
 Graz, December 2017

Maximilian Wilfinger, BSc

Development Process Optimization

of Mechatronic Systems in

Automotive Applications

MASTER THESIS

to achieve the university degree of

Diplom-Ingenieur

Master degree program:

Production Science and Management

submitted to

Graz University of Technology

Faculty of Mechanical Engineering and Economic Sciences

Institute of Automotive Engineering

Supervisor

Assoc. Prof. Dipl.-Ing. Dr. techn. Mario Hirz

III

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere

als die angegebenen Quellen / Hilfsmittel nicht benutzt und die den benutzten Quellen

wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..

 (Unterschrift)

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than

the declared sources / resources, and that I have explicitly marked all material, which

has been quoted either literally or by content from the used sources.

…………………………… ………………………………………………..

 date (signature)

IV

V

Acknowledgement

This thesis was written at the Institute of Automotive Engineering of Graz University of

Technology in close cooperation with the Department of Engineering Project

Management at Magna Powertrain.

My supervisor, Assoc. Prof. Dipl.-Ing. Dr. techn. Mario Hirz, deserves special thanks for

the scientific support of my work at the Institute of Automotive Engineering. His door was

always open whenever I ran into a trouble spot or had a question about my research or

writing.

I would also like to thank Dipl.-Ing. Irenka Mandic of the EPO Department at Magna

Powertrain for the integration of the thesis into her team and the professional support I

have always received.

Furthermore, I would also like to thank Dipl.-Ing. Helmut Brunner for his support at the

Institute of Automotive Engineering and Dipl.-Ing. Dr. techn. Christian Kreiner for his

excellent previous work on SPICE at the Institute for Technical Informatics.

Of no less importance were my fellow students of the innermost core PSM group, who

have made a significant contribution to my positive and sometimes wistful reflection on

the time at TU Graz. Thank you for your professional and non-professional support.

I would like to express my deepest gratitude to the people who have raised me and

brought me up in many strenuous years. They have made it possible for me to pursue

my personal and professional development through their versatile and generous support

to this day. This accomplishment would not have been possible without them.

Thank you!

Maximilian Wilfinger

VI

VII

Kurzfassung

Steigende Kundenanforderungen, globaler Wettbewerb und Kostendruck erfordern reife

Produkte zum Serienanlauf und robuste Entwicklungsprozesse entlang der gesamten

Zulieferer-Kette mit einer proaktiven Ausrichtung zur Fehlervermeidung. Jeder Prozess

muss präventiv so robust und stabil gestaltet werden, dass jede Entwicklungsaktivität,

jedes Bauteil und damit auch jedes Fahrzeug, den hohen Qualitätsanforderungen

entspricht. Nur so kann es gelingen das Null-Fehler Ziel zu erreichen. Diese Masterthesis

behandelt die Optimierung bestehender Entwicklungsprozesse von komplexen

mechatronischen Systemen in automobilen Anwendungen. Zunächst wird der aktuelle

Stand der Technik im Bereich mechatronischer Systeme, internationaler Standards und

gängiger Entwicklungsprozesse, sowie deren Methodik als Grundlage ausführlich

dargestellt. Der Fokus liegt dabei auf der Embedded-Software Entwicklung

elektronischer Steuergeräte, von der Konzeptanforderung bis zur Serienreife. Ziel der

Masterarbeit ist die Entwicklung eines umfassenden Prozessmodells, welches nach der

Analyse bestehender Prozesse, verschiedenster Kundenanforderungen sowie

internationaler Normen, Abweichungen und Potentiale zur Prozessoptimierung aufzeigt.

Grundlage der Vergleichsanalyse ist der VDA-Standard Automotive SPICE, welcher die

Basis zur Optimierung vorhandener Entwicklungsprozesse darstellt. Das Tool zur

Prozessanalyse soll modular so konzipiert werden, dass es das Potential hat, zukünftig

um weitere Standards und herstellerspezifische Lastenhefte erweitert zu werden. Im

Verlauf dieser Masterarbeit sollen, nach der Konzeptentwicklung einer funktionierenden

Umgebung zur zielgerechten Darstellung der Abweichungen aller analysierten Quellen,

jeder zu bewertende Prozess und dessen Basispraktiken dem genormten Pendant

zugeordnet werden. Eine Herausforderung stellt dabei die Zuordnung und Verknüpfung

der verschiedenen Quellen dar, bei denen es sich um komplex verschachtelte n:m

Beziehungen handeln kann. Diese Umgebung soll für definierte Nutzergruppen, z.B.

Prozesseigentümer, Management und Qualitätssicherung, die gezielte Analyse der

Abweichungen und Bedarfe zur Prozessoptimierung ermöglichen. Erstellung von

Angeboten, Anforderungsanalysen, Bewertungskriterien und eine Risikoidentifikation

sind dadurch in einer frühen Phase der Produktentwicklung ebenfalls einfacher und

zielbewusst realisierbar.

VIII

IX

Abstract

Increasing customer requirements, global competition and cost pressure require mature

products that are ready for series production and robust development processes along

the entire supply chain with a proactive focus to prevent failures. Every process must be

designed to be so robust and stable that every development activity, every component

and therefore every vehicle meets the high quality requirements. This is the only way to

achieve the zero-defect target. This master thesis deals with the optimization of existing

development processes of complex mechatronic systems in automotive applications. At

the beginning, the current state of the art in the field of mechatronic systems,

international standards and development processes as well as their methodologies are

presented in detail as a basis. The focus is on the embedded software development of

electronic control units, from conceptual requirement definition to series production

readiness. The objective of this thesis is the development of a comprehensive process

model, which shows deviations and potentials for process optimization based on the

analysis of existing processes, various customer requirements as well as international

standards. The basis for the comparative analysis is the VDA Standard Automotive

SPICE, which represents the foundation for optimizing existing development processes.

This tool for the process analysis is to be modularly designed in such a way that it has

the potential to be extended in the future by further standards and manufacturer-specific

specifications. In the course of this master thesis, following the concept development of

a functioning framework for target-oriented representation of the deviations of all

analyzed sources, each process and its base practices is to be mapped to the

corresponding process of the standards. One of the challenges is the mapping and

correlation of the different sources, which may be complex n:m relationships. This

framework is intended to allow the targeted analysis of deviations and requirements for

process optimization for defined user groups, e.g. process owners, management and

quality assurance. The quoting process, requirement analyses, evaluation criteria and

risk identification are thus also easier and can be systematically implemented at an early

stage of product development.

X

Table of Contents

1 Introduction .. 13

1.1 Relevance of the Topic ... 13

1.2 Objectives ... 13

1.3 Structure and Methodology ... 14

2 Mechatronic Systems in Automotive Applications .. 15

2.1 Mechanics .. 17

2.2 Electrics and Electronics ... 18

2.3 Software ... 21

2.4 Functional Safety of Mechatronic Systems ... 24

3 Process Environment .. 27

3.1 Automotive Engineering Processes .. 27

3.2 Systems Engineering .. 29

3.3 V-Model Development Approach .. 31

3.3.1 V-Model of Automotive Software Development 32

3.4 Phase-Gate Process ... 33

3.5 Embedded Software Engineering ... 34

3.5.1 Methodologies and Development Tools ... 36

3.5.2 Structuring the Software Development Process 38

3.6 Concurrent Engineering .. 39

3.7 Project Management ... 41

3.7.1 Traditional Management Practices ... 43

3.7.2 Agile Management Approaches ... 44

4 Relevant Guidelines ... 47

4.1 Introduction to Guidelines ... 47

4.1.1 Necessity of Guidelines ... 48

4.1.2 Structuring Approaches ... 49

4.1.3 Assessment of Guidelines ... 51

4.2 Applicable Standards .. 51

4.2.1 IATF 16949 (Quality Management) .. 52

4.2.2 ISO 26262 (Road Vehicles – Functional Safety) 53

4.2.3 ISO/IEC 15504 (SPICE)... 54

4.3 Customer Requirements ... 55

4.3.1 OEM A ... 56

4.3.2 OEM B ... 56

4.3.3 OEM C ... 57

4.4 Best Practices ... 57

XI

5 Automotive SPICE .. 59

5.1 Introduction to Automotive SPICE ... 59

5.1.1 Relevance for Automotive Applications .. 60

5.1.2 History of the Standard .. 61

5.1.3 Process Capability Level.. 64

5.2 Scope of Automotive SPICE ... 67

5.3 Components of Automotive SPICE ... 69

5.3.1 Process Outcomes .. 69

5.3.2 Base Practices ... 70

5.3.3 Work Products ... 70

5.4 Structure of the Standard .. 71

5.5 Assessment of Automotive SPICE .. 73

6 Concept Development for Process Analysis ... 79

6.1 Introduction to the Corporation .. 79

6.2 Current Situation and Challenges ... 80

6.3 Approach to Process Analysis .. 82

6.4 Approach to Concept Development .. 84

6.5 Outcomes and Tool Concept .. 88

7 Optimization of Development Processes ... 101

7.1 Methodology of the Optimization ... 101

7.2 Results and Findings .. 102

7.3 Exemplary Processes ... 105

7.3.1 MAN.3 Project Management .. 106

7.3.2 SWE.3 Software Detailed Design and Unit Construction...................... 108

7.4 Potentials of Optimization ... 112

7.4.1 Capability Maturity Model Integration ... 113

7.4.2 Relation to ISO 26262 – Functional Safety .. 114

8 Summary .. 117

9 Bibliography ... 119

10 List of Figures .. 123

11 List of Tables .. 125

12 List of Abbreviations ... 127

A Appendix .. 129

A.1 Developed VBA Code for Mapping BPs from One Source 130

A.2 Mapping between ASPICE 2.5 and 3.0 (MAN.3 Scope) 131

A.3 Mapping between ASPICE 2.5 and 3.0 (SWE.3 Scope) 133

A.4 Mapping between Outcomes and WPs (SWE.3 Scope) 136

XII

Introduction 13

1 Introduction

1.1 Relevance of the Topic

Automobile vehicle manufacturers – or the brand as referred to original equipment

manufacturer (OEM) – are now transforming their vehicles from mechanical to advanced

electronically controlled systems. This makes the software, with an increasing need for

complexity, a major vehicle component, as it is part of embedded systems that

electronically control a variety of vehicle functions. In the last generations of vehicles,

the number of electronic control units and processors has risen significantly, both among

low-cost and luxury models. These innovations represent safety-critical functions and

therefore have to be precise and of high quality. Customers and OEMs also place high

requirements on vehicle quality and the reliability of their suppliers. In order to be able to

develop and produce mature products, the underlying processes must also meet high

quality standards. These development processes have to be closely coordinated with

the customer (i.e. OEM) in order to ensure that the product meets the customer

requirements. Suppliers must be able to implement these processes according to these

specifications. There are standardized guidelines and customer-specific specifications,

which must be taken into account in order to acquire and develop successful customer

projects.

1.2 Objectives

The objective of this master thesis is the creation of a comprehensive process model,

which includes the processes for the development of mechatronic systems in automotive

applications. The focus is on embedded software development according to the VDA

standard Automotive SPICE. Within the framework of the thesis, a tool concept for data

management and analysis is to be developed, which incorporates the process model. In

addition to the still valid Automotive SPICE 2.5 standard, the new version Automotive

SPICE 3.0 also comes into play. Automotive SPICE guidelines and several customer

requirements are likewise included in the process model. This is to be modularly

designed in such a way that it can be extended in the future by even more process

scopes and customer requirements. With the help of this tool it should be possible to

allocate and compare different requirements of the various sources. Based on the

analysis of the deviations, potential for process optimization can then be derived in order

14 Introduction

to cover a wide range of requirements of the automotive market by means of internal

processes. This process model allows a better understanding of one’s own capabilities

with regard to requirements and development processes and is intended to contribute to

the optimization of internal processes. This model will also be used to identify critical

issues and requirements where substantial backlog is needed. Once the processes have

been implemented and optimized on the basis of the analyzed requirements, this should

ensure increased process capability, which can also help to save resources in an early

development phase.

1.3 Structure and Methodology

This thesis is structured in such a way that the basics and the current state of the art of

technology are explained in detail. First, the actual mechatronic system and its structure

are briefly explained. Then the background and current topics of the entire process

environment in automotive development will be explained. Process models and

methodologies play a major role here, which are also the basis of many standards and

customer requirements. Subsequently, the current status of standardization in the field

of automotive software development is described and an explanation is given of the

added value resulting from a standardization of the development processes. As the basis

of the process model is the VDA Standard Automotive SPICE, this standard is explained

explicitly in detail. Both the historical development and the process models are described

here as well as how the process capability level is determined. Subsequently, the

practical part of the work is described in detail, whereby the conceptual design of the tool

for data management and analysis is in focus. Afterwards, results of the usability of the

tool and analyses of defined processes are presented whose deviations offer potentials

for process optimization. In the end, there is an outlook on how this process model can

be further optimized in the future, e.g. by adding further standards and even more

customer requirements.

Mechatronic Systems in Automotive Applications 15

2 Mechatronic Systems in Automotive Applications

Today, almost every active component in a car is a mechatronic system. Such a system

allows the component to interact with its environment through the control and adaption

to real-time information and the comparison to pre-defined actuating variables. This

chapter provides an introductory overview of the components and functions of a

mechatronic system in current automotive applications.

The word “mechatronic” is a portmanteau from the terms “mechanics” and “electronics”

where the term mechanics refers to fields of the discipline of mechanical engineering

(e.g. mechanics, hydraulics, pneumatics, etc.) whereas the term electronics describes

the hardware and software components of such a system [1]. Figure 2.1 illustrates the

various involved disciplines in the engineering and development process of complex

mechatronic systems. These disciplines have to cooperate closely to ensure a proper

product development that meets the defined customer requirements.

Figure 2.1 Mechatronic synergies of involved disciplines, cf. [1]

When earlier machines and precision engineered devices were characterized by the fact

that they mainly consisted of mechanical components, it is now clear that the interaction

of mechanical, electrical and electronic components can significantly increase the

performance of these systems. However, this requires a careful adaptation of the

Mechatronics

Mechanics

Electronics

Information

Technology

• Energy technology

• Hydraulics

• Pneumatics

• Drivetrains, gearboxes

• Vehicle engineering

• Precision engineering

• Measuring technology

• Control technology

• Power electronics

• Micro electronics

• Sensors

• Actuators

• Automation technology

• System theory

• Model building

• Software engineering

• Artificial intelligence

16 Mechatronic Systems in Automotive Applications

functions of individual components and assemblies as well as a holistic and discipline-

transcending mindset in design and execution. Mechanical systems in the form of

machines and devices often use the transformation of electrical, thermal, chemical or

mechanical energy into the respectively required energy form. The control and regulation

of the energy flow as well as of the overall process must be highly flexible due to the

increasing complexity of mechatronic systems. This requires that the real-time technical

measurement of process and disturbance variables is ensured as much as possible by

sensors, as well as intelligent information processing technology [2].

Mechatronic systems are today present in almost the entire motor vehicle. This ranges

from engine management systems and transmission control units all the way to energy

management and driving dynamic modules. That also includes the communication

between these systems, which is usually carried out via a standardized Binary Unit

System (BUS) protocol. Typical BUS topologies in today’s vehicles are for example the

Controller Area Network (CAN) BUS or the more powerful but also more complex Flexray

BUS. These topologies allow different components of a mechatronic system to exchange

information but also enables the complex interactions between different mechatronic

systems. Typical components of mechatronic systems are – but are not limited to –

sensors, processors, actuators and the basic mechanical system. Figure 2.2 provides a

schematic overview of the control function of a simplified mechatronic system. These

control functions generally follow the same pattern of regulating and adapting the basic

system. Sensors measure the actual values of a defined variable of the surrounding

environment. This result is then compared to predefined reference variables by the

processor, which are either stored or calculated from different input values. The

processor then makes the decision based on the comparison of the actual and the

reference variable to make changes in the basic system. By the use of actuators, the

mostly mechanical basic system is changed and adapted to correct the measured values

to be equal to the predefined value stored in the system. Such actuators are mostly

powered by auxiliary power and can be either active (e.g. electromechanical /

electrohydraulic) or semi-active (e.g. electromagnetic / hydromechanics). The existence

of the mechatronic system in a changing environment defines its purpose. Since the

interaction with the environment may change the defined and measured variables – and

thus the condition of the operations for the overall mechatronic system – constant control

and adaption is necessary to prevent failures and secure the system to operate normally.

That is why the control process of a mechatronic system is seen as a closed loop process

[3].

Mechatronic Systems in Automotive Applications 17

Figure 2.2 Closed loop control process of a mechatronic system [3]

2.1 Mechanics

Traditionally, most dynamic systems were based on traditional disciplines in the field of

mechanics – but still today, most mechatronic systems are based on the basic

mechanical principle of the behavior of physical bodies due to forces or displacement.

Classical mechanics in mechatronic systems are i.e. derived from the following [3]:

• Newtonian mechanics (kinematics/dynamics),

• Hydraulics,

• Pneumatics,

• Acoustics, etc.

In mechatronic systems, these classical mechanic disciplines are mapped to

components such as gears, drives, pumps or switches, just to name a few. Not only the

basic system can be built out of mechanical components but also functions can be

realized by traditional mechanics (e.g. sensors and actuators).

It is important to mention that innovations are nowadays less likely to occur in the field

of traditional mechanics, as this discipline is the oldest one in the context of mechatronic

systems. Especially in the automotive industry, innovation and patents in electronic

components and software technology are increasing tremendously [3].

18 Mechatronic Systems in Automotive Applications

2.2 Electrics and Electronics

Electrics and electronics (E/E) in integrated mechatronic systems are the connection

between the embedded control software and the basic mechanical system inside a

mechatronic component. Electric and electronic parts are hardware components such

as sensors, cables, integrated circuit boards but also microcontrollers and storage

memory. Measuring systems – so-called sensors – allow the detection of states of a

process. In this case, a sensor converts the physical quantity to be measured into an

electrical output signal, which serves for further processing. For example, mechanical

quantities such as force or torque can be converted into mechanical parameters such as

length, angle, force or deformation via levers, gearing or spring elements. To manipulate

and adapt, mechatronic systems make use of actuators. These are components of

mechatronic systems, which convert electrical actuating signals from an information

processing device (e.g. microcontroller) into mechanical control parameters required for

the control of a process in the process chain. In an open loop system, the program of a

microprocessor controls the action of an actuator (e.g. power currents). To change the

fixed control program, a human-machine interface is used. Automated processes use

closed loop systems, in which sensors measure the process state by measuring

technology and provide the measured signals to the microprocessor. By comparison with

set points and a control strategy, which is predetermined by calculation algorithms,

control signals are then determined for the actuator, which ultimately acts as a

positioning device on the process [2].

In an integrated system, most E/E components are usually located closely together on a

circuit board inside an electronic control unit (ECU). The task of this integrated ECU is

the whole control of the mechatronic system according to the control process described

in chapter two. Figure 2.3 provides a schematic overview of E/E components in an ECU

and its data flow. The ECU has generally three interfaces to other components. These

are input and output (I/O) channels for signals from sensors and to actuators, power

supply and interfaces (e.g. BUS) to other systems and for diagnostics. Various input

signals – either digital, analog or pulsatory – are converted, processed and provided to

the microcontroller. The microcontroller, often referred to as central processing unit

(CPU), is an integrated circuit board consisting of a random-access memory (RAM), fast

flash memory chips and the processor itself. The CPU is the “processing unit”

responsible for comparing set and actual value and calculate the necessary adjustments.

These adjustment signals are then amplified and sent to the required actuators. In safety

Mechatronic Systems in Automotive Applications 19

relevant mechatronic systems, for applications in the automotive industry, there is also

a monitoring module integrated inside the ECU. This module tracks all activities of the

microcontroller to detect failures or irregularities in the running process. It is important to

detect hazards early and prevent further fatalities that could happen in a vehicle

environment. Thus, an electrically erasable programmable read-only memory

(EEPROM) stores all critical information about the conditions of the ECU and the

corresponding system, but also data about recorded errors and bugs. These error codes

and detailed fault information can later be received via the diagnostics interface through

the on-board diagnosis (OBD) interface of a vehicle, which is also connected to the

vehicle’s BUS system [4].

Figure 2.3 Schematic structure of an electronic control unit, cf. [4]

20 Mechatronic Systems in Automotive Applications

As previously mentioned, innovations in mechatronic components – especially in the

automotive industry – happen increasingly in electronics. Figure 2.4 shows the

development of the proportion of E/E components in a motor vehicle over the last

decade. A tremendous progress has been made in the development of automotive

systems, enabled by the replacement of traditional mechanics by electronic systems.

This has led to many beneficial innovations for passengers (e.g. vehicle stabilization

systems) and pedestrians (e.g. active safety) but also for the environment (e.g. exhaust

gas after treatment). A sizable amount of these innovations was enabled by the

introduction of electronically-controlled systems as well as programmable electronics in

the automobile and the proportion of these systems has been increasing continuously.

Further requirements of active safety systems, but also in the infotainment segment of a

car, will increase this development, where E/E systems will play an even bigger role as

today. Customers also demand a high reliability level from their vehicle, whereas OEMs

and the whole supply chain are challenged by requirements such as downsizing, cost

reductions and package or weight restrictions (due to legislation). This results in an

increased complexity of vehicle systems but can also be seen as an opportunity for the

replacement of traditional mechanics and E/E systems towards microprocessor

controlled systems. As a consequence, the development of programmable electronics

and integrated control software continues to gain importance in the future [3].

Figure 2.4 Proportion of electrics/electronics in the motor vehicle [3]

Mechatronic Systems in Automotive Applications 21

2.3 Software

In the first sections of this chapter it became clear that the design of mechatronic systems

is based on the close connection of mechanical, electrical and electronic components,

whereby the system properties, i.e. dynamic behavior, flexibility and learning ability, are

also determined to a great extent by the software. Mechatronic systems are therefore

generally characterized by a modular and clear design, which facilitates the integration

of different technologies and components. This makes it possible to divide the various

functions of mechanical and electronic components as well as their information

technology (software) in such a way that the mechanical design is simpler and the

manufacturing effort is reduced. At the same time, the interaction of the various module

functions can be realized by the overall system, which would otherwise not be possible

with a pure hardware design [2].

In the development of electronic systems, a general trend is from hardware to software

solutions. Software solutions are ideally suited for realizing the functional aspects of

electronic systems. Thus, for example, the realization of control, regulation and

monitoring functions by means of software enable maximum degrees of freedom, e.g. in

the design of linearizations, learning algorithms, but also safety and diagnostic concepts.

No other technology offers such a large design freedom – in particular because package

or manufacturing aspects have very little influence on the realization of software

functions. Therefore, the implementation of vehicle functions through software provides

vehicle manufacturers and suppliers a great potential for differentiation from the

competition – a trend that is also observable in other industries besides the automotive

industry [5].

Because this thesis focuses especially on the topic of process optimization in embedded

software engineering of mechatronic systems, the general architecture, components and

basic functions of embedded software is described in this chapter. Software functions in

an ECU for automotive applications handle all control functions of a mechatronic

process, such as the processing, comparison, offset and control of I/O signals and stored

variables. To reduce the development effort for OEMs and suppliers, the software on

ECUs is usually clustered in various modules. This allows a flexible adaption of the

parameters and control functions, but also provides the necessary compatibility with the

hardware components in the mechatronic system and the entire vehicle. In general, there

is a separation of functions: either in basic software or application software. The actual

software functions for the control and monitoring functions of the ECU are part of the

22 Mechatronic Systems in Automotive Applications

application software. The basic software depends on the hardware, i.e. the micro-

controller used, as well as on the other hardware that can be installed on the control unit.

However, the interfaces of the basic software are largely independent of the hardware

and also standardized. The application software then relies on the interfaces of the basic

software. It can thus be easily ported to other control units. Between basic software and

application software is the interface, which connects both, the runtime environment

(RTE). In the RTE, communication between the software components of the application

software is realized as well as between components of the application and the basic

software. This provides the necessary standardized communication mechanisms for a

flexible adaption of the control unit. The advantage of this architecture is that individual

software components of the application software can be ported to other control devices

with virtually no change. In this case, only the communication flow within the RTE has to

be changed. A standardized example of such a system in automotive applications is the

AUTOSAR development environment. Figure 2.5 illustrates the AUTOSAR software

architecture of an integrated control unit for automotive applications in general. It

highlights, that the RTE links together individual software functions from application and

basic software on one level [6].

Figure 2.5 AUTOSAR software architecture for microcontrollers, cf. [6]

System Services

AUTOSAR Runtime Environment

Function 1

Function 3

Function 2

Complex
Device
Drivers

I/O
Hardware

Abstraction

I/O Drivers
Communication

Drivers

Communication
Hardware

Abstraction

Communication
Services

Memory
Drivers

Memory
Hardware

Abstraction

Memory
Services

Microcontroller
Drivers

Onboard
Hardware
Abstraction

API

I/O

Application
Software

Basic
Software

Mechatronic Systems in Automotive Applications 23

The advantage of such an RTE is the standardization of the transfer protocols, which

allow manufacturers to create individual software modules that are able to work on

different ECUs with the same RTE. This eliminates the need for translation to other

protocols and allows for easy interchangeability, which also reduces costs. Complex

drivers are a special case. These parts of the basic software are hardware and

application-specific, which means that they are exactly matched to the ECU. These parts

take on highly real-time-critical functions for which perfect interaction between HW and

SW must be ensured. Since there are many such functions in the engine control system

compared to other ECUs in the car (e.g. ignition, injection, tooth signal acquisition), the

complex drivers take up a large part of the basic software [7].

The benefit of interchangeability of the application software with the basic software via

the RTE is made possible by the integration of application programming interfaces (API).

An API is a programming or software component that is made available to other

programs for the connection to the system. This is a program link at source code level

with defined parameters. Therefore, complex function modules are able to access the

available runtime environment and through that, communicate with components of the

basic software [5].

In general, the program that the microprocessor of a microcontroller executes is stored

in the read-only memory and is not exchanged for different applications. An important

exception is the loading of a new software version as part of a software update by “Flash

programming”. In software engineering, for example, the specifications from the

descriptions for control and regulation functions must be converted into a program code

executable on the microprocessor and a set of parameters that can be stored in the

microprocessor's data memory. For automotive applications, this process of storing the

code and parameters on the ECU’s memory is only done once in the production process.

Updates for ECU’s are not typical in the product lifecycle (PLC) of a car. Mostly they are

done when a failure is detected in field and the manufacturer has to recall a certain car

series. Over-the-air software updates are mostly limited to entertainment functions or the

ability to unlock pre-defined functions (e.g. advanced driving assistance systems) [5].

In the field of automotive software development, the trend is increasingly towards the

use of open source code and third-party code to prevent delays in projects. This is the

result of the strong budget and time pressure that a current development project is

experiencing. Greater use of third-party code helps embedded system development

teams to accelerate time to market in various industries, including the automotive sector.

Here, software functionalities are among the innovation drivers that generate

24 Mechatronic Systems in Automotive Applications

corresponding competitive advantages. Unfortunately, setbacks in the development of

embedded systems are often amplified by the dependencies between the individual

disciplines (software, mechanics, electrics). Delays that occur in one area can continue

in others and lead to significantly excessive development budgets. Developers of

embedded systems and enterprise software often face similar problems, so they are

increasingly using similar strategies. This results in a mixed approach that combines

iterative elements with the precision required for the embedded system market. The

success of teams working according to agile development methods promotes further

changes in the strategies of embedded system development. Today, companies

throughout the industry are exploring new ways to increase efficiency through additional

collaboration and the implementation of agile management processes [8].

2.4 Functional Safety of Mechatronic Systems

The demands on the safety of vehicle functions are particularly high compared to other

sectors such as mechanical engineering or consumer electronics. Since the probability

that in the event of an accident a person is always close to the vehicle must be assumed

to be 100% (driver), the functions are usually classified into a high safety class. This is a

typical example for the automotive industry and does not apply to the general mechanical

engineering industries. There, the probability of people being around machines can be

significantly reduced, for example, by suitable shut-off measures and similar safety

devices. With mechatronic systems increasingly becoming more complex, the

requirements to retain a high safety standard is vital. Failures can lead to dangerous

accidents that could threat people's lives including the driver, passengers but also

pedestrians and other road users. Therefore, the analysis of functional safety and the

specification of suitable safety concepts has a great influence on the functional

development and thus also on the software development for embedded systems in

automotive applications. High safety requirements require error detection and error

handling measures. One of the most powerful measures to detect and deal with errors

is the redundant design of systems. This means that the trend towards distributed and

networked systems in vehicles is intensified by high demands on functional safety.

Additionally, this results in special demands on the development processes and

development tools. Examples include the certification of development processes,

software development tools or standardized software components such as the

aforementioned AUTOSAR systems [5].

Mechatronic Systems in Automotive Applications 25

The concept of functional safety (FuSa) is not able to provide one hundred percent

reliability against system failure. Legal requirements demand safety measures for

technical systems that endanger life and property in the event of failure, so that the

remaining residual risk remains below a tolerable threshold. For complex mechatronic

systems with software, these are so-called safety functions. In addition, the legislation

requires that safety-relevant systems must comply with the current state of the art in

technology. The basic safety considerations are defined in international standards.

Today, a relatively simple proof of functional safety is a prerequisite for the registration

of vehicles for road traffic. In general, the compliance and application of a standard

cannot be forced by legislation. But with respect of the product liability law it is in the

interest of every automaker to always develop according to the current state of the art,

which is defined in current standards and guidelines. The manufacturers thus protected

themselves against high fines in the event of a vehicle malfunction or failure of individual

system components by applying common standards [5, 7].

The most important international standard for functional safety in automotive applications

is ISO 26262, a domain-specific application of IEC 61508. This standard has a significant

influence on the design, qualification and production of electronic control units and has

been accepted by more than 130 countries worldwide. The failure metrics of ISO 26262

and their requirements for the avoidance of random component errors, dependent errors

and mutual interference have proven to be a significant influence on the safety

architectures. On the basis of the procedures described here briefly, the result is a

classification according to ISO 26262 into the so-called “Automotive Safety Integrity

Levels” (ASIL). The evaluation basis distinguishes between different driving situations:

• Severity: potential hazard and severity of resulting injuries

• Exposure: how often are driving conditions where the fault is relevant

• Controllability: the controllability of the resulting situation

The classification levels range from QM (no FuSa relevance), ASIL A to ASIL D. This

refers to the sum of the above-mentioned three classes, i.e. even with the highest

severity potential (with possible death consequences) a QM classification can result if

controllability is high and the probability of occurrence is low. As a product development

based on high ASIL levels is becoming exponentially more expensive, the standard

allows the decomposition into lower ASIL levels where the same tolerable residual risk

is guaranteed [7]. This procedure is described in more detail in chapter 4.2.

26 Mechatronic Systems in Automotive Applications

Process Environment 27

3 Process Environment

The “process environment” describes all surrounding activities, processes, guidelines

and deliverables in a development environment, independent from individual projects or

customers. It is a corporation-internal approach to structure the engineering processes

and align the different activities of the various departments along the development

phases. Therefore, it is necessary to define clear roles and responsibilities in accordance

to the time schedule but with the generic project or development target in mind. These

processes and development plans are often company or industry specific and mostly

derived from different sources to get a general process model that is in accordance with

internal guidelines, best practices, international standards and customer specific

requirements.

Fundamentally, the product development process is the central link to transform the

requirements of the market, respectively the customer demands, into an appealing

product. Faced with expanding markets and diversified, customer-specific mobility

requirements as well as regionally pronounced certification and ecology requirements,

every OEM with its product portfolio and thus its entire product development process is

faced with enormous challenges worldwide. Processes can only be realized successfully

if the people are working together on one goal know the processes and are able to deliver

the services within the agreed time and with the agreed quality. Due to the increasing

variety of vehicle types and the flexibility of digital development, product-optimized

versions of the development process are created. These variations of processes require

very good knowledge of the workflows as well as flexibility in the projects. Developing

the individual skills of each individual employee is a prerequisite for being able to react

quickly to the diversity of requirements [9].

3.1 Automotive Engineering Processes

Historically, the automotive industry is one of the industries with the most guidelines,

standards and best practices. This results from the fact that a vehicle nowadays is a

complex system of traditional mechanics, electric and electronics but also increasing

software complexity. Additionally, the safety aspect in this industry is critical – equally

the environmental impact of road vehicles – which requires progressive development but

also supporting processes and the right methodologies. These guidelines change and

adapt over time as technology advances.

28 Process Environment

The development time for new vehicles is currently estimated to be around three years,

a production period of about seven years and a subsequent operating and service phase

of up to 15 years. This results in a total product life cycle (PLC) of around 25 years.

These intervals are considerably shorter in electronics due to the continuing advances

in hardware technology. This poses great challenges, e.g. for the long-term supply of

electronic spare parts to the market and must be taken into account during vehicle

development. This also influences the software architecture. Effects include, e.g. the

standardization of the software architecture and the hardware-independent specification

of software functions in order to simplify the porting of the software to a new hardware

generation, which might be necessary later on. A product's life cycle can be divided into

three phases: development, production and operation. Product lifecycles can vary in

length for the individual components of a system. For example, product life cycles for

vehicles are often longer than the life or modification cycles for ECU hardware and

software due to the ongoing technological advances in electronics. In addition, the

system requirements can vary in the individual phases of development, production,

operation and service. In this thesis, the focus is on the processes of the development

phases in the PLC [5].

The increasing number of functions in a vehicle, its networking, high and increasing

demands on reliability, availability and safety, as well as variant and scalability

requirements lead to a complexity that can hardly be mastered without a defined

development process. A method of mastering complexity that has long been used in the

automotive industry is the division into systems and subsystems and their distributed

development. In vehicle development, this approach initially results in a partitioning of

the vehicle into the subsystems powertrain, chassis, body and infotainment.

Subsequently, the further partitioning of the subsystems into subordinate subsystems

and components takes place step by step. After the division of tasks and parallel

development of the components, their testing is carried out, as well as the gradual

integration and testing of components to subsystems via the various system levels.

Finally, the subsystems powertrain, chassis, body and infotainment are integrated into

the vehicle. The requirement for this is not only a clear division of responsibilities in

subsystem and component development, but also the cooperation in partitioning and

integration of the system with regard to packaging space, vehicle functions and

production technology. In addition, the cross-company subsystem and component

development between vehicle manufacturers and suppliers is very prominent in the

automotive industry. The clear division of activities between vehicle manufacturers and

Process Environment 29

suppliers is therefore a fundamental requirement. A further dimension is added by the

simultaneous development of different vehicles or vehicle variants. This leads to multi-

project situations on all system levels at vehicle manufacturer and supplier. The

cooperation of different disciplines requires a common, holistic understanding of the

problem, a common understanding of the processes of problem solving, as well as a

common understanding of the influences and effects of solutions on the system.

Furthermore, the responsibilities and competencies have to be defined in a project.

Proven holistic approaches are, for example, mechatronics on the technical side or

system engineering methods on the organizational level of a development project. In the

case of cross-company cooperation between vehicle manufacturer and supplier, all

aspects of the business model, in particular also legal issues such as product liability or

patent rights, must be clarified additionally [5].

3.2 Systems Engineering

In contrast to the development of individual components, system engineering is focused

on the analysis and design of the system as a whole, not on the detailed analysis and

design of its components. Systems engineering is therefore an interdisciplinary approach

and includes measures to enable the successful implementation of systems. In the

development process, systems engineering targets the early definition of requirements

and the required functionality with the documentation of the requirements, followed by

the design, verification and validation of the system. The comprehensive problem

definition of a system is taken into account – such as development, scope, costs and

schedule, testing, production and service up to the final disposal. Systems engineering

provides a structured development process that takes into account all phases of the

product lifecycle, from concept development and production to operation and service.

Both technical and organizational aspects must be considered. In comparison, software

development as well as the development of hardware is a discipline within system

development. The precise definition of the specification and integration interfaces

between system and software development is an essential prerequisite for a seamless

development process [5].

During the 1960s, systems engineering was defined as an interdisciplinary, document-

driven approach to the development and implementation of complex technical systems

in large-scale projects, particularly in the American aerospace industry and in major

military projects. From the software and electronics industry's point of view, this approach

30 Process Environment

has been continuously expanded and now offers modeling and simulation support for

complex, highly networked systems. Systems engineering is based on the principle that

a system is more than the sum of its subsystems. For this reason, not only the

relationships of the subsystems, but also the overall context of the system in general

should be considered during the development [10].

An important term in the field of systems engineering is system theory. System theory

provides procedures for dealing with complexity. The common approach to manage

complexity requires the following assumptions:

• The distribution of the system into components does not distort the problem

• The components are essentially identical to the components of the system

• The principles for the assembly of the components are simple and stable

The composition of a complex system in subsystems and individual components is

illustrated in Figure 3.1. The properties of the system are derived from the relationships

between the components of the system, that is, from the way the components

communicate and interact. As the complexity of a system increases, the analysis of

components and their interrelationships becomes complex and costly. Therefore, it is

vital to define the right system boundaries and to derive the right number of components

in every new development project [5, 11].

Figure 3.1 Definition of a system in system theory, cf. [11]

System A

Component X

Component Y

Subsystem B

System Boundary System Environment

System Inputs System Outputs

Process Environment 31

3.3 V-Model Development Approach

To be able to better understand, simplify and structure these efforts, various process and

development models have been designed and implemented, not only in the automotive

industry. Due to the numerous interactions between vehicle, electronics and software

development, a continuous development process is necessary that covers all steps from

the analysis of customer requirements to the validation of the mechatronic system. The

V-model distinguishes between a view of the system and a view of the components and

integrates quality assurance measures. It is therefore widely used in the automotive

industry. This process model for development can be presented in the form of a “V”. In

this way, the project phases and the interfaces between system and software

development can also be represented in an adapted V-model, as well as the specific

steps in vehicle development. Figure 3.2 represents the schematic V-model according

to VDI 2206. In the left half of the “V” are the processes and tasks for the design of the

system. From top to bottom, the focus is shifted more and more from the overall system

to individual components. On the right side, the integration of the system is visualized.

To validate each integration and development step, the components and the system are

tested against the defined requirements during the integration (bottom-up in the “V”) [5].

Figure 3.2 The V-model for mechatronics development (VDI 2206), cf. [10]

Requirements Product

Mechanical Engineering

Electrical Engineering

Software Engineering

Modeling and Analysis

System Validation

32 Process Environment

3.3.1 V-Model of Automotive Software Development

The aforementioned V-model is just a basic model on system level without necessary

details. Multiple V-models have been developed to suit different needs and industries. In

this section, the V-model in automotive development processes, especially for software

development, is presented. As illustrated in Figure 3.3, the V-model for software

development can be divided horizontally into activities regarding system development

and software development. Usually, system development is done by the OEM, whereas

the software is developed by component suppliers. The core process also divides the

considered objectives into three different levels of abstraction. First, the logical system

area – which is focused on the various functions the defined system has to carry out.

After more details are defined, the technical system architecture is specified. In this

architecture, it is already clear which electronic control units realizes the previous defined

functions in the system of a complete vehicle. On a deeper level is the software

architecture. This is the most detailed view how the defined functions can be realized

and implemented. Here it is defined, which modules make up the software and what

parameters are used to calculate and control the system on a software level [5].

Figure 3.3 V-model process for the development of systems and software, cf. [5]

Analysis of customer
requirements

Specification of the logical
system architecture

Analysis of the logical
system architecture

Specification of the technical
system architecture

System development

Software development

OEM

Supplier

Analysis of the software
requirements

Specification of the
software architecture

Specification of the
software components

Component design and
implementation

Test of software
components

Integration testing of
software

Integration of software
components

Integration of system
components

Integration test of the
system

Calibration

Acceptance test and
system test

Logical system
architecture

Technical system
architecture

Software
architecture

Process Environment 33

3.4 Phase-Gate Process

The “Phase-Gate Process” – also often referred to as “Stage-Gate Process” – is an

exemplary model of an advanced development process in a corporation. Usually, this

phase-gate process model is an integrated part of the defined development system in

each company. It defines critical development phases and their corresponding gates.

Each phase represents a stage of development activity with the purpose to achieve the

set targets of the gate. Each gate has defined deliverables and each responsibilities and

actions are defined in the corresponding phase. The status of the project is reviewed in

quality or release meetings at each gate or milestone within a management team. In

general, the phase-gate process model is also based on the key concept of the V-model

for development projects. Usually, there are also phase gate process models for the

entire product life cycle present, i.e. for the production and operation processes.

Figure 3.4 shows an exemplary phase-gate process according to Cooper. The entire

process from idea and concept to production readiness is covered with several sections.

Cooper defined a set of parallel activities, deliverables and outputs for each phase and

gate. In the development system, quality gates mark the beginning and end of important

process stages, with so-called milestones. Only if the defined product and process

maturity requirements are met at these points in the process, the quality gate can be

passed through. If a quality gate is not met, it is necessary to decide on and take

measures that are capable of successfully passing through the “access gate for quality”

in the second attempt. This is done according to a clearly defined process with clearly

defined rules. Usually, the previous phase is then partially repeated in order to fulfill the

requirements of the gate at the next attempt and thus reach the next phase [9, 12].

Figure 3.4 Phase-gate process according to Cooper, cf. [12]

Driving new products to market

Phase 1
Gate

2
Phase 2

Gate
3

Phase 3
Gate

4
Phase 4

Gate
5

Phase 5
Gate

1

Scoping Business case Development Testing & Validation Launch

Second screen Go to development Go to testing Go to launchIdea screen

34 Process Environment

3.5 Embedded Software Engineering

As this thesis is emphasizing the embedded software engineering part of mechatronic

system development in automotive applications, this section provides a general overview

of the engineering of embedded software components in the context of mechatronic

systems in automotive applications.

In electrical engineering, a distinction is often made between processors, controllers and

systems on chip (SoC). All these terms refer to programmable digital integrated circuits

(ICs), whereby the processor as the innermost module takes over the execution of the

machine commands. Embedded systems are computer systems in which processors,

controllers or SoCs are equipped with supplementary electronics – power supply,

protective circuits, additional components and connectors – and are usually integrated

in enclosures for their dedicated task. The traditionally essential characteristic of

embedded systems (and thus their differentiation against the common definition of

computer systems, which is limited to PCs, smartphones, tablets, etc.) is the absence of

a human-machine interface. In many cases, the driver and vehicle occupants have little

or no influence on the various functions. Examples of embedded systems in automotive

applications include all electronic control units. The engineering of embedded software

consists of all development activities and processes in new product development of

software, architectures, protocols and logics for embedded systems. This ranges from

the initial idea or commissioning to development and production readiness [13].

Figure 3.5 Value and cost distribution in embedded products (2016), cf. [8]

21%

26%

51%

2%

Mechanics

Electrics

Software

Other

Process Environment 35

As illustrated in Figure 3.5, today’s value of embedded systems in automotive

applications is mainly the software component. The same applies to product and

development costs. That is why it needs a structured and well-defined development

process, which is tailored to the tasks and challenges of software engineering. A

substantial reason for poor software is often the lack of interaction between systems from

different suppliers. One of the requirements is to create uniform standards for all

manufacturers, suppliers and programmers. Together with reduced time-to-market, all

parties involved face the challenge of driving functional and software development

forward efficiently. This results in the following requirements for the software

development process for mechatronic systems, according to [14]:

• The complexity of both, the individual ECU and the ECU BUS network must be

mastered.

• Distributed functions have to be handled in distributed systems.

• Interfaces between project partners must be adapted and defined.

• Process know-how from other industries (e.g. aerospace) can and should be

taken over, especially for safety-relevant systems.

• Quality must be ensured through optimized processes and test methods.

• Testing must be an integral part of the development process as a core discipline.

Software engineering is different in many aspects compared to traditional engineering

disciplines. Compared to hardware engineering, the change cycles are shorter in

software development. The use of flash technology in conjunction with the network of all

ECUs in the vehicle enables cost-effective software updates to be carried out in the field,

for example via the vehicle’s central off-board diagnostic interface – without the need for

expensive removal or replacement of ECUs [5].

Due to the long product lifecycles of vehicles, the advanced development and change

management of vehicle systems is particularly important. It must be possible to manage

and track the effects of changes in a system. For the continuous development of

mechatronic systems, project management – described in following sections – must

therefore be linked to the core process together with change management, requirements

management, supplier management and quality assurance as supporting processes.

Another challenge is the design and implementation of software components in the

overall vehicle system in terms of availability and readiness of each modules and

functions. Figure 3.6 illustrates this development complexity over the project time. The

basic idea of system theory is also a challenge in the development of a holistic system.

36 Process Environment

Figure 3.6 Software integration steps in product development, cf. [15]

Different components of a system are developed in decentralized departments or in a

project-oriented matrix organization. Each developer must achieve the defined targets at

different milestones in the development project to be compatible with corresponding

functions of other developers or suppliers. At these so-called integration steps, the

software versions of all components and modules must be on the same level, otherwise

integration and communication among each other is not ensured. Over the course of the

development project, the different modules are gradually combined into components and

finally integrated into the overall system. A seamless interplay between all subsystems

of different supplier is essential, which is why integration and testing is an integral part

of embedded software development [15].

3.5.1 Methodologies and Development Tools

In all stages of development, appropriate methods supported by tools can contribute to

improving quality and reducing risk and costs. The continuous interplay of the different

tools is therefore of great importance. Possible methodologies and development tools

with their significant effects on the three critical success factors quality, risk and costs

are presented in this subsection.

The V-model implicitly assumes that the user requirements are captured and analyzed

completely at the beginning and that a detailed specification of the technical system

architecture can be derived from it. Integration is based on sequential, separated steps.

Vehicle
software

system

Project time

Component
A

Module 1

Component
C

Component
B

Module 2

Module 4

Module 3

Process Environment 37

However, practice shows that in many cases these requirements are not met. The user

requirements are often not fully known at the beginning and are updated during the

development process. Specifications therefore initially only reflect a rough idea of the

system. Only gradually are details defined. In the integration phase, component delays

cause delays in integration and all subsequent steps. In cross-company development,

many integration and test steps are restricted by non-existent, non-identical or current

neighboring modules. Reality is therefore characterized by incremental and iterative

procedures, in which steps of the V-model or the entire V-model are processed several

times. Methods and tools for the early validation of requirements, specifications and

realized components in the laboratory, at the test bench or directly in the vehicle can be

used to support such a procedure for the development of software functions [5].

In order to be able to offer customers even more functions and even more intelligent

software solutions, the path has been moving from pure code programming to model-

driven software development for several years now. Model based software development

takes place in large parts without programming actual lines of code. Procedures and

algorithms, as well as structures and processes are modeled in different modeling

languages using graphical tools and then automatically translated into program code by

compilers. Various software tools are used to model the actual ECU software. This is

why it is also called computer-aided software engineering (CASE) [10].

These CASE tools allow and simplify the model based development of software,

especially in the automotive industry for embedded systems where the development

process has an interdisciplinary approach. Interdisciplinary cooperation in software

development requires a common understanding of problems and solutions. For example,

when designing vehicle control functions, the reliability and safety requirements as well

as aspects of software implementation in embedded systems must be considered

holistically. The basis for this common understanding of function can be a graphical

functional model that takes into account all components of the system. In software

development, adequate model-based software development methods with notations

such as block diagrams and state diagrams are increasingly replacing the traditional

software specifications. In addition to a common understanding of problems and

solutions, the modeling of software functions offers further advantages. If the

specification model is formal, i.e. distinct and without any room for interpretation, the

specification can be executed on the computer in a simulation and can be experienced

in the vehicle at an early stage by the use of rapid prototyping tools. Because of these

advantages, the “digital requirement specifications” have become very popular [5].

38 Process Environment

3.5.2 Structuring the Software Development Process

The combination of these different methodologies and tools in a software development

project result in a structured process for software development. Software development

processes consist of different tasks and activities, clustered in phases that define what

the participants should do. Project members can take on various roles in software

development, such as software designers, software architects, project managers and

quality managers. Software development processes are organized in phases in which

the respective focus is on a certain part of software development within a project.

According to [15], these are summarized into the following six phases:

1. Requirements engineering: phase in which ideas about the software functions

are generated and divided into requirements

2. Software analysis: phase in which the system analysis is performed, and high-

level decisions are made on the assignment of functions to the logical systems.

3. Software architecting: phase in which the software architects define the high-level

design of the software including its components and assign them to the systems.

4. Software design: phase in which the individual components are designed in detail

5. Implementation: phase in which the design is implemented for each component.

6. Testing: phase in which the software is tested in various ways.

The general development process is defined and often standardized for each

organization, but the outcomes and milestones may vary for every project. Since not

every vehicle project has the same technical complexity or characteristics when it comes

to product development, the product development process must also be adapted

accordingly. An essential criterion here is the degree of acceptance of already known

concepts and technologies and the extent of changes or innovations, which have to be

developed and secured (e.g. carry-over-parts) [9].

Developers of embedded systems and enterprise software are often faced with similar

problems, resulting in an increasing use of similar strategies. This creates a mixed

approach that combines iterative elements with the precision required for the embedded

system market. The success of teams that work according to agile development methods

promotes further changes in the strategies of embedded system development.

Organizations are exploring new ways to increase efficiency through additional

collaboration and new approaches to management and project organization [8].

Process Environment 39

3.6 Concurrent Engineering

Concurrent engineering – also known as simultaneous engineering – is a method to

gradually reduce the development time in a project without skipping relevant phases. In

the previously sketched project flow – analogous to the phase-gate process model – the

activities of the individual divisions or departments always followed in sequential

sequences. In practice, this often led to boundaries between departments that restricted

the flow of information and caused the development process to be extended over time.

Each department generally has its own conventions, description models and others. The

interface is sometimes not sufficiently illuminated, which can lead to errors or

unnecessary time expenditure. As the work flow in a project is divided up between

different departments, the more the individual loses sight of the overall goal and feels

less and less responsible for the activities of others. The sum of the optimizations in the

departments is by no means equal to the optimum of the overall process [16].

Figure 3.7 illustrates the reduction of development time – and therefore possibly costs

– by the application of concurrent engineering principles. The sequential phase process

in the top of the figure represents the traditional approach to development projects. The

second process flow is the approach with a concurrent engineering methodology applied.

In general, the entire process chain is compressed in length, without shortening the

individual process steps. This is possible by overlapping subsequent process phases

during the development time of the project with the application of some correction loops.

Figure 3.7 Development time savings through concurrent engineering, cf. [17]

Project time

Requirement
Analysis

Specifications
and Design

Implementation
and Testing

Production
Planning

Requirement
Analysis

Specifications
and Design

Implementation
and Testing

Production
Planning

Savings

Correction Loop

Correction Loop

Correction Loop

40 Process Environment

Instead of the sequential process, it is necessary to involve the individual departments

actively and simultaneously (“concurrent”) while the product is being developed. Ideally,

the employees of all involved departments work full-time in the same room. Concurrent

engineering therefore means a joint, simultaneous and trustworthy execution of all

activities for the development of a product and the associated production facilities.

Because of the intensified collaboration between the involved departments and

employees, a partial parallel processing of the traditional sequence is possible.

Therefore, correction or change loops are necessary at each overlapping phase to adapt

the subsequent process if necessary [17].

For the development of software functions, the parallel processing of tasks means, for

example, that the software function is tested and calibrated after analysis, specification,

design, implementation and integration while at the same time additional new software

functions are developed. Furthermore, different development environments have to be

coordinated with each other. This means that simulation steps, development steps in the

laboratory, on the test bench and in the vehicle, must be designed and synchronized

with each other as consistently as possible [5].

To assure a successfully functioning concurrent engineering process, [17] defines the

following principles that must be present:

• Strong team leader: the team leader gets extensive competences. As a kind of

entrepreneur in the company, he is responsible for designing a product and

getting it into production.

• Close team: team members are assigned to the team for the duration of the

project. Their performance in the team is assessed by the team leader.

• Comprehensive communication: conflicts arising from different perspectives and

interests of the various departments are resolved directly and from the beginning.

The decisions taken collectively must then be actively supported by everyone.

• Simultaneous development: the individual development activities overlap and do

not follow one another in time. This saves a great amount of time, but requires

common work with visual contact, experience and foresight.

• Sales participation: the sales department integrates the results of market

research, service and customer surveys as well as competition and error

analyses directly into the development work and monitors their implementation.

• Cooperation with suppliers: they are generally paid to participate in the project

work. It is important that a cooperation based on trust is established.

Process Environment 41

3.7 Project Management

The aforementioned benefits of concurrent engineering can be achieved with effective

project management. Project management, also referred to as program management, is

the organization of a project in an organization as a whole. It is one of the most important

supporting processes in every company, as it is steering and controlling each project. It

defines the surroundings of each development project and defines rules how each phase

of the project is processed to achieve the agreed targets. A project itself is characterized

by the following criteria, as described in [5]:

• Tasks with risk and a certain uniqueness, i.e. no routine business

• Clear assignment of tasks

• Responsibility and objectives for an overall result to be delivered

• Time limit with clear start and end date

• Limited resource utilization

• Special organization tailored to the project

• Often different, interconnected and interdependent subtasks

The objectives of a project itself are usually set in the very beginning of the project and

can usually be summarized into one of these groups, according to [5]:

• Time target: when should the overall result be available?

• Cost target: how much can it cost to achieve the overall result?

• Quality target: which requirements should the overall result meet?

On the one hand, project management covers all aspects of project planning, i.e.

planning the implementation of project goals. This means that quality, cost and schedule

planning must be carried out, which is supported by organizational planning, resource

planning and risk analysis. On the other hand, project management also includes project

tracking and control, i.e. the monitoring of quality, costs and timing deadlines during

implementation until project completion. This also includes risk management, the

monitoring of emerging risks and definition of corresponding countermeasures [5].

Another important aspect is the type of organization around a project. In the automotive

industry, it is common to use a so-called matrix organization, specialized for projects.

The OEM as well as its supplier uses this form of organization throughout the entire line-

organization of all departments. The project manager is assigned employees from the

individual departments involved, for a specific project and for fixed periods of time. He is

42 Process Environment

empowered to give instructions to the employees in matters of the project. The line

manager remains responsible for all other organizational questions. But he has no

authority for the project. In the event of a conflict of interests, the next highest manager

is responsible. In the course of intensive work teams, the team leader is more likely to

be given more responsibility today, i.e. he will be involved in the decision on performance

assessment. This allows for a flexible organization with a lot of knowledge exchange and

participation, as the employees in the individual technical area are working on different

projects with maybe similar problems and solutions. Figure 3.8 highlights the

composition of the described project organization as a matrix. Another challenge are

multiple projects inside an organization, especially if the same employees are involved

in several parallel projects. This can lead to overstressing of the individual employees,

which can result in poorer project results [17].

Another form is the organization in a so-called pool organization. Employees are not

assigned to specific groups or departments, but rather form a pool from which they are

assigned to individual projects. The advantages are increased flexibility, a good use of

personal skills and a better flow of information (because of no one-sided specialists). A

drawback is the member's lack of feeling of belonging, as they are temporarily in different

projects with no connection to other pool members. Companies are currently trying to

develop this idea further. One form of this is swarm organization, whereby the decision

making in projects is achieved by the swarm intelligence of the entire pool without the

need of a leader but with support of mentors and mediators [17].

Figure 3.8 Matrix organization in an automotive development project, cf. [17]

Project A
(Project Manager)

Engineering
(Head of Engineering)

Advanced
Development

Design Testing Calibration

Competence

Temporary project employees

Department

Manager

Process Environment 43

3.7.1 Traditional Management Practices

Traditional project management practices are focused on planning and controlling of the

development project to achieve the defined and well-known objectives. These were set

in the beginning by a so-called product requirement document (customer specifications)

and the supplier’s functional specification document. Based on the description of the

requirements, the project manager start to plan all resources according to the quality,

costs and time targets. Usually, this is done in a waterfall method. First of all, the

subtasks of a project must be defined. A milestone is an event for which subtasks of the

project have to be completed. The achievement of milestones is a typical point in time

for partial deliveries, tests or partial payments by the customer. The period in which a

subtask is processed is called the project phase. These phases are usually subdivided

into additional phases. This is especially necessary if several organizational divisions

and different companies are involved in a project, which is usually the case in vehicle

development. As shown in Figure 3.9, this results in a process sequence with

subsequent tasks and processes. By applying the aforementioned concurrent principles,

even more tasks can overlap with each other (e.g. software and hardware development).

This sequential process is a structured approach and is well-established in the

automotive industry. Because of the resulting appearance of the planning shape, this is

called the waterfall method. This assures that the customer gets the right product he

wanted [5, 17].

Figure 3.9 Waterfall planning principle in project management

Project time

Software concept

Software design

Prototyping

Testing

Hardware prototyping

Durability testing

44 Process Environment

3.7.2 Agile Management Approaches

The traditional project management has been proven to be successful in the automotive

industry. But what if the environment changes so quickly that it is not yet clear what the

final product should look like at the beginning? Digitalization brings a fast pace of change

that forces a rethinking. It places the customer in the focus of the process. Products are

tailored directly to the customer and no longer universal. That’s why one no longer refers

to projects but to products. Short development cycles are the key, because it allows to

react quickly to the flexible market and get direct feedback from the customers or

involved project partners.

In software development, the term “agile” was introduced in 2001 when the agile

manifesto was formulated. Agile methods are defined as an incremental software

development method, in which small software releases are developed in fast cycles with

cooperative collaboration between customers and developers. The methodology itself

should be easy to learn, modifiable and highly adaptive. Methodologies that were

described as agile proved to be one way of making software development processes

flexible. The trend towards agility is a fact in software development today. More recently,

the lean paradigm was highlighted as an alternative to increasing the efficiency of

software development processes. Lean is based on the fundamental principles of

industrial engineering and is characterized by a philosophy of maximizing value and

reducing waste. Lean is often seen as a continuation of agile in software development

when agility is not sufficient enough. Unlike other software engineering topics that are

designed in science and then transferred to industry, agility and lean are usually

developed directly in the industry. Agile software development practices have been

widely accepted by the software sector as an instrument to improve flexibility and create

innovation. However, this approach is relatively new to the automotive industry and today

still in the progress of implementation [18].

Examples of agile development methods in software engineering are i.e. Kanban, Lean,

Scrum or extreme programming. Scrum is the most popular method of the named ones,

which is already being used in the field of software development in the automotive

industry. Figure 3.10 illustrates the development process according to scrum

methodologies. It is a very flexible and adaptable approach to development. The scrum

team is moderated by the so-called “scrum master” which is not a project manager

according to traditional management practices. The expert team meets on a daily basis

Process Environment 45

and targets individual and flexible goals to solve current problems in a technical but also

creative way. According to [19], the process is structured in four loops:

1. Pre-Production: identifying use cases

2. Vision: focus on product backlog and product vision

3. Sprint: enables developers to construct product according to backlogs

4. Validation: use case verification and validation

Figure 3.10 Scrum development process model, cf. [19]

To contrast traditional and agile management approaches, Table 3.1 provides an

overview of the two terms. Architecting is mostly used to describe agile development

methods, while project management is the traditional way to organize and structure

development projects (as described in the previous subsection).

Table 3.1 Architecting versus project management [15]

Architecting Project management

Done by technical experts Done by management experts

Technology in focus Scope in focus

Quality focus Cost focus

Focus on requirements Focus on work products

Maximize functionality Minimize costs

Pre-Prod.
Loop

Vision
Loop

Daily
Scrum

Sprint

Validation
Loop

DEVELOPMENTPRE-
PRODUCTION

CLOSURE

Prototype
Release

New
Functionality

Sprint
Backlog

Product
Backlog

Change
Backlog

46 Process Environment

Relevant Guidelines 47

4 Relevant Guidelines

This chapter provides an overview of relevant guidelines and their necessity for new

product development. Guidelines can be international standards, individual group

standards, customer requirements or internal best practices. These structure i.e. the

development processes and are of great importance for suppliers to secure commissions

and be able to submit offers. That is why guidelines of various sources are the basis for

the process analysis and optimization work done in the course of this thesis. In short,

guidelines reflect a standardization of the development activities and processes

described in the previous chapter.

4.1 Introduction to Guidelines

In the globalized world economy, products are hardly ever developed in isolation by

individual companies. Companies are increasingly forced to develop their businesses in

a network of global development sites, suppliers and partners. The decisive factor in this

is the constantly increasing cost pressure that is driving companies to create low-cost

production sites and strategic partnerships. Since at the same time the products are

becoming increasingly complex and demanding and development times are shortening,

two critical issues have emerged, as described in [20]:

• How to master the complex cooperation and value chains?

• How can quality, cost and schedule compliance be ensured?

This has become an essential challenge for many companies, with a direct impact on

market success and growth. Systematic and controlled processes, especially for

management, development and quality assurance, are a decisive success factor for

these issues. Guidelines from all possible sources try to address these challenges

through standardization. Processes, workflows, development outcomes and other

activities are recorded in written form by guidelines for specific industries or products,

thus forming a basis for successful cooperation and quality assurance. In principle,

guidelines serve to standardize the development processes and phases described in the

previous chapter, whereby the benefits are not only of enormous added value for

development and quality assurance in the globalized world. Thus, cooperation, complex

development interfaces as well as project and target compliance can be ensured.

48 Relevant Guidelines

4.1.1 Necessity of Guidelines

In comparison to laws and legislation, standards and other guidelines are not a legal

requirement for companies. Nevertheless, or precisely for this reason, standards play a

very important role today when it comes to the development of new products, especially

with distributed global product development with a complex value-chain. Standards and

company-specific guidelines and requirements are intended to document the current

state of the art in technology. This is therefore merely a technical recommendation, which

is not legally prescribed for the company. Figure 4.1 illustrates this difference between

laws and regulations and the technical recommendations, i.e. international standards

and specific guidelines, for companies in the automotive industry. Laws are legally

binding, and the company and its developed products must comply with all necessary

directives and regulations to get new developed vehicles approved for the road. On the

one hand, standards and guidelines provide a basis for development activities and

quality assurance. On the other hand, these technical recommendations are of great

importance when it comes to product liability issues. In the event of a failure of the

product in the field – especially with associated physical injury – the product liability law

applies nationally. In this context, it is important for the respective company to have

developed and produced its own products to the best of its knowledge and, to a certain

extent, according to the current state of the art. This state is usually recorded in

standardization processes. For this reason, these topics must also be considered in

advance in the new product development process, so that no legal proceedings or claims

for damages have to be paid later on in the event of incidents.

Figure 4.1 Difference and importance of laws and standards for companies

Law
Technical

Recommendation

Topics to be considered

OBLIGATORY

Application of EC directives

and ECE regulations (Europe)

for the vehicle approval

RECOMMENDED

Application of IEC / ISO / EN / DIN

standards to meet the

current state of the art

PHG
(Product liability law)

e.g.

ASPICE

Relevant Guidelines 49

In addition to these important issues, which have to be taken into account due to product

liability and vehicle approval, the necessity of guidelines in distributed product

development is also essential. OEMs and all other involved companies in the supply

chain must adhere to the objectives of the OEMs’ standards, because only then can the

developed product meet the objectives of the defined standards. In addition, each

manufacturer, especially at the top of the value-added chain, has its own proprietary

manufacturer-specific requirements and guidelines, which must be applied both

internally and by the corresponding suppliers. Companies require suppliers to act in

accordance with their own developed standards, so that development activities can be

coordinated with their own project structure and development work. If implemented

successfully, this facilitates a smooth project progress in development and also secures

a standard for corresponding product quality, communication and data exchange. In

today’s globalized world, such a seamless process and exchange between equal

development partners is essential to develop and launch a successful product under

increasing time and cost pressure.

In addition to standardization, the dissemination of cross-disciplinary expertise for

general economic growth and innovation is a further necessity for standards. For

continuous economic growth, it is not enough to create new knowledge through research

and development, but it must also be spread widely so that it can be applied by as many

companies as possible. Standards developed in consensus by companies are

particularly suitable for disseminating technical knowledge. Standardization experts

document the current technological level in standard documents and thus enable broad

diffusion on the market. In contrast to patents, which are subject to intellectual property

rights, the knowledge codified in the standards is freely accessible to everyone and thus

its distribution is not restricted. The dissemination or diffusion effect of the standards on

technological knowledge and the associated contribution to continuous economic growth

have already been highlighted in past studies [21].

4.1.2 Structuring Approaches

Typically, all agreements and regulations can be set out in guidelines. However,

international standards define exactly what is meant by standardization work. In this

context, standardization describes the activity of defining specifications for general and

recurring applications that relate to current or foreseeable problems and aim to achieve

an optimum degree of order in a given context. The main advantages of standardization

are the improvement of the applicability of products, processes and services for their

50 Relevant Guidelines

intended purpose, the elimination of barriers to trade and the improvement of technical

standards. The basis for this is a developed stage of the technical possibilities at a certain

point in time, as far as products, processes and services are concerned, based on the

corresponding reliable knowledge of science, technology and experience [22].

A structured overview and appropriate division is important for a systematic

standardization and documentation of the necessary information. Only then is a

successful adaptation and implementation into existing processes of a company possible

and effective. This is precisely why many international standards are based on one

another or complement each other. Normally, familiar models are also the basis for

structuring standards and guidelines. In particular, the V-model of the development

process presented in chapter 3.3 is the basis of many international technical standards,

in particular Automotive SPICE and ISO 26262 in the automotive sector. This makes it

easy to understand and implement in the company, as well as a combination or

adaptation of existing processes in order to meet as many guidelines as possible.

In particular, customer requirements or group standards of the manufacturers are based

on existing national or international standards. To this end, it is important to know that

such national or also international standards often emerge in working groups in a long

process, with representatives of participating companies, industry representatives and

members from politics taking part in standardization work. Nevertheless, the results of

the standards are interpreted and implemented differently in the individual companies.

Precisely for this reason, manufacturers formulate their own requirements and guidelines

for themselves and their suppliers in order to implement their own expectations.

Companies and organizations work together to standardize current topics and

approaches for problem solving in order to be able to represent a state of the art in

technology. This means that standards can either apply nationally, internationally or

regionally, e.g. standards by the International Organization for Standardization (ISO) or

the Deutsches Institut für Normung (DIN); be industry-specific, e.g. by the International

Electrotechnical Commission (IEC); or be sector or product-specific, e.g. by the Verband

der Automobilindustrie (VDA) or by the more general Verein Deutscher Ingenieure (VDI).

These organizations usually consist of many industry-specific representatives from the

individual companies – which are also competing on the free market – or of associations

representing the interests of the whole industrial sector. Often, these groups also exert

influence through lobbying to enforce the interests of companies in national or

international legislation.

Relevant Guidelines 51

4.1.3 Assessment of Guidelines

In order to ensure that companies – and in particular their suppliers – work according to

applicable standards, guidelines and requirements, the implementation and enforcement

is evaluated by the manufacturer or a third, independent authority. Such evaluations and

ratings are conducted during so-called assessments, which can take a day to a few

weeks and are usually ordered by the OEM respectively the customer of the supplier. In

some cases, suppliers also undergo an assessment by themselves to obtain certification

that they have implemented current industry standards and are working according to

their requirements. These assessments are usually done by others, independent

institutions, customers or sometimes also competitors. As a rule, all cases are specified

in the individual standards as to who can or must assess what and when. Not only the

entire application or implementation of standards can be assessed but also defined work

products or outcomes, especially in relation to functional safety (ISO 26262). Suppliers

in particular require such certifications and ratings from assessments as a prove of

capabilities, to get customer assignments and to be able to quote offers for development

or production projects. This is acknowledged by either a certificate or a certain rating to

which level the supplier is capable or reliable.

4.2 Applicable Standards

This section provides a brief introduction to relevant standards for product development

in the automotive industry. This work is focused on the optimization of development

processes based on Automotive SPICE, but for the sake of completeness the most

important standards are presented, as an implementation of these standards can further

improve the processes in the future.

Table 4.1 provides an overview of main approaches to evaluation in the fields of

mechatronics and software development. Safety-critical products can be evaluated from

different perspectives. The key issue, the software product, can be evaluated using a

predefined set of quality requirements, for example. The safety assessment can examine

both the product and the processes used in the development and use of the software,

which are often based on domain-specific standards. The process evaluation usually

focuses on the product development phase. All of these approaches provide valuable

information to build confidence in the safety of the product and are key for the company

to provide and demonstrate the capabilities and trust to the customer [23].

52 Relevant Guidelines

Table 4.1 Comparison of main approaches in evaluation [23]

Topic Product

evaluation

Safety

assessment

Process

assessment

Main purpose To analyze and

show compliance

of product

To demonstrate

compliance with a

selected reference

To demonstrate

capability to develop,

deliver and improve

Main focus in

safety-critical

domain

Product quality,

especially reliability

metric and data

Compliance with

generic or domain

specific safety

standard

Process evidences to

demonstrate

achievement of safety

management and

engineering

Specifics Internal, external,

in use metric

Inspections,

reviews, V&V

evidences,

technical practices

and methods

Professional

practices, work

products, capability

levels

Typical

standards

ISO/IEC 25000

family

ISO 26262, IEC

61508, IEC 60880

ISO/IEC 15504

(SPICE),

Automotive SPICE

4.2.1 IATF 16949 (Quality Management)

The IATF 16949 – known before 2016 as ISO/TS 16949 – combines existing general

requirements for quality management systems of the (mostly North American and

European) automotive industry. It is based on ISO 9001 (Quality Management) and has

been adapted and expanded for specific industries. Based on the ISO 9001 standard,

several industry-specific standards were developed at the end of the 1990s, taking into

account the supplementary requirements of the respective industries. These niche

standards were mostly the result of quality agreements that dominating market players

(e.g. car manufacturers) demanded of their suppliers. The development was favored by

the fact that, based on such individual agreements, industry associations also issued

quality standards parallel to or complementary to ISO 9001. The IATF 16949 is the most

basic standard for quality management and every company in the automotive industry

must comply with these requirements in order to work with customers and suppliers. It

Relevant Guidelines 53

lays the foundation of quality management in the industry and defines how products must

be developed and produced in order to meet the high demand of quality in this industry.

This standard is well implemented and also a basis of more complex and newer

standards [24].

4.2.2 ISO 26262 (Road Vehicles – Functional Safety)

As already descried briefly in chapter 2.4, ISO 26262 was published in 2011 as an

international standard for the development of safety-critical electronic systems for

automobiles, and is being used more and more widely all over the world. It is based on

the more general IEC standard 61508, but contains car-specific refinements. This risk-

based standard recognizes that a risk cannot possibly be reduced to zero. But it requires

that the risks be qualitatively assessed, and action taken to reduce them as far as is

reasonably practicable. It is also based on the successful implementation of the IATF

16949 (Quality Management) and structured analogous to the V-model development

approach. This standard is becoming increasingly important because it focuses on the

development of safety relevant mechatronic systems in automotive applications. The

most important term to understand is the Automotive Safety Integrity Level (ASIL) as a

risk classification of an element of electronics. Level D stands for parts with the highest

risk, A for the lowest risk. Additionally, the QM level indicates a risk level below ASIL A.

Figure 4.2 Application process of ISO 26262, cf. [25]

Determination of the risk potential of an E/E function using

Hazard Analysis and Risk Assessment ASIL Level

ASIL ≥ A

Development

according to

standard QM.

No additional

requirements of

ISO 26262

Additional measures to reduce the risk to acceptable levels

NO Exit from

FuSa processYES

Avoidance of systematic errors Control of random and systematic errors

Safety Mgmt., development

and support processes

Safety requirements for functions, techn.

systems and components (HW and SW)

ISO 26262

54 Relevant Guidelines

Figure 4.2 provides an overview of the application process of ISO 26262 for the

assessment of functional safety, in particular the ASIL evaluation. The allocation of the

risk class is based on an evaluation process to which the hazards are subjected. Every

potentially dangerous event is classified according to severity (S) – the severity of the

injuries it can cause. S0 stands for “no injuries” and S3 for “danger of death”. The other

important factors in the evaluation are the exposure (E) with a range from E0 (“extremely

low probability”) to E4 (very likely) and the controllability (C). The latter indicates the

extent to which the driver can intervene to prevent injuries (C0 stands for “simple” and

C3 for “difficult or impossible”). The ASIL value is determined using the common

consideration of all these factors by creating the total sum. It goes without saying that a

hazard with high values for S, E and C is classified in the ASIL D category. Nevertheless,

a hazard with a high S-value can be classified in the category ASIL A if it occurs with a

very low probability. If an ASIL value is determined for a hazard, this value is used to the

safety goals that reduce the hazard and the safety requirements derived from them. The

ASIL value then determines the minimum test requirements for system verification. If

during the hazard analysis and risk assessment process, the values for S, E and C are

so low that no ASIL level can be assigned, the QM level applies. This means that a

“normal” development according to quality management is allowed for this failure. The

IATF 16949, which was described in the previous section and is also a prerequisite for

the implementation of ISO 26262, then applies [26].

4.2.3 ISO/IEC 15504 (SPICE)

The ISO/IEC 15504 standard – often simply referred to as SPICE – is a five-part

international standard for the evaluation and improvement of a company’s software

development processes. Concepts and vocabulary, requirements for carrying out

process assessments are defined as the basis for process improvement and maturity

and capability level determination. The most important part of the standard is the

exemplary process assessment model (PAM). This PAM uses ISO/IEC 12207 as a

process reference model (PRM). Most SPICE assessments are carried out using this

assessment model. Further PAMs exist for certain domains, e.g. in the automotive sector

as Automotive SPICE, which is described in detail in the next chapter and forms the

basis of the process optimization described in this thesis. In general, the process model

in the SPICE standard describes a variety of development and supporting processes for

the development of systems and software. Each process, grouped according to work

packages from the V-model, is described in detail with the purpose and defined

Relevant Guidelines 55

outcomes. Additionally, practices and work packages are described, which are relevant

or necessary for the corresponding process phase [27].

In addition to determining the process maturity, the model also enables the identification

of potential improvements for individual processes. For each process, a development

path is given along the capability levels from level 0 to level 5. For each capability level,

the model includes practices that must be present for the process in order to achieve a

higher capability level. Furthermore, however, the model gives no indication of how these

practices can be implemented. By unambiguously assigning the processes of the

maturity model to the processes of the process reference model from the ISO/IEC 12207

standard, further information on the required practices is available to the model user. In

addition to the maturity model, ISO/IEC 15504 includes another guideline for conducting

an assessment, which also addresses the possibility of self-assessment. Moreover, the

standard also offers the possibility of integrating other process reference models and

thus developing individual maturity models [28].

4.3 Customer Requirements

Customer requirements can be group standards, general guidelines of the respective

OEMs (customers), or product-specific customer specifications. Generally, these are

binding for the contractor and all deviations must be approved by the client (OEM).

Customer standards, in particular the so-called group standards, are generally based on

international standards that have already been published and indicate how the

manufacturer interprets the requirements of the standard. This is interesting because the

major manufacturers have usually been actively involved in standardization work on the

new standards, but they still interpret them differently. Group standards and customer

requirements often tighten the requirements in the published standards, which poses a

further challenge for suppliers. In the case of project tenders, all product specifications

as well as the applicable group standards and requirements are distributed to the

tenderers (suppliers), who are then given the opportunity to submit an offer for a specific

project. In order to be considered as a supplier for a company, all requirements must be

able to be fulfilled and all applicable group standards must be implemented in the

company. The certificates and ratings are necessary for this purpose through the

aforementioned audits or assessments.

56 Relevant Guidelines

In the following sections three used specifications respectively group standards are

presented, which have been included in the work to optimize the development processes

in the process model. As a matter of principle, suppliers try to cover as many different

standards and customer requirements as possible by means of their own processes and

guidelines. Typically, such customer requirements are structured in a similar way to

standards or laws having defined IDs for the individual requirements to ensure a

reference and traceability.

4.3.1 OEM A

The customer requirement A is a group standard of OEM A. It sets out the basic

requirements that the entire group imposes on the software installed in the vehicle and

close to the vehicle and its development processes. The described standards are aimed

at defining and specifying the requirements of OEM A with regard to software quality in

the vehicle. These basic requirements contain the minimum requirements for the

software product and its development process that apply to all types of software (e.g.

application software, drivers, standard software etc.). The defined verification measures

are intended to provide a transparent representation of the degree of fulfilment of the

requirements by the contractor. This standard is structured analogously to the V-model

in terms of content and is therefore compatible with all relevant processes described in

automotive spice. It is an important requirement standard, because it is highly relevant

for suppliers in terms of unit quantities.

4.3.2 OEM B

The group standard B applies to the development of embedded software at OEM B and

its suppliers. It deals with the development of safety-related and non-safety related

embedded software in vehicles, basic and application software as well as embedded

software over the entire lifecycle, i.e. before production start and after that until the end

of maintenance. This standard is said to be a recommendation. However, if reference is

made to this standard within a binding document (e.g. a customer requirement for a

development project), this group standard becomes binding. In contrast to OEM A’s

standard described previously, OEM B’s standard is not structured in the same way as

Automotive SPICE. This makes direct mapping in the process optimization more

challenging. The current version is based on the standard ISO 26262 – Functional Safety

described above. A successful implementation and operation according to ISO 26262 is

Relevant Guidelines 57

also a prerequisite for a successful implementation of this standard. According to OEM

B, ISO 26262 is essential for the application of this group standard. This means that less

of the contents and requirements can be allocated directly to the Automotive SPICE

requirements. A future extension of the optimized process model to include ISO 26262

has the potential to integrate the entire standard of OEM B.

4.3.3 OEM C

OEM C’s group standard is also a supplementary document to product-specific

component specifications. It describes OEM C’s cross-component general requirements

for the provision of services within the scope of component development or series

production by the supplier. The component-specific requirements for the development or

series production of parts, modules, software or components are part of the respective

technical component requirement specifications. This standard is a very comprehensive

document, as it sets requirements for the E/E and mechanical components and their

development processes in addition to software requirements. The standard also exists

in different variants. In addition to the present standard for E/E, software and mechanical

components, it is also available for pure software scopes, pure mechanics scopes and

pre-assembly scopes. Due to the large coverage, only a small portion of the given

specification on the topic of software is relevant for process optimization and mapping of

processes and base practices respectively requirements. In the future, however, other

aspects can be added to the process model when it is expanded, which is taken into

account in the process model concept phase.

4.4 Best Practices

Within the framework of this master thesis, all internal activities, regulations and

processes of the company or supplier on the automotive market are defined under the

term of best practices. Similar to the OEM group standards, these are based on existing

standards, but are adapted to the respective company and its subcontractors. Usually,

these internal processes have emerged and evolved over a long period of time by

adapting to new standards, customer requirements or results from the field of research

and development. These best practices are very industry and product-specific, as a

result of the company’s know-how. Best practices are not only all internal processes, but

can also include common practices that are followed as if they were unwritten laws in

the company. Usually best practices also include the knowledge of past projects and

58 Relevant Guidelines

lessons-learned. Best practices are relevant for process optimization in so far as on the

one hand it is possible to identify the need for optimization on the basis of the internal

processes, and on the other hand, the knowledge of one’s own best practices also allows

an estimation of the optimization effort. Internal processes of automotive companies are

usually also structured analogous to the V-model for the development of system and

subsystems. Besides the base processes for the development activities, there are also

supplementary processes along the entire product lifecycle to control, steer and support

the main activities.

Automotive SPICE 59

5 Automotive SPICE

Automotive SPICE (ASPICE) is a domain-specific variant of the international standard

ISO/IEC 15504 (SPICE) described in the previous chapter. The purpose of Automotive

SPICE is to evaluate the performance of the development processes of electronic control

unit suppliers in the automotive industry. SPICE is the abbreviation for “Software Process

Improvement and Capability Determination”. This chapter provides an overview of the

VDA standard Automotive SPICE, which is the basis for the following process

optimization.

5.1 Introduction to Automotive SPICE

The Automotive SPICE standard, derived from the ISO/IEC 15504 (SPICE) standard, is

an international standard that is used worldwide in large automotive companies as a

framework for the assessment of processes. Automotive SPICE can be perceived as a

representative software process evaluation model because assessors evaluate

indicators and metrics that measure the performance of software processes. It is a

reference for the maturity models, which specifies requirements for process reference

models and process evaluation models similar to SPICE. This reference model

comprises several key components, namely: some lifecycle processes from several

process categories for the process dimension and six skill levels for the capability

dimension. The basis for the creation of products by the company is the process. The

capabilities associated with their process attributes relate to the company's ability to

produce these products both predictably and consistently. It includes a series of process

performance and process capability assessment indicators on the basis of which

objective assessments are collected that enable an assessor to assign ratings [29].

In principle, the process assessment model is a collection of best practices for the

automotive industry. However, this is a model and not a simple listing of the processes.

It provides the user with a tool to evaluate and compare their processes and those of

their suppliers. Methods, workflows and outcomes are commonly used for this

procedure. Automotive SPICE refers mainly to the development of mechatronic systems

in automotive applications. The content of Automotive SPICE focuses fundamentally on

system and software applications. The basic idea is the standardization and definition of

all processes, their outcomes and work packages to successfully develop a product. In

each process, the individual base practices are presented, and further generic practices

60 Automotive SPICE

are introduced. In addition to the classic development processes in the V-model, the

standard Automotive SPICE also offers a framework for the entire product development

process. This includes defined processes for project management, requirements

management, configuration management, risk management, supplier qualification and

acquisition. In order for a vehicle manufacturer to award a project to a supplier, these

suppliers must certify a certain degree of maturity in terms of process quality. This is

determined by assessments of the OEM or third parties based on defined processes and

metrics [30].

5.1.1 Relevance for Automotive Applications

Since the publication of a first process reference model by the Automotive Special

Interest Group (AutoSIG) in 2005, Automotive SPICE has established itself among

companies engaged in the development of software-based systems in the automotive

sector. The software development for mechatronic systems is traditionally characterized

by the mentioned V-model. In contrast, Automotive SPICE is specifically tailored to the

needs of the development of ECUs in the automotive sector. It has been developed by

users in the automotive industry and is recognized as a definitive ISO/IEC 1554

compliant process model. For the evaluation of software development processes in the

supply chain, European automotive manufacturers rely on Automotive SPICE. Practical

application in supplier assessments has resulted in procedures that have been

developed by a VDA working group on a guideline for conducting assessments. Here,

the procedure of assessments is modeled as a kind of own process and thus simplifies

the implementation of the standard. In practice, Automotive SPICE is part of the quality

management system of car manufacturers and suppliers. On the OEM side, there is

often a supplier evaluation strategy that is coordinated with the procurement department

and a strategy for monitoring and safeguarding ongoing projects that is coordinated with

the engineering department. An embedding of supplier assessments according to

Automotive SPICE within the framework of a comprehensive degree of maturity

assurance makes sense in many cases. The aim is to determine the process maturity of

the respective supplier in the complete chain of the development process of the

respective component – from the first idea to series production readiness – and to ensure

that it is fully operational. On the supplier’s side, there is usually already a coordinated

quality assurance strategy for software based systems development. Results from

Automotive SPICE are also embedded in the process improvement measures. An

additional challenge for safety-critical systems includes the functional safety

Automotive SPICE 61

requirements of ISO 26262, which nowadays have a very high priority and must also be

considered [31].

5.1.2 History of the Standard

The first maturity model that was widely used was CMM in the early 1990s. CMM has

never played a significant role in the automotive industry, even though a car

manufacturer tried supplier evaluation approaches for a short period of time. The SPICE

compatible BOOTSTRAP was used by a few pioneers among automotive suppliers, but

was never able to prevail over SPICE and was discontinued in the year 2003. SPICE

originated from an ISO project of the same name and was published in 1998 as ISO/IEC

TR 15504, whereby TR (Technical Report) represents a preliminary stage to a later

international standard. The various parts of the International Standard ISO/IEC 15504

have been published successively since 2003. In 2006, the most important part of

ISO/IEC 15504 was published, and in 2012 a new version was released. In 2008, part 7

“Assessment of organizational maturity” was published, which defined the normative

basics of organizational assessments. In contrast to the usual project assessments, the

maturity of an organization can be assessed by a larger number of random samples.

Several pilot assessments have so far been carried out successfully on this basis. This

methodology has not yet established itself widely. ISO/IEC 15504 has been successively

transferred to the ISO/IEC 33000 family since 2015 [20].

As described previously, the industry-specific standard Automotive SPICE was

developed on the basis of the mentioned international standard ISO/IEC 15504 (SPICE).

Starting in 2001, Automotive SPICE was developed by the Automotive Special Interest

Group (AutoSIG), which includes the automobile manufacturers Audi, BMW, Daimler,

Porsche, Volkswagen, Fiat, Ford, Jaguar, Land Rover, Volvo, the SPICE User Group

and the Procurement Forum. Today, Automotive SPICE is a registered trademark of the

VDA. The starting point was an increased complexity and functionality in the automobile,

which resulted from the increasing use of software functions. As a result, OEMs were

forced to evaluate their suppliers on the basis of software capability and quality. To this

end, each OEM initially had its own guidelines and approaches to evaluate the ability

and maturity of its suppliers. The resulting problem was that the individual manufacturers

had to meet the sometimes very complex requirements of several manufacturers, but at

the same time they had to be able to cope efficiently and with well-coordinated internal

processes and best practices. This quickly led to the need for a standardization of

62 Automotive SPICE

software capability and process maturity requirements in order to achieve a uniform

evaluation and implementation in the industry [30].

The breakthrough for the use of maturity models in the automotive industry came in 2001

with the decision of the German software manufacturer initiative “Herstellerinitiative

Software” (HIS) to use SPICE for supplier evaluation in the software and electronics

sector. Members of HIS are the German OEMs Audi, BMW, Daimler, Porsche and

Volkswagen. From this time on, SPICE spread throughout the entire automotive industry.

One of the great advantages of SPICE is its ability to develop industry-specific models

under a common normative framework. In 2005, AutoSIG published the Automotive

SPICE model, replacing the former generic SPICE standard. Automotive SPICE is now

being further developed by the working group 13 of the Quality Management Center

(QMC) within the VDA. Members of this working group are comprised by employees of

the OEMs of the Volkswagen Group, Daimler Group, BMW Group, Bosch Group, ZF

Friedrichshafen, Continental, Brose, Ford, Schaeffler and Knorr Bremse [20].

Figure 5.1 Derivation of HIS process scopes for ASPICE from ISO 15504 [20]

Automotive SPICE 63

Figure 5.1 provides an overview of the mapping between the defined processes from

the original SPICE standard ISO 15504 to the first version of Automotive SPICE. Most

processes are directly related to the successful SPICE standard with additional notes

and changes for the domain specific variant. Other processes (e.g. ENG.2 and ENG.3)

are the result of a divided process to define each phase with their respective outcomes

and work products in detail. On the other hand, processes like SUP.9 (problem resolution

management) were newly added to the Automotive SPICE standard. There are more

processes and contents of Automotive SPICE than illustrated in this figure, which is

described in the following subsections.

After a few years of version maintenance, version 3.0 was released in 2015, which

brought with it a number of structural changes in addition to further developments in

terms of content and adjustments which increased the project effort. Table 5.1 contrasts

the major overall changes between Automotive SPICE 2.5 and Automotive SPICE 3.0.

The most important innovation was the splitting of all engineering processes (ENG) into

the two groups of systems engineering processes (SYS) and software engineering

processes (SWE). This makes the process assessment model even better suited to the

common V-models and a separation between these areas is recognizable. The second

important innovation was the splitting of the processes that affect the unit, the smallest

software element. In version 3.0, the former process was split into two new ones. One

process for the unit construction and one process for the unit verification. The new plug-

in concept allows the integration of hardware and mechanical processes, which are not

provided by the ASPICE standard. The content of the HIS-Scope, apart from minor name

changes, remains largely unchanged. Some changes cause additional effort from

projects, e.g. the evaluation of alternative solutions for architectures [20, 32].

Table 5.1 Overview of major changes between version 2.5 and 3.0, cf. [33]

Automotive SPICE 2.5 Automotive SPICE 3.0

ENG (Engineering Processes) SYS (System Engineering),

SWE (Software Engineering)

One process for unit construction and

unit verification

Unit construction process and

additionally a unit verification process

No integration of HW and mechanical

processes

Plug in concept allows integration of HW

and mechanical processes

Known process names The names of some processes have

changed

64 Automotive SPICE

A further change was the division into separate base practices of the individual

processes for consistency and traceability. This means that there is a clear traceability

for every process, similar to the described V-model. It is now clear that the designed

software units must be verified and evaluated on the basis of previously defined

requirements. Such a model is presented in more detail in the course of this chapter.

Another improvement is the refinement of the requirements for the work packages and

their characteristics. It requires a further independence, but the objectivity is now given

in ASPICE 3.0. Since individual reviews of the work packages cannot be carried out

independently, this increases quality assurance. The dynamic behavior of the software

architecture was also addressed in architectural design. In this context, alternative

solutions or concepts must also be evaluated on the basis of defined criteria. A further

increase in traceability and consistency is reflected in the test processes. These now

require that a selection of the test cases must be made on the basis of the test strategy

defined in advance for the individual test steps. In the course of this master thesis, the

developed process model contains a mapping of all processes and base practices of

Automotive SPICE 2.5 and 3.0 and highlights the deviations of the HIS-scope [33].

In order to limit the scope for interpretation of the new Automotive SPICE 3.0 standard,

a new gold/blue edition was developed by the VDA. The first draft version was published

in February 2017 as a yellow volume entitled “Automotive SPICE Guidelines”. The final

version was released in April 2017 and contains binding rules and recommendations for

the transition to Automotive SPICE 3.0 as well as its interpretation guide and instructions

for assessors. This guideline was approved by the VDA Quality Management Board and

is therefore binding. Further details of the assessment of Automotive SPICE will follow

in the course of this chapter [32].

Despite the fact that version 3.0 of Automotive SPICE was already released in the year

2015, both versions (ASPICE 2.3 and 2.5) may still be used and Automotive SPICE 2.3

is still the version, which is considered mandatory by the VDA [33].

5.1.3 Process Capability Level

The process capability level is a central idea of the SPICE standard. This level enables

the user to evaluate the process capability and improve it accordingly. Especially in the

automotive industry, Automotive SPICE offers a comprehensive and standardized

evaluation method for OEMs and Tier 1 suppliers. The suppliers attest to the customer

a certain degree of process capability or maturity in previously defined processes from

Automotive SPICE. This is necessary in order to get an assignment from the OEM for a

Automotive SPICE 65

development project or part of it. This process capability level is determined in supplier

assessments and put to the test. In this context, compliance with the selected processes

is decisive. In order to achieve a certain level of process capability, defined model

elements must be implemented in the own process environment. Automotive SPICE

defines six levels of process capability – from level 0, being the lowest, to level 5, the

highest level of process capability [30].

Figure 5.2 Process capability levels of ASPICE acc. to ISO 33020, cf. [34]

Since Automotive SPICE is not only concerned with adherence to required processes,

but also with maturity and process capability for improvement and process innovation,

the degree of fulfillment is described in analogy to Figure 5.2 according to [35]:

Level 0 describes an incomplete process. The process is not implemented, or the

purpose of the process is not fulfilled. Project successes are quite possible, but are a

result of coincidence.

Level 1 is defined as a state in which everyone knows what to do. This can be described

with the base practices. Each process has its own base practices that should be

mastered at level 1. The implementation of these practices produces intermediate

results, the work products (WP). As a rule, these work products are individual and

traceable documents.

Level 2 means that everyone knows what is good and what is not good. In particular,

there are document templates and checklists for the work products to be created in the

Level 5

Level 4

Level 3

Level 2

Level 1

Level 0 Incomplete

Performed

Managed

Established

Predictable

Optimizing

66 Automotive SPICE

project. The preliminary results are reviewed and placed under configuration

management. There are some ideas on how the process can be improved during the

course of the project. The responsibilities have been clarified and the team members

receive the right training in terms of their role in the project. All measures and work steps

are planned, and their observance is checked. These are no longer individual base

practices of the individual processes, since a large number of generic practices must be

fulfilled from level 2 onwards.

Level 3 describes the realization that it is good to write down positive experiences made.

This is done in the form of process definitions. This enables improvements to be made

across project boundaries. The process definitions are continually adapted for use in

projects, so that there is also room for improvement here. In particular, lessons learned

from past projects are included.

Level 4 assumes that the defined process has already been executed many times and

therefore figures and data are available that describe the process execution. Statistical

considerations can be made about the implemented processes and defined upper and

lower limits for the individual process parameters exist. This enables preventive process

maintenance.

Level 5 describes the continuous improvement of processes. Technological innovations

are explored, usability is evaluated with the applied process and implemented for

optimization. This level has the highest requirements and is rarely attested.

The determination of the performance capability, and thus the assignment of the

individual levels described previously, is based on so-called process attributes. Process

attributes are characteristics of a process that can be evaluated on a service scale and

represent a measure of the process’s performance. They are applicable to all processes

related to Automotive SPICE. Process capability determination using a process

assessment model is based on a two-dimensional model. Processes defined in a

process reference model provide the first dimension. In the second dimension, the ability

levels are divided into process attributes. These process attributes return the quantifiable

properties of the process capability. A detailed overview of the assessment and

classification into the above levels is presented at the end of this chapter [30, 34].

Based on experience and discussions with the industrial partner, most companies

achieve a maximum of process capability level 3 at the assessment. Everything else

requires a disciplined and elaborate design of the processes. In addition, ongoing

customer requirements for the assignment of a project require at least one assessment,

Automotive SPICE 67

in which level 2 is achieved and an effort for improvement is evident. The results of the

assessment may differ depending on the customer or OEM concerned. The work in the

context of this thesis is limited to the comparison and deviation analysis at process

capability level 1 of Automotive SPICE. From the higher levels onwards, generic

practices would also be required, which would exceed the scope of this master thesis.

5.2 Scope of Automotive SPICE

Basically, Automotive SPICE covers the entire scope of the product development

process, analogous to the V-model. Processes are grouped by category and, since

Automotive SPICE 3.0, are sorted into process groups according to activities. There are

three process categories in the scope of Automotive SPICE according to [34]:

1. Primary Life Cycle Processes

2. Organizational Life Cycle Processes

3. Supporting Life Cycle Processes

In these categories, the individual processes are further subdivided into the following

application-related groups, according to [34]:

• Acquisition Process Group (ACQ)

• Supply Process Group (SPL)

• System Engineering Process Group (SYS)

• Software Engineering Group (SWE)

• Management Process Group (MAN)

• Reuse Process Group (REU)

• Process Improvement Group (PIM)

• Supporting Process Group (SUP)

Figure 5.3 illustrates the entire scope of Automotive SPICE as well as the mentioned

categories and process groups using the V-model for system and software development

processes. Key in version 3.0 is the clear separation between system engineering and

software engineering, the processes at the tip of the V-model and the concept of

bidirectional traceability and consistency. It becomes clear, that every process of the left

side of the V-model (design), has a corresponding process on the right side (verification).

68 Automotive SPICE

Figure 5.3 Automotive SPICE 3.0 process reference model [34]

Knowledge of terminology is also important for understanding the process model of

Automotive SPICE. For this purpose, there is a separate appendix in the standard, which

deals only with the terms and their definitions. Figure 5.4 contrasts the most important

central terms of the standard: element, item, component and unit. They are used

consistently during the entire development process and in the PRM.

Figure 5.4 Important terminology of Automotive SPICE [34]

Management Process
Group (MAN)

Supporting Process Group (SUP)

Acquisition Process
Group (ACQ)

Supply Process Group
(SPL)

ACQ.4
Supplier Monitoring

ACQ.11
Technical Requirements

ACQ.12
Legal and Administrative

Requirements

ACQ.13
Project Requirements

ACQ.14
Request for Proposals

ACQ.15
Supplier Qualification

SPL.1
Supplier Tendering

SPL.2
Product Release

SUP.1
Quality Assurance

SUP.2
 Verification

SUP.4
Joint Review

SUP.7
Documentation

SUP.8
Configuration
Management

SUP.9
Problem Resolution

Management

SUP.10
Change Request

Management

MAN.3
Project Management

MAN.5
Risk Management

MAN.6
Measurement

ACQ.3
Contract Agreement

Process Improvement
Process Group (PIM)

PIM.3
Process Improvement

Reuse Process Group
(REU)

REU.2
Reuse Program
Management

System Engineering Process Group (SYS)

SYS.1
Requirements Elicitation

SYS.2
System Requirements

Analysis

SYS.3
System Architectural

Design

SYS.4
System Integration and

Integration Test

SYS.5
System Qualification Test

Software Engineering Process Group (SWE)

SWE.1
Software Requirements

Analysis

SWE.2
Software Architectural

Design

SWE.3
Software Detailed Design

and Unit Construction

SWE.4
Software Unit Verification

SWE.5
Software Integration and

Integration Test

SWE.6
Software Qualification Test

Primary Life Cycle Processes Supporting Life Cycle ProcessesOrganizational Life Cycle Processes

Unit

Component

SYS.2
System Requirements

Analysis

SYS.3
System Architectural

Design

SYS.4
System Integration and

Integration Test

SYS.5
System Qualification Test

SWE.1
Software Requirements

Analysis

SWE.2
Software Architectural

Design

SWE.3
Software Detailed Design

and Unit Construction

SWE.4
Software Unit Verification

SWE.5
Software Integration and

Integration Test

SWE.6
Software Qualification Test

Element Item

Automotive SPICE 69

5.3 Components of Automotive SPICE

As already described, the standard Automotive SPICE contains individual processes.

These processes are described in detail. Figure 5.5 shows schematically how such a

process is structured and defined in Automotive SPICE. Each process can be addressed

individually with a unique ID and name. The purpose of the individual process is then

defined. This describes the goals and the situation around the activities of the

development phase according to the V-model. From this, the outcomes can be derived

directly. The ID, name, process purpose and outcomes define the PRM. The outcomes

are recorded and documented in the so-called work packages, individual documents. It

is important to know that several outcomes are relevant for several work packages and

vice versa. This is also cross-process. The work packages are described in detail at the

end of Automotive SPICE and can also be uniquely assigned by means of ID.

Subsequently, the base practices for each process are described. These base practices

and the corresponding output work products are the performance indicators, as they

provide measurable metrics for the capability determination during assessments [34].

Figure 5.5 Schematic template for an Automotive SPICE process description [34]

5.3.1 Process Outcomes

The outcomes of the process are derived from the purpose of the respective process.

These are numbered separately for each individual process (outcome 1 to n). These

outcomes can be mapped to the corresponding output work products and are related to

the defined base practices [34].

Process ID The individual processes are described in terms of
process name, process purpose, and process
outcomes to define the Automotive SPICE process
reference model. Additionally a process identifier is
provided.

Process name

Process purpose

Process outcomes

Base practices A set of base practices for the process providing a
definition of the tasks and activities needed to
accomplish the process purpose and fulfill the process
outcomes

Output work
products

A number of output work products associated with
each process

NOTE: Refer to Annex B for the characteristics
associated with each work product.

P
ro

c
e

s
s

re
fe

re
n

c
e

m
o

d
e

l

P
ro

c
e
s

s

p
e
rf

o
rm

a
n

c
e

in

d
ic

a
to

rs

70 Automotive SPICE

5.3.2 Base Practices

The base practices (BP) are a central part of the Automotive SPICE model. They define

for each process what needs to be done to meet the required outcomes. They specify

defined tasks and activities. These results of the base practices are directly derived from

the purpose and the defined outcomes, whereby the results of the individual base

practices are directly reflected in the output work packages. For each process, the base

practices are numbered consecutively in the same way as the outcomes (BP 1 to n), but

are recognizable across all processes with a unique ID (e.g. SWE.3.BP1). If the base

practices are fulfilled and all output work packages are available, the defined outcomes

are fulfilled. This corresponds to a process capability of level 1. In order to achieve a

higher rating in an assessment, it is not enough to simply implement and comply with the

required base practices for each process. The generic practices (GP) must also be

fulfilled. Irrespective of the individual processes, these are described in detail at the end

of Automotive SPICE. However, this increases the complexity considerably, which is why

the process model, which is created in the course of this master thesis, is created on the

basis of the individual base practices [34].

5.3.3 Work Products

The work products (WP) are the results of the individual base practices. Once the work

products have been created on the basis of all base practices for each process, all

required outcomes of the process are usually fulfilled. The work packages are documents

of any kind. The creator or the company is free to choose how these documents or work

products look like and how they are filed or archived. At the end of Automotive SPICE,

all work products are listed, and a description of mandatory contents is provided. Each

work product has its unique ID, independent from processes (e.g. 05-10). It is important

to know that several processes or practices can access the same work product and vice

versa. Additionally, a work product can be the result of several practices and processes.

A document can also contain several work products, if the author or company perceives

it as necessary or beneficial. It should only be noted that the documentation and

distribution of the documents is regulated inside an organization. This means that all

employees involved are always working on the latest versions and traceability and

consistency in the naming and referencing is guaranteed [34].

Automotive SPICE 71

5.4 Structure of the Standard

As already mentioned, Automotive SPICE contains individual processes and their

activities and outcomes. Since these are arranged in the same way as the V-model, a

simple and clear structure is possible, which promotes the bidirectional traceability and

consistency throughout the entire standard and process model. This is another central

element in Automotive SPICE, as it provides a transparent PRM layout. Figure 5.6

illustrates this concept by means of the relevant systems engineering processes in the

V-model. All applicable base practices are highlighted. This concept also applies

analogous to the software engineering processes. The term traceability refers to the

presence of references or links between work products, which further supports the

impact analysis, coverage, and status tracking of requirements implementation.

Consistency, on the other hand, addresses content and semantics. In addition, in

Automotive SPICE, bidirectional traceability was explicitly defined between the following

contents, according to [34]:

• Test cases and their corresponding test results as well as

• Change requests and work products, which are affected by these requests

Figure 5.6 Traceability and consistency throughout Automotive SPICE [34]

SYS.2 BP6

SYS.2 BP7

SWE.1 BP6

SWE.1 BP7

SYS.5 BP5

SYS.5 BP6

SYS.3 BP6

SYS.3 BP7

SWE.1 BP6

SWE.1 BP7

SYS.4 BP7

SYS.4 BP8

SWE.6 BP5

SWE.6 BP6

SWE.5.BP7

SWE.5 BP8

SWE.4 BP5

SWE.4 BP6

SWE.3.BP5

SWE.3 BP6
SWE.3 BP5

SWE.3 BP6

SWE.3 BP5

SWE.3 BP6

SWE.6 BP5

SWE.5 BP7

SYS.4 BP7

SYS.5 BP5

SUP.10 BP8

SWE.2 BP7

SWE.2 BP8

SWE.4 BP5

SWE.4 BP5

consistency

bidirectional traceabilityStakeholder
requirements

System requirements

System architecture

Software requirements

Software architecture

Software detailed
design

Software units

Unit test specification Unit test results

Static verification
results

Change requests
To affected work products

Software integration
test results

Software qualification
test results

Software qualification
test specification

Test cases

Software integration
test specification

Test cases

System integration
test results

System qualification
test results

System qualification
test specification

Test cases

System integration
test specification

Test cases

72 Automotive SPICE

Figure 5.7 Evaluation, verification and compliance throughout the PRM [34]

Consistency can also be monitored and applied to the terms evaluation, verification

criteria and compliance. Figure 5.7 provides an overview of the dependencies and

relationships between these important concepts and the structure within the process

model. The evaluation of alternative solutions for system and software architectures as

well as for the detailed software design is a prerequisite. The evaluation must be carried

out according to defined criteria. The result of the evaluation with reasons for the

architecture and design choice must be documented [34].

Figure 5.8 Plug-in concept of Automotive SPICE 3.0 [36]

SWE.3.BP4: Evaluate

SYS.3.BP5: Evaluate

SWE.2.BP6: Evaluate

SYS.2
System Requirements

Analysis

SYS.3
System Architectural

Design

SYS.4
System Integration and

Integration Test

SYS.5
System Qualification Test

SWE.1
Software Requirements

Analysis

SWE.2
Software Architectural

Design

SWE.3
Software Detailed Design

and Unit Construction

SWE.4
Software Unit Verification

SWE.5
Software Integration and

Integration Test

SWE.6
Software Qualification Test

SYS.2.BP5: Verification criteria

SWE.1.BP5: Verification criteria

SWE.5.BP3: Compliance

SYS.4.BP3: Compliance

SWE.4.BP2: Criteria for unit verification

SU
P

.2
V

e
ri

fi
ca

ti
o

n

SYS.5.BP2: Compliance

SWE.6.BP2: Compliance

SWE.4.BP2: Compliance

SYS.4

SYS.5

SWE.1

SWE.4

SWE.2 SWE.5

SWE.3

SWE.6

A
C

Q
.4

M
A

N
.3

S
y
s
te

m
 l
e

v
e

l
D

o
m

a
in

 l
e

v
e

l

S
U

P
.1

S
U

P
.8

HWE.1-n MEE.1-n

SYS.1

SYS.2

SYS.3

Automotive SPICE 73

The verification criteria are used for the development of test cases to ensure compliance

with the defined requirements. The criteria for the individual testing ensure that the code

complies with the detailed design and non-functional requirements of the software. For

the unit tests, these criteria must be specified in a product inspection specification.

Compliance with a software architectural design means that the specified integration

tests demonstrate that interfaces and relevant interactions between software units, items

and system items meet the requirements of the designed software architecture [34].

Another structural approach that has been implemented in Automotive SPICE 3.0 is the

so-called plug-in concept. Figure 5.8 shows this schematically, also using the V-model

for development processes. The upper half shows the complete system engineering

processes, which are structured according to the known V. Depending on the product

being developed, domain-specific processes can be included in the lower half of the

figure. Automotive SPICE 3.0 only contains the software engineering processes. By

splitting up in version 3.0, further processes for hardware development (HWE) or

mechanical development (MEE) can now be implemented according to the system

engineering processes in analogy to the SWE processes. The remaining processes,

such as support and management processes, are not domain-specific and are therefore

designed to be applied to both, the system level and the specific domain levels [34].

5.5 Assessment of Automotive SPICE

The assessment is the method for determining the capability of a process. For this

purpose, the processes of a specific project or company are compared with different

Automotive SPICE processes. The assessment is mainly used for two reasons:

• Process improvement (internal assignment): determination of the need for

internal process improvement.

• Assessment of the capability (external assignment): assessment of the risk for

supplier selection

Regardless of the purpose of the evaluation, the results – in addition to the process

capability level – are statements about the strengths and weaknesses of certain

processes and recommendations for action. It is important to note that an assessment is

always based on the evaluation of measurable metrics of individual processes and is not

targeted specifically at personnel or products [30].

74 Automotive SPICE

Figure 5.9 Process capability assessment dimensions [34]

Figure 5.9 shows the two-dimensional evaluation, which results in the already described

process capability level. On the one hand, the process capability indicators and also the

process performance indicators are used as a benchmark. Whether a certain level is

achieved or not is determined on the basis of the defined process attributes. In principle,

the process attributes are valuated using a four-level scale [34].

Table 5.2 Rating scale according to ISO 33020 [34]

N
Not
achieved

0 to
≤ 15%

There is little or no evidence of achievement of the
defined process attribute in the assessed process.

P
Partially
achieved

> 15% to
≤ 50%

There is some evidence of an approach to, and some
achievement of, the defined process attribute in the
assessed process. Some aspects of achievement of the
process attribute may be unpredictable.

L
Largely
achieved

> 50% to
≤ 85%

There is evidence of a systematic approach to, and
significant achievement of, the defined process attribute
in the assessed process. Some weaknesses related to
this process attribute may exist in the assessed process.

F
Fully
achieved

> 85% to
≤ 100%

There is evidence of a complete and systematic
approach to, and full achievement of, the defined
process attribute in the assessed process. No significant
weaknesses related to this process attribute exist in the
assessed process.

Automotive SPICE 75

Table 5.2 shows the rating scale for process attributes in the Automotive SPICE

assessment. In order to support the evaluation of process attributes, the ISO 33020

framework offers a defined rating scale with an option for refinement, different rating

methods and depending on the rating class. In addition, the Automotive SPICE standard

defines a finer scale with additional subdivisions (P-, P+, L- and L+). This allows a finer

graduation for the final evaluation of process capability. The final process capability level

depends on which rating level is reached in which evaluated processes according to the

process attributes. Table 5.3 shows this entire result based on the required process

attribute fulfillment levels. This process capability level model is based on the ISO 33020

standard and defines the rules on how achieving each level depends on the rating of

process attributes for the assessed and all subordinate levels. Generally speaking,

reaching a certain level requires that the corresponding process attributes must be

reached to a large extent and that all lower-level process attributes are fully reached [34].

Table 5.3 Process capability level model according to ISO 33020 [34]

Scale Process attribute Rating

Level 1 PA 1.1: Process Performance Largely

Level 2
PA 1.1: Process Performance
PA 2.1: Performance Management
PA 2.2: Work Product Management

Fully
Largely
Largely

Level 3

PA 1.1: Process Performance
PA 2.1: Performance Management
PA 2.2: Work Product Management
PA 3.1: Process Definition
PA 3.2: Process Deployment

Fully
Fully
Fully
Largely
Largely

Level 4

PA 1.1: Process Performance
PA 2.1: Performance Management
PA 2.2: Work Product Management
PA 3.1: Process Definition
PA 3.2: Process Deployment
PA 4.1: Quantitative Analysis
PA 4.2: Quantitative Control

Fully
Fully
Fully
Fully
Fully
Largely
Largely

Level 5

PA 1.1: Process Performance
PA 2.1: Performance Management
PA 2.2: Work Product Management
PA 3.1: Process Definition
PA 3.2: Process Deployment
PA 4.1: Quantitative Analysis
PA 4.2: Quantitative Control
PA 5.1: Process Innovation
PA 5.2: Process Innovation Implementation

Fully
Fully
Fully
Fully
Fully
Fully
Fully
Largely
Largely

76 Automotive SPICE

Although well-known manufacturers have been able to position their interests as content

in Automotive SPICE through standardization work, there are differences in the

perception of some requirements. This is one of the reasons why some manufacturers

have specified their exact interpretation in binding customer requirement specifications.

In this way, OEMs want to keep the freedom of interpretation to a minimum and

emphasize their own focus. Although Automotive SPICE is generally applicable,

manufacturers place different emphasis on the parts that are important to them. For

example, OEM A gives more importance to definition and specification of the detailed

design, while OEM C sets the priority on verification and validation. In discussions with

the industrial partner, it has also emerged that this behavior of the OEMs is directly

reflected in the process capability level that has been achieved. If a supplier achieves a

level of 1 for OEM A, it has happened before that OEM C confirms a level 3 for this

supplier.

The interpretation of assessment results often focuses on the question of their

comparability. On the one hand, an organization that commissions an internal quality

assurance team or an external service provider to carry out an assessment will ask itself

whether this result also corresponds to the possible evaluation by a customer. On the

other hand, a customer who wants to carry out an assessment of a supplier project will

be confronted with the question of whether the results of an assessment not carried out

with their own assessors allow the necessary conclusions to be drawn on the

qualification of the supplier. Practical application in supplier assessments has resulted

in procedures that have been developed by the VDA working group 13 into a guideline

for conducting assessments. These are the aforementioned yellow ribbon Automotive

SPICE Guidelines. Here, the procedure of assessments is modelled as a process. This

guideline developed by manufacturers and suppliers provides recommendations for the

application of Automotive SPICE in the software development process. In particular,

process improvement is taken up as a core element of an assessment and modeled as

an integral part of the overall process. Rules and recommendations for the evaluation of

each practice are also mentioned. The rules are much more important for the assessors,

since a written documentation is necessary in case of a deviation. It also stipulates that,

among other things, a process must be down-rated if a previous process does not meet

certain requirements [31].

Since the entire process scope of Automotive SPICE would considerably increase the

effort of an assessment and would not necessarily improve the informative value of the

results, a common scope was defined. This basic subset of processes (also known as

Automotive SPICE 77

the HIS scope) has been defined by the VDA QMC as a selection of standardized

assessment methods. This selection reflects as accurately as possible the processes by

means of which the supplier and its software processes can be evaluated as suitably as

possible in relation to process capability. These include in particular all sub-models of

the V-model. Studies conducted by the VDA have also shown that good process

capability in the HIS Scope in question is directly reflected in increased product maturity.

Unfortunately, a recent study by the Volkswagen Group revealed a deficit in these very

bottom processes of the V-model. Processes ENG.5, ENG.6 and ENG.7 (from

Automotive SPICE 2.5) are the weakest. These relate in particular to software design

and integration. On the other hand, all supporting processes performed best (SUP). In

particular, MAN.3 (project management) was seen as a critical factor, since the entire

process capability level can be overturned depending on its rating. Another result of

Volkswagen’s statistical analysis was that, in addition to correlations in the rating of the

individual processes, there are also strong dependencies between the individual base

practices. This is also reflected in the requirements of the Automotive SPICE guidelines

for assessments. In an experiment, it was then possible to predict the assessment of a

process on the basis of a few individual base practices (four out of eight) using a

regression model with high accuracy. The proposal for a new approach to assessments

provides a direct input for future versions of the Automotive SPICE standard. The focus

should therefore be on the effectiveness of the individual processes rather than the

consistency of the individual base practices. They suggest, that these BPs should also

be consolidated and optimized in future versions of the standard [37].

78 Automotive SPICE

Concept Development for Process Analysis 79

6 Concept Development for Process Analysis

This chapter describes the entire concept development as well as the necessary prior

requirement definition for the data storage and analysis, which was carried out in the

context of this master thesis. The chapter is structured according to the methodology

used in the practical part of the work. Firstly the approach to process definition and the

associated selection of suitable processes, base practices and relevant sources is

explained. Subsequently, a tool environment is to be developed in which the

comprehensive process model can be used in a clear and easy to use manner. In

addition to the first ideas and concepts, this chapter also highlights all problems and

challenges that have arisen in the course of concept development. In particular, the

complex n:m relationships (cardinalities in the database model) between the individual

requirements of the respective sources should be mentioned. The chapter concludes

with the result of a working concept for data storage and analysis within the process

model. For this purpose, all steps necessary for the development of this tool concept are

presented. A special focus is on the creation of the VBA code for mapping base practices

for the necessary comparison of the various included sources. Subsequently, this tool

concept is filled in the following chapter and allows conclusions to be drawn about

deviations and optimizations for the respective user groups.

6.1 Introduction to the Corporation

This thesis is done in close cooperation with Magna Powertrain in Lannach, Austria.

Magna Powertrain is incorporated into the management structure of Magna International,

one of the leading automotive Tier-1 suppliers in the automotive industry. The Lannach

plant is the European Headquarter of Magna Powertrain, home of the Driveline Systems

business unit. There, production and manufacturing, but also the engineering and

program planning of customer projects, take place. The most important products in the

portfolio include for example all-wheel drive (AWD) systems, transfer cases, power take-

off units, axle drive modules and disconnect systems. Most of these products are

complex mechatronic components with integrated actuators and electronic control units.

Depending on the customer requirements, specific software for driving dynamics and

handling is developed and applied in the vehicle. Nevertheless, for every active and

controllable system the modular base software has to be developed and adapted to the

vehicle specific environment.

80 Concept Development for Process Analysis

6.2 Current Situation and Challenges

At the beginning of this master thesis, all requirements for the results of the master thesis

were determined and specified together with the industrial partner. The aim of the work

is the development of a comprehensive process model, which indicates deviations and

potentials for process optimization based on the analysis of existing processes, various

customer requirements as well as international standards. The comparative analysis is

based on the VDA Standard Automotive SPICE, which is the basis for optimizing existing

development processes. This standard in version 2.5 is already implemented and well-

known in the internal processes of the industry partner.

The need for the creation of a comprehensive process model for deviation analysis and

potential analysis resulted from the conflicts that are constantly growing in industry,

between suppliers and OEMs. On the one hand, the supplier has a fixed process

environment based on the still valid standard Automotive SPICE 2.3 (or 2.5). Since a

new version of the standard has now been released, it must be implemented in the near

future, in the transitional period. The current process environment does not comply with

the upcoming changes in the standard Automotive SPICE version 3.0. The Automotive

SPICE guidelines for assessors are also to be taken into account here in order to bring

changes in the processes in line with the valuation guidelines. Furthermore, the

shortening of development times on the part of manufacturers (customers) again and

again calls for quality problems in product development at suppliers. In order to stop

these and develop more mature products, the lived development processes must also

have a certain degree of maturity. Another challenge is the backlog or lack of knowledge

about one's own process capability and, even more importantly, the lack of knowledge

about the most diverse customer requirements. This wastes resources unnecessarily in

critical processes at an early stage of development. In particular, the preparation of

quotations and the analysis of requirements should be mentioned here. If these activities

are carried out without the necessary know-how, in the worst case this will lead to

incorrectly assumed development costs and also to a non-compliant specification.

On the other side of this conflict are the car manufacturers (OEMs). They place ever

higher demands on the quality of their suppliers’ products. For these reasons, they

therefore require a high level of process capability with transparent development

activities and cost reduction at the same time. As a supplier usually does not only serve

one OEM, it has to adapt its processes to many different customer requirements. The

variability in the scope of interpretation in the assessment of Automotive SPICE

Concept Development for Process Analysis 81

described in the previous chapter plays also an important role. The differing focus on the

interpretation and implementation of the standard is reflected in the staggering rating

levels between different OEMs. The OEMs also require the fulfilment of further product-

specific specifications in addition to the general requirements (Automotive SPICE).

For these challenges it is now necessary to develop and test a tool concept for the data

handling and analysis and to fill this tool with information from the relevant sources.

Subsequently, a direct comparison of the different requirements should be possible after

mapping the individual processes and base practices among each other, whereby

potential for process optimization and improvement can be derived by means of a

deviation analysis. This environment should be as modular as possible in order to be

able to incorporate even more standards into the process model in the future. This

concept is also to be developed in such a way that it can be transferred to a database

(e.g. an existing requirement management system) at a later point in time. The creation

of this tool concept is now described in the course of this chapter. In order to meet this

challenge, the division into five work packages (Table 6.1) was carried out beforehand

at the beginning of the project including the respective scheduling.

Table 6.1 Defined work packages for the project

No. Name Description / Content Outcome

1 Familiarization
with the topic

Introduction to Automotive SPICE and
internal processes. Research of
publications on differences in ASPICE

Discuss literature /
open questions

2 Requirements
for data
storage and
analysis

Information requirements. Which data
(sources) should be included?
Assessment of the requirements in
terms of feasibility and risks.

Summary of
requirements
including
prioritization

3 Development
of the concept
for data
storage and
analysis

Verification that a subdivision according
to base practice is sufficiently fine.
Conceptual ideas for data storage and
analysis.
Development of the concept for data
management and analysis.
Detailed concept for the implementation
in the selected tool environment.

Concept for data
storage and
analysis,
experimental with
SWE.3 of ASPICE
version 3.0

4 Concept
implementation
/ prototype

Implementation of the concept.
Insertion of the defined data (sources).

Prototype
implementation of
the concept incl.
analysis
possibilities

5 Test and
documentation

Validation and verification of the
prototype.
Creation of user documentation for use
and extension.

Test of the
prototype acc. to
different user
groups and
documentation

82 Concept Development for Process Analysis

6.3 Approach to Process Analysis

After coordinating the individual phases and work packages as well as the overall

scheduling, the scope of the process model was first determined. This should consist of

several processes, the HIS scope from Automotive SPICE. Due to the existing process

knowledge, version 2.5 of Automotive SPICE is used. Additionally to the HIS scope,

MAN.5 (risk management) has to be implemented to the model. Table 6.2 provides an

overview of the defined scope of processes from Automotive SPICE 2.5. This scope acts

as the basis for the process model, the base practice mapping and the deviation analysis.

Table 6.2 Defined processes for the analysis (Automotive SPICE 2.5 [38])

Process ID Process Name

ENG.2 System requirements analysis

ENG.3 System architectural design

ENG.4 Software requirements analysis

ENG.5 Software design

ENG.6 Software construction

ENG.7 Software integration

ENG.8 Software testing

ENG.9 System integration

ENG.10 System testing

SUP.1 Quality assurance

SUP.8 Configuration management

SUP.9 Problem resolution management

SUP.10 Change request management

MAN.3 Project management

MAN.5 Risk management

ACQ.4 Supplier monitoring

After defining the process scope for the comprehensive process model, the relevant

sources were defined in the initial phase which provide data, especially base practices

and requirements, for the model. Since Automotive SPICE 2.5 is the basis on which the

further requirements are assigned to the standardized pendants, this source has been

set since the beginning. As Automotive SPICE already exists in version 3.0, as described

in this thesis, it must be implemented in the current transition period. ASPICE 3.0 is also

an integral part of this process model, especially when it comes to mastering this

challenge and identifying the changes and required change actions by means of

deviation analysis. In order to improve process capability especially with regard to

Concept Development for Process Analysis 83

assessments, the Automotive SPICE guidelines are also included, which apply to the

Automotive SPICE 3.0 version. This is where rating rules and recommendations are

defined. If these are already known in advance, the optimization of the processes can

be fine-tuned even more precisely to the requirements. In order to extend the process

model in a customer-specific manner, three customer requirement specifications are also

implemented. For reasons of confidentiality, these are referred to as OEM A, B and C.

Last but not least, the existing internal processes will be included in the tool concept in

order to make deviations clear. In general, the process model should contain all relevant

guidelines that have already been briefly presented in chapter 4. Table 6.3 shows all

relevant sources which are to be included for the process model in the tool concept to

be developed for data management and analysis. The sources are ranked according to

their priority in the model. In addition to the entire contents of the individual guidelines,

their relationship to each other and individual deviations, the process model should

represent the largest overlapping intersection of these sources. To this end, the relevant

processes of all sources are to be assigned and compared against each other. The basis

for this is Automotive SPICE 2.5 at process capability level 1, with the exception of the

Automotive SPICE guidelines, which refer to the latest version 3.0. A subsequent

assignment to Automotive 2.5 is therefore only possible after successful mapping both

Automotive SPICE versions. Since a mapping at process level is too imprecise, the

granularity is to be checked in the course of this process analysis. This is especially

important for the creation of the tool concept. As a result of the granularity analysis, the

process model will be based on the base practices of Automotive SPICE. This has

advantages because they are explicitly decisive for the assessment at level 1 of process

capability. It has also been identified that the comparison at process level between

Automotive SPICE versions and customer requirements is therefore feasible. Since

certain customer requirements are in German and binding, a translation is not necessary.

Table 6.3 Defined sources for the process mapping

Priority Source Name Published Language

1 VDA Automotive SPICE 2.5 2010 English

2 VDA Automotive SPICE 3.0 2015 English

3 VDA Automotive SPICE Guidelines 2017 English

4 OEM A Customer requirements A 2015 German

5 OEM B Customer requirements B 2015 English

6 OEM C Customer requirements C 2016 German

7 Magna Internal engineering processes - English

84 Concept Development for Process Analysis

Ultimately, customer requirements differ from the VDA standards in terms of terminology.

The process model should also enable a comparative comparison. Especially the terms

element, component, unit and item mentioned in the previous chapter are the most

important ones. A clear definition and thus comparability eliminates the inconvenience

of using the tool in advance.

6.4 Approach to Concept Development

The concept development is about the approach to develop a tool for data storage and

analysis. First of all, the choice of a suitable system for data preservation is important.

This is to be chosen with regard to modifiability and extensibility. The aim is to design

the process model in such a flexible way that it can be supplemented in the future with

additional content (sources) and process scopes. The information should also be

presented in a clear and concise way so that all the necessary information can be

accessed quickly and easily. The functionality for defined user groups should also be

provided. User groups using this tool include management, quality assurance, engineers

and process owners. Therefore, a search or filtering mechanism must be included in the

tool. Compatibility with all employees involved should also be ensured. For precisely

these reasons, Microsoft Excel was chosen as a suitable system for data management

and analysis of the process model.

Figure 6.1 Relations and references of the various sources

Requirements

/

Processes

Automotive

SPICE 2.5
ASPICE 3.0

Automotive

SPICE

Guidelines

Automotive

SPICE 3.0

Concept Development for Process Analysis 85

Another point to consider when planning and developing the concept is the future use

and handling. The process model should have a modular structure so that it can be easily

integrated into a database at a later point in time, for example an existing requirements

management system.

Following the review of all relevant sources for process analysis, Automotive SPICE 2.5

was defined as the basis for comparing and mapping base practices based on the still

valid version of Automotive SPICE 2.5. Figure 6.1 illustrates the relationships and

references of the individual considered sources. One of the challenges is the relationship

between the Automotive SPICE Guidelines published in 2017, which refer to the latest

version, Automotive SPICE 3.0. Both Automotive SPICE 3.0 and all other customer

requirements and internal processes are to be mapped directly to Automotive SPICE 2.5

and can then be analyzed. Since the Automotive SPICE Guidelines imply to which

processes the individual rules and recommendations refer, they must first be allocated

to the corresponding Automotive SPICE 3.0 counterparts. The guidelines can then be

assigned to the individual base practices and processes of the basis via an existing

relationship between Automotive 3.0 and Automotive 2.5.

After the initial analysis of the sources, it has also become apparent that there are

inconsistent content-related correlations between the various sources. This has to be

taken into account especially in relation to cardinality, if the model is to be implemented

later in a database.

Figure 6.2 Cardinality of one-to-one between BPs of two sources

A 1 B 1

A 2 B 2

A 3 B 3

A 4 B 4

A 5 B 5

Source A Source B1:1

86 Concept Development for Process Analysis

Figure 6.2 visualizes the one-to-one (1:1) relation of several exemplary base practices

from two different sources. Each base practice from source A can be assigned exactly

one single base practice from source B (and vice versa). It does not matter whether the

base practices can be assigned parallel (A1:B1) or randomly (A2:B3), as long as each

entry can be assigned to a maximum (or exactly) one counterpart of the other source.

Such an allocation (1:1) would be relatively easy to implement and understand in any

tool environment. However, the first examination of the individual sources has already

revealed that these are not all one-to-one relationships, rather they are the exception in

the HIS scope.

Figure 6.8, on the other hand, shows a one-to-many (1:n) relationship between the same

base practices of two sources. Thereby, several different base practices of the second

source B refer to the same one base practice of source A. This is particularly the case if

customer requirement specifications have divided a required base practice from the

Automotive SPICE standard into several individual requirements. In practice, this is also

the case if the rules described in the Automotive SPICE Guidelines (in the respective

chapter) all refer to a base practice. The same relationship can also be exactly the other

way around, many-to-one (n:1), whereby in this case several base practices of source A

would refer to the corresponding equivalent of source B. This cardinality between two

sources is a rather more complex to implement and also occurs more frequently in the

processes analyzed between individual base practices and customer specifications.

Figure 6.3 Cardinality of one-to-many between BPs of two sources

A 1 B 1

A 2 B 2

A 3 B 3

A 4 B 4

A 5 B 5

Source A Source B1:n

Concept Development for Process Analysis 87

Figure 6.4 Cardinality of many-to-many between BPs of two sources

However, if one of the base practices of source B no longer refers to a single base

practice of source A, which has further relations with other base practices of source B, it

is called a many-to-many (n:m) relationship. Figure 6.4 visualizes such a n:m

relationship between the two known sources. These relationships and assignments are

highly complex, both in terms of identification and in a clear and target-oriented way of

representation. This type of relationship between the individual sources occurs in

practice when, for example, generic rules of the Automotive SPICE guidelines refer to

different base practices from the Automotive SPICE standard. This also frequently

occurs when allocating the individual requirements from customer specifications. There

are both cross-sectoral requirements and explicit requirements analogous to the base

practices. These n:m relationships are very difficult to implement in Excel without losing

the overview and ease of editing. A more suitable approach would be a database, but

the flexibility is considerably simpler during the filling and testing of the tool concept for

data storage and analysis in Microsoft Excel. A solution must therefore be found to

present the complexity in a reasonable way. The number of sources also increases the

complexity, since there are not only n:m. relations between two sources, but also multiple

sources with different references (compare to Figure 6.1).

A 1 B 1

A 2 B 2

A 3 B 3

A 4 B 4

A 5 B 5

Source A Source Bn:m

88 Concept Development for Process Analysis

6.5 Outcomes and Tool Concept

This section describes the development of the tool concept for data storage and analysis

based on the considerations described before.

The integral part of this tool is the aggregation of all base practices of Automotive SPICE

2.5, which serve as a reference for the deviation analysis from which future optimization

needs can be derived. The second most important point is all the base practices of the

new Automotive SPICE 3.0 standard. This is followed by Automotive SPICE guidelines,

customer requirements and internal processes, which should be allocated to the

respective Automotive SPICE 2.5 counterparts.

At the beginning, a simple sheet was created in Excel, which could be used to test further

considerations for the concept. Figure 6.5 shows an excerpt from the concept of what

emerged from the first ideas. A separate set of columns has been created for each

source (e. g. Automotive SPICE 2.5, 3.0, etc.). These include the unique ID of the base

practice, the name of the base practice as well as the full text description of the base

practice according to the standard. For each source there is also a column for the

discrepancy, i.e. the deviations of the different requirements to the base pendant from

Automotive SPICE 2.5 as well as a column for the evaluation of the deviation or the

necessary modification effort. For each unique base practice or requirement from other

sources there is a separate line in Excel. At first glance, this led to a clear classification

of the individual sources. The filtering of the individual columns, full-text search and

grouping of individual row sections or column groups is also provided in this concept in

Excel. However, this concept quickly reached the limits of clearness, manageability and

possibility of modification, which is described next.

Figure 6.5 Challenges of allocating n:m relations of three sources in Excel

ID Name Description ID Name Description Discrepancy Rating ID

BP1 Name1 Description1 BP1 Name1 Description1 xyz ID1

BP2 Name2 Description2 BP2 Name2 Description2 xyz ID2

BP2 Name2 Description2 BP3 Name3 Description3 xyz

BP3

BP3 Name3 Description3 BP4 Name4 Description4 xyz ID3

BP3 Name3 Description3 ID4

BP4 Name4 Description4 BP4 Name4 Description4 xyz

BP5 Name5 Description5 xyz

ASPICE 2.5 ASPICE 3.0 Next Source

BP2

Concept Development for Process Analysis 89

All critical contents of the figure are highlighted in yellow and can be summarized into

the following groups:

• Duplicates of the reference base practices

• Duplicates of the source base practices

• Empty cells

• Unnecessary rows

Duplicates represent the greatest challenge. In addition to the poor representation of

duplicate entries, the biggest disadvantage is the difficulty in changing individual base

practices or allocating them to the standardized counterparts. This represents an

extreme additional effort for the filling and maintenance of the tool concept for data

management and analysis. The empty cells also impair usability and clarity in the chosen

tool environment, which Microsoft Excel offers for such a many-to-many representation.

Another problem that needs to be solved is the avoidance of unnecessary cells, as this

also greatly restricts the transparency of the entire document.

After analyzing the first ideas and taking into account the problems that have arisen, it

was possible to agree with the industrial partner on an important premise: each base

practice should only be included in the tool once and also be able to be changed without

having to change all links and allocations to their matching counterparts manually.

For this purpose, a separate spreadsheet has been created for each source (including

the Automotive SPICE 2.5 reference) within the same file. In addition to a better

overview, this also allows for the required modularity and expandability by new sources.

Afterwards, the contents of the individual sources must be mapped to each other. With

this idea, the use of macros and scripts in Visual Basic for Applications (VBA) in Microsoft

Excel came into use for the first time. In consultation with the industrial partner, a

presentation in the reference view (Automotive SPICE 2.5) is desired, in which a

maximum of one line is provided for each base practice of the standard. This also

addresses the aforementioned problem with duplicates or unnecessary rows. It also

allows for easier integration into a later database.

Accordingly, the other table sheets of the other sources were also created, with a

maximum of one line per requirement with a unique ID. Figure 6.6 shows the exemplary

structure of the new concept. In addition to a single row for each base practice, separate

columns have been created on the reference sheet for each source, which are supposed

to contain the contents and deviations of each counterpart of the respective BP.

90 Concept Development for Process Analysis

Figure 6.6 Exemplary overview of the concept tool structure (ASPICE 2.5 [38])

But this also means that in the case of an allocation of 1:n and n:m relationships, several

entries must be displayed in a single cell when mapping to the reference sheet. As this

manually means a very high additional effort for the allocation and the modification, an

automated solution had to be found by using VBA. This script should map the individual

requirements (unique ID and full text description of each requirement) for each additional

source to the respective base practices of Automotive SPICE 2.5 in the reference sheet.

These scripts are used to automatically fill the column groups of the individual sources

(colored marked in the figure).

Figure 6.7 uses three base practices of Automotive SPICE 3.0 to show how this

automated mapping should be done. In the first column “A”, the reference IDs for

Automotive SPICE 2.5 are entered. This means that each base practice of the source is

only entered once into the tool, and the allocation to the Automotive SPICE 2.5

counterparts can be changed at any time without the need to adjust the content.

Figure 6.7 Allocation of base practices from ASPICE 3.0 [34] to ASPICE 2.5

Automotive

SPICE 3.0

ASPICE 3.0

Guidelines
OEM 1 OEM 2 OEM 3

Internal

Processes

P ID BP ID Base Practice Base Practice Full Text Description

ACQ.3 ACQ.3.BP1 Negotiate the

contract/agreement

Negotiate all relevant aspects of the contract/agreement with the supplier.

[Outcome 1]

NOTE 1: Relevant aspects of the procurement may include

• system requirements

• acceptance criteria and evaluation criteria

• linkage between payment and successful completion of acceptance testing

• process requirements, process interfaces and joint processes.

ACQ.3 ACQ.3.BP2 Specify rights and duties Unambiguously specify the expectations, responsibilities, work

products/deliverables and liabilities of the parties in the

contract/agreement. [Outcome 2]

ACQ.3 ACQ.3.BP3 Review

contract/agreement for

supplier capability

monitoring

Review and consider a mechanism for monitoring the capability and

performance of the supplier for inclusion in the contract/agreement

conditions. [Outcome 3]

ACQ.3 ACQ.3.BP4 Review

contract/agreement for

risk mitigation actions

Review and consider a mechanism for the mitigation of identified risk for

inclusion in the contract/agreement conditions. [Outcome 3]

ACQ.3 ACQ.3.BP5 Approve

contract/agreement

The contract/agreement is approved by relevant stakeholders. [Outcome 1]

Automotive SPICE 2.5 REFERENCE

Ref. AS2.5 BP ID Base Practice Base Practice Full Text Description

ENG.5.BP4, SWE.3.BP3 Describe dynamic behavior Evaluate and document the dynamic behavior of and the interaction between

relevant software units. [OUTCOME 3]

NOTE 1: Not all software units have dynamic behavior to be described.

ENG.6.BP2,

ENG.6.BP3,

SWE.3.BP4 Evaluate software detailed design Evaluate the software detailed design in terms of interoperability, interaction,

criticality, technical complexity, risks and testability. [OUTCOME 1,2,3,4]

NOTE 2: The results of the evaluation can be used as input for software unit

verification.

ENG.5.BP10,

ENG.6.BP8,

ENG.6.BP9,

SWE.3.BP5 Establish bidirectional traceability Establish bidirectional traceability between software requirements and software

units. Establish bidirectional traceability between the software architectural

design and the software detailed design. Establish bidirectional traceability

between the software detailed design and software units. [OUTCOME 4]

NOTE 3: Redundancy should be avoided by establishing a combination of these

approaches that covers the project and the organizational needs.

NOTE 4: Bidirectional traceability supports coverage, consistency and impact

analysis.

Automotive SPICE 3.0

Concept Development for Process Analysis 91

On the basis of these considerations for the unambiguous assignment between the

individual sources, a flowchart was created prior to programming, on the basis of which

the process is to be illustrated. Figure 6.8 shows the flowchart for the overall mapping

process for mapping base practices of one single source to the Automotive SPICE 2.5

reference.

Figure 6.8 Flowchart of the overall process for mapping a single source

Start Mapping

Select Target

Sheet

With Source

Sheet

yes

Clear Target

Cells

Split Unique ID

into String Array

For each ID
Copy

Process

End Mapping
noIf Counter in

Rowrange

92 Concept Development for Process Analysis

First, the contents of both spreadsheets must be retrieved. This is in any case the

reference sheet with the individual base practices of Automotive SPICE 2.5, as well as

the entries of the source to be mapped in the respective process. A range of rows is then

defined, which should be large enough to contain all the entries of the respective sheet.

In a query “If Counter in Rowrange” it should now be checked if the process is still in the

defined range. The counter should be increased after each loop. If this is the case, all

cells on the reference sheet into which the entries of the sources are to be mapped

should be erased first. This allows a clean start for the copying process. The unique IDs

of the first column should then be split into separate IDs, as this can be more than one.

For each unique idea the sub-process of copying should be executed. When the row

counter exceeds the defined row range, the mapping process ends.

Figure 6.9 Flowchart of the individual copy sub-process for a single source

Start Copy

Process

yes

If String in

Cell = ID

yes

no

TargetCell1 (e.g. BP ID no.) =

TargetCell1 & SourceCell1 & ";"

TargetCell2 (e.g. BP name) =

TargetCell2 & SourceCell2 & linebreak

TargetCell3 (e.g. BP description) =

TargetCell3 & "[" & SourceCell1 & "]" &

linebreak & SouceCell3 & linebreak

End Copy

Process

noIf Counter in

Rowrange

Concept Development for Process Analysis 93

Figure 6.9 illustrates the aforementioned sub-process for copying the individual contents

of the source sheets to the reference sheet. This is to be started for each unique ID that

is within the defined row range. For this purpose, another counter is queried in the same

way as the first example. If this counter is within the defined range of rows, the process

should be continued, and the counter increased by one, otherwise the process is

terminated (and returned to the overall mapping process). A further if query will then be

used to find out whether the cell under consideration contains a string, which in turn

contains a unique ID. If this is the case, the actual copying process starts. In order to

keep this as modular as possible and to adapt it individually for each source, a separate

process was developed for each content to be copied. In this example, this is the ID of

the base practice, its name and the full text description of the base practice. As a cell in

1:n and n:m relationships contains the contents of several base practices as described

above, the cell is not overwritten every time during the execution of the copy process.

For this reason, the cell's content is redefined in each cycle: existing content plus the

new content and a comma or line break, which acts as a separator.

The copied contents or their formatting can be adapted separately for each source. For

example, the individual requirements from the OEMs’ specifications do not usually have

a name for each requirement, but instead merely a unique ID and a description or

definition of the requirement. Furthermore, it should be mentioned that in the figures and

in the further course of this chapter, the designation TargetCell refers to the target cells

in the Automotive SPICE 2.5 reference table (see color-coded areas in Figure 6.6). The

designation SourceCell accordingly refers to the cells on the individual spreadsheets of

the various sources, which are to be mapped to the reference sheet (e.g. BP, ID, full text,

etc.) analogous to the contents in Figure 6.7.

Based on these considerations, the VBA code was then developed with reference to the

described flowcharts. This development is explained briefly as follows.

The considerations from the flowcharts concerning the counter for the if-condition have

been replaced by a loop for practical reasons. For this purpose, two global public

constants have been defined for the beginning and end of the line area, as follows.

1. Public Const row_start As Integer = 3
2. Public Const row_count As Integer = 500

Since all sheets are structured identically, the first entry (BP or requirement) is in the

third row. On average, the sources contain between 250 and 450 individual entries,

which means that a run-through of up to 500 rows is currently sufficient.

94 Concept Development for Process Analysis

Subsequently, the individual tasks (subs) for the mapping processes begin. Here, such

a process is to be described on the basis of the exemplary process of mapping from

Automotive SPICE 3.0 to Automotive SPICE 2.5 (reference). After the start of the subs,

all necessary private variables for the sub are defined. Application.ScreenUpdating is set

to false to prevent flickering of the screen during the mapping process. Everything is

cached in the RAM and only output at the end. The variable value() is an array containing

the individual IDs for each process cycle. A string, containing the title of the worksheet

representing the source, is defined as source. This is declared as extra variable to easily

customize the code for a new source when creating a new mapping action.

1. Sub MapAS30toAS25()
2. Application.ScreenUpdating = False
3. Dim value() As String
4. Dim value_count_from As Integer
5. Dim value_count_to As Integer
6. Dim source As String

The variable source is then filled with the exact title of the worksheet and the target

spreadsheet is also defined. This is usually always the reference Automotive SPICE 2.5,

except for the mapping of the Automotive SPICE guidelines, which refer to Automotive

SPICE 3.0 and have to be mapped to the reference from the Automotive SPICE 3.0

worksheet.

"With the source worksheet" now allows the entries in the source sheet to be included in

the current target sheet. These entries are called up in the following with a prefixed dot

(“.”). An example would be “.Cells(row, column)”.

7. source = "ASPICE 3.0"
8. Worksheets("ASPICE 2.5").Select
9. With Worksheets(source)

For safety reasons, a query was introduced using a message box, which the user has to

confirm with “yes” when calling the mapping process. This prevents unintentional

overwriting of the target cells on the table sheet. Only if the user clicks on “yes” will the

process continue to run, otherwise the mapping process will be aborted. The following

code fragment illustrates the realization of the query using MsgBox and its defined

properties. Therefore, another variable for the answer is needed.

10. Dim answer As Integer
11. answer = MsgBox("Map " & source & " to this sheet?", vbYesNo + vbQuestion)
12. If answer = vbYes Then

Concept Development for Process Analysis 95

Now the actual mapping process starts. For this purpose, each row in the target sheet

(Automotive SPICE 2.5 reference) is sequentially looped through using the following for

expression. This runs over the previously defined range. Afterwards, each value in

column “B” of the target sheet (compare with Figure 6.6) is first separated by commas

and passed to the value array as a string. Thus, the array contains every single base

practice ID of all Automotive SPICE 2.5 processes after the entire loop has been

executed. In parallel, the variables “value_count_from” and “value_count_to” are filled

with the lowest available field index for the specified dimension of the array respectively

the highest one. These variables are needed for another for loop afterwards.

13. For I = row_start To row_count
14. value = Split(Cells(I, "B"), ", ")
15. value_count_from = LBound(value)
16. value_count_to = UBound(value)

Afterwards, all target cells are emptied row by row in the same for loop, to ensure a clean

start for the entire mapping process.

17. Cells(I, "F") = ""
18. Cells(I, "G") = ""
19. Cells(I, "H") = ""

Afterwards, two more for loops are started as described in the flowchart. The first runs

through the value() array, which contains all individual IDs of the reference spreadsheet,

the second one runs again over the entire row range.

20. For j = value_count_from To value_count_to
21. For k = row_start To row_count

Now the core of the mapping process begins, the actual comparison and duplication of

cell contents from the source sheet to the target sheet. The content is first compared by

means of an if statement. If in the string (text content) of the source cell (with the row of

the innermost for loop’s run variable and the defined column “A”) matches the entry in

the value() array (at the place of the run variable), the function InStr returns the value 1.

This is checked in the if statement with “If InStr > 0”.

In the test phase during the development of the tool environment, a problem occurred

here at first. The VBA function InStr only compares if a defined text element exists in

another part of the text. This is also the case if it is not exactly identical. Wrongly “ENG.5”

was also mapped with “ENG.6”. Therefore, the InStr function has been extended with

“& ‘,’ ”. This means that for the result 1, a text component including comma at the end

must be identical. Accordingly, all individual IDs must be entered in the source sheets in

96 Concept Development for Process Analysis

the reference column “A”, separated by commas. This is also the case if only one base

practice is the target cell. Correspondingly, after this example, the reference cells are

entered in the source sheets as follows: “ENG.5.BP1, ENG.5.BP2, ”.

The following code fragment returns the individual IDs of the source cell (here:

Automotive SPICE 3.0) coma-separated into the target cell as described above (e.g.

“SWE.3.BP1, SWE.3.BP2, ").

22. If (InStr(.Cells(k, "A"), value(j) & ",") > 0) Then
23. Cells(I, "F") = Cells(I, "F") & .Cells(k, "B") & ", "
24. End If

Similar to the same principle, the next code snippet copies further parts of the source

sheet into the target sheet. In the case of Automotive SPICE 3.0, this is first the name of

the base practice and then the full text description of the individual base practices. The

names are separated by a line break (using the expression vbCrLf) and added to the

target cells. For the description of the base practices, the unique ID of the base practice

in square brackets was once again placed before the full text as a requirement of the

industrial partner. A line break is inserted after the full text if several base practices from

the source sheet apply to the same target sheet base practice. Analogous to this

example, a mapping of the description will look like this: “[ID of BP] Description of BP”.

25. If (InStr(.Cells(k, "A"), value(j) & ",") > 0) Then
26. Cells(I, "G") = Cells(I, "G") & .Cells(k, "C") & vbCrLf
27. End If
28. If (InStr(.Cells(k, "A"), value(j) & ",") > 0) Then
29. Cells(I, "H") = Cells(I, "H") & "[" & .Cells(k, "B") & "] " & .Cells(k, "

D") & vbCrLf
30. End If

After the copy process the three for loops are terminated with the command next

respectively the counter of the loop is incremented by one step. In this case the

expression “Step 1” can be skipped at the beginning of the for loop. The else of the if

statements of the message box is called when the user clicks on “No” in the popup

window at the beginning of the query. In that case, nothing happens, and the process

ends. Finally, Application.ScreenUpdating is set to true again, which makes all changes

in the target spreadsheet visible.

31. Next
32. Next
33. Next
34. Else
35. 'do nothing if user clicked "no" in the message promt
36. End If
37. End With

Concept Development for Process Analysis 97

38. Application.ScreenUpdating = True
39. End Sub ' End action

The complete code for an original mapping process (Automotive SPICE 3.0 to

Automotive SPICE 2.5) can be found in appendix A.1.

In addition to the already explained problems, which could be solved by comma

separation of the IDs, other weak points have been noticed during the tool testing. On

the one hand, the question has arisen as to what happens with new processes

respectively base practices that have no reference to Automotive SPICE 2.5. Since these

could not be assigned to the Automotive SPICE 2.5 pendant, the new features were not

visible on the reference sheet. To address this issue, a separate line for each process

was added on the Automotive SPICE 2.5 reference sheet, on which all newly added base

practices could be mapped. This new row can be addressed in the mapping process with

ProcessName.NEW. In consultation with the industrial partner, two new lines were also

added for each process in Automotive SPICE 2.5 and on the spreadsheet for Automotive

SPICE 3.0, describing the purpose and outcomes of the respective process. This

information is used to quickly obtain an overview of the process in the spreadsheets of

the two VDA standards. The definitions are directly drawn from the standards. The

purpose describes the aim and task of each process, and the outcomes reflect what

results the process is supposed to deliver. Most base practices also refer to an outcome

of the process. These outcomes are then recorded in the individual work products, which

can be process-independent. Figure 6.10 shows the described additions on the

reference spreadsheet.

Figure 6.10 Separate rows for process purpose, outcomes and new BPs [38]

P ID BP ID Base Practice Base Practice Full Text Description

ENG.6 HIS-Scope Software construction

ENG.6 ENG.6 - PURPOSE The purpose of the Software construction process is to produce verified software units that properly reflect the

software design.

ENG.6 ENG.6 - OUTCOMES 1) a unit verification strategy is developed for software units consistent with the software design;

2) software units defined by the software design are analyzed for correctness and testability;

3) software units defined by the software design are produced;

4) software units are verified according to the unit verification strategy;

5) results of unit verification are recorded; and

6) consistency and bilateral traceability are established between software detailed design and software units;

NOTE 1: Analysis of software units will include prioritization and categorization of software units.

NOTE 2: Unit verification will include unit testing and may include static analysis, code inspection/reviews, checks

against coding standards and guidelines, and other techniques.

ENG.6 ENG.6.NEW

ENG.6 ENG.6.BP1 Define a unit verification

strategy

Develop a strategy for verification and re-verifying the software units. The strategy should define how to achieve

the desired quality with the available and suitable techniques over the complete range of allowed application

parameter combinations. [Outcome 1]

NOTE 1: Possible techniques are static/dynamic analysis, code inspection/review, white/black box testing, code

coverage, etc..

NOTE 2: The unit verification strategy must include a unit test strategy if unit testing is stipulated by contract.

Automotive SPICE 2.5 REFERENCE

98 Concept Development for Process Analysis

The individual base practices and requirements have also been grouped by process in

the spreadsheets. This simplifies the handling of more than 400 rows per sheet. For each

source, the VBA code described above has been modified to suit typical characteristics.

In particular, the target columns on the reference sheet had to be adjusted. The scripts

were then linked to buttons that enable mapping per single source. Further scripts have

been developed to empty the cells, disable filters, expand or collapse row groupings and

customize the view.

Another topic was traceability and documentation for future users. For consistency

reasons, the documentation and the manual are stored directly in an extra spreadsheet

within the entire file. This means that the documentation cannot be lost, and any user

who uses the file for analysis or reference will have the information ready to hand.

A further spreadsheet for diagrams and figures has also been added. This serves as a

collective workbook for all process diagrams from or to the Automotive SPICE standard.

In particular, the traceability and consistency diagrams as well as dependencies between

the individual processes are provided there for reference. This also supports the

allocation and analysis of individual base practices and requirements. In a further

spreadsheet, the various terms and their definitions from the individual standards and

requirements are compared. Figure 6.11 below shows a screenshot of the finished tool

concept for data handling and analysis in the reference sheet Automotive SPICE 2.5.

For this example, the grouping for process ENG.5 is expanded, the mapping results of

the other sources are not shown here.

Figure 6.11 Screenshot of the tool in the reference sheet (ASPICE 2.5 [38])

Concept Development for Process Analysis 99

As a further feature, the code for each source has been modified so that the contents of

the reference sheet (target sheet) could be mapped back to the source sheet. Thus, it is

now possible to display the individual Automotive SPICE 3.0 base practices or customer

requirements as well as the corresponding Automotive SPICE 2.5 counterparts. This

enables a targeted individual comparison and verification of the correct allocation already

on the source sheet. Figure 6.12 shows a screenshot of the source sheet of Automotive

SPICE 3.0, showing the group for the MAN.3 process (project management). In the

colored columns on the right-hand side, both the referenced base practices of

Automotive SPICE 2.5 (analogous to the mapping in column A) and the corresponding

Automotive SPICE guidelines can be compared.

In addition, extra documents were developed as agreed with the industrial partner to

enable mapping of outcomes and work products between Automotive SPICE 2.5 and

Automotive SPICE 3.0. This also helps in the deviation analysis between the two norms

and facilitates the allocation of base practices.

The result of the concept development is a working concept environment of the tool for

data storage and analysis, which can now be filled with the relevant data of the standards

and customer requirements. This tool environment provides the possibility to create a

comprehensive process model, which allows the analysis of deviations between

standards and customer requirements.

Figure 6.12 Screenshot of the tool in a source sheet (ASPICE 3.0 [34])

100 Concept Development for Process Analysis

Optimization of Development Processes 101

7 Optimization of Development Processes

This chapter describes the implementation of the tool concept described in detail in the

previous chapter. This chapter also makes a comparison between the two standards

Automotive SPICE 2.5 and Automotive SPICE 3.0 using an exemplary process. This

comparison is based on the analysis between the allocation of the individual base

practices, which was developed with the help of the developed tool concept for data

management and analysis. First, the methodology is explained, on the basis of which

the completion of the tool is carried out. Afterwards, difficulties that have occurred are

identified and the first results and findings that have occurred during the analysis are

described. The changes and deviations between two sources are then illustrated using

an exemplary process. Subsequently, further potentials will be identified to expand the

process optimization with the help of the developed tool.

7.1 Methodology of the Optimization

In order to create the process model and to develop allocations between the base

practices and requirements in the tool concept, the tool must first be populated with the

relevant data. For this purpose, the individual and relevant base practices and customer

requirements were integrated into the tool from all sources with a unique ID. As described

in the previous chapter, a separate spreadsheet has been created for each source in

addition to Automotive SPICE 2.5. The IDs, names and full text descriptions of the

individual base practices and requirements were then included in the tool concept. This

basis of all the individual requirements and processes of the different sources allows not

only allocation and comparison but also a comprehensive overview of all sources. In this

tool, each given source can be searched and filtered by keywords or requirement IDs.

This is also facilitated by the same structure of all spreadsheets and thus eliminates the

need to search through several standards and customer documents.

The relevant processes from the Automotive SPICE HIS-Scope were then allocated to

the pendants from the relevant sources. As described in the previous chapter, one or

more counterparts of the base practices of the standards were assigned to each entry

on the source sheets. After these allocations were created, the tool could be

automatically filled and mapped on the Automotive SPICE 2.5 reference sheet using all

VBA mapping processes. For the mapping to be successful, the new standard

Automotive SPICE 3.0 had to be mapped to the reference Automotive SPICE 2.5. After

102 Optimization of Development Processes

successfully allocating the individual rules, the Automotive SPICE guidelines were then

mapped to the corresponding base practices of Automotive SPICE 3.0. After this

mapping process, the relationship between the Automotive SPICE guidelines and the

Automotive 2.5 base practices can now be derived from the correlation on the same

spreadsheet (Automotive SPICE 3.0). With the help of a further macro, all rules of the

Automotive SPICE guidelines from the Automotive SPICE 3.0 spreadsheet could now

be mapped to the Automotive SPICE 2.5 reference sheet. After the allocation between

requirements and base practices, each source (OEM requirements) can then be mapped

directly from the source sheet to the Automotive SPICE 2.5 reference sheet. This sheet

now provides an overview and allows a comparison between the requirements and

changes of the two standards, the rating rules (guidelines) and the individual customer

requirements. For a better overview, another tool similar to the presented tool concept

was developed, which allows the mapping and comparison of the individual outcomes

and work products between the two versions of the Automotive SPICE standard.

After a successful mapping, the comprehensive process model now provides an

overview of all customer requirements, rating rules and guidelines for Automotive SPICE

assessors and a comparison of the changes between the Automotive SPICE versions.

From this, it is possible to identify specific differences and derive the necessary actions

for process optimization. In order to cover a broad spectrum of requirements, it is

recommended to use the largest cutting quantity between all included sources. In this

context, the tool also makes it possible to allocate a ranking for the effort and the

identified deviations. The result of the populated tool is described in the following section.

7.2 Results and Findings

In this section the findings and general results of the analysis are explained in the context

of the structure of the process model. An exemplary process is then used to illustrate the

comparison and the changes between the two versions of Automotive SPICE and to

derive optimization requirements for the development processes. The results described

here are based on Automotive SPICE 2.5 and Automotive SPICE 3.0, although some of

the Automotive SPICE guidelines are also taken into account. For reasons of

confidentiality, the requirements of the individual customer standards cannot be

explained. The concept tool for the process model was populated with all relevant data

from the standards and sources. In addition to the completeness, the functional

representation was also emphasized during the filling of the tool concept. Figure 7.1

Optimization of Development Processes 103

shows an example of the content for the Automotive SPICE 2.5 base practices, which

are grouped according to the processes. For reasons of completeness, it was agreed

with the industrial partner that at least for the two versions of the Automotive SPICE

standards as well as the Automotive SPICE guidelines all included processes will be

transferred into the tool. For the mapping of the other sources, however, the defined HIS

scope of the Automotive SIG remains the basis.

Figure 7.1 Populated tool with collapsed process groups (ASPICE 2.5)

The first comparisons and analyses of the two Automotive SPICE versions revealed

some differences, which in particular concern the processes of software development.

On average, the processes outside the defined HIS scope have not changed as much

as the processes in the V-model. It was apparent that comprehensive concepts of the

new standard were implemented, such as the uniform integration of traceability and

consistency. In Automotive SPICE, these two issues were divided into two separate base

practices for bilateral traceability and consistency and were defined per process. These

two base practices focus in particular on the relation between requirements and the

outcome, the software design. The most prominent feature of the new standard was the

division of engineering processes into system engineering and software engineering

processes. The resulting plug-in model now allows the integration of suitable processes

for the hardware and mechanics development into the entire process model in analogy

to the SWE processes. A further differentiation and innovation was the detailing at the

104 Optimization of Development Processes

base of the V-model. The Automotive SPICE 2.5 process of unit construction and

verification was split into two separate processes. In Automotive SPICE 3.0, these now

cover the unit construction and its verification separately.

The differences between the two standards are an integral part of the analysis of the

process model, as the VDA Standard Automotive SPICE is the basis of all development

processes. All deviations and changes to the new standard must therefore be known and

implemented in the company. To achieve a high rating of the process capability level,

the contents of the Automotive SPICE guidelines also had to be mapped to the individual

base practices. From conversations with the industry partner, the focus was placed on

the rating rules of the guidelines, leaving recommendations out of the question. The rules

are therefore more important for assessors, since in the case of discrepancies, it is

necessary to record in a written form what the differences to the standard are. They also

specify directly which results of the individual practices are subject to devaluation or

appreciation. Considering this in the process model from the very beginning, one can

assume that more mature development processes will be implemented.

Figure 7.2 below shows an extract of the process model within the developed tool

concept. The example shows the mapping between the two Automotive SPICE versions,

the guidelines and the requirements of an OEM. What is already structurally evident in

this sample is largely true for the entire mapping of the individual sources. Normally,

when mapping the two Automotive SPICE versions, only one to three base practices are

allocated to each other.

Figure 7.2 Tool screenshot of ASPICE 2.5, 3.0, guidelines and an OEM mapping

Optimization of Development Processes 105

The rules of the Automotive SPICE guidelines are already more frequently applied.

There are generic rules that apply to several base practices across all processes, as well

as process-specific rules that are important for the assessment of individual processes.

The OEMs’ customer requirements are even more precise. These have divided

individual base practices into many independent requirements. The manufacturers have

not only subdivided the individual processes and base practices into several unique

requirements, but have also in most cases refined and detailed them. As these stringent

requirements of the various manufacturers are now known and can be allocated to the

base practices of Automotive SPICE processes, this allows a direct comparison of all

requirements for the development processes. If the manufacturer-specific requirements

are also taken into account at the outset in the comprehensive process model, it is

possible to fine-tune the optimization of internal development processes even more

precisely to the market. Knowledge of customer requirements and own process

capabilities in the development of mechatronic systems for automotive applications

ultimately enables the development of more mature products by complying with all

requirements. This also helps to save time when analyzing requirements and creating

offers for new development projects.

7.3 Exemplary Processes

In the following section, the differences between the two Automotive SPICE versions are

explained on the basis of two exemplary process scopes. First, the objectives and

purpose of the two processes are explained. The result of the mapping of the individual

base practices is then presented. On this basis, differences can now be identified. For

reasons of simplicity, only a limited result of the mapping can be presented and explained

in the written part of this thesis.

The selection of the two processes was based on the relevance of the previously

described topics in the context of development processes. In the first case (MAN.3), this

is a one-to-one assignment at process level, although the base practices have been

redefined. In the second case (SWE.3), processes ENG.5 and ENG.6 of the Automotive

SPICE 2.5 basis were split up into several new processes in Automotive SPICE 3.0.

These were specified more precisely and adapted even better to the presented V-model.

In addition to the following findings, detailed mappings of the individual base practices

are provided in the appendix (starting with appendix A.2).

106 Optimization of Development Processes

7.3.1 MAN.3 Project Management

The process MAN.3 (project management) is an important process, which has the

objective to identify, establish, and control the activities and resources necessary for a

project to produce a product, in the context of the project’s requirements and constraints

(Automotive SPICE 3.0) [34]. This process enables a holistic view of the activities

involved in software development projects. MAN.3 is usually the initial process to be

addressed in an Automotive SPICE assessment. This process is used by assessors to

get a comprehensive overview of the project. The evaluation of the other processes is

also heavily dependent on the outcome of the MAN.3 process rating, as the entire

development project depends on consistent planning and control.

As a result of the right implementation of this process, the definition of the scope of the

project is mentioned in particular. At the same time, there is a further focus on analyzing

the feasibility and the necessary resources. Furthermore, the project must identify and

monitor further interfaces to other areas of the project. However, the central issue is the

planning of the entire development project based on a defined schedule. This project

plan must always be monitored and reported. In the event of any deviations, appropriate

measures must be taken in order to avoid missing the project goal [34].

Figure 7.3 shows the allocation of both matching process groups between Automotive

SPICE 2.5 and Automotive SPICE 3.0. As is evident, the MAN.3 process exists in both

versions of Automotive SPICE under the same name. On the basis of this overview, it

can be assumed that an allocation and thus the mapping of the base practices works

1:1. However, this is not the case. Within the individual process, some base practices

have been changed in the new version of Automotive SPICE. Table 7.1 compares the

respective base practices of the two standards.

Figure 7.3 Allocation of the MAN.3 process between ASPICE 2.5 and 3.0

MAN.3
Project

Management

MAN.3
Project

Management

ASPICE 2.5 ASPICE 3.0

Optimization of Development Processes 107

Table 7.1 List of individual MAN.3 base practices of ASPICE 2.5 and 3.0 [38, 34]

BP MAN.3 in Automotive SPICE 2.5 MAN.3 in Automotive SPICE 3.0

1 Define the scope of work Define the scope of work

2 Define project life cycle Define project life cycle

3 Determine and maintain estimates
for project attributes

Evaluate feasibility of the project

4 Define project activities Define, monitor and adjust project
activities

5 Define skill needs Determine, monitor and adjust project
estimates and resources

6 Define and maintain project
schedule

Ensure required skills, knowledge and
experience

7 Identify and monitor project
interfaces

Identify, monitor and adjust project
interfaces and agreed commitments

8 Establish project plan Define, monitor and adjust project
schedule

9 Implement the project plan Ensure consistency

10 Monitor project attributes Review and report progress of the project

11 Review and report progress of the
project

-

12 Act to correct deviations -

As can be seen without a detailed analysis, the number of base practices between the

two versions has changed. In order to make a more precise analysis of the changes, the

individual base practices were compared and mapped together in the tool concept.

Figure 7.4 shows schematically the result of the mapping of individual base practices.

Figure 7.4 Mapping of MAN.3 base practices between ASPICE 2.5 and 3.0

MAN.3.BP1

ASPICE 2.5

MAN.3.BP2

MAN.3.BP3

MAN.3.BP4

MAN.3.BP5

MAN.3.BP6

MAN.3.BP7

MAN.3.BP8

MAN.3.BP9

MAN.3.BP10

MAN.3.BP11

MAN.3.BP12

MAN.3.BP1

ASPICE 3.0

MAN.3.BP2

MAN.3.BP3

MAN.3.BP4

MAN.3.BP5

MAN.3.BP6

MAN.3.BP7

MAN.3.BP8

MAN.3.BP9

MAN.3.BP10

108 Optimization of Development Processes

As can be seen, these are complex nested n:m allocations between the individual base

practices in a single process. This shows that not only unnecessary base practices have

been omitted in the new version, but that stricter requirements have been explicitly

defined as new base practices.

As a result of the MAN.3 comparison of both Automotive SPICE versions, the following

points can be noted. Individual base practices have been adopted almost identically in

the new version of Automotive SPICE (for example, MAN.3.BP2 define project life cycle).

Existing base practices have also been split into two or more new base practices. This

means that content can be defined even more precisely and recorded as separate

outcomes. This has been the case, for example, with the MAN.3.BP1 process. The

process (define scope of work) was split in the new version into two separate base

practices (MAN.3.BP1 define scope of work and MAN.3.BP3 evaluate feasibility of the

project). This does not appear from the individual names of the base practices, but has

to be analyzed by means of the individual contents and outcomes. In this case feasibility

was previously integrated in MAN.3.BP1. Another change and deviation from the old

version of the standard was also discovered in the old base practice 12 (act to correct

deviations). This covered actions to be taken when the project objectives are no longer

achievable. This base practice no longer exists independently in the new version.

Instead, this base practice has been integrated into several individual base practices.

The addition of the adaptation can now be found, for example, in all base practices

dealing with the definition and monitoring of project parameters (schedule, resources

and activities). Considering that several rating rules of the Automotive SPICE guidelines

are mapped to the individual MAN.3 base practices, it becomes evident how complex

the entire process model is. In addition, many customer requirements are also mapped

to the individual Automotive SPICE 2.5 base practices.

The detailed mapping of the MAN.3 process between the two Automotive SPICE

versions in the developed tool concept is shown in appendix A.2.

7.3.2 SWE.3 Software Detailed Design and Unit Construction

The process SWE.3 (software detailed design and unit construction) in Automotive

SPICE 3.0 mainly deals with the creation of software units using model-based software

development. The goal is to provide an evaluated detailed design for the software units

and to produce the software units (Automotive SPICE 3.0) [34]. In this case, it was more

complicated than the previous MAN.3 process, since the SWE.3 process was divided

into two individual processes in the old standard. Comparing the processes and their

Optimization of Development Processes 109

purpose and outcomes alone, the SWE.3 process of Automotive SPICE 3.0 includes the

topics of processes ENG.5 (software design) and ENG.6 (software construction). This is

because the new standard has been detailed at the bottom of the V-model for software

development. For the first time, an independent process for verifying the developed

software units was created by means of SWE.4 (software unit verification). Figure 7.5

shows the allocation of the individual process groups between Automotive SPICE 2.5

and Automotive SPICE 3.0 in the scope of SWE.3. One challenge is already apparent in

this context: mapping the individual base practices beyond process group boundaries.

Figure 7.5 Allocation of the SWE.3 process in the context of ASPICE 2.5

The contents and mapping of the two Automotive SPICE versions will now be presented

in the following. Because the SWE.3 process from Automotive SPICE 3.0 is considered

as an example, the above figure shows a mapping of the base practices with the ENG.5

and ENG.6 process groups from the Automotive SPICE 2.5 reference. Table 7.2 lists

below the individual base practices of the three processes of each Automotive SPICE

version. However, these cannot be assigned 1:1 to each other. The individual base

practices indicate only sporadic instances of immediate correlation. Based on the names

of the individual base practices of all three process groups, it can be seen quickly that

the scope and content do not exactly match. SWE.3 has correlating base practices in

both ENG.5 and ENG.6 processes.

ENG.5
Software

Design

ENG.6
Software

Construction

SWE.2
Software

Architectural Design

SWE.3
Software Detailed

Design and Unit

Construction

SWE.4
Software Unit

Verification

ASPICE 2.5 ASPICE 3.0

110 Optimization of Development Processes

Table 7.2 Base practices of ASPICE 2.5 and 3.0 (SWE.3 scope) [38, 34]

BP ENG.5 of Automotive SPICE 2.5 SWE.3 of Automotive SPICE 3.0

1 Develop software architectural design Develop software detailed design

2 Allocate software requirements Define interfaces of software units

3 Define interfaces Describe dynamic behavior

4 Describe dynamic behavior Evaluate software detailed design

5 Define resource consumption objectives Establish bidirectional traceability

6 Develop detailed design Ensure consistency

7 Develop verification criteria Communicate agreed software
detailed design

8 Verify software design Develop software units

9 Ensure consistency and bilateral
traceability of software requirements to
software architectural design

-

10 Ensure consistency and bilateral
traceability of software architectural
design to software detailed design

-

BP ENG.6 of Automotive SPICE 2.5

1 Define a unit verification strategy

2 Analyze software units

3 Prioritize and categorize software units

4 Develop software units

5 Develop unit verification criteria

6 Verify software units

7 Record the result of unit verification

8 Ensure consistency and bilateral traceability of software detailed design to
software units

9 Ensure consistency and bilateral traceability of software requirements to
software units

10 Ensure consistency and bilateral traceability of software units to test
specification for software units

After an initial analysis of the two reference processes (ENG.5 and ENG.6) of Automotive

SPICE 2.5, it became evident that the individual base practices cannot merely be

allocated to the process scope of the SWE.3 process of Automotive SPICE 3.0.

Moreover, many base practices of the two processes are mapped to individual or multiple

base practices of the process groups SWE.2 and SWE.4 of Automotive SPICE 3.0. In

order to map the individual base practices within a complex network across process

boundaries, it was not enough to analyze and compare the contents of the individual

base practices. In discussion with the industrial partner, a further tool concept was

developed, which is capable of mapping and comparing the individual outcomes and

work products of the various processes. In particular, this allocation and comparison of

outcomes and work products was performed for the process groups SWE.2, SWE.3 and

SWE.4 of Automotive SPICE 3.0. The detailed comparison in the new tool concept is

provided in appendix A.4.

Optimization of Development Processes 111

The now improved overview and allocation of the individual work products and outcomes

helped in the following with the allocation and mapping of the actual base practices of

the process groups. This is possible because the individual base practices refer to

individual outcomes, which are then assigned to the individual work products for each

process. This enabled a detailed analysis of the individual base practices and their

requirements. Figure 7.6 shows the result of the mapping of the individual base practices

between Automotive SPICE 2.5 and Automotive SPICE 3.0 in the considered SWE.3

scope. In contrast to MAN.3, there are fewer n:m relationships in the mapping of base

practices, but the challenge was in the described allocation across process boundaries.

Figure 7.6 Mapping of SWE.3 base practices between ASPICE 2.5 and 3.0

Concepts such as SWE.3.BP1 (develop software detailed design) have been adopted

directly from the old version of the standard. Other base practices, such as ENG.6.BP2

and BP3, have been combined in a single base practice in SWE.3.BP4 and described in

detail. In addition to the remaining mapping and the resulting differences, SWE.3 also

ENG.5.BP1

ASPICE 2.5

SWE.3.BP1

ASPICE 3.0

SWE.3.BP2

SWE.3.BP3

SWE.3.BP4

SWE.3.BP5

SWE.3.BP6

SWE.3.BP7

SWE.3.BP8

SWE.2
Software Architectural Design

SWE.4
Software Unit Verification

ENG.5.BP2

ENG.5.BP3

ENG.5.BP4

ENG.5.BP5

ENG.5.BP6

ENG.5.BP7

ENG.5.BP8

ENG.5.BP9

ENG.5.BP10

ENG.6.BP1

ENG.6.BP2

ENG.6.BP3

ENG.6.BP4

ENG.6.BP5

ENG.6.BP6

ENG.6.BP7

ENG.6.BP8

ENG.6.BP9

ENG.6.BP10

NEW

112 Optimization of Development Processes

introduced a new base practice, which could not be mapped directly to any existing base

practice of Automotive SPICE 2.5. These is SWE.3.BP7 (communicate agreed software

detailed design). This base practice prescribes that the defined software detailed design

as well as any related updates must be communicated to all relevant parties.

A complete overview of the mapping of the base practices (SWE.3 scope) between

Automotive SPICE 2.5 and Automotive SPICE 3.0 is provided in the appendix A.3.

7.4 Potentials of Optimization

The potentials for the optimization of internal processes can be derived directly from the

deviations of the individual requirements in the process model within the tool concept. It

is strongly recommended to implement all requirements of the new standard Automotive

SPICE 3.0 and its rating rules from the Automotive SPICE guidelines. This ensures a

high rating of the process capability level in Automotive SPICE assessments. The new

process model should also incorporate the largest possible cutting quantity of customer

requirements. The biggest differences can be found between the Automotive SPICE 2.5

reference and the individual OEM specification requirements. There are many potentials

for improving development processes, especially at the bottom of the V-model and its

corresponding processes. In particular, customer requirements prescribe stricter

requirements for the individual processes and base practices, which even sometimes

require explicit solutions and implementations.

Functionally, there are also potentials for further optimization of the resulting process

model. In particular, the integration into a database, e.g. in an existing requirements

management tool, is promoted by the modular structure of the tool concept.

In addition to the optimization potentials of individual processes, the entire process

model can also be optimized by further implementations. For example, the process

scope can be extended from the basis of the HIS scope to the complete Automotive

SPICE scopes. In the future, the existing process model can also be extended to include

all generic practices of the Automotive SPICE versions. This would also cover the

assessment of higher process capability levels during Automotive SPICE assessments.

A further potential for optimizing the overall process model is the integration of additional

customer requirements. This enables a wider range of customer requirements to be

covered, but also allows to determine whether individual customer requirements can be

met in advance. This helps to save resources, especially in the requirements and risk

analysis of new OEM development projects.

Optimization of Development Processes 113

In addition to the expansion of the scope and customer requirements, the process model

can also be extended by further standards and other process models. In the following

sections, two process models and international standards are presented as examples,

which have great potential to further optimize the process model. Potential and

commonalities are pointed out, but also deviations and challenges for implementation in

the overall process model are highlighted.

7.4.1 Capability Maturity Model Integration

Capability Maturity Model Integration (CMMI) models are a collection of best practices

that can help companies improve their processes. These models are developed by

product teams from industry, similar to Automotive SPICE but are not industry-specific.

CMMI is a model for process improvement of products and services that consists of five

maturity levels that are achieved by implementing specific and generic goals of these

maturity levels and all previous ones. In order to achieve an objective, generic and

specific practices or acceptable alternatives must be fulfilled. Typically, organizations

implementing CMMI improve their performance in terms of productivity, predictability and

quality of the products. This makes processes more predictable and increases customer

satisfaction [39, 40].

CMMI is generally the more extensive process model and is very widespread among

companies, especially on the North American market. CMMI and Automotive SPICE

have different concepts and approaches, but they are not mutually incompatible. Each

of the two models contains aspects that are not present in the other model. Because of

structural differences, mapping CMMI to Automotive SPICE is therefore not completely

feasible. Nevertheless, CMMI and automotive SPICE can be used together, and an

integrated process model makes sense in order to meet both requirements and further

increase the own process capability [41].

Both standards cover the four categories of process areas associated with software

product development: process management, project management, engineering and

support. CMMI on the one hand, covers some disciplines and process areas that

ASPICE does not cover. These include, for example, specific process areas such as

integrated supplier management, integrated teaming and decision analysis and solution.

On the other hand, Automotive SPICE covers some areas that are not fully covered by

CMMI. These include supplier monitoring and reuse program management. It is

noteworthy, that there are no areas exclusively covered by Automotive SPICE [42].

114 Optimization of Development Processes

Figure 7.7 Correspondence of CMMI and ASPICE [42]

Figure 7.7 shows the correspondence between CMMI and Automotive SPICE. The

notation according to [42] is defined as follows:

• H: more than 80% of CMMI-specific practices can be attributed to one or more

Automotive SPICE process results.

• M: between 50% and 80% of specific practices can be mapped

• L: less than 50% of specific practices can be mapped

• X: the CMMI process area in the Automotive SPICE process is not covered.

Since there are indeed some similarities, it would make sense to extend the process

model with additional process models such as CMMI in the future. This can result in even

more mature processes, taking into account the time and effort involved in

implementation.

7.4.2 Relation to ISO 26262 – Functional Safety

The aforementioned standard ISO 26262 requires compliance with specific requirements

in the application area of safety-related mechatronic systems. The standard focuses on

functional safety assessment through an application model and a framework by

proposing an automotive safety lifecycle based on a V-model and adapting the

necessary activities during these lifecycle phases. The aim is to prove that all reasonable

system safety conditions are met. The standard focuses on functional safety assessment

Optimization of Development Processes 115

through an application model and a framework by proposing an automotive safety

lifecycle based on a V-model and adapting the necessary activities during these lifecycle

phases. The aim is to prove that all reasonable system safety objectives are fulfilled, to

validate acceptance of safety on the basis of product-specific product features and to

demonstrate the competence for system management by means of targeted verification.

Several professional industry users are looking for a mapping between Automotive

SPICE and ISO 26262, and indeed the two working groups of the VDA (Automotive

SPICE and functional safety) are now working together. The overall finding is that there

is a high coverage of the Automotive SPICE scope by the safety standard, but a low level

of coverage of ISO 26262 by Automotive SPICE. This is especially due to the fact that

ISO 26262 contains special specifications at product level in addition to the demands

defined at process level as described in Automotive SPICE. Studies have shown that all

processes in the HIS scope are fully supported by ISO 26262, except the processes

SUP.8 and SUP.9 (configuration management and problem resolution management),

which are only partially taken into account. At the same time, the process of ISO 26262

is only partially or not at all covered by Automotive SPICE. This applies in particular to

the safety management, hazard analysis and risk assessment, safety concepts, safety

validation and safety analysis processes. Table 7.3 shows the matching concepts

between central elements in both standards. There are many direct matches when

comparing both standards, but also some deviations [29].

Table 7.3 Comparison and matching concepts (ASPICE and ISO 26262) [29]

ISO 26262 – Functional Safety Automotive SPICE

Safety Lifecycle Category

Work Product Work Product

Requirement Outcome

ASIL -

- Base Practice

The relationship between the two models can be summarized as follows: both models

have requirements for processes that partly overlap, but partly differ. Automotive SPICE

(from process capability level 2) is very beneficial for the implementation of functional

safety. This is also a further potential for the partial implementation of ISO 26262 in the

developed process model.

116 Optimization of Development Processes

Summary 117

8 Summary

This master thesis presents the current state of the art in the development processes of

complex mechatronic systems in automotive applications and illustrates the optimization

of existing development processes using an example for the integration of Automotive

SPICE into a comprehensive process model with customer requirements and internal

processes.

At first, the theory of development processes and standardization is examined in detail.

Subsequently, the VDA Standard Automotive SPICE is explained at length with a focus

on the V-model orientation and assessment criteria. In order to develop mature products,

it is now necessary to implement the new Automotive SPICE standards in a process

model, taking into account the rating rules from the Automotive SPICE guidelines.

The thesis focuses on the development of the tool concept for data management and

analysis of this process model. With the use of the tool, a comprehensive process model

can be generated that includes customer requirements and internal processes in addition

to the VDA standards and guidelines. Based on the successful mapping of the individual

base practices with the new counterparts, rating rules and customer requirements, an

extensive process model is developed, which is modularly structured that it can be

supplemented by further standards and requirements in the future. In the developed tool

concept, it is then possible to compare the different base practices and requirements and

to identify differences. The deviations represent the potential for process optimization,

whereby the customer requirements should be considered with the largest possible

cutting quantity. This master thesis also provides an outlook on the future potential of

this tool concept and the integrated process model. In particular, the implementation into

a database is mentioned, as well as the later implementation of further standards such

as CMMI or ISO 26262 – Functional Safety.

The resulting process model is constantly evolving and should help to assess the

requirements and risks of customer projects, save resources and ultimately develop

more mature products at an early stage of development.

118 Summary

Bibliography 119

9 Bibliography

[1] W. Roddeck, Einführung in die Mechatronik, Bochum: Vieweg+Teubner, 2016.

[2] K.-H. Grote and J. Feldhusen, Eds., Dubbel, Springer Berlin Heidelberg, 2007.

[3] Bosch Professional Automotive Information, Automotive Mechatronics, K. Reif, Ed.,

Friedrichshafen: Springer Vieweg, 2015.

[4] Robert Bosch GmbH, Konventioneller Antriebsstrang und Hybridantriebe, K. Reif,

Ed., Wiesbaden: Vieweg+Teubner, 2010.

[5] J. Schäuffele and T. Zurawka, Automotive Software Engineering, Wiesbaden:

Vieweg+Teubner, 2013.

[6] AUTOSAR, "Layered Software Architecture," 30 November 2016. [Online].

Available: https://www.autosar.org/fileadmin/files/standards/classic/4-3/software-

architecture/general/auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf.

[Accessed 25 July 2017].

[7] T. Riepl et al., "Elektronik und Mechanik für Motor- und Getriebesteuerung," in

Handbuch Verbrennungsmotor, Wiesbaden, Springer Fachmedien, 2015.

[8] A. Girard and C. Rommel, "Softwareentwicklung mit optimierten Prozessen," ATZ

elektronik, no. 1, February 2016.

[9] B. Balasubramanian, "Entwicklungsprozesse für Kraftfahrzeuge unter den

Einflüssen von Globalisierung und Lokalisierung," in Forschung für das Auto von

Morgen, V. Schindler, Ed., Springer Berlin Heidelberg, 2008.

[10] M. Eigner, D. Roubanov and R. Zafirov, Eds., Modellbasierte Virtuelle

Produktentwicklung, Kaiserslautern: Springer Vieweg, 2014.

[11] N. G. Leveson, Safeware. System Safety and Computers, Boston, MA: Addison-

Wesley, 2001.

[12] R. G. Cooper, Winning At New Products: Accelerating the Process from Idea to

Launch, Perseus, Ed., New York: Basic Books, 2001.

[13] R. R. Asche, Embedded Controller, Wiesbaden: Springer Vieweg, 2016.

[14] R. Otterbach and F. Schütte, "Effiziente Funktions- und Software-Entwicklung für

mechatronische Systeme im Automobil," Paderborn, 2009.

[15] M. Staron, Automotive Software Architectures, Gothenburg: Springer International

Publishing, 2017.

120 Bibliography

[16] K. Ehrlenspiel and H. Meerkamm, Integrierte Produktentwicklung, Munich: Hanser,

2013.

[17] J. Schlattmann and A. Seibel, Aufbau und Organisation von Entwicklungsprojekten,

Hamburg: Springer-Verlag GmbH, 2017.

[18] P. Rodríguez et al., "Analyzing the Drivers of the Combination of Lean and Agile in

Software Development Companies," in Product-Focused Software Process

Improvement, Madrid, 2012.

[19] D. Winkler, R. Mordinyi and S. Biffl, "Research Prototypes versus Products:

Lessons Learned from Software Development Processes in Research Projects," in

Systems, Software and Services Process Improvement, Vienna, 2013.

[20] M. Müller et al., Automotive SPICE® in der Praxis, vol. 2, Heidelberg:

dpunkt.verlag, 2016.

[21] K. Blind, A. Jungmittag and A. Mangelsdorf, Der gesamtwirtschaftliche Nutzen der

Normung, Berlin: DIN Deutsches Institut für Normung e. V., 2011.

[22] DIN Deutsches Institut für Normung e.V., "DIN EN 45020 — Standardization and

related activities," Beuth Verlag, Berlin, 2007.

[23] R. Nevalainen, A. Ruiz and T. Varkoi, "Making Software Safety Assessable and

Transparent," in Systems, Software and Services Process Improvement, Dundalk,

Springer, 2013.

[24] M. Hinsch, "Einführung in zertifizierbare QM-Systeme nach ISO 9001 und EN

9100," in Qualitätsmanagement in der Luftfahrtindustrie, Hamburg, Springer

Vieweg, 2014.

[25] International Organization for Standardization, "ISO 26262 — Road vehicles —

Functional safety," ISO, Geneva, 2011.

[26] P. Anderson, "Mehr Softwaresicherheit Statische Analysetools und die ISO 26262,"

ATZ elektronik, no. 1, February 2017.

[27] P. Liggesmeyer, Software-Qualität, Heidelberg: Spektrum Akademischer Verlag,

2009.

[28] S. Hecht, "Entwicklung des Reifegradmodells," in Ein Reifegradmodell für die

Bewertung und Verbesserung von Fähigkeiten im ERP-Anwendungsmanagement,

Wiesbaden, Springer Gabler, 2014.

Bibliography 121

[29] M. Adedjouma et al., "Merging the Quality Assessment of Processes and Products

in Automotive Domain," in Product-Focused Software Improvement, Madrid,

Springer Verlag, 2012.

[30] M. Hirz and H. Brunner, "Mechatronics Academy. Development Processes.

Automotive SPICE / CMMI," Graz, 2017.

[31] J. Morenzin and B. Vanamali, "Angekommen in der Entwicklung," QZ Qualität und

Zuverlässigkeit, no. 6, 2009.

[32] F. Bella et al., "Automotive SPICE 3.0," KUGLER MAAG CIE GmbH,

Kornwestheim, 2015.

[33] tecmata GmbH, "Automotive SPICE 3.0 – What's new ?," Flörsheim, 2016.

[34] VDA QMC Working Group 13 / Automotive SIG, "Automotive SPICE Process

Assessment / Reference Model," 2015.

[35] H. Höhn et al., Software Engineering nach Automotive SPICE, Heidelberg:

dpunkt.verlag, 2009.

[36] KUGLER MAAG CIE GmbH, "Be ready for Automotive SPICE ® v3.0 (HIS Scope),"

Kornwestheim, 2016.

[37] K. K.-H. Lai, "Statistical Analysis of Automotive SPICE Assessment Results," in

VDA Automotive SYS Conference 2017, Berlin, 2017.

[38] Automotive SIG, "Automotive SPICE® Process Assessment Model," The SPICE

User Group, 2010.

[39] I. L. Margarido et al., "Towards a Framework to Evaluate and Improve the Quality

of Implementation of CMMI® Practices," in Product-Focused Software Process

Improvement, Madrid, Springer-Verlag, 2012.

[40] CMMI Product Team, "CMMI® for Development, Version 1.3," Carnegie Mellon

University, Software Engineering Process Management Program, Pittsburgh, 2010.

[41] G. Fessler, "CMMI® und Automotive SPICE© gemeinsam nutzen," June 2012.

[Online]. Available: http://www.sbz-pec.de/downloads/detail/cmmi-und-automotive-

spice-gemeinsam-nutzen/201202aspicecmmiv6.pdf. [Accessed 11 November

2017].

[42] H. Sassenburg and D. Kitson, "A Comparative Analysis of CMMI and Automotive

SPICE," 14 June 2006. [Online]. Available:

http://itq.ch/pdf/sepg/CMMI&AutomotiveSPICE_305b.pdf. [Accessed 11

November 2017].

122 Bibliography

List of Figures 123

10 List of Figures

Figure 2.1 Mechatronic synergies of involved disciplines, cf. [1] 15

Figure 2.2 Closed loop control process of a mechatronic system [3] 17

Figure 2.3 Schematic structure of an electronic control unit, cf. [4] 19

Figure 2.4 Proportion of electrics/electronics in the motor vehicle [3] 20

Figure 2.5 AUTOSAR software architecture for microcontrollers, cf. [6] 22

Figure 3.1 Definition of a system in system theory, cf. [11] ... 30

Figure 3.2 The V-model for mechatronics development (VDI 2206), cf. [10] 31

Figure 3.3 V-model process for the development of systems and software, cf. [5] 32

Figure 3.4 Phase-gate process according to Cooper, cf. [12] 33

Figure 3.5 Value and cost distribution in embedded products (2016), cf. [8] 34

Figure 3.6 Software integration steps in product development, cf. [15] 36

Figure 3.7 Development time savings through concurrent engineering, cf. [17] 39

Figure 3.8 Matrix organization in an automotive development project, cf. [17] 42

Figure 3.9 Waterfall planning principle in project management................................... 43

Figure 3.10 Scrum development process model, cf. [19] .. 45

Figure 4.1 Difference and importance of laws and standards for companies 48

Figure 4.2 Application process of ISO 26262, cf. [25] ... 53

Figure 5.1 Derivation of HIS process scopes for ASPICE from ISO 15504 [20] 62

Figure 5.2 Process capability levels of ASPICE acc. to ISO 33020, cf. [34] 65

Figure 5.3 Automotive SPICE 3.0 process reference model [34] 68

Figure 5.4 Important terminology of Automotive SPICE [34] 68

Figure 5.5 Schematic template for an Automotive SPICE process description [34] 69

Figure 5.6 Traceability and consistency throughout Automotive SPICE [34]............... 71

Figure 5.7 Evaluation, verification and compliance throughout the PRM [34] 72

Figure 5.8 Plug-in concept of Automotive SPICE 3.0 [36]... 72

124 List of Figures

Figure 5.9 Process capability assessment dimensions [34] .. 74

Figure 6.1 Relations and references of the various sources 84

Figure 6.2 Cardinality of one-to-one between BPs of two sources 85

Figure 6.3 Cardinality of one-to-many between BPs of two sources 86

Figure 6.4 Cardinality of many-to-many between BPs of two sources 87

Figure 6.5 Challenges of allocating n:m relations of three sources in Excel 88

Figure 6.6 Exemplary overview of the concept tool structure (ASPICE 2.5 [38]) 90

Figure 6.7 Allocation of base practices from ASPICE 3.0 [34] to ASPICE 2.5 90

Figure 6.8 Flowchart of the overall process for mapping a single source 91

Figure 6.9 Flowchart of the individual copy sub-process for a single source............... 92

Figure 6.10 Separate rows for process purpose, outcomes and new BPs [38] 97

Figure 6.11 Screenshot of the tool in the reference sheet (ASPICE 2.5 [38]) 98

Figure 6.12 Screenshot of the tool in a source sheet (ASPICE 3.0 [34])..................... 99

Figure 7.1 Populated tool with collapsed process groups (ASPICE 2.5) 103

Figure 7.2 Tool screenshot of ASPICE 2.5, 3.0, guidelines and an OEM mapping ... 104

Figure 7.3 Allocation of the MAN.3 process between ASPICE 2.5 and 3.0 106

Figure 7.4 Mapping of MAN.3 base practices between ASPICE 2.5 and 3.0 107

Figure 7.5 Allocation of the SWE.3 process in the context of ASPICE 2.5 109

Figure 7.6 Mapping of SWE.3 base practices between ASPICE 2.5 and 3.0 111

Figure 7.7 Correspondence of CMMI and ASPICE [42] .. 114

List of Tables 125

11 List of Tables

Table 3.1 Architecting versus project management [15] ... 45

Table 4.1 Comparison of main approaches in evaluation [23] 52

Table 5.1 Overview of major changes between version 2.5 and 3.0, cf. [33] 63

Table 5.2 Rating scale according to ISO 33020 [34] ... 74

Table 5.3 Process capability level model according to ISO 33020 [34] 75

Table 6.1 Defined work packages for the project .. 81

Table 6.2 Defined processes for the analysis (Automotive SPICE 2.5 [38]) 82

Table 6.3 Defined sources for the process mapping ... 83

Table 7.1 List of individual MAN.3 base practices of ASPICE 2.5 and 3.0 [38, 34] ... 107

Table 7.2 Base practices of ASPICE 2.5 and 3.0 (SWE.3 scope) [38, 34] 110

Table 7.3 Comparison and matching concepts (ASPICE and ISO 26262) [29] 115

126 List of Tables

List of Abbreviations 127

12 List of Abbreviations

API Application Programming Interface

ASIL Automotive Safety Integrity Level

ASPICE Automotive SPICE1

AutoSIG Automotive Special Interest Group

BP Base Practice

BUS Binary Unit System

CAN Controller Area Network

CASE Computer-Aided Software Engineering

CMMI Capability Maturity Model Integration

CPU Central Processing Unit

DIN Deutsches Institut für Normung

E/E Electric / Electronic

ECU Electronic Control Unit

EEPROM Electrically Erasable Programmable Read-Only Memory

FuSa Functional Safety

HIS Herstellerinitiative Software

I/O Input / Output

IC Integrated Circuit

IEC International Electrotechnical Commission

ISO International Organization for Standardization

OEM Original Equipment Manufacturer

PAM Process Assessment Model

PLC Product Life Cycle

PRM Process Reference Model

QM Quality Management

RAM Random-Access Memory

RTE Runtime Environment

SoC System on Chip

SPICE Software Process Improvement and Capability Determination

VDA Verband der Automobilindustrie

VDI Verein Deutscher Ingenieure

WP Work Product

1 Automotive SPICE® is a registered trademark of the Verband der Automobilindustrie e.V. (VDA)

128 List of Abbreviations

Appendix 129

A Appendix

130 Appendix

A.1 Developed VBA Code for Mapping BPs from One Source

1. Sub MapAS30toAS25()
2. ' Define local variables
3. Dim value() As String
4. Dim value_count_from As Integer
5. Dim value_count_to As Integer
6. Dim source As String
7. Dim answer As Integer
8.
9. ' Select source sheet for mapping.
10. source = "ASPICE 3.0"
11.
12. ' Ensures that the right target sheet is selected.
13. Worksheets("ASPICE 2.5").Select
14. ' All variables starting with a dot refer to the source sheet
15. With Worksheets(source)
16.
17. answer = MsgBox("Map " & source & " to this sheet?", vbYesNo + vbQuestion)
18. If answer = vbYes Then
19.
20. ' For each base practice ID; Range defined as public constants
21. For I = row_start To row_count
22.
23. ' Splitting the base practice ID (comma separated)
24. value = Split(Cells(I, "B"), ", ")
25. value_count_from = LBound(value)
26. value_count_to = UBound(value)
27.
28. ' Clearing the target fields.
29. Cells(I, "F") = ""
30. Cells(I, "G") = ""
31. Cells(I, "H") = ""
32.
33. ' For each value found, i.e. value(j)
34. For j = value_count_from To value_count_to
35.
36. ' Search in source range.
37. For k = row_start To row_count
38.
39. If (InStr(.Cells(k, "A"), value(j) & ",") > 0) Then
40. ' Add/copy BP ID + insert comma.
41. Cells(I, "F") = Cells(I, "F") & .Cells(k, "B") & ", "
42. End If
43. If (InStr(.Cells(k, "A"), value(j) & ",") > 0) Then
44. ' Add/copy BP name + insert break.
45. Cells(I, "G") = Cells(I, "G") & .Cells(k, "C") & vbCrLf
46. End If
47. If (InStr(.Cells(k, "A"), value(j) & ",") > 0) Then
48. ' Add/copy:[BP Name] + description + break.
49. Cells(I, "H") = Cells(I, "H") & "[" & .Cells(k, "B") & "] " &

.Cells(k, "D") & vbCrLf
50. End If
51. Next
52. Next
53. Next
54. Else
55. 'do nothing if user clicked "no" in the message promt
56. End If
57. End With
58. End Sub ' End action

Appendix 131

A.2 Mapping between ASPICE 2.5 and 3.0 (MAN.3 Scope)

The following excerpt shows the mapping of the MAN.3 base practices between the

Automotive SPICE 2.5 reference and the new version, Automotive SPICE 3.0.

P ID BP ID Base Practice Base Practice Full Text Description BP ID Base Practice Base Practice Full Text Description

MAN.3 HIS-Scope Project management

MAN.3 MAN.3 -

PURPOSE

The purpose of the Project management process is to identify, establish,

plan, co-ordinate, and monitor the activities, tasks, and resources

necessary for a project to produce a product and/or service, in the

context of the project’s requirements and constraints.

MAN.3 MAN.3 -

OUTCOMES

1) the scope of the work for the project is defined;

2) the feasibility of achieving the goals of the project with available

resources and constraints is evaluated;

3) the tasks and resources necessary to complete the work are sized and

estimated;

4) interfaces between elements in the project, and with other project

and organizational units, are identified and monitored;

5) plans for the execution of the project are developed, implemented

and maintained;

6) progress of the project is monitored and reported; and

7) actions to correct deviations from the plan and to prevent recurrence

of problems identified in the project are taken when project goals are

not achieved.

NOTE 1: The necessary resources will include - people, development tools,

hardware present in the ECU (CPU, RAM, Flash RAM, etc.), test

equipment, methodologies.

NOTE 2: The skills of the people and the technologies used to develop the

project will need to be evaluated and if necessary, training courses, tool

upgrades, introduction of new technologies, etc. need to be planned.

NOTE 3: Plans for the execution of the project may contain among other

elements, work break down structures, responsibilities, schedules, etc..

MAN.3 MAN.3.BP1 Define the

scope of work

Define the work to be undertaken by the project, and confirm that the

goals of the project are feasible with available resources and

constraints. [Outcomes 1, 2]

MAN.3.BP1,

MAN.3.BP3,

Define the scope

of work

Evaluate

feasibility of the

project

[MAN.3.BP1] Identify the project's goals, motivation and boundaries. [OUTCOME 1]

[MAN.3.BP3] Evaluate the feasibility of achieving the goals of the project in terms of technical feasibility within

constraints with respect to time, project estimates, and available resources. [OUTCOME 2]

MAN.3 MAN.3.BP2 Define project

life cycle

Define the life cycle for the project, which is appropriate to the scope,

context, magnitude and complexity of the project. [Outcome 2]

NOTE 1: The consistency between the project life cycle and the car

development process should be verified.

MAN.3.BP2, Define project

life cycle

[MAN.3.BP2] Define the life cycle for the project, which is appropriate to the scope, context, magnitude and

complexity of the project. [OUTCOME 2]

NOTE 1: This typically means that the project life cycle and the customer's development process are consistent

with each other.

MAN.3 MAN.3.BP3 Determine and

maintain

estimates for

project

attributes

Define and maintain baselines for project attributes [Outcome 2].

NOTE 2: Project attributes may include 1) business and quality goals for

the project, 2) resources for the project and 3) project effort, schedule and

budget.

NOTE 3 Appropriate estimation methods should be used.

NOTE 4: A development strategy is determined and resources for the

development life cycle to satisfy requirements are estimated.

NOTE 5: Resources may include required infrastructure and

communication mechanisms.

NOTE 6: Project risks and quality criteria may be considered when

estimating project attributes.

MAN.3.BP5, Determine,

monitor und

adjust project

estimates and

resources

[MAN.3.BP5] Define, maintain, and adjust project estimates of effort and resources based on project's goals,

project risks, motivation and boundaries. [OUTCOME 2, 3, 7]

NOTE 4: Appropriate estimation methods should be used.

NOTE 5: Examples of necessary resources are people, infrastructure (such as tools, test equipment,

communication mechanisms...) and hardware/materials.

NOTE 6: Project risks (using MAN.5) and quality criteria (using SUP.1) may be considered. NOTE 7: Estimations and

resources typically include engineering, management and supporting processes.

MAN.3 MAN.3.BP4 Define project

activities

Plan project activities according to defined project life cycle and

estimations, define and monitor dependencies between activities.

[Outcome 3, 5]

NOTE 7: The activities and related work packages should be of

manageable size to ensure that adequate progress monitoring is possible.

MAN.3.BP4, Define, monitor

and adjust

project activities

[MAN.3.BP4] Define, monitor and adjust project activities and their dependencies according to defined project

life cycle and estimations. Adjust activities and their dependencies as required. [OUTCOME 3, 5, 7]

NOTE 2: A structure and a manageable size of the activities and related work packages support an adequate

progress monitoring.

NOTE 3: Project activities typically cover engineering, management and supporting processes.

MAN.3 MAN.3.BP5 Define skill

needs

Identify required skills needed for the project and allocate them to

individuals and teams. [Outcome 3]

MAN.3.BP6, Ensure required

skills, knowledge,

and experience

[MAN.3.BP6] Identify the required skills, knowledge, and experience for the project and make sure the selected

individuals and teams either have or acquire these in time. [OUTCOME 3, 7]

NOTE 8: In the case of deviations from required skills and knowledge trainings are typically provided.

MAN.3 MAN.3.BP6 Define and

maintain

project

schedule

Allocate resources to activities and determine schedule for each activity

and for the whole project. [Outcome 3, 5]

NOTE 8: This includes appropriate re-planning.

NOTE 9: Project time schedule has to keep updated during lifetime of the

project continuously.

MAN.3.BP8, Define, monitor

and adjust

project schedule

[MAN.3.BP8] Allocate resources to activities, and schedule each activity of the whole project. The schedule has to

be kept continuously updated during lifetime of the project. [OUTCOME 3, 5, 7]

NOTE 10: This relates to all engineering, management and supporting processes.

MAN.3 MAN.3.BP7 Identify and

monitor project

interfaces

Identify and agree interfaces of the project with other (sub-) projects,

organizational units and other stakeholders and monitor agreed

commitments. [Outcome 4]

NOTE 10: The project planning and monitoring may include all involved

parties like quality assurance, production, car integration, testing and

prototype manufacturing.

MAN.3.BP7, Identify, monitor

and adjust

project interfaces

and agreed

commitments

[MAN.3.BP7] Identify and agree interfaces of the project with other (sub-) projects, organizational units and other

affected stakeholders and monitor agreed commitments. [OUTCOME 4, 7]

NOTE 9: Project interfaces relate to engineering, management and supporting processes.

MAN.3 MAN.3.BP8 Establish

project plan

Collect and maintain project master plan and other relevant plans to

document the project scope and goals, resources, infrastructure,

interfaces and communication mechanisms. [Outcome 5]

MAN.3.BP3,

MAN.3.BP4,

MAN.3.BP5,

MAN.3.BP6,

MAN.3.BP7,

MAN.3.BP9,

MAN.3.BP10,

Evaluate

feasibility of the

project

Define, monitor

and adjust

project activities

Determine,

monitor und

adjust project

estimates and

resources

Ensure required

skills, knowledge,

and experience

Identify, monitor

and adjust

project interfaces

and agreed

commitments

Ensure

consistency

Review and

report progress of

the project

[MAN.3.BP3] Evaluate the feasibility of achieving the goals of the project in terms of technical feasibility within

constraints with respect to time, project estimates, and available resources. [OUTCOME 2]

[MAN.3.BP4] Define, monitor and adjust project activities and their dependencies according to defined project

life cycle and estimations. Adjust activities and their dependencies as required. [OUTCOME 3, 5, 7]

NOTE 2: A structure and a manageable size of the activities and related work packages support an adequate

progress monitoring.

NOTE 3: Project activities typically cover engineering, management and supporting processes.

[MAN.3.BP5] Define, maintain, and adjust project estimates of effort and resources based on project's goals,

project risks, motivation and boundaries. [OUTCOME 2, 3, 7]

NOTE 4: Appropriate estimation methods should be used.

NOTE 5: Examples of necessary resources are people, infrastructure (such as tools, test equipment,

communication mechanisms...) and hardware/materials.

NOTE 6: Project risks (using MAN.5) and quality criteria (using SUP.1) may be considered. NOTE 7: Estimations and

resources typically include engineering, management and supporting processes.

[MAN.3.BP6] Identify the required skills, knowledge, and experience for the project and make sure the selected

individuals and teams either have or acquire these in time. [OUTCOME 3, 7]

NOTE 8: In the case of deviations from required skills and knowledge trainings are typically provided.

[MAN.3.BP7] Identify and agree interfaces of the project with other (sub-) projects, organizational units and other

affected stakeholders and monitor agreed commitments. [OUTCOME 4, 7]

NOTE 9: Project interfaces relate to engineering, management and supporting processes.

[MAN.3.BP9] Ensure that estimates, activities, schedules, plans, interfaces, and commitments for the project are

consistent across affected parties. [OUTCOME 3, 4, 5, 7]

[MAN.3.BP10] Regularly review and report the status of the project and the fulfillment of activities against

estimated effort and duration to all affected parties. Prevent recurrence of problems identified. [OUTCOME 6, 7]

NOTE 11: Project reviews may be executed at regular intervals by the management. At the end of a project, a

project review contributes to identifying e.g. best practices and lessons learned.

Automotive SPICE 2.5 REFERENCE Automotive SPICE 3.0

132 Appendix

Content is directly from Automotive SPICE 2.5 [38] and Automotive SPICE 3.0 [34].

P ID BP ID Base Practice Base Practice Full Text Description BP ID Base Practice Base Practice Full Text Description

MAN.3 MAN.3.BP9 Implement the

project plan

Implement planning activities of the project. [Outcome 5] MAN.3.BP3,

MAN.3.BP4,

MAN.3.BP5,

MAN.3.BP6,

MAN.3.BP7,

MAN.3.BP10,

Evaluate

feasibility of the

project

Define, monitor

and adjust

project activities

Determine,

monitor und

adjust project

estimates and

resources

Ensure required

skills, knowledge,

and experience

Identify, monitor

and adjust

project interfaces

and agreed

commitments

Review and

report progress of

the project

[MAN.3.BP3] Evaluate the feasibility of achieving the goals of the project in terms of technical feasibility within

constraints with respect to time, project estimates, and available resources. [OUTCOME 2]

[MAN.3.BP4] Define, monitor and adjust project activities and their dependencies according to defined project

life cycle and estimations. Adjust activities and their dependencies as required. [OUTCOME 3, 5, 7]

NOTE 2: A structure and a manageable size of the activities and related work packages support an adequate

progress monitoring.

NOTE 3: Project activities typically cover engineering, management and supporting processes.

[MAN.3.BP5] Define, maintain, and adjust project estimates of effort and resources based on project's goals,

project risks, motivation and boundaries. [OUTCOME 2, 3, 7]

NOTE 4: Appropriate estimation methods should be used.

NOTE 5: Examples of necessary resources are people, infrastructure (such as tools, test equipment,

communication mechanisms...) and hardware/materials.

NOTE 6: Project risks (using MAN.5) and quality criteria (using SUP.1) may be considered. NOTE 7: Estimations and

resources typically include engineering, management and supporting processes.

[MAN.3.BP6] Identify the required skills, knowledge, and experience for the project and make sure the selected

individuals and teams either have or acquire these in time. [OUTCOME 3, 7]

NOTE 8: In the case of deviations from required skills and knowledge trainings are typically provided.

[MAN.3.BP7] Identify and agree interfaces of the project with other (sub-) projects, organizational units and other

affected stakeholders and monitor agreed commitments. [OUTCOME 4, 7]

NOTE 9: Project interfaces relate to engineering, management and supporting processes.

[MAN.3.BP10] Regularly review and report the status of the project and the fulfillment of activities against

estimated effort and duration to all affected parties. Prevent recurrence of problems identified. [OUTCOME 6, 7]

NOTE 11: Project reviews may be executed at regular intervals by the management. At the end of a project, a

project review contributes to identifying e.g. best practices and lessons learned.

MAN.3 MAN.3.BP10 Monitor

project

attributes

Monitor the defined project attributes and document significant

deviations of them against the project plan. [Outcome 6]

NOTE 11: At minimum, project attributes of resources, effort and schedule

(planned, actual and remaining) should be monitored by the project.

MAN.3.BP5,

MAN.3.BP10,

Determine,

monitor und

adjust project

estimates and

resources

Review and

report progress of

the project

[MAN.3.BP5] Define, maintain, and adjust project estimates of effort and resources based on project's goals,

project risks, motivation and boundaries. [OUTCOME 2, 3, 7]

NOTE 4: Appropriate estimation methods should be used.

NOTE 5: Examples of necessary resources are people, infrastructure (such as tools, test equipment,

communication mechanisms...) and hardware/materials.

NOTE 6: Project risks (using MAN.5) and quality criteria (using SUP.1) may be considered. NOTE 7: Estimations and

resources typically include engineering, management and supporting processes.

[MAN.3.BP10] Regularly review and report the status of the project and the fulfillment of activities against

estimated effort and duration to all affected parties. Prevent recurrence of problems identified. [OUTCOME 6, 7]

NOTE 11: Project reviews may be executed at regular intervals by the management. At the end of a project, a

project review contributes to identifying e.g. best practices and lessons learned.

MAN.3 MAN.3.BP11 Review and

report progress

of the project

Regularly report and review the status of the project against the project

plans to all affected parties. This includes reports to the car producer.

Regularly evaluate the performance of the project. [Outcome 6]

NOTE 12: Project reviews may be executed at regular intervals by the

management. At the end of a project, a project review will normally be

held to identify best practices and lessons learned.

MAN.3.BP10, Review and

report progress of

the project

[MAN.3.BP10] Regularly review and report the status of the project and the fulfillment of activities against

estimated effort and duration to all affected parties. Prevent recurrence of problems identified. [OUTCOME 6, 7]

NOTE 11: Project reviews may be executed at regular intervals by the management. At the end of a project, a

project review contributes to identifying e.g. best practices and lessons learned.

MAN.3 MAN.3.BP12 Act to correct

deviations

Take action when project goals are not achieved, correct deviations

from plan and prevent recurrence of problems identified in the project.

Update project plans accordingly. [Outcome 7]

MAN.3.BP3,

MAN.3.BP4,

MAN.3.BP5,

MAN.3.BP6,

MAN.3.BP7,

MAN.3.BP10,

Evaluate

feasibility of the

project

Define, monitor

and adjust

project activities

Determine,

monitor und

adjust project

estimates and

resources

Ensure required

skills, knowledge,

and experience

Identify, monitor

and adjust

project interfaces

and agreed

commitments

Review and

report progress of

the project

[MAN.3.BP3] Evaluate the feasibility of achieving the goals of the project in terms of technical feasibility within

constraints with respect to time, project estimates, and available resources. [OUTCOME 2]

[MAN.3.BP4] Define, monitor and adjust project activities and their dependencies according to defined project

life cycle and estimations. Adjust activities and their dependencies as required. [OUTCOME 3, 5, 7]

NOTE 2: A structure and a manageable size of the activities and related work packages support an adequate

progress monitoring.

NOTE 3: Project activities typically cover engineering, management and supporting processes.

[MAN.3.BP5] Define, maintain, and adjust project estimates of effort and resources based on project's goals,

project risks, motivation and boundaries. [OUTCOME 2, 3, 7]

NOTE 4: Appropriate estimation methods should be used.

NOTE 5: Examples of necessary resources are people, infrastructure (such as tools, test equipment,

communication mechanisms...) and hardware/materials.

NOTE 6: Project risks (using MAN.5) and quality criteria (using SUP.1) may be considered. NOTE 7: Estimations and

resources typically include engineering, management and supporting processes.

[MAN.3.BP6] Identify the required skills, knowledge, and experience for the project and make sure the selected

individuals and teams either have or acquire these in time. [OUTCOME 3, 7]

NOTE 8: In the case of deviations from required skills and knowledge trainings are typically provided.

[MAN.3.BP7] Identify and agree interfaces of the project with other (sub-) projects, organizational units and other

affected stakeholders and monitor agreed commitments. [OUTCOME 4, 7]

NOTE 9: Project interfaces relate to engineering, management and supporting processes.

[MAN.3.BP10] Regularly review and report the status of the project and the fulfillment of activities against

estimated effort and duration to all affected parties. Prevent recurrence of problems identified. [OUTCOME 6, 7]

NOTE 11: Project reviews may be executed at regular intervals by the management. At the end of a project, a

project review contributes to identifying e.g. best practices and lessons learned.

Automotive SPICE 2.5 REFERENCE Automotive SPICE 3.0

Appendix 133

A.3 Mapping between ASPICE 2.5 and 3.0 (SWE.3 Scope)

P ID BP ID Base Practice Base Practice Full Text Description BP ID Base Practice Base Practice Full Text Description

ENG.5 HIS-Scope Software design

ENG.5 ENG.5 - PURPOSE The purpose of the Software design process is to provide a design for the

software that implements and can be verified against the software

requirements.

ENG.5 ENG.5 - OUTCOMES 1) a software architectural design is defined that identifies the components

of the software and meets the defined software requirements;

2) the software requirements are allocated to the elements of the software;

3) internal and external interfaces of each software component are defined;

4) the dynamic behaviour and resource consumption objectives of the

software components are defined;

5) a detailed design is developed that describes software units that can be

implemented and tested;

6) consistency and bilateral traceability are established between software

requirements and software architectural design; and

7) consistency and bilateral traceability are established between software

architectural design and software detailed design.

NOTE 1: The software design process should take into account all software

components such as customer supplied software, third party software and

sub-contractor software.

NOTE 2: Definition of software architectural design and detailed design

includes development of verification criteria.

ENG.5 ENG.5.NEW SWE.3.BP7, Communicate

agreed software

detailed design

[SWE.3.BP7] Communicate the agreed software detailed design

and updates to the software detailed design to all relevant

parties. [OUTCOME 5]

ENG.5 ENG.5.BP1 Develop software

architectural design

Use the functional and non-functional software requirements to develop a

software architecture that describes the top-level structure and all the

software components including software components available for reuse.

[Outcome 1]

NOTE 1: See also REU.2 – Reuse Program Management.

SWE.2.BP1, Develop software

architectural design

[SWE.2.BP1] Develop and document the software architectural

design that specifies the elements of the software with respect to

functional and non-functional software requirements.

[OUTCOME 1]

NOTE 1: The software is decomposed into elements across

appropriate hierarchical levels down to the software

components (the lowest level elements of the software

architectural design) that are described in the detailed design.

ENG.5 ENG.5.BP2 Allocate software

requirements

Allocate all software requirements to the components of the software

architectural design. [Outcome 2]

SWE.2.BP2, Allocate software

requirements

[SWE.2.BP2] Allocate the software requirements to the elements

of the software architectural design. [OUTCOME 2]

ENG.5 ENG.5.BP3 Define interfaces Identify, develop and document the internal interfaces between the

software components and external + interfaces of the software

components. [Outcome 3]

NOTE 2: Interfaces include specific interfaces required for application

parameter usage.

SWE.2.BP3,

SWE.3.BP2,

Define interfaces of

software elements

Define interfaces of

software units

[SWE.2.BP3] Identify, develop and document the interfaces of

each software element. [OUTCOME 3]

[SWE.3.BP2] Identify, specify and document the interfaces of

each software unit. [OUTCOME 2]

ENG.5 ENG.5.BP4 Describe dynamic

behaviour

Evaluate and document the dynamic behaviour of and interaction between

software components. [Outcome 4]

NOTE 3: Dynamic behaviour is determined by operating modes (e.g. start-up,

shutdown, normal mode, calibration, diagnosis, etc.), processes and process

intercommunication, tasks, threads, time slices, interrupts, etc. and shall be

evaluated over the complete range of allowed application parameter

combinations.

NOTE 4: Task execution time is highly depended on target and loads on the

target which should be considered and documented.

SWE.2.BP4,

SWE.3.BP3,

Describe dynamic

behavior

Describe dynamic

behavior

[SWE.2.BP4] Evaluate and document the timing and dynamic

interaction of software elements to meet the required dynamic

behavior of the system. [OUTCOME 4]

NOTE 2: Dynamic behavior is determined by operating modes

(e.g. start-up, shutdown, normal mode, calibration, diagnosis,

etc.), processes and process intercommunication, tasks, threads,

time slices, interrupts, etc.

NOTE 3: During evaluation of the dynamic behavior the target

platform and potential loads on the target should be considered.

[SWE.3.BP3] Evaluate and document the dynamic behavior of

and the interaction between relevant software units. [OUTCOME

3]

NOTE 1: Not all software units have dynamic behavior to be

described.

ENG.5 ENG.5.BP5 Define resource

consumption

objectives

Determine and document the resource consumption objectives for all

software components. [Outcome 4]

NOTE 5: Resource consumption is typically determined for resources

like Memory (ROM, RAM, external/internal EEPROM), CPU load, etc.

and can vary over the complete range of allowed application

parameter combinations.

SWE.2.BP5, Define resource

consumption

objectives

[SWE.2.BP5] Determine and document the resource consumption

objectives for all relevant elements of the software architectural

design on the appropriate hierarchical level. [OUTCOME 4]

NOTE 4: Resource consumption is typically determined for

resources like Memory (ROM, RAM, external / internal EEPROM

or Data Flash), CPU load, etc.,

ENG.5 ENG.5.BP6 Develop detailed

design

Decompose the software architectural design into a detailed design for

each software component describing all software units and their interfaces.

[Outcome 5]

NOTE 6: Task execution time is highly depended on target and loads on the

target which should be considered and documented

SWE.3.BP1, Develop software

detailed design

[SWE.3.BP1] Develop a detailed design for each software

component defined in the software architectural design that

specifies all software units with respect to functional and non-

functional software requirements. [OUTCOME 1]

ENG.5 ENG.5.BP7 Develop

Verification Criteria

Define the verification criteria for each component concerning their

dynamic behaviour, interfaces and resource consumption based on the

software architectural design. [Outcome 5]

NOTE 7: Verification criteria should be developed over the complete range of

allowed application parameter combinations.

SWE.2.BP8,

SWE.3.BP6,

Ensure consistency

Ensure consistency

[SWE.2.BP8] Ensure consistency between software requirements

and the software architectural design. [OUTCOME 1, 2, 5, 6]

NOTE 8: Consistency is supported by bidirectional traceability

and can be demonstrated by review records.

NOTE 9: Software requirements include software architectural

requirements, refer to BP6.

[SWE.3.BP6] Ensure consistency between software requirements

an software units. Ensure consistency between the software

architectural design, the software detailed design and software

units. [OUTCOME 4]

NOTE 5: Consistency is supported by bidirectional traceability

and can be demonstrated by review records.

ENG.5 ENG.5.BP8 Verify Software

Design

Ensure that the software design meets all software requirements.

[Outcomes 4, 5]

NOTE 8: Software design should be verified over the complete range of

allowed application parameter combinations.

SWE.2.BP8,

SWE.3.BP6,

Ensure consistency

Ensure consistency

[SWE.2.BP8] Ensure consistency between software requirements

and the software architectural design. [OUTCOME 1, 2, 5, 6]

NOTE 8: Consistency is supported by bidirectional traceability

and can be demonstrated by review records.

NOTE 9: Software requirements include software architectural

requirements, refer to BP6.

[SWE.3.BP6] Ensure consistency between software requirements

an software units. Ensure consistency between the software

architectural design, the software detailed design and software

units. [OUTCOME 4]

NOTE 5: Consistency is supported by bidirectional traceability

and can be demonstrated by review records.

Automotive SPICE 2.5 REFERENCE Automotive SPICE 3.0

134 Appendix

P ID BP ID Base Practice Base Practice Full Text Description BP ID Base Practice Base Practice Full Text Description

ENG.5 ENG.5.BP9 Ensure consistency

and bilateral

traceability of

software

requirements to

software

architectural design

Ensure consistency of software requirements including verification criteria

to software architectural design including verification criteria. Consistency

is supported by establishing and maintaining bilateral traceability between

the software requirements including verification criteria and software

architectural design including verification criteria. [Outcome 6]

SWE.2.BP7,

SWE.2.BP8,

Establish

bidirectional

traceability

Ensure consistency

[SWE.2.BP7] Establish bidirectional traceability between

software requirements and elements of the software

architectural design. [OUTCOME 5]

NOTE 6: Bidirectional traceability covers allocation of software

requirements to the elements of the software architectural

design.

NOTE 7: Bidirectional traceability supports coverage, consistency

and impact analysis.

[SWE.2.BP8] Ensure consistency between software requirements

and the software architectural design. [OUTCOME 1, 2, 5, 6]

NOTE 8: Consistency is supported by bidirectional traceability

and can be demonstrated by review records.

NOTE 9: Software requirements include software architectural

requirements, refer to BP6.

ENG.5 ENG.5.BP10 Ensure consistency

and bilateral

traceability of

software

architectural

design to software

detailed design

Ensure consistency of software architectural design including verification

criteria to software detailed design including verification criteria.

Consistency is supported by establishing and maintaining bilateral

traceability between the software architectural design including

verification criteria and software detailed design including verification

criteria. [Outcome 7]

SWE.3.BP5, Establish

bidirectional

traceability

[SWE.3.BP5] Establish bidirectional traceability between

software requirements and software units. Establish bidirectional

traceability between the software architectural design and the

software detailed design. Establish bidirectional traceability

between the software detailed design and software units.

[OUTCOME 4]

NOTE 3: Redundancy should be avoided by establishing a

combination of these approaches that covers the project and the

organizational needs.

NOTE 4: Bidirectional traceability supports coverage, consistency

and impact analysis.

ENG.6 HIS-Scope Software construction

ENG.6 ENG.6 - PURPOSE The purpose of the Software construction process is to produce verified

software units that properly reflect the software design.

ENG.6 ENG.6 - OUTCOMES 1) a unit verification strategy is developed for software units consistent

with the software design;

2) software units defined by the software design are analyzed for

correctness and testability;

3) software units defined by the software design are produced;

4) software units are verified according to the unit verification strategy;

5) results of unit verification are recorded; and

6) consistency and bilateral traceability are established between software

detailed design and software units;

NOTE 1: Analysis of software units will include prioritization and

categorization of software units.

NOTE 2: Unit verification will include unit testing and may include static

analysis, code inspection/reviews, checks against coding standards and

guidelines, and other techniques.

ENG.6 ENG.6.NEW SWE.4.BP7, Summarize and

communicate results

[SWE.4.BP7] Summarize the unit test results and static

verification results and communicate them to all affected parties.

[OUTCOME 5]

NOTE 9: Providing all necessary information from the test case

execution in a summary enables other parties to judge the

consequences.

ENG.6 ENG.6.BP1 Define a unit

verification strategy

Develop a strategy for verification and re-verifying the software units. The

strategy should define how to achieve the desired quality with the

available and suitable techniques over the complete range of allowed

application parameter combinations. [Outcome 1]

NOTE 1: Possible techniques are static/dynamic analysis, code

inspection/review, white/black box testing, code coverage, etc..

NOTE 2: The unit verification strategy must include a unit test strategy if unit

testing is stipulated by contract.

SWE.4.BP1, Develop software

unit verification

strategy including

regression strategy

[SWE.4.BP1] Develop a strategy for verification of the software

units including regression strategy for re-verification if a software

unit is changed. The verification strategy shall define how to

provide evidence for compliance of the software units with the

software detailed design and with the non-functional

requirements. [OUTCOME 1]

NOTE 1: Possible techniques for unit verification include

static/dynamic analysis, code reviews, unit testing etc.

ENG.6 ENG.6.BP2 Analyze software

units

Analyze the defined software units in terms of interoperability, interaction,

criticality, technical complexity, risks and testability. [Outcome 2]

NOTE 3: The results of the analysis may be used for categorization of software

units.

SWE.3.BP4, Evaluate software

detailed design

[SWE.3.BP4] Evaluate the software detailed design in terms of

interoperability, interaction, criticality, technical complexity,

risks and testability. [OUTCOME 1,2,3,4]

NOTE 2: The results of the evaluation can be used as input for

software unit verification.

ENG.6 ENG.6.BP3 Prioritize and

categorize software

units

Prioritize and categorize the identified and analyzed software units and

map them to future releases. [Outcome 2]

SWE.3.BP4, Evaluate software

detailed design

[SWE.3.BP4] Evaluate the software detailed design in terms of

interoperability, interaction, criticality, technical complexity,

risks and testability. [OUTCOME 1,2,3,4]

NOTE 2: The results of the evaluation can be used as input for

software unit verification.

ENG.6 ENG.6.BP4 Develop software

units

Develop and document the executable representations of each software

unit. [Outcome 3]

NOTE 4: In the development of software units code generation tools can be

used to reduce the manual coding effort.

SWE.3.BP8, Develop software

units

[SWE.3.BP8] Develop and document the executable

representations of each software unit according to the software

detailed design. [OUTCOME 6]

ENG.6 ENG.6.BP5 Develop unit

verification criteria

Develop and document verification criteria to verify that each software unit

satisfies its design, functional and non-functional requirements over the

complete range of allowed application parameter combinations.

[Outcome 3]

NOTE 5: The verification criteria should include unit test cases, unit test data,

coverage goals and coding standards that include the usage of MISRA rules

and defined coding guidelines.

NOTE 6: The verification criteria must include test specifications for software

units including test cases if uni testing is stipulated by contract.

SWE.4.BP2, Develop criteria for

unit verification

[SWE.4.BP2] Develop criteria for unit verification that are

suitable to provide evidence for compliance of the software units

with the software detailed design and with the non-functional

requirements according to the verification strategy. For unit

testing, criteria shall be defined in a unit test specification.

[OUTCOME 2]

NOTE 2: Possible criteria for unit verification include unit test

cases, unit test data, static verification, coverage goals and

coding standards such as the MISRA rules.

NOTE 3: The unit test specification may be implemented e.g. as a

script in an automated test bench.

ENG.6 ENG.6.BP6 Verify software

units.

Verify software units against the detailed design according to the

verification strategy and the unit verification criteria. [Outcome 4]

SWE.4.BP3,

SWE.4.BP4,

Perform static

verification of

software units

Test software units

[SWE.4.BP3] Verify software units for correctness using the

defined criteria for verification. Record the results of the static

verification. [OUTCOME 3]

NOTE 4: Static verification may include static analysis, code

reviews, checks against coding standards and guidelines, and

other techniques.

NOTE 5: See SUP.9 for handling of non-conformances.

[SWE.4.BP4] Test software units using the unit test specification

according to the software unit verification strategy. Record the

test results and logs. [OUTCOME 3]

NOTE 6: See SUP.9 for handling of non-conformances.

Automotive SPICE 2.5 REFERENCE Automotive SPICE 3.0

Appendix 135

Content is directly from Automotive SPICE 2.5 [38] and Automotive SPICE 3.0 [34].

P ID BP ID Base Practice Base Practice Full Text Description BP ID Base Practice Base Practice Full Text Description

ENG.6 ENG.6.BP7 Record the results

of unit verification

Document the results of unit verification and communicate to all relevant

parties. [Outcome 5]

SWE.4.BP4,

SWE.4.BP7,

Test software units

Summarize and

communicate results

[SWE.4.BP4] Test software units using the unit test specification

according to the software unit verification strategy. Record the

test results and logs. [OUTCOME 3]

NOTE 6: See SUP.9 for handling of non-conformances.

[SWE.4.BP7] Summarize the unit test results and static

verification results and communicate them to all affected parties.

[OUTCOME 5]

NOTE 9: Providing all necessary information from the test case

execution in a summary enables other parties to judge the

consequences.

ENG.6 ENG.6.BP8 Ensure consistency

and bilateral

traceability of

software detailed

design to software

units

Ensure consistency of software detailed design including verification

criteria to software units including verification criteria. Consistency is

supported by establishing and maintaining bilateral traceability between

the software detailed design including verification criteria and software

units including verification criteria. [Outcome 6]

SWE.3.BP5, Establish

bidirectional

traceability

[SWE.3.BP5] Establish bidirectional traceability between

software requirements and software units. Establish bidirectional

traceability between the software architectural design and the

software detailed design. Establish bidirectional traceability

between the software detailed design and software units.

[OUTCOME 4]

NOTE 3: Redundancy should be avoided by establishing a

combination of these approaches that covers the project and the

organizational needs.

NOTE 4: Bidirectional traceability supports coverage, consistency

and impact analysis.

ENG.6 ENG.6.BP9 Ensure consistency

and bilateral

traceability of

software

requirements to

software units

Ensure consistency of software requirements including verification criteria

to software units including verification criteria. Consistency is supported by

establishing and maintaining bilateral traceability between the software

requirements including verification criteria and software units including

verification criteria. [Outcome 6]

NOTE 7: Consistency and bilateral traceability need only be established

between software requirements and software units for requirements that

cannot be addressed in software detailed design (e.g. non functional

requirements, attributes etc.).

SWE.3.BP5, Establish

bidirectional

traceability

[SWE.3.BP5] Establish bidirectional traceability between

software requirements and software units. Establish bidirectional

traceability between the software architectural design and the

software detailed design. Establish bidirectional traceability

between the software detailed design and software units.

[OUTCOME 4]

NOTE 3: Redundancy should be avoided by establishing a

combination of these approaches that covers the project and the

organizational needs.

NOTE 4: Bidirectional traceability supports coverage, consistency

and impact analysis.

ENG.6 ENG.6.BP10 Ensure consistency

and bilateral

traceability of

software units to

test specification

for software units

Ensure consistency of software units including verification criteria to test

specification for software units including test cases for software units.

Consistency is supported by establishing and maintaining bilateral

traceability between the software units including verification criteria and

test specification for software units including test cases for software units.

[Outcome 6]

SWE.4.BP5,

SWE.4.BP6,

Establish

bidirectional

traceability

Ensure consistency

[SWE.4.BP5] Establish bidirectional traceability between

software units and static verification results. Establish

bidirectional traceability between the software detailed design

and the unit test specification. Establish bidirectional traceability

between the unit test specification and unit test results.

[OUTCOME 4]

NOTE 7: Bidirectional traceability supports coverage, consistency

and impact analysis.

[SWE.4.BP6] Ensure consistency between the software detailed

design and the unit test specification. [OUTCOME 4]

NOTE 8: Consistency is supported by bidirectional traceability

and can be demonstrated by review records.

Automotive SPICE 2.5 REFERENCE Automotive SPICE 3.0

136 Appendix

A.4 Mapping between Outcomes and WPs (SWE.3 Scope)

OC ID Outcome Outcome Full Text Description WP ID BP WP Name OC ID Outcome WP ID WP Name WP Full Text

Software design

ENG.5 - PURPOSE The purpose of the Software design

process is to provide a design for

the software that implements and

can be verified against the software

requirements.

NOTE 1: The software design process

should take into account all

software components such as

customer supplied software, third

party

software and sub-contractor

software.

NOTE 2: Definition of software

architectural design and detailed

design includes development of

verification criteria.

ENG.5.NEW New in Autmotive

SPICE 3.0

SWE.3.OC5, the software detailed design

and the relationship to the

software architectural design

is agreed and communicated

to all affected parties.

13-04,

13-25,

13-50,

Communication

record

Verification

results

Test results

[13-04]

All forms of interpersonal communication including:

- letters

- faxes

- e-mails

- voice recordings

- podcast

- blog

- videos

- forum

- live chat

- wikis

- photo protocol

- meeting support record

[13-25]

- Verification check-list

- Passed items of Verification

- Failed items of Verification

- Pending items of Verification

- Problems identified during Verification

- Risk analysis

- Recommendation of actions

- Conclusions of Verification

- Signature of Verification

[13-50]

- Level Test Log

- Anomaly Report
ENG.5.OC1 ENG.5 - OUTCOME 1 a software architectural design is

defined that identifies the

components of the software and

meets the defined software

requirements.

04-04, Software

architectural

design

[04-04]

– Describes the overall software structure

– Describes the operative system including task structure

– Identifies inter-task/inter-process communication

– Identifies the required software elements

– Identifies own developed and supplied code

– Identifies the relationship and dependency between software elements

– Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

– Describes how variants for different model series or configurations are derived

– Describes the dynamic behaviour of the software (Start-up, shutdown, software update,

error handling and recovery, etc.)

– Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

– Describes which data is persistent and under which conditions

– Consideration is given to:

– – any required software performance characteristics

– – any required software interfaces

– – any required security characteristics required

– – any database design requirements

SWE.2.OC1, a software architectural

design is defined that

identifies the elements of the

software.

04-04, Software

architectural

design

[04-04]

- Describes the overall software structure

- Describes the operative system including task structure

- Identifies inter-task/inter-process communication

- Identifies the required software elements

- Identifies own developed and supplied code

- Identifies the relationship and dependency between software elements

- Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

- Describes how variants for different model series or configurations are derived

- Describes the dynamic behavior of the software (Start-up, shutdown, software

update, error handling and recovery, etc.)

- Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

- Describes which data is persistent and under which conditions

- Consideration is given to:

-- any required software performance characteristics

-- any required software interfaces

-- any required security characteristics required

-- any database design requirements

ENG.5.OC2 ENG.5 - OUTCOME 2 the software requirements are

allocated to the elements of the

software.

04-04,

04-05,

13-22,

Software

architectural

design

Software detailed

design

Traceability

record

[04-04]

– Describes the overall software structure

– Describes the operative system including task structure

– Identifies inter-task/inter-process communication

– Identifies the required software elements

– Identifies own developed and supplied code

– Identifies the relationship and dependency between software elements

– Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

– Describes how variants for different model series or configurations are derived

– Describes the dynamic behaviour of the software (Start-up, shutdown, software update,

error handling and recovery, etc.)

– Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

– Describes which data is persistent and under which conditions

– Consideration is given to:

– – any required software performance characteristics

– – any required software interfaces

– – any required security characteristics required

– – any database design requirements

[04-05]

– Provides detailed design (could be represented as a prototype, flow chart, entity

relationship diagram, pseudo code, etc.)

– Provides format of input/output data

– Provides specification of CPU, ROM, RAM, EEPROM and Flash needs

– Describes the interrupts with their priorities

– Describes the tasks with cycle time and priority

SWE.2.OC2, the software requirements are

allocated to the elements of

the software.

04-04, Software

architectural

design

[04-04]

- Describes the overall software structure

- Describes the operative system including task structure

- Identifies inter-task/inter-process communication

- Identifies the required software elements

- Identifies own developed and supplied code

- Identifies the relationship and dependency between software elements

- Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

- Describes how variants for different model series or configurations are derived

- Describes the dynamic behavior of the software (Start-up, shutdown, software

update, error handling and recovery, etc.)

- Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

- Describes which data is persistent and under which conditions

- Consideration is given to:

-- any required software performance characteristics

-- any required software interfaces

-- any required security characteristics required

-- any database design requirements

ENG.5.OC3 ENG.5 - OUTCOME 3 internal and external interfaces of

each software component are

defined.

04-04,

04-05,

Software

architectural

design

Software detailed

design

[04-04]

– Describes the overall software structure

– Describes the operative system including task structure

– Identifies inter-task/inter-process communication

– Identifies the required software elements

– Identifies own developed and supplied code

– Identifies the relationship and dependency between software elements

– Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

– Describes how variants for different model series or configurations are derived

– Describes the dynamic behaviour of the software (Start-up, shutdown, software update,

error handling and recovery, etc.)

– Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

– Describes which data is persistent and under which conditions

– Consideration is given to:

– – any required software performance characteristics

– – any required software interfaces

– – any required security characteristics required

– – any database design requirements

[04-05]

– Provides detailed design (could be represented as a prototype, flow chart, entity

relationship diagram, pseudo code, etc.)

– Provides format of input/output data

– Provides specification of CPU, ROM, RAM, EEPROM and Flash needs

– Describes the interrupts with their priorities

– Describes the tasks with cycle time and priority

SWE.2.OC3,

SWE.3.OC2,

the interfaces of each

software element are defined.

interfaces of each software

unit are defined.

04-04,

17-08,

04-05,

Software

architectural

design

Interface

requirement

specification

Software

detailed design

[04-04]

- Describes the overall software structure

- Describes the operative system including task structure

- Identifies inter-task/inter-process communication

- Identifies the required software elements

- Identifies own developed and supplied code

- Identifies the relationship and dependency between software elements

- Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

- Describes how variants for different model series or configurations are derived

- Describes the dynamic behavior of the software (Start-up, shutdown, software

update, error handling and recovery, etc.)

- Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

- Describes which data is persistent and under which conditions

- Consideration is given to:

-- any required software performance characteristics

-- any required software interfaces

-- any required security characteristics required

-- any database design requirements

[17-08]

- Defines relationships between two products, process or process tasks

- Defines criteria and format for what is common to both

- Defines critical timing dependencies or sequence ordering

- Description of the physical interfaces of each system component like

-- Bus interfaces (CAN, MOST, LIN, Flexray etc.)

-- Transceiver (type, manufacturer, etc.)
ENG.5.OC4 ENG.5 - OUTCOME 4 the dynamic behaviour and

resource consumption objectives of

the software components are

defined.

04-04,

04-05,

13-25,

Software

architectural

design

Software detailed

design

Verification

results

[04-04]

– Describes the overall software structure

– Describes the operative system including task structure

– Identifies inter-task/inter-process communication

– Identifies the required software elements

– Identifies own developed and supplied code

– Identifies the relationship and dependency between software elements

– Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

– Describes how variants for different model series or configurations are derived

– Describes the dynamic behaviour of the software (Start-up, shutdown, software update,

error handling and recovery, etc.)

– Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

– Describes which data is persistent and under which conditions

– Consideration is given to:

– – any required software performance characteristics

– – any required software interfaces

– – any required security characteristics required

– – any database design requirements

[04-05]

– Provides detailed design (could be represented as a prototype, flow chart, entity

relationship diagram, pseudo code, etc.)

– Provides format of input/output data

– Provides specification of CPU, ROM, RAM, EEPROM and Flash needs

– Describes the interrupts with their priorities

– Describes the tasks with cycle time and priority

SWE.2.OC4,

SWE.3.OC3,

the dynamic behavior and

resource consumption

objectives of the software

elements are defined.

the dynamic behavior of the

software units is defined.

04-04,

04-05,

13-25,

13-50,

Software

architectural

design

Software

detailed design

Verification

results

Test results

[04-04]

- Describes the overall software structure

- Describes the operative system including task structure

- Identifies inter-task/inter-process communication

- Identifies the required software elements

- Identifies own developed and supplied code

- Identifies the relationship and dependency between software elements

- Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

- Describes how variants for different model series or configurations are derived

- Describes the dynamic behavior of the software (Start-up, shutdown, software

update, error handling and recovery, etc.)

- Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

- Describes which data is persistent and under which conditions

- Consideration is given to:

-- any required software performance characteristics

-- any required software interfaces

-- any required security characteristics required

-- any database design requirements

[04-05]

- Provides detailed design (could be represented as a prototype, flow chart, entity

relationship diagram, pseudo code, etc.)

- Provides format of input/output data

- Provides specification of CPU, ROM, RAM, EEPROM and Flash needs

- Describes the interrupts with their priorities

Automotive SPICE 2.5 Work Products Automotive SPICE 3.0 Work ProductsAutomotive SPICE 3.0 OutcomesAutomotive SPICE 2.5 Outcomes (REF.)

Appendix 137

ENG.5.OC5 ENG.5 - OUTCOME 5 a detailed design is developed that

describes software units that can be

implemented and tested.

04-05,

13-25,

17-50,

Software detailed

design

Verification

results

Verification

criteria

[04-05]

– Provides detailed design (could be represented as a prototype, flow chart, entity

relationship diagram, pseudo code, etc.)

– Provides format of input/output data

– Provides specification of CPU, ROM, RAM, EEPROM and Flash needs

– Describes the interrupts with their priorities

– Describes the tasks with cycle time and priority

– Establishes required data naming conventions

– Defines the format of required data structures

– Defines the data fields and purpose of each required data element

– Provides the specifications of the program structure

[13-25]

– Verification check-list

– Passed items of verification

– Failed items of verification

– Pending items of verification

– Problems identified during verification

– Risk analysis

– Recommendation of actions

– Conclusions of verification

– Signature of verification

[17-50]

-Each requirement is verifiable or can be assessed

- Verification criteria define the qualitative and quantitative criteria for verification of a

requirement.

- Verification criteria demonstrate that a requirement can be verified within agreed

constraints.

SWE.3.OC1, a detailed design is developed

that describes software units.

04-05, Software

detailed design

[04-05]

- Provides detailed design (could be represented as a prototype, flow chart, entity

relationship diagram, pseudo code, etc.)

- Provides format of input/output data

- Provides specification of CPU, ROM, RAM, EEPROM and Flash needs

- Describes the interrupts with their priorities

- Describes the tasks with cycle time and priority

- Establishes required data naming conventions

- Defines the format of required data structures

- Defines the data fields and purpose of each required data element

- Provides the specifications of the program structure

ENG.5.OC6 ENG.5 - OUTCOME 6 consistency and bilateral

traceability are established

between software requirements

and software architectural design.

04-04,

04-05,

13-22,

Software

architectural

design

Software detailed

design

Traceability

record

[04-04]

– Describes the overall software structure

– Describes the operative system including task structure

– Identifies inter-task/inter-process communication

– Identifies the required software elements

– Identifies own developed and supplied code

– Identifies the relationship and dependency between software elements

– Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

– Describes how variants for different model series or configurations are derived

– Describes the dynamic behaviour of the software (Start-up, shutdown, software update,

error handling and recovery, etc.)

– Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

– Describes which data is persistent and under which conditions

– Consideration is given to:

– – any required software performance characteristics

– – any required software interfaces

– – any required security characteristics required

– – any database design requirements

[04-05]

– Provides detailed design (could be represented as a prototype, flow chart, entity

relationship diagram, pseudo code, etc.)

– Provides format of input/output data

– Provides specification of CPU, ROM, RAM, EEPROM and Flash needs

– Describes the interrupts with their priorities

– Describes the tasks with cycle time and priority

SWE.2.OC5, consistency and bidirectional

traceability are established

between software

requirements and software

architectural design.

04-04,

13-19,

13-22,

Software

architectural

design

Review record

Traceability

record

[04-04]

- Describes the overall software structure

- Describes the operative system including task structure

- Identifies inter-task/inter-process communication

- Identifies the required software elements

- Identifies own developed and supplied code

- Identifies the relationship and dependency between software elements

- Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

- Describes how variants for different model series or configurations are derived

- Describes the dynamic behavior of the software (Start-up, shutdown, software

update, error handling and recovery, etc.)

- Identifies where the data (such as parameters) are stored and which measures (e.g.

checksums, redundancy) are taken to prevent data corruption

- Describes which data is persistent and under which conditions

- Consideration is given to:

-- any required software performance characteristics

-- any required software interfaces

-- any required security characteristics required

-- any database design requirements

[13-19]

- Provides the context information about the review:

-- what was reviewed

-- lists reviewers who attended

-- status of the review

- Provides information about the coverage of the review:

-- check-lists
ENG.5.OC7 ENG.5 - OUTCOME 7 consistency and bilateral

traceability are established

between software architectural

design and software detailed

design.

13-22, Traceability

record

[13-22]

– All requirements (customer and internal) are to be traced

– Identifies a mapping of requirement to life cycle work products

– Provides the linkage of requirements to work

product decomposition (i.e., requirement -> design -> code -> test -> deliverables, etc.)

– Provides forward and backwards mapping of requirements to associated work products

throughout all phases of the life cycle

– NOTE: this may be included as a function ofanother defined work product (example: A

CASE tool for design decomposition may have a mapping ability as part of its features)

SWE.3.OC4, consistency and bidirectional

traceability are established

between software

requirements and software

units; and consistency and

bidirectional traceability are

established between software

architectural design and

software detailed design; and

consistency and bidirectional

traceability are established

between software detailed

design and software units.

13-19,

13-22,

Review record

Traceability

record

[13-19]

- Provides the context information about the review:

-- what was reviewed

-- lists reviewers who attended

-- status of the review

- Provides information about the coverage of the review:

-- check-lists

-- review criteria

-- requirements

-- compliance to standards

- Records information about:

-- the readiness for the review

-- preparation time spent for the review

-- time spent in the review

-- reviewers, roles and expertise

- Review findings:

-- non-conformances

-- improvement suggestions

- Identifies the required corrective actions:

-- risk identification

-- prioritized list of deviations and problems discovered

-- the actions, tasks to be performed to fix the problem

-- ownership for corrective action

-- status and target closure dates for identified problems

[13-22]

- All requirements (customer and internal) are to be traced

- Identifies a mapping of requirement to life cycle work products
Software construction

ENG.6 - PURPOSE The purpose of the Software

construction process is to produce

verified software units that

properly reflect the software

design.

NOTE 1: Analysis of software units

will include prioritization and

categorization of software units.

NOTE 2: Unit verification will

include unit testing and may include

static analysis, code

inspection/reviews, checks against

coding standards and guidelines,
ENG.6.NEW New in Autmotive

SPICE 3.0

SWE.4.OC5, results of the unit verification

are summarized and

communicated to all affected

parties.

13-04, Communication

record

[13-04]

All forms of interpersonal communication including:

- letters

- faxes

- e-mails

- voice recordings

- podcast

- blog

- videos

- forum

- live chat

- wikis

- photo protocol

- meeting support record

ENG.6.OC1 ENG.6 - OUTCOME 1 a unit verification strategy is

developed for software units

consistent with the software design.

08-52,

08-50,

Test plan

Test Specification

[08-52]

- Level Test Plan (according to IEEE definition)

- Test strategy (black-box and/or white-boxtesting, boundary class test determination,

regression testing strategy, etc.) Additionally where necessary:

- Master Test Plan (according to IEEE definition)

[08-50]

- Level Test Design (according to IEEE definition)

- Level Test Case (according to IEEE definition)

- Level Test Procedure (according to IEEE

definition)

- Identification of test cases for regression testing

Additionally for system integration:

– Identification of required system elements (hardware elements, wiring elements,

parameter settings, data bases, etc.)

– Necessary sequence or ordering identified for integrating the system elements

SWE.4.OC1, a software unit verification

strategy including regression

strategy is developed to verify

the software units.

08-52, Test plan [08-52]

- Test Plan according to ISO29119-3

- Context

-- Project/Test sub-process

-- Test item(s)

-- Test scope

-- Assumptions and constraints

-- Stakeholder

-- Testing communication

- Test strategy

-- Identifies what needs there are to be satisfied

-- Establishes the options and approach for satisfying the needs (black-box and/or

white-box-testing, boundary class test determination, regression testing strategy, etc.)

-- Establishes the evaluation criteria against which the strategic options are evaluated

-- Identifies any constraints/risks and how these will be addressed

-- Test design techniques

-- Test completion criteria

-- Test ending criteria

-- Test start, abort and re-start criteria

-- Metrics to be collected

-- Test data requirements

-- Retesting and regression testing

-- Suspension and resumption criteria

-- Deviations from the Organizational Test Strategy

- Test data requirements

- Test environment requirements

- Test sub-processes
ENG.6.OC2 ENG.6 - OUTCOME 2 software units defined by the

software design are analyzed for

correctness and testability.

SWE.4.OC2, criteria for software unit

verification are developed

according to the software unit

verification strategy that are

suitable to provide evidence

for compliance of the

software units with the

software detailed design and

with the non-functional

software requirements.

08-50, Test specification [08-50]

- Test Design Specification

- Test Case Specification

- Test Procedure Specification

- Identification of test cases for regression testing

- Additionally for system integration:

-- Identification of required system elements (hardware elements, wiring elements,

parameter settings, data bases, etc.)

-- Necessary sequence or ordering identified for integrating the system elements

138 Appendix

Content is directly from Automotive SPICE 2.5 [38] and Automotive SPICE 3.0 [34].

ENG.6.OC3 ENG.6 - OUTCOME 3 software units defined by the

software design are produced.

17-50,

11-05,

Verification

criteria

Software unit

[17-50]

-Each requirement is verifiable or can be assessed

- Verification criteria define the qualitative and quantitative criteria for verification of a

requirement.

- Verification criteria demonstrate that a requirement can be verified within agreed

constraints.

(Additional Requirement to 17-00 Requirements specification)

[11-05]

– Follows established coding standards (as appropriate to the language and application):

– – commented

– – structured or optimized

– – meaningful naming conventions

– – parameter information identified

– – error codes defined

– – error messages descriptive and meaningful

– – formatting - indented, levels

– Follows data definition standards (as appropriate to the language and application):

– – variables defined

– – data types defined

– – classes and inheritance structures defined

– – objects defined

– Entity relationships defined

– Database layouts are defined

– File structures and blocking are defined

– Data structures are defined

– Algorithms are defined

– Functional interfaces defined

SWE.3.OC6, software units defined by the

software detailed design are

produced.

11-05, Software unit [11-05]

- Follows established coding standards (as appropriate to the language and

application):

-- commented

-- structured or optimized

-- meaningful naming conventions

-- parameter information identified

-- error codes defined

-- error messages descriptive and meaningful

-- formatting - indented, levels

- Follows data definition standards (as appropriate to the language and application):

-- variables defined

-- data types defined

-- classes and inheritance structures defined

-- objects defined

- Entity relationships defined

- Database layouts are defined

- File structures and blocking are defined

- Data structures are defined

- Algorithms are defined

- Functional interfaces defined

ENG.6.OC4 ENG.6 - OUTCOME 4 software units are verified

according to the unit verification

strategy.

13-25,

08-50,

13-50,

Verification

results

Test Specification

Test Result

[13-25]

– Verification check-list

– Passed items of verification

– Failed items of verification

– Pending items of verification

– Problems identified during verification

– Risk analysis

– Recommendation of actions

– Conclusions of verification

– Signature of verification

[08-50]

- Level Test Design (according to IEEE definition)

- Level Test Case (according to IEEE definition)

- Level Test Procedure (according to IEEE

definition)

- Identification of test cases for regression testing

Additionally for system integration:

– Identification of required system elements (hardware elements, wiring elements,

parameter settings, data bases, etc.)

– Necessary sequence or ordering identified for integrating the system elements

[13-50]

- Level Test Log (according to IEEE definition)

- Anomaly Report (according to IEEE definition)

- Level Test Report (according to IEEE definition) Additionally where necessary:

- Level Interim Test Status Report (according to IEEE definition)

- Master Test Report (according to IEEE definition)

SWE.4.OC3, software units are verified

according to the software unit

verification strategy and the

defined criteria for software

unit verification and the

results are recorded.

13-19,

15-01,

Review record

Analysis report

[13-19]

- Provides the context information about the review:

-- what was reviewed

-- lists reviewers who attended

-- status of the review

- Provides information about the coverage of the review:

-- check-lists

-- review criteria

-- requirements

-- compliance to standards

- Records information about:

-- the readiness for the review

-- preparation time spent for the review

-- time spent in the review

-- reviewers, roles and expertise

- Review findings:

-- non-conformances

-- improvement suggestions

- Identifies the required corrective actions:

-- risk identification

-- prioritized list of deviations and problems discovered

-- the actions, tasks to be performed to fix the problem

-- ownership for corrective action

-- status and target closure dates for identified problems

[15-01]

- What was analyzed?

- Who did the analysis?
ENG.6.OC5 ENG.6 - OUTCOME 5 results of unit verification are

recorded.

13-25,

13-50,

Verification

results

Test Result

[13-25]

– Verification check-list

– Passed items of verification

– Failed items of verification

– Pending items of verification

– Problems identified during verification

– Risk analysis

– Recommendation of actions

– Conclusions of verification

– Signature of verification

[13-50]

- Level Test Log (according to IEEE definition)

- Anomaly Report (according to IEEE definition)

- Level Test Report (according to IEEE definition) Additionally where necessary:

- Level Interim Test Status Report (according to IEEE definition)

- Master Test Report (according to IEEE definition)

SWE.4.OC3, software units are verified

according to the software unit

verification strategy and the

defined criteria for software

unit verification and the

results are recorded.

13-19,

15-01,

Review record

Analysis report

[13-19]

- Provides the context information about the review:

-- what was reviewed

-- lists reviewers who attended

-- status of the review

- Provides information about the coverage of the review:

-- check-lists

-- review criteria

-- requirements

-- compliance to standards

- Records information about:

-- the readiness for the review

-- preparation time spent for the review

-- time spent in the review

-- reviewers, roles and expertise

- Review findings:

-- non-conformances

-- improvement suggestions

- Identifies the required corrective actions:

-- risk identification

-- prioritized list of deviations and problems discovered

-- the actions, tasks to be performed to fix the problem

-- ownership for corrective action

-- status and target closure dates for identified problems

[15-01]

- What was analyzed?

- Who did the analysis?
ENG.6.OC6 ENG.6 - OUTCOME 6 consistency and bilateral

traceability are established

between software detailed design

and software units.

13-22, Traceability

record

[13-22]

– All requirements (customer and internal) are to be traced

– Identifies a mapping of requirement to life cycle work products

– Provides the linkage of requirements to work

product decomposition (i.e., requirement -> design -> code -> test -> deliverables, etc.)

– Provides forward and backwards mapping of requirements to associated work products

throughout all phases of the life cycle

– NOTE: this may be included as a function ofanother defined work product (example: A

CASE tool for design decomposition may have a mapping ability as part of its features)

SWE.3.OC4,

SWE.4.OC4,

consistency and bidirectional

traceability are established

between software

requirements and software

units; and consistency and

bidirectional traceability are

established between software

architectural design and

software detailed design; and

consistency and bidirectional

traceability are established

between software detailed

design and software units.

consistency and bidirectional

traceability are established

between software units,

criteria for verification and

verification results.

13-19,

13-22,

13-19,

13-22,

Review record

Traceability

record

Review record

Traceability

record

[13-19]

- Provides the context information about the review:

-- what was reviewed

-- lists reviewers who attended

-- status of the review

- Provides information about the coverage of the review:

-- check-lists

-- review criteria

-- requirements

-- compliance to standards

- Records information about:

-- the readiness for the review

-- preparation time spent for the review

-- time spent in the review

-- reviewers, roles and expertise

- Review findings:

-- non-conformances

-- improvement suggestions

- Identifies the required corrective actions:

-- risk identification

-- prioritized list of deviations and problems discovered

-- the actions, tasks to be performed to fix the problem

-- ownership for corrective action

-- status and target closure dates for identified problems

[13-22]

- All requirements (customer and internal) are to be traced

- Identifies a mapping of requirement to life cycle work products

	1 Introduction
	1.1 Relevance of the Topic
	1.2 Objectives
	1.3 Structure and Methodology

	2 Mechatronic Systems in Automotive Applications
	2.1 Mechanics
	2.2 Electrics and Electronics
	2.3 Software
	2.4 Functional Safety of Mechatronic Systems

	3 Process Environment
	3.1 Automotive Engineering Processes
	3.2 Systems Engineering
	3.3 V-Model Development Approach
	3.3.1 V-Model of Automotive Software Development

	3.4 Phase-Gate Process
	3.5 Embedded Software Engineering
	3.5.1 Methodologies and Development Tools
	3.5.2 Structuring the Software Development Process

	3.6 Concurrent Engineering
	3.7 Project Management
	3.7.1 Traditional Management Practices
	3.7.2 Agile Management Approaches

	4 Relevant Guidelines
	4.1 Introduction to Guidelines
	4.1.1 Necessity of Guidelines
	4.1.2 Structuring Approaches
	4.1.3 Assessment of Guidelines

	4.2 Applicable Standards
	4.2.1 IATF 16949 (Quality Management)
	4.2.2 ISO 26262 (Road Vehicles – Functional Safety)
	4.2.3 ISO/IEC 15504 (SPICE)

	4.3 Customer Requirements
	4.3.1 OEM A
	4.3.2 OEM B
	4.3.3 OEM C

	4.4 Best Practices

	5 Automotive SPICE
	5.1 Introduction to Automotive SPICE
	5.1.1 Relevance for Automotive Applications
	5.1.2 History of the Standard
	5.1.3 Process Capability Level

	5.2 Scope of Automotive SPICE
	5.3 Components of Automotive SPICE
	5.3.1 Process Outcomes
	5.3.2 Base Practices
	5.3.3 Work Products

	5.4 Structure of the Standard
	5.5 Assessment of Automotive SPICE

	6 Concept Development for Process Analysis
	6.1 Introduction to the Corporation
	6.2 Current Situation and Challenges
	6.3 Approach to Process Analysis
	6.4 Approach to Concept Development
	6.5 Outcomes and Tool Concept

	7 Optimization of Development Processes
	7.1 Methodology of the Optimization
	7.2 Results and Findings
	7.3 Exemplary Processes
	7.3.1 MAN.3 Project Management
	7.3.2 SWE.3 Software Detailed Design and Unit Construction

	7.4 Potentials of Optimization
	7.4.1 Capability Maturity Model Integration
	7.4.2 Relation to ISO 26262 – Functional Safety

	8 Summary
	9 Bibliography
	10 List of Figures
	11 List of Tables
	12 List of Abbreviations
	A Appendix
	A.1 Developed VBA Code for Mapping BPs from One Source
	A.2 Mapping between ASPICE 2.5 and 3.0 (MAN.3 Scope)
	A.3 Mapping between ASPICE 2.5 and 3.0 (SWE.3 Scope)
	A.4 Mapping between Outcomes and WPs (SWE.3 Scope)

