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Abstract

The present thesis is devoted to the spectral analysis of transmission and boundary value
problems for Dirac operators. Dirac operators are one of the main mathematical tools
in relativistic quantum mechanics to describe the propagation of spin % particles taking
relativistic effects into account. In the first part of the thesis Dirac operators with singular
0-shell interactions which are combinations of electrostatic and Lorentz scalar potentials
are studied. Such operators are associated to transmission problems for the Dirac equation.
The second part of the thesis is then devoted to self-adjoint Dirac operators in domains.
With the aid of boundary triples the self-adjointness of the corresponding operators is
shown and some of the spectral data are computed. An interesting property is the existence
of critical interaction strengths and boundary values, respectively, for which the associated
operators have significantly different spectral properties. Eventually, for Dirac operators
with singular interactions also the nonrelativistic limit is computed.

Zusammenfassung

In der vorliegenden Dissertation werden Transmissions- und Randwertprobleme fiir Dirac-
Operatoren behandelt. Dirac-Operatoren sind eines der wichtigsten mathematischen Werk-
zeuge 1in der relativistischen Quantenmechanik zur Beschreibung von Teilchen mit Spin %,
sodass auch Effekte der Relativititstheorie eingebunden werden. Im ersten Teil der Dok-
torarbeit geht es um Dirac-Operatoren mit singuldren §-Interaktionen, welche Kombina-
tionen von elektrostatischen und Lorentz-skalaren Potentialen sind. Solche Operatoren
konnen zur Behandlung von bestimmten Transmissionsproblemen verwendet werden. Im
zweiten Teil der Arbeit werden selbstadjungierte Dirac-Operatoren in Gebieten studiert.
Mithilfe von Randtripeln wird die Selbstadjungiertheit der Operatoren gezeigt und es wer-
den einige spektrale Kenngrof3en berechnet. Ein interessanter Aspekt ist die Existenz von
kritischen Interaktionsstirken und Randwerten, fiir welche die spektralen Eigenschaften
der zugehorigen Operatoren signifikant unterschiedlich sind. SchlieBlich wird fiir Dirac-
Operatoren mit singulédren Interaktionen der nichtrelativistische Grenzwert berechnet.
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1 INTRODUCTION

The Dirac equation is one of the main mathematical tools in relativistic quantum mechan-
ics. While nonrelativistic quantum mechanics, which is based on the Schrodinger equation,
led some new light into fundamental physics, it is not compatible with Einstein’s theory
of relativity. In order to find a theory that combines these two ideas in a more compatible
way Paul Dirac suggested to replace Schrodinger’s equation by another partial differential
equation, that shall be discussed now. Assume that 7z = 1 and denote the speed of light by
c. Then the Dirac equation whose solution describes the propagation of a spin—% particle
with mass m in R? under the influence of an external electrostatic potential V. and a scalar
potential Vs, which are both functions V;, Vs : R — R, is

3
i¥(t,x) = |—ic ) ooy, +Vels + (mc? +Vi)B | ®(r,x), W(0,x)=wyp(x). (1.1
j=1

In the above equation the wave function W is required to fulfill ¥(¢,-) € L?(R3;C*) for
almost every ¢ > 0, that means ¥ is a vector valued function with four components, 1; is
the d x d identity matrix, and the Dirac matrices «;, 8 € C**4 satisfy the anti-commutation
relations

Otj(Xk—l-OCk(XjZZSJk, ﬁ2:14, and ajﬁ+ﬁaj:0, J ke {1,2,3}; (1.2)

see (3.1) for their definition. The Dirac equation describes the same physical problems
as the Schrodinger equation and there is also a similar interpretation, see [68] and the
explanations below.

Following [68] there were several motivations for Paul Dirac to introduce the equation (1.1)
in 1928 in his famous paper [40]:

(i) It is a first order equation in time, which is required to have a meaningful quantum
mechanical evolution equation.

(i1) The spin of the particle is modelled automatically in a natural way.

(ii1)) Employing the replacement relations

E —io;, p— —iVy,
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where E denotes the energy of a particle and p its momentum, then we see that the
free Dirac equation (for vanishing external potentials V, = V5 = 0) formally fulfills,
in contrast to Schrodinger’s equation, the energy-momentum relation

E2 = m2ct + 2 p?
predicted in Einstein’s special theory of relativity.

Although Dirac designed the equation (1.1) only by theoretical arguments, it turned out
that with its help the hydrogen atom could be described with an impressive exactness.

To get a quantum mechanical observable one associates to the right hand side of the Dirac
equation (1.1) a self-adjoint partial differential operator in L?(R3;C*)

3
A=—ic} oy, f+Vels+ (mc*+Vs)B,
j=1

which is the Dirac operator. An important special case is V. = Vs = 0, which yields the
free Dirac operator. It is the relativistic counterpart of the free Laplacian and it often has
the role of a reference operator. As the Dirac operator describes the same physics as the
Schrédinger operator, one would expect similar (spectral) properties. Nevertheless, there
are several unexpected features of A. The most important one is that A is not bounded from
below. For the interpretation of this interesting property the existence of anti-particles was
postulated. From the mathematical point of view the lack of semi-boundedness makes the
analysis more complicated and it is one of the reasons why several problems which are
solved for Schrodinger operators are still open for Dirac operators. It is one of the main
goals in this thesis to make a contribution to this field. In particular, we want to study
transmission problems for the Dirac equation which can be reformulated to the spectral
study of Dirac operators in L?(R3;C*) with singular interactions that are formally given
by

A%e,n = _ic(a'v)+mczﬁ+<nel4+nsﬁ)52; (1.3)

N

where X is a compact and sufficiently smooth surface in R® and 1, 15 : £ — R are Lipschitz
continuous functions. The second main topic of this thesis are Dirac operators acting in a
domain Q C R? that are related to boundary value problems for the Dirac equation with
boundary conditions of the form

t(Is+iB(o- V) floa = (L +iB(a-v))Bflag: (1.4)

where 7T is a Lipschitz continuous function on dQ and Vv is the unit normal vector field
on dQ. In the above equations (1.3) and (1.4) we used for vectors x = (x; ,XQ,X3)T €R3

the notation \

o-x:= ox;. (1.5)
j=1



Our main mathematical instrument to study the operators associated to the above prob-
lems are quasi and ordinary boundary triples. Boundary triples are a powerful tool in
the extension and spectral theory of symmetric and self-adjoint operators. They will al-
low us to study the operators with non trivial transmission and boundary conditions as
self-adjoint extensions of operators with zero transmission and boundary conditions, re-
spectively. While quasi boundary triples were introduced in [17] in particular to investi-
gate boundary value problems for partial differential operators, the application of ordinary
boundary triples for partial differential operators is more complicated, but they have the
advantage that with their help one can describe all self-adjoint extensions of a given sym-
metry. For our purposes a combination of quasi and ordinary boundary triple techniques
will be convenient. Note that these tools were successfully applied in similar problems for
the Laplace and Schrodinger operator [12, 13, 17-19, 22]. Let us describe our problems
and results now in a more detailed way and let us have a look on the existing literature:

The first main part of this thesis is devoted to Dirac operators with J-shell potentials.
Singular 8-type potentials are often used in mathematical physics as idealized models for
strongly located electric potentials, as the spectral and scattering data as well as the location
of eigenfunctions of the corresponding differential operators are then approximately the
same. For Schrodinger operators such ideas are well established, see the monographs
[3,27,44], the review article [43], and the references therein. In the relativistic setting first
the Dirac operator in 1D with point interactions was investigated, compare [46] and [3,
Appendix J]. Using some standard techniques the resolvents and the complete spectral data
could be computed explicitly. Moreover, in [66] Seba showed that these Hamiltonians can
be approximated in the norm resolvent sense by Dirac operators with squeezed potentials.
In this procedure the interaction strength of the limit operator depends in a nonlinear way
on the approximating potentials — this corresponds to a phenomenon known in the physical
literature as Klein’s paradox. Eventually, based on [46] and a decomposition to spherical
harmonics Dittrich, Exner, and Seba investigated in [41] Dirac operators with singular
interactions supported on a sphere in R3. With this technique the self-adjointness for a
wide class of parameters was shown and the resolvent and some spectral data could be
computed, but due to this decomposition to spherical harmonics many of the interesting
properties of A%MS were still hidden.

After a longer period without much progress a breakthrough was then the seminal pa-
per [5] from 2014, where Arrizabalaga, Mas and Vega studied the operator A%w in 3D

for constant 7. and X being the boundary of a bounded C2-domain using a modern ap-
proach from extension theory for symmetric operators. There, the §-shell potential was
modelled via a jump condition for functions in the domain of A%e o along X. Such ideas
are well known from the study of Schrodinger operators with sir{gular interactions, see
for instance [3, 19,43]. Using some integral operators related to the resolvent of the free
Dirac operator the authors managed to prove the self-adjointness of A%e o for Ne # £2c; the
case N = +2c¢ remained open and it seemed that the corresponding oﬁerator has different
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properties. The study was then continued in [6,7,54], where among other things a Birman-
Schwinger principle and an isoperimetric inequality for A’T:k’0 were shown. Furthermore,
in [6] an interesting confinement phenomenon for A%mns was obtained: if nZ —n2 = —4c?,
then the operator A%mns decouples to two independent operators acting in the interior and
the exterior domain with boundary X; such effects are not known for the corresponding
Schrédinger operators. Other recent papers related to the approach in [5] are [56] and [57],
where it is shown that Ai:k,o and Ag,ns can be approximated in the strong resolvent sense by
Dirac operators with squeezed electrostatic and scalar potentials, respectively, supposed
that the interaction strengths 7M. and 7 fulfill a certain smallness condition, and where
similar as in 1D Klein’s paradox appears.

Then in [11] the approach from [5] was translated to the framework of quasi boundary
triples. Since boundary triple techniques do not require semi-boundedness of the operators
they are suitable for the application to Dirac operators with singular interactions, as it
was done in 1D for instance in [30,33,58]. In [11] again A%e o With constant ne # £2¢
was considered and with the aid of the above mentioned qua7si boundary triple a Krein
type resolvent formula for A%w was derived. It turned out that the spectral properties of
A%e,o are encoded in a family of boundary integral operators appearing also in [5]. With
the help of these operators some spectral properties and the nonrelativistic limit of A%e 0
were studied in [11]. The analysis was continued in [14], where the quasi boundary tripfe
from [11] was transformed to an ordinary boundary triple, which allowed to prove the self-
adjointness and to deduce some spectral properties of A,),:k o also in the critical case 1M =
42c¢. Other notable publications in this direction are [55]7, where the self-adjointness of
Aizc,o was shown via some Calderon projectors, and [48], where the discrete eigenvalues

of A% n, were studied for fixed constant 1 and large masses m.

Let us turn the discussion to the main results of this thesis on Dirac operators with sin-
gular interactions. These are generalizations of results in [11, 14,48] to combinations of
electrostatic and scalar shell-potentials with non-constant strengths. Let ¥ C R3 be the
boundary of a sufficiently smooth bounded domain €., let v be the unit normal vector
field on X pointing outwards ., and let 1,7 : £ — R be Lipschitz continuous. We set
Q :=R3\Q, and use for f € L?(R?;C*) the notation f. := f | Q.. Then the (formal)
operator A%mns from (1.3) is rigorously defined by

A%e,nsf = (—ica-V —I-mczﬁ)f+ @ (—ica-V —|—mc2[3)f_,

domA%e,nS = {f:f+ o f e H'(QuCHaH (Q_;CY: (1.6)

@) ls 1) = s+ Bl )

Here H' (Q.;C*) denotes the Sobolev space of once weakly differentiable functions in Q...
As for 8-shell potentials with constant coupling it turns out that interaction strengths



with
Ne(x)? —Ns(x)? =4¢*> forsome xeX (1.7)

are in some sense critical. For the noncritical case we obtain in Section 4.2 the following
basic properties of A%&nns

Theorem 1. Assume that (1.7) does not hold. Then A%mns is self-adjoint and the following
is true:

(i) The essential spectrum of A%e,ns is (—o0, —mc?| U [mc?, ).

(i1) The discrete spectrum of A%e.ns is finite.

(iii) (A%mns — k) S (A§,0 — /l) 3 is a trace class operator for any A € C\ R.

The proof of Theorem 1 is based on a Krein type resolvent formula that relates the re-
solvent of A%mns to the resolvent of the free Dirac operator and some perturbation term
that contains the spectral properties of A%ﬁm Item (ii) can be shown by a standard trick
using that functions in domA%ems have some Sobolev regularity and that the interaction
is compactly supported. Eventually, assertion (iii) in Theorem 1 is interesting, because it
provides a basis to do scattering theory for the operators A%e,ns and the free Dirac operator

z
A070.

The spectral properties of A?,:]ems change significantly, if the interaction strength is critical,
that means if (1.7) is fulfilled. It turns out in Proposition 4.3.1 that A%ﬁm defined as
in (1.6) is symmetric, but not self-adjoint. Following the strategy of [14] we compute
then the self-adjoint realization of A%mns for constant interaction strengths 1. and 7ng with
nZ —n2 = 4c%. The crucial point is to consider the jump condition in the definition of
A%e,ns not in L2(£;C*), but in the larger Sobolev space of negative order H~'/2(X;C*).

Using this we show in Section 4.3 the following results:

Theorem 2. Assume that Ne,Ns € R such that N2 —n2 = 4c>. Then A%e,ns defined by (1.6)
is essentially self-adjoint, the domain of its self-adjoint closure is not contained in the
space H' (R3\ X;C*), the set (—oo, —mc?| U [mc?, ) is contained in the essential spectrum

of A%mns and there can be essential spectrum in (—mc? mc?).

We would like to point out that in the critical case A%ﬁm can have essential spectrum in
(—mc?,mc?); this is shown in Theorem 4.3.6 for 1, = £2c¢ and 7 = 0 under the assump-
tion that there is a flat part contained in X. This is closely related to a similar effect known
for indefinite Laplacians, compare [16,31]. In particular it seems that this phenomenon is
related to the geometry of X, that means we do not expect that it appears for all X.

Eventually, we compute in Section 4.4 the nonrelativistic limit of A%ﬁm in the purely elec-

trostatic and purely scalar case, that means that g = 0 and 1. = 0, respectively. For this,
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one subtracts/adds the energy of the resting particle mc? to the total energy and computes
the limit of the resolvent in the operator norm for ¢ — o. The expected result is (the
resolvent of) a Schrodinger operator describing the same physics times a projection onto
the upper/lower component of the Dirac wave function. The two different considerations
correspond to the limit of the positive and the negative part of the Dirac operators. In our
case it turns out that the nonrelativistic limit is a Schrodinger operator with an electric -
potential of the same strength. This yields then finally a justification to call A%mns a Dirac
operator with a d-shell potential. Note that the critical interaction strength is no limitation
here, as for any fixed Lipschitz continuous 1. we have 1. < 4c? on X for all sufficiently
large c. Moreover, since the spectral properties of Schrodinger operators with §-potentials
are well studied, see for instance [3,43,44] and the references therein, one can deduce from
this approximation analysis some of the spectral properties of AZ .o and AZ for large val-
ues of ¢, as it is shown in one model example in Proposition 4 4.5, The theorem on the
nonrelativistic limit reads (in a simplified form) as follows:

Theorem 3. Let 1 : £ — R be a Lipschitz continuous function. Then it holds for any

AeC\R

| o 1 1 L0
lim (A7 o~ (A +mc?)) " = lim (AF, — (A +mc?)) :(_%“”‘SZ_A) (5 0)
and

st [ 1 170 o0
lim (43~ (2 -me) ' = (a-ma-a) Q7).

where all limits are in the operator norm.

Let us discuss now the second main topic of this thesis. The motivation for studying Dirac
operators in domains Q C R3 with some boundary conditions that make them self-adjoint
arise from several aspects: from the mathematical point of view they can be seen as the
counterpart of Laplacians with Robin type boundary conditions. Hence, one can expect
interesting spectral properties of these operators. From the physical point of view Dirac
operators with special boundary conditions are used to describe in relativistic quantum
mechanics particles (like gluons) that are confined to a predefined area or box. The most
important model in this context is the MIT bag model suggested in the 1970s by physicists
at the MIT to study the quark-gluon confinement, see [34-37, 49]; the MIT bag model
corresponds to the boundary condition (1.4) with T = 0. Moreover, in 2D Dirac operators
with special boundary conditions similar to the MIT bag boundary conditions are used in
the description of graphene, compare [25, 26].

The mathematical literature on Dirac operators in domains contains different approaches.
In differential geometry there are several articles dealing with self-adjoint Dirac operators
on smooth manifolds, see for instance [8,9,59]. In dimension two the paper [64] from 1995
is remarkable, where Schmidt studied the Dirac operator with so-called zigzag boundary



conditions and showed, that (in the massless case) these operators are self-adjoint and
that zero is an eigenvalue of infinite multiplicity. This indicates that similar as for Dirac
operators with singular interactions there are some critical boundary values, for which
the associated operators have different spectral properties. Other publications in this field
are [25, 26] where the self-adjointness of Dirac operators for a wide class of boundary
conditions is shown. Note that the papers [25,26,64] have in common that a transformation
of R? to C and some methods from complex analysis are used. A recent paper on the
MIT bag operator in R is [4], where the self-adjointness of the corresponding operator is
shown via operator theoretic arguments and the asymptotics of the discrete eigenvalues are
computed for large masses.

Our motivation is to study the self-adjointness and the spectral properties of Dirac oper-
ators on domains in R? with boundary conditions of the form (1.4) using boundary triple
techniques. The strategy used here is very similar as for Dirac operators with singular inter-
actions in Chapter 4 and we get comparable results. Assume that Q C R> is a bounded and
sufficiently smooth domain or the complement of such a set, let 7 : dQ — R be Lipschitz
continuous, and define

A?f = (—ic(X-V—f—mczﬁ)f,
domAP := {f e H'(CH 1 t(L+if (- V) flag = (Ia+iB(a-v))Bflaa}

There are two reasons why we are interested in boundary conditions of the form (1.4): on
the one hand the orthogonal sum A @ A$ is of the form A?]Sns with 7. and 1y depending
on 7 in a suitable form, compare Section 5.3.1. Hence A? can be seen as a Dirac operator
describing a particle actually living in R>, but which is confined to Q, which is of interest
in particle physics. On the other hand, the boundary condition (1.4) is a translation of the
boundary condition used in [25] to a boundary triple framework. In fact, in [25] similar
operators in R? with boundary conditions

(1.8)

[L+io3(c-v)cosn —sinnos]ulyg =0

for a Lipschitz continuous function 1 : dQ — R are studied. Here 6 = (01, 0,) and 03 are
the Pauli spin matrices, see (3.2), and the notation o - v is the 2D analogue of (1.5). Using
a splitting

1 ) 1 )
Ulgo = 5(12 +i03(0 - V))ulpq + 5(12 —i03(0-V))ulyq =: Prulyg +P-ulyq,

i03(0 - V)Py = £P., and P_ = 03P, 03 we see that these boundary conditions are the 2D

analogue of (1.4) for T = —%, if cosn(x) ¢ {0,1} for all x € dQ.

As already mentioned above, in a similar manner as for Dirac operators with singular
interactions there exist critical boundary values for which the spectral properties of the
corresponding operators A% are significantly different, namely

t(x)?=1 forsome x€oQ. (1.9)
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In the case of noncritical boundary values the basic spectral properties of A$ are inves-
tigated in Section 5.3. Clearly, they are significantly different whether € is bounded or
unbounded and hence, we discuss them separately. In the following we will denote the
Dirac operator in Q with MIT bag boundary conditions by TI\%T, compare Section 5.1 for
its properties. If Q is the complement of a bounded domain then the basic properties of A$
are the following:

Theorem 4. Let Q C R? be the complement of a bounded and sufficiently smooth domain
and assume that (1.9) does not hold. Then A%} is self-adjoint and the following is true:

2

(i) The essential spectrum of AL is (—oo, —mc?| U [mc?, o).

(ii) The discrete spectrum of A< is finite.

(iii) (AST2 —1) S (Tl\S/}IT —2) 3 is a trace class operator for any A € C\ R.

The strategy for the proof of Theorem 4 is very similar as for Theorem 1: we prove a Krein
type resolvent formula that relates, in this case, the resolvent of A% to the resolvent of TI\%T.
Then, the claims follow from perturbation arguments and of the regularity of functions in
domA?. Moreover, it is worth to mention that we can characterize the eigenvalues of A?

in (—mc?,mc?) with an abstract version of the Birman Schwinger principle.

If Q is a bounded domain, then domA$ C H'(Q;C*) is compactly embedded in L%(Q; C*)
and hence, the spectrum of A? is purely discrete:

Theorem 5. Let Q C R> be a bounded and sufficiently smooth domain and assume that
the condition (1.9) does not hold. Then A? is self-adjoint and G(A?) is purely discrete.

If we are in the situation of Theorem 5 then one can compute all eigenvalues of A$ with
the help of a modified Birman-Schwinger principle described in Proposition 5.3.5.

In the investigation of A? in the case of critical boundary values (1.9) we use similar ideas

as in the study of A%s,ns for critical interaction strengths described above. First, it turns out
that AS is symmetric, but not self-adjoint. Then we conclude, if T € {41} is constant, that
the operator AS given as in (1.8) is essentially self-adjoint and we obtain some of the basic

spectral properties of the self-adjoint realization:

Theorem 6. Assume that T € {+1}. Then Aizl defined by (1.8) is essentially self-adjoint,
the domain of its self-adjoint closure is not contained in H'(Q;C*), and £mc? is an eigen-

value of A% of infinite multiplicity.

We would like to draw the attention of the reader to the last claim of Theorem 6. The ef-
fect that Agl has an eigenvalue of infinite multiplicity appears for bounded and unbounded

domains Q, although for unbounded Q this eigenvalue is embedded in (—oo, —mc?] U
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[mcz,oo). Moreover, at a first glance the result seems to be comparable to Theorem 2,
but a deeper look does not confirm this: in fact a super-symmetry in A% is responsible for

the appearance of the eigenvalue with infinite multiplicity and in contrast to what we had

for A%mrls it appears for any geometry. Thus it seems that the reason for these effects is
different

Let us shortly describe the structure of the present thesis. In Chapter 2 we provide some
preliminary material which is needed to formulate and prove our main results. We sum-
marize some basic notions of the spectral theory for linear operators in Hilbert spaces,
discuss quasi and ordinary boundary triples, introduce some function spaces, in particular
Sobolev spaces on the boundary of a bounded and sufficiently smooth domain, and collect
results on integral operators and mappings that are associated to the multiplication with a
Lipschitz continuous function. Then, in Chapter 3 we introduce the free Dirac operator in
R3 and a minimal and a maximal Dirac operator on a domain Q C R3. In particular, we
will discuss several families of integral operators that are associated to Green’s function
for the free Dirac operator that will play a crucial role in the study of A%e,ns and A?.

In Chapters 4 and 5 we prove then the main results of this thesis. Chapter 4 is devoted
to A%mrls' After introducing boundary triples that are convenient to study Dirac operators
with singular interactions, we define in Section 4.2 the operator A,Z]ems rigorously and prove
for noncritical interaction strengths the basic properties, that means Theorem 1. Next, in
Section 4.3 we study A%mns for critical interaction strengths and show Theorem 2. Eventu-
ally, Section 4.4 is devoted to the proof of Theorem 3.

The topic of Chapter 5 is then the operator A?, where we use a similar approach as in
Chapter 4. After collecting some properties of the MIT bag operator in Section 5.1 we
introduce in Section 5.2 boundary triples that we use later to define and study self-adjoint
Dirac operators on domains with boundary conditions. Next, in Section 5.3 we investigate
the operator A? in the case of noncritical boundary values and prove Theorems 4 and 5.
Finally, in Section 5.4 we verify Theorem 6 on Dirac operators on domains with critical
boundary values.






2 PRELIMINARIES AND NOTATIONS

In this chapter we provide some preliminary material that is needed to formulate and prove
the main results of this thesis. On the one hand we introduce some basic notions on the
spectral theory for linear operators in Hilbert spaces, quasi and ordinary boundary triples
and Schatten-von Neumann ideals. On the other hand, we discuss several function spaces
and results on the boundedness of special integral operators and mappings that are associ-
ated to the multiplication with Lipschitz continuous functions.

2.1 Linear operators and their spectra

In this section we collect several notations and properties of bounded and unbounded linear
operators in Banach and Hilbert spaces that will be used in this thesis. In particular, we
introduce the adjoint of an unbounded operator and fix notations concerning the spectral
properties of self-adjoint operators in Hilbert spaces. Most of the results presented in this
section are standard knowledge and can be found, for instance, in [50, 60, 65, 69].

Throughout this section let X and Y be separable Banach spaces over the complex num-
bers. If 7 : dom7 — Y, where domT is a linear subspace of X, is a linear operator then
domT is its domain of definition and we denote the range and kernel by ran7 and ker 7,
respectively. The set of all bounded linear operators 7 : X — Y is denoted by B(X,Y). If
X =Y, then we simply write B(X) := B(X,X).

If T is a closed operator in X, then the resolvent set and the spectrum of 7" are defined by
p(T):={A €C:T—Ais injective and (T ~A)te B(X)}

and 6(T) :=C\ p(T). If T — A is not injective, then A is called eigenvalue of T and the
set of all eigenvalues is denoted by o, (7).

Let 91 be an open subset of C and let F : 9t — X. We say that F' is holomorphic in A € 9t
if the limit A
d F(A)—F
4 p2) = tim FR FW)
da U—A A— H
exists in X. In the case that X = B(Y,Z) for some Banach spaces Y and Z, then many
well-known rules from complex analysis can be translated in a suitable way. In particular,

13



14 2 Preliminaries and notations

if A(+),B(-) and C(-) are holomorphic operator-valued functions defined in a neighborhood
of A € C, then it holds by [20, equation (2.7)] for any k € N

k r
&(AM)B(A)c(A)): y p!’;’!r!d‘X’pA(z)dqu(md‘;rcm). @.1)

p+q+r=k

Furthermore, if A(-) is boundedly invertible in a neighborhood of A, then it holds by [20,

equation (2.8)]
d -1y _ 1 d -1
a (A(?L) ) =—-A(A) a (L)A(A) . (2.2)

Next, let (9—(, (-, )g{) and (fK, (-, )J{) be separable Hilbert spaces. Then the adjoint of a
densely defined operator A from H to KX is defined on the set

domA* := {x € K : Ix* € H: (x,Ay)x = (x*,y)s for all y € domA}

and acts as A*x = x*. Note that A* is well defined, as domA is dense in HH. It is well-known
that if A* is densely defined, then (A*)* = A and if A € B(3,XK) or A € B(H,X), then
A" € B(K,H).

A densely defined operator in a Hilbert space J is called symmetric, if A C A*, and self-
adjoint, if A = A*. If A is self-adjoint, then 6(A) C R, for a symmetric symmetric opera-
tor S the same holds true only for o,,(S). Moreover, a symmetric operator is self-adjoint if
and only if

ran(A—A)=3 forall Ae€C\R. (2.3)

The last statement remains correct, if (2.3) holds for one Ag € R. For a self-adjoint operator
A the spectrum can be split into the discrete spectrum

Gaisc(A) :={A € 6,(A) : A is isolated in (A) }
and the essential spectrum
Oess(A) := 0 (A) \ Ogisc(A).

An important result from perturbation theory of linear operators says that the essential
spectrum is stable under (weak) compact perturbations, that means if A and B are self-
adjoint operators such that

(A=) = (B-2)""
is compact for some A € p(A) N p(B), then Gess(A) = OCess(B).
Finally, we introduce a special class of symmetric operators, the so called simple or com-
pletely non self-adjoint operators. Let S be a symmetric operator in a Hilbert space H and

let H; be a closed subspace of H{. Then K is called invariant under S, if S(H;) C H;.
We say that S is simple, if for any orthogonal decomposition H = I & H; such that J(;
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and J(; are invariant under S and S| := S | I, is self-adjoint in H; it follows H; = {0}. It
is clear by this definition that a simple operator can not have eigenvalues, as S [ ker(S— A1)
is self-adjoint in ker(S — A) for any A € R. A useful criteria to check whether a given
symmetry is simple is the following: a symmetric operator S is simple if and only if

span{ f € domS*: (S* —A)f =0forad € C\R} =%, (2.4)

see for instance [23].

2.2 Quasi and ordinary boundary triples

In this section we give a short introduction to the theory of quasi and ordinary boundary
triples and their associated Weyl functions. Boundary triples are an important concept
in the extension and spectral theory of symmetric and self-adjoint operators in Hilbert
spaces. The presentation of the results in this chapter is chosen in a way such that they
can be applied directly in the main part of this thesis to define and study Dirac operators
with singular interactions and Dirac operators with boundary conditions on domains. For
a more general and detailed survey and proofs we refer the reader for instance to [17, 18,
29,38,39,47,65].

Throughout this section H is always a complex Hilbert space with inner product (-, -)q¢; if
no confusion arises, we skip the index in the inner product. We start with the definition of

quasi and ordinary boundary triples.

Definition 2.2.1. Let S be a densely defined closed symmetric operator in H and assume
that T is a linear operator in H such that T = S*. Moreover, let G be another complex
Hilbert space and let Ty, T'; : domT — G be linear mappings. Then {G,Ty,I'1} is called a
quasi boundary triple for S* if the following conditions are fulfilled:

(1) Forall f,g € domT there holds the abstract Green’s identity

(Tf,g)s— (f,Tg)sc = (T'1f,Tog)g— (Fof,T1g)g- (2.5)

(ii) T':=(Ip,I'1) :domT — G x G has dense range.
(iii) The operator Ag :=T | kerl'y is self-adjoint in .

If additionally the mapping I = (To,I'y) is surjective in G x G, then {G,T9,I'1} is called
ordinary boundary triple for S*.
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If {G,T, 1} is a quasi boundary triple for 7 = S*, then the symmetry S can be recovered
by
S=T 1] (kerI'oNkerI),

see [17, Proposition 2.2], and the mappings I'g,I'; : domT — G are closable, if {G,T,I"; }
is an ordinary boundary triple, then I'y and I'; are even continuous. Note that the above
non-standard definition of ordinary boundary triples is equivalent to the usual one given
for instance in [29,47,65], see [17, Corollary 3.2]. Moreover, if {G,I,I'1 } is an ordinary
boundary triple, then the operator 7' in Definition 2.2.1 coincides with §*. In contrast to
that, the operator 7 is in general not unique, if the dimension of G is infinite. Eventually
we remark that a quasi or ordinary boundary triple exists, if and only if dimker(S* —i) =
dimker(S* 4 i), that means if and only if S admits self-adjoint extensions.

The main idea of boundary triples is to define self-adjoint extensions of the underlying
symmetry S with suitable boundary/interface conditions in terms of the boundary mappings
I'p and I'; and to study the spectral properties of these self-adjoint extensions. As we will
see the spectrum of an extension of S is encoded in the so-called Weyl function associated
to the boundary triple. This family of operators shall be introduced next.

Let {G,T,['1} be a quasi boundary triple for 7 = S* and let Ag := T | kerI['y. The defini-
tion of the y-field and the Weyl function is based on the direct sum decomposition

dom7 =domAg+ker(T —A) =ker['pt+ker(T —1), A€ p(Ag), (2.6)

and it follows the definition of these objects for ordinary boundary triples from [38]. Note
that (2.6) implies, in particular, that [y [ ker(7 — A) is injective for A € p(Aop).

Definition 2.2.2. Let S be a densely defined, closed and symmetric operator in H, let T be
a linear operator such that T = S* and let {G,T,T'1 } be a quasi boundary triple for S*.

(i) The y-field associated to the triple {G,T0,I"1 } is the mapping

P(A0) > A = ¥(A) == (T [ ker(T —1))~".
(ii) The Weyl function associated to the triple {G,To,T'1 } is the mapping
P(Ag) 2 A = M(A) :=T1(Ty [ ker(T — 1)) ' =T1y(1).

The 7y-field is a densely defined operator in G and it maps boundary values ¢ € ranI'o C §
onto a solution f; = y(A)¢ of the boundary value problem

(T=2)f»=0, Tofy=0. 2.7)

In this sense y(A) is a potential operator as it is often seen in applications, compare for
instance in [53]. In a similar flavour the Weyl function is a densely defined operator in G
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and it maps boundary values ¢ € ranI’y onto the second boundary value I'y f; , where f; is
again the solution of the boundary value problem (2.7). In this sense M(A) can be seen as
a generalized Dirichlet to Neumann map.

Some basic properties of the y-field which will be used later in the main part of this thesis
are summarized in the following proposition. The proofs of these statements can be found
in [17, Proposition 2.6] and [20, Lemma 2.4].

Proposition 2.2.3. Let S be a densely defined, closed and symmetric operator in I, let T
be a linear operator such that T = S*, let {G,T,T'1} be a quasi boundary triple for S*, set
Ag:=T | kerD'g and let y be the associated y-field. Then the following assertions are true:

(i) For any A € p(Ag) the mapping y(A) is densely defined on ranl'y and bounded
from G into .

(ii) Let A,u € p(Ap) and @ € ranl'y. Then

YA = (I+ (A —w)(Ao—2) ") y(w)e.
In particular, the mapping p(Ao) 2 A — Y(A)@ is holomorphic and
k

e V(A)e =k!(Ao - ) Fy(A)e, keN.

(iii) The adjoint y(A)* : H — G is given by Y(A)* =T'1(Ag—A) L. In particular y(A)* €

B(H,SG), the mapping p(Ag) 2 A — y(A)* is holomorphic and
dk

my(%)* =k (Ag—A)* 1 keN,

In the next proposition we state some useful properties of the Weyl function. For the proof
see for instance [17, Proposition 2.6] and [20, Lemma 2.4].

Proposition 2.2.4. Let S be a densely defined, closed and symmetric operator in I, let T
be a linear operator such that T = S*, let {G,Ty,I'1} be a quasi boundary triple for S*, set
Ao :=T | kerl'y and let M be the associated Weyl function. Then the following assertions
are true:

(i) Forany A € p(Ao) the mapping M(A) is densely defined on ranT'y with ranM (L) C
ranl’y.

(il) For A € p(Ap) and f; € ker(T —A) it holds M(A)Tofy, =T'1f3.
(iii) Let A,u € p(Ag) and ¢ € ranT'y. Then
MA)p =M(u) ¢+ (A —m)y(p) v(d)e.

In particular, the operator M(1.) is closable, M(A) C M(A)* and M(A.) is symmetric
for A € p(Ag) NR.
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(iv) Let A, € p(Ag) and ¢ € ranT. Then

M(A) =M@+ A —my(w) I+ —u)(A—2)"")v(u)e.
In particular, the mapping p(Ag) > A — M(A)@ is holomorphic and

k

WM(MQD = k1 (Ag—A) y(A)p, keN.

Moreover, the mapping p(Ao) "R 3 A — (M(A)@, @)g is monotonously increasing.

In the main part of this thesis we will use boundary triples to introduce special extensions
of a symmetric operator S. For that let {G,I'9,I';} be a quasi boundary triple for T = S*
and let ¥ be a symmetric operator in §. Then we define the operator A acting in JH by

Aﬁ\ =T [ker(Fl — 191“0) (28)

In other words, a vector f € dom7 belongs to domAy if it satisfies the abstract boundary
condition I'y f = ¥If. It follows immediately from Green’s identity (2.5) that Ay is
symmetric, as it holds for f,g € domAy

(Asf,g)a— (f,Av8)3c = (T'1f,Tog)g — (Fof,T18)g

2.9
(0Tof,Tog)g — (Fof,8T0g)g =0 &9

due to the symmetry of ¥ in G. Of course, one would be mostly interested in the self-
adjointness of Ay. But for general quasi boundary triples it does not hold that Ay is
self-adjoint, if ¥ is self-adjoint in G; such a statement is just true for ordinary boundary
triples, see Proposition 2.2.7 below. But it holds the very efficient theorem below which
induces a sufficient condition to show the self-adjointness of Ay and which gives us an
explicit Krein-type resolvent formula; for a proof of this result see for instance [17, Theo-
rem 2.8].

Theorem 2.2.5. Let S be a densely defined, closed and symmetric operator in H, let
{G,T0,T1} be a quasi boundary triple for T = S*, set Ay := T | kerT'y, and let 'y and
M be the associated y-field and Weyl function, respectively. Moreover, let O be a symmet-
ric operator in G and let the associated operator Ay be defined by (2.8). Then the following
assertions are true for A € p(Ap):

(i) A € 0p(Ay) ifand only if 0 € o,(O —M(A)). Furthermore, it holds
ker(Ay —A) ={y(A)o: ¢ c ker(d —M(A))}.

(i) IfA ¢ op(Ay), then f cran(Ay — A) if and only if y(A)* f € ran (¥ —M(A)).
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(iii) IfA & 6p(Ay), then

(As —=A)"'f= (A0 —A) ' f+y(A) (O —M(A)) "y (A)'f
is true for all f € ran(Ay — 1).

We would like to point out that assertion (ii) in Theorem 2.2.5 gives an efficient tool to
check the self-adjointness of Ay. Since Ay is symmetric by (2.9) it suffices to check
that ran (Ay —A) = H for A € C\ R. According to Theorem 2.2.5 (ii) this is true, if
rany(A)* C ran (0 —M(A)).

In some applications it is more convenient to introduce self-adjoint extensions of S via
Ap =T ker(I'y + BI'1), where B is a symmetric operator in §. Formally, one can write
Ap=Ay with ¥ = —B~!. In the same way as in (2.9) one sees that also A[p) Is symmetric.
Moreover, one can show the following counterpart to Theorem 2.2.5, see for instance [19,
Theorem 2.8].

Theorem 2.2.6. Let S be a densely defined, closed and symmetric operator in H, let
{G,To,T1} be a quasi boundary triple for T = S*, set Ay := T | kerT'y, and let y and
M be the associated y-field and Weyl function, respectively. Moreover, let B= B* € B(G)
and set A :=T [ ker(I'o + BI'y). Then the following assertions are true for A € p(Ao):

() A € op(Ajp) if and only if 0 € op(I+BM(A)). Furthermore, it holds
ker(Ajg —A) ={y(A)@: ¢ €ker(I+BM(1))}.

(i) If A ¢ op(A), then f € ran(Ap) — A ) if and only if By(A)* f € ran (I +BM(1)).
(iii) If A & Op(Apg), then

(A —2) "' f=(A0—2) ' f—y(A)(I+BM(A)) ' By(A)
is true for all f € ran (A —4).

Eventually, if {G,T9,I';} is an ordinary boundary triple, then proving self-adjointness of
extensions Ay is simpler as in the case of quasi boundary triples. Some important state-
ments, that are used later in this thesis, are summarized in the following proposition; for a
proof of this result see for instance [38,39] and [29, Theorem 1.29 and Theorem 3.3].

Proposition 2.2.7. Let S be a densely defined, closed and symmetric operator in I, let
{G,T0,I'1} be an ordinary boundary triple for S*, set Ay :=T | ker'y, and let Yy and M
be the associated y-field and Weyl function, respectively. Moreover, let ¥ be a symmetric
operator in G and let the associated operator Ay be defined by (2.8). Then ¥ is (essen-
tially) self-adjoint in G, if and only if Ay is (essentially) self-adjoint in J{. Moreover, if ¥
is self-adjoint, then the following items are true:
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(i) A € 6(Ay) ifand only if 0 € 6 (O —M(A)).
(i) A € 6p(Ay) ifand only if 0 € 6,(% —M(A)). Furthermore, it holds
ker(Ag —A)={y(A)p: @ cker(d —M(1))}.

(iii) A € Ogisc(Ap) if and only if 0 € Ogisc (O —M(A)).

If {G,T0,I'1} is a quasi boundary triple for S*, then Theorem 2.2.5, Theorem 2.2.6 and
Proposition 2.2.7 show how the eigenvalues A ¢ p(Ap) of self-adjoint extensions of S
can be characterized by the Weyl function M. If the symmetry S is simple, then one can
do something similar for all eigenvalues, that means also for those that are embedded
in 6(Ag), compare [23, Corollary 3.4]. Note that there are also similar characterizations
for the other types of the spectrum available in [23], but in our applications we restrict
ourselves to find the eigenvalues.

Proposition 2.2.8. Let S be a densely defined, closed and simple symmetric operator in H,
let {G,T0,'1} be a quasi boundary triple for T = S*, set Ao :=T | ker[y, and let y and M
be the associated y-field and Weyl function, respectively. Moreover, let ¥ be a bounded and
self-adjoint operator in G and assume that the associated operator Ay defined by (2.8) is
self-adjoint. Then A is an eigenvalue of Ay if and only if there exists @ € ran(M(A) — )
satisfying
limie(M(A +ig) — ®) " 0.
lim ie(M(2 +i€) ~8) "o #
Proof. Define the boundary mappings Fg , Ff‘ :dom7 — G by

[Jf:=[—0y and IVf=-Tof, fe&domT.

We claim that {G,I'J,I'?} is a quasi boundary triple for S* with the additional property
T keng = Ayp. In fact, using that ¥ is bounded and self-adjoint we deduce from the
Green’s identity for {G,I0,I'1 } and for f,g € domT

(Tf,8)3c— (f:Tg)sc = (I'1f,Tog)g — (Tof.T1g)g — (80 f . Tog)g+ (Fof, 9T 0g)g
= (=Tof, (1 — 19F0)g)9 — ((Ty = dTy) f, —Fog)g
= (r?fvrgg)g - (Fgfar?g)gy
(2.10)
that means Green’s identity holds also for the triple {3,y 7}

Next, the definition of Fg , F? can be written equivalently as

(=) o= (o)
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Since ¥ is bounded, we deduce that B is boundedly invertible with

1. (0 -1
SN
Since ran (I'g,I'1) is dense in G x G this implies that also ran (Fg,l“’f) is dense. Finally, T |

ker(I'Y) =T | ker(I'y — 9T) = Ay is self-adjoint by assumption. Therefore {G,T3,T'?}
is a quasi boundary triple for S*.

Next, we compute on C \ R the Weyl function M corresponding to the triple {3, Fg , F?}.
For a fixed A € C\ R this is the mapping which is determined uniquely by the relation
MP(AMTY £, =T £, for f5, € ker(T — A). We compute for such an f; € ker(T — 1)

2 f, = (T — ¥To) f = (M(A) — 9)Tofy, = —(M(A) — 9TV f;. @.11)

Note that M(A) — 9 is invertible by Theorem 2.2.5, as otherwise the self-adjoint operator
Ap would have the non-real eigenvalue A. Thus, we conclude

After all these preparations the claim of this proposition follows from [23, Corollary 3.4]
applied to the quasi boundary triple {G,I'J, IV}, as S is simple. O

In the next proposition we state a similar result as in Proposition 2.2.8 for ordinary bound-
ary triples and unbounded parameters ¥:

Proposition 2.2.9. Let S be a densely defined, closed and simple symmetric operator in H,
let {G,T,T"1} be an ordinary boundary triple for S*, set Ao := T | kerI'y, and let y and M
be the associated Y-field and Weyl function, respectively. Moreover, let ¥ be a self-adjoint
operatorin G. Then A is an eigenvalue of Ay if and only if there exists ¢ € ran(M(1) — ¥)
satisfying

o . -1
;%zs(M(lezs)—ﬁ) ¢ #0.

Proof. The proof of this result is very similar as the one of Proposition 2.2.8, hence, we
only indicate the differences in the verification. We set Ty := S* | (domAg + domAy) and
define the mappings Fg T f} :domT? — G by

[0f:=I—0 and IVf=-Tof, fedomT?.

We claim that {9,1“3 ,F’f} is a quasi boundary triple for S* with the additional property
T [kerIy =Ay.
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It is simple to ) see that S = S* | (domAgNdomAy). Hence, it follows from [21, Proposi-
tion 2.9] that T? = S*. Next, Green’s identity for {G,I'y,I'?} can be shown in exactly the
same way as in (2.10). Furthermore, 77 | ker Fg = Ay is self-adjoint by Proposition 2.2.7.

So it remains to show that ran (Fg,f‘?) is dense in G x §. Assume that (¢,y) € §x G
fulfills for all f € domT?

0=(¢.T5f)g+ (W.I7 f)g = (¢,(T1 — 8T0) f)g — (¥, Tof)g- (2.12)

This implies, in particular, (¢,I'; f)g = 0 for all f € kerI'y. Since {G,I,I"1} is an ordi-
nary boundary triple it holds I'j (kerI'y) = G and therefore ¢ = 0. Thus (2.12) reduces to
(v,Tof)g =0forall f € dom 7?. Using now that dom 7' is dense in dom S* with respect
to the graph norm induced by S* and I' is continuous, it follows from the surjectivity of
Iy that also y = 0. Therefore ran (l“()9 ,F?) is dense in G x G and we have shown that
{G,T8,T'?} is indeed a quasi boundary triple for S*.

Finally, in the same way as in (2.11) one shows that the value of the Weyl function associ-
ated to the triple {G,I'3,I'?} for A € C\Riis

Hence, since S is simple by assumption, we deduce the claim of this proposition again
from [23, Corollary 3.4] applied to {G,I'3,T'?}. O

In the rest of this section we describe a construction introduced in [22] which allows under
some assumptions to transform and extend a given quasi boundary triple to an ordinary
boundary triple. This procedure will be very useful to study Dirac operators with critical
interaction strengths or boundary values. Assume that S is a densely defined, closed and
symmetric operator in H and that {G,Ty,T'; } be a quasi boundary triple for T = S*. We
define the sets

% :=ran(I'p [kerI'}) and ¢ :=ran(I" [ kerIY). (2.13)

The main idea from [22] is the following: under the assumption that ¢4, (or %) is dense in
G one endows this space with a suitable topology and extends then the boundary mapping
[y (or I'1) to a mapping having values in the anti-dual space ¢/ (or ¥, respectively).
The first important step in this construction is to find a suitable topology on ¥, see [22,
Proposition 2.9 and Proposition 2.10]. We set

Ar=1ImM(i) = 5-(M(i) - M(~i)) = (ORTO! (2.14)
where the last equality follows from Proposition 2.2.4 (iii) and the operator on the right
hand side is non-negative.
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Proposition 2.2.10. Let S be a densely defined, closed and symmetric operator in I, let
{G,T0,T'1 } be a quasi boundary triple for T = S* with Weyl function M and let A be given
by (2.14). Assume additionally that 4, given by (2.13) is dense in G. Then AY/?: G — 4
is an isometry and 4 endowed with the inner product

(@, ¥)g, = (AP0, A ' Py)e, @ ye?, (2.15)

is a Hilbert space. Moreover, all norms || - || such that (41, || - ||) is a reflexive Banach space
continuously embedded into G are equivalent to the norm induced by (2.15).

In the following we assume that ¢ is dense in G. Then {¥, 9,%{ } forms a Gelfand triple
and making use of the operator A we can find suitable expressions also for the duality
product in ¢ x ¢;. We set

=A% 9 g (2.16)

Via some standard constructions for Gelfand triples, see ???, the operator A2 can be
extended to an isometry
19 =G, 1_1G=AY2 (2.17)

Eventually, the duality product in ¢] x ¢ can be expressed by
(@ W)aixg, = (-0, 11 ¥)g, @EY,y Y. (2.18)

This choice of the duality product has for ¢ € § C ¢/ and y € ¥, the useful property

(@, W) agrxen, = (A0, A7 2y)g = (9, W), (2.19)

as A'/2 is a bounded and self-adjoint operator in G.

After these preliminary considerations about the space ¢ and its topology we extend now
the boundary mappings I'y and I'; to bounded mappings from domS* onto ¢/ and ¥,
respectively. This result is proven in [22, Proposition 2.10 and Corollary 2.11].

Proposition 2.2.11. Let S be a densely defined, closed and symmetric operator in I, let
{G,T0,T'1 } be a quasi boundary triple for T = S*, and let %y and 4, be given by (2.13).
Then the following assertions are true:

(1) If9, is dense in G, then Iy has a unique surjective and bounded extension
To: (domsS™, | -||s-) — 4.

(1) If 9 is dense in G and the operator A := T | kerD'; is self-adjoint in H, then 'y
has a unique surjective and bounded extension

T : (domS™, | -|ls+) — %
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Under the assumptions of the previous proposition also the y-field and the Weyl function
associated to the quasi boundary triple {G,I'9,I';} have natural extensions, see [22, Defi-
nition 2.14] and the following discussion.

Proposition 2.2.12. Let S be a densely defined, closed and symmetric operator in H, let
{G,T0,T'1} be a quasi boundary triple for T = S* with y-field y and Weyl function M, set
Ay :=T | kerl'y, and let 4y and 4, be given by (2.13). Then the following is true:

(i) Assume that 9 is dense in G and let A € p(Ao). Then y(A) has a bounded extension

Y(A) := (T | ker(S* —/l))f1 G — H.

(ii) Assume that 9y and 9, are dense in G, that A := T | kerI'| is self-adjoint in H, and
let A € p(Ao). Then M(A) has a bounded extension

M(A) :=T17(A) =T (To T ker(S* 1)) " 4 —» 4.

Finally, making use of the extended boundary mapping fo one can transform the originally
given quasi boundary triple to an ordinary boundary triple, compare [22, Theorem 2.12].
Recall that for Ag = T | kerI'g and u € p(Ap) there holds the direct sum decomposition

domS* = domAy+ker(S* — u).

Theorem 2.2.13. Let S be a densely defined, closed and symmetric operator in J, let
{G,T0,T1} be a quasi boundary triple for T = S* such that %y given by (2.13) is dense
in G, and set Ay :=T | kerl'g. Moreover, let 1, and 1 be defined by (2.16) and (2.17),
respectively, and assume that there exists some [l € p(Ag) NR. Let 'y be the extension
of T from Proposition 2.2.11 and define the mappings Yo, Y1 : domS* — G by

Yof :=1-Tof, Yif:=1.T1fo, f=fo+gedomAg+ker(S*—p)=domsS".

Then {G,Yo, Y1} is an ordinary boundary triple for S* with the additional property that
S* [kerFO =T fr() :A().

Let {G,I9,I'1} be a quasi boundary triple for $*, assume that ¢, and ¢, are dense in §
and that A, := T | kerI'; is self-adjoint in . Then the y-field B and the Weyl function
M associated to the ordinary boundary triple {9, Yo, Y;} from Theorem 2.2.13 are given
by

B(A)=7(A)=" and M(A) =14 (M(A) —M(p))1=! (2.20)

for A € p(Ag) and i € p(Ag) NR chosen as in Theorem 2.2.13, where 7 and M are given
as in Proposition 2.2.12, compare [22, equation (2.17)].
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Eventually, assume that S is a densely defined, closed and symmetric operator in I, that
{G,Ty,T"1 } is a quasi boundary triple for 7 = §* and that all assumptions of Theorem 2.2.13
are fulfilled. Choose 1 € p(Ap) NR as in Theorem 2.2.13, let ¥ be a symmetric operator
in G, and define

O(®)¢:=1.(0—Mu) e,

o 4 (2.21)
dom®(¥) = {9 € G:1Z'¢ € dom(¥ —M(u)) and (O —M(u))1-' @ € 4 }.
Then by [22, Corollary 3.5] it holds
ker(I'y — ©I) = ker(Y; — O(9)Yy). (2.22)

In view of Proposition 2.2.7 this yields that Ay := T [ ker(I'; — ©T) is (essentially) self-
adjoint, if and only if ®(®) is (essentially) self-adjoint.

2.3 Sobolev spaces

In this section we introduce the function spaces which are used to formulate and prove
the main results of the present thesis. First, we state the notations for classical function
spaces how they are used here. Then, we introduce Sobolev spaces of weakly differentiable
functions on domains. Finally, we also discuss spaces for functions acting on the boundary
of bounded and sufficiently regular domains. The presentation in this section follows [53];
more details can be found for instance also in [1,52].

Let Q C R, d € N, be an open set and k € NU {e}. Moreover, assume that K is either
R”,C", n € N, or any space which is isomorphic to one of these sets. Then we denote the
space of k times continuously differentiable functions f : Q — K by C¥(Q;K). The sym-
bol Ci(€2;K) stands for the space of infinitely many times differentiable and compactly
supported functions. Moreover, we define

C(QK) = {f1Q: feC(R*K)}.

For a multi index & = (ai1,...,0) " € N& we write |a| := Y¢_, 04 and for f € CH(Q;K)
and a € Nd with || < k we set

As usual L?(Q;K) is the Hilbert space (of equivalence classes) of square integrable func-
tions defined on Q with values in K endowed with the inner product

() = /Q £(x) - g(0dx;
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the corresponding norm is denoted by || - || o-

We say that a function f € L?(Q;K) is weakly differentiable of order « € Ng or differen-
tiable in the distributional sense if there exists some g € LZ(Q; K) such that

| rppae= (=1 [ ¢ pax

holds for all ¢ € C5(€;K). In this case we write D* f = g. The Sobolev space of order
k € N is then defined as

H*(QK) = {f e LX(Q;K): DO f € LK) Yo e N¢ : |ar| < k} . (2.23)

If one endows H¥(Q;K) with the inner product

(f:Quam) = Y, (D*f,D%)a,  f.g€H (QK), (2.24)

|| <k
then H*(Q;K) is a Hilbert space; the corresponding norm is denoted by || - || HA(Q:K)- An
important subspace of H*(Q;K) is given by
HE(Q:K) i= Gy (@) o),

Roughly speaking HE(Q;K) consists of functions in H*(Q;K) with vanishing boundary
values (a justification for this is given in Proposition 2.3.3 below).

In order to introduce Sobolev spaces of real order recall that the Fourier transform is the
unitary operator F : L*(R%;K) — L*(R?;K) which acts on f € C3(RY; K) as

1 —ix-
?f(x):W/Rde Yf(y)dy, xeR‘
Then we define for areal s > 0
H* (R K) = {f e X(REGK): (14 2)%Ff e Lz(Rd;K)}. (2.25)

If we endow H*(R“;K) with the inner product
(f: &) (rax) = /Rd(l + )T f(x)-Te()dx,  frg € H'(REK), (2.26)

then H*(R?;KK) is a Hilbert space. We point out that for s € N the definitions of H*(R?;K)
in (2.23) and (2.25) are the same and the associated norms induced by (2.24) and (2.26)
are equivalent.

In the rest of this section we discuss suitable function spaces on the boundary dQ of a
domain Q@ C R?. This is only possible, if the domain satisfies some further smoothness
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condition. For k € N we say that a set Q C RY, d > 2, is a Ck-hypograph, if there exists a
function A € CK(R?~!;R) such that

Q={x=( xg) eRY: X e R x; <A(X)}.

In a similar way we say that Q is a Lipschitz hypograph, if A is Lipschitz continuous. With
the help of this notion we are prepared to introduce Lipschitz and C¥-domains.

Definition 2.3.1. Let d,k € N withd > 2. Then Q C RY is called a C*-domain or a C*-
smooth domain, if dQ is compact and if there exist an | € N and open sets Q, ..., and
Wi, ..., W, with the following properties:

(i) 0Q c Ui, W,
(i1) Qj can be transformed by a rotation to a Ck-hypograph, j € {1,...,1}.
(iii) Wjﬂ.Qj = Wjﬂ.Q., j€E {1,...,[}.

In a similar way as in Definition 2.3.1 one defines Lipschitz domains by replacing C*-
hypographs by Lipschitz hypographs.

The boundary of a C¥-domain Q can be parametrized in the following sense: by point (ii)
in Definition 2.3.1 there exists for any j € {1,...,1} a C*-mapping Aj: R4-! - R? such
that Kj(Rd_]) = 0dQ;. We define U, := /~\;1(3Q) and A := Kj [ Uj. Then A;(U;) C W;
by Definition 2.3.1 (iii). We say that {A;,U, Wj}é.:1 is a parametrization of dQ.

An important quantity describing the geometry of a hypersurface dQ is its associated first
fundamental form. If {A;, U}, Wf}§'=1 is a parametrization of d€, then the first fundamental
form is a family of matrix valued functions given by

d—1

Gj:Uj— R(d_wx(d_]), Gj(u) = ((aukAj(”)aauzAj(“)>>k1:1’

je{l,....1}, 2.27)

where (-,-) denotes the inner product in R?. The matrix G; is always symmetric and
positive definite.

In the following assume that Q C R is a Lipschitz domain in the sense of Definition 2.3.1
with parametrization {A;,U;, WJ-}II.:1 as it is described above. The next goal is to introduce
a suitable notion of an integral on dQ. Let {¥ j}§':1 be a partition of unity subordinate to
{Wj}i.:l, that means that {x1,...,%} is a subset of C5’(R?;K) such that 0 < y; < 1,

suppy,; C W;for j € {1,...,l} and 23:17(/'()5) = 1 for all x € dQ. Now we can define the
Hausdorff measure ¢ on d< via

l
6(B) = j_ZI/Ajl(B) 2;(A;()) 1 /det G (u)du
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for any Borel set B. One can show that ¢ is a finite Borel measure, compare [52, Ap-
pendix C.8]. We say that a function ¢ : dQ — C is integrable with respect to o if
(xj-®)oAj\/detG; is integrable for all j € {1,...,/}. In this case, the integral of such a
function is defined as

/,;Q"’d" - Z/d (- @) (Aj(u))y/detG(u)du, (2.28)

where (x;- @) oA, is extended onto R?~! by zero. We would like to point out that the
above definitions of the integral and of the measure o is independent of the choice of the
parametrization of dQ.

With the Hausdorff measure on dQ it is natural to define L2(dQ;K) := L?(dQ;K,do).
Eventually, if Q is a C*-domain for some k € N, the we define for 0 < s < k the Sobolev
space H*(dQ;K) on the boundary by

H(9Q:K) := {<p € [2(0:K) : (x;0) oA, € H (RY;K) for j € {1,...,1}}.

If we endow this space with the inner product

l
((P W HS(0Q;K) Z %j(p j7 XJII/> )HS(R(J—];K)? (palVEHS(aQ;K)u (2.29)

then H*(dQ;K) becomes a Hilbert space. Note that different parametrizations of dQ lead
to different inner products in (2.29), but the induced norms are equivalent. If s € (0,1)
then another equivalent norm is given by the Sobolev-Slobodeckii norm

o0 90,
Iolians = lolBa [ [ P00 dotto0). o H 02K, 30)

For ¢ € H'(X;K) we will denote sometimes by V¢ the surface gradient or tangential
derivative of ¢ which is given in local coordinates by

(Vo) = kig”"aukq), ne{1,2},
where g"% denote the entries of (G;)~! and G, is the first fundamental form defined
by (2.27).
Finally, for —k < s < 0 we define
HY(0Q:K) := (H*(0:K))',
that means H*(dQ;K) is the dual space of H *(dQ;K).

Clearly, by definition we have H*(dQ;K) C H'(dQ;K), if < 5. In the following propo-
sition we state the important fact that the associated embedding is even compact:
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Proposition 2.3.2. Let Q C R?, d > 2, be a Ck-domain in the sense of Definition 2.3.1
for some k € N and let —k <t < s < k. Then, the embedding H*(0Q;K) — H'(d;K) is
compact.

The importance of the Sobolev spaces H*(dQ;K) on the boundary of a set Q@ C R comes
from the fact that, roughly speaking, the boundary values of functions in H5+1/2(Q;KK)
belong to this space. This result is formulated precisely in the form that we need in the
following theorem:

Proposition 2.3.3. Assume that Q C R?, d > 2, is a C'-domain. Then there exists a
bounded and surjective operator Tp : H' (Q:K) = HY2(dQ:;K) such that tpf = f|yq for
all f € CY(;K)NH'(Q;K). Moreover, it holds ker tp = HJ (Q; K).

Usually, we will write f|;0 := Tpf for f € H' (Q:;K).

Using the fact that C*(Q;K) is dense in H 1 (Q;K), see for instance [53, Theorem 3.25],
it is not difficult to show the following extension of Green’s first formula: if Q is a C!-
domain with normal vector field v = (vi,...,v;) ", j € {l,...,d}, and f,g € H'(;K),
then

|1 @m)ar= [ viflaa-glando — [ (9,)-sdx @3

2.4 Abstract results for integral operators

In this section we provide a short overview over basic results on integral operators. As
we will see in the main part of this thesis, the y-fields and the Weyl functions associated
to boundary triples suitable to define and study Dirac operators with singular interactions
and Dirac operators on domains are some special integral operators. Hence, in order to
apply the abstract results summarized in the previous Section 2.2 some basic knowledge on
integral operators is required. The presentation in this section follows [11, Appendix A],
but there is also some additional knowledge on singular integral operators added. The
results are formulated such that they can be applied directly in the main part of the thesis.

Let (X,u) and (Y, Vv) be o-finite measure spaces and let n € N. Roughly speaking we say
that a bounded operator T : L?(Y,v;C") — L*(X,u;C") is an integral operator, if there
exists a measurable function ¢ : X x Y — C"*" such that

TS = [ 1) O)avD), xeX, felPviC),

First, we formulate the Schur test. This is an important result to show the boundedness of
integral operators acting between L?-spaces. Its proof can be found, for instance, in [50,
Example III 2.4] or [69, Satz 6.9].
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Proposition 2.4.1. Let (X,u) and (Y,Vv) be o-finite measure spaces, let n € N and let
t: X xY — C"" be u x v-measurable. Assume that there exist measurable functions
1,1y : X XY — [0,00) such that |t|* < t1t2 almost everywhere and constants ki, k> > 0 with

/tl(x,y)du(x) <kKi, y€Y, and /tg(x,y)dv(y) <Ky, x€X.
X Y
Then the operator T : L*(Y,v;C") — L*(X,u;C") acting as

Tfe) = [ 1) O)aV0), xeX, fe (YT,

is well-defined and bounded with ||T||> < x1%. In particular, if (X,u) = (Y,Vv) and
t1(x,y) = t2(y,x) for almost all x,y € X, then ||T|| < k.

In the following we apply the Schur test in the situations that X and Y are either a subset
of R, d € {2,3}, with compact C?-smooth boundary equipped with the Lebesgue measure
or a C2-smooth compact surface ¥ equipped with the Hausdorff measure . For that we
need an auxiliary result on the integrals of special functions. To prove these estimates,
recall that for any ry > O there exists a constant K > 0 such that

6(ZNB(x,r)) < xri! (2.32)
forall 0 <r <rgandall x € R4, see for instance [10, Lemma A.3].

Lemma 2.4.2. Letd € {2,3} and let Q C R? be a domain with compact C*-smooth bound-
ary L := dQ. Then the following assertions hold:

(i) Define for k,R > 0 and s € (0,d) the function
fs’ < R,
(x) 1= {'{' o xeRI\ {0}.
Then there exists a constant K = K(s,x) > 0 such that

/ T(x—y)dy <K
Q

forall x € R3,

(ii) Let s € (0,d — 1) and ro > 0 be fixed. Then there exists a constant K = K(s,X) >0
such that

/ (1+|x—y|_s)d6(y) < K1
YNB(x,r)

forall x € R and all r € (0, rp).
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Proof. (i) Let x € R? be fixed. Using the translation invariance of the Lebesgue measure
and 7 > 0, we obtain

[r—navs [ s-vay= [ cnav= [ e o—blay,
Q Rd Rd B(O,R) R4\ B(0,R)

Since the integrals on the right hand side of the last formula are independent of x and finite
for s € (0,d), the claim of assertion (i) follows.

(i) First, in view of (2.32) it is clear that

/ 1do(y) = 6(ENB(x,R)) < Krd—! < k=1,
ZNB(x,r)
Hence, it remains to find an estimate for [y, ) [x —¥[*do(y). Let x € R4 be arbitrary,
but fixed. Define for n € N the sets
Api={yeX: 27" <|x—y| < r2*"+1}.
Then XN B(x,r) = U, A, and it holds for any y € A,
|x —y| 7 <r 2%,

From this we obtain

[}

*do(y / *do(y o .
Loy a0 0)= X [ vy o) < Lo o)

— n

Employing (2.32) we have 6(A,) < 6(ENB(x,r27"+1)) < kr4=12-@=D=1) This im-

plies finally
T—vlt < Krd—1-s 2(s—d+1)n‘
/ZﬂB(x,r) | y| o n;l
Since s € (0,d — 1), the last sum is finite and we have the claimed result. [l

Using the Schur test and the results from Lemma 2.4.2 we show now the boundedness of
several families of integral operators with special integral kernels satisfying O(|x — y|™)
and we obtain estimates for their operator norms.

Proposition 2.4.3. Let d € {2,3}, let Q C R? be a domain with compact C*-smooth bound-
ary, let n € N and let t : RY — C"™" be a measurable function. Assume that there exist
constants K1,K>,R > 0 such that

', x| <R, d
[t(x)] < Ky {e"‘2|x| >R x € R\ {0}.
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Then the operator T : L*(Q;C") — L*>(Q;C"),

T = [ -0 )y xeQ.f e LT,
Q
is bounded and everywhere defined with ||T|| < k1K for some K = K (k) > 0.

Proof. Define for x € RY\ {0}

1-d
Y < R7
T(x) = Ky {‘x‘ g

e M x| >R,

and t; (x,y) = t2(y,x) = T(x —y). Then by Lemma 2.4.2 (i) there exists a constant K such
that

/Qtl(x,y)dx:/gr(x—y)dx<1qK

for all y € Q. Hence, all claimed statements follow from the Schur test (Proposition 2.4.1).
O

Proposition 2.4.4. Let Q C R? be a domain with compact C*-smooth boundary 9, let
neNandlett:R> — CY" be a measurable function. Assume that there exist constants
K1,K2,R > 0 such that

72 <R,
|t(x)|§1q{eK2|x| o R ¥ € R3\ {0}.

Then the operators Ty : L*(dQ;C") — L*(Q;C"),
Tip():= [ 1x=)p()do(s), xeQ.pe 0T,
and T» : L*(Q;C") — L*(0Q;C"),
T ()= [ He=)fO)dy. x€dQ.f € H@iC”),
are bounded and everywhere defined with || Ty ||, ||T2|| < k1K for some K = K(k,0Q) > 0.

Proof. We are going to prove the claim for 77, the statement for 7, follows then by taking
adjoints. Define for s € (0,1) and x € R\ {0} the functions

—2—s
, <R
Mﬂ:m{w ¥l <R,

e ®l x| >R,
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and
T (x) := Kk K3 |x| 2T

where k3 > 1 is chosen such that e~ < ig;|x|=2** for |x| > R. Set #;(x,y) := T;(x —
y), j € {1,2}, for x € Q and y € dQ. Then |t(x,y)|* < t1(x,y)t2(x,y). Moreover, by
Lemma 2.4.2 (i) there is a constant K; = K| (k»,s) such that for all y € Q.

/ 1 (x,y)dx < K1K;.
Q

Similarly, by Lemma 2.4.2 (ii) there exists K» = K»(dQ, k»,s) such that for all x € Q

| py)do() < ke
2Q

Therefore, the Schur test (Proposition 2.4.1) implies the boundedness of 77 and the esti-
mate for its operator norm. [

Proposition 2.4.5. Let X C R? be a compact and closed C*-smooth surface, let n € N and
let t : R3 — C™" be a measurable function. Assume that there exists a constant Kk > 0
such that

t(x)| < K(l + |x|71), x e R\ {0}.

Then the operator T : L*(X;C") — L*(Z;C"),

ToW:= [1(:=)p()do(y). reX.peA(EC),
is bounded and everywhere defined with ||T|| < xK for some K = K(X) > 0.

Proof. Define for x € R*\ {0}
T(x) = k(14 |x[ 1)

and t1(x,y) = t(y,x) = 7(x —y). Then by Lemma 2.4.2 (ii) there exists a constant K such
that

/ f1(x,y)do (x) = / T(x—y)do(x) < kK
) X

for all y € X. Hence, all claimed statements follow from the Schur test (Proposition 2.4.1).
O

Eventually, we discuss in the next proposition a special singular integral operator. With
the help of Proposition 2.4.5 it will allow us to understand a boundary integral operator
in Section 3.2 below that plays a crucial role in the study of Dirac operators with singular
interactions and Dirac operators on domains. The result can be found for instance in [5,
Lemma 3.3].



34 2 Preliminaries and notations

Proposition 2.4.6. Let j € {1,2,3} and let £ C R? be a compact and closed C?-smooth
surface. Then the operator T : L*(2;C) — L*(X;C),

I p(y)do(y), xeX,@el(Z0),

T.0(x) := li
1) 0 Jr\B(re) [ —y]

is well-defined and bounded.

2.5 Multiplication operators in Sobolev spaces

In this section we state two results on operators that are associated to the multiplication
with a Lipschitz continuous function. First, we have the following standard result.

Lemma 2.5.1. Let ¥ be the boundary of a bounded Lipschitz domain and let n : £ — C
be Lipschitz continuous. Then for any s € |—1, 1] the associated multiplication operator in

H*(X;C) is well-defined and bounded.

Proof. We show the claim for s = 1, from this the statement for s = —1 follows by duality.
Eventually, the result for intermediate values s € (—1, 1) can be shown then by a standard
interpolation argument.

Since 7 is Lipschitz continuous, it is weakly differentiable and the weak derivatives belong
to L=(X;C). Then, for ¢ € H'(X;C) the surface gradient of ¢ is

Vs(ne) = (Vin)e+n(Vse).
Since n,Vyn € L*(X;C) the claim of this lemma follows. O
Next, we discuss a way how one can approximate the multiplication operator with a Lips-
chitz continuous function 1 in H 1/2 (X;C*). We are going to apply this result if 7 admits

the value zero, in this case the zero sets of the functions 7, defined in the proposition below
are non-trivial.

Proposition 2.5.2. Let ¥ C R3 be the boundary of a bounded Lipschitz domain, let 1 -
Y. — R be Lipschitz continuous and define for € > 0

Ne:=(N—¢)y —(—N+¢)- =max{n —¢,0} —min{—n +¢,0}.

Then the multiplication with Mg gives rise to a bounded operator in H 1/ 2(£;C*) and for
anyt € (0,3) there exists a constant k = k(t) > 0 such that

11 =)@l (zcy < KE Nl 12z (2.33)

holds for all ¢ € H'/?(;C*).
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Proof. In this proof x will denote a generic constant that will have different values at
different places. Let s € (0,1) be fixed. In order to prove this proposition we use the
equivalent Sobolev-Slobodeckii norm from (2.30), that means we show that there exists a
constant K > 0 such that

(1= ne)e)(x) — (N —1e) @) )
In=neoli+ [ [, S dodot)

1-
< K€ sl|¢||w1/2(2;@4)

for all ¢ € H'/?(Z;C*), which yields then the claim.

First, since | — Ne| < € on X we have
I —ne)ellz < el @lls. (2.35)
The estimate of the double integral in (2.34) is more delicate. We define the sets
rii={xeX:n(x) > e}, Y, ={xeXl:nkx) < —¢e},
Yo ={xeX:n(x) €[0,e}, L, ={xeX:n(x) e [-¢,0]},

so that X =X UX, U Z(J{ UX,. We are going to estimate the integrals over TEx X
for - € {0,€e} separately First, for x € £} we have 1(x) — n¢(x) = € and hence

2
(2.36)

_ 2 —(P(y)!2 -
—e /Eg+ /28+ ‘x_—deG(x)dG(y) < QI 1o,

Similarly, it holds
/ (1 =7e)@)(x) = (N —Me) @) W)I?
yo

e —yP
Next, if (x,y) € Lo x £y with X := X7 UX, then ne(x) = ne(y) =0, [n(x)],[n ()| < &,
and using the Lipschitz continuity of  we find for s € (0, 1)
2 2
(M =ne) @) (x) = (1 = ne) @) V)|” < 2|(n(x) =) e()|" +2[n () (9(x) — ()]
< ke =y lp(0)* +ep(x) — o)
and thus, employing [51, Lemma 3.2 (b)] we deduce

2
/ZO z:O| n— T]s )(|))C )(;T:[ ns)ﬁo)()’” dG(x)dG(y)

1900~ 00)F
/zo/zo [|x > =y }dc(x)dc(y) (2.38)
x) — 2
<xet ([ lowPaot+ [ [ P98 a00a0y))

l
<€ S||(p||wl/2 (Z;C4)"

do(x)do(y) <e ||go|]W1/2 (Zoh) (2.37)

2
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In order to estimate the integral over X} x £~ with X_ := X UX, we note that it holds
for (x,y) € £} x L~ similarly as above

(M =7e)@)(x) = (M=) @) )| < &|@(x)| +[((M =) @) )| < e(l@(x)|+ @ ()]).
Moreover, using the Lipschitz continuity of 11 we have

e<nx)—ny) < xlx—yl,

which yields |x —y|~! < ke~!. Using again [51, Lemma 3.2 (b)] we obtain eventually

2

Ix yl3

//ﬁ{'"’ (P + 90 >|2]dc(x)dc(y) (2.39)

e—y>~
els (/Z+ |<p(x)!2do(x)+/2 |<P(y)‘2do(y)) < e el 12 g0

By symmetry a similar estimate can also be shown for the integrals over L~ x £, T x X,
and £ x X with obvious notations.

Eventually, we have to estimate the integral over £ x L. For (x,y) € £J x £} it holds

(M —ne)@)(x) — (N —Me)@) )| = [(nP)(x) —e@(y)]
<elo(x) — o)+ (e—n(x))-|o(x)
< elp(x) — )|+ N () —nx)[/2TE 2 ().

The last inequality is true as 1(y) > € for y € . Using the Lipschitz continuity of 1 we
conclude from this in a similar way as in (2.38)

2
/Z+ EJF| n— ns) )() ((TI 778)‘P>()’)| dG()C)dG(y)

lx—y?

el™s (/ ](p(x)]zdcf(x)ﬂL/):(T /z; —l(p()‘c))c:;ﬁgyﬂzdo(x)dc(y)) (2.40)

1 €||(prl/2 (Z;C4)

By symmetry it is easy to see that a similar estimate is also true for the integrals over L x
23 , Xy XXg and X x X, Combining now the estimates (2.35)—(2.40) we deduce finally
that (2.34) is true and thus, the claim of this proposition is shown for t = %(1 —5). ]
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2.6 Schatten-von Neumann ideals

In this section we summarize several notions and results on Schatten-von Neumann ideals
which are necessary to prove Theorem 1 (ii1), Theorem 4 (iii) and some deeper results
in this direction in Sections 4.2 and 5.3. The presentation of the results follows the one
in [20], there one can find also further references.

Let J{ and K be separable Hilbert spaces. Recall that we denote the set of all bounded
operators A : H — X by B(H,XK). If there is no danger of confusion, we skip the spaces
and simply write 8. In a similar manner, we use the symbol G (JH,X) for the space of
all compact operators from H to K and G.(H) := S (H,H). It is well known (see for
instance [50, 60]) that for K € &..(H,K) the operator |K| := (K*K)'/? is a self-adjoint
and non-negative compact operator in H. The eigenvalues of this operator s;(K), k €
N, ordered in a non-increasing way and taking multiplicities into account are called the
singular values of K. Note that s;(K) = s (K*). Making use of the singular values one can
make the following further classification of S..(H,X):

Definition 2.6.1. Let 3 and K be separable Hilbert spaces and let p > 0. Then the
Schatten-von Neumann ideal of order p is defined by

&, (H,X) = {K € Gu (I, %K) : i sk(K)P < oo} .
k=1

Moreover, the weak Schatten-von Neumann ideal of order p is

G oo (H, K) 1= {K € Gu(,K) : 51 (K) = O(k—l/l’)}.

Assume that 0 < p < g. Then the (weak) Schatten-von Neumann ideals are ordered as
S, (FH,K) CSy(H,K) and & oo(H,K) C &y 0 (I,XK). Moreover, we have

S (H,K) C6pe(H,K) and & po(H,K) C &,4(H,%). (2.41)

The Schatten-von Neumann ideals are ideals in the sense that for A € 5 and K € G, it
holds AK € &, and KA € &,,. Similarly, it holds forA € B and K € &, . that AK € G,
and KA € 6, .. Eventually, if p,g > 0 and r is chosen such that % = %—i— é, then for
K € 6, and K; € G . the product of these operators satisfies

KK € Gy (2.42)
We would like to point out that in applications the Schatten-von Neumann ideal of order

one, which is also known as trace class ideal, are of special importance. For K € G the
trace of K is defined by

(k) = Y 4 (K).
k=1
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where A;(K) are the eigenvalues of the compact operator K. Moreover, for K,K; € B
with K1 K> € G1 and K>K| € G it holds the important cyclicity property

tI‘(Kl Kz) = tI‘(KzK]). (2.43)

Finally, let £ C R? be the boundary of a compact domain with sufficiently smooth bound-
ary. Using a result from [2] we deduce that operators with range in the Sobolev space
H*(X;C) belong to certain weak Schatten-von Neumann ideals. This is the main ingredi-
ent to prove Theorem 4.2.7 and Theorem 5.3.6 later. The author thanks V. Lotoreichik for
showing him a proof for this proposition.

Proposition 2.6.2. Let k € N, let ¥ C R3 be the boundary of a compact C*-smooth domain
and let | € {1,...,2k}. Let H be a separable Hilbert space and assume that A : H —
L*(X;C) is continuous with ranA C H'/?(Z;C). Then A € S4/l 00 (3, L*(%;C)).

Proof. For the sake of readability we split the proof into three steps:

Step 1: We show that A; : H — H'/2(X;C), A;f = Af is continuous. For this purpose we
verify that A; is closed. Assume that (f,,) C H such that

fo— finH and A;f, - gin H/*(£;C), asn— .

Then, f € H = domA; and as A € B(H,L*(X;C)) we have A, f, = Af, — Af in L>(X;C*)
for n — co. On the other hand, since H'/?(X;C) is embedded continuously in L?(X;C) we
have also Af, = A, f, — g in L?(X;C). Thus, we deduce A, f = Af = g and therefore, A; is
closed.

Step 2: Define the function

K(x) = #x’, x € R\ {0},

and the operator My : L?(X;C) — L*(X;C*) acting as

Mop(x):= [ K(x=3)0()do(y), x€X,g e L2(5C).

It is well-known, see [53, Theorem 6.8, Theorem 6.12, Theorem 7.6, and Corollary 8.13],
that My is well defined, self-adjoint, non-negative, and M, regarded as operator from
L?(X;C) to H'(X,C) is bijective. Using a scaling of Hilbert spaces argument we see that
also

M*: 13(%;C) — H'*(%;C) (2.44)
is bijective. Moreover, since K is a homogeneous function of order —1 it follows from [2,
Proposition 2.3 and Proposition 2.5] that My € &3 (L*(X;C)). Thus, by the spectral
theorem we have also M(l)/2 € 64/17W(L2(Z; C)).
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Step 3: We write A = M(l)/ 2M(; % 2Al. Then using the result of Step 1 and (2.44) we have that

My '*A; € B(H,L(Z;C)). Since My/” € 6,,..(L2(£;C)) by Step 2 we deduce finally

A€ By (L*(Z;C)), which was the claimed result. O






3 THE MINIMAL, FREE, AND MAXIMAL DIRAC OPERATOR
AND ASSOCIATED INTEGRAL OPERATORS

In this chapter we introduce the free Dirac operator in R? and we discuss the minimal
and the maximal Dirac operator acting in a bounded or unbounded domain Q C R3. Fur-
thermore, we investigate several families of integral operators which are associated to the
fundamental solutions of the corresponding Dirac equation. These objects will play a
crucial role in Chapters 4 and 5 below to define and study the spectral properties of Dirac
operators with singular interactions supported on compact surfaces * C R? and self-adjoint
Dirac operators on domains Q C R3.

3.1 The free, the minimal, and the maximal Dirac operator

Choose units such that # = 1 and let m,c be positive constants denoting the mass of the
particle and the speed of light. Throughout this thesis we work with the following choice
of the Dirac matrices o; and f3

L 0 o; L b 0
aj:= (Gj Oj) and B := (O —12)’ (3.1)

where o are the Pauli spin matrices

o) = (? é) 0y 1= (? 5")7 03 1= G) _01). (3.2)

A simple computation shows that these matrices fulfill (1.2), but we would like to note that
also other choices for o; and 8 satisfying (1.2) are possible, compare [68, Appendix 1.A].
Then the free Dirac operator is defined by

3
Aof = —ic Y oy f+mc*Bf,  domAg=H'(R*C?), (3.3)
k=1

where oy, B are the Dirac matrices given by (3.1). As in (1.5) we will often use the nota-
tion
Aof = —icat-Vf+mc?Bf.

41
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Let us first summarize some of the basic properties of Ag; they can be found, for instance,
in [68, Chapter 1] or [70, Chapter 20]. First, the free Dirac operator is self-adjoint. Next,
using (1.2) it follows that

1Aofllzs = |V fllgs +m*c*|| flIzs. (3.4)

In particular, the graph norm associated to Ay is equivalent to the norm in H'(R?;C*). It
is well known that the square of Ay coincides with a shifted free Laplace operator in R,
that means

Al = (—02A+m2c4)14, domA?Z = Hz(]R3;(C4), (3.5)

where the operator on the right hand side is understood as 4 x 4 diagonal operator, where
each non trivial entry acts as —c?A +m?c*. Eventually, the spectrum of Ay is

6 (Ag) = (—o0, —mc?| U [mc?, o).

In the following proposition we compute the resolvent of Ag. The particular form of its
integral kernel will be of great importance for our considerations in the following sections.
One can find this result for instance in [68, Section 1.E], but for completeness we add a
direct proof based on (3.5) here. Note that below we use the convention Im /it > 0 for
p € C\[0,c0).

Proposition 3.1.1. Let Ay be the free Dirac operator from (3.3) and let A € p(Ag) =
C\ ((—o0,—mc*|U[mc?,0)). Then, the resolvent of Ao acts as

(Ao—2)"" flx) = /]R Galx=y)f()dy, x€R’, felXR%CY),

(C4x4

where the -valued integral kernel G, is given by

G AI : . A2 ) i VA= (me)|x| >
2 (x) = C—z4+ml3—|— —1 C—z—(mc) |x| me : a7l . (3.6)

Proof. The identity (A9 —A)(Ag+A) = (—c?A+m?c* — A?)I4, which follows from (3.5),
implies

2N\ —1
Q%—ZY4264M0+M(—A+@MV—%%> L. (3.7)

Let f € L>(R3;C*) be fixed. It is well known that

22\ ! V222 —(me)|x—y]
) r= [

e P f(y)dy, (3.8)
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see for instance [61, Example 1 in Section IX.7]. Since (—A+ (mc)> —A%/c?) "\ f ¢
dom (—A- 1) = H*(R3;C*) this function is weakly differentiable. We are going to show
that its first order weak derivatives are

2\ —1
9dj (—A+(mc)2—)ct—2> f=T;f, Jje{1,2,3}, (3.9)
where
T = [ =3 00 xR,
with

VA=)l |
tj(x) = 8]‘ 4717| . ’ (X) -y
v VI
=11 C_Z_(mc) |)C|— 47'L'|X|3 Xj14.

Then it follows from (3.7), (3.8), and a straightforward computation that

2N\ —1
(=)0 = 2a0+2) (-4 (e~ 55 ) s

el\/)t,z/c (mc)?|-—y|
Ao-i-l /

4r| - —y|

f (y)dy> (x)

s G2 (x=2)f (),

where G has the form (3.6). It remains to verify (3.9). For this purpose, we note first that
there exists an R > 0 such that for any j € {1,2,3} the function #; satisfies

ISR TP |y > R,

for some positive constant k. Hence, the operator 7 is bounded and everywhere defined in
L?(IR3;C*); see Proposition 2.4.3. In particular, the function on the right hand side of (3.9)
belongs to LZ(]R3; C*. For h € Cy (]R3; C*) we obtain with the help of Fubini’s theorem
(whose application is allowed due to our previous considerations) and integration by parts
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that
(T3 Wy = [, [ 1= f )yl
= [ £0) [t =)hx)axdy
eV A? /2 —(me)?|x—y| T ded
\/lz/c (mc)?|x—y| I D
/M/RS PP p— f(y)dydjh(x)
» A? -
This shows (3.9) and completes the proof. 0

Let Q be a C?-domain in R? with compact boundary, that means Q is either a bounded
C?-domain or the complement of such a set. In the following we study the following two
operators acting in L?(Q;C*): The maximal Dirac operator

T f = —ica-Vf+mc*Bf, domTi, = {fe€L*(CH:a VfeL*(QCH],
(3.10)
where the derivatives are understood in the distributional sense, and the minimal Dirac
operator T =T | H& (Q;C*), which is represented more explicitly by

min max

TS f:=—ica-Vf+mc*Bf, domT2

min

= H} (Q;RY). (3.11)

The basic properties of 72 and 7>

et max are collected in the following lemma.

Lemma 3.1.2. Let Q C R? be a C>-smooth domain with compact boundary and let TS,
and T be defined by (3.10) and (3.11), respectively. Then TS is a closed, simple sym-

min min

metric operator in L*(Q;C*) and (TS} )* = TS

min max-

Proof. First, we verify that Tn%n is closed. For that, let f, C dom T

Q= HI(Q;C*) such
that
fu—=f and T2 f,—g in L2(QCY), asn — co.

We show f € domT and T¢ f = g. Denote the extensions of f, f, and g onto R> by

min min

zero by f fn and g, respectively, that is

7o [r me i [n e L o Je e
= = an =
0 inR\Q " |0 nR\Q 8 i
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Then f, € H'(R3;C*) = domAy, f, — f and Ao f, — g in L2(R3;C*), as n — oo. Since Ag
is self-adjoint and thus closed, it follows f € domAg and Agf = g. Moreover, as the set

{he H'(R}CY 1 h | Qe HY(Q:CY)}

is a closed subspace of H'(IR*;C*) and the graph norm corresponding to Ay is equivalent
to the norm in H'! (]R3;(C4), compare (3.4), we deduce f = f [ Q € H(% (Q;(C4) and

T2 f=(Af) 1Q=81Q=g¢.

Q
Hence T is closed.

Next, we show that (T2 )* = T, . First, we prove the inclusion (T2 )* C Tis,. For this

let f € dom (T )* and let g € C7(Q; C*) C dom T2 be arbitrary, but fixed. Then it holds

min min

(( mm) f’ ) (fv mlng) (f,(—icOC-V—i—mczﬁ)g)Q,

which is equivalent to

(f,OC-Vg)Q:%(( mm) S mCZBf, )

that means by definition o - Vf = (( T2 )*f—mc*Bf) € L*(Q;C*) in the distributional
sense. Therefore f € dom 7, and T 2 f=(T2)*f.
To show T2, C (T2 )%, let f € domT3s%, and let g € C3(Q;C*) be arbitrary, but fixed.

min
Then we have by the definition of the distributional derivative

(Tmaxf>8)a = (f, (—icot-V+me*B)g) o, = (f Tymn8)o- (3.12)

Now, let g € dom T2 = H}(Q;C?). Then, there exists a sequence (gn) C Co (Q:;C*) such
that g, — g in H'(Q;C*), as n — . Clearly, this implies 72 g, — T2 g in L2(Q;C*)
for n — co. Hence, the continuity of the scalar product implies that (3.12) holds for all
g € domT$* . Therefore f € dom (T2 )* and (T2 )* f = T f, which shows the second

min* min min
inclusion as well.

It remains to prove that 7 mm is simple. Assume that Tn?m =T\ ® T, there T; acts in an

invariant subspace H{; C L*(Q;C*) of T , j € {1 2}, and that Tl T}". We prove that T}
must be zero. For that note (T2 )2 =T2@® T} and T = (T3)* in H; by the spectral

min

theorem. Since T2 is closed, we have (Tn%n)2 = T2 @ T2 We want to show using (2.4) that

(T \2
(T:3)? is simple. For that consider the operator

ARf = (—icot-V4+mc?B)Ef = (—PA+mPct)f, domA® = H?*(Q:;C?).
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Integration by parts shows A® C ((TQ ) ) , as it holds for arbitrary f € domA® and g €

Q min
dom (T3, )

(AQf,g)Q: ((—1'6‘06~V—|—m02[3)2f7 ) = ((—iCOC-V+m62B)f,(—iCOC-V—l—mczﬁ)g)Q
= (f,(—iCOC-V—i—mCZB)Z ) (fa( mm) )Q7

as g, (—ica-V+mc?B)g € H} (Q;C*). Itis known from [63, Proposition 4.3] (see also [24,
Proposition 2.2] for unbounded ) that the set

U ker(A® — 1)
AeC\R

is dense in LZ(Q; C4). Hence, also

U ker( i) ) U ker( ) ) —7L>

AeC\R AeC\R

is dense in L?(Q;C*). This means that (T2 )2 is simple, compare (2.4). From this we
obtain T2 0 and hence also T = 0. Thus 7:  is simple. 0

Eventually, we prove that smooth functions are a core of T5,. The proof of this result
follows ideas from [25, Lemma 2.1], see also [55, Proposition 2.12] for a similar result.

Lemma 3.1.3. Let Q C R3 be a C2-smooth domain with compact boundary and let TS,
be defined by (3.10). Then C*(;C*) is dense in dom TH%X equipped with its graph norm.

Proof. We verify the claimed result when Q is the complement of a bounded C?-domain;
the case that Q is a bounded C2-domain can be shown in the same way. Assume that
f € domT2, fulfills

0= (f7g>Q+ (Trrglzaxf7 Tn?axé')ﬂ
=(f,g)o+ ((—icoc-V+mc2ﬁ)f,(—ica-V—}—mczﬁ)g)Q

forall g € C*(Q;C*). As C3(Q;C*) C C(Q;C*) we deduce from this that the distribution
(—icot-V +mc?B)?f exists in L?(Q;C*) and is equal to — f.

(3.13)

Next, we show
(—ico.-V+mc*B)f € Hy(Q;CY). (3.14)

To see this let 2 € C5(R3;C*), choose a cutoff function y € Ci(R*;C*) which satisfies

(1, xeB©,1),
%(x)_{o, ¥ €R3\ B(0,2),
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and recall the definition of the free Dirac operator Ay from (32). Define for n € N the
functions y, := x(-/n) and u,, := (analh) | Q. Then u, € C*(Q;C*) and u, — (Ay'h) |
Qin H'(Q;C*), as n — oo. Employing (3.13) we obtain
(Ao (—f ©0).h) s = —(f,(Ag 'h) | Q)@ = — lim (f,un)a

T . 2 . 2

= nlgI}o ((—ica-V+mc*B)f,(—ico-V4+mc*Buy) o

= ((—icot- V+mc*B)f, (—ica-V+mc*B)(Ay ' h) 1Q),

= ((—ica-V +mczl3)f@0,h)R3.

Since this is true for any & € Ci (R3; C*) we deduce
(—icot-V+mc*B)f®0=A," (—f®0) € domAy = H' (R*;C*).

As the trace of (—ica -V 4+mc?B)f ©0 at IQ is zero, we get finally (3.14).

By (3.14) there exists a sequence (h,) C C3(Q;C*) with h, — (—ica -V +mc?B)f in
H'(Q;C*) for n — oo. Therefore, using the definition of the distributional derivative and
(—ico-V+mc?B)%f = —f we conclude

0 < ((—ica-V+meB)f,(~ica-V+me*B)f) o = lim (hn, (~ica-V+me*B)f)q

= lim ((—ica-V -+ me®B)in. f) g = ((~ica-V+ mB1.f)
= _(fvf)Q < 07

that means f = 0. Therefore C*(Q; (C4) is dense in dom T2 O

max-*

Finally, we construct in the case that Q C R is the complement of a bounded C2-domain
for A € (—oo,—mc?] U [mc? ) a sequence (W) C domT which satisfies all proper-
ties of a singular Weyl-sequence. This will allow us to show that (—oco, —mc?] U [mc?, o)
belongs to the essential spectrum of Dirac operators with singular interactions and of
self-adjoint Dirac operators in Q with suitable boundary conditions. Let R > 0 such that

R3\ B(0,R) C Q. Moreover, choose for A € (—oo, —mc?] U [mc?,) a vector { € C* such
that (\/mocl +mp +?LI4) ¢ # 0, a cutoff-function ¥ € C3'(R) with x(r) =1 for
7| < % and x(r) =0 for r > 1 and set x, := (R+n2,0,0)", n € N. Then we define the
function l//,jl by

v (x):= ;;Tx (%|x—xn|) VA mmictxe <\/ A2 —m2ctay +mc*B +7LI4> §. (3.15)

Some useful properties of l,u,;l are stated in the following lemma:
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Lemma 3.1.4. Let Q C R3 be the complement of a bounded C*-domain, let Tn%n be given

by (3.11) and let A € (—o0, —mc?]U|mc?, ). Then the functions l//,)lL defined by (3.15) have
the following properties:
(a) l//,?L € dom Trr%n.
) [y} |q = const. > 0.

(©) l//,zL converges weakly to zero, as n — o.

d (T8 — M)yt = 0asn — oo,

in

Proof. First, by definition l//,iL is smooth and supp l[/,’ll NJQ = 0 and thus l//,’lL € dom Tn?in,
that means item (a) is true. Moreover, it holds

1/2
AR ((W —m2choy +mc*B +x) g)- (/B(O ; ]x(]y])]zdy) — const.,

which is assertion (b). Furthermore, since the supports of the I/I,fL are pairwise disjoint, the
sequence (l//,%) converges weakly to zero as n — oo. This is statement (c). Eventually, to
verify (d) a straightforward computation shows

(Tata = 2)Yi (x) = (—ico-V+mc® B — 2)yj (x)

- ! B
= _#elvlz—mzxﬁx’ (r_z‘x_x"’) o |i_i"‘ (N/lz/cz—mzczal +mc*p ~|—),I4) 4
n

n
. <\/ A2 —m2ctoy +mc*B — 7LI4) <\/ A2 —m2ct oy +mc*p —|—7LI4) .

The anti-commutation relation (1.2) implies
(\/ A2 —m2ctoy —|—mc2/3 — 7LI4) (\/ A2 —m2ctoy + mczﬁ + 7LI4> =0.

Hence, we have

c 1/2
T8 -2vila< S ([ i (oDPe)
B(0,1)

n

and therefore, (T — )y} — 0asn — oo, O

min
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3.2 Integral operators — Part I: Basic properties

In this section we introduce several families of integral operators associated to the Green’s
function G, for the resolvent of A that will play an important role in the analysis of
Dirac operators with singular potentials and of Dirac operators on bounded domains. In
this section, we will introduce all operators as bounded operators in the corresponding L?-
spaces. Later, in Chapter 4, it will turn out that these operators are the y-field and the Weyl
function associated to a special quasi boundary triple. With this knowledge we will prove
in Section 4.1.3 additional properties of these integral operators using the abstract theory
of quasi boundary triples.

Throughout this section, let ¥ C R3 be a compact and closed C2-smooth surface that
splits R? into a bounded part Q, and an unbounded part Q_. The unit normal vector

field at ¥ pointing inside Q_ is denoted by v. Recall for A € p(Ag) = C\ ((—eo, —mc?]U
[mcz,oo)) the definition of the function G, from (3.6). Then we define the operators

®, : L2(X;CY) — L2(R3;CY),
,0() = [[Grr-1)o0No(), reR9elA(TC). (16
and @ : L2(X;C*) — L*(Z;CH)

Crp(x) :=lim Gr(x—y)@(y)do(y), xeX,¢eL*(L:Ch. (3.17)
ENOJX\B(x,€)

The basic properties of ®, and € are summarized in the following proposition. The proof
of this result follows ideas from [5, Lemma 2.1 and Lemma 3.3].

Proposition 3.2.1. Let for A € p(Ao) the operators ®) and Cj be defined as in (3.16)
and (3.17), respectively. Then, the following assertions are true:

(1) The operator ®,, is bounded and everywhere defined. Its adjoint is explicitly given
by @5 : L*(R%C*) — L*(;CY),
@} f(x) = /R Grlx=y)f(ndy, x€X,fel*(R%CH. (3.18)

(11) The operator Cy, is bounded and everywhere defined.
(iii) Let ¢ € L*(X;C*) and set f := ®; ¢. Then, the non-tangential limits

Y (x) = dim _ f(y)

Qi 3y—xel
exist and are given by

i
Vi = GMP:Fz—C(OC'V)(P-
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(v) —4c2(Cya-v)? = —4c? (o - vCy)? = I for all A € (—mc?*,mc?).

Before we prove the preceding proposition, we note that, using the same notations as there,
assertion (iii) and (1.2) imply

1
§(W++V/7):6;L(p and ico-v(yy—y_) =0. (3.19)

Proof of Proposition 3.2.1. (i) First, we note that there exist constants kK, R > 0 such that
for x € R*\ {0}
72, x| <R,

<
Ga(x)| < K{e—lm\/m|x|, x| > R.

Hence @, is bounded by Proposition 2.4.4. Next, we compute the adjoint operator @3 :
L2(R3;C*%) — L2(Z;C*). Let ¢ € L*(X;C*) and f € L*(R?;C*) be fixed. Then, by using
G7(x—y) = Gy (y—x) and Fubini’s theorem we see

(0.03)s = (@300 = [ | [ Galx=3)9()do ()G
= o0 [ Gr=x)70)dxdo(s).

Since this is true for all ¢ € L?(X;C*) the claimed representation of ®; follows.
(ii) To show the boundedness of C; consider the splitting
Cp=TF+74+74 (3.20)
with ‘J';L (L2(Z;CY — L2(Z;CY), j € {1,2,3}, acting as
Tho(x) = i e tH(x—y)p(»)do(y), x€X,@el}(xCY), (3.21)

and

A vE wox\ VAT
Ay [ A A _
e <62]4+mﬁ+ Gz ~(me) 6|x|> 47|

tk(x) ( )( \/m\x\ ) t%(x) _ i(OC'X)

2 47| x]3 4m|x|3”

b

First, there exists k; > 0 such that |¢} (x)| < & (14 |x|") for all x € R3\ {0}. Hence T7
is bounded by Proposition 2.4.5. Furthermore, since

VA E P _ | _ / ! di /A2 (o] g
o ar

2 1
:M%_wwm/gw%Hmw¢
0
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there is a Kk, such that |t (x)| < K (14 [x|~!) for all x € R¥\ {0}. Proposition 2.4.5 shows

that also ‘T% is bounded. Finally, it follows easily from Proposition 2.4.6 that also ‘T% is
bounded. Therefore (3.20) shows that C; is bounded.

The proof of assertion (iii) can be found in [5, Lemma 3.3] for A = 0. The general state-
ment can be shown in exactly the same way. Item (iv) is shown in [6, Lemma 2.2]. ]

If we have a closer look onto the proof of the boundedness of Cj, then it turns out that this
family of operators is uniformly bounded for A € (—mc?,mc?) in the operator norm. The

proof of this result follows the one of [6, Lemma 3.2].

Proposition 3.2.2. Let for A € p(Ag) the operators C), be defined as in (3.17). Then the

operators C; are uniformly bounded in (—mcz,mcz), that means there exists a constant

K > 0 such that

sup Gyl <K.
Ae(—mc? me?)

Proof. As in the proof of Proposition 3.2.1 (ii) we write for A € (—mc?, mc?)

Cp =Tt +74 +9%,

where Tj-l, J € {1,2,3}, is given by (3.21). To show the claim it suffices to verify that TA

‘.T% and ‘J'% are uniformly bounded by a constant independent of A. First, there exists a
constant k7 > 0 such that

HOIE:

[A] Ak 3
) +m+1/ (mc) 2| T x € R\ {0},

and since A € (—mc?,mc?) is uniformly bounded, we find

A K2
|t1 (X)‘§M7 XER3\{O}7

with some k, independent of A. Therefore, Proposition 2.4.5 implies that ‘J'{“ is uniformly
bounded with respect to A.

Next, we note that

oV (me)2 =22/ _ | — /1 ie—t\/(mc)Z_AZ/ﬂ‘x‘dt
o dr

2 1
= fimer -2y [ e VT g
Cc 0

(3.22)
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Thus, there exists a constant k3 independent of A such that

2
(mc)? — )C“—Z < |';—3| xe R\ {0}. (3.23)

A la - x|
t <
2 (@) < 47mc|x|?

Hence, it follows from Proposition 2.4.5 that also ‘J'% is bounded by a constant independent
of 1.

Eventually, we note that ‘J'gl is actually independent of A and bounded by Proposition 2.4.6.
This finishes the proof of this proposition. [

In the following proposition we discuss the commutator of the singular integral operator
G, and a Lipschitz continuous function and show that this operator increases the smooth-
ness. This has important consequences for the analysis of self-adjoint Dirac operators on
domains and with singular interactions and it will be used in the proofs of many of the
main results of this thesis. The proof of the following proposition is based on a classical
result of Calderdn [32], but we trace our commutator back to another one treated in [55]
and use a result shown there.

Proposition 3.2.3. Let for A € p(Ag) = C\ ((—oo, —mc?| U [mc?,0)) the operator €, be
defined by (3.17) and let T : £ — R be Lipschitz continuous. Then for any s € [0, 1] the
commutator of C), and T gives rise to a bounded operator

€yt —1Cy : HH(Z;CY) — HY (Z;CH).

Proof. We are going to show the claim for s = 1, the statement for s = O follows then by a
duality argument. Finally, for s € (0,1) the claimed assertion can be shown by interpola-
tion.

We split €, as
C, =Tt +77,

where ‘J';L (L2(Z;CY — L2(Z;CH), j € {1,2}, is given by

A . A 2 4
T59(x) 0 fe e (x—y)e(y)do(y), x€X,peLl (5CY),
with
A 2 a-x ei\/kz/czf(mc)z\x\
Ax) == 2 me)?
(%) 0214+mﬁ+ c? (me) c|x|] 47|x|
n i((x-x)3 (ei /A2 )2 —(me)?|x| 1)7
4melx|
i(o-x
) = 1Y
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We show that the commutator of 7 with both operators ‘I{l and ‘.T% , respectively, is bounded
from L2(X;C*) to H'(X;C*).

First, we show that K := ‘T{lr — ’L"T{L : L2(X;C*) — H'(X;C*) is bounded. By the closed
graph theorem it is sufficient to show that ran XK C H'(Z;C*). Let ¢ € L*(Z;C*) be fixed.
Let {A},U}, WJ-};:1 be a parametrization of X, let {x j}ﬂ.: | be a partition of unity subordi-
nate to {W;} and define the functions ¢;(v) := @(A;(v)), v € U, and

kij(1e,v) = 2i(Ai ()2 (A (0))1g (AiC) = A () (2(A;(v) = T(Ai(w),  u€ Uiy €U;.

Moreover, we introduce for indices i,j € {1,...,/} the corresponding operators X;; :

L*(U},\/detG;dv) — L?(U;,+/detG;du) acting as
K f (u) / kij(u,v) f(v)y/detG;(v)dv, u €U, f € L*(U},+/detG;dv).

Let x € X and choose for u; € U; with x = A;(1;), if x € V;. Then in view of (2.28) it holds

l
1 (= A (A ) (T(A; (1) = (1)) 9(A; (1)) det G (v)dv

[ 1
:ZZ/ ij l,[l7 (Pj \/detG dV— Z K[]QDJ ul

i=1 j: 7] 1

Thus, it suffices to prove X;;@; € H 1(U;). Using that 7 is Lipschitz continuous and per-
forming a similar calculation as in (3.22) and (3.23) we see that there exists a constant Kk
such that for any x,y € X

|3 (x =) (t(y) — T(x)| < K1,
which yields that k;; is also bounded. Moreover, k;; is (weakly) differentiable in u almost
everywhere and it holds by the product rule

K
| Ok (1, v)] < —=

u—v|

for a constant k. Hence, by Proposition 2.4.3 the operator in-‘j AU i,4/detGdv) —
L?(U;,+/detG;du) acting as

0= [ Ol 0,0 (4)y/detG (). we U f € LU, /detGav),

is bounded. Eventually, one can show in the same way as in the proof of Proposition 3.1.1
that for f € L*>(U;, /detGdv) the function X;; f is weakly differentiable and that its weak
derivative is

0, XKijf = iK if
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compare (3.9). Hence, the claimed mapping properties of the commutator of ‘J'{l and 7
hold.

Finally, the fact that the commutator T%’c — ”L'T% is bounded follows from [55, Proposi-
tion 2.8]. In fact, in the proof of this result it is shown that a very similar operator, which is
denoted there as K> ¢ (see also the definition of the operators with kernels ¢, 4 in [55]) and
which is an integral operator with the same kernel as ‘J'% T— ‘L".T% up to the multiplication
with a constant matrix, is bounded as an operator from L?(X;C*) mapping to H'(X;C%).
In [55] only the special case T = v was considered, but the argument using a classical re-
sult from [32] applies actually for any T which has weak derivatives in L*(X), in particular
for all Lipschitz continuous 7. 0

Finally, we provide some useful anti-commutator properties of €, and the Dirac matrices.
These facts are also some of the main ingredients to prove later the self-adjointness of
Dirac operators with singular interactions and of Dirac operators on domains.

Proposition 3.2.4. Let for A € p(Ag) = C\ ((—o0, —mc?| U [mc?,e0)) the operator €, be
defined by (3.17). Then the following statements hold:

(i) The anti-commutator A := Co(at- V) + (a - v)Co can be extended to a bounded op-

erator ~
A:HV2(,Ch = H'2(z;CH).

(ii) The anti-commutator B, := C; B+ BC, can be extended to a bounded operator
B, : H'2(5;C* — H'2(5;CH).

Proof. The proof of item (i) can be found in [55, Proposition 2.8]. It remains to show
statement (ii). Using the anti-commutation relation (1.2) we see that B, is an integral
operator with kernel

VA= ey

4r|x —y|

PH(x—y) =2 (f—zﬁ +mz4)

and thus, B, = 2(?—2 B+ mI4) SLj2 /2 (me)2» Where SLy, denotes the single layer boundary
integral operator for —A — . It is well known that SL)>2_ ;)2 gives rise to a bounded

operator from H_l/z(Z; (C4) to Hl/Z(Z;C4), see for instance [53, Theorem 6.11]. This
implies the statement of item (ii). L]



4 DIRAC OPERATORS WITH SINGULAR INTERACTIONS

In this chapter we investigate Dirac operators with singular interactions supported on a
closed and compact surface ¥ C R3. First, in Section 4.1.1 we introduce a quasi bound-
ary triple {L*(X;C*),I'3,I'x} which is suitable to define and study these Dirac operators
with singular interactions. It will turn out that the y-field and the Weyl function associated
to this quasi boundary triple coincide with the integral operators ®; and €, introduced
in Section 3.2. Moreover, we will see that the triple {L*(X;C*),T5,IT} satisfies the as-
sumptions from Theorem 2.2.13. Hence, we can transform this quasi boundary triple to
an ordinary boundary triple {L?(X;C*),Y3,YT}; cf. Theorem 4.1.5. Eventually, with the
aid of the ordinary boundary triple and the abstract results from Section 2.2 we will derive
more involved results on the integral operators ®; and C, including a detailed analysis of
their mapping properties in Section 4.1.3. These results will play then a crucial role in the
study of Dirac operators with singular interactions.

In Section 4.2 we introduce with the help of the quasi boundary triple {L*(X;C*), I3, I'T}
Dirac operators with singular interactions. In the case of non-critical interaction strengths
we will prove self-adjointness of the operators and provide the basic spectral properties of
them.

In contrast to the non-critical interaction strengths it will turn out in Section 4.3 that for
critical interaction strengths Dirac operators with singular interactions introduced in Sec-
tion 4.2 with the quasi boundary triple {L?(X;C*),I'5,IF} are not self-adjoint. But for
constant 1 and s with N2 —n2 = 4c? we will be able to prove essential self-adjointness
and with the help of the ordinary boundary triple {L*(X;C*), Y5, Y}} we can compute the
self-adjoint realization in this case as well. Furthermore, we will be able to state some of
the basic spectral properties also in the case of critical interaction strength.

Finally, in the situation of purely electrostatic and Lorentz scalar shell interactions we
investigate the nonrelativistic limit. It will turn out that these Hamiltonians are the rela-
tivistic counterparts of Schrodinger operators with d-potentials. In particular, this yields a
justification for the usage of Dirac operators with singular interactions as idealized models
for Dirac operators with squeezed potentials.

The results in this chapter are generalizations of [11,14] and the presentation in this section
follows closely these papers.

55



56 4 Dirac operators with singular interactions

4.1 Boundary triples for Dirac operators with singular interactions

In this section we introduce first a quasi boundary triple which allows us to introduce Dirac
operators with singular interactions in a natural way via jump conditions at the surface X.
Then, in Section 4.1.2 we will transform this quasi boundary triple with the methods de-
scribed in Section 2.2 to an ordinary boundary triple, which enables us then to prove self-
adjointness also in the case of critical interaction strengths.

4.1.1 A quasi boundary triple for Dirac operators with J-shell interactions

Throughout this chapter let Q always be a bounded domain in R? with C2-smooth bound-
ary £ :=0JQ, and set Q_ := R3\ Q,. We denote the normal vector field at ¥ pointing
outwards Q by v. We will often make use of the orthogonal decomposition L?(R3?; C*) =
L*(Q;CH @ L*(Q_;C*) and we write for f € L>(R*;C*), in this sense, f = f. @ f_ with
fri=f1Qx+.

First, we define the operator 7% in L?>(R3;C*) by

TYf .= (—ico.-V +mc*B) fy @ (—ico -V +mc*B)f-,

4.1
domT* := H'(Q;CHaeH (Q_;CH), D

and the mappings F%,Fi: :domT* — L2 (% (C4) acting as

1
T5f =ic(e-v)(fils—f-|z) and F%fizi(f+|z+f—|z)= f€domT>  (42)

Note that ran[5,ran I’y € H'/2(Z;C*), as domT* = H'(Q;C*) @ H'(Q_;C*) and L is
C?-smooth, compare Proposition 2.3.3 and Lemma 2.5.1.

In the following theorem we show that {L?(X; (C4),F(E), F%} is a quasi boundary triple and
that T coincides with the maximal Dirac operator Tn%§ &5 TH%; from (3.10).

Theorem 4.1.1. Let Ay be the free Dirac operator from (3.3), let T* ,1"(2) and 1"% be given
by (4.1) and (4.2), respectively, and define the operator S* acting in L*(R3;C*) by

S*:=Ag | HY(R?\ Z;CH). (4.3)

Then S* is closed and symmetric, (S*)* = T = Tk ® T and {L(%;CH, T3, T} isa
quasi boundary triple for (S¥)*. Moreover,

ran (T, TT) = H'/2(Z;C* x H'/2(z;C*) (4.4)

and T* [kerl"g is the free Dirac operator A.
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Q. . .
in Thin» Where T is the minimal Dirac operator
given by (3. 11) Hence it is clear by Lemma 3.1.2 that $* is closed and symmetric and

that (S%)* = Tiak @ Tiax. Moreover, Lemma 3.1.3 1mp11es that T is dense in Tt @ Tox
as C°(Q;CHec?(Q;CH cH' (Q;CHoH (Q_;C*) =domT*.

Let us prove now that the abstract Green’s identity is fulfilled. Assume that f = f; @ f_,
g=g,®g cdomT*=H'(Q,;C*) o H'(Q_;C*). Then, integration by parts shows

((_ica ’ V+mczﬁ)f:|:7g:|:)gi - (f:i:? (—iC(X ’ V+mczﬁ)gi)gi = q:(ica : vf:l:’27g:|:‘2)):a

as v is pointing outwards Q. By adding the above formula for 2, and 2_ we obtain

(T*f,8)ps — (f. T™8)rs = (TT£,I58)x — (T5£.TT8)x,

which is Green’s identity.

Proof. First, we mention that I P 7%

Next, we verify the range property (4.4). Let ¢,y € H 1/ 2(2;64) and choose functions
fr € H'(Qy;C* and g € H'(R3;C*) that satisfy

. 1
ica-vVfils=¢ and gls=y— §f+\z,

respectively. Then we have i := (f, ©0) +g¢g € domT* and

. 1
Tgh=ica-v(filz+g+lx—g-lz) =¢ and F%h:§f+|z+g|zzll’
Therefore (4.4) is shown and, in particular, ran (I'y, ') is dense in L*(Z; C*) x L*(Z;C*).

Finally kerI'y = H'(R3;C*). Hence T* | ker['5 coincides with the self-adjoint free Dirac
operator Ag. Therefore {L?(X;C*),T'5,I'x} is a quasi boundary triple for (S*)* and all
claims have been shown. O

Next, we compute the y-field and the Weyl function associated to the quasi boundary triple
in Theorem 4.1.1. It turns out that these operators coincide with restrictions of the integral
operators @, and C; defined in Section 3.2.

Proposition 4.1.2. Let {L*(X;C*),T3,Ic} be given as in Theorem 4.1.1, let A € p(Ag) =
C\ ((—o0, —mc*]U [mc?,0)), and let ®; and C;, be defined by (3.16) and (3.17), respec-
tively. Then the following holds:

(1) The value of the y-field Y*(A) : domy*(A) C L*(Z;C*) — L*(R3;C*) is defined on
dom}/Z Hl/2 X, (C4) and is explicitly given by

P(A) =@ [ H'2(:CY),

Each y*(A) is a densely defined bounded operator from L*(X;C*) to L*(R3;C*)
and a bounded and everywhere defined operator from H'/2(2;C*) to H'(Q;C*) &
H'(Q_;C*). The adjoint y*(A)* : L*(R3;C*) — L*(X;C*) is bounded and every-
where defined and coincides with @ .
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(ii) The value of the Weyl function M=(A) : domM™(A) C L*(Z;C*) — L*(Z;C*) is de-
fined on the set domM=(A) = H'/2(X;C*) and explicitly given by

ME(A) =y | H'/2(x;CH).

Each M*(A) is densely defined and bounded in L*(X;C*) and bounded and every-
where defined in H'/?(X;C*).

Proof. First we note that domy*(A) = domM¥(1) = ran[y = H'/?(Z;C*), see (4.4).

To prove item (i) we recall first that y*(1)* = ['T(Ag — 1) ~' and this operator acts as
THA0—2) 110 = | Gle—nfO)dy = B3f(0). v/ e 2R:CY,

see (3.18), where G is the Green’s function for the resolvent of Ag from (3.6). Hence, it
is clear that

(L) =®; [domy*(A) = d; | H'/*(Z;CY),

which is a bounded and densely defined operator from L?(X;C*) to L?(R*;C*), com-
pare Proposition 3.2.1 (i). Eventually, to see that *(4) regarded as an operator from
H'2(2;C*) to H' (Q,;C*) @ H' (Q_;C*) is bounded we show that it is closed. Then the
closed graph theorem implies the claim. Assume that ¢, C dom () is a sequence such
that

¢ — @ in H/2(£;C* and y*(A)@, — fin H (Q:CHaH' (Q_;CH).

Then ¢ € H'/2(2;C*) = domy*(A) and Y*(A)@, — f in L2(R3;C*), as H'(Q;CH &
H'(Q_;C*) is continuously embedded in L?(R*;C*). On the other hand, since y*(A) is
continuous from L?(X; C*) to L?>(R3;C*), we have also ¥*(1)@, — y*(A)¢ in L>(R3;C*)

and hence
= hm '}’Z )On = 72 A)o.
Therefore y*(1) : HI/Z(Z;(C“) — H(Q;CHH'(Q_;C?*) is closed.
To show assertion (ii) we note that it holds by Definition 2.2.2, item (i), and Proposi-

tion 3.2.1 (iii) for any @ € H'/2(X;C*)

M) = TH ()9 = TT10 = 3 (@10): |5 + (®20) |x) = €10,

compare (3.19). Hence M*(A) = @€, | H'/2(X;C*). This is a densely defined and bounded
operator by Proposition 3.2.1 (ii). Finally, since y*(A) is bounded from H'/?(Z;C*) to
H'Y(Q,:C* @ H'(Q_;C*) by (i), we conclude by the mapping properties of the trace
operator that M=(1) is well-defined and bounded in H'/2(X;C*). O



4.1 Boundary triples for Dirac operators with singular interactions 59

4.1.2 An ordinary boundary triple for Dirac operators with J-shell interactions

In this section we transform and extend the quasi boundary triple {L?(Z;C*),I5,IT} to
an ordinary boundary triple using the techniques described in Section 2.2. Recall the
definition of the sets

4r :=ran(T5 | TT) and %% :=ran (T | T3).

Lemma 4.1.3. Let T be given by (4.1), let (S*)* = T & T and let {L*(%;C*), 13,5}
be the quasi boundary triple from Theorem 4.1.1. Then the operator AL := T* | kerl“% is
self-adjoint in L*(R?;C*) with 6(AL) C 6(Ag). Moreover

gr =gr =H'?(x;CH (4.5)
and the mappings F(Z), F% :domT* — LZ(Z; C*) have surjective extensions
Iy :dom (S¥) — H V2(£;C*) and T} :dom(ST) — H '/2(x;CY),
which are bounded with respect to the graph norm induced by (SZ)*.

Proof. First, we prove that AZ is self-adjoint. Via Green’s identity it is not difficult to see
that AZ is symmetric, compare (2.9). Thus, it suffices to show that AZ is bijective. Using
the Birman-Schwinger principle from Theorem 2.2.5 (i) it follows that AZ is injective,
as M*(0) = Cy | H'/2(Z;C*) is injective by Proposition 3.2.1 (iv). To show that AZ is
also surjective assume that f € LZ(R3;C4) is arbitrary, but fixed. Then f € ranAZ if and
only if ¥*(0)* f € ranM*(0), compare Theorem 2.2.5 (ii). Because of (3.18) and the trace
theorem we have ¥*(0)*f = ®(0)*f = (A, f)|z € H'/>(X;C*). Moreover, as ¥ is C2-
smooth, it follows from Proposition 3.2.1 (iv) that M*(0) = Cy | H'/?(X;C*) is bijective
in H'/2(Z;C*). Hence y*(0)* f € ranM>(0) for any f € L*(R3;C*), which implies that AZ
is self-adjoint. Furthermore, since M*(A) is bijective in H'/2(X;C*) for any A € p(Ay),
see Proposition 4.1.2 and Proposition 3.2.1 (iv), it follows from Theorem 2.2.5 (i)-(ii) that
AZ — A is bijective for any A € p(Ay), that means p(Ag) C p(AZ).

Next, we show that %3 = H'/?(£;C*). For that let ¢ € H!/?(X;C*) be arbitrary, but fixed,
and choose fi € H'(Q.;C*) such that fi|y = Fo (- V)@. Then f:= f, & f_ € ker';
and TS f = o.

To show ¥ = H'/?(X;C*) take for ¢ € H'/?(X;C*) a function f € H'(R3;C*) satis-
fying f|lx = ¢. Then f € ker['J and I'Tf = ¢. Hence, also 4= = H'/2(£;C*). Thus,
equation (4.5) is shown.

Finally, using (4.5), the self-adjointness of AZ, and Proposition 2.2.11 it follows immedi-
ately that Ty and I'T have surjective extensions Iy, Iy : dom (S*)* — H~1/2(£;C*). This
finishes the proof of this lemma. [
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Next, similarly as in Section 2.2 we set

AT :=ImME(i) = %(Mz(i) —M(—i)) = zli(e,- —C).

Since glE =HY 2(Z; (C4) is dense in LZ(Z; (C4), compare Lemma 4.1.3, we deduce from
Proposition 2.2.10 that (A¥)!/2 : [2(X;C*) — H'/2(X;C*) is a bijection and we define

2= (AD)TV2 g2z et - LA et (4.6)

and
= (AHYD  HV2(m ) - AT Y. (4.7)

Recall that we can express the inner product in %12 =HY 2(z;C*) and the duality product
in HY/2(x;C*) x H~'/2(;C*) with the help of 1%, compare the useful formulae (2.15),
(2.18), and (2.19). Moreover, we note that the typical scaling properties for embedding
operators yield that 1> gives rise to a bounded operator

1T H'2(2CY - H (5;CY). (4.8)

In the next proposition we extend with the aid of the extended boundary mappings fg and
I'> the y-field y*(1) and the Weyl function M*(1) from Proposition 4.1.2.

Proposition 4.1.4. Let {L*(X;C*),T5,T%} be the quasi boundary triple for (S*)* from
Theorem 4.1.1 with corresponding y-field Y= and Weyl function M* given as in Proposi-
tion 4.1.2. Then it holds for all A € p(Ag) = C\ ((—o0,—mc?] U [mc?,0)):

(i) The operator Y*(A) has a continuous extension

P(A) = (T5 T ker((ST) = 1))~ H'2(:C% = AR CH).

(ii) The operator M*(A) has a continuous extension
ME(L) =T5(T5 [ ker((S%) = 4)) ' H'2(5,¢%) — H2(R3, CH).
Moreover, it holds for all ¢ € H='/?(Z;C*) and w € H'/?(;C*)

(M*(A)e, ¥) _ijaxije = ((PvMZ(I)V’)_ule/Z'

(iii) The operator A7IZ(7L) is bijective in H='/2(2;C*) and its inverse is given by
ME) ' = 4P (a-v)M(A) (o - v,

where (o-v)' : H-1/2(2;C%) — H~/2(2;C*) is the dual of the multiplication op-
erator with o - v in H'/?(£;C*).
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(iv) The operator
Ay =M (a-v)+ (a- v)M*(A)
admits a bounded extension A, : HV/2(£;C*) — H'/2(X;C%). In particular, the
mapping ﬁ — (1\22(%))2 tH7V2(2:C*) — H'/2(X;C4) is bounded.

Proof. Assertion (i) and the existence and the mapping properties of MZ(?L) follow im-
mediately from Proposition 2.2.12 and Lemma 4.1.3. Moreover, employing (2.19) and
Proposition 2.2.4 (iii) we observe for ¢ € H'/?(X;C*) and y € H'/?(Z;C*)

(MZ(;L)(pa I//),l/le/z = (MZ(A’)(% IV)Z = <(P7MZ(I)W)Z = ((P7MZ(I)W)—1/2><1/2-
By density we obtain that the above formula can be extended for all ¢ € H~1/2(Z;C*).

Hence, the proof of item (ii) is complete.

To verify assertion (iii) we note first that it holds M*(A) = (M*())', when M>(%) is
considered as a bounded operator in H'/2(X;C*). Since M*(2) is bijective in H'/2(Z;C*)
by Proposition 4.1.2 and Proposition 3.2.1 (iv) with

M*(A)~! = —4c* (o v)MH(R) (- v), (4.9)
also ME(A) is bijective and the claimed formula for the inverse follows from (4.9) by
considering the dual.

It remains to show statement (iv). For A = 0 the claim is true by Proposition 3.2.4. Recall
that it holds
M*(2) = M*(0) + A7-(0)"¥*(4),

see Proposition 2.2.4 (ii1). Hence, we obtain
Ag = Ao+ A0 V)7 (0) Y (A) + A7 (0)" ¥ (1) (a - v).

Note that rany>(0)* = ran (F%Aal) — H'/2(X;C*). Hence, as y*(0)* is bounded from
L*(R3;C*) to L*(Z;C*) it follows from the closed graph theorem that y*(0)* acting be-
tween L?(R3;C*) and H'/?(X;C*) is also bounded. Therefore, the operator y>(0)*y*(1)
has the continuous extension

Y07 (A): HV2(5;CY — H'2(z,CH).

Moreover, by duality we see that the multiplication operator ¢ - v has the bounded exten-
sion (a-v)': H-'/2(£;C*) — H~'/2(£;C*). Thus, we conclude finally that A, has the
bounded extension

Ay = Ao+ A0 V)P0V F (L) + A7) F(A) (- v) - H V2 (5;,C%) — HY2 (3, CH).
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Eventually, using Proposition 3.2.1 (iv) we find for ¢ € H'/2(X;C*)

MEA) (- v) [(o- vIME(L) + ME(A) (- v) ] = {(ME(M)Z—ﬁ} ¢

This and a density argument imply

~y .02 15 ~
(M*(2))" = 17 =M~ (A) (@ v)Ay,
which is a continuous mapping from H~'/2(£;C*) to H'/2(X;C*). This finishes the proof
of this proposition. [

Finally, we transform the quasi boundary triple {L?(;C*),I'5,I’} from Theorem 4.1.1
into an ordinary boundary triple which is suitable to investigate Dirac operators with sin-
gular interactions. Since the boundary conditions for these operators are stated in the form
Fg + 9T} = 0 for some linear operator ¥ acting in L?(X; C*) it is more convenient to trans-
form the triple {L?(X;C*), —~T'F, I’} instead (in the proof of Theorem 4.1.5 below we will
see that this is in fact a quasi boundary triple). Recall that the operator AZ := T | ker F%
is bijective, compare Lemma 4.1.3. This implies, in particular,

dom (8*)* = domAZ | ker(S¥)*.

Theorem 4.1.5. Let S* be defined by (4.3) and let {L*(X;C*),T5,I'x} be the quasi bound-
ary triple from Theorem 4.1.1. Moreover, let 1% be defined by (4.6) and (4.7), respectively,
let TF be the extension of TS from Lemma 4.1.3 and define Y5, Y% : dom (S¥)* — L?(X;C*)
by

Y5fi=—1"T5f and Yif:=1:T5fy
for f = fo+g € domAZ +ker(S¥)* = dom (S¥)*. Then {L*(£;C*),Y3,Y}} is an ordinary
boundary triple for (S¥)*.

Proof. First, we note that AZ = T | F% is self-adjoint by Lemma 4.1.3. Hence the triple
{L?(£;C*), —TF, T3} fulfills all points in Definition 2.2.1, that means it is a quasi boundary
triple for (S¥)*. Therefore, all claims follow from Theorem 2.2.13 as 4) = H'/?(Z;C*) is
dense in L*(Z;C*) by Lemma 4.1.3. O

Note that the ordinary boundary triple {L*(X;C*), Y5, YF} from the above theorem is not a
transformation of the quasi boundary triple {L?(X;C*),T’5,I'>} as in Theorem 2.2.13, but
of {L*(X;C*),T5,I%} with Iy = —TF and I'* =Ty, The Weyl function of this triple is
given by

M™(2) =TF(T5 Tker(TF— 1))~ = —T5(TT T ker(TZ— 1)) = —M>(4)~"!
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for A € p(AZ) N p(Ao).
In the following let B be a symmetric operator in L?(X;C*) and set
A[ZB] = T% [ ker(T5 +BIT) = T* | ker(I'y — BLY).
Then, in view of formulae (2.22) and (2.21) it holds
ATy = T* [ ker(T] — BTG) = ($%)" [ ker(Y] — ©"*(B)Yp)
with
O (B)p: =13 (B+M=(0)")(1H) g,
dom®'*(B) = {¢ € L*(£;C*) : (1*) "¢ € dom (B+M*(0) ') and (4.10)
(B+M*(0)") (D) g e H'A(Z;CH Y.

In particular, if ®'*(B) is self-adjoint in L?(X; C*), then A[ZB] is self-adjoint in L?(R3; C*).

Finally, we are interested in operators of a similar form as ®'*(B) as above. Define for a
symmetric operator B in L?(X;C*)
O (B)g: =15 (B+M"(0)"") (1) g,
dom@"*(B) = {pc L2(2:CYH: (1F) 1o € dom (B+M*(0) ') and
(B+M*(0)"")(1%) g € H'2(Z;CH)}.

Note that we have in general ®'%(B) c ®%*(B), as in the definition of ®**(B) the exten-
sion M*(0) appears. If the parameter ®"*(B) is self-adjoint, then also the corresponding
operator Agox(gy = (S%)* I ker(YT — @%X(B)Y?) is self-adjoint. For such extensions the

Birman Schwinger principle from Theorem 2.2.5 reads, taking the special form of the Weyl
function for the triple {L*(X;C*), Y5, YT}, which is a transformation of the quasi triple

{L2(2;C*),T5, T}, from (2.20) into account, that a point A € p(AZ) = p(Ap) fulfills

-1

A€ oy(Ap) ifandonlyif 0€ (L (B+M=(2)")i?). (4.11)

Furthermore, similar statements for the discrete spectrum and the resolvent set of Ap) are
true, compare Proposition 2.2.7.

4.1.3 Integral operators — Part II: mapping properties

In this section we collect some further knowledge on the integral operators ®; and €
introduced in Section 3.2. As we have seen in Proposition 4.1.4 these operators are,
roughly speaking, the y-field and the Weyl function associated to the quasi boundary triple
{L*(%;C*),I’3,I'x} from Theorem 4.1.1. Hence, we are able to deduce some further prop-
erties of these operators from the general theory of quasi boundary triples with little ef-
fort.
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Proposition 4.1.6. Let for A € p(Ag) = C\ ((—oo,—mc*| U [mc?,0)) the operators ®;
and C; be defined as in (3.16) and (3.17), respectively, and let s € [— %, %] Then, the
following holds:

(1) The operator @, gives rise to a bounded operator

@ H(%;CY — BV ch e B2 Qo ).

(ii) The adjoint @} : L*(R*;C*) — H'/2(2;C*) is bounded.
(iii) The operator C,, gives rise to a bounded operator

4 HS(Z;CY) — HY(Z;CY).

Proof. (i) According to Proposition 4.1.2 we have that <I>)1L/ 2= ¥*(A) and this operator is
bounded from H'/2(£;C*) to H'(Q,;C*) @ H'(Q_;C*). Moreover, by Proposition 4.1.4
the operator @, has the continuous extension

—-1/2 _
@, =) HV(ZCh) - LR CY).
Hence, assertion (i) holds for s = j:%. The statement for s € ( — %, %) follows by interpo-

lation.

In order to show statement (ii) we deduce first from Proposition 2.2.3 (iii) that
ran®; = ran (F%(Ao —I)_l) =TIT(H' (R} CY) =H'?(x;C

and hence @ regarded as an operator from L*(R*;C*) to H 1/2(x,C*) is well-defined.
We prove that this operator is closed; then the closed graph theorem implies that it is also
bounded. Let (f,) € L>(R3;C*) and ¢ € H'/?(X;C*) such that

fo— finLAR3CYH and @ f, — ¢ in H/2(Z;CY).

Clearly f € L*(R?;C*) = dom®;, and since ®} is bounded from L*(R?;C*) to L*(X;C?)
by Proposition 3.2.1 (i) we obtain that @) f, — @ f in L?(X;C*). On the other hand, since
H'/2(x;C*) is continuously embedded in L?(X;C*) we get that D) fu— @ in L2(Z;C*) as
well. Thus, we have ¢ = @} f which shows that ® : L*(R*; C*) — H'/2(2;C*) is closed
and which finishes the proof of assertion (ii).

Eventually, we know from Proposition 4.1.2 that Gjl/ 2= MZ(2) is bounded in H'/?(X; C*)
and from Proposition 4.1.4 that G;l/z := M*(A) is bounded in H~'/2(X;C*). Hence,

statement (iii) is true for s = :I:%. Using an interpolation argument, the claim for s €
( — %, %) follows as well. —
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Next, we state a result on the invertibility of certain operators involving C . This result is
one of the main ingredients to prove the self-adjointness of Dirac operators with singular
interactions.

Proposition 4.1.7. Let {L*(£;C*),T5,I'c} be given as in Theorem 4.1.1, let 1, s Y =R
be Lipschitz continuous, let A ¢ o, (T* | ker (T + (nels +1sB)IT)), let s € [— 5, 3], and
let € be given as in Proposition 4.1.6. Assume that Ne(x)> — Ns(x)? # 4¢? for all x € X.
Then the operator

Iy + (Mels + nbﬁ)(ﬁj
admits a bounded and everywhere defined inverse in H*(X;C*).

Proof. We are going to prove this statement for s = 1 , the result for s = follows then
by duality. Finally, the claim for s € ( 2, 2) can be deduced then by 1nterp01at10n

So let us verify the claimed assertion for s = % First, we note that Iy + (Nels + ngﬁ) el/?

is injective, as otherwise the operator T* | ker (I + (Nels + ns8)I'T) has the elgenvalue
A by Theorem 2.2.6 (i). To show that Iy + (Nels + 7 ﬁ)(z’i/ ? s also surjective we note first

ran (I + (Mela +15B) €5/ %) > ran [(L + (Nels +nsB) €} ) (1s — (els + B )€Y 7).
Observe that
12 1/2
ILi—Mels+MsP)CY " =1s—C;/"(Ne — s B) + Ky 2
with
Kip:= G;L/z(ne —nsB) — (Nels + nsﬁ)e)lt/z
= (€} 1 —1e€;/%) —ms(€}* B+ BEY?) + (ns€)* — €} " ny)B.

Since 7M. and 1 are Lipschitz continuous it follows from Proposition 3.2.3 and Proposi-
tion 3.2.4 (ii) that X, , is a compact operator in H 1/2 (X;C*). Hence, also

Ky = (Ia+ (els+1sB)€) )%, 2
1s compact in Hl/z(Z;C4). Thus, we have
(I + (Nels+1sB)€) %) (I — (el + s B)EY?)
— (I + (Mels+1sB)C) ) (Ia — €3> (e — 1sB)) + a2

— I — (Nels +1sB) (€} )2 (e — 1sB) + (€Y > — €} *ne)
+ns(Bey*+¢e)?B)+ (e} —nse 1/ )B+%s 2

1
=14—m(77e2—7752)+5<3,,t
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with

1
K&)L = (ne14+ nSB) (4_62 _ (61/2)2) (ne . nsﬁ> + (Tleell/z o ell/Zne)
+nu(BCY7 +€Y2B) + (€Y ny — €Y ) B+ K .

Making again use of Proposition 3.2.3 and Proposition 3.2.4 (ii) and employing Propo-
sition 4.1.4 (iv) we deduce that X3, is compact in H 1/2(x;C*). Since n2 —n2 # 4c?
by assumption, the multiplication operator 14 — ﬁ(ne2 —n2) is bijective in H'/2(X;C4).
Hence, we have found

(1s+ (nels+1B)€3/%) (1= (nels + miB)e )

42 —m+nd 4c?
=—— 2 | I+—>—-K .
4c2 4t 4¢2 — nez + T[S2 3,A

The operator on the left hand side is injective, as Iy + (Nels + NsB)C ;L/ 2 and Iy — (Mels +
nSB)G/II/ % are injective; otherwise, one of the operators 7> | ker (I'y & (1els + 1s8)IT)
would have the eigenvalue A, compare Theorem 2.2.6 (i), which is not the case by as-
sumption. Hence, we obtain from Fredholm’s alternative that

1/2

(14"‘ (716144‘775ﬁ)€)b 172

)Is — (Nels + TISﬁ)GA )

is bijective in H'/2(X;C*). Therefore, we deduce finally

ran (I + (1l + 15B)€3%)  ran [(Ls + (el + 16B) €3 ) (s — (el + 1) €]
= Hl/z(Z;C4),
that means Iy + (Nels + Ms [3)6/11/ % is also surjective. This finishes the proof of this proposi-
tion. 0

In the next proposition we state that @; and €, are holomorphic and that their derivatives
belong to certain (weak) Schatten-von Neumann classes. For the proof we make use of
Proposition 2.6.2, which allows us to extend a similar result in [11, Lemma 4.5] that was
only shown for C*-smooth surfaces. To make notations short, we use the shortcut &, .
for the weak Schatten-von Neumann ideals and omit the spaces; this will not cause any
confusion.

Proposition 4.1.8. Letr n € N and let ¥ C R3 be the boundary of a compact C"-smooth
domain. Moreover; let for A € p(Ag) = C\ ((—oo, —mc*] U [mc? o)) the operators ®;,
and Gy, be defined as in (3.16) and (3.17), respectively. Then, the following holds:
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(i) The operator-valued functions A — ®; and A — CIDZ— are holomorphic and it holds
forany k€ {0,1,....n—1}

dk dk
d)qu)’l € 6y/2ht1) and mq’% € S4/(2h+1),00

In particular, ), and ®) are compact.

(ii) The operator-valued function A — C; is holomorphic and it holds for any number
ke{l,....n—1}
k

dAk

Moreover, the mapping (—mc?,mc*) 3 A — C; is monotonously increasing.
pping ) A

71 € Gk o

Proof. (i) We use that @ = ¥*(A)* =TT (49— 2)~! which implies that @~ is holomorphic
and
dk
dAk
see Proposition 2.2.3 (iii). Since (—A)!(H*(R3;C)) = H**5(R?;C) for s > 0 it follows
from (3.5) that domAS ™' = H*+1(R3;C*) and hence

— P = kT (Ag—A) ",

dk
ran d—MCI)— = k!ran [F’f(AO — l)’kfl] = H* 12 (3¢,
Therefore Proposition 2.6.2 yields
d—kcp* KT (Ag—2) e
i Pr = KA —24)™ € Gayapt1) 0

From this, the statements on the differentiability of &, follow by taking adjoint.
To show item (ii) we recall that it holds by Proposition 2.2.4 (iv) for ¢ € H 1/2 (% (C4)

dk dk _
—Crp= d—MME(),)(p kITE(Ag— ) K2 (L) o = kITT(Ag — A) * @) 0.

Taking closure this yields

dk

dAk

B dk 1 .
€1 = k[T (Ag—2) kq)x:k(dzk T )‘I’

Thus, item (i) and (2.42) show
k

dAk
Finally, C, is monotonously increasing by Proposition 2.2.4 (iv) and a density argument.
O]

—7C1 € 62/ o
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4.2 Dirac operators with singular interactions — definition and basic
spectral properties for non-critical interaction strengths

In this section we define Dirac operators with electrostatic and Lorentz scalar §-shell in-
teractions supported on a compact C2-smooth surface © C R? via the quasi boundary triple
{I*(x;C*),I3,I't} from Theorem 4.1.1. These Dirac operators are formally given by

ATE]evns = _ica ’ V + mczﬁ + n61452 + nsﬁézd

where 7, 15 : £ — R are Lipschitz continuous functions. First, we are going to show for
non-critical interaction strengths, that means if 1 (x)? — N5 (x)? # 4c¢? for all x € X, the self-
adjointness of these operators and provide their basic spectral properties. In particular, in
the physically interesting cases of purely electrostatic interactions, that means 7 is disjoint
from 4+2¢ and ng = 0, and of Dirac operators with purely scalar interactions, that means
nNs 1s arbitrary and 1 = 0, we can give a more detailed picture in Corollary 4.2.5 and
Corollary 4.2.6, respectively, below. The critical case is then treated in Section 4.3.

r

Let us start with the rigorous mathematical definition of A, o, :

Definition 4.2.1. Let {L*(X;C*),I5,IT} be the quasi boundary triple from Theorem 4.1.1
and let Ne,Ns : £ — R be Lipschitz continuous functions. Then we define the operator

A%mns =T* [ker(l“% + (Nels + nsﬁ)l'ol:). This operator is given in a more explicit way by

A5 f = (—ica-V+meB) fy & (—ica- V+mcB)f-.
domA%e,ns = {f=f+ of eH'(Qu:CHeH (Q:CY): (4.12)

@Vl 1) =~ 5+ M) ke /1) |

Let us state an remark on the transmission condition which models the 0-shell interac-
tion:

Remark 4.2.2. Another way to write (I + (1els + 1sB)I) f = 0 is

<,-c<a V)4 e+ nsm) fils+ (—ic<a V) + Lt mﬁ)) fl=0. (@13)

If Me(x)? — M5(x)? # —4c? for all x € X, then the matrices ic(a - V) + 1 (Nels + 1) are
invertible and

(iic<a-v>+§<nez4+nsﬁ>)_] e (Fe@ V- St n)).

4 n2-n
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Setting

1
R i=— (ictov) + 3 nienp) ) (sicla)+ St n)).

we see that in this case the transmission condition (4.13) can be rewritten as

+
filz = RTle,Tlsf¢|E‘

On the other hand, if M. (x)? — ns(x)? = —4c? for all x € X, then (4.13) is equivalent to
(2cts —i(o-v)(Mels +15B)) f+]s =0, (2chy+i(ot-v)(Nels+nsP)) f-1x =0, (4.14)

that means that AZ ..ns 18 decoupled to Dirac operators in Q4+ with the boundary condi-
tions (4.14). This phenomenon is known as confinement, as a particle, which is initially
located in Q.+ will stay in 4, and it is investigated in a more detailed way for constant 1)
and 7y in [6, Section 5].

It follows immediately from Green’s abstract identity that A%mns is symmetric for all real-
valued Lipschitz continuous interaction strengths 1, 75, compare (2.9). For non-critical
interaction strengths, that means 12 — n2 # 4c2, we prove in the following theorem self-
adjointness, a Krein type resolvent formula and some basic spectral properties. The main
tool to prove the self-adjointness is Proposition 4.1.7 which is only true, if nZ — n2 # 4c?
everywhere on X. In fact, we will see in Proposition 4.3.1 that otherwise, for critical in-
teraction strengths, the operator A%mns is not self-adjoint. I would like to thank Konstantin
Pankrashkin for showing me an efficient way to prove item (iv) of the following theorem:;
a similar argument is used for instance in [48, Proposition 3.6].

Theorem 4.2.3. Let e, 1N : £ — R be Lipschitz continuous such that Ne(x)* —ns(x)? # 4c?
forall x € X and letA%emS be defined by (4.12). Moreover, let Ay be the free Dirac operator

defined by (3.3), let ®;, and C;, be given by (3.16) and (3.17), respectively, and let Y= and
M be as in Proposition 4.1.2. Then A%mns is self-adjoint and the following assertions
hold:

(i) For A € C\R the resolvent of A%e,ns is given by

(Af = A) " = (A= A) " =@ (L + (ks +1B)CL) " (Mels +nuB)P;
= (A=) = (M) (I + (el +nPIM(A)) " (el +nsB) ¥ (R)".

(ii) GeSS(A%e ) = (oo, —mc?| U [mc?, ).

(iii) A € Gp( ) if and only if —1 € op((Nels +Nsp)M (1))

(iv) cp(Age,ns) is finite.
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(v) TZere e;ists a constant K > 0 such that o, (A%ems) =0, if |Ne(x) s +ns(x)B| < K for
all x € 2.

Proof. First we prove the self-adjointness of A%e,ns' Due to Green’s identity it is clear that

A%e,ns is symmetric, compare (2.9). Thus, it suffices to prove ran (A%ems —A) =L*R3CH

for A € C\R.

Let f € L*(R%C*) and A € C\R be fixed. Then, by Theorem 2.2.6 (ii) we have f €
ran (A,Zk’,7S —A) if and only if (Nely +nsB) Y (A)* f € ran (I — (Nely + NsB)M>(A)). Since
7" (A)* =TF(49 —A)~1, see Proposition 2.2.3 (iii), and domA¢ = H' (R3;C*) we deduce
from Lemma 2.5.1 that ran ((nels + nsB)y=(A)*) € H'/?(£;C*). On the other hand by
Proposition 4.1.7 the operator

I+ (Nela +nB)ME(R) = L+ (nels + 1) €5

is bijective in H'/2(X;C*). Thus, we get that f € ran (A,Zk’,7S — ). Since f € L*(R3;C*)
was arbitrary, it follows that A%&ns — A is bijective and hence, that A%mns is self-adjoint.

Next, the Krein-type resolvent formula follows directly from Theorem 2.2.6 and Proposi-
tion 4.1.2.

In order to show item (ii) we note that for A € C\ R all operators ®,, Nels + N3, PL,

and (L4 + (Nels +1sB)C2) ! are bounded in the respective L2-spaces by Proposition 3.2.1,
Lemma 2.5.1 and Proposition 4.1.7. Moreover, ®, is compact by Proposition 4.1.8. This
and assertion (i) show now that

(Af g —A) T = (A—24) ' = -y (I + (ks + nsB)€x) " (Mels + NsB) P

is compact. Therefore GGSS(A)T:]C-,TIS) = Oess(Ag) = (—o0, —mc?| U [mc?, o).
Assertion (iii) is just an application of Theorem 2.2.6 (i).

In order to verify statement (iv) we note first that the number of discrete eigenvalues of

A%ﬁm in the gap (—mc?, mc?) is equal to the number of eigenvalues of (A%e7ns)2 below the

threshold of its essential spectrum (mc?)?. Let us denote the quadratic form associated to
(A,Zkvns)2 by a. Then it holds for any f = f, @ f_ € domA,Z]eﬂs =doma

alf] = A5, 5 13 = || (—ica- V4 meB) f1|[g, + || (—ica- V+meB)f-|[g
= llc(e- V) filla, +llc(a-V)follg + (me®)?|| fllzs
+ (—icot-V fr,me*Bfi)a, + (mc*Bfr,—ica-Viy)a,
+ (—ica-Vf_,m*Bf )a + (mPBf,—ica-Vf g .
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Employing integration by parts we see that
(—ica-Vfi,m?Bfi)a. +(mcBfu,—icot-Vfi)a, = Flica-vfilg,mc*Bfilr)s,

which yields then

alf] = llc(o- V) flla, o+ (mc®)?|| 12

4.15)
—(icat-vfilg,me*Bfyls)s + (ica- vE_|g,m*Bf-|s)s.

Choose R > 0 such that ¥ C B(0,R). Then, we see that the quadratic form associated to

(A%e’ns)2 is minorated by the closed quadratic form b := bj, & bext, Where

bine[f] := ||C(a'V)f||?2+u(9,mB(o,R)) + (m02)2”f||129(0,1e)

- (iC(X ’ vf+|z,mc2[3f+|):)z + (iC(X ’ fo‘zymczﬁff’Z)E;

dom bjp := {f —fLof cH(Q:;CHaH (Q NB(O,R);CH):
1
@Vl 1) = 5 (el £ nB) (el = £ 10) ,

and

b /] := @ V) Boy g + (eI om0y
dom bey := H' (R®\ B(0,R);C*).

Then it holds b < a in the sense of quadratic forms. In particular, if the operator associated
to b has finitely many eigenvalues below (mc?)?, then (A%ems)2 has only finitely many
eigenvalues below (mc?)?.

Clearly, the operator Bex; associated to bey; is a shifted Neumann Laplacian and hence
Bext > (mc?)?. Thus, the number of eigenvalues of (A%e.ns)2 below (mc?)? is equal to
the number of eigenvalues of the operator Bj,; associated to the semibounded and closed
form bj,¢, compare for instance [62, Section XIII.15] for a similar argument. Moreover, as
domb;y C H'(Q;CH @ H' (B(0,R)NQ_;C*) is compactly embedded in L?(B(0,R); C*)
it follows that the resolvent of Bj, is compact. Therefore, the spectrum of Bjy is purely
discrete and consists of eigenvalues that accumulate only at oo, as Bj,; is bounded from
below. Thus Bjy has only finitely many eigenvalues below (mc?)?. Hence, also the oper-
ator associated to b has only finitely many eigenvalues below (mc?)?. This shows finally
that (A%e,ns)2 has only finitely many eigenvalues below (mc?)? which finishes the proof of
assertion (iv).

Finally, item (v) is just a simple consequence of the Birman-Schwinger principle in (iii)
and Proposition 3.2.2. [
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In the following corollary we state several consequences of the Birman-Schwinger princi-
ple from Theorem 4.2.3 (iii).

Corollary 4.2.4. Let 1,1 : & — R be Lipschitz continuous such that Ne(x)*> — ns(x)? ¢
{0,4c2} forall x € ¥ and let A%mns be defined by (4.12). Then the following is true:

. > . . > .
() A € 0p(Asi. ) if and only if & € 0p(AZ a2 ) —acin,nz-n))

(i) There exists some K > 4c* such that o, (A%ems) =0, if INe(x) £ns(x)| > K for all
xeX

Proof. According to Theorem 4.2.3 (iii) a number A is an eigenvalue of A%e,ns if and only if

—1is an eigenvalue of (Nely 4+ NsB)M*(A), that means if and only if there exists a function
0 # @ € domM*(1) = H'/?(Z;C*) such that

0= (Is+ (Mels+ NPIM*(2))@ = (Is+ (Nela +1sB)C2) 0.
Multiplying this equation with (Nely + ns8) ! !

T n-n
operator in H'/ 2(2;C*) due to the assumptions of this corollary, yields

(Nels — NsB), which is a bounded

1
0= (W(neh —nsB)+ G/l) ®.

S

Using —4c¢?(a - v@y)? = I, see Proposition 3.2.1, and the anti-commutation relation (1.2)
we see that the last equation can be rewritten as

1
0— (—4c2 (=) v, (a-vm) 0

€ S

— (-4 - )@ e Ha-v) (e )esg

(3 S

1
—(0ov) (4l B+ ) (@)
Ne — Mg
Because of the mapping properties of €, from Proposition 4.1.6 and the regularity of £ we
see that 0 # (ot - V)@, € H'/2(Z;C*). By the Birman-Schwinger principle this can only

. . 2
be true if and only if A € o, (A—462ne/(n§—n3),—4czns/(n§—n3))'

Item (ii) follows now directly from assertion (i) and Theorem 4.2.3 (v). ]

In the cases of purely electrostatic and purely scalar interactions one can give a more
detailed picture of the spectral properties of the associated Dirac operators and many of
the previously shown results simplify significantly. First we reformulate these statements
for Dirac operators with purely electrostatic §-shell interactions, that means we assume
Ns = 0. Then the corollary below follows immediately from Theorem 4.2.3 and Corol-
lary 4.2.4:
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Corollary 4.2.5. Let M : £ — R be Lipschitz continuous such that Ne(x) # +2c¢ for all
x € X and let the self-adjoint operator AZ 2.0 be defined by (4.12). Moreover, let Ag be
the free Dirac operator defined by (3.3), let ®, and C, be given by (3.16) and (3.17),
respectively, and let Y= and M* be given as in Proposition 4.1.2. Then the following
assertions hold:

(i) For A € C\R the resolvent of A)T:k’o is given by

(AZ o= 2) ' = (A=) =¥ (A) (L +meME()) " ey ()
= (AO —/'\,)71 — P, (I4+ne(ﬁx)_lned>%

(ii) Oess (A%e

(iii) A € Gp( _0) ifand only if —1 € op(NeM*=(1)).

) = (—o0, —mc?] U [mc?, o).

(iv) If|ne(x)| > O forall x € ¥, then A € Gp( .0) ifand only if A € op (A* " 4210 )

(v) Op(A}, o) is finite.

(vi) There exists a constant K > 0 such that GP(A%C,O) = 0, if either |Ne(x)| < K or
IMe(x)| > %for allx € L.

Next, let us discuss Dirac operators with purely Lorentz scalar §-shell interactions, that
means we assume 7). = 0. Note that in this case there is no critical interaction strength,
as N2 # —4c? always in this case. On the other hand we have for 1 = £2¢ confinement,
compare Remark 4.2.2. For purely scalar interactions many of the spectral properties of
A% ., from Theorem 4.2.3 simplify and we have some additional interesting symmetry
relations in the spectrum. Most of the results are also formulated in [48, Theorem 2.3].

Corollary 4.2.6. Let ns : £ — R be Lipschitz continuous and let the self-adjoint operator
Ag - be defined by (4.12). Moreover, let Ay be the free Dirac operator defined by (3.3), let

®, and C,, be given by (3.16) and (3.17), respectively, and let Y= and M* be given as in
Proposition 4.1.2. Then the following assertions hold:

(i) For A € C\R the resolvent of A(st is given by

(Afn, —A) ' =(A0—2)"" —77‘(/1)(14+nsﬁM2 ) 'nBY(A
=(Ag—A)""' =@ (Is +nsfCy) nSBCID*T

(i) Oess (A%,ns) = (—oo, —mcz] U [mcz’oo);

(iii) op(Af,,) is finite.
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(iv) A € 6(AF,,) if and only if =1 € G(Af ).

(v) Discrete eigenvalues of AO s have always even multiplicity.
(vi) If ns(x) >0 for all x € ¥, then GP(A%TT) =0.
(vii) A € 0,(A3 ) ifand only if —1 € op(NsBM=(1)).

(viii) If |ns(x)] >0f0rallx€2 then A € o,(A3 ‘n,) if and only if A €op(A 04(2/71)

2
(ix) There exists a constant K > 0 such that o, (A ) =0, if[ns(x)| <K orns(x)| > 4%
forall x € X.

Proof. The results in items (i1)—(ii1) and (vii)—(ix) are special cases of Theorem 4.2.3 and
Corollary 4.2.4 for n. = 0. It remains to show assertion (iv)—(vi).

First, to prove statement (iv) it is sufficient to verify the symmetry of the discrete spectrum,
as Oess <Ag,ns) = (—o0, —mc?] U [mc?,0) by (ii). Define the (nonlinear) charge conjugation
operator

=iBonf,  feL*RCH.
A simple calculation using & = —o (where the complex conjugate is understood com-
ponent wise) shows C2f = f. Moreover, it is not difficult to see that f € domAans if and
only if Cf € domAgms. Eventually, employing (1.2) we get

(—icat-V+mc*B)Cf = (—ica-V +mc*B)ifoaf

— 4.16
— iBop(—ica-V —mc*B)f = —C((—ica'V+mc2ﬁ)f). (10

Hence, we deduce AansC = _CAg,ns' This yields then the claim of item (iv).

For the proof of statement (v) we employ a similar idea and define the (nonlinear) time
reversal operator

. = 0 I
Tf=-ipaf,  feL’(R%CY), %:(b(ﬁ.

Note that we have Bys = —¥s8 and (o - x)¥s5 = ¥5( - x) for any x € R3. Similarly as above
we have f € domAans ifandonly if 7T f € domA&ns and T2 = —I,. Furthermore, a similar
calculation as in (4.16) shows

(—icot-V+mc?B)T f =T (—ica-V+mc?B)f,

which yields A3 0T = TAY n.- Another calculation gives (—iys O f, fles = (f,ivs0f)ca
which implies

(Tf P = [ TH) ) =
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z
Ouns’

trivial eigenfunction of Ag.ns' Therefore, also assertion (v) is proven.

Hence, if f is an eigenfunction of A then also 7' f is a linearly independent and non-

Finally, to show item (vi) we note first that we have for any f = f, & f_ € domAans
by (4.15)

IAG o flIgs = lle(e- V) filg,ua. + (mc)?| fllRs
— (ica- v fi|z,mcBfyls)s + (ico-vf_|s,m*Bf |x)s
= |le(a- V) fila,ua + m)? | flEs
— (ica-v(filz = f-Is),m*B(filz+ f-Is))x
+ (ica- v filg,mc®Bf-|s)s — (icat- vf_|g,m*Bfilx)s.

Using the transmission condition —ica - V(fi |z — f-|z) = L (f |z + f-|z) and (1.2), we
see

—(ica- v(filz = f-Ig)m*B(frle + f-15))s = 5 (Ms(frl + f-|g),me* (fils + £~ )5

| =

In particular, due to the assumption 713 > O this is a non-negative real number. Moreover,
employing again (1.2) we get

(ica- v fi|g,me*Bf-|g)x — (icot-vi_|z,mcB fils)s = 2ilm (icot- v f|g,mcBf-|s)s.
This leads to
IAG 1 f 1175 = le(e- V) filla, ua. + (mc)?| £l

1
5 (0s(felz+ /- |0)me*B(Fils+ f-[2)) +200m (ica- v [ |z, me* Bf-|)s.

As all other terms in the last equation are real, we conclude ilm (icot- V£, |z, mc?Bf_|x)x =
0 and thus, using g > 0

145 1S s = lle(o- V) f il va + (me)? 1 fIlzs
1
5 (M (fele S [2)meB(fils + f-15))
> (m®)?| £

Therefore AS n, can not have eigenvalues in (—mc?,mc?). O

Next, we prove that the difference of the [-th power of the resolvent of the free Dirac
operator and of A%mns belongs to a certain weak Schatten-von Neumann ideal. The proof
of the following theorem is based on Proposition 4.1.8. Hence, we have to assume some
additional smoothness of X.
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Theorem 4.2.7. Let | € N be fixed and assume here additionally that ¥. is C'-smooth. Let
NesMs : £ — R be Lipschitz continuous such that Ne(x)? — ns(x)? # 4c? for all x € X and
let A%mns be defined by (4.12). Moreover, let A be the free Dirac operator given by (3.3).
Then it holds for any A € C\ R

(AF . —A) = (A—2) " €6y

Proof. Letl € Nand A € C\ R be fixed. For convenience we set 1 := Nels + 1sf. Using
the resolvent formula from Theorem 4.2.3 (i) and (2.1) we get

1 dl—l
) —1 -1 ¥ -1 1
(Ap.n. —A) " —(A0—2)"" = (1_1)!_(%171(@%,73—/1) —(Ao—2))
1 d! L,
=G iant (@allatnC) neg) 4.17)
1 d? d? 1 dr
= P I ¢ dr.
prgrr=l—1P: lq!r! dAP Adlq(‘H—n )L) ndlr
We know from Proposition 4.1.8 that
d? ro
d)u;cbl € S4/@p+1)e and d,qu)IE S4/(2r+1) 0 (4.18)

Furthermore, Proposition 4.1.7 yields (14 +ncC 1)71 € B. Eventually, we claim for g €
{1,...,1—-1}

i (L+n€) " € 6y/gee (4.19)

This claim will be shown by induction.

Employing identity (2.2), Proposition 2.2.4 (iv), and (2.42) we get for g = 1

d 4, d
d/l(14+77(‘31) =—(l4+nCy) lndlex(14+n@z)
—(l4+nCy) 'NPrd; (L +1Cy) " € Gree.
So let us assume now that the statement is true for k = 1,...,q. With the aid of (2.1) we
get

d4+1 o d[d

d? 1 * -1
=~ [(14+71@/1) N®5P; (L +nCy) }
_ q! dt -1 d” * ! -1
== L a0 g (939) g (1 €s)

k+m+n=q
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From (2.1) (with C(A) = I4) and Proposition 4.1.8 (i) we deduce

o m &, d
(%) = X g PP € S/

s+t=m"® """

This and the assumption of the induction imply eventually that

dq+1
AQ+1 (1 + nel)

k m n

9 d 1, 47 d
= L e ) g (P18) (14 m€)
m-+n=q

belongs t0 G4 1) o
Making use of (4.17), (4.18), (4.19), and (2.42) we deduce finally that

(Ao —A) ' = (40— 2)"
1 dr d? d”
= - @) —— (L +1C) ' N—=PL € Gy o
prgires_1 Plgirtdar " dAd dAr
This was the claimed result of this theorem. O]

In the following corollary we state that the difference of the third powers of the resolvents
of A,E,evns and Ay is a trace class operator. This is an important result for mathematical
scattering theory, as it ensures the existence and completeness of the wave operators for the
scattering system {An M ,Ao} and that the absolute continuous parts of A%e,ns and Ag are

unitarily equivalent. Furthermore, we provide an explicit formula for the trace of (A% M

A)73 — (Ag— A) 73 in terms of the singular integral operator C;. Note that the trace in the
left-hand side of (4.20) is taken in LZ(]R3;(C4), whereas the trace on the right-hand side is
taken in L?(X;C%).

Corollary 4.2.8. Let ¥ C R? be the boundary of a C3-smooth compact domain and let all
assumptions of Theorem 4.2.7 be fulfilled. Then for any A € C\ R the operator

(Ao, =) 7 = (40— 2) 7
belongs to the trace class ideal and

tr[(Ay, . —2A) 7 = (Ag—A) 7]

1 [ d& - d (4.20)
= _itr ldlz ((14+(77e14+71sl3)@/1) 1(776144‘775[3)%6/1)} .

In particular, the wave operators for the scattering system {AX . Ao} exist and are com-

Ne>Ts?
plete, and the absolute continuous parts of Ane,ns and A are unitarily equivalent.
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Proof. The first statement follows immediately from Theorem 4.2.7 for the special choice
[ =3 and the fact that &, 3 ., is contained in the trace class ideal, compare (2.41). More-
over, the last assertion is a standard result in scattering theory, see for instance [71, Chap-
ter 0, Theorem 8.2] and the standard definition of the existence and completeness of wave
operators.

So it remains to prove the trace formula (4.20). We use the abbreviation 1 := Nely + 1.
Employing the resolvent formula from Theorem 4.2.3 (i), Proposition 2.2.4 (iv) and the
cyclicity of the trace (2.43) we get

2
w[(AZ , —2) 3~ (Ag—A) % = %tr {%((Agmm ) = (Ag— A)‘l)}

_ 1 d2 1 *
= dlz(q’x(14+n@/1) ne;)

1 - d dr
=- Y ® L+ney) ! oL
prarr=2 P'q'r! [dlp /ld/lq(4+n ) Taar l}

1 d? d” d?
= — z L P —@
prarr—2 Plalr! {d“< sEn) Taar“ranr ]

1 d2 1 *
=3 {dﬂ (ls+nCy)~ TI‘P;L(I’)L]

1 [ d? d
= —tr |:dﬂ,2 (I4+nel) ael] .

This is the claimed formula. O]

4.3 Dirac operators with 0-shell interactions of critical strength —
self-adjointness and basic spectral properties

In this section we study Dirac operators with a singular interaction of the form nels + nsf8
in the critical case, that means when 1 (x)? — 15 (x)? = 4¢? for some x € £. We will see that
under these assumptions A%eﬂ?s defined by (4.12) is not self-adjoint. But using the ordinary
boundary triple {L?(X;C*), Y5, Y} from Theorem 4.1.5 it turns out for constant 1 and
7N that these operators are essentially self-adjoint and we can characterize and study the
self-adjoint realizations. First, we have the following result:

Proposition 4.3.1. Assume that Ne,Ns : ¥ — R are Lipschitz continuous functions such
that Ne(x)? — Ns(x)? = 4¢? for some x € X. Then A%e_‘ns defined by (4.12) is symmetric, but
not self-adjoint.
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Proof. The fact that A%e,ns is symmetric follows immediately from Green’s identity, com-
pare (2.9). The claim that A%mns is not self-adjoint will be shown in an indirect way.

Assume that A%, is self-adjoint. Then ran (A} , —A) = L*(R*C?) for all A € C\R.
Since AZ :=T* | kerI™> is self-adjoint by Lemma 4.1.3 it follows that {L2(;C*), T3, T%}
with IA% = FZ and IA“)]: = —FE is also a quasi boundary triple with Weyl function M Q) =
—M*(A)~!, compare the con51derat10ns after Theorem 4.1.5. Hence we deduce from The-
orem 2.2.5 that

ran (fl (AZ — ?L)*l) =ran (F% I kerF%) C ran (Nels + NP + (Mz(l))*l).
By Lemma 4.1.3 it holds ran (I3 | kerI'T) = H'/2(X;C*) and thus the last condition is
equivalent to the fact that nels + 1B + (MZ(A))~! is bijective in H'/2(Z;C*).

Next, recall that M*(A) = G;L/Z and (G;L/z)’l = —4c*(a- V)C’}l/z((x - V), compare Proposi-
tion 4.1.2 and Proposition 3.2.1. Since ¥ is C>-smooth and « - v is pointwise unitary the
multiplication with o - v yields a bijective operator in H 1/2 (% (C4). Thus, using (1.2) we
see that

Nels — 1B —4¢2€5/> = (- v) (els + 1B + (€527 (¢ - v)

is bijective. Moreover, since C 7L/ is bijective in H 1/2 (X;C*) we obtain that also the oper-

ator Iy + (Nels + Ms ﬁ)@i/ ? is bijective in H!/ 2(X;C*). Therefore, also the product
(r[eI4 - rlsﬁ - 4C2€/}L/2) (14 + (rlel4 + nsﬁ) /2)

— Nels —1sB —4¢*CY (el +1sB)CY > + (n2 — 2 — 4c2)e)?

is bijective. We set
-1
C = || (Nels — B — 42CY 2 (nely+ nB)EY > + (2= n2 —4c2)el?) V|| < . (@21)
Next, choose a function 1 such that

o:=Z\suppn #0 and Cl|((n2—n2 -4 -n)e;*| <1,

where C is the same constant as in (4.21) and the norm is the one in B (H!/2(Z;C*)). Such
a choice is possible by Proposition 2.5.2; the fact that X # @ follows from the assumption
that there exist some x € ¥ such that 1 (x)? — 15(x)> — 4c? = 0. Then

C|| (Mels — nsB — 4c2€) > (nela +ns)CY > + (02 — 12 — 4c)e)?)
— (Mels = 0,8 —42€; (el + neB)E;* + €y )|

= C[|((n2 —n2—4c)—m)e;*| <1
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and thus [50, Theorem TV 1.16] yields that nely — 1 —4¢2Cy*(nels +1sB) €} > +n €}/
is bijective in H'/2(Z;C*).

Next, denote by P : H'/2(X;C*) — H'/?(Xy;C*) the restriction operator acting as P =
¢ | 9. Then since suppn = X\ £y we obtain
Hl/z(zo;(c4) Cran® (77614 —nsB - 4C2€ J? (Nels + nsB)el/z + 77@1/2>

(4.22)
=ran?P (T]el4 —np — 4C2€1/ (Mels +1sPB)C 1/2)

Finally, we claim that nely — N8 — 40263/ 2(77.314 + nSB)Gi/ % is compact in H'/2(Z;C*).
This gives then a contradiction to (4.22). To verify the last claim we write

€% (Mela+1uB) = (Mels —nuB)C; >+,
with
:KLA, — (el/Zne n 1/2)+( l/2n rls 1/2)B+ns(el/2ﬁ+ﬁel/2)

Using Propositions 3.2.3 and 3.2.4 we conclude that X ; is compact in H 1/ 2(z;CH.

Moreover, recall that (6;/2)2 = ﬁ + X5 2, where X, 5 is compact in H]/z(Z;C4), com-

pare Proposition 4.1.4 (iv). Thus, we get eventually that

Nels — 1B — 4¢2C) 2 (Mels+1sB)CY* = (nels —nsB) (I — 4c>(CYH)?) + K €47

— 4P (Ml —MuB)Kpp + K1 2L,

which is compact in H'/2(X;C*). This finishes the proof of this proposition. O

In the following let 1, ns € R with n2 —n2 = 4c>. We are going to show that A%ﬁm
is in this case essentially self-adjoint and compute the closure of this operator, which is
then the self-adjoint realization of the Dirac operator with a 6-shell interaction of strength
Nels + M5 3. For that purpose we use the ordinary boundary triple {L*(X;C*), Y5, Y¥} from
Theorem 4.1.5. Recall that

Ay o =T" Iker (I5 + (el + nsP)IT) = (S)* | (YT - Onn X5),

where (H)#ezms = l_% (nel4 +nsB + ((?(1)/2)_1)(l§)_1, 1% is defined by (4.6) and (4.7), and
G(l)/ 2 is the restriction of Co onto H'/ 2(Z; C*) from Proposition 4.1.6, compare (4.10). The
operator @i,’fns is explicitly given by

®%§nsfp' Z (el + s+ (€ )N (12) o,

(4.23)
dom®y=, = H'(Z;C).
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Due to the mapping properties of (3(1)/ ? from Proposition 4.1.6 we see that @,1775,78 is well-
defined. Moreover, using Propositions 4.1.6 and 4.1.2 it is not difficult to see that @,17’5,13 is

symmetric in L?(X;C*). Our goal is to show that ®%,’5ns is essentially self-adjoint and that
its closure coincides with the maximal parameter

O =15 (el +1B + (€ *) ) (12) o,
domG%Zn : {(p€L2(Z CcH: (Nela+ 1B + (€ 1/2) )(E)*l(PEHI/Z(Z;(Cﬂ}_
(4.24)

Here G_l/ 2 is the extension of Co onto H~1/2 (X;C*). A density argument and Proposi-
tion 3.2.1 show that (€ _1/2) = —4c% (o - v)’Gal/z(OC -v)’, where (o - V) is the dual of
the multiplication operator with o - v in H'/2(X;C4).

Proposition 4.3.2. Let ne,ns € R such that n? —n2 = 4c Moreover, let @1'277 and
@0 »n, be given by (4.23) and (4 24) respectlvely Then @ o - n, IS essentially self-adjoint in
LZ(Z C*) and the closure of @n e IS ®77 .- In particular @n’zn is self-adjoint.

Proof. The proof of this proposition consists of three steps First, we verify that @%’fns

is closed, then in Step 2 we prove that ((*4),7e )" C ®11 - Finally, in Step 3 we show

®%§ns C ®n ‘n, Which yields then together with the results from Step 1 and Step 2 the

claim of this proposition.

Step 1: We prove that @%’fns is closed. For that choose a sequence @, C dom(a(,)]’ez_‘,78 such
that
0%
O — @ and O p @y =Y, n— oo,

in L2(X;C*) for some @,y € L>(X;C*). Since 1F : H'/2(Z;C*) — L*(X;C*) is bijective,
compare (4.6), it follows that

(Mela+ 1B+ (€5 ™) () o> () 'y in HYA(ZCY), n— oo,

On the other hand, since 1= : H~!/2(2;C*) — L2(X;C*) is bijective and nely + s —
(Cy 12 )~! is continuous in H~'/2(X;C*) we see that also

(Mels+1sB+ (€5 ) ™) (15) gy = (Mela+ 0B+ (S5 PN (15) o

in H~1/2(Z;C*), as n — 0. Hence, we conclude

(Mela+nsB+ (€5 ")) (1) o = () 'y e B2 (T T,

This shows that ¢ € dom @ne n, and @?]e ns® = VY, that means @?ffns is closed.
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Step 2: We Verlfy that (G) )" C G)n - For that fix some ¢ € dom (G)}]’Zn )* and let
Y € dom ®ne n = H Iz (C4) be arbitrary, but fixed. Then using the definition of ®ne N>
equation (2.18), Proposition 4.1.4 (ii) and (C,, el 2) = —4c*(a-v)e (1)/ (a-v) we get

((@)#ez,ns W)y = (9,0 ne,ns W)y = (0,05 (Nela+ B+ (€ 1/2) NS )y
(59, (nels+nB+ (€)™ ()W) )

()@, (Nels + 1 — 4c*(ar- V)e(l)/z(o"v))l—zk‘/’)—l/le/z
((ne14+nsﬁ 4c ()€ (e v)) (B ot y)
= (1 (Mela+ 1B —4H (- v)' €y (@ v)) (15) o, (15) W),

Since this is true for all y € H!(£;C*) = dom (1*)? and as (13 )? regarded as an unbounded
operator in L2(X;C*) is self-adjoint we conclude that

i (Mels + M5B — 42 (ot -v)' €y P (- v)) (1F) " @ € dom (12)? = H' (£ CY)
and

(0153.) @ = ()12 (el + 1B —4c* (o) €5 (- v) ) (15)
— & (Nels+ 0B — 42 (- v)'C (- v)) (12) .

Thus ¢ € dom@?7 7, and (@,l]fns)*q) @% 7, @> that means (@,17’5,15)* G)?kzm

Step 3: We show that @% Zn C @ .Letgp e dom@% Zn be fixed and choose a sequence
(w,) € H'(X;C*) such that (1)1 l//n — (15)" @ in H~1/2(Z;C*). We define

%u=¢+%l(ﬁ—(mh—mﬁmlﬂ)OJW%—wl
Note that
on = 1% (1= (= 1B)C %) (05) w32 (Iao+ (nels — i) ) (2)
= 5 (L= (e —mp)ey?) (05w~ B (e v g B) (2) g
30 (L4 65 et 1)) () o,

Since 1% gives rise to a bounded operator from H'/2(X;C*) onto H'(X;C*) by (4.8), we
deduce from the mapping properties of (3(1)/ ? from Proposition 4.1.6 that

2_@—mm—mm@@ub”%em@£ﬂ
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Next, since ¢ € dom G)%’Sns we have that

1 _
S (e e+ ) (D)o = Siey (€ +mels+0iB) (15) o
belongs to H' (X;C*). Eventually, by Proposition 3.2.4 we deduce that
%E(Begl/%e(;l/zﬁ)(lz)*l(peHl(z;e“).

Therefore, we conclude ¢, € H'(X;C*). Next, as Iy — (Nels — nsB)Cy 1/2 {5 continuous in
H~'/2(Z;C*) by Proposition 4.1.6 we get that

I -
0n—¢ = 51 (I — (nels = )€ /?) (1)~ (v — @) =0

in L?(X;C%), as n — oo. Finally, using N2 — 12 = 4c> we obtain that
Oy, (@n— 0)

1

= St (nela B+ (€")7) (= (el —miB)E; ) (15) 7 (v - 9)
= S (mets B+ (€5 ) (€0~ (mels =) €2 (02) (v — )
= S (4L () (B T (e ) )€ ) (v - 0.

Using (C,, 1/2) = —4c*(a- v)/Gal/z(Ot -v)" and Proposition 3.2.1 (iv) we deduce

I\JIHI\) —

(&%) 2 =16c (o v)(€y P (@ vy
—16¢*(a-v)Cy 2 (a-v)[(a-v) (€ H) + (€ *) (- v)] (- v
—16c* (- v)'€y /22 = 5, +4cPL,
where K, : H~'/2(£;C*) — H'/?(Z;C*) is bounded, see Proposition 4.1.4 (iv). Hence

O, (90— 9) = 15 (51 -+ (B ) +€5 ) 1B) ) &5 05 (v~ 0)

and as ¥, — @ in H—'/2(£;C*), as n — oo, we conclude with Proposition 3.2.4 (ii) finally

that @%fns (@, — @) =0 in L*(%; ((.Z“‘), as n — oo, This shows now ®?7fm C ®%,fns, which
completes the proof of this proposition. [

With the aid of Proposition 4.3.2 we are now able to show that the operator A%ﬁm defined
by (4.12) is essentially self-adjoint in the critical case and we can describe its self-adjoint
closure explicitly. To formulate the corresponding theorem recall the definitions of the
maximal operator (SZ)* = max P Tmax with Tmax given by (3.10), the extended boundary
mappings FE FZ from Lemma 4.1.3, and the ordinary boundary triple {L?(X;C*),Y3, Y}
from Theorem 4 L.5.
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Theorem 4.3.3. Let N, € R such that NF —nZ = 4c? and let A%, be defined by (4.12).
Then A%mns is essentially self-adjoint in LZ(R3;(C4). Its self-adjoint closure is given by

A% o= (ST T ker (YT — @)%, Y5) = (ST)* T ker (05 + (nels +1sB)TT).  (4.25)

Moreover, A%ﬁ - AZ o1, and domA on ¢ H(Q;CHaoH (Q_;Ch).

Proof. By Proposition 4.3.2 the operator @,11’5,75 is essentially self-adjoint. Thus Proposi-
tion 2.2.7 implies that

AL L =T% [ker (T3 + (Nels +nsB)TT) = (S5 | (YT — O35 X5)

is essentially self-adjoint. Furthermore, since {L*(Z;C*),Y3, Y%} is an ordinary boundary

triple the closure A .., Of A n, corresponds to the closure of the parameter G)n s> DY

Proposition 4.3.2 thls is ®n s Employlng [22, Corollary 3.14] we deduce then (4.25).
The last statement of this theorem is a direct consequence of Proposition 4.3.1. [

Remark 4.3.4. According to [55, Proposition 2. 1] functions f3 € dom Tmaj,i have traces in
H~'/2(x;C*). Hence, the boundary condition FO + (Nels +Ms ﬁ)F = 0 is equivalent to

, 1 R
—ic(o-v) (fils = f-]z) = 5 (Mela+nsB)(frlz+f-Iz) inH 2(z;cY).
This is in accordance to the jump condition in Definition 4.2.1.

In the next proposition we summarize some of the basic spectral properties of the self-

adjoint realization A?,:k,ns in the case of critical interaction strengths. These results comple-
ment those from Theorem 4.2.3.

Proposition 4.3.5. Let Ne,ns € R such that 12 —nZ = 4c* and let A%e,ns be defined
by (4.25). Moreover, let Ay be the free Dirac operator given by (3.3) and let for A € C\ R

the operators cp;l/ % and @;1/ % be as in Proposition 4.1.6. Then the following assertions
are true:

(i) (—OO, _mcz] U [I’I’lCZ,OO) C GeSS(A%C7nS).

(i) A € (—mc?,mc*)Nop(A nens)y‘andonlylj‘Oeop(ne[4+nsﬁ+( e-1/2)- .

iii) The discrete and the essential spectra of the operators A% ., and AX_ _ coincide.
P P NesTs Ne,— s

(iv) For A € C\R it holds

(Af g~ A = (A= 2) " =@, 2 (L + (Mels +1B)E; %) ™ (el + 1)
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Proof. (i) Let A € (—oo, —mc?|U [mc?,o0) and set @ := 0@ y*, n € N, with y* defined
by (3.15). Then it holds (p,f} € dom ST C domA%ems. Furthermore, by Lemma 3.1.4 we see
that (,0,71L converges weakly to zero,

|0} |zs = W} |la = const. > 0, and (AT, —A)@F =0 (T, 22V 0, n— oo,

min

Thus (@7 ) is a singular sequence for A}, and A which shows A € 0egs(AT ;).

Assertions (i1) and (iv) are direct consequences of Proposition 2.2.7 and Theorem 2.2.5 (iii)
taking the special form of the y-field and the Weyl function for the ordinary boundary triple
{L*(X;C*), Y3, YT} from (2.20) into account, compare also (4.11).

Therefore, it remains to verify statement (iii). First, using that t¥ are bijections, the for-
mula (G;l/z)’l = —4c* (- v)’@;l/z((x -v)’, and the Birman Schwinger principle for
the discrete spectrum, compare Proposition 2.2.7 and (4.11) the proof of the statement
Oisc (A%je,n,) = Oise(AZ . _p,) follows word by word the proof of Corollary 4.2.4. Even-
tually, we prove

p(A%e ns) ( mcz,mcz) = p(Az—:nm—ns) N (_mczymCz).

This and the previously shown facts imply then Gegs (A%e 1s) = Oess (A Tle—Tls ). Due to sym-

metry reasons it suffices to verify p (A%, ;)N (—mc? mc?) C p(AX = fermme) N (—mc?,mc?).

Let A € p(A%,. ns) (—mc?,mc?). Then, by Proposition 2.2.7 we have that 0 € P(®ne e~

MX(1)), where M*(A) is the Weyl function associated to {L?(Z;C*), Y5, Y}}. Taking the

special form of M*(A) from (2.20) and @n’ s Into account this yields that the operator
) 1

Nels + 1B +(C, 1/2)-1 4 injective and that H'/2(X;C*) belongs to its range. Employing

Mely +MsB) ' = %(neh NsB), equation (1.2), Proposition 3.2.1 (iv), and a density
argument we find

—MNels — NP + ( 1/2)
= —(OC-V) (nel4_rlsﬁ) ne14+rlsﬁ+( 1/2) G;_Ll/z(a'V)/.

Since (o - v)" and nely — NsP are invertible and 6_1/ % s bijective in H~1/2(Z;C*), also
—Nels—NsB+(C,, 1/2 )~!is injective and H'/2(Z; (C4) belongs to the range of this operator.
This yields, using again Proposition 2.2.7, that A € p(AZ T Ts) ]

Finally, we prove that in the case of critical interaction strengths under certain assump-

tions there might be essential spectrum of A ..n, also in the gap of 6(Ag). To be more
precise, we show that if there is some flat part contamed in X and the interaction is purely
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electrostatic, then the point zero belongs to O};SS(A:Z|E2 c 0). This result shows that in the
case of critical interaction strengths the spectral properﬁes can be of a completely differ-
ent nature as in the non-critical case. The proof of this theorem follows closely the one
of [14, Theorem 5.9].

Theorem 4.3.6. Let £ C R3 be a bounded C?-smooth surface such that there exists an
open set Xy C X that is contained in a plane. Moreover, let Ne € {£2c} and 1y = 0 be

constant and let Aiz c0 be defined by (4.12). Then 0 € Oess (Ai2 c,O)‘

Proof. The proof is indirect and for a simpler readability it is split into four steps. We
are going to show the claim for e = 2¢, the proof for . = —2c¢ follows the same lines.
Assume that o o

0 € p(A, o) UGaise (AT, ¢)- (4.26)

In our considerations the operator Z* : L?(X; C*) — L?(X;C*) acting on ¢ € L?(X;C*) as
220 = —1Z(a-v) (2cly —4c2€, ) (2ely+ 42, ) (- v) (1F) o (427)

will play an important role.

Step 1. We claim that =% is bounded and self-adjoint in LZ(E; (C4). First, we find for
@ € L2(X;CH

Lo — —402&(06 V) (14 —402(6’81/2)2) (a- v)/(lg)*lfp.

(x]

Since 1} : H*'/2(Z;C*) — L*(Z;C*) are bounded and bijective, it follows from Proposi-
tion 4.1.6 (iv) that also ZF is well-defined and bounded. Next, using (1.2) we note that =
actson @ € H'(X;C*) as

[x]

2o = —4ctiZ (- v) (I — 4(CY D)) (@ - v) (1E) o

Since the operators @ - v, (‘3(1)/ ? and 1= | HY/ 2(%;C*) = (1) 7! are symmetric this yields
for ¢ € H'(X;C*)

(E%0,0), = —4c*((I4 —402(6(1)/2)2) (a-v)ito, (a v)iye), €R.

By a density argument this extends to all ¢ € L?(X;C*) and hence E* is self-adjoint
in L?(X;C*).

Step 2. We show that the direct sum decomposition
kerZ* = ker®)"+ker@’7, (4.28)

holds. Together with a similar consideration for the discrete spectrum as in (4.11) for
A =0, Proposition 4.3.5 (iii) and assumption (4.26) this yields that dimker 2% < co. Clearly
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ker(2cly + 402@,71/ %) Nker(2¢ly — 4c2671/ %) = {0}. Hence, in view of the definition of

®1§ 0 it follows that the sum in (4.28) is direct. Next, using (1.2) we see

5 0x 105
= ®2col( T 0,0

=—1X(a-v) (2c14 —|—462661/2> (2C14 —462681/2) (a-v) (=)

p) 20-1/2 20-1/2 -1 (4.29)
= —X(a-v) <2c14—4c e, ) (2c14 +4c%¢; )(a-v)/(l_)_
0.2 0%
:@)26012( H'e” —2¢,0
and get the inclusion
ker@))+ker®”%.  C kerE~. (4.30)

To get the other inclusion let us denote by ker 2> © ker®” 2 - o the orthogonal complement
of ker G)_’2 .o in the subspace ker 2= of L?(£;C*). Then (4.29) yields

(2c14+4c2651/2) (0 v)' (%) ! (kerZ* cker®”3, ) C ker (2014—4c2(‘3 1/2>.

Since
(2ets+4c%¢; ") (@ v)' (1) 7! (ker EF S ker @3, )

is injective and & - v and 1% are bijective we conclude

dimker2® < dimker (2cly +4c2€, /%) + dimker (2cls — 4c%¢; %)
= d1mker®0§ ot d1mker®2 0’

which together with (4.30) implies finally (4.28).

Step 3. We define 57 := (ker Z¥)* and claim that assumption (4.26) implies that £, which
is clearly injective in the invariant subspace .7, is boundedly invertible in 7. In other
words, this means that Z | .77 is a bounded, self-adjoint and bijective operator in 7.

Let Pf be the orthogonal projectors onto ker @igc o- Making use of (4.26), Proposi-
tion 4.3.5 (ii1) and a similar consideration as in (4.11) we see that the self-adjoint operators

0%, o I (1-PHLA(x:CY)

are boundedly invertible in (1 — P¥)L?(Z;C*). Let us these restrictions by ®%. Now, let
¢ € ranE* C J# and choose y € # with ¢ = ZXy. If we define

vy =17 <:F2c14 —4c% (a- v)’Gal/z(oc : v)’) 15ty e dom@i’g‘c,o,
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_ =X

then ¢ = E*y = @?éc oVa. Hence, we get w1 = (0%) '@+ Pry, and therefore

4c(Z 1 A) o =dey =y —y, = (02) o (07) o+ Py —Pry,.

Since PXy_ — PXy, € kerZF = 7 by (4.28) we deduce

J4c(2 1) 0l < 4c(=® 1) ol PP~ P |
= ||4c( EE[ H)~ 1¢+(PEW+—P§W—)H§
=[l©%) o~ (©%)'o;.

Since (®%)~! are bounded we conclude that also (E* | s#)~! is bounded in J#. As
(X | )~ is self-adjoint in J# it is clear that it is everywhere defined on J7Z.

Step 4. Finally, we prove that the assumption that a flat part X is contained in X yields
that there are infinitely many linearly independent functions not belonging to ran =*. This
is then a contradiction to the previous findings in this proof, which shows that the assump-
tion (4.26) can not be true.

We consider the linear operator

A=y (- v) +(a-v)e, 2.

Then by Proposition 3.2.4 the operator A : H~'/2(£;C*) — H'/?(Z;C*) is a well-defined
and bounded and by Proposition 3.2.1 (iv) and a density argument we obtain

2 = 16ctiZ (- v)'Cy PAGE)

Since 1%, (a-v)’, and Co 2 are isomorphisms, we see by comparing with (4.27) that in-
finitely many linearly independent functions do not belong to ran =% if and only if infinitely

many linearly independent functions do not belong to ran.A. We are going to verify the
last claim.

Employing the anti-commutation relation (1.2) one sees that A acts on ¢ € L?(X;C*) as

A9(0) = [[a(x3)9()do () @31)

with integral kernel

P

Py p— (1+melx =y[)v(x) - (x =),

a(x,y) = Go(x—z)a- (v(y) = v(x)) + 27|x

where Gy is the Green’s function for the resolvent of the free Dirac operator Ag given
by (3.6). Note that the integral operator in (4.31) is not singular, as |a(x,y)| < C|x —y|~!,
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compare for instance [5, equation (22) and Lemma 3.5] and [45, Proposition 3.11]. Choose
a subset ; C X with | C Xg. Note that a(x,y) = 0 for x,y € £y. Let U; C R? and
o:U — R3 be a linear affine function which parametrizes ¥, that means ran¢ = X,
and let ¢ € LZ(Z;(C“) be arbitrary, but fixed. Since v is constant on Xy and X; C X, we
see that the mapping U} 3 u — a(¢(u),y) is C*-smooth for any y € X and the function
Y >y~ a(¢(u),y) is C'-smooth for any u € U;. From this, it is easy to deduce that
(A@) o ¢ is differentiable on U; and

3, (AQ)(9 /8uja Jo(n)da(y),  je{1,2).

Let us denote the elements of the 4 x 4-matrix a(x,y) by a;(x,y) and those of ¢(x) € C*
by @(x), I,k € {1,2,3,4}. Then the last observation implies, in particular, that

||8"‘j‘A(p||iz():1;(C4) :CI/U ‘8MJAQD(¢(M))‘2du
1

=C1/
U,

2
:c/ (9 )P d
: Ui ki 1’ (0 (w), )(pk)1/2><—1/2‘ “

2

/ Du,a(9(),)(y)do(y)| du

§C1/U ZHaujal-(q)(u)v')H12-11/2(2;(C4)||(p||H—'/2(Z;(C4)dM
L=l

=Glollg-12mcy-

Continuity and density yield that Ag|y, € H'(X1;C*) for all ¢ € H~'/2(£;C*). Thus, any
function y € H'/2(X;C*) with |z, ¢ H'(X1;C*) is not contained in ran.A. Hence, there
are infinitely many linearly independent functions in H'/2(X;C*) that are not contained in
ran A. This completes the proof of this Theorem. [

Theorem 4.3.6 has also some interesting consequences for the domain of the operator
A%e ns» Namely that it is not contained in any Sobolev space of positive order. This ex-
tends the finding from Proposition 4.3.1 and complements one of the main results from
Theorem 4.2.3, namely that functions in domA% _ have in the non-critical case H!-
smoothness.

Ne:Ns

Corollary 4.3.7. Let ¥. C R3 be the boundary of a bounded C?-smooth domain such that
there exists an open set ¥y C ¥ which is contained in a plane. Moreover, let Ne € {£+2c}

be constant. Then domAE oL H (R3\ Z;C*) for all s > 0.

Proof. We are going to show the claim for ne = 2¢, the proof for ne = —2c is similar.
This corollary will be shown in an indirect way. Namely, we prove that the difference
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(A% o~ A)~' = (49— 2)~! is compact for A € C\R, if domAy.q C H*(R*\ £;C*) for

some s > 0. But this is not possible, as Gess(Ag) = (—o0, —mc?| U [mc?, 00) # Gess(Agc 0) by
Theorem 4.3.6.

The proof of the claim requires some preliminaries. For s € [0, 1] define the Hilbert spaces
HS = H(R*\ Z;C*) N dom (§F)*
equipped with the norms
171 = 1 gy + 1) Ay, f €9

Then I :=T%: H'(R3\Z:C*) = H! - H'/2(£;C*) and I} := T : dom ($7)* = HO —
H~'/2(%;C*) are continuous for j € {0,1}. By interpolation we get that also

T : ~1/2(y. 4
% =15 [0 — B2 (5 CY)
is continuous for any s € [0, 1].

Let us assume now that domA%c o = ker (Yi: — @g’CZOYg) C H* for some s > 0. Then it
holds dom@?’fo C H¥(Z;C*) as Y5 = —l§f‘%. Let B% and M?* be the y-field and Weyl

function corresponding to the ordinary boundary triple {L*(X;C*), Y5, YT}, see (2.20).
For A € C\ R we have

ran (@g’fo — ME(A))_I = dom (@gfo —M>(A)) C H'(Z;CH).

Moreover, by Proposition 2.2.7 the operator (G)gfo —M(1)) ~!is continuous in L2 (Z;CH).
It follows that o . »

(@350 —M™(A)) : L*(Z:CY) — HY (:CY)
is closed and hence continuous. As the embedding from H*(X;C*) to L?(X;C*) is compact,
compare Proposition 2.3.2, we conclude that (@gfo —MZ*(A))~! is a compact operator in
L?(X;C*). Finally, Krein’s resolvent formula from Theorem 2.2.5 shows that

(A3 0—A) 7 = (A0—2)"" = BE(A)(37, —~ M (L)) T'BE(A)*, A€C\R,

is a compact operator in L?(R3;C*). This yields the desired contradiction. [

4.3.1 Dirac operators with 5-shell interactions of variable critical strength

Finally, we would like to state several remarks on the operator A%e-ns’ if the interaction

strengths 7., N5 : £ — R are Lipschitz continuous functions in the critical case, that means
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if there are some x € ¥ such that 1e(x)? — 15(x)> = 4c2. We have seen already in Propo-
sition 4.3.1 that A%ems is symmetric, but not self-adjoint. We will sketch here that, if 1.
and n; fulfill some suitable assumptions, then one can still show similarly as in Section 4.3
that A%MS is essentially self-adjoint, compute the self-adjoint realization and provide some
spectral properties of this operator like in Theorem 4.3.3 and Proposition 4.3.5.

The crucial result in Section 4.3 is Proposition 4.3.2 — the following main results are based
on this. Step I and Step 2 of its proof could be done for any Lipschitz continuous and
real valued functions 7M. and 7ns without any difference, the critical point is Step 3. But
with some assumptions on 7. and 1 one can modify this also for more general interaction
strengths. This consideration is based on the fact that any ¢ € dom @ne n, fulfills

(M2 —n2—4ct)p c H'/>(Z;CH. (4.32)

Hence, if we assume that 1. and 7 are such that for all ¢ € H -1/ 2(x;C*) which sat-
isfy (4.32) there is a sequence (¢,) C H'/?(Z;C*) with

¢ — @ in H'/2(£;C*  and
(M2 —n2 —4c®) @, — (2 —n2 —4c?)g in H'/2(Z;CY),

as n — oo, then one could also adapt Step 3 in the proof of Proposition 4.3.2 with just
little modifications such that its claim is still true. One only must be careful that non-

(4.33)

constant functions 7. and 75 do not commute with C,, 12 But due to Proposition 3.2.3 the

commutator of C,, 12 with any Lipschitz continuous function is a bounded operator from

H~'/2(2;C*) to H'/2(2;C*), which allows to prove the desired claim. Note that the above
assumptions are clearly fulfilled, if 1 (x)? — ns(x)? = 4c? everywhere on X.

Having Proposition 4.3.2 one can then proceed as for constant interaction strengths: in the
same way as in Theorem 4.3.3 it follows that A%e,ns is essentially self-adjoint and that the
self-adjoint closure is given by

AG of = (—ica-V +mB) f1 & (—icat-V +mB) [,
domAne 0= {f =/ +®f €dom (S5)* : (T5 + (Mels +sB)TT) f = 0}.

Moreover, if for all ¢ € H~'/2(X;C*) satisfying (4.32) it holds (4.33), then the spectral

properties of A%e,rls can be deduced in a similar way as in Proposition 4.3.5 and we get
that:

(i) (=00, =me*JU[me?,00) C Gess (A5 n,)-
(i) A € (—mc?,mc )ﬂcp(A%em ) if and only if 0 € o, (nels + 1B + (C 1/2) .
(iii) For A € C\R it holds

(An—A) "= (A= A) ' =@, (L (el +1B)C; %) T (Mell + s B) D%
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Moreover, if n2 # 12 on X, then one can show with similar arguments as in the proof of
Proposition 4.3.5 (iii) that the discrete and the essential spectra and hence also the resolvent

sets of the operators A .., and A* coincide.

—4c2Me /(M2 —n2),—4c*ns/(nd—n2)

4.4 Convergence in the nonrelativistic limit of Dirac operators with
electrostatic and Lorentz scalar 6-shell interactions

In this section we study the nonrelativistic limit of Dirac operators with purely electro-
static or purely Lorentz scalar d-shell interactions, that means we study this limit of A%mns
in the case that either 1y = 0 or 1. = 0. In the nonrelativistic limit one subtracts/adds the
energy of the mass of the particle mc? from the total energy and and computes the limit of
the resolvent as ¢ — oo. The expected result is the resolvent a nonrelativistic Schrodinger
operator which describes the same physical problem with the same parameters times a pro-
jection onto the upper/lower components of the Dirac wave function. In our case we will
see that the Dirac operator with an electrostatic or a scalar -shell interaction converges in
the nonrelativistic limit to a Schrodinger operator with a - potential of the same strength.
This gives a justification for the usage of the operator AZ .0 and A On, asa Dirac opera-
tor with a singular d-interaction supported on X. The presentatlon in this section follows
closely [11, Section 5].

First, let us recall the definition of Schrodinger operators with §-potentials and some of
their properties that are needed for our purposes here. As usual let © C R? be the boundary
of a compact C?-domain and let ) : £ — R be a Lipschitz continuous function. We define
the sesquilinear form

1
anlf,gl =5 -(Vf:Velw + (Nfls.gls)s,  f,g € domay :=HI(R%C).  (4.34)

It is not difficult to show that a, is symmetric, semibounded from below and closed,
see for instance [28, Section 4] or [19]. The associated self-adjoint operator —Ay is the
Schrodinger operator with a d-potential of strength 1 supported on X. In what follows we
want to find a suitable resolvent formula for —A;. For that we define for A € C\ R the
function

eV 2mA x|

KA (X) = 2mT|x‘,

x e R*\ {0}, (4.35)

and recall that

1 -1
<_%A_A‘) f(x> = /R3 K)L(x_y)f(y>dyv X € R3=f € L2<R3;C)7 (436)
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see for instance [67, Chapter 7.4]. Moreover, we introduce the bounded integral operators
¥, : L*(Z;C) — L*(R3;C) acting as

¥, 0(x /K,L x—y)p(y)do(y), xeR3 ¢pecL?Z:CY, (4.37)
and Dy : L*(X;C) — L*(X;C),
Dy o(x) /KA x—y)o(y)do(y), x€X ¢cL*(X;CH. (4.38)

It is not difficult to see that ¥, and D, are bounded, compare Propositions 2.4.4 and 2.4.5.
Moreover, a simple calculation shows that the adjoint W5 : L*(R?;C) — L*(X;C) is

Vif) = [ Kre—3)f0)dy  xeX.fe (RN,

With these notations in hand we can state now an explicit resolvent formula for —Ag; for
a proof of this result see for instance [19, Theorem 3.5] or [28, Lemma 2.3].

Proposition 4.4.1. Let 1 : £ — R be a Lipschitz continuous function and let —Ay be the
self-adjoint operator associated to the quadratic form (4.34). Then for all A € C\ R the
operator Iy + 1D is boundedly invertible and

_ 1 - -
(Ap—2) 1:<—%A—/1) — W (L +1Dy) " WL

In the rest of this section we are going to prove that the Dirac operators A%_/O with a purely
electrostatic 0-shell potential and A(EM7 with a purely scalar interaction given by (4.12)
converge in the nonrelativistic limit to a Schrodinger operator —A, with a §-potential of
strength 1. That means that we are going to show

hm( no— (A+me®) = (=Ag—2)"'Py
and
lim (A5 — (A £=me?)) ™" = ((~Ay) = A) P,
where

P, = (15 8) and P_:= (8 I(i) .

This shows then that A% o and Ag.n are the relativistic counterparts of —A; with electro-
static and scalar interactions, respectively.

Note that for a fixed parameter 1 there is no critical interaction strength for sufficiently
large ¢, as 4c¢> > n(x)? for all x € ¥ in this case. Furthermore, the operators (A% 0—
(A +mc?))~! and (A)(in — (A £mc?))~! can be expressed by Theorem 4.2.3 in terms of

(Ao — (A £mc?) ™!, @542, €1 e and @7 5. The convergence of these operators is
analyzed in the following lemma:
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Lemma 4.4.2. Let A € C\R, let Ay be the free Dirac operator defined by (3.3), and let @),
and €, be given by (3.16) and (3.17), respectively. Moreover, let —A be the free Laplace
operator in L*>(R?;C) and let ¥, and D, be given by (4.37) and (4.38), respectively. Then,
there exists a constant K > 0 independent of ¢ such that the following estimates are true
for all sufficiently large c:

1 ! K
(Ag— (A £mc?))~1 — (:F%A—A> Pef <= (4.39a)
K
[Phsmer F Waa Pl < 73 (4.39b)
* * K
[P ez FY P < s (4.39¢)
K
Hel:tmc2 + ®j:lPiH < ? (4.39d)

Proof. We only prove the claims on (Ag — (A +mc?))~1, @, .2, P 2> and Cp 0

*
A+m
here, the convergence of (Ag — (A —mc?))~!, &, _, 2, ®;  ».and €, 2 can be studied
in exactly the same way.

Note first that all differences that shall be estimated in (4.39) are integral operators with
the integral kernel G, > — K3 P;.. Thus, we have first a closer look onto this function.
Recall the definition of K from (4.35) and note that

A A2 i(oc _x) ei\/lz/CZJerMx\
Grime(X)= (;Iﬁ— 2mPy + <1 —i\/ = —|—2ml|x|> ol prp .

We make the decomposition

G?H—mcz (X) —K; (X)P+ =n (X) +10 (X), (4.40)

where the functions #; and , are defined by

A /A2 ilo-x ei\/lz/c2+2ml|x|
tl(x) = (C—2]4+ (1 —1\/ =2 +2m7t|x|> (C|x|2)> 477,'|x| ;

b(x) = ( oIV A/ 2mAl] _ ei\/2m7L|x|> 2m

Amlx]

(4.41)

It is easy to see that there exist positive constants k; = kj(m,A) and x» = ky(m,A) de-

pending on A and m and independent of ¢ and an R > 0 such that

i1 (m, A -2, <R,
1(m,2) {|x| i a2

<—
]S =2 A, x| >R,
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In order to estimate #, we compute first

oA 2mA] _ i/Im ]| _ / td VTR g
o dr
; 272 i1?
ez\/tl /c?+2mA |x| ‘dt.

o
“cJo 2¢\/tA%/c? 4+ 2mA

Since A € C\ R there exist constants x3(m, ), ks(m,A) > 0 which are again independent
of the speed of light such that for all sufficiently large ¢

iL?
i JIN2 /2 B
e ER RN (Vrereery

hold for all 7 € [0, 1]. This implies

2m i 2/e242mA|x iV2mA|x
()] = | (VAT VRl p
4m|x] (4.43)
< Ky (m, A) e Ram Al

2me

Eventually, by (4.40), (4.42) and (4.43) there exist constants ks(m,A), kg(m,A) > 0 such
that

|Gsme2 (¥) = K () Py| < |11 (x) | + [12(x)|
- Ks(m,2) {rxr—z, x| <R, (4.44)

C e_’(ﬁ(mvl)‘xl, |x| ZR.

Now, we are prepared to prove (4.39a)—(4.39c). By Proposition 3.1.1 and (4.36) we have

2m

<(Ao —(A+mc?) " - <—iA—A) 1P+)f(x)

=/, (Glercz(x—y) —K), (x—y)P+)f(y)dy

for x € R? and f € L?>(R3;C*). With (4.44) and Proposition 2.4.3 we get

(40— (Ame?)) ™" - (—ﬁA—x) | < Kl A)

for some constant x7(m,A) and hence (4.39a) holds. Next we prove (4.39b). By Proposi-
tion 4.1.2 (i) and (4.37) we have

(@1 =122 )00) = [ (G1 a3 =) = Kalx=3)P) 9()do ()
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for x € R3 and ¢ € L?(X;C*). Here, the asymptotics in (4.44) and Proposition 2.4.4 yield

KS(mv)“)
D4 4 mez — PaPe|l < —

which is already the claimed estimate. Moreover, the relation (4.39¢) follows by taking
adjoints.

Finally, we verify C; ,,, .2 — D, P,. For that, we use the decomposition
(Chmez — DaPs) p(x)
= lim (Grme (x—=y) = Kp(x= )P+ ) @(y)do(y)
ENOJx—y|>¢
= (814+82+83+84)p(x), x€X, p L’ (L;CY),

where for j € {1,2,3,4} the integral operators §; : L?(X;C*) — L?(X;C*) are given by

89(x) := lim si(x—=y)p(y)do(y), x€X, ¢ € L*(%CY),
ENOJ|x—y|>€
with
( )_ AI Az omd ei\/)LZ/c2+2me\ )._t ( )
s1(x) = 2l c|x| m prp , 52(x) ==t (x),
LR NN ot _i(a-x)
$3%) 1= dem|x|? (e 1)’ $4¥) = dem|x|3

with 1, as in (4.41). We remark that 5| + 53 + 54 = #; with #; given by (4.41). It is easy to
see that |s(x)| < K9(‘ ‘ %) for some constant K9(m,A) depending only on m and A and all

x € R*\ {0}. Furthermore, [s,(x)| < K3(m,A)5 for all x € R? by (4.43). Next, because
of

I
ei\/)L_Z/c_ZJerMx\_l‘: / 4 /BT amal g,

\/l2/02+2m |x\ —|—2m7L

we deduce that there exists kjo(m,A) such that |s3(x)| < % for all x € R\ {0}.
Therefore, we can apply Proposition 2.4.5 and obtain

K11 (m, A .
Jsjl < <1 e 12,3y,

for some constant ki (m,A) depending only on m and A. Eventually, we note that 84 = liT,

i(o-(x=y)).

where T is the integral operator with integral kernel cs4(x —y) = prepmmvER

this operator
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is independent of ¢, everywhere defined and bounded, see Proposition 2.4.6. Therefore,
|84/ < %12. This yields finally that

Ki3(m,A)
1€2-+mez = DaP[| < ISl + 18]l + [183]] + [|8all < ===

and completes the proof of (4.39d). 0

Now we are prepared to compute the nonrelativistic limit of Dirac operators with electro-
static and scalar 0-shell interactions. The proofs of these results are based on the resolvent
formulae from Theorem 4.2.3 and Proposition 4.4.1 and on Lemma 4.4.2.

Theorem 4.4.3. Assume that 1 : ¥ — R is a Lipschitz continuous function and let the
operators A% o and —Ay be defined by (4.12) and (4.34), respectively. Then for any A €
C\ R there exists a constant K > 0 such that for all sufficiently large ¢

PP

Proof. According to Theorem 4.2.3 the resolvent of A%,o is given by

(A%~ (A+mc?)) ™ = (Ag— (A+mc®)) " =@ (L +N0Cy ) NPL, .

From Lemma 4.4.2 we know that there exists a constant k7 > 0 such that for all sufficiently
large c it holds

K LS|
m < ?7 Hq)l—i—mcz _lPQLP-f-” < ?7

(Ao— (A +mec?) " - (—LA_ /1) T

K K1
1€ ime = DaPell < - and (|95, o — 5P|l <

Using that I +nC, > and I4 + nD, P, are boundedly invertible for A € C\ R, see
Proposition 4.1.7 and Proposition 4.4.1, we conclude from [50, Theorem IV 1.16] that
also

-1 -1 K2
H(I4+ne7t+mcz) - (I4+nD7LP+) H < c
for some x, > 0. This implies

lim (45— (A +me?) ™" = lim [(4g— (A +me?)) "

Jm Ao~

- cI))L+mc2 (14 +n e/’l.—l—mCz) - n q)%ercz]

1 - g

compare Proposition 4.4.1, and that the order of convergence is % This is the claimed

result. O]
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Eventually, we prove that the Dirac operator with a Lorentz scalar 6-shell interaction con-
verges in the nonrelativistic limit also to a Schrodinger operator —A; with a §-potential
supported on X. This theorem is very similar as Theorem 4.4.3, but we would like to point
out that we have a slightly stronger statement for scalar as for electrostatic interactions: for
scalar 0-shell interactions we also have convergence of the negative part of the operator
(that means of Aan +mc?) to —(—Ay).

Theorem 4.4.4. Assume that 1 : £ — R is a Lipschitz continuous function and let the
operators A(ZM7 and —Ay be defined by (4.12) and (4.34), respectively. Then for any A €
C\ R there exists a constant K > 0 such that for all sufficiently large c

| (A% = tme?) ™ = (£ (—ag) = 2) ' < g

Proof. The convergence of A%n — mc? can be analyzed with exactly the same arguments
as the one of A')r:; 0~ mc? in Theorem 4.4.3; hence, we omit the treatment of this case here
and study only Agm +mc?. According to Theorem 4.2.3 the resolvent of Aan is given by

—1 ~1 —1
(Aa,7 —(A— mcz)) = (Ap— (A — mcz)) —®; 2 (L+MBCy_ ) nBe;_ ..
From Lemma 4.4.2 we know that there exists a constant k7 > 0 such that for all sufficiently
large ¢
-1

1 K K
— (X —me) 1 _ < <2
(Ao — (A —mc?)) +( 2mA+z> P <= @y e WP <=

Ki « K
1Crme2 +DaP-l < —, and |7 o +¥ 2P || <—.

Using that I4 + nBC; _,,2 and Is + NnD, P = Iy —nBD, P_ are boundedly invertible for
A € C\ R, see Proposition 4.1.7 and Proposition 4.4.1, we conclude from [50, Theo-
rem IV 1.16] that also

86y )~ npmyp) ] <2

for some K > 0. Note that BP_ = —P_. Hence, we obtain finally

lim (A5 — (& —me?)) " = lim [(Ag— (A —mc?))

c—roo
- CI)lfmcz (14 + nﬁelfmﬂ) 71”Bq)%_mc2}
1

-1
——(—=—A+A) P WP (,—nBD_,P) 'np¥ P
2m A

1 ! _
:—(——A+?L) P +V¥ 5 (L+nD_y) 1n‘P*_IPf

2m

= (A +A) 1P = (= (-ag) - A) TP
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compare Proposition 4.4.1, and that the order of convergence is % This is the claimed

result. ]

Finally, we show that for large ¢ and constant 11 < O sufficiently large the number of
eigenvalues of A%O in the gap (—mc?,mc?) of Oess (A%,o) becomes large. The proof is
based on Theorem 4.4.3 and a result from [42] on the spectrum of —Ay. In a similar way,
one can derive also other results on the spectrum of A; o from the well-known properties

of —Ay. A similar result can also be shown for Aén with exactly the same arguments.

Proposition 4.4.5. For any fixed j € N there exists a constant 1 < 0 depending on j such
that the number of discrete eigenvalues of A%,o taking multiplicities into account is at
least j for all sufficiently large c.

Proof. First, we show that for a suitable 1 < 0 the operator —Ay, Py has the desired prop-
erties; then via a continuity argument the claim follows also for Ay. It is easy to see that
Ocss(—AnPy) = Ocss(—An) U{0} = [0,00). Moreover, we know from [19, Theorem 3.14]
that Ogisc(—AnP+) = Odgisc(—Ap) is finite and from [42, Theorem 2.1] that for some fixed
J € N there exists an 11 < 0 such that —Ap P, has at least j discrete eigenvalues. Let this n
be fixed and choose a < b < 0 with 6gisc(—Ap) C (a,b) and denote the spectral projections
of —AnPy and Ay —mc? for the interval (a,b) by E_,p,.((a,b)) and EA% - ((a,b)), re-

spectively.

According to Theorem 4.4.3 the operators (A%,o — (A +mc?))~! converge to (—Ay —

A)~1P, for ¢ — o and A € C\ R. The latter operator is the resolvent of a self-adjoint rela-
tion (multivalued operator) and hence one can show in the same way as in [69, Satz 9.24 b)]
together with [69, Satz 2.58 a)] that for all sufficiently large ¢ the dimensions of the ranges
of E_a,p, ((a,b)) and EA%,O_mCQ ((a,b)) coincide, that means

dimranEA%_’O_mcz((a,b)) =dimranE 4, p,((a,b)) > j.

Thus, the operator A')r:; o has at least j eigenvalues (counted with multiplicities) in the inter-
val (a+mc?,b+mc?) C (—mc?, mc?) for sufficiently large c. O






S DIRAC OPERATORS ON DOMAINS

In this chapter we investigate self-adjoint Dirac operators on a domain Q C R? which
is either a bounded C2-domain or the complement of a bounded C?>-domain. The self-
adjointness is achieved in this case by requiring suitable boundary conditions on dQ. First,
in Section 5.1 we investigate the so called MIT bag model. This is a Dirac operator with
special boundary conditions which is known to be self-adjoint and, as the free Dirac op-
erator on the whole Euclidean space R>, the MIT bag operator will serve as a reference
operator. Moreover, we will study several properties of this operator.

Then, in Section 5.2.1 we introduce a quasi boundary triple {Gq, 1“62, F{Z} which is suitable
to define and study self-adjoint Dirac operators on domains. Here G = P, (LZ(E; C4))
and Py = %(14 +ifa- v) is a projection which turns out to have some very convenient
properties. Again the y-field and the Weyl function associated to this quasi boundary
triple are closely related to the integral operators @, and C; introduced in Section 3.2.
Moreover, we will see that the triple {Gq, T g,l“?} satisfies the assumptions from Theo-
rem 2.2.13. Hence, we can transform this quasi boundary triple to an ordinary boundary
triple {Gq, Y5, Y$*}; compare Theorem 5.2.6.

Next, in Section 5.3 we introduce with the help of the quasi boundary triple {Gq, T, IS}
Dirac operators acting in Q. In the case of non-critical boundary values we prove self-
adjointness of the operators and provide the basic spectral properties of them. Furthermore,
we will see that there is a close relation of Dirac operators on domains and Dirac operators
with singular interactions in the confinement case, compare Remark 4.2.2.

Similarly as for Dirac operators with singular interactions there exist also some critical
boundary values for which self-adjointness can not be shown with the aid of the quasi
boundary triple {99,1“8,1“?}. Following the strategy from Section 4.3 we compute the
self-adjoint realization for constant critical 7. Moreover, making use of the ordinary
boundary triple {9Q7Y87Y?} we will then deduce some further spectral properties of the
self-adjoint realization.

The material presented in this chapter is part of the paper in preparation [15].

5.1 The MIT bag operator

Let Q C R3 be a domain with a compact C?-boundary dQ with outer unit normal vector
field v. In this first preliminary section we discuss the MIT-bag Dirac operator in Q which

101
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will often play the role of a self-adjoint reference operator in this chapter. It is defined as
follows:

Definition 5.1.1. The MIT-bag operator Tl\S/IzIT is given by

TI\%Tf D= (—ica-V+m62B)f,
/ e | (5.1)
dom Tigr = {f € HY(Q;CY) : flya = —iB(a-Vv)flaa}-

In the following proposition we summarize the basic properties of TI\%T. The proof is rather
simple due to the fact that TI\%T P Tl\%CT = Ag%c with Ag 5220 given by (4.12), compare (4.14).
In order to formulate the results, we define the orthogonal projections
Po: LX(R%CY = L(QCY), Paf=[1Q, (5.2)
and
in Q
PL i LA(QiCY > LAR3CY), Pog=4° 77
0 in Q°.

Note that assertions (iii) and (iv) of the proposition below are shown in [4] with similar
ideas.

Proposition 5.1.2. Let TI\S/IEIT be defined by (5.1) and let for A € C\ R the operators ®,
and C), be defined by (3.16) and (3.17), respectively. Then Tl\S/IzIT is self-adjoint and the
following assertions are true:

(i) For A € C\R the resolvent of Ty is given by

(Tidr—A) ™' = Pa(Ao—A) 'R — Pa®; (Is +2¢B€;) ™ 2cPOLPE,.

(i) (—mc?,mc?) C p(Tir).
(iii) A € o(Tiigy) if and only if —A € o (Tikr)-

(iv) Discrete eigenvalues of TI\%T have always even multiplicity.

Proof. First, since Ty @ Tiyr = Ag%c is self-adjoint in L?(R3;C*) by Theorem 4.2.3
it follows immediately that Tl\%T = PQAg%cPEg is self-adjoint in L? (Q;(C4); compare also
Remark 4.2.2. Moreover, this block structure and Theorem 4.2.3 (i) imply the claimed

resolvent formula.

Next, assertion (ii) is a direct consequence of Corollary 4.2.6 (vii). Finally, items (iii) and
(iv) can be shown in exactly the same way as Corollary 4.2.6 (iv) and (v); we omit the
proof here. [
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In the following lemma we give a more detailed picture of the spectral properties of TB%T.
The properties are entirely different depending on whether Q is bounded or not.

Lemma 5.1.3. Let TI\%T be defined by (5.1). Then the following assertions are true:
(i) If Q is bounded, then o(TGr) = Odise(Tr)-

(i) If Q is unbounded, then 6 (Tyg) = Oess(Tir) = (—o0, —mc?] U [mc?, o).

Proof. (i) Since Q is a bounded C2-domain dom Ty C H' (Q;C?) is compactly embedded
in L2(Q;C*). Hence o(T#r) is purely discrete.

(ii) First, we know from Proposition 5.1.2 that 6(Tyt) C (—eo, —mc?|U[mc?, ). To prove

the other inclusion, fix some A € (—oo, —mc?] U [mc?,). Then, since Q is unbounded,
the functions 1//,3L from Lemma 3.1.4 belong to dom Trf}in C dom TI\%T. Furthermore l//,f‘
converge weakly to zero and

|yt |lo =const. >0 and (Tigr—A)wr = (T2 —A)y} =0, asn— oo

Thus (') is a singular sequence for 7,3 and A which shows A € Gess(Tiigr). This
finishes the proof of this lemma. [

Finally, we state in a similar fashion as for the MIT bag model the basic spectral properties
of another distinguished self-adjoint realization of the Dirac operator on . This operator
has similar boundary conditions as Tl\%T, but with opposite sign, and it is given by

Ty f : = (—icat-V+mc*B)f,

(5.3)
domszMIT = {f S I{1 (Q,C4) : f|aQ = lB(G ’ V)f|aQ}~

Lemma 5.1.4. The operator Ty is self-adjoint. Moreover, 6(T%r) N (—mc?,mc?)
consists of at most finitely many discrete eigenvalues.

Proof. First, it holds T ;p © % = A§% ,, and this operator is self-adjoint in L?(R3;C*)
by Theorem 4.2.3. This implies with Py given by (5.2) that TPMIT = PQAg% 2o Po 18 self-
adjoint in L?(Q; C*).

Finally, since we have T_QMIT D T_Ql\jHT = Ag Q » it follows immediately from Corollary 4.2.6

that 6(T% ) N (—mc?,mc?) consists only of at most finitely many discrete eigenvalues.
This finishes the proof of this proposition. 0
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5.2 Boundary triples for Dirac operators on domains

In this section we introduce first a quasi boundary triple which allows us to define self-
adjoint Dirac operators on domains via suitable boundary conditions on dQ. Then in
Section 5.2.2 we will transform this quasi boundary triple with the methods described in
Section 2.2 to an ordinary boundary triple, which enables us then to prove self-adjointness
also in the case of critical boundary conditions.

5.2.1 A quasi boundary triple for Dirac operators on domains

Throughout this chapter let Q be either a bounded domain in R* with C2-smooth boundary
or the complement of a bounded C2-domain. We denote the normal vector field at JQ
pointing outwards of Q by v. Furthermore, we define

P = %(uiiﬁ(a-v)). (5.4)

Using the anti-commutation relation (1.2) it is easy to see that Py is an orthogonal projec-
tion. Furthermore, it is clear that P~ = I — P,. This implies, in particular, that P, P_ =
P_P; = 0. Eventually, we set for s € [0, 1]

G5, = Py (H*(0Q:CY)). (5.5)

For convenience we set Gq := 9%. Since P, is an orthogonal projection in L?(9Q;C%)
the space G is a Hilbert space. Moreover, as dQ is C2-smooth G, CH* (89;@4) for any
s € [0,1] and G5, is a closed subspace of H*(9Q;C*).

Next, we define the operator T in L?(Q;C*) by
T f .= (—ica-V+mc*B)f, dom7¢ := H'(Q;C?), (5.6)
and the mappings 'S, F? :dom T — G, acting as

I§f:=VcPiflog and TPf:=+/cPBflyq, fEdomT (5.7)

Note that the trace theorem and Lemma 2.5.1 imply that ranT'$?, ran F? C 9}2/ 2, as dQ is

C?-smooth and dom 7% = H'(Q;C*).

In the following theorem we show that {Gq, ng, F‘f} is a quasi boundary triple and that T®
coincides with the maximal Dirac operator 7,5, from (3.10). Moreover, it turns out that
the reference operator T | ker ng is the MIT bag operator TI\%T studied in Section 5.1.
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Theorem 5.2.1. Let S® := T be the minimal Dirac operator from (3.11), let Sq be given

~ “min

by (5.5) and let TQ, I 62 and F? be given by (5.6) and (5.7), respectively. Then S s closed
and symmetric, (S¢)* =T =TS, and {Sq,T5, [} is a quasi boundary triple for (S¢)*.

max
Moreover, T | kerl“f)2 is the Dirac operator TI\%T with MIT bag boundary conditions and

ran (T'g | kerT$?) = ran (T | kerT) = 9;2/2. (5.8)

In particular, it holds ran ([§,T$) = 9}2/2 X ng.

Proof. First, it is clear by Lemma 3.1.2 that $° = Tn?in is closed and symmetric and that
(§9)* =T2 as C*(Q;CY c

2 Moreover, Lemma 3.1.3 implies that 7 is dense in 75
H'(Q;C*) = domT*.

max?»
Next, we prove that Green’s identity is fulfilled. Let f,g € domT% = H 1(Q;C4). Then,
integration by parts (2.31) and the self-adjointness of o - v yield

(Tf,8)a—(f.Tg)a = ((—ico-V+mc*B)f,8)q — (f:(—ica-V +mc*B)g),
= (—ica-Vflra:&laa) 50

1 . 1 _
= 5(— ivea-vflaa, \/Eg|ag)ag - E(ﬁf’aga —iv/cor- Vg|ag)ag-

Using that 8 is unitary and self-adjoint and the anti-commutation relation (1.2) we see that
the last expression is equal to

(—iveBa vflaaVeBslaa) yo — %(\/Eﬁflam —ivePa-vglan) s
B %(\/Eﬁfbgv\/z(gbg +iBa-velag)) o

3 (Ve(laa +iBa-vlaa) VaBelaa) g
= (VeBflag: VePiglaa)aa — (VePy flag: VeBglaa) oo

| =

Since P, is a orthogonal projection we have P, = (P, )> = (P, )*, which implies eventually

(Tf.8)a—(f,Tg)a= (VePiBfloa: VcPiglaa)aa — (VP flaas VePiBglaa)aa
= (Fsl)f7rgzg)3§2 - (Fgf7r?g)3§27
which is Green’s identity (2.5).

Next, we verify the range property (5.8). Clearly, by the definition of I 62 and F? and
domT§ = domI{¥ = H!(Q;C?) it holds

ran (I8 | kerT$), ran (T | kerI['g) C 9;2/2.
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On the other hand, let ¢ € 9}2/ 2 and choose a function f € H'Y(Q;C*) with f|yq = \/Lg(p.

Since p € G ;2/ % it holds ¢ = P ¢ and hence we deduce

TGf = VePyflag = Pro = 9.

Moreover, the relation (1.2) implies BPy = P_ 3. Hence, we have

[Pf =VePiBfloo=PiBo =P pPio=PP Bp=0,
that means f € kerI['$%. Thus, ¢ € ran (I'§ | ker['$).

Tlo prove 9;2/2 ‘C ran (T'$ [ ker ') let y € 9}2/2 and choose g € H' (Q; C*) satisfying g|yo =
7 Bw. Then it holds
TGg=P By =P y=0,
as ¥ € Gq, and
Tg = VP fgloq =Py =y,
that means ¥ € ran (F‘l2 [ kerl“f)z). Hence, equation (5.8) has been shown.

Finally,
kerI'g = {f € H' (% CY): flag = —iB(at- V) flaq} = dom Tyjir.

Hence T | kerI'§ coincides with the MIT bag Dirac operator Ty which is known to be
self-adjoint, see Proposition 5.1.2. Therefore {99,1“62,1“‘12} is a quasi boundary triple for
(S2)* and all claims have been shown. O

Next, we compute the y-field and the Weyl function associated to the quasi boundary triple
in Theorem 5.2.1. It turns out that these operators are closely related with restrictions of

the integral operators ®; and C, defined in Section 3.2. In order to formulate the result
recall that 2% B+ G;L/ ? admits a bounded and everywhere defined inverse in H'/2(Z;C*) for

A € C\ ((—o0, —mc?| U [mc?,0)), see Proposition 4.1.7.

Proposition 5.2.2. Let {Gq,I'§, T2} be the quasi boundary triple from Theorem 5.2.1, let
A € C\ ((—o0,—mc*|U[mc?,00)) C p(Tir), let Po be given by (5.2), and let ®; and C),
be defined by (3.16) and (3.17), respectively. Then the following holds:
(i) The value of the y-field Y*(A) : domy?(1) C Gq — L*(Q;C*) is defined on the set
domy?() = 9}2/2 and is explicitly given by

-1
PR = %chp;/z (%B + e;/2> |

Each () is a densely defined bounded operator from Gq to L*(Q;C*) and a
bounded and everywhere defined operator from G ;2/ % to H! (Q; C4).
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(ii) The value of the Weyl function M}(1) : domM*(A) C Gq — Sq is defined on the

set domM®P (L) = 9512/2 and explicitly given by

1 1 !
MEA) = —P. (ZB +e;/2) P..

Each M (1) is densely defined and bounded in Sq and bounded and everywhere
. el)2
defined in G ".

Proof. Let A € C\ ((—o0,—mc*] U [mc?,)) be fixed. First we note that dom y*(1) =
domM®(A) =ran[§ = 9;{2, see (5.8).
For the proof of item (i) let ¢ € ranI} be fixed and recall that y*(A)g is the unique
solution of the boundary value problem

(T®=2)f=0 and Tgf=o0, (5.9)
compare (2.7). We set

1 1 -
fri= %chpi/z (Z_CB + e}l/z) ®.

Then, due to the mapping properties of CID/II/ % and (2_10 B+ Gi/ 2)_], see Proposition 4.1.6
and Proposition 4.1.7, we have f; € H'(Q;C*) = domT**. We are going to show that f;
solves the boundary value problem (5.9).

First, by Proposition 4.1.2 it is clear that (T —A)f; =0, as ®, | H'/2(Z;C*) is the y-
field for the quasi boundary triple {LZ(QQ;C4),FgQ,F‘1)Q}. Moreover, employing Propo-
sition 3.2.1 (iii) we get

I 1 -1

B i 11 1 2\
=P, (_2ca'v_2cﬁ+2cﬁ+e’1) <_2cﬁ+e/1 ) (0
B i 1 1 1/2 -

=P, (__2c(a'v)ﬁ__2cl4)ﬁ (—2CL3+€/l ) ®+Po.

Using that ¢ € Gg, Pf = P, and the anti-commutation relation (1.2) we deduce
i 1 1 2\ 7!
I8 =P ( —B(a-v)—=—I —B+e
0/ +(2cﬁ( ) 2c4>ﬁ<2cﬁ+ A > o+o

_ ! Lo o12) groo
_—CP+P_[5(2cﬁ+C’,L) o+ =0.
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Hence, f; is a solution of the boundary value problem (5.9), that means that y¥2(1)¢p = f;.
This is the claimed representation of 2(4).

Next, by the definition of the y-field it is clear that y*(1) is a densely defined bounded
operator from Gq to LZ(Q;(C4). Moreover, using Propositions 4.1.7 and 4.1.6 we deduce

that y*(1) regarded as an operator from 9;2/ 2 to H! (Q;C*) is continuous.

To show assertion (ii) we note that it holds by Definition 2.2.2, item (i) and Proposi-

tion 3.2.1 (i) for any ¢ € G/

—1
M 2)g =TT (2)p = P.p (chb;/z (zicmei/z) <p>

2Q
i

_ 1 1 1 12\
_P+B( 520V 26B+26B+61> (2(:[”6% > )

—»p, (—iﬁ(a-V)—zic) (zicﬁ+e;/2)_l<p+aﬁ<p.

Using that ¢ € G, PJZr = P,, and the anti-commutation relation (1.2) we deduce

1

c

1 12) 1 1 12\
MEW)p=——PL(B+€*) o+BPo=—P (-B+e) Pio,
2c c 2c
which is the claimed representation of the Weyl function. Due to the mapping properties
of (B + 6/11/ 2)_1 from Proposition 4.1.7 we obtain finally that M(1) is bounded and

densely defined in G and bounded and everywhere defined in G ;2/ 2. ]

Eventually, we state an explicit formula for the inverse of M}(1). This will be one of the
main ingredients to prove the self-adjointness of Dirac operators on € with suitable bound-

ary conditions. Recall that the operator —% B+ (i’i/ ? admits a bounded and everywhere
defined inverse in H'/ 2(9€;C*); see Proposition 4.1.7.

Proposition 5.2.3. Let T, be defined by (5.3), assume that A € C\ ((—00, —mc?| U

o (T-mir) U[mc?,)), let Gi/z be given as in Proposition 4.1.6, and let M*(1) be as in

Proposition 5.2.2. Then M} (1) admits a bounded and everywhere defined inverse in 9;2/ 2

which acts as

-1
) = e (5B e)

Cc

Proof. First, we note that functions f in the domain of 7 | ker F{Z satisfy

IPf=0 & flaa=iB(a V)floa
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which means that this operator coincides with the self-adjoint operator TfZMIT. Therefore,
the triple {Ggo,I'§, I} with

fgl = F? and f? = —1“62
is a quasi boundary triple for (S)* with Weyl function
_ ~0 A ~1 _
M®(A) =TP(T§ Tker(T¢—2)) " = —(M2(A)~", A €p(Tiir) NP (TErr):

So in order to compute (M(1))~! we calculate the Weyl function associated to the triple
{Gq,I'§,T$}. For that we derive first an explicit formula for the y-field ¥*(1). Let A €
C\ ((—o0, —mc?| U0 (TS gyp) U [mc?,0)), let @ € dom P (A) = ranlA“f)2 =ranl{ = 9;{2 be
fixed and set

1

i 1
fri= %qu)i/z (—2—013 +ei/2) Bo,

where CIDi/ %is given as in Proposition 4.1.6. We prove that f; is a solution of the boundary
value problem

(T®=L1)=0 and T§f, = 0.
This shows then 7*(1)¢@ = f;, compare (2.7).
First, due to the mapping properties of ( — % B+ Gjl/ 2) ~and CIDJI/ ? from Proposition 4.1.7
and Proposition 4.1.6 we get f3 € H'(Q;C*) = domT. Moreover, we easily deduce

(T2 — 1) f, = 0 because of Proposition 4.1.2. Eventually, employing Proposition 3.2.1 (iii)
we have

N | .
I3/, =T/ = P:B (PQ(D;LQ (‘2—613 +€;L/2) ﬁ(P>

aQ

P (—tavipopre,) (—Lptc? _1[3

o 2c 2c 2c A 2c A ¢
1 1 -

:EP+ﬁZP_ (—2—6.34'6;11/2) Bo+PiB>0.

Since B2 =14, PLP_=0and ¢ € G, we deduce IA“(K)Z /2 = @, which was the claim.

Eventually, we compute M%(1)@ = f??g(/'t)(p Using again Proposition 3.2.1 (iii) we
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obtain

ML) =TP7* (1) = -T2 (1) e
-1
—_p, (Pﬂcpl/z (—%B +el/2) /3<p>

i 1 1 1 -1
= (v abre) (el e

aQ

1 1 -1
—-1rpp (~5B+€)7) Bo-ribo.
c 2¢

Using the anti-commutation relation (1.2) we deduce BP- = P, 3. Thus, as ¢ € G we
conclude finally

-1
M) =) =P (5B € ) Brio-BPPio

1 1 -
——1rp (5 +€)%) Brio.
c 2c

which is the claimed result. O]

5.2.2 An ordinary boundary triple for Dirac operators on domains

In this section we transform and extend the quasi boundary triple {Ggq, Ff)z, F?} from The-
orem 5.2.1 to an ordinary boundary triple using the techniques described in Section 2.2.
Recall that we have by (5.8)

= ran (1§ [erT®) = 67 and 9% = ran (1P [ker ) = 5.

Following the procedure described in Section 2.2 we see that

A2 :=ImM2(j) = 21 (M (i) — M2 (—i))

i

is a non-negative self-adjoint operator and we define the bijections

1= (A% 2. g% 5 g (5.10)
and / )
12:= (A1) 1 g% 5 6, (5.11)
where

50" 1= (54"’



5.2 Boundary triples for Dirac operators on domains 111

is the dual space of 9;2/ 2. Recall that we can express with the aid of the embeddings liz the

inner product in 931/ % and the duality product in 9;21/ 2 1/ 2 by (2.15), (2.18), and (2.19).
Eventually, we note that the typical scaling properties for embeddlng operators yield that
12 gives rise to a bounded operator

@.gl% gl (5.12)

Now, we have all tools and notations in hand to introduce the extensions of the boundary
mappings Fg and F?. This result can be shown using that A® := 79 | kerFsl2 = T_QMIT is
self-adjoint, which was shown in the proof of Lemma 5.1.4, equation (5.8), and Proposi-
tion 2.2.11.

Lemma 5.2.4. Let (S?)* = T2, and let {SGq, T, TS} be the quasi boundary triple from

Theorem 5.2.1. Then, the operator AS := T [kerlﬁ{2 is self-adjoint in L*(Q;C*). More-
over, the mappings rgl,r? :dom T — Gq have surjective extensions

T$:dom ($%)* = 65'"* and TP :dom(s)* — G5,

which are bounded with respect to the graph norm of (SQ)*.
With the aid of the extended boundary mappings f‘f} and f? we are able to extend the
y-field y*(1) and the Weyl function M*(1) from Proposition 5.2.2.

Proposition 5.2.5. Let {Sq,I'§, I} be the quasi boundary triple for (S®)* from The-
orem 5.2.1 with corresponding y-field ¥* and Weyl function M given as in Proposi-
tion 5.2.2. Moreover, let T,y be given by (5.3) and let A € C\ ((—o0,—mc*|U[mc?,o0)).
Then it holds:

() The operator Y*(A) has a continuous extension
() = (T§ Tker((S2)* = 1)) " : 65"% = Sa.

(i) The operator M}(A) has a continuous extension

MO(2) =TQ(T§ I ker((S%)* —1)) ' :85"% = 65"~

1/2 1/2

Moreover it holds for all ¢ € G, ™ and y € G

<A7IQ(M9”=‘V>_1/2x1/2 (@.M%()y)_ 1/2x1/2°

(iii) For A € C\ ((—e0,—mc?] U 6(TSyp) U [mc?e0)) the operator (M®(A))~" has a
continuous extension

(M2(A) " =TT T ker(($%)*—2)) 65" = 557
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(iv) For A € C\ ((—o0,—mc*|U o (TS ) U [mc?e)) the operator
ML) — (M2(A)) " 6512 = gl
is bounded and everywhere defined.

Proof. Assertion (1) and the existence and the mapping properties of M2 (1) follow im-
mediately from Proposition 2.2.12. Also item (iii) is a consequence of Proposition 2.2.12,
as —(M®(1))~! is the Weyl function for the quasi boundary triple {Ggo, T}, '}, com-
pare the proof of Proposition 5.2.3, and this triple fulfills also the assumptions of Propo-

sition 2.2.12. Moreover, employing (2.18) and Proposition 2.2.4 (iii) we observe for
(p€9£12/2 andl,tIEQ}Z/2

OO, 1112 = (MA2)0. )0 = (0.M* D) W)a0 = (.M (D)Y)_1 /2012

By density we obtain that the above formula can be extended for all ¢ € 9{21/ 2. Hence,
also item (ii) is completely proved.

It remains to show statement (iv). We are going to prove that M2 (1) — (M2(1))~! can

1/2

be extended to a bounded operator from G, '~ to G ;2/ 2, By Proposition 5.2.2 and Proposi-

tion 5.2.3 it holds
1) 1) 1 1 1 1/2 ! 1 1 1/2 !
M>(A) = (M(4)) :_EP+ %ﬁ-FG;L P+—;P+ﬁ _ZB—'—GA BP,.

Using that 8 is an invertible matrix and that all involved operators are bounded and every-
where defined this implies

—1 -1
ME() — (MO(A)) = —%m (%B +6§/2> P, - %P+ (—%B +B6’i/26> Py

—1p, (—%mﬁe%ﬂ)_] (Bey>+€l%p) p (zicmei/z)_la.

C

-1
Since (%[)’ + Gi/2> has a bounded extension in H_1/2(8Q;64), see Proposition 4.1.7,

and BG;L/Z + (‘3/11/2[)’ has a bounded extension from H~/2(9Q;C*) to H'/2(9Q;C*) by
Proposition 3.2.4, the claim of item (iv) follows. L]

Eventually, since %19 =g Sl}/ 2 is dense in Gq we are able to apply the construction described
in Section 2.2 to transform the quasi boundary triple from Theorem 5.2.1 to an ordinary
boundary triple. Here we fix some g € p(T% 1) N (—mc?,mc?) C p(Ty). Note that

such a u exists by Lemma 5.1.4. This implies, in particular, that
dom (5%)* = domAG +ker ((S%)* — p).
see (2.6).
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Theorem 5.2.6. Let S¢ =T be given by (3.11) and let {Gq,T§, T} be the quasi bound-
ary triple from Theorem 5.2.1. Moreover; let liz be defined by (5.10) and (5.11), respec-
tively, let F(g)2 be the extension of 1“62 from Lemma 5.2.4 and define Téz, T? :dom (S2)* — Ggq
by

YEf =181 f and YPf:=191%

for f = fo+g € domAf+ker ((S%)* — ) = dom (S%)*. Then {Sq, Y5, Y$} is an ordinary
boundary triple for (S®)* and (S?)* | kerY§ = T | ker['§ = T}

5.3 Dirac operators on domains — definition and basic spectral
properties in the case of non-critical boundary values

In this section we define self-adjoint Dirac operators in a domain Q C R3, which has a
compact C2-smooth boundary, with suitable boundary conditions via the quasi boundary
triple {Gq, I 62, 1"512} from Theorem 5.2.1. To be more precise, we are going to study Dirac
operators with the boundary conditions

TP floa = P+Bflaas

where the function 7 : dQ — R is Lipschitz continuous and the matrix P, is given by (5.4).
In the case of non-critical boundary values, that means if 7(x) # +1 for all x € dQ, we
are going to prove self-adjointness and basic spectral properties. The critical case is then
treated in Section 5.4.

Definition 5.3.1. Let {Sq,T', v} be the quasi boundary triple from Theorem 5.2.1 and
let T: dQ — R be Lipschitz continuous. Then we define AS := T | ker(I'{ — t['§). This
operator is given in a more explicit way by

AZf = (—ica-V+mc*B)f,

(5.13)
domA? := {f € H'(Q;C*) : TP, floq = P+ Bflaa}-

First, we show that A is unitarily equivalent to —Agff. This technical property will be
useful in the study of A? later. In the proof of this result we use the matrix

(0 D
Lemma 5.3.2. Let T: dQ — R be a Lipschitz continuous function, let A? be defined

by (5.13) and define the unitary matrix B := Bvys with 5 given as above. Then it holds
A? = —B*A%TB. In particular, A? is self-adjoint if and only if Ag_ZT is self-adjoint.
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Proof. First, we show that B(domA®) = domA®_. In fact, the anti-commutation rela-
tion (1.2), (- v)¥%s = y5(a- v), and Bys = —¥s B imply for f € domAS

IPBf =P B2¥5floa = B5P-B*flaa = 15BP:Bflaa
=YsBTP flog = TP+ ¥sBflaa = —TP+Bflaqs

that means Bf € domA®?_. By a similar argument we see that f € domA®_ yields Bf ¢
domA$ which shows B(domA$?) = domA®_. Eventually, employing again (1.2) we get
for any f € H'(Q;C?)

(—icot-V+mc*B)Bf = (—ica-V+mc*B)Bysf = Blica-V+mc*B)ysf
= Bys(ica-V —mc?B)f = —B(—ico-V +mc?B)f.

This finishes the proof of this lemma. [

It follows immediately from Green’s abstract identity that A? is symmetric for any Lips-
chitz continuous and real valued function 7, see (2.9). In order to prove self-adjointness,
we employ Theorem 2.2.5; this gives us also a Krein type resolvent formula. Note that
this resolvent formula below is explicit as we know from Proposition 5.1.2 the resolvent

(TI\%T —2) ! explicitly.

Theorem 5.3.3. Let T: dQ — R be a Lipschitz continuous function satisfying |t(x)| # 1
for all x € dQ and let A? be defined by (5.13). Moreover, let ¥* and M® be given as in
Proposition 5.2.2. Then A is self-adjoint and it holds for all A € C\ R

(AL —2)" = (T — ) 72 (A) (e — M) 21

Proof. Due to Green’s identity it is clear that A% i1s symmetric, compare (2.9). Thus, it
suffices to prove ran (A2 — 1) = L?(Q;C*) for A € C\ R.

Let f € L*(€;C*) and A € C\R be arbitrary, but fixed. Then by Theorem 2.2.5 (ii)
we have f € ran(A? — 1) if and only if ¥*(1)*f € ran(7 — M®(L)). Since y*(1)* =
F? (TI\%T — l)_l, see Proposition 2.2.3 (iii), and dom Tl\%T C H! (Q;(C4) we deduce that
YA f € 9;2/2. We prove that T — M*}(1) is surjective in 9;2/2. Clearly we have

ran (7 — M®(A)) Dran [(t— ME(A)) (t+ (ME(A)) )]
=ran [t? — 1+ t(M®(A)) ' —M®(A)1].

Making use of the explicit form of M*}(1) from Proposition 5.2.2 we deduce from Propo-
sition 3.2.3 that

1 1 -1 1 -1
e o (L) (- er) (o) .
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is compact in 9;2/ 2, as 7 is Lipschitz continuous. Moreover, by Proposition 5.2.5 (iv) also
(M2(A))~! = M2(A) is compact in 9;2/2. Thus, the operator

Ky = T(MEA)) = MEA)T = [(MEA)) T = MEA)] + MR (L) — M ()T

is compact in § Slz/ *. Note that both operators T — M2 (L) and T+ (M} (1)) ~! are injective,
as otherwise one of the symmetric operators A$ or T | ker(l“f)2 + TF?) would have the
non-real eigenvalue A, see Theorem 2.2.5 (recall that —(M**(1))~! is the Weyl function
for the quasi boundary triple {SQ,F?, —I 62}, compare the proof of Proposition 5.2.3).
Thus, Fredholm’s alternative implies that

(2= M) (e 0122)) ) = (1) 14+ 5156,

e e e 1/2 1/2 Q . . Q

is bijective in G5 °. Therefore G5~ C ran (7 —M™(A)), which yields f € ran (A% — 4).
Since f was arbitrary we get eventually ran (A2 — 1) = L?(Q;C*) and that A is self-
adjoint.

Finally, the stated resolvent formula follows from Theorem 2.2.5. O]

In the following we discuss the basic spectral properties of A?. Since these are of a very
different nature whether Q is bounded or Q is the complement of a bounded domain,
we discuss these two cases separately. First, we treat the simpler case, when Q is the
complement of a bounded C?-domain. Then the essential spectrum of A% is (—oo, —mc?]U
[mc?, o) and the discrete eigenvalues in the gap of the essential spectrum can be computed
with the aid of the Birman-Schwinger principle.

Proposition 5.3.4. Let Q be the complement of a bounded C*-domain, let T: 9Q — R be
a Lipschitz continuous function satisfying |t(x)| # 1 for all x € dQ and let AS be defined
by (5.13). Then the following is true:

) O'eSS(A?) = (—o0, _mcz] U [mC27°°)~
(i) The number of discrete eigenvalues is finite.

(iii) A € 6(A%) ifand only if0 € o(t — M?(L)).
Proof. (i) Note first that due to Theorem 5.3.3 we have for A € C\ R
(Ac—2)7" = (B3 —2) "' = ¥*() (r - M2(1)) "2 (R)
=R(A) (r—M*A) )

The operator }/Q(I)* is bounded from L*(Q;C*) to G Sl)/ 2, because by Proposition 2.2.3 (iii)

and (5.8) we have rany?(1)* = ran [C(L3) 7' = 9;2/ ? and the closed graph theorem.

(5.14)

*
*
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Moreover (‘L’ — MQ(A)) ~lis bijective in 9;2/ 2, as it is shown in the proof of Theorem 5.3.3.
Hence, we deduce that

(r—M2(A) " PR LA(Q;CY) — 6

is bounded. Since 9}2/ 2 is compactly embedded into G this operator is compact from
L?(Q;C*) to Gqo. Moreover, ¥*(1) can always be extended to a bounded and everywhere
defined operator from Gg to LZ(Q;(C4), compare Proposition 2.2.3. Thus, we deduce that
the left hand side of (5.14) is compact in L? (Q; (C4), which yields

GeSS(ASg) = GeSS(Tl\S/IzIT) = (—oo, —mcz] U [mczv‘x’)-

Assertion (ii) can be shown in exactly the same way as Theorem 4.2.3 (iv). Finally,
item (ii1) is an immediate consequence of Theorem 2.2.5 (1). L]

If Q is a bounded C%-domain, then it is more difficult to describe the spectrum of A?
in terms of the Weyl function M. Since domA$ C H'(Q;C*) is compactly embedded
in L2 (Q;C4) in this case, the spectrum of A? is purely discrete. On the other hand, we
have only an expression for the value of the Weyl function M*(1) in Proposition 5.2.2 for
A € C\ ((—o0,—mc?|U[mc? ). Hence, we can not use the Birman Schwinger principle
from Theorem 2.2.5 directly to detect discrete eigenvalues in (—oo, —mc?] U [mc?, ). But
since the symmetry S = 7% is simple by Lemma 3.1.2, we can apply Proposition 2.2.8

min
and obtain immediately the following result.

Proposition 5.3.5. Let Q be a bounded C?-smooth domain, let T: dQ — R be a Lipschitz
continuous function satisfying |t(x)| # 1 for all x € dQ and let AS be defined by (5.13).

Then 6 (AS) = Gisc (AL) and A is an eigenvalue of A if and only if there exists a ¢ € 91/ 2
such that |

lim ie(M®(A +ig) — 1)~ 0.

lim ie(M™(A +i€) 1) @ #

Next, we state the analogue of Theorem 4.2.7 for Dirac operators on domains. In this case
we compare the differences of powers of the resolvents of A$ and TI\%T. The results are
very similar to those of Theorem 4.2.7. Hence, we also give just a sketch of the proof.
Again, we have to assume here some additional smoothness of JQ.

Theorem 5.3.6. Let | € N be fixed and assume that Q is has a C'-smooth boundary. Let
7:9Q — R be Lipschitz continuous such that |T(x)| # 1 for all x € dQ and let AL be
defined by (5.13). Moreover, let TI\%T be the MIT-bag operator defined by (5.1). Then it
holds for all A € C\ R

AT —A) " — (it — 1) ' €6y
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In particular, for | =3 the operator (A3 — 1) 73 — (Tt — A) > belongs to the trace class
ideal and

r[(A2 —2) 3 — (T8g —4) %] = —%n {—2 ((T—Mﬂ(z))*%Mﬂ(z))}  (.15)

Moreover, the wave operators for the scattering system {A?, TI\%T} exist and are complete
and the absolute continuous parts of AS and TI\%T are unitarily equivalent.

Proof. The proof of this theorem follows the one of Theorem 4.2.7. Thus, we give here
just a sketch and point out the differences to the proof of Theorem 4.2.7. Let A € C\ R
be fixed and denote by Py, : LZ(R3;C4) — L2 (Q; (C4) the restriction operator which acts as
Pof = f | Q, f € L>(R%;C*). Then it holds by Proposition 5.2.2

b (1 12\
P ) = hat) (2cﬁ+ek)
1/2

with the operators CID:I/ % and @ 4 defined as in Proposition 4.1.6. Hence, we have

2(A) = %qu’x <%B + @/1) R :

In a similar way one gets

In the proof of Theorem 4.2.7 it was shown that

k

d _
d—M(14+2Cﬁex) '€ Gk

see (4.19). Hence, it follows
k

d
SMO(0) € Gy (5.16)

and using (2.42), Proposition 4.1.8 and (2.1)

& 5~ Kdt o d ] -
W?’Q(l) =Fo 2 kﬁdks‘“@ (%ﬁ —1—6,1) € G4/(2k+1) 00
S+i=

By taking adjoints this implies that also dd—;kyﬂ(%)* € ©4/(2k+1),- Note that (5.16) yields

d* -
(T M) €S
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this can be shown in exactly the same way as (4.19). Thus, using the resolvent formula
from Theorem 5.3.3 we get finally in a similar way as in (4.17) that

Q gl QAN _ I dh—<d? a1 d

belongs t0 &3 ; ..

Finally, the trace formula (5.15) can be shown in exactly the same way as Corollary 4.2.8.
O]

5.3.1 A remark on A$ and A%e,ns in the confinement case

Let Q, C R3 be a bounded C?-domain, set £ := dQ, and Q_ :=R3\ Q, and denote
the unit normal vector pointing outwards of Q1 by vi. Moreover, let ne,7ns : £ — R be
Lipschitz continuous. If 1 (x)? — ns(x)?> = —4c? for all x € X, then the operator A%eﬂ?s
given by (4.12) is self-adjoint and it decouples into

r o Q.
Aﬂeyns _Anearls 63Arle7775’

where g%ei,ns is a Dirac operator in L?(Q.; C*) with boundary conditions

(2¢ly —i(ot-vi) (e +nsB)) fels =0 for fi € domAps, (5.17)

compare Remark 4.2.2 and Theorem 4.2.3. We will show that the operators ngm are of

the form A?i and, on the other hand, for every Lipschitz continuous 7 in the non-critical

case, that means 7(x) # +1 for all x € £, the operator A?i is the compression of some
A%e,ns in the confinement case. This allows, in particular, to deduce some properties of

A?i of those of A%e,ns from Chapter 4 with very small effort.

Proposition 5.3.7. Let for some Lipschitz continuous functions Ne,Ns, T : £ — R the oper-
ators ATZIe,ns and A?i be defined as in (4.12) and (5.13), respectively.

(i) Assume that Ne(x)> —ns(x)? = —4c? forallx € L. If T := 20716”5, then T # +1 every-
where on X and A%e,ns = A?+ EBA?‘.

(ii) Conversely, let T be such that T(x) # £1 forall x € X. If

then N2 —n? = —4c? on X and A%e,ns =A7 ®AT.
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Proof. Let us start with some general observations. Using the anti-commutation rela-
tion (1.2) and B2 = I, we see that

Iy=P +P_ =P, +BPp.
Thus, the boundary condition (5.17) is equivalent to

(2cty—i(0t- v )(Ne+MsB)) Py frlx = — (2cls —i(a- v ) (Ne + NsB)) BPL B f|x.

Multiplying both sides with 3, using again (1.2) and i3 (o - v+ )Py = P we deduce that
the last line can be rewritten as

((26+ ns)ﬁ - nel4)P+fi|Z = ((20 - ns>l4 + neﬁ)PJrﬁfj:’Z' (5.18)

To prove now assertion (i) we use first nZ — n2 = —4c? to see

((2c =n9)ls —meB) ((2¢ +n5)B — Nels) = —4ene

and
((2C - ns)l4 - neﬁ) ((2C - ns)I4 + neﬁ) = 8C2 —4cs.

Thus, multiplying (5.18) with the invertible matrix ((2c — 1s)I4 — Nef) we see that it is

equivalent to
TNe
20 - n S

This implies the claim of item (1).

To* fo =T fi (5.19)

In order to verify item (ii) define 7. and 1) as in the proposition. Then a simple calculation
shows that ng — 11S2 = —4¢? and that this choice fulfills T = zﬂ"ns . Since (5.19) is equivalent

to (5.17) for ne, N satisfying N2 — nZ = —4c? everywhere on ¥, we deduce that A%e,ns =
A?* @A?‘. This finishes the proof of this proposition. 0

Proposition 5.3.7 shows us that there is a one-to-one correspondence between the operators
A% for non-critical boundary values and A,Z]mns in the confinement case. Using this result
and the findings of Section 4.2 we are able to state and reformulate some properties of A?.
For instance, using the previous proposition and Theorem 4.2.3 one can show with very
little effort the following resolvent identity:

Corollary 5.3.8. Let Q C R? be a C*>-domain with compact boundary, let T: dQ — R be
Lipschitz continuous such that t(x) # +1 for all x € Q. Moreover, set
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and let Pg be the projection defined by (5.2). Eventually, let Ao be the free Dirac operator
and let ®) and C, be defined by (3.16) and (3.17), respectively. Then it holds for all
AeC\R

(A2 = 2)™" = Pa(Ao— A) "' Py — Pa® (Is+ (Mela +1sB)C) ™ (Nel + 1B ) PP

In a similar way as in Corollary 5.3.8 one can deduce almost immediately other properties
of A?. For instance Theorem 5.3.6 follows from Theorem 4.2.7. Furthermore, the fact

that for unbounded Q it holds Oegs (A?i) = (—o0, —mc?| U [mc?, ) and that the number of

discrete eigenvalues in (—mc?, mc?) is finite is a simple consequence of Theorem 4.2.3.

A translation of the Birman Schwinger principle is a little bit more delicate: if for some A €
(—mc*,mc?) it holds —1 € op((Nels +nsB)Cy), then A € GP(A%e,ns) = Gp(Ai2+ @A?*),
but it is not clear whether A is an eigenvalue of A?* or of ASTL. If Q_ is connected, then
one can say more on eigenvalues of A7 in (—o0, —mc*] U [mc?, ), as A% does not have
embedded eigenvalues there in this case (see [6, Theorem 3.7] and the discussion after this
result). This means that

GP(A?) N (_007 _mCZ] U [mcza oo) = GP<A%C,HS) A <_°°, _mc2] U [l’l’lc2, oo)

Since S = Trﬁ; &) Tn?iﬁ is simple by Lemma 3.1.2 we can detect the eigenvalues of A%mns

in (—oo, —mc?) U [mc?,o0) with the aid of Proposition 2.2.8 and get for A € (—oco, —mc?|U
[mc?,o0) that

Aeo(AT) & o e H'A(Z:CH: Lim e (1 + (Nela +7sB)Caric) ' @ #0.

It seems that the approach presented in this subsection has many advantages compared to
the direct one discussed in Section 5.3. But it has one big drawback (in the opinion of the
author of this thesis): there is no chance here to study A?i in the case of critical boundary
values to obtain similar results as below in Section 5.4 with the techniques available from
the direct approach.

5.4 Dirac operators on domains with critical boundary values —
self-adjointness and basic spectral properties

In this section we study Dirac operators on a domain Q C R? with the boundary condition
TP flga = P+ B floq in the critical case, that means if there are x € dQ with |t(x)| = 1.
Under this assumption A$ defined by (5.13) is not self-adjoint. With a similar strategy
as in Section 4.3 we will show then for constant boundary value 7 € {£1} that A% is
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essentially self-adjoint and with the aid of the ordinary boundary triple {SQ,Tg,T?} from
Theorem 5.2.6 we can compute the self-adjoint closure of this operator and deduce some
of its spectral properties.

First, we show that AS defined by (5.13) is symmetric, but not self-adjoint. The proof of
this result relies on Lemma 5.3.2 and similar arguments as in Proposition 4.3.1.

Proposition 5.4.1. Assume that T : dQ — R is a Lipschitz continuous function such that
|7(x)| = 1 for some x € dQ. Then AS defined by (5.13) is symmetric, but not self-adjoint.

Proof. The proof is very similar to the one of Proposition 4.3.1 and hence, we provide just
a sketch here. The fact that A? is symmetric follows immediately from Green’s identity,
see (2.9). The claim that A% is not self-adjoint will be shown in an indirect way.

Assume that A% is self-adjoint. Then ran (A% — 1) = L?(Q;C*) for all A € C\R. Accord-
ing to Theorems 2.2.5 and 5.2.1 this is equivalent to

rany*(A)* = ran (F?(TI\%T - QL)_I) C ran (17— M%(1)).
By (5.8) it holds ran (T'?(Tiir — A) ') = ran (T | kerI) = G4/? and thus the last con-
dition is equivalent to the fact that T — M*}(1) is bijective in G Slz/ 2,

Next, Lemma 5.3.2 and the assumption AQ = (A$)* imply that also A%_ is self-adjoint

and hence, with a similar argument as above we see that T+ M®(A) is bijective in 9;2/ 2,
We claim that this implies that also 7+ (M (1))~! is bijective. Clearly, this operator is
injective, as otherwise the symmetric operator 7 | ker(Fg2 + TF?) would have the non-
real eigenvalue A by Theorem 2.2.6 (i). Moreover, we have

T+ (MP(A) " = T+ MEQA) M A) + (MB(A))
= (T+ M) (I — (r+MP(A)) " (MPA) — (ME(A) ).

Since M(A) — (M (A))~! is compact in 9;2/ 2 by Proposition 5.2.5 it follows from Fred-
holm’s alternative that 7+ (M}(1))~" must be bijective.

Since T — M*(A) and T+ (M®(1))~! are bijective, also the product
(t—M2A)) (t+ ME2) ") = (22— D+ t(M*(A) ' =M Q)T
is bijective. We set
C:=||((7* = D+ o(M(A) " —=m2(A)7) . (5.20)

Next, by assumption there exist some x € dQ such that 7(x)?> = 1. Thus, there is a function
7T such that
To:=0Q\suppT#0 and C|[(t°—1)-7| <1



122 5 Dirac operators on domains

with C chosen as in (5.20) and the norm is the operator norm in 5 ( 9;2/ 2). Note that such a
choice is possible by Proposition 2.5.2. This and (5.20) imply then

C||(Fls+ (M) =M A)7) — (72 — D+ t(MP(A)) ' =M (A)7) ||
=C|[("-1)—-7|| < 1.

Therefore, also the operator Ty +T(M®(A))~! — M} ()7 is bijective in 9512/2 by [50, The-
orem IV 1.16].

Eventually, let P : H'/2(9Q; C*) — H'/2(Z(;C*) be the restriction operator acting as P =
¢ | Lo. Using supp T = dQ \ ¥ this yields that

{¢1%0: 05y} Cran?P (%14+1(MQ<A))*1 —MQUL)’C)

5.21
:ran?(r(MQ(A))—l —MQ(A)T>. G20

One can show in exactly the same way as in the proof of Theorem 5.3.3 that T(M (1))~ —

M*®(2)7is compactin § ;2/ > This gives then a contradiction to (5.21) and finishes the proof
of this proposition. [

In the following assume that 7 € {£1} is constant. In the rest of this section we show
that Aﬁl is essentially self-adjoint and using the ordinary boundary triple {SQ,T(?,T?}

from Theorem 5.2.6 we are going to compute its self-adjoint closure and some of its

spectral properties. Choose the same u € p(T% ) N (—mc?,mc?) as in the definition

of {Gq, Y5, Y}. Then
* Q
AL =T [ ker (T£ — ) = ($9)* | (Y — 07°1D),
where O = 12 (7 — M®()) (12)~" and M(w) is the value of the Weyl function given
as in Proposition 5.2.2, compare (2.22). The operator @%’Q is explicitly given by

0:%¢ =12 (1 - M) (1*) "', domOr*:= G, (5.22)

Due to the mapping properties of M Q( u) from Proposition 5.2.2 we see that @%’Q is well-
defined. Our goal is to show that G)%’Q is essentially self-adjoint and that its closure coin-
cides with the maximal parameter

O % =1 (1 —M (1) (1) "o,
1/2

~ (5.23)
dom@L® := {p € G : (T~ M) (19) 9 € G4},

where M (1) is the extension of M (i) onto 951/ ? from Proposition 5.2.5. The (essen-

tial) self-adjointness of @%’Q and @2’9 is studied in the following proposition; the proof
of this result follows closely the one of Proposition 4.3.2 and hence we give just a sketch
here.
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Proposition 5.4.2. Let © € {+1} and let Oy and ®% be given by (5.22) and (5.23),
respectively. Then @%’Q is essentially self-adjoint in Gq and the closure of @%’Q is @279.
In particular @2’9 is self-adjoint.

Proof. The proof of this proposition is very similar as the one of Proposition 4.3.2. First,
one can verify that @‘379 is a closed operator in Gg. This can be done with exactly the
same arguments as in Step I of the proof of Proposition 4.3.2 and hence, we omit it.
Then one can check that @%Q C ®%’Q, which implies that @2’9 is also symmetric, and
(@i’g)* C @2’9, which yields finally that G)(T)’Q is self-adjoint. It remains to verify the
inclusions ©2 c @1 and (©L?)* c ®2. This will be done in the following.

First, to show G)(T)’Q C @%’Q fix some ¢ € dom G)(T)’Q and choose a sequence (V) C 9}2 such
that (12) 'y, = (1%) '@ in 951/2. We define
1 ~ _ _
0ui= 9+ 512 (L+ (12(w) ') (12~ (vu— 9).
Note that

On = %lg <I4+ (MQ([.L))_11> (19)_1Wn+ %lg_z(MQ(‘u))_l (1\71([.1) B ’L'> (19)_1@
(5.24)

Since (M®(u))~! is bounded in 9}2/ 2 by Proposition 5.2.3 and 1 gives rise to a bounded
operator from 9;2/ 2 onto 9}2 by (5.12) we deduce

212 (1s+ (42(0)'7) (12) 1y € Gy

Q
Because of the same reasons and ¢ € dom ®(T)’ we have

() (W) 1) (12) g € b

Hence, we conclude from (5.24) that @, € G),. Next, as Iy + (M®(u)) "' is continuous in

9;21/ ? by Proposition 5.2.5 (iii) and 12 : 9;21/2 — Ja by construction we find

Pn— = %IQ <I4+ (Mg(u))‘lr) @) Yy, — @) —0 inYq.

Finally, using 7> = 1 we obtain that
1 ~ ~ _ _
00— 9) = 512 (T = M) ) 14+ (12(w) %) (22) " (v~ 0)

= %lf((n’i(u))l —M())(2) " (v — ).

(5.25)
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Since (M(p))~' —M(u) : 9;21/2 — 9512/2 is continuous by Proposition 5.2.5 (iv) we de-

duce eventually from (5.25) that @%Q(gon — @) — 01in Gg. This finishes the proof of the

statement that @O Q C @1 Q

It remains to prove that (@1 Q) c ®%°. But this can be done in exactly the same way as
in Step 2 in the proof of Proposition 4.3.2. One just has to use Proposition 5.2.5 (ii) instead
of Proposition 4.1.4 (i1). This finishes the proof of this proposition. O

With the aid of Proposition 5.4.2 we are now able to show that the operator Aizl defined
by (5.13) is essentially self-adjoint and we can describe its self-adjoint closure A_% in
terms of the boundary triple { 9Q,T62,T?} from Theorem 5.2.6, which allows us further
to state some of the spectral properties of A_‘T) . Recall the definitions of the maximal op-

erator (S?)* = T given by (3.10) and the extended boundary mappings f‘f},f‘? from
Lemma 5.2.4.

Theorem 5.4.3. Let T € {£1} and let A be defined by (5.13). Moreover, let Tyh, be
given by (3.10) and let ¥* and M V< be given as in Proposition 5.2.5. Then AL is essentially
self-adjoint in LZ(Q; (C4) and its self-adjoint closure is given by

A2 =T2 Tker (Y- 0YTE) = TS, | ker (T£ —1I3). (5.26)

max

Furthermore AS C A_% dornA_g2 ¢ H'(Q;C*), and the following assertions are true:

(i) For A € C\R it holds

AL —2) ' = (T&s — )"+ 72 ) (- M2A) (1)

(ii) If Q is unbounded, then (—oo, —mc?)U [mc?,00) C Oess(A2) and A € (—mc?,mc*) N
0p(AL) if and only if 0 € o, (T — M2 ()).

(iii) If Q is bounded, then A is an eigenvalue of A_% if and only if there exists a ¢ € Gg
such that

li{r(l)is (MO +ie)—7)(12) '] o £0.

Proof. First, by Proposition 5.4.2 the operator @i’g is essentially self-adjoint. Thus Propo-
sition 2.2.7 implies that

A2 =T ker (TP —1T) = T2, | (Y8 - 077P)

is essentially self-adjoint. Furthermore, since {SQ,YO ,Y } is an ordmary boundary triple
the closure AQ of AQ corresponds to the closure of the parameter @ by Proposition 5.4.2
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this is G)(;’Q. Employing (2.22) and [22, Corollary 3.14] Wﬂeduce then (5.26). Eventually,
it follows immediately from Proposition 5.4.1 that A$ C AQ.

The Krein type resolvent formula in item (i) is an immediate consequence of Theorem 2.2.5
taking the special form of the y-field and the Weyl function for the triple {9Q7T62,T?}
from (2.20) into account.

Next, we prove statement (ii). First, let A € (—oo, —mc?] U [mc?, o) and define the function
l[/,’lL as in Lemma 3.1.4. Then l//,fL € domT

min

C domA$ for any n € N and this sequence
has all properties of a singular Weyl sequence for A and A2. Hence A € Gess(AS). Since
A € (—oo,—mc?| U [mc?,o0) was arbitrary, we deduce (—oo, —mc?] U [mc?,00) C Gess(AD).
Furthermore, the Birman-Schwinger principle in (ii) is a direct consequence of Theo-

rem 2.2.5 (i) due to the special form of the Weyl function corresponding to the triple
{QQ,Y(%Z,Y?}, compare (2.20).

Finally, since §© = Trr%n is simple by Lemma 3.1.2, statement (iii) is a consequence of

Proposition 2.2.9 and (2.20). [

Remark 5.4.4. According to [55, Proposition 2.1] functions f € dom 752 have traces in
HY 2(89; <C4). Hence, the boundary condition T} = F? is equivalent to

TP flaq = PiBflag in H V2(Z;CH)

and hence, it is formally the same as for non-critical boundary values in Definition 5.3.1.

Finally, we provide a result which shows that the spectral properties of A? can be signif-
icantly different in the case of critical boundary values. This can be seen as the analogue
of Theorem 4.3.6 for Dirac operators on domains. But a more careful look shows that
the principle behind this effect is a completely different one as in Theorem 4.3.6. Using
super symmetry, we prove that +mc? is an eigenvalue of infinite multiplicity of Aﬁl. This
implies that for bounded Q the essential spectrum of A% can be non-empty in the critical
case. The proof of this result follows closely the one of [64, Proposition 2] in the 2D-case;
I would like to thank K.M. Schmidt for providing me a copy of [64] which was very help-
ful. We would like to remark that, differently from Theorem 4.3.6, we do not have to make
a restriction on the geometry of Q here.

Theorem 5.4.5. Assume that T € {£1} is constant let A_Sﬁl be defined by (5.26). Then

+mc? is an eigenvalue of infinite multiplicity ofAiZl.

Remark 5.4.6. Tf Q is bounded, then one can deduce similarly as in Corollary 4.3.7 that
domA$, is not contained in H*(Q;C*) for any s > 0.
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Proof of Theorem 5.4.5. We are going to prove the claim of the theorem for 7 = 1, the
statement for T = —1 can be shown with the same arguments. For a simpler readability
we split the proof into three steps. First, we introduce a new operator Af}, and show via a
super symmetry argument that A% is self-adjoint. Then we verify that A% is an extension

of A?. Since this operator is essentially self-adjoint we conclude A% = A?. Finally, using
the special structure of Afnz we show that this operator has the eigenvalue mc? with infinite
multiplicity.

Step 1: We use for f € L?(Q;C*) the splitting f = (f1, ) with f1, f» € L*(Q;C*), that
means f1 and f, are the upper and lower two components of the Dirac spinor, respectively.
We define the operator

AL =T 1 {f=(fi,fr) EdomTe, : f> € Hy(Q;C?)}.

This operator has the explicit representation

’ ~
Q mch A
AL = ( = _mc%) , (5.27)

where A is B B
Af = —ic-Vf, domA=H}(Q;C?),

and ¢ = (01, 03, 03) is the family of C**2-valued Pauli matrices from (3.2). We claim that
A is self-adjoint. For that purpose it suffices to consider m = 0, as mc?f is a bounded
self-adjoint perturbation.

Indeed A} is symmetric, as we have for f = (f1, f2) € dom A

(AGf. Na= A, Ao+ A fi, )a =2Re(Afs, fi)q € R.
Next, it holds for f = (f1, f2) € dom (Af)z)* and g = (g1,82) € domflf)2

((AD) f:8)q = (f1AT8) g = (f1,Ag2)a + (f2.A"81)a- (5.28)
Choosing g; = 0 we get from (5.28)
(((AD)*f)1r82) g = (f1,Ag2)a

and hence f; € domA* and A*f; = ((AB)*f),- Similarly, choosing g» = 0 we obtain
from (5.28) that f> € domA and Af> = ((Af)z)* f )1. Therefore, we conclude f € dom.Ag
and (AY)*f = A, that means A} is self-adjoint.

Step 2: We show that A? C Aﬁ. Since A? is essentially self-adjoint by Theorem 5.4.3 this
yields then A = A‘f. We prove that f € dom T fulfills

fedomA} ifandonlyif (B —1)f|yo=0. (5.29)
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This yields then the claim of this step. To see (5.29) recall that the boundary condition of
A? reads

0=TPf—T5f=P(B—1)flso- (5.30)

Because of (1.2) it holds P, 8 = BP_ and hence, using B2 = I; we see that (5.30) is equiv-
alent to

0=BP_(B—1s)fls0- (5.31)
Since B is invertible, we deduce (5.29) from (5.30) and (5.31).

Step 3: Eventually we show that mc? is an eigenvalue of A,% of infinite multiplicity. Note
that A is the upper right corner of the minimal operator Tn%n from (3.11) and similarly A*
is the upper right corner of the maximal operator 7,2 . Hence Aisa symmetric operator
with infinite deficiency indices. Moreover kerA = {0}, as T<

he hin 18 simple by Lemma 3.1.2.
Therefore dimkerA* = oo.

Finally, picking any f] € kerA* we deduce from (5.27) that f := (f;,0) is an eigenfunction
of A and eigenvalue mc?. This yields the claimed result of this theorem. [

5.4.1 Dirac operators on domains with variable critical boundary values

Finally, we would like to state several remarks on the operator A%, ift:dQ —>Risa
Lipschitz continuous function in the critical case, that means if there are some x € dQ
such that 7(x)? = 1. We have seen already in Proposition 5.4.1 that A$ is symmetric, but
not self-adjoint. If 7 fulfills some suitable assumptions, then one can still show similarly as
in Section 5.4 that A$ is essentially self-adjoint, compute the self-adjoint realization and
provide some spectral properties of this operator as in Theorem 5.4.3.

The crucial result in Section 5.4 is Proposition 5.4.2 — all following main results are based

on this. The critical point here is to prove that @%Q C @%’Q, the other steps in the proof can
be done similarly as for constant 7. With some suitable assumptions on T one can modify
the verification of G)(T)’Q C @%’Q for more general 7. This consideration is based on the fact
that any ¢ € dom @)‘379 fulfills
1/2
(22— 1)p e 5~ (5.32)

Hence, if we assume that 7 is such that for all ¢ € 951/ 2 which satisfy (5.32) there is a
sequence ¢, € G1/2 with

o= 0inGg'? and (12— 1)@, — (2~ 1)@ in G3°, (5.33)

as n — oo, then one could also verify @2’9 - @i’g similarly as in the proof of Proposi-

tion 5.4.2 with just little modifications. One only must be careful that a non-constant 7
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does not commute with G;l/ 2 and hence with A719(u) But due to Proposition 3.2.3 the
commutator of G;l/ * with any Lipschitz continuous function is a bounded operator from
H1/2(9Q;C*) to H'/2(9Q;C*), which allows to prove the desired claim.

Having the analogue of Proposition 5.4.2 one can then proceed as for constant interaction
strengths: in the same way as in Theorem 5.4.3 it follows that A% is essentially self-adjoint
and that the self-adjoint closure is given by

AQf = (—icat-V+mc*B)f,
domAQ := {f e domT2, : T[5 f = f}.

Moreover, if for all ¢ € 951/ 2 satisfying (5.32) it holds (5.33), then the spectral properties
of A can be deduced in a similar way as in Theorem 5.4.3 and we get that:

(i) For A € C\R it holds

(A2-4)"' = (Tfir — ) '+ 72 A) (t— M2 (1))~ Vﬂ(l)*-

(ii) If Q is unbounded, then (—oco, —mc?| U [mc?,0) C Gess(A2) and A € (—mc?,mc?) N
0,(A2) if and only if 0 € o,(7 — M®(A)).

(iii) If Q is bounded, then A is an eigenvalue of @ if and only if there exists a ¢ € Gg
such that B ]
li{r(l)is [(BMEA+ie) 1)) @ #0.
£
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