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Abstract

This thesis covers analytical and numerical aspects of variational regulari-
sation for multi-data inverse problems. Such problems emerge when splitting
an inverse problem into subproblems possibly featuring different degrees of
ill-posedness and different scales, noise levels and noise models. To address
these different properties, a Tikhonov approach for such problems featur-
ing joint regularisation and a weighted sum of discrepancies is proposed
and lies in the focus of our considerations. The specific structure of the
multi-data problem allows for partial solutions (solving some but not all
subproblems) and emphasis lies on their properties. We show that with a
suitable parameter choice rule, subsequential convergence to a partial solu-
tion can be obtained, and under additional source conditions, convergence
rates for discrepancies and the Bregman distance are presented. Moreover,
one sees that said limit partial solution solves a Tikhonov problem for the
unsolved problems, featuring the solved subproblems as prior. The capa-
bilities of norms and the Kullback-Leibler divergence as discrepancies are
discussed, showing that they are indeed suitable discrepancies. As joint reg-
ularisation functional, a version of Total Generalised Variation (TGV) for
vector-valued functions is considered. Its capability of promoting smooth
solutions and penalising disjoint edge sets and features makes it suitable as
joint regularisation in imaging. We apply a Tikhonov approach employing
Kullback-Leibler divergence as discrepancies and joint TGV as regularisation
functional to reconstruct multi-spectral Scanning Transmission Electron Mi-
croscopy (STEM) Computed Tomography. A primal-dual algorithm based
scheme is proposed to solve such problems, and this reconstruction algorithm
creates adequate, smooth yet sharp reconstructions superior in image quality
to other standard methods.



Zusammenfassung

Diese Arbeit behandelt analytische und numerische Aspekte einer varia-
tionellen Regularisierung für multi-data inverse Probleme. Solche Proble-
me entstehen wenn ein inverses Problem in Subprobleme aufgespalten wird,
welche unterschiedliche Grade von nicht Wohlgestelltheit, unterschiedliche
Rauschniveaus und Rauschmodelle besitzen. Um diese Unterschiede mitein-
zubeziehen, wird ein Tikhonov Ansatz für solche Probleme mit einem ge-
meinsamen Regularisierungsfunktional und einer gewichteten Summe von
Diskrepanz-Termen betrachtet und steht im Zentrum dieser Arbeit. Die spe-
zifische Struktur des multi-data Problems ermöglicht die Betrachtung von
Teillösungen und besonderes Augenmerk liegt auf deren Eigenschaften. Wir
zeigen, dass mit geeigneter Parameterwahl Konvergenz zu einer Teillösung er-
zielt werden kann und mit zusätzlichen Voraussetzungen auch deren Konver-
genzraten bestimmt werden können. Darüber hinaus sieht man, dass besagte
Teillösung die Lösung eines Tikhonov Ansatzes für die ungelösten Proble-
me mit den gelösten Problemen als Prior ist. Es wird gezeigt, dass Normen
und die Kullback-Leibler Divergenz geeignete Diskrepanzen sind. Zur Re-
gularisierung wird eine Version von Total Generalised Variation (TGV) für
vektor-wertige Funktionen betrachtet, deren Eigenschaft glatte Lösungen zu
erzeugen und disjunkte Kantenmengen zu bestrafen es zu einem geeigne-
ten Regularisierungsfunktional für Imaging machen. Wir betrachten solch
einen Tikhonov Ansatz mit Kullback-Leibler Divergenzen und TGV Re-
gularisierung um multi-spektrale Scanning Transmission Electron Microsco-
py (STEM) Computed Tomography zu rekonstruieren. Basierend auf einem
primalen-dualen Algorithmus wird eine Methode zur Lösung solcher Proble-
me abgeleitet. Dieser Algorithmus erzeugt glatte und scharfe Rekonstruktio-
nen, und numerische Ergebnisse zeigen, dass dieser Algorithmus adäquate
Rekonstruktionen erzeugt, die standard Rekonstruktionsmethoden in Qua-
lität überlegen sind.
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Introduction

Many mathematical problems occurring in industrial and scientific applications cannot

be solved by direct computation, but rather require the inversion of a process. This

means considering a process T , which takes an input u, transforming it into an output

f , but trying to find a suitable input leading to given output f . Hence, one considers

problems of the form

Tu = f

typically featuring infinite-dimensional spaces, where the output f and the process

T : X → Y are given, and one aims to solve this equation for the necessary input u.

Such problems often occur when one obtains data f through a well-understood process

modeled by T , but aims to reconstruct the cause u which would have led to f .

A simple example of such problems, which nicely illustrates the difference in thought

between direct and inverse problems, is deconvolution, where one tries to solve

k ∗ u = f, where k ∗ u(·) =

∫
Rn
u(· − y)k(y) dy,

with given f and k for u, meaning one tries to invert the convolution operation. This

theoretical setting can for example be found in the backward heat equation for practical

purposes. Imagine a rod of iron whose heat distribution over time is observed. Obtaining

the heat distribution at some point in time from given starting distribution is a basic

PDE problem one can solve via convolution h ∗ u0 = u1, where u0 denotes the initial

distribution and h the heat-kernel. This would represent the direct problem, while

obtaining a starting distribution which would have led to a given distribution later in

time represents the inverse problem. Therefore, for given heat-distribution u1 at time

t = 1 one solves h ∗ u0 = u1 for u0.

A problem we focus on more heavily in later sections is the inversion of the Radon

transform used in CT [3]. The Computed Tomography (CT) method is used in medical

practice to obtain 3-dimensional density distributions of patients. In order to do so,

a sequence of X-ray images of the patient from different angles is taken. Through

mathematical modelling it is easy to understand how to obtain the sinograms (X-ray

data) from given density distribution, while the converse is not so obvious. Hence, in
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order to obtain suitable CT reconstructions for the physician to analyse, one solves

Tu = f (1)

where T models the forward operator, i.e. the procedure of obtaining the sinograms data

from the density distribution, and f the sinogram data obtained from the examination

of a patient. Such measurements f however typically suffer from noise, in particular

Poisson distributed noise since the measurement is made via detection counts of the

transmitted photons which typically is modelled to be Poisson distributed, see e.g. [50].

Unfortunately, solving an inverse problem is often not stable (in particular the ones

mentioned above), i.e. small aberration in data f might result in massive changes in the

corresponding solution u. Thus, regularisation methods are required in order to overcome

this stability issue. Specifically, the Tikhonov regularisation [47, 48] is a commonly used

method, and since this thesis will focus on Tikhonov regularisation, we quickly motivate

its use:

Although an inverse problem is not always solvable, in practical applications one might

still be interested in finding an approximate solution as this might appear sufficient.

Therefore, it is reasonable to look for u†, such that Tu† is as close to f as possible, and

consequently one could try to solve

u† ∈ argmin
u∈X

D(Tu, f) (2)

instead, where D(Tu, f) is a suitable measurement of the distance between f and Tu,

commonly referred to as the discrepancy function. In case of working on a normed vector

space, a natural choice would be the norm, i.e. D(a, b) = ‖a − b‖, but more complex

choices are possible and might be necessary.

However, Problem (2) might still not be solvable as u 7→ D(Tu, f) does not attain

a minimum. Also, in practical applications, a procedure to measure data inherently

contains measurement inaccuracies and noise, since theoretical assumptions are not being

perfectly matched by reality. Thus, often only f δ is available, which is a version of f

with noise, and this poses a particular problem when solving (2) is not stable either.

Therefore, one introduces a regularisation parameter α and a regularisation function

R and considers

u† ∈ argmin
u∈X

D(Tu, f) + αR(u). (3)
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It is reasonable to choose R, such that (3) is solvable, and enforces desired properties of

solutions, i.e. R should penalise undesired properties in u occurring due to noise in the

data. Tikhonov regularisation methods are well studied, in particular the stability and

convergence results for vanishing noise [25] play an integral role in this theory.

In order to get insight into the chemical make-up of a specimen, one uses Scanning

Transmission Electron Microscopy (STEM), see [4, 36, 6, 35] and references therein.

This enables one to obtain sinogram data corresponding to the density distribution of

specific chemical components, thus allowing a CT reconstruction of the specific density

distributions. Unfortunately, these data sets leave things to be desired in terms of quality

due to the high time-consumption required to record several such data sets. Thankfully,

one would expect the reconstructions of the individual spectra to contain complementing

information, as one would expect a weighted sum of the densities to result in the mass-

density distribution, or common edges to occur when the density of one element plumps

and the others rise conversely. Therefore, one would like to reconstruct these multi-

spectral data sets jointly, exploiting information contained in other spectra’s data.

Following this idea, joint regularisation becomes more common, not solving problems

individually, but several inverse problems jointly. This applies in particular to problems

expected to have complementing information where a joint solution can take advantage

of the information in the other inverse problems. Hence, one considers the problems

T1u = f1, T2u = f2, . . . TMu = fM . (4)

Note that this setting does not solely allow for individual independent reconstructions

being coupled for the sake of complementing information, but also incorporates inverse

problems being coupled in nature, i.e. subproblems together posing a single inverse

problem. It might be reasonable to split an inverse problem into such subproblems, as

they might feature different degrees of ill-posedness, scales, noise levels and noise models

which require individual consideration.

Relevant examples of the use of joint regularisation are CT reconstruction of Scanning

Transmission Electron Microscopy (STEM) data or PET-MRI reconstructions in applied

medicine, for example the Joint TGV reconstruction proposed in [29]. In the latter, the

quality of PET is typically low and it is expected that complementing information from

the MR images improve the quality of PET reconstructions.
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In order to apply Tikhonov regularisation to such multi-data problems, one considers

u† ∈ argmin
u∈X

( M∑
i=1

λiDi(Tiu, fi)
)

+Rα(u) (5)

with individual discrepancy terms and weights, but one joint regularisation function

depending on a parameter α.

Although the general theory could be extended to the multi-data situation by consid-

ering it as a problem on the product space, it would not take into account the before

mentioned properties of the individual subproblems. The structure of (4) and (5) raises

the question of how the convergence result for vanishing noise in the single-data regu-

larisation transfer into the multi-data setting if there are partial solutions, i.e. solutions

to some, but not all problems simultaneously. This thesis will introduce a theory which

considers such convergence results.

In order to bridge the gap between theoretical ideas and practical applications, we

investigate how the theory works for specific discrepancies such as powers of norms and

the Kullback-Leibler divergence [9]. The latter is particularly suitable for measuring the

discrepancy of Poisson distributed noise which is present in many noise models and is

thus regularly considered as a discrepancy function [40, 44, 16].

As application of this theory, we consider regularisation with the Total Generalised

Variation (TGV) functional [14, 13], a regularisation commonly used in imaging, which

generalises the Total Variation (TV) of functions [2]. TV regularisation has the specific

advantage to other regularisation methods of promoting piece-wise constants solutions

allowing hard transitions as would be expected to occur in many applications. However,

piece-wise constant solutions are often not suitable, which is overcome by the TGV

functional promoting piece-wise polynomial solutions. In particular this functional can

also be used in a multi-dimensional setting [11, 29] and is shown to enforce common

features such as complementing edges.

Finally, when using such approaches and being faced with a concrete problem, also

a numerical framework is required in order to solve Tikhonov problems with concrete

data and parameter. We show such a framework used onto the STEM CT reconstruction

using TGV and the Kullback-Leibler divergence approaches which relies on a primal-dual

optimisation method [17]. While a TV approach with norm discrepancies for individual

reconstruction was used in [37] with promising results, one hopes that Kullback-Leibler

divergence, which is more suitable for the occurring noise, and TGV, which allows for

more realistic solutions, further improves the resulting reconstruction.
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After a quick recapitulation of well-known mathematical foundations, this thesis is

separated into four Parts. Part I discusses a general theory for Tikhonov regularisation.

Therein the classical single-data Tikhonov regularisation is discussed as a basis for the

subsequent multi-data Tikhonov approach, with particular focus on convergence results

for partial solutions. In Part II, norms and the Kullback-Leibler divergence are inves-

tigated with respect to their properties required to be suitable choices as discrepancies

with respect to the theory of Part I. In Part III, Total Deformation and Total Generalised

Variation are introduced and their properties as regularisation functional are discussed.

In particular, their applicability to linear inverse problems are investigated. Finally in

Part IV, the application of the previously discussed to the multi-spectral STEM CT

reconstruction is considered. Therein, the properties of the Radon transform, as well as

a numerical framework and a discussion of results is presented.
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1. Mathematical Foundation

In this chapter we establish some well-known theoretical aspects for the sake of com-

pleteness, to set notation and for later reference. Therefore, this chapter is more of a

brief summary containing results required for the later theory than a chapter discussing

these topics in detail. For more precise information and further details please look at

the mentioned literature.

1.1. Topologies

For our observations, the notion of convergence will play an important role, and it is

described in a general way by topological spaces. Also continuity and compactness

properties which will play a part in inverse problems are related to topological aspects.

For a more complete introduction and discussion of topologies, we refer to [38] and the

references therein.

Definition 1.1. Let X be a set and let Pot(X) denote the power set of X. A set

T ⊂ Pot(X) is called a topology, iff for any index set I, mapping f : I → T and finite

index set J ⊂ I the properties

X ∈ T , ∅ ∈ T ,
⋃
i∈I

f(i) ∈ T ,
⋂
i∈J

f(i) ∈ T ,

hold. In this case A ∈ T is called open, and the conditions state that X and ∅ are open,

arbitrary unions of open sets are again open, and finite intersections of open sets are

open. A subset B = Ac for A open is called closed. Moreover, the pair (X, T ) is called

a topological space.

From this definition, one can derive a notion of convergence which is directly impacted

by the open sets in T .

Definition 1.2. In a topological space (X, T ) we call a set U ⊂ X a neighbourhood of

x ∈ X, if U ∈ T and x ∈ U . We then say a sequence (xn)n ⊂ X converges to x (also

xn
T→ x or limn x

n = x) if and only if for every neighbourhood U of x there is a number

N(U) ∈ N such that xn ∈ U for all n ≥ N(U). A topological space (X, T ) is called

Hausdorff, if for all x, y ∈ X with x 6= y there exist disjoint neighbourhoods of x and y.

Lemma 1.3. In a Hausdorff space, a sequence has at most one limit.
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Based on the concept of convergence one can develop a notion of continuity and assign

certain properties to subsets of X.

Definition 1.4. For two topological spaces (X, TX) and (Y, TY ), we say a function

f : X → Y is continuous with respect to the TX and TY topologies (strictly speaking

sequentially continuous) if for a sequence (xn)n ⊂ X, xn
TX→ x implies f(xn)

TY→ f(x).

Definition 1.5. Let (X, TX) be a topological space.

• A set K ⊂ X is called (sequentially) precompact, if every sequence (xn)n ⊂ K

admits a Tx-convergent subsequence in X.

• A set D ⊂ X is called dense, if for every x ∈ X there is a sequence (xn)n ⊂ D

such that xn
TX→ x.

Remark 1.6. We will in the following say continuity when meaning sequential continuity

and precompact when meaning sequentially precompact, as we will mainly work with

sequences and thus only use sequential continuity and precompactness.

However, sometimes continuity is a too strong requirement but a weaker notion would

be sufficient. Closedness is such a weaker concept of regularity of functions.

Definition 1.7. A function T : dom(T ) ⊂ X → Y between topological spaces X, Y is

closed with respect to TX and TY , if for any sequence (xn)n ⊂ X:

(
xn → x, Txn → y

)
⇒

(
x ∈ dom(T ), Tx = y

)
.

1.2. Normed Vector Spaces

In order to equip topological spaces with an algebraic structure, we introduce vector

spaces which are commonly used in various fields. Their topology is typically adapted

to the algebraic structure, thus making it possible to simplify topological problems. For

a more detailed description, we refer to [42, 15] and the references therein.

Definition 1.8 (Vector space). Let V be a set such that there are operations

+: V × V → V and · : R× V → V, (6)

such that the structure (V,+) induces an Abelian group, i.e. let the addition be com-

mutative, associative, contain a neutral element 0 and inverse elements to every v ∈ V
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exist, typically denoted by −v. Furthermore, for α, β ∈ R and v, w ∈ V , let

(α + β)v = αv + βv, α(v + w) = αv + αw, α(βv) = (αβ)v, 1v = v.

Then V is called a vector space over R.

Furthermore, a function ‖ · ‖ : V → R is called a norm if it is positive definite, abso-

lutely homogeneous and satisfies a triangle inequality, i.e. for v, w ∈ V and α ∈ R,

‖v‖ ≥ 0, ‖v‖ = 0⇔ v = 0, ‖αv‖ = |α|‖v‖, and ‖v + w‖ ≤ ‖v‖+ ‖w‖.

We call a vector space normed and write (V, ‖ · ‖), if V is a vector space which admits

a norm ‖·‖. Furthermore, U ⊂ V such that U is a vector space with the same operations

as V (restricted to U) is called a subspace.

A vector space is a solely algebraic structure, but normed spaces can be equipped with

a topology adapted to these structures.

Proposition 1.9. On a normed space (V, ‖ · ‖V ), there is a topology such that for any

sequence (vn)n ⊂ V , and any v ∈ V ,

lim
n→∞

vn = v ⇔ lim
n→∞

‖vn − v‖ = 0.

This topology is called the norm topology (also topology induced by the norm). In par-

ticular, the topological space induced by a norm is a Hausdorff space. We will say

convergence with respect to the norm or ‖ · ‖ when actually meaning convergence with

respect to the norm topology.

Definition 1.10. We call a sequence (fn)n such that for every ε > 0 there is N(ε) ∈ N
with ‖fn − fm‖ ≤ ε for n,m ≥ N(ε) a Cauchy sequence. A normed space V is called

complete, if every Cauchy sequence possesses a limit in V . Such a normed complete

space is also referred to as Banach space. In particular a closed subspace of a Banach

space is itself complete.

An important tool in both understanding and combining normed vector spaces are

linear continuous functions between normed spaces.

Definition 1.11. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be two normed spaces. We call a function

T : X → Y linear, if for v, w ∈ X and α ∈ R,

T (αv + w) = αT (v) + T (w).

8



Moreover the function T is called continuous with respect to the norm topologies if

‖T‖ = sup
v∈X
‖v‖X≤1

‖Tv‖Y <∞, (7)

which is is compatible with the notion of continuity defined in Definition 1.2. We call

Ker(T ) = {x ∈ X
∣∣ Tx = 0} the kernel and Rg(T ) = {Tx

∣∣ x ∈ X} the range of T .

We define the dual space of X, denoted with X∗ as

X∗ =
{
ξ : X → R

∣∣ ξ is linear and continuous w.r.t. ‖ · ‖X and | · |
}
,

i.e. the space of all linear and continuous functionals from X onto R. The dual space

X∗ equipped with the norm defined in (7) is a Banach space even if X is not complete.

For a linear continuous operator T : X → Y we define the adjoint operator as the

unique operator such that

T ∗ : Y ∗ → X∗ with 〈η, Tx〉Y ∗×Y = 〈T ∗η, x〉X∗×X for all η ∈ Y ∗, x ∈ X.

Proposition 1.12. There is a topology TX,W (called the weak topology) on a normed

space (X, ‖ · ‖X) with the following properties: A sequence (vn)n converges to v in TX,W
(also converges weakly or vn ⇀ v) if for every ξ ∈ X∗, limn ξ(v

n) = ξ(v). Alternatively,

one can say that the weak topology is the weakest (coarsest) topology for which ξ(·) is

continuous for every ξ ∈ X∗.
Further, there exists a topology TX∗,W ∗ on X∗, which is the finest topology on X∗

such that for all x ∈ X the mapping ξ 7→ ξ(x) is continuous. Hence, for a sequence

(ξn)n ⊂ X∗ we say ξn ⇀∗ ξ (also ξn
TX∗,W∗→ ξ) if for all x ∈ X: ξn(x)→ ξ(x) as n→∞.

Lemma 1.13. The weak topology is indeed a topology, in fact (V, TV,W ) is a Hausdorff

space which is adapted to the vector space structure, i.e. addition and multiplication

remain continuous under the weak topology. Convergence with respect to the norm im-

plies weak convergence. Moreover, if T : (X, ‖ · ‖X) → (Y, ‖ · ‖Y ) is continuous with

respect to the norm topologies, it is also continuous with respect to the weak topologies,

i.e. T : X → Y is continuous with respect to TX,W and TY,W .

One can also consider the dual of the dual space to get further insight into the prop-

erties of a normed space and its weak topology.

Definition 1.14. We call the space X∗∗ = (X∗)∗ the bi-dual space of X, and define the

9



canonical embedding

ι̃ : X → X∗∗, ι̃(x)(ξ) = ξ(x) for all ξ ∈ X∗, x ∈ X (8)

which is isometric with respect to ‖ · ‖X and ‖ · ‖X∗∗, but not necessarily surjective. If ι̃

is additionally surjective, the space X is called reflexive.

Theorem 1.15 (Alaoglu’s Theorem for Reflexive Spaces). Let (X, ‖ · ‖X) be a normed

reflexive space. Then the set

B(0, 1) = {x ∈ X
∣∣ ‖x‖X < 1}

is sequentially precompact with respect to the weak topology.

Lemma 1.16. Let X be a normed space, and U ⊂ X a subspace. Then U is dense, if

and only if for ξ ∈ X∗, ξ(U) = {0} implies ξ = 0.

So the properties of linear continuous functions on vector spaces are important, how-

ever, sometimes one only has the weaker property of closedness. Obviously being contin-

uous is a stronger property than being closed, but in the linear setting and with suitable

assumptions both are equivalent.

Theorem 1.17. Let X and Y be Banach spaces and T : X → Y linear. Then T is

continuous with respect to the norm topologies, if and only if T is closed with respect to

the norm topologies. This in particular also holds if dom(T ) is a closed subspace of X.

1.3. Measure Theory

Many applications in classical analysis rely on integration. However, the setting in which

Riemann integration is applicable is limited. In order to generalise integrals to more

universal situations and find a suitable theory concerning it, one introduces concepts of

measurability and measures. A detailed description can be found in [19, 22].

Definition 1.18. A system A of subsets of a set Ω 6= ∅ is called a σ-algebra if for A ∈ A
and for a sequence (An)n ⊂ A

∅ ∈ A, Ω ∈ A, Ac ∈ A, and
∞⋃
i=1

An ∈ A. (9)
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The elements A ∈ A are called measurable and the tuple (Ω,A) is called a measurable

space. A function f : Ω1 → Ω2 with measurable spaces (Ω1,A1) and (Ω2,A2) is called

measurable (more precisely A1-A2 measurable) if for A ∈ A2 the preimage f−1(A) ∈ A1.

If (Ω, T ) is Hausdorff space, one can equip Ω with the Borel-algebra B, the smallest

σ-algebra containing all open sets in T .

Such measurable functions play an integral role for measure theory, and thus verify-

ing measurability of functions is necessary. Fortunately, many common operations on

measurable functions maintain measurability.

Lemma 1.19. Let (Ωi,Ai) be measurable spaces for i = 1, 2, 3 and let f : Ω1 → Ω2 and

g : Ω2 → Ω3 be measurable functions in their respective senses. Then the composition

g ◦ f : Ω1 → Ω3 is A1-A3 measurable.

If Ω1 and Ω2 are Hausdorff spaces equipped with the corresponding Borel-algebras B1

and B2, and f : Ω1 → Ω2 is continuous, then f is measurable with respect to B1 and B2.

Next, one wants to introduce a measure, a function on A which assigns each measur-

able set a value, and is adapted to disjoint set-union.

Definition 1.20. For a measurable space (Ω,A) a mapping µ : A → [0,∞] such that

for any sequence of disjoint sets (An)n ⊂ A

µ(∅) = 0, and µ

( ∞⋃
n=1

An

)
=
∞∑
i=1

µ(An) (10)

holds, is called a measure, and the triple (Ω,A, µ) is called a measure space. Moreover,

if µ(Ω) < ∞, µ is called a finite measure and if in addition µ(Ω) = 1, µ is referred to

as probability measure and the measure space is called a probability space. Furthermore,

a measure µ is called σ-finite if there is a sequence of measurable sets (An)n such that⋃
nAn = Ω and µ(An) <∞.

Lemma 1.21. There is a unique measure λ on Ω = Rd equipped with the Borel-algebra

induced by the standard l2 topology in Rd such that for a = (a1, . . . , ad) ∈ Rd and

b = (b1, . . . , bd) ∈ Rd with ai < bi

λ([a1, b1]× · · · × [ad, bd]) =
d∏
i=1

(bi − ai). (11)

This measure is called the Lebesgue measure and can be interpreted as the measure whose

11



value of any cuboid is the product of its side-lengths, and is thus a natural measure to

equip Rd with.

In the upcoming integral theory, sets A ∈ A with measure µ(A) = 0 do not have any

impact, hence we use the following notation to denote such sets.

Definition 1.22. In a measure space (Ω,A, µ) a set A ∈ A such that µ(A) = 0 is

called a null-set. Moreover we say a Condition C is satisfied µ almost everywhere (a.e.)

(almost surely in case of probability measures) if the set on which C is not fulfilled

is subset of a null-set. Also, for a topological space X and a sequence of functions

(fn)n with fn : Ω → X measurable, we say fn converges toward f almost everywhere if

{x ∈ Ω | fn(x) 6→ f(x)} is a null-set.

Now we have a good understanding of measures and measurability, however the aim

is to define and derive a suitable notion of integrals with respect to measures.

Definition 1.23. Let (Ω,A, µ) be a measure space. We call a function g : Ω → [0,∞]

simple if g is measurable with respect to the Borel-algebra on [0,∞] and attains only

finitely many values on Ω. Then, for a measurable function f : Ω → [0,∞], we define

the (Lebesgue-)integral∫
Ω

f dµ = sup

{∑
z

zµ({h = z})
∣∣ h is simple and h ≤ f

}
, (12)

where the value +∞ is allowed.

Moreover, for measurable functions f : Ω→ [−∞,∞] we denote with f+ = max(f, 0)

and f− = −min(f, 0), and define∫
Ω

f dµ =

∫
Ω

f+ dµ−
∫

Ω

f− dµ, (13)

in case the value ∞ is attained by at most one of the integrals, but not both. Note that

the integrals on the right-hand side are already defined, and we call a function integrable

if the integral is well-defined and attains a finite value.

This notion of integrals carries some properties such as linearity and monotonicity

which one knows and expects from classical integration theory.

Lemma 1.24. Let (Ω,A, µ) be a measure space and let f, g : Ω→ R be measurable and

α ∈ R. Then∣∣∣ ∫
Ω

f dµ
∣∣∣ ≤ ∫

Ω

|f | dµ, and

∫
Ω

αf + g dµ = α

∫
Ω

f dµ+

∫
Ω

g dµ, (14)

12



and in particular f is integrable, if and only if |f | is integrable. Moreover, if f ≥ g a.e.,

then
∫

Ω
f dµ ≥

∫
Ω
g dµ, and if

∫
Ω
|f | dµ <∞, then also |f | <∞ a.e..

These notions of measurable and integrable functions can be transfered into a space

of integrable functions. However, as functions differing only on a null-set do have the

same integrational properties, one needs to consider classes of equivalent functions.

Definition 1.25. Let (Ω,A, µ) be a measure space, and we call two measurable functions

f and g equivalent if f = g a.e., which induces an equivalence relation on the measurable

functions, and we denote with [f ] the equivalence class containing f . Then, for p ∈ [1,∞)

we define for f ∈ [f ]

‖f‖Lpµ =

(∫
Ω

|f |p dµ

) 1
p

, ‖f‖L∞µ = ess-sup
Ω

(|f |) = inf{C ∈ [0,∞]
∣∣ |f | ≤ C a.e.} (15)

which is independent of the representative. Further, for p ∈ [1,∞], we define the corre-

sponding function spaces

Lpµ(Ω) =
{

[f ]
∣∣ f : Ω→ R measurable and ‖f‖Lpµ <∞

}
. (16)

Later, we will not explicitly talk about classes but functions, and implicitly refer to classes

of the functions, which usually does not have any impact since the observations only

require a.e. properties. We will also refer to ‖ ·‖Lpµ as ‖ ·‖p and call ‖ ·‖∞ the supremum

norm.

Also, it is well-known that the corresponding dual spaces
(
Lpµ(Ω)

)∗
= Lp

∗
µ (Ω) with

1
p

+ 1
p∗

= 1 for p ∈ (1,∞) and p∗ = ∞ for p = 1 in case of a finite measure space.

Particularly, for p ∈ (1,∞) the spaces Lpµ(Ω) are reflexive and for p ∈ [1,∞] the spaces

Lpµ(Ω) are complete.

An important topic is also how convergence of a sequence of functions transfers to

convergence of the corresponding integrals. One can show that point-wise convergence

is not sufficient to ensure convergence of the integrals, thus in the following we present

two well-known theorems partially solving the issue.

Theorem 1.26 (Fatou’s Lemma). Let (Ω,A, µ) be a measure space, let f : Ω → [0,∞]

and let (fn)n be a sequence of measurable functions such that fn : Ω→ [0,∞]. Then,

f ≤ lim inf
n→∞

fn a.e. ⇒
∫

Ω

f dµ ≤ lim inf
n→∞

∫
Ω

fn dµ. (17)
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Theorem 1.27 (Dominated Convergence, Lebesgue’s Theorem). Let (Ω,A, µ) be a mea-

sure space, let f : Ω→ [−∞,∞] and let (fn)n be a sequence of measurable functions such

fn : Ω → [−∞,∞] with fn(x) → f(x) for almost all x ∈ Ω. Further, let g : Ω → [0,∞]

be integrable such that |fn| ≤ g almost everywhere. Then,

lim
n→∞

∫
Ω

fn dµ =

∫
Ω

f dµ. (18)

For functions defined on product spaces of measurable spaces it is reasonable to con-

sider product integrals featuring the individual measures. The theoretical basis for this

is given by the following statements.

Definition 1.28. Let (Ω1,A1) and (Ω2,A2) be measurable spaces. Then the product

algebra A1 ⊗ A2 is the smallest σ-algebra on Ω1 × Ω2 generated by sets {A1 × A2 ∈
Ω1 × Ω2 | A1 ∈ A1, A2 ∈ A2}.

These product algebras raise the question of product measures and integration of

functions on such algebras, which is summarised in the following theorem.

Theorem 1.29. Let (Ω1,A1, µ) and (Ω2,A2, ν) be σ-finite measure spaces and let f : Ω1×
Ω2 → [0,∞] be measurable on the product algebra A1 ⊗ A2. Then, y 7→ f(x, y) is A2

measurable for all x ∈ Ω1 and x 7→
∫

Ω2
f(x, y) dν(y) is well-defined and A1 measurable.

Therefore,
∫

Ω1

∫
Ω2
f(x, y) dν(y) dµ(x) is well-defined and independent of the integration

order, i.e. ∫
Ω1

∫
Ω2

f(x, y) dν(y) dµ(x) =

∫
Ω2

∫
Ω1

f(x, y) dµ(x) dν(y). (19)

This statement is called Fubini’s Theorem, and remains true for functions f : Ω1×Ω2 →
[−∞,∞] if a double integral of the modulus of f for an arbitrary integration order is

finite.

On Hausdorff spaces with the corresponding Borel-algebras, the topological structure

allows the question whether a measure is adapted to the topology.

Definition 1.30. Let (X,B, µ) a Borel-measure space on a Hausdorff space (X, T ).

Then a measure µ is called regular if for B ∈ B

µ(B) = inf
{
µ(O) | O ⊃ B open

}
= sup

{
µ(C) | C ⊂ B compact }. (20)

Also, one can drop the condition that a measure must be a non-negative scalar valued

mapping and allow for real vector-valued measures.
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Definition 1.31. On a measurable space (Ω,A) a mapping µ : A → [−∞,∞] is called

signed measure, if

µ(∅) = 0, and µ

( ∞⋃
n=1

An

)
=
∞∑
i=1

µ(An), (21)

where the sum is required to be well-defined and in particular independent of the sum-

mation order.

Definition 1.32. On a measurable space (Ω,A) we call µ a vector-valued measure with

dimension d > 0 if µ = (µ1, . . . , µd) where µi are signed measures. In this setting, the

integral of a function f = (f1, . . . , fd) : Ω→ [−∞,∞]d with f1, . . . fd integrable is defined

via ∫
Ω

f dµ =
d∑
i=1

∫
Ω

fi dµi. (22)

We denote with M(Ω,Rd) the space of regular, vector-valued, finite measures, and equip

it with the norm

‖µ‖ = sup
{∫

Ω

φ(x) dµ(x)
∣∣ φ ∈ C0(Ω) with φ(x) ≤ 1 for a.e. x ∈ Ω

}
. (23)

Note that with this norm and the addition and scalar-multiplication of vector-valued

measures, M(Ω,Rd) is a Banach space. Moreover, for µ ∈ M(Ω,Rd) there is also a

representation

µ = λ|µ|, (24)

where λ : Ω→ Rd is a |µ| measurable function also referred to as the density.

Theorem 1.33 (Riesz’ Representation). Let (X, T ) be a compact metric space and

denote with C(X,Rd) the space of continuous functions X → Rd which is equipped with

the supremum norm ‖f‖∞ = supx∈X |f |(x). Then, for every linear continuous functional

ξ : C(X,Rd)→ R there exists a regular, vector-valued, finite measure µ such that

ξ(f) =

∫
X

f dµ. (25)

In particular the mapping ξ 7→ µ is isometric and thus C(X,R)∗=̂M(X,Rd).
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1.4. Convex Analysis

When considering the Tikhonov regularisation of inverse problems often differentiable

approaches are too restrictive and do not yield suitable results. Thus, one works with

operations requiring nothing more than convexity, giving sufficient flexibility while still

containing suitable structure for optimisation. More on the presented topics can be

found in [18].

Definition 1.34. Let X be a vector space and A ⊂ X. The function χA : X → {0,∞}
such that

χA(x) =

0 if x ∈ A,

∞ otherwise,
(26)

is called the characteristic function of A.

Definition 1.35. Let X be a vector space and let F : X → (−∞,∞] be a function. We

denote (−∞,∞] by R∞, call dom(F ) = {x ∈ X
∣∣ F (x) <∞} the domain, and say F is

proper if dom(F ) 6= ∅. The function F is called convex if for α ∈ [0, 1], u, v ∈ X,

F
(
αu+ (1− α)v

)
≤ αF (u) + (1− α)F (v). (27)

A set C ⊂ X is called convex if the characteristic function χC is convex. The function

F is called strictly convex, if dom(F ) is convex, and for α ∈ (0, 1) and u, v ∈ dom(F ),

u 6= v

F
(
αu+ (1− α)v

)
< αF (u) + (1− α)F (v). (28)

Note that if X is not a vector space, but a convex subset of a vector space Y , completely

analogue definitions can be made.

Lemma 1.36. Let X be a vector space, F,G : X → R convex, α ≥ 0, g : R∞ → R∞

convex and monotone and {F i}i∈I a set of convex functions. Then, also the following

functions are convex:

F +G, αF, g ◦ F, sup
i∈I

F i.

For convex functions, we generalise the notion of differentiability in a non-smooth

context, allowing for a concept of differentiability containing relevant information for

convex functions.
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Definition 1.37. Let (X, ‖ · ‖) be a normed space and F : X → (−∞,∞] a convex

function. We call ξ ∈ X∗ a subgradient of F in a point x if for y ∈ X

F (y)− F (x) ≤ ξ(y − x).

The set of all subgradients [∂F ](x) = {ξ ∈ X∗ | ξ is subgradient of F in x} is called the

subdifferential.

Lemma 1.38. For (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) Banach spaces, F,G convex functions on

X, A : X → Y linear and continuous and α > 0, the following calculus rules hold:

∂[αF ](x) = α∂[F ](x), ∂[F +G](x) ⊃ ∂[F ](x) + ∂[G](x), ∂[F ◦ A](x) ⊃ A∗∂[F ](Ax)

where the inclusion of the addition holds with equality in case that there is an u0 ∈
dom(F ) ∩ dom(G) such that F is continuous in u0, and the inclusion for composition

with linear continuous operations holds with equality in case F is continuous in some

u0 ∈ dom(F ) ∩ Rg(A). Moreover, a convex function F attains a minimum in x ∈ X if

and only if 0 ∈ ∂[F ](x).

Also, one requires certain regularity assumptions on the occurring functions in the

Tikhonov regularisation, and while continuity would suffice, one can further relax to

lower semi-continuity conditions.

Definition 1.39. Let (X, TX) be a topological space and F : X → R∞. We call F

(sequentially) lower semi-continuous with respect to TX (TX-l.s.c.) if for any sequence

(xn)n in X such that xn
TX→ x for some x ∈ X,

F (x) ≤ lim inf
n→∞

F (xn).

Lemma 1.40. For (X, TX) and (Y, TY ) topological spaces, F,G TX-lower semi-continuous

and φ : R∞ → R∞ l.s.c. and monotonely increasing, {F n}n∈I a set of convex functions,

H : Y → X linear and continuous, and α > 0, the following functions are also lower

semi-continuous:

F +G, αF, φ ◦ F, F ◦H, sup
n∈I

F n.

Lemma 1.41. Let (X, ‖ · ‖X) be a normed space, and U∗ the dual of a normed space

(U, ‖ · ‖U). Then, the mapping x 7→ ‖x‖X is weakly lower semi-continuous, and the

mapping ξ 7→ ‖ξ‖U∗ is weak* lower semi-continuous.
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Lemma 1.42. Let (X, TX) be a topological space, let f, g : X → R∞ be lower semi-

continuous, and let (xn)n be a sequence in X with xn
TX→ x such that limn f(xn)+g(xn) =

f(x) + g(x) <∞. Then also f(xn)→ f(x) and g(xn)→ g(x).

Proof. Due to lower semi-continuity

f(x) ≤ lim inf
n→∞

f(xn), and g(x) ≤ lim inf
n→∞

g(xn).

If we assume f(x) = lim infn f(xn)− c for some c > 0, then

f(x) + g(x) = lim inf
n→∞

f(xn)− c+ g(x) ≤ lim sup
n→∞

f(xn) + g(xn)− c = f(x) + g(x)− c

yielding a contradiction, and consequently no such c can exist and lim infn f(xn) =

lim supn f(xn) = limn f(xn).

Lemma 1.43. Let (X, ‖ · ‖X) be a normed space, and F : X → R∞ a convex and lower

semi-continuous function. Then F is also weakly lower semi-continuous.

The theory of convex analysis we derived so far is often used to solve minimisation

problems minx∈X F (x) with convex, lower semi-continuous F : X → R∞.

However, sometimes solving an optimisation problem directly is not possible, but

there is a dual problem with a more suitable structure. Often, these dual problems offer

more structure and thus can be solved, and their solutions give insight into the original

problem and possibly even enable us to compute the solution to the original optimisation

problem.

Definition 1.44. For a Banach space (X, ‖ · ‖X) and F : X → R∞ a convex function,

we define the convex conjugate function F ∗ as

F ∗ : X∗ → R∞, F ∗(·) = sup
x∈X
〈·, x〉X∗×X − F (x).

Moreover, for G : X∗ → R∞ we define

G∗ : X → R∞, G∗(·) = sup
ξ∈X∗
〈ξ, ·〉X∗×X −G(ξ). (29)

Note that thus G∗ is defined as a function on X and not on X∗∗.

This conjugation operation also fulfills the typical property that T ∗∗ = T in a suitable

setting.
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Proposition 1.45. Let (X, ‖ · ‖X) be a reflexive Banach space and denote by

Γ0(X) =
{
F : X → R∞

∣∣∣ F is proper, convex and lower semi-continuous
}
,

Γ0(X∗) =
{
G : X∗ → R∞

∣∣∣ G is proper, convex and lower semi-continuous
}

the spaces of proper convex and lower semi-continuous functions, on which in slight abuse

of notation the conjugation operations ∗ : Γ0(X)→ Γ0(X∗) and ∗ : Γ0(X∗)→ Γ0(X) are

well-defined. Moreover, the former is invertible and the inverse operation is the latter,

i.e.

F = (F ∗)∗ on Γ0(X), and F (x) = sup
ξ∈X∗
〈ξ, x〉 − F ∗(ξ) ∀x ∈ X. (30)

Theorem 1.46. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces, let T : X → Y be linear

and continuous and F : X → R∞ and G : Y → R∞ both be proper, convex and lower

semi-continuous. If we further assume

Y =
⋃
λ>0

λ
(

dom(G)− T dom(F )
)
,

then we obtain the equivalent reformulation

inf
v∈X

F (v) +G(Tv) = min
η∈Y ∗

F ∗(−T ∗η) +G∗(η). (31)

Proof. See [5].
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Part I.

General Tikhonov Regularisation

In this part we consider Tikhonov regularisation approaches to inverse problems with

general discrepancies and regularisation functionals. This is a classical regularisation

approach to ill-posed inverse problems, that features optimisation problems balancing

the discrepancy in the data with costs generated by a function penalising undesired

properties. First we consider the well-known single-data approach. Later, we present a

multi-data approach applied to a set of subproblems collectively posing an inverse prob-

lem. Particular focus will be placed on suitable settings and assumptions for convergence

results and concepts of partial solutions if not all problems can be solved simultaneously.

2. Single-Data Tikhonov Regularisation

In this chapter, we reiterate the well-established theory for Tikhonov regularisation of

the single-data inverse problem

Tu = f †, (32)

which will be a basis to build the theory for multi-data regularisation upon.

Problem 2.1 (Single-data Tikhonov problem). Let X, Y be sets, α > 0, let D : Y ×
Y → [0,∞] (called the discrepancy function), R : X → [0,∞] (called the regularisation

function) and α ∈ (0,∞). Further, let T : dom(T ) ⊂ X → Y , and f † ∈ Y . The

corresponding single-data Tikhonov Problem STIKHα(f †) is defined as finding u† ∈ X
such thatu† ∈ argminu∈X Fα(u, f †) such that Fα(u†, f †) <∞,

with Fα(u, f †) = D(Tu, f †) + αR(u).
STIKHα(f †)

Problem STIKHα(f †) is expected to balance costs for not satisfying desired properties

with costs for high discrepancy between Tu and f , thus ensuring adequate solutions.

A suitable choice of α is in general not simple, however the rule of more noise requires

greater α applies.

Note that the problem STIKHα(f †) depends on two instances, α and f †, thus promi-

nent questions are for which α, f † the problem STIKHα(f †) is solvable and how it reacts
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to changing α and f †.

2.1. Existence and Stability

First, we aim to find suitable conditions to ensure that STIKHα(f †) is solvable and

robust with respect to noise, i.e. disturbances in f †. The following properties are posed

in a general setting in order to be widely applicable and fit many situations.

Definition 2.2. Let (Y, TY ) be a Hausdorff space, and let D : Y × Y → [0,∞], and let

TD be a Hausdorff topology on Y . Then D is called a basic discrepancy (with respect to

TY and TD), if the following hold:

D1 The topology TD is stronger than convergence D(f, fn) → 0, i.e. TD is such that

for a sequence (fn)n ⊂ Y and f ∈ Y ,

fn
τD→ f ⇒ D(f, fn)→ 0. (33)

D2 For v, f ∈ Y , the value D(v, f) = 0 if and only if v = f .

D3 The function D is TY × TD lower semi-continuous, i.e. for sequences (vn)n ⊂ Y ,

(fn)n ⊂ Y and respective limits f, v ∈ Y ,(
vn
TY→ v, fn

TD→ f
)
⇒ D(v, f) ≤ lim inf

n→∞
D(vn, fn). (34)

A basic discrepancy is called v0-continuous in f † ∈ Y , if the mapping f 7→ D(v0, f) is

continuous in f † with respect to the TD topology.

Let ψ : [0,∞) → [0,∞) be a continuous and monotone function with ψ(0) = 0. We

call a basic discrepancy strongly ψ-continuous on a set V ⊂ Y in f † ∈ Y , if there is

δ0 > 0 such that for all v ∈ V and for f ∈ Y with D(f †, f) ≤ δ0, the discrepancy

function satisfies the following modulus of continuity estimate:

|D(v, f †)−D(v, f)| ≤ ψ
(
D(f †, f)

)(
D(v, f †) + 1

)
. (35)

Note that these definitions are not standard, but will be used for the sake of readability.

With this notation, we use the following assumptions.

Assumptions 2.3 (Single-Data Tikhonov Regularisation).

A1 Let (X, TX) be a Hausdorff space.
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A2 Let (Y, TY ) be a Hausdorff space, and T : dom(T ) ⊂ X → Y be a continuous

operator with respect to TX and TY , such that dom(T ) is closed with respect to TX .

A3 The function D is a basic discrepancy (see Definition 2.2).

A4 The function R : X → [0,∞] is TX-lower semi-continuous.

A5 The Tikhonov functional F1 (with parameter α = 1) is uniformly coercive in the

following sense: If fn
TD→ f , then for each C > 0 the set

⋃∞
n=1{u ∈ X

∣∣ F1(u, fn) <

C} is TX-precompact.

Some of these assumptions are standard, while some seem rather technical. It will

become clear in the following theorems’ proofs why they were required, and where weaker

conditions would suffice.

While these assumptions will be applied throughout the entire chapter, in later stages

additional continuity and source conditions will be required.

Hence, we can start answering whether STIKHα(f †) is solvable, or more precisely for

which data and parameter the minimisation problem attains a finite value.

Theorem 2.4 (Existence). Let Assumptions 2.3 hold and let f † ∈ Y . Then, either

for all α ∈ (0,∞) STIKHα(f †) possesses a solution, or Fα(·, f †) is not proper for any

α ∈ (0,∞). Moreover, if Fα(·, f †) is strictly convex, the solution is unique.

Proof. Obviously, being proper is equivalent to the existence of an u0 ∈ dom(R)∩dom(T )

such that D(Tu0, f
†) < ∞, which does not dependent on α. So either the problem is

not proper for any α, or it is for all.

Hence, in the following we assume that Fα(·, f †) is proper for α > 0, and show

that the minimum is attained by a standard approach, using the direct method. Ob-

viously Fα(u, f †) = D(Tu, f †) + αR(u) ≥ 0 and due to the properness assumptions

infu∈dom(T ) Fα(u, f †) < ∞. Thus, there exists an infimising sequence (un)n such that

limn→∞ Fα(un, f †) = infu∈X Fα(u, f †). Basic computation shows that for some C > 0

cF1(un, f †) ≤ Fα(un, f †) ≤ C for almost every n with c = α in case α ≤ 1, and c = 1

otherwise. Due to coercivity, there is a subsequence (un
′
)n′ , such that un

′ TX→ u† ∈ X.

Using lower semi-continuity of D(·, f †) and R, and Tun
′ TY→ Tu† by continuity, one

obtains

Fα(u†, f †) ≤ inf
u∈X

Fα(u, f †),

implying that u† is a solution to STIKHα(f †). As strictly convex functions can attain

at most one minimum, the uniqueness statement follows.
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Remark 2.5. Note that in this proof only weaker lower semi-continuity and coercivity

properties than stated in Assumptions 2.3 were needed, since one only required lower

semi-continuity with respect to the first component, and coercivity for fixed f † and for

some C > 0 such that the level-set is not empty, not all C (although this C is usually

not known a-priori).

Next, we make sure that solving the Tikhonov problem is stable, i.e. slight changes

in the data f will not affect the corresponding solutions significantly. To do so, we need

an additional continuity property of the discrepancy, namely that D is a continuous

discrepancy in a reasonable sense.

Theorem 2.6 (Stability). Let Assumptions 2.3 hold, f † ∈ Y , α > 0 and a sequence

(fn)n ⊂ Y such that fn
TD→ f †. Further, let there be a solution to STIKHα(f †) we denote

by u0 such that D is a Tu0-continuous discrepancy in f †.

Then STIKHα(fn), the Tikhonov problem corresponding to data fn, is solvable for

sufficiently large n and we denote the corresponding solutions by un, i.e.

Fα(un, fn) = min
u∈dom(T )

Fα(u, fn) <∞. (36)

Moreover, the sequence (un)n admits a TX-convergent subsequence in X. Furthermore,

every TX-limit u† of such a subsequence (un
′
)n′ is a solution to STIKHα(f †), the Tikhonov

problem with the true data f †, and these subsequences satisfy

R(u†) = lim
n′→∞

R(un
′
). (37)

If the solution u0 to the Tikhonov problem for f † and α is unique, then the entire sequence

(un)n TX-converges towards the solution u0.

Proof. Note that this statement is a generalisation of [25, Thm 3.2, p 990] and the

presented proof follows its general idea.

The continuity of D(Tu0, ·) in f †, which holds due to assumption, yields

Fα(u0, f
n) = D(Tu0, f

n) + αR(u0)
n→∞→ D(Tu0, f

†) + αR(u0) <∞

and consequently for n sufficiently large minu∈dom(T ) Fα(u, fn) < ∞. Thus, Theorem

2.4 ensures the existence of un for n sufficiently large, and in the following we assume

without loss of generality that the problems are solvable for all n ≥ 0.
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Due to the optimality of un for data fn, we obtain for u ∈ X that

Fα(un, fn) = D(Tun, fn) + αR(un)
opt.

≤ D(Tu, fn) + αR(u) = Fα(u, fn). (38)

Choosing u = u0 yields

Fα(un, fn) ≤ D(Tu0, f
n)︸ ︷︷ ︸

n→∞→ D(Tu0,f†)<∞

+R(u0) ≤ C <∞.

Due to the uniform coercivity, the sequence (un)n admits a convergent subsequence

(un
′
)n′ such that un

′ TX→ u†. At this point, we may assume without loss of generality, that

the entire sequence converges. Due to the lower semi-continuity of D and R,

Fα(u†, f †)
l.s.c.

≤ lim inf
n→∞

Fα(un, fn) ≤ lim sup
n→∞

Fα(un, fn)
opt.

≤ lim sup
n→∞

Fα(u0, f
n)

cont.
= Fα(u0, f

†),

(39)

where we applied the optimality of un for data fn, as well as the fact, that for u0 the

discrepancy D(Tu0, ·) is continuous with respect to the topology TD in f †. Consequently,

u† is a solution to the Tikhonov problem with data f †.

In case of a unique solution, the entire sequence converges as an immediate conse-

quence of the previous result and a subsequence argument.

All that is left to show is that also the values of the regularisation function R converge.

Therefore, let again (un
′
)n′ be a convergent subsequence un

′ TX→ u†, and observe that since

Fα(u†, f †) = Fα(u0, f
†), (39) implies that

Fα(u†, f †) = lim inf
n′→∞

Fα(un
′
, fn

′
) = lim sup

n′→∞
Fα(un

′
, fn

′
) (40)

yielding convergence of the functional Fα. Since Fα(u, f) = D(Tu, f) +αR(u) and both

R and D are lower semi-continuous in a suitable sense, Lemma 1.42 implies convergence

of both D(Tun
′
, f †) and R(un

′
) respectively.

Remark 2.7. The semi-continuity and continuity properties stated were both required

in order to show the optimality of the limits u†. Also, here the uniform coercivity for a

sequence (fn)n was required to ensure the existence of convergent subsequences.
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2.2. Convergence

In the previous chapter the regularisation parameter α remained fixed and solely the data

(fn)n were changed, in order to show stability. However, for ever less disturbed data, it

would be reasonable to reduce α towards 0, thus returning to the original unregularised

problem minu∈dom(T ) D(Tu, f †). This raises the question how to choose α with respect to

the noise level? Too fast reduction might lead to results strongly affected by the noise,

while too slow reduction might yield results with high discrepancy. Furthermore, if the

weight of R reduces towards zero, does this imply that solutions get ever-less regular, or

can one expect the values of R(un) to remain low?

To formalise the notion of vanishing noise, we use the following notation.

Definition 2.8. Let (∆n)n∈N ⊂ (0,∞) (the sequence of vanishing noise levels) be a

sequence such that (∆n)n is strictly monotone decreasing and the limit of (∆n)n is 0. To

simplify the notation, we associate n with δ such that ∆n = δ, resulting in a sequence

(δ)δ∈∆. We will also index other sequences with δ, i.e. (f δ)δ refers to a sequence (fn)n

with said relation between δ and n. Particularly, limδ→0 f
δ refers to limn→∞ f

n, and

analogously for other operations concerning sequences. Also, the phrase a property holds

for δ sufficiently small refers to n sufficiently large, which indicates that after finitely

many entries the property is satisfied by the elements of a sequence.

In the following there will implicitly be a sequence (∆n)n in the background without

further mention, and we use the resulting sequence (δ)δ∈∆ to index the other sequences.

In order to answer whether solutions to the Tikhonov problems remain regular when

reducing noise and the regularisation parameter towards 0, one uses the concept of

R-minimal solutions.

Definition 2.9 (R-Minimal Solutions). For f ∈ Rg(T ) we call û ∈ X an R-minimal

solution to Tu = f , if

û ∈ argmin
u∈dom(T )

Tu=f

R(u), such that R(û) <∞. (41)

Obviously, for f ∈ Rg(T ) there exist solutions to Tu = f , however, R-minimal solu-

tions are special in the way that they also minimise the regularisation functional.

Lemma 2.10. Let the Assumptions 2.3 hold and let f † ∈ Rg(T ). Then either there

exists an R-minimal solution to Tu = f † or R(u) ≡ ∞ for all u with Tu = f †.
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Proof. We may assume there is an u0 such that Tu0 = f † and R(u0) < ∞, and thus,

an R-infimising sequence (vn)n exists, such that Tvn = f †. Without loss of generality,

F1(vn, f †) = D(f †, f †) + R(vn) ≤ R(u0) < ∞, and by coercivity the sequence (vn)n

admits a convergent subsequence (relabeled vn) with limit û. Since the set T−1(f †) is

TX-closed, and by lower semi-continuity of R, we see that

R(û) ≤ lim inf
n→∞

R(vn) = inf
u∈X : Tu=f†

R(u), (42)

implying that û ∈ T−1(f †) with minimal regularisation value.

Next, one is interested in whether for the sequence of data (f δ)δ and parameter (α(δ))δ,

the sequence of corresponding solutions (uδα)δ converges to an R-minimal solution, i.e.

the regularity is the best it can be.

Theorem 2.11 (Convergence). Let Assumptions 2.3 hold, let the sequence (f δ)δ ⊂ Y

and f † ∈ T
(

dom(R)
)

be such that the noise level D(f †, f δ) = δ and f δ
TD→ f †. Let there

be an R-minimal solution u0 to Tu = f †. Then the problems STIKHα(f δ) are solvable

for any α and δ sufficiently small.

Moreover, if we choose α = α(δ) dependent on the noise level as α : (0,∞] → (0,∞]

such that

lim
δ→0

α(δ) = 0, and lim
δ→0

δ

α(δ)
= 0 (43)

and denote the corresponding solutions to STIKHα(δ)(f
δ) by uδα, then the sequence of

solutions (uδα)δ contains a TX-convergent subsequence. Every limit of such a subsequence

is an R-minimal solution to Tu = f †. Moreover, if the R-minimal solution is unique,

the entire sequence will converge.

Proof. This theorem is a generalisation of [25, Thm 3.5, p 991] and the following proof

will use it as a blueprint.

First, we note that for any α > 0,

Fα(u0, f
δ) = D(Tu0, f

δ) + αR(u0) = δ + αR(u0) <∞,

and thus Theorem 2.4 implies solvability. We once again take advantage of the optimality

of uδα, obtaining

D(Tuδα, f
δ) + α(δ)R(uδα) = Fα(δ)(u

δ
α, f

δ)
opt.

≤ Fα(δ)(u, f
δ) = D(Tu, f δ) + α(δ)R(u), (44)
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for arbitrary u ∈ X. Inserting u = u0 in this equation and observing Tu0 = f † yields

D(Tuδα, f
δ) + α(δ)R(uδα) ≤ D(Tu0, f

δ)︸ ︷︷ ︸
=δ→0

+α(δ)︸︷︷︸
→0

R(u0)→ 0. (45)

Omitting either D(Tuδα, f
δ) ≥ 0 or α(δ)R(uδα) ≥ 0 in this inequality, which holds due to

the non-negativity of the occurring functions, one obtains

R(uδα) ≤ δ

α(δ)︸︷︷︸
→0

+R(u0) <∞, and D(Tuδα, f
δ)→ 0. (46)

Thus, through the uniform coercivity property of F1(·, ·) the sequence (uδα)δ contains

a convergent subsequence with limit u†. Due to the lower semi-continuity of D with

respect to both arguments,

D(Tu†, f †) ≤ lim inf
δ→0

D(uδα, f
δ) = 0, (47)

which due to the positive definiteness property of D implies Tu† = f †. Furthermore,

(46) together with lower semi-continuity of R implies that u† is an R-minimal solution.

The statement concerning convergence of the entire sequence in case of unique R-

minimal solutions is again obtained via a subsequence argument and the already estab-

lished statements.

Theorem 2.11 shows what suitable choices of α might be, in particular that one cannot

reduce α too drastically. However, we are still unaware of how fast the solutions will

converge, which in practical application might pose a problem. Note that until now no

vector space structure was required, however in the following we will need convexity and

Banach spaces to find suitable notions of distance to measure convergence rates. Also,

to measure convergence rates, we use the following notation.

Definition 2.12. Let δ be a sequence in the sense of Definition 2.8 with the corre-

sponding (∆n)n, and let (f δ)δ and (gδ)δ be non negative real valued sequences. Then we

use

f = O(g) ⇔ lim sup
δ→0

f

g
<∞, and f = o(g) ⇔ lim

δ→0

f

g
= 0. (48)

Also, we introduce the Bregman distance [32], a weak notion of distance, which is

suitable to measure the rates of convergence for such problems.
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Definition 2.13. Let X be a Banach space and F : X → R∞ a convex function. For

x2 ∈ X and ξ ∈ ∂[F ](x2), we define the Bregman distance

Dξ
F (x1, x2) = F (x1)− F (x2)− ξ(x1 − x2). (49)

Remark 2.14. We note that Dξ
F is always non-negative, however in general it does not

satisfy a positive definiteness property, i.e. Dξ
F (x1, x2) = 0 does not imply x1 = x2. A

simple instance where no positivity holds is the function F (x) = |x| with x ∈ R, x1 = 1,

x2 = 2 and ξ = 1 ∈ ∂[F ](x2).

Nonetheless, this gives a suitable notion of distance to measure convergence rates,

however we will require some further technical assumptions to obtain rates.

Theorem 2.15 (Convergence Rates). Let Assumptions 2.3 be satisfied, let X be a Ba-

nach space (but TX does not need to be the corresponding norm topology) and let R be

convex. Let f † ∈ Y , p ≥ 1, ξ ∈ X∗ be such that the following assumptions hold:

1. There exists an R-minimal solution u† to Tu = f † with ξ ∈ ∂[R](u†).

2. There are constants γ1, γ2 ≥ 0 with γ1 < 1 and ε0 > 0 such that for all u ∈ X with

D(Tu, f †) ≤ ε0 and R(u) ≤ R(u†) + ε0,

−〈ξ, u− u†〉X∗×X ≤ γ1D
ξ
R(u, u†) + γ2D(Tu, Tu†)1/p. (SC1)

3. D satisfies a quasi triangle inequality, in the sense that there is a constant c > 0

such that for v, w ∈ Y ,

D(v, f †)1/p ≤ c
(
D(v, w)1/p +D(f †, w)1/p

)
. (50)

Then the following convergence results in terms of Bregman distance hold for (f δ)δ such

that f δ
TD→ f † and D(f †, f δ) = δ.

• For p > 1 and α chosen such that there are constants c, C > 0 and cδ
p−1
p ≤ α(δ) ≤

Cδ
p−1
p , one obtains

Dξ
R(uδα, u

†) = O(δ
1
p ) and R(uδα) ≤ R(u†) +

δ
1
p

c
. (51)
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• In the case of p = 1, for 1 > ε > 0 and the choice α such that cδε ≤ α(δ) ≤ Cδε

for some constants c, C > 0, one obtains

Dξ
R(uδα, u

†) = O(δ1−ε) and R(uδα) ≤ R(u†) +
δ1−ε

c
. (52)

In both cases, one obtains

D(Tuδα, f
δ) = O(δ). (53)

Proof. Again, this theorem is a generalisation of [25, Thm. 4.4, p 995] and the following

proof uses its ideas.

From the optimality of uδα, the fact that R(u†) < ∞ and Tu† = f † since u† is an

R-minimal solution, we see that

D(Tuδα, f
δ) + α(δ)R(uδα)

opt.

≤ D(Tu†, f δ)︸ ︷︷ ︸
=δ→0

+α(δ)R(u†) = δ + α(δ)R(u†) (54)

which can be equivalently reformulated to

D(Tuδα, f
δ) + α(δ)

(
R(uδα)−R(u†)− 〈ξ, uδα − u†〉X∗×X

)︸ ︷︷ ︸
DξR(uδα,u

†)

≤ α(δ)〈ξ, u† − uδα〉X∗×X + δ.

(55)

Furthermore, for δ sufficiently small uδα satisfies the requirements for (SC1) as R(uδα) ≤
R(u†) + δ

α(δ)
→ R(u†) due to (54) when omitting D(Tuδα, f

δ) and with the triangle

inequality (50) one obtains

D(Tuδα, f
†)

1
p ≤ cδ

1
p + cD(Tuδα, f

δ)
1
p

(54)

≤ cδ
1
p + c

(
δ + α(δ)R(u†)

) 1
p → 0. (56)

Consequently, using the Source Condition (SC1), Tu† = f † and the triangle inequality,

one obtains

〈ξ, u† − uδα〉X∗,X
(SC1)

≤ γ1D
ξ
R(uδα, u

†) + γ2D(Tuδα, Tu
†︸︷︷︸

=f†

)1/p (57)

≤ γ1D
ξ
R(uδα, u

†) + cγ2

(
D(Tuδα, f

δ)1/p + δ
1
p
)
.

Case p = 1: Combining (55) and (57) yields
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(
1− cα(δ)γ2

)
D(Tuδα, f

δ) + α(δ)(1− γ1)Dξ
R(uδα, u

†) ≤ δ + cα(δ)γ2δ. (58)

Due to γ1 < 1 and cα(δ)γ2 < 1 for δ sufficiently small, one can rearrange in order to

obtain

D(Tuδα, f
δ) ≤ δ

1 + cα(δ)γ2

(1− cα(δ)γ2)
= O(δ),

Dξ
R(uδα, u

†) ≤ δ(1 + cα(δ)γ2)

α(δ)(1− γ1)
= O(δ1−ε).

Case p > 1: Similar to the case p = 1 we combine the results (55) and (57) in order

to obtain

D(Tuδα, f
δ)− cα(δ)γ2D(Tuδα, f

δ)
1
p + α(δ)(1− γ1)Dξ

R(uδα, u
†) ≤ δ + cα(δ)δ

1
pγ2. (59)

Application of Young’s inequality

ab ≤ ap

p
+
bp
∗

p∗
for a, b ≥ 0,

1

p
+

1

p∗
= 1,

with a = D(Tuδα, f
δ)1/p and b = cα(δ)γ2 results in

cα(δ)γ2D(Tuδα, f
δ)

1
p ≤ 1

p
D(Tuδα, f

δ) +

(
cγ2α(δ)

)p∗
p∗

.

Thus, for δ sufficiently small,

D(Tuδα, f
δ) ≤ p

p− 1

(
δ + cα(δ)δ

1
pγ2 +

(cα(δ)γ2)p
∗

p∗

)
= O(δ),

Dξ
R(uδα, u

†) ≤
δ + cα(δ)δ

1
pγ2 + 1

p∗
(cα(δ)γ2)p

∗

α(δ)(1− γ1)
= O(δ

1
p ).

Remark 2.16. Note that the Condition (SC1) is a variational inequality source condi-

tion as described in [26], using the Bregman distance Dξ
R as the error functional. These

variational inequality source conditions yield a wider theory of conditions allowing for

convergence results obtained similarly to the computations done above.

Since the Source Condition (SC1) is still quite abstract, the following shows a sufficient

condition in a common setting.
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Theorem 2.17. Let (X, TX) and (Y, TY ) be Hausdorff spaces, and let R be TX-lower

semi-continuous. Let (X, ‖·‖X), (Z, ‖·‖Z),(Y, ‖·‖Y ) be Banach spaces such that T : X →
Y is linear and continuous with respect to TX and TY . Let Z ⊂ Y such that ‖ · ‖Z is

lower semi-continuous with respect TY in Y when understanding ‖y‖Z = ∞ if y 6∈ Z.

Further, we denote by T̃ : dom(T̃ ) = {u ∈ X
∣∣ Tu ∈ Z} ⊂ X → Z the restriction of

T to suitable spaces and we assume without loss of generality that T̃ is densely defined.

We consider the Tikhonov functional Fα(·, f) = ‖T · −f‖pZ + αR(·), i.e. with a norm

discrepancy D(v, f) = ‖v − f‖pZ for some p ≥ 1. We further assume, that Fα(·, f) is

coercive for any f ∈ Y and that the topology TY is shift invariant, i.e. such that fn
TY→ f

iff fn − g TY→ f − g for any g ∈ Y . Let f † ∈ Z and (f δ)δ ⊂ Z be a sequence such that

‖f † − f δ‖pZ = δ and δ → 0 (we use a extension of the norm topology in Z as the TD
topology on Y ). Further, let u† be an R-minimal solution to Tu = f † such that

there is ω ∈ dom(T̃ ∗) such that T̃ ∗ω ∈ ∂R(u†), (S̃C1)

where T̃ ∗ is the adjoint of T̃ . For ξ = T̃ ∗ω we gain:

• For p > 1, the choice of α such that cδ
p−1
p ≤ α(δ) ≤ Cδ

p−1
p results in

Dξ
R(uδα, u

†) = O(δ
1
p ), and ‖Tuδα − f δ‖

p
Z = O(δ). (60)

• For p = 1 and α such that there are constants c, C > 0 with cδε ≤ α(δ) ≤ Cδε for

some ε > 0 results in

Dξ
R(uδα, u

†) = O(δ1−ε), and ‖Tuδα − f δ‖Z = O(δ). (61)

Proof. We just need to verify, that indeed the assumptions of Theorem 2.15 are fulfilled.

Obviously, for D(v, f) = ‖v−f‖pZ we obtain D ≥ 0 and D(v, f) = 0 if and only if v = f .

In order to show lower semi-continuity, we compute

‖v − f‖Z ≤ lim inf
n→∞

‖ vn − f︸ ︷︷ ︸
TY→v−f

‖Z − lim
n→∞

‖f − fn‖Z︸ ︷︷ ︸
=0

≤ lim inf
n→∞

‖vn − fn‖Z .

That the subgradient of R in u† is non-empty is apparent, since T̃ ∗ω ∈ ∂R(u†). Also,

the quasi triangle inequality is simply the standard triangle inequality of norms for ‖·‖Z ,

which only leaves to show the estimate on the dual pairing. Therefore, we note that

both uδα, u
† ∈ dom(T̃ ), since Fα is proper by assumption, and u† and uδα are optimal in
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their respective senses. Also ξ ∈ dom(T̃ ∗), resulting in

〈ξ, u† − uδα〉X∗×X = 〈ω, T̃ (u† − uδα)〉Z∗×Z ≤ ‖ω‖Z∗‖Tuδα − Tu†‖Z = ‖ω‖Z∗D(Tuδα, Tu
†)1/p

= 0Dξ
R(u, u†) + ‖ω‖Z∗D(Tuδα, Tu

†)1/p,

i.e. (SC1) is satisfied with γ1 = 0 and γ2 = ‖ω‖Z∗ .

Remark 2.18. A classical situation in which one uses this Theorem is, if T : (X, ‖ ·
‖X)→ (Y, ‖ · ‖Y ) is linear and continuous, and the relevant topologies TX and TY repre-

sent the respective weak topologies. Moreover, ‖ · ‖Z is a stronger norm than the one on

Y , and is only defined on a subspace of Y (e.g. Y = L2 but Z is the Sobolev space H1).

So to summarise, under reasonable assumptions the Tikhonov problem is solvable.

Moreover, with additional continuity assumptions, solving the Tikhonov problem is sta-

ble. Finally, with a suitable parameter choice rule, one can obtain convergence to R-

minimal solutions, and with an additional source condition, rates can be estimated.
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3. Multi-Data Tikhonov Regularisation

Based on this classical approach to Tikhonov regularisation, one can extend the setting

by breaking down an inverse problem into several inverse problems. Hence, in this

section one tries to solve

T1u = f †1 , . . . , TMu = f †M (62)

for u ∈ X, f †i ∈ Yi and operators Ti : dom(Ti) ⊂ X → Yi. We will use product space

notation T = (T1, . . . , TM), Y = Y1 × · · · × YM and f † = (f †1 , . . . , f
†
M) and problem

(62) can be understood as the inverse problem Tu = f † being broken down into several

subproblems. Considering these subproblems will give us more control to deal with the

individual subproblems’ properties.

As motivated in the introduction, we aim to consider a Tikhonov functional Fλ,α(u, f †) =∑M
i=1 λiDi(Tiu, f

†
i )+Rα(u) using multiple discrepancies with individual parameter. Split-

ting the problem into these subproblems and applying such Tikhonov approaches allows

to consider adequate noise models and corresponding discrepancies to the individual

problems. Also, the individual problems might have different scales and noise levels,

and moreover the degree of ill-posedness might vary strongly between the individual

problems, making individual regularisation parameters essential to obtaining a suitable

approach. Furthermore, splitting the problem allows to consider a multitude of be-

haviour in the data. Important questions which arise from this setting are:

• How are the parameter supposed to be chosen in order to get suitable results?

• How do sequences of solutions obtained through such a Tikhonov approach to data

disturbed by noise behave if the data of some (but not all) problems converge to

a ground truth? In this case, does the problem converge to a limit problem with

appropriate interpretation (like R-minimal)?

• Can one obtain convergence rates for the individual problems, and if so, how do

they incorporate the noise levels of the other problems, what is their interplay?

3.1. Preliminaries

Before we come to the main focus of multi-data Tikhonov regularisation, we have to

adapt the assumptions and confirm basic existence and stability results.

While the split problem (62) could be interpreted as a single inverse problem on the

product space Y = Y1 × · · · × YM and regularised accordingly, we discuss a multi-data
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Tikhonov approach as follows in order to address mentioned issues.

Problem 3.1 (Multi-Data Tikhonov Problem). For i ∈ {1, . . . ,M} let X, Yi, A be sets

and let Ti : dom(Ti) ⊂ X → Yi . Further, let Di : Yi × Yi → [0,∞], λ ∈ (0,∞)M and

a family of functions (Rα)α∈A with Rα : X → [0,∞] be given. We say u† is a solution

to the multi-data Tikhonov regularisation regarding Tiu = f †i for i ∈ {1, . . . ,M} with

discrepancies Di, weights λi and regularisation Rα with regularisation parameter α ∈ A,

if 
u† ∈ argminu∈X Fλ,α(u, f †) such that Fλ,α(u†, f †) <∞,

with Fλ,α(u, f †) =

(∑M
i=1 λiDi(Tiu, f

†
i )

)
+Rα(u).

(MTIKHλ,α(f †))

Here, one uses a single regularisation functional Rα, while individual weighting pa-

rameters λi and individual discrepancies Di suitable for the i-th inverse problem are

applied, in order to exert more control over individual discrepancies.

Such approaches are already used in practice in order to solve independent inverse

problems with complementing information, i.e. solving Tiui = f †i for ui via Tikhonov

approaches with joint regularisation which is expected to transfer information between

the problems. While such problems satisfies the setting of multi-data regularisation, this

multi-data approach is not limited to such situations.

In order to develop the theory, we generalise the assumptions from the single-data

setting to the multi-data setting, and those will be used throughout the entire chapter.

As we allow now for slightly more general regularisation functionals, we require the

following definition.

Definition 3.2. Let (X, TX) and (A, TA) be a Hausdorff spaces, and for any α ∈ A, let

Rα : X → [0,∞]. Then we call the family (Rα)α∈A continuous, if the following hold:

R1 The mapping (u, α) 7→ Rα(u) is TX ×TA-lower semi-continuous, i.e. for sequences

(un)n ⊂ X and (αn)n ⊂ A,(
un
TX→ u and αn

TA→ α
)
⇒ Rα(u) ≤ lim inf

n→∞
Rαn(un). (63)

R2 For fixed u ∈ X, and a sequence (αn)n ⊂ A such that αn
TA→ α, also limn→∞Rαn(u) =

Rα(u).
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R3 For α, β ∈ A, there is a constant c(α, β) such that Rα(u) ≤ c(α, β)Rβ(u) for all

u ∈ X, i.e. the functions Rα are topologically equivalent for different parameter

α ∈ A. Moreover, for a sequence (αn)n ⊂ A with αn
TA→ α the constants c(α, αn)

stay bounded.

Furthermore, for continuous ψR
α†

: [0,∞) → [0,∞) with ψR
α†

(0) = 0, we say the

family (Rα)α∈A is strongly ψR†α-continuous on a set U ⊂ X in α† ∈ A, iff (A, dA) is

a metric space equivalent to (A, TA) and there is ε0 > 0 such that for all u ∈ U and

for β ∈ A with dA(β, α†) < ε0, the family of regularisation functions (Rα)α satisfies the

following modulus of continuity estimate:

|Rβ(u)−Rα†(u)| ≤ ψR
α†

(
dA(β, α†)

)(
Rα†(u) + 1

)
. (64)

Recall that for single-data Tikhonov problems we required Hausdorff spaces, a con-

tinuous operator, a basic discrepancy (a non-negative function with positivity proper-

ties which is lower semi-continuous), a topology stronger than the discrepancy, a non-

negative and lower semi-continuous regularisation functional and a coercivity statement.

The following assumptions are similar, however now feature several discrepancies and

corresponding spaces and topologies.

Assumptions 3.3 (Multi-data Tikhonov Regularisation). Let the following conditions

hold:

M1 The spaces (X, TX) and (A, TA) are Hausdorff spaces.

M2 For i ∈ {1, . . . ,M}, the space (Yi, TYi) is a Hausdorff space, and the operator

Ti : dom(Ti) ⊂ X → Yi is continuous with respect to TX and TYi and dom(Ti) is

closed with respect to TX .

M3 There are topologies TDi on Yi for i ∈ {1, . . . ,M} such that Di is a basic discrep-

ancy with respect to TYi and TDi (see Definition 2.2).

M4 The family (Rα)α∈A is continuous (see Definition 3.2).

On the product space Y = Y1× · · ·×YM , we denote by TY and TD the product topologies

induced by {TYi}Mi=1, {TDi}Mi=1 respectively.

M5 There is α0 ∈ A such that the Tikhonov functional F1,α0 with 1 = (1, . . . , 1) is

uniformly coercive in the following sense: For a sequence (fn)n ⊂ Y with fn
TD→ f

and for each C > 0, the set
⋃∞
n=1{u ∈ X

∣∣F1,α0(u, f
n) < C} is TX-precompact.
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Remark 3.4. While most of these assumptions are simply generalisations of the single-

data setting, allowing the regularisation to be dependent on a parameter α ∈ A will

allow for more general settings without any substantial problems arising from it. This

parameter α can be understood as a fine-tuning of the regularisation, while the main

weighting is done through λ.

The existence and stability properties of MTIKHλ,α(f †) are inherited from the cor-

responding results for single-data Tikhonov regularisation.

Theorem 3.5. Let the Assumptions 3.3 hold and f † ∈ Y . Either for all λ ∈ (0,∞)M and

α ∈ A the Problem MTIKHλ,α(f †) is solvable, or Fλ,α(·, f †) ≡ ∞ for all λ ∈ (0,∞)M

and α ∈ A. Moreover, if there is a solution u0 to MTIKHλ,α(f †) and if Di is Tiu0-

continuous in f †i for i ∈ {1, . . . ,M} (i.e. Di(Tiu0, ·) is continuous in f † with respect to

the TDi topology), then solving MTIKHλ,α(f †) is stable.

Proof. For fixed α ∈ A and λ ∈ (0,∞)M we consider the discrepancy and regularisation

functions D̃(v, f) =
∑M

i=1 λiDi(vi, fi), R̃(u) = Rα(u) and F̃1(u, f) = D̃(Tu, f)+α̃R̃(u) =

F̃α̃(u, f) with α̃ = 1, where T = (T1, . . . , TM), v, f ∈ Y and u ∈ X. Using the single-

data Tikhonov functional F̃1(u, f) to the inverse problems Tu = f yields an approach

satisfying Assumptions 2.3. Hence, Theorem 2.4 states that F̃1(·, f †) either attains a

minimum or is constantly ∞. Moreover, due to the topological equivalence of Rα and

Rβ for α, β ∈ A, the properness of the problems does not depend on the specific α, thus

making the problem either be solvable for all α ∈ A or non-proper. The same argument

can be made for different parameter λ, showing that being proper does not depend on

α or λ, and consequently the existence statement is valid.

To show stability, we apply Theorem 2.6 to the functional F̃1 for fixed α ∈ A and

λ ∈ (0,∞)M , where Tu0-continuity of D̃ is satisfied due to the continuity assumptions

on Di for i ∈ {1, . . . ,M}.

3.2. Convergence to Partial Solutions

In this section, we aim to answer the questions stated in the beginning of Chapter

3. In particular, the question of how solutions behave if the data concerning some of

the problems converge to a ground truth while the other data converge to data not

representing the true data. This leads to the concept of partial solutions, i.e. u ∈ X

such that for an index set I = {i1, . . . , i|I|} ⊂ {1, . . . ,M} with TI = (Ti1 , . . . , Ti|I|) and

fI = (fi1 , . . . , fi|I|), TIu = fI holds. As we consider the data of some subproblems
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converging to a ground truth, one might expect to obtain partial solutions solely solving

said subproblems. We will see, that convergence to such partial solutions can be attained

and the problems themselves converge towards a limit problem not unlike the problem

minTu=f† R(u). As we will see, this limit problem can be understood as a Tikhonov

approach to the unsolved subproblems, using the solved problems as a prior.

To answer the posed questions, we aim to generalise the theory of vanishing noise

to incorporate convergence to partial solutions. Again a suitable parameter choice is

required in order to guarantee convergence towards partial solutions. Note that we

again use sequences indexed by δ, however, now δ = (δ1, . . . , δM) ∈ (0,∞)M is a vector

of positive reals.

Remark 3.6. Note that in Chapter 2 continuity of D was required for the stability result

in Theorem 2.6, but not for the convergence result in Theorem 2.11, since α(δ) → 0

enforced the convergence one previously only attained due to continuity assumptions.

The following theory of convergence to partial solutions is a mixture of the two, and thus

requires a mixture of the assumptions and techniques used in the respective proofs.

In particular, we need to adapt the notion of R-minimal solutions in case of partial

solutions to also incorporate discrepancies of the unsolved problems.

Definition 3.7. Let Di and Rα as in the Tikhonov functional in Problem 3.1. For

an index set I ⊂ {1, . . . ,M}, f ∈ Y , weights λ ∈ (0,∞]M and α ∈ A, we define the

extended regularisation functional

Rα,λ,I(u, f) = Rα(u) +
∑
i∈Ic

λiDi(Tiu, fi). (65)

Note that in this setting, we allow λi =∞ in which case we set λiDi(Tiu, fi) = χ{fi}(Tiu),

where χ denotes the characteristic function in Definition 1.34.

For f † ∈ Y , we call u† ∈ X an Rα,λ,I-minimal I-partial solution to Tu = f † if

u† ∈ argmin
u∈dom(T )

TIu=f†I

Rα,λ,I(u, f
†), and Rα,λ,I(u

†, f †) <∞, (66)

where for I = {i1, . . . , i|I|} with i1 < i2 < · · · < i|I|, TI = (Ti1 , . . . Ti|I|) and f †I =

(f †i1 , . . . , f
†
i|I|

). When setting λi = ∞ for i ∈ I one can understand this minimisation

problem equivalently as argminu∈dom(T ) Rα,λ,{1,...,M}(u, f
†) since for i ∈ I the convention

λiDi(Tiu, fi) = χ{fi}(Tiu) enforces TIu = f †I .
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Remark 3.8. Note that Rα,λ,I is a again a multi-data Tikhonov functional to the prob-

lem TIcu = f †Ic, and thus Rα,λ,I-minimal solutions are solutions to a Tikhonov problem

regarding TIcu = f †Ic using TIu = f †I as prior.

Theorem 3.9 (Convergence to Partial Solutions). Let Assumptions 3.3 hold, let the

sequence (f δ)δ in Y with f δ
TD→ f † be given and denote with Di(f

†
i , f

δ
i ) = δi the noise

level of the individual subproblems and set δ = (δ1, . . . , δM). Further, let I ⊂ {1, . . . ,M}
and λ† ∈ (0,∞]M be such that λ†i = ∞ for i ∈ I and finite otherwise, let α† ∈ A and

f † ∈ Y such that f †I ∈ Rg(TI). Assume there is an Rα†,λ†,I-minimal I-partial solution

u0 to Tu = f † such that for all i ∈ Ic, the discrepancy Di is Tiu0-continuous in f †i (i.e.

Di(Tiu0, ·) is continuous in f †i with respect to TDi).

Then, for every λ ∈ (0,∞)M , α ∈ A and f δ with δ sufficiently small MTIKHλ,α(f δ)

possesses a solution. Furthermore, if sequences (αδ)δ and (λδ)δ withαδ
TA→ α† and λδ → λ†

are chosen such that λδi → λ†i ∈ (0,∞) for i ∈ Ic,

λδi δi → 0, λδi →∞ = λ†i for i ∈ I,
(67)

then the corresponding sequence of solutions to MTIKHλδ,αδ(f
δ) denoted by (uδ)δ con-

tains a TX-convergent subsequence. Moreover, any limit u† of such a subsequence is an

Rα†,λ†,I-minimal I-partial solution to Tu = f † and

Rα†(u
†) = lim

δ→0
Rαδ(u

δ), Di(Tiu
†, f †i ) = lim

δ→0
Di(Tiu

δ, f δi ) for i ∈ Ic, (68)

Di(Tiu
δ, f δi ) = o

(
(λδi )

−1
)

for i ∈ I.

Remark 3.10. We note that this theorem is a combination of stability and convergence

results, where the i ∈ I represent the vanishing noise portion, while the i ∈ Ic represent

the stability portion. Thus, only Ic requires the continuity assumption as was required

for the stability but not for the convergence results.

Also, the convergence to an Rα†,λ†,I-minimal I-partial solution can be understood as

approximating a Tikhonov problem for TIcu = f †Ic with prior TIu = f †I . Thus solving the

multi-data Tikhonov problem for vanishing noise can be used as an approximation scheme

for solving a Tikhonov problem with prior (as direct solution might not be possible).

Proof Theorem 3.9. We note that due to the continuity assumption on Di for i ∈ Ic, we
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can compute

F1,α†(u0, f
δ) = Rα†(u0) +

(∑
i∈I

Di(Tiu0, f
δ
i )︸ ︷︷ ︸

=δi→0

)
+
(∑
i∈Ic

Di(Tiu0, f
δ
i )︸ ︷︷ ︸

cont.→ Di(Tiu0,f
†
i )<∞

)
<∞ (69)

for δ sufficiently small since u0 is an Rα†,λ†,I-minimal solution. Thus, Theorem 3.5

ensures existence of solutions for any f δ with δ sufficiently small and all λ ∈ (0,∞)M ,

α ∈ A. We use the optimality of uδ, the continuity condition on Di for i ∈ Ic and the

continuity of the family (Rα)α to estimate

Fλδ,αδ(u
δ, f δ)

opt.

≤ Fλδ,αδ(u0, f
δ)

def.
=
(∑

i∈I

λδiDi(

=f†i︷︸︸︷
Tiu0, f

δ
i )
)

+
(∑
i∈Ic

λδiDi(Tiu0, f
δ
i )
)

+Rαδ(u0)

=
(∑

i∈I

δiλ
δ
i︸︷︷︸

(67)→ 0

)
+
(∑
i∈Ic

λδi︸︷︷︸
def.→ λ†i<∞

Di(Tiu0, f
δ
i )︸ ︷︷ ︸

cont.→ Di(Tiu0,f
†
i )

)
+ Rαδ(u0)︸ ︷︷ ︸

cont.→ R
α† (u0)

(70)

≤ c+Rα†,λ†,I(u0, f
†) <∞

for δ sufficiently small. Also, for α0 as in M5 of Assumption 3.3 such that F1,α0 is

coercive, the uniform boundedness of c(α†, αδ) for the continuous family (Rα)α and the

fact that λδ = mini=1,...,M λδi is uniformly bounded away from zero imply

M∑
i=1

Di(Tiu, f
δ
i ) ≤ 1

λδ

M∑
i=1

λδiDi(Tiu, f
δ
i ), and (71)

Rα0(u
δ) ≤ c(α0, α

†)Rα†(u
δ) ≤ c(α0, α

†)c(α†, αδ)Rαδ(u
δ).

Together with (70), this yields the boundedness of F1,α0(u
δ, f δ), and the precompactness

of the corresponding level sets implies that (uδ)δ admits a TX-convergent subsequence

(relabeled uδ) with limit u†. Due to lower semi-continuity and f δ
TD→ f †, one obtains

that Di(Tiu
†, f †i ) ≤ lim infδDi(Tiu

†, f δi ) = lim infδ δi = 0 for i ∈ I and with convergence
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of λδi → λ†i for i ∈ Ic and αδ
TA→ α†, one computes

Rα†,λ†,I(u
†, f †)

l.s.c.

≤ lim inf
δ→0

Rαδ,λδ,I(u
δ, f δ) ≤ lim sup

δ→0
Rαδλδ,I(u

δ, f δ)

≤ lim sup
δ→0

Rαδ,λδ,I(u
δ, f δ) +

∑
i∈I

λδiDi(Tiu
δ, f δi ) (72)

opt.

≤ lim sup
δ→0

Rαδ,λδ,I(u0, f
δ) +

∑
i∈I

λδi Di(Tiu0, f
δ
i )︸ ︷︷ ︸

=δi→0

cont.
= Rα†,λ†,I(u0, f

†)

where the last inequality is due to optimality and the final equality holds since (α, λ, f) 7→
Rα,λ,I(u0, f) is continuous in (α†, λ†, f †) due to the continuity condition on Di for i ∈ Ic

and the continuity of the family (Rα)α. In particular, these results imply that u† is an

Rα†,λ†,I-minimal I-partial solution to Tu = f †.

Note that since both u† and u0 areRα†,λ†,I-minimal I-partial solutions, Rα†,λ†,I(u
†, f †) =

Rα†,λ†,I(u0, f
†) holds. So all inequalities in (72) hold with equality, yielding the con-

vergence Rαδ,λδ,I(u
δ, f δ)

δ→0→ Rα†,λ†,I(u
†, f †) and

∑
i∈I λ

δ
i Di(Tiu

δ, f δi ) → 0 resulting in

Di(Tiu
δ, f δi ) = o

(
(λδi )

−1
)

for i ∈ I. Application of Lemma 1.42 to the extended regulari-

sation functional Rαδλδ,I(u
δ
α, f

δ) =
(∑

i∈Ic λ
δ
iDi(Tiu

δ, f δi )
)

+Rαδ(u
δ) yields convergence

of Rαδ(u
δ) and Di(Tiu

δ, f δi ) for i ∈ Ic.

Remark 3.11. This proof follows the idea of the proof for Theorem 2.11 by considering

Rα,λ,I as regularisation functional. The additional continuity is required to ensure the

existence of a convergent subsequence, and the Rα†,λ†,I-minimality of u† as an I-partial

solution. Also, the stability result stated in Theorem 3.5 can be understood to be a special

case of Theorem 3.9 when setting I = ∅, λδ = λ†, αδ = α† and solely changing f δ, in

fact one even gets a slightly stronger stability result since we obtain stability for λ, α not

fixed, but converging λ→ λ† ∈ (0,∞)M , α→ α† ∈ A.

Also, for I = {1, . . . ,M} one attains subsequential TX-convergence of (uδ)δ to solu-

tions of the multi-data inverse problem Tu = f †, analog to the vanishing noise result

presented in Theorem 2.11. Further, we point out that the continuity conditions are

solely required to ensure Di(Tiu0, f
δ
i )

δ→0→ Di(Tiu0, f
†
i ) for i ∈ Ic, and consequently is

only needed for those i ∈ Ic which have f δi 6= f †i for infinitely many δ.

Next, we aim to obtain convergence rates for the Bregman distance and the occurring

discrepancies. The main difference to the result in Theorem 2.15 is that when one

considers Rα†,λ†,I(·, f †) as the regularisation functional, there is an explicit dependence

on f †, λ† and α†, whose information is not contained in the MTIKHλδ,αδ(f
δ) problems
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for fixed δ. In order to overcome this issue, one requires further continuity assumptions

on Di and Rα, and convergence rates on λδi → λ† and αδ
TA→ α†. Therefore, we require sets

U ⊂ X and Vi ⊂ Yi and functions ψi,ψR
α†

: [0,∞)→ [0,∞) such that for i ∈ {1, . . . ,M},
the discrepancy Di is strongly ψi-continuous on Vi in f †, and that (Rα)α is strongly ψR

α†
-

continuous on U in α† (see Definitions 2.2 and 3.2). Recall that this means there are

functions ψi for i ∈ {1, . . . ,M} and a function ψR
α†

such that the functions Di and

the regularisation family (Rα)α satisfy the modulus of continuity estimates for vi ∈ Vi,
u ∈ U :

|Di(vi, f
†
i )−Di(vi, fi)| ≤ ψi

(
Di(f

†
i , fi)

)(
Di(vi, f

†
i ) + 1

)
, (73)

|Rα(u)−Rα†(u)| ≤ ψR
α†

(
dA(α, α†)

)(
Rα†(u) + 1

)
, (74)

for Di(f
†
i , fi) and dA(α, α†) sufficiently small, where dA is a metric on A that metricises

the topology TA.

Remark 3.12. We note that the right side of the modulus of continuity estimates may

depend multiplicatively on one of the function values. This allows for more general

moduli of continuity without affecting the resulting convergence rates. In particular, this

ensures applicability to a larger range of discrepancy functions.

Note that for vi ∈ Vi this estimate implies continuity of Di(vi, ·) in f †i . Furthermore, if

for i ∈ {1, . . . ,M} the true data f †i satisfies f †i ∈ Vi, then ψi(t) ≥ ct with some constant

c ≥ 1.

Theorem 3.13 (Error Estimates to Partial Solutions). Let Assumptions 3.3 hold and

let (A, dA) be a metric space. Let α† ∈ A, let I ∈ {1, . . . ,M} and λ† ∈ (0,∞]M be such

that λ†i =∞ for i ∈ I and finite otherwise, and f † be the true parameters and true data,

and let parameter λ ∈ (0,∞)M and α ∈ A and data f ∈ Y be such that Di(f
†
i , fi) = δi

sufficiently small that (73) and (74) holds, and such thatλiδi < 1 for i ∈ I, |λi − λ†i | < 1 for i ∈ Ic,

λiψi(δi) ≤ 1 for i ∈ Ic, ψi(δi) ≤ 1
2

for all i, ψR
α†

(dA(α†, α)) < 1.
(75)

Let û denote a solution to MTIKHλ,α(f), and let there be an Rα†,λ†,I-minimal I-partial

solution u† to Tu = f †. Further, let there be sets Vi ⊂ Yi and U ⊂ X and functions

ψi, ψR
α†

: [0,∞) → [0,∞) such that the discrepancies Di are strongly ψi-continuous on

Vi in f †i for i ∈ {1, . . . ,M} and the family of functions (Rα)α is strongly ψR
α†

-continuous

on U in α† and such that û, u† ∈ U and Tiû, Tiu
† ∈ Vi for all i. Then there is a constant
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c > 0 such that

Rα†,λ†,I(û, f
†) ≤ Rα†,λ†,I(u

†, f †) + c
((∑

i∈I

λiδi + ψi(δi)
)

(76)

+
(∑
i∈Ic

ψi(δi) + |λ†i − λi|
)

+ ψR
α†

(dA(α, α†))
)
.

In particular, this constant c does not depend on û, f, λ, α but solely on Rα†,λ†,I(u
†, f †)

and α†, λ†, f †.

Additionally, let X be a Banach space and let Rα† and Di(Ti · , f †) for i ∈ Ic be convex,

and let there be ξ ∈ ∂[Rα†,λ†,I(·, f †)](u†) as well as constants γ1, γ2 ≥ 0 with γ1 < 1 and

λi − 2γ2 ≥ 1 for i ∈ I, such that

−〈ξ, û− u†〉X∗×X ≤ γ1D
ξ
R
α†,λ†,I(·,f†)(û, u

†) + γ2

∑
i∈I

Di(Tiû, Tiu
†). (SC2)

Then, there is a constant c > 0 such that the following estimates for j ∈ I hold:

Dj(Tjû, fj) ≤ c

(
(λj)

−1
((∑

i∈I

λiδi + ψi(δi)
)

(77)

+
(∑
i∈Ic

ψi(δi) + |λ†i − λi|
)

+ ψR
α†

(dA(α, α†))
))

,

Dξ
R
α†,λ†,I(·,f†)(û, u

†) ≤ c

((∑
i∈I

λiδi + ψi(δi)
)

(78)

+
(∑
i∈Ic

ψi(δi) + |λ†i − λi|
)

+ ψR
α†

(dA(α, α†))

)
.

Note that the constant c does not depend on û, f, λ, α, but the estimate is uniform for

all such tuples satisfying the stated assumptions and only depends on Rα†,λ†,I(u
†, f †),

α†, λ†, f † and the constants γ1, γ2.

Remark 3.14. Note that the Source Condition (SC1) allowed for exponent 1
p

on the

discrepancy, while (SC2) does not. This is solely for the sake of simplicity, Theorem

3.21 will present a more general source condition for multi-data regularisation.

We provide the proof after remarking important consequences concerning the appli-

cability of this theorem to sequences of solutions.

Remark 3.15. While in the previous theorem the estimate is made for one tuple û, f, λ, α,

classical application of such results would be to use these estimates on sequences uδ, f δ,
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αδ, λδ with δ → 0 to obtain convergence rates. To do so, one would require the estimate

(75) and the Condition (SC2) to hold for all instances of the sequences.

For parameter choice rules δ 7→ (λδ,αδ) as in Theorem 3.9 and data f δ there is

δ = (δ1, . . . , δM) such that δi ≤ δi guarantees that (75) is fulfilled. Hence, these estimates

hold for δ < δ independent of all other factors, and in particular independent of the

sequence f δ itself as long as the parameter choice rules are fixed.

The Source Condition (SC2) needs to hold for the instances of the sequence (uδ)δ, the

sequence of corresponding solutions. Typically, one assumes that this estimate holds for

u with sufficiently small Tikhonov function values, more precisely (SC2) holds for u such

that Rλ†,α†,I(u, f
†) ≤ Rλ†,α†,I(u

†, f †) + ε0 and
∑

i∈I Di(Tiu, f
†) ≤ ε0 for some constant

ε0 > 0. Again, these assumption are fulfilled for the sequence after finitely many δ,

as can be seen from Theorem 3.9. Thus the estimates of Theorem 3.13 transfers to a

convergence rates for sequences of data with vanishing noise.

Theorem 3.16 (Convergence Rates to Partial Solutions). Let Assumptions 3.3 hold

and let (A, dA) be a metric space. Let α† ∈ A, let I ∈ {1, . . . ,M} and λ† ∈ (0,∞]M be

such that λ†i =∞ for i ∈ I and finite otherwise, and f † be the true parameters and true

data, and (f δ)δ ⊂ Y be a sequence such that D(f †i , f
δ
i ) = δi and f δ

TD→ f †. Let parameter

choice rules λδ and αδ be such that λδ → λ† and αδ → α† withλδi → λ†i ∈ (0,∞) for i ∈ Ic,

λδi δi → 0, λδi →∞ = λ†i for i ∈ I.
(79)

Denote with uδ the solutions to MTIKHλδ,αδ(f
δ), and let there be an Rα†,λ†,I-minimal

I-partial solution u† to Tu = f †. Further, let there be sets Vi ⊂ Yi and U ⊂ X such

that the discrepancies Di are strongly ψi-continuous on Vi in f †i for i ∈ {1, . . . ,M} and

the family of functions (Rα)α is strongly ψR
α†

-continuous on U in α† and these sets are

such that uδ, u† ∈ U and Tiu
δ, Tiu

† ∈ Vi for all δ and all i.

Then there is δ = (δ1, . . . , δM) and a constant c > 0 such that for δ < δ,

Rα†,λ†,I(u
δ, f †) ≤ Rα†,λ†,I(u

†, f †) + c
(∑

i∈I

(
λδi δi + ψi(δi)

)
(80)

+
∑
i∈Ic

(
ψi(δi) + |λ†i − λδi |

)
+ ψR

α†
(dA(αδ, α†))

)
Additionally, let X be a Banach space and let Rα† and Di(Ti · , f †) be convex for

i ∈ Ic, and let there be constants γ1, γ2 ≥ 0 with γ1 < 1 and ε0 > 0 such that the follow-
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ing source condition holds: There is ξ ∈ ∂[Rα†,λ†,I(·, f †)](u†) such that for u satisfying

Rα†,λ†,I(u, f
†) ≤ Rα†,λ†,I(u

†, f †) + ε0 and
∑

i∈I Di(Tiu, f
†
i ) ≤ ε0,

−〈ξ, u− u†〉X∗×X ≤ γ1D
ξ
R
α†,λ†,I(·,f†)(u, u

†) + γ2

∑
i∈I

Di(Tiu, Tiu
†). (SC2)

Then, there are constants c > 0 and δ = (δ1, . . . , δM) such that for δ < δ the following

estimates for j ∈ I hold:

Dj(Tju
δ, f δj ) ≤ c

(
(λδj)

−1
((∑

i∈I

λδi δi + ψi(δi)
)

(81)

+
(∑
i∈Ic

ψi(δi) + |λ†i − λδi |
)

+ ψR
α†

(dA(αδ, α†))
))

,

Dξ
R
α†,λ†,I(·,f†)(u

δ, u†) ≤ c

((∑
i∈I

λδi δi + ψi(δi)
)

(82)

+
(∑
i∈Ic

ψi(δi) + |λ†i − λδi |
)

+ ψR
α†

(dA(αδ, α†))

)
.

In particular, this constant c solely depends on Rα†,λ†,f†(u
†, f †), γ1, γ2, λ†, α†, f † and δ,

but not on the specific sequences (uδ)δ, (f δ)δ or even (δ)δ∈∆.

To avoid technical difficulties in the proof of Theorem 3.13, we first prove the follow-

ing lemma. The need for this lemma arises as the extended regularisation functional

Rα,λ,I(u, f) does not solely depend on u, but also on f , α, λ, and one needs to be able

to estimate the difference between said functional when using some f , α, λ (or f δ, αδ,

λδ) and f †, α†, λ†.

Lemma 3.17. Let the assumptions in Theorem 3.13 leading up to equation (76) be

satisfied, and let the corresponding notations for û, u†, f , f †, δ etc. be used. Then there

is a constant c1 > 0 such that for δi = Di(f
†
i , fi),

∣∣Rα,λ,I(u
†, f)−Rα†,λ†,I(u

†, f †)
∣∣ ≤ c1

(
ψR

α†

(
dA(α, α†)

)
+
∑
i∈Ic

λiψi(δi) + |λ†i − λi|
)
, (83)

∣∣Rα,λ,I(û, f)−Rα†,λ†,I(û, f
†)
∣∣ ≤ c1

(
ψR

α†

(
dA(α, α†)

)
+
∑
i∈Ic

λiψi(δi) + |λ†i − λi|
)
. (84)

In particular, the constant c1 does solely depend on Rα†,λ†,I(u
†, f †) and λ†, but not on

λ, α, f, û.
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Proof Lemma 3.17. In order to obtain a suitable estimate, we must first compute some

subestimates. To this point, we use the moduli of continuity statements and the defini-

tion of the extended regularisation functional to compute for u ∈ {û, u†} ⊂ U the effect

of changing the parameter for the extended regularisation function, first from f to f †,

then λ to λ† and finally α to α†:

∣∣Rα,λ,I(u, f)−Rα,λ,I(u, f
†)
∣∣ per

=
def.
|
∑
i∈Ic

λi
(
Di(Tiu, f

†)−Di(Tiu, f)
)
|

mod.

≤
cont.

∑
i∈Ic

λiψi(δi)
(
Di(Tiu, f

†
i ) + 1

)
,∣∣Rα,λ,I(u, f

†)−Rα,λ†,I(u, f
†)
∣∣ per

=
def.
|
∑
i∈Ic

(λ†i − λi)Di(Tiu, f
†
i )| ≤

∑
i∈Ic
|λ†i − λi|Di(Tiu, f

†
i ),

∣∣Rα,λ†,I(u, f
†)−Rα†,λ†,I(u, f

†)
∣∣ per

=
def.
|Rα†(u)−Rα(u)|

mod.

≤
cont.

ψR
α†

(
dA(α, α†)

)
(Rα†(u) + 1).

Combining these results one obtains

∣∣Rα,λ,I(u, f)−Rα†,λ†,I(u, f
†)
∣∣ ≤ψR

α†

(
dA(α, α†)

)
(Rα†(u) + 1) (85)

+
∑
i∈Ic

Di(Tiu, f
†
i )
(
|λ†i − λi|+ λiψi(δi)

)
+ λiψi(δi).

For u = u† the right-hand sides of (85) can be further estimated since
∑

i∈Ic Di(Tiu
†, f †) <

∞ and Rα†(u
†) <∞, thus yielding (83).

In order to obtain the estimate (84), we consider (85) for u = û, and show that

Dj(Tjû, f
†
j ) for j ∈ Ic and Rα†(û) are bounded independent of û, f, λ, α (so we get the

estimate independent of specific û, f, α, λ). Indeed, one obtains for j ∈ Ic, when refor-

mulating the modulus of continuity condition and since ψj(δj) ≤ 1
2

due to assumption

(75), that

Dj(Tjû, f
†
j )

mod.

≤
cont.

1

1− ψj(δj)
(
Dj(Tjû, fj) + ψj(δj)

)
≤ 2
(
Dj(Tjû, fj) + ψj(δj)

)
, (86)
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and via the estimates (83) we already proved, it follows that

Rα(û) + λjDj(Tjû, fj)
opt.

≤
( M∑
i=1

λiDi(Tiu
†, fi)

)
+Rα,λ,I(u

†, f) =
(∑

i∈I

λiδi

)
+Rα,λ,I(u

†, f)

(83)

≤ c1

(∑
i∈Ic

λiψi(δi) + |λ†i − λi|
)

(87)

+ c1ψR
α†

(
dA(α, α†)

)
+
(∑

i∈I

λiδi

)
+Rα†,λ†,I(u

†, f †) ≤ C <∞

for j ∈ Ic, where C does not depend on û, f, α, λ. Note that this constant C is in-

deed uniform as the contributing terms are bounded due to Assumption (75). Hence,

Dj(Tjû, f
†
j ) and Rα†(û) ≤ c(α†, α)Rα(û) are bounded due to (86), and consequently one

obtains through (85),

∣∣Rα,λ,I(û, f)−Rα†,λ†,I(û, f
†)
∣∣ ≤ c1

(
ψR

α†

(
dA(α†, α)

)
+
(∑
i∈Ic

λiψi(δi) + |λ†i − λi|
))
, (88)

where the constant c1 depends solely on Rα†,λ†,I(u
†, f †) and λ†, f †, α† but not on û, f, α, λ.

With this technical result, some issues originating from the extended regularisation

functional can be tackled, and the proof for Theorem 3.13 unfold similarly to the one

for Theorem 2.15.

Proof of Theorem 3.13. Optimality of û, i.e.,

Fλ,α(û, f) =
(∑

i∈I

λiDi(Tiû, fi)
)

+Rα,λ,I(û, f)

≤
(∑

i∈I

λiDi(Tiu
†, fi)

)
+Rα,λ,I(u

†, f) = Fλ,α(u†, f)

yields (∑
i∈I

λiDi(Tiû, fi)
)

+Rα,λ,I(û, f) ≤ Rα,λ,I(u
†, f) +

∑
i∈I

λiδi. (89)

However, to proceed we require an estimate similar to (89) with Rα†,λ†,I(·, f †) instead

of Rα,λ,I(·, f), and by the estimates given in Lemma 3.17 and the inequality (89) one
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indeed obtains

Rα†,λ†,I(û, f
†) ≤ Rα†,λ†,I(û, f

†) +
∑
i∈I

λiDi(Tiû, fi) (90)

≤ Rα†,λ†,I(u
†, f †) +

(∑
i∈I

λiδi

)
+ 2c1

(∑
i∈Ic

ψi(δi) + |λ†i − λi|
)

+ 2c1ψR
α†

(dA(α, α†)),

which confirms the error estimate on Rα†,λ†,I(û, f
†) stated in (76).

Now, analogous to the proof concerning convergence rates for a single discrepancy,

the Source Condition (SC2) and a modulus of continuity estimate analogue to (86) for

i ∈ I imply

−〈ξ, û− u†〉
(SC2)

≤ γ1D
ξ
R
α†,λ†,I(·,f†)(û, u

†) + γ2

∑
i∈I

Di(Tiû, f
†
i ) (91)

mod.

≤
cont.

γ1D
ξ
R
α†,λ†,I(·,f†)(û, u

†) + 2γ2

∑
i∈I

(
Di(Tiû, fi) + ψi(δi)

)
.

Combining the equations (90) and (91), and using the definition of the Bregman distance

Rα†,λ†,I(û, f
†)−Rα†,λ†,I(u

†, f †)− 〈ξ, û− u†〉 = Dξ
R
α†,λ†,I(·,f†)(û, u

†) results in

(∑
i∈I

(λi − 2γ2)Di(Tiû, f)
)

+ (1− γ1)Dξ
R
α†,λ†,I(·,f†)(û, u

†) (92)

≤
(

2
∑
i∈I

λiδi + γ2ψi(δi)
)

+ 2c1

(∑
i∈Ic

ψi(δi) + |λ†i − λi|
)

+ 2c1ψR
α†

(dA(α, α†)).

From this one obtains for j ∈ I and some constant c > 0, that

Dj(Tjû, f) ≤ c(λj)
−1
((∑

i∈I

λiδi + ψi(δi)
)

+
(∑
i∈Ic

ψi(δi) + |λ†i − λi|
)

+ ψR
α†

(dA(α, α†))
)
,

Dξ
R
α†,λ†,I(·,f†)(û, u

†) ≤ c
((∑

i∈I

λiδi + ψi(δi)
)

+
(∑
i∈Ic

ψi(δi) + |λ†i − λi|
)

+ ψR
α†

(dA(α, α†))
)
.

We note that the constant c occurring here depends on Rα†,λ†,I(u
†, f †), γ1, γ2, f †, λ†, α†

and δ, but not on û, f, α, λ as long as the stated assumptions are fulfilled.

Proof of Theorem 3.16. This proof is a direct consequence from Theorem 3.13 when sub-

stituting û by uδ since the estimates occurring in said theorem are independent of the spe-

cific δ. The Conditions (75) are fulfilled for δ sufficiently small independent of the specific

f δ or uδ. Also, due to the parameter choice rule, the requirements to apply the Source
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Condition (SC2) are satisfied by uδ with δ < δ for some δ = (δ1, . . . , δM) due to the

estimate in (68) and (76) (stating convergence of Rα†,λ†,I(u
δ, f †) and Dj(Tju

δ, f δj )) which

is independent of the specific uδ, f δ. So application of Theorem 3.13 to (uδ, f δ, αδ, λδ)

for (û,f ,α,λ) yields the desired estimates.

Remark 3.18. Theorem 3.16 grants us insight into suitable convergence requirements

for λδ → λ†, αδ → α† and the behaviour of uδ.

• Note that (uδ)δ and u† are not known a-priori, and consequently confirming that

uδ, u† ∈ U and Tiu
δ, Tiu

† ∈ Vi beforehand might not be possible.

• We note that the estimates on the j-th discrepancy is affected by the noise of all

problems, not solely the δj, which is to be expected since the problems are solved

jointly and the noise of the other problems also impacts the Tikhonov functional.

• We note that the estimate on Dj(Tju
δ, f δj ) is o

(
(λδj)

−1
)

since all the other occurring

terms in (81) vanish in the estimate, thus at least confirming the rate in Theorem

3.9.

• One sees that for i ∈ Ic, the convergence rate of the parameter choice λδi →
λ†i has an impact on the estimates, and should thus be chosen such that |λδi −
λ†i | = O(ψi

(
δi)
)
. Also, the convergence rate dA(αδ, α†) should be chosen such that

ψR
α†

(dA(αδ, α†)) = O(maxi ψi(δi)) to not slow down the estimates.

• For i ∈ I, the rate at which λδi converges to infinity plays a role on the estimate.

If limδ→0
δi

ψi(δi)
= 0, a reasonable choice is such that cψi(δi)

δi
≤ λδi ≤ C ψi(δi)

δi
for some

constants c, C > 0, and in particular this choice would satisfy (79) making it a

applicable choice without any further assumptions.

• As can be expected, quick convergence for λδj → ∞ can lead to faster convergence

of the discrepancy of the j-th problem. However, this might in turn slow down

convergence rates for the discrepancies corresponding to the other problems and

for the Bregman distance.

Hence there is a balance between speeding up the rates for one specific discrepancy,

and slowing convergence rates on the other discrepancies.

The following corollaries show some possible technical relaxations of the assumptions,

as well as results for specific parameter choices we did not show in the main theorem for

the sake of readability and generality.
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Corollary 3.19. Let the assumptions of Theorem 3.13 hold, and let additionally λδ and

αδ be chosen such that for εi ∈ (0, 1) and constants c, C > 0

cδ1−εi
i ≤ λδi ≤ Cδ1−εi

i for i ∈ I, |λδi − λ
†
i | = O

(
ψi(δi)

)
(93)

and ψR
α†

(dA(αδ, α†)) = O(maxi ψi(δi)). Then, one obtains the rates

Dj(Tju
δ, f δj ) = O

(
δ1−εi
j

(∑
i∈I

(
δεii + ψi(δi)

)
+
∑
i∈Ic

(
ψi(δi)

)))
for j ∈ I, (94)

Dξ
R
α†,λ†,I(·,f†)(u

δ, u†) = O
(∑

i∈I

(
δεii + ψi(δi)

)
+
∑
i∈Ic

(
ψi(δi)

))
. (95)

Furthermore, we note that when considering the multi-data inverse problem as a

single vector-valued one, considering D̂(T ·, f) =
∑M

i=1Di(Ti·, fi) and corresponding δ̂ =∑M
i=1 δi ≥ δi for all i > 0 and ψi(δ) = δ

1
pi , these results imply the results for the

single-data regularisation stated in Theorem 2.15.

Remark 3.20. Sometimes, the strong ψi-continuity of Di required to obtain the rates

might be a too strong requirement. When dealing with just one specific sequence of data

(f δ)δ, we can relax the ψi-continuity of Di on a set Vi in f †i (i.e. the modulus of continuity

estimate) to hold solely for these specific f δ (compared to f sufficiently close to f † in the

original), i.e. for vi ∈ Vi

|Di(vi, f
†
i )−Di(vi, f

δ
i )| ≤ ψi

(
Di(f

†
i , f

δ
i )
)(
Di(vi, f

†
i ) + 1

)
. (96)

This simply means instead of a general modulus of continuity, it is sufficient to reduce

the estimate to a specific sequence of data. With this instead of strong continuity of Di,

convergence results for this one specific sequence can be derived in an analogous manner,

however no uniform estimate can be observed for all sequences.

We note that in the setting of Theorem 3.13, for i ∈ I the estimate in Source Condition

(SC2) would contain Di, while in the single-data setting in (SC1) stated in Theorem 2.15

D
1
p would appear. Thus the following corollary relaxes the source condition (SC2) to

(SC3), so that (SC3) is indeed a generalisation of (SC1).

Theorem 3.21. Let all assumptions of Theorem 3.13 hold except the strong ψi-continuity

of the discrepancies Di and the Source Condition (SC2) which holds in the slightly weaker
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form

−〈ξ, u− u†〉X∗×X ≤ γ1D
ξ
R
α†,λ†,I(·,f†)(u, u

†) + γ2

∑
i∈I

φi(Tiu, Tiu
†), (SC3)

under the same requirements for u and where ψi : [0,∞) → [0,∞) is a monotone con-

tinuous function with ψi(0) = 0. Here for i ∈ I, the function φi : Yi × Yi → [0,∞] is

such that for vi ∈ Yi and fi with Di(f
†
i , fi) sufficiently small,

φi(vi, f
†
i ) ≤ Φi

(
Di(f

†
i , fi)

)
Di(vi, fi) + ψi

(
Di(f

†
i , fi)

)
,

where Φi : [0,∞] → [0,∞] is such that Φi(δi) ≤ 1
4γ2
λδi for δi sufficiently small. Also, let

Di be strongly ψi-continuous on Vi in f †i for i ∈ Ic (and not for all i) for sets Vi and

functions ψi as in Theorem 3.16 and let Tiu
†, Tiu

δ ∈ Vi for i ∈ Ic. Then the convergence

estimates of Theorem 3.16 remain valid.

Proof. First note that the Lemma 3.17 holds even if the strong continuity is only satisfied

for i ∈ Ic, as the i ∈ I do not play any role in the statement or proof. The proof for

Theorem 3.16 remains exactly the same except the equations (91) and (92), however due

to the assumptions on φ these equations hold in slightly different form as

−〈ξ, uδ − u†〉
(SC3)

≤ γ1D
ξ
R
α†,λ†,I(·,f†)(u

δ, u†) + γ2

∑
i∈I

φi(Tiu
δ, f †i )

def.

≤ Dξ
R
α†,λ†,I(·,f†)(u

δ, u†) + 2γ2

∑
i∈I

(
Φi(δ)Di(Tiu

δ, f δi ) + ψi(δi)
)
, (97)

which for δ sufficiently small results in(∑
i∈I

(λδi − 2γ2Φi(δi))︸ ︷︷ ︸
≥ 1

2
λδi

Di(Tiu
δ, f δi )

)
+ (1− γ1)Dξ

R
α†,λ†,I(·,f†(u

δ, u†)

≤ 2
(∑

i∈I

λδi δi + ψi(δi)
)

+ 2c1

(∑
i∈Ic

ψi(δi) + |λ†i − λδi |
)

+ ψR
α†

(dA(αδ, α†)). (98)

which leads to analogous estimates.

Remark 3.22. This Source Condition (SC3) is indeed a generalisation of the Source

Condition (SC1), and allows us to omit the strong continuity requirement for i ∈ I by

in turn requiring a potentially stronger source condition.

Note that here ψi-continuity of Di is required for i ∈ Ic while for i ∈ I, ψi denotes a

function resulting from estimates in (SC3).
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So to summarise, one can generalise the theory for single-data to multi-data in a

natural way. In particular, convergence and rates towards Rα†,λ†,I-minimal I-partial

solutions to Tu = f † can be obtained. These partial solutions can be interpreted as

solutions to a Tikhonov approach for the unsolved problems TIcu = f †Ic using TIu = f †I
as prior.
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Part II.

Specific Discrepancies

In this part, we aim to discuss how the theory of Part I applies to commonly used

discrepancy functions. Furthermore, we try to reduce the assumptions made on the

discrepancies concerning specific choices forDi into conditions which are more practically

verifiable, or show that some properties are automatically fulfilled.

First classical norms and afterwards lower semi-continuous subnorms are considered

with regard to said properties required from the discrepancies. Then, the Kullback-

Leibler divergence, a suitable discrepancy for data affected by Poisson noise is considered.

While this discrepancy requires more technical effort to discuss, in the end it is applicable

under reasonable assumptions.

4. Norm Discrepancies

4.1. Classical Norms

When dealing with a normed vector space Y , it is common to use norms or the power

of norms as discrepancies in the single-data case, i.e. for p ∈ [1,∞) use

D(v, f) = ‖v − f‖pY .

This makes sense as this discrepancy is a reasonable measure of distance in Y , is a convex

function and is compatible with the linear structure.

Therefore we study norm discrepancy functions and how they fits into the multi-

data setting we previously derived. To do so, in this chapter we consider following the

Tikhonov problem.

Problem 4.1. Let (X, TX), (Yi, TYi) for i ∈ {1, . . . ,M} and (A, TA) be Hausdorff spaces

and let Ti : dom(Ti) ⊂ X → Yi be continuous operators with respect to TX and TYi and

with closed domain. Moreover, let J ⊂ {1, . . . ,M} be such that for j ∈ J the space

(Yj, ‖ · ‖Yj) is a normed vector space, let pj ∈ [1,∞) and Dj : Yj × Yj → [0,∞) with

Dj(vj, fj) = ‖vj − fj‖
pj
Yj

. Let Di : Yi × Yi → [0,∞] for i ∈ J c be non-negative functions,

let λ ∈ (0,∞)M and let (Rα)α∈A with Rα : X → [0,∞] be a family of functions. We say

u† is a solution to the Tikhonov regularisation (N -MTIKHλ,α(f †)) regarding Tu = f †
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with discrepancies Di, weights λi and regularisation Rα with parameter α ∈ A, ifu† ∈ argminu∈X Fλ,α(u, f †) such that Fλ,α(u†, f †) <∞

with Fλ,α(u, f †) =
(∑

j∈J ‖Tju− f
†
j ‖

pj
Yj

)
+
(∑

i∈Jc Di(Tiu, f
†
i )
)

+Rα(u).

(N -MTIKHλ,α(f †))

So this problem is a multi-data Tikhonov approach where for j ∈ J the discrepancy

Dj(vj, fj) = ‖vj − fj‖
pj
Yj

is the norm of the difference to the pj-th power.

We aim to discuss whether using norm discrepancies Dj(vj, fj) = ‖vj − fj‖
pj
Yj

fits the

general theory derived in Part I, and what assumptions are required to apply it.

Recall that for Part I we required basic discrepancies, i.e. we needed discrepancy

functions to be non-negative, indeed positive unless its arguments are equal, there needed

to be a topology TDi stronger than Di such that Di is lower semi-continuous in TYi×TDi .
The following assumptions for j ∈ J will be the basis of this discussion.

Assumptions 4.2 (Norms).

Let J ⊂ {1, . . . ,M} be the set such that Dj(vj, fj) = ‖vj − fj‖
pj
Yj

is the discrepancy

function for j ∈ J . The following conditions are satisfied for each j ∈ J :

N1 There is a topology TDj on Yj, such that

fnj
TDj→ fj ⇒ ‖fj − fnj ‖Yj → 0 (99)

N2 The norm ‖ · ‖Yj is TYj -lower semi-continuous.

N3 The topology TYj is translation invariant in the sense that

vnj
TYj→ vj ⇒

(
vnj + fj

TYj→ vj + fj or vnj + fj
‖·‖Yj→ vj + fj

)
(100)

for every fj ∈ Yj.

We again use the product space notation T = (T1, . . . , TM), Y = Y1 × · · · × YM with

product topologies TY and TD.

Proposition 4.3. With Assumptions 4.2, for j ∈ J the norm discrepancy Dj : Yj ×
Yj → [0,∞), Dj(vj, fj) = ‖vj − fj‖

pj
Yj

is a basic discrepancy on Yj with respect to the

corresponding topologies TYJ and TDj (see Definition 2.2).
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Proof. Let j ∈ J and vj, fj ∈ Yj. That the topology TDj is stronger than the topology

induced by ‖vj−fj‖Yj is clear due to the assumptions, and since the function g(t) = tpj is

continuous and g(0) = 0, also ‖fj − fnj ‖Yj → 0 if and only if ‖fj − fnj ‖
pj
Yj
→ 0 confirming

that TDj is stronger than Dj.

The positivity of Dj(vj, fj) for vj 6= fj is obviously satisfied due to the positive defi-

niteness property of norms, which is not obstructed by taking the pj-th power.

Finally, concerning the lower semi-continuity with respect to TY1 × TD1 , let sequences

(vnj )n and (fnj )n be in Yj with vnj
TYj→ vj and fnj

TDj→ fj. Due to the inverse triangle

inequality, and ‖fj − fnj ‖Yj → 0 as well as vnj − fj → vj − fj either in TY1 or in the norm

topology, one computes

lim inf
n→∞

‖vnj − fnj ‖Yj ≥ lim inf
n→∞

‖vnj − fj‖Yj − ‖fj − fnj ‖Yj
l.s.c.

≥ ‖vj − fj‖Yj (101)

where we used that both topologies either through N1 or directly imply the lower semi-

continuity estimate on ‖vnj − fj‖. Since the function g(t) = tpj is continuous and mono-

tone, application of g leaves the lower semi-continuity of ‖ ·1 − ·2 ‖Yj intact.

Recall that for the convergence results stated in Chapter 3 we required Tiu0-continuity

of Di in f †i for i ∈ Ic (i.e. Di(Tiu0, ·) is continuous in f †i with respect to TDi) and strong

ψi-continuity of Di on a set Vi in f †i ( modulus of continuity estimates in a surrounding

of f †i and on a set Vi). Hence, we next verify that these conditions are indeed satisfied

for j ∈ J where we use norm discrepancies.

Proposition 4.4. Let Assumptions 4.2 be satisfied. For j ∈ J with Dj(vj, fj) = ‖vj −
fj‖

pj
Yj

, for every f †j ∈ Yj and v0 ∈ Yj the discrepancy Dj is v0-continuous in f †j . Moreover,

there is c > 1 such that with ψj(t) = ct
1
pj the function Dj is strongly ψj-continuous on

Vj = Yj and in any f †j ∈ Yj.
The constant c > 0 is not depending on f †j or Vj, but solely on δ0 > 0 (recall

ψj : (0, δ0] → [0,∞), so δ0 is a limit on the noise for which the modulus of continu-

ity estimate needs to hold). This means that for ‖fj − f †j ‖
pj
Yj

= δj < δ0 and vj ∈ Yj we

obtain the modulus of continuity estimate∣∣∣‖vj − fj‖pjYj − ‖vj − f †j ‖pjYj ∣∣∣ ≤ cδ
1
pj

j

(
‖vj − f †j ‖

pj
Yj

+ 1
)
. (102)

Proof. Let j ∈ J , v0, fj, f
†
j ∈ Yj. The v0-continuity of Dj for any v0 ∈ Yj is imminent,

since the norm is continuous due to the triangle inequality, i.e. for a sequence (fnj )n with
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fnj
TDj→ f †j , ∣∣∣‖Tju− fnj ‖Yj − ‖Tju− f †j ‖Yj ∣∣∣ ≤ ‖fnj − f †j ‖Yj → 0, (103)

and composition with the continuous function g(t) = tpj maintains the continuity. For

pj = 1 the modulus of continuity is already proven in the previous equation and restric-

tion to δj < δ0 is not necessary.

In order to show the modulus of continuity estimate for pj > 1, we first estimate for

a, b, β ≥ 0 and p, q > 1 such that 1
p

+ 1
q

= 1

|a+ b|p ≤ ap(1 + βq)p−1 + bp(1 + β−1)p−1 (104)

in order to estimate ‖vj − fj‖
pj
Yj
≤
(
‖vj − fj‖Yj + δ

1
pj

j

)pj where δj = ‖fj − f †j ‖
pj
Yj

. Indeed,

due to Hölder’s Inequality applied to the standard R2 inner product

a+ b = a+ β
b

β
= 〈

(
a
b
β

)
,

(
1

β

)
〉 ≤ ‖

(
a
b
β

)
‖p‖

(
1

β

)
‖q = p

√
ap +

bp

βp
q
√

1 + βq,

(a+ b)p ≤ ap(1 + βq)
p
q +

( b
β

)p
(1 + βq)

p
q = ap(1 + βq)p−1 + bp(1 + β−q)p−1.

Next, we note that for β sufficiently small, there is c > 0 such that with t = βq and

h(t) = (1 + t)p−1,

1− (1 + βq)p−1 = h(0)− h(t) = h′(ξ)t ≤ cβq, and (1 + β−q)(p−1) ≤ cβ−(p−1)q (105)

where we used the Taylor polynomial with intermediate point ξ, and that h′ is bounded

in a surrounding of 0.

Hence, with monotonicity of the function g(t) = tpj and the equations (104) and (105)

we estimate for β sufficiently small

‖vj − fj‖
pj
Yj
≤ (‖vj − f †j ‖Yj + δ

1
pj

j )pj ≤ ‖vj − f †j ‖
pj
Yj

(1 + βqj)pj−1︸ ︷︷ ︸
≤1+cβqj

+δj (1 + β−qj)pj−1︸ ︷︷ ︸
≤cβ−qj(pj−1)

.

Choosing β = δ
1

pjqj

j and δj sufficiently small therefore results in

‖vj − fj‖
pj
Yj
≤ ‖vj − f †j ‖

pj
Yj

(1 + cδ
1
pj

j ) + cδ
1
pj

j . (106)

Note that this is part of the estimate (102), we exchange the roles of fj and f †j in order
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to get the other part, yielding

‖vj − f †j ‖
pj
Yj
≤ ‖vj − fj‖

pj
Yj

(1 + cδ
1
pj

j ) + cδ
1
pj

1 .

which when rearranged results in

‖vj−fj‖
pj
Yj
≥ ‖vj−f †j ‖

pj
Yj
−cδ

1
pj

j ( ‖vj − fj‖
pj
Yj︸ ︷︷ ︸

≤c‖vj−f†j ‖
pj
Yj

+δ

1
pj
0

+1) ≥ (1−cδ
1
pj

j )‖vj−f †j ‖pj−cδ
1
pj

j . (107)

Note that here δ0 > 0 is simply used to limit the amount of noise for which the estimates

need to hold, i.e. δj ≤ δ0. Combining the estimates (106) and (107) yields the desired

modulus of continuity estimate.

Remark 4.5. Note that in ψj : [0, δ0) → [0,∞) with ψj(δj) = cδ
1
p

j , the constant c does

not depend on f †, vj ∈ Yj or even the specific norm, but solely on δ0 and pj.

So we see that all requirements for the theory of Part I are satisfied by norm discrepan-

cies with only very basic assumptions, thus making approaches featuring norms possible.

The application of such Tikhonov approaches with norm discrepancies is summarised in

the following corollary.

Corollary 4.6. This corollary summarises the theory of Part I applied to norm dis-

crepancies. We consider 4 statements: existence, convergence, rates and single-data

results:

1. Let the Assumptions 4.2 hold for j ∈ J such that Dj(vj, fj) = ‖vj − fj‖
pj
Yj

. For

i ∈ J c, let Di : Yi × Yi → [0,∞] be a basic discrepancy. Further, let (Rα)α be a

continuous family of regularisation functionals and with λ = 1 and some α = α0 ∈
A let the Tikhonov functional

F1,α0(u, f) =
∑
j∈J

‖Tju− fj‖
pj
Yj

+
∑
i∈Jc

Di(Tiu, fi) +Rα0(u) (108)

be uniformly coercive. Then, for f † ∈ Y the Problem (N -MTIKHλ,α(f †)) is either

solvable or Fλ,α(·, f †) ≡ ∞ for all α ∈ A, λ ∈ (0,∞)M .

2. Additionally to point 1., let I ⊂ {1, . . . ,M}, let parameter choice rules as in The-

orem 3.9 be applied, and let an Rα†,λ†,I-minimal I-partial solution u0 to Tu = f †
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exists such that for i ∈ J c ∩ Ic the discrepancies Di are Tiu0-continuous in f †i . Let

a sequence (f δ)δ ⊂ Y be such that f δ
TD→ f † and denote the corresponding solu-

tions to N-MTIKHλδ,αδ(f
δ) by uδ. Then, one obtains subsequential convergence

of (uδ)δ to Rα†,λ†,I-minimal I-partial solutions to Tu = f †.

3. Additionally to 1. and 2., let X be a normed space and (A, dA) be a metric space,

and let u† be an Rα†,λ†,I-minimal I-partial solution to Tu = f †. Let Rα for all

α ∈ A and Di(Ti·, f †i ) for all i ∈ Ic be convex. Let (f δ)δ ⊂ Y be a sequence of

data, and denote by δi = Di(f
†
i , f

δ
i ). For i ∈ J c let the discrepancy function Di

be strongly ψi-continuous on Vi ⊂ Yi in f †i and let the family (Rα)α be strongly

ψR
α†

-continuous on U ⊂ X in α†. Let u†, uδ ∈ U and Tiu
†, Tiu

δ ∈ Vi for i ∈ J c for

Di(f
†
i , f

δ
i ) = δi < δ0 with some constant δ0 > 0. Let there be constants γ1, γ2 ≥ 0

with γ1 < 1 and ε0 > 0 such that the following source condition holds: There is

ξ ∈ ∂[Rα†,λ†,I(·, f †)](u†) such that for u satisfying Rα†,λ†,I(u, f
†) ≤ Rα†,λ†,I(u

†, f †)+

ε0 and
∑

i∈I Di(Tiu, f
†
i ) ≤ ε0

−〈ξ, u− u†〉X∗×X ≤ γ1D
ξ
R
α†,λ†,I(·,f†)(u, u

†) + γ2

∑
i∈I

φi(Tiu, Tiu
†), (SC3)

where for j ∈ I ∩ J , the function φj(Tju, Tju
†) = ‖Tju− Tju†‖Yj . Here, for i ∈ I,

the function φi : Yi × Yi → [0,∞] is such that for vi ∈ Vi

φi(vi, f
†
i ) ≤ Φi

(
Di(f

†
i , fi)

)
Di(vi, fi) + ψi

(
Di(f

†
i , fi)

)
,

where Φi : [0,∞]→ [0,∞] is such that Φi(δi) ≤ 1
4γ2
λδi for δi sufficiently small.

Then, there are constants c > 0 and δ = (δ1, . . . , δM) such that for δ < δ and

j ∈ J ∩ I,

‖Tjuδ − f δj ‖
pj
Yj
≤ c

(
(λδj)

−1
(∑

i∈I

(
λδi δi + ψi(δi)

)
(109)

+
∑
i∈Ic

(
ψi(δi) + |λ†i − λδi |

)
+ ψR

α†
(dA(αδ, α†))

))
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holds. For j ∈ I:

Dj(Tju
δ, f δj ) ≤ c

(
(λδj)

−1
(∑

i∈I

(
λδi δi + ψi(δi)

)
(110)

+
∑
i∈Ic

(
ψi(δi) + |λ†i − λδi |

)
+ ψR

α†
(dA(αδ, α†))

))
,

Dξ
R
α†,λ†,I(·,f†)(u

δ, u†) ≤ c

(∑
i∈I

(
λδi δi + ψi(δi)

)
(111)

+
∑
i∈Ic

(
ψi(δi) + |λ†i − λδi |

)
+ ψR

α†
(dA(αδ, α†))

)
.

In particular, this constant c solely depends on Rα†,λ†,f†(u
†, f †), γ1, γ2, λ†, α†, f †

and δ, but not on the specific sequence (uδ)δ, (f δ)δ or even (δ)δ∈∆.

4. In the single-data case M = 1: Let R be TX-lower semi-continuous and for all

C > 0, let the set {u ∈ X
∣∣ R(u) + ‖Tu − f‖pY ≤ C} be TX-precompact and let

dom(R)∩dom(T ) 6= ∅. Then, for Tu = f †, the single data Tikhonov regularisation

min
u∈X
‖Tu− f †‖pY + αR(u) (112)

is solvable and stable, and the convergence results stated in Part I hold.

Proof. Application of Theorems 3.5, 3.9 and Theorem 3.21, whose assumptions are ful-

filled due to Propositions 4.3, 4.4 and the assumptions made in this theorem.

Example 4.7. Let M = 2 and let (Y1, ‖ · ‖Y1) and (Y2, ‖ · ‖Y2) be normed spaces. We

consider the Tikhonov functional Fλ(u, f
†) = λ1‖T1u− f †i ‖Y1 + λ2‖T2u− f †i ‖2

Y2
+Rα(u),

i.e. with two norm discrepancies and p1 = 1 and p2 = 2. Let the Assumptions 4.2 for

J = {1, 2} hold, let (Rα)α be continuous families of functions. Let I = {1, 2}, let u†

be an R-minimal solution and let D(·, f †) and R be convex. Let the Source Condition

(SC3) of Theorem 4.6 for u with the same requirements be satisfied in u† and choose

λδ = (δ
−(1−ε)
1 , δ

−1
2

2 ) where δi = ‖f †i − f δi ‖pi. In particular, Theorem 3.21 is applicable

when we use the Source Condition (SC3) with φi(vi, fi) = ‖vi−fi‖Yi. Then, one obtains

‖T1u
δ − f δ1‖Yi = O(δ1−ε

(
δε1 + δ

1
2
2

)
), ‖T2u

δ − f δ2‖2
Y2

= O(δ
1
2
2

(
δε1 + δ

1
2
2

)
),

Dξ
R(uδ, u†) = O(δε1 + δ

1
2
2 ).

Note that the estimate for D1 improves for ε closer to 0, however the estimates for D2
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and Dξ
R potentially deteriorate unless δ1 goes to 0 at a significantly higher speed than δ2.

If one changes the setting to I = {2}, changes all the corresponding conditions, and

chooses |λ†1 − λδ1| = O(δ1) for some λ†1 ∈ (0,∞), one obtains

‖T2u
δ − f δ2‖2

Y2
= O(δ

1
2
2

(
δ

1
2
2 + δ1

)
), Dξ

R
α†,λ†,I(·,f†)(u

δ, u†) = O(δ
1
2
2 + δ1).

For this choice of parameter, we see that the noise level δ2 has greater impact than δ1. In

particular, when δ2
1 ≈ δ2, i.e. ‖f †1 − f δ1‖Y1 ≈ ‖f

†
2 − f δ2‖Y2, the estimate is not obstructed

by the problem for i = 1, and one obtains the same convergence rate, as one would if

solving solely the problem for i = 2 with single-data Tikhonov regularisation.

4.2. Subnorms

We continue our discussion of norms as discrepancies in a slightly different setting.

Sometimes the operator T maps onto a normed space Y , however a suitable discrepancy

is a stronger norm, solely defined on a subspace Z ⊂ Y . A typical example is that

Y = L2(Ω) and T maps continuously onto L2, however, the suitable discrepancy is the

Sobolev norm ‖ · ‖H1 .

Definition 4.8. Let (Y, ‖ · ‖Y ) and (Z, ‖ · ‖Z) be normed spaces. For an embedding

ι : Z ↪→ Y that is injective, linear and continuous with respect to the norm topologies,

we define in slight abuse of notation

‖ · ‖Z : Y → [0,∞], ‖y‖Z =

‖ι−1y‖Z if y ∈ ι(Z),

∞ else,
(113)

i.e. taking the norm in Z for suitable y, and penalising with ∞ otherwise.

In this chapter we use such subnorms as discrepancies, and the corresponding setting

is summarised in the following.

Problem 4.9. Let (X, TX), (Yi, TYi) for i ∈ {1, . . . ,M} and (A, TA) be Hausdorff spaces

and let Ti : dom(Ti) ⊂ X → Yi be continuous operators with respect to TX and TYi with

closed domain. Moreover, let J ⊂ {1, . . . ,M} and for j ∈ J let the space (Yj, ‖ · ‖Yj)
be a normed space and let (Zj, ‖ · ‖Zj) be a normed space such that ιj : Zj ↪→ Yj linearly

and continuously. For j ∈ J , let pj ∈ [1,∞) and Dj : Yj × Yj → [0,∞] with Dj(vj, fj) =

‖vj−fj‖
pj
Zj

as in (113). Let Di : Yi×Yi → [0,∞] for i ∈ J c be functions, let λ ∈ (0,∞)M

and let (Rα)α∈A with Rα : X → [0,∞] be a family of functions. We say u† is a solution
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to the Tikhonov problem (SN -MTIKHλ,α(f †)) regarding Tu = f † with discrepancies

Di, weights λi and regularisation Rα with parameter α ∈ A, ifu† ∈ argminu∈X Fλ,α(u, f †) such that Fλ,α(u†, f †) <∞

with Fλ,α(u, f †) =
(∑

j∈J ‖Tju− f
†
j ‖

pj
Zj

)
+
(∑

i∈Jc Di(Tiu, f
†
i )
)

+Rα(u).

(SN -MTIKHλ,α(f †))

So this problem is a multi-data Tikhonov approach where the discrepancies concerning

j ∈ J are subnorms of the differences taken to the pj-th power, i.e. Dj(vj, fj) = ‖vj −
fj‖

pj
Zj

.

Again we start by stating assumptions making Dj(vj, fj) = ‖vj − fj‖
pj
Zj

basic discrep-

ancy function.

Assumptions 4.10 (Subnorms). Let J ⊂ {1, . . . ,M} such that Dj(vj, fj) = ‖vj−fj‖
pj
Yj

,

and let the following hold for all j ∈ J :

Ñ1 Let Yj be a vector space with norm ‖ · ‖Yj and let Zj be a reflexive Banach space such

that Zj
ιj
↪→ Yj linearly, densely and continuously with respect to the norm topologies.

Ñ2 The topology TYj is such that for all ξ ∈ Yj∗ the operation 〈ξ, ·〉Yj∗×Yj is TYj -continuous,

i.e. TYj is stronger than the weak topology on Yj.

Ñ3 TDj is a topology on Yj, such that for sequences (vnj )n, (f
n
j )n ⊂ Yj,

fnj
TDj→ fj ⇒

(
fj − fnj ∈ ιj(Zj) and ‖fj − fnj ‖Zj → 0

)
. (114)

We again use the product space notation T = (T1, . . . , TM), Y = Y1 × · · · × YM with

product topologies TY and TD.

With these assumption, the subnorm discrepancy is indeed a reasonable discrepancy

as confirmed in the following proposition.

Proposition 4.11. With Assumption 4.10, for j ∈ J the function Dj : Yj×Yj → [0,∞]

with Dj(vj, fj) = ‖vj − fj‖
pj
Zj

and some pj ∈ [1,∞) is a basic discrepancy.

Note here, that Dj(vj, fj) is still defined on Yj and not Zj, so fj 6∈ ιj(Zj) is allowed,

thus it is not necessary that vj ∈ ιj(Zj) either (as would not be expected for vj = Tju).

Proof. Analogously to the proof of Proposition 4.3, for j ∈ J the conditions concerning

the TDj topology and positivity are satisfied (TDj is stronger than Dj and Dj attains

positive values for non-equal instances) due to the basic properties of norms and the

general setting.
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In order to ensure lower semi-continuity ofDj with respect to the TYj×TDj topology, we

first note that ι∗j(Yj
∗) ⊂ Z∗j densely. Indeed, by application of Hahn-Banach’s Theorem,

a subspace S of Z∗j is dense, if and only if for z∗∗ ∈ Z∗∗j , z∗∗(S) = 0 implies z∗∗ = 0.

The canonical embedding ι̃j : Zj ↪→ Z∗∗j is surjective due to reflexivity, and hence for

z∗∗ = ι̃j(z) ∈ Z∗∗j ,

0 = z∗∗(ι∗jy
∗) = 〈ι̃jz, ι∗y∗〉Z∗∗j ×Z∗j = 〈ι∗jy∗, z〉Z∗j×Zj = 〈y∗, ιjz〉Yj∗×Yj for all y∗ ∈ Y ∗j

(115)

if and only if ιjz = 0 which in turn implies z = 0 and z∗∗ = 0 yielding the desired density

property. Note, that for z ∈ Zj the norm is thus equivalently defined via

‖z‖Zj = sup
ξ∈Z∗

j

‖ξ‖Z∗
j
≤1

〈ξ, z〉Z∗j×Zj = sup
ξ∈ι∗

j
(Yj
∗)

‖ξ‖Z∗
j
≤1

〈ξ, z〉Z∗j×Zj = sup
ξ∈Yj∗

‖ι∗j ξ‖Z∗j ≤1

〈ξ, ιjz〉Yj∗×Yj , (116)

where we took advantage of the continuity of 〈·, z〉Z∗j×Zj with respect to the Z∗j norm

and density of ι∗j(Yj
∗). Thus, for y ∈ Yj, such that y ∈ ιj(Zj),

‖y‖Zj = sup
ξ∈Y ∗

j

‖ι∗j ξ‖Z∗j ≤1

〈ξ, ιjι−1
j y〉Yj∗×Yj = sup

ξ∈Yj∗

‖ι∗j ξ‖Z∗j ≤1

〈ξ, y〉Yj∗×Yj (117)

which is a weakly lower semi-continuous function as supremum of weakly continuous

functions.

In order to show lower semi-continuity of Dj, let vj, fj ∈ Yj, sequences (vnj )n, (f
n
j )n ⊂

Yj and we consider two cases: First, let vj − fj ∈ ιj(Zj), v
n
j

TYj→ vj, f
n
j

TDj→ fj and

without loss of generality vnj − fnj ∈ ιj(Zj) for all n ≥ 1. Hence, we are able to use the

representation (117) which is weakly lower semi-continuous in Yj and vnj − fnj ⇀ vj− fj,
resulting in ‖vj − fj‖Zj ≤ lim infn→∞ ‖vnj − fnj ‖Zj .

For the second case, let vj − fj 6∈ ιj(Zj) and again denote by fnj , v
n
j the corresponding

converging sequences such that vnj − fnj ∈ ιj(Zj). If there was a subsequence (with

the same name) such that ‖vnj − fnj ‖Zj was bounded, Alaoglu’s Theorem in reflexive Z

would imply a further subsequence such that vn
′

j − fn
′

j = ιj(z
n′
j ) and zn

′
j ⇀ zj ∈ Zj.

By continuity of ιj one obtains ιj(zj) = vj − fj contradicting the assumptions, thus

‖vnj − fnj ‖Zj → ∞ = ‖vj − fj‖Zj . So in both cases a lower semi-continuity estimate

holds, yielding desired lower semi-continuity.

Next, we show that ‖ ·‖Zj still satisfies triangle inequalities in a certain sense that will
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be required later on.

Lemma 4.12. Let j ∈ J and let Assumptions 4.10 hold. Let a, b, c ∈ Yj such that

b − c ∈ ιj(Zj). Then the triangle inequality and inverse triangle inequality hold as

follows:

‖a− b‖Zj ≤ ‖a− c‖Zj + ‖b− c‖Zj , (118)∣∣∣‖a− c‖Zj − ‖b− c‖Zj ∣∣∣ ≤ ‖a− b‖Zj ,
where the values ∞ are allowed (with the rule ∞ ≤∞).

Proof. Note that a − b ∈ ιj(Zj) if and only if a − c ∈ ιj(Zj), and hence infinity can

only occur on both sides of the inequalities simultaneously. In case a − b ∈ ιj(Z) also

a− c ∈ ιj(Z) and thus the standard triangle inequality or inverse triangle inequality for

‖ · ‖Zj on a− b and b− c lead to both stated inequalities. In the case a− b 6∈ ιj(Zj) also

a− c 6∈ ιj(Zj), and consequently all inequalities remain true via∞ ≤∞+ ‖b− c‖Zj and

|∞ − ‖b− c‖Zj | ≤ ∞.

Note that the triangle inequality would hold without the assumption b − c ∈ ιj(Zj),
but the left side of the inverse triangle inequality would not be well-defined in case

∞−∞.

With these results, we can investigate whether for j ∈ J the discrepancy Dj is con-

tinuous and satisfies a modulus of continuity estimate in f †.

Proposition 4.13. If Assumptions 4.10 are satisfied, for j ∈ J such that Dj(vj, fj) =

‖v1 − f1‖
pj
Zj

with pj ≥ 1, then for every f †j ∈ Yj and v0 ∈ Yj the discrepancy Dj is

v0-continuous in f †j .

Moreover, for any f †j ∈ Yj and Vj = Yj, the discrepancy Dj is strongly ψj-continuous

on Vj in f †j , where ψj : [0, δ0] → [0,∞) is ψj(t) = ct
1
pj with some constant c > 1 and

δ0 > 0 limits the noise, i.e. δ0 > δj. This means that for ‖fj−f †j ‖
pj
Zj

= δj < δ0 we obtain

∣∣∣‖Tju− fj‖pjZj − ‖Tju− f †j ‖pjZj ∣∣∣ ≤ cδ
1
pj

j

(
‖Tju− f †j ‖

pj
Zj

+ 1
)
. (119)

Proof. The continuity of Dj(v0, ·) with respect to TDj is a direct consequence of the

triangle inequalities which we just established, used on vj, f
†
j and (f δj )δ, where f δj → f †j

in TDj implies the required condition for applicability of the triangle inequalities.
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The proof of Proposition 4.4 concerning the strong ψj-continuity solely used basic

results on convex analysis in finite dimensions and the inverse triangle inequality. Thus,

a completely analogue proof can be made.

Hence, we see that also subnorms satisfy the conditions required for the Theory de-

veloped in Part I and the following corollary summarises the application of said theory.

Corollary 4.14. This corollary summarises the theory of Part I applied to the Problem

(SN -MTIKHλ,α(f †)). We again split into 4 statements, existence, convergence, rates

and single-data:

1. Let the Assumptions 4.10 hold with J such that Dj(vj, fj) = ‖vj − fj‖
pj
Zj

for j ∈ J ,

for i ∈ J c let Di : Yi × Yi → [0,∞] be a basic discrepancy function. Further, let

(Rα)α be a continuous family of functions and with λ = 1 and some α = α0 ∈ A
let the Tikhonov functional

F1,α0(u, f) =
(∑
j∈J

‖Tju− fj‖
pj
Yj

)
+
(∑
i∈Ic

Di(Tiu, fi)
)

+Rα0(u) (120)

be uniformly coercive. Then, for f † ∈ Y the Problem (SN -MTIKHλ,α(f †)) is

either solvable or Fλ,α(·, f †) ≡ ∞ for all λ ∈ (0,∞)M , α ∈ A.

2. Additionally to 1., let I ⊂ {1, . . . ,M}, parameter choice rules as in Theorem 3.9

be applied, and let an Rα†,λ†,I-minimal I-partial solution u0 exists such that Di is

Tiu0-continuous in f †i for all i ∈ Ic ∩ J c. Let (f δ)δ be a sequence in Y such that

f δ
TD→ f † and let the corresponding solutions to SN-MTIKHλδ,αδ(f

δ) be denoted

by uδ. Then, one obtains subsequential convergence of (uδ)δ to Rα†,λ†,I-minimal

I-partial solutions to Tu = f †.

3. Additionally to 1. and 2., let X be a normed space and (A, dA) be a metric space,

and let u† be an Rα†,λ†,I-minimal I-partial solution to Tu = f †. For i ∈ J c

let the discrepancy Di be strongly ψi-continuous on Vi in f †i for some sets Vi ⊂
Yi and suitable functions ψi, and let there be a set U ⊂ X and function ψR

α†

such that the family (Rα)α is strongly ψR
α†

-continuous on U in α†. Let Rα† and

Di(Ti·, f †) for i ∈ Ic be convex. Also, let u†, uδ ∈ U and Tiu
†, Tiu

δ ∈ Vi for i ∈ J c

and for δj < δ0 with some constant δ0 > 0. Let there be constants γ1, γ2 ≥ 0

with γ1 < 1 and ε0 > 0 such that the following source condition holds: There is
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ξ ∈ ∂[Rα†,λ†,I(·, f †)](u†) such that for u satisfying Rα†,λ†,I(u, f
†) ≤ Rα†,λ†,I(u

†, f †)+

ε0 and
∑

i∈I Di(Tiu, f
†
i ) ≤ ε0

−〈ξ, u− u†〉X∗×X ≤ γ1D
ξ
R
α†,λ†,I(·,f†)(u, u

†) + γ2

∑
i∈I

φi(Tiu, Tiu
†), (SC3)

where in case j ∈ I ∩ J , the function φj(Tju, Tju
†) = ‖Tju − Tju†‖Zj . Here, for

i ∈ I, the function φi : Yi × Yi → [0,∞] is such that for vi ∈ Yi

φi(vi, f
†
i ) ≤ Φi

(
Di(f

†
i , fi)

)
Di(vi, fi) + ψi

(
Di(f

†
i , fi)

)
,

where Φi : [0,∞]→ R is such that Φi(δi) ≤ 1
4γ2
λδi for δi sufficiently small.

Then, there are constants c > 0 and δ = (δ1, . . . , δM) ∈ (0,∞)M such that for

δ < δ and j ∈ I ∩ J ,

‖Tjuδ − f δj ‖
pj
Zj
≤ c

(
(λδj)

−1
(∑

i∈I

(
λδi δi + ψi(δi)

)
(121)

+
∑
i∈Ic

(
ψi(δi) + |λ†i − λδi |

)
+ ψR

α†
(dA(αδ, α†))

))
.

For j ∈ I:

Dj(Tju
δ, f δj ) ≤ c

(
(λδj)

−1
(∑

i∈I

(
λδi δi + ψi(δi)

)
(122)

+
∑
i∈Ic

(
ψi(δi) + |λ†i − λδi |

)
+ ψR

α†
(dA(αδ, α†))

))
,

Dξ
R
α†,λ†,I(·,f†)(u

δ, u†) ≤ c

(∑
i∈I

(
λδi δi + ψi(δi)

)
(123)

+
∑
i∈Ic

(
ψi(δi) + |λ†i − λδi |

)
+ ψR

α†
(dA(αδ, α†))

)
.

In particular, this constant c solely depends on Rα†,λ†,f†(u
†, f †), γ1, γ2, λ†, α†, f †

and δ, but not on the specific sequence (uδ)δ, (f δ)δ or even (δ)δ∈∆.

4. In the single-data case M = 1: Let R : X → [0,∞) be TX-lower semi-continuous

and for all C > 0, let the set {u ∈ X
∣∣ R(u) + ‖Tu− f‖pZ ≤ C} be TX-precompact
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and let dom(R) ∩ dom(T ) 6= ∅. Then, for Tu = f † the Tikhonov regularisation

min
u∈X
‖Tu− f †‖pZ + αR(u) (124)

is solvable and stable, and the convergence results stated in Part I hold.

Proof. Application of Theorems 3.5, 3.9 and Theorem 3.21, whose assumptions are ful-

filled due to Propositions 4.11, 4.13 and the general setting.

65



5. Kullback-Leibler Divergence

5.1. Motivation

While using norms for the discrepancy function is often reasonable as described in the

previous chapter, the discrepancy should always be suitable to the noise model one con-

siders, and there are types of noise for which norms simply are not feasible discrepancy

choices. In this chapter the Kullback-Leibler divergence is derived and its use for reg-

ularisation is considered. Using such a fidelity term is in particular reasonable when

dealing with Poisson distributed noise, e.g. if Y = L1(Ω), and every point contains noise

which is Poisson distributed with the true value as expected value.

IfX is a Poisson distributed random variable with parameter λ, then for k ∈ {0, 1, 2, . . . }

P(X = k) =
λk

k!
e−λ. (125)

When we consider v = (v1, . . . , vN) and f = (f1, . . . , fN) such that f is a random-variable

and fi is Poisson distributed with expected value vi, i.e. f is a version of v containing

Poisson noise, then the likelihood function is L(v, f) =
∏N

i=1
v
fi
i

fi!
e−vi , and consequently

argmax
v

(
L(v, f)

)
= argmin

v

(
− ln(L(v, f))

)
= argmin

v

(
− ln

( N∏
i=1

vfii
fi!
e−vi

))
= argmin

v

( N∑
i=1

−fi ln(vi) + vi + ln(fi!)
)

= argmin
v

( N∑
i=1

vi − fi − fi ln
(vi
fi

))
.

It is well known that the likelihood function is a suitable discrepancy when trying to

recover parameter (in our case v), and therefore D(v, f) =
∑N

i=1 vi − fi − fi ln(vi
fi

) is a

reasonable measure of the discrepancy when dealing with Poisson distributed noise.

Understanding this as a special case for the counting measure, we generalise this

concept to the Kullback-Leibler divergence.

Definition 5.1 (Kullback-Leibler divergence). Let µ be a positive finite Radon mea-

sure and (Ω,A, µ) the corresponding measure space. Let L1,+
µ (Ω) = {v ∈ L1

µ(Ω) | v ≥
0 µ a.e.} and we define the Kullback-Leibler divergence (also I-divergence) as

DKL : L1,+
µ (Ω)× L1,+

µ (Ω)→ [0,∞], DKL(v, f) =

∫
Ω

v − f − f ln
(v
f

)
dµ,
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where we understand the integrand d(a, b) = a − b − ln
(
a
b

)
such that d(a, 0) = a for

a ≥ 0 and d(0, b) =∞ for b > 0 and in particular d(0, 0) = 0.

Note that L1,+
µ (Ω) is not a vector space, but one could extend the Kullback-Leibler

divergence with values ∞ onto the whole space L1
µ(Ω). Moreover, one can still consider

concepts of convexity on L1,+
µ (Ω) as it is a convex subset of the vector space L1

µ(Ω).

Moreover, we will in the following use the norm topology from L1
µ also on L1,+

µ (Ω) by

considering the resulting subspace topology to which we also refer to as the L1
µ topology

in slight abuse of notation.

5.2. Basic Properties

First of all, let us consider some of the basic properties of the Kullback-Leibler diver-

gence, in particular its analytic properties relevant to the application as a discrepancy

in Part I. We will therefore in the following assume that a finite measure space (Ω,A, µ)

as in Definition 5.1 exists in the background without further mention.

Lemma 5.2. For v, f ∈ L1,+
µ (Ω), the mapping (v, f) 7→ DKL(v, f) is convex. Also, the

positive definiteness property

DKL(v, f) ≥ 0, and DKL(v, f) = 0⇔ v = f µ a.e. in Ω, (126)

holds. Furthermore, DKL(·, f) is strictly convex, if and only if f > 0 µ almost every-

where.

Proof. We consider the function d : [0,∞)× [0,∞)→ R such that for a, b ≥ 0, d(a, b) =

a−b−b ln
(
a
b

)
, i.e. the integrand in DKL as in Definition 5.1 with the same special cases.

Many computations and consideration concerning the Kullback-Leibler divergence can

be reduced to point-wise considerations with regard to d. Since dom(DKL) ⊂ L1,+
µ (Ω)×

L1,+
µ (Ω) which is a convex subset of L1

µ(Ω) × L1
µ(Ω), it is sufficient to consider v, f ≥ 0

and v, f <∞ µ a.e., in order to investigate convexity or positivity.

Convexity: We aim to show that d : [0,∞) × [0,∞) is a convex function as this

immediately implies the convexity of DKL. In a, b > 0,

∇d =

(
1− a

b

− ln
(
a
b

)) , ∇2d =

(
b
a2
− 1
a

− 1
a

1
b

)
and det(∇2d) =

b

a2

1

b
− 1

a

1

a
= 0 (127)

implying that d is convex on (0,∞)× (0,∞).
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So it remains to show that convexity holds even if one of the variables possesses the

value 0. Let therefore a1, a2, b1, b2 ≥ 0 and for some α ∈ (0, 1) let ā = αa1 + (1 − α)a2

and b̄ = αb1 + (1− α)b2. We need to show that d(ā, b̄) ≤ αd(a1, b1) + (1− α)d(a2, b2).

The cases left to consider revolve around at least one of the instances a1, a2, b1, b2

being zero, however, the cases ai = 0 but bi > 0 for some i ∈ {1, 2} are trivial as then

d(ai, bi) = ∞ and the convexity estimate would hold trivially. Therefore, also in the

case a1 = 0 and a2 = 0 the convexity estimates hold as either d(ai, bi) =∞ for at least

one i, or a1 = a2 and b1 = b2.

So trivial cases are taken care of and the cases with one bi = 0 remain, i.e. b2 = 0,

a1 ≥ 0, b1 ≥ 0 and a2 ≥ 0 (and the same with the roles i = 1 and i = 2 exchanged).

We further split this up into the case a2 = 0, b2 = 0, a1 > 0, b1 ≥ 0 and the case

b2 = 0, b1 ≥ 0, a1 ≥ 0, a2 > 0 (and the cases exchanging roles i = 1 with i = 2). For the

first case, i.e. that a2 = 0 and b2 = 0 we see via computation that d(ā, b̄) = αd(a1, b1)

which implies the convexity estimate as d(a2, b2) = 0. In the second case, i.e. ai > 0 for

i ∈ {1, 2} and b2 = 0, since ā ≥ αa1 we obtain

d(ā, b̄) = α
(
a1 − b1 − b1 ln

( ā

αb1

))
+ (1− α)

(
a2 − b2 − b2 ln

(a2

b2

)
︸ ︷︷ ︸

=0

)

≤ α
(
a1 − b1 − b1 ln

(αa1

αb1

))
+ (1− α)

(
a2 − b2 − b2 ln

(a2

b2

))
= αd(a1, b1) + (1− α)d(a2, b2),

which holds true even if b1 = 0. Hence, the function d : [0,∞)× [0,∞)→ R∞ is indeed

convex.

Apparently, DKL(v, f) =
∫

Ω
d
(
v(x), f(x)

)
dµ(x) and it is well-known, that the integral

of convex functions (with an unsigned measure) is again convex.

Positivity: To confirm that DKL(v, f) ≥ 0 and equality holds if and only if v = f ,

we compute for fixed f ∈ L1,+
µ (Ω) what the infimum value infv∈L1,+

µ (Ω)DKL(v, f) is. We

will see that these infima are always zero, and the infimum is only attained by v = f µ

a.e., consequently confirming the positivity statements.

In order to find the infimum, we consider mina≥0 d(a, b) for fixed b ≥ 0 since integrating

point-wise minimal functions will lead to minimal integrals. The first order optimality

condition in the case a > 0, b > 0 is satisfied by a = b which obviously yields d(a, b) = 0.

In case a > 0, b = 0, the value d(a, b) = a > 0, which is not optimal, since d(0, 0) = 0.

The case a = 0, b > 0 implies d(a, b) = ∞, while d(b, b) = 0. Consequently, in any
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case a = b minimises the functional d(·, b). By monotonicity of the integral operator

and since d
(
v(x), f(x)

)
= 0 is minimal only for v(x) = f(x), we obtain that it is both

necessary and sufficient for the minimiser v of DKL(·, f) that v = f µ almost everywhere

in Ω and in particular DKL(v, f) ≥ 0 for any v ∈ L1,+
µ (Ω).

Strict convexity: The strict convexity of the functional with respect to the first

component is again obtained from considering the point-wise function d. For b = 0,

d(a, b) = a is linear, and consequently not strictly convex. Hence, for Ω̃ = {x ∈
Ω
∣∣ f(x) = 0} the characteristic function χΩ̃ such that χΩ̃(x) = 1 if x ∈ Ω̃ and zero

otherwise has the property

DKL(χΩ̃, f) =

∫
Ω̃

1 dx = |Ω̃| = 1

3
|Ω̃|+ 2

3
|Ω̃| = 1

2
DKL(

2

3
χΩ̃, f) +

1

2
DKL(

4

3
χΩ̃, f), (128)

which shows that DKL(·, f) is not strictly convex if |Ω̃| > 0. In the case that f > 0 a.e.

on Ω, d(·, f(x)) is strictly convex for µ almost all x ∈ Ω (as v(x) 7→ −f(x) ln(v(x)) is

for f(x) > 0), resulting in DKL(·, f) =
∫

Ω
d(·(x), f(x)) dµ being strictly convex.

As we have seen in Part I, the topological properties of the discrepancy term D are

important in order to establish technical results concerning stability and convergence of

the regularised solutions. Therefore, we next consider what properties DKL possesses

with regard to the L1
µ topology.

Under some additional assumptions, the functional DKL induces a topology stronger

than the L1
µ norm topology.

Lemma 5.3. For v, f ∈ L1,+
µ (Ω), the inequality

‖v − f‖2
L1
µ(Ω) ≤

(2

3
‖f‖L1

µ
+

4

3
‖v‖L1

µ

)
DKL(v, f) (129)

holds. In particular, for sequences (vn)n and (fn)n bounded in L1
µ, we have

lim
n→∞

DKL(vn, fn) = 0 ⇒ lim
n→∞

‖vn − fn‖L1
µ

= 0. (130)

Proof: [see e.g. [30, 9]. ] For a, b ∈ R with a > 0 and b ≥ 0, we first show the scalar

inequality

(a− b)2 ≤
(2

3
b+

4

3
a
)(
− b ln

(a
b

)
+ a− b

)
. (131)

In order to do so, we consider g(t) =
(

4
3

+ 2
3
t
)(
t ln(t)− t+ 1

)
− (t− 1)2. Note that for

t = b
a
≥ 0, a2g(t) is the difference of the two sides of (131), and hence we aim to show
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g(t) ≥ 0 for all t > 0. One can compute, that

∂g

∂t
(t) =

4

3

(
− 2t+ (t+ 1) ln(t) + 2

)
and

∂2g

∂t2
(t) =

4

3

(
− 2 +

t+ 1

t
+ ln(t)

)
. (132)

The value t = 1 is a solution to the first order optimality condition of g, and ∂2g
∂t2

(t) > 0

for t 6= 1 (since 1
t

+ ln(t) > 1 for t 6= 1) implying that t = 1 is the unique solution to the

first order condition as g is strictly convex. Therefore the minimum value of g can only

be attained in t = 1, and since g(1) = 0, also g(t) ≥ 0 for all t > 0, which implies (131)

as multiplication with a2 will not change the sign.

Now, we can turn to the DKL estimate and note, that for v(x) = 0 only f(x) = 0

(in an µ a.e. sense) is reasonable, since otherwise DKL(v, f) = ∞ and the estimate

would be trivially fulfilled. Consequently, we assume without loss of generality, that

v > 0 µ almost everywhere. Then, application of the scalar estimate, as well as the

Cauchy-Schwarz Inequality yield

(∫
Ω

|v − f | dµ
)2 (131)

≤
(∫

Ω

√(2

3
f +

4

3
v
)√
−f ln

(v
f

)
+ v − f dµ

)2

C.S.I.

≤
∫

Ω

(
2

3
|f |+ 4

3
|v|
)

dµ

∫
Ω

(
− f ln

(v
f

)
+ v − f

)
dµ

def.
=
(2

3
‖f‖L1

µ
+

4

3
‖v‖L1

µ

)
DKL(v, f).

The topology induced by the Kullback-Leibler divergence is in a way stronger than

the L1
µ norm. Next we discuss how the DKL functional react to L1

µ convergence of its

arguments in terms of continuity, and how a Topology TDKL implying DKL convergence

might look like.

5.3. Continuity Results

In this chapter we investigate suitable topologies and assumptions such that continuity

of DKL is achieved in reasonable settings.

Lemma 5.4. Let f † ∈ L1,+
µ (Ω). For fixed δ0 > 0, there is a constant c > 0 such that

if DKL(f †, f δ) ≤ δ0 for f δ ∈ L1,+
µ (Ω), also ‖f δ‖L1

µ
< c. This means that small distance

with respect to DKL implies boundedness in L1
µ. Note that the constant c does depend on

‖f †‖L1
µ

and δ0.

Proof. Let f δ ∈ L1,+
µ (Ω) with DKL(f †, f δ) < δ0. Then using the estimate (129) in
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Lemma 5.3 (stating an estimate between ‖f − f †‖2
L1
µ

and DKL(f †, f)) one computes

(
‖f δ‖L1

µ
− ‖f †‖L1

µ

)2 ≤ ‖f † − f δ‖2
L1
µ

(129)

≤ 2(‖f †‖L1
µ

+ ‖f δ‖L1
µ
)DKL(f †, f δ).

Reformulating by putting all ‖f δ‖L1
µ

on the left side, applying the binomial formula and

using that DKL(f †, f δ) ≤ δ0, one obtains the equivalent inequality

‖f δ‖L1
µ
(‖f δ‖L1

µ
− 2δ0 − 2‖f †‖L1

µ
) + ‖f †‖2

L1
µ
≤ 2‖f †‖L1

µ
δ0.

Now, if ‖f δ‖L1
µ
> 4‖f †‖L1

µ
+ 2δ0 were to hold and omitting the term ‖f †‖2

L1
µ
≥ 0, one

sees

‖f δ‖L1
µ
≤ δ0

contradicting ‖f δ‖L1
µ
> 4‖f †‖L1

µ
+ 2δ0. So we obtain that

‖f δ‖L1
µ
≤ 4‖f †‖L1

µ
+ 2δ0. (133)

So we see that there indeed are uniform bounds on the L1
µ norm for smallDKL distance.

This will later be useful in order to connect the L1
µ topology with a topology stronger

than DKL.

Lemma 5.5. The mapping (u, v) 7→ DKL(u, v) in L1,+
µ (Ω) × L1,+

µ (Ω) is lower semi-

continuous with respect to the L1
µ × L1

µ norm topology.

Proof. In order to prove the lower semi-continuity, we employ the Lemma of Fatou.

Again, only functions with non-negative finite values need to be considered and we do

the proof by contradiction. We assume that DKL is not lower semi-continuous and

therefore there are sequences (vn)n and (fn)n in L1,+
µ (Ω) such that vn → v in L1

µ and

fn → f in L1
µ, but

lim
n→∞

DKL(vn, fn) < DKL(v, f). (134)

It is well known, that every convergent sequence in L1
µ admits a subsequence which

converges point-wise µ almost everywhere. Hence, we can select a subsequence indexed

by n′ for which vn
′
(x) → v(x) µ a.e. and fn

′
(x) → f(x) µ a.e.. In particular v < ∞

and f <∞ µ a.e., and thus the cases v(x) =∞ or f(x) =∞ are negligible. Therefore,

we show that the integrand function d with d(a, b) = a − b − b ln
(
a
b

)
is lower semi-

continuous on [0,∞) × [0,∞) as preparation for Fatou’s Lemma. All parts of d(a, b)
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other than g(a, b) = −b ln
(
a
b

)
, with the conventions as in the definition of DKL are

obviously lower semi-continuous, so our focus will lie on this part of d. Let (an)n and

(bn)n be convergent non-negative valued sequences with respective limits a, b ∈ [0,∞).

If a > 0 and b > 0, the function d is continuous in (a, b) as the composition of continuous

functions. The case b = 0 and a > 0 does not pose any problems either, since ln
(
an
)

is

bounded, implying limn→∞ g(an, bn) = 0 = g(a, b) due to our conventions. This leaves

the case a = 0, and either b = 0 or b > 0. In the former, d(a, b) = 0 ≤ d(an, bn)

and therefore the lower semi-continuity estimate holds, while for the latter, obviously

g(a, b) =∞ = limn→∞ g(an, bn).

Hence, d(v(x), f(x)) ≤ lim infn′→0 d
(
vn
′
(x), fn

′
(x)
)

and d
(
v(x), f(x)

)
≥ 0 for µ almost

every x ∈ Ω, thus Fatou’s Lemma is applicable and results in

DKL(v, f) =

∫
Ω

d
(
v(x), f(x)

)
dµ(x)

≤ lim inf
n′→∞

∫
Ω

d
(
vn
′
(x), fn

′
(x)
)

dµ(x) = lim
n→∞

DKL(vn, fn),

contradicting the assumptions stating existence of sequences (vn)n, (fn)n such that

limn→∞DKL(vn, fn) < DKL(v, f), and consequently DKL is lower semi-continuous.

Recall that being a basic discrepancy requires a topology TD which is stronger than

the discrepancy, and yields TY × TD-lower semi-continuity. Next we try to find such a

topology and show its properties.

Definition 5.6. We define the topology TDKL on L1,+
µ (Ω) as the topology created by the

subbasis S ⊂ P(L1,+
µ (Ω)) (the smallest topology containing S, constructed by arbitrary

unions of finite intersections of elements in S), where

S =
{
Bε(f

†)
∣∣ ε ∈ (0,∞), f † ∈ L1,+

µ (Ω)
}

with (135)

Bε(f
†) =

{
f ∈ L1,+

µ (Ω) | DKL(f †, f) < ε
}
,

i.e. the topology induced by level sets with regard to the function DKL(f †, ·). Note that

this construction indeed is a topology, and this topology will serve as the TDi topology for

the Tikhonov theory if the discrepancy Di = DKL.

Lemma 5.7. For a sequence (fn)n ⊂ L1,+
µ (Ω) and f † ∈ L1,+

µ (Ω), convergence fn
TDKL→ f †

holds if and only if for any f ∈ L1,+
µ (Ω),

lim
n→∞

DKL(f, fn) = DKL(f, f †). (136)
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In particular, TDKL is stronger than the L1
µ norm topology and TDKL is also a Hausdorff

topology.

Proof. First we assume that fn
TDKL→ f † and show that (136) holds for any f ∈ L1,+

µ (Ω).

This convergence of fn → f † is equivalently defined via: for any neighbourhood U of

f † ∈ L1,+
µ (Ω) there is n0 > 0 such that fn ∈ U for n ≥ n0. It is however sufficient to

consider U =
⋂N
i=1 Bεi(fi) for arbitrary f1, . . . fN ∈ L1,+

µ (Ω) and ε1, . . . , εN > 0 such that

DKL(fi, f
†) < εi, i.e. finite intersections of elements of the subbasis containing f †. This

in turn means that for such f1, . . . , fN and ε1, . . . , εN there is a n0 > 0 such that for

n > n0

DKL(fi, f
n) ≤ εi.

When choosing N = 1, f1 = f † and ε1 > 0 arbitrarily small, this implies the convergence

DKL(f †, fn) → 0 and due to Lemma 5.4 the norm ‖fn‖L1
µ

is bounded and thus also

fn
L1
µ→ f † due to Lemma 5.3, showing that indeed TDKL is stronger than the L1

µ topology.

Also, choosing N = 1 and f ∈ L1,+
µ (Ω) arbitrary, we see that

lim sup
n→∞

DKL(f, fn) ≤ inf
{
ε > 0

∣∣ DKL(f, f †) < ε
}

= DKL(f, f †).

Hence, we see that lim supn→∞DKL(f, fn) ≤ DKL(f, f †). However, as TDKL is stronger

than L1
µ, Lemma 5.5 implies that DKL(f, f †) ≤ lim infn→∞DKL(f, fn), which together

yields the claimed convergence statement.

For the converse implication, let DKL(f, fn) → DKL(f, f †) for all f ∈ L1,+
µ . Then it

is easy to see that indeed fn ∈ U for any neighbourhood U after finitely many n and

consequentlyfn
TDKL→ f †.

That this is a Hausdorff topology follows immediately from the fact that TDKL is

stronger than the Hausdorff topology induced by ‖ · ‖L1
µ
.

Lemma 5.8. The function DKL is TL1
µ,W
× TDKL lower semi-continuous, i.e. for se-

quences (vn)n and (fn)n in L1,+
µ (Ω),

(
vn

L1
µ
⇀ v, fn

TDKL→ f
)
⇒ DKL(v, f) ≤ lim inf

n→∞
DKL(vn, fn). (137)

In particular DKL : L1,+
µ (Ω) × L1,+

µ (Ω) → [0,∞] is a basic discrepancy with respect to

TL1
µ,W

and TDKL, where again in slight abuse of notation TL1
µ,W

will denote the subtopology
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of the weak L1
µ topology on L1,+

µ (Ω). Moreover, for any v0, f
† ∈ L1,+

µ (Ω) the Kullback-

Leibler divergence is v0-continuous in f †.

Proof. Lemma 5.5 shows the lower semi-continuity on L1
µ×L1

µ, and DKL is convex, thus

Lemma 1.43 implies that DKL is even TL1
µ,W
× TL1

µ,W
lower semi-continuous. Strictly

speaking one would require a vector space for this lemma, however L1,+
µ (Ω) is a convex,

weakly closed subset and the same argument can be made to DKL by extending DKL

with ∞ onto L1
µ(Ω). In particular, TDKL is stronger than the weak topology on L1

µ due

to Lemma 5.7, and thus convergence in TDKL implies convergence in TL1
µ,W

, ensuring the

desired lower semi-continuity property. In particular, the other conditions for being a

basic discrepancy with respect to TL1
µ(Ω) and TDKL are fulfilled (positivity and topology

TD stronger than D), so DKL is indeed a basic discrepancy. That DKL(v0, ·) is continuous

in f † with respect to TDKL is immanent due to Lemma 5.7

Remark 5.9. The previous lemma ensures that in a Tikhonov approach the discrepancy

D = DKL with Y = L1,+
µ (Ω), TY = TL1

µ,W
and TD = TDKL (Definition 5.6), the function

DKL is a suitable choice for a discrepancy function.

We wish to investigate the topology further, in order to find conditions allowing to

verify convergence more easily than considering DKL(f, fn) for all f ∈ L1,+
µ (Ω) and

identify sets V suitable for strong continuity of DKL. The following example illustrates,

that it is not sufficient that DKL(f †, fn)→ 0 to obtain convergence in TDKL .

Example 5.10. We show an example of functions v0, f † and a sequence of function

(fn)n in L1,+
µ such that DKL(f †, fn)→ 0 does not imply DKL(v0, f

n)→ DKL(v0, f
†) and

consequently fn does not converge with respect to TDKL. To do so, we consider Ω = [0, 1]

and µ is the standard Lebesgue measure. When we consider v0, f
† ∈ L1,+(Ω) such that

for x ∈ Ω, v0(x) = e
−1

x2 x
3
2 and f †(x) = x

3
2 , then

DKL(v0, f
†) =

∫ 1

0

v0 − f † − x
3
2 ln(e

−1

x2 ) dx =

∫ 1

0

v0 − f †︸ ︷︷ ︸
≤1

+x
3
2

1

x2
dx <∞.

For the sequence of functions (fn)n ⊂ L1,+(Ω) with fn(x) = x
3
2 + 1

n
x for n ≥ 1, we

74



see that

DKL(f †, fn) =

∫ 1

0

x
3
2 − x

3
2 − 1

n
x− (x

3
2 +

1

n
x) ln

( x
3
2

x
3
2 + 1

n
x

)
dx

= − 1

n

∫ 1

0

x dx+

∫ 1

0

− (x
3
2 +

1

n
x)︸ ︷︷ ︸

≤2x≤2

ln
( x

3
2

x
3
2 + 1

n
x

)
︸ ︷︷ ︸

n→∞→ 0

dx.

Obviously the first integral will vanish for n→∞, while for the second we find a majorant

g(x) = −x ln
(
x
2

)
, and thus Lebesgue’s Theorem implies that the second integral vanishes

as well, thus yielding DKL(f †, fn)→ 0. However,

DKL(v0, f
n) =

∫ 1

0

v0 − fn − (x
3
2 +

1

n
x) ln

(
e
−1

x2
x

3
2

x
3
2 + 1

n
x

)
dx

=

∫ 1

0

v0 − fn dx︸ ︷︷ ︸
≤c

+

∫ 1

0

(x
3
2 +

1

n
x)

1

x2
dx︸ ︷︷ ︸

=∞

−
∫ 1

0

(x
3
2 +

1

n
x) ln

( x
3
2

x
3
2 + 1

n
x

)
dx︸ ︷︷ ︸

n→∞→ 0

=∞,

where the first integral is bounded, the second is essentially
∫ 1

0
x−1 dx which is infinite,

and the last integral was estimated before. Hence, for this v0 and this f †,

DKL(v0, f
†) <∞ = lim

δ→0
DKL(v0, f

δ),

implying that fn does not converge in TDKL to f †. In particular we note that all occur-

ring functions are even bounded in L∞µ (Ω), so convergence might require even stronger

assumptions.

Theorem 5.11. Let f †, v0 ∈ L1,+
µ (Ω) such that DKL(v0, f

†) < ∞, and let (fn)n ⊂
L1,+
µ (Ω) be a sequence with DKL(f †, fn)→ 0. Then

lim
n→∞

DKL(v0, f
n) = DKL(v0, f

†) ⇔ lim
n→∞

∫
{v0 6=0, f† 6=0}

ln
(v0

f †

)
(f † − fn) dµ = 0.

(138)

In particular, if a sequence (fn)n in L1,+
µ (Ω) is such that there is a constant c > 0 with

fn(x) ≤ cf †(x) and fn(x) → f †(x) for almost every x ∈ Ω, then fn
TDKL→ f †. Also,

f ∈ L1,+
µ (Ω) is isolated with respect to the TDKL topology if and only if f ≡ 0.

Proof. Note that if DKL(v, f) =
∫

Ω
d(v(x), f(x)) dµ(x) < ∞, also d(v(x), f(x)) < ∞

µ a.e. and hence v(x) = 0 implies f(x) = 0. Therefore, in a µ a.e. sense v0(x) = 0
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implies f †(x) = 0 and f †(x) = 0 implies fn(x) = 0 for n sufficiently large since both

DKL(v0, f
†) <∞ and DKL(f †, fn) <∞ for n sufficiently large.

For a, b, c ∈ [0,∞), such that a = 0⇒ b = 0 and b = 0⇒ c = 0, with the conventions

concerning d(a, b) = a− b− ln(a
b
), we compute

d(a, c)− d(a, b)− d(b, c) = −c ln
(a
c

)
+ b ln

(a
b

)
+ c ln

(b
c

)
(139)

=
(

ln(a)− ln(b)
)(
b− c

)
.

Indeed, if a > 0, b > 0, c > 0 this is basic a computation with logarithms, in case c = 0

and a, b not, the first and last term vanish, leaving solely b(ln(a)− ln(b)) which is again

correct. In case a = 0 or b = 0, also b = c = 0 holds, and thus obviously the equation

holds with the values 0. Using linearity of integrals and (139),

∣∣DKL(v0, f
n)−DKL(v0, f

†)−DKL(f †, fn)
∣∣ =

∣∣∣ ∫
{v0 6=0, f† 6=0}

ln
(v0

f †

)
(f †−fn) dµ

∣∣∣, (140)

and since DKL(f †, fn) → 0, the convergence of DKL(v0, f
n) is equivalent to the stated

integral’s convergence.

Next we show that for a sequence (fn)n with fn ≤ cf † and fn → f † point-wise

µ almost everywhere, also DKL(v0, f
†) = limn→∞DKL(v0, f

n) since then Lemma 5.7

implies convergence in TDKL .

To show the convergence of D(v0, f
n), we may assume DKL(v0, f

†) <∞, as otherwise,

the convergence is implied by lower semi-continuity in L1
µ as stated in Lemma 5.5. Thus

we can apply the first statement of this theorem which reduces the proof to showing

that the right side of (138) holds. Therefore, we consider∫
{v0 6=0, f† 6=0}

ln
(v0

f †

)
(fn − f †) dµ =

∫
{v0 6=0, f† 6=0}

χ{f† 6=fn}f
† ln
(v0

f †

)(
1− fn

f †

)
dµ, (141)

where in an almost everywhere sense f †(x) = 0 implies fn(x) = 0 for n sufficiently

large (independent of x) and therefore division by 0 does not occur. Furthermore,

f † ln
(
v0
f†

)
∈ L1

µ(Ω) since DKL(v0, f
†) < ∞, and the function

∣∣1 − fn

f†

∣∣ < c + 1 and

converges subsequentially point-wise µ a.e. towards 0. Hence, application of Lebesgue’s

Theorem ensures convergence of the integral on the right side of (141) towards 0. Thus,

fn
TDKL→ f due to Lemma 5.7.

In particular, for any f ∈ L1,+
µ (Ω) with f not constant zero, there is a sequence of
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functions (fn)n (e.g. (1 + 1
n
)f) such that fn

TDKL→ f , so f is not isolated. On the other

hand, DKL(0, f) = ∞ for all f ∈ L1,+
µ and therefore the only open neighbourhood of

f ≡ 0 is {f ≡ 0}.

Remark 5.12. Note that the conditions fn ≤ cf † and point-wise convergence almost

everywhere are sufficient conditions which can be verified more easily, but not necessarily

an equivalent formulation of the convergence induced by the topology. However, the

condition in (138) for convergence is close to an L∞µ convergence of fn

f†
towards constant

1, more precisely the condition appears similar to convergence in a topology pre-dual to

L1
µ.

Next, for f † ∈ L1,+
µ we wish to identify a set V ⊂ L1,+

µ (Ω) and a function ψ : [0,∞)→
[0,∞) such that the discrepancy DKL is strongly ψ-continuous on V in f †, i.e. whether

for v0 ∈ V a modulus of continuity estimate in f † holds.

Theorem 5.13. Let f †, v0 ∈ L1,+
µ (Ω) such that

ln
(v0

f †

)
∈ L∞µ ({f † 6= 0, v0 6= 0}). (142)

Then, for fixed f δ ∈ L1
µ(Ω) with DKL(f †, f δ) = δ the following estimate holds:

∣∣DKL(v0, f
†)−DKL(v0, f

δ)
∣∣ ≤ 2‖ ln

(v0

f †

)
‖L∞µ ({f† 6=0,v0 6=0})

(
‖f †‖L1

µ
+ ‖f δ‖L1

µ

) 1
2 δ

1
2 + δ.

(143)

In particular, for constant c1 > 0 and for

V =
{
v ∈ L1,+

µ (Ω)
∣∣ ln

( v
f †

)
< c1

}
(144)

there is constant c > 1 such that for ψ : [0, δ0)→ [0,∞) with ψ(t) = ct
1
2 the discrepancy

DKL is strongly ψ-continuous on V in f †. Here, δ0 limits the noise, for which the

modulus of continuity estimate is required to hold.

One gets the even slightly stronger statement that there is c > 0 such that for f δ ∈
L1,+
µ (Ω) with DKL(f †, f δ) = δ < δ0 and v0 ∈ V one obtains the estimate

|DKL(v0, f
δ)−DKL(v0, f

†)| ≤ cδ
1
2 , (145)

i.e. DKL is locally Hölder-continuous in the TDKL topology.

Proof. Note that again v0(x) = 0 implies f †(x) = 0 and f †(x) = 0 implies f δ(x) = 0 for
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almost every x ∈ Ω. Obviously, points x ∈ Ω with f †(x) = f δ(x) do not contribute to

the integrals defining the difference DKL(v0, f
†)−DKL(v0, f

δ), and therefore the points

x with f †(x) = 0 or v0(x) = 0 do not have any impact on the following considerations.

The estimate (140) implies

∣∣DKL(v0, f
†)−DKL(v0, f

δ)
∣∣ ≤ ‖ ln

(v0

f †

)
‖L∞µ ({f† 6=0, v0 6=0})‖f δ − f †‖L1

µ(Ω) + δ, (146)

with δ = DKL(f †, f δ). Furthermore, Lemma 5.3 implies ‖f †−f δ‖2
L1
µ(Ω) ≤ 2 supδ

(
‖f †‖L1

µ
+

‖f δ‖L1
µ

)
δ yielding the desired estimate.

The strong ψ-continuity is an immediate consequence, as δ
1
2 goes slower to 0 than δ,

‖f δ‖L1
µ

is uniformly bounded due to Lemma 5.4 and ‖ ln
(
v0
f†

)
‖∞ ≤ c1 by assumption on

v0, and as stated even a locally Hödlder-continuity estimate holds.

5.4. Applicability as a Discrepancy

With these results in mind, we can propose suitable assumptions to use the Kullback-

Leibler divergence as a discrepancy. The corresponding setting is summarised in the

following problem, featuring the Kullback-Leibler divergence as discrepancy functions.

Problem 5.14. Let (X, TX), (Yi, TYi) for i ∈ {1, . . . ,M} and (A, TA) be Hausdorff

spaces and let Ti : dom(Ti) ⊂ X → Yi be continuous operators with respect to TX and

TYi with closed domain. Moreover, let J ⊂ {1, . . . ,M} and for j ∈ J let (Ωj,Aj, µj) be a

finite measure space and (Yj, TYj) = (L1,+
µj

(Ωj), TL1
µj

(Ωj),W ), and let Dj : Yj × Yj → [0,∞]

be such that Dj(vj, fj) = DKL(vj, fj) as in Definition 5.1. Let Di : Yi × Yi → [0,∞] for

i ∈ J c be functions, let λ ∈ (0,∞)M and let (Rα)α∈A with Rα : X → [0,∞] be a family of

functions. We say u† is a solution to the Tikhonov regularisation (KL-MTIKHλ,α(f †))

with regards to Tu = f † with discrepancies Di, weights λi and regularisation Rα with

parameter α ∈ A, ifu† ∈ argminu∈X Fλ,α(u, f †) such that Fλ,α(u†, f †) <∞

with Fλ,α(u, f †) =
(∑

j∈J DKL(Tju, f
†
j )
)

+
(∑

i∈Jc Di(Tiu, f
†
i )
)

+Rα(u).

(KL-MTIKHλ,α(f †))

So this problem is a multi-data Tikhonov approach where Kullback-Leibler divergence

discrepancies Dj(vj, fj) = DKL(vj, fj) are used. Strictly speaking one would require the

notation for DKL to also reflect the corresponding measure space, as its definition would

depend on it. However, for the sake of readability, we will not use such notation as it

78



will be clear from context which space to use, and we implicitly use the DKL functional

fitting the arguments.

Assumptions 5.15 (Kullback-Leibler divergence). Let J ⊂ {1, . . . ,M} be such that

for j ∈ J , Dj = DKL. Then for j ∈ J let the following hold:

KL Let TDj = TDKL be the topology stated in Definition 5.6 for the respective space

L1
µj

(Ωj). In particular, then for sequences (fnj )n ⊂ Yj and f † ∈ Yj

fnj
TDj→ f †j ⇒ lim

n→∞
DKL(fj, f

n
j ) = DKL(fj, f

n
j ) for all fj ∈ L1,+

µj
(Ωj). (147)

We again use the product space notation T = (T1, . . . , TM), Y = Y1 × · · · × YM with

product topologies TY and TD. Also, recall that fnj ≤ cf †j and fnj (x) → f †j (x) for µ

almost all x ∈ Ω implies fnj
TDj→ f †j .

Proposition 5.16. Let Assumptions 5.15 hold. Then, for j ∈ J the function Dj = DKL

is basic discrepancies, which is v0-continuous in f †j for all v0, f
†
j ∈ L1,+

µj
(Ωj). Moreover,

for f †j ∈ L1,+
µj

(Ωj) the discrepancy Dj is strongly ψj-continuous on Vj in f †j , where

Vj =
{
vj ∈ L1,+

µj
(Ωj)

∣∣∣ ln
( vj
f †j

)
< cj

}
(148)

for any cj > 0, and ψj : [0, δ0) → [0,∞) is ψj(t) = ct
1
2 for some constant c ≥ 1, more

precisely DKL(vj, ·) is even locally Hölder-continuous for vj ∈ Vj.

Theorem 5.17. This theorem summarises the theory of Part I for the specific problem

(KL-MTIKHλ,α(f †)). We consider 3 statements, existence, convergence and rates:

1. Let the Assumptions 5.15 hold for j ∈ J with Dj(vj, fj) = DKL(vj, fj). For i ∈ J c,
let Di : Yi × Yi → [0,∞] be a basic discrepancy function on Yi with topologies TYi
and TDi. Further, let (Rα)α be a continuous family of functions, and with λ = 1

and some α = α0 ∈ A let the Tikhonov functional

F1,α0(u, f) =
(∑
j∈J

DKL(Tju, fj)
)

+
(∑
i∈Jc

Di(Tiu, fi)
)

+Rα0(u) (149)

be uniformly coercive. Then, for f † ∈ Y the Problem (KL-MTIKHλ,α(f †)) is

either solvable or Fλ,α(·, f †) ≡ ∞.
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2. Additionally to 1., let I ⊂ {1, . . . ,M}, let a parameter choice rules as in Theorem

3.9 be applied, and let there be an Rα†,λ†,I-minimal I-partial solution u0 such that

for i ∈ J c the discrepancy Di is Tiu0-continuous in f †i . Let a sequence (f δ)δ ⊂ Y

such that f δ
TD→ f †, and denote corresponding solutions to (KL-MTIKHλδ,αδ(f

δ))

by uδ. Then, one obtains subsequential convergence of (uδ)δ to Rα†,λ†,I-minimal

I-partial solutions to Tu = f †.

3. Additionally to 1.,2., let X be a normed space and (A, dA) be a metric space,

and let u† be an Rα†,λ†,I-minimal I-partial solution to Tu = f †. For a sequence

(f δ)δ ∈ Y denote with δ = (δ1, . . . , δM) and Di(f
†
i , f

δ
i ) = δi. Let there be sets

U ⊂ X and Vi ⊂ Yi and functions ψi, ψR
α†

for i ∈ J c such that for i ∈ J c the

the discrepancy Di is strongly ψi-continuous on Vi in f † and the family (Rα)α is

strongly ψR
α†

-continuous on U in α† (modulus of continuity estimates hold on the

discrepancies and regularisation). Furthermore, for j ∈ J let Vj and ψj be as

in Lemma 5.16, and let u†, uδ ∈ U and Tiu
†, Tiu

δ ∈ Vi for i ∈ {1, . . . ,M} and

δi < δ0 with some constant δ0 > 0. Let Rα† and Di(Ti·, f †i ) be convex functions.

Let there be constants γ1, γ2 ≥ 0 with γ1 < 1 and ε0 > 0 such that the following

source condition holds: There is ξ ∈ ∂[Rα†,λ†,I(·, f †)](u†) such that for u satisfying

Rα†,λ†,I(u, f
†) ≤ Rα†,λ†,I(u

†, f †) + ε0 and
∑

i∈I Di(Tiu, f
†
i ) ≤ ε0

−〈ξ, u− u†〉X∗×X ≤ γ1D
ξ
R
α†,λ†,I(·,f†)(u, u

†) + γ2

∑
i∈I

φi(Tiu, Tiu
†), (SC3)

where in case j ∈ J ∩ I, the function φj(Tju, Tju
†) = ‖Tju − Tju†‖L1

µ
. Here, for

i ∈ I, the function φi : Yi × Yi → [0,∞] is such that for vi = Yi

φi(vi, f
†
i ) ≤ Φi

(
Di(f

†
i , fi)

)
Di(vi, fi) + ψi

(
Di(f

†
i , fi)

)
,

where Φi : [0,∞]→ R is such that Φi(δi) ≤ 1
4γ2
λδi for δi sufficiently small.

Then, there are constants c > 0 and δ = (δ1, . . . , δM) such that for δ < δ and

j ∈ I ∩ J

DKL(Tju
δ, f δj ) ≤ c

(
(λδj)

−1
(∑

i∈I

(
λδi δi + ψi(δi)

)
(150)

+
∑
i∈Ic

(
ψi(δi) + |λ†i − λδi |

)
+ ψR

α†
(dA(αδ, α†))

))
.
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For j ∈ I:

Dj(Tju
δ, f δj ) ≤ c

(
(λδj)

−1
(∑

i∈I

(
λδi δi + ψi(δi)

)
(151)

+
∑
i∈Ic

(
ψi(δi) + |λ†i − λδi |

)
+ ψR

α†
(dA(αδ, α†))

))
,

Dξ
R
α†,λ†,I(·,f†)(u

δ, u†) ≤ c

(∑
i∈I

(
λδi δi + ψi(δi)

)
(152)

+
∑
i∈Ic

(
ψi(δi) + |λ†i − λδi |

)
+ ψR

α†
(dA(αδ, α†))

)
.

In particular, this constant c solely depends on Rα†,λ†,f†(u
†, f †), γ1, γ2 cj for j ∈ J

and δ, but not on the specific sequence (f δ)δ or even (δ)δ∈∆ and the general setting.

Proof. Application of Theorems 3.5, 3.9 and Theorem 3.21, whose assumptions are ful-

filled due to Propositions 5.16 and the general setting.

Example 5.18. Let M = 2, let (Y1, ‖ · ‖Y1) be a normed space and Y2 = L1,+
µ (Ω) for

Ω ⊂ R bounded and µ the Lebesgue measure and D1(v1, f1) = ‖v1−f1‖Y1 and D2(v2, f2) =

DKL(v2, f2). Let Assumptions 4.2 for j = 1 and Assumptions 5.15 for j = 2 hold and let

(Rα)α be a strongly ψR
α†

-continuous family of functions. Let (f δ)δ ⊂ Y = Y1 × Y2 such

that Di(f
†, f δ) = δi and let the sequence of solutions (uδ)δ and u† concerning (f δ)δ and

f †. Let uδ, u† ∈ U and T2u
†, T2u

δ ∈ V2 with V2 as in Proposition 5.16. Let the Source

Condition (SC3) hold and the same requirements as in Theorem 5.17. For I = {2},
λδ2 = δ

1
2
2 and |λδ1 − λ

†
1| = δ1 one obtains the convergence rates

DKL(Tu, f δ) = O
(
δ

1
2
2 (δ

1
2
2 + δ1)

)
, Dξ

R
α†,λ†,I(·,f†)(u

δ, u†) = O(δ
1
2
2 + δ1).

Note that the Kullback-Leibler divergence yields the same convergence as norm dis-

crepancy with power pj = 2. However,unlike in the norm case Vj is not the entire space

and Tju
δ ∈ Vj is a condition that can not be checked a-priori.

For the single-data case, we present an alternative source condition, solely dependent

on u†. This different source condition in the single data case allows to avoid the need

for sets Vj and corresponding conditions, and can be seen as a different approach using

an other type of source conditions.

Theorem 5.19. Let (X, ‖·‖X) be a normed space, T : X → L1,+
µ (Ω) be a linear continu-

ous operator for a finite measure space (Ω,A, µ). Let (f δ)δ ⊂ L1,+
µ (Ω) and f † ∈ L1,+

µ (Ω)
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such that f δ
TDKL→ f †. Further, let f † ∈ Rg(T ) and u† be an R-minimal solution. Let an

ξ ∈ X∗ satisfy the source condition:

there is ω ∈ L∞µ (Ω) such that T ∗ω = ξ ∈ ∂R(u†), (SC4)

where T ∗ : L∞µ (Ω) → X∗ denotes the adjoint operator of T : X → L1
µ(Ω). Further, let

DKL(Tu, f) +R(u) be uniformly coercive.

Choosing α such that cδ
1
2 ≤ α(δ) ≤ Cδ

1
2 for some constant c, C > 0 where DKL(f †, f δ) =

δ and denoting with uδα solutions to

argmin
u∈X

DKL(Tu, f δ) + α(δ)R(u)

yields

Dξ
R(uδα, u

†) = O(δ
1
2 ), and DKL(Tuδα, f

δ) = O(δ). (153)

Proof. Similarly to the proof of Theorem 2.15, one obtains due to optimality and via

rearranging

DKL(Tuδα, f
δ) + α(δ)Dξ

R(uδα, u
†) ≤ δ − α(δ)〈ξ, uδα − u†〉X∗×X .

Since ξ = T ∗ω, one obtains

DKL(Tuδα, f
δ) +α(δ)Dξ

R(uδα, u
†) ≤ δ−α(δ)〈ω, Tuδα− f δ〉L∞×L1 +α(δ)〈ω, f †− f δ〉L∞µ ×L1

µ
.

(154)

Estimating the occurring dual pairings where cf† denotes the constant such that ‖f −
f †‖2

L1
µ
≤ cf†DKL(f †, f) in Lemma 5.3, yields

〈ω, f δ − f〉L∞µ ×L1
µ
≤ ‖ω‖L∞µ ‖f − f

δ‖L1
µ
≤ ‖ω‖L∞µ cf†

√
DKL(f, f δ) ≤ cf†

√
δ,

|α(δ)〈ω, Tuδα − f δ〉L∞µ ×L1
µ
| ≤ α(δ)‖ω‖L∞µ ‖Tu

δ
α − f δ‖L1

µ

Young

≤ α(δ)2
‖ω‖2

L∞µ

c̃
+ c̃‖Tuδα − f δ‖2

L1
µ

≤ α(δ)2
‖ω‖2

L∞µ

c̃
+ c2

f† c̃DKL(Tuδα, f
δ),

and where c̃ > 0 is arbitrary and Young’s inequality was applied. Inserting these esti-

mates into (154) yields

(1− c2
f† c̃)DKL(Tuδα, f

δ) + α(δ)Dξ
R(uδα, u

†) ≤ δ + α(δ)cf†δ
1
2 + α(δ)2

‖ω‖2
L∞µ

c̃
, (155)
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which when choosing c̃ =
c2
f†

2
results in

c1DKL(Tuδα, f
δ) + α(δ)Dξ

R(uδα, u
†) ≤ δ + α(δ)c2δ

1
2 + α(δ)2c3‖ω‖2

L∞ (156)

with c1, c2, c3 > 0 suitable. The desired convergence estimates are an immediate conse-

quence of this estimate when choosing α ≈ δ
1
2 .
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Part III.

Regularisation Functionals

Although some requirements concerning the families of regularisation functionals (Rα)α

were needed in the theory of Part I, we did not yet address how possible regularisations

look like and this chapter tries to exemplary answer this. The focus in the requirements

of Part I lay more heavily on the discrepancy functionals Di and those were addressed

exemplary in Part II. The family of regularisation functional (Rα)α∈A is only required

to be a continuous family of functions, i.e. TX×TA-lower semi-continuous, continuous in

TA and topologically equivalent Rα ≤ c(α, β)Rβ. Moreover, the function resulting as the

sum of the discrepancies and the family of regularisation functionals must be uniformly

coercive. Thus, a wide range of regularisation functionals is applicable, but typically the

regularisation functionals are chosen in a way that penalises undesired properties so as

to make solutions to the Tikhonov problems suitable. In this part we first motivate a

general approach using norms of closed operators in Banach spaces, while afterwards we

introduce Total Deformation (TD) and Total Generalised Variation (TGV) regularisa-

tion functionals which are commonly used in regularisation of imaging problems. They

are known to penalise local fluctuation while allowing for jump discontinuities, and thus

when used as regularisation preserve edges while reducing noise.

6. Regularisation with Norms and Closed Operators

In a normed space setting the norm is usually the measure of choice as it is easily

applicable and is adapted to the linear structure. Thus it would also make sense to use

a norm as a regularisation function when X has vector space structure. As the norm

should be suitable to penalise undesired properties, such a norm might lie in a different

space, and thus one considers the family (Rα(u))α∈(0,∞) with Rα = α‖Au‖ for a linear

operator A transporting into the suitable space and emphasising certain properties.

Problem 6.1. Let (X, ‖ · ‖X) be a Banach space, let (Yi, ‖ · ‖Yi) for i ∈ {1, . . . ,M} and

(U, ‖ · ‖U) be normed spaces and let Ti : X → Yi be linear and continuous with respect to

the weak-weak topology and T = (T1, . . . , TM). Further, let A : dom(A) ⊂ X → U∗ be a

linear operator where U∗ denotes the dual space of U .

For λ ∈ (0,∞)M , α ∈ (0,∞) and pi ∈ [1,∞), we consider the following Tikhonov
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regularisation approach to Tu = f † for f † ∈ Y :x† ∈ minx∈X Fλ,α(x, f †), with

Fλ,α(x) =
∑M

i=1 λi‖Tix− f
†
i ‖

pi
Yi

+ α‖Ax‖U∗
(A-Tikh)

where regularisation is applied via the family (Rα)α∈A with Rα(x) = α‖Ax‖U∗ and A =

(0,∞) equipped with the standard topology induced by | · |. We consider the following

topologies in context of this problem: we use weak topologies TX = TX,W , TYi = TYi,W ,

and TDi is the topology induced by the norm in Yi. Moreover, TY and TD denote the

respective product topologies.

In this chapter we will consider the situation described in Problem 6.1, and note that

the stated topologies are natural for this setting.

Remark 6.2. One chooses A such that Ax highlights undesired properties in the U∗

norm. Common choices for A are derivative operators in order to promote smoothness

and penalise strong fluctuations.

Note that in this setting Di(vi, fi) = ‖vi − fi‖piYi is a strongly continuous discrepancy

on Yi in all f †i . Thus all potential requirements for the discrepancy terms are fulfilled,

so we can focus on the regularisation functional. Also other discrepancy functions would

be possible.

This chapter will in particular serve as a blueprint for application of other regulari-

sation functionals, namely TD and TGV. Relevant questions are how such a functional

fits into the theory of regularisers (in this specific linear setting), and what necessary

assumptions might be.

Lemma 6.3. Let the setting in Problem 6.1 hold. Let A : dom(A) ⊂ X → U∗ be

weak-weak* closed. Then x 7→ ‖Ax‖U∗ is TX-lower semi-continuous (i.e. weakly l.s.c.).

Moreover, if A is injective, the mapping A−1 : Rg(A)→ X is continuous with respect to

the norm topologies, if and only if Rg(A) is closed in the ‖ · ‖U∗ topology.

Proof. We show lower semi-continuity by direct proof. Let (xn)n ⊂ X be a sequence

with xn ⇀ x, and we may further assume that Axn is bounded in U∗. Banach Alaoglu’s

Theorem implies Axn
∗
⇀ ξ for some ξ ∈ U∗ subsequentially, and using closedness one

obtains Ax = ξ and thus Axn
∗
⇀ Ax. The norm ‖ · ‖U ∗ is a dual norm and thus lower

semi-continuous with respect to the weak* topology on U∗, which yields ‖Ax‖U∗ ≤
lim infn ‖Axn‖U∗ .
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To show continuous invertibility of A in case Rg(A) is closed, let Rg(A) be closed,

let a sequence (yn)n ⊂ Rg(A) be such that yn
∗
⇀ y, and let (xn)n ⊂ X be such that

Axn = yn and xn ⇀ x. By closedness of A, x ∈ dom(A) and Ax = y or looking at it

conversely y ∈ dom(A−1) and A−1y = x. Hence, A−1 is a closed operator originating

from a Banach space (since Rg(A) is closed) and is thus continuous with respect to the

respective norms due to the Closed Graph Theorem.

Conversely, if A−1 was continuous, then for a sequence (yn)n ⊂ Rg(A) with yn → y

in ‖ · ‖∗U , the sequence (xn)n in X with xn = A−1yn would be a Cauchy sequence in X,

and thus closedness would imply y = Ax ∈ Rg(A) and consequently Rg(A) would be

closed.

Corollary 6.4. Let the assumptions in Lemma 6.3 hold. Then, the family of functions

(Rα)α∈(0,∞) with Rα(x) = α‖Ax‖U∗ is a continuous family of functions (i.e. (x, α) 7→
Rα(x) is TX × TA-lower semi-continuous, α 7→ Rα(x) is continuous and there is a con-

stant c(α, β) such that Rα(x) ≤ c(α, β)Rβ(x) for any x, see Definition 3.2).

Proof. In order to show continuity of the family (Rα)α∈(0,∞), note that A = (0,∞) with

the standard | · | topology is a Hausdorff space. Moreover, (x, α) 7→ Rα(x) is TX × TA-

lower semi-continuous as ‖Ax‖U∗ is TX-lower semi-continuous and multiplication with

non-negative numbers is monotone and continuous. For α, β ∈ A, Rα(x) = α
β
Rβ(x) for

all x ∈ X, so c(α, β) = α
β

which remains bounded for α→ α† ∈ (0,∞) and in particular

Rα(x)→ Rα†(x) for all x ∈ X holds.

Lemma 6.5. Let the assumptions from Lemma 6.3 hold. Let (X, ‖ · ‖X) be a reflexive

Banach space. Let linear A : X → U∗ be a weak-weak*-closed operator with closed range

and finite-dimensional kernel and let Ti : X → Yi be continuous with respect to TX,W and

TYi,W and linear with T = (T1, . . . , TM) such that Ker(T ) ∩ Ker(A) = {0}. Then the

functional F1,1 in Problem 6.1 is uniformly coercive with respect to the weak topology on

X and the TD topology on Y , i.e. for (fn)n ⊂ Y with fn
TD→ f † and for any constant

C > 0, the set
⋃∞
n=1

{
x ∈ X

∣∣ F1,1(x, fn) < C
}

is TX-precompact.

Proof. We aim at using Banach-Alaoglu’s Theorem to show precompactness with respect

to the weak topology. Thus we first show that for a sequence (fn)n ⊂ Y with fn
TD→ f †

and C > 0, a sequence (xn)n ⊂ X with F1,1(xn, fn) < C is bounded in ‖ · ‖X .

Since Ker(A) is finite-dimensional, there is a projection P : X → Ker(A) and con-

sequently we use the representation x = Px + (id − P )x = v + w. Let a sequence

(xn)n = (vn)n+(wn)n ⊂ X with C ≥ ‖Axn‖U∗ . Due to the continuity of A−1 : Rg(A)→
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(id − P )(U∗) established in Lemma 6.3, also C ≥ ‖Awn‖U∗ ≥ c‖wn‖X and thus we see

that wn is bounded in ‖ · ‖X . So it remains to show that also vn is bounded. Since

T = (T1, . . . , TM) is injective and continuous on Ker(A), T is continuously invertible

on T (Ker(A)) onto Ker(A) by finite-dimensionality. As C ≥ ‖T (vn + wn) − fn‖Y ≥
‖Tvn‖Y −‖Twn−fn‖Y where ‖f‖Y =

∑
‖fi‖Yi , the boundedness of Tvn implies bound-

edness of vn, and therefore also xn is bounded in ‖ · ‖X . Due to the Banach-Alaoglu

Theorem (xn)n admits a weak convergent subsequence thus confirming the coercivity

claim.

Remark 6.6. We note that the condition Ker(T ) ∩ Ker(A) = {0} is a technical one

which can always be satisfied by considering a suitable factor space since factorising with

respect to this kernel does not alter the function values, completeness or reflexivity.

Corollary 6.7. Let the assumptions of Lemma 6.5 hold. Let for i ∈ {1, . . . ,M} the

functions Di : Yi × Yi → [0,∞] be basic discrepancies with respect to TY = TY,W and a

topology TD. We consider{
x† ∈ minx∈X F̃ λ, α(x, f †). with F̃λ,α(x) =

∑M
i=1 λiDi(Tix, f

†
i ) + α‖Ax‖U∗ .

Further, let Di be such that for a sequence (fn)n in Y with fn
TD→ f , the estimate

Di(v, f
n
i ) ≥ φ(fn)n(‖v − fni ‖Yi) (157)

holds, where the function φ(fn)n : [0,∞] → [0,∞] is coercive and continuous in 0 with

φ(fn)n(0) = 0. Then F̃1,1 is uniformly coercive with respect to TX and TD.

This simply means that the coercivity statement extends when using discrepancies

which are coercive with respect to the norm topologies.

7. Total Deformation

Many inverse problems are posed on function spaces like Lp(Ω) spaces with the standard

Lebesgue measure, and regularisation functionals are used to promote smoothness in a

suitable sense. Using the previous chapter, one could consider regularisation by penal-

ising the norm of a derivative operator (these are typically closed and have closed range

in the correct setting). Using Sobolev spaces and the corresponding derivative operators

for regularisation is quite common, although not always suitable. These Sobolev ap-

proaches typically lead to smooth solutions, which do not allow for jump discontinuities.
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But, in imaging and other scientific fields, one would expect hard transitions and jump

discontinuities from solutions, and thus these Sobolev approaches might not be ideal.

Hence, we introduce the Total Deformation, which works similarly in a slightly different

functional analytic setting in order to allow jump discontinuities while still penalising

fluctuating functions.

7.1. Symmetric Tensor Fields

Before we can start with the actual definition of the Total Deformation, we need to

introduce and investigate suitable spaces and operations to build upon. Spaces of multi-

linear functions will serve as this foundation, since derivatives can also be understood to

be multilinear operations, leading to a consistent and elegant notion of differentiation.

Definition 7.1. For d ∈ N and k ∈ N0, a function ξ : Rd × · · · × Rd︸ ︷︷ ︸
k times

→ R is called

multilinear, if for ã, a1, . . . , ak ∈ Rd and λ ∈ R,

ξ(a1, . . . , ai−1, ai + λã, ai+1, . . . , ak) =ξ(a1, . . . , ai−1, ai, ai+1, . . . , ak)

+ λξ(a1, . . . , ai−1, ã, ai+1, . . . , ak),

where for k = 0, ξ is a real number. Moreover, ξ is called symmetric if for any permu-

tation σ : {1, 2, . . . , k} → {1, 2, . . . , k} (i.e. σ bijective. We also say σ ∈ Sk),

ξ(a1, a2, . . . , ak) = ξ(aσ1 , aσ2 , . . . , aσk).

Furthermore, we denote by

T k,d =
{
ξ : Rd × · · · × Rd︸ ︷︷ ︸

k times

→ R
∣∣ ξ is multilinear

}
,

Symk,d =
{
ξ ∈ T k,d

∣∣ ξ is symmetric
}
,

the spaces of multilinear functions and symmetric multilinear functions respectively.

In the following we will always assume k and d to be suitable and will not further

comment on them unless there is relevance to their properties.

Remark 7.2. When endowing the space T k,d with the standard algebra for function

spaces, i.e. point-wise addition and point-wise multiplication with scalars, the resulting

structure is a finite-dimensional vector space. A basis of T k,d is given by considering for
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p ∈ {1, . . . , d}k the corresponding multilinear forms ep with ep(a1, . . . , ak) =
∏
ai,pi, and

in particular the space T k,d has the dimension dk. Also, the space Symk,d is a subspace

of T k,d when equipped with the same algebraic operations.

Due to their specific structure, these spaces can further be equipped with natural

operations to combine multilinear forms and to compute products or norm of multilinear

forms.

Definition 7.3. For k, l ≥ 0, we define

⊗ : T k,d × T l,d → T l+k,d with ξ ⊗ η(a1, . . . , ak+l) = ξ(a1, . . . , ak)η(al+1, . . . ak+l),

for a1, . . . , ak+l ∈ Rd and ξ ∈ T k,d, η ∈ T l,d. We define the trace of multilinear forms

with k ≥ 2 as

tr : T k,d → T k−2,d with tr(ξ)(a1, . . . , ak−2) =
d∑
i=1

ξ(ei, a1, . . . , ak−2, ei), (158)

where ei denotes the i-th standard unit vector in Rd. Further, we define for ξ, η ∈ T k,d

the inner product

ξ · η = trk(ξ̄ ⊗ η) =
d∑

i1=1

d∑
i2=1

· · ·
d∑

ik=1

ξ(ei1 , . . . , eik)η(ei1 , . . . , eik), (159)

where trk = tr ◦ trk−1 is the trace operation iterated k times, and the multilinear form

ξ̄ satisfies ξ̄(a1, . . . , ak) = ξ(ak, ak−1, . . . , a1), i.e. is the multilinear form with switched

order of arguments.

It is an easy exercise to verify that these definitions induce a finite-dimensional Hilbert

space T k,d. In particular, this allows us to find a suitable projection onto Symk,d and

thus we are also able to find a basis for Symk,d.

Proposition 7.4. We define the linear symmetrisation operation ||| : T k,d → Symk,d,

such that for ξ ∈ T k,d

|||ξ(a1, . . . , ak) =
1

k!

∑
σ∈Sk

ξ(aσ1 , . . . , aσk) (160)

for a1, . . . , ak ∈ Rd. Then ||| is well defined and is the orthogonal projection onto Symk,d

in T k,d.
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Proof. We do the proof in two steps, first we show that application of the symmetrisation

operation yields a symmetric multilinear form, and afterwards we compute that it is

indeed a projection.

Well-defined: Indeed, for a multilinear form ξ ∈ T k,d, a permutation π ∈ Sk and

vectors a1, . . . ak ∈ Rd, one sees

|||ξ(aπ1 , . . . , aπk) =
1

k!

∑
σ∈Sk

ξ(aπ(σ1), . . . , aπ(σk)) =
1

k!

∑
σ̃∈Sk

ξ(aσ̃1 , . . . , aσ̃k)

= |||ξ(a1, . . . , ak),

where we transformed σ 7→ σ̃ on Sk bijectively by σ̃ = π ◦ σ, and therefore |||ξ ∈ Symk,d

and the operation ||| is well-defined. Moreover, that ||| is linear follows immediately from

its definition.

Projection: Obviously, for ξ ∈ Symk,d, |||ξ = ξ since the summands in the definition

of the operation do not depend on σ, and there are k! summands. Also, for ξ ∈ Symk,d

and η ∈ T k,d, we compute

ξ · (|||η) =
d∑

i1=1,...,ik=1

(
ξ(ei1 , . . . , eik)|||η(ei1 , . . . , eik)

)
=

d∑
i1=1,...,ik=1

(
ξ(ei1 , . . . , eik)

1

k!

∑
σ∈Sk

η(eσ(i1), . . . , eσ(ik))
)

Sym .
=

1

k!

∑
σ∈Sk

d∑
i1=1,...,ik=1

ξ(eσ(i1), . . . , eσ(ik))η(eσ(i1), . . . , eσ(ik)) =
1

k!

∑
σ∈Sk

ξ · η = ξ · η.

Thus the inner product is invariant under application of ||| for ξ ∈ Symk,d, and conse-

quently ||| is an orthogonal projection with respect to this inner product.

From this proposition, it is easy to find a basis of Symk,d as the symmetrisation of the

basis of T k,d.

Proposition 7.5. We consider the mapping σ : {1, . . . , d}k → {β ∈ Nd
0

∣∣ |β| = k} such

that σ(p)i = |
{
j ∈ {1, . . . , k} | pj = i

}
| for p ∈ {1, . . . , d}k. The set

{
eβ = k!|||ep

∣∣ p ∈ {1, . . . , d}k, β = σ(p)
}

(161)

is an orthonormal basis of Symk,d.
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This allows for a different interpretation and notation on Symk,d. Since every ξ ∈
Symk,d is the linear combination of the basis-vectors, we define the corresponding basis

representation indexed by multiindices β ∈ Nd
0 with |β| = k such that

ξ =
∑

β∈Nd0,|β|=k

ξβeβ, (162)

where the corresponding coefficients for β = σ(p) are ξβ = ξ(ep1 , . . . , epk) ∈ R. With this

new notation, some operations can be rewritten in a more compact manner as depicted

in the following corollary.

Corollary 7.6. The operators introduced in Definition 7.3, can be described in the

multiindices notation as follows: For ξ ∈ Symk,d, η ∈ Syml,d, and α, β, γ ∈ Nd
0 with

|β| = k, |γ| = l, |α| = k − l,

(ξ ⊗ η)(β,γ) = ξβηγ, trl(ξ ⊗ η)α =
∑

γ∈Nd0, |γ|=l

l!

γ!
ξα+γηγ (163)

Proof. Straight forward computation.

Now that we have a deeper understanding of the space Symk,d, we wish to use it as

a basis for the definition of Symk,d-valued function spaces. In this context, we note

that with the basis representation, one could understand the following as functions onto

RN for some N > 0, but we use this specific structure as it will allow a more elegant

definition of derivative operations.

Definition 7.7. Let Ω be a bounded Lipschitz domain equipped with the standard Lebesgue

measure, and equip Symk,d with the Borel algebra corresponding to its Hilbert space topol-

ogy. For p ∈ [1,∞] the spaces Lp(Ω, Symk,d) are defined analogously to Definition 1.25

as spaces of functions integrable to the p-th power, i.e

Lp(Ω, Symk,d) =
{
ξ : Ω→ Symk,d

∣∣ ξ measurable, ‖ξ‖p <∞
}
, with (164)

‖ξ‖p =
(∫

Ω

|ξ(x)|p dx
) 1
p

for 1 ≤ p <∞, and ‖ξ‖∞ = ess-sup
x∈Ω

|ξ(x)|,

where |ξ| = (ξ · ξ) 1
2 . Furthermore, C(Ω, Symk,d) denotes the Symk,d-valued functions

that are continuous with respect to the topology induced by the norm on Symk,d and is
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equipped with the supremum norm. Moreover,

Cc(Ω̄, Symk,d) = {f ∈ C(Ω, Symk,d)
∣∣ support of ξ is compact in Ω}, (165)

and C0(Ω, Symk,d) denotes its closure with respect to ‖ · ‖∞. The space of Symk,d-valued,

signed Radon measures is denoted by M(Ω, Symk,d).

In the following we will assume that Ω ⊂ Rd is a bounded Lipschitz domain equipped

with Borel algebra and the Lebesgue measure.

Knowing the dual space of a normed space gives more insight into said space, and

recall that for p, p∗ ∈ [1,∞) and 1
p

+ 1
p∗

= 1 isometric bijections (Lp)∗=̂Lp
∗

and (C0)∗=̂M
exist for classical function onto R. Analogue results hold for Symk,d-valued functions as

depicted in the following proposition.

Proposition 7.8. Let p ∈ [1,∞) and p∗ be such that 1
p

+ 1
p∗

= 1 with p∗ =∞ for p = 1.

Then, the dual space of Lp(Ω, Symk,d) and C0(Ω, Symk,d) satisfy the isometric bijections(
Lp(Ω, Symk,d)

)∗
=̂Lp

∗
(Ω, Symk,d) and

(
C0(Ω, Symk,d)

)∗
=̂M(Ω, Symk,d). Moreover, the

corresponding dual pairings for ρ ∈ Lp(Ω, Symk,d), η ∈ Lp∗(Ω, Symk,d), ξ ∈ C0(Ω, Symk,d)

and µ = λ|µ| ∈ M(Ω, Symk,d) are defined via

〈η, ρ〉Lp∗ ,Lp =

∫
Ω

η · ρ dx and 〈µ, ξ〉M,C0 =

∫
Ω

ξ(x) dµ(x) =

∫
Ω

ξ(x) · λ(x) d|µ|(x),

where · denotes the inner product on Symk,d and λ : Ω→ Symk,d is the density of µ with

respect to |µ| and is in particular |µ| measurable. Recall, the semi variation measure is

|µ| = sup
{ N∑
i=1

|µ(Bi)|
∣∣ B1, . . . , BN ⊂ Ω measurable,

N⋃
i=1

Bi = Ω, Bi∩Bj = ∅ for i 6= j
}
.

Next, we want to consider a notion of differentiability to such spaces, which are

adapted to this specific structure.

Definition 7.9. We call ξ ∈ C(Ω̄, Symk,d) differentiable if the coefficient ξβ is differen-

tiable for all multiindices β ∈ Nd
0 with |β| = k. We then define for a1, . . . , ak+1 ∈ Rd,

∇⊗ ξ(x)(a1, . . . , ak+1) = [Dξ(x)(a1)](a2, . . . , ak+1) =
d∑
i=1

a1,i
∂ξ

∂xi
(a2, . . . , ak+1)

ξ ⊗∇(x)(a1, . . . ak+1) = [Dξ(x)(ak+1)](a1, . . . ak),
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where Dξ(x) ∈ L(Rd, Symk,d) denotes the derivative of ξ. In particular, ∂ξ(a2,...,ak+1)

∂xi
can

be computed via standard analysis in R, and thus one can use the coefficient representa-

tion to compute [Dξβ(x)(ei)] = [(Dξ(x))β(ei)].

With this definition of differentiability we can introduce spaces of differentiable func-

tions of higher order, and on those define the differential operations E and div and their

iterates.

Definition 7.10. We define

C1(Ω̄, Symk,d) =
{
ξ ∈ C(Ω̄, Symk,d)

∣∣∣ ξ differentiable and ∇⊗ ξ ∈ C(Ω̄, T k+1,d)
}
.

The space Cl(Ω̄, Symk,d) for l ∈ N with l ≥ 2 is then defined inductively as

Cl(Ω̄, Symk,d) =
{
ξ ∈ Cl−1(Ω̄, Symk,d)

∣∣∣ ∇l−1 ⊗ ξ differentiable and ∇l⊗ξ ∈ C(Ω̄, T k+l,d)
}
,

where ∇l ⊗ ξ = ∇⊗ (∇l−1 ⊗ ξ) denotes the iterated derivation operation. Furthermore,

we define the symmetrised derivative E for k ≥ 0, via

E : C1(Ω̄, Symk,d)→ C(Ω̄, Symk+1,d) such that Eξ = |||(∇⊗ ξ) = |||(ξ ⊗∇)

for ξ ∈ C1(Ω̄, Symk,d), which unlike ∇ ⊗ ξ is again symmetric. We further define the

divergence operator for k ≥ 1 via

div : C1(Ω̄, Symk,d)→ C(Ω̄, Symk−1,d), such that div ξ = tr(∇⊗ ξ).

In particular, for multiindices β ∈ Nd
0 such that |β| = k − 1 and a1, . . . , ak−1 ∈ Rd, one

computes

div ξβ =
d∑
i=1

∂ξβ+ei

∂xi
and div ξ(a1, . . . , ak−1) =

d∑
j=1

∂ξ

∂xj
(a1, . . . , ak−1, ej).

We illustrate with small examples how these technical definitions play out in relevant

situations, i.e., how occurring operations and spaces look like.

Example 7.11. For k = 0, 1, 2 the corresponding spaces Symk,d are

Sym0,d =̂R, Sym1,d =̂Rd and Sym2,d =̂
{
A ∈ Rd×d∣∣A is symmetric

}
.
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So for k = 0 the space of symmetric multilinear forms contains reals, for k = 1 it

contains vectors, and for k = 2 the elements correspond to symmetric matrices. In

particular when interpreting this in the multiindices notation for d = 2 one obtains for

u ∈ Sym0,2, ξ ∈ Sym1,2 and η ∈ Sym2,2, that

u ≈ u0,0, ξ ≈

(
ξ1,0

ξ0,1

)
≈

(
ξx

ξy

)
, and η ≈

(
η2,0 η1,1

η1,1 η0,2

)
≈

(
ηxx ηxy

ηxy ηyy

)
.

When computing the corresponding differential operators, and denoting with x, y the

respective axes, one sees

Eu ≈

∂u
∂x

∂u
∂y

 = ∇u, Eξ ≈

 ∂ξ1,0
∂x

1
2

(∂ξ1,0
∂y

+ ∂ξ0,1
∂x

)
1
2

(∂ξ1,0
∂y

+ ∂ξ0,1
∂x

) ∂ξ0,1
∂y

 ,

div ξ ≈ ∂ξ1,0

∂x
+
∂ξ0,1

∂y
, div η ≈

∂η2,0
∂x

+ ∂η1,1
∂y

∂η0,2
∂y

+ ∂η1,1
∂x

 .

So we see that indeed these operations workout analogously to their well-known coun-

terparts in classical analysis. In particular, for a symmetric matrix, its divergence is

simply the classical divergence applied to its rows and the symmetrised derivative of a

vector is the symmetrised Jacobian matrix.

We see that this notion of differentiability is similar to the classical one when inter-

preted in the correct way, and hence one would expect many of the properties of classical

derivatives to remain valid in this setting.

Proposition 7.12 (see [12]). If u ∈ Ck+1(Ω, Symk,d) satisfies E u = 0, then also ∇k+1⊗
u = 0. If additionally Ω is a domain, then u is a Symk,d-valued polynomial, i.e. there

are Al ∈ Syml,d⊗ Symk,d for l = 0, . . . , k, such that for x ∈ Ω and y1, . . . , yk ∈ Rd,

u(x)(y1, . . . , yk) =
k∑
l=0

Al(x, . . . , x︸ ︷︷ ︸
l times

, y1, . . . yk) =
k∑
l=0

∑
|β|=l

Alβ(y1, . . . , yk)x
β.

In classical analysis the operators −∇ and div are adjoint operators given suitable

boundary conditions, as can be observed via a divergence theorem. Similarly, we show

a divergence theorem for multilinear forms.

Lemma 7.13 (see [14]). Let ξ ∈ C1(Ω̄, Symk+1,d) and η ∈ C1(Ω̄, Symk,d) with Ω a
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bounded Lipschitz domain. Then the following integration by parts formula holds:∫
Ω

div ξ · η dx =

∫
∂Ω

ξ · |||(η ⊗ ν) dHd−1 −
∫

Ω

ξ E η dx, (166)

where ν denotes the outer normal vector and Hd−1 denotes the (d − 1)-dimensional

Hausdorff measure.

Proof. Using the multiindices notation, we apply the standard integration by parts for-

mula for real-valued functions resulting in

∫
Ω

div ξ · η dx =

∫
Ω

trk
(
(div ξ)⊗ η)

)
=

∫
Ω

trk
( d∑
i=1

∂ξ

∂xi
(·, · · · , ·, ei)⊗ η

)
dx

=

∫
Ω

d∑
i=1

∑
β∈Nd0, |β|=k

k!

β!

∂ξβ+ei

∂xi
ηβ dx

Integration
=

by parts

d∑
i=1

∑
β∈Nd0, |β|=k

k!

β!

(∫
∂Ω

ξβ+eiηβνi dHd−1 −
∫

Ω

ξβ+ei

∂ηβ
∂xi

dx
)

=
d∑
i=1

∑
β∈Nd0, |β|=k

k!

β!

(∫
∂Ω

ξβ+ei(η ⊗ ν)β,ei dHd−1 −
∫

Ω

ξβ+ei(∇⊗ η)ei,β dx
)

=

∫
∂Ω

ξ · (η ⊗ ν) dHd−1 −
∫

Ω

ξ · (∇⊗ η) dx

=

∫
∂Ω

ξ · |||(η ⊗ ν) dHd−1 −
∫

Ω

ξ · |||(∇⊗ η) dx,

where the last equality holds due to the symmetrisation being an orthogonal projection

and ξ being symmetric.

Note that again under suitable boundary conditions, this divergence formula implies

that −E is adjoint to div. In particular, on C∞c (Ω, Symk,d) the duality −E∗ = div holds

and consequently we can obtain a distributional symmetric derivative operator from the

operation div on C∞c .

Definition 7.14. We define the distributional symmetrised derivative operator E via

E : (C∞c (Ω, Symk,d))∗ → (C∞c (Ω, Symk+1,d))∗ with (167)

E T (φ) = −T (div φ), for φ ∈ C∞c (Ω, Symk+1,d), T ∈ (C∞c (Ω, Symk,d))∗
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where div denotes the divergence operation defined for continuously differentiable func-

tions.

In the following we will use this distributional symmetric derivative operator as the

closed operator for regularisation as in Chapter 6, thus introducing Total Deformation.

7.2. Tensor Fields of Bounded Deformation

With these technicalities out of the way, we can define Total Deformation with the

help of continuous functions on Symk,d. As motivated before, the Total Deformation

is the norm of a derivative operator, however, we start with the more commonly used

variational definition.

Definition 7.15. Let Ω be a bounded Lipschitz domain, let k ≥ 0 and d ≥ 1. For a

function u ∈ L1(Ω, Symk,d) the Total Deformation of u is

TD(u) = sup
{∫

Ω

u · divψ dx
∣∣∣ ψ ∈ C1

c (Ω, Symk+1,d) with ‖ψ‖∞ ≤ 1
}
. (168)

Moreover, we say u ∈ L1(Ω, Symk,d) has bounded deformation if TD(u) <∞, and denote

by

BD(Ω, Symk,d) =
{
u ∈ L1(Ω, Symk,d)

∣∣ TD(u) <∞
}

(169)

the set of functions with bounded deformation. We equip BD(Ω, Symk,d) with the norm

‖u‖BD = ‖u‖L1 + TD(u).

This variational definition is indeed equivalent to the norm of the derivative operator

E in the space of Radon measures as can be seen in the following Lemma.

Lemma 7.16. Let u ∈ L1(Ω, Symk,d). Then u ∈ BD(Ω, Symk,d) holds, if and only if

E u ∈
(
C0(Ω, Symk+1,d)

)∗
=̂M(Ω, Symk+1,d), and in this case TD(u) = ‖ E u‖M(Ω,Symk+1,d)

holds.

Proof. For u ∈ BD(Ω, Symk,d), the distributional derivative E u is linear and continuous

on C∞c (Ω, Symk,d) by definition. Also, E u is continuous with respect to the supremum

norm ‖ · ‖∞ on C∞c (Ω, Symk,d), as

E u(φ) =

∫
Ω

u · div φ dx ≤ TD(u)‖φ‖∞ <∞. (170)
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Hence, by density E u can be uniquely extended to a function Ẽu ∈
(
C0(Ω, Symk+1,d)

)∗
,

and by the Riesz Theorem E u possesses a representation as a Radon measure. In

particular, by definition of the dual norm we obtain ‖ E u‖M(Ω,Symk+1,d) = TD(u).

Conversely, if E u ∈M(Ω, Symk+1,d), then∣∣∣ ∫
Ω

u · div φ dx
∣∣∣ =

∣∣∣ ∫
Ω

φ dE u(x)
∣∣∣ ≤ ‖E u‖M‖φ‖∞, (171)

which implies TD(u) <∞.

Remark 7.17. We recall that in the motivation in chapter 6 the operator A used as

regularisation was required to be weak-weak* closed, to have finite-dimensional kernel

and closed range. Thus in the following we investigate these topological properties of E.

The operator A being closed was an important tool for the theory of Section 6 which

raises the question whether E is closed. The following lemma answers this closedness

question for E : dom(E) ⊂ L1(Ω, Symk,d)→M(Ω, Symk+1,d).

Lemma 7.18. The distributional symmetric derivation operator E : BD(Ω, Symk,d) ⊂
L1(Ω, Symk,d) → M(Ω, Symk+1,d) is weak-weak* closed, i.e. if a sequence (un)n∈N in

L1(Ω, Symk,d) satisfies un
TL1
⇀ u for u ∈ L1(Ω, Symk,d), and E un

∗
⇀ η inM(Ω, Symk+1,d),

then E u = η.

Proof. Due to weak* convergence, for ψ ∈ C1
c (Ω, Symk+1,d)

Eun(ψ) =

∫
Ω

ψ dE un →
∫

Ω

ψ dη = η(ψ), (172)

and due to weak L1 convergence and divψ being bounded,

divψ(un) =

∫
Ω

un · divψ dx→
∫

Ω

u · divψ dx = divψ(u). (173)

By definition of E , this results in∫
Ω

ψ dE u
per
=
def.

∫
Ω

u · divψ dx =

∫
Ω

ψ dη, (174)

and by uniqueness of such a measure, E u = η.

Proposition 7.19. The space BD(Ω, Symk,d) is complete.
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Indeed, since both L1(Ω, Symk,d) andM(Ω, Symk+1,d) are Banach spaces and the sym-

metric differentiation operator E : BD(Ω, Symk,d) ⊂ L1(Ω, Symk,d) → M(Ω, Symk+1,d)

is closed, BD(Ω, Symk,d) is complete as well.

Proposition 7.20. Let E : BD(Ω, Symk,d) ⊂ L1(Ω, Symk,d) →M(Ω, Symk+1,d) and let

A = (0,∞) and TA be the standard | · | topology on A. Then the family (Rα)α∈A with

Rα(u) = α‖Eu‖M = αTD(u) is a continuous family of functions.

Moreover, this family is strongly ψR
α†

-continuous on BD(Ω, Symk,d) in any α† ∈ A
with ψR

α†
(t) = t.

Proof. Apply Corollary 6.4 with E as the linear closed operator A, which is closed due

to Lemma 7.18. The strong continuity claim is obviously fulfilled.

Recall that the only other requirement on Rα was that it ensures coercivity of the

Tikhonov functional. When using norm discrepancies and a linear setting, we showed

in Section 6 that this coercivity holds if X is reflexive and E has closed range and finite

kernel.

However, X = L1(Ω, Symk,d) is not reflexive, and we avoid this difficulty by switching

to other Lp spaces thanks to the following embedding theorem.

Theorem 7.21 (see [12]). For a bounded Lipschitz domain Ω, there is a continuous

embedding

BD(Ω, Syml,d) ↪→ Ld/(d−1)(Ω, Syml,d), (175)

as well as a compact embedding for 1 ≤ p < d/(d− 1), such that

BD(Ω, Syml,d) ↪→ Lp(Ω, Syml,d), (176)

where in case d = 1 we understand d
d−1

=∞.

In particular, we can consider (X, TX) = (Lp(Ω, Syml,d), TLp,W ) for 1 < p < d
d−1

instead

of L1, which is reflexive and has a topology stronger than weak L1, so all continuity

statements remain valid.

It is left to show that Rg(E) is closed in M(Ω, Symk+1,d) and has finite kernel, and

consequently E is continuously invertible in a suitable setting.

Theorem 7.22 (see [12]). Let Ω be a bounded Lipschitz domain. The kernel of the

operation E : Ld(Ω, Symk,d)→M(Ω, Symk,d) is a finite-dimensional subspace, and thus

there is a continuous projection from L(d/d−1) onto Ker(E). Furthermore, for any such
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projection P : Ld/(d−1)(Ω, Symk,d) → Ker(E), there is a constant c > 0 such that for

u ∈ BD(Ω, Symk,d)

‖u− Pu‖d/(d−1) ≤ c‖ E u‖M. (177)

Remark 7.23. Hence E is continuously invertible on Rg(E) (modulo finite-dimensional

kernel).

Proposition 7.24. Let Ω be a bounded Lipschitz domain, let (Y, ‖ · ‖Y ) be a normed

space and let for some 1 < p ≤ d
d−1

the operation T : Lp(Ω, Symk,d) → Y be lin-

ear and continuous with respect to the respective weak topologies. Then the function

F1,1 : Lp(Ω, Symk,d) × Y → [0,∞] with F1,1(u, f) = ‖Tu − f‖qY + TD(u) is uniformly

coercive with respect to the topologies TLp,W and the norm topology on Y . In fact, for

1 ≤ p < d
d−1

the uniform coercivity also holds for the Lp norm topology instead of the

weak topology on Lp.

Proof. Lemma 6.5 applied to this situation with A = E : BD(Ω, Symk,d) ⊂ Lp(Ω, Symk,d)

→M(Ω, Symk+1,d), whose assumptions on the operator A are fulfilled due to previous

statements in this section. In the case p < d
d−1

, we can apply the compact embedding

instead of the continuous one, and thus get precompactness of the level set with respect

to the Lp norm topology.

When starting the theory of TD, we aimed at obtaining a regularisation that penalises

non-smoothness but allows for jump-discontinuities. The following examples show that

we succeeded in doing so.

Example 7.25. Let Ω′ ⊂ Ω ⊂ R2 be a Lipschitz domain such that Ω′ has positive

distance to the boundary of Ω. We consider the function u = IΩ′ with IΩ′(x) = 1 if

x ∈ Ω′ and 0 otherwise. We can compute for φ ∈ C∞c (Ω, Sym1,2) that∫
Ω

u · div φ dx =

∫
Ω

IΩ′ · div φ dx =

∫
Ω′

div φ dx =

∫
∂Ω′

φ · ν dH1 =

∫
Ω

φ dEu.

Consequently Eu = νH1 where H1 denotes the Hausdorff measure on ∂Ω′, which is

not a function but in M(Ω,R2). So we see that u ∈ BD(Ω, Sym0,2) and in particular

TD(u) = ‖Eu‖M =
∫
∂Ω′

1 dH1, so jump discontinuities are allowed, and will be penalised

by TD corresponding to the height and the perimeter of the jump.

Example 7.26. We consider functions over Ω = [−1, 1] ⊂ R for the sake of simplic-

ity, and note that similar principles can be applied for higher space-dimensions. Let

99



Figure 1: Exemplary illustration of Ω,Ω′ in Example 7.25.

u, v : Ω→ R be such that

u(x) =


−0.5 for −1 ≤ x ≤ −0.5,

x for −0.5 ≤ x ≤ 0.5,

0.5 for 0.5 ≤ x ≤ 1.

v(x) =

−0.5 for − 1 ≤ x ≤ 0,

0.5 for 0 < x ≤ 1.
(178)

x x

u(x) v(x)

Figure 2: Illustration of functions u, v in Example 7.26.

It is easy to compute that TD(u) = 1 < ∞ and in particular the contribution to

TD made on (−0.5, 0.5) is 1 which is the raising in the segment [−0.5, 0.5]. When

instead considering the Heaviside function v the same contribution 1 is made and thus

TD(v) = 1. Indeed any monotonically increasing function w on [−1, 1] with Dirichlet

boundary conditions w(−1) = −0.5, w(1) = 0.5 (same as u or v) will lead to TD(w) = 1.

In particular, there is no function w with the same Dirichlet boundary conditions

on (−1, 1) that would have TD(w) < 1, and a function w which is not monotonically

increasing would have TD(w) > 1, i.e. a higher deformation value.

Remark 7.27. The previous examples show how the TD functional penalises local fluc-

tuations and jump discontinuities. In particular, when fixing the value of u on the right

and left endpoint with the value 0, the only function attaining TD(u) = 0 is the constant

zero-function.
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Hence, one expects when using TD as a regulariser, that solutions are piece-wise con-

stant in order to flatten fluctuations otherwise increasing the TD functional. This indeed

allows for hard transitions, however one has to wonder whether piece-wise constant so-

lutions are indeed desirable and suit the application.

8. Total Generalised Variation

In many applications such as imaging, one would like a regularisation method which

does not solely promote piece-wise constant solutions, but also piece-wise polynomials

of higher order. Often, approximating functions with piece-wise polynomials becomes

more suitable for higher orders polynomials, and thus piece-wise polynomial solutions

appear more natural. Therefore, we introduce Total Generalised Variation (TGV), a

functional based on TD which is capable of promoting piece-wise polynomial solutions

while maintaining the jump-discontinuity properties of the Total Deformation.

8.1. Basic Properties

In order to find such a regularisation method we generalise the variational definition

of TD. We again assume throughout the chapter that Ω ⊂ Rd is a bounded Lipschitz

domain.

Definition 8.1. Let l ∈ N0, k ∈ N and weights α = (α0, . . . , αk−1) ∈ (0,∞)k. Then we

define the Total Generalised Variation for u ∈ L1(Ω, Syml,d), as

TGVk
α(u) = sup

{∫
Ω

u · divk φ dx
∣∣∣ φ ∈ Ckc (Ω, Symk+l,d) (179)

with ‖ divj φ‖∞ ≤ αj for j ∈ {0, . . . , k − 1}
}
.

Furthermore, we consider the space and norm

BGVk
α(Ω, Syml,d) =

{
u ∈ L1(Ω, Syml,d)

∣∣ TGVk
α(u) <∞

}
,

with ‖u‖BGVkα
= ‖u‖L1 + TGVk

α(u) for u ∈ BGVk
α(Ω, Syml,d).

We will in the following assume α, k and l to be appropriate as in Definition 8.1, and

Ω to be a bounded Lipschitz domain and will not further comment on them.

Lemma 8.2. Let α, β ∈ (0,∞)k. Then BGVk
α(Ω, Syml,d) = BGVk

β(Ω, Syml,d), and

there is a constant c(α, β) such that for u ∈ BGVk
α(Ω, Syml,d), the estimate TGVk

α(u) ≤
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c(α, β) TGVk
β(u) is satisfied. In particular, for αn → α† the constant c(αn, β) remains

bounded.

Proof. Let the set of admissible φ in (179) be denoted by S(α) and denote by α =

maxi=0,...,k−1 αi and α = mini=0,...,k−1 αi and analogously for β.

TGVk
α(u) = sup

φ∈S(α)

∫
Ω

u · div φ dx =
α

β
sup

φ∈S
(
α(α

β
)−1
) ∫

Ω

u · div φ dx ≤ α

β
TGVk

β(u), (180)

where we used that S
(
α(α

β
)−1
)
⊂ S(β).

Remark 8.3. We see that the set BGVk
α and its topology does not depend on α, and

therefore we will in the following omit the α and simply talk about BGVk.

We start by showing some basic analytic properties of TGVk
α and BGVk which will

later be relevant.

Lemma 8.4. The following hold:

1. TGVk
α is a semi-norm on BGVk, and ‖·‖BGVkα

is indeed a norm on BGVk(Ω, Syml,d).

2. The function TGVk
α : L1(Ω, Syml,d) → R∞ is lower semi-continuous with respect

to the L1 norm topology.

3. The normed space (BGVk, ‖ · ‖BGVkα
) is complete.

Proof. That TGVk
α is a semi-norm follows from straight forward computation. Indeed,

for u, v ∈ BGVk(Ω, Syml,d) and β ∈ R, when choosing φ = 0 in the supremum defin-

ing TGVk
α we see TGVk

α(u) ≥ 0, and |β|TGVk
α(u) = TGVk

α(βu) as the set S(α) over

which the supremum is taken satisfies S(α) = −S(α) and due to the linearity of the

integral. Also, due to the standard computation rules for suprema and the linearity∫
Ω

(u + v) divk ψ dx =
∫

Ω
u divk ψ dx +

∫
Ω
v divk ψ dx, the triangle inequality holds. It

follows immediately that ‖ · ‖BGVkα
is a norm.

To show lower semi-continuity, for fixed φ ∈ Ckc (Ω, Symk+l,d) we consider the mapping

Tφ : L1(Ω, Syml,d)→ R with Tφu =

∫
Ω

u · divk φ dx for u ∈ L1(Ω, Syml,d).

Since divk φ ∈ L∞(Ω, Syml,d) =
(
L1(Ω, Syml,d)

)∗
, Tφ is continuous with respect to the

L1 topology. Because the supremum of continuous functions is lower semi-continuous,

also the function TGVk
α is lower semi-continuous.
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To prove completeness, consider a Cauchy sequence (un)n∈N in BGVk(Ω, Syml,d) with

respect to the ‖ · ‖BGVk norm, i.e. for m > n, ‖un − um‖BGVk < εn for a sequence (εn)n

in (0,∞) with εn → 0. Therefore un is a Cauchy sequence in L1, and hence there is

u ∈ L1(Ω, Syml,d) such that ‖un − u‖L1 → 0, and also TGVk
α(un − um) ≤ εn for m > n.

By lower semi-continuity, TGVk
α(un−u) ≤ lim infm TGVk

α(un−um) < εn, and therefore

limn→∞ ‖un − u‖BGVk = 0 implying completeness.

Next, we aim to show an equivalent representation of TGV, as an infimal convolution

which allows for a different interpretation and more concrete application. In order to do

so, we first need a simple lemma.

Lemma 8.5. For j ∈ N0 let wj ∈ Cj0(Ω, Syml+j,d). Then

‖ E wj−1 − wj‖M = sup
{
〈wj−1, div φ〉+ 〈wj, φ〉

∣∣ φ ∈ Cjc (Ω, Syml+j,d) with ‖φ‖∞ ≤ 1
}
.

(181)

In particular, E wj−1 − wj ∈M(Ω, Syml+j,d) if and only if the supremum is finite.

Proof. It is well known that for a dense subset U ⊂ V of a normed space (V, ‖ · ‖V ),

one can continuously extend a linear continuous functional f : U → R to a functional

F ∈ V ∗, if and only if

sup
φ∈U
‖φ‖V ≤1

〈f, φ〉 <∞.

With this in mind, note that the subspace C∞c (Ω, Symj+l,d) ⊂ Cjc (Ω, Symj+l,d) is

dense in C0(Ω, Syml+j,d), and hence, E wj−1 − wj can be continuously extended onto

C0(Ω, Syml+j,d), if and only if

sup
φ∈C∞c (Ω,Syml+j,d)

‖φ‖∞≤1

(
〈E wj−1−wj, φ〉

)
= sup

φ∈C∞c (Ω,Syml+j,d)
‖φ‖∞≤1

(
〈wj, φ〉+ 〈wj−1, div φ〉

)
<∞. (182)

Therefore E wj−1 − wj is continuous on C0(Ω, Syml+j,d) with respect to ‖ · ‖∞, i.e. by

duality E wj−1 − wj ∈ M(Ω, Syml+j,d), if and only if the supremum in (181) is finite.

The alternative formulation of the norm as the supremum follows from (182).

Theorem 8.6 (see [14]). For u ∈ BGVk(Ω, Syml,d), TGVk
α is equivalently defined via

TGVk
α(u) = inf

{ k∑
j=1

αk−j‖wj − E wj−1‖M (183)∣∣∣ wj ∈ BD(Ω, Syml+j,d) for j = 0, 1, . . . , k, with w0 = u, wk = 0
}
.
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In particular, u ∈ BGVk(Ω, Syml,d) if and only if the infimum is finite and BD(Ω, Syml,d) =

BGVk(Ω, Syml,d). In case TGVk
α(u) < ∞, the minimum in (183) is attained for some

w1, . . . , wk−1.

Proof. Let u ∈ L1(Ω, Syml,d) with TGVk
α(u) < ∞. We aim to reformulate TGVk

α in a

way, that enables us to use duality arguments. We consider the product spaces

X = C1
0(Ω, Syml+1,d)× · · · × Ck0 (Ω, Syml+k,d),

Y = C1
0(Ω, Syml+1,d)× · · · × Ck−1

0 (Ω, Syml+k−1,d).

On those, we define

F : X → R∞ such that v 7→ −〈u, div v1〉+
k∑
j=1

χ{‖·‖∞≤αk−j}(vj), (184)

where vj denotes the j-th projection of v,

G : Y → R∞ such that w 7→ χ(0,...,0)(w), (185)

and the linear and continuous function

Λ: X → Y, with
(
Λv
)
j

= −vj − div vj+1. (186)

Then one can rewrite

TGVk
α(u) = sup

v∈X
−F (v)−G(Λv). (187)

Indeed, in this equation, vj represents divk−j φ(−1)k−j in the definition of TGVk
α when

understanding vk = φ, since the characteristic function in G ◦Λ enforces div vj = −vj−1

and in particular div v1 = (−1)k divk φ. Finally, the characteristic function in F enforces

the condition ‖vk−j‖∞ = ‖ divj φ‖∞ ≤ αj, and thus the alternative representation is

indeed equivalent to TGV. We aim to apply Theorem 1.46 (recall: this states that

infv F (v) + G(Tv) = minw F (−T ∗w) + G∗(w), if Y =
⋂
λ>0 λ(dom(G) − T dom(F ))).

Therefore, we need to show

Y =
⋃
λ>0

λ
(

dom(G)− Λ dom(F )
)
, (188)

where the operations are understood element-wise, dom(G) = {0} and dom(F ) =
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B(0, αk)×· · ·×B(0, α1). For y ∈ Y , one can recursively define vk = 0, vj = yj−div vj+1,

i.e. −Λv = y. Hence, there is a constant λ such that λ−1v ∈ dom(F ), and consequently

y = λ(0 − Λv), confirming Condition (188). Thus, application of Theorem 1.46 to the

maximisation problem in (187) yields

TGVk
α(u) = min

w∗∈Y ∗
F ∗(−Λ∗w∗) +G∗(w∗), (189)

and the minimum is indeed attained. A simple computation shows G∗(w∗) = 0 and per

Proposition 1.44 F ∗(ξ) = supv∈X〈ξ, v〉 − F (v), thus setting w0 = u and wk = 0 results

in

F ∗(−Λ∗w∗) +G∗(w∗) = − sup
v∈X
〈Λ∗w∗, v〉+ 〈u, div v1〉 −

k∑
j=1

χ{‖·‖∞≤αk−j}(vj)

= sup
v∈X,‖vj‖∞≤αk−j

k∑
j=1

〈wj, vj + div vj+1〉+ 〈u, div v1〉

wk=0
=

w0=u
sup

v∈X,‖vj‖∞≤αk−j

k∑
j=1

〈wj − E wj−1, vj〉

(181)
=

k∑
j=1

αk−j‖ E wj−1 − wj‖M,

where the third line is true due to w0 = u and wk = 0. Now taking the minimum,

together with (189) shows the desired representation. In particular, this minimum is

finite for u ∈ BD(Ω, Syml,d), by setting wj = 0 for j ≥ 1 and the fact that E u ∈
M(Ω, Syml+1,d). Conversely, a finite sum for u ∈ L1(Ω, Syml,d) implies finite TGV

yielding u ∈ BD(Ω, Syml,d).

Remark 8.7. Thanks to the representation in (183), one can define TGVk
α recursively

for u ∈ BD(Ω, Syml,d), via

TGVk+1
α (u) = min

w∈BD(Ω,Syml+1,d)
αk‖ E u− w‖M + TGVk

α̃(w), (190)

where α̃ = (α0, . . . , αk−1). In particular, the minimum is attained for some w ∈
BD(Ω, Syml+1,d).

From this it is effortless to see that Ker(TGVk
α) = Ker(Ek) ⊂ L1(Ω, Syml,d). In the

case that l = 0, i.e. considering real valued functions, we can further describe the
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elements of the kernel as follows.

Proposition 8.8 (see [14]). In the case l = 0, the kernel of Ek : BD(Ω, Sym0,d) →
M(Ω, Symk,d) consists of Sym0,d-valued polynomials of degree less than k. In particular

Ker(TGVk
α) = Ker(Ek) consists solely of such polynomials.

With this knowledge concerning the TGVk
α functional, we can deduce that the TGVk

α

functionals constitute a suitable family of regularisations. Recall, that we needed to

assume for families of regularisation functionals (Rα)α∈A with a Hausdorff space (A, TA)

that they are continuous families of functions, i.e. (u, α) 7→ Rα(u) is TX × TA-lower

semi-continuous, α 7→ Rα(u) is continuous for fixed u ∈ X, and Rα(u) ≤ c(α, β)Rβ(u).

Also strongly ψR
α†

-continuity on a set U ⊂ X in α† ∈ A was required, which meant that

(A, TA) is a metric space with metric dA, and a modulus of continuity estimate holds

such that for u ∈ U ,

|Rα(u)−Rα†(u)| < ψR
α†

(
dA(α, α†)

)(
Rα†(u) + 1

)
for α ∈ A with dA(α, α†) sufficiently small.

The following proposition shows that indeed all these requirements are satisfied by

the TGVk
α family of regularisations.

Proposition 8.9. For k ≥ 1, let A = (0,∞)k equipped with the topology TA induced by

|·|. Then the family of functions (Rα)α∈A with Rα(u) = TGVk
α(u) for u ∈ BD(Ω, Syml,d)

is a continuous family of functions with respect to TL1,W and TA.

Moreover, for α† ∈ A there is a constant c > 1 such that with ψR
α†

(t) = ct, the family

(Rα)α∈A is strongly ψR
α†

-continuous on L1(Ω, Syml,d) in α† when using dA(α, α†) =

‖α− α†‖∞.

Proof. Note that in Lemma 8.2 the claim concerning the constants such that Rα ≤
c(α, β)Rβ was already discussed.

We first show an estimate needed for the modulus of continuity statement, as it will

reduce the effort needed to show the remaining statements.

Let α, α† ∈ (0,∞)k be such that 2|α − α†| < α† = mini=0,...,k−1 α
†
i and let u ∈

BD(Ω, Syml,d). Recall the infimal convolution representation of TGV in Theorem 8.6

and that there are wj for j = 0, . . . , k such that this infimum is indeed attained. We
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denote by w†j for j = 0, . . . , k these infimising instances for TGVk
α†(u). Therefore,

TGVk
α(u) = inf

{ k∑
j=1

αk−j‖wj − E wj−1‖M

∣∣ wj ∈ BD(Ω, Syml+j,d) for j = 0, 1, . . . , k, with w0 = u, wk = 0
}

≤
k∑
j=1

αk−j‖w†j − E w
†
j−1‖M

= TGVk
α†(u) +

k∑
j=1

(
αk−j − α†k−j

)
‖w†j − E w

†
j−1‖M

≤ TGVk
α†(u)

(
1 +
‖α† − α‖∞

α†

)
. (191)

Interchanging the rules of α and α† also yields

TGVk
α†(u) ≤ TGVk

α(u)
(

1 +
‖α† − α‖∞

α

)
≤ TGVk

α(u)
(

1 + 2
‖α† − α‖∞

α†

)
. (192)

So from (191) and (192), it becomes obvious that α 7→ Rα(u) is continuous and also the

strong ψR
α†

-continuity estimate is immanent with ψR
α†

(t) = ct with c = 2 1
α†

when using

the supremum metric on A.

It is left to show, that (u, α) 7→ Rα(u) is TL1,W × TA-lower semi-continuous. Let

sequences (αn)n ⊂ A and (un)n ⊂ L1(Ω, Syml,d) be such that un ⇀ u and αn → α†.

We further may assume lim infn→∞TGVk
αn(un) <∞ and note that due to the estimates

(191) and (192) TGVk
αn(un)− TGVk

α†(u
n)→ 0. Then, we compute

lim inf
n→∞

TGVk
αn(un) = lim inf

n→∞
TGVk

αn(un)− TGVk
α†(u

n) + TGVk
α†(u

n)

= lim inf
n→∞

TGVk
α†(u

n)
l.s.c.

≥ TGVk
α†(u),

confirming the lower semi-continuity claim where for the last inequality we used lower

semi-continuity of TGVk
α† for fixed α†.

8.2. Topological Properties

We know that BGVk and BD are equivalent in a bijective sense, but we are not yet aware

in which relation the respective topologies stand. Thus, we investigate the topological

properties of BGVk and consequently TGVk
α.
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Definition 8.10. We denote by P k : Ld/(d−1)(Ω, Syml,d) → Ker(Ek), a continuous pro-

jection onto the kernel of Ek.

Recall, that Ker(Ek) = Ker(TGVk
α) is finite-dimensional and thus indeed such a pro-

jection P k exists.

Lemma 8.11. For k ∈ N, l ∈ N0, there is a constant C > 0, dependent on Ω, k, l, such

that for v ∈ BD(Ω, Syml,d) and w ∈ Ker(TGVk
α) ⊂ L1(Ω, Syml+1,d),

‖ E v‖M ≤ C
(
‖ E v − w‖M + ‖v‖L1

)
. (193)

Proof. We prove by contradiction, assuming there were sequences (vn)n∈N in BD(Ω, Syml,d)

and (wn)n∈N in Ker(TGVk
α) ⊂ L1(Ω, Syml+1,d), such that

‖ E vn‖M = 1, and
1

n
≥ ‖vn‖L1 + ‖ E vn − wn‖M. (194)

Then E vn is bounded in M and consequently also wn is bounded in M. However,

Ker(Ek) is a finite-dimensional space, implying that limn→∞ ‖wn − w‖M = 0 subse-

quentially for some w ∈ Ker(Ek), and consequently also limn→∞ ‖ E vn − w‖M = 0. As

vn → 0 in L1, closedness of E implies E 0 = w = 0. Thus ‖ E vn‖M → 0, contradicting

the assumption (194).

With this, one can again obtain a Poincaré-type inequality and an estimate which

leads to the topological equivalence of the spaces BGVk and BD.

Theorem 8.12. There are constant C1, C2 > 0, solely dependent on k, l, Ω, α and the

choice of P k, such that for u ∈ BD(Ω, Syml,d)

‖ E u‖M ≤ C1

(
‖u‖L1 + TGVk

α(u)
)
, (195)

‖u− P ku‖d/(d−1) ≤ C2 TGVk
α(u), (196)

where we understand d
d−1

=∞ in case d = 1.

Proof. We prove both statements via a single induction with respect to k, for fixed l ≥ 0.

We will work with α = (α0, α1, . . . ), an infinite sequence, which is tacitly restricted to

the first k indices (a0, . . . , ak−1) when used as parameter in TGVk
α.

For k = 1, we note that TGV1
α(u) = α0‖ E u‖M. Consequently (195) is immanent,

and (196) is stated in Theorem 7.22 concerning similar statements for TD.
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Hence we assume the statements to hold for k ≥ 1 and l ≥ 0. We start by proving (195)

for k+1. By Lemma 8.11 and the triangle inequality, for arbitrary w ∈ BD(Ω, Syml+1,d)

we compute

‖ E u‖M
(193)

≤ c‖ E u−P k+1w‖M+‖u‖L1 ≤ ‖E u−w‖M+‖w−P k+1w‖M+‖u‖L1 . (197)

Note that w ∈ Ld/(d−1) by embedding Theorem 7.21, as well as ‖f‖M = ‖f‖L1 for

f ∈ L1(Ω, Syml,d). Using these facts and the Poincaré inequality (196) for k, which hold

due to induction assumption, one obtains

‖ E u‖M ≤ c
(
‖ E u−w‖M+‖w−P k+1w‖d/(d−1)+‖u‖L1

)
≤ c
(
‖ E u−w‖M+TGVk

α(w)+‖u‖L1

)
.

Finally, taking the minimum with respect to w ∈ BD(Ω, Syml+1,d), and using the recur-

sive representation of TGVk
α stated in (190) yields

‖ E u‖M ≤ C1

(
‖u‖L1 + TGVk+1

α (u)
)
.

In order to show the Poincaré-type inequality, we do a proof by contradiction. We

assume there is a sequence un ⊂ BD(Ω, Syml,d), such that

‖un − P k+1un‖d/(d−1) = 1, and
1

n
≥ TGVk+1

α (un). (198)

It is easy to see, that

TGVk+1
α (un) = TGVk+1

α (un − P k+1un).

By (195) for k + 1 (we just proved) one obtains for vn = un − P k+1un, that

‖ E(vn)‖M ≤ c
(

TGVk+1
α (un) + ‖vn‖L1

)
≤ K <∞,

for some constant K > 0. Further, note that {v ∈ L1(Ω, Syml,d)
∣∣ P k+1v = 0} is closed in

L1 due to the closedness of the operator Ek+1. The compact embedding BD(Ω, Syml,d) ↪→
L1(Ω, Syml,d) and the fact that P k+1vn = 0 imply the existence of v ∈ L1(Ω, Syml,d) such

that ‖vn − v‖L1 → 0 and P k+1v = 0. However, by lower semi-continuity

TGVk+1
α (v) ≤ lim inf

n→∞
TGVk+1

α (vn) = 0 (199)
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implying that v ∈ Ker(Ek+1). Hence, 0 = P k+1v = v and vn → 0 in BD(Ω, Syml,d)

resulting in vn → 0 in Ld/(d−1), which however contradicts (198).

From those inequalities, the topological equivalence of BGVk and BD is immanent.

Corollary 8.13. There exist constants c, C > 0, again only dependent on l, k, Ω and

α, such that for u ∈ BD(Ω, Syml,d)

c
(
‖u‖L1 + TGVk

α(u)
)
≤ ‖u‖L1 + TD(u) ≤ C

(
‖u‖L1 + TGVk

α(u)
)
, (200)

i.e. BGVk(Ω, Syml,d)=̂ BD(Ω, Syml,d) in the sense of Banach space isometry.

8.3. Total Generalised Variation of Vector-Valued Functions

Up to this point we considered functions u(x) ∈ Symk,d and the corresponding Total

Generalised Variation TGVk
α(u). Next, we aim to generalise TGV to be also applicable

to vector-valued functions, i.e. u(x) ∈ (Symk,d)M = Symk,d,M , in order to apply it as a

joint regularisation functional for multiple inverse problems simultaneously.

Recall, that the variational definition of TGV given in Definition 8.1 was

TGVk
α(u) = sup

{∫
Ω

u · divk φ dx
∣∣∣ φ ∈ Ckc (Ω, Symk+l,d)

with ‖ divj φ‖∞ ≤ αj for j ∈ {0, . . . , k − 1}
}
,

i.e. TGVk
α is the supremum of products with the divergence of continuously differentiable

functions φ subject to L∞ conditions on divj φ. We wish to use an analogue definition

for the vectorial TGV function, and therefore we have to extend the definition of the

product, the norms and the operators to the functions u = (u1, . . . , uM) with values in

Symk,d,M .

Definition 8.14. Let M,k, d, l and Ω ⊂ Rd be as above. Then, in slight abuse of

notation, we define the component-wise operations

E : Clc(Ω, Symk,d,M)→ Cl−1
c (Ω, Symk+1,d,M) such that [Eφ]i = E(φi),

div : Clc(Ω, Symk+1,d,M)→ Cl−1
c (Ω, Symk,d,M) such that [divψ]i = div(ψi),

for i ∈ {1, . . . ,M}, where ψ ∈ Clc(Ω, Symk+1,d,M), and φ ∈ Clc(Ω, Symk,d,M). The opera-

tions divj = div ◦ divj−1 and E j = E ◦E j−1 are then again defined in an iterative manner

and are equivalent to the component-wise iteration of the operations.
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Next one needs to adapt the corresponding point-wise norms. Previously, we used the

| · | norm as a norm on Symk,d, so a natural extension would be to use ‖| · |‖2 where ‖ · ‖2

is the standard euclidean norm on RM and |u| = (|u1|, |u2| · · · , |uM |). However, in the

following we allow for more general point-wise norms | · |Al : Syml,d,M → R, and note

that Symk,d,M is finite-dimensional and thus all norms are topologically equivalent.

Definition 8.15. For a norm | · |A on Symk,d,M , we define the norm

‖ · ‖∞,A : C0(Ω, Symk,d,M)→ R, such that ‖u‖∞,A = ‖|u|A‖∞, (201)

i.e. the supremum of the point-wise evaluation of the | · |A norm.

In order to generalise the product u · divk φ on the product space Syml,d,M , one can

simply use the sum of the individual products, i.e. u · divk φ =
∑M

i=1 ui · divk φi.

Definition 8.16. Let α = (α0, . . . , αk−1) ∈ (0,∞)k and let for j ∈ {0, . . . , k − 1} the

function | · |Aj be a norm on Symk+l−j,d,M . Then the corresponding Total Generalised

Variation for u ∈ L1(Ω, Syml,d,M) is defined as

TGVk
α(u) = sup

{ M∑
i=1

∫
Ω

ui · divk φi dx
∣∣∣ φ ∈ Ckc (Ω, Symk+l,d,M) (202)

with ‖ divj φ‖∞,Aj ≤ αj for j ∈ {0, . . . , k − 1}
}
.

In particular, we can again define

BGVk(Ω, Syml,d,M) =
{
u ∈ L1(Ω, Syml,d,M)

∣∣ TGVk
α(u) <∞

}
. (203)

This is an analogue definition to the scalar TGV with more general norms. In partic-

ular, all basic properties we previously shown remain true for this vector-valued version

of Total Generalised Variation.

Remark 8.17. We note that the specific choice of the set of norms affects the definition

of TGVk
α however we will in the following not explicitly state the dependence on the set

of norms, but simply assume there is such in the background. All sets of norms induce

an equivalent TGV functional, i.e. for sets of norms (| · |Ai)ki=1 and (| · |Ãi)
k
i=1 and the

induced TGVk
α and T̃GV

k

α functionals there are constants c1, c2 > 0 such that

c1 TGVk
α(u) ≤ T̃GV

k

α(u) ≤ c2 TGVk
α(u). (204)
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This estimate follows from the standard norm-equivalence statement on finite-dimensional

vector spaces. So, while the choice of norms will not completely change the properties of

the corresponding TGV functional, choosing suitable norms allows to place the focus on

certain properties or penalise some aspects more harshly than others.

Proposition 8.18. For p ≥ 1 the function TGVk
α : Lp(Ω, Symk,d,M) → [0,∞] is proper

convex and lower semi-continuous.

Proof. Completely analogous to the proof of Lemma 8.4.

Many of the properties of this TGVk
α for vector-valued functions can be proven in a

completely analogous manner, in particular Proposition 8.9 holds, i.e. (TGVk
α)α∈(0,∞)k

is a continuous family of regularisation functionals. However, to save some effort, one

can show that TGVk
α of vector-valued functions is topologically equivalent to the sum

of the individual TGV functionals.

Proposition 8.19. There are constants c1, c2 > 0 such that for all u = (u1, . . . , uM) ∈
L(Ω, Syml,d,M), it holds that

c1

M∑
i=1

TGVk
α(ui) ≤ TGVk

α(u) ≤ c2

M∑
i=1

TGVk
α(ui), (205)

where TGVk
α(ui) denotes application of the scalar TGV, while TGVk

α(u) corresponds to

the TGV functional for vector-valued functions.

Proof. Due to the equivalence of TGV induced from different norms, we may assume

without loss of generality that | · |Ai = ‖| · |‖∞ where | · | is the standard norm on

Symk+l−i,d and ‖ · ‖∞ is the standard supremum norm on RM .

However, since div is a component-wise operation, one computes in this setting

TGVk
α(u) = sup

{ M∑
i=1

∫
Ω

ui · divk φi dx
∣∣ φ ∈ Ckc (Ω, Symk+l,d,M) with ‖ divj φ‖∞,Aj ≤ αj

}
= sup

{ M∑
i=1

∫
Ω

ui · divk φi dx
∣∣ φ ∈ Ckc (Ω, Symk+l,d,M) with ‖ divj φi‖∞ ≤ αj,

for i ∈ {1, . . . ,M}
}

=
M∑
i=1

sup
{∫

Ω

ui · divk φi dx
∣∣ φi ∈ Ckc (Ω, Symk+l,d) with ‖ divj φi‖∞ ≤ αj

}
=

M∑
i=1

TGVk
α(ui),
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where we used that for this choice of norms, the condition ‖ divj φ‖∞,Aj ≤ αj is equivalent

to the conditions ‖ divj φi‖∞ ≤ αj for all i ∈ {1, . . . ,M}. As these conditions are

independent from one-another, one can split the supremum into several, and each is

exactly the definition of TGV for the respective component. Again using the equivalence

of TGVk
α induced by different sets of norms to switch back to the TGVk

α induced by the

set of norms (| · |Ai)Mi=1, yields the desired estimate.

Remark 8.20. Due to Proposition 8.19, all the topological properties of TGV for vector-

valued functions are direct consequences of the ones for scalar functions. This particu-

larly holds for all embedding theorems, Poincaré-type estimates and coercivity statements.

Corollary 8.21. The spaces BGVk(Ω, Symk,d,M)=̂ BD(Ω, Symk,d,M) in a topological sense,

and in particular BD(Ω, Symk,d,M) is a Banach space.

The infimal convolution representation of TGVk
α holds analogously to the one stated

in Theorem 8.6.

Theorem 8.22. For TGVk
α induced by a set of norms (| · |Ai)k−1

i=0 the following represen-

tation holds:

TGVk
α(u) = inf

{ k∑
j=1

‖wj − Ewj−1‖M,A∗i
(206)

∣∣ wj ∈ BD(Ω, Syml+j,d,M) for j = 0, 1, . . . , k, w0 = u, wk = 0
}
,

where ‖ · ‖M,A∗i
= ‖| · |A∗i ‖M with (| · |A∗i )

k
i=1 the adjoint norms to (| · |Ai)i, and ‖ · ‖M is

the standard norm on the real-valued measures.

Proposition 8.23. Let l = 0 and consider Lp(Ω, Syml,d,M)=̂Lp(Ω,RM). Then,

Ker(TGVk
α) =

{
u ∈ Lp(Ω,RM)

∣∣ u(x)
a.e.
=
∑
|α|<k

aαx
α with x ∈ Ω and aα ∈ RM

}
.

9. TGV Regularisation in a Linear Setting

In this chapter we summarise how application of TGV as regularisation can be applied

in a linear setting, and in particular with the specific discrepancies previously discussed.

We consider independent problems as this is a common application of the multi-

channel TGV functional, however analogue considerations in a non-independent setting

can be made. Hence, we consider the following setting.
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Problem 9.1. Let Ω be a bounded Lipschitz domain, let Xi = Lpi(Ω,R) for some

pi ∈ [1,∞) and set X = X1×· · ·×XM . Further, we assume that (Yi, ‖ · ‖Yi) are normed

spaces for i ∈ {1, . . . ,M}, Y = Y1 × · · · × YM and let Ti : Xi → Yi be linear and weak-

weak continuous and we use the notation T = (T1, . . . , TM). We consider the problems

to find u = (u1, . . . , uM) ∈ X for f † ∈ Y such that

T1u1 = f †1 , . . . TMuM = f †M . (207)

Let pi ≤ p̄ = d
d−1

if d > 1 and pi < ∞ if d = 1 and let qi ∈ [1,∞). Further, let TX be

the product topology of TXi, which is the norm topology in Lpi if pi < p̄, and otherwise

the weak topology in Lp̄. Further, we consider the topology TY = TY1 × · · · × TYM with

TYi = TYi,W and the topology TD, which is the product of the respective norm topologies.

Then, we define

Fλ,α : X × Y → R, Fλ,α(u, f) =
M∑
i=1

λi‖Tiui − fi‖qiYi + TGVk
α(u), (208)

where TGVk
α denotes the TGV functional for vector-valued functions. As the corre-

sponding Tikhonov problem we consider

u† ∈ argminFλ,α(u, f †), Fλ,α(u†, f †) <∞. (TGVk
α-TIKHλ(f

†))

One can also understand Ti as an operation T̃i on the entirety of X by considering

T̃i : X → Yi with T̃iu = Tiui, and thus this is a special case of the theory of Part I. As

previously stated, (TGVk
α)α∈(0,∞)k is a continuous family of functions, and similarly to

the TD situation, one can show coercivity in a linear setting.

Theorem 9.2. Let the situation in Problem 9.1 hold. Let the operator T = (T1, . . . , TM)

be such that Ker(T ) ∩ Ker(TGVk
α) = {0}. Then the function F1,1 is uniformly coercive

with respect to TX = TX1 × · · · × TXM and TD.

Moreover, in this case the Problem (TGVk
α-TIKHλ(f

†)) is solvable, and the corre-

sponding stability and convergence results are applicable.

Proof. We note that in this linear setting the function v ≡ 0 satisfies v ∈ dom(TGVk
α)

and ‖Tivi − fi‖Yi < ∞, so the functional is indeed proper, and also Proposition 8.9

ensures the required continuity and modulus of continuity conditions on the family

(TGVk
α)α∈(0,∞)k . All requirements concerning the discrepancy functions are satisfied by

norm discrepancies. The only point to show is that F1,1 is indeed uniformly coercive,
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which we do by using BD embeddings in Theorem 7.21. Let sequences (fn)n ⊂ Y be

such that fn → f † in the TD topology and (un)n ⊂ X be such that F1,1(un, fn) < C for

some C > 0.

From C > TGVk
α(u) ≥ c

∑M
i=1 TGVk

α(ui), we can conclude that TGVk
α(ui) < C for all

i ∈ {1, . . . ,M} and consequently ‖(id− P k)uni ‖Lpi ≤ C̃ by the Poincaré-type inequality

(196) where P k is the corresponding projection onto the kernel of the scalar TGV. We

note that Ker(TGVk
α) is finite-dimensional and consequently ‖P kuni ‖Lpi → ∞ would

imply ‖TiP kuni ‖ → ∞. Hence, in case ‖P kuni ‖Lpi was unbounded, one would obtain

C > ‖Tiuni − fni ‖ ≥ ‖TiP kuni ‖ − ‖Ti(id− P k)uni ‖ − ‖fni − f †‖ − ‖f †‖ → ∞

contradicting un being in the level sets. Hence uni is bounded in BD, and the statements

concerning compact embeddings in Theorem 7.21 in the case of pi <
d
d−1

, and reflex-

ivity in the case p = d
d−1

yield a convergent subsequence of uni in TXi , thus confirming

coercivity.

Remark 9.3. Note that the assumption that Ker(TGV) ∩ Ker(T ) = {0} is a technical

assumption, one can satisfy by changing the space X = L1(Ω,R) to the factor space

X = L1(Ω,R)/Ker(T ) and the theory applies in a completely analogue manner.

The following Theorem shows that a Tikhonov approach using norms and the Kullback-

Leibler divergence as discrepancies and TGV for regularisation works.

Theorem 9.4. Let {1, . . . ,M} = JN∪JKL∪JEN . For i ∈ {1, . . . ,M} let qi ∈ [1,∞) and

let the space and function (Yi, TYi) and Di : Yi×Yi → [0,∞] be as follows: For i ∈ JKL let

there be a finite measure space (Ωi, µi) and let Yi = L1
µi

(Ωi) and Di(vi, fi) = DKL(vi, fi).

Let (Yi, ‖·‖Yi) be a normed space and let Di(vi, fi) = ‖vi−fi‖qiYi for i ∈ JN . Let a reflexive

Banach space Zi be continuously embedded in Yi such that Di(vi, fi) = ‖vi − fi‖qiZi for

i ∈ JEN . Further, let (X, TX) be as in Problem 9.1, let Ti : (Xi, TX) → (Y, TYi,W ) be

linear and continuous. Moreover, denote by TDi the norm topologies for i ∈ JN ∪ JKL
and the topology induced by the subnorm ‖ · ‖Zi on Yi for JEN . Then the following 3

statements concerning coercivity, convergence and rates hold:

1. Consider the functional

Fλ,α : X × Y → [0,∞], Fλ,α(u, f †) = TGVk
α(u) +

∑
i∈JN

λi‖Tiui − f †i ‖
qi
Yi

+
∑
i∈JEN

λi‖Tiui − f †i ‖
qi
Zi

+
∑
i∈JKL

λiDKL(Tiui, f
†
i ).
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Then the functional F1,1 is uniformly coercive in TX and TD, i.e. for all C > 0

the set
⋃∞
n=1

{
un
∣∣ F1,1(un, fn) < C} is TX-precompact for any sequence (fn)n with

fn
TD→ f †.

2. Let I ⊂ {1, . . . ,M} and let a parameter choice rule δ 7→ λδ ∈ RM be such thatλδi → λ†i ∈ (0,∞) for i ∈ Ic,

λδi δi → 0, λδi →∞ = λ†i for i ∈ I,
(209)

is satisfied and let αδ → α†. Let (f δ)δ be a sequence in Y such that f δ → f † in

TD and let û be a [TGVk
α†(·) +

∑
Ic λ

†
iDi(Ti·, f †i )]-minimal I-partial solution to the

inverse problem Tu = f † with true data f †. Then the sequence of solutions uδ to

the Tikhonov problem corresponding to data f δ with weights λδ and αδ contains a

TX-convergent subsequence and every TX-limit of a subsequence is a [TGVk
α†(·) +∑

Ic λ
†
iDi(Ti·, f †i )]-minimal I-partial solution to Tu = f †.

3. Additionally to the previous points we set qi = 2 for i ∈ JKL and for i ∈ I choose

λδi such that cδ
−(1−ε)
i ≤ λδi ≤ Cδ

−(1−ε)
i if qi = 1 and cδ

1−qi
qi

i ≤ λδi ≤ Cδ
1−qi
qi

i otherwise

and for i ∈ Ic such that |λ†i − λδi | = O(δ
1
qi
i ). Further, let u† be a [TGVk

α†(·) +∑
Ic λ

†
iDi(Ti·, f †i )]-minimal I-partial solution to Tu = f † and let for i ∈ JKL the

condition Tiu
†
i , Tiu

δ
i ∈ Vi =

{
vi ∈ L1

µi
(Ωi) | ln

(
vi
f†i

)
< C

}
be satisfied. Then, there

is a constant c > 0 such that for δ sufficiently small,

TGVk
α†(u

δ
i ) +

∑
i∈Ic

λ†iDi(Tiu
δ
i , f
†
i )

≤ TGVk
α†(u

†) +
∑
i∈Ic

λ†iDi(Tiu
†
i , f
†
i )

+ c
((∑

i∈I

λδi δi + ψi(δi)
)

+
(∑
i∈Ic

ψi(δi) + |λ†i − λδi |
)

+ ψR
α†

(dA(αδ, α†))
)
,

i.e. the Tikhonov functional for the i ∈ Ic is low for the iterates uδ.

Let there be constants γ1, γ2 ≥ 0 with γ1 < 1 and ε0 > 0 such that the following

source condition holds: There is ξ ∈ ∂[Rα†,λ†,I(·, f †)](u†) such that for u satisfying

Rα†,λ†,I(u, f
†) ≤ Rα†,λ†,I(u

†, f †) + ε0 and
∑

i∈I Di(Tiu, f
†
i ) ≤ ε0 also

−〈ξ, u− u†〉X∗×X ≤ γ1D
ξ
R
α†,λ†,I(·,f†)(u, u

†) + γ2

∑
i∈I

φi(Tiu, Tiu
†). (SC3)
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Here, for i ∈ I, the function φi : Yi × Yi → [0,∞] is such that for vi, fi ∈ Yi

φi(vi, f
†
i ) =


‖vi − fi‖Yi i ∈ I ∩ JN ,

‖vi − fi‖Zi i ∈ I ∩ JEN ,

DKL(vi, fi) i ∈ I ∩ JKL.

Then, one can obtain the convergence rates

Di(Tj(u
δ
j , f

δ
j ) = O

(
δ1−ε
j

( ∑
{i∈I|qi=1}

δεi +
∑
{i|qi>1}

δ
1
qi
i +

∑
{i∈Ic|qi=1}

δi
))

for j s.t. qj = 1

Di(Tju
δ
j , f

δ
j ) = O

(
δ
qi−1

qi
j

( ∑
{i∈I|qi=1}

δεi +
∑
{i|qi>1}

δ
1
qi
i +

∑
{i∈Ic|qi=1}

δi
))

for j s.t. qj > 1

Dξ

TGVkα(·)+
∑
i∈Ic λ

†
iDi(Ti·,f†)

(uδ, u†) = O
( ∑
{i∈I|qi=1}

δεi +
∑
{i|qi>1}

δ
1
qi
i +

∑
{i∈Ic|qi=1}

δi

)
.
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Part IV.

Application to STEM CT

Reconstruction

In this part we aim to apply the theory derived in the previous parts to the specific

problem of reconstructing multi-spectral STEM [4] CT data.

While single transmission projection methods such as X-Ray are suitable for some pur-

poses, they are often difficult to interpret as the information of a 3D density distribution

is compressed into a 2D image making such methods unusable for certain applications.

Hence the question arises, whether it is possible to obtain the 3D density distribution

of an object from such 2D data, to which the obvious answer is no. A sequence of 2D

projections taken from all different angles however might be sufficient.

This is the basic idea of Computed Tomography (CT) [3], taking X-ray projections

from all directions, thus containing the information of the entire 3D density distribution.

A particular application field of CT approaches is the STEM (Scanning Transmission

Electron Microscopy) [4] in material science. STEM is used for spectroscopy methods

[51] such as EELS (Electron Energy Loss Spectroscopy) and EDS (Energy-Dispersive

X-ray Spectroscopy) which can be applied for elemental analysis and chemical mappings

of objects, i.e. determining the distribution of chemical elements inside a speciment.

However, due to technical limitations the quality of such data is low and contains much

noise, making proper regularisation relevant.

In particular, we present a Tikhonov regularisation scheme suitable for CT recon-

struction problems, and show how this can be solved approximately. First the Radon

transform, the process involved in such inverse problems is discussed, before a discretised

framework and an optimisation method to solve the resulting problem are presented. Fi-

nally, for real data numerical results are discussed and their improvements over other

methods are emphasised.

10. The Radon Transform

An inverse problem always consists of a process T , and data f one tries to invert,

however, it is not yet clear how the specific operator T corresponding to the process of

recording sinogram-data (CT data) works.
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Thus, it is necessary to understand the process that transfers a 3D density distribution

into the corresponding 2D projections, also known as the Radon transform. Furthermore,

it is necessary to consider the analytic properties of this Radon transform, in order to

ensure that the corresponding Tikhonov approach works out in a suitable manner.

10.1. Deriving the Radon Transform

The idea of Computed Tomography (CT) is to consider electron transmission projec-

tions (such as X-ray images) of an object from multiple angles around a fixed axis, and

reconstruct the density distribution inside an object from those. Hence, we first need

to understand how such transmission projections work and how densities u translate to

measured data f , which requires mathematical and physical modelling of the process.

We assume here, that the electron transmission moves along a single straight line from

the source to the detector (see Figure 3), that the object is 3-dimensional and contained

inside ΩR = B(0, 1) × [0, Z], i.e. the cylinder with middle-point 0, radius 1 and height

Z, and that the projections are taken from different angles rotating around the z axis.

Note that the assumption of transmission along straight lines is a modelling assumption

which is not physically accurate, and more sophisticated modelling is possible, e.g. cone-

beam computed tomography assumes that the transmission moves from the source to

the detector in a conical beam (see [31] and the references therein). However, for our

considerations the model with straight lines is sufficient and will be the content of the

following.

All such straight lines (which are constant in z-dimension) are described as follows.

Definition 10.1. For s ∈ [−1, 1], φ ∈ [0, π) and z ∈ [0, Z], we denote by

L(s, φ, z) =
{

xL(t) = (0, 0, z)T + sω(φ) + tω⊥(φ) ∈ R3
∣∣∣ t ∈ [−1, 1] and (210)

ω(φ) =
(

cos(φ), sin(φ), 0
)T
,

ω⊥(φ) =
(

sin(φ),− cos(φ), 0
)T}

the line L through ΩR with offset s, angle φ in the x-y plane and height z. Alternatively,

the line L(s, φ, z) is defined as all x = (x, y, z) ∈ ΩR such that 〈x, ω(φ)〉 = s and the

third space-dimension of x and L are the same.

For a constant angle φ ∈ [0, π] and offset s, the electron transmission projection is

obtained when an electron moves through the object in a straight line, where the initial

energy of said electron can be controlled, while a detector on the opposite end measures
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Figure 3: 2D cross-section illustrating a Line L(s, φ, z) for fixed z.

the intensity of the electron after having passed through the body, thus enabling us to

consider the attenuation along this straight line. Further, let u(x) denote the density

of the object in x ∈ ΩR. It is reasonable from a physical perspective to assume the

infinitesimal loss of energy of the transmitting electron in a point x to be proportional

to the density u(x) and the energy contained when passing through x.

More precisely, for fixed L = L(s, φ, z), let IL(t) denote the intensity of an electron

moving through an object along L at the position xL(t). Then IL(−1) = I0 is the initial

intensity one can control, and IL(1) = I1 is the terminal intensity one measures with a

detector on the opposite side, and for t ∈ (−1, 1) the loss of intensity in xL(t) along the

line L is modelled as
∂IL(t)

∂t
= −u

(
xL(t)

)
IL(t). (211)

Solving this differential equation with initial intensity I0 yields

IL(t) = I0e
−

∫ t
−1 u(xL(τ)) dτ , and I0e

−
∫ 1
−1 u(xL(τ)) dτ = I1. (212)

Hence, it is easy to see that for sufficiently smooth functions u,∫ 1

−1

u
(
xL(τ)

)
dτ = ln

(I0(L)

I1(L)

)
, (213)

where the right side is given via the (known) initial intensity, and the (measured) termi-

nal intensity. So the right-hand side can be understood as the measured data f , while

the left is solely dependent on the density u and can be understood as an operation TLu.

For a single line L, this could already be understood as an inverse problem TLu = fL
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where fL is the logarithm of the relative loss of intensity, while TLu accumulates the

mass along the line L. On a larger scale, we can consider the operation modelling such

processes along all possible lines, leading to the following definition.

Definition 10.2 (Radon Transform). We define the sinogram space ΩS = [−1, 1] ×
[0, π]× [0, Z], and consider the mapping

R : C(ΩR)→ L1(ΩS), such that Ru(s, φ, z) =

∫ √1−s2

−
√

1−s2
u(xL(s,φ,z)(t)) dt (214)

=

∫ 1

−1

u
(
sω(φ) + tω⊥(φ) + (0, 0, z)T

)
dt,

for u ∈ C(ΩR) which we tacitly extend with zero outside of ΩR. We refer to this operation

as the Radon transform.

Remark 10.3. Note that in this specific setting the Radon transform is well-defined as

the line integral of continuous functions, and ‖Ru‖L1 ≤ c‖u‖L∞ ensures Ru ∈ L1(ΩS),

however we will derive a more general functional-analytic setting in the next chapter,

which makes it more suitable for applications of certain discrepancy and regularisation

functionals.

Also, we consider ΩS which contains the projections from all angles φ ∈ [0, π], which

can not be obtained in real data sets. Still we first discuss this setting for theoretical

considerations, and will in later sections shift our attention to a discretised setting.

10.2. Analytical Properties

The Radon transform in Definition 10.2 is solely defined for continuous functions, which

is too restrictive as one would expect jump discontinuities in a density distribution to

occur. Thus, we try to widen the definition of the Radon transform to more general

spaces, consider its continuity properties with respect to the occurring topologies, and

discuss why indeed regularisation is required. Many of the following statements and

more on tomography in general can for example be found in [34].

Proposition 10.4. For each p ∈ [1,∞) there exists a linear and continuous extension

Rp :
(
Lp(ΩR), ‖ · ‖Lp

)
→
(
Lp(ΩS), ‖ · ‖Lp

)
to R as defined in (214) which we also refer

to as Radon transform. We will in later parts not explicitly state the dependence on p

when it is clear from the setting what p is, and refer to Rp as R.
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(a) Phantom density distribution for fixed z. (b) Sinogram for fixed z.

Figure 4: Phantom density distribution and the corresponding sinogram-data for fixed
slice z.

Remark 10.5. This setting might be surprising, since the definition of the Radon trans-

form in (214) appears to require integration along lines, which are null-sets with respect

to the Lebesgue measure, and one would thus expect those integrals to not be well-defined

for all Lp functions. However, due to considering lines with all possible offsets s and

heights z simultaneously, some might not be well-defined, but those are few in a suitable

sense as the following proof shows.

Proof of Proposition 10.4. Let u ∈ C(ΩR) and compute for p ∈ [1,∞) via Fubini’s The-

orem and Hölder’s Inequality

‖Ru‖pp =

∫
ΩS

|Ru(s, φ, z)|p d(s, φ, z) =

∫ Z

0

∫ π

0

∫ 1

−1

∣∣∣ ∫ √1−s2

−
√

1−s2
u
(
xL(s,φ,z)(t)

)
dt
∣∣∣p ds dφ dz

Hölder

≤
∫ Z

0

∫ π

0

∫ 1

−1

(( ∫ √1−s2

−
√

1−s2
|u
(
xL(s,φ,z)(t)

)
|p dt

) 1
p
( ∫ √1−s2

−
√

1−s2
1p
∗

dt
) 1
p∗
)p

ds dφ dz

≤ 2p−1

∫ π

0

∫ Z

0

∫ 1

−1

(∫ √1−s2

−
√

1−s2
|u
(
xL(s,φ,z)(t)

)
|p dt

)
ds dz dφ, (215)

where the last inequality holds since we can estimate the integral containing 1p
∗

with

the value 2. Further, note that the domain covered by the variable xL(t) for fixed φ and
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L = L(s, φ, z) with t, s, z varying according to the integration boundaries is exactly ΩR.

Consequently, one can compute

‖Rp u‖pp ≤ 2p−1

∫ π

0

∫
ΩR

|u(x)|p dx dφ = 2p−1π‖u‖pp, (216)

and thus the Radon transform is also continuous from Lp → Lp. Since the continuous

functions are dense in Lp(ΩR), there is a unique continuous extension Rp : Lp(ΩR) →
Lp(ΩS).

Also, we note that for a set of angles A different from [0, π] and a different finite

measure on it, e.g. finitely many angles equipped with the counting-measure, the same

continuity results hold as φ did not play an important role in this proof. Thus, the

continuity of the operator does not depend on the φ dimension in ΩS as long as it is a

finite measure space, and therefore later considering versions with finitely many angles

will also be sensible.

Proposition 10.6 (See [34] Thm 3.27, p 155 and its conclusions). For all p ∈ [1,∞),

the operation Rp : Lp(ΩR)→ Lp(ΩS) is injective.

Next, we aim to show that the Radon transform is not continuously invertible and

not surjective, thus indeed making regularisation necessary.

Proposition 10.7. For any p ∈ (1,∞), the Radon transform Rp : Lp(ΩR)→ Lp(ΩS) is

not continuously invertible with respect to the norm topologies. Furthermore, Rp is not

surjective for any p ∈ [1,∞).

Proof. Let u ∈ C(ΩR) be such that supp(u) = {x ∈ ΩR

∣∣ u(x) 6= 0} ⊂
(
B(0, 1)\B(0, s̄)

)
×

[0, Z] for fixed s̄ ∈ (0, 1). Revisiting (215) but now using vs,φ,z(t) = Isupp(u(xL(s,φ,z))(t)

with IC(x) = 1 if x ∈ C, and 0 otherwise for Hölder’s inequality, and noting that the

length of this support is uniformly bounded by a function g(s̄) such that g(s̄) → 0 as

s̄→ 1 independently of φ or z, one computes

‖Rp u‖pp ≤ g(s̄)p−1

∫ π

0

∫ Z

0

∫ 1

−1

(( ∫ √1−s2

−
√

1−s2
u
(
xL(t)

)p
dt
))

ds dz dφ = πg(s̄)p−1‖u‖pp.

(217)
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r
=

1

s̄ supp(u)

Choosing us̄ such that ‖us̄‖p = 1 and us̄ is supported only outside B(0, s̄), e.g. us̄

constant outside, we see that ‖Rp us̄‖p
s̄→1→ 0, which since Rp is injective implies that

R−1
p cannot be continuous.

Note that this works since for p > 1 we can place less and less total mass closer and

closer to the boundary of the cylinder while maintaining the norm to be equal to 1,

ultimately leading to vanishing Radon transforms.

In particular, the Radon transform cannot be surjective or have closed range either

for p > 1, since closed range would imply continuous invertibility by the Open Mapping

Theorem.

For p = 1, we first show that for u ∈ L1(ΩR) the integral
∫ Z

0

∫ 1

−1
Rp u(s, φ, z) ds dz

is constant for almost every φ. For an approximating sequence of continuous functions

(un)n, we see that for almost all φ ∈ [0, π),∫
ΩR

u(x) dx
n→∞←

∫
ΩR

un(x) dx

=

∫ Z

0

∫ 1

−1

∫ √1−s2

−
√

1−s2
un
(
(0, 0, z)T + sω(φ) + tω⊥(φ)

)
dt ds dz (218)

=

∫ Z

0

∫ 1

−1

Rp u
n(s, φ, z) ds dz

n→∞→
∫ Z

0

∫ 1

−1

Rp u(s, φ, z) ds dz,

and consequently
∫ Z

0

∫ 1

−1
Rp u(s, φ, z) ds dz =

∫
ΩR
u dx for almost every φ. Therefore, a

function f which does not satisfy
∫ Z

0

∫ 1

−1
f(s, φ, z) ds dz = c constant for almost every φ

can not be in the range of Rp and therefore Rp can not be surjective.

Note that one would always expect the distribution of the density u to be non-negative

almost everywhere, and also the data f = ln
(
I0
I1

)
to be non-negative as I0 ≥ I1. With

the goal of using the Kullback-Leibler divergence which requiresRp u to be non-negative,

we next show that the non-negativity of u is transfered to non-negativity of Rp u.
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Proposition 10.8. The linear continuous function Rp : Lp(ΩR) → Lp(ΩS) for p ∈
[1,∞) maintains non-negativity, i.e. for u ∈ Lp(ΩR) with u ≥ 0 almost everywhere also

Rp u ≥ 0 almost everywhere.

Proof. For u ∈ C(ΩR) the statement follows immediately from the definition of the

Radon transform, since the line-integrals of non-negative functions are non-negative.

For u ∈ Lp(ΩR), there is a sequence (un)n ⊂ C(ΩR) such that ‖un − u‖p
n→∞→ 0, and we

may assume without loss of generality that un ≥ 0 since ‖(un)+ − u‖p ≤ ‖un − u‖p → 0

with a+ = max(a, 0). Hence Rp u
n ≥ 0 almost everywhere, and Rp u

n(s, φ, z)
n→∞→

Rp u(s, φ, z) for almost all (s, φ, z) ∈ ΩS subsequentially, and consequently also Rp u ≥ 0

almost everywhere.

The linear and continuous Radon transform also possesses an adjoint operator, which

allows more insight into Rp and its properties.

Proposition 10.9. The adjoint of the operator Rp : Lp(ΩR) → Lp(ΩS) for p ∈ [1,∞)

is the operation

R∗p : Lp
∗
(ΩS)→ Lp

∗
(ΩR), with R∗p f(x) =

∫ π

0

f
(
x · ω(φ), φ,xz

)
dφ (219)

for f continuous and with x = (x, y, z) ∈ ΩR ⊂ R3 and xz denotes the 3. component of

x.

Proof. Let u ∈ C(ΩR), f ∈ C(ΩS), and we compute

〈Rp u, f〉 =

∫
ΩS

Rp u · f(s, φ, z) d(s, φ, z) =

∫ π

0

∫ Z

0

∫ 1

−1

Rp u · f(s, φ, z) ds dφ dz

=

∫ π

0

∫ Z

0

∫ 1

−1

f(s, φ, z)
(∫ 1

−1

u
(
(0, 0, z)T + sω(φ) + tω⊥(φ)

)
dt
)

ds dφ dz

=

∫
ΩR

u(x)

∫ π

0

f(x · ω(φ), φ,xz) dφ dx = 〈u,R∗p f〉,

where we substituted x = sω(φ) + tω⊥(φ) + (0, 0, z)T for fixed φ. For p > 1 and p∗ <∞
the space C(ΩS) is dense in Lp

∗
(ΩS), and one can extend this function uniquely to a

function R∗p : Lp
∗
(ΩS)→ Lp

∗
(ΩR), and since C(ΩR) is dense in Lp(ΩR), R∗p is indeed the

adjoint operation to Rp.

For p = 1 and p∗ = ∞, the continuous functions are not dense in L∞(ΩS) and hence

the same procedure does not work. However, it is easy to see that when understanding
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R2 as a linear, not necessarily continuous function R2 : L2(ΩR) ⊂ L1(ΩR) → L1(ΩS),

that

R1 ⊃ R2 and consequently R∗1 ⊂ R∗2, (220)

where these inclusion are the inclusions of linear operators, i.e. dom(R∗1) ⊂ dom(R∗2)

and R∗2 = R∗1 on dom(R∗1). Consequently, the adjoint Radon transform for p = 1 has the

same form as the adjoint of R2 restricted to L∞ and for smooth functions the integral

representation holds.

10.3. Filtered Backprojection

When considering the Radon transform on L2(ΩR), one can take advantage of the Hilbert

space structure of L2 to understand how the inversion of R works. More precisely, being

on a Hilbert space allows to investigate the linear continuous operation R with spectral

theory, enabling us to find the inverse operation under additional assumptions.

To do so, we employ a multiplicative version of the spectral theorem that features

unitary and partially unitary operations, and a multiplication operation, which in this

case are related to the Fourier transform, see e.g. [20].

Definition 10.10. We define the Fourier transform in d dimensions as

F : L1(Rd,C)→ C(Rd,C), with Fu(ξ) =
1

(2π)
d
2

∫
Rd
u(x)e−iξ·x dx (221)

for u ∈ L1(Rd,C), where i denotes the imaginary unit.

It is easy to see, that the Fourier transform is well-defined as Fu is continuous due

to dominated convergence and the operator is also linear and continuous. In particular,

note that in this entire chapter we allow for complex-valued functions without further

mention. The Fourier transform can be seen as a continuous version of Fourier series,

splitting a signal into individual spectra or frequencies. Therefore the Fourier transform

is commonly used in acoustics, where one tries to insulate individual signals from over-

lapping frequencies, which can be directly seen in the Fourier transformed version of the

signal. Similarly, the operation R∗ is in a way overlapping many different ”signals” in

the form of integrating over all lines L(s, φ, z) which pass through a point x and thus we

will see the connection between the Fourier transformation and the Radon transform.

Proposition 10.11. There is a unique linear and continuous extension from the Fourier

transform on L2 ∩ L1(Rd) to F : L2(Rd) → L2(Rd). Moreover, this Fourier transform
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between L2 spaces is unitary (bijective and isomorphic), and for continuous v ∈ L2(Rd)

the following inversion formula holds:

F∗v(x) = F−1v(x) =
1

(2π)
d
2

∫
Rd
eis·xv(s) ds. (222)

This proposition confirms that indeed the suitable spaces for the Fourier transform

are the L2 spaces.

Proof. See e.g. [27, Thm 1.95, p 279], and use density of continuous functions.

Definition 10.12. For sets Ω̂R = R2× [0, Z] and Ω̂S = R× [0, π]× [0, Z], we define the

Fourier transform with respect to the first, or the first two variables as the extension of

the operations

F1v(ξ, φ, z) =
1√
2π

∫
R
e−iξ·sv(s, φ, z) ds, and F2u(ξ, z) =

1

2π

∫
R2

e−iξ·xu(x, z) dx

(223)

for L1 ∩ L2 functions on the spaces L2(Ω̂S) and L2(Ω̂R) respectively, i.e. exactly the

Fourier transformations of the function with respect to the first one or two arguments,

while leaving the other arguments fixed. Again, these operations are linear, continuous

and unitary operations on the corresponding L2 spaces, and their inverse operations are

given in analogue manner to (222).

The following is known as the Fourier Slice (see e.g. [34, Thm 3.27 p 155]), and shows

that in a way the Fourier transform is adapted to the Radon transform.

Proposition 10.13. Let the operation T : dom(T ) ⊂ L2(Ω̂R) → L2(Ω̂S), called the

slice operator, with dom(T ) = {v ∈ L2(Ω̂R)
∣∣ (x, z) 7→ v(x, z)/|x| 12 is in L2} be defined

such, that for u continuous and ω̃(φ) =
(
cos(φ), sin(φ)

)T
the operation Tu(s, φ, z) =

u(sω̃(φ), z). Then F2(L2(ΩR)) ⊂ dom(T ) and the Radon transform R : L2(ΩR) →
L2(ΩS) satisfies

1√
2π
F1R = TF2 on L2(ΩR), (224)

when tacitly extending functions from L2(ΩR) and L2(ΩS) with zero values to L2(Ω̂R)

and L2(Ω̂S) respectively.

Proof. The operator T is well-defined as for u ∈ dom(T ),

‖Tu‖2
2 =

∫
Ω̂S

|u(sω̃(φ), z)|2 d(s, φ, z) =

∫
Ω̂R

|u(x, z)|2 1

|x|
d(x, z) <∞,
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where we substituted x = sω̃(φ).

Next, we consider u ∈ C(ΩR) and compute for almost all φ, z and ξ

1√
2π
F1Ru(ξ, φ, z) =

1

2π

∫ 1

−1

e−iξ·sRu(s, φ, z) ds

=
1

2π

∫ 1

−1

∫ 1

−1

u(sω̃(φ) + tω̃⊥(φ), z) dte−iξs ds

=
1

2π

∫
B(0,1)

e−iξω̃·xu(x, z) dx = F2u(ξ · ω̃(φ), z) = TF2u(s, φ, z),

where we substituted x = sω̃(φ) + tω̃⊥(φ). Due to the density of continuous functions

in L2, the equation remains valid for u ∈ L2(ΩR). In particular the computation shows

that u ∈ dom(T ) and the both sides of the claimed equation are well-defined.

Theorem 10.14 (Filtered Backprojection, see [34]). Let the multiplication operator

M : dom(M) ⊂ L2(Ω̂S) → L2(Ω̂S) be such that dom(M) = {f ∈ L2(Ω̂S) | (s, φ, z) 7→
f(s, φ, z)|s| 12 is in L2 ∩L1} and Mf(s, φ, z) = f(s, φ, z)|s| 12 . If Ru = f for u ∈ L2(ΩR)

and f ∈ L2(ΩS) such that F2u ∈ L1(Ω̂R) and F1f ∈ dom(M), then

u =
1

2π
R∗F−1

1 MF1f. (225)

This formula is called the Filtered Backprojection, it is however only under suitable

assumptions an inversion. In particular this process is not continuously dependent on f

in L2.

Proof. We again use ω̃(φ) =
(
cos(φ), sin(φ)

)T
. Due to the Fourier Slice Theorem we

know that F1f =
√

2πTF2u. Thus, one can compute, with the L1 assumptions

u(x, z) = F−1
2 F2u(x, z) =

1

2π

∫
R2

F2u(ξ, z)eix·ξ dξ

=
1

2π

∫ π

0

∫
R
|s|F2u(sω̃(φ), z)eisx·ω̃(φ) ds dφ

=
1

2π

∫ π

0

∫
R

1√
2π
|s|F1f(s, φ, z)eisx·ω̃(φ) ds dφ =

1

2π
R∗F−1

1 MF1f(x, z).

Remark 10.15. Although there are technical assumptions, the Filtered Backprojection

can be used in applications, in particular in a discrete setting where these technical

assumptions do not pose any problems. The Filtered Backprojection is thus often used
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as a first approach, however, the non-continuity in the continuous setting transfers into

an ill-conditioned property in the discretised version, which amplifies noise.

11. Tikhonov Approach to Multi-Spectra STEM CT

Reconstruction

Now that we understand the Radon transform, one can formulate the multi-data inverse

problem of reconstructing STEM CT data. This means we possess M (analytical) sino-

gram data sets, each corresponding to the density distribution of one specific chemical

element, e.g. aluminium, silicium, ect.. Note that from a mathematical viewpoint the

sinograms and densities we aim to reconstruct do not differ from the ones we considered

in previous sections, soley their interpretation as spectral densities is different. Usually,

one of the sinograms corresponds to the HAADF (high-angle annular dark field, see

e.g. [46]) signal, which represents the overall mass-density distribution, i.e. CT data as

described in previous sections.

So theoretically one has a set of M independent inverse problems of inverting the

Radon transform for data (f1, . . . , fM) to reconstruct M spectral density distributions

(u1, . . . , uM). However, to take advantage of the complementing information contained

in the data sets, e.g. common edge location information, overall mass, ect, we apply joint

regularisation to couple the problems, resulting in a multi-data inverse problem. This

becomes imperative as due to technical limitations such as the high time consumption

for obtaining analytical data sets or the limited amount of intensity being used due to

potential beam damages, the analytical data is often strongly disturbed by noise, in

particular Poisson distributed noise.

As stated before, inversion of the Radon transform requires regularisation, and in

particular the joint regularisation should promote information exchange between the in-

dividual spectra. Thus, we briefly present a regularisation framework for such problems,

however, for all practical purposes the question of how to solve the resulting problems

is of equally great importance. Therefore, we devote the majority of this chapter to

presenting a discretisation scheme and a numerical approach to solve the resulting prob-

lems.
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11.1. Continuous Tikhonov Problem for STEM CT Reconstruction

With the Radon transform sufficiently discussed, we see that it is a suitable opera-

tor to model the forward operation of obtaining CT data from an object via electron

transmission projection, and reconstructing the individual spectra of STEM CT data is

solving

Ru1 = f †1 , . . . , RuM = f †M , (Mul-Spec-Rec)

where u = (u1, . . . , uM) represents the (spectral) density distributions, R is the Radon-

transform on L1(ΩR) and f † = (f †1 , . . . , f
†
M) with f †i ∈ L1(ΩS) is the sinogram data.

This means that from a mathematical viewpoint the spectral STEM CT reconstruction

is the inversion of the Radon transform with spectral sinogram data f †i obtained through

STEM methods such as EDS in order to obtain the spectral density distribution (density

distribution of a specific element) ui for i = 1, . . . ,M .

As these problems typically suffer from Poisson noise, we use Kullback-Leibler discrep-

ancies, and TGV2
α for vector-valued functions is used for regularisation as it is expected

to promote exchange of information yielding common features and smooth solutions.

Problem 11.1. So to regularise the Problem (Mul-Spec-Rec), we use the following

Tikhonov approach:u† ∈ argminu∈X Fλ,α(u, f †) such that Fλ,α(u, f †) <∞,

with Fλ,α(u, f) = TGV2
α(u) + χ{·≥0}(u) +

∑M
i=1 λiDKL(Rui, fi).

(TIKH-STEM)

In the notation of Chapter 3, X = L1(ΩR)M , Yi = L1(ΩS) for i = 1, . . . ,M , τX is the

strong topology on L1, τYi the L1 weak topology and τDi is the topology in Definition 5.6

(the weakest topology making DKL continuous). Note that the characteristic function

χ{·≥0}(u) attains the value 0 if u ≥ 0 a.e., and infinity otherwise, thus forcing solutions

to satisfy non-negativity, as would be expected from density distributions. In particular,

the characteristic function is convex, lower semi-continuous and non-negative as {u ∈
L1(ΩR)

∣∣ u ≥ 0 a.e.} is convex and closed. Thus the family of functions (Rα)α∈(0,∞)2 with

Rα(u) = TGV2
α(u) +χ{·≥0}(u) is a continuous family since the family (TGV2

α)α∈(0,∞)2 is

(see Proposition 8.9) and these properties are not affected by adding the characteristic

function.

So the theory of Chapter 3 ensures the the problem (TIKH-STEM) is well-defined

when proper, and convergence results hold in a suitable setting. But while the problem
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is solvable, it is yet unclear how to find said solution, and the following chapters try to

answer this question.

11.2. Discretisation Scheme

While the consideration in infinite-dimensional spaces was suitable to understand the

analytical properties of the problems and give us a general model and understanding

of the situation, in practice always only a finite amount of data is available, and more

could not be measured and processed anyways.

Thus, we need to reduce the setting to a finite-dimensional one and therefore we need

to obtain a finite-dimensional inverse problem and Tikhonov approach. However, this

discretisation should be done in a manner that maintains the characteristic traits of the

functions and operations being used, hence preserving the original problem best we can.

Consequently we try to solve

argmin
u∈U

F̃λ,α(u), with F̃λ,α(u) =
M∑
i=1

λiD̃KL(R̃ui, fi) + T̃GV
2

α(u), (D-TIKH-STEM)

where D̃KL : Υi × Υi → R∞ denotes a discretised version of DKL, analogously R̃ and

T̃GV
2

α are discrete versions of their continuous counterparts, and U,Υ = Υ1× · · · ×ΥM

are discrete versions of X and Y respectively. While there might not be a unique way

to discretise the occurring functions, one would like to do it in a consistent manner so

that it indeed relates to the original functions and settings.

Thus we consider the reconstruction space U = RM×Nx×Nx×Nz=U1×· · ·×UM with Uc =

RNx×Nx×Nz for c = 1, . . . ,M . For an instance u ∈ U we use u = (u1, . . . , uM) where uc ∈
Uc denotes the c-th channels for c = 1, . . . ,M , and the values uc = (ux,y,zc )Nx−1,Nx−1,Nz−1

x=0,y=0,z=0

represent the values attained in the c-th channel at the position x, y, z representing

the three space-dimensions. The domain Ω̃R = {0, . . . , Nx − 1} × {0, . . . , Nx − 1} ×
{0, . . . , Nz − 1} is a discretisation of a cuboid in ΩR, and u ∈ U can be understood as a

M -dimensional vector-valued function on Ω̃R. The connection between the continuous

domain ΩR and the discretised domain Ω̃R can be understood via the mapping depicted

in (226), whose meaning is illustrated in Figure 5:
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(x, y) = (0, 0)

(x̂, ŷ) = (−0.53,−0.53)

(x, y) = (3, 0)

(x̂, ŷ) = (0.53,−0.53)

(x, y) = (2, 3)

(x̂, ŷ) = (0.17, 0.53)

Figure 5: Cross-section illustration of the discretisation Ω̃R in ΩR for fixed z.

̂ : [−1

2
, Nx −

1

2
]× [−1

2
, Nx −

1

2
]× [−1

2
, Nz −

1

2
]→ ΩR with (226)

x 7→ x̂ = − 1√
2

+ (x+
1

2
)

√
2

Nx

, y 7→ ŷ = − 1√
2

+ (y +
1

2
)

√
2

Nx

, z 7→ ẑ = (z +
1

2
)

√
2

Nz

,

and we denote byˇthe inverse operation on a suitable domain.

The values in u can thus be understood as a vector of piece-wise constant functions

in L1(ΩR) by interpreting the values as pixel values of adequately placed pixels in ΩR.

Here, Nx can be understood as the width and height (in form of pixels) of 2-dimensional

images being stacked Nz times on top of one-another. Moreover, the vector space V =

(R3)M×Nx×Nx×Nz and the space W = (R6)M×Nx×Nx×Nz have the same domain as U ,

but feature 3-dimensional vectors and 3 × 3 symmetric matrices, where v ∈ V has the

form v = (v1, v2, v3) with vi ∈ U and w ∈ W with w = (w1, . . . , w6) is such that

w1, w2, w3 represent the diagonal entries, and w4, w5, w6 represent upper matrix entries

of a symmetric matrix. These spaces will serve as the spaces containing the derivatives

appearing in the discrete version of TGV as these can be understood as vector- and

matrix-valued functions over the same domain. Note that although the Radon transform

would require a cylinder, U contains functions defined over a cuboid, and we imagine

functions u ∈ U to be extended outside this cuboid with zero-values such that it is

indeed defined in an enveloping cylinder.

The geometry of the cylinder is of course strongly related to the Radon transform,

which leads us to the discretisation of the sinogram space, for which we consider the

space Υ = RM×Ns×Na×Nz and Υc ∈ RNs×Na×Nz for c = 1, . . . ,M with Υ = Υ1×· · ·×ΥM .
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We use the notation f = (f1, . . . , fM) ∈ Υ such that fc ∈ Υc for c = 1, . . . ,M , where

again the notation f s,φ,zc is used and the first axis represents the offsets, the second the

corresponding angle, and the last the z space-dimension. Again, there is a connection

between ΩS and Ω̃S = {0, . . . , Ns − 1} × A×{0, . . . , Nz − 1} with set of angles A,

representing the domain for functions in Υi. We obtain a suitable interpretation of the

discretisation, by considering the operation

̂ : → [−1

2
, Ns −

1

2
]→ [−1, 1] s 7→ ŝ = −1 + (s+

1

2
)

2

Ns

, (227)

and z 7→ ẑ as defined in (226). Thus f ∈ Υ can be interpreted as a vector-valued

piece-wise constant function on ΩS.

Accordingly, Ns denotes the number of pixel fitting in the diagonal of the correspond-

ing square, or the radius of the enveloping cylinder and is roughly
√

2Nx. There are

Na angles from which projections are taken, and those angles are contained in a list A.

In slight abuse of notation, we will sometimes use φ ∈ A as an index, and sometimes

as the angle itself. Hence, for f ∈ Υ, we use an analogous notation f s,φ,zc (with φ ∈ A
and not φ ∈ {0, . . . , Na − 1}) to denote the value of f corresponding to these instances

s, φ, z and channel c. So again f can be understood as a vector-valued function on Ω̃S

(although the angles are not necessarily uniformly distributed in [0, π)) and represent

pixel values in ΩS. Note that here identical Υc for all c are used for the sake of simplicity,

however, these spaces could be different, i.e. have different angles/resolutions, and one

would need to adapt the following discretisations to the individual spaces which follows

the same ideas.

The spaces U,Υ are equipped with norms ‖u‖2 =
∑M

c=1

∑Nx−1,Nx−1,Nz−1
x,y,z=0 |ux,y,zc |2 and

‖f‖2 =
∑M

c=1

∑Ns−1,Na−1,Nz−1
x,y,z=0 |f s,φ,zc |2 for u ∈ U , f ∈ Υ and with those U and Υ

are Hilbert spaces, and the corresponding inner products are the sums of point-wise

products.

Remark 11.2. Note that this norm on Υ would only be a special case of the L2 norm

for piece-wise constant functions if the angles in A were uniformly distributed in [0, π),

i.e. equi-distant placement in [0, π), as otherwise some values might be representative of

larger regions than others, thus making a weighting of the sum necessary. However, for

our considerations we will not use such weights, i.e. assume uniformly distributed angles.

One could also factor in this different weights into the norm and the measure used for

the Kullback-Leibler divergence yielding slight changes to the following considerations.

Remark 11.3. Note that we consider the reconstruction on a cuboid Ω̃R and not on
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a cylinder, which is for the sake of convenience and avoiding additional computational

complications coming from more complex domains, while not creating any real drawbacks.

In practice one looks at square images anyways, and one could assume no mass to be

present outside a certain area by increasing the radius of the cylinder.

In the following we propose discretisations of relevant functions, which are designed

in a manner which allows for parallel implementation, enabling quick execution of the

corresponding operations while capturing the essence of the original functions. This in

particular holds for the Radon transform and its adjoint, whose computation comes at

great computational expense.

Discretisation: Kullback-Leibler divergence

Recall that DKL(vi, fi) =
∫

ΩS

(
vi − fi − fi ln

(
vi
fi

))
d(s, φ, z) in the continuous setting.

Since we assume all angles to carry the same weight as stated in Remark 11.2, and

the nodes with respect to the other dimensions are equi-distantly distributed, we can

discretise the integral to a simple sum over all entries, which is in particular unweighted

as we use the Lebesgue-measure. Furthermore, to avoid unnecessary computational

effort, for vi, fi ∈ Υi we can reduce the integrand vi − fi − fi ln
(
vi
fi

)
of DKL to the

integrand vi − fi ln(vi), as the difference of the two is constant with respect to vi, and

thus this change does not alter the minimisation problem’s solutions.

Consequently we obtain the following discrete version of DKL for vi, fi ∈ Υi:

D̃KL(vi, fi) =


∑

s,φ,z v
s,φ,z
i − f s,φ,zi ln(vs,φ,zi ), if vi, fi ≥ 0 and vs,φ,zi = 0⇒ f s,φ,zi = 0,

∞, else.

(228)

Note that this function is indeed a discretised version of DKL, and one could adapt this

functional to incorporate more general measures concerning the angles and the other

dimensions.

Discretisation: Total Generalised Variation

To discretise TGV2
α, we use the infimal convolution representation as stated in (183)

and discretise it. For k = 2, this representation reduces to TGV2
α(u) = infv α1‖v −

∇u‖M,A∗1
+ α0‖Ev‖M,A∗0

for suitable v with ‖ · ‖M,A∗i
= ‖| · |A∗i ‖M with | · |A∗i a norm on

Sym2−i,d, and consequently we need to generalise the occurring norms and differential

operators.
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First we note, that the definitions of the point-wise norms | · |Ai on Sym2−i,d still make

sense in the respective spaces V and W as point-wise norms, when understanding the

values of v ∈ V and w ∈ W as multilinear functions. Classical choices are Frobenius

type norms but more sophisticated choices are possible, e.g. the nuclear norm, see

[29]. Also, the occurring functions v ∈ V , w ∈ W satisfy |v|A1 ∈ L1 and |w|A0 ∈ L1

when understood as piece-wise constant functions since they are bounded, and thus

one can reformulate ‖|v|A∗1‖M = ‖|v|A∗1‖L1 which in this discrete setting reduces to

‖|v|A∗1‖l1 =
∑Nx−1,Nx−1,Nz−1

x,y,z=0 |vx,y,zc |A∗1 and analogously for w.

To define the differential operations on U and V , we use a standard finite differences

approach. Thus we define for u ∈ U

∇̃ : U → V, ∇̃u = (δ+
x u, δ

+
y u, δ

+
z u) with (229)

δ+
x , δ

+
y , δ

+
z : U → U, (δ+

x u)x,y,zc =

ux+1,y,z
c − ux,y,zc if x ∈ {0, . . . , Nx − 2},

0 otherwise,

and analogously for δ+
y and δ+

z . Furthermore, we define the discretised symmetric Jaco-

bian for v = (v1, v2, v3) via

Ẽ : V → W, Ẽv =
(
δ−x v

1, δ−y v
2, δ−z v

3,
δ−x v

2 + δ−y v
1

2
,
δ−x v

3 + δ−z v
1

2
,
δ−y v

3 + δ−z v
2

2

)
(230)

δ−x : U → U, such that (δ−x u)x,y,zc =

ux,y,zc − ux−1,y,z
c if x > 0,

0 else,

and analogously δ−y , δ
−
z . We will also require the adjoint to these operations and thus

introduce a discrete divergence such that − d̃iv = ∇̃∗ and − d̃iv = Ẽ∗ in their respective

spaces. In order to do so, we define operations

δ̂+
x : U → U with (δ̂+

x u)x,y,zc =


ux,y,zc − ux−1,y,z

c if x = 1, . . . , Nx − 2,

u0,y,z
c if x = 0,

−uNx−2,y,z
c if x = Nx − 1,

(231)
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and

δ̂−x : U → U with (δ̂−x u)x,y,zc =


ux+1,y,z
c − ux,y,zc if x = 1, . . . , Nx − 2,

u1,y,z
c if x = 0,

−uNx−1,y,z
c if x = Nx − 1,

(232)

and analogously for other axes. Then, for v ∈ V and w ∈ W , we obtain the adjoint

operations

∇̃∗v = − d̃iv v, Ẽ∗w = − d̃ivw = −
(
(d̃ivw)1, (d̃ivw)2, (d̃ivw)3

)
,

d̃iv v = δ̂+
x v

1 + δ̂+
y v

2 + δ̂+
z v

3, (d̃ivw)1 = δ̂−x w
1 + δ̂−y w

4 + δ̂−z w
5, (233)

(d̃ivw)2 = δ̂−x w
4 + δ̂−y w

2 + δ̂−z w
6, (d̃ivw)3 = δ̂−x w

5 + δ̂−y w
6 + δ̂−z w

3.

So we finally define

T̃GV
2

α(u) = inf
v∈V

α1‖|v − ∇̃u|A∗1‖l1 + α0‖|Ẽv|A∗0‖l1 . (234)

Discretisation: Adjoint Radon transform

For the algorithmic solution of the problem, we will also require a discretisation of the

adjoint of the operator featured in the inverse problem, and since the interpretation of

this is easier to understand and motivates the discretisation used on the Radon trans-

form, we start with the adjoint.

Recall that for a function f on the sinogram space, the adjoint Radon transform has

the form R∗ f(x) =
∫

ΩS
f(x ·ω(φ), φ, z) dφ where x = (x, y, z). Since all angles carry the

same weight, we can reduce the integral to a summation over all angles in A. Thus, the

only issue is the evaluation of f at s with ŝ = (x̂ · ω(φ)) which will not be an integer in

general and thus does not allow evaluation for f ∈ Υc. Therefore, we wish to interpolate

between adjacent integer values in the s axis, and in order to do so we introduce the

following notation.

For fixed φ ∈ A and x ∈ Ω̃R we say x is between s ∈ {0, . . . , Ns − 1} and s + 1 if

ŝ ≤ x̂ · ω(φ) < ŝ+ 1, and also say L(s, φ, z) and L(s + 1, φ, z) are the adjacent lines of

x. Conversely, we call all x as above which are between s and s + 1 or between s − 1

and s adjacent to L(s, φ, z) (see Figure 6).

With these notations, for fixed φ we define the mapping sφ(x) to denote the smaller

adjacent offset. Moreover, pφ(x) = x̂·ω(φ)− ŝφ(x) denotes the distance between ŝ = x̂·ω
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s = 4

ŝ = 0.5
Nodes adjacent to s = 4

Figure 6: Illustration of the adjacency relation between s and x for fixed φ.

and ŝφ(x), and 1 − pφ(x) is the distance from ŝ to ̂sφ(x) + 1. So interpolation implies

fi(x̂ · ω(φ), φ, ẑ) ≈ pφ(x)fi
( ̂sφ(x) + 1, φ, ẑ

)
+
(
1− pφ(x)

)
fi
(
ŝφ(x), φ, ẑ

)
.

Putting these considerations together, for fi ∈ Υi and x = (x, y, z) ∈ Ω̃R we define

R̃∗ : Υi → Ui with R̃∗fi(x) =
∑
φ∈A

pφ(x)fi
( ̂sφ(x) + 1, φ, ẑ

)
+
(
1− pφ(x)

)
fi
(
ŝφ(x), φ, ẑ

)︸ ︷︷ ︸
≈f(x̂·ω(φ),φ,ẑ)

=
∑
φ∈A

pφ(x)f
sφ(x)+1,φ,z
i +

(
1− pφ(x)

)
f
sφ(x),φ,z
i . (235)

Discretisation: Radon transform

Finally, we consider the discretisation of the Radon transform, and note that there is no

completely obvious way to discretise it. As the adjoint operator features an interpolation

in the s dimension, one would expect a distribution of mass in x onto adjacent lines in

the s dimension to occur in the discretised Radon transform.

Consequently, one would imagine that for fixed s, φ, z a contribution to the line integral

along L = L(s, φ, z) is made by all x adjacent to L, and the corresponding weights to

be relative to the respective distances, which computes as |ŝ− x̂ · ω(φ)|.
However, unlike in the case of the adjoint operator, now for fixed s, φ, z there is

potentially a large number of adjacent integer nodes x, and thus we require an efficient

scheme to find adjacent nodes.

For fixed s, φ and z with ω(φ) = (ωx, ωy, 0) = (cos(φ), sin(φ), 0) and L = L(s, φ, z),

eligible x = (x, y, z) ∈ Ω̃R are all that satisfy ŝ− 1 ≤ ωxx̂ + ωyŷ < ŝ+ 1. We fix
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y ∈ {0, . . . , Nx − 1} and by reformulating this equation one sees that suitable x are

between xlow and xhigh (dependent on s, φ, y) which are computed as follows:

x̃low =
(
ω−1
x (ŝ− 1− ωyŷ)

)̌
, x̃high =

(
ω−1
x (ŝ+ 1− ωyŷ)

)̌
if ωx > 0,

x̃low =
(
ω−1
x (ŝ+ 1− ωyŷ)

)̌
, x̃high =

(
ω−1
x (ŝ− 1− ωyŷ)

)̌
if ωx < 0, (236)

x̃low = 0 x̃high = Nx − 1 if ωx = 0,

and xlow = max
(
ceil(x̃low), 0

)
and xhigh = min

(
floor(x̃high), Nx − 1

)
which describes the

boundary of all x values such that x = (x, y, z) is adjacent to L(s, φ, z) and obviously

only nodes in [0, . . . , Nx− 1] are relevant. The corresponding distance between x and L

is again given by |ŝ− ωxx̂− ωyŷ|, so for each y, one can find all x such that (x, y, z) are

sufficiently close to L and we understand the line integral along the line L as a weighted

sum of the function values in these points. Hence, we define

R̃ : Ui → Υi, s.t. R̃u(s, φ, z) =
Nx−1∑
y=0

∑
x∈N

x∈[xlow,xhigh]

(
1− |ŝ− ω(φ)xx̂− ω(φ)yŷ|

)
ui(x̂, ŷ, ẑ)

=
Nx−1∑
y=0

∑
x∈N

x∈[xlow,xhigh]

(
1− |ŝ− ω(φ)xx̂− ω(φ)yŷ|

)
ux,y,zi (237)

for ui ∈ Ui, where
∑xhigh

xlow
= 0 if xlow > xhigh.

We note that these discretised versions R̃, R̃∗ of R and R∗ are indeed adjoint. To

show this we prove

〈R̃u, v〉 = 〈u, R̃∗v〉 (238)

for delta functions u = Ix̄,ȳ,z̄1 ∈ Ui and v = Is̄,φ̄,z̄2 ∈ Υi with x̄, ȳ ∈ {0, . . . , Nx − 1},
z̄1, z̄2 ∈ {0, . . . , Nz − 1} s̄ ∈ {0, Ns − 1} and φ̄ ∈ A, those functions are 1 in case the

argument is (x̄, ȳ, z̄1), (s̄, φ̄, z̄2) respectively and zero otherwise. Therefore we solely need

to compute R̃u(s̄, φ̄, z̄2) and R̃∗v(x̄, ȳ, z̄1) and observe that they are equal.

In order for the value R̃u(s̄, φ̄, z̄2) to be non-zero, x̄, ȳ, z̄ must appear in the sum

in (237), so x̄ ∈ [xlow, xhigh] which depend on ȳ, s̄, φ̄ must be satisfied. Recall that x̄

satisfies this condition if and only if x̄ = (x̄, ȳ, z̄1) is adjacent to L(s̄, φ̄, z̄2), and in this

case the coefficient (1− |ˆ̄s− ω(φ̄)x ˆ̄x− ω(φ̄)y ˆ̄y|) denotes ”one minus the distance from ˆ̄x

to L(s̄, φ̄, z̄2)”. So R̃u(s̄, φ̄, z̄2) = 0 if x̄ is not adjacent to L(s̄, φ̄, z̄2), and one minus the

distance otherwise.

Conversely, if we compute R̃∗v(x̄) with the definition in (235), the sum is empty if
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sφ̄(x̄) 6∈ {s̄, s̄ − 1} and in this case R̃∗v(x̄) = 0. Otherwise, L(s̄, φ̄, z̄2) is adjacent to

x̄, and in this case the coefficients are 1 − pφ̄(x̄) or pφ̄(x̄) which denote the distance to
̂sφ̄(x̄) + 1, ŝφ̄(x̄) respectively. So R̃∗v(x̄) is ”one minus the distance from L(s̄, φ̄, z̄2) to

ˆ̄x” if they are adjacent, and zero otherwise. Hence

〈u, R̃∗v〉 = R̃∗v(x̄) = R̃u(s̄, φ̄, z̄2) = 〈R̃u, v〉, (239)

and thus the operators are indeed adjoint.

Remark 11.4. We note that the relevant analytic properties such as continuity and

coercivity statements of the occurring functions transfer into this discrete setting. We

leave the proof to the interested reader.

11.3. Primal-Dual Optimisation Algorithm

After having defined the problem (D-TIKH-STEM) in a suitable discrete setting, one

needs to actually solve it in practical applications. However, TGV is not differentiable in

the classical sense making many of the common choices for optimisation methods such

as gradient descent or Newton [10, 7, 33] not applicable. Therefore, we apply the primal-

dual algorithm presented in [17], which is used to solve convex minimisation problems

with linear and continuous operators in it. More precisely, we consider the (primal)

problem

min
x∈H1

F (x) +G(Ax) (240)

on Hilbert spaces H1 and H2, with proper, lower semi-continuous, convex functions

F : H1 → R∞ and G : H2 → R∞ and linear and continuous operation A : H1 → H2.

Via the statement of Proposition 1.45, one can reformulate (240) to the saddle-point

problem

min
x∈H1

sup
ξ∈H2

L(x, ξ), with L(x, ξ) = 〈ξ, Ax〉+ F (x)−G∗(ξ). (Gen-Sad)

Note that cases ∞−∞ are not relevant due to the properness, and thus ξ such that

G∗(ξ) = ∞ will not be relevant to the supremum. We assume throughout the chapter

that a pair (x∗, ξ∗) ∈ H1 ×H2 exists that solves (Gen-Sad).

Before we can state the solution algorithm, we require a definition and proposition in

order to understand the operations in the algorithm and ensure they are well-defined.

For a more detailed discussion of these, we refer to [41] as well as the references therein.
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Definition 11.5. Let H be a Hilbert space and let F : H → R∞ be proper, convex and

lower semi-continuous. Then, for σ > 0, the mapping

proxFσ : H → H, proxFσ (x0) = argmin
x∈X

‖x− x0‖2

2
+ σF (x) = (I + σ∂F )−1(x0) (241)

is called the proximal mapping (or proximation, resolvent) of F .

The following proposition confirms that the proximal mapping is indeed well-defined

as a mapping, and not a set-valued mapping.

Proposition 11.6. For a Hilbert space H and F : H → R∞ proper, convex and lower

semi-continuous, for each x0 ∈ H there is a unique x ∈ H such that x ∈ proxFσ (x0), and

consequently proxFσ can indeed be understood as a mapping from H to H.

For the saddle-point problem (Gen-Sad), [17] proposes Algorithm 1.

Algorithm 1 Primal-Dual Algorithm
INPUT: Operators A,A∗ between Hilbert spaces H1 and H2, reals σ, τ > 0 such that
στ‖A‖2 < 1 and proximal mappings proxFσ , proxG

∗
τ .

1: Initialise x0 = 0 ∈ H1, ξ0 = 0 ∈ H2 and x̄ = 0 ∈ H1.
2: for all n = 0, 1, . . . do

3:


ξn+1 = proxG

∗
σ (ξn + σAx̄)

xn+1 = proxFτ (xn − τA∗ξn+1)

x̄ = 2xn+1 − xn

Output: Sequence of pairs (xn, ξn)n which converge to a solution of (Gen-Sad).

Remark 11.7. Note that in practical applications one does not compute the loop in

Algorith 1 for infinitely many n, but uses a stopping criteria. Aside from stopping after

a predetermined number of iterations, one can use a posteriori convergence criteria such

as the primal-dual gap criteria [17].

The following theorem stated in [17] ensures the convergence of the iterates.

Theorem 11.8. If the dimensions of H1 and H2 are finite and there exists a solution

to (Gen-Sad), then the iterates (xn, ξn)n converge to a saddle-point (x̂, ξ̂).

Consequently the algorithm is indeed correct and when terminating after finitely many

steps, one obtains an approximate solution. Note that similar convergence results can

be found for infinite-dimensional spaces, however we will not require them as we will

apply Algorithm 1 to (D-TIKH-STEM).
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11.4. STEM CT Reconstruction Algorithm

In order to apply Algorithm 1 to (D-TIKH-STEM), we need to first reformulate it as a

saddle-point problem, and compute the required proximal mappings.

We denote with H1, H2 the spaces H1 = U × V and H2 = (Υ × V ×W ), denote by

F : H1 → R∞ and G : H2 → R∞ the functions

F
(
(u, v)

)
= χ{·≥0}(u), G

(
(y, p, w)

)
=

M∑
i=1

λiD̃KL(yi, fi) + α1‖p‖l1,A∗1 + α0‖w‖l1,A∗0 ,

(242)

and by A : H1 → H2 and A∗ : H2 → H1 the (adjoint) mappings

A(u, v) =
((
R̃u1, · · · , R̃uM

)
, ∇̃u− v, Ẽv

)
, (243)

A∗(ξ, p, w) =
((
R̃∗ξ1, · · · , R̃

∗
ξM
)
− d̃iv p, − d̃ivw − p

)
.

Those will serve as functions as in (Gen-Sad) for this concrete problem. With these

definitions, we compute

min
u∈U

F̃λ,α(u) = min
u∈U

M∑
i=1

λiD̃KL(R̃ui, fi) + χ{·≥0}(u) + T̃GV
2

α(u) = (244)

= min
(u,v)∈H1

M∑
i=1

λiD̃KL(R̃ui, fi) + χ{·≥0}(u) + α1‖∇̃u− v‖l1,A∗1 + α0‖Ẽv‖l1,A∗0

= min
(u,v)∈H1

sup
(ξ,p,w)∈H2

χ{·≥0}(u) + 〈
(
u, v
)
, A∗

(
ξ, p, w

)
〉 −G∗(ξ, p, w).

So in order to apply the Algorithm 1 to the saddle-point problemmin(u,v)∈H1 sup(ξ,p,w)∈H2
L
(
(u, v), (ξ, p, w)

)
,

with L
(
(u, v), (ξ, p, w)

)
= 〈(u, v), A∗(ξ, p, w)〉+ F (u, v)−G∗(ξ, p, w),

(Saddle-Tikh)

we need to compute the norm of ‖A‖ and the proximal mappings corresponding to F

and G∗.

For the computation of the norm of ‖A‖ one can apply the Power-Iteration [8] used

to find the greatest singular value, which due to the Hilbert space norm is equal to the

norm of the operator.

To compute prox
χ{·≥0}
σ (u0) = argminu∈U

‖u−u0‖2
2

+σχ{·≥0}(u), it is easy to see that this
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minimum is attained only by the projection of u0 onto {u ∈ U | u ≥ 0}, i.e.

prox
χ{·≥0}
σ (u0) = proj{u≥0}(u0) = u+

0 , (245)

with a+ = max(a, 0) point-wise. Determination of proxG
∗

τ involves more computation

due to its greater complexity. First, we see due to the independence of the terms in G

that

G∗(ξ, p, w) = sup
(y,ν,ω)∈H2

〈ξ, y〉+ 〈ν, p〉+ 〈ω,w〉

−
([ M∑

i=1

λiD̃KL(yi, fi)
]

+ α1‖ν‖l1,A∗1 + α0‖ω‖l1,A∗0
)

=
[ M∑
i=1

sup
yi∈Υi

(
〈ξi, yi〉 − λiD̃KL(yi, fi)

)]
+ sup

ν∈V

(
〈ν, p〉 − α1‖ν‖l1,A∗1

)
+ sup

ω∈W

(
〈ω,w〉 − α1‖ω‖l1,A∗0

)
=
[ M∑
i=1

(
λiD̃KL(·, fi)

)∗
(ξi)
]

+ (α1‖ · ‖l1,A∗1)∗(p) + (α0‖ · ‖l1,A∗0)∗(w)

and we can thus compute the convex conjugate functions independently for the occurring

functions. Since the convex conjugate functions only depend on one variable each, it is

easy to see that also

proxG
∗

τ (ξ, p, w) =



prox
(λ1D̃KL(·,f1))∗
τ (ξ1),

...

prox
(λM D̃KL(·,fM ))∗
τ (ξM),

prox
(α1‖·‖l1,A∗1

)∗

τ (p),

prox
(α0‖·‖l1,A∗0

)∗

τ (w)


(246)

and thus we can also compute the prox operations individually.

Starting with the norm operations, computation shows

(‖ · ‖B)∗ = χ{‖·‖B∗≤1} and consequently for i = 0, 1 (αi‖ · ‖l1,A∗i )
∗ = χ{‖·‖l∞,Ai≤αi}.

(247)

Analogously to F , the proximal mapping then reduces to a projection in the Hilbert
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space topology, which exists for convex closed sets, and thus

prox
(αi‖·‖l1,A∗

i
)∗

τ (z) = proj{‖·‖l∞,Ai≤αi}
(z). (248)

So it remains to find the convex conjugate and proximal mappings of the Kullback-

Leibler divergence with given data fi ∈ Υi and fi ≥ 0. We obtain (λD̃KL(·, fi))∗(ξi) =

supyi∈Υi
〈ξi, yi〉 − λD̃KL(yi, fi) for ξi, fi ∈ Υi with fi ≥ 0 by computing the point-wise

suprema for g(yi) = ξiyi− λ(yi− fi ln(yi)). In points with fi > 0, the supremum cannot

be attained by yi = 0, hence, by differentiation we obtain the optimality condition

0 = ξi − λ1 + λ fi
yi

, where the operations are understood point-wise. In case fi = 0,

g(yi) = (ξi − λ)yi, whose supremum is infinity if ξi > λ and zero otherwise. These

computations result for ξi ≤ λ with equality only where fi = 0 in

(
λD̃KL(·, fi)

)∗
(ξi) = λ〈fi, ln

( λfi
λ− ξi

)
− 1〉, ∂[

(
λD̃KL(·, fi)

)∗
](ξi) =

{
λfi

( 1

ξi − λ

)}
,

(249)

and for other ξi result in the value
(
λD̃KL(·, f)

)∗
(ξi) =∞ and the subdifferential being

empty. So we can compute for ζi, ξi ∈ Υi the proximal mapping

prox(λD̃KL(·,fi))∗
τ (ζi) = ξi ⇔ ζi ∈

(
I +τ∂(λD̃KL(·, fi))∗

)
(ξi)

⇔ ζi = ξi + τλfi

( 1

ξi − λ

)
and ξi ≤ λ a.e.

⇔ ξi = ζi −
(ζi − λ)±

√
(ζi − λ)2 + 4fiτλ

2
and ξi ≤ λ a.e.

which, when considering the condition ξi ≤ λ reduces to

prox(λD̃KL(·,fi))∗
τ (ζi) = ζi −

(ζi − λ) +
√

(ζi − λ)2 + 4fiτλ

2
. (250)

Recall that the primal-dual algorithm required the existence of a saddle-point in order

to work. The following proposition ensures this condition is indeed satisfied.

Proposition 11.9. Let f ∈ Υ with f ≥ 0, and f = 0 in Rg(R̃)⊥. Then Problem

(Saddle-Tikh) possesses a saddle-point. Moreover, any u∗ such that
(
(u∗, v∗), (ξ∗, p∗, w∗)

)
is a saddle-point for some ξ∗, v∗, p∗, w∗ is also a solution to (D-TIKH-STEM).

Proof. Note that (u, v) 7→ L
(
(u, v), (ξ, p, w)

)
is convex and lower semi-continuous, and

(ξ, p, w) 7→ L
(
(u, v), (ξ, p, w)

)
is concave and upper semi-continuous. Also, we consider

the problem solely for H̃2 = Rg(R̃)M × V ×W ⊂ H2, as this allows to show required
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coercivity statements. Also, a saddle-point on H1× H̃2 is also a saddle-point on H1×H2

as the function value L
(
(u, v), (ξ, p, w)

)
= L

(
(u, v), (ξ + ζ, p, w)

)
for ζ ∈

(
Rg(R)M

)⊥
.

Due to [18, VI Prop 2.4, p. 176], it is sufficient for the existence of a saddle-point to

show that

lim
(u,v)∈H1
‖(u,v)‖→∞

sup
(ξ,p,w)∈H̃2

L
(
(u, v), (ξ, p, w)

)
=∞, (251)

and the coercivity statement that for some fixed (u, v) ∈ H1

lim
(ξ,p,w)∈H̃2
‖(ξ,p,w)‖→∞

L
(
(u, v), (ξ, p, w)

)
= −∞. (252)

To show (251), we note that

sup
(ξ,p,w)∈H̃2

L
(
(u, v), (ξ, p, w)

)
=

M∑
i=1

λiDKL(Rui, fi)+α1‖∇̃u−v‖l1,A∗1 +α1‖Ẽv‖l1,A∗0 (253)

by Proposition 1.45 and therefore

F̃λ,α(u)
(244)
= inf

ṽ∈V
sup

(ξ,p,w)∈H̃2

L
(
(u, ṽ), (ξ, p, w)

)
≤ sup

(ξ,p,w)∈H̃2

L
(
(u, v), (ξ, p, w)

)
.

So the coercivity of F̃λ,α, which holds similarly to the coercivity of Fλ,α in the continuous

setting, shows coercivity for u independent of v. So it is left to show that for bounded

u, the function is coercive in v independent of bounded u, which follows immediately

from the alternative formulation (253).

To show (252), we fix (u, v) ∈ H1 with R̃ui ≥ 1 on Rg(R̃). The proof for the existence

of such u is left to the interested reader. Recall

L
(
(u, v), (ξ, p, w)

)
= 〈(u, v), A∗(ξ, p, w)〉+ F (u, v)−G∗(ξ, p, w)

where F (u, v) = χ{·≥0}(u) and G∗(ξ, p, w) features characteristic functions limiting the

norm of p, w and the convex conjugate of λD̃KL derived in (249). The mentioned char-

acteristic functions limit the norms of p, w and it remains to show uniform coercivity

with respect to ξ for bounded p, w.

To show coercivity for ξ, we consider the function

gi : (−∞, λi]× [1,∞)× [0,∞)→ [−∞,∞) with gi(a, b, c) = ba− λic ln
( λic

λi − a

)
,

(254)
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where we understand 0 · ln(0)) = 0. This function represents point-wise evaluations in

the sum defining the parts of L which depend on ξ.

This function satisfies gi(a, b, c) → −∞ for a → −∞ uniformly for all b ∈ [1, C] and

c ∈ [0, C] for some constant C > 0. Indeed, for a sufficiently small, −λic ln
(
λic
λi−a

)
<

d|a| 12 for some constant d > 0 independent of c, and consequently the linear term ba

dominates the logarithmic term, confirming the claimed coercivity statement. Moreover,

the function gi(·, ·, ·) is bounded on (−∞, λi] × [1, C] × [0, C], as gi(a, b, c) → −∞ for

a → λi unless c = 0, in which case it converges to bλi, and the function is continuous

and coercive. In particular, note that for bounded b, c, the boundedness and coercivity

estimates hold uniformly.

With this in mind, note that ‖ξ‖ large implies that ξ contains a entry in some

i∗, s∗, φ∗, z∗ such that −(ξ)s
∗,φ∗,z∗

i∗ = O(‖ξ‖) , and that the terms depending on p, w

in L are bounded. We estimate

L
(
(u, v), (ξ, p, w)

)
≤

M∑
i=1

Ns−1,Nz−1∑
s=0,z=0,φ∈A

gi(ξ
s,φ,z
i , R̃us,φ,zi , f s,φ,zi )︸ ︷︷ ︸

〈R̃ui,ξi〉−
(
DKL(·,fi)

)∗
(ξi)

+K, (255)

for some constant K > 0. Further, g(ξs,φ,zi , Rus,φ,zi , f s,φ,zi ) is uniformly bounded from

above with respect to the first component for all s, φ, z, and for some i∗, s∗, φ∗, z∗, the

value −gi∗(ξs
∗,φ∗,z∗

i∗ , Rus
∗,φ∗,z∗

i∗ , f s
∗,φ∗,z∗

i∗ ) = O(‖ξ‖), yielding the required coercivity state-

ment for L.

Consequently [18, VI Prop 2.4, p. 176] ensures that a saddle-point ((u∗, v∗), (ξ∗, p∗, w∗))

to (Saddle-Tikh) exists. Also, due to [18, III Prop 3.1, p. 57], u∗ is indeed a solution to

the primal problem (D-TIKH-STEM).

Thus, all required proximal mappings are computed and assumptions are satisfied, and

hence we can adapt Algorithm 1 to the specific structure of the STEM reconstruction

yielding Algorithm 2.

Due to Theorem 11.8, Algorithm 2 is indeed correct, i.e. the sequence (un)n converges

to a solution of (D-TIKH-STEM). Thus this algorithm is an adequate method to solve

(D-TIKH-STEM), and consequently it is a reconstruction algorithm for multi-spectral

STEM CT data.
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Algorithm 2 Discrete Radon Reconstruction
INPUT: Operators A,A∗ between Hilbert spaces H1 and H2 as in (243), and sinogram
data f ∈ Υ,

1: ‖A‖ = Power-iteration(A,A∗)
2: Initialise u0 = 0 ∈ U v0 = 0 ∈ V , ξ0 = 0 ∈ Υ, ū = 0 ∈ U , v̄ = 0 ∈ V , p = 0 ∈ V ,
w = 0 ∈ W and s ∈ Υ, choose τ, σ > 0 such that στ‖A‖2 < 1.

3: for all n = 0, 1, . . . do

4:



Dual update for i = 1, . . . ,M :{
zi = ξni + σR̃ūi
ξn+1
i = zi −

(zi−λi)+
√

(zi−λi)2+4τλifi

2

pn+1 = proj{‖v‖l∞,A1
≤α1}

(
pn + σ(∇̃ū− v̄)

)
wn+1 = proj{‖w‖l∞,A0

≤α0}(w
n + σẼ v̄)

Primal update for i = 1, . . . ,M :{
un+1
i = proj{u≥0}

(
un − τ(R̃∗ξn+1

i − d̃iv pn+1
i )

)
vn+1 =

(
vn + τ(pn+1 + d̃ivwn+1)

)
Extragradient update:

ū = 2un+1 − un

v̄ = 2vn+1 − vn

Output: Sequence (un)n which converge to a solution of (D-TIKH-STEM).
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12. Discussion of Numerical Results

With the Reconstruction Algorithm 2, we are able to compute reconstructions of sino-

gram data. The purpose of this chapter is to discuss numerical results, explain occurring

effects and observe improvements made by the proposed algorithm compared to other

methods.

To create these results, we use an implementation of Algorithm 2 in Python 2 with

operations as defined in Chapter 11.2. These operations used for the iteration rules

are implemented via PyOpenCL, a version of OpenCL (see [28] and references therein)

adapted to Python, which allows a parallel implementation on the GPU (graphics pro-

cessing unit). This allows an efficient implementation as the needed operations are

suitable for such implementations. We note that the majority of computational efford

is required for evaluation of the Radon transform and its adjoint, and differential oper-

ations. The differential operations are sparce and thus can be implemented in a swift

manner. This leaves the Radon transform and its adjoint, which are not sparce as each

row in the matrix representing R̃ corresponding to (s, φ, z) contains non-zero entries in

all columns corresponding to adjacent nodes, and the number of those nodes grows at the

same rate as the resolution Ns. Still, the number of adjacent nodes does not grow very

fast compared to the overall growth of data, making a parallel implementation suitable.

In particular for the Radon transform and its adjoint there is a significant increase in

speed from the cpu- to the gpu-implementation.

We first show that preprocessing might be required to obtain suitable reconstructions,

using exemplary artificial data sets to illustrate certain undesired effects and their couses.

Then the effects of using TGV and the Kullback-Leibler divergence compared to TV and

L2 subnorms are shown, and the effects of excessive and insufficient regularisation are

depicted. After this, we look at real practical data sets obtained through Scanning

Transmission Electron Microscopy (TEM and STEM) [4] and the reconstruction com-

puted in a single-data and multi-data setting. In the chapter concerning single-data

reconstruction, we compare the result with reconstructions obtained through standard

methods, and depict results illustrating the capabilities of Algorithm 2. In the final

chapter, multi-data reconstructions are considered. There, a particular focus lies on the

improvements made through coupling compared to uncoupled reconstructions.
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12.1. Preprocessing

For the Tikhonov approach to yield reliable results for the noisy data, it is imperative

for data to fit the assumptions made in the model leading to the Tikhonov regularisation

and in particular to the discrepancy used. Unfortunately, often the measured data does

not fit these assumptions. Possible causes are that data passes through a sequence of

processes before being available for the actual solution of the Tikhonov problem or that

some theoretical assumptions are not satisfied by reality or the measurement process.

This however might lead to the data not satisfying these initial assumptions, sometimes

in very basic ways, which might not allow for the approach to realise its full potential.

Therefore, in the following we present some of such deficiencies in the data, and show

how they impact the reconstruction and how to correct these deficiencies. This might be

helpful to detect and identify issues in concrete data on which one works. Note that the

scale of the depicted deficiencies here is purposely exaggerated to illustrate the effects

on reconstruction, but similar weaker effects can be seen in practical applications.

Original setting

We consider the data set depicted in 7(a) which was obtained through STEM mea-

surements and represents the density distribution in a speciment. The data contain

projections from Na = 139 angles and has resolution Ns = 998 and thus has dimension

139 × 998 and only one slice, i.e. Nz = 1, where the angles are represented by the

vertical axis. Moreover, the values in the data are scaled to be between 0 and 1, where

0 represent no density being present.

We consider here two different approaches, both applying TGV2
α regularisation, but

one using Kullback-Leibler divergences while the other uses the subnorm ‖ · ‖2
L2 . We

refer to those as Kullback-Leibler reconstruction and L2 reconstruction respectively. The

parameter choices leading to the later depicted reconstructions are obtained through

manual selection of suitable results.

Fluctuating brightness

In electron tomography data, one might observe intensity fluctuations between different

tilt angles. There are two main sources creating these effects due to physical effects and

technical limitations. One being partial shadowing of the detector, the other is residual

diffraction contrast.

Partial detector shadowing happens due to technical limitations in obtaining data, as
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(a) Original sinogram

(b) Kullback-Leibler reconstruction of the original
sinogram using α = (4, 1) and λ = 0.001

(c) L2 reconstruction of the original sinogram us-
ing α = (4, 1) and λ = 1

Figure 7: Original sinogram data and corresponding reconstructions for Section 12.1.
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electrons hit parts of the installation of the detector under certain angles, reducing the

intensity of measured electrons.

Diffraction contrast is a natural phenomenon occuring in the measured data, and

although diffraction contrast contributions to the measurements are small when using

STEM techniques [23], some contribution of diffraction contrast can still be present,

which leads to brightness fluctuations depending on tilt angles.

Such brightness fluctiations are depicted in Figure 8(a), where we modified the bright-

ness of the projection for each angle (row in the image) by an random value which is

normal distributed with expected value 1 and standard deviation 0.2. Moreover, we

reduced the intensity of the first and last 20 projections by 50% to simulate partial de-

tector shadowing. In the L2 reconstruction This can lead to artifacts appearing inside

and outside the observed object as shown in Figure 8(c). This happens because the

algorithm tries to position mass in a way that affects the projections with little intensity

less than the others, leading to the substential amount of mass being placed on the sides.

Note that for the Kullback-Leibler reconstruction this does not occur (see Figure 8(b)),

as placing mass outside the object (where f = 0) would lead to a linear penalty, however,

when raising the baseline (value representing no mass) slightly, the same effect as for

L2 reconstruction occurs, see Figure 8(d). To reduce these effects, one can rescale all

projections to be non-negative and to have a common mean. Additionally, projections

with very strong diffraction contrast, and hence containing unsatisfactory information,

should be removed completely. In particular, we note that bad information might cause

more problems than possessing no information at all for a specific angle, and the number

of such projections is usually small compared to the total number of projections.

Non-zero baseline & Gaussian noise:

Often, the data get rescaled in the line of procession before reconstruction starts, how-

ever, for the Radon transform it is imperative that the baseline (the value representing

no density) has the value 0. Also, such data suffers from thermic (Gaussian) noise due

to the electronics of the detector. Though generally much lower than the Poisson noise,

Gaussian noise is particularly relevant in points with no density (where consequently

no Poisson noise occurs), which is not consistent with the noise model. As depicted

in Figure 9(a), we added normal distributed values with expectation 0.1 and standard

deviation 0.03 to the sinogram, i.e. change the baseline to 0.1 and add Gaussian noise,

to simulate this situation. Therefore, the reconstruction scheme must insert additional

mass to make up for the non-zero baseline and noise outside the object, resulting in
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(a) Sinogram with brightness fluctuations

(b) Kullback-Leibler reconstruction of the sino-
gram with brightness fluctuations using α = (4, 1)
and λ = 0.001

(c) L2 reconstruction of the sinogram with
brightness fluctuations using α = (4, 1) and λ =
1

(d) Kullback-Leibler reconstruction of the sino-
gram with brightness fluctuations and non-zero
baseline usign α = (4, 1) and λ = 1

Figure 8: Brightness fluctuations and its effects on reconstructions.
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noise and halo artifacts appearing as depicted in Figures 9(b) and 9(c). In particular,

this effect appears in similar gravity for both Tikhonov approaches. The reason for the

occurence of such artifacts is that halo functions are similar to preimages of constant

functions, and so the algorihtm works faithfully, but the solution is different from what

one would expect or is looking for. Indeed, Figure 9(d) illustrates the solution of a sino-

gram with constant values, and shows that the halo is indeed an (approximate) solution

to constant sinograms. To achieve an zero baseline, and simultaneously remove noise in

points without density, hard thresholding can be applied.

Misalignment:

Misalignment of the tilt series can be an issue in electron tomography. One must be

wary, that the alignment of the projection is correct, meaning that each projection is

centered with respect to a common tilt axis. An example for a severely misaligned

sinogram is shown in Figure 10(a), where we modified the sinogram data by shifting

the projections randomly for each angle by a normal distributed value. A non-correct

alignment leads to blurring of the image, and artifacts outside the object as one can see

in Figures 10(b) and 10(c). In particular the bluring appears in both reconstructions, but

again the artifacts outside the object only appear in the L2 reconstruction while in the

Kullback-Leibler reconstruction the boundary accumulates unnatural mass formations.

For proper alignment one can use center of mass and common-line alignment methods,

see e.g. [43, 21].

We note that although each of these artifacts appearing without preprocessing might

not be very significant, when all the described problems occur at once, they further

amplify one another.
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(a) Sinogram with modified baseline and added Gaussian noise

(b) Kullback-Leibler reconstruction of the sino-
gram with shifted baseline using α = (4, 1) and
λ = 0.001

(c) L2 reconstruction of the sinogram with
shifted baseline using α = (4, 1) and λ = 1

(d) Reconstruction of data representing a con-
stant sinogram, i.e. f ≡ 1

Figure 9: Sinogram with modified baseline and added Gaussian noise, and the corre-
sponding effects on reconstruction.
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(a) Sinogram data with severe misalignment

(b) Kullback-Leibler reconstruction of the sino-
gram with shifted alignment using α = (4, 1) and
λ = 0.001

(c) L2 reconstruction of the sinogram with
shifted alignment using α = (4, 1) and λ = 1

Figure 10: Sinogram with shifted alignments and the corresponding reconstructions.
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12.2. Synthetic Experiments

We use an artificial example to highlight the effects of different discrepancy and regular-

isation functions in the Tikhonov scheme, as this artificial setting allows us more insight

in how the algorithm reacts to certain situations and modifications in data. In par-

ticular, the advantages of TGV2
α and Kullback-Leibler divergence DKL over TV (Total

Variation, a commonly used regularisation functional in imaging, which for scalar-valued

functions is identical to TD) and subnorms ‖·‖2
L2 become apparent in these observations.

Therefore, we consider the following two sinograms in 2D where the second is a version

of the first which is disturbed with Poisson noise as depicted in Figure 11.

The data has format 105 × 708, i.e. resolution Ns = 708 and Na = 105 projections

are considered, and Nz = 1, i.e. only a single slice is considered.

(a) Sinogram of original distribution

(b) Sinogram with Poisson noise

Figure 11: Sinogram data for Section 12.2.

Note that the noise is stronger in parts of the sinogram containing much mass, while

those without mass remain unaffected.

The density distribution from which the original sinorgam was computed, is depicted

in Figure 12(a) and contains several different aspects of functions occurring in it. From

the top there is a linear increase downwards with respect to the y axis, while the ramp

coming from the left is a quadratic function with respect to the x axis. Those two

ramps continuously lead into a block in the middle of the image with a constant value

and a hard transition to the surrounding areas which hold no density. On one vertex

of this square block, a quadratic function describing the square distance to said vertex

overlays the constant block in a circular way. In the bottom-right corner two boxes

are placed whose values describe the square distance to two respective middle-points,
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however, now not in a circular but in a square shape, and the two functions are inverse of

another, leading to a hard transition with opposite trends on their shared boundary. So

to summarise, the density features constant, linear and quadratic parts, partially with

continuous and partially with hard transitions.

As can be seen in Figure 12(b), the application of Filtered Backprojection reconstruc-

tion of the original sinogram is not perfect, which is due to the Radon transform with

finitely many angles not being injective. But the effect is far stronger for the noisy data,

where the Filtered Backprojection reconstruction is not usable and strongly amplifies

noise, even in points containing no mass, see Figure 12(c).

(a) Original density (b) Filtered Backprojection of
the original sinogram

(c) Filtered Backprojection of
the noisy sinogram

Figure 12: Original Density distribution and Filtered Backprojection reconstructions for
Chapter 12.2.

So obviously this Filtered Backprojection method is not suitable when strong noise

is occurring in the data, and thus we consider reconstructions made using Tikhonov

regularisation with TGV or TV for the regularisation functional as well as DKL or

‖ · ‖2
L2 (short KL or L2) as discrepancies. Applying those reconstruction methods to

the sinogram with noise leads to the results depicted in Figure 13. Here we show 3

different parameter choices for each approach in order to illustrate what the effect of

excessive, insufficient or appropriate regularisation on the reconstruction is. Note that

the used parameter choices were determined manually by examining results of some

reconstructions.

In the first and second line of Figure 13 one sees the approaches using Total Variation,

where it becomes apparent that TV promotes piece-wise constant areas in the solutions

leading to staircase artifacts. Hence, in the constant regions with hard transitions the

reconstruction is very good, however in the linear and quadratic regions the solutions are

non-smooth and look unnatural. TGV2 appears to reconstruct the non-constant areas
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well and also allows for jumps and discontinuities, although sometimes the transitions

are a bit blurry. As TGV2 promotes piece-wise linear functions, it comes as no surprise

that on the linear and quadratic sections TGV2 is superior to TV and yields smoother

results.

There seems to be no big difference in the results between using L2 and KL. As we are

aware of the original image, one can quantify the errors made by the reconstructions,

which shows a slight advantage of KL over L2 (as would be expected), however the

difference is not significant and both yield suitable reconstructions.
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Insufficient

regularisation:

Appropriate

regularisation:

Excessive

regularisation:

TV-L2

λ = 0.0002
TV-L2

λ = 0.0001
TV-L2

λ = 0.00001

TV-KL
λ = 0.02

TV-KL
λ = 0.005

TV-KL
λ = 0.001

TGV-L2

λ = 0.00012
TGV-L2

λ = 0.00008
TGV-L2

λ = 0.00005

TGV-KL
λ = 0.015

TGV-KL
λ = 0.008

TGV-KL
λ = 0.005

Figure 13: Reconstruction of noisy data with varying methods and regularisation pa-

rameter. The first row shows a TV-L2 approach, the second a TV-KL, the

third a TGV-L2 and the last a TGV-KL approach with different degrees of

regularisation, first column for insufficient, second for adequat and last for

excessive regularisation. 158



12.3. Reconstruction of Single-Data HAADF Signals

As an application we consider the reconstruction of a single density distribution for

data obtained by Transmission Electron Microscopy (TEM). Here, HAADF (high-angle

annular dark field, see e.g. [46]) detectors are used to obtain mass-projections and thus

one retrieves sinogram information from which one tries to reconstruct the mass-density

distribution.

Mathematically speaking, this is the inverse problem of reconstructing a single density

distribution by inversion of the Radon transform on a single sinogram.

Such sinogram data is depicted in Figure 14, these however are not all projections, and

just serve as illustration. For the practical computation done in this chapter, we consider

HAADF singram data consisting of Na = 155 projections, with resolution Ns = 1248,

and Nz = 34 slices are considered. We also note that preprocessing steps were applied

to this data set.

(a) -1.30 Radian (b) -0.89 Radian (c) -0.40 Radian

(d) 0.09 (e) 0.57 Radian (f) 1.13 Radian

Figure 14: HAADF projections of a speciment from different angles.

Note that the data supposedly contains Poisson and Gaussian distributed noise,

however, the noise is much weaker than it was in Section 12.2. Thus, we again con-

sider Filtered Backprojection, as well as other standard algorithms for reconstruction,

namely Filtered Backprojection (FBP), Simultaneous Iterative Reconstruction Tech-

nique (SIRT) [24], Simultaneous Algebraic Reconstruction Technique (SART) [1] and

the Conjugate Gradient Least Square method (CGLS) [45] and the results are depicted

in Figure 15.
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These results were computed using the ASTRA toolbox [39, 49] for one specific slice of

the data, and although one gets a general idea of what the object looks like, the results

still contain noise.

Therefore, we applied Algorithm 2 to solve a TGV-KL approach as in (TIKH-STEM)

and again a suitable parameter choice is obtained through manual optimisation. Further,

we consider the effects of preprocessing on the results, where we use the preprocessing

methods as proposed in Section 12.1. The difference between a reconstruction with

and without preprocessing is depicted in Figure 16 and the corresponding heat-maps

illustrate that while the reconstruction inside the object is proper even without pre-

processing, quite some noise accumulates outside the object unlike in the preprocessed

version. While for the human eye this noise outside the object might not pose any real

problem, for possible postprocessing this could be an issue, e.g. segmentation algorithms

could view this noise as an additional object.

We further note that the Radon transform is basically a two-dimensional operation we

consider for different heights z and so the reconstruction of different slices are computed

independently by many algorithms. The proposed Tikhonov TGV approach however

links the different slices through penalising the gradient in z direction. The noise in a

certain slice might lead to artifacts, however as the noise is random, the noise of the

adjacent slices most likely leads to other artifacts. Thus, TGV penalises these artifacts,

although these artifacts would be reasonable when just considering the two-dimensional

reconstruction. Such effects can be observed in Figure 16(c), where we see that while

the reconstruction of the object is done well, some artifacts appear in the grey mass.

Also, in Figure 17 a sequence of reconstructions of different slices are shown to further

illustrate the effect of Algorithm 2 on preprocessed data. One sees that the algorithm

succeeds in gaining smooth reconstructions, allowing for hard and soft transitions, and

still retrieves details like the small entrapments which can be seen in the second row

of Figure 17. Furthermore, the algorithm creates a stark contrast between the object

and its surrounding without mass, which is due to the linear penalty imposed by the

Kullback-Leibler divergence on points in the sinogram with signalvalue 0.
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(a) Filtered Backprojection (b) SIRT reconstruction

(c) SART reconstruction (d) CGLS reconstruction

Figure 15: Reconstructions created by commonly used reconstruction algorithms for one
specific slice in the data set in Section 12.3.

(a) Reconstruction without pre-

processing

(b) Reconstruction with pre-

processing

(c) Reconstruction in 2D with-

out linking of the slices

(d) Heat-map without prepro. (e) Heat-map with prepro. (f) Heat-map 2D

Figure 16: Reconstructions with TGV and KL using α = (4, 1) and λ = 0.00025
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Figure 17: Series of slices (read along rows) from reconstructions with TGV and KL

using α = (4, 1) and λ = 0.00025.
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12.4. STEM Multi-Spectral Reconstructions

Finally, we apply the Reconstruction Algorithm 2 to STEM data obtained via EDS

representing several spectra. We work with a data set containing a HAADF signal as

well as analytical data for aluminium, silicium and ytterbium, see Figure 18. The data

has resolution Ns = 296 with Na = 39 projections and Nz = 276 slices.

From a mathematical standpoint this data is not different from the HAADF data

previously obtained, only that the physical interpretation is different as it does not

represent mass-density but the density for certain elements used to do elemental analysis

and create a chemical mapping.

Unfortunately, due the higher technical effort in obtaining data, these sinogram data

have lower quality and contain stronger noise, as can be seen in Figure 18. This leads

to potential complications, as one requires strong regularisation to remove the noise,

which on the other hand might lead to blurry transitions and non-sharp features. Thus,

we consider two different TGV approaches and the choice of parameter is again done

manually. One approach reconstructs the spectra independently, i.e. the norms | · |A∗1
and | · |A∗0 in the defintion of TGV2 are the l1 norms over all entries, while the other uses

Frobenius norms for both instances, leading to a coupling of the problems promoting

common edges. The corresponding reconstruction results are presented in Figure 19 and

20 where the four channels (HAADF, aluminium, silicium, ytterbium) are placed from

left to right.

The uncorrelated approach yields satisfying results inside the objects, yet becomes

blurry, particularly on the boundaries but also elsewhere. Moreover, due to the blur-

ring, small features such as the small entrapment in ytterbium spectrum are lost. It

is easy to see, that the density distribution of ytterbium is the same as the highest

density parts in the HAADF reconstruction. Consequently the reconstruction of the

low quality ytterbium data could greatly benefit from edge information in the HAADF

reconstruction. Therefore, in the coupled reconstruction, the ytterbium reconstruction

improves significantly by drawing on this information. For example the entrapments

in the ytterbium density becomes more visible and the transition gets sharper in the

coupled reconstruction, while in the uncoupled reconstruction these entrapments were

rather blury. This shows that the information from the HAADF data with higher quality

can improve the low quality ytterbium reconstruction.

Also, one sees that the edges in the aluminium and silicium signals are complementing

each other in the coupled reconstruction, which makes sense from a physical point of

view as they have almost the same density. In the uncorrelated reconstruction however,
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these shared edges in the aluminium reconstruction are less defined. So also informa-

tion exchange between two low quality signals can be observed to the benefit of both

reconstructions.

Furthermore, note that there is information exchange between HAADF and alumninium,

as the hole in the top left of the aluminium reconstruction corresponds to a higher mass

in the HAADF reconstruction, and coupling makes the features of said hole sharper.

Also, the outer boundary of the aluminium density seems to be not very smooth and

rather frayed in the uncoupled reconstruction, while the outer boundary of the HAADF

reconstruction is smooth. Coupling results in this boundary of the sinogram becoming

smoother by adjusting to the HAADF’s boundary.

So to summarise, while the uncorrelated reconstruction already creates suitable re-

sults, the approach with joint regularisation succeeds in creating sharp edges, preserving

small details more efficiently and allowing for information exchange, both between high

and low quality signals, or between two signals of similar quality.
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(a) aluminium: -1.30 Radian (b) aluminium: -0.40 Radian (c) aluminium: 0.57 Radian

(d) silicium:-1.30 Radian (e) silicium: -0.40 Radian (f) silicium: 0.57 Radian

(g) ytterbium: -1.30 Radian (h) ytterbium: -0.40 Radian (i) ytterbium: 0.57 Radian

Figure 18: Spectral projections of a speciment from different angles.
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Figure 19: Uncoupled TGV-KL reconstruction of data in Section 12.4 with α = (4, 1)

and λ = (0.05, 0.005, 0.002, 0.0015), showing from left to right HAADF, alu-

minium, silicium and ytterbium.
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Figure 20: Joint TGV-KL reconstruction of data in Section 12.4 using Frobenius norms

with λ = (0.05, 0.002, 0.001, 0.0008) and α = (4, 1), showing from left to right

HAADF, aluminium, silicium and ytterbium.
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Summary

We want to quickly recapitulate the most relevant results and methods presented in this

thesis. The overall topics discussed were analytical and numerical aspects of multi-data

Tikhonov approaches as well as their application to STEM CT reconstruction.

The first part focused on the analytical properties of multi-data Tikhonov approaches,

which are schemes to solve multi-data inverse problems

T1u = f1, . . . TMu = fM (256)

with M subproblems featuring forward operators Ti and data fi. These approaches use

discrepancy functions Di for i = 1, . . . ,M and a family of regularisation functionals

(Rα)α∈A and parameters λ ∈ RM and α ∈ A, and consist in solving

u† ∈ argmin
u∈X

Fλ,α(u, f) with Fλ,α(u, f) = Rα(u) +
M∑
i=1

λiDi(Tiu, fi). (257)

In order to guarantee that this problem is indeed well-defined and satisfies expected

properties, we introduced the concepts of basic, continuous and strongly continuous

discrepancy functions as well as continuous and strongly continuous families of regulari-

sation functionals. With these and standard coercervity assumptions, one can show that

this approach is well-defined in the sense that an solution exists in case Fλ,α is proper.

Further, convergence results for vanishing noise similar to the ones for classical Tikhonov

problems are discussed. In this context, not only convergence to solutions, but also to

partial solutions can be considered as such are possible due to the multi-data structure.

When denoting by Rα,λ,I(u, f) = Rα(u)+
∑

Ic λiDi(Tiu, fi) the extended regularisation

functional, the focus lies on Rα,λ,I-minimal I-partial solutions, and convergence to those

under additional parameter choice rules is considered. These Rα,λ,I-minimal I-partial

solutions also allow interpretation as solutions to a Tikhonov problem for the unsolved

problems TIc = fIc , using TIu = fI as prior. This is true, as Rα,λ,I(u, f) represents a

Tikhonov functional for the subproblems in Ic, and the prior condition enforces being

I-partial solution. So the Tikhonov approach can be seen as an approximation scheme

for solving said Tikhonov problems with prior.

Indeed, for vanishing noise we show that subsequential convergence to such an Rα,λ,I-

minimal I-partial solution (if existent) can be obtained, when using continuous discrep-

ancies and families of regularisation functionals and applying a suitable parameter choice
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strategy. Moreover, under additional source conditions and modulus of continuity esti-

mates (strongly continuous discrepancies and regularisation functionals), one can also

derive convergence rates for the residuals and the Bregman distance of Rα,λ,I . From

these, one can find parameter choice strategies to obtain optimal rates, and in particular

the rates are affected by the noise levels of all subproblems. Therefore, one might im-

prove the convergence rate for one subproblem by changing the parameter choices, but

risks slowing down the others’ convergence.

With these general results, we aimed to apply specific discrepancies and families of

regularisation to it, in order to show that the required assumptions are indeed reasonable

and are fulfilled by a number of concrete functions.

For discrepancies on a vector space we first considered norm and subnorms, i.e.

Di(vi, fi) = ‖vi − fi‖pii (258)

with vector space norms or subnorms. For such, under natural assumptions and topolo-

gies we obtained that these are indeed continuous discrepancies, which are t
1
pi -strongly

continuous, and so they pose a suitable choice for discrepancies and satisfy all require-

ments without any restrictions.

More challenging is the discussion of the Kullback-Leibler divergence as a discrepancy

functional, i.e. the discrepancy Di = DKL on L1
µ(Ω) with

Di(vi, fi) = DKL(vi, fi) =

∫
Ω

vi − fi − fi ln
(vi
fi

)
dµ. (259)

This discrepancy is suitable to tackle Poisson distributed noise due to its connection to

the corresponding likelihood function. Unlike norms, the Kullback-Leibler divergence is

not adapted to the linear operations, thus requiring more analytical discussion. Still,

under acceptable assumptions and choices of topology, we showed that the Kullback-

Leibler divergence is a continuous discrepancy in every v0 and f †i . However, strong

continuity in f †i is only obtained on the set

Vi =
{
vi ∈ L1

µ(Ω)
∣∣∣ ln

( vi
f †i

)
∈ L∞µ (

{
vi 6= 0, f †i 6= 0

}
)
}
, (260)

where one obtains local 1
2
-Hölder continuity.

As an example for regularisation functionals, TGV (Total Generalised Variation) is
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considered, where for α ∈ (0,∞)k,

TGVk
α(u) = sup

{∫
Ω

u · divk φ dx
∣∣∣ φ ∈ Ckc (Ω, Symk+l,d) (261)

with ‖ divj φ‖∞ ≤ αj for j ∈ {0, . . . , k − 1}
}
.

This is a regularisation functional frequently used in imaging that penalises deriva-

tives in order to promote smooth solutions, however does it in a way that allows for

discontinuities. After introducing these functionals, their analytical properties are dis-

cussed, and in particular, it is shown that the family (TGVk
α)α∈(0,∞)k is indeed a strongly

continuous family of functions, and thus applicable as a family of regularisation func-

tionals. Moreover, we discuss a version of TGV for vector-valued functions, allowing the

coupling of inverse problems with the exchange of edge location information in order to

promote common features in Tikhonov reconstructions.

Furthermore, the properties of TGV in a linear setting are discussed, i.e. Ti linear

and Di = ‖ · ‖pii , showing that the TGV regularisation also leads to a coercive Tikhonov

functional, thus creating a suitable Tikhonov approach.

As application of the discussed choices of discrepancy and regularisation functionals,

we consider the multi-data inverse problem of reconstruction of STEM CT data. These

problems feature multiple independent inverse problems

Ru1 = f1, . . . RuM = fM (262)

of reconstructing density distributions u1, . . . , uM from corresponding sinogram data

f1, . . . , fM with R the Radon transform. These densities represent the densities of

specific chemical elements, thus one tries to obtain a chemical mapping of an object. A

Tikhonov approach using the Kullback-Leibler divergence and TGV for vector-valued

functions is employed to solve the inverse problem, in the hope of tackling Poisson noise

efficiently and promoting information exchange and smooth solutions.

Therefore, the Radon transform, the forward operation for such problem, is discussed.

It is shown that it satisfies analytical requirements for a Tikhonov approach and that

regularisation is indeed necessary as the inverse problems are not well-posed.

In order to solve the resulting Tikhonov approach, a discretised problem is introduced,

and a primal-dual algorithm is employed to solve said discrete problem. In particular,

the discrete problem is derived in a way that allows a parallel implementation on the

GPU, resulting in an efficient reconstruction algorithm.
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Finally, numerical results are discussed, highlighting the effects, advantages and short-

comings of such a Tikhonov approach, and illustrating that indeed satisfactory results

can be obtained, which are superior to other reconstruction methods. The algorithm pro-

duces smooth reconstruction while allowing for sharp features and in particular succeeds

in eliminating noise without blurring the reconstructions and applies suitable exchange

of information yielding sharp edges.
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