
Thomas Hämmerle, BSc

Hardware Abstraction Layer (HAL) for

an automotive real-time multicore

operating system

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Electrical Engineering

submitted to

Graz University of Technology

Ass.Prof. Dipl.-Ing. Dr.techn. Bernd Eichberger

Institute of Electronic Sensor Systems

 Diplom-Ingenieur

Supervisor

Dipl.-Ing. Dr.techn. Eduard Unger, AVL List GmbH

Graz, March 2016

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly indicated all material which has been
quoted either literally or by content from the sources used. The text document uploaded to
TUGRAZonline is identical to the present master’s thesis.

date (signature)

i

Acknowledgments

I would like to thank my advisor Ass.Prof. Dipl.-Ing. Dr.techn. Bernd Eichberger for his
support throughout the course of my thesis.

Furthermore, I would like to thank Dipl.-Ing. Dr.techn. Eduard Unger, for his excellent
guidance during my work at AVL List GmbH and the outstanding support during the work
on my thesis. I also really appreciated the help of my colleagues and the pleasant working
environment.

I would like to thank my family and friends for their encouragement. I am especially grateful
to my parents, who not only gave me the chance of doing my Masters degree but most of
all motivated me not to take the easy route and to get the best out of myself.

Thomas Hämmerle
Graz, March 2017

iii

Abstract

One of the most important tools in the area of engine research and development is a perfor-
mant and high flexible electronic control unit for internal combustion engines. The increasing
complexity of tasks, placed to electronic control units creates new requirements and demands
more real-time performance.
AVL Rapid Prototyping Engine Management System (EMS) represents such a generic engine
controller. It is provided to customers of AVL as a highly flexible and configurable engine
management system for the operation of all kind of combustion engines during performance
and emission development.
To meet the demands of the future, the performance of the next EMS generation is further
improved by replacing the current singlecore microcontroller by a state-of-the-art multicore
microcontroller. Through increased capabilities floating point format calculations are sup-
ported, as well as the distribution of complex processing tasks on different cores.

In the course of this master’s thesis, an application specific Hardware Abstraction Layer
(HAL) for a real-time operating system was established, forming the basis for the future
EMS software.

This work presents the implementation of the Hardware Abstraction Layer including the Low
Level Drivers for a multicore microcontroller. Used concepts and functionalities of real-time
operating systems are discussed on the basis of the automotive operating system ETAS
RTA-OS5.

v

Kurzfassung

Eines der wichtigsten Werkzeuge im Bereich der Motorenforschung und -entwicklung ist eine
leistungsfähige und hochflexible elektronische Steuereinheit für Verbrennungsmotoren. Die
zunehmende Komplexität der Aufgaben, die an die elektronischen Steuergeräte gestellt wer-
den, schafft neue Anforderungen und verlangt mehr Echtzeit-Performance.
AVL Rapid Prototyping Engine Management System (EMS) stellt eine solche generische
Motorsteuerung dar. Sie wird Kunden von AVL als hochflexibles und konfigurierbares Motor-
managementsystem für den Betrieb verschiedener Verbrennungsmotoren bei Leistungs- und
Emissionsentwicklung zur Verfügung gestellt.
Um den zukünftigen Anforderungen gerecht zu werden, wird die Performance der nächsten
EMS-Generation weiter gesteigert, indem der aktuelle Singlecore-Mikrocontroller durch einen
modernen Multicore-Mikrocontroller ersetzt wird. Durch die gesteigerte Leistungsfähigkeit
werden Fließkomma-Format-Berechnungen sowie die Verteilung komplexer Bearbeitungsauf-
gaben auf verschiedene Kerne unterstützt.

Im Zuge dieser Masterarbeit wurde eine anwendungsspezifische Hardware Abstraktionsschicht
(HAL) für ein Echtzeitbetriebssystem entwickelt, welche die Basis für die zukünftige EMS-
Software bildet.

Diese Arbeit stellt die Implementierung der Hardware Abstraktionsschicht einschließlich der
Low Level Treiber für einen Multicore Mikrocontroller vor. Verwendete Konzepte und Funk-
tionalitäten von Echtzeitbetriebssystemen werden anhand des Automotive-Betriebssystems
ETAS RTA-OS5 diskutiert.

vii

Contents

List of Abbreviations xi

List of Figures xiv

1. Introduction 1
1.1. AVL (Rapid Prototyping) Engine Management System (EMS) 1

1.1.1. Hardware architecture . 2
1.1.2. Software architecture . 2

1.2. Technical goal . 4

2. Utilized hardware 5
2.1. TriBoard TC2X7 . 5

2.1.1. Power Supply . 5
2.1.2. Startup configuration . 6

2.2. Connector PCB . 7
2.3. Lauterbach LA-7704 . 7

3. Utilized software 9
3.1. ETAS ASCET . 9
3.2. ETAS RTA-OS5 . 11

3.2.1. Real-time operating systems . 11
3.2.2. Main concepts of ETAS RTA-OS5 13
3.2.3. Multicore support of RTA-OS5 . 17

3.3. Development with ASCET . 17
3.4. Infineon AURIX Software Framework . 23
3.5. TASKING VX-toolset for TriCore . 23

4. Background 25
4.1. Definition of hardware abstraction layer . 25
4.2. Current AVL EMS software architecture . 26

5. Implementation of the HAL 31
5.1. Architecture of the software . 31
5.2. Multicore considerations . 32
5.3. Digital in- and outputs . 33

5.3.1. TC277T General Purpose I/O Ports 33

ix

Contents

5.3.2. DIGIO software module . 34
5.4. Analog to Digital Conversion . 35

5.4.1. TC277T Versatile Analog-to-Digital Converter (VADC) 35
5.4.2. VADC software module . 38

5.5. Pulse width modulated signals . 40
5.5.1. TC277T Generic Timer Module . 40
5.5.2. PWMIO software module . 52

5.6. Microsecond Channel . 56
5.6.1. TC277T Micro Second Channel Interface 56
5.6.2. MSC software module . 58

5.7. Controller Area Network . 60
5.7.1. TC277T Controller Area Network Controller 63
5.7.2. MultiCan software module . 64

5.8. Serial peripheral interface . 67
5.8.1. TC277T Queued Synchronous Peripheral Interface 68
5.8.2. SPI software module . 69

6. Evaluation 77
6.1. MultiCAN module . 77
6.2. MSC, PWMIO and SPI module . 80

6.2.1. Measurement . 81

7. Conclusion and Outlook 87

Appendix A. Code 89
A.1. MSC, PWMIO and SPI module test project 89

Listings 91

Bibliography 94

x

List of Abbreviations

ADC Analog-to-Digital-Converter

ARU Advanced Routing Unit

ASC Asynchronous/Synchronous Communication

ASW Application Software

ATOM ARU-connected Timer Output Module

AUTOSAR AUTomotive Open System ARchitecture

AVL Anstalt für Verbrennungskraftmaschinen List GmbH

BSW Basic Software

CAN Controller Area Network

CFGU Configurable Clock Generation Subunit

CMU Clock Management Unit

CPU Central Processing Unit

ECU Engine Control Unit

EGU External Clock Generation Subunit

ELF Executable and Linking Format

EMS Engine Management System

EPM Engine Position Management

FIFO Firt In First Out

FXU Fixed Clock Generation

GTM Generic Timer Module

HAL Hardware Abstraction Layer

IC Integrated Circuit

IDE Integrated Development Environment

IFX Infineon Technologies AG

xi

List of Abbreviations

iLLD Infineon Low Level Driver

IP Intellectual Property

ISR Interrupt Service Routine

JTAG Joint Test Group Array

LSB Least Significant Bit

MSB Most Significant Bit

MSC Microsecond Channel

MUTEX mutual exclusion

OS Operating System

PCB Printed Circuit Board

PCP Peripheral Control Processor

RTOS Real-time operating system

SFR Special Function Register

SPI Serial Peripheral Interface

TIM Timer Input Module

TOM Timer Output Module

VADC Versatile Analog-to-Digital Converter

xii

List of Figures

1.1. Overview of AVL EMS . 1
1.2. AVL EMS main board with processor board 2
1.3. Overview of AVL EMS software concept . 3

2.1. Infineon TriBoard TC2X7 with TC277T (BGA-292) 5
2.2. TriBoard Hardware configuration DIP-Switch 6
2.3. Bare connector PCB . 7
2.4. Lauterbach LA-7704 with connected Debug Cable 7

3.1. Stages of ASCET-SE code generation . 10
3.2. Real-time requirements for operating systems 12
3.3. Scheduling of tasks . 15
3.4. ASCET code editor for example module . 18
3.5. Partition of operating system’s priority space by ASCET-SE 20
3.6. Illustration of a example for messages in ASCET 21

4.1. Overview of Software Layers defined by AUTOSAR 25
4.2. Structure of the layered conversion of a analog input signal 27
4.3. Interface of the OS editor for an example project in ASCET 28

5.1. Overview of the software architecture . 32
5.2. General structure of a Port Pin in TC277T 33
5.3. ADC Kernel block diagram . 35
5.4. Timing of the conversion process . 38
5.5. GTM Architecture Block Diagram . 40
5.6. Block Diagram of Clock Management Unit (CMU) 41
5.7. Block Diagram of the Timer Output Module (TOM) 43
5.8. TOM channel 0 - 7 architecture . 44
5.9. PWM Output of a TOM channel . 45
5.10. ATOM channel architecture . 47
5.11. ARU Communication Interface architecture 47
5.12. Architecture of the Timer Input Module (TIM) 48
5.13. Architecture of TIM channel . 50
5.14. GTM to MSC connections . 51
5.15. Blockdiagram of the MSC Downstream Channel 56
5.16. Downstram Channel Frame . 57
5.17. MSC downstream data frame . 59

xiii

List of Figures

5.18. CAN Dominant and Recessive Bus States 60
5.19. CAN data frames . 62
5.20. Overview of the MultiCAN+ Module . 63
5.21. Duplex connection of SPI . 68
5.22. Architecture of the QSPI . 69
5.23. Architecture of the SPI software module 70
5.24. Flowchart of the queue function . 72
5.25. Enqueued message objects . 73
5.26. QSPI communication procedure . 74

6.1. Trace of CAN Bus . 79
6.2. Transmission of CAN message with CANalyzer 79
6.3. Reception of a CAN message in the software of TC277T 79
6.4. Test setup with TC2X7 connected to AVL EMS main board 80
6.5. Initialization of TLE6244 via SPI . 81
6.6. MSC signals and output of TLE6244 . 82
6.7. MSC signals and output of TLE6244 at transition from low to high-state . . 82
6.8. Output of Low Side Switch (period is set to 1ms and duty cycle to 50%) . . 83
6.9. MSC signals, output of TOM1 channel 7 and output of TLE6244 84
6.10. Output of Low Side Switch (period is set to 200µs and duty cycle to 20%) . 85

xiv

1. Introduction

1.1. AVL (Rapid Prototyping) Engine Management
System (EMS)

AVL (Rapid Prototyping) Engine Management System (EMS) is a generic engine controller
and is provided to customers of AVL as a highly flexible and configurable engine management
system for the operation of all kind of combustion engines during performance and emission
development. While there is one basic hardware setup of the EMS, there exists variants for the
management of different engines (like direct injection turbo charges gasoline engines, common
rail turbo charged diesel engines, etc.) that differ in the type and number of dedicated sensor
and actuator interfaces. Figure 1.1 gives an overview of the structure of the EMS. Sensors
signals are connected via different interfaces to the core of the engine management system
(EMS). Two of them are unidirectional (from sensor to core) and the other interfaces are
bidirectional (Controller Area Network (CAN) connected intelligent sensors, etc.). Based
on the signals from the different interfaces, the engine is controlled by different actuators,
illustrated on the right hand side of figure 1.1.

Figure 1.1.: Overview of AVL EMS1

1www.avl.com: RPEMS - Rapid Prototyping Engine Management System 2017

1

www.avl.com

Chapter 1. Introduction

1.1.1. Hardware architecture

Figure 1.2.: AVL EMS main board with processor board2

The current version of all AVL EMS derivates is operated by a processor board equipped
with a single core microcontroller. This processor board is connected to the main board
providing power supply, signal conditioning for sensor inputs, power drivers for actuators and
all necessary bus transceivers, necessary for power train management. Figure 1.2 shows a
partially populated AVL EMS main board with a connected processor board.
The central element of the processor board is the single core processor TC1793 by Infineon.

1.1.2. Software architecture

The EMS software architecture is characterized by its layered design supported by real-time
operating system. The software is based on an application layer and a hardware abstraction
layer (HAL). While the application layer integrates all main functionalities of the EMS, the
HAL provides access to the hardware resources. This fundamental layer is divided into HAL-
layer 1 and HAL-layer 2. Layer 1 handles the access to peripheral hardware, using dedicated
on-chip interfaces. Layer 2 abstracts the data and functions provided by or rather passed to

2Eichberger and Unger, 2012, page 4

2

Chapter 1. Introduction

layer 1 by means of the conversion of raw input/output data into physical unit values and
vice versa. Figure 1.3 shows an overview of the EMS software layer concept.

Figure 1.3.: Overview of AVL EMS software concept3

For unloading the central processing unit (CPU) of the TC1793, time critical tasks are man-
aged by the peripheral control processor (PCP) of the TC1793.
This lean and modular software design is a prerequisite for a rapid prototyping engine man-
agement system. In 4.2 the implementation of the software is explained in detail.

3Eichberger and Unger, 2012, page 7

3

Chapter 1. Introduction

1.2. Technical goal

The basis for the usage of a multicore microcontroller in AVL EMS shall be provided.
This includes following aspects:

Development and implementation of an application specific Hardware Abstraction Layer
(HAL) for IFX AURIX TC277T. This HAL is a fundamental part of the EMS BSW (Ba-
sic SW) and is used in combination with the EMS ASW (Application SW) to support rapid
prototyping algorithm development for automotive powertrain control.
Configuration and adaptation of BSW is mainly a task related to new or changed HW
components on the PCB - during ASW development it’s not intended to do HAL or BSW
modifications. A seamless usability as well as flexibility of the functions provided by the
HAL and integrated device drivers has to be guaranteed. The reuse of already existing and
validated low level drivers from IFX TRICORE TC1793 and AURIX iLLD is mandatory for
this project.
Interface drivers to support SPI and MSC communication to different ASICS on the PCB as
well as a CAN driver are main bricks of the AURIX HAL.

4

2. Utilized hardware

2.1. TriBoard TC2X7

During development of the device drivers and the hardware abstraction layer, an IFX TriBoard
TC2X7 populated with a TC277T in BGA-292 package was used. The discussion of the
evaluation board summarizes the description in the manual (Infineon, 2013).
The TriBoard includes the necessary external wiring of the microcontroller as well as variety
of peripheral devices for testing and debugging.

Figure 2.1.: Infineon TriBoard TC2X7 with TC277T (BGA-292)

2.1.1. Power Supply

The board can either be supplied via a Micro USB connector or via a DC supply connector.
When the board is supplied via the DC supply connector, a voltage in the range from 5V
to 50V can be applied. This input voltage is connected to the multifunctional power supply
circuit IFX TLE7368-3E by Infineon. The TLE7368-3E converts the input to a 5.5V voltage
provided to the microcontroller. The microcontroller generates the necessary voltage levels
of 3.3V and 1.3V via separate parallel Embedded Voltage Regulators (EVR33 and EVR13).
By default the TC277T is configured to use a 5V voltage level for its ports, including all
communication interfaces and reference voltage for the ADCs.

5

Chapter 2. Utilized hardware

However, AVL EMS uses 3.3V as voltage level. Therefore the configuration was adjusted by
changing the wiring of the HWCFG[0:2] (Hardware Configuration) pins of the microcontroller.
The HWCFG[0:2] corresponds to the port pins P14_2 (HWCFG2), P14_5 (HWCFG1) and
P14_6 (HWCFG0). By default a 680Ω resistor is connected to each hardware configuration
pin. To set the voltage levels of TC277T to 3.3V , the resistor R524 at P14_5 (HWCFG1)
needs to be removed.

2.1.2. Startup configuration

TC277T basically provides three possible startup configurations1:

• Internal Start: the first instruction is fetched from address 0xA000 0020 of the
internal flash

• Bootloader Mode: code/data is downloaded into the Instruction Scratchpad Memory
SPRAM by using:

– ASC bootloader (Asynchronous/Synchronous Communication)

– CAN bootloader (Controller Area Network)

– Generic bootloader - based on the first received byte at specified port pins one of
the bootloaders above is selected

• Alternate Boot Modes: program code is started from a user-defined address

One of the configurations is selected by the wiring of the HWCFG[3:6] (Hardware Configu-
ration) pins. On the TriBoard a DIP-Switch is provided to change the configuration. During
the development the configuration to start from internal flash was selected (HWCFG[6...3]
= 1110) as shown in figure 2.2.

Figure 2.2.: TriBoard Hardware configuration DIP-Switch2

1The Boot Options are defined in Infineon, 2014a, page 240
2Infineon, 2013, page 26

6

Chapter 2. Utilized hardware

2.2. Connector PCB

In order to connect the EMS main board with the TriBoard TC2X7 during the development
and testing, a connector Printed Circuit Board (PCB) was designed. The board can be
connected to the target EMS main board instead of the processor board and provides access
to several signals. Figure 2.3 shows the bottom and top side of the bare connector PCB.

(a) Bottom side (b) Top side

Figure 2.3.: Bare connector PCB

2.3. Lauterbach LA-7704

Figure 2.4.: Lauterbach LA-7704 with connected Debug Cable

7

Chapter 2. Utilized hardware

During development the generated code3 was programmed into the internal flash of TC277T
with the JTAG Debugger (Joint Test Group Array) LA-7704, shown in figure 2.4. The
Debugger can be connected to a host PC via USB. The Software interface on the host
provides the following possibilities4:

• high-level and assembler debugging

• Display of internal and external peripherals at a logical level

• Flash programming

• Hardware breakpoints and trigger

• Software trace

3After the build process an file of type ELF (Executable and Linking Format) is generated.
4Referring to Lauterbach, 2010

8

3. Utilized software

The following chapter is intended to introduce the utilized software in the development
process as well as the build process of the software for the EMS in ETAS ASCET. Further
the key concepts of the real-time operating system in the AVL EMS software are pointed out
and Infineons software framework used for the development of the HAL is depicted.

3.1. ETAS ASCET

The embedded software for the EMS is developed with the ASCET product family by ETAS.
It consists of a number of products, supporting development process for embedded automo-
tive control software. The tool of this family which supports the interface for a developer
to design code in different languages (for example C or visual programming) is ASCET-MD.
With this tool ASCET models are generated, which can be passed to ASCET Software En-
gineering (ASCET-SE).
The ASCET-SE tool provides functionalities to generate target specific C code, integration
of the code into a target operating system and invoke a target-specific compiler and linker for
generation of an executable application file. Furthermore it offers the possibility to generate
an ASAM-MCD-2MC file for measurement and calibration from an existing executable file.
The main functionality of ASCET-SE is the conversion of an ASCET model (usually a project
in ASCET for a chosen target), into C code. For each component of the ASCET model, C
source code files are generated. These components include the ASCET project itself, each
software module in the project, each class and each operating system task body. The code
generator uses the target configuration files to optimize code generation or customize the
code where necessary. For example ASCET-SE can generate compiler-specific pragmas to
place code or data at specific memory sections.
ASCET-SE also generates the configuration file for the target operating system (OS). This
file defines all OS objects required by the ASCET configuration. In the build process for
the EMS software the OS generator tool RTA-OSEK (see 3.2) is used to generate the data
structure required by the operating system.
The combination of ASCET and OS code includes all variable and data definitions required
to make the ASCET system work.

9

Chapter 3. Utilized software

Figure 3.1.: Stages of ASCET-SE code generation1

1ETAS, 2011, page 22

10

Chapter 3. Utilized software

The ASCET and OS code, as well as external included C code is passed to the user specific
compiler and linker. The toolset, which is used in the build process for the EMS is the
TASKING TriCore Software Development Toolset (Altium, 2012). Based on the target
configuration files the linker generates the executable file for the target system from the
object files. The object files are generated by the compiler and can additional be provided
by external included libraries.
These stages of the ASCET-SE code generation are illustrated in figure 3.1.

3.2. ETAS RTA-OS5

In this section the characteristics of a real-time operating system are described, subsequently
the main concepts implemented in ETAS RTA-OS5 are explained. The discussed concepts
of real-time operating systems refers to Noergaard, 2012, page 383 - 441.

3.2.1. Real-time operating systems

A real-time operating system (RTOS) is characterized by using time as a key parameter
for the execution of tasks. Therefore the term real-time refers to the algorithm used for
the scheduling of task. For further explanation, it is necessary to take a closer look on the
concept of a task2.

Tasks

An operating system differentiates between a program as a passive, static sequence of instruc-
tions and the executing program, which is an active, dynamic event. Processes are generated
by an operating system to encapsulate all the information needed for an executing program
(like the stack, program counter, source code and data, etc.). A program is therefore only a
part of a task.

Scheduling

In multitasking operating systems, multiple tasks can exist at a given time. All these tasks
share the same resources including the CPU (central processing unit), that can’t be allocated
by the tasks simultaneously. To overcome this problem the tasks are multiplexed to the CPU
in time. This generates the illusion of executing the tasks simultaneously. The order and the

2Tasks are also often referred to processes in literature. To be consistent with ETAS RTA-OS the term
task is used in this work.

11

Chapter 3. Utilized software

duration of the tasks to run on the CPU is determined by the scheduler, a mechanism provided
by the OS. The scheduler queues the tasks based on an algorithm and the CPU is allocated
to the next task, what is called dispatching. In some operating systems the dispatching is
done by the scheduler, while others have a dedicated mechanism, called dispatcher. Various
scheduling algorithms are implemented in operating systems and every design has its strengths
and tradeoffs.
In general all different algorithms can be grouped into two categories:

• non-preemtive scheduling: tasks are given control of the master CPU until they
have finished execution, regardless of the length of time or the importance of the other
tasks that are waiting. This algorithms can be riskier to support, since a task could
run into an infinite loop.

• preemtive scheduling: the OS forces a context-switch on a task, whether or not a
running task has completed executing or is cooperating with the context switch

For a RTOS, preemtive scheduling is the most efficient scheduling policy. The algorithms
used for scheduling in RTOSs usually determine the next task to run on the CPU based on
different parameters including the priority (importance of the execution of a task), frequency
(number of times a task runs), deadline (when a task has to finish its execution) and the
duration (time it takes to finish execution of a task).

Value

t

deadline

(a) Hard deadline

Value

t

deadline

(b) Firm deadline

Value

t

deadline

(c) Soft deadline

Figure 3.2.: Real-time requirements for operating systems3

In a RTOS tasks always have to meet their deadlines. However, it can be distinguished
between three types of real-time requirements as illustrated in figure 3.2.
hard real-time requirements: If the deadline of a task is missed, the costs of missing the
deadline is extremely high and can include human lives. The value of the computed results
heads for negative infinity.
firm real-time requirements: A missed deadline does not result in a catastrophe, but the
computed results are useless.
soft real-time requirements: Dismissed deadlines are tolerated in a certain range and
deadlines are met in a statistical distribution. The value of the computed results decreases
in proportion to the delay, depending on the application.

3based on Noergaard, 2012, page 409

12

Chapter 3. Utilized software

Inter task communication

An operating system has to provide mechanisms enabling tasks to communicate and synchro-
nize their behaviour, in order to prevent concurrent accesses to the same shared hardware
or software resources. Usually these mechanisms consist of one or a combination of the
following three models:

Shared data model The tasks access the same data at a shared memory space. The main
issue of this model are so called race conditions, which occur if one task is preempted while
writing to the shared memory space and therefore the integrity of the data is not guaranteed.
To prevent race conditions, parts of the tasks accessing the shared memory can be labeled
for mutual exclusion (MUTEX). One mutual exclusion technique is the implementation of
Semaphores, which are used to lock a shared memory for access by other tasks.
Another technique are Processor assisted locks. If a task is scheduled in a way that no
other task can preempt it, an occurring interrupt is still able to force a context switch. The
interrupt service routine could then access the same shared memory, as the preemted task and
a race condition occurs. By disabling interrupts while executing critical section (earmarked
for MUTEX) this can be prevented. Another option to prevent such scenarios is to set a flag
in a register, for tasks that must not be interrupted. Any other task has to test this flag
(test-and-set-instruction).

Message passing Tasks communicate via messages that are queued into message queues
between the tasks. The implementation of this communication scheme varies from one
operating system to another.

Signaling Signals are used to advise tasks of an asynchronous event. Whenever a task
receives a signal, it suspends its execution and a context switch to the signal handler is
enforced. Signals are usually used for interrupts, where the signal handler becomes the
corresponding interrupt service routine.

3.2.2. Main concepts of ETAS RTA-OS5

The information about the concepts of RTA-OS5 can be found in ETAS, 2012, where ETAS
defines RTA-OS5 as follows:

”RTA-OS is a statically configurable, preemptive, real-time operating system
(RTOS) for use in high-performance, resource-constrained applications. RTAOS
is a full implementation of the open-standard AUTOSAR R3.x and AUTOSAR
R4.0 OS (including multicore) specifications and is also fully compliant to Version
2.2.3 of the OSEK/VDX OS Standard.”
ETAS (2012, p.16)

13

Chapter 3. Utilized software

AUTOSAR (AUTomotive Open System ARchitecture) is a development partnership of auto-
mobile manufacturers, suppliers and tool developers worldwide, with the primary goal of the
standardization of automotive software architectures. The open-standard provides, among
other specifications, a specification for operating systems intended for automotive applica-
tions. This specification subsumes features from the earlier OSEK4 OS standard. OSEK is
on the other hand a European automotive industry standard, with the goals of supporting
portability and reusability of software components across a number of projects.
Neither AUTOSAR nor OSEK are relevant in the development of the software for AVL EMS
and therefore they will not be explained in detail during this work, however the concepts of
RTA-OS5 implements these standards.

Tasks in RTA-OS5

Tasks in RTA-OS5 correspond to the definition in 3.2.1. However two types of tasks are
differed:

• Basic tasks are intended to start, execute and terminate. The execution of a basic
task is performed until it is preempted by a task with a higher priority. Therefore only
three different states can be assigned to a basic task: suspend, ready or running.

• Extended tasks can have one more state in addition to the ones of basic tasks. The
additional state is called waiting state. Extended tasks can stop their execution and
wait for events to occur (for example a user interaction).

Every task has a state, which defines its current behavior. These states consist of suspended
(the default state of all tasks), ready (a task is scheduled for execution but not dispatched
i.e. the task is activated) and running (the task is dispatched to the CPU) tasks. Extended
tasks can change their state to an additional one: waiting (the task voluntarily suspends and
waits for an event).

Scheduling

Preemptive as well as non-preemptive scheduling is supported by ETAS RTA-OS5. It is
possible to define a task as preemtive or non-preemtive. Preemtive tasks can be preemted
by other task where non-preemtive tasks finish their execution even if a task with a higher
priority gets activated. The priority of a task defines the order when a task is scheduled and
reflects the relative urgency of tasks.

4OSEK is a German acronym for ”Offene Systeme und deren Schnittstellen für die Elektronik in Kraft-
fahrzeugen”. English: ”Open Systems and their Interfaces for the Electronics in Motor Vehicles”

14

Chapter 3. Utilized software

(a) Preemptive tasks

(b) Non-Preemptive tasks

Figure 3.3.: Scheduling of tasks5

Figure 3.3 illustrates the two scheduling methods for tasks, where in 3.3(a) the preemtive
Task1 is preempted by the higher priority Task2. In 3.3(b) Task1 is a non-preemptive task.
Therefore Task2 is not executed until Task1 terminates, although Task2 has a higher priority.
Whether a task is preemtive or not, it can be preempted by an interrupt at any time.

Cooperative scheduling, where a task suspends voluntarily at a given time is not provided by
RTA-OS5, however this can be implemented by making a Schedule () API call at certain
points of execution, what is for example implemented by ASCET-SE.

5ETAS, 2012, page 53f

15

Chapter 3. Utilized software

Interrupts

If the interrupt is generated by the hardware, the processor loads the corresponding interrupt
vector, which contains the address of the interrupt handler. The OS provides this interrupt
handler and first saves the current context. Then the interrupt service routine (ISR) is
executed. When the ISR has finished, the context is restored and the OS resumes normal
execution.

Mutual exclusion

Occurring interrupts can lead to race conditions, where data consistency is not guaranteed.
Therefore when executing critical sections in tasks that must not be interrupted, RTA-OS5
provides processor assisted locks like the disabling of interrupts.
Further binary semaphores are provided to prevent any task or interrupt to enter the same
critical section at a time. However binary semaphores can introduce priority inversion, where
a task with low priority prevents a task with higher priority from execution. In extreme
cases even deadlocks can occur, where all tasks are waiting to enter a critical section that is
currently used by another task.
RTA-OS5 overcomes this problem by priority ceiling protocol, where the priority of a task is
increased for the time it is in a critical section.

Counters

RTA-OS5 implements counters to count ticks, where ticks can be defined by the user of the
OS. Usually ticks are defined as a specific time interval (for example 1ms) but also other
definitions can be used (Rotations, button presses, errors, etc.). If a tick occurs, an ISR is
used to increment the value of the counter.

Alarms

Alarms are used to activate a task if a counter has reached a specific value. Each counter can
trigger multiple alarms. Alarms can be specified to expire on a periodic basis, what is called
a cyclic alarm. In the AVL EMS software cyclic alarms are used to call tasks periodically.
ASCET-SE provides tasks of type alarm and generates the corresponding C code for the OS
(see 3.3).

16

Chapter 3. Utilized software

3.2.3. Multicore support of RTA-OS5

RTA-OS5 provides the following concepts concerning multicore applications as described in
RTA-OS5 User Guide ETAS, 2012:

• The OS objects that belong to an OS Application run exclusively on the core that they
are allocated to – this includes tasks and ISRs.

• The scheduling of tasks and ISRs is independent between cores. A low priority task
on one core does not get affected by higher priority tasks or ISRs on a different core.
Disabling interrupts on a core does not affect any other cores. Similarly resources are
restricted to a single core, so locking a resource cannot affect tasks on a different core.

• Tasks can be activated from any core. If the task is configured to run on a different
core then the OS will ensure that this happens correctly.

• Spinlocks are introduced to protect read/write access to shared memory by different
cores. As has been explained, one can not rely on task priority, interrupt locks or
resources to help safely share data between tasks on different cores. Spinlocks are
used to ensure that only one core at a time can access shared data. A core must ’get’
the spinlock before entering the critical section of code and must release it afterwards.
If one core has already got the lock, then any other core that tries to get the lock will
become blocked (busy-wait) until the lock gets released. Higher priority tasks or ISRs
can still preempt tasks that are blocked waiting for the spinlock.

The first statement in the list above means that every task and interrupt service routine (ISR)
is executed only on the core it is assigned to. The OS editor integrated to asket provides the
possibility to specify the core the tasks and ISRs are executed on.
Scheduling of tasks and ISRs as well as the locking of resources is treated separately on each
core.
The activation of a task6 can be done on a different core the task is executed.
Since the locking of resources does not affect tasks on different cores, a spinlock7 mechanism
is used.

3.3. Development with ASCET

ASCET tools provide a multi-paradigm modelling framework, where modules can be pro-
grammed textually or visually. These modelling languages abstract from the low-level details
and separate the concerns of what the system software must do from how it is realized in the
final code. However, this is only useful for the development of the application software. The

6A task is activated by the scheduler. Activating a task means that a task is scheduled for execution.
7If a task tries to get a lock for a resource in a loop, this is called spinlock. For setting a lock for a resource
a lock variable is used. (From Mandl, 2014, page 162)

17

Chapter 3. Utilized software

low-level functions (like the device drivers) need to be programmed in a low-level program-
ming language and therefore ASCET also provides C code development. In the following,
only the programming interface for C code is addressed.

ETAS ASCET saves all components in databases. The basic types are modules and projects.
A project is a set of modules stored in the same database. Multiple projects can access the
same module, what means that one module can be reused in different projects.

Each module consists of at least one process 1, that clusters sequential statements. Pro-
cesses are generated by ASCET-SE as void/void functions ETAS, 2011, meaning that they
have neither arguments nor a return value. Further a module can contain send and receive
messages for data exchange with other modules to ensure data consistency. ASCET-SE
generates copies of messages in all required cases, explained by an example below.

Messages can also be used for data exchange between the processes of one module. Data
that belongs to the module itself is stored in variables and parameters.
For programming of the statements of one process a C code editor is available. All processes
in one C code module share the same header file, which contains C function declarations and
macro definitions to be shared between the processes.

Figure 3.4.: ASCET code editor for example module

1Here, the term process is not referred to the usual concept of processes or rather tasks in operating
systems, as described in 3.2.1.

18

Chapter 3. Utilized software

Figure 3.4 shows the module editor for one example C code module, which consists of
the processes process1 and process2, the messages receiveMessage and sendMessage, a
parameter and a variable. In addition to the code editor for each process and the shared
header file, ASCET provides an external C code editor intended to provide functions, which
can be called in the code for every process.

The OS editor in ASCET provides the possibility to assign all processes of the modules in a
project to tasks. Tasks can be added to a project with different types, which define the event
on that the task is set to ready-state. The activation of a task does not imply its immediate
execution, but it is scheduled by the operating system. The four different types provided by
ASCET are:

• Init: The task is activated at the start of the OS. As indicated by the name, these
type is used for the task that holds the processes to initialize the system.

• Interrupt: A task of type Interrupt is activated if a defined hardware interrupt occurs
and contains usually the process that serves as the corresponding interrupt service
routine.

• Alarm: Tasks are activated when a particular counter value is reached. The OS editor
of ASCET provides a numerical input in nanoseconds to define the tick duration of
a counter (refer to counters in 3.2). The value of this counter is compared to a
period defined for a task of type alarm. If the counter reaches this value the alarm is
generated and the corresponding task is activated. Therefore alarm is usually used for
the periodical activation of tasks.

• Software: A software task is activated by calling it in a statement in a process of
another task.

If a task is activated and dispatched, the processes that are assigned to it are executed. An
example of the configuration of the operating system in ASCET is given in 4.2.

The scheduling method for a task can also be selected in the OS editor. The options are
FULL for preemptive scheduling, NON for non-preemptive scheduling and COOPERATIVE
for cooperative scheduling that ASCET SE implements at code generation, since this method
is not directly provided by RTA-OS5.
As already mentioned preemptive tasks can always be preempted by tasks with a higher pri-
ority or an interrupt, where on the other hand non-preemptive tasks can only be preempted
by interrupts.
Cooperative tasks can be preempted by non-preemptive tasks, preemptive tasks and inter-
rupts. However a cooperative task can only be preempted by another one with a higher
priority, between the process boundaries. This is achieved by dividing the priority space of
the OS into two parts - one for cooperative tasks and one for other tasks. The part that is
used for the cooperative tasks is the lower part of the priority space of the OS in the range
of 0 to a defined value Coop.Levels− 1 , that can be defined in the OS editor. The second

19

Chapter 3. Utilized software

part of the priority space starts at Coop.Levels and all non-cooperative tasks are assigned
a priority from this part. Figure 3.5 illustrates the partition of the priority space.

Figure 3.5.: Partition of operating system’s priority space by ASCET-SE8

8ETAS, 2011, page 83

20

Chapter 3. Utilized software

In AUTOSAR operating systems interrupts are categorized into two priority categories. Cat-
egory 1 includes all interrupts, which do not interact with the OS. These interrupts are
assigned the highest priorities. A developer has to configure the hardware correctly, write the
handler and the return from the interrupt. Interrupts interacting with the OS are assigned
Category 2 and are supported by ASCET-SE, as can be seen in figure 3.5.

Implementation of messages by ASCET SE As already mentioned, modules can com-
municate via messages. The concept and how messages are implemented by ASCET-SE is
explained in the following example:
If a message mAB is used to send data from module moduleA to module moduleB, it has to
be added to module moduleA as send message, while in module moduleB it has to be added
as receive message. Let us further assume the process p1_A of module moduleA writes to
the (send) message and is assigned to the task task1. On the other hand the process p1_B
of module moduleB reads the (receive) messages and is assigned to task task2. Figure 3.6
gives an overview of this example.

p1_A

Module A

Task 1

mAB

p1_BTask 2

Module B

mAB

write

read

Figure 3.6.: Illustration of a example for messages in ASCET

In order to ensure data consistency, ASCET-SE generates two global variables for each
message in the output C code. In this example its mAB and mAB__42__ (the number 42 in
the name represents the priority level).
The code for the processes p1_A and p1_B is given in the listing 3.1 and listing 3.2. As
it can be seen, in function MODULEA_IMPL_p1_A , which corresponds to the process p1_A,
the copy of the message is used, where the function MODULEB_IMPL_p1_B reads from the
message itself. The definition of the tasks task1 and task2 is given in listing 3.3. task1
contains the function call of MODULEA_IMPL_p1_A . The function writes to the copy of the

21

Chapter 3. Utilized software

message, therefore interrupts may occur during the write process. The second function that
is called in task1 is task1_msgsend. This function disables the interrupts during the copy
of the data of mAB__42__ to mAB, whereby data consistency is guaranteed.

1 ...
2 /* messages used by this process */
3 #define mAB_MODULEA_IMPL_p1_A mAB__42__
4

5 void MODULEA_IMPL_p1_A (void)
6 {
7 mAB_MODULEA_IMPL_p1_A = x;
8 }
9 ...

Listing 3.1: Extract of moduleA.c

1 ...
2 /* messages used by this process */
3 #define mAB_MODULEB_IMPL_p1_B mAB
4

5 void MODULEB_IMPL_p1_B (void)
6 {
7 x = mAB_MODULEB_IMPL_p1_B;
8 }
9 ...

Listing 3.2: Extract of moduleB.c

1 ...
2 static inline void task1_msgsend (void)
3 {
4 DisableAllInterrupts();
5 mAB = mAB__42__;
6 EnableAllInterrupts();
7 }
8 ...
9 TASK(task1) {

10 ...
11 MODULEA_IMPL_p1_A();
12 task1_msgsend();
13 ...
14 TerminateTask();
15 }
16 ...
17 TASK(task2) {
18 ...
19 MODULEB_IMPL_p1_B();
20 ...
21 TerminateTask();
22 }
23 ...

Listing 3.3: Task definitions in conf.c

22

Chapter 3. Utilized software

3.4. Infineon AURIX Software Framework

During the development of the software components Infineon AURIX Software Framework
was used. The framework includes an IDE (integrated development environment), which
is based on Eclipse (open-source, developed by Eclipse Foundation). The build process is
supported by the Software Framework Tools, which generate the specific make files for the
used compiler toolchain9.
The advantage of using Infineon AURIX Software Framework was the available example
project including all header files with register address definitions, which is a good basis to
start. Infineon provides also a set of examples for the hardware modules of TC277T.

3.5. TASKING VX-toolset for TriCore

To build AVL EMS software the TASKING TriCore Software Development Toolset is used.
It contains dedicated C/C++ compilers and assemblers for the complete TriCore family, and
a multi-core linker/locator10.

9Referring to Infineon, 2015b
10Altium, 2012

23

4. Background

4.1. Definition of hardware abstraction layer

A uniform explicit definition of the term hardware abstraction layer (HAL) does not exist,
since its implementation varies from one operating system to another or designers define its
implementation for their specific hardware / software architecture.
However generally speaking the term HAL can be defined by the description of its properties
and the functions it should provide as follows:

• it is a software layer between the hardware platform and the operating system

• it hides implementation details of the hardware platforms from the software

• The purpose of its usage is on one hand the shortening of the time for new development
of higher layer software. On the other hand the purpose is to increase portability of
the higher layer software.

Figure 4.1.: Overview of Software Layers defined by AUTOSAR1

1AUTOSAR, 2016, page 12

25

Chapter 4. Background

As an example AUTOSAR does not define a HAL, but a software layer Basic Software, ac-
cording to AUTOSAR, 2016. This layer consists of four further layers as illustrated in figure
4.1.
The lowest (closest to microcontroller) layer of the basic software is the Microcontroller
Abstraction Layer, which provides a standardized interface to software modules with direct
access to the microcontroller and its internal peripherals. On top of this layer, the ECU
abstraction layer is placed. It offers an API for access to peripheral devices, whether micro-
controller internal or external. On the right hand of the overview in 4.1, the Complex Drivers
Layer is illustrated. It integrates special purpose functionality, which includes device drivers
with very high timing constraints. The highest layer of the Basic software is the service
layer. AUTOSAR defines this layer to offer operating system functionalities, vehicle network
services, memory services, diagnostic services, ECU mode management and program flow
monitoring.

Since the AVL EMS software does not implement an architecture as defined by AUTOSAR,
because this has turned out to be not appropriate for the rapid prototyping development
of the software, the hardware abstraction layer also differs from the Basic Software layer,
defined in AUTOSAR, 2016.
In this work the term HAL is used for a software layer that

• provides a hardware independent interface to the application layer,

• integrates all device drivers (microcontroller internal and external) and network services,

• is independent of the operating system.

4.2. Current AVL EMS software architecture

As described in 1.1.2, the hardware abstraction layer (HAL) of the current EMS software
consists of the layers 1 and 2. The layer 1 of the HAL is implemented by different ASCET
modules, each corresponding to a peripheral device of the microcontroller TC1793. The
modules assigned to layer 1 provide processes for the initialization of the devices as well as
for interaction with them. On the other hand layer 2 of the HAL converts the raw input/out-
put data to/from layer 1 into physical unit values, which can be used by the application layer.
The software design of AVL EMS is explained below through the example of the input chain
of an analog sensor (figure 4.2). The analog signal from the sensor is first converted into
digital domain by the Analog-to-digital-converter (ADC) of the microcontroller, triggered by
a process of the ADC-module in layer 1, which is running in a specific task that is executed
periodically by the operating system. The result of the conversion is stored in a special func-
tion register (SFR) of the ADC. This SFR is read by another process of the ADC-Module.
This process is part of the corresponding interrupt task, which is triggered by the ADC after
the conversion has finished. When the process is executed, it reads the conversion value

26

Chapter 4. Background

and stores it in a message. The message is read by the module ADC-remap, which con-
verts the raw value into a physical unit value (for example in degree Celsius). The example
shows the basic idea behind the layered design of the EMS software and makes clear that
in contrast to other operating systems, where the HAL is part of the kernel and functions
provided by the HAL are called via system-calls, the HAL of the EMS software is not part of
the underlying OS. The HAL is rather implemented in different processes (refer to 3.3) be-
side the application processes and also integrated in tasks, organized by the operating system.

Sensor ADC ... Hardware

ADC
module

... Layer 1
Software

ADC remap ... Layer 2

Application

digital result

message

physical unit value

u(t)

Figure 4.2.: Structure of the layered conversion of a analog input signal

The implementation of the two layers of the example for the ADC in ASCET is as follows:

HAL layer 1 The layer 1 for the ADC of the microcontroller is implemented in the module
ADC, which provides three processes:

1. A process for the initialization of the ADC of the microcontroller by setting the specific
values of the special function registers (SFR). This process also sets the SFRs to
generate an interrupt, when the conversion has finished.

2. A process to trigger the conversion of the ADC.

3. A process to read the conversion results from the corresponding registers. This process
is intended as interrupt service routine for the interrupt generated when the conversion
has finished.

Furthermore the module contains multiple send-messages - one for each digital raw conversion
result of an analog input.

27

Chapter 4. Background

HAL layer 2 As layer 2 is intended to convert raw values into physical unit values and
vice versa, the module for the ADC is called ADC_remap. The module consists of receive-
messages (the counterparts for each send-message of the layer 1 module) and one process
that converts the values into physical unit values.

Operating system The operating system provides the possibility to define tasks that are
executed periodically with various periods and also interrupt-tasks that are executed if a
specific interrupt occurs. The processes of the different modules can be assigned to these
tasks.
For the example of the implementation of layer 1 and 2, figure 4.3 illustrates the interface
of the OS editor in ASCET.

Figure 4.3.: Interface of the OS editor for an example project in ASCET

The ADC example project consists of the modules ADC0 and ADCremap, where the layer
1 module ADC0 contains the processes init, ADC00_1ms and ADC00_ISR. The layer 2
module ADCremap contains only one process _1ms.
Three different tasks were added to the operating system:

• Init: The first task to execute only once

• task_1ms: A periodically generated task with period of 1ms of type Alarm

• ISR_ADC0: A task with high priority that is executed if the corresponding interrupt
for the completion of the conversion of ADC0 is generated.

The processes of the modules are assigned to the corresponding task as can be seen in the
tree view of the tasks in figure 4.3.

28

Chapter 4. Background

First the process init of the module ADC0, which is assigned to the Init task is executed and
the ADC of the microcontroller is initialized.
With a period of 1ms the task task_1ms is executed. It contains the process ADC00_1ms,
which starts the conversion of the ADC0 of the microcontroller. Further the task task_1ms
contains the process _1ms of the module ADCremap that receives the raw values of the
conversion via messages. However in the first iteration these messages contain their default
values, since the conversion has not finished and the interrupt is not generated.
If the conversion, started every 1ms, has finished, an interrupt is generated and the task
ISR_ADC0 is executed. It contains the process ADC00_ISR, which reads the conversion re-
sults in the SFRs of the ADC0 and sends them via messages to the layer 2 module ADCremap.

This ADC example project shows the design of the AVL EMS HAL and gives a basic knowledge
of a smart HAL architecture in ASCET.

29

5. Implementation of the HAL

In the following the implementation of the modules are discussed. Each implemented software
module is explained and a detailed overview of the corresponding hardware module of TC277T
is given. The introduction of the hardware modules is based on the document Infineon, 2014a.
Further code examples are given for accessing the functionalities of the modules.

5.1. Architecture of the software

The current EMS software implements hardware access as part of layer 1. This layer consists
of processes, which are integrated into tasks of the operating system. The processes include
explicit read and write statements to the special-function-registers (SFR) of the microcon-
troller. Therefore the statements are difficult to read and hardly understandable without
previous knowledge about the hardware and the corresponding SFRs1. If a property of a
hardware-module needs to be adapted during the rapid-prototyping development process, an
application developer needs knowledge about the bits in a SFR which are responsible for the
setting of this property. Moreover most of the code in layer 1 includes statements, which is
changed rarely or even not at all.
To overcome this, statements with similar functionality are encapsulated in functions. With
this encapsulation of the statements into functions and parameters describing the demands
of an application programmer, the access to the hardware is abstracted from the view of an
application programmer.
All the resulting functions regarding hardware accesses shall be provided in form of a com-
piled library and be included during the build process (an overview of the code generation
is given in figure 3.1). Figure 5.1 illustrates this concept, where the on-chip hardware as
well as the on-board hardware is accessed only by the device drivers. The HAL consists of
device drivers, layer 1 and layer 2. The operating system provides different tasks including
the processes of the modules in the application layer and in the HAL. Layer 1 processes call
the corresponding abstracted functions, provided by the device drivers.

1This holds especially for the statements in the initialize-processes of the hardware modules, but also for
other processes placed in layer 1

31

Chapter 5. Implementation of the HAL

External Devices

TC277T

Device drivers

Layer 1 modules

Layer 2 modules

Application modules

RTA-OS5

external library

H
A
L AS

CE
T

Hardware

Software

developed / modelled in ASCET-MD

Figure 5.1.: Overview of the software architecture

5.2. Multicore considerations

To prevent simultaneous access to hardware resources, by tasks running on one of the three
cores of the TC277T, only one core is responsible for hardware access. This core uses the
interface to the externally provided library, while the other two cores run the application
software. Therefore the HAL is executed only on one core, which converts data and provides
physical unit values to the other cores. On the other hand it should convert physical unit
data from the other cores into raw data, needed for the peripheral devices.
The communication between the cores is done by message passing. However messages only
disable the interrupts during writing on the specific core the task is running on2. Therefore
it is necessary to use spin locks for inter task communication.

As this work is the basis for the future use of the multicore microcontroller, where one
core is responsible for the access to the hardware, the HAL was implemented on core 0 of
TC277T.

2Messages are explained in 3.3 - Implementation of messages by ASCET SE.
Multicore support of ETAS RTA-OS5 is discussed in 3.2.3.

32

Chapter 5. Implementation of the HAL

5.3. Digital in- and outputs

5.3.1. TC277T General Purpose I/O Ports

In order to provide logical signals to peripheral devices on the main-board of the EMS, mul-
tiple port pins of TC277T are configured as general-purpose outputs. The state of external
logical signals can be read by configuring port pins as general-purpose inputs. Figure 5.2
gives an overview of the general structure of a Port Pin. The behavior of each Port Pin is
configured by setting the SFRs (Special Function Registers).

Figure 5.2.: General structure of a Port Pin in TC277T3

33

Chapter 5. Implementation of the HAL

If the Port Pin is configured for input mode the output driver is switched off (high impedance).
The input voltage is translated to a logical signal by a Schmitt-Trigger and can be read via the
register PN_IN. Furthermore the logical input signal is passed to various inputs of peripheral
units. The Schmitt-Trigger is always enabled, whether the Port Pin is configured for in- or
output mode, so the signal can also be read via the PN_IN in output mode. Additionally a
weak pull-up or a pull-down device can be connected.

In output mode the output driver is turned on and is fed by the signal from the output
multiplexer, which selects the signal source. If the Port Pin is used as general-purpose
output, the multiplexer is switched to the register PN_OUT. The inputs of the multiplexer
ALT1 - ALT7 are connected to different peripheral units that uses the Port Pin as output.

5.3.2. DIGIO software module

All functions for reading/writing the voltage level from/to external wires are included in the
DIG_IO module, which consists of the files DIG_IO .c and DIG_IO .h.
In the file DIG_IO .c, two fixed-size arrays of structure type DigIO are declared in the file
scope - one for the output and one for the input signals. The structure DigIO contains the
information about the corresponding port, the pin, and the mode the port pin should be
initialized to.
The interface to module is listed in table 5.1.

Table 5.1.: Interface to the DIGIO software module
Function Parameters Return Description
DIG_IO_init void void Initializes the arrays for input

and output and configures the
SFRs of the Port Pins.

DIG_OUT_set uint16 number
bool state

void Sets the Port Pin defined by
number from DigitalOut[] array
to either high or low.

DIG_OUT_get uint16 number bool Reads the logic value of the Port
Pin defined by number from
DigitalOut[] array and returns
high or low.

DIG_IN_get uint16 number bool Reads the logic value of the Port
Pin defined by number from
DigitalIn[] array and returns high
or low.

3Infineon, 2014a, page 1067

34

Chapter 5. Implementation of the HAL

5.4. Analog to Digital Conversion

Several sensors connected to the EMS deliver their output signal (like temperature, pressure,
mass air flow, etc.) in form of an analog signal. The continuous analog signal, representing
the measured environment information, is converted into discrete digital domain by a Analog
to Digital Converter (ADC) for further processing.

5.4.1. TC277T Versatile Analog-to-Digital Converter (VADC)

The TC277T provides eight ADC Kernels for analog to digital conversion, working on the
principle of successive approximation. Assigned to every kernel is a group. Each group
comprises a converter unit, a request source and a result register. The converter unit includes
a multiplexer, which selects an analog input channel as input to the AD converter. For each
group eight analog input channels are available. The AD converter is able to convert signals
with a resolution of up to 12 bits. Each channel can either be configured for 12-bit, 10-bit or
8-bit conversion. In addition a 10-bit fast compare mode is available, providing an indication
flag if the voltage level of an analog input is over or under a user specified value4.
Furthermore, external multiplexers are supported for extending the input channels of one
group. Figure 5.3 depicts the ADC Kernel block diagram.

Figure 5.3.: ADC Kernel block diagram5

4Hemlin; 2015, page 21
5Infineon, 2014a, page 3878

35

Chapter 5. Implementation of the HAL

A conversion can be triggered by external events, continuously or by software events. Upon
a trigger event a request source requests the conversion of the specified sequence of analog
input channels. Three request sources are available for each channel:

• Queued Request Source:
A queued request source stores a programmed sequence of up to 8 channels to convert
into a FIFO (First In First Out) based queue buffer. The channels are converted in the
order defined by the sequence. Any channel combination is possible.

• Group Channel Scan Request Source:
The group channel scan request can request the conversion of up to eight channels of
a group.

• Background Channel Scan Request Source:
This scan source can request all channels of all groups.

Because all request sources can be enabled at the same time, an arbiter resolves concurrent
conversion requests from different sources.
The conversion results of each analog input channel can be stored in one of 16 result registers
(for each group) or in a global result register accessible from any group. An available Wait
for read mode blocks new writes in a result register before the content has been read to
avoid loss of data.

The VADC is able to generate service requests for three types of events:

• Request source event: channel converted in queue source or sequence finished in a
scan source

• Channel event: indicates a channel conversion has finished or in case of limit checker,
indicates the corresponding event

• Result event: a new result is available

For indicating the completion of conversion of all defined channels of a specific group the
Channel Event is used to issue a service request to the CPU by EMS software. The service
request is used to generate an interrupt.

Conversion timing

The converters of the VADC are all supplied with two clock signals to ensure a deterministic
behavior of converters that shall operate in parallel. The clock signal for the arbiters and
fADCI for the converters are derived from the peripheral system clock by a divider - one for
each clock signal.

36

Chapter 5. Implementation of the HAL

The conversion timing depends on several user-definable factors6:

• The ADC conversion clock frequency, where7 fADCI = fV ADC

(DIV A+1)

• The selected sample time8 tS = (2 + STC)tADCI

• The selected operating mode (normal conversion / fast compare mode)

• The post-calibration time PC (0 for uncalibrated conversion)

• The result width N (8/10/12 bits) for normal conversions

For standard conversions the minimum conversion time can be calculated by the following
formula:

tCN = (2 + STC +N + PC)tADCI + 2tV ADC

As an example the following configuration is assumed:

• ADC frequency (equal to System frequency): fV ADC = 100MHz, tV ADC = 10ns

• Prescaler factor: DIV A = 5

• Result width N = 12

• Uncalibrated conversion: PC = 0

tV ADCI = DIV A+ 1
fV ADC

= 6
100MHz

= 60ns

tCmin = (2 + 12)60ns+ 2 ∗ 10ns = 860ns

6From Infineon, 2014a, page 3967
7fV ADC equals the system frequency, DIV A is the prescaler factor and fADCI is the frequency provided
to the AD converters.

8The sample time is used to adapt to sensors. It is configured by a user defined number STC of additional
clock cycles to be added to the minimum sample phase of 2 analog clock cycles.

37

Chapter 5. Implementation of the HAL

5.4.2. VADC software module

The software module VADC provides functionalities for initializing the VADC hardware mod-
ule of the TC277T, initializing the groups of the module and for reading the results of the
conversion.
As the conversion of the analog inputs into the digital domain takes a certain amount of time,
each group is configured to generate an interrupt after a conversion has finished. Thereby
it is signaled that results can be read in the corresponding registers. Figure 5.4 depicts the
conversion sequence. First a group of the VADC is triggered for conversion. During conver-
sion the CPU is not involved and can execute other tasks. After a conversion has finished
an interrupt is generated and the results, stored in the conversion registers, are returned by
the read-function.

t

conversion conversionread ...

Start conversion Interrupt

Results returned

Start conversion Interrupt

Figure 5.4.: Timing of the conversion process

The addresses of the registers corresponding to one group and the ones corresponding to the
channels of the group are encapsulated in the structure VADC_Group. All groups that are
used in the EMS software are defined in the file VADC_regs .c, which provides the structures
VADC_Group for each group in the array VADC_Groups to the software module. The size of
the array is defined in the symbol VADC_GROUPSIZE .
For each element in the array (and therefore for each group that is used), an element is
added to the enumeration VADC_GroupNumber and is assigned the value of the index in
VADC_Groups. For example if Group0 and Group2 shall be used, the addresses of the
corresponding registers have to be added to the array VADC_Groups of type VADC_Group in
the file VADC_regs .c as shown in listing 5.1.

1 #include "VADC_regs.h"
2 #include "IfxSrc_reg.h"
3

4 VADC_Group VADC_Groups[VADC_GROUPSIZE] = {
5 //Group0
6 {
7 .ARBCFG = (uint32 *)&VADC_G0ARBCFG,
8 .ARBPR = (uint32 *)&VADC_G0_ARBPR,
9 ...

10 }
11 //Group2
12 {
13 .ARBCFG = (uint32 *)&VADC_G2ARBCFG,
14 .ARBPR = (uint32 *)&VADC_G2_ARBPR,

38

Chapter 5. Implementation of the HAL

15 ...
16 }
17 };

Listing 5.1: Encapsulation of the SFRs of used VADC groups

The enumeration VADC_GroupNumber , defined in VADC.h has to provide 2 constant values
VADC_GROUP0 = 0 and VADC_GROUP2 = 1 (since the addresses of the registers of Group2
are stored in the second element of VADC_Groups) as shown in listing 5.2.

1 ...
2 typedef enum{
3 VADC_GROUP0 = 0,
4 VADC_GROUP2 = 1,
5 }VADC_GroupNumber;
6 ...

Listing 5.2: Definition of the enumeration for accessing the SFR array

The initialization function enables the VADC module and sets the frequency fADC . Subse-
quently the groups are initialized to start conversion after a pending bit is set. Furthermore
the groups are configured to generate an interrupt after all channels of the group are con-
verted and the results in the corresponding conversion registers are valid.
To trigger the conversion of a group the function VADC_startScan sets the pending bit
of the specified group. The function for reading the conversion results VADC_ReadGroup
copies the values of the result registers to a array. The base address of the array is passed
as parameter to the function. Table 5.2 provides an overview of the interface to the VADC
software module.

Table 5.2.: Interface to the VADC software module9

Function Parameters Description
init void Initializes the VADC module and the used

groups to generate an interrupt after
conversion has finished.

startScan GroupNumber group Sets the pending bit of the specified group
to trigger the conversion.

ReadGroup GroupNumber group
uint16 *results

Copies the values of the result registers of
the specified group to the array at the
passed base address.

9For a compact illustration the prefix VADC_ in the names of the functions and data types is omitted.
All functions return void.

39

Chapter 5. Implementation of the HAL

5.5. Pulse width modulated signals

Several pulse width modulated signals with different frequencies and duty cycles are necessary
for the operation of an EMS. This includes the signals for ignition and injection as well as
signals for high pressure pumps and knock sensors that are not dependent on time but on
the engine position. Therefore, these angle-synchronous signals are generated in the EPM
(Engine Position Management) module, which measures the signals from the camshaft and
crankshaft sensors and generates the ignition and injection signals.
All PWM signals for time based control of actuators are initialized and controlled in the
PWM software module.

5.5.1. TC277T Generic Timer Module

In the following section the Generic Timer Module (GTM) of Infineon’s TC277T, based on
the Intellectual Property (IP) by Robert Bosch GmbH, is introduced according to Bosch,
2013 and Infineon, 2014a.

Figure 5.5.: GTM Architecture Block Diagram10

10Infineon, 2014a, page 2731

40

Chapter 5. Implementation of the HAL

The GTM-IP by Robert Bosch GmbH forms a generic timer platform for different applications.
Its modular design allows hardware vendors (like IFX) to choose a configuration of the
submodules to fit their needs. The main advantage of the GTM is the possibility to offload
work from the CPU.
The implementation of the GTM-IP by Infineon in TC277T is illustrated in the architecture
block diagram in figure 5.5.
The central component is the Advanced Routing Unit (ARU). The ARU is able to route data
from a connected source submodule to a connected destination sub module. The routing is
done in a deterministic manner with a round-robin scheduling scheme.
The modules of the GTM used to generate PWM signals, are discussed in detail below.

Clock Management Unit

The Clock Management Unit (CMU) generates the clock signals, mapped to different sub-
modules of the GTM. It is divided into three subunits as illustrated in figure 5.6.

Figure 5.6.: Block Diagram of Clock Management Unit (CMU)11

41

Chapter 5. Implementation of the HAL

The subunits EGU (External Clock Generation), CFGU (Configurable Clock Generation Sub-
unit) and FXU (Fixed Clock Generation) provide other submodules of the GTM with different
clock signals. The signals are derived by dividing the input clock signal SYS_CLK.
The External Clock Generation (EGU) generates up to three configurable clock output sig-
nals CMU_ECLK0 - CMU_ECLK2, which are derived from the corresponding External Clock
Divider.
The Configurable Clock Generation Subunit (CMU) provides a pre-divided clock signal (out-
put of the Global Clock Divider) CMU_GCLK_EN to eight configurable clock divider blocks.
The output signals of these blocks CMU_CLK0 - CMU_CLK7 are additionally mapped to
the FXU.
The input signal for the Fixed Clock Generation Subunit (FXU) is selected by a multiplexer.
The selectable signals are CMU_GCLK_EN and the output signals of the CMU. The selected
clock signal is mapped to five fixed clock divider blocks.

Timer Output Module

The Timer Output Modules (TOM) can be used to generate simple PWM signals. Each TOM
consists of two Global Channel Control (TGC0 and TGC1) submodules and 16 independent
channels. An overview of the internal structure of the timer output module is given in the
block diagram in figure 5.7.
Both Global Channel Control modules TGC0 and TGC1 drive 8 channels synchronously by
internal or external events. The channels are controlled by four different signaling mechanisms
for each channel:

• Global enable/disable mechanism

• Global output enable mechanism

• Global force update mechanism: the compare registers CM0 and CM1 are updated to
the values of the corresponding shadow registers if the channel trigger signal is raised

• Update enable: the compare registers CM0 and CM1 are updated to the values of the
corresponding shadow registers on counter reset of CN0

The first three mechanisms can be triggered by three different sources:

• direct write access by the CPU to the registers

• time stamped signals from the Time Base Unit (TBU_TS0, TBU_TS1 and TBU_TS2)

• internal trigger signals TRIG_[x], generated by the channels

Each channel comprises two Counter Compare Units (CCU0 and CCU1) and a Signal Output
Generation Unit (SOU). The counter CN0 is clocked by one of the five selectable signals
CMU_FXCLK from the Clock Management Unit. In CCU0 the value counter register CN0
is compared with the value of the compare register CM0. In CCU1 the counter register CN0
11Infineon, 2014a, page 2829

42

Chapter 5. Implementation of the HAL

is compared with the compare register CM1. The width of the registers CN0, CM0 and CM1
is 16 bit. If the value of CN0 is greater or equal to the compare registers, the corresponding
Counter Compare Unit (CCU0 or CCU1) triggers the Signal Output Generation Unit.

Figure 5.7.: Block Diagram of the Timer Output Module (TOM)12

The values of CM0 and CM1 are updated if the Force Enable Update (FUPD) signal from
the corresponding Global Channel Control is raised or Update Enable signal is set and the
RESET signal is raised. The RESET signal is either raised by the signal TRIG from the
previous channel or by the trigger signal TRIG_CCU0 of CCU0. In the first channel the
signal TRIG is ’0’ hard coded. If TRIG from the previous channel is selected for update
and UPEN is set, multiple sequenced channels can be updated synchronously. The selection
12Infineon, 2014a, page 2918

43

Chapter 5. Implementation of the HAL

of one of the five clock signals CMU_FXCLK is selected by the Clock Selection Register
CLK_SRC. The register is updated to the value of the shadow register CLK_SRC_SR at
the same time as the compare registers of CCU0 and CCU1 are updated. Depending on the
value of SL (Signal Level Bit), the output of the channel is set to high or low signal level
from CCU0 or CCU1 in SOU. In figure 5.8 the architecture of a channel 0 - 7 is depicted.

Figure 5.8.: TOM channel 0 - 7 architecture13

13Infineon, 2014a, page 2923

44

Chapter 5. Implementation of the HAL

The TOM channels can either be configured in continuous or one-shot mode. In continuous
mode the channel runs independently after it is enabled and an initial value is written to the
counter register CN0. In one-shot mode CN0 is only incremented until the counter reaches
the value of CM0. In order to start the counter again CN0 has to be re-loaded with a value.
The signal level of the output signal TOM_CH[x]_OUT depends on SL as can be seen in
the SOU structure. The output of a TOM channel in continuous mode is illustrated in
figure 5.9(a) for both configurations of SL. Figure 5.9(b) illustrates the output in One-Shot
mode.

(a) Continuous mode

(b) One-Shot mode

Figure 5.9.: PWM Output of a TOM channel14

14Infineon, 2014a, pp. 2930, 2931

45

Chapter 5. Implementation of the HAL

ARU-connected timer output module

With the ARU-connected timer output module (ATOM) complex output signals can be gen-
erated without CPU interaction. The Advanced Routing Unit (ARU) provides the possibility
to connect the ATOM with other connected submodules. The structure of the ATOM is
similar to that of the TOM, although in addition to the ARU connection there are some
other differences. In contrast to the TOM, ATOM integrates only 8 channels and therefore
only one ATOM Global Control subunit (AGC) is necessary. The AGC’s structure is the same
as that of the TGC. Furthermore the ATOM is connected to the configurable clock signals
CMU_CLK of the CMU submodule. The width of the counter and compare registers of the
channels is 24 bit. As illustrated in figure 5.10 the ATOM channel has an additional subunit
- the ARU Communication Interface (ACI). The communication between ARU connected
modules is based on transmitting and receiving 53 bit ARU words. An ARU word comprises
5 control bits and 48 data bits. Received ARU words are split into three parts and passed
to the ATOM channel registers. An overview of the architecture of the ACI is depicted in
figure 5.11. Each ATOM channel can be configured to one of four possible modes:

• Signal Output Mode Immediate (SOMI): The output signal ATOM_CHx_OUT
is set immediately after receiving an ARU word according to the encoded signal level
in bit 48 (first bit of the 5 control bits). The control bits are copied into the 5 bit wide
ACBI bit field. ACBI0 is connected to the output stage of SOU (Signal Output Unit).
The output signal also depends on the signal level bit SL. the remaining 48 bits of the
ARU word has no meaning in this mode. If ARU access is disabled the output signal
depends on bit ACB0 and SL of the channel control register.

• Signal Output Mode Compare (SOMC): The level of the output signal depends on
the comparison of CM0 and/or CM1 with the time based values TBU_TS0, TBU_TS1
or TBU_TS2 from the Timer Based Unit (TBU). If ARU access is enabled, the behavior
of the channel is controlled by the 5 control bits of the ARU word, which are passed to
the ACBI bit field. The upper 24 data bits of the ARU word are passed to the shadow
register SR1 of CM1 and the lower 24 bits are passed to SR0.

• Signal Output Mode PWM (SOMP): The channel is operated in the same way
as the TOM channels and it compares its registers with the counter register. However
they are 24 bits wide and the values for the compare registers can either be written by
the CPU or by the ARU. If ARU access is enabled the clock source can be configured
by the bits 52 - 50 of the ARU word. The data fields are passed to the shadow registers
in the same way as in SOMC mode.

• Signal Output Mode Serial (SOMS): The content in CM1 in CCU1 is shifted to
the Signal Output Unit (SOU). The direction of the shifting is controlled either by the
channel control register or if ARU access is enabled by bit 48 of the ARU word (copied
to bit 0 of ACBI bit field). The content of CM1 is written by the upper 24 data bits
of the ARU word if ARU access is enabled.

46

Chapter 5. Implementation of the HAL

Figure 5.10.: ATOM channel architecture15

Figure 5.11.: ARU Communication Interface architecture16

15Infineon, 2014a, page 2974
16Infineon, 2014a, page 2976

47

Chapter 5. Implementation of the HAL

Timer input module

The Timer Input Module (TIM) provides functionalities for filtering and capturing of input
signals. The TIM is also connected to the Advanced Routing Unit (ARU). It is possible to
measure time stamp values of detected input rising or falling edges (and the current signal
level) of an input signal. The number of edges received since channel enable together with
the actual time stamp or the period and duty cycle of pulse width modulated input signals
can be measured. Each of the eight input signals of a TIM can be connected to 2 of the eight
filter submodules by input multiplexers. The input signals are synchronized to the system
clock SYS_CLK, resulting in a delay of 2 periods of SYS_CLK.
After the filtering of the selected input signal17 the signal is routed to the corresponding
TIM channel. The measured values can either be read directly by the CPU or routed to the
ARU, providing it to other ARU connected submodules. The output signal for the detection
of a rising edge and the one for the detection of a falling edge of the input signal from
FLTn subunit are also routed to the Timeout Detection Unit (TDU). The TDU provides the
functionality for detecting if a edge (rising or falling) is not followed by a subsequent edge
for a specified duration.

Figure 5.12.: Architecture of the Timer Input Module (TIM)18

17For Filter block FLTn, the input signal TIM_IN(n) or TIM_IN(n-1) can be selected. For FLT0 TIM_IN(0)
or TIM_IN(7) can be selected.

18Infineon, 2014a, page 2853

48

Chapter 5. Implementation of the HAL

The Architecture of the TIM is depicted in figure 5.12. The three dashed lines represent the
signal outputs from TIM0 only, to the TIM0 Input Mapping Module (MAP) of the GTM.
Also for TIM0 only the extended time base TBU_TS0 from the Time Base Unit (TBU)
is connected to the eight channels. The time base signals TBU_TS1 and TBU_TS2 are
connected to all channels of all TIMs.
The TIM Filter Functionality (FLT) provides configurable filter mechanisms for each input
signal and provides the subsequent channel with the filtered version of the signal, a signal
for the detection of a rising edge in the input signal and one for the detection of a falling
edge. Three different modes can be configured and applied individually to the falling and
rising edges of the input signal19:

• Immediate edge propagation mode

• Individual de-glitch time mode (up/down counter)

• Individual de-glitch time mode (hold counter)

The outputs of FLT are connected to the corresponding TIM channel. Figure 5.13 illus-
trates the architecture of a TIM channel, where the signals from the FLT are represented
by FEDGE_DETx, REDGE_DETx and F_OUTx (the filtered, delayed version of the input
signal). The number of falling edges are represented in bits 7 - 1 of the counter ECNT.
Together with the signal F_OUT connected to bit 0 of ECNT, it is possible to count every
filtered edge, where even counter values of ECNT refer to detected falling edges and odd
counter values refer to detected rising edges.
The core part of the channel is the Signal Measurement Unit (SMU). Its clock can be selected
by CLK_SEL in the channels control register.
A TIM channel provides 6 different modes:

• TIM PWM Measurement Mode (TPWM)

• TIM Pulse Integration Mode (TPIM)

• TIM Input Event Mode (TIEM)

• TIM Input Prescaler Mode (TIPM)

• TIM Bit Compression Mode (TBCM)

• TIM Gated Periodic Sampling Mode (TGPS)

The TPWM mode is used to measure duty cycle and period of an incoming PWM signal.
This mode is used in the AVL EMS software and is explained in the following:
The start of the measurement (polarity of the PWM signal) can be configured. If the con-
figure signal (FEDGE_DETx for falling edge or REDGE_DETx for rising edge) is received,
counting with CNT register is started until the opposite edge signal is received. This initiates
the copy of the counter value in CNT to the shadow register CNTS (CNTS_SEL = 0).
19The modes are not discussed further in the following. Detailed information is given in Infineon, 2014a,

page 2856 - 2864.

49

Chapter 5. Implementation of the HAL

If the selected edge signal is received, the value in CNT is copied to GPR120 and CNT is
cleared. The value temporarily stored in CNTS is copied to GPR0. By this, GPR0 contains
the duty cycle (positive or negative, depending on the configuration) and GPR1 contains the
period of the incoming signal. Data consistency of the registers can be checked by using the
bits 7 - 1 of ECNT.
If one PWM period was measured an interrupt can be raised and the data in GPR0 and
GPR1 is marked as valid for reading by the ARU.
If the values in GPR0 and GPR1 are not read by either the CPU or ARU when a new period
was measured a notification bit is set and the values are overwritten.

Figure 5.13.: Architecture of TIM channel21

20The selectors GPR0_SEL and GPR1_SEL has to be set to 3
21Infineon, 2014a, page 2868

50

Chapter 5. Implementation of the HAL

MSC Connections

The output of one TOM channel can be mapped to SET1, SET2 or SET3 by the configuration
of the GTM to MSC Control Registers. Each SET can map 16 outputs of the channels of
TOMi (i = 0-2) or ATOMn (n = 0-4) to its 16 outputs. The inputs of the MSC0 and MSC1
are mapped to the outputs of a SET by multiplexers. However MSC0 ALTINL[x] can only be
mapped to the output x of one SET (x = 0-16). These multiplexers are configured by MSC0
Input Low Control Register, MSC0 Input High Control Register, MSC1 Input Low Control
Register and MSC1 Input High Control Register. Figure 5.14 shows the connections from
the Generic Timer Module to the Micro Second Channel.

Figure 5.14.: GTM to MSC connections22

Port pin connections

Multiple port pins are connected to the GTM as inputs or outputs. The paths are denoted
as TINn for input signals to the GTM and TOUTn for output signals from the GTM (n =
9-150). The connection of a port pin to the corresponding path is set in the Input/Output
Control Register (IOCR) of the port. However, the inputs and outputs of the GTM are not
directly connected to the paths.
22Infineon, 2014a, page 3544

51

Chapter 5. Implementation of the HAL

The outputs of ATOM and TOM channels are connected to multiple 4-to-1 multiplexers. The
output of each multiplexer is connected to one TOUT path. The multiplexers are configured
by the Timer Output Select Registers (TOUTSEL).
The inputs of TIM channels are connected to multiple 1-to-2 multiplexers. The input of each
multiplexer is connected to one TIN path. The multiplexers are configured by the TIM Input
Select Register (TIMnINSEL (n = 0-3)).
For example the connections of port P00.0 of TC277T (BGA-292) are shown in table 5.3.
The meaning of this example is that P00.0 can either be configured as input or output. If
configured as input the input signal can be connected to the path TIN9. The path can be
multiplexed to channel 0 of TIM2 (TIM2_0) or to channel 0 of TIM3 (TIM3_0).
If configured as output the channel 8 of TOM0, channel 0 of TOM1, channel 0 of ATOM0
or channel 0 of ATOM1 can be mapped to P00.0 via the path TOUT9.

Table 5.3.: Connections of port P00.0 to GTM23

Port Input Output
Input Output

A B A B C D
P00.0 TIN9 TOUT9 TIM

2_0
TIM
3_0

TOM
0_8

TOM
1_0

ATOM
0_0

ATOM
1_0

P00.1 ...
... ...

5.5.2. PWMIO software module

The PWMIO software module consists of the PWMIN, PWMOUT modules and a function
for initialization of the Clock Management Unit (CMU). The CMU provides the clock signals
for the submodules TIM, TOM and ATOM. The initialization function PWM_init sets the
global clock signal CMU_GCLK_EN to the system clock by setting the Global Clock Divider
accordingly (refer to figure 5.6) and sets FXCLK_SEL to select CMU_GCLK_EN as input
for all fixed clock dividers in the Fixed Clock Generation Subunit(FXU). The configurable
clock source dividers in the Configurable Clock Generation Subunit (CFGU) are set to di-
vider values, stored in the Array uint32 dividerCLK [CMU_CLKS]24. The channels of the
TOM submodules are clocked by one of the five Fixed Clock signals CMU_FXCLKn. The
channels of the ATOM and TIM submodules are connected to one of the eight configurable
clock signals CMU_CLKn. After the initialization of the dividers the clock signals are enabled.

23Based on table 25-68 in Infineon, 2014a, page 3490
24This array is defined as extern to provide the information of the input frequencies to the PWM_IN and

PWM_out software modules. Based on this information it is possible to calculate the corresponding time
of the duty cycle and period of an input or output PWM signal.

52

Chapter 5. Implementation of the HAL

PWMOUT

PWMOUT software module provides functions to set the period and duty cycle for multiple
PWM output signals. The signals are mapped to either a Port Pin or to the MSC (see 5.6).
The module stores all informations concerning a PWM signal in a structure PWM_config
defined in the file PWM_OUT .h. This structure encapsulates the information about the type of
the corresponding output module (ATOM/TOM), the memory addresses of the corresponding
registers (thereby the assigned module and the channel are defined) and the values for the
registers to generate a PWM with the desired duty cycle and period.
For each PWM output signal that should be generated, a element exists in the module-
internal array PWMs of type PWM_config. An example of the statement for the initialization
of PWM0 is given in listing 5.3.

1 // Init PWM0 with 50% duty cycle, 1ms period for TOM2 channel 7
2 PWMs[0] = (PWM_config){{1000,500}, &(TOM2_G0.channels[7]), TOM};

Listing 5.3: Initialization of PWM 0

The values for the registers defining the period and the duty cycle are calculated with the
internal function PWM_setRegisterValues . Based on the period in µs and the duty cyle
in %� it calculates the necessary register values. Further the function needs the information
of the defined clock dividers for the output module (TOM or ATOM) in form of a array.
The two functions building the interface to the PWMOUT module, given in table 5.4, take
both a pointer to the address of a variable of type PWM_setup. This structure encapsulates
the period in µs and the duty cycle in %�of a PWM signal.

The pointer passed to PWM_OUT_init needs to be the address of the first element of an
array with the same size of the internal array or in other words the number of PWM signals.
The size is defined in PWM_OUT .h by the symbol NUMB_OF_PWMs.
On the other hand the pointer passed to PWM_OUT_update has to be the address of only
one element of type PWM_setup.

Listing 5.4 provides an example of an application that uses the PWMOUT module and
initializes all PWM signals with a duty cycle of 50% and a period of 100µs. After the
initialization the period and the duty cycle of PWM4 is changed.

53

Chapter 5. Implementation of the HAL

Table 5.4.: Interface to the PWMOUT software module
Function Parameters Return Description
PWM_OUT_init PWM_setup *p_setup void Initalizes the internal

array, the Port Pin
Connections, the
MSC connections and
the SFRs of the
output mod-
ules(TOM/ATOM).

PWM_OUT_update uint8 pwmNo,
PWM_setup *p_setup

void Sets the SFRs of the
channel of the
corresponding PWM
to the calculated
values for the desired
duty cycle and
period.

1 #include "PWM.h"
2 ...
3 int i;
4

5 PWM_init(); //init CMU
6 PWM_setup PWMSetup[NUMB_OF_PWMs];
7

8 for(i=0; i<NUMB_OF_PWMs; i++)
9 {

10 PWMSetup[i] = (PWM_setup){.period_us = 100, .dutyCyle_10 = 500};
11 }
12 PWM_OUT_init(&PWMSetup[0]);
13 PWMSetup[4].period_us = 200;
14 PWMSetup[4].dutyCyle_10 = 700;
15 PWM_OUT_updatePWM(4, &PWMSetup[4]);
16 ..

Listing 5.4: Example of use of the PWMOUT module

PWMIN

PWMIN software module provides the possibility to read the period and the dutycycle of a
PWM signal connected to a specified Port Pin by using the Timer Input Modules (TIMs). The
structure of PWMIN is similar to PWMOUT. A function for the initialization of the channels
and the connections to the port pins is provided. This function takes no parameters, since
the channels are initialized in a static manner.
The function PWM_IN_getVal is used to read the period in µs and the dutycyle in %�of

54

Chapter 5. Implementation of the HAL

a specified PWM. Inside the module the values of all input PWMs are stored in an array
PWM_inputs of structure type PWM_info. This type encapsulates the duty cycle as unsigned
16 bit value and the period as unsigned 32 bit value. PWM_IN_getVal takes the number of
the PWM input signal to be read as parameter and reads the GPR0 and GPR1 registers of
the corresponding TIM channel. Then it calculates the respective time value for the period
and the resulting duty cycle in %�and updates the values in the PWM_inputs. The function
returns the address of the corresponding element in the array. The two functions provided
for use in ASCET are summarized in table 5.5.
An example of reading the period and the duty cycle of a signal assigned to PWMIN[0] is
given in listing 5.5.

1 #include "PWM.h"
2 ...
3 PWM_init(); //init CMU
4 PWM_IN_init();
5 PWM_info *pwmIn0 = PWM_IN_getVal(0);
6

7 uint32 period0 = pwmIn0->period;
8 uint16 duty0 = pwmIn0->duty;
9 ..

Listing 5.5: Example of use of the PWMIN module

Table 5.5.: Interface to the PWMIN software module
Function Parameters Return Description
PWM_IN_init void void Initalizes the Port

Pin Connections,and
the SFRs of the
TIMs.

PWM_IN_getVal uint8 pwmNo PWM_info *p_info Reads the values in
the registers of the
corresponding TIM
channel, converts it
and stores the
converted values in
the internal array.
The address of the
element in the array
is returned.

55

Chapter 5. Implementation of the HAL

5.6. Microsecond Channel

The Microsecond Channel (MSC), often also referred to as microsecond Bus (usBus or
µBus) is an asymmetric serial interface, designed for short distance communications between
a master and multiple slaves.25 MSC is especially designed to connect external power devices
to a microcontroller. The main advantage of the MSC is the reduction of required Port Pins
to connect power devices to a microcontroller.
In our application the MSC is used to transmit PWM signals to on board 18 Channel Smart
Lowside Switches26. Therefore only the Downstream Channel of the MSC is used to distribute
PWM signals from (A)TOM channels to the Lowside Switches.

5.6.1. TC277T Micro Second Channel Interface

Figure 5.15.: Blockdiagram of the MSC Downstream Channel27

25Wikipedia, 2015
26IFX TLE6244 Infineon, 2003
27Infineon, 2014a, page 2051

56

Chapter 5. Implementation of the HAL

A downstream channel frame consists of a selection bit followed by the bits shifted out from
the shift register and a passive phase where at least two clock cycles have to be provided.
The basic timing of a downstream channel frame is illustrated in figure 5.16. Since AVL
EMS uses the Downstream functionality of the MSC Interface this functionality is discussed
in the following.
Figure 5.15 gives an overview of the MSC Downstream Channel. It includes a 64 bit shift
register that is divided into two 32 bit parts - SRL and SRH. The source of the data in the
shift register is either the downstream data register (DD), the downstream command register
(DC) or the two 16-bit wide input signal buses ALTINL and ALTINH. The MSC module can
operate in two modes: standard (up to 32 data bits) or extended (up to 64 data bits).
ENL, ENH and ENC are enable signals from the Downstream Channel Control to the I/O
Control. The I/O control combines these signals to four enable/select outputs EN[3:0].
Slaves with different clock polarity can be connected to one of the two serial clock outputs
FCLP (positive polarity) FCLN (negative polarity). Different interrupts are provided by
the Downstream Channel Control. The Injection Logic (shown in figure 5.15) provides the
possibility to inject two input signals from the port pins INJ0 and INJ1 at two user specified
data bit positions in a data frame.

Figure 5.16.: Downstram Channel Frame28

The upstream channel of MSC is usually used for sending diagnostic information from the
peripheral devices to the microcontroller. One out of eight input lines are used as serial data
input (SDI) signal for the upstream channel. The protocol is based on the standard based
asynchronous data transfer protocol. However AVL EMS uses the additional serial peripheral
interface for diagnostic purposes.

28Infineon, 2014a, page 2052

57

Chapter 5. Implementation of the HAL

5.6.2. MSC software module

Since the Micro Second Channel Interface of TC277T only needs to be configured once and
then passes all connected signals to the bus, the software module consists of only one function,
namely MSC_init. The function parameter/return value is void/void. It configures the
interface for selection of ALTINH and ALTINL as source for the shift register and a standard
transmission mode (32 bits), sets the frequency divider and configures the Port Pins used for
the transmission. An example for the MSC transmission is given in 6.2.

Configuration of MSC in AVL EMS

The MSC interface’s downstream channel needs to be configured as follows:

• clock signal is set to 1MHz

• enable signals (ENL and ENH) are low active

• 16 bits are transmitted at both active phases (SRL active phase and SRH active phase)

• both phases start with a low level selection bit

• 3 clock cycles passive phase added after SRH active phase

To illustrate the configuration a data frame of the downstream channel was measured, where
the bits SRL.6/SRH.6 are set to ’1’ and all other bits are set to ’0’. The measured signals
are depicted in figure 5.17.
It can be seen that the period of the clock signal tF CL = 1µs. The SRL active phase starts
with a low level selection bit followed by the 16 bits of SRL. During the transmission of SRL
the corresponding enable signal ENL is active (low).
At the transition from SRL active phase to SRH active phase, ENH becomes active and ENL
becomes inactive. In SRH active phase the low level selection bit is followed by the 16 bits
from SRH, where at the position of bit SRH.6 the SO (Serial out) signal is high.
At the end of the active phase the frame is completed by the passive phase - both enable
signals are inactive for 3 clock cycles. After the passive phase the next frame begins.

58

Chapter 5. Implementation of the HAL

Figure 5.17.: MSC downstream data frame

The length of a frame is defined by the number of selection bits, the number of bits to
transmit and the number of clock cycles for the passive phase. In the example above the
length of one frame is tF rame = 35 tF CL = 35µs.
This means that the minimum time interval for updating one specific bit in a peripheral
device is 35µs.

59

Chapter 5. Implementation of the HAL

5.7. Controller Area Network

The Controller Area Network (CAN)29 is an asynchronous, multi-master serial data commu-
nication protocol with a maximum bus speed of 1 Mbit/s. A CAN bus consists of at least
two participants, which are called nodes. Although CAN is referred to as an asynchronous
protocol, because no clock signal is used, the nodes synchronize themselves by analyzing
the transitions from recessive to dominant state and compare the transition events with a
multiple of the nominal bit time. The Non-Return-To-Zero method and the method of bit
stuffing are applied for coding the bit streams in a message.
Compared to the layered OSI model30 the relevant layers for CAN are the physical, the data
link and the application layer. On the physical layer exist three main variants, where the High
speed CAN (defined in ISO 11898-2) is the most important one. The nodes are connected
via two twisted pair wires (CANH and CANL), which are terminated at each end with 120Ω
resistors in order to prevent reflections. The logic of the bus corresponds to a wired-AND
mechanism, where recessive bits representing logic 1 are overwritten by dominant bits (logic
0). The signaling is differential, what makes CAN robust against noise. In the recessive
state both wires are passively biased to 2.5V . In the dominant state CANH is set to 3.5V ,
while CANL is set to 1.5V and a differential signal of 2V is generated. This is illustrated in
figure 5.18.

Figure 5.18.: CAN Dominant and Recessive Bus States

29The section about CAN follows the description in Bosch, 1991, Corrigan, 2008 and Infineon, 2014a
30The Open Systems Interconnection model (OSI model) is a conceptual model that characterizes and

standardizes the communication functions of a telecommunication or computing system ISO/IEC, 1994.

60

Chapter 5. Implementation of the HAL

CAN is a carrier-sense, multiple-access protocol with collision detection and arbitration on
message priority, what means that a node is only allowed to start sending a message after
a given time slice since the last message was sent over the bus. If two nodes concurrently
start to send a message, after the start of frame field the arbitration field (the format of
a data-frame is shown in figure 5.19) that contains the unique identifier. The identifier is
intended for the identification of every message. Since the connection to the bus corresponds
to a wired-AND mechanism, a low-order identifier ”wins” against a higher one.
A CAN data frame consists of seven different bit fields:

• Start of frame: A single dominant bit to mark the beginning of a data frame.

• Arbitration field: Consists of the identifier and a dominant RTR bit (Remote Trans-
mission Request Bit). The identifier length is 11 bits for standard identifiers or 29 bits
for extended identifiers.
If the message is an extended message, the RTR bit is replaced by a recessive substitute
remote request bit (SRR), followed by an recessive identifier extension bit (IDE). The
IDE bit indicates the extended identifier. After this bit the remaining 18 bits of the
extended identifier follow.

• Control field: Contains the identifier extension bit (IDE), 1 reserved dominant bit
and the 4 bit wide Data Length Code (DLC) . The IDE bit is dominant if a standard
identifier is used, otherwise it is recessive.
In case of an extended identifier message the IDE belongs to the arbitration field and
is replaced by an additional dominant reserved bit.
The DLC indicates the number of bytes in the data field.

• Data field: This field consists of the transferred data within a data frame. The size
is from 0 - 8 bytes (MSB first).

• CRC field: Contains a 15 bit wide cyclic redundancy code followed by a recessive
delimiter bit.

• ACK field: This field is composed of two bits - the ACK slot and the recessive ACK
delimiter bit. The transmitting node sends two recessive bits. A receiver node, which
received the message correctly, indicates this by sending a dominant bit during the
ACK slot.

• End of frame: Delimits a data frame by a flag sequence of seven recessive bits.

61

Chapter 5. Implementation of the HAL

(a) Standard identifier (b) Extended identifier

Figure 5.19.: CAN data frames

62

Chapter 5. Implementation of the HAL

5.7.1. TC277T Controller Area Network Controller

As described in Infineon, 2014a, the MultiCAN+ module in Infineons AURIX products imple-
ments 4 CAN nodes, representing 4 serial communication interfaces. The nodes share a set
of 256 hardware message objects, where message objects are assigned to one specific node.
For this assignment every node has its own list of message objects.
The nominal bit timings for the CAN nodes are derived from the module [Baud Rate Clock
Block]. Figure 5.20 gives an overview of the MultiCAN+ module.

Figure 5.20.: Overview of the MultiCAN+ Module31

The hardware message objects represent the messages to be sent or received. Their prop-
erties are configured by setting the corresponding special function registers (SFRs). Each
hardware message is configured by multiple SFRs. Data to be transmitted or received data
are stored in two 32 bit wide registers.
A message is allocated to a CAN Node by the configuration of the linked list. The configura-
tion of the linked list is done by writing specific commands to the Panel Control Register. In
order to allocate a message to a CAN node the command Static Allocate with the message
31Infineon, 2014a, page 2171

63

Chapter 5. Implementation of the HAL

object number and the number of the node as argument has to be written to the Panel
Control Register.

5.7.2. MultiCan software module

The nodes on the CAN bus differ with respect to the application. Therefore the MultiCan
software module needs to provide the possibility to adapt its behavior to different bus con-
figurations. This means that there has to be a possibility to change the baud rate of each
CAN node and the properties of the message objects.
The MultiCan software module consists of the two files MultiCan .c and MultiCan .h. For
the basic initialization of the MultiCAN+ module and its nodes the function CAN_Init
is provided. The initialization of a hardware message object is supported by the function
CAN_AddMO. This function takes a pointer to a structure CAN_MO. The structure encap-
sulates all necessary information for the configuration of a hardware message object. The
members of the structure are given in table 5.6.

Table 5.6.: Members of structure CAN_MO
Name Type Description
moNumber uint8 number of the corresponding

hardware message object
direction enumeration CAN_Direction either transmit or receive
identifier uint32 holds the object-identifier of

the message
dlc uint8 Data Length Code - defines

the number of bytes in the
CAN-frame

acceptenceMask uint32 holds the acceptance mask
of the message

data[] uint8 byte array that holds the
data to send or the received
data

node enumeration CAN_Node defines on which CAN node
of TC277T the message is
sent/received

The structure CAN_MO reflects all the properties required to send or receive data to/from a
CAN node. Based on this information, passed as parameter to the function CAN_AddMO, the
registers of the specific hardware message object are initialized. Listing 5.6 shows an example
of the initialization of a message object from the application software. A message object is

64

Chapter 5. Implementation of the HAL

declared and initialized to transmit data with 0x1D7 as extended identifier. It is assigned to
the hardware message object 8 and allocated to node 0 of MultiCAN+ module. The DLC is
set to 8, which means that the message consists of 8 data bytes. By passing the base address
of the structure to the function CAN_AddMO the corresponding SFRs of hardware message
object 8 are initialized accordingly. The message object is allocated to node 0 by writing the
Static Allocate command to Panel Control Register.

1 CAN_MO mo1;
2 mo1.direction = transmit;
3 mo1.identifier = 0x1D17;
4 mo1.moNumber = 8;
5 mo1.node = CAN_Node0;
6 mo1.acceptenceMask = 0x3FFFFFFF;
7 mo1.dlc = 8;
8 CAN_AddMO(&mo1);

Listing 5.6: Adding a message object to CAN

For sending an initialized message object, the array data of the structure CAN_MO has to
be set. The values are written to the registers of the hardware message with the function
CAN_SetMOData. The message is actually sent by calling the function CAN_Send.
A receive message is initialized in the same way (direction is set to receive). The reception
of a message can be determined by calling the function CAN_GetMOData. It returns true if
a message was received and in this case sets the array data in the passed software message
object to the received data. A detailed example can be found in 6.1.
Table 5.7 lists the functions provided by the CAN software module.

Table 5.7.: Interface to the CAN software module

Function Parameters Return Description
CAN_Init uint32 BaudNode0

uint32 BaudNode1
uint32 BaudNode2
uint32 BaudNode3

void Initalizes the
MultiCAN+ module,
the nodes to the
baudrates defined by
the parameters and
the Port Pin
connections.

CAN_AddMO CAN_MO *p_MO void Initializes the
corresponding
hardware message
object according to the
properties defined in
the software message
object CAN_MO at
the address p_MO.

65

Chapter 5. Implementation of the HAL

Table 5.7.: (continued) CAN SW module

Function Parameters Return Description
CAN_Send CAN_MO *p_MO void Sends the message

objects that
corresponds to the
software message
object CAN_MO at
the address p_MO.

CAN_SetMOData CAN_MO *p_MO void Writes the data stored
in the array data of
the software message
object CAN_MO at
the address p_MO to
the corresponding
hardware message
object.

CAN_GetMOData CAN_MO *p_MO bool Checks if a message
with the defined
identifier is received. If
this is the case the
data is copied from
the hardware message
object to CAN_MO at
the address p_MO
and the functions
returns true.

66

Chapter 5. Implementation of the HAL

5.8. Serial peripheral interface

For the operation of the EMS communication with several on-board-chips is necessary. The
peripheral devices can be accessed by the serial peripheral interface.

The Serial Peripheral Interface (SPI) is a synchronous interface defined by Motorola. It
allows the interconnection of microcontrollers and peripherals. In general four wires are
required for data, clock and the selection of the devices. The naming of the SPI signals
varies depending on the manufacturer. Table 5.8 shows the corresponding names, used by
Infineon and Motorola.

Table 5.8.: SPI naming conventions
Motorola Infineon

MISO (Master In Slave Out) MRST (Master Receive Slave Transmit)
MOSI (Master Out Slave In) MTSR (Master Transmit Slave Receive)

SCLK (Serial Clock) SCLK (Serial Clock)
SS (Slave Select) SLSO (Slave Select Output line)

Signal Descriptions

The four basic signals are discussed in the following, using the naming convention of Infi-
neon.

• MRST In the master device this line is configured as input while in a slave device it
is configured as output. Data is therefore transferred over this line from a slave to the
master. If a slave device is not selected it has to place this line to high-impedance
state.

• MTSR The master devices uses this line as output and slave devices as input. Data
is sent from the master device to a slave device over this line.

• SCLK This signal is provided by the master (output) to the one or more slaves (input)
and is used to synchronize data movement over MRST and MTSR.
Four timing relationships are possible by changing the polarity or the phase (with
respect to data signals) of this line.

• SLSO To select a slave device, the master device sets this line to low or high (depending
on the slave device) for the duration of the transaction.

67

Chapter 5. Implementation of the HAL

Functional description

At the beginning of a data transmission the master device selects one slave device by the
SLSO line and generates the clock signal, connected to a shift register in the master device
and to the SCLK line. In the slave device this clock signal is also provided to a shift register.
Data from the master device’ shift register is shifted into the slave device’ shift register via
MTSR line. The data from the slave device is shifted to the master device via MRST line.
Figure 5.21 shows this principle of a duplex transmission.

Figure 5.21.: Duplex connection of SPI32

5.8.1. TC277T Queued Synchronous Peripheral Interface

Infineons TC277-C offers four Queued Synchronous Peripheral Interface (QSPI) modules for
communication with external SPI devices. Each QSPI can operate in either master or slave
mode. In master mode several slave select signals are available for connecting multiple devices
to one interface. The term ”Queue” describes the functionality implemented for switching
the timing of the communication with the selected slave device. The 32 bit configuration for
the communication and the 32 bit data are queued in a 32 bit TxFIFO buffer (First In First
Out). The 32 bit configuration and the 8 bit configuration extension register (ECON) of a
QSPI module define together the full configuration of the module. Each of the eight ECON
registers are used for the configuration of the communication with devices connected to two
out of 16 slave selects (ECON0 for SLSO0 and SLSO8, ECON1 for SLSO1 and SLSO9,
etc.). A configuration entry in the TxFIFO is distributed to the basic configuration register
(BACON) and is connected to one ECON. Data entries in the queue are copied to the shift
register. Based on the configuration the next data entry in the queue is shifted to MTSR
with the selected configuration (timing configuration, data width and SLSO activation). At
the end of the shifting process, received data is copied from the shift register to the RxFIFO.
Figure 5.22 depicts the architecture of the QSPI.
32Infineon, 2014a, page 1772

68

Chapter 5. Implementation of the HAL

Figure 5.22.: Architecture of the QSPI33

5.8.2. SPI software module

The software module SPI takes use of Infineons Low Level Drivers (iLLDs). It is divided into
two sublayers A and B. In sublayer A the QSPI module takes place, which handles all interac-
tions with the peripheral devices connected to one of the interfaces of TC277T. The purpose
of this module is to abstract the functions provided by the iLLDs (Infineon Low Level Drivers),
and provide appropriate functions to sub-layer B. Figure 5.23 illustrates the connections of
the software module QSPI in the HAL and interface to the file IfxQspi_SpiMaster .c of
the iLLDs.
The functions of the iLLD, used by QSPI module are summarized in table 5.9. For basic ini-
tialization of a QSPI hardware module the function IfxQspi_SpiMaster_initModule () is
used. The second argument * config is provided by the file QSPI_cfg .c. The file provides
the configurations of the QSPI modules and channels. Based on the passed base address of
the configuration, the QSPI module is initialized. The first argument represents a connection
to the QSPI module and is stored in an element of the internal structure QSPIn (n = 0 - 4)
of the QSPI software module.

33Infineon, 2014a, page 1774

69

Chapter 5. Implementation of the HAL

IfxQspi_SpiMaster.ciLLDs

Sublayer A

...Dev1 DevN

Sublayer B

Interface to external SPI devices

Q
SP

IS
W

m
od

ul
e

Figure 5.23.: Architecture of the SPI software module

The channels represent the external devices and hold the device specific information (the
QSPI hardware module the device is connected to, the slave select port pin, etc.). A channel
is initialized by the function IfxQspi_SpiMaster_initChannel (). Like the initialization
function of the hardware module it takes the configuration variable as parameter and initial-
izes the channel accordingly. The connection to the channel is stored at the base address of
* chHandle in the structure QSPIn (n = 0 - 4) of the QSPI software module.

Table 5.9.: Functions of iLLD used by QSPI module34

Name Parameters Return
SpiMaster_initModule SpiMaster *handle SpiMaster_Config *config void
SpiMaster_initChannel SpiMaster_Channel *chHandle

SpiMaster_ChannelConfig *chConfig
SpiIf_Status

SpiMaster_exchange SpiMaster_Channel *chHandle
void *src
void *dest
sint16 count

SpiIf_Status

For communication via SPI the iLLD provides the function IfxQspi_SpiMaster_exchange .
The function takes a pointer to a variable of type IfxQspi_SpiMaster_Channel as argu-
ment. Thereby the device for communication is defined. The base address of an array is
passed to the function, holding the data to be sent. A second base address of the same
type defines where received data shall be stored. The last argument defines the number of
34For a compact illustration the prefix IfxQspi in the names of the functions and data types is omitted.

70

Chapter 5. Implementation of the HAL

elements in the array.
To provide the possibility to send data to SPI devices, while the interface is busy, the QSPI
software module is implemented by means of a queue. Further data to be sent can be marked
with two priority levels. For this purpose, all the information necessary for communication
with an external device35 are encapsulated in the structure QSPIMessageObject .
To send and receive data, a message object is stored in a queue by calling the function
QSPI_QueueMO (), which takes the address of a message object and a priority (high or
low) as parameters. The function stores the address of the message object and the priority
into the next free element of QSPI_nodelist. QSPI_nodelist [] is a array of structure
type QSPINode, with the three members message (address of the relevant message object),
priority (high or low) and next (address of the next node).
For each of the four interfaces of the hardware QSPI module a corresponding global variable
QSPI_Queue0 - QSPI_Queue3 exists. They are of type QSPIQueue and hold the address of
the first element in QSPI_nodelist to be sent, an array of size 2 with the addresses of the
last element of priority high and low and the current size of the queue. The flowchart given
in figure 5.24 of the function QSPI_QueueMO () illustrates how a QSPIMessageObject is
queued. The function takes the address of the message object and the priority (high or low)
as arguments. These parameters are encapsulated in a variable of type QSPINode. The
pointer next of the node (which is intended to point to the next node to send) is first set
to zero. By comparing the counter for the size of the nodelist with zero, it is detected if this
node is the first node. In this case the pointer head of the queue is set to the address of the
node in the node list. Since it is the only node the corresponding tail pointer (one for high
priority and one for low) is also set to the address of this node.
If the queue is not empty, the priority of the node at the address stored in head of the queue
is compared with the priority of the current node, to detect if this node is the first one with
high priority. If this is the case, the pointer next is set to the same address head of the
queue is pointing to and head is set to the new node. This means that the new node is
inserted as first node to send. If the new node is not the first node with high priority it is
checked if there is already a node with the same priority in the queue. If this is not the case,
the new node has to be inserted after the last node of high priority. Otherwise it is checked if
the existing node is marked with high priority and if this holds true, the new node is inserted
as last node of high priority. In both cases next of the new node is set to same address
next of the existing node was pointing to.
At the end of the function the tail pointer (corresponding to the priority of the new node)
of the queue is set to the new node and the size of the queue is incremented.

35This includes the corresponding channel, the memory address of data to transmit, the memory address of
data to receive and the status of a message

71

Chapter 5. Implementation of the HAL

function call: message object an priority passed

Insert passed MO
and priority as
node to nodelist

First
node?

First node
with high
prio?

Already a
node with
same prio?

Set next of last
node with high
prio to this node

Set tail of same
prio to this node
and increment
queue size

Set head to
this node

Set next of
this node to
same as head

High prio?

Set next of
this node to
same as next
of last node
with high prio

Set next of last
node to with same
prio to this node

no

no

no

yes

yes

yes

yes

no

Figure 5.24.: Flowchart of the queue function

72

Chapter 5. Implementation of the HAL

Listing 5.7 gives an example of queuing message objects with different priorities. First two
message objects (MO) with low priority are added, followed by three MOs with high priority
and one with low. This results in a configuration shown in figure 5.25.

1 // Enqueue message objects;
2 QSPI_QueueMO(&mo1, low_priority);
3 QSPI_QueueMO(&mo2, low_priority);
4 QSPI_QueueMO(&mo3, high_priority);
5 QSPI_QueueMO(&mo4, high_priority);
6 QSPI_QueueMO(&mo5, high_priority);
7 QSPI_QueueMO(&mo6, low_priority);

Listing 5.7: Example of queueing message objects with different priorities

The head pointer of the queue is pointing to the first node, queued with high priority. The
next pointer of this node points to the next node with high priority. Since mo5 is the last
MO inserted with high priority the tail pointer for high priority points to the corresponding
node. The tail pointer for low priorities points to the node corresponding to mo6.

Queue

*tail[0]
*tail[1]

*head

size = 6

*message priority next
*mo1 LOW
*mo2 LOW
*mo3 HIGH
*mo4 HIGH
*mo5 HIGH
*mo6 LOW
... ...

Node list

Figure 5.25.: Enqueued message objects

To the first node in the queue the function QSPI_TransmitBuffer is provided. It calls the
function from the iLLD to exchange data with and passes the data of the message object in
the first node to it. The function sets the DMA (Direct Memory Access) to copy the data
to be sent to the correspondent QSPI module. After reception of the data from the device
DMA is used to copy the data to the receive array of the message object and an interrupt
is generated. The head and tail pointers of the queue are set accordingly and the node is
removed from the queue. In the ISR of the DMA the functtion QSPI_TransmitBuffer is
called again. If the queue is not empty the next node is sent. Figure 5.26 illustrates the
communication procedure.

73

Chapter 5. Implementation of the HAL

Q
ue
ue

Ta
il
hi
gh

Ta
il
low

he
ad

siz
e
=

6

no
de

3

no
de

2

no
de

1

no
de

4

no
de

5

no
de

6

Q
ue
ue

Ta
il
hi
gh

Ta
il
low

he
ad

siz
e
=

5

no
de

2

no
de

1

no
de

4

no
de

5

no
de

6

Q
ue
ue

Ta
il
hi
gh

Ta
il
low

he
ad

siz
e
=

0

t

Tr
an
sm

itB
uff

er
()

IS
R

IS
R

D
M
A

D
M
A

SP
I

D
M
A

D
M
A

SP
I

D
at
a
ex
ch
an
ge

Co
py

da
ta

to
Q
SP

I

Co
py

da
ta

fro
m

Q
SP

I

Figure 5.26.: QSPI communication procedure36

36Refer to example in figure 5.25

74

Chapter 5. Implementation of the HAL

Every on-board-chip connected to one of the four interfaces is abstracted by a module placed
in sublayer B. The purpose of this modules is to provide abstracted functions for the commu-
nication with the peripheral devices to the processes in ASCET. Therefore modules implement
the different protocols of the devices. However these functions only queue messages into the
corresponding queue, where the sending is triggered in a periodic task in ASCET. An example
for such a module is given in 6.2.
The only function of the SPI software module directly accessed from ASCET is the initializa-
tion function for the QSPI hardware modules. All other functions are provided by the device
modules in sublayer B, which take use of the QSPI module in sublayer A.
Table 5.10 summarizes the functions provided by the SPI and QSPI37 software module. The
return type of all functions is void.

Table 5.10.: Interface to the SPI and QSPI software module

Function Parameters Description
SPI_Init void Provides access to the

initialization function of the QSPI
hardware modules and calls
QSPI_init.

QSPI_Init void Initializes the QSPI hardware
modules, port pin connections
and a channel for each connected
SPI device.

QSPI_TransmitBuffer void Transmits the first message
object in the queue and updates
the queue accordingly.

QSPI_QueueMO QSPIMessageObject *p_mo
QSPIMoPriority priority

Adds a message object in form of
a node to the queue.

37The QSPI software module is placed in sublayer A and accessed by sublayer B.

75

6. Evaluation

The functionalities of all implemented software modules have been verified and tested for
use with AVL EMS.
In the following the module test of the MultiCAN module is described. It is a representative
example of the verification of the implemented modules.
Further the interaction of the MSC, PWMIO and SPI modules was tested. An analysis of
the results is included as well.

6.1. MultiCAN module

To evaluate the function of the MultiCan module a project in ASCET was generated. The
source files of the module was provided during the build process by adapting the configuration
file for the project.
The example project contains an ASCET module providing the processes init, _receive
and _transmit. The process init is assigned to the initialization task and contains the
function call for the initialization of the CAN hardware module of TC277T, provided by the
MultiCan module. Further it initializes two message objects of type CAN_MO declared in
the header of the ASCET module. In the example project Node0 of the microcontroller is
initalized to 1Mbaud.
The first message object mo1 is initialized for transmission from CAN node 0 as the hardware
message object 8 of the microcontroller with the extended identifier 0x1D17 and a data
length code of 8 bytes.
The second massage object mo2 is initialized as receive message at CAN node 0, hardware
message object 9 and the identifier 0xD12. The data length code is also set to 8 bytes.
The acceptance mask is set to 0 x3FFFFFFF (all identifiers) for both messages. The function
CAN_AddMO sets the defined properties to the selected hardware message objects. Listing 6.1
shows the statements of process init.

1 CAN_vMultiInit(kbaud_1000, kbaud_500, kbaud_500, kbaud_500);
2

3 mo1.direction = transmit;
4 mo1.identifier = 0x1D17;
5 mo1.moNumber = 8;
6 mo1.node = CAN_Node0;
7 mo1.acceptenceMask = 0x3FFFFFFF;
8 mo1.dlc = 8;
9 CAN_AddMO(&mo1);

77

Chapter 6. Evaluation

10

11 mo2.direction = receive;
12 mo2.identifier = 0x1D2;
13 mo2.moNumber = 9;
14 mo2.node = CAN_Node0;
15 mo2.acceptenceMask = 0x3FFFFFFF;
16 mo2.dlc = 8;
17 CAN_AddMO(&mo2);

Listing 6.1: CAN Init-process in ASCET

The process _receive (the code is shown in 6.2) checks the reception of a message with the
identifier of mo2 by using the function CAN_GetMOData. To be able to analyze the received
data, while debugging, a statement concerning the data was added to the if-clause.

1 if(CAN_GetMOData(&mo2))
2 {
3 mo2.data[0]++;
4 }

Listing 6.2: CAN receive process in ASCET

Transmitting the message object mo1 is done with the process _transmit. The data in the
software message object is set to some values in a for-loop. Then the data is written for the
hardware message object by calling the function CAN_SetMOData and is actually sent by the
function call of CAN_Send.

1 for(int i=0; i<8; i++)
2 {
3 mo1.data[i] = 0xA0 + i;
4 }
5 CAN_SetMOData(&mo1);
6 CAN_Send(&mo1);

Listing 6.3: CAN transmit process in ASCET

Both processes _receive and _transmit are assigned to an alarm task executed with a
period of 100ms.

The software was tested on the TriBoard TC2X7 (see 2.1), equipped with the High Speed
CAN-Transceiver TLE62501. Channel 1 of the CANcaseXL by Vector was connected to the
CAN0 interface of the Triboard and the software CANalyzer by Vector was used.

The test of the example project showed that the message with the extended identifier 0x1D17
with the correct data was successfully sent over the CAN bus. The measured trace is
illustrated in figure 6.1.

1Infineon, 2008b

78

Chapter 6. Evaluation

Figure 6.1.: Trace of CAN Bus

By setting a breakpoint in the debugging software Trace32 by Lauterbach and sending a
message with the identifier 0x1D2 and some defined data to the CAN bus with CANalyzer,
the reception of the correct data could also be confirmed as illustrated in figure 6.2 and
figure 6.3.

Figure 6.2.: Transmission of CAN message with CANalyzer

Figure 6.3.: Reception of a CAN message in the software of TC277T

79

Chapter 6. Evaluation

6.2. MSC, PWMIO and SPI module

To test the functionalities of the MSC, PWMIO and SPI module a project, which makes
use of EMS on-board Low Side Switch IFX TLE6244, was created. The device is connected
to one of the EMSs SPI buses for configuration and diagnostic purposes and to one MSC
bus (connected to ENH). The data in high phase of the downstream data frame defines the
signal level of the output pins of TLE6244.
The IFX TriBoard TC2X7 was connected to the EMS via the pin headers of the Connector
PCB, plugged to the EMS main board. Figure 6.4 shows the test setup.

Figure 6.4.: Test setup with TC2X7 connected to AVL EMS main board

The software first initializes the QSPI module and IFX TLE6244 by calling the initializa-
tion function from the module TLE6244, placed in sublayer B of the SPI module (refer to
figure 5.23). The Low Side Switch is initialized by receiving three 16 bit blocks (0x2E00,
0x24FF and 0x27FF)2 via SPI.
The Micro Second Channel (MSC) is initialized according to Configuration of MSC in AVL
EMS (5.6.2), by calling the function MSC_init.
After the initialization of the MSC the GTM module is initialized. All PWM output signals’
duty cycles are set to 0 except the one of PWM33.

2The initialization process and configuration of TLE6244 are not discussed any further.

80

Chapter 6. Evaluation

PWM33 is generated by TOM1, channel 7. The output signal of TOM1 channel 7 is con-
nected to ALTINH7. This signal level is distributed to bit 7 of SRH register (Shift Register
High) of the MSC downstream channel.
TLE6244 maps the input from the SRH active phase of MSC downstream data frame to its
outputs. Therefore the signal from PWM33 is mapped to pin OUT7 of the Low Side Switch.
The corresponding code can be found in appendix A.1.

6.2.1. Measurement

The initialization of the Low Side Switch TLE6244 via SPI is illustrated in figure 6.5. The
signals of the serial peripheral interface was measured and interpreted (illustrated in cyan).
The reception of write instructions sent on MTSR to the Low Side Switch are acknowledged
with 0x1500 on the MRST line.

Figure 6.5.: Initialization of TLE6244 via SPI

The period of PWM33 was set to 5ms (200Hz) with a duty cycle of 50%. This period is
common in most applications. Figure 6.6 shows the signals of the MSC and output signal at
the corresponding pin of TLE6244.

81

Chapter 6. Evaluation

Figure 6.6.: MSC signals and output of TLE6244

Figure 6.7.: MSC signals and output of TLE6244 at transition from low to high-state

82

Chapter 6. Evaluation

The output PWM signal shows the configured period and duty cycle. However, the timing
of the transitions is not constant, resulting in a small deviation of period and duty cycle. A
measurement of the standard deviation of the period and duty cycle was done. The result
values were 12.99µs for the period and 0.34% (16.8µs) for the duty cycle. This is not rele-
vant in most applications.
The delay time of the reception of a bit that corresponds to an output signal on the MSC and
the actual transition from low to high-state was measured with a constant value of ∼ 16µs
as illustrated in figure 6.7. The delay time of the transition from high to low-state could also
be measured with a constant value of ∼ 11.8µs.

A second measurement with a period of 1ms with a duty cycle of 50% was done. Figure 6.8
depicts the output signal at the corresponding pin of TLE6244.

Figure 6.8.: Output of Low Side Switch (period is set to 1ms and duty cycle to 50%)

The output signals period and duty cycle vary. The jitter of the output signal is caused by
the frame length of the MSC. In 5.6.2 (Configuration of MSC in AVL EMS) the duration
of tF RAME = 35µs was calculated. Therefore, one specific output of TLE6244 is updated
every 35µs and transitions of the output signals can only take place at multiples of this time.
Depending on the output signal level of TOM1 channel 7 at the time the corresponding
bit in SRH of MSC downstream channel is shifted out, the PWM signals high phase is

83

Chapter 6. Evaluation

tHIGHmin = 14 tF RAME = 490µs or tHIGHmax = 15 tF RAME = 525µs.
The same holds for the period of the signal: tP min = 27 tF RAME = 980µs and tP max =
28 tF RAME = 1015µs.
To analyze the jitter of the output, the output signal and the signals of the MSC (ENL,
ENH, SO and FCLK) was measured with a period of 200µs and a duty cycle of 20% (40µs).
Figure 6.9 depicts the MSC signals, the output of TOM1 channel 7 (red) and the resulting
signal at output pin OUT7 of TLE6244 (green).

Figure 6.9.: MSC signals, output of TOM1 channel 7 and output of TLE6244

It can be seen that the output of TOM1 channel7 is ”sampled” with a period of 35µs.
The first high phase of the channels output shows the correct width of 40µs. However it is
sampled once, resulting in a high-level state of OUT7 for 35µs until the next state of the
channels output is received (low).
The second high phase (40µs) is sampled twice. Therefore the output OUT7 shows a high
phase of 70µs. This means that in this case, the high phase of consecutive periods always
alternate between 35µs and 70µs.
The resulting jitter output signal is illustrated in figure 6.10.

In the case of high frequencies and duty cycles, which lead to a high phase shorter than the
frame duration tF RAME, the resulting output signal can show 0 duty cycle for some periods,

84

Chapter 6. Evaluation

since the TOM channels output is not ”sampled” at high state.
However, usually the periods of the PWM signals transmitted via the MSC bus of the EMS,
are lower than 1ms (1kHz). This leads to a minimal duty cycle and a maximal jitter of
3.5%, this is not relevant in most applications.

Figure 6.10.: Output of Low Side Switch (period is set to 200µs and duty cycle to 20%)

85

7. Conclusion and Outlook

In the course of this work, the basis for the usage of a multicore microcontroller in AVL EMS
(Engine Management System) was developed.
This basis consists of a Hardware Abstraction Layer (HAL), meeting the requirements of
rapid prototyping software development. It offers the possibility to port the current ASW
(Application SW) to the next generation of the EMS, powered by a state-of-the-art multi-
core microcontroller, to cover the increasing complexity of tasks a power train management
system has to handle.

The tools for the development of rapid prototyping software, including an automotive real-
time operating system, were discussed and the concept of the software was outlined. Based on
the smart and modular design of the rapid prototyping software, a concept for the integration
of the HAL, abstracting hardware access to an ASW developer was introduced. It is aligned
to the ASW development and provides flexible access to the HAL.
The developed HAL comprises device drivers for peripherals and interfaces of the multicore
microcontroller as well as drivers for intelligent on board devices. Each of the software
modules provides a consistent and abstracted access to peripherals. The functionalities of
the resulting software modules could be verified and analyzed by different tests.

During development of the device drivers it was necessary to decide which port pins of the
microcontroller are used for peripheral devices. With this definitions the work can be used
as guidance for the future design of a multicore processor board. For further integration of
the HAL into the rapid prototyping software a multicore processor board is mandatory and
will be the next step in the development of the next generation of AVL EMS.

87

A. Code

A.1. MSC, PWMIO and SPI module test project

1 #include "PWM.h"
2 #include "MSC.h"
3 #include "SPI.h"
4

5 PWM_setup PWMSetup[NUMB_OF_PWMs];
6

7 SPI_init(); // Init QSPI modules
8 TLE6244_init(); // Init Low Side Switch
9 MSC_init(); // Init Micro Second Channel

10 PWM_init(); // Init the Clock Management Unit of GTM
11

12 for(i=0;i<NUMB_OF_PWMs;i++) // Init period and duty cycle of PWMs
13 {
14 PWMSetup[i].period_us = 1000;
15 PWMSetup[i].dutyCyle_10 = 0;
16 }
17 PWMSetup[33].period_us = 1000;
18 PWMSetup[33].dutyCyle_10 = 500;
19 PWM_OUT_init(&PWMSetup[0]); // Init PWM signals

Listing A.1: Initialization

1 PWMSetup[33].period_us = 200;
2 PWMSetup[33].dutyCyle_10 = 200;
3 PWM_OUT_updatePWM(33, &PWMSetup[33]);

Listing A.2: Update

89

Listings

3.1. Extract of moduleA.c . 22
3.2. Extract of moduleB.c . 22
3.3. Task definitions in conf.c . 22

5.1. Encapsulation of the SFRs of used VADC groups 38
5.2. Definition of the enumeration for accessing the SFR array 39
5.3. Initialization of PWM 0 . 53
5.4. Example of use of the PWMOUT module 54
5.5. Example of use of the PWMIN module . 55
5.6. Adding a message object to CAN . 65
5.7. Example of queueing message objects with different priorities 73

6.1. CAN Init-process in ASCET . 77
6.2. CAN receive process in ASCET . 78
6.3. CAN transmit process in ASCET . 78

A.1. Initialization . 89
A.2. Update . 89

91

Bibliography

Alan Holt, Chi-Yu Huang (2014). Embedded Operating Systems. Springer.
Altium (2012). TASKING VX-toolset for TriCore User Guide. MA160-800 (v4.0). Altium
Limited (cit. on pp. 11, 23).

Andrew S. Tanenbaum, Herbert Bos (2015). Modern Operating Systems. Pearson Education,
Inc.

AUTOSAR (2016). Layered Software Architecture. 4.3.0. AUTOSAR (cit. on pp. 25, 26).
Bosch (1991). CAN Specification. Version 2.0. Robert Bosch GmbH. D-70442 Stuttgart (cit.
on p. 60).

Bosch (2013). GTM-IP Specification. 1.5.5.1. Robert Bosch GmbH (cit. on p. 40).
Corrigan, Steve (2008). Introduction to the Controller Area Network (CAN). Tech. rep.
SLOA101A. Dallas, Texas: Texas Instruments (cit. on p. 60).

Eichberger, B. and E.; Unger (2012). “Design of a Versatile Rapid Prototyping Engine Man-
agement System”. In: Proceedings of the FISITA 2012 World Automotive Congress (cit.
on pp. 2, 3).

ETAS (2008). ASCET V6.1 Getting Started. 10565-UG-5.1.1 EN-12-2012. ETAS GmbH.
ETAS (2011). ASCET-SE V6.1 User’s Guide. EC014201 R6.1.3 EN. ETAS GmbH (cit. on
pp. 10, 18, 20).

ETAS (2012). RTA-OS User Guide. 10565-UG-5.1.1. ETAS GmbH. Stuttgart (cit. on pp. 13,
15, 17).

Gijesel, Ino de (2010). CAN und EOBD in der Fahrzeugtechnik. Ed. by Kurt Diedrich. Aachen:
Elektor.

Hemlin; Dan Larsson; Jonas (2015). “Exploring the Generic Timer Module’s Feasibility for
Truck Powertrain Control”. MA thesis. Chalmers University of Technology (cit. on p. 35).

Infineon (2003). TLE6244 - 18 Channel Smart Lowside Switch. 2003-08-29. Infineon Tech-
nologies AG. D-81541 München, Germany (cit. on p. 56).

Infineon (2005). AP32013 Connecting TLE6244X to TC1796 via usBus. V 1.0. Infineon
Technologies AG. 81726 Munich, Germany81726 Munich, Germany.

Infineon (2008a). AP16115 Programming the on-chip Flash using the SSC Bootstrap Loader.
V1.01. Infineon Technologies AG. 81726 Munich, Germany81726 Munich, Germany.

Infineon (2008b). TLE6250 High Speed CAN-Transceiver. Rev. 4.0. Infineon Technologies
AG. 81726 Munich, Germany (cit. on p. 78).

Infineon (2012). TC1798 32-Bit Single-Chip Microcontroller Users Manual. V1.2. Infineon
Technologies AG. 81726 Munich, Germany.

Infineon (2013). TriBoard TC2X7 Hardware Manual. V 1.3. Infineon Technologies AG. 81726
Munich, Germany (cit. on pp. 5, 6).

93

Bibliography

Infineon (2014a). AURIXTM TC27x C-Step. Edition 2014-12. Infineon Technologies AG.
81726 Munich, Germany (cit. on pp. 6, 31, 34, 35, 37, 40, 42–45, 47–52, 56, 57, 60,
63, 68, 69).

Infineon (2014b). TC275 / TC277 Data Sheet. V 1.0. Infineon Technologies AG. 81726
Munich, Germany.

Infineon (2015a). TC277 / TC275 / T270 Addendum. v1.3. Infineon Technologies AG. 81726
Munich, Germany.

Infineon (2015b). User Manual - Software Framework Tools. V3.2. Infineon Technologies AG.
81726 Munich, Germany (cit. on p. 23).

ISO/IEC (1994). Information Technology - Open SSystem Interconnection - Basic Reference
Model: The Basic Model. Genève, Switzerland: ISO/IEC (cit. on p. 60).

Lauterbach (2010). JTAG Debugger - Technical Information. Lauterbach GmbH. D-85649
Hofolding (cit. on p. 8).

Mandl, P. (2014). Grundkurs Betriebssysteme: Architekturen, Betriebsmittelverwaltung, Syn-
chronisation, Prozesskommunikation, Virtualisierung. SpringerLink : Bücher. Springer Fachme-
dien Wiesbaden. url: https://books.google.at/books?id=T5SLBAAAQBAJ (cit. on
p. 17).

Noergaard, T. (2012). Embedded Systems Architecture: A Comprehensive Guide for En-
gineers and Programmers. Embedded technology series. Elsevier Science. url: https:
//books.google.at/books?id=96jSXetmlzYC (cit. on pp. 11, 12).

NXP (2016). Programmable solenoid controller PT2000. Rev. 7.0. MC33PT2000. NXP Semi-
conductors.

Qing Li, Caroline Yao (2003). Real-Time Concepts for Embedded Systems. CMP Books.
Robert Oshana, Mark Kraeling (2013). Software Engineering for Embedded Systems. Elsevier.
RPEMS - Rapid Prototyping Engine Management System (2017). Accessed: 2017-01-30.

url: www.avl.com (cit. on p. 1).
Schaffer, Horst (2008). “Entwicklung eines HAL für den 32-bit Mikrocontroller TC1775 der
Fa. Infineon”. MA thesis. Technische Universität Graz.

Vector (2015). Handbuch - CANcaseXL, CANcaseXL log. Version 5.2. Vector Informatik
GmbH. Ingersheimer Straße 24, D-70499 Stuttgart.

Wikipedia (2015). Microsecond Bus — Wikipedia, The Free Encyclopedia. [Online; ac-
cessed 25-March-2017]. url: https://en.wikipedia.org/w/index.php?title=
Microsecond_Bus&oldid=649198410 (cit. on p. 56).

94

https://books.google.at/books?id=T5SLBAAAQBAJ
https://books.google.at/books?id=96jSXetmlzYC
https://books.google.at/books?id=96jSXetmlzYC
www.avl.com
https://en.wikipedia.org/w/index.php?title=Microsecond_Bus&oldid=649198410
https://en.wikipedia.org/w/index.php?title=Microsecond_Bus&oldid=649198410

	List of Abbreviations
	List of Figures
	Introduction
	AVL (Rapid Prototyping) Engine Management System (EMS)
	Hardware architecture
	Software architecture

	Technical goal

	Utilized hardware
	TriBoard TC2X7
	Power Supply
	Startup configuration

	Connector PCB
	Lauterbach LA-7704

	Utilized software
	ETAS ASCET
	ETAS RTA-OS5
	Real-time operating systems
	Main concepts of ETAS RTA-OS5
	Multicore support of RTA-OS5

	Development with ASCET
	Infineon AURIX Software Framework
	TASKING VX-toolset for TriCore

	Background
	Definition of hardware abstraction layer
	Current AVL EMS software architecture

	Implementation of the HAL
	Architecture of the software
	Multicore considerations
	Digital in- and outputs
	TC277T General Purpose I/O Ports
	DIGIO software module

	Analog to Digital Conversion
	TC277T Versatile Analog-to-Digital Converter (VADC)
	VADC software module

	Pulse width modulated signals
	TC277T Generic Timer Module
	PWMIO software module

	Microsecond Channel
	TC277T Micro Second Channel Interface
	MSC software module

	Controller Area Network
	TC277T Controller Area Network Controller
	MultiCan software module

	Serial peripheral interface
	TC277T Queued Synchronous Peripheral Interface
	SPI software module

	Evaluation
	MultiCAN module
	MSC, PWMIO and SPI module
	Measurement

	Conclusion and Outlook
	Appendix Code
	MSC, PWMIO and SPI module test project

	Listings
	Bibliography

