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Abstract

The present thesis is devoted to the spectral analysis of transmission and boundary value
problems for Dirac operators. Dirac operators are one of the main mathematical tools
in relativistic quantum mechanics to describe the propagation of spin 1

2 particles taking
relativistic effects into account. In the first part of the thesis Dirac operators with singular
δ -shell interactions which are combinations of electrostatic and Lorentz scalar potentials
are studied. Such operators are associated to transmission problems for the Dirac equation.
The second part of the thesis is then devoted to self-adjoint Dirac operators in domains.
With the aid of boundary triples the self-adjointness of the corresponding operators is
shown and some of the spectral data are computed. An interesting property is the existence
of critical interaction strengths and boundary values, respectively, for which the associated
operators have significantly different spectral properties. Eventually, for Dirac operators
with singular interactions also the nonrelativistic limit is computed.

Zusammenfassung

In der vorliegenden Dissertation werden Transmissions- und Randwertprobleme für Dirac-
Operatoren behandelt. Dirac-Operatoren sind eines der wichtigsten mathematischen Werk-
zeuge in der relativistischen Quantenmechanik zur Beschreibung von Teilchen mit Spin 1

2 ,
sodass auch Effekte der Relativitätstheorie eingebunden werden. Im ersten Teil der Dok-
torarbeit geht es um Dirac-Operatoren mit singulären δ -Interaktionen, welche Kombina-
tionen von elektrostatischen und Lorentz-skalaren Potentialen sind. Solche Operatoren
können zur Behandlung von bestimmten Transmissionsproblemen verwendet werden. Im
zweiten Teil der Arbeit werden selbstadjungierte Dirac-Operatoren in Gebieten studiert.
Mithilfe von Randtripeln wird die Selbstadjungiertheit der Operatoren gezeigt und es wer-
den einige spektrale Kenngrößen berechnet. Ein interessanter Aspekt ist die Existenz von
kritischen Interaktionsstärken und Randwerten, für welche die spektralen Eigenschaften
der zugehörigen Operatoren signifikant unterschiedlich sind. Schließlich wird für Dirac-
Operatoren mit singulären Interaktionen der nichtrelativistische Grenzwert berechnet.
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1 INTRODUCTION

The Dirac equation is one of the main mathematical tools in relativistic quantum mechan-
ics. While nonrelativistic quantum mechanics, which is based on the Schrödinger equation,
led some new light into fundamental physics, it is not compatible with Einstein’s theory
of relativity. In order to find a theory that combines these two ideas in a more compatible
way Paul Dirac suggested to replace Schrödinger’s equation by another partial differential
equation, that shall be discussed now. Assume that h̄ = 1 and denote the speed of light by
c. Then the Dirac equation whose solution describes the propagation of a spin-1

2 particle
with mass m in R3 under the influence of an external electrostatic potential Ve and a scalar
potential Vs, which are both functions Ve,Vs : R3→ R, is

i∂tΨ(t,x) =

[
−ic

3

∑
j=1

α j∂x j +VeI4 +(mc2 +Vs)β

]
Ψ(t,x), Ψ(0,x) = ψ0(x). (1.1)

In the above equation the wave function Ψ is required to fulfill Ψ(t, ·) ∈ L2(R3;C4) for
almost every t > 0, that means Ψ is a vector valued function with four components, Id is
the d×d identity matrix, and the Dirac matrices α j,β ∈C4×4 satisfy the anti-commutation
relations

α jαk +αkα j = 2δ jk, β
2 = I4, and α jβ +βα j = 0, j,k ∈ {1,2,3}; (1.2)

see (3.1) for their definition. The Dirac equation describes the same physical problems
as the Schrödinger equation and there is also a similar interpretation, see [68] and the
explanations below.

Following [68] there were several motivations for Paul Dirac to introduce the equation (1.1)
in 1928 in his famous paper [40]:

(i) It is a first order equation in time, which is required to have a meaningful quantum
mechanical evolution equation.

(ii) The spin of the particle is modelled automatically in a natural way.

(iii) Employing the replacement relations

E→ i∂t , p→−i∇x,

3



4 1 Introduction

where E denotes the energy of a particle and p its momentum, then we see that the
free Dirac equation (for vanishing external potentials Ve =Vs = 0) formally fulfills,
in contrast to Schrödinger’s equation, the energy-momentum relation

E2 = m2c4 + c2 p2

predicted in Einstein’s special theory of relativity.

Although Dirac designed the equation (1.1) only by theoretical arguments, it turned out
that with its help the hydrogen atom could be described with an impressive exactness.

To get a quantum mechanical observable one associates to the right hand side of the Dirac
equation (1.1) a self-adjoint partial differential operator in L2(R3;C4)

A =−ic
3

∑
j=1

α j∂x j f +VeI4 +(mc2 +Vs)β ,

which is the Dirac operator. An important special case is Ve = Vs = 0, which yields the
free Dirac operator. It is the relativistic counterpart of the free Laplacian and it often has
the role of a reference operator. As the Dirac operator describes the same physics as the
Schrödinger operator, one would expect similar (spectral) properties. Nevertheless, there
are several unexpected features of A. The most important one is that A is not bounded from
below. For the interpretation of this interesting property the existence of anti-particles was
postulated. From the mathematical point of view the lack of semi-boundedness makes the
analysis more complicated and it is one of the reasons why several problems which are
solved for Schrödinger operators are still open for Dirac operators. It is one of the main
goals in this thesis to make a contribution to this field. In particular, we want to study
transmission problems for the Dirac equation which can be reformulated to the spectral
study of Dirac operators in L2(R3;C4) with singular interactions that are formally given
by

AΣ
ηe,ηs

=−ic(α ·∇)+mc2
β +(ηeI4 +ηsβ )δΣ, (1.3)

where Σ is a compact and sufficiently smooth surface in R3 and ηe,ηs : Σ→R are Lipschitz
continuous functions. The second main topic of this thesis are Dirac operators acting in a
domain Ω ⊂ R3 that are related to boundary value problems for the Dirac equation with
boundary conditions of the form

τ
(
I4 + iβ (α ·ν)

)
f |∂Ω =

(
I4 + iβ (α ·ν)

)
β f |∂Ω, (1.4)

where τ is a Lipschitz continuous function on ∂Ω and ν is the unit normal vector field
on ∂Ω. In the above equations (1.3) and (1.4) we used for vectors x = (x1,x2,x3)

> ∈ R3

the notation

α · x :=
3

∑
j=1

α jx j. (1.5)
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Our main mathematical instrument to study the operators associated to the above prob-
lems are quasi and ordinary boundary triples. Boundary triples are a powerful tool in
the extension and spectral theory of symmetric and self-adjoint operators. They will al-
low us to study the operators with non trivial transmission and boundary conditions as
self-adjoint extensions of operators with zero transmission and boundary conditions, re-
spectively. While quasi boundary triples were introduced in [17] in particular to investi-
gate boundary value problems for partial differential operators, the application of ordinary
boundary triples for partial differential operators is more complicated, but they have the
advantage that with their help one can describe all self-adjoint extensions of a given sym-
metry. For our purposes a combination of quasi and ordinary boundary triple techniques
will be convenient. Note that these tools were successfully applied in similar problems for
the Laplace and Schrödinger operator [12, 13, 17–19, 22]. Let us describe our problems
and results now in a more detailed way and let us have a look on the existing literature:

The first main part of this thesis is devoted to Dirac operators with δ -shell potentials.
Singular δ -type potentials are often used in mathematical physics as idealized models for
strongly located electric potentials, as the spectral and scattering data as well as the location
of eigenfunctions of the corresponding differential operators are then approximately the
same. For Schrödinger operators such ideas are well established, see the monographs
[3,27,44], the review article [43], and the references therein. In the relativistic setting first
the Dirac operator in 1D with point interactions was investigated, compare [46] and [3,
Appendix J]. Using some standard techniques the resolvents and the complete spectral data
could be computed explicitly. Moreover, in [66] Šeba showed that these Hamiltonians can
be approximated in the norm resolvent sense by Dirac operators with squeezed potentials.
In this procedure the interaction strength of the limit operator depends in a nonlinear way
on the approximating potentials – this corresponds to a phenomenon known in the physical
literature as Klein’s paradox. Eventually, based on [46] and a decomposition to spherical
harmonics Dittrich, Exner, and Šeba investigated in [41] Dirac operators with singular
interactions supported on a sphere in R3. With this technique the self-adjointness for a
wide class of parameters was shown and the resolvent and some spectral data could be
computed, but due to this decomposition to spherical harmonics many of the interesting
properties of AΣ

ηe,ηs
were still hidden.

After a longer period without much progress a breakthrough was then the seminal pa-
per [5] from 2014, where Arrizabalaga, Mas and Vega studied the operator AΣ

ηe,0 in 3D
for constant ηe and Σ being the boundary of a bounded C2-domain using a modern ap-
proach from extension theory for symmetric operators. There, the δ -shell potential was
modelled via a jump condition for functions in the domain of AΣ

ηe,0 along Σ. Such ideas
are well known from the study of Schrödinger operators with singular interactions, see
for instance [3, 19, 43]. Using some integral operators related to the resolvent of the free
Dirac operator the authors managed to prove the self-adjointness of AΣ

ηe,0 for ηe 6=±2c; the
case ηe =±2c remained open and it seemed that the corresponding operator has different
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properties. The study was then continued in [6,7,54], where among other things a Birman-
Schwinger principle and an isoperimetric inequality for AΣ

ηe,0 were shown. Furthermore,
in [6] an interesting confinement phenomenon for AΣ

ηe,ηs
was obtained: if η2

e −η2
s =−4c2,

then the operator AΣ
ηe,ηs

decouples to two independent operators acting in the interior and
the exterior domain with boundary Σ; such effects are not known for the corresponding
Schrödinger operators. Other recent papers related to the approach in [5] are [56] and [57],
where it is shown that AΣ

ηe,0 and AΣ
0,ηs

can be approximated in the strong resolvent sense by
Dirac operators with squeezed electrostatic and scalar potentials, respectively, supposed
that the interaction strengths ηe and ηs fulfill a certain smallness condition, and where
similar as in 1D Klein’s paradox appears.

Then in [11] the approach from [5] was translated to the framework of quasi boundary
triples. Since boundary triple techniques do not require semi-boundedness of the operators
they are suitable for the application to Dirac operators with singular interactions, as it
was done in 1D for instance in [30, 33, 58]. In [11] again AΣ

ηe,0 with constant ηe 6= ±2c
was considered and with the aid of the above mentioned quasi boundary triple a Krein
type resolvent formula for AΣ

ηe,0 was derived. It turned out that the spectral properties of
AΣ

ηe,0 are encoded in a family of boundary integral operators appearing also in [5]. With
the help of these operators some spectral properties and the nonrelativistic limit of AΣ

ηe,0
were studied in [11]. The analysis was continued in [14], where the quasi boundary triple
from [11] was transformed to an ordinary boundary triple, which allowed to prove the self-
adjointness and to deduce some spectral properties of AΣ

ηe,0 also in the critical case ηe =
±2c. Other notable publications in this direction are [55], where the self-adjointness of
AΣ
±2c,0 was shown via some Calderon projectors, and [48], where the discrete eigenvalues

of AΣ
0,ηs

were studied for fixed constant ηs and large masses m.

Let us turn the discussion to the main results of this thesis on Dirac operators with sin-
gular interactions. These are generalizations of results in [11, 14, 48] to combinations of
electrostatic and scalar shell-potentials with non-constant strengths. Let Σ ⊂ R3 be the
boundary of a sufficiently smooth bounded domain Ω+, let ν be the unit normal vector
field on Σ pointing outwards Ω+, and let ηe,ηs : Σ→ R be Lipschitz continuous. We set
Ω− := R3 \Ω+ and use for f ∈ L2(R3;C4) the notation f± := f � Ω±. Then the (formal)
operator AΣ

ηe,ηs
from (1.3) is rigorously defined by

AΣ
ηe,ηs

f := (−icα ·∇+mc2
β ) f+⊕ (−icα ·∇+mc2

β ) f−,

domAΣ
ηe,ηs

:=
{

f = f+⊕ f− ∈ H1(Ω+;C4)⊕H1(Ω−;C4) :

ic(α ·ν)( f+|Σ− f−|Σ) =−
1
2
(ηeI4 +ηsβ )( f+|Σ + f−|Σ)

}
.

(1.6)

Here H1(Ω±;C4) denotes the Sobolev space of once weakly differentiable functions in Ω±.
As for δ -shell potentials with constant coupling it turns out that interaction strengths
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with
ηe(x)2−ηs(x)2 = 4c2 for some x ∈ Σ (1.7)

are in some sense critical. For the noncritical case we obtain in Section 4.2 the following
basic properties of AΣ

ηe,ηs

Theorem 1. Assume that (1.7) does not hold. Then AΣ
ηe,ηs

is self-adjoint and the following
is true:

(i) The essential spectrum of AΣ
ηe,ηs

is (−∞,−mc2]∪ [mc2,∞).

(ii) The discrete spectrum of AΣ
ηe,ηs

is finite.

(iii)
(
AΣ

ηe,ηs
−λ

)−3−
(
AΣ

0,0−λ
)−3 is a trace class operator for any λ ∈ C\R.

The proof of Theorem 1 is based on a Krein type resolvent formula that relates the re-
solvent of AΣ

ηe,ηs
to the resolvent of the free Dirac operator and some perturbation term

that contains the spectral properties of AΣ
ηe,ηs

. Item (ii) can be shown by a standard trick
using that functions in domAΣ

ηe,ηs
have some Sobolev regularity and that the interaction

is compactly supported. Eventually, assertion (iii) in Theorem 1 is interesting, because it
provides a basis to do scattering theory for the operators AΣ

ηe,ηs
and the free Dirac operator

AΣ
0,0.

The spectral properties of AΣ
ηe,ηs

change significantly, if the interaction strength is critical,
that means if (1.7) is fulfilled. It turns out in Proposition 4.3.1 that AΣ

ηe,ηs
defined as

in (1.6) is symmetric, but not self-adjoint. Following the strategy of [14] we compute
then the self-adjoint realization of AΣ

ηe,ηs
for constant interaction strengths ηe and ηs with

η2
e −η2

s = 4c2. The crucial point is to consider the jump condition in the definition of
AΣ

ηe,ηs
not in L2(Σ;C4), but in the larger Sobolev space of negative order H−1/2(Σ;C4).

Using this we show in Section 4.3 the following results:

Theorem 2. Assume that ηe,ηs ∈R such that η2
e −η2

s = 4c2. Then AΣ
ηe,ηs

defined by (1.6)
is essentially self-adjoint, the domain of its self-adjoint closure is not contained in the
space H1(R3 \Σ;C4), the set (−∞,−mc2]∪ [mc2,∞) is contained in the essential spectrum
of AΣ

ηe,ηs and there can be essential spectrum in (−mc2,mc2).

We would like to point out that in the critical case AΣ
ηe,ηs can have essential spectrum in

(−mc2,mc2); this is shown in Theorem 4.3.6 for ηe =±2c and ηs = 0 under the assump-
tion that there is a flat part contained in Σ. This is closely related to a similar effect known
for indefinite Laplacians, compare [16, 31]. In particular it seems that this phenomenon is
related to the geometry of Σ, that means we do not expect that it appears for all Σ.

Eventually, we compute in Section 4.4 the nonrelativistic limit of AΣ
ηe,ηs

in the purely elec-
trostatic and purely scalar case, that means that ηs = 0 and ηe = 0, respectively. For this,
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one subtracts/adds the energy of the resting particle mc2 to the total energy and computes
the limit of the resolvent in the operator norm for c→ ∞. The expected result is (the
resolvent of) a Schrödinger operator describing the same physics times a projection onto
the upper/lower component of the Dirac wave function. The two different considerations
correspond to the limit of the positive and the negative part of the Dirac operators. In our
case it turns out that the nonrelativistic limit is a Schrödinger operator with an electric δ -
potential of the same strength. This yields then finally a justification to call AΣ

ηe,ηs
a Dirac

operator with a δ -shell potential. Note that the critical interaction strength is no limitation
here, as for any fixed Lipschitz continuous ηe we have ηe < 4c2 on Σ for all sufficiently
large c. Moreover, since the spectral properties of Schrödinger operators with δ -potentials
are well studied, see for instance [3,43,44] and the references therein, one can deduce from
this approximation analysis some of the spectral properties of AΣ

ηe,0 and AΣ
0,ηs

for large val-
ues of c, as it is shown in one model example in Proposition 4.4.5. The theorem on the
nonrelativistic limit reads (in a simplified form) as follows:

Theorem 3. Let η : Σ→ R be a Lipschitz continuous function. Then it holds for any
λ ∈ C\R

lim
c→∞

(
AΣ

η ,0−(λ +mc2)
)−1

= lim
c→∞

(
AΣ

0,η−(λ +mc2)
)−1

=

(
− 1

2m
∆+ηδΣ−λ

)−1(I2 0
0 0

)
and

lim
c→∞

(
AΣ

0,η − (λ −mc2)
)−1

=

(
1

2m
∆−ηδΣ−λ

)−1(0 0
0 I2

)
,

where all limits are in the operator norm.

Let us discuss now the second main topic of this thesis. The motivation for studying Dirac
operators in domains Ω⊂ R3 with some boundary conditions that make them self-adjoint
arise from several aspects: from the mathematical point of view they can be seen as the
counterpart of Laplacians with Robin type boundary conditions. Hence, one can expect
interesting spectral properties of these operators. From the physical point of view Dirac
operators with special boundary conditions are used to describe in relativistic quantum
mechanics particles (like gluons) that are confined to a predefined area or box. The most
important model in this context is the MIT bag model suggested in the 1970s by physicists
at the MIT to study the quark-gluon confinement, see [34–37, 49]; the MIT bag model
corresponds to the boundary condition (1.4) with τ = 0. Moreover, in 2D Dirac operators
with special boundary conditions similar to the MIT bag boundary conditions are used in
the description of graphene, compare [25, 26].

The mathematical literature on Dirac operators in domains contains different approaches.
In differential geometry there are several articles dealing with self-adjoint Dirac operators
on smooth manifolds, see for instance [8,9,59]. In dimension two the paper [64] from 1995
is remarkable, where Schmidt studied the Dirac operator with so-called zigzag boundary
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conditions and showed, that (in the massless case) these operators are self-adjoint and
that zero is an eigenvalue of infinite multiplicity. This indicates that similar as for Dirac
operators with singular interactions there are some critical boundary values, for which
the associated operators have different spectral properties. Other publications in this field
are [25, 26] where the self-adjointness of Dirac operators for a wide class of boundary
conditions is shown. Note that the papers [25,26,64] have in common that a transformation
of R2 to C and some methods from complex analysis are used. A recent paper on the
MIT bag operator in R3 is [4], where the self-adjointness of the corresponding operator is
shown via operator theoretic arguments and the asymptotics of the discrete eigenvalues are
computed for large masses.

Our motivation is to study the self-adjointness and the spectral properties of Dirac oper-
ators on domains in R3 with boundary conditions of the form (1.4) using boundary triple
techniques. The strategy used here is very similar as for Dirac operators with singular inter-
actions in Chapter 4 and we get comparable results. Assume that Ω⊂R3 is a bounded and
sufficiently smooth domain or the complement of such a set, let τ : ∂Ω→ R be Lipschitz
continuous, and define

AΩ
τ f := (−icα ·∇+mc2

β ) f ,

domAΩ
τ :=

{
f ∈ H1(Ω;C4) : τ

(
I4 + iβ (α ·ν)

)
f |∂Ω =

(
I4 + iβ (α ·ν)

)
β f |∂Ω

}
.

(1.8)

There are two reasons why we are interested in boundary conditions of the form (1.4): on
the one hand the orthogonal sum AΩ

τ ⊕AΩc

τ is of the form A∂Ω
ηe,ηs

with ηe and ηs depending
on τ in a suitable form, compare Section 5.3.1. Hence AΩ

τ can be seen as a Dirac operator
describing a particle actually living in R3, but which is confined to Ω, which is of interest
in particle physics. On the other hand, the boundary condition (1.4) is a translation of the
boundary condition used in [25] to a boundary triple framework. In fact, in [25] similar
operators in R2 with boundary conditions[

I2 + iσ3(σ ·ν)cosη− sinησ3
]
u|∂Ω = 0

for a Lipschitz continuous function η : ∂Ω→R are studied. Here σ = (σ1,σ2) and σ3 are
the Pauli spin matrices, see (3.2), and the notation σ ·ν is the 2D analogue of (1.5). Using
a splitting

u|∂Ω =
1
2
(I2 + iσ3(σ ·ν))u|∂Ω +

1
2
(I2− iσ3(σ ·ν))u|∂Ω =: P+u|∂Ω +P−u|∂Ω,

iσ3(σ ·ν)P± =±P±, and P− = σ3P+σ3 we see that these boundary conditions are the 2D
analogue of (1.4) for τ =− sin(2η)

2cosη(1−cosη) , if cosη(x) /∈ {0,1} for all x ∈ ∂Ω.

As already mentioned above, in a similar manner as for Dirac operators with singular
interactions there exist critical boundary values for which the spectral properties of the
corresponding operators AΩ

τ are significantly different, namely

τ(x)2 = 1 for some x ∈ ∂Ω. (1.9)
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In the case of noncritical boundary values the basic spectral properties of AΩ
τ are inves-

tigated in Section 5.3. Clearly, they are significantly different whether Ω is bounded or
unbounded and hence, we discuss them separately. In the following we will denote the
Dirac operator in Ω with MIT bag boundary conditions by T Ω

MIT, compare Section 5.1 for
its properties. If Ω is the complement of a bounded domain then the basic properties of AΩ

τ

are the following:

Theorem 4. Let Ω⊂ R3 be the complement of a bounded and sufficiently smooth domain
and assume that (1.9) does not hold. Then AΩ

τ is self-adjoint and the following is true:

(i) The essential spectrum of AΩ
τ is (−∞,−mc2]∪ [mc2,∞).

(ii) The discrete spectrum of AΩ
τ is finite.

(iii)
(
AΩ

τ −λ
)−3−

(
T Ω

MIT−λ
)−3 is a trace class operator for any λ ∈ C\R.

The strategy for the proof of Theorem 4 is very similar as for Theorem 1: we prove a Krein
type resolvent formula that relates, in this case, the resolvent of AΩ

τ to the resolvent of T Ω
MIT.

Then, the claims follow from perturbation arguments and of the regularity of functions in
domAΩ

τ . Moreover, it is worth to mention that we can characterize the eigenvalues of AΩ
τ

in (−mc2,mc2) with an abstract version of the Birman Schwinger principle.

If Ω is a bounded domain, then domAΩ
τ ⊂H1(Ω;C4) is compactly embedded in L2(Ω;C4)

and hence, the spectrum of AΩ
τ is purely discrete:

Theorem 5. Let Ω ⊂ R3 be a bounded and sufficiently smooth domain and assume that
the condition (1.9) does not hold. Then AΩ

τ is self-adjoint and σ(AΩ
τ ) is purely discrete.

If we are in the situation of Theorem 5 then one can compute all eigenvalues of AΩ
τ with

the help of a modified Birman-Schwinger principle described in Proposition 5.3.5.

In the investigation of AΩ
τ in the case of critical boundary values (1.9) we use similar ideas

as in the study of AΣ
ηs,ηs

for critical interaction strengths described above. First, it turns out
that AΩ

τ is symmetric, but not self-adjoint. Then we conclude, if τ ∈ {±1} is constant, that
the operator AΩ

τ given as in (1.8) is essentially self-adjoint and we obtain some of the basic
spectral properties of the self-adjoint realization:

Theorem 6. Assume that τ ∈ {±1}. Then AΩ
±1 defined by (1.8) is essentially self-adjoint,

the domain of its self-adjoint closure is not contained in H1(Ω;C4), and±mc2 is an eigen-
value of AΩ

±1 of infinite multiplicity.

We would like to draw the attention of the reader to the last claim of Theorem 6. The ef-
fect that AΩ

±1 has an eigenvalue of infinite multiplicity appears for bounded and unbounded
domains Ω, although for unbounded Ω this eigenvalue is embedded in (−∞,−mc2]∪
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[mc2,∞). Moreover, at a first glance the result seems to be comparable to Theorem 2,
but a deeper look does not confirm this: in fact a super-symmetry in AΩ

τ is responsible for
the appearance of the eigenvalue with infinite multiplicity and in contrast to what we had
for AΣ

ηe,ηs it appears for any geometry. Thus it seems that the reason for these effects is
different

Let us shortly describe the structure of the present thesis. In Chapter 2 we provide some
preliminary material which is needed to formulate and prove our main results. We sum-
marize some basic notions of the spectral theory for linear operators in Hilbert spaces,
discuss quasi and ordinary boundary triples, introduce some function spaces, in particular
Sobolev spaces on the boundary of a bounded and sufficiently smooth domain, and collect
results on integral operators and mappings that are associated to the multiplication with a
Lipschitz continuous function. Then, in Chapter 3 we introduce the free Dirac operator in
R3 and a minimal and a maximal Dirac operator on a domain Ω ⊂ R3. In particular, we
will discuss several families of integral operators that are associated to Green’s function
for the free Dirac operator that will play a crucial role in the study of AΣ

ηe,ηs
and AΩ

τ .

In Chapters 4 and 5 we prove then the main results of this thesis. Chapter 4 is devoted
to AΣ

ηe,ηs
. After introducing boundary triples that are convenient to study Dirac operators

with singular interactions, we define in Section 4.2 the operator AΣ
ηe,ηs

rigorously and prove
for noncritical interaction strengths the basic properties, that means Theorem 1. Next, in
Section 4.3 we study AΣ

ηe,ηs
for critical interaction strengths and show Theorem 2. Eventu-

ally, Section 4.4 is devoted to the proof of Theorem 3.

The topic of Chapter 5 is then the operator AΩ
τ , where we use a similar approach as in

Chapter 4. After collecting some properties of the MIT bag operator in Section 5.1 we
introduce in Section 5.2 boundary triples that we use later to define and study self-adjoint
Dirac operators on domains with boundary conditions. Next, in Section 5.3 we investigate
the operator AΩ

τ in the case of noncritical boundary values and prove Theorems 4 and 5.
Finally, in Section 5.4 we verify Theorem 6 on Dirac operators on domains with critical
boundary values.





2 PRELIMINARIES AND NOTATIONS

In this chapter we provide some preliminary material that is needed to formulate and prove
the main results of this thesis. On the one hand we introduce some basic notions on the
spectral theory for linear operators in Hilbert spaces, quasi and ordinary boundary triples
and Schatten-von Neumann ideals. On the other hand, we discuss several function spaces
and results on the boundedness of special integral operators and mappings that are associ-
ated to the multiplication with Lipschitz continuous functions.

2.1 Linear operators and their spectra

In this section we collect several notations and properties of bounded and unbounded linear
operators in Banach and Hilbert spaces that will be used in this thesis. In particular, we
introduce the adjoint of an unbounded operator and fix notations concerning the spectral
properties of self-adjoint operators in Hilbert spaces. Most of the results presented in this
section are standard knowledge and can be found, for instance, in [50, 60, 65, 69].

Throughout this section let X and Y be separable Banach spaces over the complex num-
bers. If T : domT → Y , where domT is a linear subspace of X , is a linear operator then
domT is its domain of definition and we denote the range and kernel by ranT and kerT ,
respectively. The set of all bounded linear operators T : X → Y is denoted by B(X ,Y ). If
X = Y , then we simply write B(X) :=B(X ,X).

If T is a closed operator in X , then the resolvent set and the spectrum of T are defined by

ρ(T ) :=
{

λ ∈ C : T −λ is injective and (T −λ )−1 ∈B(X)
}

and σ(T ) := C\ρ(T ). If T −λ is not injective, then λ is called eigenvalue of T and the
set of all eigenvalues is denoted by σp(T ).

Let M be an open subset of C and let F : M→ X . We say that F is holomorphic in λ ∈M
if the limit

d
dλ

F(λ ) := lim
µ→λ

F(λ )−F(µ)

λ −µ

exists in X . In the case that X = B(Y,Z) for some Banach spaces Y and Z, then many
well-known rules from complex analysis can be translated in a suitable way. In particular,

13
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if A(·),B(·) and C(·) are holomorphic operator-valued functions defined in a neighborhood
of λ ∈ C, then it holds by [20, equation (2.7)] for any k ∈ N

dk

dλ k

(
A(λ )B(λ )C(λ )

)
= ∑

p+q+r=k

k!
p!q!r!

dp

dλ p A(λ )
dq

dλ q B(λ )
dr

dλ rC(λ ). (2.1)

Furthermore, if A(·) is boundedly invertible in a neighborhood of λ , then it holds by [20,
equation (2.8)]

d
dλ

(
A(λ )−1)=−A(λ )−1 d

dλ
A(λ )A(λ )−1. (2.2)

Next, let
(
H,(·, ·)H

)
and

(
K,(·, ·)K

)
be separable Hilbert spaces. Then the adjoint of a

densely defined operator A from H to K is defined on the set

domA∗ :=
{

x ∈K : ∃x∗ ∈H : (x,Ay)K = (x∗,y)H for all y ∈ domA
}

and acts as A∗x = x∗. Note that A∗ is well defined, as domA is dense in H. It is well-known
that if A∗ is densely defined, then (A∗)∗ = A and if A ∈B(H,K) or A ∈B(H,K), then
A∗ ∈B(K,H).

A densely defined operator in a Hilbert space H is called symmetric, if A ⊂ A∗, and self-
adjoint, if A = A∗. If A is self-adjoint, then σ(A) ⊂ R, for a symmetric symmetric opera-
tor S the same holds true only for σp(S). Moreover, a symmetric operator is self-adjoint if
and only if

ran(A−λ ) =H for all λ ∈ C\R. (2.3)

The last statement remains correct, if (2.3) holds for one λ0 ∈R. For a self-adjoint operator
A the spectrum can be split into the discrete spectrum

σdisc(A) :=
{

λ ∈ σp(A) : λ is isolated in σ(A)
}

and the essential spectrum

σess(A) := σ(A)\σdisc(A).

An important result from perturbation theory of linear operators says that the essential
spectrum is stable under (weak) compact perturbations, that means if A and B are self-
adjoint operators such that

(A−λ )−1− (B−λ )−1

is compact for some λ ∈ ρ(A)∩ρ(B), then σess(A) = σess(B).

Finally, we introduce a special class of symmetric operators, the so called simple or com-
pletely non self-adjoint operators. Let S be a symmetric operator in a Hilbert space H and
let H1 be a closed subspace of H. Then H1 is called invariant under S, if S(H1) ⊂H1.
We say that S is simple, if for any orthogonal decomposition H =H1⊕H2 such that H1
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and H2 are invariant under S and S1 := S �H1 is self-adjoint in H1 it follows H1 = {0}. It
is clear by this definition that a simple operator can not have eigenvalues, as S � ker(S−λ )
is self-adjoint in ker(S− λ ) for any λ ∈ R. A useful criteria to check whether a given
symmetry is simple is the following: a symmetric operator S is simple if and only if

span
{

f ∈ domS∗ : (S∗−λ ) f = 0 for a λ ∈ C\R
}
=H, (2.4)

see for instance [23].

2.2 Quasi and ordinary boundary triples

In this section we give a short introduction to the theory of quasi and ordinary boundary
triples and their associated Weyl functions. Boundary triples are an important concept
in the extension and spectral theory of symmetric and self-adjoint operators in Hilbert
spaces. The presentation of the results in this chapter is chosen in a way such that they
can be applied directly in the main part of this thesis to define and study Dirac operators
with singular interactions and Dirac operators with boundary conditions on domains. For
a more general and detailed survey and proofs we refer the reader for instance to [17, 18,
29, 38, 39, 47, 65].

Throughout this section H is always a complex Hilbert space with inner product (·, ·)H; if
no confusion arises, we skip the index in the inner product. We start with the definition of
quasi and ordinary boundary triples.

Definition 2.2.1. Let S be a densely defined closed symmetric operator in H and assume
that T is a linear operator in H such that T = S∗. Moreover, let G be another complex
Hilbert space and let Γ0,Γ1 : domT → G be linear mappings. Then {G,Γ0,Γ1} is called a
quasi boundary triple for S∗ if the following conditions are fulfilled:

(i) For all f ,g ∈ domT there holds the abstract Green’s identity

(T f ,g)H− ( f ,T g)H = (Γ1 f ,Γ0g)G− (Γ0 f ,Γ1g)G. (2.5)

(ii) Γ := (Γ0,Γ1) : domT → G×G has dense range.

(iii) The operator A0 := T � kerΓ0 is self-adjoint in H.

If additionally the mapping Γ = (Γ0,Γ1) is surjective in G×G, then {G,Γ0,Γ1} is called
ordinary boundary triple for S∗.
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If {G,Γ0,Γ1} is a quasi boundary triple for T = S∗, then the symmetry S can be recovered
by

S = T � (kerΓ0∩kerΓ1),

see [17, Proposition 2.2], and the mappings Γ0,Γ1 : domT → G are closable, if {G,Γ0,Γ1}
is an ordinary boundary triple, then Γ0 and Γ1 are even continuous. Note that the above
non-standard definition of ordinary boundary triples is equivalent to the usual one given
for instance in [29, 47, 65], see [17, Corollary 3.2]. Moreover, if {G,Γ0,Γ1} is an ordinary
boundary triple, then the operator T in Definition 2.2.1 coincides with S∗. In contrast to
that, the operator T is in general not unique, if the dimension of G is infinite. Eventually
we remark that a quasi or ordinary boundary triple exists, if and only if dimker(S∗− i) =
dimker(S∗+ i), that means if and only if S admits self-adjoint extensions.

The main idea of boundary triples is to define self-adjoint extensions of the underlying
symmetry S with suitable boundary/interface conditions in terms of the boundary mappings
Γ0 and Γ1 and to study the spectral properties of these self-adjoint extensions. As we will
see the spectrum of an extension of S is encoded in the so-called Weyl function associated
to the boundary triple. This family of operators shall be introduced next.

Let {G,Γ0,Γ1} be a quasi boundary triple for T = S∗ and let A0 := T � kerΓ0. The defini-
tion of the γ-field and the Weyl function is based on the direct sum decomposition

domT = domA0+̇ker(T −λ ) = kerΓ0+̇ker(T −λ ), λ ∈ ρ(A0), (2.6)

and it follows the definition of these objects for ordinary boundary triples from [38]. Note
that (2.6) implies, in particular, that Γ0 � ker(T −λ ) is injective for λ ∈ ρ(A0).

Definition 2.2.2. Let S be a densely defined, closed and symmetric operator in H, let T be
a linear operator such that T = S∗ and let {G,Γ0,Γ1} be a quasi boundary triple for S∗.

(i) The γ-field associated to the triple {G,Γ0,Γ1} is the mapping

ρ(A0) 3 λ 7→ γ(λ ) := (Γ0 � ker(T −λ ))−1.

(ii) The Weyl function associated to the triple {G,Γ0,Γ1} is the mapping

ρ(A0) 3 λ 7→M(λ ) := Γ1(Γ0 � ker(T −λ ))−1 = Γ1γ(λ ).

The γ-field is a densely defined operator in G and it maps boundary values ϕ ∈ ranΓ0 ⊂ G

onto a solution fλ = γ(λ )ϕ of the boundary value problem

(T −λ ) fλ = 0, Γ0 fλ = ϕ. (2.7)

In this sense γ(λ ) is a potential operator as it is often seen in applications, compare for
instance in [53]. In a similar flavour the Weyl function is a densely defined operator in G
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and it maps boundary values ϕ ∈ ranΓ0 onto the second boundary value Γ1 fλ , where fλ is
again the solution of the boundary value problem (2.7). In this sense M(λ ) can be seen as
a generalized Dirichlet to Neumann map.

Some basic properties of the γ-field which will be used later in the main part of this thesis
are summarized in the following proposition. The proofs of these statements can be found
in [17, Proposition 2.6] and [20, Lemma 2.4].

Proposition 2.2.3. Let S be a densely defined, closed and symmetric operator in H, let T
be a linear operator such that T = S∗, let {G,Γ0,Γ1} be a quasi boundary triple for S∗, set
A0 := T � kerΓ0 and let γ be the associated γ-field. Then the following assertions are true:

(i) For any λ ∈ ρ(A0) the mapping γ(λ ) is densely defined on ranΓ0 and bounded
from G into H.

(ii) Let λ ,µ ∈ ρ(A0) and ϕ ∈ ranΓ0. Then

γ(λ )ϕ =
(
I +(λ −µ)(A0−λ )−1)

γ(µ)ϕ.

In particular, the mapping ρ(A0) 3 λ 7→ γ(λ )ϕ is holomorphic and

dk

dλ k γ(λ )ϕ = k!(A0−λ )−k
γ(λ )ϕ, k ∈ N.

(iii) The adjoint γ(λ )∗ : H→ G is given by γ(λ )∗ = Γ1(A0−λ )−1. In particular γ(λ )∗ ∈
B(H,G), the mapping ρ(A0) 3 λ 7→ γ(λ )∗ is holomorphic and

dk

dλ k γ(λ )∗ = k!Γ1(A0−λ )−k−1, k ∈ N.

In the next proposition we state some useful properties of the Weyl function. For the proof
see for instance [17, Proposition 2.6] and [20, Lemma 2.4].

Proposition 2.2.4. Let S be a densely defined, closed and symmetric operator in H, let T
be a linear operator such that T = S∗, let {G,Γ0,Γ1} be a quasi boundary triple for S∗, set
A0 := T � kerΓ0 and let M be the associated Weyl function. Then the following assertions
are true:

(i) For any λ ∈ ρ(A0) the mapping M(λ ) is densely defined on ranΓ0 with ranM(λ )⊂
ranΓ1.

(ii) For λ ∈ ρ(A0) and fλ ∈ ker(T −λ ) it holds M(λ )Γ0 fλ = Γ1 fλ .

(iii) Let λ ,µ ∈ ρ(A0) and ϕ ∈ ranΓ0. Then

M(λ )ϕ = M(µ)∗ϕ +(λ −µ)γ(µ)∗γ(λ )ϕ.

In particular, the operator M(λ ) is closable, M(λ )⊂M(λ )∗ and M(λ ) is symmetric
for λ ∈ ρ(A0)∩R.
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(iv) Let λ ,µ ∈ ρ(A0) and ϕ ∈ ranΓ0. Then

M(λ )ϕ = M(µ)ϕ +(λ −µ)γ(µ)∗
(
I +(λ −µ)(A0−λ )−1)

γ(µ)ϕ.

In particular, the mapping ρ(A0) 3 λ 7→M(λ )ϕ is holomorphic and

dk

dλ k M(λ )ϕ = k!Γ1(A0−λ )−k
γ(λ )ϕ, k ∈ N.

Moreover, the mapping ρ(A0)∩R 3 λ 7→ (M(λ )ϕ,ϕ)G is monotonously increasing.

In the main part of this thesis we will use boundary triples to introduce special extensions
of a symmetric operator S. For that let {G,Γ0,Γ1} be a quasi boundary triple for T = S∗

and let ϑ be a symmetric operator in G. Then we define the operator Aϑ acting in H by

Aϑ := T � ker(Γ1−ϑΓ0). (2.8)

In other words, a vector f ∈ domT belongs to domAϑ if it satisfies the abstract boundary
condition Γ1 f = ϑΓ0 f . It follows immediately from Green’s identity (2.5) that Aϑ is
symmetric, as it holds for f ,g ∈ domAϑ

(Aϑ f ,g)H− ( f ,Aϑ g)H = (Γ1 f ,Γ0g)G− (Γ0 f ,Γ1g)G
= (ϑΓ0 f ,Γ0g)G− (Γ0 f ,ϑΓ0g)G = 0

(2.9)

due to the symmetry of ϑ in G. Of course, one would be mostly interested in the self-
adjointness of Aϑ . But for general quasi boundary triples it does not hold that Aϑ is
self-adjoint, if ϑ is self-adjoint in G; such a statement is just true for ordinary boundary
triples, see Proposition 2.2.7 below. But it holds the very efficient theorem below which
induces a sufficient condition to show the self-adjointness of Aϑ and which gives us an
explicit Krein-type resolvent formula; for a proof of this result see for instance [17, Theo-
rem 2.8].

Theorem 2.2.5. Let S be a densely defined, closed and symmetric operator in H, let
{G,Γ0,Γ1} be a quasi boundary triple for T = S∗, set A0 := T � kerΓ0, and let γ and
M be the associated γ-field and Weyl function, respectively. Moreover, let ϑ be a symmet-
ric operator in G and let the associated operator Aϑ be defined by (2.8). Then the following
assertions are true for λ ∈ ρ(A0):

(i) λ ∈ σp(Aϑ ) if and only if 0 ∈ σp(ϑ −M(λ )). Furthermore, it holds

ker(Aϑ −λ ) = {γ(λ )ϕ : ϕ ∈ ker(ϑ −M(λ ))}.

(ii) If λ /∈ σp(Aϑ ), then f ∈ ran(Aϑ −λ ) if and only if γ(λ )∗ f ∈ ran(ϑ −M(λ )).
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(iii) If λ /∈ σp(Aϑ ), then

(Aϑ −λ )−1 f = (A0−λ )−1 f + γ(λ )(ϑ −M(λ ))−1
γ(λ )∗ f

is true for all f ∈ ran(Aϑ −λ ).

We would like to point out that assertion (ii) in Theorem 2.2.5 gives an efficient tool to
check the self-adjointness of Aϑ . Since Aϑ is symmetric by (2.9) it suffices to check
that ran(Aϑ − λ ) = H for λ ∈ C \R. According to Theorem 2.2.5 (ii) this is true, if
ranγ(λ )∗ ⊂ ran(ϑ −M(λ )).

In some applications it is more convenient to introduce self-adjoint extensions of S via
A[B] := T � ker(Γ0 +BΓ1), where B is a symmetric operator in G. Formally, one can write
A[B] = Aϑ with ϑ =−B−1. In the same way as in (2.9) one sees that also A[B] is symmetric.
Moreover, one can show the following counterpart to Theorem 2.2.5, see for instance [19,
Theorem 2.8].

Theorem 2.2.6. Let S be a densely defined, closed and symmetric operator in H, let
{G,Γ0,Γ1} be a quasi boundary triple for T = S∗, set A0 := T � kerΓ0, and let γ and
M be the associated γ-field and Weyl function, respectively. Moreover, let B = B∗ ∈ B(G)
and set A[B] := T � ker(Γ0 +BΓ1). Then the following assertions are true for λ ∈ ρ(A0):

(i) λ ∈ σp(A[B]) if and only if 0 ∈ σp(I +BM(λ )). Furthermore, it holds

ker(A[B]−λ ) = {γ(λ )ϕ : ϕ ∈ ker(I +BM(λ ))}.

(ii) If λ /∈ σp(A[B]), then f ∈ ran(A[B]−λ ) if and only if Bγ(λ )∗ f ∈ ran(I +BM(λ )).

(iii) If λ /∈ σp(A[B]), then

(A[B]−λ )−1 f = (A0−λ )−1 f − γ(λ )(I +BM(λ ))−1Bγ(λ )∗ f

is true for all f ∈ ran(A[B]−λ ).

Eventually, if {G,Γ0,Γ1} is an ordinary boundary triple, then proving self-adjointness of
extensions Aϑ is simpler as in the case of quasi boundary triples. Some important state-
ments, that are used later in this thesis, are summarized in the following proposition; for a
proof of this result see for instance [38, 39] and [29, Theorem 1.29 and Theorem 3.3].

Proposition 2.2.7. Let S be a densely defined, closed and symmetric operator in H, let
{G,Γ0,Γ1} be an ordinary boundary triple for S∗, set A0 := T � kerΓ0, and let γ and M
be the associated γ-field and Weyl function, respectively. Moreover, let ϑ be a symmetric
operator in G and let the associated operator Aϑ be defined by (2.8). Then ϑ is (essen-
tially) self-adjoint in G, if and only if Aϑ is (essentially) self-adjoint in H. Moreover, if ϑ

is self-adjoint, then the following items are true:
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(i) λ ∈ σ(Aϑ ) if and only if 0 ∈ σ(ϑ −M(λ )).

(ii) λ ∈ σp(Aϑ ) if and only if 0 ∈ σp(ϑ −M(λ )). Furthermore, it holds

ker(Aϑ −λ ) = {γ(λ )ϕ : ϕ ∈ ker(ϑ −M(λ ))}.

(iii) λ ∈ σdisc(Aϑ ) if and only if 0 ∈ σdisc(ϑ −M(λ )).

If {G,Γ0,Γ1} is a quasi boundary triple for S∗, then Theorem 2.2.5, Theorem 2.2.6 and
Proposition 2.2.7 show how the eigenvalues λ /∈ ρ(A0) of self-adjoint extensions of S
can be characterized by the Weyl function M. If the symmetry S is simple, then one can
do something similar for all eigenvalues, that means also for those that are embedded
in σ(A0), compare [23, Corollary 3.4]. Note that there are also similar characterizations
for the other types of the spectrum available in [23], but in our applications we restrict
ourselves to find the eigenvalues.

Proposition 2.2.8. Let S be a densely defined, closed and simple symmetric operator in H,
let {G,Γ0,Γ1} be a quasi boundary triple for T = S∗, set A0 := T � kerΓ0, and let γ and M
be the associated γ-field and Weyl function, respectively. Moreover, let ϑ be a bounded and
self-adjoint operator in G and assume that the associated operator Aϑ defined by (2.8) is
self-adjoint. Then λ is an eigenvalue of Aϑ if and only if there exists ϕ ∈ ran(M(λ )−ϑ)
satisfying

lim
ε↘0

iε
(
M(λ + iε)−ϑ

)−1
ϕ 6= 0.

Proof. Define the boundary mappings Γϑ
0 ,Γ

ϑ
1 : domT → G by

Γ
ϑ
0 f := Γ1−ϑΓ0 and Γ

ϑ
1 f =−Γ0 f , f ∈ domT.

We claim that {G,Γϑ
0 ,Γ

ϑ
1 } is a quasi boundary triple for S∗ with the additional property

T � kerΓϑ
0 = Aϑ . In fact, using that ϑ is bounded and self-adjoint we deduce from the

Green’s identity for {G,Γ0,Γ1} and for f ,g ∈ domT

(T f ,g)H− ( f ,T g)H = (Γ1 f ,Γ0g)G− (Γ0 f ,Γ1g)G− (ϑΓ0 f ,Γ0g)G+(Γ0 f ,ϑΓ0g)G
=
(
−Γ0 f ,(Γ1−ϑΓ0)g

)
G
−
(
(Γ1−ϑΓ0) f ,−Γ0g

)
G

=
(
Γ

ϑ
1 f ,Γϑ

0 g
)
G
−
(
Γ

ϑ
0 f ,Γϑ

1 g
)
G
,

(2.10)

that means Green’s identity holds also for the triple {G,Γϑ
0 ,Γ

ϑ
1 }.

Next, the definition of Γϑ
0 ,Γ

ϑ
1 can be written equivalently as(

Γϑ
0

Γϑ
1

)
= B

(
Γ0
Γ1

)
, B :=

(
−ϑ 1
−1 0

)
.
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Since ϑ is bounded, we deduce that B is boundedly invertible with

B−1 :=
(

0 −1
1 −ϑ

)
.

Since ran(Γ0,Γ1) is dense in G×G this implies that also ran(Γϑ
0 ,Γ

ϑ
1 ) is dense. Finally, T �

ker(Γϑ
0 ) = T � ker(Γ1−ϑΓ0) = Aϑ is self-adjoint by assumption. Therefore {G,Γϑ

0 ,Γ
ϑ
1 }

is a quasi boundary triple for S∗.

Next, we compute on C\R the Weyl function Mϑ corresponding to the triple {G,Γϑ
0 ,Γ

ϑ
1 }.

For a fixed λ ∈ C \R this is the mapping which is determined uniquely by the relation
Mϑ (λ )Γϑ

0 fλ = Γϑ
1 fλ for fλ ∈ ker(T −λ ). We compute for such an fλ ∈ ker(T −λ )

Γ
ϑ
0 fλ = (Γ1−ϑΓ0) fλ =

(
M(λ )−ϑ

)
Γ0 fλ =−

(
M(λ )−ϑ

)
Γ

ϑ
1 fλ . (2.11)

Note that M(λ )−ϑ is invertible by Theorem 2.2.5, as otherwise the self-adjoint operator
Aϑ would have the non-real eigenvalue λ . Thus, we conclude

Mϑ (λ ) =−
(
M(λ )−ϑ

)−1
.

After all these preparations the claim of this proposition follows from [23, Corollary 3.4]
applied to the quasi boundary triple {G,Γϑ

0 ,Γ
ϑ
1 }, as S is simple.

In the next proposition we state a similar result as in Proposition 2.2.8 for ordinary bound-
ary triples and unbounded parameters ϑ :

Proposition 2.2.9. Let S be a densely defined, closed and simple symmetric operator in H,
let {G,Γ0,Γ1} be an ordinary boundary triple for S∗, set A0 := T � kerΓ0, and let γ and M
be the associated γ-field and Weyl function, respectively. Moreover, let ϑ be a self-adjoint
operator in G. Then λ is an eigenvalue of Aϑ if and only if there exists ϕ ∈ ran(M(λ )−ϑ)
satisfying

lim
ε↘0

iε
(
M(λ + iε)−ϑ

)−1
ϕ 6= 0.

Proof. The proof of this result is very similar as the one of Proposition 2.2.8, hence, we
only indicate the differences in the verification. We set Tϑ := S∗ � (domA0 +domAϑ ) and
define the mappings Γϑ

0 ,Γ
ϑ
1 : domT ϑ → G by

Γ
ϑ
0 f := Γ1−ϑΓ0 and Γ

ϑ
1 f =−Γ0 f , f ∈ domT ϑ .

We claim that {G,Γϑ
0 ,Γ

ϑ
1 } is a quasi boundary triple for S∗ with the additional property

T � kerΓϑ
0 = Aϑ .
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It is simple to see that S = S∗ � (domA0∩ domAϑ ). Hence, it follows from [21, Proposi-
tion 2.9] that T ϑ = S∗. Next, Green’s identity for {G,Γϑ

0 ,Γ
ϑ
1 } can be shown in exactly the

same way as in (2.10). Furthermore, T ϑ � kerΓϑ
0 = Aϑ is self-adjoint by Proposition 2.2.7.

So it remains to show that ran
(
Γϑ

0 ,Γ
ϑ
1
)

is dense in G×G. Assume that (ϕ,ψ) ∈ G×G

fulfills for all f ∈ domT ϑ

0 =
(
ϕ,Γϑ

0 f
)
G
+
(
ψ,Γϑ

1 f
)
G
= (ϕ,(Γ1−ϑΓ0) f )G− (ψ,Γ0 f )G. (2.12)

This implies, in particular, (ϕ,Γ1 f )G = 0 for all f ∈ kerΓ0. Since {G,Γ0,Γ1} is an ordi-
nary boundary triple it holds Γ1(kerΓ0) = G and therefore ϕ = 0. Thus (2.12) reduces to
(ψ,Γ0 f )G = 0 for all f ∈ domT ϑ . Using now that domT ϑ is dense in domS∗ with respect
to the graph norm induced by S∗ and Γ0 is continuous, it follows from the surjectivity of
Γ0 that also ψ = 0. Therefore ran

(
Γϑ

0 ,Γ
ϑ
1
)

is dense in G×G and we have shown that
{G,Γϑ

0 ,Γ
ϑ
1 } is indeed a quasi boundary triple for S∗.

Finally, in the same way as in (2.11) one shows that the value of the Weyl function associ-
ated to the triple {G,Γϑ

0 ,Γ
ϑ
1 } for λ ∈ C\R is

Mϑ (λ ) =−
(
M(λ )−ϑ

)−1
.

Hence, since S is simple by assumption, we deduce the claim of this proposition again
from [23, Corollary 3.4] applied to {G,Γϑ

0 ,Γ
ϑ
1 }.

In the rest of this section we describe a construction introduced in [22] which allows under
some assumptions to transform and extend a given quasi boundary triple to an ordinary
boundary triple. This procedure will be very useful to study Dirac operators with critical
interaction strengths or boundary values. Assume that S is a densely defined, closed and
symmetric operator in H and that {G,Γ0,Γ1} be a quasi boundary triple for T = S∗. We
define the sets

G0 := ran(Γ0 � kerΓ1) and G1 := ran(Γ1 � kerΓ0). (2.13)

The main idea from [22] is the following: under the assumption that G1 (or G0) is dense in
G one endows this space with a suitable topology and extends then the boundary mapping
Γ0 (or Γ1) to a mapping having values in the anti-dual space G ′1 (or G ′0, respectively).
The first important step in this construction is to find a suitable topology on G1, see [22,
Proposition 2.9 and Proposition 2.10]. We set

Λ := ImM(i) =
1
2i
(M(i)−M(−i)) = γ(i)∗γ(i), (2.14)

where the last equality follows from Proposition 2.2.4 (iii) and the operator on the right
hand side is non-negative.
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Proposition 2.2.10. Let S be a densely defined, closed and symmetric operator in H, let
{G,Γ0,Γ1} be a quasi boundary triple for T = S∗ with Weyl function M and let Λ be given
by (2.14). Assume additionally that G1 given by (2.13) is dense in G. Then Λ1/2 : G→ G1
is an isometry and G1 endowed with the inner product

(ϕ,ψ)G1 :=
(
Λ
−1/2

ϕ,Λ−1/2
ψ
)
G
, ϕ,ψ ∈ G1, (2.15)

is a Hilbert space. Moreover, all norms ‖·‖ such that (G1,‖·‖) is a reflexive Banach space
continuously embedded into G are equivalent to the norm induced by (2.15).

In the following we assume that G1 is dense in G. Then {G1,G,G
′
1} forms a Gelfand triple

and making use of the operator Λ we can find suitable expressions also for the duality
product in G ′1×G1. We set

ι+ := Λ
−1/2 : G1→ G. (2.16)

Via some standard constructions for Gelfand triples, see ???, the operator Λ1/2 can be
extended to an isometry

ι− : G ′1→ G, ι− � G= Λ
1/2. (2.17)

Eventually, the duality product in G ′1×G1 can be expressed by

(ϕ,ψ)G ′1×G1
:= (ι−ϕ, ι+ψ)G, ϕ ∈ G ′1,ψ ∈ G1. (2.18)

This choice of the duality product has for ϕ ∈ G⊂ G ′1 and ψ ∈ G1 the useful property

(ϕ,ψ)G ′1×G1
= (Λ1/2

ϕ,Λ−1/2
ψ)G = (ϕ,ψ)G, (2.19)

as Λ1/2 is a bounded and self-adjoint operator in G.

After these preliminary considerations about the space G1 and its topology we extend now
the boundary mappings Γ0 and Γ1 to bounded mappings from domS∗ onto G ′1 and G ′0,
respectively. This result is proven in [22, Proposition 2.10 and Corollary 2.11].

Proposition 2.2.11. Let S be a densely defined, closed and symmetric operator in H, let
{G,Γ0,Γ1} be a quasi boundary triple for T = S∗, and let G0 and G1 be given by (2.13).
Then the following assertions are true:

(i) If G1 is dense in G, then Γ0 has a unique surjective and bounded extension

Γ̃0 :
(
domS∗,‖ · ‖S∗

)
→ G ′1.

(ii) If G0 is dense in G and the operator A∞ := T � kerΓ1 is self-adjoint in H, then Γ1
has a unique surjective and bounded extension

Γ̃1 :
(
domS∗,‖ · ‖S∗

)
→ G ′0.
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Under the assumptions of the previous proposition also the γ-field and the Weyl function
associated to the quasi boundary triple {G,Γ0,Γ1} have natural extensions, see [22, Defi-
nition 2.14] and the following discussion.

Proposition 2.2.12. Let S be a densely defined, closed and symmetric operator in H, let
{G,Γ0,Γ1} be a quasi boundary triple for T = S∗ with γ-field γ and Weyl function M, set
A0 := T � kerΓ0, and let G0 and G1 be given by (2.13). Then the following is true:

(i) Assume that G1 is dense in G and let λ ∈ ρ(A0). Then γ(λ ) has a bounded extension

γ̃(λ ) :=
(
Γ̃0 � ker(S∗−λ )

)−1 : G ′1→H.

(ii) Assume that G0 and G1 are dense in G, that A∞ := T � kerΓ1 is self-adjoint in H, and
let λ ∈ ρ(A0). Then M(λ ) has a bounded extension

M̃(λ ) := Γ̃1γ̃(λ ) = Γ̃1
(
Γ̃0 � ker(S∗−λ )

)−1 : G ′1→ G ′0.

Finally, making use of the extended boundary mapping Γ̃0 one can transform the originally
given quasi boundary triple to an ordinary boundary triple, compare [22, Theorem 2.12].
Recall that for A0 = T � kerΓ0 and µ ∈ ρ(A0) there holds the direct sum decomposition

domS∗ = domA0+̇ker(S∗−µ).

Theorem 2.2.13. Let S be a densely defined, closed and symmetric operator in H, let
{G,Γ0,Γ1} be a quasi boundary triple for T = S∗ such that G0 given by (2.13) is dense
in G, and set A0 := T � kerΓ0. Moreover, let ι+ and ι− be defined by (2.16) and (2.17),
respectively, and assume that there exists some µ ∈ ρ(A0)∩R. Let Γ̃0 be the extension
of Γ0 from Proposition 2.2.11 and define the mappings ϒ0,ϒ1 : domS∗→ G by

ϒ0 f := ι−Γ̃0 f , ϒ1 f := ι+Γ1 f0, f = f0 +g ∈ domA0+̇ker(S∗−µ) = domS∗.

Then {G,ϒ0,ϒ1} is an ordinary boundary triple for S∗ with the additional property that
S∗ � ker Γ̃0 = T � Γ0 = A0.

Let {G,Γ0,Γ1} be a quasi boundary triple for S∗, assume that G0 and G1 are dense in G

and that A∞ := T � kerΓ1 is self-adjoint in H. Then the γ-field β and the Weyl function
M associated to the ordinary boundary triple {G,ϒ0,ϒ1} from Theorem 2.2.13 are given
by

β (λ ) = γ̃(λ )ι−1
− and M(λ ) = ι+

(
M̃(λ )− M̃(µ)

)
ι
−1
− (2.20)

for λ ∈ ρ(A0) and µ ∈ ρ(A0)∩R chosen as in Theorem 2.2.13, where γ̃ and M̃ are given
as in Proposition 2.2.12, compare [22, equation (2.17)].
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Eventually, assume that S is a densely defined, closed and symmetric operator in H, that
{G,Γ0,Γ1} is a quasi boundary triple for T = S∗ and that all assumptions of Theorem 2.2.13
are fulfilled. Choose µ ∈ ρ(A0)∩R as in Theorem 2.2.13, let ϑ be a symmetric operator
in G, and define

Θ(ϑ)ϕ : = ι+(ϑ −M(µ))ι−1
− ϕ,

domΘ(ϑ) =
{

ϕ ∈ G : ι
−1
− ϕ ∈ dom(ϑ −M(µ)) and (ϑ −M(µ))ι−1

− ϕ ∈ G1
}
.

(2.21)

Then by [22, Corollary 3.5] it holds

ker(Γ1−ϑΓ0) = ker(ϒ1−Θ(ϑ)ϒ0). (2.22)

In view of Proposition 2.2.7 this yields that Aϑ := T � ker(Γ1−ϑΓ0) is (essentially) self-
adjoint, if and only if Θ(ϑ) is (essentially) self-adjoint.

2.3 Sobolev spaces

In this section we introduce the function spaces which are used to formulate and prove
the main results of the present thesis. First, we state the notations for classical function
spaces how they are used here. Then, we introduce Sobolev spaces of weakly differentiable
functions on domains. Finally, we also discuss spaces for functions acting on the boundary
of bounded and sufficiently regular domains. The presentation in this section follows [53];
more details can be found for instance also in [1, 52].

Let Ω ⊂ Rd , d ∈ N, be an open set and k ∈ N∪{∞}. Moreover, assume that K is either
Rn,Cn, n ∈ N, or any space which is isomorphic to one of these sets. Then we denote the
space of k times continuously differentiable functions f : Ω→ K by Ck(Ω;K). The sym-
bol C∞

0 (Ω;K) stands for the space of infinitely many times differentiable and compactly
supported functions. Moreover, we define

C∞(Ω;K) := { f � Ω : f ∈C∞
0 (R3;K)}.

For a multi index α = (α1, . . . ,αd)
> ∈ Nd

0 we write |α| := ∑
d
k=1 αk and for f ∈Ck(Ω;K)

and α ∈ Nd
0 with |α| ≤ k we set

Dα f :=
∂ α1

∂xα1
1

. . .
∂ αd

∂xαd
d

f .

As usual L2(Ω;K) is the Hilbert space (of equivalence classes) of square integrable func-
tions defined on Ω with values in K endowed with the inner product

( f ,g)Ω :=
∫

Ω

f (x) ·g(x)dx;
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the corresponding norm is denoted by ‖ · ‖Ω.

We say that a function f ∈ L2(Ω;K) is weakly differentiable of order α ∈ Nd
0 or differen-

tiable in the distributional sense if there exists some g ∈ L2(Ω;K) such that∫
Ω

f ·Dα
ϕdx = (−1)|α|

∫
Ω

g ·ϕdx

holds for all ϕ ∈C∞
0 (Ω;K). In this case we write Dα f = g. The Sobolev space of order

k ∈ N is then defined as

Hk(Ω;K) :=
{

f ∈ L2(Ω;K) : Dα f ∈ L2(Ω;K) ∀α ∈ Nd
0 : |α| ≤ k

}
. (2.23)

If one endows Hk(Ω;K) with the inner product

( f ,g)Hk(Ω;K) := ∑
|α|≤k

(Dα f ,Dαg)Ω, f ,g ∈ Hk(Ω;K), (2.24)

then Hk(Ω;K) is a Hilbert space; the corresponding norm is denoted by ‖ · ‖Hk(Ω;K). An
important subspace of Hk(Ω;K) is given by

Hk
0(Ω;K) :=C∞

0 (Ω;K)
‖·‖Hk(Ω;K).

Roughly speaking Hk
0(Ω;K) consists of functions in Hk(Ω;K) with vanishing boundary

values (a justification for this is given in Proposition 2.3.3 below).

In order to introduce Sobolev spaces of real order recall that the Fourier transform is the
unitary operator F : L2(Rd;K)→ L2(Rd;K) which acts on f ∈C∞

0 (Rd;K) as

F f (x) =
1

(2π)d/2

∫
Rd

e−ix·y f (y)dy, x ∈ Rd.

Then we define for a real s≥ 0

Hs(Rd;K) :=
{

f ∈ L2(Rd;K) : (1+ | · |2)s/2F f ∈ L2(Rd;K)
}
. (2.25)

If we endow Hs(Rd;K) with the inner product

( f ,g)Hs(Rd ;K) :=
∫
Rd
(1+ |x|2)sF f (x) ·Fg(x)dx, f ,g ∈ Hs(Rd;K), (2.26)

then Hs(Rd;K) is a Hilbert space. We point out that for s ∈N the definitions of Hs(Rd;K)
in (2.23) and (2.25) are the same and the associated norms induced by (2.24) and (2.26)
are equivalent.

In the rest of this section we discuss suitable function spaces on the boundary ∂Ω of a
domain Ω ⊂ Rd . This is only possible, if the domain satisfies some further smoothness
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condition. For k ∈ N we say that a set Ω⊂ Rd , d ≥ 2, is a Ck-hypograph, if there exists a
function Λ ∈Ck(Rd−1;R) such that

Ω = {x = (x′,xd) ∈ Rd : x′ ∈ Rd−1, xd < Λ(x′)}.

In a similar way we say that Ω is a Lipschitz hypograph, if Λ is Lipschitz continuous. With
the help of this notion we are prepared to introduce Lipschitz and Ck-domains.

Definition 2.3.1. Let d,k ∈ N with d ≥ 2. Then Ω ⊂ Rd is called a Ck-domain or a Ck-
smooth domain, if ∂Ω is compact and if there exist an l ∈ N and open sets Ω1, . . . ,Ωl and
W1, . . . ,Wl with the following properties:

(i) ∂Ω⊂
⋃l

j=1Wj.

(ii) Ω j can be transformed by a rotation to a Ck-hypograph, j ∈ {1, . . . , l}.

(iii) Wj∩Ω j =Wj∩Ω, j ∈ {1, . . . , l}.

In a similar way as in Definition 2.3.1 one defines Lipschitz domains by replacing Ck-
hypographs by Lipschitz hypographs.

The boundary of a Ck-domain Ω can be parametrized in the following sense: by point (ii)
in Definition 2.3.1 there exists for any j ∈ {1, . . . , l} a Ck-mapping Λ̃ j : Rd−1→ Rd such
that Λ̃ j(Rd−1) = ∂Ω j. We define U j := Λ̃

−1
j (∂Ω) and Λ j := Λ̃ j �U j. Then Λ j(U j) ⊂Wj

by Definition 2.3.1 (iii). We say that {Λ j,U j,Wj}l
j=1 is a parametrization of ∂Ω.

An important quantity describing the geometry of a hypersurface ∂Ω is its associated first
fundamental form. If {Λ j,U j,Wj}l

j=1 is a parametrization of ∂Ω, then the first fundamental
form is a family of matrix valued functions given by

G j : U j→ R(d−1)×(d−1), G j(u) =
(
〈∂ukΛ j(u),∂ul Λ j(u)〉

)d−1
k,l=1, j ∈ {1, . . . , l}, (2.27)

where 〈·, ·〉 denotes the inner product in Rd . The matrix G j is always symmetric and
positive definite.

In the following assume that Ω⊂Rd is a Lipschitz domain in the sense of Definition 2.3.1
with parametrization {Λ j,U j,Wj}l

j=1 as it is described above. The next goal is to introduce
a suitable notion of an integral on ∂Ω. Let {χ j}l

j=1 be a partition of unity subordinate to
{Wj}l

j=1, that means that {χ1, . . . ,χl} is a subset of C∞
0 (Rd;K) such that 0 ≤ χ j ≤ 1,

supp χ j ⊂Wj for j ∈ {1, . . . , l} and ∑
l
j=1 χ j(x) = 1 for all x ∈ ∂Ω. Now we can define the

Hausdorff measure σ on ∂Ω via

σ(B) :=
l

∑
j=1

∫
Λ
−1
j (B)

χ j(Λ j(u))
√

detG j(u)du
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for any Borel set B. One can show that σ is a finite Borel measure, compare [52, Ap-
pendix C.8]. We say that a function ϕ : ∂Ω → C is integrable with respect to σ if
(χ j ·ϕ)◦Λ j

√
detG j is integrable for all j ∈ {1, . . . , l}. In this case, the integral of such a

function is defined as∫
∂Ω

ϕdσ :=
l

∑
j=1

∫
Rd−1

(χ j ·ϕ)(Λ j(u))
√

detG j(u)du, (2.28)

where (χ j ·ϕ) ◦Λ j is extended onto Rd−1 by zero. We would like to point out that the
above definitions of the integral and of the measure σ is independent of the choice of the
parametrization of ∂Ω.

With the Hausdorff measure on ∂Ω it is natural to define L2(∂Ω;K) := L2(∂Ω;K,dσ).
Eventually, if Ω is a Ck-domain for some k ∈ N, the we define for 0 ≤ s ≤ k the Sobolev
space Hs(∂Ω;K) on the boundary by

Hs(∂Ω;K) :=
{

ϕ ∈ L2(∂Ω;K) : (χ jϕ)◦ Λ̃ j ∈ Hs(Rd−1;K) for j ∈ {1, . . . , l}
}
.

If we endow this space with the inner product

(ϕ,ψ)Hs(∂Ω;K) :=
l

∑
j=1

(
(χ jϕ)◦ Λ̃ j,(χ jψ)◦ Λ̃ j

)
Hs(Rd−1;K)

, ϕ,ψ ∈ Hs(∂Ω;K), (2.29)

then Hs(∂Ω;K) becomes a Hilbert space. Note that different parametrizations of ∂Ω lead
to different inner products in (2.29), but the induced norms are equivalent. If s ∈ (0,1)
then another equivalent norm is given by the Sobolev-Slobodeckii norm

‖ϕ‖2
W s(∂Ω;K) := ‖ϕ‖2

∂Ω
+
∫

∂Ω

∫
∂Ω

|ϕ(x)−ϕ(y)|2

|x− y|d−1+2s dσ(x)dσ(y), ϕ ∈Hs(∂Ω;K). (2.30)

For ϕ ∈ H1(Σ;K) we will denote sometimes by ∇sϕ the surface gradient or tangential
derivative of ϕ which is given in local coordinates by

(∇s)nϕ =
2

∑
k=1

gnk
∂ukϕ, n ∈ {1,2},

where gnk denote the entries of (G j)
−1 and G j is the first fundamental form defined

by (2.27).

Finally, for −k ≤ s < 0 we define

Hs(∂Ω;K) :=
(
H−s(∂Ω;K)

)′
,

that means Hs(∂Ω;K) is the dual space of H−s(∂Ω;K).

Clearly, by definition we have Hs(∂Ω;K) ⊂ Ht(∂Ω;K), if t ≤ s. In the following propo-
sition we state the important fact that the associated embedding is even compact:
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Proposition 2.3.2. Let Ω ⊂ Rd , d ≥ 2, be a Ck-domain in the sense of Definition 2.3.1
for some k ∈ N and let −k ≤ t < s≤ k. Then, the embedding Hs(∂Ω;K) ↪→ Ht(∂Ω;K) is
compact.

The importance of the Sobolev spaces Hs(∂Ω;K) on the boundary of a set Ω⊂Rd comes
from the fact that, roughly speaking, the boundary values of functions in Hs+1/2(Ω;K)
belong to this space. This result is formulated precisely in the form that we need in the
following theorem:

Proposition 2.3.3. Assume that Ω ⊂ Rd , d ≥ 2, is a C1-domain. Then there exists a
bounded and surjective operator τD : H1(Ω;K)→ H1/2(∂Ω;K) such that τD f = f |∂Ω for
all f ∈C1(Ω;K)∩H1(Ω;K). Moreover, it holds kerτD = H1

0 (Ω;K).

Usually, we will write f |∂Ω := τD f for f ∈ H1(Ω;K).

Using the fact that C∞(Ω;K) is dense in H1(Ω;K), see for instance [53, Theorem 3.25],
it is not difficult to show the following extension of Green’s first formula: if Ω is a C1-
domain with normal vector field ν = (ν1, . . . ,νd)

>, j ∈ {1, . . . ,d}, and f ,g ∈ H1(Ω;K),
then ∫

Ω

f · (∂ jg)dx =
∫

∂Ω

ν j f |∂Ω ·g|∂Ωdσ −
∫

Ω

(∂ j f ) ·gdx. (2.31)

2.4 Abstract results for integral operators

In this section we provide a short overview over basic results on integral operators. As
we will see in the main part of this thesis, the γ-fields and the Weyl functions associated
to boundary triples suitable to define and study Dirac operators with singular interactions
and Dirac operators on domains are some special integral operators. Hence, in order to
apply the abstract results summarized in the previous Section 2.2 some basic knowledge on
integral operators is required. The presentation in this section follows [11, Appendix A],
but there is also some additional knowledge on singular integral operators added. The
results are formulated such that they can be applied directly in the main part of the thesis.

Let (X ,µ) and (Y,ν) be σ -finite measure spaces and let n ∈ N. Roughly speaking we say
that a bounded operator T : L2(Y,ν ;Cn)→ L2(X ,µ;Cn) is an integral operator, if there
exists a measurable function t : X×Y → Cn×n such that

T f (x) =
∫

Y
t(x,y) f (y)dν(y), x ∈ X , f ∈ L2(Y,ν ;Cn).

First, we formulate the Schur test. This is an important result to show the boundedness of
integral operators acting between L2-spaces. Its proof can be found, for instance, in [50,
Example III 2.4] or [69, Satz 6.9].
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Proposition 2.4.1. Let (X ,µ) and (Y,ν) be σ -finite measure spaces, let n ∈ N and let
t : X ×Y → Cn×n be µ × ν-measurable. Assume that there exist measurable functions
t1, t2 : X×Y → [0,∞) such that |t|2 ≤ t1t2 almost everywhere and constants κ1,κ2 > 0 with∫

X
t1(x,y)dµ(x)≤ κ1, y ∈ Y, and

∫
Y

t2(x,y)dν(y)≤ κ2, x ∈ X .

Then the operator T : L2(Y,ν ;Cn)→ L2(X ,µ;Cn) acting as

T f (x) :=
∫

Y
t(x,y) f (y)dν(y), x ∈ X , f ∈ L2(Y,ν ;Cn),

is well-defined and bounded with ‖T‖2 ≤ κ1κ2. In particular, if (X ,µ) = (Y,ν) and
t1(x,y) = t2(y,x) for almost all x,y ∈ X, then ‖T‖ ≤ κ1.

In the following we apply the Schur test in the situations that X and Y are either a subset Ω

of Rd , d ∈ {2,3}, with compact C2-smooth boundary equipped with the Lebesgue measure
or a C2-smooth compact surface Σ equipped with the Hausdorff measure σ . For that we
need an auxiliary result on the integrals of special functions. To prove these estimates,
recall that for any r0 > 0 there exists a constant κ > 0 such that

σ(Σ∩B(x,r))≤ κrd−1 (2.32)

for all 0 < r < r0 and all x ∈ Rd , see for instance [10, Lemma A.3].

Lemma 2.4.2. Let d ∈ {2,3} and let Ω⊂Rd be a domain with compact C2-smooth bound-
ary Σ := ∂Ω. Then the following assertions hold:

(i) Define for κ,R > 0 and s ∈ (0,d) the function

τ(x) :=

{
|x|−s, |x|< R,
e−κ|x|, |x|> R,

x ∈ Rd \{0}.

Then there exists a constant K = K(s,κ)> 0 such that∫
Ω

τ(x− y)dy≤ K

for all x ∈ R3.

(ii) Let s ∈ (0,d−1) and r0 > 0 be fixed. Then there exists a constant K = K(s,Σ)> 0
such that ∫

Σ∩B(x,r)

(
1+ |x− y|−s)dσ(y)≤ Krd−1−s

for all x ∈ Rd and all r ∈ (0,r0).
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Proof. (i) Let x ∈ Rd be fixed. Using the translation invariance of the Lebesgue measure
and τ ≥ 0, we obtain∫

Ω

τ(x− y)dy≤
∫
Rd

τ(x− y)dy =
∫
Rd

τ(−y)dy =
∫

B(0,R)
|y|−sdy+

∫
Rd\B(0,R)

e−κ|y|dy.

Since the integrals on the right hand side of the last formula are independent of x and finite
for s ∈ (0,d), the claim of assertion (i) follows.

(ii) First, in view of (2.32) it is clear that∫
Σ∩B(x,r)

1dσ(y) = σ(Σ∩B(x,R))≤ Krd−1 ≤ Krd−1−s.

Hence, it remains to find an estimate for
∫

Σ∩B(x,r) |x− y|−sdσ(y). Let x ∈ Rd be arbitrary,
but fixed. Define for n ∈ N the sets

An :=
{

y ∈ Σ : r2−n ≤ |x− y| ≤ r2−n+1}.
Then Σ∩B(x,r) =

⋃
∞
n=1 An and it holds for any y ∈ An

|x− y|−s ≤ r−s2sn.

From this we obtain∫
Σ∩B(x,r)

|x− y|−sdσ(y) =
∞

∑
n=1

∫
An

|x− y|−sdσ(y)≤
∞

∑
n=1

r−s2sn
∫

An

dσ(y).

Employing (2.32) we have σ(An) ≤ σ(Σ∩B(x,r2−n+1)) ≤ κrd−12−(d−1)(n−1). This im-
plies finally ∫

Σ∩B(x,r)
|x− y|−s ≤ Krd−1−s

∞

∑
n=1

2(s−d+1)n.

Since s ∈ (0,d−1), the last sum is finite and we have the claimed result.

Using the Schur test and the results from Lemma 2.4.2 we show now the boundedness of
several families of integral operators with special integral kernels satisfying O(|x− y|−s)
and we obtain estimates for their operator norms.

Proposition 2.4.3. Let d ∈{2,3}, let Ω⊂Rd be a domain with compact C2-smooth bound-
ary, let n ∈ N and let t : Rd → Cn×n be a measurable function. Assume that there exist
constants κ1,κ2,R > 0 such that

|t(x)| ≤ κ1

{
|x|1−d, |x|< R,
e−κ2|x|, |x|> R,

x ∈ Rd \{0}.
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Then the operator T : L2(Ω;Cn)→ L2(Ω;Cn),

T f (x) :=
∫

Ω

t(x− y) f (y)dy, x ∈Ω, f ∈ L2(Ω;Cn),

is bounded and everywhere defined with ‖T‖ ≤ κ1K for some K = K(κ2)> 0.

Proof. Define for x ∈ Rd \{0}

τ(x) := κ1

{
|x|1−d, |x|< R,
e−κ2|x|, |x|> R,

and t1(x,y) = t2(y,x) = τ(x− y). Then by Lemma 2.4.2 (i) there exists a constant K such
that ∫

Ω

t1(x,y)dx =
∫

Ω

τ(x− y)dx < κ1K

for all y ∈Ω. Hence, all claimed statements follow from the Schur test (Proposition 2.4.1).

Proposition 2.4.4. Let Ω ⊂ R3 be a domain with compact C2-smooth boundary ∂Ω, let
n ∈ N and let t : R3→ Cn×n be a measurable function. Assume that there exist constants
κ1,κ2,R > 0 such that

|t(x)| ≤ κ1

{
|x|−2, |x|< R,
e−κ2|x|, |x|> R,

x ∈ R3 \{0}.

Then the operators T1 : L2(∂Ω;Cn)→ L2(Ω;Cn),

T1ϕ(x) :=
∫

∂Ω

t(x− y)ϕ(y)dσ(y), x ∈Ω,ϕ ∈ L2(∂Ω;Cn),

and T2 : L2(Ω;Cn)→ L2(∂Ω;Cn),

T2 f (x) :=
∫

Ω

t(x− y) f (y)dy, x ∈ ∂Ω, f ∈ L2(Ω;Cn),

are bounded and everywhere defined with ‖T1‖,‖T2‖ ≤ κ1K for some K = K(κ2,∂Ω)> 0.

Proof. We are going to prove the claim for T1, the statement for T2 follows then by taking
adjoints. Define for s ∈ (0,1) and x ∈ R3 \{0} the functions

τ1(x) := κ1

{
|x|−2−s, |x|< R,
e−κ2|x|, |x|> R,
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and
τ2(x) := κ1κ3|x|−2+s

where κ3 ≥ 1 is chosen such that e−κ2|x| ≤ κ3|x|−2+s for |x| ≥ R. Set t j(x,y) := τ j(x−
y), j ∈ {1,2}, for x ∈ Ω and y ∈ ∂Ω. Then |t(x,y)|2 ≤ t1(x,y)t2(x,y). Moreover, by
Lemma 2.4.2 (i) there is a constant K1 = K1(κ2,s) such that for all y ∈ ∂Ω∫

Ω

t1(x,y)dx≤ κ1K1.

Similarly, by Lemma 2.4.2 (ii) there exists K2 = K2(∂Ω,κ2,s) such that for all x ∈Ω∫
∂Ω

t2(x,y)dσ(y)≤ κ1K2.

Therefore, the Schur test (Proposition 2.4.1) implies the boundedness of T1 and the esti-
mate for its operator norm.

Proposition 2.4.5. Let Σ⊂ R3 be a compact and closed C2-smooth surface, let n ∈ N and
let t : R3 → Cn×n be a measurable function. Assume that there exists a constant κ > 0
such that

|t(x)| ≤ κ
(
1+ |x|−1), x ∈ R3 \{0}.

Then the operator T : L2(Σ;Cn)→ L2(Σ;Cn),

Tϕ(x) :=
∫

Σ

t(x− y)ϕ(y)dσ(y), x ∈ Σ,ϕ ∈ L2(Σ;Cn),

is bounded and everywhere defined with ‖T‖ ≤ κK for some K = K(Σ)> 0.

Proof. Define for x ∈ R3 \{0}

τ(x) := κ
(
1+ |x|−1)

and t1(x,y) = t2(y,x) = τ(x− y). Then by Lemma 2.4.2 (ii) there exists a constant K such
that ∫

Σ

t1(x,y)dσ(x) =
∫

Σ

τ(x− y)dσ(x)< κK

for all y ∈ Σ. Hence, all claimed statements follow from the Schur test (Proposition 2.4.1).

Eventually, we discuss in the next proposition a special singular integral operator. With
the help of Proposition 2.4.5 it will allow us to understand a boundary integral operator
in Section 3.2 below that plays a crucial role in the study of Dirac operators with singular
interactions and Dirac operators on domains. The result can be found for instance in [5,
Lemma 3.3].
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Proposition 2.4.6. Let j ∈ {1,2,3} and let Σ ⊂ R3 be a compact and closed C2-smooth
surface. Then the operator T j : L2(Σ;C)→ L2(Σ;C),

T jϕ(x) := lim
ε↘0

∫
Σ\B(x,ε)

x j− y j

|x− y|3
ϕ(y)dσ(y), x ∈ Σ,ϕ ∈ L2(Σ;C),

is well-defined and bounded.

2.5 Multiplication operators in Sobolev spaces

In this section we state two results on operators that are associated to the multiplication
with a Lipschitz continuous function. First, we have the following standard result.

Lemma 2.5.1. Let Σ be the boundary of a bounded Lipschitz domain and let η : Σ→ C
be Lipschitz continuous. Then for any s ∈ [−1,1] the associated multiplication operator in
Hs(Σ;C) is well-defined and bounded.

Proof. We show the claim for s = 1, from this the statement for s =−1 follows by duality.
Eventually, the result for intermediate values s ∈ (−1,1) can be shown then by a standard
interpolation argument.

Since η is Lipschitz continuous, it is weakly differentiable and the weak derivatives belong
to L∞(Σ;C). Then, for ϕ ∈ H1(Σ;C) the surface gradient of ηϕ is

∇s(ηϕ) = (∇sη)ϕ +η(∇sϕ).

Since η ,∇sη ∈ L∞(Σ;C) the claim of this lemma follows.

Next, we discuss a way how one can approximate the multiplication operator with a Lips-
chitz continuous function η in H1/2(Σ;C4). We are going to apply this result if η admits
the value zero, in this case the zero sets of the functions ηε defined in the proposition below
are non-trivial.

Proposition 2.5.2. Let Σ ⊂ R3 be the boundary of a bounded Lipschitz domain, let η :
Σ→ R be Lipschitz continuous and define for ε > 0

ηε := (η− ε)+− (−η + ε)− = max{η− ε,0}−min{−η + ε,0}.

Then the multiplication with ηε gives rise to a bounded operator in H1/2(Σ;C4) and for
any t ∈

(
0, 1

2

)
there exists a constant κ = κ(t)> 0 such that

‖(η−ηε)ϕ‖H1/2(Σ;C4) ≤ κε
t‖ϕ‖H1/2(Σ;C4) (2.33)

holds for all ϕ ∈ H1/2(Σ;C4).
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Proof. In this proof κ will denote a generic constant that will have different values at
different places. Let s ∈ (0,1) be fixed. In order to prove this proposition we use the
equivalent Sobolev-Slobodeckii norm from (2.30), that means we show that there exists a
constant κ > 0 such that

‖(η−ηε)ϕ‖2
Σ +

∫
Σ

∫
Σ

|((η−ηε)ϕ)(x)− ((η−ηε)ϕ)(y)|2

|x− y|3
dσ(x)dσ(y)

≤ κε
1−s‖ϕ‖2

W 1/2(Σ;C4)

(2.34)

for all ϕ ∈ H1/2(Σ;C4), which yields then the claim.

First, since |η−ηε | ≤ ε on Σ we have

‖(η−ηε)ϕ‖Σ ≤ ε‖ϕ‖Σ. (2.35)

The estimate of the double integral in (2.34) is more delicate. We define the sets

Σ
+
ε := {x ∈ Σ : η(x)> ε}, Σ

−
ε := {x ∈ Σ : η(x)<−ε},

Σ
+
0 := {x ∈ Σ : η(x) ∈ [0,ε]}, Σ

−
0 := {x ∈ Σ : η(x) ∈ [−ε,0]},

so that Σ = Σ+
ε ∪ Σ−ε ∪ Σ

+
0 ∪ Σ

−
0 . We are going to estimate the integrals over Σ±· × Σ±·

for · ∈ {0,ε} separately. First, for x ∈ Σ+
ε we have η(x)−ηε(x) = ε and hence∫

Σ
+
ε

∫
Σ
+
ε

|((η−ηε)ϕ)(x)− ((η−ηε)ϕ)(y)|2

|x− y|3
dσ(x)dσ(y)

= ε
2
∫

Σ
+
ε

∫
Σ
+
ε

|ϕ(x)−ϕ(y)|2

|x− y|3
dσ(x)dσ(y)≤ ε

2‖ϕ‖2
W 1/2(Σ;C4)

.

(2.36)

Similarly, it holds∫
Σ
−
ε

∫
Σ
−
ε

|((η−ηε)ϕ)(x)− ((η−ηε)ϕ)(y)|2

|x− y|3
dσ(x)dσ(y)≤ ε

2‖ϕ‖2
W 1/2(Σ;C4)

. (2.37)

Next, if (x,y) ∈ Σ0×Σ0 with Σ0 := Σ
+
0 ∪Σ

−
0 , then ηε(x) = ηε(y) = 0, |η(x)|, |η(y)| ≤ ε ,

and using the Lipschitz continuity of η we find for s ∈ (0,1)∣∣((η−ηε)ϕ)(x)− ((η−ηε)ϕ)(y)
∣∣2 ≤ 2

∣∣(η(x)−η(y))ϕ(x)
∣∣2 +2

∣∣η(y)(ϕ(x)−ϕ(y))
∣∣2

≤ κε
1−s|x− y|1+s|ϕ(x)|2 + ε

2|ϕ(x)−ϕ(y)|2

and thus, employing [51, Lemma 3.2 (b)] we deduce∫
Σ0

∫
Σ0

|((η−ηε)ϕ)(x)− ((η−ηε)ϕ)(y)|2

|x− y|3
dσ(x)dσ(y)

≤ κε
1−s
∫

Σ0

∫
Σ0

[
|ϕ(x)|2

|x− y|2−s +
|ϕ(x)−ϕ(y)|2

|x− y|3

]
dσ(x)dσ(y)

≤ κε
1−s
(∫

Σ0

|ϕ(x)|2dσ(x)+
∫

Σ0

∫
Σ0

|ϕ(x)−ϕ(y)|2

|x− y|3
dσ(x)dσ(y)

)
≤ ε

1−s‖ϕ‖2
W 1/2(Σ;C4)

.

(2.38)
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In order to estimate the integral over Σ+
ε ×Σ− with Σ− := Σ−ε ∪Σ

−
0 we note that it holds

for (x,y) ∈ Σ+
ε ×Σ− similarly as above∣∣((η−ηε)ϕ)(x)− ((η−ηε)ϕ)(y)

∣∣≤ ε
∣∣ϕ(x)∣∣+ ∣∣((η−ηε)ϕ)(y)

∣∣≤ ε
(
|ϕ(x)|+ |ϕ(y)|

)
.

Moreover, using the Lipschitz continuity of η we have

ε ≤ η(x)−η(y)≤ κ|x− y|,

which yields |x− y|−1 ≤ κε−1. Using again [51, Lemma 3.2 (b)] we obtain eventually

∫
Σ−

∫
Σ
+
ε

|((η−ηε)ϕ)(x)− ((η−ηε)ϕ)(y)|2

|x− y|3
dσ(x)dσ(y)

≤ κε
1−s
∫

Σ−

∫
Σ
+
ε

[
|ϕ(x)|2 +ϕ(y)|2

|x− y|2−s

]
dσ(x)dσ(y)

≤ κε
1−s
(∫

Σ
+
ε

|ϕ(x)|2dσ(x)+
∫

Σ−
|ϕ(y)|2dσ(y)

)
≤ ε

1−s‖ϕ‖2
W 1/2(Σ;C4)

.

(2.39)

By symmetry a similar estimate can also be shown for the integrals over Σ−×Σ+
ε , Σ+×Σ−ε ,

and Σ−ε ×Σ+ with obvious notations.

Eventually, we have to estimate the integral over Σ
+
0 ×Σ+

ε . For (x,y) ∈ Σ
+
0 ×Σ+

ε it holds∣∣((η−ηε)ϕ)(x)− ((η−ηε)ϕ)(y)
∣∣= ∣∣((ηϕ)(x)− εϕ(y)

∣∣
≤ ε|ϕ(x)−ϕ(y)|+(ε−η(x)) · |ϕ(x)|
≤ ε|ϕ(x)−ϕ(y)|+ |η(y)−η(x)|1/2+s

ε
1/2−s|ϕ(x)|.

The last inequality is true as η(y)> ε for y ∈ Σ+
ε . Using the Lipschitz continuity of η we

conclude from this in a similar way as in (2.38)

∫
Σ
+
0

∫
Σ
+
ε

|((η−ηε)ϕ)(x)− ((η−ηε)ϕ)(y)|2

|x− y|3
dσ(x)dσ(y)

≤ κε
1−s
(∫

Σ
+
ε

|ϕ(x)|2dσ(x)+
∫

Σ
+
0

∫
Σ
+
ε

|ϕ(x)−ϕ(y)|2

|x− y|3
dσ(x)dσ(y)

)
≤ ε

1−s‖ϕ‖2
W 1/2(Σ;C4)

.

(2.40)

By symmetry it is easy to see that a similar estimate is also true for the integrals over Σ+
ε ×

Σ
+
0 , Σ

−
0 ×Σ−ε and Σ−ε ×Σ

−
0 . Combining now the estimates (2.35)–(2.40) we deduce finally

that (2.34) is true and thus, the claim of this proposition is shown for t = 1
2(1− s).
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2.6 Schatten-von Neumann ideals

In this section we summarize several notions and results on Schatten-von Neumann ideals
which are necessary to prove Theorem 1 (iii), Theorem 4 (iii) and some deeper results
in this direction in Sections 4.2 and 5.3. The presentation of the results follows the one
in [20], there one can find also further references.

Let H and K be separable Hilbert spaces. Recall that we denote the set of all bounded
operators A : H→K by B(H,K). If there is no danger of confusion, we skip the spaces
and simply write B. In a similar manner, we use the symbol S∞(H,K) for the space of
all compact operators from H to K and S∞(H) :=S∞(H,H). It is well known (see for
instance [50, 60]) that for K ∈ S∞(H,K) the operator |K| := (K∗K)1/2 is a self-adjoint
and non-negative compact operator in H. The eigenvalues of this operator sk(K), k ∈
N, ordered in a non-increasing way and taking multiplicities into account are called the
singular values of K. Note that sk(K) = sk(K∗). Making use of the singular values one can
make the following further classification of S∞(H,K):

Definition 2.6.1. Let H and K be separable Hilbert spaces and let p > 0. Then the
Schatten-von Neumann ideal of order p is defined by

Sp(H,K) :=

{
K ∈S∞(H,K) :

∞

∑
k=1

sk(K)p < ∞

}
.

Moreover, the weak Schatten-von Neumann ideal of order p is

Sp,∞(H,K) :=
{

K ∈S∞(H,K) : sk(K) = O(k−1/p)
}
.

Assume that 0 < p < q. Then the (weak) Schatten-von Neumann ideals are ordered as
Sp(H,K)⊂Sq(H,K) and Sp,∞(H,K)⊂Sq,∞(H,K). Moreover, we have

Sp(H,K)⊂Sp,∞(H,K) and Sp,∞(H,K)⊂Sq(H,K). (2.41)

The Schatten-von Neumann ideals are ideals in the sense that for A ∈B and K ∈ Sp it
holds AK ∈Sp and KA ∈Sp. Similarly, it holds for A ∈B and K ∈Sp,∞ that AK ∈Sp,∞
and KA ∈ Sp,∞. Eventually, if p,q > 0 and r is chosen such that 1

r = 1
p +

1
q , then for

K1 ∈Sp,∞ and K2 ∈Sq,∞ the product of these operators satisfies

K1K2 ∈Sr,∞. (2.42)

We would like to point out that in applications the Schatten-von Neumann ideal of order
one, which is also known as trace class ideal, are of special importance. For K ∈S1 the
trace of K is defined by

tr(K) :=
∞

∑
k=1

λk(K),
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where λk(K) are the eigenvalues of the compact operator K. Moreover, for K1,K2 ∈ B
with K1K2 ∈S1 and K2K1 ∈S1 it holds the important cyclicity property

tr(K1K2) = tr(K2K1). (2.43)

Finally, let Σ⊂ R3 be the boundary of a compact domain with sufficiently smooth bound-
ary. Using a result from [2] we deduce that operators with range in the Sobolev space
Hs(Σ;C) belong to certain weak Schatten-von Neumann ideals. This is the main ingredi-
ent to prove Theorem 4.2.7 and Theorem 5.3.6 later. The author thanks V. Lotoreichik for
showing him a proof for this proposition.

Proposition 2.6.2. Let k ∈N, let Σ⊂R3 be the boundary of a compact Ck-smooth domain
and let l ∈ {1, . . . ,2k}. Let H be a separable Hilbert space and assume that A : H→
L2(Σ;C) is continuous with ranA⊂ H l/2(Σ;C). Then A ∈S4/l,∞

(
H,L2(Σ;C)

)
.

Proof. For the sake of readability we split the proof into three steps:

Step 1: We show that Al : H→ H l/2(Σ;C), Al f = A f is continuous. For this purpose we
verify that Al is closed. Assume that ( fn)⊂H such that

fn→ f in H and Al fn→ g in H l/2(Σ;C), as n→ ∞.

Then, f ∈H= domAl and as A ∈B(H,L2(Σ;C)) we have Al fn = A fn→ A f in L2(Σ;C4)
for n→ ∞. On the other hand, since H l/2(Σ;C) is embedded continuously in L2(Σ;C) we
have also A fn = Al fn→ g in L2(Σ;C). Thus, we deduce Al f = A f = g and therefore, Al is
closed.

Step 2: Define the function

K(x) :=
1

4π|x|
, x ∈ R3 \{0},

and the operator M0 : L2(Σ;C)→ L2(Σ;C4) acting as

M0ϕ(x) :=
∫

Σ

K(x− y)ϕ(y)dσ(y), x ∈ Σ,ϕ ∈ L2(Σ;C).

It is well-known, see [53, Theorem 6.8, Theorem 6.12, Theorem 7.6, and Corollary 8.13],
that M0 is well defined, self-adjoint, non-negative, and M0 regarded as operator from
L2(Σ;C) to H1(Σ,C) is bijective. Using a scaling of Hilbert spaces argument we see that
also

Ml/2
0 : L2(Σ;C)→ H l/2(Σ;C) (2.44)

is bijective. Moreover, since K is a homogeneous function of order −1 it follows from [2,
Proposition 2.3 and Proposition 2.5] that M0 ∈ S2,∞(L2(Σ;C)). Thus, by the spectral
theorem we have also Ml/2

0 ∈S4/l,∞(L2(Σ;C)).
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Step 3: We write A = Ml/2
0 M−l/2

0 Al . Then using the result of Step 1 and (2.44) we have that
M−l/2

0 Al ∈B(H,L2(Σ;C)). Since Ml/2
0 ∈ S4/l,∞(L2(Σ;C)) by Step 2 we deduce finally

A ∈S4/l,∞(L2(Σ;C)), which was the claimed result.





3 THE MINIMAL, FREE, AND MAXIMAL DIRAC OPERATOR
AND ASSOCIATED INTEGRAL OPERATORS

In this chapter we introduce the free Dirac operator in R3 and we discuss the minimal
and the maximal Dirac operator acting in a bounded or unbounded domain Ω ⊂ R3. Fur-
thermore, we investigate several families of integral operators which are associated to the
fundamental solutions of the corresponding Dirac equation. These objects will play a
crucial role in Chapters 4 and 5 below to define and study the spectral properties of Dirac
operators with singular interactions supported on compact surfaces Σ⊂R3 and self-adjoint
Dirac operators on domains Ω⊂ R3.

3.1 The free, the minimal, and the maximal Dirac operator

Choose units such that h̄ = 1 and let m,c be positive constants denoting the mass of the
particle and the speed of light. Throughout this thesis we work with the following choice
of the Dirac matrices α j and β

α j :=
(

0 σ j
σ j 0

)
and β :=

(
I2 0
0 −I2

)
, (3.1)

where σ j are the Pauli spin matrices

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. (3.2)

A simple computation shows that these matrices fulfill (1.2), but we would like to note that
also other choices for α j and β satisfying (1.2) are possible, compare [68, Appendix 1.A].
Then the free Dirac operator is defined by

A0 f :=−ic
3

∑
k=1

αk∂k f +mc2
β f , domA0 = H1(R3;C4), (3.3)

where αk,β are the Dirac matrices given by (3.1). As in (1.5) we will often use the nota-
tion

A0 f =−icα ·∇ f +mc2
β f .

41
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Let us first summarize some of the basic properties of A0; they can be found, for instance,
in [68, Chapter 1] or [70, Chapter 20]. First, the free Dirac operator is self-adjoint. Next,
using (1.2) it follows that

‖A0 f‖2
R3 = c2‖∇ f‖2

R3 +m2c4‖ f‖2
R3. (3.4)

In particular, the graph norm associated to A0 is equivalent to the norm in H1(R3;C4). It
is well known that the square of A0 coincides with a shifted free Laplace operator in R3,
that means

A2
0 = (−c2

∆+m2c4)I4, domA2
0 = H2(R3;C4), (3.5)

where the operator on the right hand side is understood as 4×4 diagonal operator, where
each non trivial entry acts as −c2∆+m2c4. Eventually, the spectrum of A0 is

σ(A0) = (−∞,−mc2]∪ [mc2,∞).

In the following proposition we compute the resolvent of A0. The particular form of its
integral kernel will be of great importance for our considerations in the following sections.
One can find this result for instance in [68, Section 1.E], but for completeness we add a
direct proof based on (3.5) here. Note that below we use the convention Im

√
µ > 0 for

µ ∈ C\ [0,∞).

Proposition 3.1.1. Let A0 be the free Dirac operator from (3.3) and let λ ∈ ρ(A0) =
C\
(
(−∞,−mc2]∪ [mc2,∞)

)
. Then, the resolvent of A0 acts as

(A0−λ )−1 f (x) =
∫
R3

Gλ (x− y) f (y)dy, x ∈ R3, f ∈ L2(R3;C4),

where the C4×4-valued integral kernel Gλ is given by

Gλ (x) =

(
λ

c2 I4 +mβ +

(
1− i

√
λ 2

c2 − (mc)2|x|

)
i

c|x|2
α · x

)
· e

i
√

λ 2/c2−(mc)2|x|

4π|x|
. (3.6)

Proof. The identity (A0−λ )(A0+λ ) = (−c2∆+m2c4−λ 2)I4, which follows from (3.5),
implies

(A0−λ )−1 = c−2(A0 +λ )

(
−∆+(mc)2− λ 2

c2

)−1

I4. (3.7)

Let f ∈ L2(R3;C4) be fixed. It is well known that(
−∆+(mc)2− λ 2

c2

)−1

f (x) =
∫
R3

ei
√

λ 2/c2−(mc)2|x−y|

4π|x− y|
f (y)dy, (3.8)
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see for instance [61, Example 1 in Section IX.7]. Since (−∆ + (mc)2 − λ 2/c2)−1 f ∈
dom(−∆ · I4) = H2(R3;C4) this function is weakly differentiable. We are going to show
that its first order weak derivatives are

∂ j

(
−∆+(mc)2− λ 2

c2

)−1

f = Tj f , j ∈ {1,2,3}, (3.9)

where

Tj f (x) :=
∫
R3

t j(x− y) f (y)dy, x ∈ R3,

with

t j(x) := ∂ j

(
ei
√

λ 2/c2−(mc)2|·|

4π| · |

)
(x) · I4

=

(
i

√
λ 2

c2 − (mc)2|x|−1

)
ei
√

λ 2/c2−(mc)2|x|

4π|x|3
x j · I4.

Then it follows from (3.7), (3.8), and a straightforward computation that

(A0−λ )−1 f (x) = c−2(A0 +λ )

(
−∆+(mc)2− λ 2

c2

)−1

f (x)

= c−2(A0 +λ )

(∫
R3

ei
√

λ 2/c2−(mc)2|·−y|

4π| ·−y|
f (y)dy

)
(x)

=
∫
R3

Gλ (x− y) f (y)dy,

where Gλ has the form (3.6). It remains to verify (3.9). For this purpose, we note first that
there exists an R > 0 such that for any j ∈ {1,2,3} the function t j satisfies

|t j(x)| ≤ κ

{
|x|−2, |x|< R,

e−Im
√

λ 2/c2−(mc)2|x|, |x| ≥ R,

for some positive constant κ . Hence, the operator Tj is bounded and everywhere defined in
L2(R3;C4); see Proposition 2.4.3. In particular, the function on the right hand side of (3.9)
belongs to L2(R3;C4). For h ∈ C∞

0 (R3;C4) we obtain with the help of Fubini’s theorem
(whose application is allowed due to our previous considerations) and integration by parts
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that (
Tj f ,h

)
R3)

=
∫
R3

∫
R3

t j(x− y) f (y)dyh(x)dx

=
∫
R3

f (y)
∫
R3

t j(x− y)h(x)dxdy

=−
∫
R3

f (y)
∫
R3

ei
√

λ 2/c2−(mc)2|x−y|

4π|x− y|
∂ jh(x)dxdy

=−
∫
R3

∫
R3

ei
√

λ 2/c2−(mc)2|x−y|

4π|x− y|
f (y)dy∂ jh(x)dx

=−
((
−∆+(mc)2− λ 2

c2

)−1

f ,∂ jh
)
R3
.

This shows (3.9) and completes the proof.

Let Ω be a C2-domain in R3 with compact boundary, that means Ω is either a bounded
C2-domain or the complement of such a set. In the following we study the following two
operators acting in L2(Ω;C4): The maximal Dirac operator

T Ω
max f :=−icα ·∇ f +mc2

β f , domT Ω
max =

{
f ∈ L2(Ω;C4) : α ·∇ f ∈ L2(Ω;C4)

}
,

(3.10)
where the derivatives are understood in the distributional sense, and the minimal Dirac
operator T Ω

min := T Ω
max � H1

0 (Ω;C4), which is represented more explicitly by

T Ω
min f :=−icα ·∇ f +mc2

β f , domT Ω
min = H1

0 (Ω;R3). (3.11)

The basic properties of T Ω
min and T Ω

max are collected in the following lemma.

Lemma 3.1.2. Let Ω ⊂ R3 be a C2-smooth domain with compact boundary and let T Ω
max

and T Ω
min be defined by (3.10) and (3.11), respectively. Then T Ω

min is a closed, simple sym-
metric operator in L2(Ω;C4) and (T Ω

min)
∗ = T Ω

max.

Proof. First, we verify that T Ω
min is closed. For that, let fn ⊂ domT Ω

min = H1
0 (Ω;C4) such

that
fn→ f and T Ω

min fn→ g in L2(Ω;C4), as n→ ∞.

We show f ∈ domT Ω
min and T Ω

min f = g. Denote the extensions of f , fn and g onto R3 by
zero by f̃ , f̃n and g̃, respectively, that is

f̃ :=

{
f in Ω,

0 in R3 \Ω,
f̃n =

{
fn in Ω,

0 in R3 \Ω,
and g̃ =

{
g in Ω,

0 in R3 \Ω.
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Then f̃n ∈H1(R3;C4) = domA0, f̃n→ f̃ and A0 f̃n→ g̃ in L2(R3;C4), as n→∞. Since A0

is self-adjoint and thus closed, it follows f̃ ∈ domA0 and A0 f̃ = g̃. Moreover, as the set{
h̃ ∈ H1(R3;C4) : h̃ � Ω ∈ H1

0 (Ω;C4)
}

is a closed subspace of H1(R3;C4) and the graph norm corresponding to A0 is equivalent
to the norm in H1(R3;C4), compare (3.4), we deduce f = f̃ � Ω ∈ H1

0 (Ω;C4) and

T Ω
min f = (A0 f̃ ) � Ω = g̃ � Ω = g.

Hence T Ω
min is closed.

Next, we show that (T Ω
min)

∗ = T Ω
max. First, we prove the inclusion (T Ω

min)
∗ ⊂ T Ω

max. For this
let f ∈ dom(T Ω

min)
∗ and let g ∈C∞

0 (Ω;C4)⊂ domT Ω
min be arbitrary, but fixed. Then it holds(

(T Ω
min)

∗ f ,g
)

Ω
=
(

f ,T Ω
ming

)
Ω
=
(

f ,(−icα ·∇+mc2
β )g
)

Ω
,

which is equivalent to

( f ,α ·∇g)Ω =
1
ic

(
(T Ω

min)
∗ f −mc2

β f ,g
)

Ω
,

that means by definition α ·∇ f =− 1
ic((T

Ω
min)

∗ f −mc2β f )∈ L2(Ω;C4) in the distributional
sense. Therefore f ∈ domT Ω

max and T Ω
max f = (T Ω

min)
∗ f .

To show T Ω
max ⊂ (T Ω

min)
∗, let f ∈ domT Ω

max and let g ∈ C∞
0 (Ω;C4) be arbitrary, but fixed.

Then we have by the definition of the distributional derivative

(Tmax f ,g)Ω =
(

f ,(−icα ·∇+mc2
β )g
)

Ω
= ( f ,T Ω

ming)Ω. (3.12)

Now, let g ∈ domT Ω
min = H1

0 (Ω;C4). Then, there exists a sequence (gn)⊂C∞
0 (Ω;C4) such

that gn → g in H1(Ω;C4), as n→ ∞. Clearly, this implies T Ω
mingn → T Ω

ming in L2(Ω;C4)
for n→ ∞. Hence, the continuity of the scalar product implies that (3.12) holds for all
g ∈ domT Ω

min. Therefore f ∈ dom(T Ω
min)

∗ and (T Ω
min)

∗ f = T Ω
max f , which shows the second

inclusion as well.

It remains to prove that T Ω
min is simple. Assume that T Ω

min = T1⊕ T2, there Tj acts in an
invariant subspace H j ⊂ L2(Ω;C4) of T Ω

min, j ∈ {1,2}, and that T1 = T ∗1 . We prove that T1
must be zero. For that, note (T Ω

min)
2 = T 2

1 ⊕ T 2
2 and T 2

1 = (T 2
1 )
∗ in H1 by the spectral

theorem. Since T 2
1 is closed, we have (T Ω

min)
2 = T 2

1 ⊕T 2
2 . We want to show using (2.4) that

(T Ω
min)

2 is simple. For that consider the operator

AΩ f := (−icα ·∇+mc2
β )2 f = (−c2

∆+m2c4) f , domAΩ = H2(Ω;C4).
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Integration by parts shows AΩ ⊂
(
(T Ω

min)
2)∗, as it holds for arbitrary f ∈ domAΩ and g ∈

dom(T Ω
min)

2(
AΩ f ,g

)
Ω
=
(
(−icα ·∇+mc2

β )2 f ,g
)

Ω
=
(
(−icα ·∇+mc2

β ) f ,(−icα ·∇+mc2
β )g
)

Ω

=
(

f ,(−icα ·∇+mc2
β )2g

)
Ω
=
(

f ,(T Ω
min)

2g
)

Ω
,

as g,(−icα ·∇+mc2β )g∈H1
0 (Ω;C4). It is known from [63, Proposition 4.3] (see also [24,

Proposition 2.2] for unbounded Ω) that the set⋃
λ∈C\R

ker(AΩ−λ )

is dense in L2(Ω;C4). Hence, also⋃
λ∈C\R

ker
((

(T Ω
min)

2)∗−λ

)
=

⋃
λ∈C\R

ker
((

(T Ω
min)

2
)∗−λ

)

is dense in L2(Ω;C4). This means that (T Ω
min)

2 is simple, compare (2.4). From this we
obtain T 2

1 = 0 and hence also T1 = 0. Thus T Ω
min is simple.

Eventually, we prove that smooth functions are a core of T Ω
max. The proof of this result

follows ideas from [25, Lemma 2.1], see also [55, Proposition 2.12] for a similar result.

Lemma 3.1.3. Let Ω ⊂ R3 be a C2-smooth domain with compact boundary and let T Ω
max

be defined by (3.10). Then C∞(Ω;C4) is dense in domT Ω
max equipped with its graph norm.

Proof. We verify the claimed result when Ω is the complement of a bounded C2-domain;
the case that Ω is a bounded C2-domain can be shown in the same way. Assume that
f ∈ domT Ω

max fulfills

0 = ( f ,g)Ω +(T Ω
max f ,T Ω

maxg)Ω

= ( f ,g)Ω +
(
(−icα ·∇+mc2

β ) f ,(−icα ·∇+mc2
β )g
)

Ω

(3.13)

for all g∈C∞(Ω;C4). As C∞
0 (Ω;C4)⊂C∞(Ω;C4) we deduce from this that the distribution

(−icα ·∇+mc2β )2 f exists in L2(Ω;C4) and is equal to − f .

Next, we show
(−icα ·∇+mc2

β ) f ∈ H1
0 (Ω;C4). (3.14)

To see this let h ∈C∞
0 (R3;C4), choose a cutoff function χ ∈C∞

0 (R3;C4) which satisfies

χ(x) =

{
1, x ∈ B(0,1),
0, x ∈ R3 \B(0,2),
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and recall the definition of the free Dirac operator A0 from (3.3). Define for n ∈ N the
functions χn := χ(·/n) and un := (χnA−1

0 h) � Ω. Then un ∈C∞(Ω;C4) and un→ (A−1
0 h) �

Ω in H1(Ω;C4), as n→ ∞. Employing (3.13) we obtain(
A−1

0 (− f ⊕0),h
)
R3 =−( f ,(A−1

0 h) � Ω)Ω =− lim
n→∞

( f ,un)Ω

= lim
n→∞

(
(−icα ·∇+mc2

β ) f ,(−icα ·∇+mc2
β )un

)
Ω

=
(
(−icα ·∇+mc2

β ) f ,(−icα ·∇+mc2
β )(A−1

0 h) � Ω
)

Ω

=
(
(−icα ·∇+mc2

β ) f ⊕0,h
)
R3.

Since this is true for any h ∈C∞
0 (R3;C4) we deduce

(−icα ·∇+mc2
β ) f ⊕0 = A−1

0 (− f ⊕0) ∈ domA0 = H1(R3;C4).

As the trace of (−icα ·∇+mc2β ) f ⊕0 at ∂Ω is zero, we get finally (3.14).

By (3.14) there exists a sequence (hn) ⊂ C∞
0 (Ω;C4) with hn → (−icα ·∇+mc2β ) f in

H1(Ω;C4) for n→ ∞. Therefore, using the definition of the distributional derivative and
(−icα ·∇+mc2β )2 f =− f we conclude

0≤
(
(−icα ·∇+mc2

β ) f ,(−icα ·∇+mc2
β ) f

)
Ω
= lim

n→∞

(
hn,(−icα ·∇+mc2

β ) f
)

Ω

= lim
n→∞

(
(−icα ·∇+mc2

β )hn, f
)

Ω
=
(
(−icα ·∇+mc2

β )2 f , f
)

Ω

=−( f , f )Ω ≤ 0,

that means f = 0. Therefore C∞(Ω;C4) is dense in domT Ω
max.

Finally, we construct in the case that Ω⊂ R3 is the complement of a bounded C2-domain
for λ ∈ (−∞,−mc2]∪ [mc2,∞) a sequence (ψλ

n ) ⊂ domT Ω
min which satisfies all proper-

ties of a singular Weyl-sequence. This will allow us to show that (−∞,−mc2]∪ [mc2,∞)
belongs to the essential spectrum of Dirac operators with singular interactions and of
self-adjoint Dirac operators in Ω with suitable boundary conditions. Let R > 0 such that
R3 \B(0,R)⊂Ω. Moreover, choose for λ ∈ (−∞,−mc2]∪ [mc2,∞) a vector ζ ∈ C4 such
that

(√
λ 2−m2c4α1 +mβ +λ I4

)
ζ 6= 0, a cutoff-function χ ∈C∞

0 (R) with χ(r) = 1 for

|r| < 1
2 and χ(r) = 0 for r > 1 and set xn := (R+ n2,0,0)>, n ∈ N. Then we define the

function ψλ
n by

ψ
λ
n (x) :=

1
n3/2 χ

(
1
n
|x− xn|

)
ei
√

λ 2/c2−m2c2x·e1
(√

λ 2−m2c4α1 +mc2
β +λ I4

)
ζ . (3.15)

Some useful properties of ψλ
n are stated in the following lemma:
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Lemma 3.1.4. Let Ω⊂ R3 be the complement of a bounded C2-domain, let T Ω
min be given

by (3.11) and let λ ∈ (−∞,−mc2]∪ [mc2,∞). Then the functions ψλ
n defined by (3.15) have

the following properties:

(a) ψλ
n ∈ domT Ω

min.

(b) ‖ψλ
n ‖Ω = const. > 0.

(c) ψλ
n converges weakly to zero, as n→ ∞.

(d) (T Ω
min−λ )ψλ

n → 0 as n→ ∞.

Proof. First, by definition ψλ
n is smooth and suppψλ

n ∩ ∂Ω = /0 and thus ψλ
n ∈ domT Ω

min,
that means item (a) is true. Moreover, it holds

‖ψλ
n ‖=

∣∣∣(√λ 2−m2c4α1 +mc2
β +λ

)
ζ

∣∣∣ ·(∫
B(0,1)

|χ(|y|)|2dy
)1/2

= const.,

which is assertion (b). Furthermore, since the supports of the ψλ
n are pairwise disjoint, the

sequence (ψλ
n ) converges weakly to zero as n→ ∞. This is statement (c). Eventually, to

verify (d) a straightforward computation shows

(T Ω
min−λ )ψλ

n (x) = (−icα ·∇+mc2
β −λ )ψλ

n (x)

=− i
n5/2 ei

√
λ 2−m2x·e1 χ

′
(

1
n
|x− xn|

)
α · x− xn

|x− xn|

(√
λ 2/c2−m2c2α1 +mc2

β +λ I4

)
ζ

+
1

n3/2 χ

(
1
n
|x− xn|

)
ei
√

λ 2/c2−m2c2x·e1

·
(√

λ 2−m2c4α1 +mc2
β −λ I4

)(√
λ 2−m2c4α1 +mc2

β +λ I4

)
ζ .

The anti-commutation relation (1.2) implies(√
λ 2−m2c4α1 +mc2

β −λ I4

)(√
λ 2−m2c4α1 +mc2

β +λ I4

)
= 0.

Hence, we have

‖(T Ω
min−λ )ψλ

n ‖Ω ≤
C
n

(∫
B(0,1)

|χ ′(|y|)|2dy
)1/2

and therefore, (T Ω
min−λ )ψλ

n → 0 as n→ ∞.
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3.2 Integral operators – Part I: Basic properties

In this section we introduce several families of integral operators associated to the Green’s
function Gλ for the resolvent of A0 that will play an important role in the analysis of
Dirac operators with singular potentials and of Dirac operators on bounded domains. In
this section, we will introduce all operators as bounded operators in the corresponding L2-
spaces. Later, in Chapter 4, it will turn out that these operators are the γ-field and the Weyl
function associated to a special quasi boundary triple. With this knowledge we will prove
in Section 4.1.3 additional properties of these integral operators using the abstract theory
of quasi boundary triples.

Throughout this section, let Σ ⊂ R3 be a compact and closed C2-smooth surface that
splits R3 into a bounded part Ω+ and an unbounded part Ω−. The unit normal vector
field at Σ pointing inside Ω− is denoted by ν . Recall for λ ∈ ρ(A0) = C\

(
(−∞,−mc2]∪

[mc2,∞)
)

the definition of the function Gλ from (3.6). Then we define the operators
Φλ : L2(Σ;C4)→ L2(R3;C4),

Φλ ϕ(x) :=
∫

Σ

Gλ (x− y)ϕ(y)dσ(y), x ∈ R3,ϕ ∈ L2(Σ;C4), (3.16)

and Cλ : L2(Σ;C4)→ L2(Σ;C4)

Cλ ϕ(x) := lim
ε↘0

∫
Σ\B(x,ε)

Gλ (x− y)ϕ(y)dσ(y), x ∈ Σ,ϕ ∈ L2(Σ;C4). (3.17)

The basic properties of Φλ and Cλ are summarized in the following proposition. The proof
of this result follows ideas from [5, Lemma 2.1 and Lemma 3.3].

Proposition 3.2.1. Let for λ ∈ ρ(A0) the operators Φλ and Cλ be defined as in (3.16)
and (3.17), respectively. Then, the following assertions are true:

(i) The operator Φλ is bounded and everywhere defined. Its adjoint is explicitly given
by Φ∗

λ
: L2(R3;C4)→ L2(Σ;C4),

Φ
∗
λ

f (x) =
∫
R3

G
λ
(x− y) f (y)dy, x ∈ Σ, f ∈ L2(R3;C4). (3.18)

(ii) The operator Cλ is bounded and everywhere defined.

(iii) Let ϕ ∈ L2(Σ;C4) and set f := Φλ ϕ . Then, the non-tangential limits

ψ±(x) := lim
Ω±3y→x∈Σ

f (y)

exist and are given by

ψ± = Cλ ϕ∓ i
2c

(α ·ν)ϕ.
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(iv) −4c2(Cλ α ·ν)2 =−4c2(α ·νCλ )
2 = I4 for all λ ∈ (−mc2,mc2).

Before we prove the preceding proposition, we note that, using the same notations as there,
assertion (iii) and (1.2) imply

1
2
(
ψ++ψ−

)
= Cλ ϕ and icα ·ν

(
ψ+−ψ−

)
= ϕ. (3.19)

Proof of Proposition 3.2.1. (i) First, we note that there exist constants κ,R > 0 such that
for x ∈ R3 \{0}

|Gλ (x)| ≤ κ

{
|x|−2, |x| ≤ R,

e−Im
√

λ 2/c2−(mc)2|x|, |x|> R.

Hence Φλ is bounded by Proposition 2.4.4. Next, we compute the adjoint operator Φ∗
λ

:
L2(R3;C4)→ L2(Σ;C4). Let ϕ ∈ L2(Σ;C4) and f ∈ L2(R3;C4) be fixed. Then, by using
G

λ
(x− y) = Gλ (y− x) and Fubini’s theorem we see

(ϕ,Φ∗
λ

f )Σ = (Φλ ϕ, f )R3 =
∫
R3

∫
Σ

Gλ (x− y)ϕ(y)dσ(y) f (x)dx

=
∫

Σ

ϕ(y)
∫
R3

G
λ
(y− x) f (x)dxdσ(y).

Since this is true for all ϕ ∈ L2(Σ;C4) the claimed representation of Φ∗
λ

follows.

(ii) To show the boundedness of Cλ consider the splitting

Cλ = Tλ
1 +Tλ

2 +Tλ
3 (3.20)

with Tλ
j : L2(Σ;C4)→ L2(Σ;C4), j ∈ {1,2,3}, acting as

Tλ
j ϕ(x) = lim

ε↘0

∫
Σ\B(x,ε)

tλ
j (x− y)ϕ(y)dσ(y), x ∈ Σ,ϕ ∈ L2(Σ;C4), (3.21)

and

tλ
1 (x) =

(
λ

c2 I4 +mβ +

√
λ 2

c2 − (mc)2 α · x
c|x|

)
· e

i
√

λ 2/c2−(mc)2|x|

4π|x|
,

tλ
2 (x) =

i(α · x)
4π|x|3

(
ei
√

λ 2/c2−(mc)2|x|−1
)
, tλ

3 (x) =
i(α · x)
4π|x|3

.

First, there exists κ1 > 0 such that |tλ
1 (x)| ≤ κ1

(
1+ |x|−1) for all x ∈ R3 \{0}. Hence Tλ

1
is bounded by Proposition 2.4.5. Furthermore, since

ei
√

λ 2/c2−(mc)2|x|−1 =
∫ 1

0

d
dt

eit
√

λ 2/c2−(mc)2|x|dt

= i

√
λ 2

c2 − (mc)2|x|
∫ 1

0
eit
√

λ 2/c2−(mc)2|x|dt,
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there is a κ2 such that |tλ
2 (x)| ≤ κ2

(
1+ |x|−1) for all x ∈R3 \{0}. Proposition 2.4.5 shows

that also Tλ
2 is bounded. Finally, it follows easily from Proposition 2.4.6 that also Tλ

3 is
bounded. Therefore (3.20) shows that Cλ is bounded.

The proof of assertion (iii) can be found in [5, Lemma 3.3] for λ = 0. The general state-
ment can be shown in exactly the same way. Item (iv) is shown in [6, Lemma 2.2].

If we have a closer look onto the proof of the boundedness of Cλ , then it turns out that this
family of operators is uniformly bounded for λ ∈ (−mc2,mc2) in the operator norm. The
proof of this result follows the one of [6, Lemma 3.2].

Proposition 3.2.2. Let for λ ∈ ρ(A0) the operators Cλ be defined as in (3.17). Then the
operators Cλ are uniformly bounded in (−mc2,mc2), that means there exists a constant
K > 0 such that

sup
λ∈(−mc2,mc2)

‖Cλ‖ ≤ K.

Proof. As in the proof of Proposition 3.2.1 (ii) we write for λ ∈ (−mc2,mc2)

Cλ = Tλ
1 +Tλ

2 +Tλ
3 ,

where Tλ
j , j ∈ {1,2,3}, is given by (3.21). To show the claim it suffices to verify that Tλ

1 ,
Tλ

2 and Tλ
3 are uniformly bounded by a constant independent of λ . First, there exists a

constant κ1 > 0 such that

|tλ
1 (x)| ≤ 2

[
|λ |
c2 +m+

√
(mc)2− λ

c2

]
κ1

|x|
, x ∈ R3 \{0},

and since λ ∈ (−mc2,mc2) is uniformly bounded, we find

|tλ
1 (x)| ≤

κ2

|x|
, x ∈ R3 \{0},

with some κ2 independent of λ . Therefore, Proposition 2.4.5 implies that Tλ
1 is uniformly

bounded with respect to λ .

Next, we note that

e−
√

(mc)2−λ 2/c2|x|−1 =
∫ 1

0

d
dt

e−t
√

(mc)2−λ 2/c2|x|dt

=−
√

(mc)2− λ 2

c2 |x|
∫ 1

0
e−t
√

(mc)2−λ 2/c2|x|dt.

(3.22)
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Thus, there exists a constant κ3 independent of λ such that

|tλ
2 (x)| ≤

|α · x|
4πc|x|2

√
(mc)2− λ 2

c2 ≤
κ3

|x|
, x ∈ R3 \{0}. (3.23)

Hence, it follows from Proposition 2.4.5 that also Tλ
2 is bounded by a constant independent

of λ .

Eventually, we note that Tλ
3 is actually independent of λ and bounded by Proposition 2.4.6.

This finishes the proof of this proposition.

In the following proposition we discuss the commutator of the singular integral operator
Cλ and a Lipschitz continuous function and show that this operator increases the smooth-
ness. This has important consequences for the analysis of self-adjoint Dirac operators on
domains and with singular interactions and it will be used in the proofs of many of the
main results of this thesis. The proof of the following proposition is based on a classical
result of Calderón [32], but we trace our commutator back to another one treated in [55]
and use a result shown there.

Proposition 3.2.3. Let for λ ∈ ρ(A0) = C\
(
(−∞,−mc2]∪ [mc2,∞)

)
the operator Cλ be

defined by (3.17) and let τ : Σ→ R be Lipschitz continuous. Then for any s ∈ [0,1] the
commutator of Cλ and τ gives rise to a bounded operator

Cλ τ− τCλ : Hs−1(Σ;C4)→ Hs(Σ;C4).

Proof. We are going to show the claim for s = 1, the statement for s = 0 follows then by a
duality argument. Finally, for s ∈ (0,1) the claimed assertion can be shown by interpola-
tion.

We split Cλ as
Cλ = Tλ

1 +Tλ
2 ,

where Tλ
j : L2(Σ;C4)→ L2(Σ;C4), j ∈ {1,2}, is given by

Tλ
j ϕ(x) := lim

ε↘0

∫
Σ\B(x,ε)

tλ
j (x− y)ϕ(y)dσ(y), x ∈ Σ,ϕ ∈ L2(Σ;C4),

with

tλ
1 (x) :=

[
λ

c2 I4 +mβ +

√
λ

c2 − (mc)2 α · x
c|x|

]
ei
√

λ 2/c2−(mc)2|x|

4π|x|

+
i(α · x)
4πc|x|3

(
ei
√

λ 2/c2−(mc)2|x|−1
)
,

tλ
2 (x) :=

i(α · x)
4πc|x|3

.
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We show that the commutator of τ with both operators Tλ
1 and Tλ

2 , respectively, is bounded
from L2(Σ;C4) to H1(Σ;C4).

First, we show that K := Tλ
1 τ − τTλ

1 : L2(Σ;C4)→ H1(Σ;C4) is bounded. By the closed
graph theorem it is sufficient to show that ranK⊂ H1(Σ;C4). Let ϕ ∈ L2(Σ;C4) be fixed.
Let {Λ j,U j,Wj}l

j=1 be a parametrization of Σ, let {χ j}l
j=1 be a partition of unity subordi-

nate to {Wj} and define the functions ϕ j(v) := ϕ(Λ j(v)), v ∈U j, and

ki j(u,v) := χi(Λi(u))χ j(Λ j(v))t1
λ
(Λi(u)−Λ j(v))(τ(Λ j(v))− τ(Λi(u))), u ∈Ui,v ∈U j.

Moreover, we introduce for indices i, j ∈ {1, . . . , l} the corresponding operators Ki j :
L2(U j,

√
detG jdv)→ L2(Ui,

√
detGidu) acting as

Ki j f (u) :=
∫

U j

ki j(u,v) f (v)
√

detG j(v)dv, u ∈Ui, f ∈ L2(U j,
√

detG jdv).

Let x ∈ Σ and choose for ui ∈Ui with x = Λi(ui), if x ∈Vi. Then in view of (2.28) it holds

Kϕ(x) =
l

∑
j=1

∫
U j

t1
λ
(x−Λ j(v))χ j(Λ j(v))(τ(Λ j(v))− τ(x))ϕ(Λ j(v))

√
detG j(v)dv

=
l

∑
i=1

l

∑
j=1

∫
U j

ki j(ui,v)ϕ j(v)
√

detG j(v)dv =
l

∑
i, j=1

Ki jϕ j(ui).

Thus, it suffices to prove Ki jϕ j ∈ H1(Ui). Using that τ is Lipschitz continuous and per-
forming a similar calculation as in (3.22) and (3.23) we see that there exists a constant κ1
such that for any x,y ∈ Σ ∣∣t1

λ
(x− y)(τ(y)− τ(x))

∣∣≤ κ1,

which yields that ki j is also bounded. Moreover, ki j is (weakly) differentiable in u almost
everywhere and it holds by the product rule

|∂ukki j(u,v)| ≤
κ2

|u− v|

for a constant κ2. Hence, by Proposition 2.4.3 the operator Kk
i j : L2(U j,

√
detG jdv)→

L2(Ui,
√

detGidu) acting as

Kk
i j f (u) :=

∫
U j

∂uk(ki j(u,v)) f (v)
√

detG j(v)dv, u ∈Ui, f ∈ L2(U j,
√

detG jdv),

is bounded. Eventually, one can show in the same way as in the proof of Proposition 3.1.1
that for f ∈ L2(U j,

√
detG jdv) the function Ki j f is weakly differentiable and that its weak

derivative is
∂ukKi j f =Kk

i j f ,
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compare (3.9). Hence, the claimed mapping properties of the commutator of Tλ
1 and τ

hold.

Finally, the fact that the commutator Tλ
2 τ − τTλ

2 is bounded follows from [55, Proposi-
tion 2.8]. In fact, in the proof of this result it is shown that a very similar operator, which is
denoted there as K2,0 (see also the definition of the operators with kernels cq,k in [55]) and
which is an integral operator with the same kernel as Tλ

2 τ − τTλ
2 up to the multiplication

with a constant matrix, is bounded as an operator from L2(Σ;C4) mapping to H1(Σ;C4).
In [55] only the special case τ = ν was considered, but the argument using a classical re-
sult from [32] applies actually for any τ which has weak derivatives in L∞(Σ), in particular
for all Lipschitz continuous τ .

Finally, we provide some useful anti-commutator properties of Cλ and the Dirac matrices.
These facts are also some of the main ingredients to prove later the self-adjointness of
Dirac operators with singular interactions and of Dirac operators on domains.

Proposition 3.2.4. Let for λ ∈ ρ(A0) = C\
(
(−∞,−mc2]∪ [mc2,∞)

)
the operator Cλ be

defined by (3.17). Then the following statements hold:

(i) The anti-commutator A := C0(α ·ν)+ (α ·ν)C0 can be extended to a bounded op-
erator

Ã : H−1/2(Σ;C4)→ H1/2(Σ;C4).

(ii) The anti-commutator Bλ := Cλ β +βCλ can be extended to a bounded operator

B̃λ : H−1/2(Σ;C4)→ H1/2(Σ;C4).

Proof. The proof of item (i) can be found in [55, Proposition 2.8]. It remains to show
statement (ii). Using the anti-commutation relation (1.2) we see that Bλ is an integral
operator with kernel

bλ (x− y) := 2
(

λ

c2 β +mI4

)
ei
√

λ 2/c2−(mc)2|x−y|

4π|x− y|

and thus, Bλ = 2
(

λ

c2 β +mI4
)
SLλ 2/c2−(mc)2 , where SLµ denotes the single layer boundary

integral operator for −∆− µ . It is well known that SLλ 2/c2−(mc)2 gives rise to a bounded
operator from H−1/2(Σ;C4) to H1/2(Σ;C4), see for instance [53, Theorem 6.11]. This
implies the statement of item (ii).



4 DIRAC OPERATORS WITH SINGULAR INTERACTIONS

In this chapter we investigate Dirac operators with singular interactions supported on a
closed and compact surface Σ ⊂ R3. First, in Section 4.1.1 we introduce a quasi bound-
ary triple {L2(Σ;C4),ΓΣ

0 ,Γ
Σ
1} which is suitable to define and study these Dirac operators

with singular interactions. It will turn out that the γ-field and the Weyl function associated
to this quasi boundary triple coincide with the integral operators Φλ and Cλ introduced
in Section 3.2. Moreover, we will see that the triple {L2(Σ;C4),ΓΣ

0 ,Γ
Σ
1} satisfies the as-

sumptions from Theorem 2.2.13. Hence, we can transform this quasi boundary triple to
an ordinary boundary triple {L2(Σ;C4),ϒΣ

0 ,ϒ
Σ
1}; cf. Theorem 4.1.5. Eventually, with the

aid of the ordinary boundary triple and the abstract results from Section 2.2 we will derive
more involved results on the integral operators Φλ and Cλ including a detailed analysis of
their mapping properties in Section 4.1.3. These results will play then a crucial role in the
study of Dirac operators with singular interactions.

In Section 4.2 we introduce with the help of the quasi boundary triple {L2(Σ;C4),ΓΣ
0 ,Γ

Σ
1}

Dirac operators with singular interactions. In the case of non-critical interaction strengths
we will prove self-adjointness of the operators and provide the basic spectral properties of
them.

In contrast to the non-critical interaction strengths it will turn out in Section 4.3 that for
critical interaction strengths Dirac operators with singular interactions introduced in Sec-
tion 4.2 with the quasi boundary triple {L2(Σ;C4),ΓΣ

0 ,Γ
Σ
1} are not self-adjoint. But for

constant ηe and ηs with η2
e −η2

s = 4c2 we will be able to prove essential self-adjointness
and with the help of the ordinary boundary triple {L2(Σ;C4),ϒΣ

0 ,ϒ
Σ
1} we can compute the

self-adjoint realization in this case as well. Furthermore, we will be able to state some of
the basic spectral properties also in the case of critical interaction strength.

Finally, in the situation of purely electrostatic and Lorentz scalar shell interactions we
investigate the nonrelativistic limit. It will turn out that these Hamiltonians are the rela-
tivistic counterparts of Schrödinger operators with δ -potentials. In particular, this yields a
justification for the usage of Dirac operators with singular interactions as idealized models
for Dirac operators with squeezed potentials.

The results in this chapter are generalizations of [11,14] and the presentation in this section
follows closely these papers.

55
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4.1 Boundary triples for Dirac operators with singular interactions

In this section we introduce first a quasi boundary triple which allows us to introduce Dirac
operators with singular interactions in a natural way via jump conditions at the surface Σ.
Then, in Section 4.1.2 we will transform this quasi boundary triple with the methods de-
scribed in Section 2.2 to an ordinary boundary triple, which enables us then to prove self-
adjointness also in the case of critical interaction strengths.

4.1.1 A quasi boundary triple for Dirac operators with δ -shell interactions

Throughout this chapter let Ω+ always be a bounded domain in R3 with C2-smooth bound-
ary Σ := ∂Ω+ and set Ω− := R3 \Ω+. We denote the normal vector field at Σ pointing
outwards Ω+ by ν . We will often make use of the orthogonal decomposition L2(R3;C4) =
L2(Ω+;C4)⊕L2(Ω−;C4) and we write for f ∈ L2(R3;C4), in this sense, f = f+⊕ f− with
f± := f � Ω±.

First, we define the operator T Σ in L2(R3;C4) by

T Σ f := (−icα ·∇+mc2
β ) f+⊕ (−icα ·∇+mc2

β ) f−,

domT Σ := H1(Ω+;C4)⊕H1(Ω−;C4),
(4.1)

and the mappings ΓΣ
0 ,Γ

Σ
1 : domT Σ→ L2(Σ;C4) acting as

Γ
Σ
0 f := ic(α ·ν)( f+|Σ− f−|Σ) and Γ

Σ
1 f :=

1
2
( f+|Σ + f−|Σ), f ∈ domT Σ. (4.2)

Note that ranΓΣ
0 , ranΓΣ

1 ⊂ H1/2(Σ;C4), as domT Σ = H1(Ω+;C4)⊕H1(Ω−;C4) and Σ is
C2-smooth, compare Proposition 2.3.3 and Lemma 2.5.1.

In the following theorem we show that {L2(Σ;C4),ΓΣ
0 ,Γ

Σ
1} is a quasi boundary triple and

that T Σ coincides with the maximal Dirac operator T Ω+
max⊕T Ω−

max from (3.10).

Theorem 4.1.1. Let A0 be the free Dirac operator from (3.3), let T Σ,ΓΣ
0 and ΓΣ

1 be given
by (4.1) and (4.2), respectively, and define the operator SΣ acting in L2(R3;C4) by

SΣ := A0 � H1
0 (R3 \Σ;C4). (4.3)

Then SΣ is closed and symmetric, (SΣ)∗ = T Σ = T Ω+
max⊕T Ω−

max and {L2(Σ;C4),ΓΣ
0 ,Γ

Σ
1} is a

quasi boundary triple for (SΣ)∗. Moreover,

ran(ΓΣ
0 ,Γ

Σ
1) = H1/2(Σ;C4)×H1/2(Σ;C4) (4.4)

and T Σ � kerΓΣ
0 is the free Dirac operator A0.
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Proof. First, we mention that SΣ = T Ω+
min ⊕T Ω−

min , where T Ω±
min is the minimal Dirac operator

given by (3.11). Hence, it is clear by Lemma 3.1.2 that SΣ is closed and symmetric and
that (SΣ)∗ = T Ω+

max⊕T Ω−
max. Moreover, Lemma 3.1.3 implies that T Σ is dense in T Ω+

max⊕T Ω−
max,

as C∞(Ω+;C4)⊕C∞(Ω−;C4)⊂ H1(Ω+;C4)⊕H1(Ω−;C4) = domT Σ.

Let us prove now that the abstract Green’s identity is fulfilled. Assume that f = f+⊕ f−,
g = g+⊕g− ∈ domT Σ = H1(Ω+;C4)⊕H1(Ω−;C4). Then, integration by parts shows(
(−icα ·∇+mc2

β ) f±,g±
)

Ω±
−
(

f±,(−icα ·∇+mc2
β )g±

)
Ω±

=∓
(
icα ·ν f±|Σ,g±|Σ

)
Σ
,

as ν is pointing outwards Ω+. By adding the above formula for Ω+ and Ω− we obtain

(T Σ f ,g)R3− ( f ,T Σg)R3 = (ΓΣ
1 f ,ΓΣ

0 g)Σ− (ΓΣ
0 f ,ΓΣ

1 g)Σ,

which is Green’s identity.

Next, we verify the range property (4.4). Let ϕ,ψ ∈ H1/2(Σ;C4) and choose functions
f+ ∈ H1(Ω+;C4) and g ∈ H1(R3;C4) that satisfy

icα ·ν f+|Σ = ϕ and g|Σ = ψ− 1
2

f+|Σ,

respectively. Then we have h := ( f+⊕0)+g ∈ domT Σ and

Γ
Σ
0 h = icα ·ν

(
f+|Σ +g+|Σ−g−|Σ

)
= ϕ and Γ

Σ
1 h =

1
2

f+|Σ +g|Σ = ψ.

Therefore (4.4) is shown and, in particular, ran(ΓΣ
0 ,Γ

Σ
1) is dense in L2(Σ;C4)×L2(Σ;C4).

Finally kerΓΣ
0 = H1(R3;C4). Hence T Σ � kerΓΣ

0 coincides with the self-adjoint free Dirac
operator A0. Therefore {L2(Σ;C4),ΓΣ

0 ,Γ
Σ
1} is a quasi boundary triple for (SΣ)∗ and all

claims have been shown.

Next, we compute the γ-field and the Weyl function associated to the quasi boundary triple
in Theorem 4.1.1. It turns out that these operators coincide with restrictions of the integral
operators Φλ and Cλ defined in Section 3.2.

Proposition 4.1.2. Let {L2(Σ;C4),ΓΣ
0 ,Γ

Σ
1} be given as in Theorem 4.1.1, let λ ∈ ρ(A0) =

C\
(
(−∞,−mc2]∪ [mc2,∞)

)
, and let Φλ and Cλ be defined by (3.16) and (3.17), respec-

tively. Then the following holds:

(i) The value of the γ-field γΣ(λ ) : domγΣ(λ ) ⊂ L2(Σ;C4)→ L2(R3;C4) is defined on
domγΣ(λ ) = H1/2(Σ;C4) and is explicitly given by

γ
Σ(λ ) = Φλ � H1/2(Σ;C4).

Each γΣ(λ ) is a densely defined bounded operator from L2(Σ;C4) to L2(R3;C4)
and a bounded and everywhere defined operator from H1/2(Σ;C4) to H1(Ω+;C4)⊕
H1(Ω−;C4). The adjoint γΣ(λ )∗ : L2(R3;C4)→ L2(Σ;C4) is bounded and every-
where defined and coincides with Φ∗

λ
.
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(ii) The value of the Weyl function MΣ(λ ) : domMΣ(λ )⊂ L2(Σ;C4)→ L2(Σ;C4) is de-
fined on the set domMΣ(λ ) = H1/2(Σ;C4) and explicitly given by

MΣ(λ ) = Cλ � H1/2(Σ;C4).

Each MΣ(λ ) is densely defined and bounded in L2(Σ;C4) and bounded and every-
where defined in H1/2(Σ;C4).

Proof. First we note that domγΣ(λ ) = domMΣ(λ ) = ranΓΣ
0 = H1/2(Σ;C4), see (4.4).

To prove item (i) we recall first that γΣ(λ )∗ = ΓΣ
1(A0−λ )−1 and this operator acts as

Γ
Σ
1(A0−λ )−1 f (x) =

∫
R3

G
λ
(x− y) f (y)dy = Φ

∗
λ

f (x), x ∈ Σ, f ∈ L2(R3;C4),

see (3.18), where Gλ is the Green’s function for the resolvent of A0 from (3.6). Hence, it
is clear that

γ
Σ(λ ) = Φλ � domγ

Σ(λ ) = Φλ � H1/2(Σ;C4),

which is a bounded and densely defined operator from L2(Σ;C4) to L2(R3;C4), com-
pare Proposition 3.2.1 (i). Eventually, to see that γΣ(λ ) regarded as an operator from
H1/2(Σ;C4) to H1(Ω+;C4)⊕H1(Ω−;C4) is bounded we show that it is closed. Then the
closed graph theorem implies the claim. Assume that ϕn ⊂ domγΣ(λ ) is a sequence such
that

ϕn→ ϕ in H1/2(Σ;C4) and γ
Σ(λ )ϕn→ f in H1(Ω+;C4)⊕H1(Ω−;C4).

Then ϕ ∈ H1/2(Σ;C4) = domγΣ(λ ) and γΣ(λ )ϕn → f in L2(R3;C4), as H1(Ω+;C4)⊕
H1(Ω−;C4) is continuously embedded in L2(R3;C4). On the other hand, since γΣ(λ ) is
continuous from L2(Σ;C4) to L2(R3;C4), we have also γΣ(λ )ϕn→ γΣ(λ )ϕ in L2(R3;C4)
and hence

f = lim
n→∞

γ
Σ(λ )ϕn = γ

Σ(λ )ϕ.

Therefore γΣ(λ ) : H1/2(Σ;C4)→ H1(Ω+;C4)⊕H1(Ω−;C4) is closed.

To show assertion (ii) we note that it holds by Definition 2.2.2, item (i), and Proposi-
tion 3.2.1 (iii) for any ϕ ∈ H1/2(Σ;C4)

MΣ(λ )ϕ = Γ
Σ
1 γ

Σ(λ )ϕ = Γ
Σ
1 Φλ ϕ =

1
2
(
(Φλ ϕ)+|Σ +(Φλ ϕ)−|Σ

)
= Cλ ϕ,

compare (3.19). Hence MΣ(λ ) = Cλ � H1/2(Σ;C4). This is a densely defined and bounded
operator by Proposition 3.2.1 (ii). Finally, since γΣ(λ ) is bounded from H1/2(Σ;C4) to
H1(Ω+;C4)⊕H1(Ω−;C4) by (i), we conclude by the mapping properties of the trace
operator that MΣ(λ ) is well-defined and bounded in H1/2(Σ;C4).
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4.1.2 An ordinary boundary triple for Dirac operators with δ -shell interactions

In this section we transform and extend the quasi boundary triple {L2(Σ;C4),ΓΣ
0 ,Γ

Σ
1} to

an ordinary boundary triple using the techniques described in Section 2.2. Recall the
definition of the sets

G Σ
0 := ran(ΓΣ

0 � Γ
Σ
1) and G Σ

1 := ran(ΓΣ
1 � Γ

Σ
0).

Lemma 4.1.3. Let T Σ be given by (4.1), let (SΣ)∗= T Ω+
max⊕T Ω−

max and let {L2(Σ;C4),ΓΣ
0 ,Γ

Σ
1}

be the quasi boundary triple from Theorem 4.1.1. Then the operator AΣ
∞ := T Σ � kerΓΣ

1 is
self-adjoint in L2(R3;C4) with σ(AΣ

∞)⊂ σ(A0). Moreover

G Σ
0 = G Σ

1 = H1/2(Σ;C4) (4.5)

and the mappings ΓΣ
0 ,Γ

Σ
1 : domT Σ→ L2(Σ;C4) have surjective extensions

Γ̃
Σ
0 : dom(SΣ)∗→ H−1/2(Σ;C4) and Γ̃

Σ
1 : dom(SΣ)∗→ H−1/2(Σ;C4),

which are bounded with respect to the graph norm induced by (SΣ)∗.

Proof. First, we prove that AΣ
∞ is self-adjoint. Via Green’s identity it is not difficult to see

that AΣ
∞ is symmetric, compare (2.9). Thus, it suffices to show that AΣ

∞ is bijective. Using
the Birman-Schwinger principle from Theorem 2.2.5 (i) it follows that AΣ

∞ is injective,
as MΣ(0) = C0 � H1/2(Σ;C4) is injective by Proposition 3.2.1 (iv). To show that AΣ

∞ is
also surjective assume that f ∈ L2(R3;C4) is arbitrary, but fixed. Then f ∈ ranAΣ

∞ if and
only if γΣ(0)∗ f ∈ ranMΣ(0), compare Theorem 2.2.5 (ii). Because of (3.18) and the trace
theorem we have γΣ(0)∗ f = Φ(0)∗ f = (A−1

0 f )|Σ ∈ H1/2(Σ;C4). Moreover, as Σ is C2-
smooth, it follows from Proposition 3.2.1 (iv) that MΣ(0) = C0 � H1/2(Σ;C4) is bijective
in H1/2(Σ;C4). Hence γΣ(0)∗ f ∈ ranMΣ(0) for any f ∈ L2(R3;C4), which implies that AΣ

∞

is self-adjoint. Furthermore, since MΣ(λ ) is bijective in H1/2(Σ;C4) for any λ ∈ ρ(A0),
see Proposition 4.1.2 and Proposition 3.2.1 (iv), it follows from Theorem 2.2.5 (i)-(ii) that
AΣ

∞−λ is bijective for any λ ∈ ρ(A0), that means ρ(A0)⊂ ρ(AΣ
∞).

Next, we show that G Σ
0 = H1/2(Σ;C4). For that let ϕ ∈H1/2(Σ;C4) be arbitrary, but fixed,

and choose f± ∈ H1(Ω±;C4) such that f±|Σ =∓ i
2c(α ·ν)ϕ . Then f := f+⊕ f− ∈ kerΓΣ

1
and ΓΣ

0 f = ϕ .

To show G Σ
1 = H1/2(Σ;C4) take for ϕ ∈ H1/2(Σ;C4) a function f ∈ H1(R3;C4) satis-

fying f |Σ = ϕ . Then f ∈ kerΓΣ
0 and ΓΣ

1 f = ϕ . Hence, also G Σ
1 = H1/2(Σ;C4). Thus,

equation (4.5) is shown.

Finally, using (4.5), the self-adjointness of AΣ
∞, and Proposition 2.2.11 it follows immedi-

ately that ΓΣ
0 and ΓΣ

1 have surjective extensions Γ̃Σ
0 , Γ̃

Σ
1 : dom(SΣ)∗→ H−1/2(Σ;C4). This

finishes the proof of this lemma.
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Next, similarly as in Section 2.2 we set

Λ
Σ := ImMΣ(i) =

1
2i

(
MΣ(i)−M(−i)

)
=

1
2i
(Ci−C−i).

Since G Σ
1 = H1/2(Σ;C4) is dense in L2(Σ;C4), compare Lemma 4.1.3, we deduce from

Proposition 2.2.10 that (ΛΣ)1/2 : L2(Σ;C4)→ H1/2(Σ;C4) is a bijection and we define

ι
Σ
+ := (ΛΣ)−1/2 : H1/2(Σ;C4)→ L2(Σ;C4) (4.6)

and
ι

Σ
− :=

(
(ΛΣ)1/2)′ : H−1/2(Σ;C4)→ L2(Σ;C4). (4.7)

Recall that we can express the inner product in G Σ
1 = H1/2(Σ;C4) and the duality product

in H1/2(Σ;C4)×H−1/2(Σ;C4) with the help of ιΣ
±, compare the useful formulae (2.15),

(2.18), and (2.19). Moreover, we note that the typical scaling properties for embedding
operators yield that ιΣ

− gives rise to a bounded operator

ι
Σ
− : H1/2(Σ;C4)→ H1(Σ;C4). (4.8)

In the next proposition we extend with the aid of the extended boundary mappings Γ̃Σ
0 and

Γ̃Σ
1 the γ-field γΣ(λ ) and the Weyl function MΣ(λ ) from Proposition 4.1.2.

Proposition 4.1.4. Let {L2(Σ;C4),ΓΣ
0 ,Γ

Σ
1} be the quasi boundary triple for (SΣ)∗ from

Theorem 4.1.1 with corresponding γ-field γΣ and Weyl function MΣ given as in Proposi-
tion 4.1.2. Then it holds for all λ ∈ ρ(A0) = C\

(
(−∞,−mc2]∪ [mc2,∞)

)
:

(i) The operator γΣ(λ ) has a continuous extension

γ̃
Σ(λ ) =

(
Γ̃

Σ
0 � ker((SΣ)∗−λ )

)−1 : H−1/2(Σ;C4)→ L2(R3;C4).

(ii) The operator MΣ(λ ) has a continuous extension

M̃Σ(λ ) = Γ̃
Σ
1
(
Γ̃

Σ
0 � ker((SΣ)∗−λ )

)−1 : H−1/2(Σ;C4)→ H−1/2(R3;C4).

Moreover, it holds for all ϕ ∈ H−1/2(Σ;C4) and ψ ∈ H1/2(Σ;C4)(
M̃Σ(λ )ϕ,ψ

)
−1/2×1/2 =

(
ϕ,MΣ(λ )ψ

)
−1/2×1/2.

(iii) The operator M̃Σ(λ ) is bijective in H−1/2(Σ;C4) and its inverse is given by

M̃Σ(λ )−1 =−4c2(α ·ν)′M̃(λ )(α ·ν)′,

where (α ·ν)′ : H−1/2(Σ;C4)→ H−1/2(Σ;C4) is the dual of the multiplication op-
erator with α ·ν in H1/2(Σ;C4).
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(iv) The operator
Aλ := MΣ(λ )(α ·ν)+(α ·ν)MΣ(λ )

admits a bounded extension Ãλ : H−1/2(Σ;C4)→ H1/2(Σ;C4). In particular, the
mapping 1

4c2 −
(
M̃Σ(λ )

)2 : H−1/2(Σ;C4)→ H1/2(Σ;C4) is bounded.

Proof. Assertion (i) and the existence and the mapping properties of M̃Σ(λ ) follow im-
mediately from Proposition 2.2.12 and Lemma 4.1.3. Moreover, employing (2.19) and
Proposition 2.2.4 (iii) we observe for ϕ ∈ H1/2(Σ;C4) and ψ ∈ H1/2(Σ;C4)(

M̃Σ(λ )ϕ,ψ
)
−1/2×1/2 = (MΣ(λ )ϕ,ψ)Σ = (ϕ,MΣ(λ )ψ)Σ = (ϕ,MΣ(λ )ψ)−1/2×1/2.

By density we obtain that the above formula can be extended for all ϕ ∈ H−1/2(Σ;C4).
Hence, the proof of item (ii) is complete.

To verify assertion (iii) we note first that it holds M̃Σ(λ ) =
(
MΣ(λ )

)′, when MΣ(λ ) is
considered as a bounded operator in H1/2(Σ;C4). Since MΣ(λ ) is bijective in H1/2(Σ;C4)
by Proposition 4.1.2 and Proposition 3.2.1 (iv) with

MΣ(λ )−1 =−4c2(α ·ν)MΣ(λ )(α ·ν), (4.9)

also M̃Σ(λ ) is bijective and the claimed formula for the inverse follows from (4.9) by
considering the dual.

It remains to show statement (iv). For λ = 0 the claim is true by Proposition 3.2.4. Recall
that it holds

MΣ(λ ) = MΣ(0)+λγ
Σ(0)∗γΣ(λ ),

see Proposition 2.2.4 (iii). Hence, we obtain

Aλ =A0 +λ (α ·ν)γΣ(0)∗γΣ(λ )+λγ
Σ(0)∗γΣ(λ )(α ·ν).

Note that ranγΣ(0)∗ = ran
(
ΓΣ

1 A−1
0
)
= H1/2(Σ;C4). Hence, as γΣ(0)∗ is bounded from

L2(R3;C4) to L2(Σ;C4) it follows from the closed graph theorem that γΣ(0)∗ acting be-
tween L2(R3;C4) and H1/2(Σ;C4) is also bounded. Therefore, the operator γΣ(0)∗γΣ(λ )
has the continuous extension

γ
Σ(0)∗γ̃Σ(λ ) : H−1/2(Σ;C4)→ H1/2(Σ;C4).

Moreover, by duality we see that the multiplication operator α ·ν has the bounded exten-
sion (α · ν)′ : H−1/2(Σ;C4)→ H−1/2(Σ;C4). Thus, we conclude finally that Aλ has the
bounded extension

Ãλ := Ã0 +λ (α ·ν)γΣ(0)∗γ̃Σ(λ )+λγ
Σ(0)∗γ̃Σ(λ )(α ·ν)′ : H−1/2(Σ;C4)→ H1/2(Σ;C4).
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Eventually, using Proposition 3.2.1 (iv) we find for ϕ ∈ H1/2(Σ;C4)

MΣ(λ )(α ·ν)
[
(α ·ν)MΣ(λ )+MΣ(λ )(α ·ν)

]
ϕ =

[
(MΣ(λ ))2− 1

4c2

]
ϕ.

This and a density argument imply(
M̃Σ(λ )

)2− 1
4c2 = MΣ(λ )(α ·ν)Ãλ ,

which is a continuous mapping from H−1/2(Σ;C4) to H1/2(Σ;C4). This finishes the proof
of this proposition.

Finally, we transform the quasi boundary triple {L2(Σ;C4),ΓΣ
0 ,Γ

Σ
1} from Theorem 4.1.1

into an ordinary boundary triple which is suitable to investigate Dirac operators with sin-
gular interactions. Since the boundary conditions for these operators are stated in the form
ΓΣ

0 +ϑΓΣ
1 = 0 for some linear operator ϑ acting in L2(Σ;C4) it is more convenient to trans-

form the triple {L2(Σ;C4),−ΓΣ
1 ,Γ

Σ
0} instead (in the proof of Theorem 4.1.5 below we will

see that this is in fact a quasi boundary triple). Recall that the operator AΣ
∞ := T Σ � kerΓΣ

1
is bijective, compare Lemma 4.1.3. This implies, in particular,

dom(SΣ)∗ = domAΣ
∞+̇ker(SΣ)∗.

Theorem 4.1.5. Let SΣ be defined by (4.3) and let {L2(Σ;C4),ΓΣ
0 ,Γ

Σ
1} be the quasi bound-

ary triple from Theorem 4.1.1. Moreover, let ιΣ
± be defined by (4.6) and (4.7), respectively,

let Γ̃Σ
1 be the extension of ΓΣ

1 from Lemma 4.1.3 and define ϒΣ
0 ,ϒ

Σ
1 : dom(SΣ)∗→ L2(Σ;C4)

by
ϒ

Σ
0 f :=−ι

Σ
−Γ̃

Σ
1 f and ϒ

Σ
1 f := ι

Σ
+Γ

Σ
0 f0

for f = f0 +g ∈ domAΣ
∞+̇ker(SΣ)∗ = dom(SΣ)∗. Then {L2(Σ;C4),ϒΣ

0 ,ϒ
Σ
1} is an ordinary

boundary triple for (SΣ)∗.

Proof. First, we note that AΣ
∞ = T Σ � ΓΣ

1 is self-adjoint by Lemma 4.1.3. Hence the triple
{L2(Σ;C4),−ΓΣ

1 ,Γ
Σ
0} fulfills all points in Definition 2.2.1, that means it is a quasi boundary

triple for (SΣ)∗. Therefore, all claims follow from Theorem 2.2.13 as G Σ
0 = H1/2(Σ;C4) is

dense in L2(Σ;C4) by Lemma 4.1.3.

Note that the ordinary boundary triple {L2(Σ;C4),ϒΣ
0 ,ϒ

Σ
1} from the above theorem is not a

transformation of the quasi boundary triple {L2(Σ;C4),ΓΣ
0 ,Γ

Σ
1} as in Theorem 2.2.13, but

of {L2(Σ;C4), Γ̂Σ
0 , Γ̂

Σ
1} with Γ̂Σ

0 = −ΓΣ
1 and Γ̂Σ

1 = ΓΣ
0 . The Weyl function of this triple is

given by

M̂Σ(λ ) = Γ̂
Σ
1
(
Γ̂

Σ
0 � ker(T Σ−λ )

)−1
=−Γ

Σ
0
(
Γ

Σ
1 � ker(T Σ−λ )

)−1
=−MΣ(λ )−1
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for λ ∈ ρ(AΣ
∞)∩ρ(A0).

In the following let B be a symmetric operator in L2(Σ;C4) and set

AΣ

[B] = T Σ � ker(ΓΣ
0 +BΓ

Σ
1) = T Σ � ker(Γ̂Σ

1 −BΓ̂
Σ
0).

Then, in view of formulae (2.22) and (2.21) it holds

AΣ

[B] = T Σ � ker(Γ̂Σ
1 −BΓ̂

Σ
0) = (SΣ)∗ � ker(ϒΣ

1 −Θ
1,Σ(B)ϒΣ

0)

with

Θ
1,Σ(B)ϕ : = ι

Σ
+(B+MΣ(0)−1)(ιΣ

−)
−1

ϕ,

domΘ
1,Σ(B) =

{
ϕ ∈ L2(Σ;C4) : (ιΣ

−)
−1

ϕ ∈ dom(B+MΣ(0)−1) and

(B+MΣ(0)−1)(ιΣ
−)
−1

ϕ ∈ H1/2(Σ;C4)
}
.

(4.10)

In particular, if Θ1,Σ(B) is self-adjoint in L2(Σ;C4), then AΣ

[B] is self-adjoint in L2(R3;C4).

Finally, we are interested in operators of a similar form as Θ1,Σ(B) as above. Define for a
symmetric operator B in L2(Σ;C4)

Θ
0,Σ(B)ϕ : = ι

Σ
+(B+ M̃Σ(0)−1)(ιΣ

−)
−1

ϕ,

domΘ
0,Σ(B) =

{
ϕ ∈ L2(Σ;C4) : (ιΣ

−)
−1

ϕ ∈ dom(B+ M̃Σ(0)−1) and

(B+ M̃Σ(0)−1)(ιΣ
−)
−1

ϕ ∈ H1/2(Σ;C4)
}
.

Note that we have in general Θ1,Σ(B)⊂Θ0,Σ(B), as in the definition of Θ0,Σ(B) the exten-
sion M̃Σ(0) appears. If the parameter Θ0,Σ(B) is self-adjoint, then also the corresponding
operator AΘ0,Σ(B) = (SΣ)∗ � ker(ϒΣ

1 −Θ0,Σ(B)ϒΣ
0) is self-adjoint. For such extensions the

Birman Schwinger principle from Theorem 2.2.5 reads, taking the special form of the Weyl
function for the triple {L2(Σ;C4),ϒΣ

0 ,ϒ
Σ
1}, which is a transformation of the quasi triple

{L2(Σ;C4), Γ̂Σ
0 , Γ̂

Σ
1}, from (2.20) into account, that a point λ ∈ ρ(AΣ

∞) = ρ(A0) fulfills

λ ∈ σp(A[B]) if and only if 0 ∈ σp
(
ι+(B+ M̃Σ(λ )−1)ι−1

−
)
. (4.11)

Furthermore, similar statements for the discrete spectrum and the resolvent set of A[B] are
true, compare Proposition 2.2.7.

4.1.3 Integral operators – Part II: mapping properties

In this section we collect some further knowledge on the integral operators Φλ and Cλ

introduced in Section 3.2. As we have seen in Proposition 4.1.4 these operators are,
roughly speaking, the γ-field and the Weyl function associated to the quasi boundary triple
{L2(Σ;C4),ΓΣ

0 ,Γ
Σ
1} from Theorem 4.1.1. Hence, we are able to deduce some further prop-

erties of these operators from the general theory of quasi boundary triples with little ef-
fort.
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Proposition 4.1.6. Let for λ ∈ ρ(A0) = C \
(
(−∞,−mc2]∪ [mc2,∞)

)
the operators Φλ

and Cλ be defined as in (3.16) and (3.17), respectively, and let s ∈
[
− 1

2 ,
1
2

]
. Then, the

following holds:

(i) The operator Φλ gives rise to a bounded operator

Φ
s
λ

: Hs(Σ;C4)→ Hs+1/2(Ω+;C4)⊕Hs+1/2(Ω−;C4).

(ii) The adjoint Φ∗
λ

: L2(R3;C4)→ H1/2(Σ;C4) is bounded.

(iii) The operator Cλ gives rise to a bounded operator

Cs
λ

: Hs(Σ;C4)→ Hs(Σ;C4).

Proof. (i) According to Proposition 4.1.2 we have that Φ
1/2
λ

= γΣ(λ ) and this operator is
bounded from H1/2(Σ;C4) to H1(Ω+;C4)⊕H1(Ω−;C4). Moreover, by Proposition 4.1.4
the operator Φλ has the continuous extension

Φ
−1/2
λ

:= γ̃
Σ(λ ) : H−1/2(Σ;C4)→ L2(R3;C4).

Hence, assertion (i) holds for s =±1
2 . The statement for s ∈

(
− 1

2 ,
1
2

)
follows by interpo-

lation.

In order to show statement (ii) we deduce first from Proposition 2.2.3 (iii) that

ranΦ
∗
λ
= ran

(
Γ

Σ
1(A0−λ )−1)= Γ

Σ
1(H

1(R3;C4)) = H1/2(Σ;C4)

and hence Φ∗
λ

regarded as an operator from L2(R3;C4) to H1/2(Σ;C4) is well-defined.
We prove that this operator is closed; then the closed graph theorem implies that it is also
bounded. Let ( fn)⊂ L2(R3;C4) and ϕ ∈ H1/2(Σ;C4) such that

fn→ f in L2(R3;C4) and Φ
∗
λ

fn→ ϕ in H1/2(Σ;C4).

Clearly f ∈ L2(R3;C4) = domΦ∗
λ

and since Φ∗
λ

is bounded from L2(R3;C4) to L2(Σ;C4)

by Proposition 3.2.1 (i) we obtain that Φ∗
λ

fn→Φ∗
λ

f in L2(Σ;C4). On the other hand, since
H1/2(Σ;C4) is continuously embedded in L2(Σ;C4) we get that Φ∗

λ
fn→ ϕ in L2(Σ;C4) as

well. Thus, we have ϕ = Φ∗
λ

f which shows that Φ∗
λ

: L2(R3;C4)→ H1/2(Σ;C4) is closed
and which finishes the proof of assertion (ii).

Eventually, we know from Proposition 4.1.2 that C1/2
λ

:=MΣ(λ ) is bounded in H1/2(Σ;C4)

and from Proposition 4.1.4 that C−1/2
λ

:= M̃Σ(λ ) is bounded in H−1/2(Σ;C4). Hence,
statement (iii) is true for s = ±1

2 . Using an interpolation argument, the claim for s ∈(
− 1

2 ,
1
2

)
follows as well.
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Next, we state a result on the invertibility of certain operators involving Cs
λ

. This result is
one of the main ingredients to prove the self-adjointness of Dirac operators with singular
interactions.

Proposition 4.1.7. Let {L2(Σ;C4),ΓΣ
0 ,Γ

Σ
1} be given as in Theorem 4.1.1, let ηe,ηs : Σ→R

be Lipschitz continuous, let λ /∈ σp
(
T Σ � ker

(
ΓΣ

0± (ηeI4+ηsβ )Γ
Σ
1
))

, let s ∈
[
− 1

2 ,
1
2

]
, and

let Cs
λ

be given as in Proposition 4.1.6. Assume that ηe(x)2−ηs(x)2 6= 4c2 for all x ∈ Σ.
Then the operator

I4 +(ηeI4 +ηsβ )C
s
λ

admits a bounded and everywhere defined inverse in Hs(Σ;C4).

Proof. We are going to prove this statement for s = 1
2 , the result for s = −1

2 follows then
by duality. Finally, the claim for s ∈

(
− 1

2 ,
1
2

)
can be deduced then by interpolation.

So let us verify the claimed assertion for s = 1
2 . First, we note that I4 +(ηeI4 +ηsβ )C

1/2
λ

is injective, as otherwise the operator T Σ � ker
(
ΓΣ

0 +(ηeI4 +ηsβ )Γ
Σ
1
)

has the eigenvalue

λ by Theorem 2.2.6 (i). To show that I4 +(ηeI4 +ηsβ )C
1/2
λ

is also surjective we note first

ran(I4 +(ηeI4 +ηsβ )C
1/2
λ

)⊃ ran
[
(I4 +(ηeI4 +ηsβ )C

1/2
λ

)(I4− (ηeI4 +ηsβ )C
1/2
λ

)
]
.

Observe that
I4− (ηeI4 +ηsβ )C

1/2
λ

= I4−C
1/2
λ

(ηe−ηsβ )+K1,λ

with

K1,λ : = C
1/2
λ

(ηe−ηsβ )− (ηeI4 +ηsβ )C
1/2
λ

= (C
1/2
λ

ηe−ηeC
1/2
λ

)−ηs(C
1/2
λ

β +βC
1/2
λ

)+(ηsC
1/2
λ
−C

1/2
λ

ηs)β .

Since ηe and ηs are Lipschitz continuous it follows from Proposition 3.2.3 and Proposi-
tion 3.2.4 (ii) that K1,λ is a compact operator in H1/2(Σ;C4). Hence, also

K2,λ := (I4 +(ηeI4 +ηsβ )C
1/2
λ

)K1,λ

is compact in H1/2(Σ;C4). Thus, we have

(I4 +(ηeI4 +ηsβ )C
1/2
λ

)(I4− (ηeI4 +ηsβ )C
1/2
λ

)

= (I4 +(ηeI4 +ηsβ )C
1/2
λ

)(I4−C
1/2
λ

(ηe−ηsβ ))+K2,λ

= I4− (ηeI4 +ηsβ )(C
1/2
λ

)2(ηe−ηsβ )+(ηeC
1/2
λ
−C

1/2
λ

ηe)

+ηs(βC
1/2
λ

+C
1/2
λ

β )+(C
1/2
λ

ηs−ηsC
1/2
λ

)β +K2,λ

= I4−
1

4c2 (η
2
e −η

2
s )+K3,λ
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with

K3,λ := (ηeI4 +ηsβ )

(
1

4c2 − (C
1/2
λ

)2
)
(ηe−ηsβ )+(ηeC

1/2
λ
−C

1/2
λ

ηe)

+ηs(βC
1/2
λ

+C
1/2
λ

β )+(C
1/2
λ

ηs−ηsC
1/2
λ

)β +K2,λ .

Making again use of Proposition 3.2.3 and Proposition 3.2.4 (ii) and employing Propo-
sition 4.1.4 (iv) we deduce that K3,λ is compact in H1/2(Σ;C4). Since η2

e −η2
s 6= 4c2

by assumption, the multiplication operator I4− 1
4c2 (η

2
e −η2

s ) is bijective in H1/2(Σ;C4).
Hence, we have found(

I4 +(ηeI4 +ηsβ )C
1/2
λ

)(
I4− (ηeI4 +ηsβ )C

1/2
λ

)
=

4c2−η2
e +η2

s
4c2

(
I4 +

4c2

4c2−η2
e +η2

s
K3,λ

)
.

The operator on the left hand side is injective, as I4 +(ηeI4 +ηsβ )C
1/2
λ

and I4− (ηeI4 +

ηsβ )C
1/2
λ

are injective; otherwise, one of the operators T Σ � ker
(
ΓΣ

0 ± (ηeI4 +ηsβ )Γ
Σ
1
)

would have the eigenvalue λ , compare Theorem 2.2.6 (i), which is not the case by as-
sumption. Hence, we obtain from Fredholm’s alternative that

(I4 +(ηeI4 +ηsβ )C
1/2
λ

)(I4− (ηeI4 +ηsβ )C
1/2
λ

)

is bijective in H1/2(Σ;C4). Therefore, we deduce finally

ran(I4 +(ηeI4 +ηsβ )C
1/2
λ

)⊃ ran
[
(I4 +(ηeI4 +ηsβ )C

1/2
λ

)(I4− (ηeI4 +ηsβ )C
1/2
λ

)
]

= H1/2(Σ;C4),

that means I4 +(ηeI4 +ηsβ )C
1/2
λ

is also surjective. This finishes the proof of this proposi-
tion.

In the next proposition we state that Φλ and Cλ are holomorphic and that their derivatives
belong to certain (weak) Schatten-von Neumann classes. For the proof we make use of
Proposition 2.6.2, which allows us to extend a similar result in [11, Lemma 4.5] that was
only shown for C∞-smooth surfaces. To make notations short, we use the shortcut Sp,∞
for the weak Schatten-von Neumann ideals and omit the spaces; this will not cause any
confusion.

Proposition 4.1.8. Let n ∈ N and let Σ ⊂ R3 be the boundary of a compact Cn-smooth
domain. Moreover, let for λ ∈ ρ(A0) = C \

(
(−∞,−mc2]∪ [mc2,∞)

)
the operators Φλ

and Cλ be defined as in (3.16) and (3.17), respectively. Then, the following holds:
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(i) The operator-valued functions λ 7→ Φλ and λ 7→ Φ∗
λ

are holomorphic and it holds
for any k ∈ {0,1, . . . ,n−1}

dk

dλ k Φλ ∈S4/(2k+1),∞ and
dk

dλ k Φ
∗
λ
∈S4/(2k+1),∞.

In particular, Φλ and Φ∗
λ

are compact.

(ii) The operator-valued function λ 7→ Cλ is holomorphic and it holds for any number
k ∈ {1, . . . ,n−1}

dk

dλ kCλ ∈S2/k,∞.

Moreover, the mapping (−mc2,mc2) 3 λ → Cλ is monotonously increasing.

Proof. (i) We use that Φ∗
λ
= γΣ(λ )∗=ΓΣ

1(A0−λ )−1 which implies that Φ∗
λ

is holomorphic
and

dk

dλ k Φ
∗
λ
= k!ΓΣ

1(A0−λ )−k−1,

see Proposition 2.2.3 (iii). Since (−∆)l(Hs(R3;C)) = H2l+s(R3;C) for s ≥ 0 it follows
from (3.5) that domAk+1

0 = Hk+1(R3;C4) and hence

ran
dk

dλ k Φ
∗
λ
= k!ran

[
Γ

Σ
1(A0−λ )−k−1]= Hk+1/2(Σ;C4).

Therefore Proposition 2.6.2 yields

dk

dλ k Φ
∗
λ
= k!ΓΣ

1(A0−λ )−k−1 ∈S4/(2k+1),∞.

From this, the statements on the differentiability of Φλ follow by taking adjoint.

To show item (ii) we recall that it holds by Proposition 2.2.4 (iv) for ϕ ∈ H1/2(Σ;C4)

dk

dλ kCλ ϕ =
dk

dλ k MΣ(λ )ϕ = k!ΓΣ
1(A0−λ )−k

γ
Σ(λ )ϕ = k!ΓΣ

1(A0−λ )−k
Φλ ϕ.

Taking closure this yields

dk

dλ kCλ = k!ΓΣ
1(A0−λ )−k

Φλ = k

(
dk−1

dλ k−1 Φ
∗
λ

)
Φλ .

Thus, item (i) and (2.42) show
dk

dλ kCλ ∈S2/k,∞.

Finally, Cλ is monotonously increasing by Proposition 2.2.4 (iv) and a density argument.
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4.2 Dirac operators with singular interactions – definition and basic
spectral properties for non-critical interaction strengths

In this section we define Dirac operators with electrostatic and Lorentz scalar δ -shell in-
teractions supported on a compact C2-smooth surface Σ⊂R3 via the quasi boundary triple
{L2(Σ;C4),ΓΣ

0 ,Γ
Σ
1} from Theorem 4.1.1. These Dirac operators are formally given by

AΣ
ηe,ηs

:=−icα ·∇+mc2
β +ηeI4δΣ +ηsβδΣ,

where ηe,ηs : Σ→ R are Lipschitz continuous functions. First, we are going to show for
non-critical interaction strengths, that means if ηe(x)2−ηs(x)2 6= 4c2 for all x∈ Σ, the self-
adjointness of these operators and provide their basic spectral properties. In particular, in
the physically interesting cases of purely electrostatic interactions, that means ηe is disjoint
from ±2c and ηs = 0, and of Dirac operators with purely scalar interactions, that means
ηs is arbitrary and ηe = 0, we can give a more detailed picture in Corollary 4.2.5 and
Corollary 4.2.6, respectively, below. The critical case is then treated in Section 4.3.

Let us start with the rigorous mathematical definition of AΣ
ηe,ηs

:

Definition 4.2.1. Let {L2(Σ;C4),ΓΣ
0 ,Γ

Σ
1} be the quasi boundary triple from Theorem 4.1.1

and let ηe,ηs : Σ→ R be Lipschitz continuous functions. Then we define the operator
AΣ

ηe,ηs
:= T Σ � ker(ΓΣ

0 +(ηeI4 +ηsβ )Γ
Σ
1). This operator is given in a more explicit way by

AΣ
ηe,ηs

f := (−icα ·∇+mc2
β ) f+⊕ (−icα ·∇+mc2

β ) f−,

domAΣ
ηe,ηs

:=
{

f = f+⊕ f− ∈ H1(Ω+;C4)⊕H1(Ω−;C4) :

ic(α ·ν)( f+|Σ− f−|Σ) =−
1
2
(ηeI4 +ηsβ )( f+|Σ + f−|Σ)

}
.

(4.12)

Let us state an remark on the transmission condition which models the δ -shell interac-
tion:

Remark 4.2.2. Another way to write
(
ΓΣ

0 +(ηeI4 +ηsβ )Γ
Σ
1
)

f = 0 is(
ic(α ·ν)+ 1

2
(ηeI4 +ηsβ )

)
f+|Σ +

(
−ic(α ·ν)+ 1

2
(ηeI4 +ηsβ )

)
f−|Σ = 0. (4.13)

If ηe(x)2−ηs(x)2 6= −4c2 for all x ∈ Σ, then the matrices ±ic(α ·ν)+ 1
2(ηeI4 +ηsβ ) are

invertible and(
±ic(α ·ν)+ 1

2
(ηeI4 +ηsβ )

)−1

=− 4
4c2 +η2

e −η2
s

(
±ic(α ·ν)− 1

2
(ηeI4−ηsβ )

)
.
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Setting

R±ηe,ηs
:=−

(
±ic(α ·ν)+ 1

2
(ηeI4 +ηsβ )

)−1(
∓ic(α ·ν)+ 1

2
(ηeI4 +ηsβ )

)
,

we see that in this case the transmission condition (4.13) can be rewritten as

f±|Σ = R±ηe,ηs
f∓|Σ.

On the other hand, if ηe(x)2−ηs(x)2 =−4c2 for all x ∈ Σ, then (4.13) is equivalent to(
2cI4− i(α ·ν)(ηeI4 +ηsβ )

)
f+|Σ = 0,

(
2cI4 + i(α ·ν)(ηeI4 +ηsβ )

)
f−|Σ = 0, (4.14)

that means that AΣ
ηe,ηs

is decoupled to Dirac operators in Ω± with the boundary condi-
tions (4.14). This phenomenon is known as confinement, as a particle, which is initially
located in Ω± will stay in Ω±, and it is investigated in a more detailed way for constant ηe
and ηs in [6, Section 5].

It follows immediately from Green’s abstract identity that AΣ
ηe,ηs

is symmetric for all real-
valued Lipschitz continuous interaction strengths ηe,ηs, compare (2.9). For non-critical
interaction strengths, that means η2

e −η2
s 6= 4c2, we prove in the following theorem self-

adjointness, a Krein type resolvent formula and some basic spectral properties. The main
tool to prove the self-adjointness is Proposition 4.1.7 which is only true, if η2

e −η2
s 6= 4c2

everywhere on Σ. In fact, we will see in Proposition 4.3.1 that otherwise, for critical in-
teraction strengths, the operator AΣ

ηe,ηs
is not self-adjoint. I would like to thank Konstantin

Pankrashkin for showing me an efficient way to prove item (iv) of the following theorem;
a similar argument is used for instance in [48, Proposition 3.6].

Theorem 4.2.3. Let ηe,ηs : Σ→R be Lipschitz continuous such that ηe(x)2−ηs(x)2 6= 4c2

for all x∈ Σ and let AΣ
ηe,ηs

be defined by (4.12). Moreover, let A0 be the free Dirac operator
defined by (3.3), let Φλ and Cλ be given by (3.16) and (3.17), respectively, and let γΣ and
MΣ be as in Proposition 4.1.2. Then AΣ

ηe,ηs
is self-adjoint and the following assertions

hold:

(i) For λ ∈ C\R the resolvent of AΣ
ηe,ηs

is given by

(AΣ
ηe,ηs
−λ )−1 = (A0−λ )−1−Φλ

(
I4 +(ηeI4 +ηsβ )Cλ

)−1
(ηeI4 +ηsβ )Φ

∗
λ

= (A0−λ )−1− γ
Σ(λ )

(
I4 +(ηeI4 +ηsβ )MΣ(λ )

)−1
(ηeI4 +ηsβ )γ

Σ(λ )∗.

(ii) σess(AΣ
ηe,ηs

) = (−∞,−mc2]∪ [mc2,∞).

(iii) λ ∈ σp(AΣ
ηe,ηs

) if and only if −1 ∈ σp((ηeI4 +ηsβ )MΣ(λ )).

(iv) σp(AΣ
ηe,ηs

) is finite.
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(v) There exists a constant K > 0 such that σp(AΣ
ηe,ηs

) = /0, if |ηe(x)I4+ηs(x)β |< K for
all x ∈ Σ.

Proof. First we prove the self-adjointness of AΣ
ηe,ηs

. Due to Green’s identity it is clear that
AΣ

ηe,ηs
is symmetric, compare (2.9). Thus, it suffices to prove ran(AΣ

ηe,ηs
−λ ) = L2(R3;C4)

for λ ∈ C\R.

Let f ∈ L2(R3;C4) and λ ∈ C \R be fixed. Then, by Theorem 2.2.6 (ii) we have f ∈
ran(AΣ

ηe,ηs
−λ ) if and only if (ηeI4+ηsβ )γ

Σ(λ )∗ f ∈ ran(I4−(ηeI4+ηsβ )MΣ(λ )). Since
γΣ(λ )∗ = ΓΣ

1(A0−λ )−1, see Proposition 2.2.3 (iii), and domA0 = H1(R3;C4) we deduce
from Lemma 2.5.1 that ran

(
(ηeI4 +ηsβ )γ

Σ(λ )∗
)
⊂ H1/2(Σ;C4). On the other hand by

Proposition 4.1.7 the operator

I4 +(ηeI4 +ηsβ )MΣ(λ ) = I4 +(ηeI4 +ηsβ )C
1/2
λ

is bijective in H1/2(Σ;C4). Thus, we get that f ∈ ran(AΣ
ηe,ηs
−λ ). Since f ∈ L2(R3;C4)

was arbitrary, it follows that AΣ
ηe,ηs
−λ is bijective and hence, that AΣ

ηe,ηs
is self-adjoint.

Next, the Krein-type resolvent formula follows directly from Theorem 2.2.6 and Proposi-
tion 4.1.2.

In order to show item (ii) we note that for λ ∈ C \R all operators Φλ , ηeI4 +ηsβ , Φ∗
λ

,

and
(
I4+(ηeI4+ηsβ )Cλ

)−1 are bounded in the respective L2-spaces by Proposition 3.2.1,
Lemma 2.5.1 and Proposition 4.1.7. Moreover, Φλ is compact by Proposition 4.1.8. This
and assertion (i) show now that

(AΣ
ηe,ηs
−λ )−1− (A0−λ )−1 =−Φλ

(
I4 +(ηeI4 +ηsβ )Cλ

)−1
(ηeI4 +ηsβ )Φ

∗
λ

is compact. Therefore σess(AΣ
ηe,ηs

) = σess(A0) = (−∞,−mc2]∪ [mc2,∞).

Assertion (iii) is just an application of Theorem 2.2.6 (i).

In order to verify statement (iv) we note first that the number of discrete eigenvalues of
AΣ

ηe,ηs
in the gap (−mc2,mc2) is equal to the number of eigenvalues of (AΣ

ηe,ηs
)2 below the

threshold of its essential spectrum (mc2)2. Let us denote the quadratic form associated to
(AΣ

ηe,ηs
)2 by a. Then it holds for any f = f+⊕ f− ∈ domAΣ

ηe,ηs
= doma

a[ f ] = ‖AΣ
ηe,ηs

f‖2
R3 =

∥∥(−icα ·∇+mc2
β ) f+

∥∥2
Ω+

+
∥∥(−icα ·∇+mc2

β ) f−
∥∥2

Ω−

= ‖c(α ·∇) f+‖2
Ω+

+‖c(α ·∇) f−‖2
Ω−+(mc2)2‖ f‖2

R3

+(−icα ·∇ f+,mc2
β f+)Ω+ +(mc2

β f+,−icα ·∇ f+)Ω+

+(−icα ·∇ f−,mc2
β f−)Ω−+(mc2

β f−,−icα ·∇ f−)Ω−.
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Employing integration by parts we see that

(−icα ·∇ f±,mc2
β f±)Ω±+(mc2

β f±,−icα ·∇ f±)Ω± =∓(icα ·ν f±|Σ,mc2
β f±|Σ)Σ,

which yields then

a[ f ] = ‖c(α ·∇) f‖2
Ω+∪Ω−+(mc2)2‖ f‖2

R3

− (icα ·ν f+|Σ,mc2
β f+|Σ)Σ +(icα ·ν f−|Σ,mc2

β f−|Σ)Σ.
(4.15)

Choose R > 0 such that Σ ⊂ B(0,R). Then, we see that the quadratic form associated to
(AΣ

ηe,ηs
)2 is minorated by the closed quadratic form b := bint⊕bext, where

bint[ f ] := ‖c(α ·∇) f‖2
Ω+∪(Ω−∩B(0,R))+(mc2)2‖ f‖2

B(0,R)

− (icα ·ν f+|Σ,mc2
β f+|Σ)Σ +(icα ·ν f−|Σ,mc2

β f−|Σ)Σ,

dombint :=
{

f = f+⊕ f− ∈ H1(Ω+;C4)⊕H1(Ω−∩B(0,R);C4) :

ic(α ·ν)( f+|Σ− f−|Σ) =−
1
2
(ηeI4 +ηsβ )( f+|Σ− f−|Σ)

}
,

and

bext[ f ] := ‖c(α ·∇) f‖2
R3\B(0,R)+(mc2)2‖ f‖2

R3\B(0,R),

dombext := H1(R3 \B(0,R);C4).

Then it holds b≤ a in the sense of quadratic forms. In particular, if the operator associated
to b has finitely many eigenvalues below (mc2)2, then (AΣ

ηe,ηs
)2 has only finitely many

eigenvalues below (mc2)2.

Clearly, the operator Bext associated to bext is a shifted Neumann Laplacian and hence
Bext ≥ (mc2)2. Thus, the number of eigenvalues of (AΣ

ηe,ηs
)2 below (mc2)2 is equal to

the number of eigenvalues of the operator Bint associated to the semibounded and closed
form bint, compare for instance [62, Section XIII.15] for a similar argument. Moreover, as
dombint⊂H1(Ω+;C4)⊕H1(B(0,R)∩Ω−;C4) is compactly embedded in L2(B(0,R);C4)
it follows that the resolvent of Bint is compact. Therefore, the spectrum of Bint is purely
discrete and consists of eigenvalues that accumulate only at ∞, as Bint is bounded from
below. Thus Bint has only finitely many eigenvalues below (mc2)2. Hence, also the oper-
ator associated to b has only finitely many eigenvalues below (mc2)2. This shows finally
that (AΣ

ηe,ηs
)2 has only finitely many eigenvalues below (mc2)2 which finishes the proof of

assertion (iv).

Finally, item (v) is just a simple consequence of the Birman-Schwinger principle in (iii)
and Proposition 3.2.2.
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In the following corollary we state several consequences of the Birman-Schwinger princi-
ple from Theorem 4.2.3 (iii).

Corollary 4.2.4. Let ηe,ηs : Σ→ R be Lipschitz continuous such that ηe(x)2−ηs(x)2 /∈
{0,4c2} for all x ∈ Σ and let AΣ

ηe,ηs
be defined by (4.12). Then the following is true:

(i) λ ∈ σp(AΣ
ηe,ηs

) if and only if λ ∈ σp
(
AΣ

−4c2ηe/(η2
e−η2

s ),−4c2ηs/(η2
e−η2

s )

)
;

(ii) There exists some K > 4c2 such that σp(AΣ
ηe,ηs

) = /0, if |ηe(x)±ηs(x)| ≥ K for all
x ∈ Σ.

Proof. According to Theorem 4.2.3 (iii) a number λ is an eigenvalue of AΣ
ηe,ηs

if and only if
−1 is an eigenvalue of (ηeI4+ηsβ )MΣ(λ ), that means if and only if there exists a function
0 6= ϕ ∈ domMΣ(λ ) = H1/2(Σ;C4) such that

0 = (I4 +(ηeI4 +ηsβ )MΣ(λ ))ϕ = (I4 +(ηeI4 +ηsβ )Cλ )ϕ.

Multiplying this equation with (ηeI4 +ηsβ )
−1 = 1

η2
e−η2

s
(ηeI4−ηsβ ), which is a bounded

operator in H1/2(Σ;C4) due to the assumptions of this corollary, yields

0 =

(
1

η2
e −η2

s
(ηeI4−ηsβ )+Cλ

)
ϕ.

Using −4c2(α ·νCλ )
2 = I4, see Proposition 3.2.1, and the anti-commutation relation (1.2)

we see that the last equation can be rewritten as

0 =

(
−4c2 1

η2
e −η2

s
(ηeI4−ηsβ )(α ·νCλ )

2 +(α ·ν)2Cλ

)
ϕ

=

(
−4c2 1

η2
e −η2

s
(ηeI4−ηsβ )(α ·ν)Cλ +α ·ν

)
(α ·ν)Cλ ϕ

= (α ·ν)
(
−4c2 1

η2
e −η2

s
(ηeI4 +ηsβ )Cλ + I4

)
(α ·ν)Cλ ϕ.

Because of the mapping properties of Cλ from Proposition 4.1.6 and the regularity of Σ we
see that 0 6= (α ·ν)Cλ ϕ ∈ H1/2(Σ;C4). By the Birman-Schwinger principle this can only
be true if and only if λ ∈ σp

(
AΣ

−4c2ηe/(η2
e−η2

s ),−4c2ηs/(η2
e−η2

s )

)
.

Item (ii) follows now directly from assertion (i) and Theorem 4.2.3 (v).

In the cases of purely electrostatic and purely scalar interactions one can give a more
detailed picture of the spectral properties of the associated Dirac operators and many of
the previously shown results simplify significantly. First we reformulate these statements
for Dirac operators with purely electrostatic δ -shell interactions, that means we assume
ηs ≡ 0. Then the corollary below follows immediately from Theorem 4.2.3 and Corol-
lary 4.2.4:
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Corollary 4.2.5. Let ηe : Σ→ R be Lipschitz continuous such that ηe(x) 6= ±2c for all
x ∈ Σ and let the self-adjoint operator AΣ

ηe,0 be defined by (4.12). Moreover, let A0 be
the free Dirac operator defined by (3.3), let Φλ and Cλ be given by (3.16) and (3.17),
respectively, and let γΣ and MΣ be given as in Proposition 4.1.2. Then the following
assertions hold:

(i) For λ ∈ C\R the resolvent of AΣ
ηe,0 is given by

(AΣ
ηe,0−λ )−1 = (A0−λ )−1− γ

Σ(λ )
(
I4 +ηeMΣ(λ )

)−1
ηeγ

Σ(λ )∗

= (A0−λ )−1−Φλ

(
I4 +ηeCλ

)−1
ηeΦ

∗
λ
.

(ii) σess(AΣ
ηe,0) = (−∞,−mc2]∪ [mc2,∞).

(iii) λ ∈ σp(AΣ
ηe,0) if and only if −1 ∈ σp(ηeMΣ(λ )).

(iv) If |ηe(x)|> 0 for all x ∈ Σ, then λ ∈ σp(AΣ
ηe,0) if and only if λ ∈ σp

(
AΣ

−4c2/ηe,0

)
.

(v) σp(AΣ
ηe,0) is finite.

(vi) There exists a constant K > 0 such that σp(AΣ
ηe,0) = /0, if either |ηe(x)| < K or

|ηe(x)| ≥ 4c2

K for all x ∈ Σ.

Next, let us discuss Dirac operators with purely Lorentz scalar δ -shell interactions, that
means we assume ηe ≡ 0. Note that in this case there is no critical interaction strength,
as η2

s 6= −4c2 always in this case. On the other hand we have for ηs ≡ ±2c confinement,
compare Remark 4.2.2. For purely scalar interactions many of the spectral properties of
AΣ

ηe,ηs
from Theorem 4.2.3 simplify and we have some additional interesting symmetry

relations in the spectrum. Most of the results are also formulated in [48, Theorem 2.3].

Corollary 4.2.6. Let ηs : Σ→ R be Lipschitz continuous and let the self-adjoint operator
AΣ

0,ηs
be defined by (4.12). Moreover, let A0 be the free Dirac operator defined by (3.3), let

Φλ and Cλ be given by (3.16) and (3.17), respectively, and let γΣ and MΣ be given as in
Proposition 4.1.2. Then the following assertions hold:

(i) For λ ∈ C\R the resolvent of AΣ
0,ηs

is given by

(AΣ
0,ηs
−λ )−1 = (A0−λ )−1− γ

Σ(λ )
(
I4 +ηsβMΣ(λ )

)−1
ηsβγ

Σ(λ )∗

= (A0−λ )−1−Φλ

(
I4 +ηsβCλ

)−1
ηsβΦ

∗
λ
.

(ii) σess(AΣ
0,ηs

) = (−∞,−mc2]∪ [mc2,∞);

(iii) σp(AΣ
0,ηs

) is finite.
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(iv) λ ∈ σ(AΣ
0,ηs

) if and only if −λ ∈ σ(AΣ
0,ηs

).

(v) Discrete eigenvalues of AΣ
0,ηs have always even multiplicity.

(vi) If ηs(x)≥ 0 for all x ∈ Σ, then σp(AΣ
0,ηs

) = /0.

(vii) λ ∈ σp(AΣ
0,ηs

) if and only if −1 ∈ σp(ηsβMΣ(λ )).

(viii) If |ηs(x)|> 0 for all x ∈ Σ, then λ ∈ σp(AΣ
0,ηs

) if and only if λ ∈ σp
(
AΣ

0,4c2/ηs

)
.

(ix) There exists a constant K > 0 such that σp(AΣ
0,ηs

) = /0, if |ηs(x)|< K or |ηs(x)| ≥ 4c2

K
for all x ∈ Σ.

Proof. The results in items (i)–(iii) and (vii)–(ix) are special cases of Theorem 4.2.3 and
Corollary 4.2.4 for ηe ≡ 0. It remains to show assertion (iv)–(vi).

First, to prove statement (iv) it is sufficient to verify the symmetry of the discrete spectrum,
as σess(AΣ

0,ηs
) = (−∞,−mc2]∪ [mc2,∞) by (ii). Define the (nonlinear) charge conjugation

operator
C f := iβα2 f , f ∈ L2(R3;C4).

A simple calculation using α2 = −α2 (where the complex conjugate is understood com-
ponent wise) shows C2 f = f . Moreover, it is not difficult to see that f ∈ domAΣ

0,ηs
if and

only if C f ∈ domAΣ
0,ηs

. Eventually, employing (1.2) we get

(−icα ·∇+mc2
β )C f = (−icα ·∇+mc2

β )iβα2 f

= iβα2(−icα ·∇−mc2
β ) f =−C

(
(−icα ·∇+mc2

β ) f
)
.

(4.16)

Hence, we deduce AΣ
0,ηs

C =−CAΣ
0,ηs

. This yields then the claim of item (iv).

For the proof of statement (v) we employ a similar idea and define the (nonlinear) time
reversal operator

T f :=−iγ5α2 f , f ∈ L2(R3;C4), γ5 :=
(

0 I2
I2 0

)
.

Note that we have βγ5 =−γ5β and (α ·x)γ5 = γ5(α ·x) for any x ∈R3. Similarly as above
we have f ∈ domAΣ

0,ηs
if and only if T f ∈ domAΣ

0,ηs
and T 2 =−I4. Furthermore, a similar

calculation as in (4.16) shows

(−icα ·∇+mc2
β )T f = T (−icα ·∇+mc2

β ) f ,

which yields AΣ
0,ηs

T = TAΣ
0,ηs

. Another calculation gives 〈−iγ5α2 f , f 〉C4 = 〈 f , iγ5α2 f 〉C4

which implies

(T f , f )R3 =
∫
R3

T f (x) · f (x)dx = 0.
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Hence, if f is an eigenfunction of AΣ
0,ηs

, then also T f is a linearly independent and non-
trivial eigenfunction of AΣ

0,ηs
. Therefore, also assertion (v) is proven.

Finally, to show item (vi) we note first that we have for any f = f+⊕ f− ∈ domAΣ
0,ηs

by (4.15)

‖AΣ
0,ηs

f‖2
R3 = ‖c(α ·∇) f+‖2

Ω+∪Ω−+(mc2)2‖ f‖2
R3

− (icα ·ν f+|Σ,mc2
β f+|Σ)Σ +(icα ·ν f−|Σ,mc2

β f−|Σ)Σ

= ‖c(α ·∇) f+‖2
Ω+∪Ω−+(mc2)2‖ f‖2

R3

−
(
icα ·ν( f+|Σ− f−|Σ),mc2

β ( f+|Σ + f−|Σ)
)

Σ

+(icα ·ν f+|Σ,mc2
β f−|Σ)Σ− (icα ·ν f−|Σ,mc2

β f+|Σ)Σ.

Using the transmission condition −icα ·ν( f+|Σ− f−|Σ) = ηs
2 ( f+|Σ + f−|Σ) and (1.2), we

see

−
(
icα ·ν( f+|Σ− f−|Σ),mc2

β ( f+|Σ + f−|Σ)
)

Σ
=

1
2
(
ηs( f+|Σ + f−|Σ),mc2( f+|Σ + f−|Σ)

)
Σ
.

In particular, due to the assumption ηs ≥ 0 this is a non-negative real number. Moreover,
employing again (1.2) we get

(icα ·ν f+|Σ,mc2
β f−|Σ)Σ− (icα ·ν f−|Σ,mc2

β f+|Σ)Σ = 2iIm(icα ·ν f+|Σ,mc2
β f−|Σ)Σ.

This leads to

‖AΣ
0,ηs

f‖2
R3 = ‖c(α ·∇) f+‖2

Ω+∪Ω−+(mc2)2‖ f‖2
R3

+
1
2
(
ηs( f+|Σ + f−|Σ),mc2

β ( f+|Σ + f−|Σ)
)

Σ
+2iIm(icα ·ν f+|Σ,mc2

β f−|Σ)Σ.

As all other terms in the last equation are real, we conclude iIm(icα ·ν f+|Σ,mc2β f−|Σ)Σ =
0 and thus, using ηs ≥ 0

‖AΣ
0,ηs

f‖2
R3 = ‖c(α ·∇) f+‖2

Ω+∪Ω−+(mc2)2‖ f‖2
R3

+
1
2
(
ηs( f+|Σ + f−|Σ),mc2

β ( f+|Σ + f−|Σ)
)

Σ

≥ (mc2)2‖ f‖2
R3.

Therefore AΣ
0,ηs

can not have eigenvalues in (−mc2,mc2).

Next, we prove that the difference of the l-th power of the resolvent of the free Dirac
operator and of AΣ

ηe,ηs
belongs to a certain weak Schatten-von Neumann ideal. The proof

of the following theorem is based on Proposition 4.1.8. Hence, we have to assume some
additional smoothness of Σ.
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Theorem 4.2.7. Let l ∈ N be fixed and assume here additionally that Σ is Cl-smooth. Let
ηe,ηs : Σ→ R be Lipschitz continuous such that ηe(x)2−ηs(x)2 6= 4c2 for all x ∈ Σ and
let AΣ

ηe,ηs
be defined by (4.12). Moreover, let A0 be the free Dirac operator given by (3.3).

Then it holds for any λ ∈ C\R

(AΣ
ηe,ηs
−λ )−l− (A0−λ )−l ∈S2/l,∞.

Proof. Let l ∈ N and λ ∈ C\R be fixed. For convenience we set η := ηeI4 +ηsβ . Using
the resolvent formula from Theorem 4.2.3 (i) and (2.1) we get

(AΣ
ηe,ηs
−λ )−l− (A0−λ )−l =

1
(l−1)!

dl−1

dλ l−1

(
(AΣ

ηe,ηs
−λ )−1− (A0−λ )−1)

=− 1
(l−1)!

dl−1

dλ l−1

(
Φλ

(
I4 +ηCλ

)−1
ηΦ
∗
λ

)
=− ∑

p+q+r=l−1

1
p!q!r!

dp

dλ p Φλ

dq

dλ q

(
I4 +ηCλ

)−1
η

dr

dλ r Φ
∗
λ
.

(4.17)

We know from Proposition 4.1.8 that

dp

dλ p Φλ ∈S4/(2p+1),∞ and
dr

dλ r Φ
∗
λ
∈S4/(2r+1),∞. (4.18)

Furthermore, Proposition 4.1.7 yields
(
I4 +ηCλ

)−1 ∈ B. Eventually, we claim for q ∈
{1, . . . , l−1}

dq

dλ q

(
I4 +ηCλ

)−1 ∈S2/q,∞. (4.19)

This claim will be shown by induction.

Employing identity (2.2), Proposition 2.2.4 (iv), and (2.42) we get for q = 1

d
dλ

(I4 +ηCλ )
−1 =−(I4 +ηCλ )

−1
η

d
dλ

Cλ (I4 +ηCλ )
−1

=−(I4 +ηCλ )
−1

ηΦ
∗
λ

Φλ (I4 +ηCλ )
−1 ∈S2,∞.

So let us assume now that the statement is true for k = 1, . . . ,q. With the aid of (2.1) we
get

dq+1

dλ q+1 (1+ηCλ )
−1 =

dq

dλ q

[
d

dλ
(I4 +ηCλ )

−1
]

=− dq

dλ q

[
(I4 +ηCλ )

−1
ηΦ
∗
λ

Φλ (I4 +ηCλ )
−1
]

=− ∑
k+m+n=q

q!
k!m!n!

dk

dλ k (1+ηCλ )
−1

η
dm

dλ m

(
Φ
∗
λ

Φλ

) dn

dλ n (I4 +ηCλ )
−1.
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From (2.1) (with C(λ ) = I4) and Proposition 4.1.8 (i) we deduce

dm

dλ m

(
Φ
∗
λ

Φλ

)
= ∑

s+t=m

m!
s!t!

ds

dλ s Φ
∗
λ

dt

dλ t Φλ ∈S2/(m+1),∞.

This and the assumption of the induction imply eventually that

dq+1

dλ q+1 (1+ηCλ )
−1

=− ∑
k+m+n=q

q!
k!l!m!

dk

dλ k (1+ηCλ )
−1

η
dm

dλ m

(
Φ
∗
λ

Φλ

) dn

dλ n (1+ηCλ )
−1

belongs to S2/(q+1),∞.

Making use of (4.17), (4.18), (4.19), and (2.42) we deduce finally that

(AΣ
ηe,ηs
−λ )−l− (A0−λ )−l

=− ∑
p+q+r=l−1

1
p!q!r!

dp

dλ p Φλ

dq

dλ q (I4 +ηCλ )
−1

η
dr

dλ r Φ
∗
λ
∈S2/l,∞.

This was the claimed result of this theorem.

In the following corollary we state that the difference of the third powers of the resolvents
of AΣ

ηe,ηs
and A0 is a trace class operator. This is an important result for mathematical

scattering theory, as it ensures the existence and completeness of the wave operators for the
scattering system {AΣ

ηe,ηs
,A0} and that the absolute continuous parts of AΣ

ηe,ηs
and A0 are

unitarily equivalent. Furthermore, we provide an explicit formula for the trace of (AΣ
ηe,ηs
−

λ )−3− (A0−λ )−3 in terms of the singular integral operator Cλ . Note that the trace in the
left-hand side of (4.20) is taken in L2(R3;C4), whereas the trace on the right-hand side is
taken in L2(Σ;C4).

Corollary 4.2.8. Let Σ⊂ R3 be the boundary of a C3-smooth compact domain and let all
assumptions of Theorem 4.2.7 be fulfilled. Then for any λ ∈ C\R the operator

(AΣ
ηe,ηs
−λ )−3− (A0−λ )−3

belongs to the trace class ideal and

tr
[
(AΣ

ηe,ηs
−λ )−3− (A0−λ )−3]
=−1

2
tr
[

d2

dλ 2

((
I4 +(ηeI4 +ηsβ )Cλ

)−1
(ηeI4 +ηsβ )

d
dλ

Cλ

)]
.

(4.20)

In particular, the wave operators for the scattering system {AΣ
ηe,ηs

,A0} exist and are com-
plete, and the absolute continuous parts of AΣ

ηe,ηs
and A0 are unitarily equivalent.
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Proof. The first statement follows immediately from Theorem 4.2.7 for the special choice
l = 3 and the fact that S2/3,∞ is contained in the trace class ideal, compare (2.41). More-
over, the last assertion is a standard result in scattering theory, see for instance [71, Chap-
ter 0, Theorem 8.2] and the standard definition of the existence and completeness of wave
operators.

So it remains to prove the trace formula (4.20). We use the abbreviation η := ηeI4 +ηsβ .
Employing the resolvent formula from Theorem 4.2.3 (i), Proposition 2.2.4 (iv) and the
cyclicity of the trace (2.43) we get

tr
[
(AΣ

ηe,ηs
−λ )−3− (A0−λ )−3]= 1

2
tr
[

d2

dλ 2

(
(AΣ

ηe,ηs
−λ )−1− (A0−λ )−1)]

=−1
2

tr
[

d2

dλ 2

(
Φλ (I4 +ηCλ )

−1
ηΦ
∗
λ

)]
=− ∑

p+q+r=2

1
p!q!r!

tr
[

dp

dλ p Φλ

dq

dλ q (I4 +ηCλ )
−1

η
dr

dλ r Φ
∗
λ

]
=− ∑

p+q+r=2

1
p!q!r!

tr
[

dq

dλ q (I4 +ηCλ )
−1

η
dr

dλ r Φ
∗
λ

dp

dλ p Φλ

]
=−1

2
tr
[

d2

dλ 2 (I4 +ηCλ )
−1

ηΦ
∗
λ

Φλ

]
=−1

2
tr
[

d2

dλ 2 (I4 +ηCλ )
−1

η
d

dλ
Cλ

]
.

This is the claimed formula.

4.3 Dirac operators with δ -shell interactions of critical strength –
self-adjointness and basic spectral properties

In this section we study Dirac operators with a singular interaction of the form ηeI4 +ηsβ

in the critical case, that means when ηe(x)2−ηs(x)2 = 4c2 for some x∈ Σ. We will see that
under these assumptions AΣ

ηe,ηs
defined by (4.12) is not self-adjoint. But using the ordinary

boundary triple {L2(Σ;C4),ϒΣ
0 ,ϒ

Σ
1} from Theorem 4.1.5 it turns out for constant ηe and

ηs that these operators are essentially self-adjoint and we can characterize and study the
self-adjoint realizations. First, we have the following result:

Proposition 4.3.1. Assume that ηe,ηs : Σ→ R are Lipschitz continuous functions such
that ηe(x)2−ηs(x)2 = 4c2 for some x ∈ Σ. Then AΣ

ηe,ηs
defined by (4.12) is symmetric, but

not self-adjoint.
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Proof. The fact that AΣ
ηe,ηs

is symmetric follows immediately from Green’s identity, com-
pare (2.9). The claim that AΣ

ηe,ηs
is not self-adjoint will be shown in an indirect way.

Assume that AΣ
ηe,ηs

is self-adjoint. Then ran(AΣ
ηe,ηs
−λ ) = L2(R3;C4) for all λ ∈ C \R.

Since AΣ
∞ := T Σ � kerΓΣ

1 is self-adjoint by Lemma 4.1.3 it follows that {L2(Σ;C4), Γ̂Σ
0 , Γ̂

Σ
1}

with Γ̂Σ
0 = ΓΣ

1 and Γ̂Σ
1 :=−ΓΣ

0 is also a quasi boundary triple with Weyl function M̂Σ(λ ) =
−MΣ(λ )−1, compare the considerations after Theorem 4.1.5. Hence we deduce from The-
orem 2.2.5 that

ran
(
Γ̂1(AΣ

∞−λ )−1)= ran
(
Γ

Σ
0 � kerΓ

Σ
1
)
⊂ ran

(
ηeI4 +ηsβ +(MΣ(λ ))−1).

By Lemma 4.1.3 it holds ran
(
ΓΣ

0 � kerΓΣ
1
)
= H1/2(Σ;C4) and thus the last condition is

equivalent to the fact that ηeI4 +ηsβ +(MΣ(λ ))−1 is bijective in H1/2(Σ;C4).

Next, recall that MΣ(λ ) = C
1/2
λ

and (C
1/2
λ

)−1 =−4c2(α ·ν)C1/2
λ

(α ·ν), compare Proposi-
tion 4.1.2 and Proposition 3.2.1. Since Σ is C2-smooth and α ·ν is pointwise unitary the
multiplication with α ·ν yields a bijective operator in H1/2(Σ;C4). Thus, using (1.2) we
see that

ηeI4−ηsβ −4c2C
1/2
λ

= (α ·ν)
(
ηeI4 +ηsβ +(C

1/2
λ

)−1)(α ·ν)
is bijective. Moreover, since C

1/2
λ

is bijective in H1/2(Σ;C4) we obtain that also the oper-

ator I4 +(ηeI4 +ηsβ )C
1/2
λ

is bijective in H1/2(Σ;C4). Therefore, also the product(
ηeI4−ηsβ −4c2C

1/2
λ

)(
I4 +(ηeI4 +ηsβ )C

1/2
λ

)
= ηeI4−ηsβ −4c2C

1/2
λ

(ηeI4 +ηsβ )C
1/2
λ

+(η2
e −η

2
s −4c2)C

1/2
λ

is bijective. We set

C :=
∥∥(ηeI4−ηsβ −4c2C

1/2
λ

(ηeI4 +ηsβ )C
1/2
λ

+(η2
e −η

2
s −4c2)C

1/2
λ

)−1∥∥< ∞. (4.21)

Next, choose a function η such that

Σ0 := Σ\ suppη 6= /0 and C
∥∥((η2

e −η
2
s −4c2)−η

)
C

1/2
λ

∥∥< 1,

where C is the same constant as in (4.21) and the norm is the one in B(H1/2(Σ;C4)). Such
a choice is possible by Proposition 2.5.2; the fact that Σ0 6= /0 follows from the assumption
that there exist some x ∈ Σ such that ηe(x)2−ηs(x)2−4c2 = 0. Then

C
∥∥(ηeI4−ηsβ −4c2C

1/2
λ

(ηeI4 +ηsβ )C
1/2
λ

+(η2
e −η

2
s −4c2)C

1/2
λ

)
−
(
ηeI4−ηsβ −4c2C

1/2
λ

(ηeI4 +ηsβ )C
1/2
λ

+ηC
1/2
λ

)∥∥
=C

∥∥((η2
e −η

2
s −4c2)−η

)
C

1/2
λ

∥∥< 1
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and thus [50, Theorem IV 1.16] yields that ηeI4−ηsβ −4c2C
1/2
λ

(ηeI4+ηsβ )C
1/2
λ

+ηC
1/2
λ

is bijective in H1/2(Σ;C4).

Next, denote by P : H1/2(Σ;C4)→ H1/2(Σ0;C4) the restriction operator acting as Pϕ =
ϕ � Σ0. Then since suppη = Σ\Σ0 we obtain

H1/2(Σ0;C4)⊂ ranP
(

ηeI4−ηsβ −4c2C
1/2
λ

(ηeI4 +ηsβ )C
1/2
λ

+ηC
1/2
λ

)
= ranP

(
ηeI4−ηsβ −4c2C

1/2
λ

(ηeI4 +ηsβ )C
1/2
λ

)
.

(4.22)

Finally, we claim that ηeI4−ηsβ − 4c2C
1/2
λ

(ηeI4 +ηsβ )C
1/2
λ

is compact in H1/2(Σ;C4).
This gives then a contradiction to (4.22). To verify the last claim we write

C
1/2
λ

(ηeI4 +ηsβ ) = (ηeI4−ηsβ )C
1/2
λ

+K1,λ

with

K1,λ :=
(
C

1/2
λ

ηe−ηeC
1/2
λ

)
+
(
C

1/2
λ

ηs−ηsC
1/2
λ

)
β +ηs

(
C

1/2
λ

β +βC
1/2
λ

)
.

Using Propositions 3.2.3 and 3.2.4 we conclude that K1,λ is compact in H1/2(Σ;C4).

Moreover, recall that (C1/2
λ

)2 = 1
4c2 +K2,λ , where K2,λ is compact in H1/2(Σ;C4), com-

pare Proposition 4.1.4 (iv). Thus, we get eventually that

ηeI4−ηsβ −4c2C
1/2
λ

(ηeI4 +ηsβ )C
1/2
λ

=
(
ηeI4−ηsβ

)(
I4−4c2(C

1/2
λ

)2)+K1,λC
1/2
λ

=−4c2(ηeI4−ηsβ )K2,λ +K1,λC
1/2
λ

,

which is compact in H1/2(Σ;C4). This finishes the proof of this proposition.

In the following let ηe,ηs ∈ R with η2
e − η2

s = 4c2. We are going to show that AΣ
ηe,ηs

is in this case essentially self-adjoint and compute the closure of this operator, which is
then the self-adjoint realization of the Dirac operator with a δ -shell interaction of strength
ηeI4+ηsβ . For that purpose we use the ordinary boundary triple {L2(Σ;C4),ϒΣ

0 ,ϒ
Σ
1} from

Theorem 4.1.5. Recall that

AΣ
ηe,ηs

= T Σ � ker
(
Γ

Σ
0 +(ηeI4 +ηsβ )Γ

Σ
1
)
= (SΣ)∗ �

(
ϒ

Σ
1 −Θ

1,Σ
ηe,ηsϒ

Σ
0
)
,

where Θ
1,Σ
ηe,ηs = ιΣ

+

(
ηeI4 +ηsβ +(C

1/2
0 )−1)(ιΣ

−)
−1, ιΣ

± is defined by (4.6) and (4.7), and

C
1/2
0 is the restriction of C0 onto H1/2(Σ;C4) from Proposition 4.1.6, compare (4.10). The

operator Θ
1,Σ
ηe,ηs is explicitly given by

Θ
1,Σ
ηe,ηsϕ := ι

Σ
+

(
ηeI4 +ηsβ +(C

1/2
0 )−1)(ιΣ

−)
−1

ϕ,

domΘ
1,Σ
ηe,ηs := H1(Σ;C4).

(4.23)
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Due to the mapping properties of C1/2
0 from Proposition 4.1.6 we see that Θ

1,Σ
ηe,ηs is well-

defined. Moreover, using Propositions 4.1.6 and 4.1.2 it is not difficult to see that Θ
1,Σ
ηe,ηs is

symmetric in L2(Σ;C4). Our goal is to show that Θ
1,Σ
ηe,ηs is essentially self-adjoint and that

its closure coincides with the maximal parameter

Θ
0,Σ
ηe,ηsϕ := ι

Σ
+

(
ηeI4 +ηsβ +(C

−1/2
0 )−1)(ιΣ

−)
−1

ϕ,

domΘ
0,Σ
ηe,ηs :=

{
ϕ ∈ L2(Σ;C4) :

(
ηeI4 +ηsβ +(C

−1/2
0 )−1)(ιΣ

−)
−1

ϕ ∈ H1/2(Σ;C4)
}
.

(4.24)

Here C
−1/2
0 is the extension of C0 onto H−1/2(Σ;C4). A density argument and Proposi-

tion 3.2.1 show that (C−1/2
0 )−1 = −4c2(α ·ν)′C−1/2

0 (α ·ν)′, where (α ·ν)′ is the dual of
the multiplication operator with α ·ν in H1/2(Σ;C4).

Proposition 4.3.2. Let ηe,ηs ∈ R such that η2
e − η2

s = 4c2. Moreover, let Θ
1,Σ
ηe,ηs and

Θ
0,Σ
ηe,ηs be given by (4.23) and (4.24), respectively. Then Θ

1,Σ
ηe,ηs is essentially self-adjoint in

L2(Σ;C4) and the closure of Θ
1,Σ
ηe,ηs is Θ

0,Σ
ηe,ηs . In particular Θ

0,Σ
ηe,ηs is self-adjoint.

Proof. The proof of this proposition consists of three steps. First, we verify that Θ
0,Σ
ηe,ηs

is closed, then in Step 2 we prove that (Θ1,Σ
ηe,ηs)

∗ ⊂ Θ
0,Σ
ηe,ηs . Finally, in Step 3 we show

Θ
0,Σ
ηe,ηs ⊂ Θ

1,Σ
ηe,ηs which yields then together with the results from Step 1 and Step 2 the

claim of this proposition.

Step 1: We prove that Θ
0,Σ
ηe,ηs is closed. For that choose a sequence ϕn ⊂ domΘ

0,Σ
ηe,ηs such

that
ϕn→ ϕ and Θ

0,Σ
ηe,ηsϕn→ ψ, n→ ∞,

in L2(Σ;C4) for some ϕ,ψ ∈ L2(Σ;C4). Since ιΣ
+ : H1/2(Σ;C4)→ L2(Σ;C4) is bijective,

compare (4.6), it follows that(
ηeI4 +ηsβ +(C

−1/2
0 )−1)(ιΣ

−)
−1

ϕn→ (ιΣ
+)
−1

ψ in H1/2(Σ;C4), n→ ∞.

On the other hand, since ιΣ
− : H−1/2(Σ;C4)→ L2(Σ;C4) is bijective and ηeI4 + ηsβ −

(C
−1/2
0 )−1 is continuous in H−1/2(Σ;C4) we see that also(

ηeI4 +ηsβ +(C
−1/2
0 )−1)(ιΣ

−)
−1

ϕn→
(
ηeI4 +ηsβ +(C

−1/2
0 )−1)(ιΣ

−)
−1

ϕ

in H−1/2(Σ;C4), as n→ ∞. Hence, we conclude(
ηeI4 +ηsβ +(C

−1/2
0 )−1)(ιΣ

−)
−1

ϕ = (ιΣ
+)
−1

ψ ∈ H1/2(Σ;C4).

This shows that ϕ ∈ domΘ
0,Σ
ηe,ηs and Θ

0,Σ
ηe,ηsϕ = ψ , that means Θ

0,Σ
ηe,ηs is closed.
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Step 2: We verify that (Θ1,Σ
ηe,ηs)

∗ ⊂ Θ
0,Σ
ηe,ηs . For that fix some ϕ ∈ dom(Θ1,Σ

ηe,ηs)
∗ and let

ψ ∈ domΘ
1,Σ
ηe,ηs = H1(Σ;C4) be arbitrary, but fixed. Then using the definition of Θ

1,Σ
ηe,ηs ,

equation (2.18), Proposition 4.1.4 (ii) and (C
1/2
0 )−1 =−4c2(α ·ν)C1/2

0 (α ·ν) we get(
(Θ1,Σ

ηe,ηs)
∗
ϕ,ψ

)
Σ
=
(
ϕ,Θ1,Σ

ηe,ηsψ
)

Σ
=
(
ϕ, ιΣ

+

(
ηeI4 +ηsβ +(C

1/2
0 )−1)(ιΣ

−)
−1

ψ
)

Σ

=
(
(ιΣ
−)
−1

ϕ,
(
ηeI4 +ηsβ +(C

1/2
0 )−1)(ιΣ

−)
−1

ψ
)
−1/2×1/2

=
(
(ιΣ
−)
−1

ϕ,
(
ηeI4 +ηsβ −4c2(α ·ν)C1/2

0 (α ·ν)
)
ι

Σ
+ψ
)
−1/2×1/2

=
((

ηeI4 +ηsβ −4c2(α ·ν)′C−1/2
0 (α ·ν)′

)
(ιΣ
−)
−1

ϕ, ιΣ
+ψ
)
−1/2×1/2

=
(
ι

Σ
−
(
ηeI4 +ηsβ −4c2(α ·ν)′C−1/2

0 (α ·ν)′
)
(ιΣ
−)
−1

ϕ,(ιΣ
+)

2
ψ
)

Σ
.

Since this is true for all ψ ∈H1(Σ;C4) = dom(ιΣ
+)

2 and as (ιΣ
+)

2 regarded as an unbounded
operator in L2(Σ;C4) is self-adjoint we conclude that

ι
Σ
−
(
ηeI4 +ηsβ −4c2(α ·ν)′C−1/2

0 (α ·ν)′
)
(ιΣ
−)
−1

ϕ ∈ dom(ιΣ
+)

2 = H1(Σ;C4)

and

(Θ1,Σ
ηe,ηs)

∗
ϕ = (ιΣ

+)
2
ι

Σ
−
(
ηeI4 +ηsβ −4c2(α ·ν)′C−1/2

0 (α ·ν)′
)
(ιΣ
−)
−1

ϕ

= ι
Σ
+

(
ηeI4 +ηsβ −4c2(α ·ν)′C−1/2

0 (α ·ν)′
)
(ιΣ
−)
−1

ϕ.

Thus ϕ ∈ domΘ
0,Σ
ηe,ηs and (Θ1,Σ

ηe,ηs)
∗ϕ = Θ

0,Σ
ηe,ηsϕ , that means (Θ1,Σ

ηe,ηs)
∗ ⊂Θ

0,Σ
ηe,ηs .

Step 3: We show that Θ
0,Σ
ηe,ηs ⊂Θ

1,Σ
ηe,ηs . Let ϕ ∈ domΘ

0,Σ
ηe,ηs be fixed and choose a sequence

(ψn)⊂ H1(Σ;C4) such that (ιΣ
−)
−1ψn→ (ιΣ

−)
−1ϕ in H−1/2(Σ;C4). We define

ϕn := ϕ +
1
2

ι
Σ
−

(
I4− (ηeI4−ηsβ )C

−1/2
0

)
(ιΣ
−)
−1(ψn−ϕ).

Note that

ϕn =
1
2

ι
Σ
−

(
I4− (ηeI4−ηsβ )C

−1/2
0

)
(ιΣ
−)
−1

ψn +
1
2

ι
Σ
−

(
I4 +(ηeI4−ηsβ )C

−1/2
0

)
(ιΣ
−)
−1

ϕ

=
1
2

ι
Σ
−

(
I4− (ηeI4−ηsβ )C

1/2
0

)
(ιΣ
−)
−1

ψn−
ηs

2
ι

Σ
−
(
βC
−1/2
0 +C

−1/2
0 β

)
(ιΣ
−)
−1

ϕ

+
1
2

ι
Σ
−

(
I4 +C

−1/2
0 (ηeI4 +ηsβ )

)
(ιΣ
−)
−1

ϕ.

Since ιΣ
− gives rise to a bounded operator from H1/2(Σ;C4) onto H1(Σ;C4) by (4.8), we

deduce from the mapping properties of C1/2
0 from Proposition 4.1.6 that

1
2

ι
Σ
−

(
I4− (ηeI4−ηsβ )C

1/2
0

)
(ιΣ
−)
−1

ψn ∈ H1(Σ;C4).
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Next, since ϕ ∈ domΘ
0,Σ
ηe,ηs we have that

1
2

ι
Σ
−

(
I4 +C

−1/2
0 (ηeI4 +ηsβ )

)
(ιΣ
−)
−1

ϕ =
1
2

ι
Σ
−C

1/2
0

(
(C
−1/2
0 )−1 +ηeI4 +ηsβ

)
(ιΣ
−)
−1

ϕ

belongs to H1(Σ;C4). Eventually, by Proposition 3.2.4 we deduce that
ηs

2
ι

Σ
−
(
βC
−1/2
0 +C

−1/2
0 β

)
(ιΣ
−)
−1

ϕ ∈ H1(Σ;C4).

Therefore, we conclude ϕn ∈ H1(Σ;C4). Next, as I4− (ηeI4−ηsβ )C
−1/2
0 is continuous in

H−1/2(Σ;C4) by Proposition 4.1.6 we get that

ϕn−ϕ =
1
2

ι
Σ
−

(
I4− (ηeI4−ηsβ )C

−1/2
0

)
(ιΣ
−)
−1(ψn−ϕ)→ 0

in L2(Σ;C4), as n→ ∞. Finally, using η2
s −η2

e = 4c2 we obtain that

Θ
0,Σ
ηe,ηs(ϕn−ϕ)

=
1
2

ι
Σ
+

(
ηeI4 +ηsβ +(C

−1/2
0 )−1

)(
I4− (ηeI4−ηsβ )C

−1/2
0

)
(ιΣ
−)
−1(ψn−ϕ)

=
1
2

ι
Σ
+

(
ηeI4 +ηsβ +(C

−1/2
0 )−1

)(
(C
−1/2
0 )−1− (ηeI4−ηsβ )

)
C
−1/2
0 (ιΣ

−)
−1(ψn−ϕ)

=
1
2

ι
Σ
+

(
−4c2I4 +(C

−1/2
0 )−2 +ηs

(
β (C

−1/2
0 )−1 +(C

−1/2
0 )−1

β
))

C
−1/2
0 (ιΣ

−)
−1(ψn−ϕ).

Using (C
−1/2
0 )−1 =−4c2(α ·ν)′C−1/2

0 (α ·ν)′ and Proposition 3.2.1 (iv) we deduce(
C
−1/2
0

)−2
= 16c4(α ·ν)′(C−1/2

0 )2(α ·ν)′

= 16c4(α ·ν)C1/2
0 (α ·ν)

[
(α ·ν)′(C−1/2

0 )+(C
−1/2
0 )(α ·ν)′

]
(α ·ν)′

−16c4((α ·ν)′C−1/2
0 )2 =K1 +4c2I4,

where K1 : H−1/2(Σ;C4)→ H1/2(Σ;C4) is bounded, see Proposition 4.1.4 (iv). Hence

Θ
0,Σ
ηe,ηs(ϕn−ϕ) =

1
2

ι
Σ
+

(
K1 +ηs

(
β (C

−1/2
0 )−1 +(C

−1/2
0 )−1

β
))

C
−1/2
0 (ιΣ

−)
−1(ψn−ϕ)

and as ψn→ ϕ in H−1/2(Σ;C4), as n→ ∞, we conclude with Proposition 3.2.4 (ii) finally

that Θ
0,Σ
ηe,ηs(ϕn−ϕ)→ 0 in L2(Σ;C4), as n→ ∞. This shows now Θ

0,Σ
ηe,ηs ⊂ Θ

1,Σ
ηe,ηs , which

completes the proof of this proposition.

With the aid of Proposition 4.3.2 we are now able to show that the operator AΣ
ηe,ηs

defined
by (4.12) is essentially self-adjoint in the critical case and we can describe its self-adjoint
closure explicitly. To formulate the corresponding theorem recall the definitions of the
maximal operator (SΣ)∗ = T Ω+

max⊕T Ω−
max with T Ω±

max given by (3.10), the extended boundary
mappings Γ̃Σ

0 , Γ̃
Σ
1 from Lemma 4.1.3, and the ordinary boundary triple {L2(Σ;C4),ϒΣ

0 ,ϒ
Σ
1}

from Theorem 4.1.5.
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Theorem 4.3.3. Let ηe,ηs ∈R such that η2
e −η2

s = 4c2 and let AΣ
ηe,ηs

be defined by (4.12).
Then AΣ

ηe,ηs
is essentially self-adjoint in L2(R3;C4). Its self-adjoint closure is given by

AΣ
ηe,ηs = (SΣ)∗ � ker

(
ϒ

Σ
1 −Θ

0,Σ
ηe,ηsϒ

Σ
0
)
= (SΣ)∗ � ker

(
Γ̃

Σ
0 +(ηeI4 +ηsβ )Γ̃

Σ
1
)
. (4.25)

Moreover, AΣ
ηe,ηs

( AΣ
ηe,ηs and domAΣ

ηe,ηs 6⊂ H1(Ω+;C4)⊕H1(Ω−;C4).

Proof. By Proposition 4.3.2 the operator Θ
1,Σ
ηe,ηs is essentially self-adjoint. Thus Proposi-

tion 2.2.7 implies that

AΣ
ηe,ηs

= T Σ � ker
(
Γ

Σ
0 +(ηeI4 +ηsβ )Γ

Σ
1
)
= (SΣ)∗ �

(
ϒ

Σ
1 −Θ

1,Σ
ηe,ηsϒ

Σ
0
)

is essentially self-adjoint. Furthermore, since {L2(Σ;C4),ϒΣ
0 ,ϒ

Σ
1} is an ordinary boundary

triple the closure AΣ
ηe,ηs of AΣ

ηe,ηs
corresponds to the closure of the parameter Θ

1,Σ
ηe,ηs; by

Proposition 4.3.2 this is Θ
0,Σ
ηe,ηs . Employing [22, Corollary 3.14] we deduce then (4.25).

The last statement of this theorem is a direct consequence of Proposition 4.3.1.

Remark 4.3.4. According to [55, Proposition 2.1] functions f± ∈ domT Ω±
max have traces in

H−1/2(Σ;C4). Hence, the boundary condition Γ̃Σ
0 +(ηeI4 +ηsβ )Γ̃

Σ
1 = 0 is equivalent to

−ic(α ·ν)′( f+|Σ− f−|Σ) =
1
2
(ηeI4 +ηsβ )( f+|Σ + f−|Σ) in H−1/2(Σ;C4).

This is in accordance to the jump condition in Definition 4.2.1.

In the next proposition we summarize some of the basic spectral properties of the self-
adjoint realization AΣ

ηe,ηs in the case of critical interaction strengths. These results comple-
ment those from Theorem 4.2.3.

Proposition 4.3.5. Let ηe,ηs ∈ R such that η2
e − η2

s = 4c2 and let AΣ
ηe,ηs be defined

by (4.25). Moreover, let A0 be the free Dirac operator given by (3.3) and let for λ ∈ C\R
the operators Φ

−1/2
λ

and C
−1/2
λ

be as in Proposition 4.1.6. Then the following assertions
are true:

(i) (−∞,−mc2]∪ [mc2,∞)⊂ σess(AΣ
ηe,ηs).

(ii) λ ∈ (−mc2,mc2)∩σp(AΣ
ηe,ηs) if and only if 0 ∈ σp

(
ηeI4 +ηsβ +(C

−1/2
0 )−1).

(iii) The discrete and the essential spectra of the operators AΣ
ηe,ηs and AΣ

−ηe,−ηs
coincide.

(iv) For λ ∈ C\R it holds

(AΣ
ηe,ηs−λ )−1 = (A0−λ )−1−Φ

−1/2
λ

(
I4 +(ηeI4 +ηsβ )C

−1/2
λ

)−1
(ηeI4 +ηsβ )Φ

∗
λ
.
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Proof. (i) Let λ ∈ (−∞,−mc2]∪ [mc2,∞) and set ϕλ
n := 0⊕ψλ

n , n ∈ N, with ψλ
n defined

by (3.15). Then it holds ϕλ
n ∈ domSΣ ⊂ domAΣ

ηe,ηs
. Furthermore, by Lemma 3.1.4 we see

that ϕλ
n converges weakly to zero,

‖ϕλ
n ‖R3 = ‖ψλ

n ‖Ω− = const. > 0, and (AΣ
ηe,ηs−λ )ϕλ

n = 0⊕ (T Ω−
min −λ )ψλ

n → 0, n→ ∞.

Thus (ϕλ
n ) is a singular sequence for AΣ

ηe,ηs and λ which shows λ ∈ σess(AΣ
ηe,ηs

).

Assertions (ii) and (iv) are direct consequences of Proposition 2.2.7 and Theorem 2.2.5 (iii)
taking the special form of the γ-field and the Weyl function for the ordinary boundary triple
{L2(Σ;C4),ϒΣ

0 ,ϒ
Σ
1} from (2.20) into account, compare also (4.11).

Therefore, it remains to verify statement (iii). First, using that ιΣ
± are bijections, the for-

mula (C
−1/2
λ

)−1 = −4c2(α · ν)′C−1/2
λ

(α · ν)′, and the Birman Schwinger principle for
the discrete spectrum, compare Proposition 2.2.7 and (4.11) the proof of the statement
σdisc(AΣ

ηe,ηs) = σdisc(AΣ
−ηe,−ηs

) follows word by word the proof of Corollary 4.2.4. Even-
tually, we prove

ρ(AΣ
ηe,ηs)∩ (−mc2,mc2) = ρ(AΣ

−ηe,−ηs
)∩ (−mc2,mc2).

This and the previously shown facts imply then σess(AΣ
ηe,ηs) = σess(AΣ

−ηe,−ηs
). Due to sym-

metry reasons it suffices to verify ρ(AΣ
ηe,ηs)∩ (−mc2,mc2)⊂ ρ(AΣ

−ηe,−ηs
)∩ (−mc2,mc2).

Let λ ∈ ρ(AΣ
ηe,ηs)∩ (−mc2,mc2). Then, by Proposition 2.2.7 we have that 0 ∈ ρ(Θ0,Σ

ηe,ηs−
MΣ(λ )), where MΣ(λ ) is the Weyl function associated to {L2(Σ;C4),ϒΣ

0 ,ϒ
Σ
1}. Taking the

special form of MΣ(λ ) from (2.20) and Θ
0,Σ
ηe,ηs into account this yields that the operator

ηeI4 +ηsβ +(C
−1/2
λ

)−1 is injective and that H1/2(Σ;C4) belongs to its range. Employing
(ηeI4 +ηsβ )

−1 = 1
4c2 (ηeI4−ηsβ ), equation (1.2), Proposition 3.2.1 (iv), and a density

argument we find

−ηeI4−ηsβ +(C
−1/2
λ

)−1

=−(α ·ν)′(ηeI4−ηsβ )
[
ηeI4 +ηsβ +(C

−1/2
λ

)−1
]
C
−1/2
λ

(α ·ν)′.

Since (α · ν)′ and ηeI4−ηsβ are invertible and C
−1/2
λ

is bijective in H−1/2(Σ;C4), also

−ηeI4−ηsβ +(C
−1/2
λ

)−1 is injective and H1/2(Σ;C4) belongs to the range of this operator.
This yields, using again Proposition 2.2.7, that λ ∈ ρ(AΣ

τe,τs
).

Finally, we prove that in the case of critical interaction strengths under certain assump-
tions there might be essential spectrum of AΣ

ηe,ηs also in the gap of σ(A0). To be more
precise, we show that if there is some flat part contained in Σ and the interaction is purely
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electrostatic, then the point zero belongs to σess(AΣ
±2c,0). This result shows that in the

case of critical interaction strengths the spectral properties can be of a completely differ-
ent nature as in the non-critical case. The proof of this theorem follows closely the one
of [14, Theorem 5.9].

Theorem 4.3.6. Let Σ ⊂ R3 be a bounded C2-smooth surface such that there exists an
open set Σ0 ⊂ Σ that is contained in a plane. Moreover, let ηe ∈ {±2c} and ηs = 0 be
constant and let AΣ

±2c,0 be defined by (4.12). Then 0 ∈ σess(AΣ
±2c,0).

Proof. The proof is indirect and for a simpler readability it is split into four steps. We
are going to show the claim for ηe = 2c, the proof for ηe = −2c follows the same lines.
Assume that

0 ∈ ρ(AΣ
2c,0)∪σdisc(AΣ

2c,0). (4.26)

In our considerations the operator ΞΣ : L2(Σ;C4)→ L2(Σ;C4) acting on ϕ ∈ L2(Σ;C4) as

Ξ
Σ
ϕ :=−ι

Σ
+(α ·ν)

(
2cI4−4c2C

−1/2
0

)(
2cI4 +4c2C

−1/2
0

)
(α ·ν)′(ιΣ

−)
−1

ϕ (4.27)

will play an important role.

Step 1. We claim that ΞΣ is bounded and self-adjoint in L2(Σ;C4). First, we find for
ϕ ∈ L2(Σ;C4)

Ξ
Σ
ϕ =−4c2

ι
Σ
+(α ·ν)

(
I4−4c2(C

−1/2
0 )2)(α ·ν)′(ιΣ

−)
−1

ϕ.

Since ιΣ
± : H±1/2(Σ;C4)→ L2(Σ;C4) are bounded and bijective, it follows from Proposi-

tion 4.1.6 (iv) that also ΞΣ is well-defined and bounded. Next, using (1.2) we note that ΞΣ

acts on ϕ ∈ H1(Σ;C4) as

Ξ
Σ
ϕ =−4c2

ι
Σ
+(α ·ν)

(
I4−4c2(C

1/2
0 )2)(α ·ν)(ιΣ

−)
−1

ϕ.

Since the operators α · ν , C1/2
0 , and ιΣ

− � H1/2(Σ;C4) = (ιΣ
+)
−1 are symmetric this yields

for ϕ ∈ H1(Σ;C4)(
Ξ

Σ
ϕ,ϕ

)
Σ
=−4c2((I4−4c2(C

1/2
0 )2)(α ·ν)ιΣ

+ϕ,(α ·ν)ιΣ
+ϕ
)

Σ
∈ R.

By a density argument this extends to all ϕ ∈ L2(Σ;C4) and hence ΞΣ is self-adjoint
in L2(Σ;C4).

Step 2. We show that the direct sum decomposition

kerΞ
Σ = kerΘ

0,Σ
2c,0+̇kerΘ

0,Σ
−2c,0 (4.28)

holds. Together with a similar consideration for the discrete spectrum as in (4.11) for
λ = 0, Proposition 4.3.5 (iii) and assumption (4.26) this yields that dimkerΞΣ <∞. Clearly
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ker(2cI4 + 4c2C
−1/2
0 )∩ ker(2cI4− 4c2C

−1/2
0 ) = {0}. Hence, in view of the definition of

Θ
0,Σ
±2c,0 it follows that the sum in (4.28) is direct. Next, using (1.2) we see

Ξ
Σ = Θ

0,Σ
−2c,0ι

Σ
−(ι

Σ
+)
−1

Θ
0,Σ
2c,0

=−ι
Σ
+(α ·ν)

(
2cI4 +4c2C

−1/2
0

)(
2cI4−4c2C

−1/2
0

)
(α ·ν)′(ιΣ

−)
−1

=−ι
Σ
+(α ·ν)

(
2cI4−4c2C

−1/2
0

)(
2cI4 +4c2C

−1/2
0

)
(α ·ν)′(ιΣ

−)
−1

= Θ
0,Σ
2c,0ι

Σ
−(ι

Σ
+)
−1

Θ
0,Σ
−2c,0

(4.29)

and get the inclusion
kerΘ

0,Σ
2c,0+̇kerΘ

0,Σ
−2c,0 ⊂ kerΞ

Σ. (4.30)

To get the other inclusion let us denote by kerΞΣ	kerΘ
0,Σ
−2c,0 the orthogonal complement

of kerΘ
0,Σ
−2c,0 in the subspace kerΞΣ of L2(Σ;C4). Then (4.29) yields(

2cI4 +4c2C
−1/2
0

)
(α ·ν)′(ιΣ

−)
−1(kerΞ

Σ	kerΘ
0,Σ
−2c,0

)
⊂ ker

(
2cI4−4c2C

−1/2
0

)
.

Since (
2cI4 +4c2C

−1/2
0

)
(α ·ν)′(ιΣ

−)
−1(kerΞ

Σ	kerΘ
0,Σ
−2c,0

)
is injective and α ·ν and ιΣ

± are bijective we conclude

dimkerΞ
Σ ≤ dimker

(
2cI4 +4c2C

−1/2
0

)
+dimker

(
2cI4−4c2C

−1/2
0

)
= dimkerΘ

0,Σ
−2c,0 +dimkerΘ

0,Σ
2c,0,

which together with (4.30) implies finally (4.28).

Step 3. We define H :=(kerΞΣ)⊥ and claim that assumption (4.26) implies that ΞΣ, which
is clearly injective in the invariant subspace H , is boundedly invertible in H . In other
words, this means that Ξ � H is a bounded, self-adjoint and bijective operator in H .

Let PΣ
± be the orthogonal projectors onto kerΘ

0,Σ
±2c,0. Making use of (4.26), Proposi-

tion 4.3.5 (iii) and a similar consideration as in (4.11) we see that the self-adjoint operators

Θ
0,Σ
±2c,0 � (1−PΣ

±)L
2(Σ;C4)

are boundedly invertible in (1−PΣ
±)L

2(Σ;C4). Let us these restrictions by ΘΣ
±. Now, let

ϕ ∈ ranΞΣ ⊂H and choose ψ ∈H with ϕ = ΞΣψ . If we define

ψ± := ι
Σ
−

(
∓2cI4−4c2(α ·ν)′C−1/2

0 (α ·ν)′
)
(ιΣ
−)
−1

ψ ∈ domΘ
0,Σ
±2c,0,
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then ϕ = ΞΣψ = Θ
0,Σ
±2c,0ψ±. Hence, we get ψ± = (ΘΣ

±)
−1ϕ +PΣ

±ψ± and therefore

4c(ΞΣ � H )−1
ϕ = 4cψ = ψ−−ψ+ = (ΘΣ

−)
−1

ϕ− (ΘΣ
+)
−1

ϕ +PΣ
−ψ−−PΣ

+ψ+.

Since PΣ
−ψ−−PΣ

+ψ+ ∈ kerΞΣ = H ⊥ by (4.28) we deduce∥∥4c(ΞΣ � H )−1
ϕ
∥∥2

Σ
≤
∥∥4c(ΞΣ � H )−1

ϕ
∥∥2

Σ
+
∥∥PΣ

+ψ+−PΣ
−ψ−

∥∥2
Σ

=
∥∥4c(ΞΣ � H )−1

ϕ +(PΣ
+ψ+−PΣ

−ψ−)
∥∥2

Σ

=
∥∥(ΘΣ

−)
−1

ϕ− (ΘΣ
+)
−1

ϕ
∥∥2

Σ
.

Since (ΘΣ
±)
−1 are bounded we conclude that also (ΞΣ � H )−1 is bounded in H . As

(ΞΣ � H )−1 is self-adjoint in H it is clear that it is everywhere defined on H .

Step 4. Finally, we prove that the assumption that a flat part Σ0 is contained in Σ yields
that there are infinitely many linearly independent functions not belonging to ranΞΣ. This
is then a contradiction to the previous findings in this proof, which shows that the assump-
tion (4.26) can not be true.

We consider the linear operator

A := C
−1/2
0 (α ·ν)′+(α ·ν)′C−1/2

0 .

Then by Proposition 3.2.4 the operator A : H−1/2(Σ;C4)→ H1/2(Σ;C4) is a well-defined
and bounded and by Proposition 3.2.1 (iv) and a density argument we obtain

Ξ
Σ = 16c4

ι
Σ
+(α ·ν)′C

−1/2
0 A(ιΣ

−)
−1.

Since ιΣ
±, (α ·ν)′, and C

−1/2
0 are isomorphisms, we see by comparing with (4.27) that in-

finitely many linearly independent functions do not belong to ranΞΣ if and only if infinitely
many linearly independent functions do not belong to ranA. We are going to verify the
last claim.

Employing the anti-commutation relation (1.2) one sees that A acts on ϕ ∈ L2(Σ;C4) as

Aϕ(x) =
∫

Σ

a(x,y)ϕ(y)dσ(y) (4.31)

with integral kernel

a(x,y) = G0(x− z)α · (ν(y)−ν(x))+
ie−mc|x−y|

2π|x− y|3
(1+mc|x− y|)ν(x) · (x− y),

where G0 is the Green’s function for the resolvent of the free Dirac operator A0 given
by (3.6). Note that the integral operator in (4.31) is not singular, as |a(x,y)| ≤C|x− y|−1,
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compare for instance [5, equation (22) and Lemma 3.5] and [45, Proposition 3.11]. Choose
a subset Σ1 ⊂ Σ with Σ1 ⊂ Σ0. Note that a(x,y) = 0 for x,y ∈ Σ0. Let U1 ⊂ R2 and
φ : U1 → R3 be a linear affine function which parametrizes Σ1, that means ranφ = Σ1,
and let ϕ ∈ L2(Σ;C4) be arbitrary, but fixed. Since ν is constant on Σ0 and Σ1 ⊂ Σ0, we
see that the mapping U1 3 u 7→ a(φ(u),y) is C∞-smooth for any y ∈ Σ and the function
Σ 3 y 7→ a(φ(u),y) is C1-smooth for any u ∈ U1. From this, it is easy to deduce that
(Aϕ)◦φ is differentiable on U1 and

∂u j(Aϕ)(φ(u)) =
∫

Σ

∂u ja(φ(u),y)ϕ(y)dσ(y), j ∈ {1,2}.

Let us denote the elements of the 4×4-matrix a(x,y) by alk(x,y) and those of ϕ(x) ∈ C4

by ϕk(x), l,k ∈ {1,2,3,4}. Then the last observation implies, in particular, that

‖∂u jAϕ‖2
L2(Σ1;C4) =C1

∫
U1

∣∣∂u jAϕ(φ(u))
∣∣2 du

=C1

∫
U1

∣∣∣∣∫
Σ

∂u ja(φ(u),y)ϕ(y)dσ(y)
∣∣∣∣2 du

=C1

∫
U1

4

∑
k,l=1

∣∣∣(∂u jalk(φ(u), ·),ϕk
)

1/2×−1/2

∣∣∣2 du

≤C1

∫
U1

4

∑
l=1

∥∥∂u jal·(φ(u), ·)
∥∥2

H1/2(Σ;C4)
‖ϕ‖H−1/2(Σ;C4)du

=C2‖ϕ‖H−1/2(Σ;C4).

Continuity and density yield that Aϕ|Σ1 ∈H1(Σ1;C4) for all ϕ ∈H−1/2(Σ;C4). Thus, any
function ψ ∈ H1/2(Σ;C4) with ψ|Σ1 /∈ H1(Σ1;C4) is not contained in ranA. Hence, there
are infinitely many linearly independent functions in H1/2(Σ;C4) that are not contained in
ranA. This completes the proof of this Theorem.

Theorem 4.3.6 has also some interesting consequences for the domain of the operator
AΣ

ηe,ηs , namely that it is not contained in any Sobolev space of positive order. This ex-
tends the finding from Proposition 4.3.1 and complements one of the main results from
Theorem 4.2.3, namely that functions in domAΣ

ηe,ηs
have in the non-critical case H1-

smoothness.

Corollary 4.3.7. Let Σ ⊂ R3 be the boundary of a bounded C2-smooth domain such that
there exists an open set Σ0 ⊂ Σ which is contained in a plane. Moreover, let ηe ∈ {±2c}
be constant. Then domAΣ

ηe,0 6⊂ Hs(R3 \Σ;C4) for all s > 0.

Proof. We are going to show the claim for ηe = 2c, the proof for ηe = −2c is similar.
This corollary will be shown in an indirect way. Namely, we prove that the difference
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(AΣ
2c,0−λ )−1− (A0−λ )−1 is compact for λ ∈ C \R, if domA2c,0 ⊂ Hs(R3 \Σ;C4) for

some s > 0. But this is not possible, as σess(A0) = (−∞,−mc2]∪ [mc2,∞) 6= σess(AΣ
2c,0) by

Theorem 4.3.6.

The proof of the claim requires some preliminaries. For s ∈ [0,1] define the Hilbert spaces

Hs := Hs(R3 \Σ;C4)∩dom(SΣ)∗

equipped with the norms

‖ f‖2
Hs := ‖ f‖2

Hs(R3\Σ;C4)+‖(S
Σ)∗ f‖2

L2(R3;C4), f ∈Hs.

Then ΓΣ
j,1 := ΓΣ

j : H1(R3\Σ;C4) =H1→H1/2(Σ;C4) and ΓΣ
j,0 := Γ̃Σ

j : dom(SΣ)∗=H0→
H−1/2(Σ;C4) are continuous for j ∈ {0,1}. By interpolation we get that also

Γ
Σ
j,s := Γ̃

Σ
j �H

s : Hs→ Hs−1/2(Σ;C4)

is continuous for any s ∈ [0,1].

Let us assume now that domAΣ
2c,0 = ker

(
ϒΣ

1 −Θ
0,Σ
2c,0ϒΣ

0
)
⊂ Hs for some s > 0. Then it

holds domΘ
0,Σ
2c,0 ⊂ Hs(Σ;C4) as ϒΣ

0 = −ιΣ
−Γ̃Σ

1 . Let β Σ and MΣ be the γ-field and Weyl
function corresponding to the ordinary boundary triple {L2(Σ;C4),ϒΣ

0 ,ϒ
Σ
1}, see (2.20).

For λ ∈ C\R we have

ran
(
Θ

0,Σ
2c,0−MΣ(λ )

)−1
= dom

(
Θ

0,Σ
2c,0−MΣ(λ )

)
⊂ Hs(Σ;C4).

Moreover, by Proposition 2.2.7 the operator
(
Θ

0,Σ
2c,0−M(λ )

)−1 is continuous in L2(Σ;C4).
It follows that (

Θ
0,Σ
2c,0−MΣ(λ )

)−1 : L2(Σ;C4)→ Hs(Σ;C4)

is closed and hence continuous. As the embedding from Hs(Σ;C4) to L2(Σ;C4) is compact,
compare Proposition 2.3.2, we conclude that (Θ0,Σ

2c,0−MΣ(λ ))−1 is a compact operator in
L2(Σ;C4). Finally, Krein’s resolvent formula from Theorem 2.2.5 shows that

(AΣ
2c,0−λ )−1− (A0−λ )−1 = β

Σ(λ )
(
Θ

0,Σ
2c,0−MΣ(λ )

)−1
β

Σ(λ )∗, λ ∈ C\R,

is a compact operator in L2(R3;C4). This yields the desired contradiction.

4.3.1 Dirac operators with δ -shell interactions of variable critical strength

Finally, we would like to state several remarks on the operator AΣ
ηe,ηs

, if the interaction
strengths ηe,ηs : Σ→ R are Lipschitz continuous functions in the critical case, that means
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if there are some x ∈ Σ such that ηe(x)2−ηs(x)2 = 4c2. We have seen already in Propo-
sition 4.3.1 that AΣ

ηe,ηs
is symmetric, but not self-adjoint. We will sketch here that, if ηe

and ηs fulfill some suitable assumptions, then one can still show similarly as in Section 4.3
that AΣ

ηe,ηs
is essentially self-adjoint, compute the self-adjoint realization and provide some

spectral properties of this operator like in Theorem 4.3.3 and Proposition 4.3.5.

The crucial result in Section 4.3 is Proposition 4.3.2 – the following main results are based
on this. Step 1 and Step 2 of its proof could be done for any Lipschitz continuous and
real valued functions ηe and ηs without any difference, the critical point is Step 3. But
with some assumptions on ηe and ηs one can modify this also for more general interaction
strengths. This consideration is based on the fact that any ϕ ∈ domΘ

0,Σ
ηe,ηs fulfills

(η2
e −η

2
s −4c2)ϕ ∈ H1/2(Σ;C4). (4.32)

Hence, if we assume that ηe and ηs are such that for all ϕ ∈ H−1/2(Σ;C4) which sat-
isfy (4.32) there is a sequence (ϕn)⊂ H1/2(Σ;C4) with

ϕn→ ϕ in H−1/2(Σ;C4) and

(η2
e −η

2
s −4c2)ϕn→ (η2

e −η
2
s −4c2)ϕ in H1/2(Σ;C4),

(4.33)

as n→ ∞, then one could also adapt Step 3 in the proof of Proposition 4.3.2 with just
little modifications such that its claim is still true. One only must be careful that non-
constant functions ηe and ηs do not commute with C

−1/2
0 . But due to Proposition 3.2.3 the

commutator of C−1/2
0 with any Lipschitz continuous function is a bounded operator from

H−1/2(Σ;C4) to H1/2(Σ;C4), which allows to prove the desired claim. Note that the above
assumptions are clearly fulfilled, if ηe(x)2−ηs(x)2 = 4c2 everywhere on Σ.

Having Proposition 4.3.2 one can then proceed as for constant interaction strengths: in the
same way as in Theorem 4.3.3 it follows that AΣ

ηe,ηs
is essentially self-adjoint and that the

self-adjoint closure is given by

AΣ
ηe,ηs f := (−icα ·∇+mc2

β ) f+⊕ (−icα ·∇+mc2
β ) f−,

domAΣ
ηe,ηs :=

{
f = f+⊕ f− ∈ dom(SΣ)∗ : (Γ̃Σ

0 +(ηeI4 +ηsβ )Γ̃
Σ
1) f = 0

}
.

Moreover, if for all ϕ ∈ H−1/2(Σ;C4) satisfying (4.32) it holds (4.33), then the spectral
properties of AΣ

ηe,ηs can be deduced in a similar way as in Proposition 4.3.5 and we get
that:

(i) (−∞,−mc2]∪ [mc2,∞)⊂ σess(AΣ
ηe,ηs).

(ii) λ ∈ (−mc2,mc2)∩σp(AΣ
ηe,ηs) if and only if 0 ∈ σp

(
ηeI4 +ηsβ +(C

−1/2
0 )−1).

(iii) For λ ∈ C\R it holds

(AΣ
ηe,ηs−λ )−1 = (A0−λ )−1−Φ

−1/2
λ

(
I4 +(ηeI4 +ηsβ )C

−1/2
λ

)−1
(ηeI4 +ηsβ )Φ

∗
λ
.
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Moreover, if η2
e 6= η2

s on Σ, then one can show with similar arguments as in the proof of
Proposition 4.3.5 (iii) that the discrete and the essential spectra and hence also the resolvent
sets of the operators AΣ

ηe,ηs and AΣ

−4c2ηe/(η2
e−η2

s ),−4c2ηs/(η2
e−η2

s )
coincide.

4.4 Convergence in the nonrelativistic limit of Dirac operators with
electrostatic and Lorentz scalar δ -shell interactions

In this section we study the nonrelativistic limit of Dirac operators with purely electro-
static or purely Lorentz scalar δ -shell interactions, that means we study this limit of AΣ

ηe,ηs
in the case that either ηs ≡ 0 or ηe ≡ 0. In the nonrelativistic limit one subtracts/adds the
energy of the mass of the particle mc2 from the total energy and and computes the limit of
the resolvent as c→ ∞. The expected result is the resolvent a nonrelativistic Schrödinger
operator which describes the same physical problem with the same parameters times a pro-
jection onto the upper/lower components of the Dirac wave function. In our case we will
see that the Dirac operator with an electrostatic or a scalar δ -shell interaction converges in
the nonrelativistic limit to a Schrödinger operator with a δ -potential of the same strength.
This gives a justification for the usage of the operator AΣ

ηe,0 and AΣ
0,ηs

as a Dirac opera-
tor with a singular δ -interaction supported on Σ. The presentation in this section follows
closely [11, Section 5].

First, let us recall the definition of Schrödinger operators with δ -potentials and some of
their properties that are needed for our purposes here. As usual let Σ⊂R3 be the boundary
of a compact C2-domain and let η : Σ→ R be a Lipschitz continuous function. We define
the sesquilinear form

aη [ f ,g] :=
1

2m
(∇ f ,∇g)R3 +(η f |Σ,g|Σ)Σ, f ,g ∈ domaη := H1(R3;C). (4.34)

It is not difficult to show that aη is symmetric, semibounded from below and closed,
see for instance [28, Section 4] or [19]. The associated self-adjoint operator −∆η is the
Schrödinger operator with a δ -potential of strength η supported on Σ. In what follows we
want to find a suitable resolvent formula for −∆η . For that we define for λ ∈ C \R the
function

Kλ (x) := 2m
ei
√

2mλ |x|

4π|x|
, x ∈ R3 \{0}, (4.35)

and recall that(
− 1

2m
∆−λ

)−1

f (x) =
∫
R3

Kλ (x− y) f (y)dy, x ∈ R3, f ∈ L2(R3;C), (4.36)
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see for instance [67, Chapter 7.4]. Moreover, we introduce the bounded integral operators
Ψλ : L2(Σ;C)→ L2(R3;C) acting as

Ψλ ϕ(x) :=
∫

Σ

Kλ (x− y)ϕ(y)dσ(y), x ∈ R3,ϕ ∈ L2(Σ;C4), (4.37)

and Dλ : L2(Σ;C)→ L2(Σ;C),

Dλ ϕ(x) :=
∫

Σ

Kλ (x− y)ϕ(y)dσ(y), x ∈ Σ,ϕ ∈ L2(Σ;C4). (4.38)

It is not difficult to see that Ψλ and Dλ are bounded, compare Propositions 2.4.4 and 2.4.5.
Moreover, a simple calculation shows that the adjoint Ψ∗

λ
: L2(R3;C)→ L2(Σ;C) is

ψ
∗
λ

f (x) =
∫
R3

K
λ
(x− y) f (y)dy, x ∈ Σ, f ∈ L2(R3;C).

With these notations in hand we can state now an explicit resolvent formula for −∆η ; for
a proof of this result see for instance [19, Theorem 3.5] or [28, Lemma 2.3].

Proposition 4.4.1. Let η : Σ→ R be a Lipschitz continuous function and let −∆η be the
self-adjoint operator associated to the quadratic form (4.34). Then for all λ ∈ C \R the
operator I1 +ηDλ is boundedly invertible and

(−∆η −λ )−1 =

(
− 1

2m
∆−λ

)−1

−Ψλ (I1 +ηDλ )
−1

Ψ
∗
λ
.

In the rest of this section we are going to prove that the Dirac operators AΣ
η ,0 with a purely

electrostatic δ -shell potential and AΣ
0,η with a purely scalar interaction given by (4.12)

converge in the nonrelativistic limit to a Schrödinger operator −∆η with a δ -potential of
strength η . That means that we are going to show

lim
c→∞

(AΣ
η ,0− (λ +mc2))−1 = (−∆η −λ )−1P+

and
lim
c→∞

(AΣ
0,η − (λ ±mc2))−1 = (±(−∆η)−λ )−1P±,

where

P+ :=
(

I2 0
0 0

)
and P− :=

(
0 0
0 I2

)
.

This shows then that AΣ
η ,0 and AΣ

0,η are the relativistic counterparts of −∆η with electro-
static and scalar interactions, respectively.

Note that for a fixed parameter η there is no critical interaction strength for sufficiently
large c, as 4c2 > η(x)2 for all x ∈ Σ in this case. Furthermore, the operators (AΣ

η ,0−
(λ +mc2))−1 and (AΣ

0,η − (λ ±mc2))−1 can be expressed by Theorem 4.2.3 in terms of
(A0− (λ ±mc2))−1, Φλ±mc2 , Cλ±mc2 and Φ

λ±mc2 . The convergence of these operators is
analyzed in the following lemma:
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Lemma 4.4.2. Let λ ∈C\R, let A0 be the free Dirac operator defined by (3.3), and let Φλ

and Cλ be given by (3.16) and (3.17), respectively. Moreover, let −∆ be the free Laplace
operator in L2(R3;C) and let Ψλ and Dλ be given by (4.37) and (4.38), respectively. Then,
there exists a constant K > 0 independent of c such that the following estimates are true
for all sufficiently large c:∥∥∥∥∥(A0− (λ ±mc2))−1−

(
∓ 1

2m
∆−λ

)−1

P±

∥∥∥∥∥≤ K
c

; (4.39a)

‖Φλ±mc2∓Ψ±λ P±‖ ≤
K
c

; (4.39b)

‖Φ∗
λ±mc2∓Ψ

∗
±λ

P±‖ ≤
K
c

; (4.39c)

‖Cλ±mc2∓D±λ P±‖ ≤
K
c
. (4.39d)

Proof. We only prove the claims on (A0− (λ +mc2))−1, Φλ+mc2 , Φ∗
λ+mc2 , and Cλ+mc2

here, the convergence of (A0−(λ −mc2))−1, Φλ−mc2 , Φ∗
λ−mc2 , and Cλ−mc2 can be studied

in exactly the same way.

Note first that all differences that shall be estimated in (4.39) are integral operators with
the integral kernel Gλ+mc2 −Kλ P+. Thus, we have first a closer look onto this function.
Recall the definition of Kλ from (4.35) and note that

Gλ+mc2(x)=

(
λ

c2 I4+2mP++

(
1− i

√
λ 2

c2 +2mλ |x|

)
i(α · x)
c|x|2

)
ei
√

λ 2/c2+2mλ |x|

4π|x|
.

We make the decomposition

Gλ+mc2(x)−Kλ (x)P+ = t1(x)+ t2(x), (4.40)

where the functions t1 and t2 are defined by

t1(x) =

(
λ

c2 I4 +

(
1− i

√
λ 2

c2 +2mλ |x|

)
i(α · x)
c|x|2

)
ei
√

λ 2/c2+2mλ |x|

4π|x|
;

t2(x) =
(

ei
√

λ 2/c2+2mλ |x|− ei
√

2mλ |x|
) 2m

4π|x|
P+.

(4.41)

It is easy to see that there exist positive constants κ1 = κ1(m,λ ) and κ2 = κ2(m,λ ) de-
pending on λ and m and independent of c and an R > 0 such that

|t1(x)| ≤
κ1(m,λ )

c

{
|x|−2, |x|< R,
e−κ2(m,λ )|x|, |x| ≥ R.

(4.42)
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In order to estimate t2 we compute first∣∣∣ei
√

λ 2/c2+2mλ |x|− ei
√

2mλ |x|
∣∣∣= ∣∣∣∣∫ 1

0

d
dt

ei
√

tλ 2/c2+2mλ |x|dt
∣∣∣∣

≤ |x|
c

∫ 1

0

∣∣∣∣ei
√

tλ 2/c2+2mλ |x| iλ 2

2c
√

tλ 2/c2 +2mλ

∣∣∣∣dt.

Since λ ∈ C\R there exist constants κ3(m,λ ),κ4(m,λ )> 0 which are again independent
of the speed of light such that for all sufficiently large c∣∣∣∣∣ iλ 2

2c
√

tλ 2/c2 +2mλ

∣∣∣∣∣≤ κ3(m,λ ) and Re
(

i
√

tλ 2/c2 +2mλ

)
≤−κ4(m,λ )

hold for all t ∈ [0,1]. This implies

|t2(x)|=
∣∣∣∣ 2m
4π|x|

(
ei
√

λ 2/c2+2mλ |x|− ei
√

2mλ |x|
)

P+

∣∣∣∣
≤ κ3(m,λ )

m
2πc

e−κ4(m,λ )|x|.

(4.43)

Eventually, by (4.40), (4.42) and (4.43) there exist constants κ5(m,λ ),κ6(m,λ ) > 0 such
that

|Gλ+mc2(x)−Kλ (x)P+| ≤ |t1(x)|+ |t2(x)|

≤ κ5(m,λ )

c

{
|x|−2, |x|< R,
e−κ6(m,λ )|x|, |x| ≥ R.

(4.44)

Now, we are prepared to prove (4.39a)–(4.39c). By Proposition 3.1.1 and (4.36) we have((
A0− (λ +mc2)

)−1−
(
− 1

2m
∆−λ

)−1

P+

)
f (x)

=
∫
R3

(
Gλ+mc2(x− y)−Kλ (x− y)P+

)
f (y)dy

for x ∈ R3 and f ∈ L2(R3;C4). With (4.44) and Proposition 2.4.3 we get∥∥∥∥∥(A0− (λ +mc2)
)−1−

(
− 1

2m
∆−λ

)−1

P+

∥∥∥∥∥≤ κ7(m,λ )

c

for some constant κ7(m,λ ) and hence (4.39a) holds. Next we prove (4.39b). By Proposi-
tion 4.1.2 (i) and (4.37) we have(

Φλ+mc2−Ψλ P+
)
ϕ(x) =

∫
Σ

(
Gλ+mc2(x− y)−Kλ (x− y)P+

)
ϕ(y)dσ(y)
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for x ∈ R3 and ϕ ∈ L2(Σ;C4). Here, the asymptotics in (4.44) and Proposition 2.4.4 yield

‖Φλ+mc2−Ψλ P+‖ ≤
κ8(m,λ )

c
,

which is already the claimed estimate. Moreover, the relation (4.39c) follows by taking
adjoints.

Finally, we verify Cλ+mc2 →Dλ P+. For that, we use the decomposition(
Cλ+mc2−Dλ P+

)
ϕ(x)

= lim
ε↘0

∫
|x−y|>ε

(
Gλ+mc2(x− y)−Kλ (x− y)P+

)
ϕ(y)dσ(y)

= (S1 +S2 +S3 +S4)ϕ(x), x ∈ Σ, ϕ ∈ L2(Σ;C4),

where for j ∈ {1,2,3,4} the integral operators S j : L2(Σ;C4)→ L2(Σ;C4) are given by

S jϕ(x) := lim
ε↘0

∫
|x−y|>ε

s j(x− y)ϕ(y)dσ(y), x ∈ Σ, ϕ ∈ L2(Σ;C4),

with

s1(x) :=

(
λ

c2 I4 +
α · x
c|x|

√
λ 2

c2 +2mλ

)
ei
√

λ 2/c2+2mλ |x|

4π|x|
, s2(x) := t2(x),

s3(x) :=
i(α · x)
4cπ|x|3

(
ei
√

λ 2/c2+2mλ |x|−1
)
, s4(x) :=

i(α · x)
4cπ|x|3

,

with t2 as in (4.41). We remark that s1 + s3 + s4 = t1 with t1 given by (4.41). It is easy to
see that |s1(x)| ≤ κ9(m,λ )

c|x| for some constant κ9(m,λ ) depending only on m and λ and all
x ∈ R3 \{0}. Furthermore, |s2(x)| ≤ κ3(m,λ ) m

2πc for all x ∈ R3 by (4.43). Next, because
of ∣∣∣ei

√
λ 2/c2+2mλ |x|−1

∣∣∣= ∣∣∣∣∫ 1

0

d
dt

eit
√

λ 2/c2+2mλ |x|dt
∣∣∣∣

≤ |x|
∫ 1

0

∣∣∣∣eit
√

λ 2/c2+2mλ |x| · i
√

λ 2

c2 +2mλ

∣∣∣∣dt,

we deduce that there exists κ10(m,λ ) such that |s3(x)| ≤ κ10(m,λ )
c|x| for all x ∈ R3 \ {0}.

Therefore, we can apply Proposition 2.4.5 and obtain

‖S j‖ ≤
κ11(m,λ )

c
, j ∈ {1,2,3},

for some constant κ11(m,λ ) depending only on m and λ . Eventually, we note that S4 =
1
cT,

where T is the integral operator with integral kernel cs4(x− y) = i(α·(x−y))
4π|x−y|3 ; this operator
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is independent of c, everywhere defined and bounded, see Proposition 2.4.6. Therefore,
‖S4‖ ≤ κ12

c . This yields finally that∥∥Cλ+mc2−Dλ P+
∥∥≤ ‖S1‖+‖S2‖+‖S3‖+‖S4‖ ≤

κ13(m,λ )

c
and completes the proof of (4.39d).

Now we are prepared to compute the nonrelativistic limit of Dirac operators with electro-
static and scalar δ -shell interactions. The proofs of these results are based on the resolvent
formulae from Theorem 4.2.3 and Proposition 4.4.1 and on Lemma 4.4.2.

Theorem 4.4.3. Assume that η : Σ→ R is a Lipschitz continuous function and let the
operators AΣ

η ,0 and −∆η be defined by (4.12) and (4.34), respectively. Then for any λ ∈
C\R there exists a constant K > 0 such that for all sufficiently large c∥∥∥(AΣ

η ,0− (λ +mc2)
)−1− (−∆η −λ )−1P+

∥∥∥≤ K
c
.

Proof. According to Theorem 4.2.3 the resolvent of AΣ
η ,0 is given by(

AΣ
η ,0− (λ +mc2)

)−1
=
(
A0− (λ +mc2)

)−1−Φλ+mc2
(
I4 +ηCλ+mc2

)−1
ηΦ
∗
λ+mc2 .

From Lemma 4.4.2 we know that there exists a constant κ1 > 0 such that for all sufficiently
large c it holds∥∥∥∥∥(A0− (λ +mc2)

)−1−
(
− 1

2m
∆−λ

)−1

P+

∥∥∥∥∥≤ κ1

c
, ‖Φλ+mc2−Ψλ P+‖ ≤

κ1

c
,

‖Cλ+mc2−Dλ P+‖ ≤
κ1

c
, and ‖Φ∗

λ+mc2−Ψ
∗
λ

P+‖ ≤
κ1

c
.

Using that I4 + ηCλ+mc2 and I4 + ηDλ P+ are boundedly invertible for λ ∈ C \R, see
Proposition 4.1.7 and Proposition 4.4.1, we conclude from [50, Theorem IV 1.16] that
also ∥∥∥(I4 +ηCλ+mc2

)−1−
(
I4 +ηDλ P+

)−1
∥∥∥≤ κ2

c
for some κ2 > 0. This implies

lim
c→∞

(
AΣ

η ,0− (λ +mc2)
)−1

= lim
c→∞

[(
A0− (λ +mc2)

)−1

−Φλ+mc2
(
I4 +ηCλ+mc2

)−1
ηΦ
∗
λ+mc2

]
=

(
− 1

2m
∆−λ

)−1

P+−Ψλ P+
(
I4 +ηDλ P+

)−1
Ψ
∗
λ

P+

= (−∆η −λ )−1P+,

compare Proposition 4.4.1, and that the order of convergence is 1
c . This is the claimed

result.
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Eventually, we prove that the Dirac operator with a Lorentz scalar δ -shell interaction con-
verges in the nonrelativistic limit also to a Schrödinger operator −∆η with a δ -potential
supported on Σ. This theorem is very similar as Theorem 4.4.3, but we would like to point
out that we have a slightly stronger statement for scalar as for electrostatic interactions: for
scalar δ -shell interactions we also have convergence of the negative part of the operator
(that means of AΣ

0,η +mc2) to −(−∆η).

Theorem 4.4.4. Assume that η : Σ→ R is a Lipschitz continuous function and let the
operators AΣ

0,η and −∆η be defined by (4.12) and (4.34), respectively. Then for any λ ∈
C\R there exists a constant K > 0 such that for all sufficiently large c∥∥∥(AΣ

0,η − (λ ±mc2)
)−1−

(
± (−∆η)−λ

)−1P±
∥∥∥≤ K

c
.

Proof. The convergence of AΣ
0,η −mc2 can be analyzed with exactly the same arguments

as the one of AΣ
η ,0−mc2 in Theorem 4.4.3; hence, we omit the treatment of this case here

and study only AΣ
0,η +mc2. According to Theorem 4.2.3 the resolvent of AΣ

0,η is given by(
AΣ

0,η − (λ −mc2)
)−1

=
(
A0− (λ −mc2)

)−1−Φλ−mc2
(
I4 +ηβCλ−mc2

)−1
ηβΦ

∗
λ−mc2.

From Lemma 4.4.2 we know that there exists a constant κ1 > 0 such that for all sufficiently
large c∥∥∥∥∥(A0− (λ −mc2))−1 +

(
− 1

2m
∆+λ

)−1

P−

∥∥∥∥∥≤ κ1

c
, ‖Φλ−mc2 +Ψ−λ P−‖ ≤

κ1

c
,

‖Cλ−mc2 +D−λ P−‖ ≤
κ1

c
, and ‖Φ∗

λ−mc2 +Ψ
∗
−λ

P−‖ ≤
κ1

c
.

Using that I4 +ηβCλ−mc2 and I4 +ηDλ P− = I4−ηβDλ P− are boundedly invertible for
λ ∈ C \R, see Proposition 4.1.7 and Proposition 4.4.1, we conclude from [50, Theo-
rem IV 1.16] that also∥∥∥(I4 +ηβCλ−mc2

)−1−
(
I4−ηβDλ P−

)−1
∥∥∥≤ κ2

c
for some κ2 > 0. Note that βP− =−P−. Hence, we obtain finally

lim
c→∞

(
AΣ

0,η − (λ −mc2)
)−1

= lim
c→∞

[(
A0− (λ −mc2)

)−1

−Φλ−mc2
(
I4 +ηβCλ−mc2

)−1
ηβΦ

∗
λ−mc2

]
=−

(
− 1

2m
∆+λ

)−1

P−−Ψ−λ P−
(
I4−ηβD−λ P−

)−1
ηβΨ

∗
−λ

P−

=−
(
− 1

2m
∆+λ

)−1

P−+Ψ−λ

(
I4 +ηD−λ

)−1
ηΨ
∗
−λ

P−

=−(−∆η +λ )−1P− =
(
− (−∆η)−λ

)−1P−,



4.4 Nonrelativistic limit of Dirac operators with singular interactions 99

compare Proposition 4.4.1, and that the order of convergence is 1
c . This is the claimed

result.

Finally, we show that for large c and constant η < 0 sufficiently large the number of
eigenvalues of AΣ

η ,0 in the gap (−mc2,mc2) of σess(AΣ
η ,0) becomes large. The proof is

based on Theorem 4.4.3 and a result from [42] on the spectrum of −∆η . In a similar way,
one can derive also other results on the spectrum of Aη ,0 from the well-known properties
of −∆η . A similar result can also be shown for AΣ

0,η with exactly the same arguments.

Proposition 4.4.5. For any fixed j ∈ N there exists a constant η < 0 depending on j such
that the number of discrete eigenvalues of AΣ

η ,0 taking multiplicities into account is at
least j for all sufficiently large c.

Proof. First, we show that for a suitable η < 0 the operator −∆ηP+ has the desired prop-
erties; then via a continuity argument the claim follows also for Aη . It is easy to see that
σess(−∆ηP+) = σess(−∆η)∪{0} = [0,∞). Moreover, we know from [19, Theorem 3.14]
that σdisc(−∆ηP+) = σdisc(−∆η) is finite and from [42, Theorem 2.1] that for some fixed
j ∈N there exists an η < 0 such that −∆ηP+ has at least j discrete eigenvalues. Let this η

be fixed and choose a < b < 0 with σdisc(−∆η)⊂ (a,b) and denote the spectral projections
of−∆ηP+ and Aη−mc2 for the interval (a,b) by E−∆η P+((a,b)) and EAΣ

η ,0−mc2((a,b)), re-
spectively.

According to Theorem 4.4.3 the operators (AΣ
η ,0 − (λ + mc2))−1 converge to (−∆η −

λ )−1P+ for c→∞ and λ ∈C\R. The latter operator is the resolvent of a self-adjoint rela-
tion (multivalued operator) and hence one can show in the same way as in [69, Satz 9.24 b)]
together with [69, Satz 2.58 a)] that for all sufficiently large c the dimensions of the ranges
of E−∆η P+((a,b)) and EAΣ

η ,0−mc2((a,b)) coincide, that means

dimranEAΣ
η ,0−mc2((a,b)) = dimranE−∆η P+((a,b))≥ j.

Thus, the operator AΣ
η ,0 has at least j eigenvalues (counted with multiplicities) in the inter-

val (a+mc2,b+mc2)⊂ (−mc2,mc2) for sufficiently large c.





5 DIRAC OPERATORS ON DOMAINS

In this chapter we investigate self-adjoint Dirac operators on a domain Ω ⊂ R3 which
is either a bounded C2-domain or the complement of a bounded C2-domain. The self-
adjointness is achieved in this case by requiring suitable boundary conditions on ∂Ω. First,
in Section 5.1 we investigate the so called MIT bag model. This is a Dirac operator with
special boundary conditions which is known to be self-adjoint and, as the free Dirac op-
erator on the whole Euclidean space R3, the MIT bag operator will serve as a reference
operator. Moreover, we will study several properties of this operator.

Then, in Section 5.2.1 we introduce a quasi boundary triple {GΩ,Γ
Ω
0 ,Γ

Ω
1 }which is suitable

to define and study self-adjoint Dirac operators on domains. Here GΩ = P+
(
L2(Σ;C4)

)
and P+ = 1

2

(
I4 + iβα · ν

)
is a projection which turns out to have some very convenient

properties. Again the γ-field and the Weyl function associated to this quasi boundary
triple are closely related to the integral operators Φλ and Cλ introduced in Section 3.2.
Moreover, we will see that the triple {GΩ,Γ

Ω
0 ,Γ

Ω
1 } satisfies the assumptions from Theo-

rem 2.2.13. Hence, we can transform this quasi boundary triple to an ordinary boundary
triple {GΩ,ϒ

Ω
0 ,ϒ

Ω
1 }; compare Theorem 5.2.6.

Next, in Section 5.3 we introduce with the help of the quasi boundary triple {GΩ,Γ
Ω
0 ,Γ

Ω
1 }

Dirac operators acting in Ω. In the case of non-critical boundary values we prove self-
adjointness of the operators and provide the basic spectral properties of them. Furthermore,
we will see that there is a close relation of Dirac operators on domains and Dirac operators
with singular interactions in the confinement case, compare Remark 4.2.2.

Similarly as for Dirac operators with singular interactions there exist also some critical
boundary values for which self-adjointness can not be shown with the aid of the quasi
boundary triple {GΩ,Γ

Ω
0 ,Γ

Ω
1 }. Following the strategy from Section 4.3 we compute the

self-adjoint realization for constant critical τ . Moreover, making use of the ordinary
boundary triple {GΩ,ϒ

Ω
0 ,ϒ

Ω
1 } we will then deduce some further spectral properties of the

self-adjoint realization.

The material presented in this chapter is part of the paper in preparation [15].

5.1 The MIT bag operator

Let Ω ⊂ R3 be a domain with a compact C2-boundary ∂Ω with outer unit normal vector
field ν . In this first preliminary section we discuss the MIT-bag Dirac operator in Ω which

101



102 5 Dirac operators on domains

will often play the role of a self-adjoint reference operator in this chapter. It is defined as
follows:

Definition 5.1.1. The MIT-bag operator T Ω
MIT is given by

T Ω
MIT f : = (−icα ·∇+mc2

β ) f ,

domT Ω
MIT = { f ∈ H1(Ω;C4) : f |∂Ω =−iβ (α ·ν) f |∂Ω}.

(5.1)

In the following proposition we summarize the basic properties of T Ω
MIT. The proof is rather

simple due to the fact that T Ω
MIT⊕T Ωc

MIT = A∂Ω
0,2c with A∂Ω

0,2c given by (4.12), compare (4.14).
In order to formulate the results, we define the orthogonal projections

PΩ : L2(R3;C4)→ L2(Ω;C4), PΩ f = f � Ω, (5.2)

and

P∗Ω : L2(Ω;C4)→ L2(R3;C4), PΩg =

{
g in Ω,

0 in Ωc.

Note that assertions (iii) and (iv) of the proposition below are shown in [4] with similar
ideas.

Proposition 5.1.2. Let T Ω
MIT be defined by (5.1) and let for λ ∈ C \R the operators Φλ

and Cλ be defined by (3.16) and (3.17), respectively. Then T Ω
MIT is self-adjoint and the

following assertions are true:

(i) For λ ∈ C\R the resolvent of T Ω
MIT is given by

(T Ω
MIT−λ )−1 = PΩ(A0−λ )−1P∗Ω−PΩΦλ

(
I4 +2cβCλ

)−12cβΦ
∗
λ

P∗Ω.

(ii) (−mc2,mc2)⊂ ρ(T Ω
MIT).

(iii) λ ∈ σ(T Ω
MIT) if and only if −λ ∈ σ(T Ω

MIT).

(iv) Discrete eigenvalues of T Ω
MIT have always even multiplicity.

Proof. First, since T Ω
MIT⊕ T Ωc

MIT = A∂Ω
0,2c is self-adjoint in L2(R3;C4) by Theorem 4.2.3

it follows immediately that T Ω
MIT = PΩA∂Ω

0,2cP∗
Ω

is self-adjoint in L2(Ω;C4); compare also
Remark 4.2.2. Moreover, this block structure and Theorem 4.2.3 (i) imply the claimed
resolvent formula.

Next, assertion (ii) is a direct consequence of Corollary 4.2.6 (vii). Finally, items (iii) and
(iv) can be shown in exactly the same way as Corollary 4.2.6 (iv) and (v); we omit the
proof here.
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In the following lemma we give a more detailed picture of the spectral properties of T Ω
MIT.

The properties are entirely different depending on whether Ω is bounded or not.

Lemma 5.1.3. Let T Ω
MIT be defined by (5.1). Then the following assertions are true:

(i) If Ω is bounded, then σ(T Ω
MIT) = σdisc(T Ω

MIT).

(ii) If Ω is unbounded, then σ(T Ω
MIT) = σess(T Ω

MIT) = (−∞,−mc2]∪ [mc2,∞).

Proof. (i) Since Ω is a bounded C2-domain domT Ω
MIT⊂H1(Ω;C4) is compactly embedded

in L2(Ω;C4). Hence σ(T Ω
MIT) is purely discrete.

(ii) First, we know from Proposition 5.1.2 that σ(T Ω
MIT)⊂ (−∞,−mc2]∪ [mc2,∞). To prove

the other inclusion, fix some λ ∈ (−∞,−mc2]∪ [mc2,∞). Then, since Ω is unbounded,
the functions ψλ

n from Lemma 3.1.4 belong to domT Ω
min ⊂ domT Ω

MIT. Furthermore ψλ
n

converge weakly to zero and

‖ψλ
n ‖Ω = const. > 0 and (T Ω

MIT−λ )ψλ
n = (T Ω

min−λ )ψλ
n → 0, as n→ ∞.

Thus (ψλ
n ) is a singular sequence for T Ω

MIT and λ which shows λ ∈ σess(T Ω
MIT). This

finishes the proof of this lemma.

Finally, we state in a similar fashion as for the MIT bag model the basic spectral properties
of another distinguished self-adjoint realization of the Dirac operator on Ω. This operator
has similar boundary conditions as T Ω

MIT, but with opposite sign, and it is given by

T Ω
−MIT f : = (−icα ·∇+mc2

β ) f ,

domT Ω
−MIT = { f ∈ H1(Ω;C4) : f |∂Ω = iβ (α ·ν) f |∂Ω}.

(5.3)

Lemma 5.1.4. The operator T Ω
−MIT is self-adjoint. Moreover, σ(T Ω

−MIT)∩ (−mc2,mc2)
consists of at most finitely many discrete eigenvalues.

Proof. First, it holds T Ω
−MIT⊕T Ωc

−MIT =A∂Ω
0,−2c and this operator is self-adjoint in L2(R3;C4)

by Theorem 4.2.3. This implies with PΩ given by (5.2) that T Ω
−MIT = PΩA∂Ω

0,−2cP∗
Ω

is self-
adjoint in L2(Ω;C4).

Finally, since we have T Ω
−MIT⊕T Ωc

−MIT =A∂Ω
0,−2c it follows immediately from Corollary 4.2.6

that σ(T Ω
−MIT)∩ (−mc2,mc2) consists only of at most finitely many discrete eigenvalues.

This finishes the proof of this proposition.
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5.2 Boundary triples for Dirac operators on domains

In this section we introduce first a quasi boundary triple which allows us to define self-
adjoint Dirac operators on domains via suitable boundary conditions on ∂Ω. Then in
Section 5.2.2 we will transform this quasi boundary triple with the methods described in
Section 2.2 to an ordinary boundary triple, which enables us then to prove self-adjointness
also in the case of critical boundary conditions.

5.2.1 A quasi boundary triple for Dirac operators on domains

Throughout this chapter let Ω be either a bounded domain in R3 with C2-smooth boundary
or the complement of a bounded C2-domain. We denote the normal vector field at ∂Ω

pointing outwards of Ω by ν . Furthermore, we define

P± :=
1
2
(
I4± iβ (α ·ν)

)
. (5.4)

Using the anti-commutation relation (1.2) it is easy to see that P± is an orthogonal projec-
tion. Furthermore, it is clear that P− = I4−P+. This implies, in particular, that P+P− =
P−P+ = 0. Eventually, we set for s ∈ [0,1]

Gs
Ω := P+(Hs(∂Ω;C4)). (5.5)

For convenience we set GΩ := G0
Ω

. Since P+ is an orthogonal projection in L2(∂Ω;C4)
the space GΩ is a Hilbert space. Moreover, as ∂Ω is C2-smooth Gs

Ω
⊂ Hs(∂Ω;C4) for any

s ∈ [0,1] and Gs
Ω

is a closed subspace of Hs(∂Ω;C4).

Next, we define the operator T Ω in L2(Ω;C4) by

T Ω f := (−icα ·∇+mc2
β ) f , domT Ω := H1(Ω;C4), (5.6)

and the mappings ΓΩ
0 ,Γ

Ω
1 : domT Ω→ GΩ acting as

Γ
Ω
0 f :=

√
cP+ f |∂Ω and Γ

Ω
1 f :=

√
cP+β f |∂Ω, f ∈ domT Ω. (5.7)

Note that the trace theorem and Lemma 2.5.1 imply that ranΓΩ
0 , ranΓΩ

1 ⊂ G
1/2
Ω

, as ∂Ω is
C2-smooth and domT Ω = H1(Ω;C4).

In the following theorem we show that {GΩ,Γ
Ω
0 ,Γ

Ω
1 } is a quasi boundary triple and that T Ω

coincides with the maximal Dirac operator T Ω
max from (3.10). Moreover, it turns out that

the reference operator T � kerΓΩ
0 is the MIT bag operator T Ω

MIT studied in Section 5.1.
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Theorem 5.2.1. Let SΩ := T Ω
min be the minimal Dirac operator from (3.11), let GΩ be given

by (5.5) and let T Ω,ΓΩ
0 and ΓΩ

1 be given by (5.6) and (5.7), respectively. Then SΩ is closed
and symmetric, (SΩ)∗= T Ω = T Ω

max and {GΩ,Γ
Ω
0 ,Γ

Ω
1 } is a quasi boundary triple for (SΩ)∗.

Moreover, T Ω � kerΓΩ
0 is the Dirac operator T Ω

MIT with MIT bag boundary conditions and

ran(ΓΩ
0 � kerΓ

Ω
1 ) = ran(ΓΩ

1 � kerΓ
Ω
0 ) = G

1/2
Ω

. (5.8)

In particular, it holds ran(ΓΩ
0 ,Γ

Ω
1 ) = G

1/2
Ω
×G

1/2
Ω

.

Proof. First, it is clear by Lemma 3.1.2 that SΩ = T Ω
min is closed and symmetric and that

(SΩ)∗ = T Ω
max. Moreover, Lemma 3.1.3 implies that T Ω is dense in T Ω

max, as C∞(Ω;C4) ⊂
H1(Ω;C4) = domT Ω.

Next, we prove that Green’s identity is fulfilled. Let f ,g ∈ domT Ω = H1(Ω;C4). Then,
integration by parts (2.31) and the self-adjointness of α ·ν yield

(T f ,g)Ω− ( f ,T g)Ω =
(
(−icα ·∇+mc2

β ) f ,g
)

Ω
−
(

f ,(−icα ·∇+mc2
β )g
)

Ω

=
(
− icα ·ν f |∂Ω,g|∂Ω

)
∂Ω

=
1
2
(
− i
√

cα ·ν f |∂Ω,
√

cg|∂Ω

)
∂Ω
− 1

2
(√

c f |∂Ω,−i
√

cα ·νg|∂Ω

)
∂Ω

.

Using that β is unitary and self-adjoint and the anti-commutation relation (1.2) we see that
the last expression is equal to

1
2
(
− i
√

cβα ·ν f |∂Ω,
√

cβg|∂Ω

)
∂Ω
− 1

2
(√

cβ f |∂Ω,−i
√

cβα ·νg|∂Ω

)
∂Ω

=
1
2
(√

cβ f |∂Ω,
√

c(g|∂Ω + iβα ·νg|∂Ω)
)

∂Ω

− 1
2
(√

c( f |∂Ω + iβα ·ν f |∂Ω),
√

cβg|∂Ω

)
∂Ω

= (
√

cβ f |∂Ω,
√

cP+g|∂Ω)∂Ω− (
√

cP+ f |∂Ω,
√

cβg|∂Ω)∂Ω.

Since P+ is a orthogonal projection we have P+ = (P+)2 = (P+)∗, which implies eventually

(T f ,g)Ω− ( f ,T g)Ω = (
√

cP+β f |∂Ω,
√

cP+g|∂Ω)∂Ω− (
√

cP+ f |∂Ω,
√

cP+βg|∂Ω)∂Ω

= (ΓΩ
1 f ,ΓΩ

0 g)∂Ω− (ΓΩ
0 f ,ΓΩ

1 g)∂Ω,

which is Green’s identity (2.5).

Next, we verify the range property (5.8). Clearly, by the definition of ΓΩ
0 and ΓΩ

1 and
domΓΩ

0 = domΓΩ
1 = H1(Ω;C4) it holds

ran(ΓΩ
0 � kerΓ

Ω
1 ), ran(ΓΩ

1 � kerΓ
Ω
0 )⊂ G

1/2
Ω

.
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On the other hand, let ϕ ∈ G
1/2
Ω

and choose a function f ∈ H1(Ω;C4) with f |∂Ω = 1√
cϕ .

Since ϕ ∈ G
1/2
Ω

it holds ϕ = P+ϕ and hence we deduce

Γ
Ω
0 f =

√
cP+ f |∂Ω = P+ϕ = ϕ.

Moreover, the relation (1.2) implies βP+ = P−β . Hence, we have

Γ
Ω
1 f =

√
cP+β f |∂Ω = P+βϕ = P+βP+ϕ = P+P−βϕ = 0,

that means f ∈ kerΓΩ
1 . Thus, ϕ ∈ ran(ΓΩ

0 � kerΓΩ
1 ).

To prove G1/2
Ω
⊂ ran(ΓΩ

1 � kerΓΩ
0 ) let ψ ∈G1/2

Ω
and choose g∈H1(Ω;C4) satisfying g|∂Ω =

1√
cβψ . Then it holds

Γ
Ω
0 g = P+βψ = βP−ψ = 0,

as ψ ∈ GΩ, and
Γ

Ω
1 g =

√
cP+βg|∂Ω = P+β

2
ψ = ψ,

that means ψ ∈ ran(ΓΩ
1 � kerΓΩ

0 ). Hence, equation (5.8) has been shown.

Finally,

kerΓ
Ω
0 = { f ∈ H1(Ω;C4) : f |∂Ω =−iβ (α ·ν) f |∂Ω}= domT Ω

MIT.

Hence T Ω � kerΓΩ
0 coincides with the MIT bag Dirac operator T Ω

MIT which is known to be
self-adjoint, see Proposition 5.1.2. Therefore {GΩ,Γ

Ω
0 ,Γ

Ω
1 } is a quasi boundary triple for

(SΩ)∗ and all claims have been shown.

Next, we compute the γ-field and the Weyl function associated to the quasi boundary triple
in Theorem 5.2.1. It turns out that these operators are closely related with restrictions of
the integral operators Φλ and Cλ defined in Section 3.2. In order to formulate the result
recall that 1

2cβ +C
1/2
λ

admits a bounded and everywhere defined inverse in H1/2(Σ;C4) for
λ ∈ C\

(
(−∞,−mc2]∪ [mc2,∞)

)
, see Proposition 4.1.7.

Proposition 5.2.2. Let {GΩ,Γ
Ω
0 ,Γ

Ω
1 } be the quasi boundary triple from Theorem 5.2.1, let

λ ∈ C\
(
(−∞,−mc2]∪ [mc2,∞)

)
⊂ ρ(T Ω

MIT), let PΩ be given by (5.2), and let Φλ and Cλ

be defined by (3.16) and (3.17), respectively. Then the following holds:

(i) The value of the γ-field γΩ(λ ) : domγΩ(λ )⊂ GΩ→ L2(Ω;C4) is defined on the set
domγΩ(λ ) = G

1/2
Ω

and is explicitly given by

γ
Ω(λ ) =

1√
c

PΩΦ
1/2
λ

(
1
2c

β +C
1/2
λ

)−1

.

Each γΩ(λ ) is a densely defined bounded operator from GΩ to L2(Ω;C4) and a
bounded and everywhere defined operator from G

1/2
Ω

to H1(Ω;C4).
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(ii) The value of the Weyl function MΩ(λ ) : domMΩ(λ ) ⊂ GΩ→ GΩ is defined on the
set domMΩ(λ ) = G

1/2
Ω

and explicitly given by

MΩ(λ ) =−1
c

P+

(
1
2c

β +C
1/2
λ

)−1

P+.

Each MΩ(λ ) is densely defined and bounded in GΩ and bounded and everywhere
defined in G

1/2
Ω

.

Proof. Let λ ∈ C \
(
(−∞,−mc2]∪ [mc2,∞)

)
be fixed. First we note that domγΩ(λ ) =

domMΩ(λ ) = ranΓΩ
0 = G

1/2
Ω

, see (5.8).

For the proof of item (i) let ϕ ∈ ranΓΩ
0 be fixed and recall that γΩ(λ )ϕ is the unique

solution of the boundary value problem

(T Ω−λ ) f = 0 and Γ
Ω
0 f = ϕ, (5.9)

compare (2.7). We set

fλ :=
1√
c

PΩΦ
1/2
λ

(
1
2c

β +C
1/2
λ

)−1

ϕ.

Then, due to the mapping properties of Φ
1/2
λ

and
( 1

2cβ +C
1/2
λ

)−1, see Proposition 4.1.6
and Proposition 4.1.7, we have fλ ∈ H1(Ω;C4) = domT Ω. We are going to show that fλ

solves the boundary value problem (5.9).

First, by Proposition 4.1.2 it is clear that (T Ω−λ ) fλ = 0, as Φλ � H1/2(Σ;C4) is the γ-
field for the quasi boundary triple {L2(∂Ω;C4),Γ∂Ω

0 ,Γ∂Ω
1 }. Moreover, employing Propo-

sition 3.2.1 (iii) we get

Γ
Ω
0 fλ =

√
cP+ fλ |∂Ω = P+

(
− i

2c
α ·ν +Cλ

)(
1
2c

β +C
1/2
λ

)−1

ϕ

= P+

(
− i

2c
α ·ν− 1

2c
β +

1
2c

β +Cλ

)(
1
2c

β +C
1/2
λ

)−1

ϕ

= P+

(
− i

2c
(α ·ν)β − 1

2c
I4

)
β

(
1
2c

β +C
1/2
λ

)−1

ϕ +P+ϕ.

Using that ϕ ∈ GΩ, P2
+ = P+ and the anti-commutation relation (1.2) we deduce

Γ
Ω
0 fλ = P+

(
i

2c
β (α ·ν)− 1

2c
I4

)
β

(
1
2c

β +C
1/2
λ

)−1

ϕ +ϕ

=−1
c

P+P−β

(
1
2c

β +C
1/2
λ

)−1

ϕ +ϕ = ϕ.
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Hence, fλ is a solution of the boundary value problem (5.9), that means that γΩ(λ )ϕ = fλ .
This is the claimed representation of γΩ(λ ).

Next, by the definition of the γ-field it is clear that γΩ(λ ) is a densely defined bounded
operator from GΩ to L2(Ω;C4). Moreover, using Propositions 4.1.7 and 4.1.6 we deduce
that γΩ(λ ) regarded as an operator from G

1/2
Ω

to H1(Ω;C4) is continuous.

To show assertion (ii) we note that it holds by Definition 2.2.2, item (i) and Proposi-
tion 3.2.1 (iii) for any ϕ ∈ G

1/2
Ω

MΩ(λ )ϕ = Γ
Ω
1 γ

Ω(λ )ϕ = P+β

(
PΩΦ

1/2
λ

(
1
2c

β +C
1/2
λ

)−1

ϕ

)∣∣∣∣∣
∂Ω

= P+β

(
− i

2c
α ·ν− 1

2c
β +

1
2c

β +Cλ

)(
1
2c

β +C
1/2
λ

)−1

ϕ

= P+

(
− i

2c
β (α ·ν)− 1

2c

)(
1
2c

β +C
1/2
λ

)−1

ϕ +P+βϕ.

Using that ϕ ∈ GΩ, P2
+ = P+, and the anti-commutation relation (1.2) we deduce

MΩ(λ )ϕ =−1
c

P2
+

(
1
2c

β +C
1/2
λ

)−1

ϕ +βP−ϕ =−1
c

P+

(
1
2c

β +C
1/2
λ

)−1

P+ϕ,

which is the claimed representation of the Weyl function. Due to the mapping properties
of
( 1

2cβ +C
1/2
λ

)−1 from Proposition 4.1.7 we obtain finally that MΩ(λ ) is bounded and

densely defined in GΩ and bounded and everywhere defined in G
1/2
Ω

.

Eventually, we state an explicit formula for the inverse of MΩ(λ ). This will be one of the
main ingredients to prove the self-adjointness of Dirac operators on Ω with suitable bound-
ary conditions. Recall that the operator − 1

2cβ +C
1/2
λ

admits a bounded and everywhere
defined inverse in H1/2(∂Ω;C4); see Proposition 4.1.7.

Proposition 5.2.3. Let T Ω
−MIT be defined by (5.3), assume that λ ∈ C \

(
(−∞,−mc2]∪

σ(T−MIT)∪ [mc2,∞)
)
, let C1/2

λ
be given as in Proposition 4.1.6, and let MΩ(λ ) be as in

Proposition 5.2.2. Then MΩ(λ ) admits a bounded and everywhere defined inverse in G
1/2
Ω

which acts as

(MΩ(λ ))−1 =
1
c

P+β

(
− 1

2c
β +C

1/2
λ

)−1

βP+.

Proof. First, we note that functions f in the domain of T Ω � kerΓΩ
1 satisfy

Γ
Ω
1 f = 0 ⇔ f |∂Ω = iβ (α ·ν) f |∂Ω,
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which means that this operator coincides with the self-adjoint operator T Ω
−MIT. Therefore,

the triple {GΩ, Γ̂
Ω
0 , Γ̂

Ω
1 } with

Γ̂
Ω
0 := Γ

Ω
1 and Γ̂

Ω
1 :=−Γ

Ω
0

is a quasi boundary triple for (SΩ)∗ with Weyl function

M̂Ω(λ ) = Γ̂
Ω
1
(
Γ̂

Ω
0 � ker(T Ω−λ )

)−1
=−(MΩ(λ ))−1, λ ∈ ρ(T Ω

MIT)∩ρ(T Ω
−MIT).

So in order to compute (MΩ(λ ))−1 we calculate the Weyl function associated to the triple
{GΩ, Γ̂

Ω
0 , Γ̂

Ω
1 }. For that we derive first an explicit formula for the γ-field γ̂Ω(λ ). Let λ ∈

C\
(
(−∞,−mc2]∪σ(T Ω

−MIT)∪ [mc2,∞)
)
, let ϕ ∈ dom γ̂Ω(λ ) = ran Γ̂Ω

0 = ranΓΩ
1 = G

1/2
Ω

be
fixed and set

fλ :=
1√
c

PΩΦ
1/2
λ

(
− 1

2c
β +C

1/2
λ

)−1

βϕ,

where Φ
1/2
λ

is given as in Proposition 4.1.6. We prove that fλ is a solution of the boundary
value problem

(T Ω−λ ) = 0 and Γ̂
Ω
0 fλ = ϕ.

This shows then γ̂Ω(λ )ϕ = fλ , compare (2.7).

First, due to the mapping properties of
(
− 1

2cβ +C
1/2
λ

)−1 and Φ
1/2
λ

from Proposition 4.1.7
and Proposition 4.1.6 we get fλ ∈ H1(Ω;C4) = domT Ω. Moreover, we easily deduce
(T Ω−λ ) fλ = 0 because of Proposition 4.1.2. Eventually, employing Proposition 3.2.1 (iii)
we have

Γ̂
Ω
0 fλ = Γ

Ω
1 fλ = P+β

(
PΩΦ

1/2
λ

(
− 1

2c
β +C

1/2
λ

)−1

βϕ

)∣∣∣∣∣
∂Ω

= P+β

(
− i

2c
α ·ν +

1
2c

β − 1
2c

β +Cλ

)(
− 1

2c
β +C

1/2
λ

)−1

βϕ

=
1
c

P+β
2P−

(
− 1

2c
β +C

1/2
λ

)−1

βϕ +P+β
2
ϕ.

Since β 2 = I4, P+P− = 0 and ϕ ∈ GΩ, we deduce Γ̂Ω
0 fλ = ϕ , which was the claim.

Eventually, we compute M̂Ω(λ )ϕ = Γ̂Ω
1 γ̂Ω(λ )ϕ . Using again Proposition 3.2.1 (iii) we
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obtain

M̂Ω(λ )ϕ = Γ̂
Ω
1 γ̂

Ω(λ )ϕ =−Γ
Ω
0 γ̂

Ω(λ )ϕ

=−P+

(
PΩΦ

1/2
λ

(
− 1

2c
β +C

1/2
λ

)−1

βϕ

)∣∣∣∣∣
∂Ω

=−P+

(
− i

2c
α ·ν +

1
2c

β − 1
2c

β +Cλ

)(
− 1

2c
β +C

1/2
λ

)−1

βϕ

=−1
c

P+βP−

(
− 1

2c
β +C

1/2
λ

)−1

βϕ−P+βϕ.

Using the anti-commutation relation (1.2) we deduce βP− = P+β . Thus, as ϕ ∈ GΩ we
conclude finally

−(MΩ(λ ))−1 = M̂Ω(λ )ϕ =−1
c

P+β

(
− 1

2c
β +C

1/2
λ

)−1

βP+ϕ−βP−P+ϕ

=−1
c

P+β

(
− 1

2c
β +C

1/2
λ

)−1

βP+ϕ,

which is the claimed result.

5.2.2 An ordinary boundary triple for Dirac operators on domains

In this section we transform and extend the quasi boundary triple {GΩ,Γ
Ω
0 ,Γ

Ω
1 } from The-

orem 5.2.1 to an ordinary boundary triple using the techniques described in Section 2.2.
Recall that we have by (5.8)

G Ω
0 := ran(ΓΩ

0 � kerΓ
Ω
1 ) = G

1/2
Ω

and G Ω
1 := ran(ΓΩ

1 � kerΓ
Ω
0 ) = G

1/2
Ω

.

Following the procedure described in Section 2.2 we see that

Λ
Ω := ImMΩ(i) =

1
2i

(
MΩ(i)−MΩ(−i)

)
is a non-negative self-adjoint operator and we define the bijections

ι
Ω
+ := (ΛΩ)−1/2 : G1/2

Ω
→ GΩ (5.10)

and
ι

Ω
− :=

(
(ΛΩ)1/2)′ : G−1/2

Ω
→ GΩ, (5.11)

where
G
−1/2
Ω

:=
(
G

1/2
Ω

)′
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is the dual space of G1/2
Ω

. Recall that we can express with the aid of the embeddings ιΩ
± the

inner product in G
±1/2
Ω

and the duality product in G
−1/2
Ω
×G1/2

Ω
by (2.15), (2.18), and (2.19).

Eventually, we note that the typical scaling properties for embedding operators yield that
ιΩ
− gives rise to a bounded operator

ι
Ω
− : G1/2

Ω
→ G1

Ω. (5.12)

Now, we have all tools and notations in hand to introduce the extensions of the boundary
mappings ΓΩ

0 and ΓΩ
1 . This result can be shown using that AΩ

∞ := T Ω � kerΓΩ
1 = T Ω

−MIT is
self-adjoint, which was shown in the proof of Lemma 5.1.4, equation (5.8), and Proposi-
tion 2.2.11.

Lemma 5.2.4. Let (SΩ)∗ = T Ω
max and let {GΩ,Γ

Ω
0 ,Γ

Ω
1 } be the quasi boundary triple from

Theorem 5.2.1. Then, the operator AΩ
∞ := T Ω � kerΓΩ

1 is self-adjoint in L2(Ω;C4). More-
over, the mappings ΓΩ

0 ,Γ
Ω
1 : domT Ω→ GΩ have surjective extensions

Γ̃
Ω
0 : dom(SΩ)∗→ G

−1/2
Ω

and Γ̃
Ω
1 : dom(SΩ)∗→ G

−1/2
Ω

,

which are bounded with respect to the graph norm of (SΩ)∗.

With the aid of the extended boundary mappings Γ̃Ω
0 and Γ̃Ω

1 we are able to extend the
γ-field γΩ(λ ) and the Weyl function MΩ(λ ) from Proposition 5.2.2.

Proposition 5.2.5. Let {GΩ,Γ
Ω
0 ,Γ

Ω
1 } be the quasi boundary triple for (SΩ)∗ from The-

orem 5.2.1 with corresponding γ-field γΩ and Weyl function MΩ given as in Proposi-
tion 5.2.2. Moreover, let T Ω

−MIT be given by (5.3) and let λ ∈C\
(
(−∞,−mc2]∪ [mc2,∞)

)
.

Then it holds:

(i) The operator γΩ(λ ) has a continuous extension

γ̃
Ω(λ ) =

(
Γ̃

Ω
0 � ker((SΩ)∗−λ )

)−1 : G−1/2
Ω
→ GΩ.

(ii) The operator MΩ(λ ) has a continuous extension

M̃Ω(λ ) = Γ̃
Ω
1
(
Γ̃

Ω
0 � ker((SΩ)∗−λ )

)−1 : G−1/2
Ω
→ G

−1/2
Ω

.

Moreover, it holds for all ϕ ∈ G
−1/2
Ω

and ψ ∈ G
1/2
Ω〈

M̃Ω(λ )ϕ,ψ
〉
−1/2×1/2 =

〈
ϕ,MΩ(λ )ψ

〉
−1/2×1/2.

(iii) For λ ∈ C \
(
(−∞,−mc2]∪ σ(T Ω

−MIT)∪ [mc2∞)
)

the operator (MΩ(λ ))−1 has a
continuous extension(

M̃Ω(λ )
)−1

= Γ̃
Ω
0
(
Γ̃

Ω
1 � ker((SΩ)∗−λ )

)−1 : G−1/2
Ω
→ G

−1/2
Ω

.
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(iv) For λ ∈ C\
(
(−∞,−mc2]∪σ(T Ω

−MIT)∪ [mc2∞)
)

the operator

M̃Ω(λ )−
(
M̃Ω(λ )

)−1 : G−1/2
Ω
→ G

1/2
Ω

is bounded and everywhere defined.

Proof. Assertion (i) and the existence and the mapping properties of M̃Ω(λ ) follow im-
mediately from Proposition 2.2.12. Also item (iii) is a consequence of Proposition 2.2.12,
as −(MΩ(λ ))−1 is the Weyl function for the quasi boundary triple {GΩ,Γ

Ω
1 ,−ΓΩ

0 }, com-
pare the proof of Proposition 5.2.3, and this triple fulfills also the assumptions of Propo-
sition 2.2.12. Moreover, employing (2.18) and Proposition 2.2.4 (iii) we observe for
ϕ ∈ G

1/2
Ω

and ψ ∈ G
1/2
Ω〈

M̃Ω(λ )ϕ,ψ
〉
−1/2×1/2 = (MΩ(λ )ϕ,ψ)∂Ω = (ϕ,MΩ(λ )ψ)∂Ω = 〈ϕ,MΩ(λ )ψ〉−1/2×1/2.

By density we obtain that the above formula can be extended for all ϕ ∈ G
−1/2
Ω

. Hence,
also item (ii) is completely proved.

It remains to show statement (iv). We are going to prove that MΩ(λ )− (MΩ(λ ))−1 can
be extended to a bounded operator from G

−1/2
Ω

to G
1/2
Ω

. By Proposition 5.2.2 and Proposi-
tion 5.2.3 it holds

MΩ(λ )− (MΩ(λ ))−1 =−1
c

P+

(
1
2c

β +C
1/2
λ

)−1

P+−
1
c

P+β

(
− 1

2c
β +C

1/2
λ

)−1

βP+.

Using that β is an invertible matrix and that all involved operators are bounded and every-
where defined this implies

MΩ(λ )− (MΩ(λ ))−1 =−1
c

P+

(
1
2c

β +C
1/2
λ

)−1

P+−
1
c

P+

(
− 1

2c
β +βC

1/2
λ

β

)−1

P+

=−1
c

P+

(
− 1

2c
β +βC

1/2
λ

β

)−1(
βC

1/2
λ

+C
1/2
λ

β

)
β

(
1
2c

β +C
1/2
λ

)−1

P+.

Since
(

1
2cβ +C

1/2
λ

)−1
has a bounded extension in H−1/2(∂Ω;C4), see Proposition 4.1.7,

and βC
1/2
λ

+ C
1/2
λ

β has a bounded extension from H−1/2(∂Ω;C4) to H1/2(∂Ω;C4) by
Proposition 3.2.4, the claim of item (iv) follows.

Eventually, since G Ω
1 = G

1/2
Ω

is dense in GΩ we are able to apply the construction described
in Section 2.2 to transform the quasi boundary triple from Theorem 5.2.1 to an ordinary
boundary triple. Here we fix some µ ∈ ρ(T Ω

−MIT)∩ (−mc2,mc2) ⊂ ρ(T Ω
MIT). Note that

such a µ exists by Lemma 5.1.4. This implies, in particular, that

dom(SΩ)∗ = domAΩ
0 +̇ker

(
(SΩ)∗−µ

)
.

see (2.6).
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Theorem 5.2.6. Let SΩ = T Ω
min be given by (3.11) and let {GΩ,Γ

Ω
0 ,Γ

Ω
1 } be the quasi bound-

ary triple from Theorem 5.2.1. Moreover, let ιΩ
± be defined by (5.10) and (5.11), respec-

tively, let Γ̃Ω
0 be the extension of ΓΩ

0 from Lemma 5.2.4 and define ϒΩ
0 ,ϒ

Ω
1 : dom(SΩ)∗→GΩ

by
ϒ

Ω
0 f := ι

Ω
− Γ̃

Ω
0 f and ϒ

Ω
1 f := ι

Ω
+Γ

Ω
1 f0

for f = f0+g∈ domAΩ
0 +̇ker

(
(SΩ)∗−µ

)
= dom(SΩ)∗. Then {GΩ,ϒ

Ω
0 ,ϒ

Ω
1 } is an ordinary

boundary triple for (SΩ)∗ and (SΩ)∗ � kerϒΩ
0 = T Ω � kerΓΩ

0 = T Ω
MIT.

5.3 Dirac operators on domains – definition and basic spectral
properties in the case of non-critical boundary values

In this section we define self-adjoint Dirac operators in a domain Ω ⊂ R3, which has a
compact C2-smooth boundary, with suitable boundary conditions via the quasi boundary
triple {GΩ,Γ

Ω
0 ,Γ

Ω
1 } from Theorem 5.2.1. To be more precise, we are going to study Dirac

operators with the boundary conditions

τP+ f |∂Ω = P+β f |∂Ω,

where the function τ : ∂Ω→R is Lipschitz continuous and the matrix P+ is given by (5.4).
In the case of non-critical boundary values, that means if τ(x) 6= ±1 for all x ∈ ∂Ω, we
are going to prove self-adjointness and basic spectral properties. The critical case is then
treated in Section 5.4.

Definition 5.3.1. Let {GΩ,Γ
Ω
0 ,γ

Ω
1 } be the quasi boundary triple from Theorem 5.2.1 and

let τ : ∂Ω→ R be Lipschitz continuous. Then we define AΩ
τ := T Ω � ker(ΓΩ

1 − τΓΩ
0 ). This

operator is given in a more explicit way by

AΩ
τ f := (−icα ·∇+mc2

β ) f ,

domAΩ
τ := { f ∈ H1(Ω;C4) : τP+ f |∂Ω = P+β f |∂Ω}.

(5.13)

First, we show that AΩ
τ is unitarily equivalent to −AΩ

−τ . This technical property will be
useful in the study of AΩ

τ later. In the proof of this result we use the matrix

γ5 :=
(

0 I2
I2 0

)
.

Lemma 5.3.2. Let τ : ∂Ω → R be a Lipschitz continuous function, let AΩ
τ be defined

by (5.13) and define the unitary matrix B := βγ5 with γ5 given as above. Then it holds
AΩ

τ =−B∗AΩ
−τB. In particular, AΩ

τ is self-adjoint if and only if AΩ
−τ is self-adjoint.
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Proof. First, we show that B(domAΩ
τ ) = domAΩ

−τ . In fact, the anti-commutation rela-
tion (1.2), (α ·ν)γ5 = γ5(α ·ν), and βγ5 =−γ5β imply for f ∈ domAΩ

τ

Γ
Ω
1 B f = P+β

2
γ5 f |∂Ω = γ5P−β

2 f |∂Ω = γ5βP+β f |∂Ω

= γ5βτP+ f |∂Ω = τP+γ5β f |∂Ω =−τP+B f |∂Ω,

that means B f ∈ domAΩ
−τ . By a similar argument we see that f ∈ domAΩ

−τ yields B f ∈
domAΩ

τ which shows B(domAΩ
τ ) = domAΩ

−τ . Eventually, employing again (1.2) we get
for any f ∈ H1(Ω;C4)

(−icα ·∇+mc2
β )B f = (−icα ·∇+mc2

β )βγ5 f = β (icα ·∇+mc2
β )γ5 f

= βγ5(icα ·∇−mc2
β ) f =−B(−icα ·∇+mc2

β ) f .

This finishes the proof of this lemma.

It follows immediately from Green’s abstract identity that AΩ
τ is symmetric for any Lips-

chitz continuous and real valued function τ , see (2.9). In order to prove self-adjointness,
we employ Theorem 2.2.5; this gives us also a Krein type resolvent formula. Note that
this resolvent formula below is explicit as we know from Proposition 5.1.2 the resolvent(
T Ω

MIT−λ
)−1 explicitly.

Theorem 5.3.3. Let τ : ∂Ω→ R be a Lipschitz continuous function satisfying |τ(x)| 6= 1
for all x ∈ ∂Ω and let AΩ

τ be defined by (5.13). Moreover, let γΩ and MΩ be given as in
Proposition 5.2.2. Then AΩ

τ is self-adjoint and it holds for all λ ∈ C\R

(AΩ
τ −λ )−1 =

(
T Ω

MIT−λ
)−1

+ γ
Ω(λ )

(
τ−MΩ(λ )

)−1
γ

Ω(λ )∗.

Proof. Due to Green’s identity it is clear that AΩ
τ is symmetric, compare (2.9). Thus, it

suffices to prove ran(AΩ
τ −λ ) = L2(Ω;C4) for λ ∈ C\R.

Let f ∈ L2(Ω;C4) and λ ∈ C \R be arbitrary, but fixed. Then by Theorem 2.2.5 (ii)
we have f ∈ ran(AΩ

τ − λ ) if and only if γΩ(λ )∗ f ∈ ran(τ −MΩ(λ )). Since γΩ(λ )∗ =

ΓΩ
1
(
T Ω

MIT−λ
)−1, see Proposition 2.2.3 (iii), and domT Ω

MIT ⊂ H1(Ω;C4) we deduce that

γΩ(λ )∗ f ∈ G
1/2
Ω

. We prove that τ−MΩ(λ ) is surjective in G
1/2
Ω

. Clearly we have

ran(τ−MΩ(λ ))⊃ ran
[
(τ−MΩ(λ ))

(
τ +(MΩ(λ ))−1)]

= ran
[
τ

2−1+ τ(MΩ(λ ))−1−MΩ(λ )τ
]
.

Making use of the explicit form of MΩ(λ ) from Proposition 5.2.2 we deduce from Propo-
sition 3.2.3 that

τMΩ(λ )−MΩ(λ )τ =
1
c

P+

(
1
2c

β +C
1/2
λ

)−1(
τC

1/2
λ
−C

1/2
λ

τ

)( 1
2c

β +C
1/2
λ

)−1

P+
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is compact in G
1/2
Ω

, as τ is Lipschitz continuous. Moreover, by Proposition 5.2.5 (iv) also
(MΩ(λ ))−1−MΩ(λ ) is compact in G

1/2
Ω

. Thus, the operator

Kλ := τ(MΩ(λ ))−1−MΩ(λ )τ = τ
[
(MΩ(λ ))−1−MΩ(λ )

]
+ τMΩ(λ )−MΩ(λ )τ

is compact in G
1/2
Ω

. Note that both operators τ−MΩ(λ ) and τ +(MΩ(λ ))−1 are injective,
as otherwise one of the symmetric operators AΩ

τ or T Ω � ker(ΓΩ
0 + τΓΩ

1 ) would have the
non-real eigenvalue λ , see Theorem 2.2.5 (recall that −(MΩ(λ ))−1 is the Weyl function
for the quasi boundary triple {GΩ,Γ

Ω
1 ,−ΓΩ

0 }, compare the proof of Proposition 5.2.3).
Thus, Fredholm’s alternative implies that

(τ−MΩ(λ ))
(
τ +(MΩ(λ ))−1)= (τ2−1)

[
1+

1
τ2−1

Kλ

]
is bijective in G

1/2
Ω

. Therefore G
1/2
Ω
⊂ ran(τ −MΩ(λ )), which yields f ∈ ran(AΩ

τ − λ ).
Since f was arbitrary we get eventually ran(AΩ

τ − λ ) = L2(Ω;C4) and that AΩ
τ is self-

adjoint.

Finally, the stated resolvent formula follows from Theorem 2.2.5.

In the following we discuss the basic spectral properties of AΩ
τ . Since these are of a very

different nature whether Ω is bounded or Ω is the complement of a bounded domain,
we discuss these two cases separately. First, we treat the simpler case, when Ω is the
complement of a bounded C2-domain. Then the essential spectrum of AΩ

τ is (−∞,−mc2]∪
[mc2,∞) and the discrete eigenvalues in the gap of the essential spectrum can be computed
with the aid of the Birman-Schwinger principle.

Proposition 5.3.4. Let Ω be the complement of a bounded C2-domain, let τ : ∂Ω→ R be
a Lipschitz continuous function satisfying |τ(x)| 6= 1 for all x ∈ ∂Ω and let AΩ

τ be defined
by (5.13). Then the following is true:

(i) σess(AΩ
τ ) = (−∞,−mc2]∪ [mc2,∞).

(ii) The number of discrete eigenvalues is finite.

(iii) λ ∈ σ(AΩ
τ ) if and only if 0 ∈ σ(τ−MΩ(λ )).

Proof. (i) Note first that due to Theorem 5.3.3 we have for λ ∈ C\R

(Aτ −λ )−1−
(
T Ω

MIT−λ
)−1

= γ
Ω(λ )

(
τ−MΩ(λ )

)−1
γ

Ω(λ )∗

= γΩ(λ )
(
τ−MΩ(λ )

)−1
γ

Ω(λ )∗.
(5.14)

The operator γΩ(λ )∗ is bounded from L2(Ω;C4) to G
1/2
Ω

, because by Proposition 2.2.3 (iii)
and (5.8) we have ranγΩ(λ )∗ = ran

[
ΓΩ

1 (T
Ω

MIT)
−1] = G

1/2
Ω

and the closed graph theorem.
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Moreover
(
τ−MΩ(λ )

)−1 is bijective in G
1/2
Ω

, as it is shown in the proof of Theorem 5.3.3.
Hence, we deduce that (

τ−MΩ(λ )
)−1

γ
Ω(λ )∗ : L2(Ω;C4)→ G

1/2
Ω

is bounded. Since G
1/2
Ω

is compactly embedded into GΩ this operator is compact from
L2(Ω;C4) to GΩ. Moreover, γΩ(λ ) can always be extended to a bounded and everywhere
defined operator from GΩ to L2(Ω;C4), compare Proposition 2.2.3. Thus, we deduce that
the left hand side of (5.14) is compact in L2(Ω;C4), which yields

σess(AΩ
τ ) = σess(T Ω

MIT) = (−∞,−mc2]∪ [mc2,∞).

Assertion (ii) can be shown in exactly the same way as Theorem 4.2.3 (iv). Finally,
item (iii) is an immediate consequence of Theorem 2.2.5 (i).

If Ω is a bounded C2-domain, then it is more difficult to describe the spectrum of AΩ
τ

in terms of the Weyl function MΩ. Since domAΩ
τ ⊂ H1(Ω;C4) is compactly embedded

in L2(Ω;C4) in this case, the spectrum of AΩ
τ is purely discrete. On the other hand, we

have only an expression for the value of the Weyl function MΩ(λ ) in Proposition 5.2.2 for
λ ∈ C\

(
(−∞,−mc2]∪ [mc2,∞)

)
. Hence, we can not use the Birman Schwinger principle

from Theorem 2.2.5 directly to detect discrete eigenvalues in (−∞,−mc2]∪ [mc2,∞). But
since the symmetry SΩ = T Ω

min is simple by Lemma 3.1.2, we can apply Proposition 2.2.8
and obtain immediately the following result.

Proposition 5.3.5. Let Ω be a bounded C2-smooth domain, let τ : ∂Ω→ R be a Lipschitz
continuous function satisfying |τ(x)| 6= 1 for all x ∈ ∂Ω and let AΩ

τ be defined by (5.13).
Then σ(AΩ

τ ) = σdisc(AΩ
τ ) and λ is an eigenvalue of AΩ

τ if and only if there exists a ϕ ∈ G1/2
Ω

such that
lim
ε↘0

iε
(
MΩ(λ + iε)− τ

)−1
ϕ 6= 0.

Next, we state the analogue of Theorem 4.2.7 for Dirac operators on domains. In this case
we compare the differences of powers of the resolvents of AΩ

τ and T Ω
MIT. The results are

very similar to those of Theorem 4.2.7. Hence, we also give just a sketch of the proof.
Again, we have to assume here some additional smoothness of ∂Ω.

Theorem 5.3.6. Let l ∈ N be fixed and assume that Ω is has a Cl-smooth boundary. Let
τ : ∂Ω→ R be Lipschitz continuous such that |τ(x)| 6= 1 for all x ∈ ∂Ω and let AΩ

τ be
defined by (5.13). Moreover, let T Ω

MIT be the MIT-bag operator defined by (5.1). Then it
holds for all λ ∈ C\R

(AΩ
τ −λ )−l− (T Ω

MIT−λ )−l ∈S2/l,∞.
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In particular, for l = 3 the operator (AΩ
τ −λ )−3− (T Ω

MIT−λ )−3 belongs to the trace class
ideal and

tr
[
(AΩ

τ −λ )−3− (T Ω
MIT−λ )−3]=−1

2
tr
[

d2

dλ 2

((
τ−MΩ(λ )

)−1 d
dλ

MΩ(λ )

)]
. (5.15)

Moreover, the wave operators for the scattering system {AΩ
τ ,T

Ω
MIT} exist and are complete

and the absolute continuous parts of AΩ
τ and T Ω

MIT are unitarily equivalent.

Proof. The proof of this theorem follows the one of Theorem 4.2.7. Thus, we give here
just a sketch and point out the differences to the proof of Theorem 4.2.7. Let λ ∈ C \R
be fixed and denote by PΩ : L2(R3;C4)→ L2(Ω;C4) the restriction operator which acts as
PΩ f = f � Ω, f ∈ L2(R3;C4). Then it holds by Proposition 5.2.2

γ
Ω(λ ) =

1√
c

PΩΦ
1/2
λ

(
1
2c

β +C
1/2
λ

)−1

with the operators Φ
1/2
λ

and C
1/2
λ

defined as in Proposition 4.1.6. Hence, we have

γΩ(λ ) =
1√
c

PΩΦλ

(
1
2c

β +Cλ

)−1

.

In a similar way one gets

MΩ(λ ) =−1
c

P+

(
1
2c

β +Cλ

)−1

P+.

In the proof of Theorem 4.2.7 it was shown that

dk

dλ k (I4 +2cβCλ )
−1 ∈S2/k,∞,

see (4.19). Hence, it follows
dk

dλ k MΩ(λ ) ∈S2/k,∞ (5.16)

and using (2.42), Proposition 4.1.8 and (2.1)

dk

dλ k γΩ(λ ) = PΩ ∑
s+t=k

k!
s!t!

ds

dλ s Φλ

dt

dλ t

(
1
2c

β +Cλ

)−1

∈S4/(2k+1),∞.

By taking adjoints this implies that also dk

dλ k γΩ(λ )∗ ∈S4/(2k+1),∞. Note that (5.16) yields

dk

dλ k

(
τ−MΩ(λ )

)−1 ∈S2/k,∞;
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this can be shown in exactly the same way as (4.19). Thus, using the resolvent formula
from Theorem 5.3.3 we get finally in a similar way as in (4.17) that

(AΩ
τ −λ )−l− (T Ω

MIT−λ )−l = ∑
p+q+r=l−1

1
p!q!r!

dp

dλ p γ(λ )
dq

dλ q

(
τ−MΩ(λ )

)−1 dr

dλ r γ(λ )∗

belongs to S2/l,∞.

Finally, the trace formula (5.15) can be shown in exactly the same way as Corollary 4.2.8.

5.3.1 A remark on AΩ
τ and AΣ

ηe,ηs in the confinement case

Let Ω+ ⊂ R3 be a bounded C2-domain, set Σ := ∂Ω+ and Ω− := R3 \Ω+ and denote
the unit normal vector pointing outwards of Ω± by ν±. Moreover, let ηe,ηs : Σ→ R be
Lipschitz continuous. If ηe(x)2−ηs(x)2 = −4c2 for all x ∈ Σ, then the operator AΣ

ηe,ηs
given by (4.12) is self-adjoint and it decouples into

AΣ
ηe,ηs

= ÃΩ+
ηe,ηs⊕ ÃΩ−

ηe,ηs,

where ÃΩ±
ηe,ηs is a Dirac operator in L2(Ω±;C4) with boundary conditions(

2cI4− i(α ·ν±)(ηe +ηsβ )
)

f±|Σ = 0 for f± ∈ dom ÃΩ±
ηe,ηs, (5.17)

compare Remark 4.2.2 and Theorem 4.2.3. We will show that the operators ÃΩ±
ηe,ηs are of

the form AΩ±
τ and, on the other hand, for every Lipschitz continuous τ in the non-critical

case, that means τ(x) 6= ±1 for all x ∈ Σ, the operator AΩ±
τ is the compression of some

AΣ
ηe,ηs

in the confinement case. This allows, in particular, to deduce some properties of
AΩ±

τ of those of AΣ
ηe,ηs

from Chapter 4 with very small effort.

Proposition 5.3.7. Let for some Lipschitz continuous functions ηe,ηs,τ : Σ→R the oper-
ators AΣ

ηe,ηs
and AΩ±

τ be defined as in (4.12) and (5.13), respectively.

(i) Assume that ηe(x)2−ηs(x)2 =−4c2 for all x ∈ Σ. If τ := ηe
2c−ηs

, then τ 6=±1 every-

where on Σ and AΣ
ηe,ηs

= AΩ+
τ ⊕AΩ−

τ .

(ii) Conversely, let τ be such that τ(x) 6=±1 for all x ∈ Σ. If

ηe :=
4cτ

1− τ2 and ηs :=
2c(1+ τ2)

τ2−1
,

then η2
e −η2

s =−4c2 on Σ and AΣ
ηe,ηs

= AΩ+
τ ⊕AΩ−

τ .
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Proof. Let us start with some general observations. Using the anti-commutation rela-
tion (1.2) and β 2 = I4 we see that

I4 = P++P− = P++βP+β .

Thus, the boundary condition (5.17) is equivalent to(
2cI4− i(α ·ν±)(ηe +ηsβ )

)
P+ f±|Σ =−

(
2cI4− i(α ·ν±)(ηe +ηsβ )

)
βP+β f±|Σ.

Multiplying both sides with β , using again (1.2) and iβ (α · ν±)P+ = P+ we deduce that
the last line can be rewritten as(

(2c+ηs)β −ηeI4
)
P+ f±|Σ =−

(
(2c−ηs)I4 +ηeβ

)
P+β f±|Σ. (5.18)

To prove now assertion (i) we use first η2
e −η2

s =−4c2 to see(
(2c−ηs)I4−ηeβ

)(
(2c+ηs)β −ηeI4

)
=−4cηe

and (
(2c−ηs)I4−ηeβ

)(
(2c−ηs)I4 +ηeβ

)
= 8c2−4cηs.

Thus, multiplying (5.18) with the invertible matrix
(
(2c−ηs)I4−ηeβ

)
we see that it is

equivalent to
ηe

2c−ηs
Γ

Ω±
0 f± = Γ

Ω±
1 f±. (5.19)

This implies the claim of item (i).

In order to verify item (ii) define ηe and ηs as in the proposition. Then a simple calculation
shows that η2

e −η2
s =−4c2 and that this choice fulfills τ = ηe

2c−ηs
. Since (5.19) is equivalent

to (5.17) for ηe,ηs satisfying η2
e −η2

s = −4c2 everywhere on Σ, we deduce that AΣ
ηe,ηs

=

AΩ+
τ ⊕AΩ−

τ . This finishes the proof of this proposition.

Proposition 5.3.7 shows us that there is a one-to-one correspondence between the operators
AΩ

τ for non-critical boundary values and AΣ
ηe,ηs

in the confinement case. Using this result
and the findings of Section 4.2 we are able to state and reformulate some properties of AΩ

τ .
For instance, using the previous proposition and Theorem 4.2.3 one can show with very
little effort the following resolvent identity:

Corollary 5.3.8. Let Ω⊂ R3 be a C2-domain with compact boundary, let τ : ∂Ω→ R be
Lipschitz continuous such that τ(x) 6=±1 for all x ∈ ∂Ω. Moreover, set

ηe :=
4cτ

1− τ2 and ηs :=
2c(1+ τ2)

τ2−1
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and let PΩ be the projection defined by (5.2). Eventually, let A0 be the free Dirac operator
and let Φλ and Cλ be defined by (3.16) and (3.17), respectively. Then it holds for all
λ ∈ C\R

(AΩ
τ −λ )−1 = PΩ(A0−λ )−1P∗Ω−PΩΦλ

(
I4 +(ηeI4 +ηsβ )Cλ

)−1
(ηeI4 +ηsβ )Φ

∗
λ

P∗Ω.

In a similar way as in Corollary 5.3.8 one can deduce almost immediately other properties
of AΩ

τ . For instance Theorem 5.3.6 follows from Theorem 4.2.7. Furthermore, the fact
that for unbounded Ω it holds σess(A

Ω±
τ ) = (−∞,−mc2]∪ [mc2,∞) and that the number of

discrete eigenvalues in (−mc2,mc2) is finite is a simple consequence of Theorem 4.2.3.

A translation of the Birman Schwinger principle is a little bit more delicate: if for some λ ∈
(−mc2,mc2) it holds −1 ∈ σp((ηeI4 +ηsβ )Cλ ), then λ ∈ σp(AΣ

ηe,ηs
) = σp(A

Ω+
τ ⊕AΩ−

τ ),
but it is not clear whether λ is an eigenvalue of AΩ+

τ or of AΩ−
τ . If Ω− is connected, then

one can say more on eigenvalues of AΩ+
τ in (−∞,−mc2]∪ [mc2,∞), as AΩ−

τ does not have
embedded eigenvalues there in this case (see [6, Theorem 3.7] and the discussion after this
result). This means that

σp(AΩ
τ )∩ (−∞,−mc2]∪ [mc2,∞) = σp(AΣ

ηe,ηs
)∩ (−∞,−mc2]∪ [mc2,∞).

Since SΣ = T Ω+
min ⊕T Ω−

min is simple by Lemma 3.1.2 we can detect the eigenvalues of AΣ
ηe,ηs

in (−∞,−mc2]∪ [mc2,∞) with the aid of Proposition 2.2.8 and get for λ ∈ (−∞,−mc2]∪
[mc2,∞) that

λ ∈ σ(AΩ+
τ )⇔∃ϕ ∈ H1/2(Σ;C4) : lim

ε↘0
iε
(
I4 +(ηeI4 +ηsβ )Cλ+iε

)−1
ϕ 6= 0.

It seems that the approach presented in this subsection has many advantages compared to
the direct one discussed in Section 5.3. But it has one big drawback (in the opinion of the
author of this thesis): there is no chance here to study AΩ±

τ in the case of critical boundary
values to obtain similar results as below in Section 5.4 with the techniques available from
the direct approach.

5.4 Dirac operators on domains with critical boundary values –
self-adjointness and basic spectral properties

In this section we study Dirac operators on a domain Ω⊂R3 with the boundary condition
τP+ f |∂Ω = P+β f |∂Ω in the critical case, that means if there are x ∈ ∂Ω with |τ(x)| = 1.
Under this assumption AΩ

τ defined by (5.13) is not self-adjoint. With a similar strategy
as in Section 4.3 we will show then for constant boundary value τ ∈ {±1} that AΩ

τ is
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essentially self-adjoint and with the aid of the ordinary boundary triple {GΩ,ϒ
Ω
0 ,ϒ

Ω
1 } from

Theorem 5.2.6 we can compute the self-adjoint closure of this operator and deduce some
of its spectral properties.

First, we show that AΩ
τ defined by (5.13) is symmetric, but not self-adjoint. The proof of

this result relies on Lemma 5.3.2 and similar arguments as in Proposition 4.3.1.

Proposition 5.4.1. Assume that τ : ∂Ω→ R is a Lipschitz continuous function such that
|τ(x)|= 1 for some x ∈ ∂Ω. Then AΩ

τ defined by (5.13) is symmetric, but not self-adjoint.

Proof. The proof is very similar to the one of Proposition 4.3.1 and hence, we provide just
a sketch here. The fact that AΩ

τ is symmetric follows immediately from Green’s identity,
see (2.9). The claim that AΩ

τ is not self-adjoint will be shown in an indirect way.

Assume that AΩ
τ is self-adjoint. Then ran(AΩ

τ −λ ) = L2(Ω;C4) for all λ ∈C\R. Accord-
ing to Theorems 2.2.5 and 5.2.1 this is equivalent to

ranγ
Ω(λ )∗ = ran

(
Γ

Ω
1 (T

Ω
MIT−λ )−1)⊂ ran(τ−MΩ(λ )).

By (5.8) it holds ran
(
ΓΩ

1 (T
Ω

MIT−λ )−1)= ran
(
ΓΩ

1 � kerΓΩ
0
)
= G

1/2
Ω

and thus the last con-

dition is equivalent to the fact that τ−MΩ(λ ) is bijective in G
1/2
Ω

.

Next, Lemma 5.3.2 and the assumption AΩ
τ = (AΩ

τ )
∗ imply that also AΩ

−τ is self-adjoint
and hence, with a similar argument as above we see that τ +MΩ(λ ) is bijective in G

1/2
Ω

.
We claim that this implies that also τ +(MΩ(λ ))−1 is bijective. Clearly, this operator is
injective, as otherwise the symmetric operator T Ω � ker(ΓΩ

0 + τΓΩ
1 ) would have the non-

real eigenvalue λ by Theorem 2.2.6 (i). Moreover, we have

τ +(MΩ(λ ))−1 = τ +MΩ(λ )−MΩ(λ )+(MΩ(λ ))−1

= (τ +MΩ(λ ))
(
I4− (τ +MΩ(λ ))−1(MΩ(λ )− (MΩ(λ ))−1)

)
.

Since MΩ(λ )− (MΩ(λ ))−1 is compact in G
1/2
Ω

by Proposition 5.2.5 it follows from Fred-
holm’s alternative that τ +(MΩ(λ ))−1 must be bijective.

Since τ−MΩ(λ ) and τ +(MΩ(λ ))−1 are bijective, also the product

(τ−MΩ(λ ))
(
τ +(MΩ(λ ))−1)= (τ2−1)I4 + τ(MΩ(λ ))−1−MΩ(λ )τ

is bijective. We set

C :=
∥∥((τ2−1)I4 + τ(MΩ(λ ))−1−MΩ(λ )τ

)−1∥∥. (5.20)

Next, by assumption there exist some x∈ ∂Ω such that τ(x)2 = 1. Thus, there is a function
τ̃ such that

Σ0 := ∂Ω\ supp τ̃ 6= /0 and C
∥∥(τ2−1)− τ̃

∥∥< 1
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with C chosen as in (5.20) and the norm is the operator norm in B(G
1/2
Ω

). Note that such a
choice is possible by Proposition 2.5.2. This and (5.20) imply then

C
∥∥(τ̃I4 + τ(MΩ(λ ))−1−MΩ(λ )τ

)
−
(
(τ2−1)I4 + τ(MΩ(λ ))−1−MΩ(λ )τ

)∥∥
=C

∥∥(τ2−1)− τ̃
∥∥< 1.

Therefore, also the operator τ̃I4+τ(MΩ(λ ))−1−MΩ(λ )τ is bijective in G
1/2
Ω

by [50, The-
orem IV 1.16].

Eventually, let P : H1/2(∂Ω;C4)→H1/2(Σ0;C4) be the restriction operator acting as Pϕ =
ϕ � Σ0. Using supp τ̃ = ∂Ω\Σ0 this yields that{

ϕ � Σ0 : ϕ ∈ G
1/2
Ω

}
⊂ ranP

(
τ̃I4 + τ(MΩ(λ ))−1−MΩ(λ )τ

)
= ranP

(
τ(MΩ(λ ))−1−MΩ(λ )τ

)
.

(5.21)

One can show in exactly the same way as in the proof of Theorem 5.3.3 that τ(MΩ(λ ))−1−
MΩ(λ )τ is compact in G

1/2
Ω

. This gives then a contradiction to (5.21) and finishes the proof
of this proposition.

In the following assume that τ ∈ {±1} is constant. In the rest of this section we show
that AΩ

±1 is essentially self-adjoint and using the ordinary boundary triple {GΩ,ϒ
Ω
0 ,ϒ

Ω
1 }

from Theorem 5.2.6 we are going to compute its self-adjoint closure and some of its
spectral properties. Choose the same µ ∈ ρ(T Ω

−MIT)∩ (−mc2,mc2) as in the definition
of {GΩ,ϒ

Ω
0 ,ϒ

Ω
1 }. Then

AΩ
τ = T Ω � ker

(
Γ

Ω
1 − τΓ

Ω
0
)
= (SΩ)∗ �

(
ϒ

Ω
1 −Θ

1,Ω
τ ϒ

Ω
1
)
,

where Θ
1,Ω
τ = ιΩ

+

(
τ−MΩ(µ)

)
(ιΩ
− )
−1 and MΩ(µ) is the value of the Weyl function given

as in Proposition 5.2.2, compare (2.22). The operator Θ
1,Ω
τ is explicitly given by

Θ
1,Ω
τ ϕ := ι

Ω
+

(
τ−MΩ(µ)

)
(ιΩ
− )
−1

ϕ, domΘ
1,Ω
τ := G1

Ω. (5.22)

Due to the mapping properties of MΩ(µ) from Proposition 5.2.2 we see that Θ
1,Ω
τ is well-

defined. Our goal is to show that Θ
1,Ω
τ is essentially self-adjoint and that its closure coin-

cides with the maximal parameter

Θ
0,Ω
τ ϕ := ι

Ω
+

(
τ− M̃Ω(µ)

)
(ιΩ
− )
−1

ϕ,

domΘ
0,Ω
τ :=

{
ϕ ∈ GΩ :

(
τ− M̃Ω(µ)

)
(ιΩ
− )
−1

ϕ ∈ G
1/2
Ω

}
,

(5.23)

where M̃Ω(µ) is the extension of MΩ(µ) onto G
−1/2
Ω

from Proposition 5.2.5. The (essen-
tial) self-adjointness of Θ

1,Ω
τ and Θ

0,Ω
τ is studied in the following proposition; the proof

of this result follows closely the one of Proposition 4.3.2 and hence we give just a sketch
here.
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Proposition 5.4.2. Let τ ∈ {±1} and let Θ
1,Ω
τ and Θ

0,Ω
τ be given by (5.22) and (5.23),

respectively. Then Θ
1,Ω
τ is essentially self-adjoint in GΩ and the closure of Θ

1,Ω
τ is Θ

0,Ω
τ .

In particular Θ
0,Ω
τ is self-adjoint.

Proof. The proof of this proposition is very similar as the one of Proposition 4.3.2. First,
one can verify that Θ

0,Ω
τ is a closed operator in GΩ. This can be done with exactly the

same arguments as in Step 1 of the proof of Proposition 4.3.2 and hence, we omit it.
Then one can check that Θ

0,Ω
τ ⊂ Θ

1,Ω
τ , which implies that Θ

0,Ω
τ is also symmetric, and

(Θ1,Ω
τ )∗ ⊂ Θ

0,Ω
τ , which yields finally that Θ

0,Ω
τ is self-adjoint. It remains to verify the

inclusions Θ
0,Ω
τ ⊂Θ

1,Ω
τ and (Θ1,Ω

τ )∗ ⊂Θ
0,Ω
τ . This will be done in the following.

First, to show Θ
0,Ω
τ ⊂Θ

1,Ω
τ fix some ϕ ∈ domΘ

0,Ω
τ and choose a sequence (ψn)⊂ G1

Ω
such

that (ιΩ
− )
−1ψn→ (ιΩ

− )
−1ϕ in G

−1/2
Ω

. We define

ϕn := ϕ +
1
2

ι
Ω
−

(
I4 +(M̃Ω(µ))−1

τ

)
(ιΩ
− )
−1(ψn−ϕ).

Note that

ϕn =
1
2

ι
Ω
−

(
I4 +(MΩ(µ))−1

τ

)
(ιΩ
− )
−1

ψn +
1
2

ι
Ω
− (M

Ω(µ))−1
(

M̃(µ)− τ

)
(ιΩ
− )
−1

ϕ.

(5.24)

Since (MΩ(µ))−1 is bounded in G
1/2
Ω

by Proposition 5.2.3 and ιΩ
− gives rise to a bounded

operator from G
1/2
Ω

onto G1
Ω

by (5.12) we deduce

1
2

ι
Ω
−

(
I4 +(MΩ(µ))−1

τ

)
(ιΩ
− )
−1

ψn ∈ G1
Ω.

Because of the same reasons and ϕ ∈ domΘ
0,Ω
τ we have

1
2

ι
Ω
− (M

Ω(µ))−1
(

M̃(µ)− τ

)
(ιΩ
− )
−1

ϕ ∈ G1
Ω.

Hence, we conclude from (5.24) that ϕn ∈ G1
Ω

. Next, as I4 +(M̃Ω(µ))−1τ is continuous in
G
−1/2
Ω

by Proposition 5.2.5 (iii) and ιΩ
− : G−1/2

Ω
→ GΩ by construction we find

ϕn−ϕ =
1
2

ι
Ω
−

(
I4 +(M̃Ω(µ))−1

τ

)
(ιΩ
− )
−1(ψn−ϕ)→ 0 in GΩ.

Finally, using τ2 = 1 we obtain that

Θ
0,Ω
τ (ϕn−ϕ) =

1
2

ι
Ω
+

(
τ− M̃(µ)

)(
I4 +(M̃Ω(µ))−1

τ

)
(ιΩ
− )
−1(ψn−ϕ)

=
1
2

ι
Ω
+

(
(M̃(µ))−1− M̃(µ)

)
(ιΣ
−)
−1(ψn−ϕ).

(5.25)



124 5 Dirac operators on domains

Since (M̃(µ))−1− M̃(µ) : G−1/2
Ω

→ G
1/2
Ω

is continuous by Proposition 5.2.5 (iv) we de-
duce eventually from (5.25) that Θ

0,Ω
τ (ϕn−ϕ)→ 0 in GΩ. This finishes the proof of the

statement that Θ
0,Ω
τ ⊂Θ

1,Ω
τ .

It remains to prove that (Θ1,Ω
τ )∗ ⊂ Θ

0,Ω
τ . But this can be done in exactly the same way as

in Step 2 in the proof of Proposition 4.3.2. One just has to use Proposition 5.2.5 (ii) instead
of Proposition 4.1.4 (ii). This finishes the proof of this proposition.

With the aid of Proposition 5.4.2 we are now able to show that the operator AΩ
±1 defined

by (5.13) is essentially self-adjoint and we can describe its self-adjoint closure AΩ
±1 in

terms of the boundary triple {GΩ,ϒ
Ω
0 ,ϒ

Ω
1 } from Theorem 5.2.6, which allows us further

to state some of the spectral properties of AΩ
τ . Recall the definitions of the maximal op-

erator (SΩ)∗ = T Ω
max given by (3.10) and the extended boundary mappings Γ̃Ω

0 , Γ̃
Ω
1 from

Lemma 5.2.4.

Theorem 5.4.3. Let τ ∈ {±1} and let AΩ
τ be defined by (5.13). Moreover, let T Ω

max be
given by (3.10) and let γ̃Ω and M̃Ω be given as in Proposition 5.2.5. Then AΩ

τ is essentially
self-adjoint in L2(Ω;C4) and its self-adjoint closure is given by

AΩ
τ = T Ω

max � ker
(
ϒ

Ω
1 −Θ

0,Ω
τ ϒ

Ω
0
)
= T Ω

max � ker
(
Γ̃

Ω
1 − τΓ̃

Σ
0
)
. (5.26)

Furthermore AΩ
τ ( AΩ

τ , domAΩ
τ 6⊂ H1(Ω;C4), and the following assertions are true:

(i) For λ ∈ C\R it holds

(AΩ
τ −λ )−1 = (T Ω

MIT−λ )−1 + γ̃
Ω(λ )

(
τ− M̃Ω(λ )

)−1
γ

Ω(λ )∗.

(ii) If Ω is unbounded, then (−∞,−mc2]∪ [mc2,∞)⊂ σess(AΩ
τ ) and λ ∈ (−mc2,mc2)∩

σp(AΩ
τ ) if and only if 0 ∈ σp(τ− M̃Ω(λ )).

(iii) If Ω is bounded, then λ is an eigenvalue of AΩ
τ if and only if there exists a ϕ ∈ GΩ

such that
lim
ε↘0

iε
[
ι

Ω
+ (M̃

Ω(λ + iε)− τ)(ιΩ
− )
−1]−1

ϕ 6= 0.

Proof. First, by Proposition 5.4.2 the operator Θ
1,Ω
τ is essentially self-adjoint. Thus Propo-

sition 2.2.7 implies that

AΩ
τ = T Ω � ker

(
Γ

Ω
1 − τΓ

Ω
0
)
= T Ω

max �
(
ϒ

Ω
1 −Θ

1,Ω
τ ϒ

Ω
0
)

is essentially self-adjoint. Furthermore, since {GΩ,ϒ
Ω
0 ,ϒ

Ω
1 } is an ordinary boundary triple

the closure AΩ
τ of AΩ

τ corresponds to the closure of the parameter Θ
1,Ω
τ ; by Proposition 5.4.2
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this is Θ
0,Ω
τ . Employing (2.22) and [22, Corollary 3.14] we deduce then (5.26). Eventually,

it follows immediately from Proposition 5.4.1 that AΩ
τ ( AΩ

τ .

The Krein type resolvent formula in item (i) is an immediate consequence of Theorem 2.2.5
taking the special form of the γ-field and the Weyl function for the triple {GΩ,ϒ

Ω
0 ,ϒ

Ω
1 }

from (2.20) into account.

Next, we prove statement (ii). First, let λ ∈ (−∞,−mc2]∪ [mc2,∞) and define the function
ψλ

n as in Lemma 3.1.4. Then ψλ
n ∈ domT Ω

min ⊂ domAΩ
τ for any n ∈ N and this sequence

has all properties of a singular Weyl sequence for λ and AΩ
τ . Hence λ ∈ σess(AΩ

τ ). Since
λ ∈ (−∞,−mc2]∪ [mc2,∞) was arbitrary, we deduce (−∞,−mc2]∪ [mc2,∞) ⊂ σess(AΩ

τ ).
Furthermore, the Birman-Schwinger principle in (ii) is a direct consequence of Theo-
rem 2.2.5 (i) due to the special form of the Weyl function corresponding to the triple
{GΩ,ϒ

Ω
0 ,ϒ

Ω
1 }, compare (2.20).

Finally, since SΩ = T Ω
min is simple by Lemma 3.1.2, statement (iii) is a consequence of

Proposition 2.2.9 and (2.20).

Remark 5.4.4. According to [55, Proposition 2.1] functions f ∈ domT Ω
max have traces in

H−1/2(∂Ω;C4). Hence, the boundary condition τΓ̃Ω
0 = Γ̃Ω

1 is equivalent to

τP+ f |∂Ω = P+β f |∂Ω in H−1/2(Σ;C4)

and hence, it is formally the same as for non-critical boundary values in Definition 5.3.1.

Finally, we provide a result which shows that the spectral properties of AΩ
τ can be signif-

icantly different in the case of critical boundary values. This can be seen as the analogue
of Theorem 4.3.6 for Dirac operators on domains. But a more careful look shows that
the principle behind this effect is a completely different one as in Theorem 4.3.6. Using
super symmetry, we prove that ±mc2 is an eigenvalue of infinite multiplicity of AΩ

±1. This
implies that for bounded Ω the essential spectrum of AΩ

τ can be non-empty in the critical
case. The proof of this result follows closely the one of [64, Proposition 2] in the 2D-case;
I would like to thank K.M. Schmidt for providing me a copy of [64] which was very help-
ful. We would like to remark that, differently from Theorem 4.3.6, we do not have to make
a restriction on the geometry of Ω here.

Theorem 5.4.5. Assume that τ ∈ {±1} is constant let AΩ
±1 be defined by (5.26). Then

±mc2 is an eigenvalue of infinite multiplicity of AΩ
±1.

Remark 5.4.6. If Ω is bounded, then one can deduce similarly as in Corollary 4.3.7 that
domAΩ

±1 is not contained in Hs(Ω;C4) for any s > 0.
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Proof of Theorem 5.4.5. We are going to prove the claim of the theorem for τ = 1, the
statement for τ = −1 can be shown with the same arguments. For a simpler readability
we split the proof into three steps. First, we introduce a new operator AΩ

m and show via a
super symmetry argument that AΩ

m is self-adjoint. Then we verify that AΩ
m is an extension

of AΩ
1 . Since this operator is essentially self-adjoint we conclude AΩ

m = AΩ
1 . Finally, using

the special structure of AΩ
m we show that this operator has the eigenvalue mc2 with infinite

multiplicity.

Step 1: We use for f ∈ L2(Ω;C4) the splitting f = ( f1, f2) with f1, f2 ∈ L2(Ω;C4), that
means f1 and f2 are the upper and lower two components of the Dirac spinor, respectively.
We define the operator

AΩ
m := T Ω

max �
{

f = ( f1, f2) ∈ domT Ω
max : f2 ∈ H1

0 (Ω;C2)
}
.

This operator has the explicit representation

AΩ
m =

(
mc2I2 Ã

Ã∗ −mc2I2

)
, (5.27)

where Ã is
Ã f =−iσ ·∇ f , dom Ã = H1

0 (Ω;C2),

and σ = (σ1,σ2,σ3) is the family of C2×2-valued Pauli matrices from (3.2). We claim that
AΩ

m is self-adjoint. For that purpose it suffices to consider m = 0, as mc2β is a bounded
self-adjoint perturbation.

Indeed AΩ
0 is symmetric, as we have for f = ( f1, f2) ∈ domAΩ

0

(AΩ
0 f , f )Ω = (Ã f2, f1)Ω +(Ã∗ f1, f2)Ω = 2Re(Ã f2, f1)Ω ∈ R.

Next, it holds for f = ( f1, f2) ∈ dom(AΩ
0 )
∗ and g = (g1,g2) ∈ domAΩ

0(
(AΩ

0 )
∗ f ,g

)
Ω
=
(

f ,AΩ
0 g
)

Ω
= ( f1, Ãg2)Ω +( f2, Ã∗g1)Ω. (5.28)

Choosing g1 = 0 we get from (5.28)((
(AΩ

0 )
∗ f
)

2,g2
)

Ω
= ( f1, Ãg2)Ω

and hence f1 ∈ dom Ã∗ and Ã∗ f1 =
(
(AΩ

0 )
∗ f
)

2. Similarly, choosing g2 = 0 we obtain
from (5.28) that f2 ∈ dom Ã and Ã f2 =

(
(AΩ

0 )
∗ f
)

1. Therefore, we conclude f ∈ domAΩ
0

and (AΩ
0 )
∗ f =AΩ

0 f , that means AΩ
0 is self-adjoint.

Step 2: We show that AΩ
1 ⊂AΩ

m . Since AΩ
1 is essentially self-adjoint by Theorem 5.4.3 this

yields then AΩ
m = AΩ

1 . We prove that f ∈ domT Ω fulfills

f ∈ domAΩ
1 if and only if (β − I4) f |∂Ω = 0. (5.29)
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This yields then the claim of this step. To see (5.29) recall that the boundary condition of
AΩ

1 reads
0 = Γ

Ω
1 f −Γ

Ω
0 f = P+(β − I4) f |∂Ω. (5.30)

Because of (1.2) it holds P+β = βP− and hence, using β 2 = I4 we see that (5.30) is equiv-
alent to

0 = βP−(β − I4) f |∂Ω. (5.31)

Since β is invertible, we deduce (5.29) from (5.30) and (5.31).

Step 3: Eventually we show that mc2 is an eigenvalue of AΩ
m of infinite multiplicity. Note

that Ã is the upper right corner of the minimal operator T Ω
min from (3.11) and similarly Ã∗

is the upper right corner of the maximal operator T Ω
max. Hence Ã is a symmetric operator

with infinite deficiency indices. Moreover ker Ã = {0}, as T Ω
min is simple by Lemma 3.1.2.

Therefore dimker Ã∗ = ∞.

Finally, picking any f1 ∈ ker Ã∗ we deduce from (5.27) that f := ( f1,0) is an eigenfunction
of AΩ

m and eigenvalue mc2. This yields the claimed result of this theorem.

5.4.1 Dirac operators on domains with variable critical boundary values

Finally, we would like to state several remarks on the operator AΩ
τ , if τ : ∂Ω→ R is a

Lipschitz continuous function in the critical case, that means if there are some x ∈ ∂Ω

such that τ(x)2 = 1. We have seen already in Proposition 5.4.1 that AΩ
τ is symmetric, but

not self-adjoint. If τ fulfills some suitable assumptions, then one can still show similarly as
in Section 5.4 that AΩ

τ is essentially self-adjoint, compute the self-adjoint realization and
provide some spectral properties of this operator as in Theorem 5.4.3.

The crucial result in Section 5.4 is Proposition 5.4.2 – all following main results are based
on this. The critical point here is to prove that Θ

0,Ω
τ ⊂Θ

1,Ω
τ , the other steps in the proof can

be done similarly as for constant τ . With some suitable assumptions on τ one can modify
the verification of Θ

0,Ω
τ ⊂Θ

1,Ω
τ for more general τ . This consideration is based on the fact

that any ϕ ∈ domΘ
0,Ω
τ fulfills

(τ2−1)ϕ ∈ G
1/2
Ω

. (5.32)

Hence, if we assume that τ is such that for all ϕ ∈ G
−1/2
Ω

which satisfy (5.32) there is a
sequence ϕn ∈ G1/2 with

ϕn→ ϕ in G
−1/2
Ω

and (τ2−1)ϕn→ (τ2−1)ϕ in G
1/2
Ω

, (5.33)

as n→ ∞, then one could also verify Θ
0,Ω
τ ⊂ Θ

1,Ω
τ similarly as in the proof of Proposi-

tion 5.4.2 with just little modifications. One only must be careful that a non-constant τ
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does not commute with C
−1/2
µ and hence with M̃Ω(µ). But due to Proposition 3.2.3 the

commutator of C−1/2
µ with any Lipschitz continuous function is a bounded operator from

H−1/2(∂Ω;C4) to H1/2(∂Ω;C4), which allows to prove the desired claim.

Having the analogue of Proposition 5.4.2 one can then proceed as for constant interaction
strengths: in the same way as in Theorem 5.4.3 it follows that AΩ

τ is essentially self-adjoint
and that the self-adjoint closure is given by

AΩ
τ f := (−icα ·∇+mc2

β ) f ,

domAΩ
τ := { f ∈ domT Ω

max : τΓ̃
Ω
0 f = Γ̃

Ω
1 f}.

Moreover, if for all ϕ ∈ G
−1/2
Ω

satisfying (5.32) it holds (5.33), then the spectral properties
of AΩ

τ can be deduced in a similar way as in Theorem 5.4.3 and we get that:

(i) For λ ∈ C\R it holds

(AΩ
τ −λ )−1 = (T Ω

MIT−λ )−1 + γ̃
Ω(λ )

(
τ− M̃Ω(λ )

)−1
γ

Ω(λ )∗.

(ii) If Ω is unbounded, then (−∞,−mc2]∪ [mc2,∞)⊂ σess(AΩ
τ ) and λ ∈ (−mc2,mc2)∩

σp(AΩ
τ ) if and only if 0 ∈ σp(τ− M̃Ω(λ )).

(iii) If Ω is bounded, then λ is an eigenvalue of AΩ
τ if and only if there exists a ϕ ∈ GΩ

such that
lim
ε↘0

iε
[
ι

Ω
+ (M̃

Ω(λ + iε)− τ)(ιΩ
− )
−1]−1

ϕ 6= 0.
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