
Simon Roth, BSc.

An Optimistic Certified Email System
Based Upon Internet Email

Master’s Thesis

Graz University of Technology

Institute of Applied Information Processing and Communications
Head: O.Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhard Posch

Supervisor: Dipl-Ing. Dr.techn. Arne Tauber

Graz, February 2018

Abstract

Traditional emails sent over the Internet lack in several points compared to
registered postal letters. There is no reliable way to track emails, a sender
has no reliable possibility to prove an email was sent, a sender receives
no reliable confirmation when an email was delivered successfully and a
recipient might deny a reception. This thesis focuses on the implementation
of a certified email system covering those gaps whereby - in contrast to
several solutions already in the field - the current Internet email technology
is re-used as much as possible enhancing the end-user usability as well as
simplifying the deployment on already available infrastructure. Furthermore,
the selected certified email protocol is extended by a feature especially
important for the business sector: Email forwarding while maintaining end-
to-end encryption. This feature is possible by using proxy re-encryption - an
emerging cryptographic primitive allowing proxies to re-encrypt ciphertext
encrypted for one party to another party without getting access to the
plaintext.

iii

Kurzfassung

Herkömmliche Internet E-Mails haben mehrere entschiedene Nachteile
gegenüber eingeschriebenen Briefen. So gibt es keine vertrauenswürdige
Möglichkeit zur Nachverfolgung, der Sender hat keine vertrauenswürdige
Möglichkeit zu beweisen, dass eine E-Mail versendet wurde, der Sender
erhält keine vertrauenswürdige Bestätigung wenn eine E-Mail erfolgreich
übermittelt wurde und der Empfänger kann den Empfang abstreiten. Diese
Arbeit fokussiert auf die Implementierung eines zertifizierten E-Mail Sys-
tems welches diese Nachteile abdeckt. Dabei wird im Gegensatz zu anderen
bereits existierenden zertifizierten E-Mail Systemen darauf geachtet, die
bereits vorhandenen Internet E-Mail Technologien möglichst wieder zu
verwenden um einerseits den Anwendern die Benutzung zu erleichtern
und andererseits den Aufwand der Installation eines solchen Systems in
Grenzen zu halten. Darüber hinaus wird das gewählte zertifizierte E-Mail
Protokoll um eine Funktionalität erweitert, die speziell im Business Sek-
tor von Bedeutung ist: E-Mail Weiterleitung unter Beibehaltung der Ende
zu Ende Verschlüsselung. Diese Funktionalität wird durch den Einsatz
von Proxy re-Encryption ermöglicht, eine aufstrebende Kryptografische
Technologie die es Proxys ermöglicht verschlüsselten Text für eine Partie
in verschlüsselten Text für eine andere Partie umzuwandeln ohne dabei
Zugriff zum Originalen Inhalt zu bekommen.

v

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

vi

Acknowledgements

In first instance I want to thank my advisor Arne Tauber as well as my
former colleague and advisor Andreas Fitzek for their patience, support
and hints whenever needed. A very special thanks is due to my parents and
grandmother for never stop supporting and believing in me. Nevertheless,
the most important person for finishing this thesis is my wonderful girlfriend
Tamara. Without all your motivation and support in every sense this would
not have been possible.

vii

Contents

Abstract iii

Kurzfassung iv

1. Introduction 1
1.1. A Short History of Message Exchange 1

1.2. The Rise of the Email . 2

1.3. Email: State of the Art . 4

1.4. Certified Mail . 5

1.5. Motivation . 5

1.6. Methodology . 6

2. Email Technology 7
2.1. Basics . 7

2.1.1. Mail Transfer Agent . 7

2.1.2. Message Submission Agent 8

2.1.3. Mail Delivery Agent . 9

2.1.4. User Agent . 9

2.1.5. Mailing Architecture Overview 10

2.1.6. Routing . 10

2.2. SMTP . 12

2.2.1. SMTP Procedure . 13

2.2.2. SMTP Service Extension 14

2.3. POP3 . 15

2.3.1. POP3 Procedure . 15

2.3.2. POP3 Extension Mechanism 16

2.4. IMAP . 17

2.4.1. IMAP Procedure . 17

2.4.2. IMAP Extensions . 20

ix

Contents

2.5. Email Formats . 20

2.5.1. Internet Message Format 20

2.5.2. MIME Messages . 22

2.6. Security . 26

2.6.1. Simple Authentication and Security Layer 27

2.6.2. STARTTLS . 27

2.6.3. Security Issues . 28

2.6.4. End-to-end Protection 29

3. Certified Mail Basics 33
3.1. Analogous Registered Mail Services 33

3.1.1. Registered Letters . 34

3.1.2. Governmental Registered Letters 34

3.2. Comparison: Registered Letters vs Signed/Encrypted Email . 35

3.3. Certified Email Properties . 35

3.4. Trusted Third Partys . 37

3.4.1. Trusted Third Party Property Comparison 38

4. Related Work 41
4.1. Certified Mail in the Field . 41

4.2. Certified Mail in Research . 45

4.2.1. Extensions for the current Internet Email Protocols . . 45

4.2.2. Certified Mail Protocols on top of Internet Email . . . 45

5. Technology Evaluation 49
5.1. Certified Email Protocol . 49

5.2. Software Evaluation . 50

5.2.1. Basic Mail Protocols . 50

5.2.2. Mail Server Software . 50

5.2.3. Mail Client Software . 52

5.2.4. Client Mail API . 52

6. Certified Email Protocol 53
6.1. Delivery sub-protocol . 53

6.2. Resolution sub-protocol . 55

x

Contents

7. Certified Mail Implementation 57
7.1. Mail server . 58

7.1.1. Specification . 58

7.1.2. Adaption . 59

7.2. Certified Mail Service . 60

7.3. User Agent . 62

7.4. Communication Protocols . 63

7.5. Trusted Third Party . 64

7.6. Message Format . 65

8. Certified Email Forwarding 67
8.1. A possible Solution for Certified Email Forwarding 67

8.1.1. Proxy re-encryption . 68

8.1.2. Protocol Extension . 69

8.2. Certified Email Forwarding Evaluation 70

9. Evaluation 73
9.1. Protocol Evaluation . 73

9.2. Implementation Evaluation . 74

9.2.1. MTA and Certified Email Service 75

9.2.2. Client . 75

9.2.3. TTP, Time Synchronization and PKI 76

10.Future Work 77

Bibliography 81

Appendix 87
A. Email Server Software . 88

B. Demo Environment Setup . 89

B.1. Modified javax.mail Library 90

B.2. Trusted Third Party . 90

B.3. Apache James . 91

B.4. Certified Mail Server Extension 94

B.5. Cmail Client . 95

xi

List of Figures

2.1. Mail architecture: sending an email. 11

2.2. SMTP relaying. 13

6.1. Certified Email: Delivery sub-protocol 55

7.1. Certified mail system prototype overview. 57

7.2. A lightweight certified mail enabled user agent. 63

8.1. A certified email forwarding sequence 71

xiii

1. Introduction

After highlighting the most important historical stages of development
regarding message exchange from a very high level in section 1.1, the
origination and evolution of email technology is investigated in section
1.2. In section 1.3 some statistics are provided pointing out the significance
of emails today next to the most used sub-technologies in the field. The
necessity of certified emails is described in section 1.4 followed by the
motivation to provide a certified mail system based on the standardized
email architecture in section 1.5. Finally, the methodology for implementing
such a system is described in section 1.6.

1.1. A Short History of Message Exchange

The concept of exchanging messages between people over large distances
is already thousands of years old and dates back to old cultures like the
Babylonians or ancient Egyptians. The purpose of sending messages is still
the same nowadays: a sender intends to pass information asynchronously
to a distant recipient without traveling towards the receiving destination
physically him or herself for transmission. Asynchronous communication
hereby means that the sender may send the message independently of the
recipient, hence it does not matter whether the addressee is able to receive
or reply to the message simultaneously, in contrast to a telephone call for
example. While different information carriers were used over time, like clay
tablets or papyrus thousands of years ago or paper in more recent times on
the other hand, they all had in common that it was necessary to forward
the carrier physically, requiring a long period for transmission. Even tough
paper is still a very common and broadly used carrier for messages, alterna-
tives emerged with advances in technology. The key technology for raising

1

1. Introduction

message exchange to a new level was the invention of electricity. Electricity
first led to new transfer technologies like telegraphs or facsimile machines.
The greatest progress achieved hereby was that it is no longer necessary
to pass the messages physically and therefore they can be delivered in
comparatively no time with less resources. The most important technology
for information exchange widely used today came up with the invention
of Internet and resulted in emails as successor over more or less outdated
technologies like telegrams or facsimile.

1.2. The Rise of the Email

The invention of Internet email already started in the sixties, at a time when
personal computers were not even imaginable and dates back to times in the
mainframe computer era, long before the Internet itself came up. Usually
multiple people shared a single computer at that time. Therefore, the launch
of email in strict sense already began with single-computer electronic mails:
according to researcher Raymond Tomlinson first programs like SNDMSG
(Send Message) were developed making it possible for computer operators
to send messages asynchronously to other operators using the same com-
puter by employing simple files as mailboxes accessible only by the intended
persons [1]. A little later the development of a predecessor of the modern
Internet called ARPANET (Advanced Research Projects Agency Network)
started by the end of the sixties whereas the intention of ARPANET was
to establish a decentralized computer network for information exchange
between researchers located at different universities. This led to first network
protocols as well as network programs like an experimental file transfer
program called CPYNET (Copy Net). 1971 RFC196 referred as ”A Mail Box
Protocol” was published suggesting a protocol for distributing messages to
other destinations by sending them to remote printers [2]. This RFC inspired
Tomlinson to integrate the program CPYNET into SNDMSG in order to
allow sending messages via ARPANET to remote mailboxes [1] as he esti-
mated sending messages to printers as too complicated. This was also the
time when the now well-known at sign (@) was born in the email context,
as an indicator for distinguishing between local and remote messages was
necessary.

2

1.2. The Rise of the Email

CPYNET was replaced by FTP (File Transfer Protocol) whereas the latter
one was extended by mailing functionalities followed by several revisions
updating the specification for further improvements [3]. It was determined
that mail commands can only consist of ASCII (American Standard Code
for Information Interchange) strings instead of binary data - a characteristic
still valid today. More sophisticated UAs (User Agents) and MTAs (Mail
Transfer Agents) were developed as the email handling was not satisfactory
for an extensive usage. In 1973 the decision was made that email should
get a separate protocol as it became too important and the community was
shifting. The same year also led to first standards for email headers. The
header standards were improved several times within the next years to meet
the requirements before RFC-822 [4] was published in 1982, superseded by
RFC-5322 [5] in 2008, the message format standard used today. In order to
transfer emails from server to client applications in a standardized manner,
the POP (Post Office Protocol) [6] and IMAP (Internet Message Access Pro-
tocol) [7] were introduced in the 80s whereas IMAP is a more sophisticated
version compared to POP. Both protocols are still in wide use today.
As ARPANET was only accessible to limited institutions while the demand
for computer networks increased in other places the same way, alterna-
tive networks like UUPC, BITNET and CSNET were developed whereas
email applications similar to those originated in ARPANET were seen as an
important key component [3]. Those new networks subsequently also got
connected one below the other and to ARPANET resulting in the network
we now call Internet. As parties began to develop their own variations of
mailing applications, obviously the need for standardization became more
important. Developing MTAs able to handle multiple networks transformed
into a complex task and was faced with serious academic research resulting
in the Delivermail (Eric Allman, UC Berkley), mmdf (Dave Crocker, Univer-
sity of Delaware) and sendmail (Eric Allman, UC Berkley) MTA superseding
Delivermail - the latter still being one of the most used MTAs to date.
In 1980 the transition from Arpanet to Internet started requiring a bridge
protocol between both networks. Suzanne Sluzier and Jon Postel proposed
MTP (Mail Transfer Protocol). As this protocol turned out to be too com-
plex Postel reworked MTP one year later resulting in a simpler protocol
called SMTP (Simple Mail Transfer Protocol) - the protocol for transferring
emails to date. Sendmail was the first MTA to implement SMTP (Simple
Mail Transfer Protocol). In order to avoid the need of using numeric IP

3

1. Introduction

numbers to address receiving destinations a distributed database called
DNS (Domain Name System) was integrated in the mailing architecture
using MX-RR (Mail Exchange Resource Records) for routing in 1986 [8].
The last important key component shaping the Internet email architecture
today was released 1993 in RFC 1426 [9]: extending the SMTP protocol for
sending MIME (Multipurpose Internet Mail Extensions) messages. MIME
messages allow determination of encoding formats, to transmit binary data
as attachments and to compose message bodies with multiple parts.

1.3. Email: State of the Art

The day when more emails were sent than traditional mails took place al-
ready decades ago: In 2016 worldwide approximately 215.3 billion emails per
day were sent by 2.6 billion users whereas those numbers are still increasing.
While electronic mails are very important for all forms of communication
despite alternative technologies available, e.g., instant messengers or SMS,
it is especially the leading technology for business communication [10].
Regarding protocols in the field, SMTP is the most used technology for
sending respectively transporting emails nowadays. POP3 or IMAP as more
sophisticated solution, is used for receiving emails by a client from the
server. In 2017 Exim, Postfix and Sendmail are the most used server appli-
cations implementing SMTP according to a mail server survey [11]. For
IMAP servers on the other hand Dovecot and Courier are the key players
[12]. The distribution of mail clients changed heavily over the years: As
emails usually were read and composed using desktop applications like
Microsoft Outlook or Thunderbird some years ago those clients tend to be
shifted more and more towards web applications like gmail or outlook.com.
Additionally, email clients on mobile phones gain a considerable piece of
the pie nowadays [13].

4

1.4. Certified Mail

1.4. Certified Mail

Ordinary emails without further improvements or extending technologies
can be compared to ordinary letters, or even worse considering traceability
or confidentiality: postcards. There is no guarantee that a recipient will
obtain a message - it simply might get lost during transmission. Regarding
confidentiality an email akin to a postcard has to be treated as plain text
message; every relaying station between sending and receiving is able to
read the email for example. A recipient might deny the reception of the
email on his will. Those specified attributes are only a subset of factors
limiting the use of ordinary emails. It would be unwise to use regular
emails for important business or governmental mails for instance. In the
analogous world, i.e., letters in paper form, those problems are solved using
registered mails. The realization of those registered mail services differs
from country to country and provider to provider, but usually they have at
least following characteristics or subsets of those characteristics (depending
on the appropriate service) in common:

• A sender gets a receipt including the filing date proving the submis-
sion.
• Receivers have to sign an acknowledgment of receipt in order to get

the registered mail handed over.
• This receipt including an original signature by the recipient is returned

to the sender.
• Only persons intended to receive the letter may retain it.
• The recipient therefore has to prove his or her identity via some kind

of identification card.
• Different stations of the letter during the delivery process can be

tracked via tracking number.

1.5. Motivation

Sending letters analogously in paper form is not up to date anymore. It
would be desired to offer a service making it possible to send digital certified
emails while keeping all the characteristics provided by registered mail or

5

1. Introduction

even extend them when reasonable and possible. Benefits in contrast to
letters in paper form are for example a transmission in comparatively no
time, fewer costs due to less personal costs and efforts for the physical
delivery or reducing paper wastage. It is desired to integrate a solution for
certified electronic emails in the already existing email infrastructure. Users
will accept an integrated solution rather than new systems as they may
use the applications they are familiar with and where they have already
registered their accounts. An integrated solution can reuse several well
tested components improved over time by gaining practical knowledge.
Additionally it makes the administrators life simpler as they don’t have to
install and maintain new software stacks. As there exist several different
implementations of IMAP, POP3 and SMTP server applications as well as
clients it should be considered to provide some interfaces minimizing the
changes to be made in the applications already existing in order to minimize
the implementation effort and to obtain acceptance.

1.6. Methodology

After investigating the most important components of the current Internet
email infrastructure, requirements requested by certified emails are ana-
lyzed. In a consequence certified email protocols introduced by the research
community are examined as well as solutions already in the field. Based
on those examination results the best fitting components and protocols
are picked in order to implement a certified email system fulfilling several
demands and complying with the current Internet email infrastructure
as much as possible. Finally, the resulting system is analyzed regarding
potential improvements.

6

2. Email Technology

In order to define requirements, to analyze systems already deployed in
the field, to evaluate scientific papers proposing new ideas and to finally
implement a protocol for certified emails extending the ordinary email
architecture, it is necessary to investigate several important subcomponents
and protocols of the email architecture commonly used today. Basic compo-
nents of the mailing infrastructure are explained in section 2.1. Based upon
this knowledge the SMTP protocol for transferring mails is described in
section 2.2 next to POP3 in section 2.3 or IMAP as alternative to POP3 for
receiving mails by user agents in section 2.4. The formats defining emails
itself are described in section 2.5. Email security considerations are finally
highlighted in section 2.6. Nevertheless, the following descriptions are on
a rather high level; for low level specification details the appropriate RFC
should be consulted.

2.1. Basics

Before going more into detail concerning the most important mailing proto-
cols in use nowadays, an explanation of some basic components regarding
the email infrastructure is below-mentioned. Those components are of vital
importance to understand all protocols described within the next sections.

2.1.1. Mail Transfer Agent

The Mail Transfer Agent (MTA) is a component responsible for the mail
transport itself [14]. It receives messages from various sources like Message
Submission Agents or other MTAs. Usually a source has to be authenticated

7

2. Email Technology

by a MTA before accepting emails to be transmitted. If a MTA is configured
in a way where no authentication is necessary, i.e., any device on the Internet
is able to submit emails, it is referred to as open relay. The responsibility
of a MTA when receiving a message is to process it and determine how
it should be routed according the result. Therefore, messages consist of
the data to be transferred next to an envelope containing all the necessary
information required by the MTA, avoiding the need for parsing the whole
message. If the desired destination is not available, the MTA is responsible
for queuing the messages and retrying the transmission several times before
returning a notification indicating an unsuccessful delivery to the origin if
still not possible. MTAs make use of three different buffers for processing
messages:

• forward-path: This buffer is used for storing a list containing one or
multiple recipients per message.
• reverse-path: The source address of a message is stored here.
• mail-data: The mail-data storage buffer is used for saving the mail

content data itself.

In order to provide some kind of traceability, MTAs add tracing information
to mail message headers as they pass trough the mailing system, like
a receiving date or authentication results. When the MTA processing is
completed successfully and the recipient is hosted locally, the message is
handed over to the Mail Delivery agent 2.1.3. Otherwise, if the recipient
is hosted on a remote server, the email has to be relayed to another MTA.
Therefore, MTAs also have to implement client functionality next to server
functionality. While for other components multiple different protocols are
in use nowadays, for MTAs SMTP as exclusive protocol has emerged over
time in Internet email context 2.2.

2.1.2. Message Submission Agent

A Message Submission Agent (MSA) [15] is a special version of a MTA.
While the primary task of a MTA is to care about the mail transport, MSAs
are responsible to provide a message submission destination for User Agents.
Usually MTAs are not altering messages except some tracing header fields.

8

2.1. Basics

MSAs on the other hand are supposed to correct possible faults introduced
by User Agents regarding the standardized message formats. An additional
main difference in contrast to MTAs is the responsibility for performing
an end-user authentication - a task that became very important with time
regarding matters of security and spam.

2.1.3. Mail Delivery Agent

A Mail Delivery Agent (MDA) is often implemented as part of a MTA. The
task to be fulfilled by a MDA is the transmission of mails handed over by a
MTA into the user’s local mailbox, respectively storing the mail until a user
accepts it. Additionally, it has possibilities for filtering and manipulating
messages before delivery. Similar to MTAs it is in the responsibility for
MDAs to attach tracing information to mail messages.

2.1.4. User Agent

A User Agent (UA) is the missing link between users and the message
handling system. In order to provide a comfortable user experience they
often implement graphical user interfaces. In recent years also web appli-
cations got a very important role for UA implementations as alternative to
dedicated applications. UAs provide several possibilities for mail handling,
like composing new emails, viewing emails, deleting emails or replying
to an email. Usually they also provide a local message storage omitting
the need for fetching emails repeatedly. If a new message is composed and
should be sent to a remote destination, the mail is forwarded by the UA to
a MSA via the SMTP protocol. Receiving incoming emails from the remote
message storage is achieved by applying the POP3 2.3, IMAP 2.4 or other
(less important, often closed third-party) protocols on the other hand.

9

2. Email Technology

2.1.5. Mailing Architecture Overview

Figure 2.1 shows all the components linked together while an email is sent
from Sender to Receiver. The Sender makes use of a user agent software to
compose an email including the provision of a receiving address. When the
Sender is satisfied with the composed email the UA can be instructed to send
the mail to a message submission agent via SMTP protocol after authentica-
tion. After reception, the MSA routes the email to the next destination using
DNS and MX records 2.1.6 - in the use case depicted within the figure to
an intermediate MTA. The intermediate MTA performs routing as well and
forwards the mail to the destination MTA. Therefore, the MSA and the MTA
each use SMTP for relying the message while making use of their storage
capability if necessary, for example to buffer and delay the transmission of
emails to a later time if a destination host is not responding. If the MDA is
not on the same host respectively integrated within the MTA (otherwise this
can be handled internally), the destination MTA hands the message over
to the message delivery agent, for example via LMTP (Local Mail Transfer
Protocol) - a variation of the SMTP protocol in first instance considering
the lack of temporary mail storage capabilities of MDAs. Therefore, a MDA
using LMTP denies the reception temporarily if it is not able to handle the
message in time. The MDA is finally responsible to deliver the message
into the user mailbox from where it can be accessed by the Receiver. The
access, respectively reception of emails by the Receiver can be achieved by
employing a user agent software to communicate with the corresponding
POP3 or IMAP server picking the emails from the user’s mailbox.

2.1.6. Routing

In order to resolve email destination addresses, MTAs have to translate them
into IP addresses [16]. For this purpose the MTA makes use of the Domain
Name System (DNS). DNS lookups for mailing services are slightly different
from regular DNS lookups. Resource records within the DNS responsible for
email services are referred to as mail exchanger (MX) resource records. If the
DNS server is able to find a MX record according the mail address provided
with the lookup request, it will respond either a canonical name (CNAME)

10

2.1. Basics

Figure 2.1.: Mail architecture: sending an email.

or one or multiple MX records. Otherwise, if there is no corresponding
entry or no DNS server is available, error handling has to be performed; in
first instance the domain name of the recipient itself might be used trying
to establish a connection or the transfer has to be terminated otherwise,
leading to an error message. In case of a canonical name a follow-up DNS
query has to be performed providing this CNAME. This might have to be
repeated until a response not related to a CNAME is returned. In the end,
possibly after resolving CNAME entries, the MTA will be in possession of
MX records. While the payload of those MX records contain multiple pieces
of information, two values are of particular interest: the mail exchanger and
the preference value. The mail exchanger field references to a fully qualified
domain name of a server capable of processing emails. The second field
on the other hand, the preference value, is used for determining priorities.

11

2. Email Technology

This field is necessary as it is possible that there are multiple mail servers
available for a domain, usually for high-availability or backup reasons. The
RFC defines to handle lower preference values with higher priority; therefore
this field is also referred to as distance. In order to continue the MTA has to
select one MX record entry for trying to establish a SMTP connection 2.2.
For this purpose undesired entries are removed from the list of MX records:
for instance the sending MTA itself and records with higher preference
values than occurrences of the MTA itself. The remaining MX record entries
are sorted by their preference value from low to high. In a consequence
the MTA iterates trough this list trying to open a SMTP connection to the
target server until successful. In order to establish a connection there is still
an IP address of the receiving entity necessary hat the MTA can receive
via regular DNS request providing the fully qualified domain name gained
from the MX record.

2.2. SMTP

SMTP, defined in RFC 5321 [16] as most recent version, is the protocol
responsible for exchanging emails between multiple networks. As basic
prerequisite for sending emails an ordered data stream is necessary, usually
TCP on port 25, 465 or 587, while other protocols are possible. A SMTP
client is responsible to initiate a transaction to a SMTP server via 2-way
channel whereby the server address can be resolved via DNS (Domain Name
System) and the server can either be the final target referred to as post office
(inspired by the analogous postal service), or a relaying station, acting as
client itself. Today there are two different kinds of SMTP servers in the field:
MTAs (Mail Transfer Agents) for relaying mails and MSA (Mail Submission
Agents) for accepting mails from clients only if a user is authenticated. In
order to initiate a mail transaction a client has to perform a handshake
with the server in first instance. The server responds to all commands sent
by the client either with messages indicating a command was accepted,
further commands are expected or an error occurred. After the handshake
was performed successfully, the mail transaction can be initiated including
the delivery of several informations like mail headers, mail content and
other metadata using the appropriate commands. After the submission is

12

2.2. SMTP

complete, a client can either initiate another transaction or shut it down.
Data transferred by SMTP is referenced as a mail object, consisting of an
envelope and the content. The envelope includes an origin address, one or
multiple recipient addresses and optionally appropriate extension data. The
content on the other hand consists of header fields (section 2.5) and a body
containing the user data to be sent, usually in MIME (Multipurpose Internet
Mail Extensions) format (section 2.5.2).

Figure 2.2.: SMTP relaying.

2.2.1. SMTP Procedure

Although there are several commands specified within the SMTP specifi-
cation, only few of them are used frequently for transferring mails; most
of the others are intended for debugging purposes. Every line transmitted,
either from client or server, has to be terminated by a CR followed by a LF

character and must not be longer than 512 characters. A typical scenario for
transferring a mail from client to server is as follows:

1. Session Initiation: A SMTP client application opens a connection to a
SMTP server. The server usually provides a welcome message when
successful.

2. Client Initiation: After receiving a welcome message the client re-
sponds with an EHLO command, indicating the client’s identity and its
ability to handle SMTP together with its service extensions.

3. Mail Transaction: The mail transaction is initiated by the client when
sending a MAIL FROM command providing the source mailbox iden-
tifier as parameter. The server resets its state and responds with OK.

13

2. Email Technology

Afterwards the client has to send the RCPT TO command providing the
recipient’s mailbox name and domain as parameter. This command
might be repeated several times, depending on the number of recipi-
ents while the server each time responds with OK. When all recipients
are provided, the transmission of the mail data can be initiated by
sending a DATA command. In a consequence the server expects all
succeeding lines as data to be sent until an end of mail indicator is
appended (a line only containing a dot). When the server receives this
indicator, the processing of the received data is performed.

4. Closing the session: If the client committed all data either a new mail
transaction can be started or a QUIT command might be sent in order
to quit the session.

Every command sent from client to server is responded by a well defined
three digit reply code number indicating the server’s state next to some
short text messages depending on the implementation. There are several
codes available; 250 means everything is ok and the command was ac-
cepted whereas 550 indicates that the specified mailbox was not found for
example.

2.2.2. SMTP Service Extension

As SMTP was designed already several decades ago the demand for ex-
tensions or updates arose over time. In order to maintain backwards com-
patibility an extension mechanism was established instead of creating a
new SMTP version. A client is able to determine if a server provides ex-
tensions by sending an EHLO command, a variation of HELO. The server will
either respond a list of extensions it is supporting or an error message if
it cannot handle EHLO. An interesting standardized extension in context of
certified emails might be the Delivery Status Notification [17]. It provides
delivery status informations like success, delay or failure messages designed
to be processed programmatically. In order to handle new commands a
registry for SMTP extensions was established by IANA. The procedure for
registering a new extension is described within RFC 5321 [16]. For private
or research purposes there is also the possibility to create non-standard

14

2.3. POP3

extensions by using x as prefix for the command name.

2.3. POP3

As SMTP is only responsible for delivering an email to the post office or
relaying it to another SMTP server on the other hand, a different protocol for
transporting an email from the post office to an end-user is necessary. Over
the years two different protocols emerged. The less sophisticated protocol,
referred to as POP3 [18] (Post Office Protocol 3), is covered within this
section. The protocol enables a client software application, referred to as UA
(User Agent), to take delivery of received emails stored in the user’s mailbox.
Usually the mail is deleted on the server after downloading immediately,
although this behavior is in the responsibility of the client application.
Similar to SMTP an ordered data stream is essential for the communication,
ordinarily TCP via port 110. As for SMTP, commands consist of printable
ASCII chars, lines have to be terminated using CRLF and reply codes are
returned from the server indicating the result respectively server status
next to the responses. Unlike to a SMTP server on the other hand is the
possibility of returning multi-line responses. In this case a special set of
characters indicate the end of a response (046.CRLF).

2.3.1. POP3 Procedure

The communication between client and server takes place in three states
whereas the first state, the authorization state, is initiated by establishing
the TCP connection after the server sent a short greeting message.

1. Authorization State: In this state the client has to authorize against the
server. Different mechanisms are available to perform an authorization,
for example a USER and PASS command combination. The mechanism
provided by the server is not defined, but at least one has to be
provided. The server acquires appropriate resources if successful,
enumerates all mails contained in the mailbox from one to n, calculates

15

2. Email Technology

the size of each mail and returns a positive indicator leading to the
transaction state.

2. Transaction State: When the session is in transaction state, the client
may issue following commands:

• STAT: When receiving this command, the server responds with
stats regarding the mailbox. At least the number of messages and
the storage space has to be returned while additional information
is possible.
• LIST: Using this command a client can request details of a distinct

message by providing the message number as parameter or of
all messages if no parameter is provided otherwise. The answer
contains at least the message number and the according storage
space and may contain additional information.
• RETR: The server returns the email corresponding to the message

number provided as (obligatory) attribute.
• DELE: The email corresponding to the message number provided

via mandatory attribute is marked as deleted, whereas the con-
crete deletion happens within the update state.
• NOOP: No action, only a positive response is returned.
• RSET: Messages marked as deleted become unmarked.
• QUIT: Causes the initiation of the next state, the update state.

3. Update State: In this status the server deletes all messages marked as
deleted, releases the resources and quits the tcp connection.

The commands above are the commands a POP3 server has to support at
least while it is suggested to implement some additional commands in order
to improve the mail handling capabilities of the client: TOP returning only
the headers of the message instead of the whole content, UIDL returning a
unique, persistent identification number and APOP for an improved, more
secure authentication.

2.3.2. POP3 Extension Mechanism

POP3 has not considered possibilities for adding new features in the core
specification. Nevertheless an extension mechanism similar to SMTP was

16

2.4. IMAP

specified for POP3 in RFC2449 [19] providing additional commands in-
cluding the support for more sophisticated authorization mechanisms and
extended response codes. Similar to SMTP it is also possible to add com-
mands using x as prefix for experimental or private purposes.

2.4. IMAP

As mentioned in the preceding POP3 section, two alternative protocols
have established over time for transporting mails from the post office to
the client user application. Where POP3 stands out regarding its simplicity
and efficiency, the protocol characterized in this section, IMAP (Internet
Message Access Protocol) [20], is attractive for all the features it provides
making the user experience more comfortable. IMAP is able to handle
multiple mailboxes per user in a way equivalent to local folders and the
intention is to keep the emails on the server, in contrast to POP3, where
messages should be deleted immediately after reception, acting more or
less as some kind of buffer memory. Therefore, using IMAP only a copy
is transmitted from the server to the client when a user retrieves an email,
implying the availability of backups if a client device is broken. Additionally,
IMAP was designed to handle multiple clients accessing the same mailbox
gracefully; a feature gained high importance over the last years as it is
common practice to use multiple clients (smartphones, notebooks, etc.) in
parallel nowadays. Furthermore, IMAP has integrated support for MIME
structures 2.5.2 and the internet message format obviating sophisticated
parsing by clients. The protocol offers several possibilities for accessing and
manipulating emails on the server. It provides functionalities like searching
in mails, creating, deleting and moving mailboxes or checking for new
messages by informing the client from the server via notification instead of
client polling for example.

2.4.1. IMAP Procedure

In the same vein as POP3 and SMTP, IMAP makes use of text based com-
mands terminated by CRLF for the communication between client and server

17

2. Email Technology

sent over a TCP stream, usually by occupying port 143. Additionally, IMAP
adds the possibility to send literals containing arbitrary binary data. In order
to increase flexibility (multiple users simultaneously per mailbox) IMAP
differs in the behavior of POP3. Where POP3 always responds to a command
sent by the client immediately, an IMAP server might also send responses
independently from the commands. For this purpose two protocols are in
place: one for the usual client commands and the corresponding response
codes similar to SMPT or POP3 next to another protocol responsible for
sending data from server to client. Using this approach it is possible to notify
multiple clients if a new email was received for example, without requiring
a client to initiate some kind of query command. IMAP can handle several
commands asynchronously instead of pipelining them like POP3, therefore
every command needs a preceding unique random tag enabling the client
to assign a response from the server (including the corresponding tag) to
a particular command. This results in major performance improvements
when performing very computationally commands like searching through
mail messages content matching a specific string for example. As IMAP
sessions tend to have a high longevity compared to POP3, there is no session
timeout defined; sessions are only terminated automatically after inactivity
(receiving no command) of at least 30 minutes.

After a TCP connection was established by the client followed by a greeting
message from the server, a session is initially in the Not Authenticated State (if
not already preauthenticated). As IMAP provides a large list of commands
and a complete description would overwhelm this document only a subset
of the most important commands is described within this section. Moreover,
required respectively optional arguments for the commands are neglected
here; if required an extensive description can be found in RFC 3501 [20].

1. Not Authenticated State: This state roughly corresponds to the POP3

Authorization State. In order to authenticate against the server a client
can either send a LOGIN command providing username and password,
or use the AUTHENTICATE command offering different and more secure
mechanisms for authentication while maintaining the possibility to
add new mechanisms. If the authentication is performed successfully,
the session state gets forwarded to the Authenticated State where a
larger set of commands is available.

18

2.4. IMAP

2. Authenticated State: In this state it is possible for clients to manage
mailboxes. A new mailbox can be created using the CREATE com-
mand, they can be deleted (DELETE), renamed (RENAME), subscribed
(SUBSCRIBE) respectively unsubscribed (UNSUBSCRIBE), listed (LIST)
next to some other possibilities. In order to act on mailboxes itself
the client can select a particular mailbox using the SELECT or EXAMINE
command for read-only access. Those two commands induce a state
transition into the Selected State.

3. Selected State: Acting on particular mailboxes is possible in the Se-
lected State. For example, it is possible to search (SEARCH), fetch (FETCH)
or copy (COPY) particular messages contained in the selected mailbox,
or to set flags indicating a status for a message (STORE). In order to
switch back from Selected State to Authenticated State the CLOSE com-
mand has to be executed.

4. Logout State: The Logout State can be reached from every other state
by executing the LOGOUT command. It is also in place if the server gets
shut down or the connection to the client is lost. This state is used by
the server to terminate the connection gracefully.

The server responds with one out of three possible response types: status
responses, server data or command continuation requests. Status responses
are predefined strings (ok, no, bad, preauth and bye) representing the server
state after command execution, similar to POP3. Optionally response codes
providing additional information can be appended. They may contain a tag
initially transmitted by the client request if the response is related to this
command making it possible for the client to assign the response or a * char-
acter as tag replacement for information not associated with a command.
Server data responds return larger amounts of data managed by the server
like messages, search results or mailbox lists while those results are always
untagged. If a command is not completed yet and additional client data is
necessary for processing, the server replies with a command continuation
request response on the other hand. This response usually occurs during
authentication or responses containing literals.
Unlike POP3 and SMTP IMAP supports several types of data transferred
between client and server on protocol level, 13 to be precise. This results in
much more complexity regarding the implementation of the protocol itself
compared to POP3 while making the development of a client application

19

2. Email Technology

more convenient. One of the most significant data types improving IMAP
might be literals. They allow sending arbitrary data with few restrictions,
especially regarding the length of data being limited to single lines when
using other data types. Moreover, message numbers, unique message num-
bers, message flags (assigning status information to messages (answered,
deleted, draft, flagged, recent, seen, ...)), envelope and body structures (pro-
viding message meta information) are supported on protocol level next to
some minor important data types.

2.4.2. IMAP Extensions

Alike POP3 and SMTP IMAP also provides an extension mechanism while
here the CAPA command necessary for this mechanism is already defined
in the core protocol itself in contrast to POP3 and SMTP. Next to several
extensions already defined, new IMAP capabilities can be registered at the
IANA IMAP registry by publishing a standard track or RFC. Alternatively
non-standard capabilities can be added when X is used as prefix for the
name. Non-standard extensions without X as prefix must not be provided
by IMAP servers.

2.5. Email Formats

When sending certified emails, most certainly metadata has to be generated
in addition to the encrypted message content of the original message. In the
purpose of analyzing the integration possibilities for this kind of data, the
standardized format of mail messages is investigated within this section.

2.5.1. Internet Message Format

In order to normalize, respectively standardize messages sent between hosts
and different networks, the Internet Message Format (IMF) is defined in
RFC5322 [5]. Local storage of emails on the other hand is not bound to
this definition. Basically emails consist of simple text lines terminated by

20

2.5. Email Formats

CRLF while a length limit of 1000 characters is required and 80 characters
is suggested, each including the terminating CRLF. Although it is not
important for the IMF itself to limit the length, the restriction is defined since
many implementations of email infrastructure components have problems to
handle lines exceeding this limit. The 80 character limit on the other hand is
suggested to fit to many graphical user interfaces truncating or wrapping the
lines otherwise. RFC5322 [5] defines only 7-bit ASCII characters to be used
within mail messages. In order to transfer more complex data like images or
other binary data the IMF is extended by the MIME Messages specification
2.5.2. IMF defines two sections from which an email is composed of: the
header section followed by the body section separated by a blank line. The
header includes metadata like sender, recipient, date and subject in a defined
format making it easy for MTAs to parse this information. The body on
the other hand contains the payload, i.e., arbitrary data a sender intends to
transfer to the recipient. It has to be taken care, that the IMF header and
body is not the same header and body used by SMTP: the SMTP header
and body might be interpreted as a message envelope while the IMF would
depict the message itself.

Header IMF header fields consist of a name field and a body field sep-
arated by a colon and terminated by CRLF. In order to handle the 1000

character length restriction there is a mechanism, referred to as folding,
available to split the body field into multiple lines. This can be achieved by
inserting CRLF immediately followed by a white space character. Folded
header fields have to be unfolded before processing by removing the CRLF
characters. Using this approach no length limit restrictions are in place for
the unfolded fields. It must be considered, that header fields don’t appear
in a particular order; the order might even change during transmission.
While the only required header fields are the origination date field and the
originator address field, several other defined fields are possible. A short
description of the most important fields:

• orig-date: The time when a user pushes the send button within the
user agent software - this is actually not the time when the message is
transported.
• from: The address referring to the mailbox of the message creator.

21

2. Email Technology

• sender: Address referring to the person sending the message; might be
a secretary for instance.
• reply-to: Mailbox address indicating a mailbox where replies should

be sent to.
• to: The receiving mailbox.
• cc: Additional receiving mailbox, while this field indicates that the

recipient is not the main receiving entity.
• bcc: Additional receiving mailbox, while addresses contained in this

field are not visible to other recipients in contrast to the cc field.
• message-id: A unique id identifying a message; should be changed as

soon as the message content changes.
• in-reply-to: The message identifier of a message being replied to.
• references: The message content of a message being replied to.
• subject: The subject of a message defined by the message originator.
• Trace fields: Fields containing information like received timestamps to

trace a message; set by MTAs and MDAs.

Additionally, it is possible to add optional unspecified header fields. The
only restriction is that the name differs from fields specified by the rfc.
Those fields are uninterpreted per default.

Body The body field is rather simple compared to the well defined and
structured header field. Without the MIME extension 2.5.2 arbitrary 7-bit
ASCII text may be inserted here without any further restrictions (except the
length restriction and CRLF line termination).

2.5.2. MIME Messages

The standard IMF defined in RFC5322 [5] restricts emails to consist of 7-bit
ASCII characters for each, header and body of the message. Using 7-bit
ASCII leads to problems if other languages than English should be sup-
ported as it is not possible to add language specific characters. It is difficult
to send non-text data like images, pdf files or other binary data. Difficult
means that it is necessary to encode the data in a format conforming 7-bit
ASCII (for example hexadecimal) while the receiving entity is still not able

22

2.5. Email Formats

to identify the type of the data. Additionally, it is desired to send multiple
pieces of different data in one message - a task not easy to be fulfilled
with an unstructured, non-standardized text chunk. Therefore, the IMF was
extended by a series of RFC specifications covering Multipurpose Internet
Mail Extensions (MIME) to face this gap. The first specification, RFC2045

[21] defines the headers to extend IMF by MIME messages. RFC2046 [22]
specifies the structure of the MIME media typing system next to an initial
set of media types. The 7-bit ASCII limitation of IMF headers was targeted
by RFC2047 [23]. RFC4288 [24] and RFC4289 [25] specify registration pro-
cedures for introducing new MIME types while RFC2049 [26] determines
conformance criteria for user agent implementations to be MIME conform
next to some example MIME messages.

MIME headers The MIME headers extend the mail headers defined by the
IMF [21]. While they are generated by the sending user agent, they can be
utilized to process the message from the receiving user agent. The following
headers are defined:

• MIME-Version: This is the only required field to be provided in order
to generate a MIME message. It is intended to provide backwards
compatibility if new MIME versions are introduced. The most recent
version is still 1.0.
• Content-Type: This field defines the content type of the data encapsu-

lated within this MIME object. It contains a media type specifying
the data format, a subtype for a more detailed specification level and
optional parameters useful for processing, whereas the order of the
parameters is not significant. New, experimental content types may be
added by using a X-token as prefix for the encoding.
• Content-Transfer-Encoding: As data fields might contain content not

supported by IMF, they have to be encoded for the transfer. The type
of encoding is specified within this header field, whereas possible
types are 7bit, 8bit, binary and base64. Similar to the Content-Type
header field, new experimental transfer encodings can be specified by
inserting a X-token as prefix for the encoding name.
• Content-ID: A unique MIME entity identifier comparable to IMFs

message id.

23

2. Email Technology

• Content-Description: A textual description of the content that might be
useful for the recipient to interpret the data.
• Content-Disposition: Determines content information for the user inter-

face. It can be defined if the content should be displayed inline or as
attachment for example.
• Content-MD5: A MD5 digest providing the possibility for an integrity

check of the message content.
• Content-Language: A language tag enabling the user agent to program-

matically detect the message language.

RFC2047 [23] specifies an extension for the MIME headers to allow non-
ASCII characters.

MIME Media Types A number of different data types for MIME messages
are defined in RFC2046 [22] including several subtypes. The type contained
by a MIME entity has to be defined in the Content-Type header field. The
majority of those data types like image, audio, video, etc. are not important
in certified email context. Therefore, only the types potentially useful for a
certified email system are described:

• text: This type indicates a MIME entity containing text while different
variants are defined by the subtype. The subtype plain defines simple
text without further interpretation. Additionally, also enriched text
and html is possible for example.
• application: The application top level media type is used for data not

fitting into another category. Special applications or user agents sup-
porting this format are necessary to handle this kind of data. Subtypes
usually refer to the application name.
• multipart: multipart is a fundamental property of MIME messages. This

type allows the encapsulation of multiple different MIME entities
into another entity. Therefore, a body of a multipart message can
contain one or multiple parts separated by a delimiter, whereas this
delimiter is specified as header attribute. Each part consists of a header
similar to a MIME header and a body, separated by a blank line. The
header is similar to the MIME message header itself while it is not
necessary to redefine the MIME-Version within a multipart field. In a
consequence this media type enables the usage of different (or similar,

24

2.5. Email Formats

but separated) data types within a single message. Subtypes can
indicate a mixed set of data type parts within a single message (mixed),
the same data in different data formats (alternative), data intended to
be displayed in parallel (parallel) or data of type message/rfc822 for
all subparts (digest). The media type multipart may also be used in
another multipart body part and multipart messages with a single
body part are explicitly allowed.

MIME Extensions For implementing a certified mail system it might be
useful to extend the MIME format using the provided possibilities in order
to integrate new features in a standard conforming way. The following
entities are considered to be extended:

• Content Types: There is no designated registration possibility for new
top level types. This can only be achieved by defining a new RFC.
In order to extend MIME by additional media subtypes, the accord-
ing extension mechanism is addressed by RFC4288 [24]. In particular,
new subtypes have to be registered at the Internet Assigned Num-
bers Authority (IANA) providing a central registry. This registration
mechanism is necessary to ensure interoperability between different
systems. In order to initiate a registration, a proposal has to be com-
posed. Different types of registration can be performed afterwards if
accepted:

– standard: for subtypes of general interest intended to be imple-
mented by the Internet community.

– vendor: for commercial applications of third party vendors. Sub-
types corresponding to this registration type have the prefix vnd.
in their name.

– personal: experimental subtypes not to be distributed commer-
cially. Names of this registration type are denoted with prs. as
prefix.

– special: unregistered, experimental. Only useful if parties ex-
changing this type agree on this format. Equivalent to names
starting with X-, while x. is used as prefix for the subtype name
in this case.

25

2. Email Technology

As alternative, for experimental purposes, arbitrary content types can
simply be added by adding X- as type name prefix in order to be
distinguishable from well-defined formats as already stated within the
MIME header section. It has to be taken care that experimental/private
types prefixed by X- might get lost when sent over gateways filtering
those types.
• Transfer encoding: New experimental, respectively private transfer

encodings can be added by inserting X- as prefix to the new type
name of the transfer encoding header field preventing the mixture
with new formats in the future. Types prefixed with X- might be
ignored by gateways depending on their implementation respectively
configuration. If standardized encodings should be added on the other
hand, they have to be specified as new RFC while the procedure is
described in RFC4289 [25].
• Header fields: Additional MIME header fields might only be declared

in future RFCs. Alternative extensions are not designated.

2.6. Security

When sending an ordinary email, usually at least three requirements are
desired:

1. Authenticity:

a) A user agent sending an email hast to authenticate against the
sending server entity in order to prevent impersonation and spam
messages.

b) A receiving user agent has to authenticate against the receiving
server entity in order to assign the correct mailbox, respectively
prevent attackers from accessing foreign mailboxes.

c) Users might be interested in having a possibility to verify server
identities.

d) A recipient might want to verify the authenticity of the message
author.

2. Integrity: it is expected that message content is not altered during
transmission.

26

2.6. Security

3. Confidentiality: messages transferred over the network should not be
accessible for attackers or relaying stations.

The following subsections describe the mechanisms provided by mail pro-
tocols targeting those properties. The description is on a rather high level
not providing protocol details. For details additional literature is necessary.
Also security mechanism in DNS context are not elaborated here, as they
are out of scope in certified email context.

2.6.1. Simple Authentication and Security Layer

Originally SMTP had no possibility for client authentication leading to open
relays which in turn led to a huge amount of spam messages. POP3 and
IMAP had only limited, weak authentication mechanisms like providing
username and password in plaintext. Client authentication for SMTP along
more sophisticated mechanisms for POP3 and IMAP authentication were
specified using their extension mechanisms. Nowadays usually all three
major email protocols support the Simple Authentication and Security
Layer (SASL) [27]. SASL is a framework intended to separate mailing (and
other) protocols from authentication. Several authentication and security
mechanisms are provided by SASL and a registry was established by the
IANA making it possible to add new mechanisms. Currently approximately
40 mechanisms1 are specified. Depending on the selected mechanism, SASL
can also be used for server authentication, data integrity checking and
encryption. Summarized, server authentication (1c), client authentication
against SMTP (1a) and client authentication against IMAP and POP3 servers
(1b) are fulfilled if appropriate mechanisms are chosen. Integrity (2) and
confidentiality (3) seem to be fulfilled when an appropriate mechanism is
chosen. Nevertheless, the latter two properties are problematic, see 2.6.3.

2.6.2. STARTTLS

In order to provide integrity and confidentiality for emails when submitted
to a SMTP server, respectively fetched from a IMAP or POP3 server, START-

1https://www.iana.org/assignments/sasl-mechanisms/sasl-mechanisms.xhtml

27

https://www.iana.org/assignments/sasl-mechanisms/sasl-mechanisms.xhtml

2. Email Technology

TLS can be used to encrypt the data shared between a user agent and the
server entities. Relaying SMTP servers can also make use of STARTTLS to
protect the connection. STARTTLS basically makes use of hybrid encryption:
asymmetric cryptography for key exchange and symmetric cryptography
for efficient data encryption. A server using STARTTLS has to provide a
certified public key used by the client to encrypt the data, respectively the
symmetric key used for encrypting the bulk data. This certificate is also
utilized by the client to authenticate the server (1c). For SMTP the integra-
tion of this feature was specified as SMTP service extension in RFC 3207

[28]. The IMAP and POP3 extensions on the other hand are treated in RFC
2595 [29]. By using STARTTLS, an encrypted connection on transport level
is established. Therefore, all data between client and server is protected
regarding confidentiality (3) and integrity (2). Anyhow, confidentiality and
integrity properties are confronted with the same problems as SASL 2.6.3.
Additionally, in practical use, it has to be considered that most MTAs are not
performing server authentication as mail processing has a higher priority
than trust.

2.6.3. Security Issues

Both, SASL and STARTTLS, are able to provide encryption mechanisms for
ensuring confidentiality and integrity. However, the encryption provided by
both opportunities is taking place on transport level. If multiple hops are
necessary to deliver an email, the data is decrypted and encrypted again at
every single hop. This enables relaying, respectively intermediate entities
to eavesdrop and even alter messages. Additionally, it is possible that a
message is not encrypted over the full distance; there is no guarantee that
every intermediate entity applies an encryption mechanism. This leads to
the necessity to provide high trust in all servers relaying an email; a level
of trust that usually can not be raised. Both opportunities also lack in the
requirement for providing an authentication mechanism of the message
originator.

28

2.6. Security

2.6.4. End-to-end Protection

Additional mechanisms or protocols are required for addressing the prob-
lems described in the previous section 2.6.3. Therefore, with PGP/MIME
2.6.4 and S/MIME 2.6.4 two alternative technologies have established over
time to provide end-to-end protection of messages. For the integration of
the necessary data overhead resulting of those security features, new MIME
subtypes were defined 2.6.4. End-to-end protection implies that messages
are encrypted within the sender’s domain, respectively decrypted in the
recipient’s domain. No intermediate stations are able to get access to the
plain-text and alteration would be detected by the recipient. Additionally, a
recipient is able to verify the real originator of the message.

MIME Security In order to provide a framework for encryption and sig-
nature of messages, two MIME multipart subtypes were introduced by RFC
1847 [30]: multipart/signed and multipart/encrypted, each consisting of
two body parts.

• For the signed MIME subtype the first body part is an arbitrary mes-
sage of an arbitrary MIME type defined in its header as usual. The
second part consists of the signature over the MIME headers and the
message content next to META information for verification. The digest
algorithm and the specific protocol in use are provided as MIME type
parameter of the surrounding MIME entity.
• Using the encrypted MIME subtype, the first body part is used for pro-

tocol specific META information necessary for decryption of messages;
except the key itself of course. The second body part on the other
hand is used to encapsulate the encrypted data itself. Similar to the
signature subtype, the specific protocol is defined as parameter of the
surrounding MIME entity.

PGP/MIME PGP/MIME, specified in RFC 3156 [31], utilizes the MIME
security subtypes defined in the previous paragraph. It provides a hybrid
crypto-system allowing to sign and/or encrypt complete messages including
possible attachments. To be more specific, PGP/MIME defines three possible
subtypes:

29

2. Email Technology

• application/pgp-encrypted: Encrypted messages can be sent using tis
type. A surrounding MIME entity has to be specified as multipart/en-
crypted while a protocol parameter matching application/pgp-encrypted is
required. The first body part of type application/pgp-encrypted contains
only one line specifying the PGP/MIME version. The second part on
the other hand contains the encrypted message next to some META
information and has to be of type application/octet-stream.
• application/pgp-signature: This type is used to send signed messages.

Therefore, a surrounding MIME entity has to be specified as multi-
part/signed while the first body part of this entity consists of the data to
be signed next to the second body part of type application/pgp-signature
containing the signature itself next to some meta signature informa-
tion. The digest algorithm is defined using the algorithm parameter
of the surrounding entity and the protocol parameter has to match
application/pgp-signature.
• application/pgp-keys: Public PGP keys can be transferred using the

application/pgp-keys type. No multipart entities are intended for this
purpose, as the data can be transferred as single block.

In order to sign and encrypt a message, the message can be signed while
the result is encapsulated in an encrypted message in a consequence. As
alternative PGP/MIME also supports a native combination, resulting in one
entity containing the signature and the encrypted text.

PGP/MIME compared to S/MIME S/MIME specified in RFC 5751 [32]
is basically an alternative mechanism for PGP/MIME2.6.4 providing the
same features in a slightly different way. As the focus of this thesis is not
on PGP/MIME or S/MIME and the underlying principle of the end-to-
end security mechanism potentially useful for certified emails is already
explained by PGP/MIME 2.6.4 a detailed explanation is omitted (for detail
information regarding S/MIME, see RFC 5751 [32]). Nevertheless, the major
differences on a rather high level might be of interest:

• Although both trust-models are possible with both protocols, PG-
P/MIME usually makes use of the decentralized Web of Trust while
S/MIME focuses on centralized, hierarchical certification authorities
for key exchange.

30

2.6. Security

• S/MIME and PGP/MIME use different encoding formats and algo-
rithms.
• S/MIME has a broader acceptance in enterprise context and is accepted

by many vendors.
• As S/MIME is already included in most user agents while it is often

necessary to install plug-ins for PGP/MIME and the centralized trust
model might be more intuitive, S/MIME is probably easier to be
handled by end-users.

Security Notes Both, PGP/MIME and S/MIME, lack in one point regard-
ing end-to-end security: Email headers, such as the from, to or subject, are still
transferred in plain-text. This circumstance can be mitigated by using MIME
security on top of channel security like STARTTLS or similar mechanisms
provided by SASL for example. Nevertheless, it has to be taken care that
relaying stations or potential man in the middle attackers can get access to
this plain meta-data.

31

3. Certified Mail Basics

Within the security section of the previous chapter three desired proper-
ties for ordinary emails were addressed: authenticity, confidentiality and
integrity. Those requirements can already be achieved with the ordinary
Internet email technology by using a combination of transport layer security
(e.g. TLS) and email security (e.g. S/MIME or PGP/MIME). By comparing
properties of encrypted email with non-electronic registered mail on the
other hand several major gaps can be identified. Therefore, the requirements
for a certified email system have to be extended compared to Internet email
and it’s standardized features. Important properties of analogous certified
mails are analyzed in section 3.1 in order to be able to identify gaps of en-
crypted email in comparison. Those identified gaps are listed in section 3.2,
while necessary features and attributes of certified email systems identified
by scientific papers are listed in section 3.3. Section 3.4 finally treats Trusted
Third Partys and their properties, a trusted parent instance necessary to
achieve a fair message exchange.

3.1. Analogous Registered Mail Services

In this section registered snail-mail services are analyzed to provide a basis
for identifying the gaps of encrypted emails in comparison with analogous
registered letters. Registered mail services differ slightly from country to
country, respectively provider to provider while the essential resulting
security properties are quite similar. Consequently, this analysis is limited
to registered mail services provided in Austria.

33

3. Certified Mail Basics

3.1.1. Registered Letters

The Austrian Postal Service provides registered mail as a service paired
with several additional options1. Basically a unique registration number is
assigned to every registered letter. This number makes it possible to track
letters. When sending a registered letter, the sender receives a confirmation
signed by the post office proving the initiation of the delivery process. A
recipient on the other hand has to provide her signature in order to take
delivery of the letter. Additionally, the recipient has to prove the identity by
an official identification document. Two options are available for senders
to be notified when the transmission is completed: either the sender can
simply be notified by the Austrian Postal Service on a predetermined
communication channel (email, SMS or the like) or a delivery receipt signed
by the recipient can be returned to the sender making it also possible to
verify the identity of the recipient on the other hand. A sender can also
determine whether only the intended recipient herself or optionally also an
authorized representative may pick-up the delivery.

3.1.2. Governmental Registered Letters

Governmental certified letters are specified within the Austrian Service of
Documents Act (ZustG)2. In contrast to registered mail, those letters may
only be sent by governmental institutions or by law courts. Two types of
those governmental certified letters are available: RSa and RSb. The differ-
ence between RSa and RSb is basically the regulation that RSa letters may
only be delivered to the intended recipient or an authorized person while
RSb letters are less restricted and therefore may also be delivered to substi-
tute addressees. A delivery receipt attached to the letter containing sender
and recipient information, a signature by the recipient and an Austrian
Postal Service indenter is returned to the sending governmental institution
after delivery.

1https://www.post.at/privat_versenden_brief_oesterreich_zusatzleistungen.

php
2http://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&

Gesetzesnummer=10005522

34

https://www.post.at/privat_versenden_brief_oesterreich_zusatzleistungen.php
https://www.post.at/privat_versenden_brief_oesterreich_zusatzleistungen.php
http://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10005522
http://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10005522

3.2. Comparison: Registered Letters vs Signed/Encrypted Email

3.2. Comparison: Registered Letters vs
Signed/Encrypted Email

When comparing email secured by SSL/TLS in combination with email
signature and encryption to analogous registered letters several gaps can be
identified:

• Using ordinary email there is no possibility available to track sent
emails (despite there exist insufficient approaches like DSN 4.2.1). In a
consequence a sender can neither check the status of the delivery nor
the sender would be aware if an email gets lost.
• A sender has no possibility to prove that an email was sent.
• A sender receives no confirmation that an email was successfully

delivered.
• A recipient might deny having received an email at all.

This short analysis already highlights several unresolved gaps in the ordi-
nary email technology even tough applying encryption and other email
security mechanisms. The next section deals with desired and missing prop-
erties in a more structured way based on scientific papers covering this
topic.

3.3. Certified Email Properties

Sending certified emails is not a new topic. Several scientific papers have
already investigated necessary requirements for certified emails in more
detail than the short hands-on gap analysis in the preceding section. Those
papers basically affiliate certified email protocols to fair exchange protocols:
the message is only handed off to the recipient if the latter provides his sig-
nature on exchange. Fair exchange protocols already have a longer research
history as those protocols are also important for many other scenarios.
Although there is no clear definition of properties for certified emails two
scientific papers from Tauber [33] and [34] have investigated required core
properties with practical applicability based on requirements emerged for
fair exchange protocols.

35

3. Certified Mail Basics

• Non-Repudiation: Parties (sender and recipient) must not be able to
repudiate the involvement in certain events of a transaction. For this
purpose digital evidences bound to specific parties by requiring their
digital signature on defined transfer data (including a timestamp) are
introduced. Without providing those evidences the delivery execution
would be stopped. In certified email context those evidences are:

– Non-repudiation of delivery (NRD): This is a delivery evidence
signed by the MDA making it impossible for a MDA to repudiate
the delivery in a consequence.

– Non-repudiation of receipt (NRR): Sometimes even a stronger ev-
idence compared to the NRD evidence is required approving the
reception by the recipient herself instead of the MDA. Therefore,
the NRR evidence has to be signed by the recipient on exchange
of the message.

– Non-repudiation of submission (NRS): On the sending side on
the other hand a NRS evidence signed by the MTA is generated
making it impossible to repudiate a submission at a future date.

– Non-repudiation of origin (NRO): A signature on the message to
be transferred provided by the originator of the message serves
as a non-repudiation evidence from the author of the message.

• Fairness: A protocol used for certified email exchange must guarantee
fair conditions. In more detail this means that no party (sender or
recipient) may prevail over another party. Violating this priciple would
for example occure if a sender receives a NRR evidence while the
recipient is not able to access the message in plain. Furthermore,
this means that after a transaction is complete every party has its
expected messages respectively evidences - otherwise no one receives
the expected items.
• Non-Selective Receipt: When a recipient is notified about a new incom-

ing certified mail she must not be able to repudiate the reception by
this point. Therefore, the recipient has to sign the NRR evidence before
getting access to the message. Otherwise it would be possible to select
messages to be received based on metadata, e.g., the sender address,
while rejecting undesired mails, e.g. from the financial department on
the other hand.
• Timeliness: In order to provide determinism, a timespan has to be

36

3.4. Trusted Third Partys

defined within a certified mail has to be delivered successfully or the
transfer is aborted on the other hand.
• Verifiability of TTPs (3.4): If a TTP misbehaves there must be a possi-

bility for the deceived certified email participant to prove this misbe-
haviour.
• Confidentiality: Although this property is optionally also available

for regular email, certified email has to provide confidentiality by
encrypting the message content.
• Effectiveness: A transfer of a certified email should be executed as

effective as possible with the minimum number of required claims and
if a transaction is executed fair as expected it should not be necessary
to interact with the TTP.

3.4. Trusted Third Partys

For resolving possible ambiguities, respectively ensuring the required fair-
ness property, many fair exchange protocols make use of a so-called Trusted
Third Party (TTP), an independent entity trusted by all system participants.
This entity is necessary as systems without parent instance can lead to word
against another’s situations. Although there exist other solutions for this
situation without TTP, at least in laboratory conditions, those solutions have
turned out to be impractical either because of unrealistic requirements, non-
deterministic results or huge communication overhead [33]. Basically TTP
solutions are divided in three categories with different properties making
them more or less applicable:

Inline TTP An inline TTP is the simplest solution at first glance. Every
step of a transaction between A and B has to be sent through the TTP
while letter is processing the message and forwarding it to it’s indented
destination. Therefore, an inline TTP acts basically as proxy.

Online TTP Similar to an inline TTP, an online TTP is involved in every
transaction. However, there is a major difference between both types: online

37

3. Certified Mail Basics

TTPs are not involved in every step of a transaction whereby the TTP
acts as mediator, for example to exchange session keys. The rest of the
communication per transaction takes place without TTP interaction directly
between the communication parties.

Offline TTP Communication with offline TTPs on the other hand is only
necessary if some kind of inconsistency occurred during the transfer of
a certified email, respectively if some kind of dispute has to be resolved.
Otherwise, as applicable in most situations, it is assumed that all parties
behave fair while there is a possibility for resolving conflicts otherwise.

3.4.1. Trusted Third Party Property Comparison

The selection of a TTP type can be made conditional on some properties
distinguishing them:

Communication Overhead Employing TTPs requires communication over-
head, as connections to an additional service have to be established. There-
fore, reducing communication with TTPs leads to better performance of
certified mail systems. Obviously offline TTPs are superior to other solu-
tions as communication is only necessary in special cases while inline TTPs
demands most resources as communication is necessary multiple times per
transaction. Nevertheless, it has to be considered that message sizes and
necessary communication steps between clients increases using offline TTPs
compared to online and especially inline TTPs.

Resources Inline TTPs have to process entire messages and provide stor-
age for messages and associated data like timestamps and audit information.
In a consequence they have comparable high infrastructural requirements.
Offline TTPs on the other hand are usually not involved in the communi-
cation and need only limited resources for processing messages therefore.
Online TTPs are in perspective of efficiency between inline and offline TTPs:
While they do not have to process entire messages, as the sending and

38

3.4. Trusted Third Partys

receiving party communicate directly, they still have to do some processing
per transaction.

Convenience of Integration The concept of inline TTPs is easy to integrate
in a certified email system as they could be included as part of already
available components like MTAs for example. The integration of online and
offline TTPs in the already existing infrastructure is more complex on the
other hand as new components have to be added.

Security Inline TTPs are able to decouple the recipient from the sender
as they are acting as a proxy and can therefore control the message flow
hiding a sender for example when processing the message. On the other
hand this is a serious drawback as they would have to be fully trusted being
able to discard, read or even alter messages. Online TTPs require less trust
as they are not able to modify, read or discard messages (depending on
the implementation and configuration). Nevertheless, they are still able to
delay, respectively prevent message exchange. Finally, offline TTPs require
even less trust than inline TTPs as they are only involved in special cases.
Therefore, during a regular transaction they are neither able to read, alter,
discard or delay messages.

39

4. Related Work

When evaluating ambitions for introducing certified e-mails it can be ob-
served that there are already several solutions operating in the field. In
section 4.1 those services are investigated. Additionally there are lots of sci-
entific papers available researching new solutions, algorithms and protocols.
Those papers are considered closer in section 4.2.

4.1. Certified Mail in the Field

Many certified email systems are already available in the Internet whereas
those solutions can basically be separated into three categories:

• Governmental: Governmental certified mail systems usually have to be
certified, respectively authorized by a governmental institution and are
intended to be used for delivering mails to citizens on a high security
level; a task that is otherwise costly and time-consuming.
• Private: Certified mail systems are also shaping up well for the private

sector. While those systems don’t have the requirement to be autho-
rized by a governmental institution, they still follow a defined set of
rules. The intention behind following those rules is that systems of dif-
ferent providers can interact, that users can assume a well-conceived,
secure system and that there is a possibility to exchange mails between
different providers.
• Third Party: The last category are third party solutions provided by

private companies or other independent institutions. Usually they are
not following a defined rulebook, the specifications are closed and
users are not able to exchange mails with other providers.

41

4. Related Work

The implementations and protocols of available certified email systems,
especially for the governmental sector, differ from country to country, each
providing own solutions. As it is not possible within this thesis to investigate
all those solutions in detail, the focus here is on the certified email systems
operating in Austria. More solutions from different countries were examined
by Tauber in Cross-Border Certified Electronic Mailing [33].

Certified Mail in Austria Currently five companies authorized by the
Austrian Office of the Federal Chancellor provide governmental, certified
electronic mails in Austria1 considering the Austrian Service of Documents
Act (ZustG)2, whereas the technical specification requirements for providers
are publicly available3. Summarized the most important points of those
specifications on a high level:

• For registration and authentication, users either have to provide their
identity by the Austrian mobile phone signature or the Austrian citizen
card.
• The Austrian mobile phone signature or the Austrian citizen card is

also used to provide integrity and authenticity by appending advanced
electronic signatures to certified mails.
• If a user provides a certificate (optionally), all certified mails have to

be encrypted.
• When a certified mail is delivered, the according user is informed about

the reception via an ordinary email, a SMS or a postal letter after a
designated timespan. At the same time a transmission confirmation
is automatically returned to the sender, although this confirmation
does not reveal information about the actual reception of the receiving
entity.
• Immediately when a user logs in after the notification, a return receipt

is generated and returned to the sender.
• A LDAP based registry referred to as Zustellkopf is specified making

it possible to deliver certified emails to different providers depending

1https://www.bundeskanzleramt.at/elektronische-zustellung
2https://www.ris.bka.gv.at/GeltendeFassung/Bundesnormen/10005522/ZustG%

2c%20Fassung%20vom%2019.03.2017.pdf
3https://www.ref.gv.at/AG-II-ZUSE-Zustellung-Spezifik.2822.0.html

42

https://www.bundeskanzleramt.at/elektronische-zustellung
https://www.ris.bka.gv.at/GeltendeFassung/Bundesnormen/10005522/ZustG%2c%20Fassung%20vom%2019.03.2017.pdf
https://www.ris.bka.gv.at/GeltendeFassung/Bundesnormen/10005522/ZustG%2c%20Fassung%20vom%2019.03.2017.pdf
https://www.ref.gv.at/AG-II-ZUSE-Zustellung-Spezifik.2822.0.html

4.1. Certified Mail in the Field

on where the user is registered.
• There is also an optional specification for accessing certified emails by

regular email clients.
• The specification is not limited to governmental mail: Delivery initiated

by private parties is considered as well.
• A governmental certified mail is automatically classified as delivered

after the second notification was sent.

For the private sector, Austria plans to obligate companies providing an
electronic mailbox for governmental mail by year 2020

4.

Third Party and Private Certified Mail Service Systems Additionally, pri-
vate and/or proprietary third party mail systems introduced by several
companies and institutions are available. While those services are not neces-
sarily bound to certain countries, the main problems of those systems are
the closed, private specifications and/or the missing ability to interact with
other certified mail systems. Users have to register at those communication
silos while a high trust in the provider is necessary.

Certified Mail Services in the Field Currently the following services for
certified mail messages are available in Austria following the specifications
provided by the Austrian government - third party and private solutions
are not considered as the specifications are not publicly available or the lack
in dissemination and/or interoperability classifies them as not significant:

• Bundesrechenzentrum GmbH: Elektronischer Zustelldienst. The Elek-
tronischer Zustelldienst allows only the reception of governmental
certified mails. It was approved in 2009 as the first player in the field.
• Österreichische Post AG: meinbrief. This service was introduced by

the Austrian Post one year later in 2010. Different from Elektronischer
Zustelldienst, this service also allows private delivery.
• Postserver Onlinezustelldienst GmbH: E-Zustellung. Approved in

2012 this is actually the only solution providing the possibility to

4https://www.ris.bka.gv.at/Dokumente/BgblAuth/BGBLA_2017_I_40/BGBLA_

2017_I_40.html

43

https://www.ris.bka.gv.at/Dokumente/BgblAuth/BGBLA_2017_I_40/BGBLA_2017_I_40.html
https://www.ris.bka.gv.at/Dokumente/BgblAuth/BGBLA_2017_I_40/BGBLA_2017_I_40.html

4. Related Work

send electronic mails as specified by the WKÖ rulebook 5, a private
extension of the the governmental specifications. The service is also
certified for receiving governmental mails following the specification
by the Austrian government.
• sendhybrid ÖPBD GmbH: eVersand. Another alternative for the recep-

tion of governmental certified mails, approved in 2014.
• Hpc DUAL ZustellsystemeGmbH: Briefbutler. This is the most recent

service and was approved in 2017. Similar to meinbrief this service
additionally allows non-governmental delivery.

Conclusion Proprietary third party certified mail systems can not be in-
vestigated as the specifications and implementation details are not publicly
available and private solutions result in communication silos. When analyz-
ing the specifications following the Austrian Service of Documents Act on
the other hand, the following conclusions can be drawn:

• It can be observed that those systems are not inter-operable with the
ordinary Internet email infrastructure, although an optional reception
via IMAP is specified by the Austrian government and several other
primitives respectively technologies of the Internet email infrastructure
are employed, like MIME messages for encrypted certified mails. All
participants have to register a new account within the chosen certified
mail system; users are not able to use the system with already existing
email accounts and it is not possible to exchange certified emails with
ordinary email services.
• There is no TTP available allowing to independently monitor or verify

the MTA behaviour: on a closer look, the MTAs overtake the role of
inline TTPs leading to a high trust requirement for users.

5http://www.ezustellung.at/downloads/e-Zustellung_Rulebook_V12_03-

2015.pdf

44

http://www.ezustellung.at/downloads/e-Zustellung_Rulebook_V12_03-2015.pdf
http://www.ezustellung.at/downloads/e-Zustellung_Rulebook_V12_03-2015.pdf

4.2. Certified Mail in Research

4.2. Certified Mail in Research

Different attempts were made by the research community to provide a
certified email solution. One approach is to extend the current Internet
email protocols using their designated extension mechanisms. The other
approach category suggests an additional protocol layer above the Internet
email protocols.

4.2.1. Extensions for the current Internet Email Protocols

Extending current Internet email protocols like SMTP, POP and IMAP
to achieve certified emailing seems the most obvious approach. Next to
some minor important protocol extensions, the following are the most
relevant alternatives: delivery status notifications [17] specify a method to
extend SMTP in order to return notifications for determined delivery states
allowing to track emails. This extension is limited to report the delivery into
the recipient’s mailbox; it is not possible to return information if an email
is actually picked up or even read by the recipient. At this point another
extension joins the game: message disposition notifications. This kind of
notification is realized as extension for the POP protocol [35] respectively
the IMAP protocol [36], while the intention is to return a notification to the
sender as soon as the recipient accesses the email. An alternative approach
was undertaken by extending S/MIME by signed receipts [37]. Nevertheless,
all those approaches are facing problems achieving the requirements for
certified emails. Apart from the fact that those extensions are not mandatory,
recipients are able to prevent the return of the notification or receipt, hence
are able to repudiate the reception for example. As there is no TTP in place,
this situation can never be resolved.

4.2.2. Certified Mail Protocols on top of Internet Email

With time numerous certified email protocols on top of conventional mailing
protocols were investigated and published, each claiming to be the best solu-
tion. Therefore, this analysis is organized from a bottom-up view excluding

45

4. Related Work

branches not fitting the needs to fulfil the claimed requirements to imple-
ment a practical certified mail solution. First of all solutions without TTP are
not further considered as those protocols are classified as impracticable [33].
A protocol using an inline TTP was presented by Zhou and Gollman [38].
While this protocol lacks in fairness also another important characteristic
appears: inline TTPs are involved in every single step of the protocol. When
the Internet email infrastructure is able to handle very high loads based
on it’s decentralized design, this is difficult to achieve for TTPs leading
to bottlenecks. Therefore, the same authors reduced the TTP involvement
in a different protocol making use of an online TTP not requiring TTP
involvement in every step [39]. Abadi et al. [40] proposed an alternative
protocol using a lightweight online TTP without requiring a public key in-
frastructure. Although performing better compared to solutions employing
inline TTPs, still an involvement per transaction is required for online TTP
solutions being not very efficient. As this inefficiency can also be expected
for similar online and inline TTP protocols, the focus for his thesis is set to
offline TTPs from now, also referred to as optimistic approaches. Optimistic
certified mail protocols were introduced by Zhou and Gollmann [41]. Based
on this idea numerous optimistic protocols were developed. Many of those
protocols turned out to have security problems or cannot ensure fairness.
Promising solutions were introduced by Wang et al. [42][43][44]. But those
protocols and similar approaches were not designed having in mind specific
deployment scenarios like mounting them on top of the existing Internet
email architecture. Instead, they assume direct communication between
sender and recipient. Mapping those protocols to Internet email often seems
difficult or impossible as the infrastructure respectively the participating
entities (UAs, MTAs, etc.) are already defined. In a consequence the remain-
der of this section focuses mainly on optimistic certified email protocols
potentially fitting the Internet email infrastructure and making use of TTPs
for resolution. A optimistic protocol fitting the Internet email architecture
very well was introduced by Blundo et al. [45]. It covers several requirements
necessary for certified emails but has some shortcomings: the TTP is not
verifiable and selective receipt is not prevented. Liu et al. present a different
protocol having the apperance to be very practical on the first glimpse [46].
Nevertheless, following their approach it is required for the TTP to contact
end users for resolution. This is not practical as end-users would have to
register at the TTP and would have to be online when the resolution is

46

4.2. Certified Mail in Research

performed. A very promising protocol comes from Draper-Gil et al. [47]. It’s
design allows to implement an optimistic, practical certified mail system
while also fulfilling the necessary certified mail requirements.

47

5. Technology Evaluation

Scientific papers propose several solutions for enhancing widespread email
technology with certified mail functionality 4.2. Nevertheless, only few
of them fulfil necessary requirements. The protocol to be implemented is
evaluated in section 5.1. Furthermore, the selected protocol should not be
based on email software built from the scratch - instead already existing
software should be extended proving also the ease of integrating the new
functionalities. Software suitable to be extended is evaluated in section
5.2.

5.1. Certified Email Protocol

In first instance the certified mail protocol to be implemented has to satisfy
the required attributes defined in section 3.3: Repudiation must not be
possible, fairness has to be ensured, selective receipt must not be possible,
timeliness must be guaranteed, the TTP must be verifiable, the certified
mail must be confidential and the protocol has to be effective. Addition-
ally the protocol should fit the current Internet email infrastructure. To be
more detailed, it should match the communication parties coming with this
infrastructure: users, user agents and message transfer agents - no direct
communication between two end-users is possible. Furthermore, the result-
ing system should be scalable similar to the email infrastructure. Hence, as
already mentioned in section 4.2.2, optimistic protocols using offline TTPs
are encouraged. One protocol appearing to fit all those requirements was
introduced by Draper-Gil et al. [47].

49

5. Technology Evaluation

5.2. Software Evaluation

In order to demonstrate the practicality, the certified email system to be
implemented should preferably be integrated in already existing software
components. Software components to be used and extended are particularly
a user agent, a MSA/MTA and the basic protocols between user and user
agent respectively all other participating parties.

5.2.1. Basic Mail Protocols

While for sending emails from the user agent to a MSA or MTA, respec-
tively handing off emails from MTA to MTA, it is clear to use the SMTP
protocol (2.2) owning to the lack of alternatives, things look different for
receiving emails from the message storage by the receiving UA. For the
letter case there are basically two possibilities: using the rather simple POP3

protocol (2.3) or the sophisticated IMAP protocol (2.4). From a point of view
on feasibility it is possible to integrate a certified email protocol in both
alternatives. Nevertheless, many things have to be taken care when integrat-
ing the protocol in IMAP as there might be multiple mailboxes per user,
emails remain on the server instead deletion, multiple clients might use one
mailbox, mails on the server are affected by multiple protocol commands
etcetera. Although those features enhance the user experience they make it
rather complex to integrate the certified email protocol as things have to be
kept in synchronization leading to major implementation effort while not
changing the outcome of showcasing the certified email protocol concept
per se. In a consequence this work will focus on the POP3 protocol.

5.2.2. Mail Server Software

Many server-side mail software solutions are available on the market. A
survey of the most used mail servers employing MX record lookups as
indicator1 visualizes that the marked is shared mainly between two server

1http://www.securityspace.com/s_survey/data/man.201706/mxsurvey.html

50

http://www.securityspace.com/s_survey/data/man.201706/mxsurvey.html

5.2. Software Evaluation

implementations nowadays: Exim and Postfix, while other options have
very less and decreasing market-share. Nevertheless, for this prototype
implementation other properties than the market-share might be more
important as it should focus more on demonstration than providing an
implementation optimized for productive usage. Desired requirements
for server-side mail software used as base for the certified mail protocol
integration are listed below:

• Programming Language: Email servers found in productive environ-
ments usually make use of low level programming languages like C
for performance reasons and are optimized for high throughput. The
disadvantage of using a low level programming language on the other
hand is much more implementation effort compared to high level
programming languages as Java or C# for example. For demonstrating
a prototype high level programming languages are more suitable as
major effort would be necessary to integrate certified mail protocols
in highly optimized low-level (in terms of programming language)
environments.
• Licence: A good deal of email server software solutions are based

on proprietary licenses limiting adaption respectively usage by third
parties. Therefore, a license providing access to the source code and
allowing all necessary adaption work is a requirement for the selected
server software.
• OS support: Although not a hard requirement, as Linux is commonly

known to be the most used operating system in server context it would
be desirable that the software also supports Linux, respectively is able
to be executed on multiple platforms instead being tailored to a single
platform.
• Provided Features: While some email server solutions provide a com-

plete package of email services including SMTP, POP3, IMAP and
mailbox for example there are also solutions, often used in productive
environments, providing only specialized services like SMTP only in
case of Exim and Postfix. For this certified email protocol prototype a
server solution including all necessary components would be desired.

A list comparing the desired requirements of available mail servers was
added to the appendix B. The result shows that more than half of the mail

51

5. Technology Evaluation

servers is not useable for implementing a certified email prototype due
to proprietary licenses leading to closed source code in a consequence.
The remaining mail servers mostly use a low level programming language
and/or provide only one type of protocol. As most suitable software in
context of developing a certified email prototype system basically one option
remains: Apache James.

5.2.3. Mail Client Software

Similar to server-side mail software applications also many client software
applications are available, while web-based products displaced native clients
more and more within the last years. As major changes are necessary on the
client side to integrate certified email (additional user interfaces, additional
database fields, adaptation of the email protocols on client side, etcetera) a
new lightweight web-based email client is developed to provide possibilities
for compiling and sending certified emails.

5.2.4. Client Mail API

In order to communicate between client and server a library able to handle
email protocols (SMTP, POP3, IMAP) is necessary. A major requirement for
this component is its extensibility, hence source code access, as at least some
minor changes will have to be performed. For this purpose the JavaMail
API seems to be a good choice2.

2http://www.oracle.com/technetwork/java/javamail/index.html

52

http://www.oracle.com/technetwork/java/javamail/index.html

6. Certified Email Protocol

The certified email protocol introduced by Draper-Gil et al. [47] promises
effectiveness, fairness, timeliness, verifiability of TTP, confidentiality, non-
selective receipt, non-repudiation and makes use of an offline TTP. In order
to match the Internet email infrastructure it is designed for four participating
entities: sending UA and MTA respectively receiving UA and MTA while
any number of intermediate MTAs between sending and receiving MTA
are possible. Additionally, a TTP is required while for resolution two-way
communication is necessary between MTAs and TTP respectively one-way
from UA to TTP. This implies that some kind of registration of MTAs at
the TTP is necessary. Relying on an offline TTP leads to two sub-protocols:
The delivery sub-protocol executed for common certified mail transfer
without special incidents and a resolution sub-protocol in case some kind
of irregularity has to be resolved. The protocol’s security proof requires the
following assumptions:

• The TTP is classified as semi-trusted, i.e. it can misbehave but not
collude with other parties.
• Users trust the MTA where their email account is registered.
• The communication channels between users, UAs and MTAs are unre-

liable while they have to be operational between TTP and it’s commu-
nication partner.
• The sending UA has to know the receiving UAs public encryption key.

6.1. Delivery sub-protocol

The delivery sub-protocol is the main protocol for message exchange and
if no error occurs during transmission it is the only one to be executed

53

6. Certified Email Protocol

promising effectiveness. On a high level the following steps are performed
(for more details see [47]):

• The sending UA generates a random symmetric key k, encrypts the
message to be transferred using this key (Ek[C]) and encrypts the
symmetric encryption key using the asymmetric public receiving en-
cryption key (PKUAB [k]). Additionally, a time-limit td for the maximal
transfer duration is chosen. All those data chunks are transferred to-
gether with a NRO evidence to the sending MTA as M0. The sending
UA obtains a NRS evidence from the sending MTA in exchange (M2).
• The sending MTA forwards all data except the encrypted symmetric

key k to the receiving MTA (M3) while the latter is transferring this
data in the receiving users inbox. The symmetric key has to be stored
by the sending MTA for later usage.
• The receiving user can fetch the encrypted certified mail from the

according mailbox (M5). In order to get the key for decrypting the
message a NRK evidence has to be generated and sent to the receiving
MTA (M6).
• The receiving MTA forwards the NRK evidence to the sending MTA

(M7) and receives in exchange the encrypted symmetric key and the
NRO evidence (M8).
• After receiving the encrypted symmetric key k, the receiving MTA

returns a NRD evidence to the sending MTA (M9).
• Finally the receiving user agent is able to decrypted the message as it

is in possession of the private key SK making it possible to decrypt
the symmetric key k. Furthermore, the receiving UA obtains a NRO
evidence (M11), and the sending UA a NRK and NRD evidence (M13).
• M1, M4, M10 and M12 are synchronization requests.

For a better illustration the delivery sub-protocol sequence is depicted
in Figure 6.1. If the maximal transfer duration is exceeded, MTAs stops
forwarding or processing new messages: the transfer is cancelled. Different
to the evidences defined in 3.3 the protocol does not include a NRR evidence,
while a NRK (non-repudiation of knowledge) evidence was introduced. The
authors assume that the combination of NRK and NRD also satisfies the
NRR evidence.

54

6.2. Resolution sub-protocol

Figure 6.1.: Delivery sub-protocol: A sends a message to user B. k: symmetric key, C:
message, Ek[C]: symmetric encrypted message, PKUAB : public key of user
agent B, PKUAB [k]: symmetric key encrypted with public key of user agent B,
LTSNRO: NRO timestamp.

6.2. Resolution sub-protocol

The resolution sub-protocol is activated if a to be defined time-limit is
exceeded for receiving evidences or other messages are expected but not
received. Basically a request is possible for every potentially lost or withhold
message from the delivery sub-protocol. UAs and MTAs are able to request
resolution by the TTP if they can proof that they are privileged to receive
the according resolution data by passing attributes they must already have
received. The TTP on the other hand is able to collect information about the
transfer stored at the sending and receiving MTA. Based on the data received
from the MTAs the TTP might also generate affidavit evidences if enough
information is available. If the resolution is successful, the requesting entity
is able to pursue the delivery protocol. If the delivery time-limit is exceeded,
the TTP answers only with information it already collected - it does not
contact MTAs any-more at this point of time. Furthermore, if the TTP is
not able to resolve the request, the TTP can cancel the transfer. For detailed
information about all possible resolution requests and responses, see [47].

55

7. Certified Mail Implementation

The implementation chapter points out design decisions, implementation
details and how challenges were mastered to integrate the certified email
system in already existing basic Internet email components. Therefore, all
important entities are analyzed each for itself. An overview of all major
components playing a role in the certified email prototype system and their
interaction possibilities is shown in Figure 7.1.

Figure 7.1.: Certified mail system prototype overview.

57

7. Certified Mail Implementation

7.1. Mail server

A core component of a certified email environment is the mail handling
software on the server side. The evaluation in section 5 points out that
Apache James1 can best satisfy this project’s requirements, i.e., being licensed
under a license allowing the modification of source code, being implemented
in a higher level programming language like Java, being compatible with
Linux and supporting the POP3, IMAP and SMTP protocol (5.2.2).

7.1.1. Specification

Apache James is a modular mail enterprise server implemented in Java.
It is licensed under Apache License, Version 2.02 providing access to the
source code and granting all necessary permissions to modify source code.
Components provided by James are amongst others server side end-points
for protocols like SMTP, LMTP, POP3 and IMAP, a mail storage implemen-
tation together with a mail storage API, administration tools and Mailets:
extensible and pluggable email processing agents.

Mailets An important component of Apache James are so-called Mailets3.
Mailets are intended to provide flexible, independent mail processing func-
tionality covering a wide range of purposes. In order to activate a Mailet it
has to be referred and configured in the mailetcontainer.xml configuration
file. Next to specifying the Mailet class itself also a reference to a so-called
Matcher is required. A Matcher is a unit determining if an email conforms to
specific requirements defined by this Matcher. If the Matcher takes effect, it
initiates the processing by the corresponding Mailet. Several default Match-
ers and Mailets are already provided and used by James out-of-the-box
while it is easy to extend this repertoire.

1https://james.apache.org/
2https://www.apache.org/licenses/LICENSE-2.0
3https://james.apache.org/mailet/index.html

58

https://james.apache.org/
https://www.apache.org/licenses/LICENSE-2.0
https://james.apache.org/mailet/index.html

7.1. Mail server

7.1.2. Adaption

It is desirable to implement a certified-mail solution that is portable to
other already existing email servers without major effort. Therefore, it is
attempted to keep the changes within Apache James itself on a minimum
and source the certified mail processing out to an independent, reusable
application, a so-called certified mail service 7.2. While the certified mail
service application might either be executed on the same server as Apache
James, it is also possible to re-locate it to an independent remote server.
To achieve this objective, i.e. to undock the certified email processing from
James, a Matcher is implemented scanning emails for certified emails. When
a certified email is identified by the mime type multipart/certified, it is for-
warded to a corresponding certified mail Mailet. This Mailet in turn is
responsible to establish a connection to the certified mail service, to forward
the filtered certified mail and to cancel the email transmission to the next
regular destination. The forwarding of filtered certified emails is performed
using Java RMI (Remote Method Invocation). In order to provide a less
platform dependent protocol (as RMI is bound to the Java platform), this
protocol might be replaced in the future with a different, more ubiquitous
protocol like JSON over a plain socket for example. Beside the message pro-
cessing another adaption is necessary to be integrated in Apache James: The
implemented protocol requires synchronization messages and responses to
be signed. Therefore, as POP3 was chosen as synchronization basic protocol,
an adaption is necessary on the server-side POP3 component to verify syn-
chronization requests signed by the recipient and to sign synchronization
responses, primarily intended to ensure fairness for the users. It has to be
considered that this minor POP3 adaption leads to the fact that the result-
ing certified mail system is not fully compatible with the originally POP3

protocol anymore. Furthermore, it is necessary to store synchronization
request and response timestamps associated to the according certified email.
In order to keep the changes in the server software minimal and to keep
the responsibilities at the designated places, this signature functionality
was outsourced to the certified mail service as well, similar to the deliv-
ery sub-protocol mail processing. Summarized, by outsourcing all certified
email components, the adaptions to be performed on the mailing server are
kept minimal making the effort to integrate it in other mail server software

59

7. Certified Mail Implementation

very low. No additional database schemes or additional dependencies are
required.

7.2. Certified Mail Service

The certified mail service is the centerpiece of the delivery sub-protocol
and plays also an important role for resolution in case of irregularities.
Two-way communication with its corresponding MTA is possible, while
the incoming communication is handled via RMI, respectively the outgoing
communication via the SMTP protocol. Furthermore, the certified email
service is able to contact the TTP for obtaining timestamps, public keys
and to request resolution if necessary 7.5. Aside it has to provide resolution
information if requested by the TTP. For this prototype implementation all
those communication channels were realized using Java RMI. In order to
provide a less platform dependent protocol (as RMI is bound to the Java
platform), this protocol might be replaced in the future with a different,
more ubiquitous alternative protocol. Summarized the certified mail service
has four main jobs:

• Certified mail processing: A main purpose of the certified email ser-
vice is to process forwarded certified mail messages originating from
the corresponding MTA. Hereby signatures of received messages have
to be validated as well as received evidences. If an evidence is invalid,
the certified mail service must not continue. The certified mail service
itself is not able to initiate a transfer cancellation directly. Nevertheless,
either a cancellation is performed as a consequence of the invalid
evidence when the resolution process is started by any party caused
by not receiving expected data or the transfer times out invalidating
the transfer if no resolution process is initiated otherwise. Further-
more, the certified mail service is responsible itself to sign messages
before they are sent. Hereby messages intended to be transferred to
the users inbox lead to a special case, as they have to be signed at
the point in time when returned to the user after the synchroniza-
tion request instead of the time when they are moved to the MTAs

60

7.2. Certified Mail Service

inbox. In succession those messages should not be signed directly after
processing.
• Sychronization response signatures: When a user agent performs

synchronization using the POP3 protocol, Apache James recognizes
by the MIME type if the message is a certified email and contacts the
certified email service in a consequence. The certified email service
is responsible to sign the response. Furthermore, it is responsible to
detect if the synchronization response is the specific message m5 (the
encrypted certified email): In this case the synchronization request
(timestamp and signature) and response timestamp have to be stored
in the database if resolution is necessary at a later time.
• Provide resolution information: The certified mail service has to pro-

vide information about a certified mail transfer in case the TTP contacts
the certified mail service for resolution purposes. Therefore, all transfer
data necessary for providing resolution information has to be stored
in a database for later availability.
• Initiate Resolution: The certified email service is executing a sched-

uled job detecting if awaited responses for a certified mail transfer are
overdue according to some configured time values. In this case the
certified email service contacts the TTP for resolution by providing
the necessary information. Depending on the answer of the TTP the
certified mail service can either cancel the transfer or, if resolution is
successful, initiate the continuation of the certified mail transfer again.

The certified mail service is responsible to persist all data gained during a
certified mail transfer in a database for potential later resolution. Resulting
from the protocol design it has never the possibility to get access to the
certified mail plaintext. Special attention was also paid to continuation of a
certified mail transfer after resolution: Caused by ordinary delays it could
happen otherwise, that an entity requests resolution for a specific message.
If the resolution was successful, the mail transfer is continued. Nevertheless,
the original expected message could arrive at the resolution requesting entity
at a later point in time caused by an ordinary delay. Without protection
mechanism it could happen that multiple copies of the same certified email
are transferred otherwise.

61

7. Certified Mail Implementation

7.3. User Agent

The user agent is the most important component in the end-users perspec-
tive as it represents the interface between the certified mailing system and
the user. It is responsible to provide a database for storing certified emails
and a graphical user interface allowing to send and receive certified emails
respectively to provide status information about the transfer. Additionally,
a task periodically checking if the resolution protocol should be started is
a mandatory part of the user agent. As native applications can be turned
off preventing the periodic task execution, web-based always-on applica-
tions are desired for a certified email user agent. This also corresponds
to the zeitgeist, as user agents are more and more shifted towards web-
applications in general. In a consequence it is not purposeful to extend
common native applications like Thunderbird or Microsoft Outlook. In-
stead of integrating certified email functionality in an already existing user
agent a new, lightweight, web-based user agent was developed (see Figure
7.2). Compared to integration in already existing software, this approach
allows maximum control and access to the application avoiding possible
limitations, hence reducing integration effort while increasing testability
- properties ideal for a prototype. The web-application implementation is
based on the JavaServer Faces framework4 for the frontend, the Spring
framework5 for the backend and Hibernate6 as ORM framwork to achieve
persistence. Multiple users can self register at one user agent protected
by simple username/password authentication in a consequence (a more
sophisticated mechanism might be desired for productive systems). After
configuring the POP3 and SMTP server in the corresponding mail setting
menu, the user agent allows to send and receive certified emails as well
as regular emails. Furthermore, details of the transfer state are provided,
i.e., if valid NRK, NRS and NRD evidences are available for sent certified
emails, respectively a valid NRO evidence for received certified mails. In
case the evidence is available also the corresponding timestamp is shown. If
a transfer is canceled by timeout or for another reason on the other hand

4http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.

html
5https://spring.io/
6http://hibernate.org/

62

http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
https://spring.io/
http://hibernate.org/

7.4. Communication Protocols

Figure 7.2.: A lightweight certified mail enabled user agent.

the user is informed as well.

7.4. Communication Protocols

The certified email system prototype is implemented on top of already
existing protocols. SMTP is used to transfer messages from user agent to
MTA, between MTAs and from the certified email service back to the MTA
after message processing. The SMTP protocol requires no changes - it can be
taken as it is. For the synchronization operation between user agent and the
MTA on the other hand either POP3 or IMAP offer themselves, while POP3

was selected for the prototype implementation. Both potential protocols
require minor changes: a timestamp has to be appended to the synchro-
nization request and a signature has to be appended. For the prototype
system those requirements are met by extending the Java mail client library.
Request timestamp, signature key and meta-information about the signature
algorithm have to be attached to the POP3 session instance properties. Those

63

7. Certified Mail Implementation

properties are used in a consequence to extend the commands according the
requirements before the command is issued. The following listing shows
the format of the modified RETR command while ltsRQ is the timestamp in
milliseconds and the signature is Base64 encoded:

RETR + messageNumber + ltsRQ + s ignature

As operational communication protocol between the TTP and corresponding
entities Java RMI is employed. The same protocol is used for internal
forwarding of certified email messages from the MTA to the certified email
service. While this protocol fits ideal for the prototype system a different
approach might be desired for a productive system, especially for the TTP
communication (see 10).

7.5. Trusted Third Party

The trusted third party is a Spring based Java application accepting certified
email resolution requests. Incoming information attached to the requests
is persisted using Hibernate to be available for potential later requests. If
necessary, depending on the request and already persisted data, the TTP is
able to contact MTAs, respectively the corresponding certified email service
to request evidences and additional data using Java RMI. MTA responses
are persisted similar to request attributes to be used for potential later
requests and if an evidence is available after a response it is returned to the
requesting entity. If the TTP is not able to reach certain entities required for
resolution, it is able to generate affidavit evidences if enough information
is already available from previous requests. Otherwise, if the time-limit is
overdue or if no resolution is possible the TTP might either answer with
a signed nack command or it will cancel the delivery depending on the
resolution protocol state. The prototype certified email TTP implementation
additionally validates the signatures of all incoming requests and responses,
respectively the validity of collected evidences to ensure a valid system
status. Special attention has to be paid to synchronization: As every res-
olution request is started as a new thread, it is potentially possible that
resolution is requested for one distinct certified email from different entities.
In order to mitigate undefined transfer states, a synchronization mechanism

64

7.6. Message Format

is integrated in the TTP prototype preventing parallel resolution for one
distinct certified email - different mails can still be resolved concurrently.
Furthermore, the prototype system is also enhanced with functionality to
provide synchronized timestamps and a public key server.

• Timestamp server: Parties can request a reference time of this server.
Timing is essential as the certified email system depends on a synchro-
nized time.
• Public key server: The public key server allows parties to register their

public keys and make them publicly available for other parties in a
consequence. The prototype certified email system registers a public
key implicitly when a new email account is created while the key is
bound to the corresponding email address. Other parties may request
a public key by a request providing the corresponding email address
afterwards.

7.6. Message Format

In order to transfer certified email messages an underlying message format
has to be chosen or defined. For the certified email prototype implemen-
tations JWS (JSON Web Signature) objects are used as they fit ideal for
this purpose. JWS format allows structuring data and adding signatures
conveniently while keeping metadata short and simple compared to XML
or ASN1 for example. For transfer the serialized JWS object is attached as
payload to an email of the newly defined MIME type multipart/certified.

65

8. Certified Email Forwarding

In Section 3 analogues certified mail systems were compared with regular
email technology in order to identify the lacks to be fulfilled by certified
electronic mail systems in Section 3.3. Based on those properties a certified
mail system fulfilling those requirements was implemented on top of al-
ready existing Internet email technology. Nevertheless, when comparing the
resulting system with services offered by analogous certified mail providers
there is still a functionality missing, as cited from Section 3.1.1: ”Optionally
a sender can also determine whether only the intended recipient itself or optionally
also an authorized person may take the delivery”.

If certified email systems should be used in the business sector for instance,
mail forwarding is a substantial feature. A scenario demonstrating the
importance of mail forwarding could be an employee on vacation. Often it is
unavoidable to process the received business emails addressed to the person
in absence nonetheless. As the implemented certified email system provides
end-to-end encryption, the private key of the recipient is necessary to
decrypt the message, hence it cannot be simply forwarded to a replacement
person. In order to get access to the private key the absent person would
have to share the private key with others or a system administrator would
have to intervene. Summarized, those solutions are not desirable.

8.1. A possible Solution for Certified Email
Forwarding

The delivery sub-protocol of the implemented certified email system consists
of two main phases (6): In the first phase the symmetrical encrypted cipher-
text containing the message content is transferred while at this time the

67

8. Certified Email Forwarding

symmetric key for decryption is unknown to the recipient. In the second
phase, in exchange of a NRK evidence, the symmetric key is transferred
to the recipient while this key is encrypted with a traditional public key
encryption scheme. For encryption the recipient’s public key is applied,
hence it can only be decrypted by provision of the recipient’s private key.
Within the last years a comparably new encryption technology referred to
as proxy re-encryption gained more and more popularity. By employing
this technology and extending the implemented protocol a certified mail
forwarding solution can be realized.

8.1.1. Proxy re-encryption

The proxy re-encryption primitive was initially introduced by Blaze et al. in
1998 [48]. As this scheme has several drawbacks and considerable security
risks it is not very applicable for practical usage scenarios. Nevertheless, the
idea was adopted and the scientific community developed several new and
improved proxy re-encryption schemes based on elliptic curves and lattices
providing different properties, each. Regular public key encryption schemes
allow transferring data to a distant party without the need for exchanging a
secret key. The following set of functions is available:

Keygen(λ)→ (skB, pkB) (8.1)

Encrypt(M, pkB)→ (CB) (8.2)

Decrypt(CB, skB)→ (M) (8.3)

By providing some encryption primitive environment parameters λ, Keygen
allows to generate a keypair consisting of a public key pkB, respectively
a private key skB . When data should be transferred encrypted from user
A to user B, the former uses Encrypt to encrypt a message M with the
recipients public key pkB. After transferring the encrypted data CB, user B
is able to reconstruct the plaintext M by decrypting the ciphertext using
Decrypt under provision of the ciphertext CB and B’s private key . Hereby
the private key skB never leaves user B’s domain. Proxy re-encryption adds
two further functions:

68

8.1. A possible Solution for Certified Email Forwarding

ReKeygen(skB, pkC)→ (rkB→C) (8.4)

ReEncrypt(CB, rkB→C)→ (CC) (8.5)

If user B creates a re-encryption key rkB→C by executing ReKeygen under
the provision of a user C’s public key pkC and B’s secret key skB, a third
party can use this re-encryption key to transform ciphertext. More precisely,
a third party can transform ciphertext CB, decryptable by user B’s private
key, into ciphertext CC, decryptable by user C’s private key, after applying
ReEncrypt. Hereby the re-encryption key can be classified as public key and
the third party has at no time the possibility to access the plaintext.

8.1.2. Protocol Extension

It is possible to integrate a certified email forwarding service into the imple-
mented certified email system without further modification of any standard
email protocol (i.e. SMTP, POP3 or IMAP4) beyond the signature modi-
fications necessary for the implemented certified email protocol anyway
and without the need of major changes in the existing server side mailing
software (i.e. MTA or MDA). Hereinafter a procedure for realizing certified
email forwarding while maintaining the required certified email properties
is presented. We assume a user B intending to activate forwarding to a user
C due to unavailability.

1. User agent B generates a re-encryption key rkB→C on behalf of the
user.

2. The resulting key and the forwarding information, e.g., the replace-
ment receiving email address and optionally a time-frame indicating
the forwarding duration have to be transferred to the MTA where
the user is registered. The transfer can be realized by sending the key
embedded in an email over regular SMTP. For this email a specific
MIME type or header has to be defined.

3. If the MTA detects an email including this header or MIME type it is
responsible to forward it directly to the certified mail extension.

4. The certified mail extension stores the re-encryption key and forward-
ing information.

69

8. Certified Email Forwarding

5. If user agent A intends to send a certified email to user agent B and
forwarding is activated, the certified email extension will recognize
this based on the stored forwarding information. In a consequence it
will act as man in the middle for M3, M7 and M9 and forward those
messages directly.

6. Forwarding M8 on the other hand requires some processing: Before
M8 is forwarded the certified mail extension has to perform a re-
encryption operation on PKUAR [k] using the stored re-encryption key
rkB→C.

7. In order to preserve the possibility to execute the resolution protocol,
the certified mail extension on the original receiving side is responsible
to answer with forwarding information in case it is contacted. Based
on this information the TTP is able to contact the replacement certified
mail extension and gain the necessary information from there. The
forwarding information should be stored at the TTP after the first
corresponding response.

8. If the forwarding should be stopped, user B has to inform the certified
email extension by sending a stop signal wrapped into an email with
the same MIME type or header used for starting.

Figure 8.1 demonstrates the forwarding of a certified email sent by user A
from user B to user C as a sequence diagram.

8.2. Certified Email Forwarding Evaluation

The proposed solution enables to extend the implemented certified email
service with mail forwarding capabilities while end-to end encryption and
all other certified email requirements are maintained. Depending on the
configured SMTP authentication mechanism, it is also imaginable to pre-
compute re-encryption keys and use those keys to activate certified mail
forwarding in situations where a user leaves unexpectedly. If the proxy
re-encryption scheme is implemented using lattices a further advantage
is obtained: Lattices are considered as post-quantum cryptography secure
so far. As symmetric encryption used for encrypting the plaintext itself is
considered as relatively little susceptible for quantum cryptography as well,

70

8.2. Certified Email Forwarding Evaluation

Figure 8.1.: Certified email forwarding sequence: User A sends a certified email to user B. B
activated forwarding to user C. k: symmetric key, C: message, Ek[C]: symmetric
encrypted message, PKUAB : public key of user agent B, PKUAB [k]: symmetric
key encrypted with public key of user agent B, LTSNRO: NRO timestamp, M′8:
copy of M8 while PKUAB is re-encrypted to PKUAC by MTA B.

a system potentially able to withstand quantum cryptography would be the
result.

71

9. Evaluation

An electronic certified email system on top of basic Internet email pro-
tocols fulfilling all requirements (3.3) to obtain an adequate replacement
for analogous certified mail was implemented. Furthermore, the protocol
was extended by certified mail forwarding functionality using proxy re-
encryption - an important feature especially in business context. This section
presents observations made during the implementation concerning the cer-
tified email protocol itself next to observations concerning the implemented
components. Suggestions for improvements based on this evaluation results
are presented in the future work section (10).

9.1. Protocol Evaluation

In general the protocol is able to fulfill all defined requirements excellently.
Nevertheless, some things have to be kept in mind:

• For the implemented protocol it is necessary to sign the user agents
synchronization commands. This is especially important to prevent
repudiation of knowledge when receiving a certified email. In order
to implement this feature, the protocol authors suggest developing
POP3 extensions for signing LIST and RETR commands, respectively
a similar extension for IMAP. Nevertheless, solving this requirement
using extensions faces some problems:

– Instead of only signing LIST and RETR commands all commands
exposing information about new emails in the inbox (including
metadata) have to be signed (e.g. TOP in case of POP3 and many
more in case of IMAP4) and recorded by the MTA. This problem

73

9. Evaluation

increases as MTAs can deploy further extensions exposing infor-
mation about new emails; therefore a policy would be necessary
for certified email MTAs enforcing only to allow the deployment
of such extensions that enforce signatures on information expos-
ing client commands.

– Extensions implemented according the protocol extension mecha-
nism of POP3 2.3.2 respectively IMAP 2.4.2 introduce new com-
mands. This does not meet the requirements for certified email
as the default unsigned commands still could be executed. For
certified email the existing commands have to be enhanced with
signatures or signed extensions have to be developed while the
default commands must be deactivated resulting in incompatibil-
ity with other participants. Alternatively fundamental changes
have to implemented in the MTA preventing exposure of unpriv-
ileged information using commands not adequate for certified
email.

• If any party requested a successful TTP resolution and the delivery
sub-protocol is restarted by this party in a consequence, the protocol
implementation must be able to detect and prevent potential message
duplication.
• In order to obtain the best resolution results in perspective of perfor-

mance and to reduce unnecessary communication effort between TTP
and other parties, special attention should be paid on the configurable
time limits defining the start of the resolution process. While reason-
able values are pre-configured in the prototype applications, it might
be advantageous to adjust those values when gaining more experience
in real-world deployment and usage.

9.2. Implementation Evaluation

Beside the protocol evaluation the implementation of the server, client and
third party components is evaluated below:

74

9.2. Implementation Evaluation

9.2.1. MTA and Certified Email Service

By choosing the approach to outsource certified mail processing from the
MTA to an independent certified mail service application a very flexible,
scalable and reusable solution could be realized on the server-side. Next to
validating synchronization request signatures, the only additional task to
be accomplished by the MTA itself is to identify certified email messages
based on the MIME type and forward those messages to the certified mail
service for further processing. In a consequence it is possible for email
providers to offer certified mail services by making only minor changes in
the MTA software source code. No new databases or additional substantial
dependencies are required in the MTA software making it also possible
to integrate certified email in sophisticated, optimized, C or other low
level programming language MTAs with minor effort. The certified mail
service application on the other hand has common requirements for typical
applications: a database and a signature key-pair bound to the application.

9.2.2. Client

Basically certified email functionality can be integrated in every already
existing mail client software. Nevertheless, the modifications to be done
are more extensive compared to the MTA software. Changes in the user
interface are necessary, additional database tables have to be created, addi-
tional dependencies have to be provided (e.g. proxy re-encryption library
when certified mail forwarding is included), key-pairs for signatures and
encryptions have to be maintained and a periodical task runner for starting
the resolution process if necessary has to be implemented. Therefore, in
order to implement the prototype certified mail protocol without facing
major problems resulting from extension limitations of already existing
software a new, lightweight certified mail user agent was developed. If
certified email functionality should be integrated in existing UA software
in the future, the implemented prototype will be very helpful, as a system
for comparing and testing by replacing desired components is available.
Another interesting facet regarding the client software is the type of the
application: The resolution protocol is usually started before the certified

75

9. Evaluation

email transfer times out. This is no problem if the UA is realized as always
on-line web-application employing a task runner for all clients. Neverthe-
less, if the UA is realized as native application, similar to Thunderbird or
Microsoft Outlook, the start of the resolution protocol in time cannot be
guaranteed as the hosting computer or the application can be turned off.

9.2.3. TTP, Time Synchronization and PKI

For the present certified email implementation the TTP was equipped with
a reference time provider and a simple key-server for all certified email
system participants replacing a sophisticated PKI solution, as this is out of
scope for the prototype. As key and especially time-stamp queries lead to lot
of traffic between TTP and other entities those components should be split
up and enhanced (functionalities provided by sophisticated PKI solutions
should be installed, e.g., revocation mechanisms) for a productive system. By
implementing the TTP particular attention was payed to synchronization: If
multiple entities start certified mail resolution in the same point of time this
could lead to problems otherwise, as different entities could gain different
information about the certified mail transfer state.

76

10. Future Work

The implemented certified email system serves in first instance the purpose
to provide a prototype solution demonstrating the feasibility of integrating
a certified email system on top of the current Internet email infrastructure.
With Java a high programming language was chosen making it possible
to conveniently include additional modifications for testing purposes. If
the intention is on the other hand to develop a system for real-world
usage, some enhancements should, respectively can be implemented. Those
improvements wouldn’t have put additional benefits to the prototype as it
is out of scope:

• Protocols: Currently the communication between the TTP and other
parties, respectively the communication from Apache James to the
certified mail service is realized using the Java RMI protocol. While
this protocol is feasible for a prototype implementation, a more generic
protocol should be consulted for productive usage for two reasons:

– JAVA RMI is very platform dependent, it works only for Java
applications.

– If the communicating parties are not on the same host being usu-
ally the case in a real-world environment, RMI requires opening
of some specific ports. Furthermore, RMI is not really designed
for communication over the Internet.

A better and very flexible solution for a real-world system could
for example be to use JSON messages over plain sockets. For the
communication from the MTA to the certified mail service also LMTP
would offer itself.
• Authentication: For providing a secure certified email system, proper

authentication is mandatory between user agent and mail transfer
agent. The prototype employs only simple username and password

77

10. Future Work

authentication. This authentication mechanism is not adequate for
certified mails. Instead, more secure solutions should be installed, for
example two-factor authentication.
• MIME type registration: New MIME types were introduced to imple-

ment the certified mail system prototype. For productive usage those
MIME types should be officially registered according 2.5.2.
• IMAP: The prototype implementation currently supports only POP3

for the message synchronization, as enabling IMAP4 support is rather
complex. Nevertheless, for productive usage this might be a feature of
interest. If IMAP4 support should be added some things have to be
kept in mind:

– All IMAP commands disclosing information about received cer-
tified emails (also meta information) have to be signed and
recorded by the certified mail service in order to prevent selective
reception.

– As IMAP4 is intended to be used by multiple clients simultane-
ously, it has to be take care that no synchronization problems
occur in this case.

– Emails in IMAP4 can be distributed over several mailboxes and
they are usually not deleted on the server-side.

• Public key infrastructure (PKI): Instead of a sophisticated PKI only
a simple key-server was used to realize the prototype. This simple
system does not provide functionalities necessary to operate a pro-
ductive certified email system. There is no possibility for public key
chain validation or revocation for example. Therefore, for a real world
system, a more sophisticated public key infrastructure should be in-
stalled. On the protocol level support for PKI is already possible as
JWS is used as message container providing several options to pass
necessary information.
• Timestamps: For a certified email system it is necessary that all par-

ticipating entities have correct time values - this is even more essential
if UAs are realized as native client applications instead of web appli-
cations. For the prototype this was realized by using the TTP time as
reference time. In order to reduce the communication with the TTP
server a different reference time solution might be installed.
• Multiple recipients: Currently the implemented certified email pro-

78

totype is only able to handle certified emails with a single recipient.
Certified email providers might also be interested in sending certified
mails to multiple recipients. This can be realized without any protocol
modifications by some minor modifications in the UA implementation.
For each recipient the certified email should be copied and a new
transaction should be initiated.

79

Bibliography

[1] D. Spicer. “Raymond Tomlinson: Email Pioneer, Part 1.” In: IEEE
Annals of the History of Computing 38.2 (Apr. 2016), pp. 72–79. issn:
1058-6180. doi: 10.1109/MAHC.2016.25 (cit. on p. 2).

[2] Richard W. Watson. A MAIL BOX PROTOCOL. July 1971. url: https:
//tools.ietf.org/html/rfc196 (visited on 11/26/2016) (cit. on p. 2).

[3] C. Partridge. “The Technical Development of Internet Email.” In: IEEE
Annals of the History of Computing 30.2 (Apr. 2008), pp. 3–29. issn:
1058-6180. doi: 10.1109/MAHC.2008.32 (cit. on p. 3).

[4] David H. Crocker. STANDARD FOR THE FORMAT OF ARPA INTER-
NET TEXT MESSAGES. RFC 822. Dept. of Electrical Engineering, Aug.
1982, pp. 1–47. url: https://www.ietf.org/rfc/rfc0822.txt (cit. on
p. 3).

[5] P. Resnick. Internet Message Format. RFC 5322. Qualcomm Incorporated,
Oct. 2008, pp. 1–57. url: https://tools.ietf.org/html/rfc5322
(cit. on pp. 3, 20–22).

[6] J. K. Reynolds. POST OFFICE PROTOCOL. RFC 918. Oct. 1984, pp. 1–5.
url: https://tools.ietf.org/html/rfc918 (cit. on p. 3).

[7] M. Crispin. INTERACTIVE MAIL ACCESS PROTOCOL - VERSION 2.
RFC 1064. July 1988, pp. 1–26. url: https://tools.ietf.org/html/
rfc1064 (cit. on p. 3).

[8] Craig Partridge. MAIL ROUTING AND THE DOMAIN SYSTEM. RFC
974. CSNET CIC BBN Laboratories Inc, Jan. 1986, pp. 1–7. url: https:
//tools.ietf.org/html/rfc974 (cit. on p. 4).

[9] J. Klensin et al. SMTP Service Extension for 8bit-MIME Transport. RFC
1426. Feb. 1993, pp. 1–6. url: https://tools.ietf.org/html/rfc1426
(cit. on p. 4).

81

http://dx.doi.org/10.1109/MAHC.2016.25
https://tools.ietf.org/html/rfc196
https://tools.ietf.org/html/rfc196
http://dx.doi.org/10.1109/MAHC.2008.32
https://www.ietf.org/rfc/rfc0822.txt
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc918
https://tools.ietf.org/html/rfc1064
https://tools.ietf.org/html/rfc1064
https://tools.ietf.org/html/rfc974
https://tools.ietf.org/html/rfc974
https://tools.ietf.org/html/rfc1426

Bibliography

[10] Inc The Radiacti Group. Email Statistics Report, 2016-2020. Mar. 2016.
url: http://www.radicati.com/wp/wp-content/uploads/2016/
01/Email_Statistics_Report_2016-2020_Executive_Summary.pdf

(visited on 12/10/2016) (cit. on p. 4).

[11] SecuritySpace. Mail (MX) Server Survey. Jan. 2017. url: http://www.
securityspace.com/s_survey/data/man.201612/mxsurvey.html

(visited on 12/10/2016) (cit. on p. 4).

[12] Open email survey. Mar. 2016. url: http://www.openemailsurvey.org/
(visited on 12/10/2016) (cit. on p. 4).

[13] Litmus Labs. 2016 State of Email Report. Mar. 2016. url: https://
litmus.com/blog/we-analyzed-13-billion-opens-to-discover-

where-subscribers-read-email-infographic (visited on 01/08/2017)
(cit. on p. 4).

[14] D. Crocker. Internet Mail Architecture. RFC 5598. July 2009, pp. 1–54.
url: https://tools.ietf.org/html/rfc5598 (cit. on p. 7).

[15] J. Klensin R. Gellens. Message Submission for Mail. RFC 6409. Nov. 2011,
pp. 1–20. url: https://tools.ietf.org/html/rfc6409 (cit. on p. 8).

[16] J. Klensin. Simple Mail Transfer Protocol. RFC 5321. Oct. 2008, pp. 1–95.
url: https://tools.ietf.org/html/rfc5321 (cit. on pp. 10, 12, 14).

[17] K. Moore. Simple Mail Transfer Protocol (SMTP) Service Extension for
Delivery Status Notifications (DSNs). RFC 3461. Jan. 2003, pp. 1–38. url:
https://tools.ietf.org/html/rfc3461 (cit. on pp. 14, 45).

[18] J. Myers et al. Post Office Protocol - Version 3. RFC 1939. May 1996,
pp. 1–23. url: https://www.ietf.org/rfc/rfc1939.txt (cit. on
p. 15).

[19] R. Gellens et al. POP3 Extension Mechanism. RFC 2449. Nov. 1998,
pp. 1–19. url: https://tools.ietf.org/html/rfc2449 (cit. on p. 17).

[20] M. Crispin. INTERNET MESSAGE ACCESS PROTOCOL - VERSION
4rev1. RFC 3501. Mar. 2003, pp. 1–108. url: https://tools.ietf.org/
html/rfc3501 (cit. on pp. 17, 18).

[21] N. Borenstein N. Freed. Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies. RFC 2045. Nov. 1996, pp. 1–
31. url: https://tools.ietf.org/html/rfc2045 (cit. on p. 23).

82

http://www.radicati.com/wp/wp-content/uploads/2016/01/Email_Statistics_Report_2016-2020_Executive_Summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2016/01/Email_Statistics_Report_2016-2020_Executive_Summary.pdf
http://www.securityspace.com/s_survey/data/man.201612/mxsurvey.html
http://www.securityspace.com/s_survey/data/man.201612/mxsurvey.html
http://www.openemailsurvey.org/
https://litmus.com/blog/we-analyzed-13-billion-opens-to-discover-where-subscribers-read-email-infographic
https://litmus.com/blog/we-analyzed-13-billion-opens-to-discover-where-subscribers-read-email-infographic
https://litmus.com/blog/we-analyzed-13-billion-opens-to-discover-where-subscribers-read-email-infographic
https://tools.ietf.org/html/rfc5598
https://tools.ietf.org/html/rfc6409
https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc3461
https://www.ietf.org/rfc/rfc1939.txt
https://tools.ietf.org/html/rfc2449
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc2045

Bibliography

[22] N. Borenstein N. Freed. Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types. RFC 2046. Nov. 1996, pp. 1–44. url: https:
//tools.ietf.org/html/rfc2046 (cit. on pp. 23, 24).

[23] K. Moore. MIME (Multipurpose Internet Mail Extensions) Part Three:
Message Header Extensions for Non-ASCII Text. RFC 2047. Nov. 1996,
pp. 1–15. url: https://tools.ietf.org/html/rfc2047 (cit. on pp. 23,
24).

[24] J. Klensin N. Freed. Media Type Specifications and Registration Procedures.
RFC 4288. Dec. 2005, pp. 1–24. url: https://tools.ietf.org/html/
rfc4288 (cit. on pp. 23, 25).

[25] J. Klensin N. Freed. Multipurpose Internet Mail Extensions (MIME)
Part Four: Registration Procedures. RFC 4289. Dec. 2005, pp. 1–11. url:
https://www.ietf.org/rfc/rfc4289.txt (cit. on pp. 23, 26).

[26] N. Borenstein N. Freed. Multipurpose Internet Mail Extensions (MIME)
Part Five: Conformance Criteria and Examples. RFC 2049. Nov. 1996,
pp. 1–24. url: https://tools.ietf.org/html/rfc2049 (cit. on p. 23).

[27] K. Zeilenga A. Melnikov. Simple Authentication and Security Layer
(SASL). RFC 4422. June 2006, pp. 1–33. url: https://tools.ietf.
org/html/rfc4422 (cit. on p. 27).

[28] P. Hoffman. SMTP Service Extension for Secure SMTP over Transport
Layer Security. RFC 3207. Feb. 2002, pp. 1–9. url: https://www.ietf.
org/rfc/rfc3207.txt (cit. on p. 28).

[29] C. Newman. Using TLS with IMAP, POP3 and ACAP. RFC 2595. June
1999, pp. 1–15. url: https://tools.ietf.org/html/rfc2595 (cit. on
p. 28).

[30] J. Galvin et al. Security Multiparts for MIME: Multipart/Signed and
Multipart/Encrypted. RFC 1847. Oct. 1995, pp. 1–11. url: https://
tools.ietf.org/html/rfc1847 (cit. on p. 29).

[31] M. Elkins et al. MIME Security with OpenPGP. RFC 3156. Aug. 2001,
pp. 1–15. url: https://tools.ietf.org/html/rfc3156 (cit. on p. 29).

[32] S. Turner B. Ramsdell. Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.2 Message Specification. RFC 5751. Jan. 2010, pp. 1–
45. url: https://tools.ietf.org/html/rfc5751 (cit. on p. 30).

83

https://tools.ietf.org/html/rfc2046
https://tools.ietf.org/html/rfc2046
https://tools.ietf.org/html/rfc2047
https://tools.ietf.org/html/rfc4288
https://tools.ietf.org/html/rfc4288
https://www.ietf.org/rfc/rfc4289.txt
https://tools.ietf.org/html/rfc2049
https://tools.ietf.org/html/rfc4422
https://tools.ietf.org/html/rfc4422
https://www.ietf.org/rfc/rfc3207.txt
https://www.ietf.org/rfc/rfc3207.txt
https://tools.ietf.org/html/rfc2595
https://tools.ietf.org/html/rfc1847
https://tools.ietf.org/html/rfc1847
https://tools.ietf.org/html/rfc3156
https://tools.ietf.org/html/rfc5751

Bibliography

[33] Arne Tauber. “Cross-border Certified Electronic Mailing: A Scalable
Interoperability Framework for Certified Mail Systems.” PhD thesis.
2012 (cit. on pp. 35, 37, 42, 46).

[34] Joseph Lluis Ferrer-Gomilla et al. “Certified electronic mail: properties
revisited.” In: Computers & Security 29 (Apr. 2010), pp. 167–179. issn:
0167-4048 (cit. on p. 35).

[35] K. Moore. Message Disposition Notification. RFC 3798. May 2004, pp. 1–
30. url: https://tools.ietf.org/html/rfc3798 (cit. on p. 45).

[36] A. Melnikov. Message Disposition Notification (MDN) profile for Internet
Message Access Protocol (IMAP). RFC 3503. Mar. 2003, pp. 1–9. url:
https://tools.ietf.org/html/rfc3503 (cit. on p. 45).

[37] P. Hoffman. Enhanced Security Services for S/MIME. RFC 2634. June
1999, pp. 1–58. url: https://www.ietf.org/rfc/rfc2634.txt (cit. on
p. 45).

[38] Jianying Zhou and Dieter Gollmann. “Certified electronic mail.” In:
Computer Security — ESORICS 96: 4th European Symposium on Research
in Computer Security Rome, Italy, September 25–27, 1996 Proceedings. Ed.
by Elisa Bertino et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
1996, pp. 160–171. isbn: 978-3-540-70675-5. doi: 10.1007/3- 540-
61770-1_35. url: https://doi.org/10.1007/3-540-61770-1_35
(cit. on p. 46).

[39] Jianying Zhou and Dieter Gollmann. “A Fair Non-repudiation Proto-
col.” In: Proceedings of the 1996 IEEE Conference on Security and Privacy.
SP’96. Oakland, California: IEEE Computer Society, 1996, pp. 55–61.
isbn: 0-8186-7417-2. url: http://dl.acm.org/citation.cfm?id=
1947337.1947348 (cit. on p. 46).

[40] Martı́n Abadi and Neal Glew. “Certified email with a light on-line
trusted third party: Design and implementation.” In: (Jan. 2002),
pp. 387–395 (cit. on p. 46).

[41] Jianying Zhou and Dieter Gollmann. “An Efficient Non-repudiation
Protocol.” In: Proceedings of the 10th IEEE Workshop on Computer Secu-
rity Foundations. CSFW ’97. Washington, DC, USA: IEEE Computer
Society, 1997, pp. 126–. isbn: 0-8186-7990-5. url: http://dl.acm.org/
citation.cfm?id=794197.795082 (cit. on p. 46).

84

https://tools.ietf.org/html/rfc3798
https://tools.ietf.org/html/rfc3503
https://www.ietf.org/rfc/rfc2634.txt
http://dx.doi.org/10.1007/3-540-61770-1_35
http://dx.doi.org/10.1007/3-540-61770-1_35
https://doi.org/10.1007/3-540-61770-1_35
http://dl.acm.org/citation.cfm?id=1947337.1947348
http://dl.acm.org/citation.cfm?id=1947337.1947348
http://dl.acm.org/citation.cfm?id=794197.795082
http://dl.acm.org/citation.cfm?id=794197.795082

Bibliography

[42] Guilin Wang. “Generic Fair Non-Repudiation Protocols with Transpar-
ent Off-line TTP.” In: Proceedings of the 2005 Conference on Applied Public
Key Infrastructure: 4th International Workshop: IWAP 2005. Amsterdam,
The Netherlands, The Netherlands: IOS Press, 2005, pp. 51–65. isbn:
1-58603-550-9. url: http://dl.acm.org/citation.cfm?id=1564104.
1564111 (cit. on p. 46).

[43] H. Wang et al. “A New Certified Email Protocol.” In: 18th International
Workshop on Database and Expert Systems Applications (DEXA 2007).
Sept. 2007, pp. 683–687. doi: 10.1109/DEXA.2007.117 (cit. on p. 46).

[44] H. Wang et al. “Certified Email Delivery with Offline TTP.” In: Third
International Symposium on Information Assurance and Security. Aug.
2007, pp. 15–20. doi: 10.1109/IAS.2007.85 (cit. on p. 46).

[45] Carlo Blundo, Stelvio Cimato, and Roberto De Prisco. “Certified Email:
Design and Implementation of a New Optimistic Protocol.” In: Pro-
ceedings of the Eighth IEEE Symposium on Computers and Communications
(ISCC 2003), 30 June - 3 July 2003, Kiris-Kemer, Turkey. 2003, pp. 828–
833. isbn: 0-7695-1961-X. doi: 10.1109/ISCC.2003.1214220. url:
http://dx.doi.org/10.1109/ISCC.2003.1214220 (cit. on p. 46).

[46] D. Liu et al. “A Practical Certified E-Mail System with Temporal
Authentication Based on Transparent TSS.” In: 2008 Ninth ACIS Inter-
national Conference on Software Engineering, Artificial Intelligence, Net-
working, and Parallel/Distributed Computing. Aug. 2008, pp. 285–290.
doi: 10.1109/SNPD.2008.119 (cit. on p. 46).

[47] G. Draper-Gil et al. “An optimistic certified e-mail protocol for the
current Internet e-mail architecture.” In: 2014 IEEE Conference on
Communications and Network Security. Oct. 2014, pp. 382–390. doi:
10.1109/CNS.2014.6997507 (cit. on pp. 47, 49, 53–55).

[48] Matt Blaze, Gerrit Bleumer, and Martin Strauss. “Divertible Protocols
and Atomic Proxy Cryptography.” English. In: Advances in Cryptology
— EUROCRYPT’98. Vol. 1403. Lecture Notes in Computer Science.
1998, pp. 127–144. isbn: 978-3-540-64518-4 (cit. on p. 68).

85

http://dl.acm.org/citation.cfm?id=1564104.1564111
http://dl.acm.org/citation.cfm?id=1564104.1564111
http://dx.doi.org/10.1109/DEXA.2007.117
http://dx.doi.org/10.1109/IAS.2007.85
http://dx.doi.org/10.1109/ISCC.2003.1214220
http://dx.doi.org/10.1109/ISCC.2003.1214220
http://dx.doi.org/10.1109/SNPD.2008.119
http://dx.doi.org/10.1109/CNS.2014.6997507

Appendix

87

Appendix

A. Email Server Software

Table .1 compares desired features of server-side email software including
the programming language, operating system support, license (proprietary
or open source) and the protocols included while a list targeting the com-
parison of mail servers published on wikipedia was used as basis 1.

Name Lang Linux Lic Features
agorum core Java yes os SMTP/IMAP
Apache James Java yes os SMTP/IMAP/POP3

Atmail PHP yes dual SMTP/IMAP/POP3

Axigen ? yes prop SMTP/IMAP/POP3

Citadel C yes os SMTP/IMAP/POP3

Cloudmark ? yes prop SMTP
CommuniGate Pro ? yes prop SMTP/IMAP/POP3

Courier Mail Server C/C++ yes os SMTP/IMAP/POP3

Cyrus IMAP server C yes os IMAP/POP3

Dovecot C yes os IMAP/POP3

Eudora Internet Mail Server ? no prop SMTP/IMAP/POP3

Exim C yes os SMTP
FirstClass ? yes prop SMTP/IMAP/POP3

Gordano Messaging Suite ? yes prop SMTP/IMAP/POP3

GroupWise ? yes prop SMTP/IMAP/POP3

Halon C++ yes prop SMTP
Haraka Node.js yes os SMTP
hMailServer C++ no os SMTP/IMAP/POP3

IBM/Lotus Notes/Domino Java/C++ yes prop SMTP/IMAP/POP3

IceWarp Mail Server ? yes prop SMTP/IMAP/POP3

Ipswitch IMail Server ? no prop SMTP/IMAP/POP3

Kolab C++/PHP yes os SMTP/IMAP/POP3

Kopano C++/PHP yes os SMTP/IMAP/POP3

Mailsite ? no prop SMTP/IMAP/POP3

Mailtraq ? no prop SMTP/IMAP/POP3

MDaemon ? no prop SMTP/IMAP/POP3

1https://en.wikipedia.org/wiki/Comparison of mail servers

88

B. Demo Environment Setup

Mercury Mail Transport ? no prop SMTP/IMAP/POP3

Microsoft Exchange Server C++/C# no prop SMTP/IMAP/POP3

NetMail ? yes prop SMTP/IMAP/POP3

OpenSMTPD C yes os SMTP
Open-Xchange C/Java yes dual SMTP/IMAP/POP3

Oracle Communications ? yes prop SMTP/IMAP/POP3

Postfix C yes os SMTP
Qmail C yes os SMTP/POP3

Qpopper C yes os POP3

Sendmail C yes os SMTP
SparkEngine ? yes prop SMTP
Synovel Collabsuite ? yes prop SMTP/IMAP/POP3

UW IMAP C/C++ yes os IMAP/POP3

WinGate ? no prop SMTP/IMAP/POP3

Zarafa C++ yes os SMTP/IMAP/POP3

Table .1.: Desired features for email server software. Abbreviations: Lang - Programming
Language, Linux - Linux support, Lic - Licence, os - open source, prop - propri-
etary, Features - protocols provided.

B. Demo Environment Setup

This section provides an example how to set up a demo environment
similar to figure 7.1. In order to come close to a real world scenario this
setup contains two independent email servers including the certified mail
extension services, two independent email clients and one common trusted
third party (TTP). In order to omit the requirement of setting up a DNS
server for simplification, the environment is configured only for particular
demo domains. Embedded derby databases are used per default while
it is possible and convenient to configure several other database types
as well. It has to be taken care that the trusted third party should be
running before starting the certified mail server extensions, as the latter
generates a signature keypair after starting followed by a deployment of the
public signature key at the TTP instance. The following instruction leads

89

Appendix

from source code to be compiled to a running environment including the
necessary configuration. In order to shorten the compiling time the flag
-DskipTests=true can be used for the maven commands. For inspecting the
derby databases the application DBeaver has proven itself.

B.1. Modified javax.mail Library

The modification of the javax.mail library was arranged as maven project.
There is no configuration necessary. The only thing to be considered here is
to compile the library as well as installing it to the local maven repository as
other projects make use of it. Both tasks can be achieved with the following
command:
mvn i n s t a l l

B.2. Trusted Third Party

The TTP was arranged as maven project. In order to compile and generate a
runnable jar file the following command should be executed:
mvn package

Herby a jar file is created in the target folder that can be copied to the desired
destination. The database schemas and files can be generated automatically
in a consequence. Therefore the file applicationContext.xml inside the jar file
has to be changed. Particularly the property hibernate.hbmdll.auto has to be
altered from validate to create:
<beans : prop key=” hibernate . hbm2ddl . auto”>crea te</beans : prop>

Afterwards the database can be created by:
j ava − j a r cmailTTP . j a r

This command creates the database and the schemas relative to the jar file
in the same directory. When the schemas were created successfully the TTP
should be shut down again followed by changing back create to validate

90

B. Demo Environment Setup

inside the applicationContext.xml file. For finally starting up the TTP the
following command can be used:
nohup java − j a r cmailTTP . j a r &

It has to be paid attention that this way the task has to be killed manually
for shutting the TTP down again.

B.3. Apache James

Apache James is a maven project as well. For compilation and package
generation the following command should be used (the -DSkipTests=true
flag is highly recommended here as unit tests take a lot of time otherwise):
mvn package −DskipTests=true −Pwith−assembly

Unfortunately the RMI port to the certified mail extension service is still
hardcoded currently making it necessary to compile at least the correspond-
ing classes twice for obtaining two server instances. Those port values occur
in two classes: CertifiedMail.java and RetrCmdHandler.java. Example values
could be 1097 and 1098 (1099 should not be used in order to omit troubles).
The resulting zip file is located in james-project/server/app/target. After un-
zipping to the desired destination several configuration work is necessary
for each instance. The following builds on the demo default configuration
coming with Apache James and has to be performed for both instances
by adapting the respective attibutes. First of all several mailets have to be
configured in mailetcontainer.xml. For activating certified email technology
the corresponding mailet together with it’s matcher have to be configured
inside the transport processor configuration:
<mai le t match=” I s C e r t i f i e d M a i l ” c l a s s =” C e r t i f i e d M a i l ” />

In order to enable sending mails in arbitrary domains without setting up a
DNS server the following lines should be added to the transport processor:
<mai le t match=” HostIs= i a i k 1 . tugraz . a t ”

c l a s s =”RemoteDelivery”>
<outgoingQueue>re lay</outgoingQueue>
<delayTime >5000 , 100000 , 500000</delayTime>
<maxRetries>25</maxRetries>

91

Appendix

<maxDnsProblemRetries>0</maxDnsProblemRetries>
<deliveryThreads>10</deliveryThreads>
<sendpar t ia l>true</sendpar t ia l>
<bounceProcessor>bounces</bounceProcessor>
<gateway >0 .0 .0 .0</ gateway>
<gatewayPort>2525</gatewayPort>

</mailet>
<mai le t match=” HostIs= i a i k 2 . tugraz . a t ”

c l a s s =”RemoteDelivery”>
<outgoingQueue>re lay2</outgoingQueue>
<delayTime >5000 , 100000 , 500000</delayTime>
<maxRetries>25</maxRetries>
<maxDnsProblemRetries>0</maxDnsProblemRetries>
<deliveryThreads>10</deliveryThreads>
<sendpar t ia l>true</sendpar t ia l>
<bounceProcessor>bounces</bounceProcessor>
<gateway >0 .0 .0 .0</ gateway>
<gatewayPort>2526</gatewayPort>

</mailet>

The domain name of the particular server has to be configured in domain-
list.xml, for example:

<domainname>i a i k 1 . tugraz . at</domainname>

The POP3 server can be configured in pop3server.xml in the following manner
while a default keystore is used to be exchanged for productive usage:

<pop3servers>
<pop3server enabled=” true”>

<jmxName>pop3server</jmxName>
<bind >0 .0 .0 .0 :8143 </ bind>
<connectionBacklog >200</connectionBacklog>
< t l s socketTLS=” f a l s e ” s tar tTLS =” true”>

<keystore> f i l e : . / . . / conf/keystore</keystore>
<s e c r e t>demopw</s e c r e t>
<provider>

org . bouncycast le . j c e . provider . BouncyCastleProvider
</provider>

</t l s >
<connectiontimeout >1200</connectiontimeout>
<connectionLimit>0</connectionLimit>
<connect ionLimitPerIP>0</connect ionLimitPerIP>
<handlerchain>

92

B. Demo Environment Setup

<handler c l a s s =”org . apache . james . pop3server . core . CoreCmdHandlerLoader”/>
</handlerchain>

</pop3server>
</pop3servers>

The SMTP server can be configured in smtpserver.xml in the following manner
while a default keystore is used to be exchanged for productive usage:

<smtpservers>
<smtpserver enabled=” true”>

<jmxName>smtpserver−authent icated</jmxName>
<bind >0 .0 .0 .0 :2525 </ bind>
<connectionBacklog >200</connectionBacklog>
< t l s socketTLS=” f a l s e ” s tar tTLS =” true”>

<keystore> f i l e : . / . . / conf/keystore</keystore>
<s e c r e t>demopw</s e c r e t>
<provider>

org . bouncycast le . j c e . provider . BouncyCastleProvider
</provider>
<algorithm>SunX509</algorithm>

</t l s >
<connectiontimeout >360</connectiontimeout>
<connectionLimit>0</connectionLimit>
<connect ionLimitPerIP>0</connect ionLimitPerIP>
<authRequired>announce</authRequired>
<authorizedAddresses >0 .0 .0 .0/0</ authorizedAddresses>
<v e r i f y I d e n t i t y >true</v e r i f y I d e n t i t y >
<maxmessagesize>0</maxmessagesize>
<addressBracketsEnforcement>true</addressBracketsEnforcement>
<smtpGreeting>JAMES Linagora ’ s SMTP awesome Server</smtpGreeting>
<handlerchain>

<handler c l a s s =”org . apache . james . smtpserver . f a s t f a i l . ValidRcptHandler”/>
<handler c l a s s =”org . apache . james . smtpserver . CoreCmdHandlerLoader”/>

</handlerchain>
</smtpserver>

</smtpservers>

The jmx port used by the James client application has to be configured in
jmx.properties:

jmx . address = 1 2 7 . 0 . 0 . 1

jmx . port =9999

93

Appendix

A derby database is generated in /var/store automatically during the first
startup without any further interaction. After the configuration is done the
server can be started by executing ./james start in the bin folder. In order to
be operable a domain has to be created as well as james users (while the
user cmailservice is required) using the james client in the bin directory:

sh james−c l i . sh −h 1 2 7 . 0 . 0 . 1 −p 9999 adddomain
i a i k 1 . tugraz . a t

sh james−c l i . sh −h 1 2 7 . 0 . 0 . 1 −p 9999 adduser
c m a i l s e r v i c e @ i a i k 1 . tugraz . a t c m a i l s e r v i c e

sh james−c l i . sh −h 1 2 7 . 0 . 0 . 1 −p 9999 adduser
tom@iaik1 . tugraz . a t tom

A shutdown of the James server can be initiated by executing the following
command in the bin folder:

sh james stop

B.4. Certified Mail Server Extension

Similar to former projects the Certified Mail Server Extension is arranged as
maven project and can be compiled and packaged to a jar file by using the
corresponding maven command:

mvn package

After copying the jar file to the desired destination the config.properties file in
the jar file has to be adapted. The following listing demonstrates an example
configuration:

mtaUrl = l o c a l h o s t
mtaPort = 2525

serviceMailAddress = c m a i l s e r v i c e @ i a i k . tugraz . a t
serviceMailPassword = c m a i l s e r v i c e
rmiServerPort = 1098

signatureAlgorithm = SHA256withRSA
jwsSignatureAlgorithm = RS256

signatureKeyFormat = RSA
signatureKeyLength = 1024

94

B. Demo Environment Setup

The database can be created by changing the hibernate.hbm2ddl.auto property
from validate to create inside applicationContext.xml:
<beans : prop key=” hibernate . hbm2ddl . auto”>crea te</beans : prop>

In order to initiate the creation of the database and the schema the Certified
Mail Extensions should be started (and stopped again afterwards):
j ava − j a r cmai lServ ice . j a r

For starting the Certified Mail Extensions finally a truststore has to be
provided containing a root certificate of James mail server. Additionally
hibernate.hbm2ddl.auto has to be changed back to validate. The extensions can
be started afterwards by the following command:
nohup java − j a r −Djavax . net . s s l . t r u s t S t o r e =”/opt/cmail/cmail1/ t s ”
−Djavax . net . s s l . t rustStorePassword =”demopw”
−Dorg . j b o s s . logging . provider= s l f 4 j cmai l serv ice −0.0.1−SNAPSHOT. j a r &

This way the process has to be killed manually if a shutdown is desired.

B.5. Cmail Client

The last component to be deployed is the cmail user client. As this applica-
tion is a web application, webapp runners, e.g. Apache Tomcat2, have to be
set up. The project itself is a maven project again and can be compiled and
packaged by:
mvn package

Afterwards the resulting war file has to be copied to the according folder of
the webapp runner. In order to create the database a folder for the database
has to be created somewhere on the filesystem. The path to this folder has
to be configured in the applicationContext.xml file located in the war file’s
WEB-INF folder:
<beans : property name=” u r l ” value=” jdbc : derby :/ opt/cmail/ua1/db/ua1 ;

c r e a t e =true ” />

2https://tomcat.apache.org/

95

https://tomcat.apache.org/

Appendix

Additionally the hibernate.hbm2ddl.auto property in the same file should be
changed from validate to create during the first startup. For the creation of
the database the application should now be started and stopped again by
executing the following in tomcat’s bin folder:
sh s t a r t u p . sh
sh shutdown . sh

For starting the application finally a truststore containing a root certificate
of James server certificate has to be provided and configured. For the
configuration a file named setenv.sh has to be created in tomcats bin folder
containing the following content:
JAVA OPTS=”$JAVA OPTS −Djavax . net . s s l . t r u s t S t o r e =/opt/cmail/ua1/ t s ”
JAVA OPTS=”$JAVA OPTS −Djavax . net . s s l . t rustStorePassword=demopw”
JAVA OPTS=”$JAVA OPTS −Dorg . j b o s s . logging . provider= s l f 4 j ”
export JAVA OPTS

Finally, after changing back the hibernate.hbm2ddl.auto property to validate
the application can be started and stopped by:
sh s t a r t u p . sh
sh shutdown . sh

96

