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Abstract

Mesh subdivision has become an important task in geometry. It generates dense
and smooth surface representations from rather coarse meshes by iterative
refinement. Subdivision surfaces are nowadays a standard modeling tool in
character animation for feature films. As the demand for more detailed meshes
grows, there is a need for fast and efficient subdivision implementations. Despite
the inherent parallelism of subdivision algorithms, their parallelization is a
challenging problem, hence, to date no fully GPU enabled implementation
exists. Even the current industry standard for mesh subdivision relies on serially
precomputed subdivision tables, to be able to utilize some of the parallel
computing power of modern graphics hardware. Traditional data structures for
serial mesh processing often rely on linked lists. Computations therefore involve
pointer chasing and scattered memory accesses, both harming performance,
especially on parallel computing devices such as the GPU. In this thesis we
propose the use of linear algebra primitives for mesh subdivision based on a
sparse matrix representation for meshes. This enables for expressive algorithm
descriptions, which can be efficiently parallelized on the GPU. While a straight
forward implementation of the high level linear algebra formalizations already
results in high performance subdivision implementations, tailoring the linear
algebra kernel to account for the underlying structures allows to unleash the
sheer power of modern graphics hardware to gain a substantial speedup. In this
thesis we present linear algebra descriptions for v/3, Loop and Catmull-Clark and
our implementations surpass state of the art performance by up to three orders of
magnitude. While the principles proposed in this thesis are applied to subdivision
algorithms, they can be used for general mesh processing tasks to move from
slow serial algorithms to high performance parallel implementations.



Kurzfassung

Mesh Subdivision ist zu einer wichtigen Aufgabe in der Geometrieverarbeitung
geworden. Grobmaschige 3D-Modelle kénnen durch iteratives Verfeinern immer
dichter und glatter gemacht werden. Subdivision ist heutzutage ein standard
Modellierwerkzeug in der Charakteranimation fiir Animationsfilme. Da Meshes
immer detaillierter sein sollen, stieg die Nachfrage nach schnellen und effizienten
Subdivision Implementierungen. Trotz der inhérenten Parallelitdt von Sub-
division Algorithmen ist deren Parallelisierung ein anspruchsvolles Problem,
weshalb bis jetzt keine vollstandig parallelisierte Implementierung auf der GPU
existiert. Der aktuelle Industriestandard fiir Mesh Subdivision verwendet se-
riell vorberechnete Subdivision Tabellen um einen Teil der massiven parallelen
Leistung moderner Grafikhardware nutzen zu kénnen. Traditionelle Datenstruk-
turen zur Representation von Meshes, welche in der seriellen Meshverarbeitung
Anwendung finden, basieren oft auf verketteten Listen. Berechnungen auf diesen
Strukturen erfordern oftmals das Traversieren von Index- oder Pointerketten
und verstreute Speicherzugriffe. Beides fiihrt zu reduzierter Performance, beson-
ders auf paralleler Hardware wie der GPU. In dieser Arbeit schlagen wir die
Verwendung von Primitiven aus der Linearen Algebra zur Durchfithrung von
Mesh Subdivision, unter Verwendung einer Sparse Matrix Representation fiir
Meshes vor. Dies ermoglicht aussagekréftige Algorithmenbeschreibungen, welche
effizient auf der GPU parallelisiert werden konnen. Wahrend wir bereits mit
einer einfachen Implementierung dieser Formulierungen sehr gute Performance
erzielen, kbnnen wir weiters das Wissen tiber die zugrundeliegenden Strukturen
der Matrix verwenden um die Effizienz mafigeblich zu steigern. In dieser Arbeit
prisentieren wir Beschreibungen fiir v/3, Loop und Catmull-Clark Subdivision
in der Sprache von Linearer Algebra und unsere Implementierungen iibertreffen
State of the Art Performance um bis zu drei Gréfenordnungen. Wahrend wir die
hier prasentierten Prinzipien auf Mesh Subdivision anwenden, kénnen sie auch
verwendet werden um von langsamen seriellen Meshverarbeitungsalgorithmen
auf schnelle parallele Implementierungen umzusteigen.
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1 Introduction

Mesh subdivision is an old problem, already dating back more than four decades.
It is a geometric operation which starts from a coarse mesh and iteratively
refines it to get denser and smoother representations. The coarse mesh is also
often called the control mesh because of the close relation to splines. Repeated
refinement of a control mesh eventually causes the series of resulting meshes
to converge to a limit surface, provided that the parameters governing the
subdivision are chosen carefully. An example of a cube at different subdivision
levels can be seen in Figure 1.1. Subdivision surfaces have various applications.
They became a standard tool in feature film production for character animation
[DKT98], as it is more pleasant to animate the control mesh and render the
subdivision surface than to directly manipulate the vast amount of vertices
in the final model. Subdivision models are also used to reduce the pressure
on the rendering pipeline, by using coarse representation for meshes in the
distance and only render the detailed model if it is close to the camera. A huge
advantage of being able to generate high resolution models from rather coarse
representations on demand is that only a small amount of data, the control
mesh, has to be stored and streamed to the Graphics Processing Unit (GPU)
for rendering, because it is well known that data transfer from and to the GPU
is expensive. For general information on subdivision in geometric modeling, the
reader is referred to the book by Warren et al. [WWO1].

The strive for more detailed models with high resolution sparked the need
for fast mesh subdivision. Not too long ago, Moore’s law ensured that serial
algorithms executed on the CPU doubled their performance every two years,
as transistors where getting faster and smaller such that more of them could
fit on a chip [Moo00]. Unfortunately, the free lunch is over [Sut05] as we hit
the power wall and cooling CPUs becomes infeasible. Therefore, parallelization
of algorithms has become a common way to speed up computations. While
GPUs were exclusively used for image synthesis a few years ago, they are now
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Figure 1.1: Visualization of a cube at different subdivision levels

a powerful platform for general purpose parallel algorithms. A GPU consists
of several SIMD (single instruction-multiple data) processors, each capable
of executing multiple threads at the same time. Many threads execute the
same instructions but on different data. Due to the inherently parallel nature
of subdivision algorithms they lend themselves for implementations that are
executed on the SIMD hardware of modern graphics cards.

Traditional mesh representations used in serial algorithms on the CPU often rely
on linked lists, to support fast adjacency queries. A widely used representation,
the half-edge data structure [CKS98], which is a derivate of the winged-edge
structure [Bau72], consists of a list of half-edges, each holding pointers to vertices,
faces and other half-edges in its neighborhood. Depending on the implementation,
details may vary, but a change to the topology in a half-edge like representation
requires updating primitives in the local neighborhood and careful pointer
handling to preserve consistency. Computations on linked list representations
require pointer chasing, causing unbalanced workloads, which hurts performance
of parallel implementations. The complexity of topological updates and the
required inter thread communication to achieve fine grained parallelism point
towards the necessity of different mesh representations for parallel subdivision
on the GPU. To reduce the communication between threads working on the
subdivision of different faces, the mesh can be split into small fragment meshes
which can be subdivided independently of each other [SJP05]. These fragments
contain the face to be subdivided and usually one layer of surrounding faces to
ensure independence of other fragments. Fragments for neighboring faces in the
mesh have a large overlap, and therefore contain duplicate data which increases
overall memory footprint. Fragments are usually created in a preprocessing
step on the CPU. To avoid the patch generation and data redundancy, data
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structures to support parallel breadth first subdivision have been developed
[PEO09]. In contrast to the patch based depth first approaches where fragments
were subdivided to their final level independently of each other, breadth first
subdivision ensures that the whole mesh is at the same refinement level before
advancing to the next level. These approaches are more similar to traditional
methods using linked list representations and store topological information on
a per edge basis. To enable these structures to serve adjacency queries fast,
each edge has information about its neighboring faces and edges, which again
causes the structures to be large in size. Some subdivision implementations on
the CPU [BS02] as well as on the GPU [Nie+12] rely on subdivision tables,
which hold for each primitive in the refined mesh, the indices of vertices in the
control mesh, which contribute to its calculation. While the evaluation of the
refined vertex data can be done efficiently in parallel using these tables, they
have to be computed upfront, which is usually done on the CPU. As the table
creation account to a full symbolic subdivision, the precomputation time hurts
the overall performance of table based approaches.

In this thesis the process of mesh subdivision is recast into linear algebra and
implemented using parallel kernels optimized for subdivision. Instead of using
complex and hard to maintain data structures we represent meshes as sparse
matrices, called mesh matrices M. This enables for expressive formulations of
subdivision algorithms in terms of linear algebra and opens up a new toolset to
tackle the problem. Operations on the mesh can be performed by sparse matrix-
vector (SpMV) and sparse matrix-matrix (SpGEMM) multiplication. Sparse
linear algebra implementations are available for the GPU and faster approaches
are continuously published. Therefore, linear algebra based subdivision lends
itself for parallel implementation on modern graphics hardware and benefits
directly from the ongoing improvements of the underlying algebraic routines.
The used mesh representation also enables for new optimization techniques,
like matrix reordering, which can improve the performance of mesh operations.
As a proof of concept, we describe and implement v/3, Loop and the widely
used Catmull-Clark subdivision schemes in our linear algebra framework. We
improve upon these results by detecting and utilizing patterns in the operations
on M and achieve a performance up to three orders of magnitude compared to
the current industry standard.

This thesis is structured as follows: Chapter 2 discusses existing approaches
to parallel subdivision and compares them to our linear algebra formalizations
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presented in this thesis. Chapter 3 describes the mesh matrix and the operations
used for computation on M. The traditional formulations of v/3, Loop and
Catmull-Clark subdivision, as well as our linear algebra approach are discussed
in detail in Chapter 4, and we show that it is capable of handling feature
adaptive subdivision. In Chapter 5, the linear algebra operations used to
perform the different subdivision schemes are analyzed and optimized versions
are presented. To evaluate performance we compared our implementations of the
three aforementioned schemes to OpenMesh and the current industry standard,
OpenSubdiv, and discuss the results and the effect of matrix reordering in
Chapter 6. Finally, the thesis is concluded in Chapter 7.



2 Related Work

The fact that subdivision algorithms have been a research topic for more than
four decades, and the demand for subdivision in real-time applications [Bra+16],
point towards the necessity of fast subdivision implementations. Subdivided
meshes are used in different fields, from character animation in feature film
production [DKT98] to primitive creation interactive [Zho+09] and real-time
rendering [TPO10].

Mesh representations on the CPU are often derivatives of the winged-edge
mesh representations [Bau72] which already dates back more than 40 years.
As the name suggests, these are edge-centric representations where each edge
points to its first and second vertex, its left and right face and to the next and
previous edge for both traversal directions. Different flavors of the winged-edge
representation evolved over time, for example the widely used half-edge data
structure [CKS98], which mainly differ in which information is stored and how.
Access to entities in the vicinity of a primitive, which is a commonly required
operation in subdivision algorithms, requires traversal of the linked list of edges.
Parallel traversal of faces, for example, suffers from the different length of the
traversal path as face sizes vary and the traversal operation takes as long as it
takes to traverse the highest order face. The same is true for traversal of edges
incident to a certain vertex. Topological updates are cumbersome, because a
considerable amount of pointer or index update operations are required to ensure
consistency of the mesh and updating neighboring primitives in parallel requires
synchronization between threads which hurts performance. A more suitable
mesh representation would be favorable. Numerical operations and optimizations
are often performed using matrix representations and linear algebra operations,
while the mesh is described by a separate structure. Zayer et al. introduced
the mesh matrix, a sparse matrix representation for unstructured grids, which
enables numerical and geometric operations to be performed directly on the
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mesh representation [ZSS17]. This thesis explores the use of such representations
across different subdivision schemes and is concerned with optimizing the used
linear algebra operations for that purpose.

Mesh subdivision is an active research topic and a large variety of different
approaches exists. Shiue et al. divided the mesh into fragments which can be
subdivided independently [SJP05]. This reduces inter thread communication
but introduces redundant computations and data. To assure certain properties
on the mesh, one step of subdivision might have to be done on the CPU as a
preprocessing step before the fragment meshes can be extracted. The fragments
are then subdivided in shaders using precomputed tables. Subdivision or stencil
tables were already used in CPU implementations [BS02]. They encode for each
vertex in the refined mesh the indices of primitives in the control mesh which
contribute in its calculation. Stam proposed a method to evaluate Catmull-
Clark subdivision surface directly without explicit subdivision [Sta98]. The
approach requires precomputation of the eigenstructures of the subdivision
matrix depending on the vertex valence. The patches are then transformed
into eigenspace and can be evaluated at arbitrary parameter values by scaling
the contribution of the splines by the eigenvalues. Stam’s approach requires
the extraordinary, non-valence four vertices to be isolated, such that each
patch contains at most one irregular vertex. To enforce this property, explicit
subdivision may be required as a precomputation step. Due to the computational
cost of these exact methods with explicit subdivision, approximation schemes
were introduced. Peters proposed an algorithm that transforms the quadrilaterals
of a mesh into bicubic Nurbs patches, one for each face [Pet00]. While the
resulting surface is at least tangent continuous everywhere, the algorithm
imposes some restricting requirements on the mesh. It has to be a quad-only
mesh and the extraordinary vertices have to be isolated, which requires the
mesh to be subdivided at least once. The approach of Loop et al. overcomes this
restrictions [LLS08]. They approximate the Catmull-Clark subdivision surface
using bicubic patches, which in regular regions of the mesh leads to the exact
same results as the explicit subdivision. The surface regions around irregular
faces do not inherit the tangent continuity from the exact computations and
are therefore only position continuous. The discontinuity in the tangents may
lead to shading artifacts. To get a visually smooth result they use tangent
patches which produce smooth normals everywhere on the surface. This of
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course requires additional computations. While approximations are usually fast
to evaluate, some favorable properties of the subdivision schemes might get lost
and additional techniques have to be applied to compensate for that. Therefore,
the idea emerged to treat regular and irregular regions differently. Niefiner et al.
proposed a hybrid approach where regular faces are refined using hardware
tessellation and the region around irregular vertices are subdivided recursively
in compute shaders using a table based approach [Nie+12]. In feature adaptive
subdivision, the tables have to be precomputed on the CPU for each mesh up
to a predefined maximum subdivision level. While the subdivision tables are
independent of vertex data, which enables this approach to be used for animated
meshes, changes to the topology require the tables to be recomputed which
makes it infeasible for some applications. Also, the preproccessing step basically
requires a full subdivision up to the maximum level, which hurts the overall
performance. Several extensions to the standard subdivision algorithms have
been made, such as boundary handling [Nas87], dynamic levels for irregular
regions [Sch+15] and displacement mapping [Coo84; NL13].

Matrix reordering which increases quality of the sparsity pattern is commonly
used to increase performance of linear algebra operations. As the mesh matrix
is representing a 3D model where indices (of faces or vertices) can be permuted
without having an influence on the shape, it is possible to swap columns or
rows in the mesh matrix. While reordering the matrix does not change the
geometry, it can have an impact on the performance of the operations applied,
because memory access patterns change. In case of subdivision it is favorable to
have the non-zero entries close to the diagonal. That means that faces that are
close to each other in memory use vertices that are topologically close. Mesh
subdivision requires access to neighboring primitives. If these primitives have a
good memory layout, the access pattern becomes more local which in general
increases performance. The problem of matrix reordering has been researched
for many decades. One of the most prominent reordering algorithms, which is
known to produce low profile results for relatively low cost, is the Cuthill-McKee
[CM69] algorithm. It reorders nodes locally based on their valence and globally
based on adjacency. After choosing a starting node, which is the first entry in the
ordering, the set of adjacent vertices is ordered by their valencies and appended
to the global ordering. The vertex to continue with, is the next vertex in the
global ordering. The reverse Cuthill-McKee, introduced in [Geo71] is the same
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algorithm with reversed index order, which, while having the same bandwidth,
usually leads to a better profile [GL81]. A different approach that reduces the
envelope of a matrix is the spectral reordering[BPS93]. Instead of using the
adjacency matrix, the uniform Laplacian is calculated and a second eigenvector
has to be determined. This vector is sorted in monotonically increasing and
decreasing order to get two permutations. The permutation that leads to the
smaller envelope is chosen.

The linear algebra approach proposed in this thesis uses a sparse matrix as
mesh representation instead of traditional data structures to eliminate related
shortcomings in parallel implementations. It does not suffer from any of the
disadvantages inherent to existing approaches. Our approach does not involve
any preprocessing as we do not have to enforce special properties on the
mesh and we do not need to create auxiliary structures such as subdivision
tables. The proposed linear algebra formalizations are easy to understand and
modify without any knowledge about underlying data structures or low level
optimizations. As the approach is based on linear algebra expressions with
only minor changes, implementations are possible on nearly any computing
platform. It will be demonstrated that irregular regions in the mesh can be
easily identified, extracted and subdivided using propagation in the mesh, which
makes the approach applicable in a feature-adaptive setting.
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The half-edge data structure [CKS98] has become the default choice for repre-
senting surface meshes in many computer graphics applications. It is capable
of efficiently answering the most common adjacency queries. Depending on
the specific implementation the memory requirements might be high. In ap-
plications where mesh topology changes frequently special attention has to be
paid to keeping track of pointers to keep the data structure consistent. Face
and vertex addition or removal requires an update of surrounding entities.
Handling this kind of tasks in an efficient way on the GPU is difficult. With
GPU implementations becoming available for more algorithms it is necessary to
explore different mesh representations which are better suited to be processed
in parallel. A mesh data structure that can be processed on the GPU in an
efficient way was introduced by Zayer et al. [ZSS17]. The mesh matrix M
represents unstructured grids as sparse matrices. This enables concise algorithm
descriptions and efficient implementations in terms of linear algebra. Highly
optimized GPU sparse linear algebra libraries are available [NVI17] and their
performance improves constantly due to active research in this field. Zayer et al.
introduced action maps, which can capture interactions between entities in a
mesh during sparse matrix-vector (SpMV) and sparse general matrix-matrix
multiplication (Sp GEMM), and avoid explicit creation of intermediate results
to keep a low memory footprint.

Notation: For the mesh matrix, the calligraphic letter M will be used through-
out this thesis. All other matrices are named by normal upper case letters.
M (i, ) is the i-th entry in the j-th row of matrix M. M (i, *) and M (x,7) denote
the i-th row and column respectively. Bold lower case letters v signify vectors
and normal lower case letters s are scalars. The number of faces and vertices in
a mesh are denoted as ny and n,. The number of non-zero entries in a sparse
matrix is z.
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f1l f2 f3 f4 5 f6

vi 1

v2 2 1

v3 3 4 1 2
vd 4 1
v5 2

v6 3 2

v7 3 1 3
v8 3 1 4
v9 3 5
v10 2 2

Figure 3.1: A small mesh consisting of six faces and ten vertices and its mesh matrix. The
matrix has one column per face and one row per vertex, with the values capturing
the cyclic order of vertices in each face.

3.1 Mesh Matrix Basics

The mesh matrix M is a sparse matrix, representing a surface mesh. It consists
of one column per face and one row per vertex. The value stored at a specified
entry M (4, j) reflects the position of vertex v; in the cyclic order of face f;. A
small example is illustrated in Figure 3.1.

Different data structures for sparse matrices exist. One for our purpose partic-
ularly useful representations is the compressed sparse column (CSC) format,
which requires three arrays. The first and second one hold values and row indices
of non-zero entries respectively. The column pointer is the third array, which
is needed to define a sparse matrix in the CSC format. It has one more entry
than the matrix has column. Each entry is an index to the start of a column in
the first two arrays. The last entry in the column pointer holds the number of
non-zero entries in the matrix and is at the same time a pointer to the end of
the last column. While not necessary in general, some linear algebra libraries
require the row indices to be sorted in ascending order in each column, as this
enables for more efficient implementation of some matrix operations. The CSC

10
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column pointer | 0 [ 4 [ 8 [11]14]17] 22]

0 1 2 3 4 5 6 7 8 9 10 11 10 13 14 15 16 17 18 19 20 21
rowindices| 1 | 2|3 |42 3|56 (3|6|7|7|8(10/8|9|10/3|4|7|8]|9
values| 1 |2 |3 |4|1|4|2|3|1|2|3|1|3|2|1|3|2|2|1(3|4]|5

Figure 3.2: The compressed sparse column representation of the example mesh given in Figure
3.1.

representation of the example mesh from Figure 3.1 is depicted in Figure 3.2.

A very similar and wide spread sparse matrix format is the compressed sparse
row (CSR) format, which instead of column pointers and row indices, has row
pointers and column indices. It is worth noting that matrix A in CSC format,
interpreted as CSR matrix is its transpose A7, because the roles of columns and
rows are exchanged. While CSR provides fast access to the rows of a matrix,
CSC supports efficient access to its columns. In context of the mesh matrix, this
implies fast parallel access to the individual faces and their vertices. The size of
M in CSC format is dependent on the number of faces in the mesh and their
order. Assuming s, bytes per value and s; bytes per index in the row indices
and column pointer array, the size of the mesh matrix representing a mesh with
ny faces, where face f; has order ¢; is equal to

ny
size (M) = (s; + Sa) Zci +si(ng+1)
i=1

= (8i + sq)z + si(ny + 1).

(3.1)

3.2 Operations on the Mesh Matrix

Computations using the mesh matrix can be expressed as basic operations in
sparse linear algebra, namely sparse matrix-vector and sparse matrix-matrix
multiplication. Fast parallel SpMV implementations are available and the
performance is continuously improved by new approaches [SZS17; Der+17].
Performing parallel SpGEMM efficiently is a difficult task that is topic of many
recent publications [LV14]. For general information about sparse multiplication

11
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algorithms the reader is referred to the book by Davis [Dav06], which explains
the fundamentals of SpMV and SpGEMM in detail.

For operations and computations on the mesh matrix, SpMV and SpGEMM
are augmented by action maps [ZSS17], which enable to capture and modify
interactions between colliding elements during the multiplication.

Mapped SpMV In SpMYV, a sparse matrix M is multiplied with a dense
vector v. This operation can be done in an efficient way in parallel, regardless
of whether to calculate Mv or M”v, because the matrix transpose does not
have to be done explicitly. Instead, the transposed result can be regarded as
v M. In mapped SpMV, an action map Q is part of the multiplication. Before
calculating M (i, 7) - v(j), the value M (7, j) is used as an index into the map to
get m = Q(M(i,7)). Subsequently, m is used as it was the value of M (i, j) to
calculate m - v(j). The pseudo code for mapped SpMV is given in Algorithm
1.

Algorithm 1: This code illustrates mapped sparse matrix - dense
vector multiplication. It calculates y = %x + vy, where x and y are

dense vectors, A is a sparse matrix in CSC format and () is an array
used as the map to substitute the matrix values.
Input: A, x, Q
Output: y
for ¢ < 0; ¢ < A.ncols; ¢ + ¢ + 1 do
for r + A.cptrfc]; r < A.cptrfec + 1]; < r + 1 do
row < A.rids[r];
val < A.vals[r];
mval = Q[vall;
y[row] + y[row] + mval * x[row];

end

end

While the concept is simple, it enables to use SpMV for computations, which
might otherwise require iterating over a subset of vertices or faces. Without
loss of generality the task of interpolating vertex normals to triangle normals is
given as an example:

12
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f, = MTv, (3.2)
(123) =3

Each row in M7 corresponds to a single triangle and has non-zero entries in

the columns corresponding to the triangle’s vertices. Therefore, fy, (i) holds

the normal for triangle 7 calculated by averaging the normals of the triangle’s

vertices.

Instead of M (i, j), the indices i or j can be used as an index into a map. To
demonstrate the usage, the task of averaging face normals to get vertex normals
is carried out by

vn = Mf, , (3.3)
z’—>nii
where v, and f,, are the vectors of vertex and face normals respectively and
n; is the order of the i-th vertex. Each row in M describes the affiliation of a
single vertex to the faces of the mesh. It has a non-zero entry in the columns of
adjacent faces. The index 7 of a vertex is mapped to the reciprocal of its order,
to average the result. Of course this could also be carried out with a constant
map to one and a subsequent element-wise division by the vertex orders n. The

purpose is to demonstrate different map kinds.

Mapped SpGEMM SpGEMM multiplies two sparse matrices. The general
approach is to do the multiplication in two passes. In a first symbolic pass,
the required memory is calculated and allocated, by determining the non-zero
elements in the result. In the second pass the actual multiplication is performed
and the result is generated. For a detailed description the reader is again
referred to Davis [Dav06]. Considering C' = AB, the entry C(i,j) in the result
is calculated by multiplying row A(i, ) with column B(x, j). Therefore, C(i,7)
can only be non-zero if there is a collision between entries in the two vectors.
Assuming A(i, k) and B(k, j) are non-zero, they will cause a collision. In the
SpGEMM the two values would be multiplied and the next pair of values would
be considered. In mapped SpGEMM the multiplication of the colliding values is
not performed. Instead, A(i, k) and B(k,j) are used as row and column index

13
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into the map @, which can be thought of as a small third matrix. The result of
the look-up is then used as result of the collision. The pseudo code for mapped
SpGEMM is given in Algorithm 2.

Algorithm 2: The given pseudo code illustrates mapped sparse
matrix - matrix multiplication. It calculates C = AQB, where A, B

and C' are sparse matrix in CSC format and @ is a dense matrix
representing the map.
Input: A, B, Q
Output: C
for colB < 0; colB<B.ncols; colB < colB+1 do
for rB < B.cptr[colB]; rB<B.cptr[colB+1]; rB < rB+1 do
rowBcolA «+ B.rids[rB];
valB + B.vals[rBJ;
for rA<«A.cptrfrowBceolA]; rA<A.cptrfrowBceolA+1]; rA«~rA+1 do
rowA < A.rids[rA];
valA <+ A.vals[rA];
mval < Q[valA][valB];
C.add(rowA, colB, mval);
end

end

end

A special kind of map are the circulant matrices

010 O 0
001 O 0

Qn = 000 =0 0 g (3.4)
o0 0
00 0 O0 1
100 0 0 0

which can be used to capture the cyclic order of vertices in each face [ZSS17]
and can therefore be used to apply operations only to vertices that are in a
special relation to each other, as for example to vertices that are connected
by an edge. These matrices and their powers do not have to be constructed
explicitly as they are described by
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3 The Mesh Matrix

1 < j=((i+p—-1) modn)+1

3.5
0 else (3:5)

@ (6,7) = {

and therefore the map values can be calculated on demand. To give a short
example, the task of calculating the vertex-vertex adjacency matrix S, in a
triangular mesh is solved using mapped SpGEMM [ZSS17]. The map is chosen
to be

(3.6)

_— o O =
O O = N
O = O w

1
Q3= 2
3

which is called the circulant matrix of size three. The matrix S, can then be
calculated using the mapped SpGEMM

S, = MMT (3.7)
Q3

The entry S,(i,j) is calculated by multiplying the two vectors M (i, *) and
M(x,7), each representing a vertex. Each non-zero entry in these vectors
indicates that the vertex is part of the face corresponding to the entry. Therefore,
a collision between M (i, k) and M(k, j) implies, that vertex i and vertex j are
both part of face k. The values M(i, k) and M(k, j) are the positions of the
vertices in the cyclic order of face k. The collision between them is mapped
to one, if vertex ¢ is connected to vertex j by a directed edge in face k£ and to
zero otherwise. The circulant matrices @ can therefore be seen as adjacency
matrices, capturing the connectivity of vertices inside a face. In general the
maps are not restricted to existing connectivity. As an example, the map Q)4 can
be constructed which captures the relation between any two diagonal vertices
in a quadrilateral:
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3 The Mesh Matrix

Qa = (3.8)

O

o= OO =
_ o O O W
OO O = W
OO~ O

Action maps in SpMV can be utilized to avoid constructing intermediate
matrices, such as the binary mesh matrix, and help keep the memory footprint
small. In SpGEMM action maps capture relations between vertices in the mesh’s
faces, and can therefore be used to apply operations only to vertices in a certain
defined adjacency relation.
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4 Subdivision in the Language of
Linear Algebra

In this chapter we will discuss, how different subdivision algorithms can be
expressed in terms of linear algebra. The v/3-subdivision [Kob00] will be treated
first, where we show that a slightly changed view on a refinement scheme
can ease parallelization and how linear algebra can be used to perform mesh
subdivision algorithms. Subsequently, we will discuss the Loop subdivision
scheme [Loo87], to show that the same principles are applicable in different
schemes, and lead to concise formulations that can be efficiently parallelized.
The latter two schemes are used to subdivide triangular meshes. To show that
our approach generalizes to meshes with mixed face orders, we apply the idea
of linear algebra subdivision to the Catmull-Clark algorithm [CC78]. As this
scheme is widely used, we demonstrate on the example of Catmull-Clark how
our approach can be used in a feature-adaptive setting and how reordering of
input meshes can improve subdivision performance.

25

Figure 4.1: Schematic figure of two iterations of topology refinement of a triangle using the
V/3 scheme. After every second step of v/3-subdivision every original triangle is
split into nine descendants.




4 Subdivision in the Language of Linear Algebra

Figure 4.2: A new vertex has to be added to the barycenter of each triangle.

4.1 /3-Subdivision

The /3-subdivision was introduced by Leif Kobbelt [Kob00]. The algorithm is
designed to subdivide triangular meshes by adding one point and three edges
to each triangle and performing an edge-flip on control mesh edges afterwards.
The number of faces in the mesh grows by a factor of three in each iteration.
Two iterations of /3 subdivision applied to a triangle are illustrated in Figure
4.1.

4.1.1 Traditional Formulation

The v/3-subdivision requires three basic steps - adding new vertices, updating
old vertices and performing an edge-flip on the original edges.

Adding new vertices: In the first step a new vertex is inserted on each face 1.
The new vertex position is

1
b; = 3 (pr + P14+ Pm) (4.1)

which coincides with the triangle’s barycenter. Each new vertex is then connected
to the vertices of the triangle it lives on. This step is shown in Figure 4.2.

18
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Figure 4.3: The original vertex in the center (blue) is updated using a linear combination of
its neighbors in the control mesh (blue).

Updating old vertices: The second step smooths the mesh by updating the
positions of the original vertices. Each updated vertex position is a linear
combination of its old position and the average of the vertices in its 1-ring
neighborhood in the control mesh. This can be seen in Figure 4.3.

The update equation is

} 1 &
pi = (1—a;)p;i + % - Z;pj (4.2)
J:

where n; is the vertex’s order, p; is the position of the j-th vertex adjacent the

i-th vertex and
4 — 2cos(2)
# (4.3)

o; =
is a valence-dependent term which can be derived from the eigenstructure of
the local subdivision matrix [Kob00].

Edge-flip: To complete one iteration of v/3-subdivision, an edge-flip is per-
formed on the original edges of the control mesh such that each new vertex is
connect to the barycenters of the three neighboring triangles. The concluding
edge-flip operation is shown in Figure 4.4.
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Figure 4.4: To conclude one /3 iteration, the old edges of the triangle are flipped, such that
the newly added barycenters of neighboring triangles are connected.

Properties: The local subdivision matrix S; of size n; +1 x n; + 1 can be used
to analyze convergence of the algorithm and smoothness of the limit surface.
This matrix describes the subdivision of a subset v of the mesh M. In case of
the v/3 subdivision this subset is the 1-ring neighborhood of a vertex. S maps
the patch v of the control mesh M* to ¥ in the subdivided mesh M*+1 [Kob00].
Equations 4.1, 4.2 and 4.3 can be combined in the expression

\72' = SzVZ (4.4)
with ) )
3(1—a;) 35 35k
1 1 1 0 -+ 0
1 1 0 1 1 0 0
S =5 ) ) (4.5)
: : .. 0
1 0 o --- 1 1
i 1 1 o --- 0 1 ]

The limit surface of v/3 is curvature continuous everywhere except for points
that do not have a valence of six. At these irregular points it is tangent
continuous [Kob00].

4.1.2 Linear Algebra Formulation

The traditional v/3-subdivision formulation, as described in Section 4.1.1, does
not lend itself naturally to be expressed in terms of linear algebra. The algorithm
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Figure 4.5: Each triangle in the control mesh contributes three new triangles to the next
subdivision level.

can be formulated in an easier, more face-centric way [Zay08]. In the new
formulation, each triangle contributes three new triangles to the refined mesh
as shown in Figure 4.5.

Each of the three new faces consists of the barycenter, one of the triangle’s
vertices and the barycenter of a neighboring triangle. With this novel view
on the v/3 scheme, the required steps can be reformulated as linear algebra
expressions easily.

Adjacency information: Clearly, for each half-edge in the mesh, the containing
face needs to be known, to be able to determine neighboring faces for the topology
refinement. We can extract this information from the mesh matrix by calculating
F' using the mapped SpGEMM

F=MMT (4.6)
{Qs}]

with the function
Eoif Q) =1

0 else

Every time a collision between element M (i, k) and M”(k,j) occurs, the
attached function ~ is called, which performs the map lookup and provides an
output. If the vertices described by M (i, *) and M7 (x, j) are connected by a
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half-edge within face k, Q3 will flag a non-zero, and « returns k, the index of
the face, as the collision’s result. Therefore, F'(i,j) = k and k # 0, if vertices i
and j are connected by a half-edge in face k.

Adding new vertices: One new vertex is placed on each triangle’s barycenter,
which can be expressed as an SpMV with the mesh matrix

b= MTp (4.8)
(1,2,3)—%

where b holds the barycenter for each triangle and p is the vector of vertex
positions.

Updating old vertices: The old vertex positions of the control mesh have
to be updated. The update is a linear combination of vertex positions in its
one-ring neighborhood. The first term in Equation 4.2, which depends on the
old position of the vertex can be computed in parallel in the conventional way.
The second term calculates a weighted sum of the 1-ring neighborhood and can
be computed using

Fp (4.9)

o
val;— =t
ng

because F' has the same sparsity pattern as the vertex-vertex adjacency matrix,
only missing the diagonal.

Creating the new triangulation: For each face in the control mesh three new
triangles are created. Each of them is spanned by one original vertex of the
parent, the new vertex in the barycenter and the new point on a neighboring
face. To build the mesh matrix for the refined mesh, the indices for these vertices
need to be determined. The indices of vertices of the parent triangle i are known
as (k,l,m) and the index of the point at the barycenter is n, + i. Indices of
neighboring triangles can simply be fetched from the matrix F', then indices
of new vertices on neighbors can be computed the same way. Each triangle 4
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in the control mesh contributes three columns to the refined mesh matrix, as
illustrated in Table 4.1.

column 1 column ny +4  column 2ny + i
row value row value TOwW value
k 1 l 1 m 1

F(l,k) 2 F(m,1) 2 F(k,m) 2
TNy + 1 3 Ny + 1 3 Ny + 1 3

Table 4.1: The rows and non-zero values in each column corresponding to the three child
triangles created from parent triangle i.

4.2 Loop Subdivision

The Loop-Subdivision scheme was introduced by Charles Loop in his master
thesis [Loo87]. The algorithm subdivides triangular meshes by adding an edge-
point to each edge and connecting them to split the triangles of the control
mesh. The number of faces after each iteration increases by a factor of four.
Two steps of Loop subdivision on a triangle are illustrated in Figure 4.6

4.2.1 Traditional Formulation

The algorithm consists of three basic steps. A new vertex is inserted at each
edge, the original vertex positions are updated and the topology is refined.

AN

Figure 4.6: Two steps of topology refinement of a triangle (left) using the Loop scheme. After
the first (middle) and second (right) step the triangle was split into four and
sixteen child triangles respectively.
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Figure 4.7: One new vertex is added per edge of the control mesh. The vertices of the two
triangles adjacent to the edge contribute to the update.

Adding new vertices: A vertex is added on each edge at the position calculated
via

3 1
Pl = é(Pk + ) + g(Pm + pn) (4.10)

where pi and p; are the endpoints of the edge and p,, and p, are the two
remaining vertices of the two triangles bordering the edge. This step is visualized
in Figure 4.7.

Updating old vertices: To update the original vertices of the control mesh, a
linear combination of positions in the neighborhood of the vertex is calculated

pi = (L=nB)pi+ B Y (4.11)

j=1

where p; is the position of the vertex in the control mesh, n; is the order of the
vertex and p; are the vertices in the 1-ring neighborhood. The update for a
single valence six vertex is depicted in Figure 4.8.

The update of old vertices described in Equation 4.11 is governed by S; which
is a valence dependent term defined by
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Figure 4.8: Update of an original vertex with valence six. The one-ring neighborhood and the
old vertex position contribute to the update (blue). The newly added edge-points
are ignored (black).

Figure 4.9: Topology update of a triangle using the loop scheme. Three edges connecting the
newly inserted edge-points are inserted at the face.

1 (5 3 1 2\ \ 2

This term was derived from the local subdivision matrix, to support meshes with
extraordinary, non-valence-six vertices and ensure convergence of the algorithm
to a limit surface [Loo87].

Creating the new triangulation: Three edges are inserted at each face, con-
necting the edge-points and splitting the parent triangle into four new triangles.
The topology update of a single triangle can be seen in Figure 4.9.
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Figure 4.10: The boundary polygon is updated in two steps. First, a vertex is inserted at
the midpoint of the edge. In the second step, the original boundary vertices are
updated.

Boundaries: To be able to handle meshes with boundary, the Loop subdivision
defines special rules to subdivide mesh borders.

In each step a new vertex is added to each boundary edge. Edge-point positions
on border edges are calculated via:

1
Piit1 = 5 (i + pit1)- (4.13)

The rule to update a vertex position p; in the boundary polygon of a mesh is

. 3 1
pi=pit+ é(pi—l + pit1)- (4.14)

Properties Loop showed in his thesis [Loo87] that the resulting surface is tan-
gent continuous everywhere for correctly chosen parameters and that curvature
continuity is only violated at extraordinary vertices.

4.2.2 Linear Algebra Formulation

Adding new vertices: FEach edge-point’s position is calculated from a linear
combination of two adjacent triangles’ vertices. This can be divided into two
steps. The mapped SpMV in Equation 4.15 is used to calculate the three vectors
P1,23, P2,3,1 and p3 1,2, each holding a weighted average for each triangle.
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Figure 4.11: Calculation of the three edge-points of one triangle. Each edge-point is calculated
from the contribution of the two adjacent triangles.

Phim = MTp (4.15)

(klm)—(E,3.%)

Each of the three SpMVs maps one of the three vertices of each triangle to
% and the remaining two to %. Figure 4.11 shows how the contributions of

neighboring triangles are combined to form the edge-points.

In order to be able to combine the correct contributions to edge-points, the
edges need to be assigned unique and consecutive indices. This can be done
using a mapped SpGEMM similar to the calculation of F' in Equation 4.6. A
matrix F is created via

E=MM" | (4.16)
Q3+Q3

where Q3 and Q3 capture clockwise and counter-clockwise connections of vertices
within each triangle. During the multiplication, whenever a collision between
two vertices ¢ and j is detected in face k, a lookup is performed and the map
returns non-zero if the two vertices are connected by an edge in the face. In this
special case of triangular meshes, if two vertices share a face, which certainly
causes a collision, they also share an edge. Therefore, the matrix entry E(i, j)
flags 2 if vertices ¢ and j are connected by an internal edge and therefore share
two faces, a 1 if they are connected by an edge from a boundary polygon and
0 otherwise. Unique edge indices can simply be obtained by enumerating the
non-zero entries in the upper triangular part of E. Then, E(min{i, j}, max{i, j})
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stores the index of the new vertex on the edge connecting vertices ¢ and j. With
this information the three contributions of each triangle can be added to the
corresponding edge-points.

Updating old vertices: Smoothing the mesh is done by updating each original
vertex to a weighted average of its old position and the sum of vertex positions in
its 1-ring neighborhood as described by Equation 4.11. Similar the /3, the first
term is only dependent on the original position and can be calculated in parallel
in a straight forward way. The second term involves the 1-ring neighborhood of
each vertex, which is encoded by the non-zero entries in the corresponding row
of E. Therefore, the second term in the update can be written as a single index
mapped SpMV

Ep (4.17)

Uall'%ﬁi

where each non-zero value in row ¢ of E is mapped to the corresponding vertex
valence dependent term.

Creating the new triangulation: FEach triangle in the control mesh contributes
four new triangles to the refined topology, hence, four columns to the refined
mesh matrix. To create the topology for the four children of a parent triangle 4
as shown in Figure 4.9, the corresponding columns are created as shown in Table
4.2. Assuming ¢ consists of vertices k, [ and m, the three indices of edge-points
€k, €.,m and e, can be determined using the upper triangular part of .
The center triangle consists of these three edge-points. Each remaining child is
spanned by one of the original vertices and the two edge-points on the edges
incoming to and outgoing from the original vertex.

Boundaries: Boundary vertices and edges can be identified using the matrix F.
Whenever a column ¢ contains a one in any row, vertex ¢ is part of the boundary
polygon and considered an external vertex. The indices of external edge-points
are obtained from F. Boundary meshes can be handled in a build and repair
fashion, meaning the individual steps to subdivide a mesh are carried out as
usual and the external vertices and edge-points are identified and repaired. In
the Loop scheme, the only repair that has to be performed happens after the
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column 1 column 7 +ny column i+ 2ny column ¢+ 3ny

row value row value  row value row value
€k, 1 k 1 l 1 m 1
€lm 2 €kl 2 €lm 2 em,k 2
em,k 3 em,k 3 ek,l 3 6[7m 3

Table 4.2: The rows and non-zero values in each column corresponding to the four child
triangles created from parent triangle i.

refined vertex data was calculated. Let vi and vg be start and end vertices of the
external edges with corresponding edge-point indices e. With that information
the edge-points in the refined vertex data p can be repaired, using the original
positions p

Ble) = £ (p(v1) + p(v2)). (1.18)

Similarly, position of external vertices is corrected:

p(v1) = zp(vl) (4.19)
p(v1) = p(v1) + %P(Vz) (4.20)
p(v2) =p(vz) + %p(vl) (4.21)

4.3 Catmull-Clark Subdivision

The Catmull-Clark Subdivision [CC78] is probably the most widely used sub-
division scheme. A very interesting property of the algorithm is that it can
operate on polygonal meshes and regardless of face orders in the input, always
produces pure quadrilateral meshes. The number of children of a face after one
iteration is equal to the face’s order. This is demonstrated for a single triangle
in Figure 4.12.
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Figure 4.12: Two iterations of topology refinement of a triangle (left) using the Catmull-Clark
scheme. After one iteration (middle), all faces in the mesh are quadrilaterals.
Another step of Catmull-Clark has split the original triangle into twelve quads
(right).

4.3.1 Traditional Formulation
One iteration of Catmull-Clark subdivision is done in four steps. The first two
add vertices to faces and edges respectively. The third step updates the original

vertices to smooth the resulting mesh. To create the refined topology, edges are
added to the mesh, each connecting a face-point to a neighboring edge-point.

Calculating face-points: The position of the face-point f; added to a face i is
set to the barycenter of the polygon

fi==> m (4.22)
where ¢; is the order of the face and pj are the face’s vertices.

Calculating edge-points: The position of the new edge-point e ; on each edge
is the average of the edge’s endpoints p; and p; and the face-points f,, and f,
on the two faces adjacent to the edge.

1
€kl = 7 (P + 21+ fn + fn) (4.23)
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Figure 4.13: A face-point has to be added to each face. The position is equal to the face’s
barycenter.

Figure 4.14: An edge-point is added to each edge. The edge-point’s position is the average of
its two end points and the face-points on the neighboring faces.
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Figure 4.15: Each updated vertex position is a linear combination of the old position, the
average of edge-mid points and the average of all face-points on adjacent faces.

Updating old vertices: To get a smooth result the original vertices of the con-
trol mesh have to be updated. Each original vertex is set to a linear combination
of its old position, the edge-mid-points of all adjacent edges and the face-points
added to each adjacent face in the current iteration. This is done via

g

11 & 2 - 1
n; n; = n; = 2

where n; is the vertex’s valence, f; are the face-points on adjacent faces and p;
are the vertices sharing an edge with p;.

Connecting new vertices: To conclude the iteration, new edges have to be
added to each face. One new edge is added per vertex of the face, which connects
the face-point and an edge-point on one of the face’s edges. Therefore, each
parent face is split into ¢; child quadrilaterals, each spanned by one of the
original vertices p;, the edge-point on the edge outgoing from p;, the face-point
fi, and the edge-point on the edge incoming to p;.
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Boundaries: Catmull-Clark subdivision also supports meshes that have a
boundary. The rule to update a vertex position p; in the boundary polygon of
a mesh is

- 3 1
pi=pit g(pi—l + Dit1)- (4.25)

The positions of edge-points on the boundary are set to the edge mid-points

1
€iit+1 = i(pi + pit1). (4.26)

Properties: The limit surface of the Catmull-Clark subdivision in regular
regions of the mesh can be modeled as bicubic B-splines, and is therefore
curvature continuous. The proof of a continuous tangent plane at extraordinary
vertices, while not provided in the original paper, was given by Doo et al.
[DS98].

4.3.2 Linear Algebra Formulation

This section introduces the linear algebra formulation for Catmull-Clark sub-
division, which is the computationally most expensive, of the three schemes
treated in this thesis, as it combines primitives used in both, v/3 and Loop.
In Catmull-Clark, after the first iteration of refinement, all meshes will only
comprise quads. The number of faces in each subdivision level grows exponen-
tially, which makes an efficient implementation for quadrilateral crucial for good
performance.

Calculating face-points: The positions of face-points added to each polygon
coincide with the faces’ barycenters which can be calculated using a mapped
SpMV. Each row in M7 represents one face in the mesh. Therefore, each
non-zero value val; in row 7 is mapped to the reciprocal of the face’s order:

f= M'p. (4.27)

val;— L
&

To calculate the face-points in an quad mesh, the SpMV is simply
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f= M'p . (4.28)
(1,2,3,4)—1

Calculating edge-points: Edge-points are a linear combination of edge-endpoints
and adjacent face-points. The indices of face-points on faces adjacent to each
edge are known from the matrix F', which is calculated using Equation 4.6.
Furthermore, the start and end vertex of each edge, as well as the index of its
edge-point can be determined using F, calculated in Equation 4.16. Using these
information the edge-points are calculated by combining the two face-points on
the adjacent faces and the two incident vertices.

Updating old vertices: The update Equation 4.24 can be conveniently rewrit-

ten as . .
N 2 1 1 &«

pi = pi (1—,)+22pj+22fj (4.29)
n; n; st n; e}

such that the update can be split into three summands. The first is the term
which depends on the original position and can be calculated using the mapped
SpMV where non-zero entries in row i are mapped to a term dependent on the
valence of vertex ¢

pi= Ip (4.30)

val,-—)(l—%)
K

with Z being the identity matrix. The second term sums the 1-ring neighborhood
of the vertex. This can again be done using FE, as it has the same sparsity
pattern as the vertex-vertex adjacency matrix with a zero diagonal,

p2= FEp . (4.31)
Uali%n%
The third and last term required in the smoothing step calculates a weighted
sum of the face-points on faces adjacent to the vertex. This is accomplished
using a mapped SpMV of the mesh matrix M with the previously calculated
face-points
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D @ O

Figure 4.16: Refining the topology of a quadrilateral, resulting in four new faces. Each consists
of one of the original vertices, the edge-point on the outgoing edge, the parent’s
face-point and the edge-point on the incoming edge.

ps= Mf . (4.32)

val;— %
i

To complete the update, the components are added to get the updated vertex
positions.

Creating the new topology: Each polygon ¢ of the control mesh contributes
quads to the refined mesh, equal to its order ¢;. Each of the new faces consists
of one vertex of the parent face, the parent’s face-point and two edge-points.
The split of a quad is visualized in Figure 4.16.

The index of the original vertex is known and the face-point on face ¢ takes
the index n, + i. What remains to be determined are the indices of the two
edge-points. The matrix E can be used again. The entry F(min{k,(}, max{k,[})
holds the index of the edge ej; connecting vertex k and /. The Index of the
corresponding edge-point is simply n, + ny + eg ;.

Boundaries: Meshes that are not closed and therefore have a boundary are
handled in the Catmull-Clark subdivision the exact same way as they are in
the Loop subdivision. See Section 4.2.2 for a detailed explanation.
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4.3.3 Feature-Adaptive Subdivision

It is well known that Catmull-Clark subdivision of regular faces can be done
using bicubic patches, as they describe the behavior of the limit surface around
valence four vertices. To describe the surface around irregular vertices an infinite
number of patches would be required [DS98]. Bicubic patches can be evaluated
using programmable shaders and hardware tessellation on modern graphics
cards, which enables for faster implementations, while sacrificing some flexibility.
Hardware tessellation has some limitations, for example, the tessellation factor
can be at most 64, which equals 6 subdivision iterations. To improve subdivision
performance, the idea emerged to subdivide regions around irregular vertices
manually and handle bicubic patches for regular regions in tessellation shaders
[Nie+12]. This section discusses how the irregular faces can be identified and
how to determine the neighborhood that is needed to subdivide them. Using the
mesh matrix, no traversal of data structures is required to find the sub-mesh that
is needed for manual subdivision, but rather can be determined by propagation.
We refrain from calling the subset of faces patches because the sub-mesh is
subdivided just like the whole mesh would be and the algorithm is not changed
in any way to work on a per patch basis. The sub-mesh generation is described
below.

The irregular vertices are identified by checking the vertex orders, calculated
using

n= M1 . (4.33)
Vvalse M—1

The algorithm produces two vectors which describe the desired sub-mesh.

The first one is the vertex vector, which has non-zero values only at entries

corresponding to vertices that are in the sub-mesh. Similarly, the face-vector

has non-zero entries for faces which belong to the sub-mesh. The vertex vector

Po can be initialized by setting irregular vertices to one:

po(i)z{1 if n)#4 (4.34)

0 else
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The propagation consists of two steps. First, the mesh matrix is used to determine
the neighboring faces fy

fo = MTpg (4.35)

which has a non-zero entry at position %, if the ¢-th face contains an irregular
vertex. In the second step, all the vertices that are contained in the faces tagged
by fo, are identified using the SpMV

p1 = Mfo (4.36)

where pj tags all irregular vertices and their 1-ring neighborhood. To be more
general, the two steps

f; = MTp; (4.37)

pii1 = Mf (4.38)

can be repeated multiple times to get the set of faces f; containing the vertices
specified in p; and the set of vertices pjy1 contained in the faces specified in fj.
After n steps, the vector py has non-zero entries for all the vertices contained in
the n-ring neighborhood of vertices specified in pg. f,—1 contains all the faces
adjacent to at least one vertex of py_1. The sub-mesh growth is visualized in
Figure 4.17.

To perform Catmull-Clark subdivision of faces in the 1-ring neighborhood of an
irregular vertex, information contained in the two ring neighborhood is needed.
Therefore, the irregular vertices of the control mesh have to be identified and
the propagation step described above is performed two times to identify the
sub-mesh needed for the adaptive subdivision. Indices of primitives in this
sub-mesh are in general not continuous anymore. New unique and continuous
indices for faces and vertices are generated by setting non-zero entries to one
and performing a cumulative sum over the vectors f; and pg2 respectively. With
this, a new mesh matrix is created, only containing relevant faces. A condensed
vertex vector containing only relevant vertices is built similarly. Due to the fact
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Figure 4.17: To extract the sub-mesh for an irregular vertex the vertex vector po is initialized

to flag a one at the position of the irregular vertex and zero otherwise (top).
fo is calculated by multiplying the mesh matrix with po as stated in Equation

4.37. Only entries in the result corresponding to neighbors of the vertex in po
are non-zero (middle, left). In the second part of the propagation step, pi is

calculated using Equation 4.38 and only entries in p1 corresponding to vertices

that are part of faces tagged in fo are non-zero (middle right). fo and p1 represent
the one ring-neighborhood of the irregular vertex. A second propagation step is

shown in the bottom row.
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4 Subdivision in the Language of Linear Algebra

that all faces, vertices and their corresponding new indices in the sub-mesh are
known, building the sub-mesh matrix is a simple copy instruction. A sub-mesh
that only consists of the j-neighborhood around each irregular vertex is called
the Mj ;-sub-mesh if its primitives are a subset of a mesh at the [-th subdivision
level. The feature adaptive approach works as follows

M—>M1—>M371—>M672—>M372—>-~-
s P s P s

where s-steps and p-steps stand for subdivide and propagate respectively. The
control mesh M is subdivided once to get the level one mesh M;. Then propa-
gation is performed to get the M3 sub-mesh, which is then subdivided to Mg o
and propagation reduces it to the M3 5. This is repeated until the desired subdi-
vision level is reached. There are also other options in which order subdivision
and propagation are applied and which neighborhood size is chosen. The 2-ring
neighborhood around irregular vertices would be sufficient to do the subdivision.
In the current implementation, we decided to do one full subdivision step and
perform the first propagation on level one because in the first iteration some
mesh properties like boundary and irregular vertex indices can be evaluated,
which are needed upfront. The 3-ring propagation was chosen to conform with
the output OpenSubdiv provides. Of course it would also be possible to work
with the 2-ring neighborhood during consecutive subdivision steps and only
output the 3-ring neighborhood after the last step. By outputting the 3-ring
neighborhood it is ensured that it contains all the information needed to build
the patches for regular faces, in case the mesh is further subdivided later on.
Regardless of which subdivision-propagation combination is chosen, after sub-
dividing the region around irregular vertices, new regular faces emerged as
shown in Figure 4.18. For these faces, patches can be built and evaluated using
hardware tessellation.

The patches created for some of these faces are transition patches as they lie on
a boundary between different subdivision levels and special care has to be taken
to avoid cracks and T-vertices in the subdivided mesh. For further detail on
this matter the reader is referred to Niefiner et al. [Nie+12]. However, regular
faces are ignored in our current implementation as the purpose is to show that
the linear algebra approach can be used to find and subdivide the irregular
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\
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Figure 4.18: Feature adaptive Catmull-Clark subdivision illustrated on a small mesh with one
irregular vertex in the center. The top left figure depicts the mesh to subdivide
and the edges of irregular faces are shown in blue. After one subdivision iteration
and the propagation, the result is the sub-mesh M3 1, shown with non-dashed
lines in the top right. The new irregular faces for the next iteration are shown in
blue. In the bottom left, the blue edges indicate the faces which can be subdivided
with bicubic patches. The blue faces in the bottom right indicate those which are
subdivided using transition patches [Nie+12], as they are situated between faces
of different subdivision levels.
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4 Subdivision in the Language of Linear Algebra

regions and that the information to create patches for emerging regular faces is
present.

4.3.4 Mesh reordering

Representing a mesh as a sparse matrix M enables to use techniques that are
used to improve performance of linear algebra operations, to make operations
on the mesh matrix more efficient. One interesting technique, that was used
successfully to improve subdivision performance in our approach, is matrix
reordering. To be able to select the best permutation among many different
ones, it is required to define some quality metrics for matrices. Recall, that the
mesh matrix comprises one column per face in the mesh and each column has
one non-zero entry per vertex in the face. Subdivision algorithms usually require
plenty of averaging over local neighborhoods. Memory access patterns matter
on the CPU and are crucial on the GPU to reach good performance. Therefore,
adjacent faces should be close to each other in memory. Also, the vertices of
a face, as well as vertices of adjacent faces should be close to each other in
memory. In short, primitives that are topologically close in the mesh should also
be close in memory. Converted to the sparsity pattern of the mesh matrix, this
means that all the non-zero elements should be close to the diagonal. A measure
that gives information about closeness of non-zero entries to the diagonal is the
matrix bandwidth. The row bandwidth b, is the maximum distance between
two non-zero entries in any row. The column bandwidth b. can be defined in
a similar manner. The bandwidth of the matrix is then b = max{b,,b.}. For
square matrices the row and column bandwidths are equal. In case of a mesh
matrix with a small column bandwidth, the faces consist of vertices with indices
that are close to each other, which implies that the vertices reside close in
memory. Analogously, a small row bandwidth means that faces using the same
vertices are close to each other in memory.

To reduce the bandwidth, a modified reverse Cuthill McKee (RCM) reordering
was used [CM69; Geo71]. The original RCM works on square symmetric matrices
and calculates a permutation to reduce the bandwidth. For further detail the
reader is referred to original papers by Cuthill et al. and George. To reorder non-
square mesh matrices, the standard RCM algorithm is applied to the Laplacian
matrix of the mesh, to obtain a permutation which is applied to the rows of
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Figure 4.19: Reordering of two models using RCM on the Laplacian for row reordering and
subsequently sorting the columns by the row index of their first non-zero entry.
For both, the sparsity pattern of the original (left) and the reordered matrix are
shown (right). Colors of the mesh indicate positions of the faces in memory.

the mesh matrix. The columns are sorted according to the minimum row index
of their non-zero entries. Some results of the reordering algorithm can be seen
in Figure 4.19.

When subdividing a mesh using our Catmull-Clark approach, the faces that
emerge from the same parent face are placed next to each other in memory. Also,
the global ordering of faces is preserved. If parent columns ¢ and j fulfill ¢ < j,
then their children i and j; also fulfill 7;, < j;. By creating the new topology in
this way instead of just appending columns to the existing matrix and altering
original columns, the locality of faces is preserved. The refined vertex data
vector contains all updated vertex positions, followed by the face-points and the
edge-points are placed last. Therefore, subdividing a reordered mesh results in
a sparsity pattern that features three narrow bands, as clearly visible in Figure
4.20.
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Figure 4.20: A mesh matrix after the initial reordering (left). After one step of subdivision,
the clustering of original, face and edge-points is clearly visible in the structure
of the matrix (right).

Due to the reordering, access to neighboring primitives in the topology is trans-
lated to more local memory accesses which results in an increase in performance.
Comparisons of subdivision performance using reordered and original meshes
are presented and discussed in Chapter 6.
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5 Optimization of Mesh Matrix
Operations

While the v/3, Loop and Catmull-Clark subdivision schemes can be implemented
using the standard linear algebra operations as described in Sections 4.1.2, 4.2.2
and 4.3.2 respectively, the operations on the mesh matrix can be optimized due
to the knowledge of the underlying structures. The fact that the used SpMVs
and SpGEMMs do not have to work on arbitrary matrices but rather on mesh
matrices enables for specialization of the individual operations to improve the
overall performance of the subdivision. This chapter will identify commonalities
of the schemes in terms of the applied linear algebra operations and show how
they can be optimized, considering the underlying structure and characteristics
of mesh matrices.

5.1 Reduced Mesh Matrix

Whenever M represents a homogeneous mesh, such as a pure triangular or
quadrilateral mesh, the column pointer can be dropped, because the face orders
are consistent and the start index in the row indices for each face is known.
Therefore, the correspondence of a row index to a certain face is given by the
position of the index in the array. Reordering the row index-value pairs such that
the values are sorted in each column also renders the value array unnecessary,
because the cyclic order of vertices in a face is implicitly given by the order of
their appearance in the row indices array. A mesh matrix for a homogeneous
mesh that only consists of the row indices is called the reduced mesh matrix
M, and its size is equal to the size of a face table representing the same mesh
[ZSS17].
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5 Optimization of Mesh Matrix Operations

To illustrate the concept, let the mesh matrix M represent a homogeneous mesh
with ny faces, each having face-order c. M is in reduced form and therefore
only consists of the row index array M.rid which comprises ny - ¢ entries. The
entries in the interval [i- ¢, (i + 1) - ¢) describe the i-th column, which represents
the face i. The row indices are ordered within each interval to capture the cyclic
order of the vertices in the corresponding face. The information provided by
value array and column pointer are therefore redundant, and can be omitted.

/3 and Loop subdivision only operate on triangle meshes and the Catmull-Clark
algorithm produces meshes exclusively consisting of quadrilaterals. Therefore
this optimization can be applied in all three implementations.

5.2 Implicit mapped SpGEMM

A mapped SpGEMM of the form

A= MM" (5.1)
{Q}a]

is used to calculate the matrices £ and F' containing adjacency information.
Note, that in Equation 4.16 for calculating F, the function o was omitted, as it
directly returns the map value. While the algorithms to perform SpGEMM are
constantly improving, it is still a computationally intense task. Therefore, the
goal should be to avoid explicit multiplication whenever possible. In case of the
multiplication in Equation 5.1 this is possible and the three matrices can be
created directly from M. To see why this is possible it has to be understood
what exactly happens during the multiplication and how the different action
maps influence the result.

During the matrix-matrix multiplication MM, each row r; = M (i, *) is mul-
tiplied with each column ¢; = MT (%, 7). Both, r; and c¢j encode one vertex
each and have non-zero entries at the positions corresponding to their surround-
ing faces. During multiplication, a collision between two entries M (i, k) and
MT(k, ) happens if both are non-zero, meaning that vertices 4 and j share a
face k. Clearly, vertices not part of the same face will never induce a collision.
An action map encodes a specific relation between vertices within a face. A
collision invokes the function «, which provides an output based on the map
lookup.
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A mapped SpGEMM as in Equation 5.1, would usually require multiplication
of each row vector in M with each column of M”. As mentioned above, in the
special case of the mesh matrix, collisions of non-zero entries can only occur
if the vertices, represented by the vectors, share a face. This fact implies that
we only need to check the vertices of a face against each other. The number of
vertex pairs in each face, for which the function « needs to be executed, can be
further reduced, because an invocation will only return a non-zero value, if the
map lookup evaluates to non-zero. The vertices in a face for which this is the
case are directly determined by the map. Action maps encode relations between
positions of vertices within the cyclic order of a face. For the i-th vertex of a
face, the function a only needs to be called with the j-th vertex if Q(i,7) # 0.
Therefore, Q(i, %) is an evaluation pattern for the i-th vertex in each face, which
determines the invocations of a.

Before the actual multiplication can be carried out in the way described above,
the number of non-zero values in each column of the result needs to be de-
termined, to be able to allocate sufficient memory for the arrays of its CSC
representation. This can be done using a preceding symbolic pass, similar to
general SpGEMM algorithms. In parallel for each entry in the row indices of
M, we use the map to determine the number of evaluations for the vertex by
counting the non-zeros in the map row corresponding to the vertices’ position
in the cyclic order of the current face. The total number of invocations for each
vertex is accumulated in an array and is equal to the non-zero entries in the
vertex’s column of the result. A simple parallel scan (cumulative sum) over
that array gives the column pointer and the number of non-zero values of the
resulting matrix. With that information the row index and value arrays can be
allocated and subsequently filled during the evaluation pass. It is worth noting
that this step can be skipped if each row of the map has the same number of
non-zero entries. Then the number of evaluations and therefore the number
of non-zero values of the vertex’s column in the result, is independent of its
position in the cyclic order of adjacent faces. If this is the case, the invocations
on each vertex can be directly calculated as a multiple of the vertex order z,n.
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5 Optimization of Mesh Matrix Operations
5.3 Specialized SpMVs

Whenever certain patterns in SpMVs formulated in the higher level linear
algebra description are detected, they can be transformed to specifically tailored
GPU kernels. Basis for all eventual SpMV optimizations is a naive GPU imple-
mentation [Ste+16] as shown in Algorithm 3 and Algorithm 4. Note that an
explicit transpose of the matrix is not required to perform transposed matrix-
vector multiplication. This is particularly important since we make extensive
use of the mesh matrix and its transpose.

Direct mapped SpMV In the mapped SpMV for CSC matrices, multiple
threads collaborate to calculate a single element of the result vector. Paral-
lelization is done over the input elements. A thread reads a single entry of
the input vector and multiplies it with the mapped non-zero elements of the
corresponding column. These intermediate products are directly accumulated
in the result vector using an atomic addition operation to avoid race conditions.
Pseudo code for mapped SpMV is given in Algorithm 3.

Algorithm 3: Direct CSC matrix vector multiplication with maps.
The algorithm calculates y = Az + y in parallel with a number of
threads equal to the number of columns of A

Input: A, x, m

Output: y

tid + getUniqueThreadld();

x_val < x[tid];

for i < A.cptrftid]; i < A.cptrftid + 1]; i < i + 1 do
rid + A.ridsl[i];
map_val < m[A.vals[i]];
atomicAdd(y[rid], map_val - x_val);

end

Transpose mapped SpMV  In the transpose mapped SpMV for CSC matrices,
a single thread is responsible for a single output element, which eliminates the
need for atomic operations. Each thread iterates over the non-zero elements of
its column, uses the map to substitute them and multiplies each mapped value
with the corresponding vector element. This means, that in contrast do the
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direct mapped SpMV, a thread has to read multiple elements from the input
vector - see Algorithm 4.

Algorithm 4: Transpose mapped sparse CSC matrix vector multipli-
cation with maps. The algorithm calculates y = AT2 + y in parallel
with a number of threads equal to the number of columns of A

Input: A x, m

Output: y

tid < getUniqueThreadId();

val « 0;

for i < A.cptrftid]; i < A.cptrftid + 1]; i < i + 1 do
rid + A.rids][i];
map_val < m[A.vals[i]];
val < val + map_val - x[rid];

end

y[tid] + y[tid] + val;

Specializations and Memory Optimizations Depending on the input to the
high level linear algebra primitives we can detect several special properties and
patterns and produce highly efficient GPU code for the individual applications.
If the input matrix to an SpMYV is in reduced form, every column has the same
number of non-zero entries, which renders the loop over each column obsolete
and it can be unrolled. Therefore, the column pointer is not required to perform
the multiplication. Value arrays can also be omitted, because row indices in
each column are sorted in a reduced mesh matrix to reflect the cyclic order of
the face. In both SpMV versions each thread works on one column of the matrix.
If the mesh matrix represents a quadrilateral mesh, as it is very common in
the Catmull-Clark scheme, each column has exactly four entries. Instead of
performing four individual memory accesses while reading the row indices, a
single 128-bit request can be issued, reducing the number of reads by a factor
of four.

Certain properties of the map might also be exploited to optimize the code.
If the map is a constant function, as it is often the case if an SpMV is used
to average over some neighborhood, the value of the map can simply reside in
shared or constant memory, and frequent map lookups are not necessary. In
the non-transposed case, maps that output the same value for each entry in
a face can be handled similarly, as each thread works on a single column and
only needs to perform a lookup once.
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The input vector might give information about the purpose of the SpMV which
enables for further optimizations. To count elements (vertices in each face, faces
adjacent to each vertex) the mesh matrix is multiplied with a one vector. In this
case the reads of vector elements are obsolete and can be omitted, as the linear
combination reduces to a simple sum. In many cases a vector of positions is used
in a mapped SpMV with the mesh matrix, to average over local neighborhoods
in the mesh. As every input position consists of multiple components the number
of threads can be increased such that the multiplication is carried out on a per
component level. Without loss of generality, consider the case of averaging the
vertex positions for each face, as it is done for example, when calculating face-
points in the Catmull-Clark scheme. Each position consists of four components
and each column in M has four non-zero entries. In this case an SpMV kernel
can be constructed that is launched with 16 threads per face, each responsible
for a single component of one vertex position. Each group of sixteen consecutive
threads can then calculate the mapped multiplication of a single column. In the
general case their intermediate products are then combined in the result using
atomic addition operations. As it is known that each output component will only
depend on intermediate products of four vertices, efficient SIMD communication
primitives (shuffle instructions on NVIDIA hardware) can be used to combine
the results. In that way the atomics can be dropped and the number of write
accesses can be decreased, as the result for a component can be written by
a single thread. Unfortunately the shuffle solution used in the transpose case
is not applicable to the direct case, because threads which contribute their
intermediate result to the same output element, are not necessarily in the same
thread group.

Fusion Kernel fusion is an important paradigm in parallel computing, as it
enables to reduce kernel launch overheads and costly memory loads and stores by
merging kernels that have overlapping inputs or data dependencies. Whenever
two operations in the high level linear algebra formulation require the same
input vectors, and the number of threads required for both computations agree,
the two generated kernels can be merged, such that data is not required to be
loaded multiple times. The input to the fused kernel is then the union of the
sets of inputs to the two individual kernels. The same is true for the output
variables.
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The second case where it is advantageous to fuse two kernels, is when the output
of the first is the input to the second. In that case the data does not have to
go through global memory from the first to the second kernel but can directly
be used in the same kernel after it was computed. If the data that causes the
dependency is not needed in any further computation it is not necessary to
write it to global memory in the fused kernel. Especially for subdivision, where
different output data is generated from shared input data, for example, edge
points and face points, fusion can greatly reduce memory access. Thus, it can
significantly improve performance, especially for memory bound kernels.
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In this chapter the performance of the linear algebra approach and the imple-
mented extensions such as feature adaptive subdivision and matrix reordering
are evaluated by comparing to widely used and state of the art subdivision
implementations.

OpenSubdiv  [Tecl7] was developed by Pixar and offers industrial strength
subdivision implementations. OpenSubdiv uses a table based approach that
involves three steps, of which the first two are considered preprocessing. In
the first step, the topology is refined. This does not involve any vertex data
such as positions but only connection information. Using the refined topology,
the stencil tables are computed in a second step. These are the indices of
control vertices which contribute in the calculation of a refined vertex. While
the third step is done in parallel on the GPU, the two preprocessing steps are
done entirely on the CPU. This is a problem in applications with frequently
changing topology, because the topology refinement has to be done after each
topological update and stencil tables have to be recomputed. OpenSubdiv does
not support /3 subdivision, which is why we could only compare to their Loop
and Catmull-Clark implementations. OpenSubdiv implements feature adaptive
subdivision for the Catmull-Clark scheme, where only regions around irregular
vertices are subdivided explicitly and for regular regions patches are created,
which are tessellated using shaders.

OpenMesh [Unil7] is a framework for serial mesh processing. The used mesh
representations allow for fast access to neighboring primitives, which is an
advantage in mesh subdivision. OpenMesh supports all subdivision schemes
that were implemented in our linear algebra framework.
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All tests are performed on a Intel core i5-4690k with 16GB of RAM and an
Nvidia Titan X (Pascal). All given timings are averages over several runs. The
given measurements for our approaches are the sum of individual timings of all
required kernel calls. The results for our approach, using standard linear algebra
kernels and maps, are labeled SpLA. The results for the optimized approach
that does not require an Sp GEMM and that uses the specialized SpMVs is label
opt.

\/3-Subdivision The /3 is the computationally least costly of the ones im-
plemented. After each step the number of triangles in the mesh tripled. Only
OpenMesh supports this scheme.

Loop Subdivision The Loop subdivision splits each triangle into four new
triangles in each iteration. Therefore, the number of faces grows faster than
for v/3-subdivision, which is one reason of the higher performance compared to
Loop. This subdivision method is supported by all three approaches we compare
to.

Catmull-Clark: Additional Experiments The Catmull-Clark subdivision is
the most widely used method for mesh refinement. It is implemented in nearly
any popular modeling software. To demonstrate the flexibility of our approach,
we implemented some extensions, like feature adaptive subdivision. For that, we
compare the table based approaches to subdivide irregular regions used by Open-
Subdiv and the original code by Niefiner et al. to our propagation based method.
We also evaluate the impact of initial mesh reordering on the performance of
OpenSubdiv, OpenMesh and our Catmull-Clark implementations.

6.1 Subdivision performance

For OpenSubdiv we list the individual timings of the two preprocessing steps
topology refinement (ref.) and stencil table creation (sten.) and the total subdi-
vision time (tot.) is given for all implementations. Tables 6.1 and 6.2 compare
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Figure 6.1: A variety of different models were used for evaluation. Some of them are shown
here. Small models in the top row, large models in the bottom row and zooms of

the large models in the bottom row. The Embreea Orchid and Eulaema Meriana
Bee models are courtesy of The Smithsonian Institution.

the timings of our optimized approach to our unoptimized linear algebra imple-
mentation and to OpenSubdiv as well as OpenMesh. Models with a variety of
face counts were used - for examples see Figure 6.1. The corresponding peak
GPU memory consumption is given in Tables 6.3 and 6.4.

Data recorded in the undertaken experiments suggest that we outperform Open-
Subdiv and OpenMesh for both, Loop and Catmull-Clark, while additionally
having a lower memory footprint. Taking into account the whole subdivision
process, our SpLA version reaches 14x-24x speedup to OpenMesh and 13x-42x
compared to OpenSubdiv. The optimized implementation pushes the speedup
further to 390x-620x for OpenMesh and 380x-1500x for OpenSubdiv. The
large performance gain is mostly due to the full parallelization of the subdivision
operation in our approach, eliminating any precomputations. Our optimized im-
plementation only takes a little longer for the complete subdivision process than
OpenSubdiv requires for the evaluation of the precomputed stencil tables.
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model;lvl faces oM 0SD SpLA  OM/SpLA OSD/SpLA opt OM/opt OSD/opt
in  out tot. ref. sten. eval. tot. tot. tot.
archer;6 2k TM  3468.41  578.37  9477.41  4.37 10060.15 248.26 13.97 40.52 7.54 460.00 1334.24
dress;6 2k OM  4942.78  799.23 12634.02 5.41 13438.67 332.46 14.87 40.42 9.95 496.76 1350.62
Embreea Orchid;1  4M  12M  3683.69  476.10  2684.41 2.66  3163.18 167.76 21.96 18.86 8.30 443.82 381.11
phil;6 3k 12M  6606.27 1095.07 17550.84 7.95 18653.87 432.65 15.27 43.12 12.62  523.48 1478.12
hat;6 4k 18M  9697.63 1521.98 25143.67 11.52 26677.18 638.11 15.20 41.80 18.44  525.90 1446.70
coat;6 6k  23M  12223.98 2020.40 31563.84 14.99 33599.23 812.88 15.04 41.33 22.65  539.69 1483.41
neptune; 2 4M - 48M 17903.35 3506.40 27278.92 23.83 30809.16 1198.90 14.93 25.70 33.90 528.12 908.82
FEulaema Bee;1 17M  51M  16106.23 2074.85 12170.30 14.40 14259.56 718.10 22.43 19.86 34.78  463.09 410.00

Table 6.1: Performance comparison of running Uniform Catmull-Clark subdivision on different

models. All timings in ms.

model;lvl faces OM OSD SpLA  OM/SpLA OSD/SpLA opt OM/opt OSD/opt
in out tot. ref. sten. eval. tot. tot. tot.
archer;6 3k 13M  4068.45  882.07 7048.93 3.09  7934.09 292.73 13.90 27.10 10.53  386.37 753.47
Embreea Orchid;1  4M  16M  2986.20  494.19  1754.34  1.95  2250.50 166.09 17.98 13.55 5.21 573.17 431.96
dress;6 4k 18M  5792.07 1235.65 9426.01 3.84  10665.50 418.90 13.835 25.46 14.61  396.45 730.01
phil:6 6k 25M 777021 1692.61 13802.41 6.19 15501.22 560.56 13.86 27.65 19.09  407.03 812.01
hat;6 9k  36M 11312.70 2457.62 18837.46 8.13 21303.23 816.18 13.86 26.10 27.41  412.72 777.21
coat;6 11k  46M  14803.18 3103.37 23295.68 10.59 26409.65 981.96 15.08 26.89 34.46  429.58 766.39
neptune;2 AM 64M 14984.42 3513.48 15161.60 13.45 18688.53 982.88 15.25 19.01 27.67  541.54 675.41
Eulaema Bee;1 17M 68M  13564.64 2103.95 7903.19  9.92 10017.07 708.60 19.14 14.14 21.75  623.63 460.53

Table 6.2: Performance comparisons for the Loop scheme; all timings in ms and all models

are triangulated;

Model;lvl OSD SpLA opt Model;lvl OSD SpLA opt
hat; 6 2.77 147  0.84  hat;6 219 182 1.08
dress; 6 1.37  0.74 0.43 dress;6 1.08 092 0.54
phil;6 1.93 1.01 0.58 phil;6 1.60 1.25 0.74
coat; 6 3.47 185 1.06 coat;6 2.73 229 1.36
archer;6 1.03 0.53 0.31 archer;6 0.81 0.66 0.39
neptune;2 4.23  3.90 2.24 neptune;2 2.69 323 191
Embreea Orchid;1 0.62  0.80 0.61 Embreea Orchid;1 0.46  0.80 0.47
Eulaema Bee;1 2.65 3.41 2.59 FEulaema Bee;1 1.96 341 2.02

Table 6.3: Memory usage of the Uniform
Catmull-Clark scheme; All mea-
surements in GB
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Table 6.4: Memory usage for the Loop
scheme; All measurements in

GB
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model;iter. Niefner et al. OSD SpLA  opt

ref. + sten. eval. tot. ref.  sten. eval. tot. tot.  tot.
hat; 6 4.81 0.05  4.86 1.37 230 0.01 3.69 2391 1.38
dress;6 29.13 0.06 29.19 5.33 18.10 0.01 23.45 27.48 1.59
phil;6 119.43 0.08 119.51 15.79 47.77 0.02 63.58 28.62 1.65
coat; 6 17.38 0.05 17.44 3.53 7.88 0.01 11.42 24.24 1.85
archer;6 125.00 0.08 125.08 16.73 59.55 0.02 76.30 36.22 1.81

Table 6.5: Performance comparison for the Adaptive Catmull-Clark scheme; All timings in
ms; all models subdivided to level 6;

Model;iter. Niefiner et al. OSD SpLA  opt

hat; 6 0.18 0.23 1.48 0.98
dress; 6 0.75 1.66 1.35 0.99
phil; 6 296 4.42 3.62 2.67
coat; 6 0.55 0.77 1.89 1.26
archer;6 2.99 5.01 4.27 3.15

Table 6.6: Memory usage comparison for the Adaptive Catmull-Clark approach; all measure-
ments in MB

The results when exclusively subdividing regions around irregular vertices, as
in a feature adaptive approach, are summarized in Tables 6.5 and 6.6. The
SpLA approach performance deteriorates, as the overhead of feature extraction
dominates the computations. Still, we are able to outperform the original
implementation by Niefiner et al. using our optimized approach. As the number
of faces that require explicit subdivision is so small, the full power of the GPU
can not be utilized.

OpenMesh is the only implementation in our test suite that supports v/3
subdivision. Clearly, GPU implementations can outperform serial CPU imple-
mentations. Still, it is worth noting, that the changed view on v/3 allowed for
linear algebra formalizations and efficient GPU implementation. The results of
the comparison are summarized in Table 6.7.
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Model;iter. faces OpenMesh ~ SpLA  OM/SpLA  opt OM/opt
in out tot. tot. tot.
fox;6 1k 453k 157.55 34.34 4.59 1.07 147.24
goblet_tri; 6 1k 729k 259.15 43.67 5.93 1.28 202.46
Hhomer;6 10k 7™ 3055.23 193.29 15.81 10.36  294.91
trim-star;6 10k  8M 3077.58 195.17 15.77 10.29  299.08
Embreea Orchid;1  4M  12M 1932.23 145.17 13.31 4.21 458.96
neptune;2 4M  36M 8582.17 676.20 12.69 20.14  426.13
girl_bust;6 61k 45M  18959.06  1173.01 16.16 79.48  238.54

Eulaema Bee;1 17M  51M 8525.38 621.24 13.72 15.67  544.06

Table 6.7: Performance comparisons for the /3 scheme, all timings in ms

6.2 Mesh reordering

To evaluate the influence of initial mesh matrix reordering on the subdivision
performance, we subdivided ordered and original meshes using different Catmull-
Clark approaches. Interestingly, the speedup for our optimized approach using
an RCM reordered mesh compared the original mesh was as large as 8x, while
for the other implementations in our comparison the maximum speedup was
2x.

model;iter. faces OM OSD SpLA opt

in out orig. re. impr. orig. re. impr.  orig. re. impr.  orig. re.  impr.
angel;1 474k 1M 728.76 434.92 1.68 562.80 381.00 1.48 29.81 25.93 1.15 3.69 1.50 2.46
angel;2 474k 6M  3566.70  2092.22  1.70  4669.25  3412.05 1.37 168.92 151.87 1.11  10.50 5.07  2.07
angel:3 474k 23M 15196.35 10662.78 1.43 25101.77 21176.15 1.19 745.03 675.06 1.10 29.67 18.35 1.62
FEulaema Bee;1  17M 51M  18444.64 17234.08 1.07 15936.20 14936.64 1.07 752.06 720.71 1.04 54.98 35.09 1.57
Beetle; 1 2M  6M  3848.24 1886.73 2.04 3152.81 1639.66 1.92 134.90 89.70 1.50 4290 5.63 7.62
Beetle; 2 2M 24M 17934.28 9073.76  1.98 24603.65 14785.59 1.66 772.88 608.19 1.27 107.04 22.40 4.78

Blue Crab;2 1IM  34M  12474.40 10774.76  1.16 10567.69 9265.71  1.14 546.01 480.84 1.13 42.04 2383 1.76
Armadillo; 1 346k 1M 487.01 316.02 1.54 401.63 277.40 145 2226 1945 114 2.61 1.07 245
Armadillo;2 346k 4M 251239 1492.77  1.68 343599  2473.22 1.39 12548 111.71 1.12 7.68 344 224
Hunter;1 994k  3M  1888.75 918.37 2.06  1490.97 807.27 1.85  68.75 4851 142 13.95 248 5.63
Hunter;2 994k 12M  8622.89  4381.06  1.97 11690.37 7335.97 1.59 382.69 308.79 1.59  36.16 895 4.04

Table 6.8: Subdivision time of applying uniform Catmull-Clark to original (orig.) and reordered
(re.) meshes, as well as the achieved improvement (impr.); All timings in ms;

Our results suggest that reordering the meshes using RCM can yield a substantial
speedup. Reordering the mesh after each subdivision step using RCM is too
expensive. Finding a different reordering or mapping scheme, that could be
applied after every iteration turned out to be a challenging task, as the additional
computation cost compensated any improvement in performance.
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7 Conclusion

This thesis proposed the use of optimized linear algebra kernels to perform
mesh subdivision on the GPU, using a sparse matrix to represent meshes and
linear algebra primitives augmented with action maps to refine them. While
the higher level linear algebra formulations are easy to understand and modify
without the need of any knowledge about the underlying implementation, our
approach surpasses state of the art performance. Continuous improvements of
parallel linear algebra primitives translate directly to linear algebra subdivision.
While the proposed principle are used for subdivision in this thesis, they can
be used in general mesh processing applications to speed up computations.

The proposed approach is fully parallelized on the GPU. To the best of our
knowledge, at the time of writing this thesis, there is no other subdivision
implementation that runs entirely in parallel on the GPU without any CPU
preprocessing. Three different refinement schemes were implemented to show
that the approach is universal and the solution is not carefully crafted and opti-
mized to reach good performance for a single approach only. Instead, we showed
with the undertaken experiments that for every implemented approach we reach
superior performance compared to widely used subdivision implementations and
the current industry standard, OpenSubdiv. Even better performance can be
reached by using specialized SpMVs for reoccurring tasks and by eliminating the
SpGEMMs used to generate adjacency information. In particular, we reached
up to three orders of magnitude speedup compared to OpenSubdiv, while not
requiring any preprocessing. We showed that the linear algebra subdivision
can simply be extended with additional features such as boundary handling or
feature adaptive subdivision.
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