting information ma-
trix. During this process, the size of the design is held constant according to the desired
number of experiments (in contrast to, for example the DETMAX-algorithm, which
temporarily allows for di�ering numbers of experiments during the construction process).

If design point xi, being part of the 'old' design matrix X̃ is exchanged with a candidate
point xj , thus transforming X̃ into the 'new' design matrix X̂, the following relations
prove to be valid:

X̂T X̂ “ X̃T X̃ ` xj ¨ x
T
j ´ xi ¨ x

T
i

and

|X̂T X̂| “ |X̃T X̃|p1`∆pxi,xjqq

with

∆pxi,xjq “ dpxjq ´ dpxiq ´ dpxiqdpxjq ` dpxi,xjq
2

and

dpxkq “ x
T
k pX̃

T X̃q´1xk for k “ i, j

dpxi,xjq “ x
T
i pX̃

T X̃q´1xj
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Basically, Fedorov's algorithm works as follows: In each step, ∆-values for all possible
(xi,xj)-combinations are calculated, with xi denoting the points in the design matrix
and xj denoting all points in the list of candidate points. The combination with the
highest value is selected for exchange. As long as such combinations lead to positive
∆-values, the algorithm can improve the design - therefore it should not terminate
until such successful combinations do not appear any more. What seems to be a good
approach in theory, is often not feasible in practice, because reaching this point might
be too expensive according computation time. Therefore, a threshold is chosen, and the
algorithm stops when all ∆-values become smaller than the value of the threshold.

Dynamic Design of Experiment (DDoE)

The algorithm sets up a D-optimal experimental design given the number of design
points, n, and the structure of the model. This means, that the constructed design

is suitable only for the given design space, a speci�c model and a certain

number of design points.

Growing information about the relationship between battery-usage and cell ageing during
the ongoing experiment makes the revision of the proposed model necessary before the
end of the experiment is reached. As mentioned before, a new model needs a new design
for achieving the data quality needed for proper parametrization.

The optFederov-Routine enables us to add additional design points to the original de-
sign in order to restore the desired design feature of minimized estimator variance for
parametrization of the new model.

This stepwise process of

� setting up a model,

� designing a proper experiment,

� model revision in the light of new information due to the ongoing experiment

� and designing an extended experiment with respect to the new model

is called DDoE (Haselgruber [11]).

Further design revisions can be conducted unless one ends up with a reasonable and well
parametrized model.

The number of distinct design points needed

In order to be able to estimate p di�erent parameters, the number of distinct design
points, l, must at least be equal to p. In many cases p is also the optimal number of
distinct design points. Generally, the optimal number lies in the interval rp , ppp`1q{2s.
If l is outside of this interval, the e�ciency of the design can drop severely.
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3.1 Evaluation of the design in use

In the preceding chapters much has been said about the concrete situation for which
a proper experimental design is needed and the theory behind design construction was
discussed.

In chapter 1 the chemical and physical background of the battery-aging experiment,
the question which factors to investigate and the special requirements concerning factor
ranges and the problem of constraints imposed on the design region is addressed. In
chapter 2 the theory of design construction is discussed in more detail. Especially the
application of optimal designs in the light of economical restrictions and irregular shaped
experimental regions due to forbidden factor-level-combinations is considered.

The ongoing experiment is based on the initial design (table 3.1) constructed by G.
Pregartner and W. Prochaska who have put lots of e�ort in its creation. It's De�bound-
or Dea-value of about 0.701 (a lower bound on D-e�ciency - see the corresponding
sections of chapter 2 and 3 for details) made it a reasonable candidate for acting as
a starting point to commence the experiment. Unfortunately, the implementation of
this design was not possible due to several physical restrictions concerning the technical
equipment. That was the beginning of several changes concerning the design. This fact
as well as the evolving linear model under investigation in combination with the omitted
adaptation of the design (see the comment on DDoE, page 47), makes the lower bound
for the designs D-optimality, computed for the initial design, no longer valid.

In order to again establish such a lower bound, the experiment in its actual state is
thoroughly evaluated. Finally, suggestions what actions could be taken for maintaining
the quality of the experimental design in the course of its execution are given. Cal-
culation of the D-e�ciency of an existing design can be done by using the R-routine
eval.design. In addition, in order to repair (i.e raising its D-e�ciency) an existing
design the augmentation feature provided by the R-routine optFederov can be used.
Both routines are part of the R-package AlgDesign (see [36] for details). In order to
quantify the D-e�ciency of and/or repair an existing design two major ingredients are
inevitable: a proper candidate set and a model which which has to be parametrized. If
one of those ingredients cannot be provided no meaningful statement about the e�ciency
of the experiment can be given.
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3.1.1 Comparing the initial design and the actual state of the experiment

In contrast to the number of factor-levels given in the corresponding internal report,
Prochaska & Pregartner used di�erent numbers of factor-levels in the actual process of
design construction:

Factor Factor-Levels # of Factor-Levels
T -10 5 20 40 4
CC 0.2 0.8 2.4 3
ADC 0.0 0.2 1.0 2.0 3.0 4.0 6.0 8.0 8
PDC 0.2 1.0 3.0 4.0 6.0 8.0 10.0 12.0 14.0 9
F 0.000333 0.03 0.06 0.1 0.2 0.5 6
SoC 15 25 55 80 95 5
dSoC 0.01 2.50 15 50 80 5

For this 129600 di�erent factor-level-combinations exist. Applying the constraints men-
tioned in more detail in chapter 1 (see table 3.2 for an explicit list) reduces the number
of possible factor-level-combinations by a factor of more than 30. In total, there are
exactly 4233 feasible factor-level-combinations left (the candidate points), from which
the algorithm for calculating the D-optimal design can choose the appropriate design
points.

The process of design construction based on the regression model lm.ex (see chapter
2, page 40 �. for more details) and the set of 4233 candidate points mentioned above,
aims to yield a design with a D-e�ciency that is, under the given conditions, as high
as possible. One of the best designs found this way is des_701 (table 3.1), which has
a lower D-e�ciency boundary of 0.701. The design reported in the respective internal
report, termed there as �nal-design-of-experiment (in the following termed des_WP1300

- see table 3.2), which constitutes a major outcome of WP1300, shows a few deviations
from des_701 (table 3.3). Evaluation of des_WP1300 shows, that the constraints in the
case of �ve design-points are no longer ful�lled.

Does it make sense to evaluate the D-e�ciency of a design, which is no longer within the
allowed test space with respect to that test space? Since evaluation of the e�ciency of
a design with respect to an enlarged test space (and therefore enlarged set of candidate
points) yields a bound which is always lower or equal to the bound which is found doing
the respective calculations with respect to the smaller initial set of candidate points
(which is a subset of the larger set). The lower bound calculated using the initial set
can be seen as an upper bound for the bound which would be calculated using the
larger set, i.e. designs which do not �t into the initial design space have a lower bound
for D-e�ciency which is at best as large as the bound calculated using the initial set.
Evaluating des_WP1300 in this way yields a signi�cantly lower D-e�ciency boundary of
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only 0.116 compared to the initial design des_701 having a lower bound of 0.701. This
tells us, that a designs D-e�ciency can be severely e�ected by just a few modi�cations.

Therefore, if changes of the design are inevitable (due to technical and/or economical
reasons) an accompanying statistical monitoring is highly recommended - this is the only
way to keep the bene�t of the experiment as high as possible. Modifying the experiment
without statistical supervision can cause poor data quality and hence dissatisfactory
experimental results.

The design des_m (see table 3.4), which is the design actually in use, shows many devi-
ations from des_701. Not only several load points have changed with time, but also the
factor ranges. The lowest levels of CC and PDC are now set to zero (initially the lowest
possible value of this factors was 0.2) and in the case of F the lowest level dropped from
0.000333 to 0.0003. If this design is coded with respect to the initial factor ranges, coded
factor values smaller than -1 emerge. This will likely raise the chance of having load
points in the design which violate one or more of the constraints - in fact 21 of the load
points violate the constraints. Incorporating the new factor ranges in coding the design
is obviously a remedy for the problem of coded values not within the interval r´1, 1s,
but still many of the design points (17 in total) are violating constraints.

Evaluation of this design, coded and analyzed with respect to the initial factor ranges,
the initial set of candidate points and the initial model lm.ex yields a lower bound for
D-e�ciency smaller than 10´1. Due to the fact, that in the course of the experiment,
it soon turned out that model lm.ex is not the model of choice and, instead a model
of much lower complexity, namely model lm6_bal is emerging (see page 83 for details),
the same design evaluation is done with respect to model lm6_bal. This yields a much
better, but still unsatisfactory Dea-value of 0.337.

3.1.2 Remedies and Suggestions

This rather inferior result of course raises the question of how to deal with such a situa-
tion. The only remedy is repairing the design. Unfortunately, this is not always possible
due to economical and/or time restrictions - in this situation, there is no alternative to
sticking to the experimental outcome, hoping that the data gained this way still will do
the job.

If repairing the design is a reasonable possibility, two di�erent ways can be chosen.
First, all load points violating constraints can be removed from the design, but can
subsequently be used as additional points for model validation. Now, the remaining
part of the design can be augmented such that again a su�cient lower D-e�ciency
bound for the experimental design is reached.

A second, and maybe more economical way, would be, to revise the constraints and thus
the set of candidate points such that the new factor ranges are incorporated and the
existing design no longer violates the constraints. Building on that, one can repair the
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design by augmenting it with, hopefully, not as many additional runs as will be needed
using the �rst method.

The procedure of design-repair will now be illustrated for the �rst method suggested
above. After removing all load points which are violating the constraints, 21 load points
remain (see table 3.5), which can be augmented until we have again a reasonable de-
sign.

Table 3.5: 21 des_m - runs not in con�ict with the constraints

In order to �nd out how many runs we have to add, we construct designs with sizes
ranging from 24 up to 66 runs. This is done with respect to the initial set of candidate
points and model lm6_bal. It can be observed, that the D-e�ciency is increasing (despite
some �uctuations) up to the size of 41 runs, where the D-e�ciency has its maximum
and then drops continuously (�gure 3.1).

This means, that the best repaired design has the same number of runs as the initial
design. The new design (see table 3.6) consists of the 21 remaining runs taken from
des_m and 20 new runs, which have to be started time-delayed and thus prolonging
the duration of the whole experiment. The lower D-e�ciency boundary of the repaired
design is 0.721 and thus reasonably large.

Finally, due to limited resources, none of these two possibilities has been realized. Instead
the free capacities have been used for replicating some of the existing experimental
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conditions and the execution of validation experiments. Therefore, the experiment is
�nally brought to an end based on des_m, which is, for the purpose of statistical analysis
coded with respect to the new extended factor ranges (table 3.7).

Figure 3.1: D-e�ciency as a function of design size
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Table 3.1: Initial design (des_701) with 41 load points
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Table 3.2: Design reported in WP1300 (des_WP1300, 41 load points)
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Table 3.3: Di�erences between des_701 and des_WP1300

55



3 Statistical analysis

Table 3.4: Design actually in use (des_m, 41 load points)
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Table 3.6: The repaired design (41 load points)
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Table 3.7: Design actually in use coded using the new (wider) factor-ranges
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3.2 The cells

3.2.1 Di�erent cell types

In the actual experiment two di�erent types of cells are considered . Large ones - these
are the cells used in automotive applications and whose behaviour should be modeled in
the end. Due to economical restrictions a second, smaller type of batteries has especially
been made to gain the data needed for parametrizing the linear model. The smaller cells
are intended to constitute an economical model-system and will hopefully show, despite
controllable scaling e�ects, the same behaviour as the large cells.

The variation in the data observed stems from di�erent sources, one of it are di�erences
between cells due to the manufacturing process. These di�erences are much more obvious
in the case of the small cells. These are, in contrast to the large cells not machine-made,
but hand-made which causes higher variability concerning internal resistance and cell
capacity. An interesting, albeit expected observation in this context is that deviations
are more likely in directions which are undesirable, i.e we can see more cells with higher
resistance and/or lower cell-capacity than would be expected if these quantities are nor-
mally distributed. These facts are depicted in �gure 3.2 - it shows histograms concerning
resistance and cell-capacity supplemented with the empirical density function and the
density function of the corresponding normal distribution.

Figure 3.2: State of characteristic quantities at the beginning of the experiment for small cells

Both histograms show considerable skewed distributions. The distribution is positively
skewed in case of the internal resistance and negatively skewed in case of the cell capacity.
The skewness is in both cases almost similar concerning its magnitude but opposite in
direction.
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skewness(RTP1_Ri) = 3.185988
skewness(RTP1_Capacity) = -3.289153

Testing for normality yields the expected result - the hypothesis of normally distributed
observations is in both cases rejected with very high levels of con�dence (the p-values of
the tests are smaller than 10´16).

shapiro.test(RTP1_Ri) shapiro.test(RTP1_Capacity)

Shapiro-Wilk normality test Shapiro-Wilk normality test
data: RTP1_Ri data: RTP1_Capacity
W = 0.6108, p-value ă 2.2e-16 W = 0.693, p-value ă 2.2e-16

To investigate whether there is a relationship between resistance and cell-capacity, a
scatter-plot is drawn (�gure 3.3).

Figure 3.3: Scatter-plot comparing internal resistance and cell-capacity of the small cells at the
beginning of the experiment

This plot does obviously not show any evidence for an interrelation between these quan-
tities. To maintain a reasonable homogeneous cell-population to start the experiment
with, it was decided to sort out all cells, which showed a deviation from the mean
capacity of more than 4%.

60



3 Statistical analysis

To determine which of the two characteristic quantities considered for each cell, internal
resistance or cell-capacity, should be used as an indicator of cell aging, the evolution of
these (standardized) quantities with respect to the time elapsed is graphed:

Figure 3.4: Evolution of standardized cell-capacity

Figure 3.5: Evolution of standardized resistance

Figure 3.5 shows, that the evolution of the internal resistance does not take place in the
expected way. Instead of increasing, the resistance seems to decrease in many cases and
in addition, looking at single cells, the resistance evolves rather erratically in some cases,
i.e. shows irregular behaviour like alternating de- and increasing. The reason for this
undesirable behaviour might be measurement errors producing noisy data and adding a
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further source of variability this way. Therefore, the internal resistance is not useful for
modeling the process of aging.

In opposition to the behaviour of the internal resistance, the cell capacity shows an
evolution, which is much more as expected (3.4). The cells capacities are, in most
cases, decreasing as anticipated, but still there are some cells, whose capacities show an
irregular behaviour. These irregularities are caused by some inherent problems of the
method of capacity determination. Data of cells whose measurements are e�ected by
this problem is not used in the analysis of the experiment. In summary, after sorting out
problematic cells, the characteristic of capacity evolution makes this quantity the ideal
candidate for assessing a cells status of aging.

During the experiment, each experimental condition is imposed on several cells (three or
more) and it can be seen that, even after standardizing the respective quantity (internal
resistance, cell-capacity) with respect to the initial value, di�erent cells show considerable
variability in their response to the same experimental condition. It has been discussed in
detail in chapter 2 how this variability is incorporated in modeling by means of a noise
term. The model chosen demands, that this design-point speci�c variability is the same
across all experimental settings under consideration - whether this proves to be true has
to be veri�ed by running the proper model diagnostic tools.

If the precondition of homoscedasticity is not valid, the varying error variances, which
are connected with di�erent experimental conditions then constitute an additional source
of variability. In this case it is necessary to at least transform the data in a proper way
(see page 34) enabling the application of linear regression analysis, or, if this does not
yield the desired result, switch to a modeling concept of greater �exibility like GLM.

Looking at the raw data, plotting the standardized cell-response versus the according
load point, could give an idea whether heteroscedasticity can in fact constitute an issue
in analyzing this data. Unfortunately, this is problematic in our case because it is not
meaningful to compare the current capacity- and resistance-values concerning di�erent
load points due to the fact that, at least in most cases, even for one and the same load
point the cell speci�c data is gathered with respect to di�erent RTPs. The reason for
this is twofold. First, in the case of most load points, some of the cells have been taken
out without having reached their end of life for chemical characterization while others
are still running. The second reason is, that not all cells are part of the experiment from
the very beginning - some of them have been introduced later in order to use the experi-
mental equipment to full capacity when other cells in the course of the experiment were
taken out due to several reasons (e.g. chemical characterization, reached EoL, abnormal
behaviour). Because the extrapolated lifespans change with the duration of the experi-
ment (see �gures 3.9 to 3.11), it is not reasonable to compare extrapolations based on
cells which have experienced di�erent times of operation. By using the nascent capacity
of the equipment it was aimed to get better data by replicating critical load points, i.e.
load points where the cells do not work properly or show con�icting behaviour.
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Figure 3.6 illustrates this situation. For each observation, the highest RTP number
experienced by the cell so far is indicated by a certain symbol - same symbol indicates
same RTP.

Figure 3.6: Standardized cell-capacity versus load point

If not taking into account that the data belongs to di�erent RTP's, �gure 3.6 could
possibly be misleading by wrongly attributing the whole di�erences concerning location
as well as variability to the e�ect of di�erent load points only.

One remedy is, to choose a certain RTP for each load point, which is available for all
cells running under its regime and plotting this data versus the load point (�gure 3.7).

This is still not a very satisfying solution since a large amount of data available is not used
in this examination. However, it can be seen that, despite the fact that the variability
within data concerning single load points is obviously smaller now (compare �gures 3.6
& 3.7), the variability varies considerably between di�erent load points. Hence, the
conclusion is, that heteroscedasticity might become an issue, but in fact, to be able to
see the true di�erences between the e�ects of the load points in use, we have to compare
their lifetimes and the corresponding variabilities. Due to the fact, that many of the cells
haven't reached their end of life yet, in these cases we will estimate the cells lifetimes
(see the section about extrapolating the cells end of life on page 66 �.).
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Figure 3.7: Standardized cell-capacity versus load point - showing data which for each load point
belongs to the same RTP, but not necessarily to the same RTP for all load points

Interaction-Plots

These are plots intended to discover �rst order interactions between the factors used in
the experiment.

Due to the rather scarce data, proper interaction-plots can hardly be drawn, but nonethe-
less evidence for interactions can be seen. Therefore, considering interaction terms in
describing the relationship between the cells life time and the factors under investigation
constitutes an essential part of the modeling process.

To quantify the interaction e�ects for this large number of factors may require much
more data than can be produced due to economical restrictions.

Additionally, at least some qualitative statements about the in�uence of single factors
can be given. On the diagonal, the interaction plot shows the e�ect according to the
single factors, totally ignoring the others. It can be seen, that extreme levels of T,
especially in the case of the highest level, have a strong negative e�ect on the cells
lifespans. Additionally, it seems, that the in�uence of T is rather non-linear (quadratic
and/or cubic). A similar behaviour can be observed in the case of ADC and dSoC. In the
case of PDC and SoC, the e�ect seems to be the other way around - the life expectancy
seems to be higher for the lowest and the highest level, respectively. A rather low e�ect
can be found for CC and almost none for F.
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Figure 3.8: Interaction-plot, using the the cell-capacity as response in the case of the RTP 10
data
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3.3 Extrapolation of the Cells End of Life

Due to the fact, that the duration of the experiment is to short for reaching the end of
life (EoL) of many of the batteries, the lifespan of these cells has to be extrapolated.

This is done as follows. Using the available capacity data, but without the data belonging
to RTP1 in order to avoid initial e�ects, the following simple model has been applied:

yptq “ β1e
´β2t

with yptq denoting the remaining capacity after t days of operation and β1, β2 P Rą0.

Modeling the capacity decay in this way re�ects the tendency of �attening the decay
by the monotonous growth of the exponential functions slope. This type of modeling
doesn't take into account the factors applied, it just establishes a load point speci�c
relationship between time of operation and capacity decay. The question whether this
type of modeling is adequate or not, cannot be conclusively decided until (almost) all
cells have �nished their lives, but all data available at the moment seem to justify this
approach, not implying that no other or even better ways exist.

The �gures 3.9 to 3.11 show the outcome of this extrapolation process. Each of the
diagrams represents one single load point. The measurements are drawn in blue, the
extrapolated development of the capacity decay is drawn in black. The horizontal line
indicates the 70% level of the initial cell capacity and the vertical lines mark the extra-
polated lifetime of the individual cells.

Figure 3.9: EoL - extrapolation C01 - L09
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Figure 3.10: EoL - extrapolation L10 - L24

Figure 3.11: EoL - extrapolation L25 - L35
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Some of the load points in use have already caused the EoL of the cells which are
operated under their regimes whilst others have not. This shows, that at least some of
the factors have a massive impact on the life expectancy of the cells. Figure 3.12 exhibits
a histogram depicting the distribution of the extrapolated lifespans.

Figure 3.12: Distribution of extrapolated lifespans according to the data gained during RTP20

Another e�ect, which is obvious, is that in many cases the speed of the capacity-decay
is slowing down with increasing duration of the experiment.

This behaviour rises the question about the stability of the extrapolated EoLs, i.e. do
the extrapolations change signi�cantly in the course of the experiment and, even more
essential, is the character of the load point, i.e. is the load point causing slow or fast
aging, signi�cantly a�ected.

Figures 3.13 to 3.17 show the evolution of the extrapolated lifespans with respect to the
data available. One can observe di�erent types of trends, even for the same load point.
In some cases the values are stabilizing, in others they are in- or declining.

To get an impression, whether at least the basic characteristic of the load points is not
changing over the course of the experiment, the extrapolated lifespans due to data gained
during several load points are compared for RTP8, RTP12, RTP16, RTP20 and RTP24
to those calculated with respect to RTP28 (�gure 3.18). As expected, the extrapolations
are more and more approaching those carried out with respect to the RTP28 data and,
despite the fact that, with increasing RTP number, the estimates of the lifespans are
by trend becoming longer, we can see that the character of the load points, at least in
most cases, is not changing, since in all diagrams there is a strong positive correlation
between the extrapolations made with respect to di�erent RTP's. This means that all
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Figure 3.13: EoL - extrapolation vs. duration of experiment, C01 - L03

Figure 3.14: EoL - extrapolation vs. duration of experiment, L04 - L12
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Figure 3.15: EoL - extrapolation vs. duration of experiment, L13 - L21

Figure 3.16: EoL - extrapolation vs. duration of experiment, L22 - L30
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Figure 3.17: EoL - extrapolation vs. duration of experiment, L31 - L35

sub-plots show only relatively small deviations of the earlier extrapolations from that
made using the RTP28 data (no 'starry sky').

If successive extrapolations (calculated with respect to RTP8 and RTP12, RTP12 and
RTP16,...) are compared, we can in addition see, that the di�erences between successive
extrapolations become smaller and smaller (see �gure 3.19), which indicates, that the
extrapolations are stabilizing.

Because the scatter-plots show in all cases clearly the same trend, namely that the
character of the load points stays the same throughout the whole experiment and is
not changing from RTPx to RTPy, it is reasonable to use the extrapolated lifespans for
modeling the relationship between factors and capacity decay or equivalently factors and
life expectancy of the cells.

But still, the question whether all cells performed in a way, that the data can be used
for model selection without hesitation is not fully investigated at this point.

When extrapolating the lifespans, there is one additional problem which we already
mentioned but not discussed in detail so far, namely the problem of cell data belonging
to the same load point but to di�erent RTPs. For illustration purposes, let us have a
look at load point L04. By examining the evolution of the extrapolated life spans for
the cells under its regime, we can see (�gure 3.14), that both cells show a very similar
behaviour, but one of the cells (1056) is running shorter than the other (1011). In this
case, it is not reasonable to use the extrapolations calculated with respect to the di�erent
RTPs available - this would be equivalent to assume, that in the case of cell 1056 the
evolution of the lifespan would not show any change (i.e. proceed horizontally) from
the time of the last measurement until the actual experimental duration of cell 1011
is reached. Instead of that, we assume the evolution to be similar to that shown by
cell 1011 and therefore we �nally extrapolate the lifespan of 1056 by subtracting the
di�erence between the extrapolated lifespans of the two cells according to the latest
RTP experienced by cell 1056 from the extrapolated lifespan of cell 1011 according to
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Figure 3.18: Extrapolated lifespans according to RTP: 8, 12, 16, 20 and 24 vs. extrapolated
lifespans according to RTP28

Figure 3.19: Extrapolated lifespans according to RTPx vs. extrapolated lifespans according to
RTP(x+4), with x = 8, 12, 16, 20 and 24
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the latest RTP experienced by it. This procedure, although rather rough, gives surely a
more reasonable result than we get by mixing up data due to di�erent RTPs.

In other cases, some of the cells should be considered as outliers and left aside in analysis.
For example cell 1319 (load point 22 - see �gure 3.16). The extrapolations regarding cell
1319 have not stabilized yet, while the others are extraordinary stable. In addition, the
extrapolations for cell 1319 are tending obviously towards those belonging to the other
two cells under the regime of L22.

In the case of C01, we have con�icting information about the lifespans which can be
reached by cells operated under its regime. The data belonging to one cell suggest
a lifespan which is around 6 times longer than in the second case. By examining the
available data a bit closer, the involved chemist came to the conclusion, that a reasonable
lifespan in the case of C01 is very likely something in between these two di�ering lifespans
- so to solve this con�ict, instead of the two extrapolations available, only one estimated
lifespan in between the two observed values is used for further analysis.

Also in the case of C02, the involved chemist concluded due to similar reasons as in the
case of C01, that the extrapolated life span should be reduced by around 1000 days.

3.4 Modeling the Relationship between the Cells' Lifespans
and the seven di�erent in�uential Factors using multiple
linear Regression (MLR)

3.4.1 Balancing the Data Set

The experimental design consists of 41 di�erent experimental settings or load points (LP)
which are initially applied to three cells each. This means, that for most experimental
conditions, we have three independent observations. Due to unexpected problems with
some of the cells, there exist load points which yield less than three usable results and
in the case of four load points, namely C01, C02, C03 and LP29, there exists only
one cell each considered working reliably. In other cases, there exist more than three
observations, due to subsequent replications of the experimental conditions (see page
62). This means, that we are now in the rather unfavourable situation of dealing with
an unbalanced dataset. Since we want to bene�t from the pros of a balanced design
when doing the statistical analysis of the data, we arti�cially balanced the data by

� trimming down the number of observations if more than 3 are available or

� adding arti�cial observations if less than 3 observations have been made

by following rules.

Actually, we set up a procedure in R to balance the data automatically:
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� More than three observations: keep the lowest and the highest observation and in
addition the observation, which is closest to their average.

� Two observations: add the average of the two available observations. In statistical
analysis, introducing an arti�cial observation of this type has to be accounted for
by reducing the degree of freedom by one.

� One observation: we take its value as the mean of a normal distribution with
variance empirically determined using the data produced by the experiment. In
a next step we add two randomly generated values by using this distribution.
To avoid producing outliers this way, we limit the distance between the randomly
generated observation and the mean value of the distribution used by the maximum
observed distance between the observations made in the experiment and the mean
values of the observations made under the regime of the respective load points.

Then we analyze the dataset balanced this way (i.e. �t the model lm.ex), repeat the
whole process of balancing and analyzing ten times in total, compare the di�erent results
(i.e. compare the parameters and p-values generated by parametrizing the model lm.ex)
and, as a last step, if no signi�cant di�erences occur, we choose one of the balanced data
sets randomly for use in the subsequent analysis.

Additionally, the same analysis is done with the unbalanced dataset, to see whether the
process of balancing is of signi�cance for the subsequent model selection process.

When looking at the 'diagnostic'-plots, which are the sub-�gures of �gures 3.20 to 3.23,
we can see, that balancing the dataset as speci�ed above does not have a huge impact
on the signi�cance of most regressors when parametrizing the model lm.ex by using
10 di�erent automatically generated balanced datasets and additionally the unbalanced
dataset. The larger deviations can be found between the values of the quantities cal-
culated in the balanced cases and the unbalanced case, but these values are still of the
same magnitude and do not yield a signi�cantly di�erent picture when compared with
the results of the balanced cases. The diagnostic-plots show the p-values and the pa-
rameters in the case of the intercept and the 23 regressors of lm.ex which are generated
when parametrizing this model. The subplots showing the p-values are ordered such
that the �rst ten subplots show the p-values of the signi�cant regressors, the next three
subplots those of regressors with borderline signi�cance and the remaining 11 subplots
show the p-values of the regressors which are not signi�cant. The numbers on the left
hand side of the sub-�gures indicate the position of the regressors in the model lm.ex.
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Figure 3.20: p-values (on y-axis) of the 10 regressors of lm.ex turning out to be highly signi�cant
when 10 di�erent balanced datasets and the unbalanced dataset (1 to 11 on x-axis)
are used for parametrization of lm.ex (10 sub-�gures above). The numbers on the
left hand side of the sub-�gures indicate the position of the regressors in the model
lm.ex
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Figure 3.21: p-values (on y-axis) of the 3 regressors of lm.ex showing borderline signi�cance
when 10 di�erent balanced datasets and the unbalanced dataset (1 to 11 on x-axis)
are used for parametrization of lm.ex (3 sub-�gures above). The numbers on the
left hand side of the sub-�gures indicate the position of the regressors in the model
lm.ex
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Figure 3.22: p-values (on y-axis) of the intercept and 10 regressors of lm.ex turning out to be
not signi�cant when 10 di�erent balanced datasets and the unbalanced dataset (1
to 11 on x-axis) are used for parametrization of lm.ex (11 sub-�gures above). The
numbers on the left hand side of the sub-�gures indicate the position of the regressors
in the model lm.ex

77



3 Statistical analysis

Figure 3.23: Parameter-values (on y-axis) in the case of the intercept and the 23 parameters
of lm.ex arising when 10 di�erent balanced datasets and the unbalanced dataset
(1 to 11 on x-axis) are used for parametrization of lm.ex (24 sub-�gures above).
The numbers on the left hand side of the sub-�gures indicate the position of the
regressors in the model lm.ex
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In addition, we also compared the values of the residual standard error which are cal-
culated when parametrizing lm.ex using the 10 di�erent balanced datasets and the
unbalanced data as well (�gure 3.24). There are again only minor di�erences between
the balanced datasets. As anticipated, the larger deviations can be found between the
values of the quantities calculated in the balanced cases and the unbalanced case.

Figure 3.24: Residual standard error obtained when parametrizing lm.ex by using 10 di�erent
balanced datasets (replication number 1 - 10) and the unbalanced data (replication
number 11).

All together, it appears to be reasonable to balance the data set as described above. The
analysis, i.e. the 'diagnostic' - plots shown do not provide evidence, that balancing will
signi�cantly distort the results of the subsequent analysis.

Degrees of Freedom

In the case of the unbalanced data set there are 8 load points in total where we have
only two (reliable) extrapolations at hand and therefore had to add the mean values
of these two extrapolations in order to balance it. This also means, that we have to
reduce the available degrees of freedom in the subsequent statistical analysis by 8. Eight
observations out of 123 - this is a fraction of around 6.5 % which is of course not a
totally marginal part of the observations, but we think still a fraction which will, due to
the fact that the regressors chosen in the model selection process (using the unreduced
degrees of freedom) are highly signi�cant, have no signi�cant e�ect on the outcome of
the analysis. We therefore rely on the 'approximate result' of the analysis using the
uncorrected degrees of freedom.

79



3 Statistical analysis

3.4.2 Statistical Analyis and Model Selection

All analyses which will be discussed from now on, will always be based on the balanced
dataset. Therefore, it will not be mentioned each time separately.

When parametrising the model lm.ex, we see (�gure 3.25), that there are many param-
eters considered insigni�cant (i.e. have p-values greater than 0.05). This tells us, that
there is a considerable amount of redundancy in the model, i.e. not all parameters are
needed to describe the relationship between in- and output.

In order to get rid of non-informative parameters, we use the R-routine leaps to perform
an all-subsets regression (see page 33 for more details). By using several criteria (adjR2,
BIC and Mallows' Cp), we try to select the model which is the most suitable under all
models at hand, i.e. this procedure of course does in general not yield the best possible
model for describing the data, it just yields the most suitable under all linear models
which can be constructed by using the regressors available in the model lm.ex (for more
information on this topic see page 29 �.).

When plotting the best model (in terms of the criteria mentioned above) of each size
(i.e. number of regressors in the model) ordered by its corresponding BIC value (�gure
3.26), then we get a good impression of the order of magnitude concerning the size of
suitable models. In terms of the BIC, the 7 best models are ranging in between 6 -
12 regressors, showing BIC-values between -130 and -140, i.e. are pretty close together
concerning this criterion. In addition we cannot only see which regressors are comprised
by each of these models, but also get an impression of which of them show up in almost
all of the models, thus being likely the most informative of the 24 regressors in total. The
regressors showing up most often are the temperature (T), the state of charge (SoC),
the squared average discharge current (ADC2), the squared state of charge (SoC2), the
charge current (CC), the average discharge current (ADC) and the interactions of charge
current with peak discharge current (CC:PDC), of charge current with state of charge
(CC:dSoC) and of state of charge with delta state of charge (SoC:dSoC).

The interaction SoC:dSoC is literally ubiquitous - it is present in all models. The tem-
perature is included in all models with more than one regressor in form of at least one
of the regressors T, T2 and T3 and can often be found also in one or more interactions
present in the model. The same is also true for SoC, with the exception of not hav-
ing SoC3 as a potential regressor. Therefore, the selected model will include T2 or T3,
T, SoC, SoC2 and last but not least the interaction SoC:dSoC, i.e. it will be a model
comprising at least 5 regressors.

To re�ne our quest for the most adequate model, additionally we consider further criteria,
namely Mallows' Cp and the adjusted R2. To get a comprehensive picture concerning
the criteria used, we plot the number of parameters (from 1 to 24) versus the values of
the respective criterion associated with the best model of each size (�gure 3.27). Two
criteria, namely adjR2 and the BIC suggest models with 6 and 10 regressors and Mallows'
Cp indicates a model with approximately 10 regressors. In the following analysis we will

80



3 Statistical analysis

investigate the best models comprising 6 and 10 regressors, subsequently named lm6_bal

and lm10_bal.

Figure 3.25: Printout of the R routine lm, when parametrizing model lm.ex using the balanced
data.
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Figure 3.26: Best models with 0,1,...,24 regresors orderd by their respective BIC-value.

Figure 3.27: Selection criteria vs. model-size.
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The printout of the R routine lm, when parametrizing model lm6_bal (�gure 3.28) shows,
that all regressors in the model are highly signi�cant. It contains the regressors stated
above (T2, T3, SoC, SoC2, SoC:dSoC) and additionally ADC2.

Figure 3.28: Printout of the R routine lm, when parametrizing model lm6_bal using the balanced
data.

By looking at the diagnostic-plots (�gure 3.29), which are automatically generated by
applying the plot function on an lm-object (which is a result of the lm-function), we can
see that the QQ-plot indicates a deviation from the assumption of normally distributed
errors and that the scale-location plot does also allow for doubting the assumption of
homoscedasticity.

Though the result is not at all clear, we apply some statistical tests (table 3.8).

Table 3.8: Results of Shapiro-Wilk- and ncv-test in the case of lm6_bal.

The Shapiro-Wilk normality test does not reject the assumption of normally distributed
errors but the ncv-test rejects the assumption of homoscedasticity (even though the
p-value of 0.035 is only slightly smaller than the chosen signi�cance level of 0.05).
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Figure 3.29: Diagnostic-plots in the case of lm6_bal.

The Box-Cox-routine (�gure 3.30) suggests a transformation with λ “ 0.412.

Figure 3.30: Box-Cox-analysis of lm6_bal.

But transforming the data as suggested by the Box-Cox-routine does not yield the desired
result. Tables and sub-�gures of �gure 3.31 show, that the data has now approximately
constant variance, but the error distribution is now consistently rated not being normal
by both, the QQ-plot and the Shapiro-Wilk test. Therefore, we suggest to stick to the
untransformed data in this case: the assumption of normally distributed errors seems
to be ful�lled and the deviation from the assumption of homoscedasticity seems to be
rather moderate.
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Figure 3.31: Results of statistical analysis concerning lm6_trans.
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The printout of the R routine lm, parametrizing model lm10_bal shows (�gure 3.32),
that all of the regressors in the model are highly signi�cant. It consists of the regressors
stated above (T2, T3, SoC, SoC2, SoC:dSoC) and additionally of CC, ADC, ADC2,
CC:PDC and CC:dSoC.

Figure 3.32: Printout of the R routine lm, when parametrizing model lm10_bal using the bal-
anced data.

By looking at the diagnostic-plots (�gure 3.33), we can again observe that the QQ-plot
indicates a slight deviation from the assumption of normally distributed errors and that
the scale-location plot does also allow for doubting the assumption of homoscedasticity.
Again, in order to enhance diagnostics, we apply some statistical tests (table 3.9) and
get essentially the same results as before.

Table 3.9: Results of Shapiro-Wilk- and ncv-test in the case of lm10_bal.

The Shapiro-Wilk normality test does again not reject the assumption of normally dis-
tributed errors, but showing a smaller p-value of 0.086 now compared to the p-value of
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0.22 in the case of lm6_bal. The ncv-test again rejects the assumption of homoscedas-
ticity (also the p-value of 0.026 is smaller compared to the p-value of 0.035 in the case of
lm6_bal). Again, the Box-Cox-routine suggests a transformation with λ equal to 0.4.

Figure 3.33: Diagnostic-plots in the case of lm10_bal.

But, as before, transforming the data as suggested by the Box-Cox-routine does not
yield the desired result. Again, the homoscedasticity of the data is improved, but the
error distribution is again consistently rated not being normal by the QQ-plot as well
as the Shapiro-Wilk test. Therefore, we again recommend to stick to the untransformed
data.

In addition we did a leaps-based model-selection using transformed data, to investigate
the topic of data-transformation by exponentiation of the response with λ as suggested
by the Box-Cox-routine.

Applying the Box-Cox-routine to lm.ex yields a λ of 0.265 for transforming the response
in advance. Using the same strategy as described above (see �gures 3.34 & 3.35), the
outcome of this model-selection process is model lm11_trans consisting of 11 regressors
which are the same as in the case of lm10_bal plus dSoC (see �gure 3.36).

Looking at the diagnostic-plots and statistics respectively (�gure 3.36), it is obvious,
that we encounter in this case the same problems with the transformation suggested
by the Box-Cox-routine, as we had in the case of lm6_bal and lm10_bal. Therefore,
we conclude, that transforming the data in this case is not an appropriate remedy for
solving the problem of slight deviations from homoscedasticity in the statistical analysis
of models lm6_bal and lm10_bal. Hence, it is reasonable to stick to the models found
in the context of untransformed data.
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Figure 3.34: Output of the R routine leaps, when doing an all subsets regression using the bal-
anced and transformed data (λ “ 0.265).

Figure 3.35: Selection criteria vs. model-size.
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Figure 3.36: Results of statistical analysis concerning lm11_trans when using the balanced and
transformed data (λ “ 0.265) for parametrization.
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Additional regressors

In order to investigate whether additional regressors, i.e interactions not included in
lm.ex might be of importance we expanded the list of potential regressors by allowing
many more potential interactions, especially those of the type A:B2, with A and B
denoting any of the 7 in�uential factors except frequency. We have already seen in the
foregoing model-selection process based on the regressors occurring in lm.ex, that F
does not seem to play any role in the modeling of the aging process. In addition, in case
of temperature T, also interactions of the type A:T3 are considered. This strategy yields
64 potential regressors in total (table 3.10).

Table 3.10: Enlarged set of regressors.

Due to the large number of potential regressors, new challenges emerge. Now it is not
possible to do an all-subsets regression using the R-package leaps. Leaps is, as already
mentioned using a branch-and-bound algorithm, which is capable of dealing with at most
around 40 regressors. Beyond 40 regressors, the computational e�ort becomes too large
to be handled. Therefore, we decided to use a heuristic strategy:

� We �rst perform a for- and a backward regression based on the set of 64 regressors.

� The regressors, which emerge this way, are then added to the initial set of 24
regressors comprised by lm.ex. From this new set of regressors, all regressors with
the frequency term are removed.

� On this new set of regressors, which does fortunately contain fewer than 40 regres-
sors, again an all-subsets regression is performed.

But, it is almost impossible to �nd the 'best' model this way. Due to the fact that this
model selection is not based on an exhaustive procedure, it is very likely that many more
well performing models exist which perform even better in terms of the criteria used for
model selection.

The result of the exhaustive search (�gure 3.37) indicates that a model with around 16
regressors will be of su�cient complexity. This model is called lm16_heu (�gure 3.38)
and a brief discussion of its properties is given in the following.
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Figure 3.37: Selection criteria concerning the all-subsets-regression based on the new set of re-
gressors.

Figure 3.38: Printout of the R-routine lm in the case of lm16_heu.
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The printout of the R-routine lm in the case of lm16_heu (�gure 3.38) tells us, that all
of the regressors comprised by the model are highly signi�cant and that the rather high
adjR2 value of almost 0.88 does not di�er much from the multiple R2 value of 0.894.
This means that most of the variability in the data is explained by lm16_heu and that
there is almost no redundancy in the model. The diagnostics show (3.39 & table 3.11),
that the problem of not meeting the basic assumptions of regression analysis is even
more severe now compared to the situation in the case of lm6_bal and lm10_bal. The
Box-Cox-routine suggests transforming the data by exponentiation of the response with
λ “ 0.65 (�gure 3.40).

Figure 3.39: Diagnostic plots in the case of lm16_heu.

Table 3.11: Testing for normally and homoscedastic distributed errors in the case of
lm16_heu.

But again, applying this transformation to the data constitutes no remedy (�gure 3.41
& table 3.12) and therefore, even more than before, the question remains whether this
type of modeling should be used at all.

The result of this strategy is a model of higher complexity than encountered in the
context of the regressors comprised by lm.ex. It consists of 16 instead of at most 10
regressors. This means, that the model �t is better, but also raises the question of
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Figure 3.40: Box-Cox-analysis of lm16_heu.

Figure 3.41: Diagnostic plots in the case of lm16_heu parametrized using the transformed data
as suggested by the Box-Cox-routine.
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Table 3.12: Testing for normally and homoscedastic distributed errors in the case of
lm16_heu parametrized using the transformed data as suggested by the

Box-Cox-routine.

over�tting. A behaviour, which can indeed be observed, when applying this model to
the validation points (see next subsection for details).

Validation of the chosen models by examining the validation points

Validation points are additional experimental conditions applied to at least three di�er-
ent cells each. The data gathered this way is not used for parametrizing the models,
but instead used for testing the models quality by comparing the models prediction
for these experimental conditions with the extrapolated life spans calculated for these
load-points.

The results of extrapolation for the validation-points is depicted in �gure 3.42. Since the
validation-points V10, V11 and V12 have been established recently, i.e. the respective
cells are not part of the experiment from the beginning, it remains questionable, whether
it makes sense to already use this data because there is some kind of stabilization-phase
at the beginning of most of the runs, as can be seen when cells are tested for longer
periods. For cells under the regimes of V02, V03 and V04 we can �nd longer times of
operation, i.e. there are cells which are running since hundreds of days, therefore giving
a better impression of the evolution of the extrapolations which are, as already discussed
(see page 68 �.) changing with time. By looking at the respective sub�gures of 3.42, we
can see, that there is at least one cell per load-point, which is not as long part of the
experiment as the other cells belonging to this load-point. This problem is handled as
described before (see page71 �.).
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Figure 3.42: Evolution of extrapolation in the case of the validation points.
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Table 3.13 shows the mean values of the extrapolated lifespans and the lifespans predicted
by the three models of interest, lm6_bal, lm10_bal and lm16_heu.

First, let us consider lm6_bal and lm10_bal, which show a di�erent behaviour compared
to lm16_heu.
In both cases, the models give reasonable results for load-points resulting in a moderate
or rather slow aging (extrapolated lifespans between 1233 and 3141 days), but giving
rather poor results in the case of the harsher load-points (extrapolated lifespans between
149 and 695 days). In all cases, except in the case of V12, both models are underes-
timating the extrapolations, showing even negative values in the case of the harshest
load-point V11. Additionally, lm10_bal also gives a negative prediction in the case of
the load-point causing the second shortest lifespan, V04, while lm6_bal gives a rather
reasonable result in this case. In the case of V12, both models are overestimating the
extrapolation by a factor of three, but due to the short time of operation of the cells
tested under the regime of this load-point, it might be, that the extrapolation is not very
reliable. Despite the fact, that negative predicted life-spans are void of meaning, both
models seem to be able to discriminate between harsh and moderate load-points. It is for
sure better, to use a model giving negative predictions in the case of harsh load-points
and is apart from that behaving well, than to use a model which doesn't identify harsh
conditions as such.

In the case of lm16_heu, the situation is di�erent. This model is not able to distinguish
between harsh and moderate load-points. Summing up the models' behaviour it can be
said, that literally all predictions in the case of the validation points seem to be absolutely
useless. This result, at least in our opinion, indicates over�tting. A result, which is
somewhat surprising in the light of the criteria used for model selection (�gure 3.37)
and the printout of the R-routine lm (�gure 3.38), because all criteria unambiguously
suggest a model of such a size and the printout shows that all of the regressors chosen
are highly signi�cant. This is a good example for the complexity of modeling such a
relationship and it tells, that just relying on a few criteria might yield a poor result.
Therefore, it is of great importance to incorporate as many ways of model evaluation as
possible (another way of evaluating the models is applying them to real-world driving
cycles as done by the involved chemist).

lifespan/days
load-point

V02 V03 V04 V10 V11 V12

extrapolated 1233 3141 394 1521 149 695
lm6_bal 929 2543 238 1320 -202 1969
lm10_bal 857 2728 -90 1405 -1348 1725
lm16_heu -259 -132 -1497 -2025 1513 3139

Table 3.13: Extrapolated and predicted lifespans.
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Accuracy of the models

To get an impression concerning the accuracy of the models, the plots 3.43 and 3.44
compare the magnitude of the predicted values and the associated con�dence intervals.

Figure 3.43: Predicted values and length of CI in the case of lm6_bal.

Figure 3.44: Predicted values and length of CI in the case of lm10_bal.

We can see that the con�dence intervals are rather wide. This might, at least partly,
be caused by the rather low D-e�ciency of the design in use (see page 50 for further
details).
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Despite this fact, there are a lot of means of the observations not covered by the con�-
dence intervals of the predictions (�gures 3.45 & 3.46). Still in most cases, both models
catch the trend rightly, but the accuracy of model lm6_bal is not as high as that of
lm10_bal. It is obvious, that lm6_bal is over- and also underestimating the extrapola-
tions somewhat more often severely than lm10_bal.

Figure 3.45: Coverage of the observed means by the con�dence intervals of the predictions in the
case of lm_6 (vertical lines indicate validation points).

Figure 3.46: Coverage of the observed means by the con�dence intervals of the predictions in the
case of lm10_bal (vertical lines indicate validation points).
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Looking at the residuals of the di�erent models (�gures 3.47 & 3.48), the overall picture
is that lm6_bal and lm10_bal do not di�er very much in most cases.

Figure 3.47: Residuals of di�erent models given in percent of the according extrapolation.

Figure 3.48: Residuals of di�erent models given in percent of the according extrapolation and
truncated at ˘ 150%.

But, leaving the validation points aside and taking a closer look, it can also be seen that
the residuals of lm6_bal are especially in the case of great deviations by trend larger
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than those of lm10_bal. Interestingly, the means of the absolute values of the residuals
do not di�er much - the more complex model lm10_bal shows only a slightly smaller
value than the less complex model lm6_bal. In the case of the most complex model,
lm16_heu, we have much smaller residuals in the case of load points C01 to L35, which
are the ones used for model parametrization. Also the mean of the absolute values of
the residuals is signi�cantly smaller than in the case of the less complex models, but
lm16_heu performs worse in the case of the validation points compared to the other
models.

The next �gure shows a comparison of the mean values of the lifespan-extrapolations
(ordered by size) with the predictions according to the models lm6_bal, lm10_bal and
lm16_heu. We can see again, that lm16_heu is not able to cope with the validation points
(indicated by vertical lines) whilst showing a good �t in the case of the load points used
for model parametrization. For the other two models, there is a somewhat contrary
situation - these models perform much more reasonable concerning the validation points
but show more severe deviations in the case of the load points used for parametrization.

Figure 3.49: Comparison of extrapolated EoL and EoL predicted by lm6_bal, lm10_bal and
lm16_heu.

All in all, due to the fact, that lm16_heu shows a devastating performance in case of
the validation points and is in this context totally outperformed by both models of
lower complexity, we would not suggest to consider lm16_heu as a suitable candidate
for modeling the aging of the Li-ion cells. Since lm6_bal and lm10_bal have, in many
cases, equal strengths and weaknesses but lm6_bal is, as discussed above, in some load
points inferior to lm10_bal (it seems, that lm6_bal might be of too low complexity to
be able to cope with as many di�erent operating conditions as appearing in our setting),
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we would suggest to consider lm10_bal to be the most promising, albeit not perfect
candidate for modeling cell-aging in the context of multiple linear regression.
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Design of Experiment

One of the goals of DOE is to choose the design matrix X such that the variability of
the estimators is as low as possible given a certain error associated with the underlying
stochastic process (i.e. to optimize the e�ciency of the design). The errors of the
estimators' distributions depend not only on the error of the stochastic process but also
on the design matrix X.

The constructed design is suitable only for a given design space, a speci�c model and
a certain number of design points. Therefore, one has to be careful when altering the
design or the model. As shown in section 3.1, only a few changes concerning the design
can have a devastating impact on the designs D-e�ciency - its lower bound can even drop
to almost zero. In addition, growing information about the relationship between in- and
output gathered during the ongoing experiment, makes a revision of the proposed model
necessary before the end of the experiment is reached. As mentioned before, a new model
needs a new design for achieving the data quality needed for proper parametrization.

Therefore, if changes of the design are inevitable (due to technical and/or economical
reasons) and/or modi�cations of the model are inevitable, an accompanying statistical
monitoring is highly recommended. This is the only way to keep the bene�t of the
experiment as high as possible. Modifying the experiment without statistical supervision
can cause poor data quality and hence dissatisfactory experimental results. How such a
design revision works and what remedies exist in order to restore a design possessing a
satisfactory degree of e�ciency, is also illustrated in 3.1 in form of two di�erent strate-
gies. Both ways have in common, that additional experiments are needed. Obviously,
one will also in this case have to �nd a balance between constraints concerning the
available resources and the increase of the designs D-e�ciency.

Statistical Modeling of the Relationship between Cell Usage and Cell Aging

At the beginning, some preliminary questions have to be answered concerning the ex-
perimental data, in order to establish a reasonable model describing this relationship.

First, the question which cell characteristics constitute a proper indicator of cell aging
has to be answered. It turns out, that the capacity decay seems to be the ideal candidate
for assessing a cell's status of aging (see section 3.2). Since the intended response is the
cells' end of life, it was decided to model the relationship between cell usage (represented
by 7 di�erent factors, namely: temperature, charge current, average discharge current,
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peak discharge current, frequency, state of charge and delta state of charge - see chapter
1 for more details) and the time needed for the cells to reach 70% of their initial capacity.
In addition it is necessary to establish a method for extrapolating the time needed for
reaching this state, because a signi�cant number of cells does not reach their end of
life according to the afore-mentioned criterion until the experiment is terminated. We
decided to use a simple exponential model which is described in detail on page 66. By in-
vestigating the behavior of these extrapolations in the light of increasing information due
to the progressive gain of data in the course of the experiment, we show that using this
strategy yields reasonable, i.e. stable extrapolations with respect to the characteristic
of the experimental settings (i.e. harsh conditions stay harsh conditions, intermediate
conditions stay intermediate conditions and soft conditions stay soft conditions - see
page 68 �. for further details).

Second, it has to be decided which type of data to use for statistical analysis. The
raw data of the experiment is unbalanced, because some of the cells did not work as
expected. We decided to balance the data by using the strategy described on page 73 �.
in order to bene�t from the ease of analyzing balanced data-sets. We also investigated,
whether the impact of balancing on statistical analysis proves to be signi�cant. This
is done by applying the balancing strategy several times and comparing the results of
the statistical analyses of the resulting data-sets balanced using di�erent estimates. No
such evidence was found and therefore we decided to use a randomly balanced data-set
for further analysis, i.e. model selection and model parametrization.

Modeling Results

Using the set of 23 regressors, which have initially been selected (see page 4 �.) yields
two models of rather low complexity showing a reasonable performance: lm6_bal and
lm10_bal (pages 83 & 86), comprising 6 and 10 regressors respectively. One signi�cant
�nding of this modeling process is, that one of the factors considered in�uential, namely
the frequency, does not prove to have any e�ect and thus can be neglected. Additionally,
in order to investigate whether supplemental regressors, i.e regressors not included in
the initial list of 23 regressors might be of importance, we expanded the list of potential
regressors by allowing many more potential interactions. The result of these approach
is a model of higher complexity comprising 16 regressors and denoted lm16_heu (page
91).
By assessing the goodness of these models, we tried to select the most reasonable candi-
date under the three models found. This is done by examining the validation points and
assessing the accuracy of the models. The validation points are experimental conditions
not used for modeling but instead used for testing the models' quality by comparing their
predictions for these experimental conditions with the extrapolated life spans calculated
for these load-points (table 3.13 on page 96). Both models, lm6_bal and lm10_bal,
seem to be able to discriminate between harsh and moderate validation points, albeit
the fact that they show negative predictions concerning some harsh load-points. In the
case of lm16_heu, we can see a completely di�erent picture. This model is not able to
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distinguish between harsh and moderate validation points. Summing up this models'
behaviour it can be said, that literally all predictions in the case of the validation points
seem to be absolutely useless. This result, at least in our opinion, indicates over�tting
(page 28 f.). It is for sure better, to use a model giving negative predictions in the case
of harsh conditions and is apart from that behaving well, than to use a model which
doesn't identify such conditions reliably.
The accuracy of the models is assessed by looking at the con�dence intervals of the
predictions and the magnitudes of the according residuals (page 97 �.). It can be seen,
that con�dence intervals are rather wide. This might, at least partly, be caused by the
rather low D-e�ciency of the design in use (see page 50 for further details). Despite
this fact, there are a lot of means of the observations not covered by the con�dence
intervals of the predictions. Still in most cases, both models catch the trend rightly,
but the accuracy of model lm6_bal is not as high as that of lm10_bal. The residuals
of lm6_bal are especially in the case of great deviations by trend larger than those of
lm10_bal. The most complex model, lm16_heu, shows much smaller residuals concern-
ing the load points used for model parametrization, but lm16_heu performs worse in the
case of the validation points compared to the other models. All in all, due to the fact,
that lm16_heu shows a devastating performance in case of the validation points and
is in this context totally outperformed by both models of lower complexity, we would
not suggest to consider lm16_heu as a suitable candidate for modeling the aging of the
Li-ion cells. Since lm6_bal and lm10_bal have, in many cases, equal strengths and
weaknesses but lm6_bal is, as discussed above, in some load points inferior to lm10_bal
(it seems, that lm6_bal might be of too low complexity to be able to cope with as many
di�erent operating conditions as appearing in our setting), we would suggest to consider
lm10_bal to be the most promising, albeit not perfect candidate for modeling cell-aging
in the context of multiple linear regression.
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For conducting further experiments, the following issues should be kept in mind:

� It is highly recommended to revise the whole topic of test space construction since
the problem of violated constraints became an issue in the course of the experiment.

� Due to the fact that only minor changes of the experimental setting (concerning
the DoE and/or the model which should be parametrized) could lead to a drastic
reduction of the e�ciency of the experimental design two important points should
be considered:

1. The experiment should be statistically supervised throughout its whole du-
ration, i.e. each change should be evaluated immediately in terms of the de-
signs e�ciency and all alterations negatively e�ecting the experimental setting
should under all circumstances be avoided or at least be repaired.

2. A dynamic experimental design (DDoE) is recommended in order to maintain
a reasonable data quality level since it is likely that the model of interest is
changing over the course of the experiment.

� One of the in�uential factors, namely the frequency (F), does not prove to play a
signi�cant role in explaining the relationship between battery usage and battery
aging and can thus be neglected. This will likely improve the study of the e�ects
of the remaining factors.

� We recommend using the most promising model lm10_bal as a starting point
for design construction, since using transformed data and/or models of higher
complexity do not prove to be a reasonable choice.
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