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Abstract

Møller (1998, 2001) extended Föllmer and Sondermann’s (1986) theory of
risk-minimization in incomplete markets to determine the optimal financial
portfolio to hedge the insurers risk when selling unit-linked life insurance
contracts. In the first part the unique risk-minimizing financial strategy
for a so called contingent T -claim, arising from pure endowment and term
insurance contracts, will be specified. We will see that the insurer is able to
eliminate the intrinsic risk completely, when the financial model is extended
by a reinsurance possibility. In the second part, the simple world of T -claims
is enlarged to general payment streams and finally some numeric results are
presented.

i



ii



Contents

1 Introduction 1

2 The financial market 5
2.1 The financial assets . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The equivalent martingale measure . . . . . . . . . . . . . . . 7
2.3 Further definitions . . . . . . . . . . . . . . . . . . . . . . . . 8

3 The theory of risk-minimization in incomplete markets 13
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Chapter 1

Introduction

At the beginning of a traditional life insurance contract an appointed benefit
payment stream is settled between the insurer and the policy holder. An
example would be a pure endowment insurance, which pays at a fixed time
(the end of the contract) a previous specified amount of money, given the
insured person1 is still alive at the time of maturity. Other examples would
be a term insurance, that pays a predefined amount of money at the time of
death of the insured person, if the person dies before maturity of the contract,
or an endowment insurance, which is a combination of both types mentioned
before.

As one can see, the only stochastic part in traditional life insurance con-
tracts is given by the mortality of the insured person. Usually the proba-
bilities of different ages to die within one year is assumed to be given by a
life table, meaning that the mortality risk is considered as diversifiable and
expected.

This fact changes if one considers unit-linked or index-linked life insurance
contracts. These types of contracts do not pay a fixed insurance benefit at
a predefined (maybe stochastic) point in time, but consider the benefits in
dependence of the price process of a specified stock, fund or index. Benefits
typically are defined as the price of the stock or the maximum of the price
of the stock and some guarantee. As for traditional life insurance contracts
guaranteed returns are very low at the moment, unit-linked contracts are
getting more popular recently.

Aase and Persson (1994) analysed unit-linked life insurance contracts

1In general an insurance contract can include three different persons: The one that
concludes the contract, another one, whose lifetime is insured and a third person, that will
receive the benefit. For reasons of simplicity in this thesis it is assumed that an insurance
contract concerns only one person, i.e., the policy holder equals the insured person and
equals the benefited.
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under the pricing principle of equivalence implicitly assuming the insured
person as risk neutral with respect to mortality. This means that the death-
probabilities of the policy holder behave like the ones given in a life table.
Therefore, these kinds of contracts can be priced and perfectly hedged by
traditional no-arbitrage theory of financial mathematics. But when taking
the the pathwise considered stochastics of mortality into account, the market
no longer can be considered as complete. As a result the insurer is not able
to hedge his risk perfectly by trading assets on the market and is left with
some minimum obtainable risk, the so called intrinsic risk process.

Based on two articles by Møller (1998, 2001), this thesis deals with the
problem of finding risk-minimizing hedging strategies for general insurance
payment streams that depend on a financial asset and consider the insured
event as stochastic. The theory of risk-minimization in incomplete markets
introduced by Föllmer and Sondermann (1986) will be used to find those risk-
minimizing hedges. The remaining risk of the insurer is going to be measured
by the expected value with respect to the risk neutral martingale measure of
the square of the difference of the payable benefits and the investment gains.

The first part of the current thesis will be based on Møller (1998) and
will discuss simple claims that arise from unit-linked life insurance contracts
where the life length of the insured person is assumed to be driven by some
stochastic process and the benefits are payable at predefined points in time
only. Furthermore we will assume that premiums are paid as single pre-
miums. In this part of the paper risk-minimizing trading strategies will be
obtained for pure endowment insurance contracts as well as for term insur-
ance contracts. In both situations there will be an intrinsic risk process left
for the insurer, but when considering freely traded reinsurance contracts, the
direct insurer will be able to eliminate his risk completely.

After understanding the theory of risk-minimization of simple unit-linked
life insurance contracts, we will be able to broadly generalize the insurance
claims processes in the second part of the recent paper, based on Møller
(2001). These generalized payment processes include insurance liabilities
where the insurer has to face more than one possible claim in the duration of
the contract. Since one can not directly use the concept of risk-minimization
of Föllmer and Sondermann (1986) we need to extend their theory. After de-
ducing the necessary results we will derive risk-minimizing hedging strategies
for general unit-linked life insurance contracts and furthermore a non-life in-
surance contract will be considered where the claim size distribution depends
on the development of the price process of a specified traded asset.

The financial market will in both cases consist of two financial products
only, one bond, which will be assumed to be (locally) risk-free and used for
discounting, and one stock, that is the risky asset. The discounted price
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process of the asset will be given by a (locally) square-integrable local mar-
tingale. There will be neither transaction costs nor liquidity constraints.

The present thesis is organized as follows: In Chapter 2 the financial
model as well as the simple life insurance model are defined and briefly some
required results from financial mathematics are reviewed. The theory of
risk-minimization is introduced in Chapter 3 and afterwards risk-minimizing
hedging strategies for simple unit-linked pure endowment and term insurance
contracts are obtained in Chapter 4. In Chapter 5 we define generalized
payment streams and derive the required extension of the traditional concept
of risk-minimization. With this result we are able to obtain risk-minimizing
hedging strategies for general unit-linked life insurance contracts. And finally
in Chapter 6 some numerical results are presented.
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Chapter 2

The financial market

In this chapter the financial model, that defines the environment of the two
considered financial products and the desired hedging strategy, is introduced.
In contrast to the insurance model, that will be generalized in the course of
the present thesis, the financial model will stay mostly the same (it will just
be slightly expanded).

Additionally, we will review several basic definitions and results from
financial mathematics, that will be necessary to construct the forthcoming
theory.2

2.1 The financial assets

We consider a fixed finite time horizon, that will be denoted by T and a given
probability space (Ω,A,P) with a filtration F = (Ft)0≤t≤T , that satisfies the
so called usual conditions.

Definition 2.1.1. [9] Let F be a filtration.

(i.) F is called right continuous if F = F+.3

(ii.) F is called P-complete if F0 (and hence all Ft) contain the sets of
probability zero, i.e., N ⊆ F0, where N := {A ∈ A|P(A) = 0}.

(iii.) F satisfies the usual conditions if it is right continuous and P-
complete.

2Most of these basic definitions, technical results and some interpretations are based on
Karatzas and Shreve (1998) [5], Øksendal (2013) [11] and the lecture notes from ”Stochas-
tic Analysis” [9] and ”Advanced Financial Mathematics” by Wolfgang Müller [10] lectured
at TU Graz.

3F+
t :=

⋂
s>t Fs, it describes the information at time t+ dt with infinitesimal dt.

5



6 2.1. THE FINANCIAL ASSETS

The market consists of two freely traded assets only: a (risk-free) bond
with price process B = (Bt)0≤t≤T and a (risky) stock with price process
S = (St)0≤t≤T , i.e., at any time t ∈ [0, T ] both assets can be traded by
prices Bt and St respectively. Both price processes are defined on the given
probability space (Ω,A,P) and are driven by the following dynamics

dSt = α(t, St)Stdt+ σ(t, St)StdWt, (2.1.1)

dBt = r(t, St)Btdt, (2.1.2)

where (Wt)0≤t≤T denotes a standard Brownian motion on the time interval
[0, T ], the coefficients are defined as functions in time and the asset price,
i.e., α, σ, r : [0, T ] × R → R and the initial values are given by B0 = 1 and
S0 > 0.

Furthermore, assume Bt to be almost surely positive at every point in
time, i.e., Bt > 0 P-a.s. This allows us to define the discounted stock
price process as follows:

Definition 2.1.2. The discounted price of the stock at time t is given by

S∗t :=
St
Bt

.

Let us introduce the new augmented filtration G = (Gt)0≤t≤T , which rep-
resents the economic information on [0, T ], i.e., Gt is contained in Ft and
generated by the economy and all nullsets and therefore given by

Gt = σ{{(Su, Bu) | u ≤ t},N} = σ{Su | u ≤ t}

where the last equality holds since Bu depends on the price process of the
stock, S.

Next we want to find explicit expressions for the prices of the assets.
Obviously the solution of the differential equation (2.1.2) defining the price
process of the bond B is given by

Bt = e
∫ t
0 rudu, (2.1.3)

whereat
∫ T

0
rudu is assumed to be finite.4 To ensure an existing and up to in-

distinguishably unique solution of the stochastic differential equation (2.1.1)
that defines the stock price, one has to make some regularity assumptions for
the diffusion coefficient σ and the drift α. For detailed information see Ap-
pendix A and Øksendal (2013). We assume these regularity conditions to be

4In the following we will use the shorter form rt instead of writing both arguments
r(t, St). The same holds for the other coefficient functions σ and α.



2.2. THE EQUIVALENT MARTINGALE MEASURE 7

fulfilled in the rest of the thesis and, therefore, are able to give a reasonable
integral5 expression for the stock price itself and its discounted price process

St = S0e
∫ t
0

(
αu−

σ2u
2

)
du+

∫ t
0 σudWu , (2.1.4)

S∗t = S0e
∫ t
0

(
αu−ru−

σ2u
2

)
du+

∫ t
0 σudWu . (2.1.5)

The drift α can be considered as the mean return of the stock S and the
diffusion coefficient σ represents the standard deviation of the rate of return.
A very intuitive interpretation can be given for the coefficient function r, that
is called the short rate of interest, since it represents the risk-free interest rate
an investor receives for holding the bond over time. Let us define the process
νt = αt−rt

σt
which denotes the market price of risk. ”It can be interpreted as

an annual risk premium (in units of the volatility σ) for the holder of the
risky stock in comparison to the holder of the risk-less bond.”[10].

Example 2.1.3. To give an example of a financial model we consider the
coefficients α, σ and r to be constant. Then one obtains the famous Black
Scholes model, where the two financial assets are given by

St = S0e
(α−σ

2

2
)t+σWt ,

Bt = ert.

Here the stock price is modelled by a geometric Brownian motion.

2.2 The equivalent martingale measure

To investigate a meaningful financial model it is indispensable to define an
equivalent martingale measure. We denote this new probability measure
by P∗ and want it to fulfil two conditions: First it should be equivalent to
the given measure P and secondly the discounted stock price should be a
martingale under P∗ . In the following we obtain the required new measure
in two steps:

1. An equivalent measure is obtained directly by definition and an appli-
cation of Girsanov’s Transformation Theorem.

2. The martingale property is shown with the help of the Novikov con-
dition.

Before starting with the definition of an equivalent measure we remember
the Girsanov Transformation Theorem.

5Stochastic integration is meant to be in the sense of Itô.
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Theorem 2.2.1. [9] Let W be a Brownian motion on (Ω,A,P) and Y an
W -integrable process. Further assume that

Us := e
∫ s
0 YudWu− 1

2

∫ s
0 Y

2
u du, 0 ≤ s ≤ t (2.2.1)

is a P-martingale. Then the density process
dP∗
t

dP = Ut defines a probability
measure on Gt, P∗t , which is equivalent to P. The process W ∗ = (W ∗

s )s≤t
defined by

W ∗
s := Ws −

∫ s

0

Yudu, s ≤ t

is a standard Brownian motion with respect to P∗t .

By setting Yu := −αu−ru
σu

we get the proper equivalent measure P∗

dP∗

dP
:= UT := e

∫ T
0

αu−ru
σu

dWu− 1
2

∫ T
0 (αu−ruσu

)
2
du, (2.2.2)

such that the discounted price process S∗ given by Definition 2.1.2 is a P∗-
martingale. The martingale property can be checked by using the Novikov
condition [9], which states that if (Ys)s≤t fulfils

E
[
e

1
2

∫ t
0 Y

2
u du
]
<∞, (2.2.3)

then (Us)s≤t is a martingale. In the current setting this would mean that we
need to request the parameter functions to satisfy that

E
[
e

1
2

∫ t
0

(
−αu−ru

σ

)2
du
]
<∞.

So the new measure P∗ is equivalent to P and fulfils the martingale prop-
erty. Therefore P∗ given by (2.2.2) is the required equivalent martingale
measure, which will be used for measuring the intrinsic risk process and
finding the optimal hedging strategy in the rest of the thesis.

2.3 Further definitions

Finally the financial model is completed by defining the concept of a trading
strategy in the financial model, its value and cost processes. Furthermore,
we consider the risk process that depends on such a trading strategy and
a claim. This financial model was considered by Møller (1998, 2001), who
based this concept on the theory introduced by Föllmer and Sondermann
(1986).
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In the following we will work with the space of all square-integrable F -
predictable processes given by6

L2(P∗S) =

{
ξ|ξ is F -predictable and satisfies E∗

[∫ T

0

ξ2
ud[S]u

]
<∞

}
.

(2.3.1)

For a precise definition of predictability see Müller [9] Definition 2.11. A
basic example for a predictable process would be any adapted process with
left-continuous paths.

Next we define the concept of trading strategies and its value processes.

Definition 2.3.1. [7] The value process V̂ of a pair ϕ = (ξ, η) is given by

V̂ ϕ
t := ξtSt + ηtBt. (2.3.2)

The deflated value process V of a pair ϕ = (ξ, η) is given by

V ϕ
t := V̂ ϕ

t B
−1
t = ξtS

∗
t + ηt. (2.3.3)

With the above definition of the value process we are able to define a
reasonable concept of trading strategies.

Definition 2.3.2. [7] A trading strategy or portfolio strategy is any
process ϕ = (ξ, η) with ξ ∈ L2(P∗S) and η F-adapted, such that the (deflated)
value process V ϕ is càdlàg7 and V ϕ

t ∈ L2(P∗) for all t.

At any time t the portfolio (or trading strategy) ϕ = (ξ, η) respectively
ξ and η can be interpreted as number of stocks and number of bonds held
at time t. The value of the portfolio at time t is given by the value process
V̂ ϕ
t and its deflated value is obtained by discounting with the price of the

risk-free asset at time t.
A special type of strategies are the so called self-financing strategies.

Changes in the value of self-financing strategies are generated by changes
in the underlying price processes only. Formally this property is defined as
follows:

Definition 2.3.3. [7] A trading strategy ϕ = (ξ, η) is said to be self-
financing if

V̂ ϕ
t = V̂ ϕ

0 +

∫ t

0

ξudSu +

∫ t

0

ηudBu, for all 0 ≤ t ≤ T. (2.3.4)

6Throughout this thesis the square brackets []t will denote the quadratic variation of a
random process at time t.

7A càdlàg function is a right-continuous function with existing left limits.
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Obviously an equivalent definition can be given if one multiplies Equation
(2.3.4) with the discounting factor B−1

t and obtains

V ϕ
t = V ϕ

0 +

∫ t

0

ξudS
∗
u. (2.3.5)

The liabilities for the insurer that arise from insurance contracts are de-
scribed by claims:

Definition 2.3.4. [7] A contingent claim with maturity T is a random
variable X that is GT -measurable and P∗-square integrable. In particular

(i) X is called simple claim whenever X = g(ST ), for some function
g : R+ → R.

(ii) X is called attainable, if there exists a self-financing strategy ϕ such
that V̂ ϕ

T = X P-almost surely (a.s.), i.e., X can be perfectly hedged or
perfectly duplicated.

If all contingent claims are attainable the market is referred to as complete,
otherwise it is said to be incomplete.

If ϕ = (ξ, η) is a self-financing X-duplicating strategy, then one gets a new
representation for the contingent claim X by (2.3.4) combined with (2.3.2)
considered at the final point in time T

X = ξ0S0 + η0 +

∫ T

0

ξudSu +

∫ T

0

ηudBu. (2.3.6)

Our next aim is to guarantee a ”fair” market and therefore the concept
of arbitrage is introduced. In an arbitrage-free market it is not possible to
find a trading strategy that leads to profit without risk.

Definition 2.3.5. [7] A self-financing strategy ϕ is an arbitrage if

(a.i) V̂ ϕ
0 < 0 and

(a.ii) V̂ ϕ
T ≥ 0 P-a.s. and.

Or equivalently

(b.i) V̂ ϕ
0 ≤ 0 and

(b.ii) V̂ ϕ
T ≥ 0 P-a.s. and

(b.iii) P
(
V̂ ϕ
T > 0

)
> 0.
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The present financial model given by the assets (2.1.1) and (2.1.2) and the
economic filtration G is arbitrage-free and complete. For detailed information
about the theory of financial models see Karatzas and Shreve (1998).

In consistency with the common theory of financial mathematics the fair
price at time t of a simple claim is defined as the discounted conditional
expectation of the payout under the martingale measure P∗ with respect to
the economic information Gt.

Definition 2.3.6. The arbitrage-free price process (F (t, St))0≤t≤T of a
simple claim that specifies the payment g(ST ) at time T is given by

F (t, St) = E∗
[
e−

∫ T
t rudug(ST )|Gt

]
. (2.3.7)

Øksendal (2013) (Theorem 7.1.2) shows that the processes St and Bt

satisfy the Markov property for Itô diffusions, since they are given by the
differential equations (2.1.1) - (2.1.2). And because of the Markov property
of the prices St and Bt one sees that

F (t, St) = E∗
[
e−

∫ T
t rudug(ST )|St

]
.

Remark 2.3.7. Furthermore it can be shown that the arbitrage-free price
process (F (t, St))0≤t≤T of the simple claim g(ST ) fulfils a generalization of the
Black-Scholes differential equation given by the following partial differential
equation with boundary condition

− r(t, s)F (t, s) + Ft(t, s) + r(t, s)sFs(t, s) +
1

2
σ(t, s)2s2Fss(t, s) = 0,

F (T, s) = g(s),

where Ft and Fs denote the partial derivatives of F with respect to t re-
spectively s and Fss stands for the second derivative of F with respect to
s.
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Chapter 3

The theory of risk-minimization
in incomplete markets

After the construction of a complete and arbitrage-free financial market we
want to combine this model with an insurance payment stream. This leads
to incompleteness in our model and to the problem of hedging general claims,
since in an incomplete market it can no longer be guaranteed that a perfect
duplicating self-financing trading strategy is found for every claim. There-
fore we want to use the theory of risk-minimization in incomplete markets
introduced by Föllmer and Sondermann (1986).

3.1 Föllmer and Sondermann’s mean squared

error minimization

Föllmer and Sondermann considered elementary claims of the form

At = −κ+ It≥TH, 0 ≤ t ≤ T, (3.1.1)

for some constant κ ∈ R and H ∈ L2(P∗), i.e., payments take place only at
two points in time. From the insurer’s point of view it can be interpreted as
a premium income κ at time 0 and an insurance claim of amount H payable
at time T .

In the first part of the present thesis we will work with basic claims in
the form of (3.1.1) and hence the theory of Föllmer and Sondermann (1986)
can be applied directly. Therefore their concept of risk-minimization due to
squared errors is reviewed in this chapter, before we discuss the extension of
their theory by Møller (2001) in the second part of the thesis.

We start with defining two new process: The cost process of a trading
strategy, which is the discounted difference between the value of the portfolio

13
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3.1. FÖLLMER AND SONDERMANN’S MEAN SQUARED ERROR

MINIMIZATION

and the accumulated income from the stock, and the risk process, that is
given by the conditional expectation of the squared future costs.

Definition 3.1.1. [7] The cost process Cϕ associated with the trading strat-
egy ϕ is defined by

Cϕ
t = V ϕ

t −
∫ t

0

ξudS
∗
u, 0 ≤ t ≤ T. (3.1.2)

Definition 3.1.2. [7] The risk process Rϕ associated with the trading strat-
egy ϕ is defined by

Rϕ
t = E∗

[
(Cϕ

T − C
ϕ
t )2|Ft

]
, 0 ≤ t ≤ T. (3.1.3)

Combining the definition of self-financing strategies (2.3.5) and Definition
3.1.1 we get the following equivalence:

ϕ is self-financing ⇐⇒ V ϕ
t = V ϕ

0 +

∫ t

0

ξudS
∗
u

⇐⇒ Cϕ
t +

∫ t

0

ξudS
∗
u = V ϕ

0 +

∫ t

0

ξudS
∗
u

⇐⇒ Cϕ
t = V ϕ

0 = Cϕ
0 ,

meaning that a trading strategy is self-financing if and only if the correspond-
ing cost process has constant paths.

Föllmer and Sondermann (2001) weakened the concept of self-financing
strategies:

Definition 3.1.3. [4] A strategy ϕ = (ξ, η) is called mean-self-financing
if the corresponding cost process is a martingale with respect to F and P∗.

Obviously every self-financing strategy is also mean-self-financing (see
equivalence relation above). In contrast to the extension of the definition
of self-financing strategies we need to restrict the concept of general trading
strategies to those fulfilling a special property.

Definition 3.1.4. [4] Let H ∈ L2(P∗) be a claim. A strategy is called ad-
missible with respect to H if its value process has terminal value VT = H
P∗-a.s.

Thus, an admissible strategy hedges the claim, but the hedger is left with
costs defined by Cϕ

T , which are not necessarily equal to Cϕ
0 = V ϕ

0 .
In the following a result is obtained, which specifies optimal admissible

strategies, that minimize the mean squared error Rϕ
0 . Therefore we need to

define a new process, the so called intrinsic value process.
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Definition 3.1.5. [7] The intrinsic value process V ∗t is defined by

V ∗t := E∗ [H|Ft] .

For constructing the optimal trading strategies we need to apply the
Galtchouk-Kunita-Watanabe decomposition of martingales.

Theorem 3.1.6. [2] Let V ∗ be a real local martingale and S∗ a local martin-

gale with values in Rd. Then there exists a process ξH with P∗
( ∫ t

0
ξHu dS

∗
u <

∞
)

for all 0 ≤ t ≤ T and a local martingale LH , which is orthogonal to S∗

and has zero mean, such that

V ∗t = V ∗0 +

∫ t

0

ξHu dS
∗
u + LHt , 0 ≤ t ≤ T. (3.1.4)

This decomposition is unique.

Remark 3.1.7. Two square-integrable martingales M1 and M2 are called or-
thogonal if their product M1M2 is again a martingale.

Under the martingale measure P∗ the intrinsic value process V ∗ is a mar-
tingale by definition and the discounted stock price S∗ is a martingale due
to the construction of P∗. Therefore, Theorem 3.1.6 can be used to find a
decomposition of the intrinsic value process V ∗ as given in (3.1.4). With help
of the process ξH Föllmer and Sondermann (1986, Theorem 1) proved the
following:

Theorem 3.1.8. [4] An admissible strategy ϕ = (ξ, η) has minimal variance

E∗
[
(Cϕ

T − E∗ [Cϕ
T ])2

]
= E∗

[
(LHT )2

]
if and only if ξ = ξH .

Proofing Theorem 3.1.8 we need the well-known Itô isometry

E∗
[(∫ t

0

YsdS
∗
s

)2
]

= E∗
[∫ t

0

Y 2
s d[S∗]s

]
, (3.1.5)

where Y ∈ L2(B) and B is a Brownian motion with respect to P∗.

Proof. Let ϕ be an admissible strategy for the claim H. Since
∫ t

0
ξudS

∗
u has

expectation 0 we get for the cost process

E∗ [Cϕ
T ] = E∗ [V ϕ

T ] = E∗ [H] . (3.1.6)
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Furthermore it holds that

Cϕ
T = V ϕ

T −
∫ T

0

ξudS
∗
u

Def.(3.1.4)
= H −

∫ T

0

ξudS
∗
u (3.1.7)

and since H is FT -measurable by definition

H = E∗ [H|FT ] = V ∗T . (3.1.8)

Using (3.1.4) together with (3.1.6), (3.1.7) and (3.1.8) we obtain

E∗
[
(Cϕ

T − E∗ [Cϕ
T ])2

]
= E∗

[
(Cϕ

T − E∗ [H])2
]

=

= E∗
[(
H −

∫ T

0

ξudS
∗
u − E∗ [H]

)2
]

=

= E∗
[(
V ∗T −

∫ T

0

ξudS
∗
u − E∗ [H]

)2
]

=

= E∗
[(

E∗ [H] +

∫ T

0

(ξHu − ξu)dS∗u + LHT − E∗ [H]
)2
]

=

= E∗
[(∫ T

0

(ξHu − ξu)dS∗u
)2
]

+ E∗
[
(LHT )2

]
=

= E∗
[∫ T

0

(ξHu − ξu)2d[S∗]u

]
+ E∗

[
(LHT )2

]
.

In the last two steps we used the orthogonality of LH and S∗ and the Itô
isometry (3.1.5). Thus the minimum E∗

[
(LHT )2

]
is obtained if and only if

ξ = ξH .

Remark 3.1.9. According to Møller (1998), [7], ”if the number of bonds held
at time 0 is determined such that the initial value of the portfolio equals
E [H], i.e.,

η0 = E∗ [H]− ξ0S
∗
0”,

we get

Rϕ
0 = E∗

[
(Cϕ

T − C
ϕ
0 )2
]

= E∗
[
(Cϕ

T − V
ϕ

0 )2
]

= E∗
[
(Cϕ

T − ξ0S
∗
0 − η0)2

]
=

= E∗
[
(Cϕ

T − ξ0S
∗
0 − E∗ [H] + ξ0S

∗
0)2
] (3.1.6)

= E∗
[
(Cϕ

T − E∗ [Cϕ
T ])2

]
.

Hence minimizing the variance E∗ [(Cϕ
T − E∗ [(Cϕ

T ])2] is equal to minimizing
Rϕ

0 and the variance can be interpreted as the minimal obtainable risk.
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Remark 3.1.10. Theorem 3.1.8 does not characterize a unique risk-minimizing
trading strategy for a special claim H, but it gives an entire class of optimal
portfolios, which all differ in the number of bonds held at time t for 0 ≤ t < T .
This consequence follows from the definition of the mean squared error Rϕ

0 ,
that depends only on the cost process at time T . Therefore, ”we can draw
no conclusion concerning the process η = (ηt)0≤t≤T except that it must make
the strategy admissible, i.e.,

ηT = H − ξTS∗T .”

see Föllmer and Sondermann (1986), [4].

Example 3.1.11. To illustrate the previous result Föllmer and Sondermann
(1986, Example 1) discuss the most natural example when considering a
trading strategy that is self-financing during (0, T ) and rebalance the port-
folio only at time of maturity T to obtain an admissible variance-minimizing
strategy. This strategy is given by

ξt = ξHt , 0 ≤ t ≤ T,

ηt = E∗[H] +

∫ t

0

ξudS
∗
u − ξtS∗t , 0 ≤ t < T,

ηT = H − ξTS∗T .

Hence, this trading strategy is self-financing , i.e., no extra investment has to
be made up to but excluding time of maturity T . To determine the payment
stream (either an investment of the insurer or financial gain) at time T , which
has to be made in order to obtain an admissible strategy, consider on the one
hand

ηT = H − ξTS∗T = V ∗T − ξTS∗T = E∗[H] +

∫ T

0

ξudS
∗
u + LHT − ξTS∗T

and on the other hand we obtain from the definition of ηt

ηT− = E∗[H] +

∫ T−

0

ξudS
∗
u − ξT−S∗T− = E∗[H] +

∫ T

0

ξudS
∗
u − ξTS∗T .

In the last step we used the fact that ηt is càdlàg as a trading strategy (see
Definition 2.3.2).

Combining these expressions we see for the payment stream at time T

ηT − ηT− = LHT .
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This means, that at time of maturity T the insurance company has to face
the gain/loss LHT , that represents the difference between the value of the
financial portfolio V ϕ

T− and the claim H.
This simple trading strategy indeed minimizes the initial intrinsic risk,

but at any time t within the insurance period the value of the insurance
claim V ∗t will in general not be equal to the value of the financial portfolio
V ϕ
t , as Møller (1998) pointed out the disadvantage of this strategy. ”Since

this difference may be substantial due to adverse development within the
insurance portfolio, one should at least require that the value of the portfolio
equals V ∗t in order to enhance the solvency of the insurer”, see [7]

Theorem 3.1.8 does not give a precise characterization of the optimal
trading strategy, when minimizing the mean squared error. Therefore, as a
next result Föllmer and Sondermann determined strategies, which minimize
the risk in a sequential sense, i.e., at every point in time 0 ≤ t ≤ T . As we
will see it will be sufficient to guarantee that the value of the trading strategy
equals the value of the claim V ∗t at any point in time t, as suggested in the
previous example.

For this purpose let us define a class of trading strategies related to a
given portfolio ϕ.

Definition 3.1.12. [4] ϕ̃ is called an admissible continuation of ϕ at
time t if ϕ̃ coincides with ϕ in the interval [0, t) and has the same terminal
value like ϕ, i.e., V ϕ̃

T = V ϕ
T .

Definition 3.1.13. [4] A strategy ϕ is called risk-minimizing if ϕ at any
time minimizes the remaining risk, i.e., for any 0 ≤ t < T , we have

Rϕ
t ≤ Rϕ̃

t , P∗ − a.s.,

for every admissible continuation ϕ̃ of ϕ at time t.

The next property of admissible risk-minimizing strategies was essential
for Föllmer and Sondermann when proofing the final result of their theory
of risk minimization.

Lemma 3.1.14. [4] An admissible risk-minimizing strategy is mean-self-
financing.

Proof. Let ϕ = (ξ, η) be an admissible trading strategy. For fixed time
0 ≤ t0 ≤ T define a new strategy ϕ̃ = (ξ, η̃) by

η̃t :=

{
ηt if t < t0

C̃t +
∫ t

0
ξudS

∗
u − ξtS∗t if t0 ≤ t ≤ T,
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where C̃t := E∗ [Cϕ
T |Ft] for 0 ≤ t ≤ T . Then ϕ̃ = (ξ, η̃) is an admissible

continuation of ϕ at time t0 by construction. Note that C̃T = E∗ [Cϕ
T |FT ] =

Cϕ
T , hence for the risk process of ϕ at time t0 we get

E∗
[(
Cϕ
T − C

ϕ
t0

)2 |Ft0
]

= E∗
[(
C̃T − Cϕ

t0 − C̃t0 + C̃t0

)2

|Ft0
]

=

= E∗
[(
C̃T − C̃t0

)2

|Ft0
]

+
(
C̃t0 − C

ϕ
t

)2

.

Consequently, ϕ can be risk-minimizing if and only if Cϕ
t0 = C̃t0 P∗-a.s. for

any t0 ≤ T . This means, that ϕ is mean-self-financing.

Now we are able to formulate and proof Föllmer and Sondermann‘s (1986,
Theorem 2) final result.

Theorem 3.1.15. [4] There exists an unique admissible risk-minimizing
strategy ϕ = (ξ, η) given by

(ξt, ηt) = (ξHt , V
∗
t − ξHt S∗t ), 0 ≤ t ≤ T. (3.1.9)

For this strategy, the remaining risk at any time t ≤ T is given by

Rϕ
t = E∗

[(
LHT − LHt

)2 |Ft
]
. (3.1.10)

Proof. The statement is shown in three steps:

(i) Admissibility:
The trading strategy ϕ fulfils the admissibility property, since for the
value process at time T we obtain

V ϕ
T = ξtS

∗
T + ηT = ξHT S

∗
T + V ∗T − ξHT S∗T = V ∗T = H.

(ii) Risk-minimization:
Rewrite the difference of the cost process of the trading strategy ϕ in
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the following way

Cϕ
T − C

ϕ
t

(3.1.7)
= H −

∫ T

0

ξudS
∗
u − V

ϕ
t +

∫ t

0

ξudS
∗
u

(3.1.8)
=

=V ∗T −
∫ T

0

ξudS
∗
u − V

ϕ
t +

∫ t

0

ξudS
∗
u

(3.1.4)
=

=E∗ [H] +

∫ T

0

ξHu dS
∗
u + LHT −

∫ T

0

ξudS
∗
u − V

ϕ
t +

∫ t

0

ξudS
∗
u =

=

∫ T

t

ξHu dS
∗
u + LHT −

∫ T

t

ξudS
∗
u − V

ϕ
t +

+E∗ [H] +

∫ t

0

ξHu dS
∗
u + LHt − LHt

(3.1.4)
=

=

∫ T

t

(ξHu − ξu)dS∗u + LHT − LHt − V
ϕ
t + V ∗t .

Using this expression for the cost process together with the orthogo-
nality of LH and S∗ we obtain for the remaining risk process

Rϕ
t = E

[
(Cϕ

T − C
ϕ
t )2 |Ft

]
=

= E

[(∫ T

t

(ξHu − ξu)dS∗u
)2

|Ft

]
+ E

[(
 LHT − LHt

)2 |Ft
]

+ (V ∗t − V
ϕ
t )2 =

= E
[∫ T

t

(ξHu − ξu)2d[S∗]u|Ft
]

+ E
[(

 LHT − LHt
)2 |Ft

]
+ (V ∗t − V

ϕ
t )2

This shows that the strategy ϕ defined in (3.1.9) minimizes the remain-

ing risk process and Rϕ
t = E

[(
 LHT − LHt

)2 |Ft
]
.

(iii) Uniqueness:

Consider any admissible risk-minimizing portfolio ϕ̃ = (ξ̃, η̃). Theorem
3.1.8 together with (3.1.10) at time 0 implies ξ̃ = ξH .

Furthermore by Lemma (3.1.14), ϕ̃ is mean-self-financing and therefore
its value process V ϕ̃ is a martingale, i.e.,

E∗
[
V ϕ̃
T |Ft

]
= V ϕ̃

t . (3.1.11)

On the other hand, ϕ̃ is admissible by assumption and so

E∗
[
V ϕ̃
T |Ft

]
= E∗ [H|Ft] . (3.1.12)
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Combining (3.1.11) with (3.1.12) we get

V ϕ̃
t = E∗ [H|Ft] .

Hence, η̃t = V ∗t − ξHt S∗t . Thus, the risk-minimizing admissible strategy
given in (3.1.9) is unique.

We call the risk process associated with the risk-minimizing strategy, that
is determined in Theorem 3.1.15, the intrinsic risk process.
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Chapter 4

First application: Unit linked
life insurance contracts with
single premium

After defining the financial model in Chapter 2 and discussing concepts of
risk-minimization in incomplete markets by Föllmer and Sondermann (1986)
in the last chapter, we will now apply the obtained results. First we need
to define an insurance model, which corresponds to the model introduced
by Møller (1998). This model will be rather simple in this first part of
applications, before we go on to more advanced general insurance payment
streams in chapter 5.

Møller (1998) considered two different types of unit-linked life insurance
contracts, the pure endowment and the term insurance, both with single
premiums and contingent claims payable at a pre-specified stochastic time
only. Our aim will be to hedge these claims with the risk-minimizing trading
strategies by Föllmer and Sondermann (1986) obtained in the last chapter.

4.1 The insurance model with single premium

and payment at one point in time only

We consider a group of x-year old persons and denote the number of per-
sons in this group by lx. The remaining lifetime of the x-year old indi-
viduals is given by a sequence of non-negative random variables T1, T2, ..., Tlx
defined on (Ω,F ,P). For simplicity we assume that the lifetimes of persons
of the same age are independently and identically distributed with absolutely

23
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continuous distribution function F , i.e.,

Ti
i.i.d.∼ F for all i ∈ {1, 2, ..., lx}.

Denote the survival probability by

tpx = P(Ti > t),

for some i ∈ {1, 2, ..., lx}. More precisely, tpx gives the probability of an
x-year old person to die in the next t years. Let µx+t be the hazard rate
function , which can be interpreted as the probability of an (x+ t)-year old
person to die in the infinitesimal time interval [x+ t, x+ t+ dt] and is given
by

µx+t := − d

dt
ln(tpx) (4.1.1)

which is obviously equivalent to

tpx = e−
∫ t
0 µx+τdτ (4.1.2)

and to

P(t < Ti < t+ dt) = tpxµx+tdt. (4.1.3)

Next we define the stochastic process N = (Nt)0≤t≤T , which takes values in
N0 and dependens on the remaining lifetimes Ti, by

Nt :=
lx∑
i=1

I(Ti ≤ t), (4.1.4)

where I(Ti ≤ t) denotes the indicator function that gives 1 if death happens
before time t, Ti ≤ t, and 0 if the complementary event occurs. The process
N can be interpreted as counting process, where Nt denotes the number
of deaths in the group up to and inclusive time t. Note that Nt is càdlàg by
definition.

Let us denote the natural filtration generated byN withH = (Ht)0≤t≤T .
So Ht can be interpreted as the information corresponding to the remaining
lifetimes of the insured group available at time t. Since Ti are i.i.d., it fol-
lows that N is an H-Markov process. Next consider the intensity process
λ = (λt)0≤t≤T of the counting process N , which is given by

E [dNt|Ht− ] = (lx −Nt−)µx+tdt = λtdt
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the number of persons alive just before time t multiplied with the hazard
rate function. Finally define the compensated counting process M =
(Mt)0≤t≤T by

Mt := Nt −
∫ t

0

λudu, (4.1.5)

that is an H-martingale.

In the next step we combine the insurance model with the financial mar-
ket. For this purpose, we give the following list of conditions, that will be
assumed to be true for the period of this chapter.

1. The available information at a specific point in time is described by
the filtration F = (Ft)0≤t≤T , which is given as the smallest filtration
containing both, the economic information G as well as the information
generated by the mortality of the insurance holders H

Ft := Gt ∨Ht.

2. G and H are independent.

3. At time 0 every policyholder out of the lx individuals subscribes to
an insurance contracts, which specify a single premium and benefit
payments depending on the remaining life time of the person and the
development of the price of the stock S. Each contract owns maturity T
and pays single premium at time 0, which is denoted by π1. Therefore,
the present value of all premiums paid equals π := π1lx.

4. ”During the period [0, T ] the company is allowed to trade the assets B
and S freely (without transaction costs, taxes and short sales restric-
tions) based on the complete information F .”[7]

5. In order to find a risk-minimizing hedging strategy we allow continuous
rebalancing of the amounts of stocks and bonds held in the financial
portfolio.8

We continue with presenting the two basic forms of insurance contracts
that will be considered in this section.

8In the real world this may cause problems since a trader has to face transactions costs
for shifting the financial portfolio as well as the impossibility of continuous rebalancing
itself.
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4.1.1 The simple pure endowment insurance

A pure endowment insurance contract specifies a single benefit payment (the
insured sum) payable at the term of the contract, if the policyholder is still
alive then. Since in this thesis we are interested in unit-linked contracts, we
specify the insured sum as a stipulated function of the price of the stock at
time T , given by g(ST ), where g is assumed to be continuous. After obtaining
general results we will consider specific choices of g, such as the pure unit-
linked contract given by g(s) = s and the unit-linked contract with
guarantee with g(s) = max(s,K), see Aase and Persson (1994).

The present value of the insurance contract held by individual i for
i ∈ {1, ..., lx} gives the obligation of the insurance company for the single
contract and is defined by the discounted insured sum conditioned on the
lifetime of the policyholder

Hi := I(Ti > T )g(ST )B−1
T = I(Ti > T )g(ST )e−

∫ T
0 rudu. (4.1.6)

Therefore the complete claim arising by the entire insurance portfolio consist-
ing of lx contracts is given by the discounted insured sum times the number
of survivors at time T

H := g(ST )B−1
T

lx∑
i=1

(Ti > T ) = g(ST )B−1
T (lx −NT ). (4.1.7)

Note that the present value is an FT -measurable random variable and will
be considered as contingent claim, see Definition 2.3.4. In particular the
undiscounted claim HBT depends only on ST and NT . We call insurance
claims payable at time T and depending on ST and NT only simple T-
claims (see Definition 2.3.4 point (i)), whereas all other insurance claims
payable at time T are called general T-claims.

4.1.2 The simple term insurance

A term insurance contract pays a benefit immediately after death of the
insured person if the event of death occurs before maturity T . In contrast
to Section 4.1.1 we now have to use a benefit payment function gt = g(t, St)
which depends on the price of the stock as well as on the time, since by the
nature of term insurances claims can arise at any point in time [0, T ]. As
this type of claim is no longer payable at time T only (hence no T -claim), we
need to set up special assumptions to guarantee T -claims. The most simple
way to transform the obligations of term insurance contracts into T -claims
is to assume that the benefit payment of each contract is deferred to time
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T and accumulated with the interest rate r. Therefore, insurance contract i
pays the amount

gt(t, St)BTB
−1
t (4.1.8)

at time T .9 So we can write the present value of the insurer‘s liabilities
coming from an insurance portfolio of lx term insurance contracts with benefit
payments deferred and accumulated to time T as the discounted sum over
all payments of the form (4.1.8) conditioned on death before maturity

HT : = B−1
T

lx∑
i=1

g(Ti, STi)B
−1
Ti
BT I(Ti ≤ T ) = (4.1.9)

=
lx∑
i=1

∫ T

0

g(u, Su)B
−1
u dI(Ti ≤ u). (4.1.10)

By interchanging sum and integral in (4.1.9) and using definition (4.1.4) we
can rewrite the present value as follows

HT =

∫ T

0

g(u, Su)B
−1
u dNu. (4.1.11)

4.1.3 Remarks

(1) By combining the pure endowment insurance with the term insurance a
multitude of different types of insurance contracts can be obtained. The
most popular one is the so called endowment insurance which pays
the insured sum either at time of death if death occurs before maturity
or at maturity if the insured person is still alive then. The present value
of the insurer‘s obligations arising from endowment insurance contracts
is simply given by the sum of (4.1.7) and (4.1.11).

(2) As we already pointed out before in Section 2 the financial model de-
fined by the assets S and B together with the economic filtration G
is complete. But when we consider the market (S,B) with the overall
filtration F we obtain an incomplete model, since there are contin-
gent claims that can not be represented by integrals over S and B as
in (2.3.6). As examples for these types of contingent claims consider

9This way ”of modifying the contracts by deferring the benefits might seem most rea-
sonable for contracts with short time horizons, say one year. Although time horizons
associate with traditional life insurance contracts are typically much longer, we will as-
sume that benefits are deferred to the end of the insurance period.” [7]
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both insurance claims introduced above, the pure endowment insurance
(4.1.7) and the term insurance (4.1.9). Obviously these two claims de-
pend not only on the price processes S and B alone but also on the
uncertainty arising from the mortality risk of the insured persons (de-
scribed by Ti for i ∈ {1, ..., lx}).

4.1.4 Family of equivalent martingale measures in the
combined model

In Section 2.2 we derived the unique equivalent martingale measure in the
financial model defined by (S,B) and the economic filtration G. Since we
will not work with the smaller filtration G but with the complete information
F given by the economic filtration combined with the mortality filtration,
we will again have to find an equivalent martingale measure for this new
situation. As Møller (1998) showed, there will not be a unique equivalent
martingale measure but a whole family of measures satisfying this property.
This result corresponds to the fact, that the model is not complete any more
(see Remark (2) in the previous subsection).

Let h = (ht)0≤t≤T be an H-predictable process, such that h > −1 and
E[LT ] = 110 and define a likelihood process, see [7], L by

dLt := Lt−htdMt

with initial condition L0 := 1. Now we will define the new probability mea-
sure P̂ using Girsanov‘s Transformation Theorem and the density process UT
given in (2.2.2) by

dP̂
dP

= UTLT . (4.1.12)

Now we want to show that the new measure P̂ is an equivalent martingale
measure. Hence, we have to show that P̂ is equivalent to P, which is true
with Girsanov’s Transformation Theorem and the definition of P̂ (4.1.12). As
a second property the discounted price process S∗ needs to be a martingale
with respect to P̂. For obtaining this result, let us consider Bayes’ rule for
conditional expectation, that helps us to perform a change of measure under
expectations. More precisely this theorem states

10As before the expectation with respect to the probability measure P will just be
denoted by E whereas expectations with respect to other probability measure can be
matched with the corresponding measures by additional notation like * and .̂
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Theorem 4.1.1. [9] Let P ∼ Q be equivalent with density Z = dQ
dP . If X is

a Q-integrable random variable and F a sub σ-algebra of A, then

EQ [X|F ] =
EP [XZ|F ]

EP [Z|F ]
, Q-a.s. and P-a.s..

We use Bayes’ rule with P̂ instead of Q and setting UTLT for the density
process Z and obtain for s ≤ t

Ê [S∗t |Fs] =
E [S∗tUTLT |Fs]
E [UTLT |Fs]

=
E [S∗tUT |Fs]
E [UT |Fs]

E [LT |Fs]
E [LT |Fs]

= E [S∗t |Fs] = S∗s ,

where we used the independence between N and (B, S) and the martingale

property of S∗ with respect to P∗. Therefore, P̂ defines an equivalent mar-
tingale measure and since the process h was not specified, we obtain a whole
family of martingale measures for the financial market.

Analogously to the compensating counting process M given by (4.1.5),
we define the process Mh = (Mh

t )0≤t≤T for admissible h by

Mh
t := Nt −

∫ t

0

λu(1 + hu)du, (4.1.13)

that is an (F , P̂)-martingale by Girsanov’s Transformation Theorem and the
independence between N and (B, S).

Note the following facts:

(1) Obviously the measure P∗ can be obtained from (4.1.12) by setting

h ≡ 0, i.e., P∗ is one element of the family P̂.

(2) It is important to notice that the change of measure from P to P∗ does
not alter the distribution of the counting process N , since the mortality
distribution is independent of the financial model.

(3) Due to the fact that we derived non-uniqueness of the equivalent mar-
tingale measure, we can define more then one fair price of contingent
claims, i.e., each price given by the expectation of the claim with re-
spect to one of the equivalent martingale measures

π(P̂) := Ê [H]

gives an arbitrage-free price.
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(4) The overall filtration F can equivalently be generated by the P∗-martingales
S∗ and M with

Gt = σ {S∗u, 0 ≤ u ≤ t} ,
Ht = σ {Mu, 0 ≤ u ≤ t} .

As Møller (1998) justifies the choice of the specific equivalent martingale
measure P∗ defined by (2.2.2) with references to papers from Schweizer (1991,
1995) and Aase and Persson (1994), we will follow his suggestion and will
use the so called minimal martingale measure P∗ throughout this thesis.

4.2 Risk-minimizing strategy for pure endow-

ment insurance

After the introduction presented in the chapters before, in this section we will
eventually derive the first results by using Föllmer and Sondermann’s (1986)
theory to determine the risk-minimizing strategy for the unit-linked pure
endowment insurance defined in Section 4.1.1. First we will construct the
Galtchouk-Kunita-Watanabe decomposition (see (3.1.4)) of the claim (4.1.7)
and then we will be able to apply Theorems 3.1.8 and 3.1.15 to obtain risk-
minimizing strategies and the associated intrinsic risk process.

As Møller (1998) pointed out in his paper we know from classical actuarial
theory ”that in case of fixed premiums and sum insured, the ’relative risk’
associated with the portfolio decreases as the size lx of the portfolio increases.
More precisely, this means that the ratio between the standard deviation of
the present value of all payments and the size of the portfolio lx will congerge
to 0 as lx is increased,” [7]. In the model of the present thesis we can not
expect such results, since claims arising from different insurance contracts all
depend on the same risky stock price process S and therefore are no longer
stochastically independent. Anyway, to obtain a result about the behaviour
of the risk arising from the portfolio if the number of insured persons grows
very large, we will use the initial intrinsic risk R0 = E∗

[
(LHT − LH0 )2

]
, which

measures the expected squared error of the non-hedge-able part of the claims
and work with the ratio

√
R0

lx
, as Møller (1998) suggested.

4.2.1 Theory

Our first result will be to determine the Galtchouk-Kunita-Watanabe decom-
position of the present value of the claim H from (4.1.7),

H = g(ST )B−1
T (lx −NT ). (4.2.1)
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The following decomposition of the claim arising from the portfolio of pure
endowment insurance is shown by Møller (1998, Lemma 4.1).

Theorem 4.2.1. [7] For the contingent claim H in (4.2.1) the process V ∗

defined by V ∗t := E∗ [H|Ft] has the decomposition

V ∗t = V ∗0 +

∫ t

0

ξHu dS
∗
u +

∫ t

0

νHu dMu,

where (ξH , νH) are given by

ξHt := (lx −Nt−)T−tpx+tF
g
s (t, St), (4.2.2)

νHt := −B−1
t F g(t, St)T−tpx+t, (4.2.3)

for 0 ≤ t ≤ T and F g(t, St) := E
[
g(ST )BtB

−1
T |Gt

]
with first order derivative

F g
s (t, St) with respect to the second argument St.

Before proving Møller’s (1998) decomposition theorem, we briefly recall
the well-known Itô formula for semi-martingales.

Theorem 4.2.2. [9] Let X = (X1, ..., Xd) be a d-dimensional semi-martingale
which takes almost surely values in an open set U ⊂ Rd. Furthermore, let
f : U → R be two times differentiable. Then f(X) is a semi-martingale and

f(Xt) = f(X0) +
d∑
i=1

∫ t

0

∂f

∂xi
(Xs−)dX i

s +
1

2

d∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs−)d[X i, Xj]s

+
∑
s≤t

{
∆f(Xs)−

d∑
i

∂f

∂xi
(Xs−)∆X i

s −
1

2

d∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs−)∆[X i, Xj]s

}
.

Proof of Theorem 4.2.1: For the intrinsic value process of the claim H we
get

V ∗t = E∗
[
g(ST )BtB

−1
T |Ft

]
E∗ [(lx −NT )|Ft]B−1

t (4.2.4)

by using the stochastic independence of N and (B, S). With the definition
of the risk-free asset, the first factor in (4.2.4) equals

E∗
[
g(ST )BtB

−1
T |Ft

]
= E∗

[
e−

∫ T
t rudug(ST )|Ft

]
=

= E∗
[
e−

∫ T
t rudug(ST )|Gt

]
=

=: F g(t, St),
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Note that we used the stochastic independence of N and (B, S), which en-
sures that the conditional distribution of (B, S) with respect to Ft does not
depend on information coming from the insured lives Ht and therefore the
overall filtration Ft can be replaced by the economic one, denoted by Gt.
Furthermore, the function F g(t, St) corresponds to the unique arbitrage-free
price process of a simple claim in the complete model (see Definition 2.3.6.
Moreover, the generalized Black-Scholes differential equation

−r(t, s)F g(t, s) + F g
t (t, s) + r(t, s)sF g

s (t, s) +
1

2
σ(t, s)2s2F g

ss(t, s) = 0

(4.2.5)

holds true for F g(t, St) in the incomplete case.
The second factor in (4.2.4) can be rewritten as

E∗ [(lx −NT )|Ft] = E∗
[

lx∑
i=1

I(Ti > T )|Ft

]
=

lx∑
i=1

E∗ [I(Ti > T )|Ti > t] =

=
lx∑
i=1

Ti−tpx+t = (lx −Nt)T−tpx+t.

Therefore, at every point in time t the expected number of persons alive at
maturity T equals the number of persons alive at time t weighted with the
probability to survive up to time T conditioned that the person still lives at
time t.

Eventually, the intrinsic value process in (4.2.4) equals

V ∗t = (lx −Nt)T−tpx+tB
−1
t F g(t, St). (4.2.6)

Now we apply Itô’s formula to (4.2.6). Note that the second order derivatives
and the ∆X term drop out and we get

V ∗t =V ∗0 +

∫ t

0

(lx −Nu−)B−1
u F g(u, Su)d(T−upx+u)+

+

∫ t

0

(lx −Nu−)T−upx+ud(B−1
u F g(u, Su)) +

∑
u≤t

∆V ∗u =

=V ∗0 +

∫ t

0

(lx −Nu−)B−1
u F g(u, Su)T−upx+uµx+udu+

+

∫ t

0

(lx −Nu−)T−upx+ud(B−1
u F g(u, Su)) +

∑
u≤t

(V ∗u − V ∗u ).

Next we determine the integral with respect to d(B−1
u F g(u, Su)). For this

purpose note the following points:
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(i) By applying the product rule we rewrite the differential of the stock
price with the help of the deflated stock price:

dSt = d(S∗tBt) = S∗t dBt +BtdS
∗
t = S∗t rtBtdt+BtdS

∗
t = Strtdt+BtdS

∗
t

(ii) Apply Itô’s formula to dF g(t, St) and get

dF g(t, St) =F g
t (t, St)dt+ F g

s (t, St)dSt +
1

2
F g
ss(t, St)d[St] =

=F g
t (t, St)dt+ F g

s (t, St)dSt

+
1

2
F g
s (t, St)d[α(t, St)Stdt+ σ(t, St)StdWt] =

=F g
t (t, St)dt+ F g

s (t, St)dSt +
1

2
F g
ss(t, St)σ

2(t, St)S
2
t dt.

Finally we obtain

d(B−1
t F g(t, St)) =F g(t, St)dB

−1
t +B−1

t dF g(t, St)
(ii)
=

=− F g(t, St)B
−1
t rtdt+B−1

t

(
F g
t (t, St)dt+

+ F g
s (t, St)dSt +

1

2
F g
ss(t, St)σ(t, St)

2S2
t dt

)
(i)
=

=− F g(t, St)B
−1
t rtdt+B−1

t

(
F g
t (t, St)dt+

+ F g
s (t, St)Strtdt+ F g

s (t, St)BtdS
∗
t +

1

2
F g
ss(t, St)σ(t, St)

2S2
t dt

)
(4.2.5)

=

=− F g(t, St)B
−1
t rtdt+ F g

s (t, St)dS
∗
t + F g(t, St)B

−1
t rtdt =

=F g
s (t, St)dS

∗
t .

For the variation of the intrinsic value process we get

∑
u≤t

(V ∗u − V ∗u−) = −
∫ t

0

B−1
u F g(u, Su)T−upx+udNu.
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Summarizing all results we see

V ∗t =V ∗0 +

∫ t

0

(lx −Nu−)B−1
u F g(u, Su)T−upx+uµx+udu+

+

∫ t

0

(lx −Nu−)T−upx+ud(B−1
u F g(u, Su)) +

∑
u≤t

(V ∗u − V ∗u ) =

=V ∗0 +

∫ t

0

B−1
u F g(u, Su)T−upx+uλudu+

+

∫ t

0

(lx −Nu−)T−upx+uF
g
s (u, Su)dS

∗
u −

∫ t

0

B−1
u F g(u, Su)T−upx+udNu =

=V ∗0 +

∫ t

0

(lx −Nu−)T−upx+uF
g
s (u, Su)dS

∗
u −

∫ t

0

B−1
u F g(u, Su)T−upx+udMu =

=V ∗0 +

∫ t

0

ξHu dS
∗
t +

∫ t

0

νHu dMu.

Remark 4.2.3. The intrinsic risk process V ∗t = E∗ [H|Ft] represents the ex-
pectation of the future value of the claim conditioned on all information
available at time t. Therefore, it can be interpreted as the fair price of the
portfolio consisting of pure endowment contracts. More precisely, the initial
value V ∗0 = lxTpxF

g(0, S0) is the natural choice of the single premium for
the complete portfolio and can be described as the benefit payment times
the expected number of persons alive at maturity T . This way of pricing
the portfolio would be in accordance to the traditional equivalence principle,
which states that all future expected and discounted premiums should equal
all future expected and discounted benefits.

Next we will combine the decomposition of V ∗ from Theorem 4.2.1 with
Föllmer and Sondermann’s Theorem 3.1.8 to obtain a family of variance-
minimizing strategies, where the amount of stocks is precisely specified at
any point in time t, but the amount of bonds in the portfolio varies except
for maturity T .

Theorem 4.2.4. [7] Consider the pure endowment given by the contin-
gent claim H in (4.2.1). An admissible strategy ϕ∗ minimizing the variance
E∗ [(Cϕ

T − E∗[Cϕ
T ])2] is given by

ξ∗t = (lx −Nt−)T−tpx+tF
g
s (t, St), 0 ≤ t ≤ T,

η∗T = H − ξ∗TS∗T .
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The minimal variance is given by

E∗
[
(Cϕ

T − E∗[Cϕ
T ])2

]
= lxTpx

∫ T

0

E∗
[
(B−1

u F g(u, Su))
2
]
T−upx+uµx+udu

Proof. Using the decomposition of the intrinsic value process V ∗ of Theorem
4.2.1

V ∗t = V ∗0 +

∫ t

0

ξHu dS
∗
u +

∫ t

0

νHu dMu,

with

ξHt := (lx −Nt−)T−tpx+tF
g
s (t, St), (4.2.7)

νHt := −B−1
t F g(t, St)T−tpx+t (4.2.8)

and Föllmer and Sondermann’s result (3.1.8) we easily see that for the
amount of stocks in the variance-minimizing portfolio we have

ξ∗t = ξHt = (lx −Nt−)T−tpx+tF
g
s (t, St).

To determine the amount of bonds held at maturity T , note that

V ∗T = E∗ [H|FT ] = H, (4.2.9)

since H is FT -measurable as contingent claim with maturity T . Furthermore,

H = V ∗T = ξTS
∗
T + ηT =⇒ ηT = H − ξTS∗T .

To complete the proof, we will show the representation of the minimal vari-
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ance:

E∗
[
(Cϕ

T − E∗[Cϕ
T ])2

]
= E∗

[
(LHT )2

]
= E∗

[(∫ T

0

νHu dMu

)2
]

Itô isometry (3.1.5)
=

E∗
[∫ T

0

(νHu )2d[M ]u

]
=

E∗
[∫ T

0

(B−1
u F g(u, Su)T−upx+u)

2λudu

]
Fubini Theorem

=∫ T

0

E∗
[
(B−1

u F g(u, Su)T−upx+u)
2λu
]
du

Independence of N and (B,S)
=∫ T

0

E∗
[
(B−1

u F g(u, Su))
2
]
T−up

2
x+uE∗[λu]du

Definition of λ
=∫ T

0

E∗
[
(B−1

u F g(u, Su))
2
]
T−up

2
x+uE∗[(lx −Nu−)µx+u]du =∫ T

0

E∗
[
(B−1

u F g(u, Su))
2
]
T−up

2
x+ulxupxµx+udu

T−upx+u·upx=T px
=

lxTpx

∫ T

0

E∗
[
(B−1

u F g(u, Su))
2
]
T−upx+uµx+udu.

Remark 4.2.5. The remaining risk the insurance company has to face, when
using an optimal financial strategy to hedge the claim arising from the port-
folio of pure endowment contracts, corresponds to the initial intrinsic risk
Rϕ

0 = E∗
[
(LHT )2

]
. Due to proportionality of Rϕ

0 and lx, we see that the ra-

tio

√
Rϕ0
lx

converges to 0 if the number of insured persons lx goes to infinity,
i.e., the non-hedge-able part of the risk decreases when the group of policy
holders increases.

The last step concerning simple pure endowment insurance contracts is
now to determine the optimal trading strategy among the family of strategies
obtained in the previous theorem. An optimal strategy should minimize the
remaining risk at any point in time and therefore it should fulfil the definition
of risk-minimization from 3.1.13.

Theorem 4.2.6. [7] For the pure endowment contract given by the contin-
gent claim (4.2.1) the unique admissible risk-minimizing strategy is given by

ξ∗t = (lx −Nt−)T−tpx+tF
g
s (t, St),

η∗t = (lx −Nt)T−tpx+tB
−1
t F g(t, St)− ξ∗t S∗t , 0 ≤ t ≤ T.
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The intrinsic risk process Rϕ∗
is given by

Rϕ∗
= (lx −Nt)

∫ T

t

E∗
[
(νHu )2|Ft

]
u−tpx+tµx+udu. (4.2.10)

Proof. The risk-minimizing trading strategy follows directly from Föllmer
and Sondermann’s Theorem 3.1.15 combined with the representation for V ∗t
in (4.2.6).

To see the equivalence in (4.2.10) we use the Itô isometry (3.1.5), Fu-
bini and E [(lx −NT )|Ft] = (lx −Nt)T−tpx+t, which is shown in the proof of
Theorem 4.2.1.

Rϕ∗

t =E∗
[
(LHT − LHt )2|Ft

]
= E

[( ∫ T

t

νHu dMu

)2

|Ft
]

= E∗
[ ∫ T

t

(νHu )2d[M ]u|Ft
]

=

=E∗
[ ∫ T

t

(νHu )2λudu|Ft
]

=

∫ T

t

E∗
[
(νHu )2|Ft

]
E∗ [λudu|Ft] =

=

∫ T

t

E∗
[
(νHu )2|Ft

]
E∗ [(lx −Nu)µx+u|Ft] du =

=(lx −Nt)

∫ T

t

E∗
[
(νHu )2|Ft

]
u−tpx+tµx+udu.

As Møller (1998) points out in his paper, this model does not properly
represent the real world, since the insurance company is allowed to rebalance
the hedging portfolio continuously. Thus, all contingent claims can be hedged
by using the two considered financial assets and the remaining uncertainty
arises from the mortality risk of the insured persons only. This random
quantity is described by the martingale M , which drives the insurer’s loss,
given by LH

dLHt = νHt dMt = −B−1
t F g(t, St)T−tpx+t(dNt − λtdt). (4.2.11)

This means, that at any time-point t the insurer shifts his financial portfolio
according to the expected number of policy holders surviving the insurance
period. ”During the infinitesimal time interval [t, t + dt] the insurer will
experience the gain dMt multiplied by the term B−1

t F g(t, St)T−tpx+t, the
latter denoting the price at time t of one security with payment g(ST ) at
time T contingent on the survival of some individual. That is, a death will
produce an immediate gain for the insurer due to the downwards adjustment
of the expected number of survivors, whereas no deaths will cause a small
loss”, see [7].
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4.2.2 Examples

In the following we will work through some concrete examples given by Møller
(1998) to illustrate the previous results. We will specify the benefit function
g and for the sake of simplicity assume constant deterministic interest rate
r, drift term α and volatility σ. Therefore, the financial model simplifies to
the Black-Scholes model, see Example (2.1.3).

(1) First let us consider the contract function, that describes a pure unit-
linked insurance g(s) = s, i.e., the insured persons gets the present
value of the stock ST at maturity T . The expected value of the claim
at maturity g(ST ) conditioned on the information at time t is given by
the process (F g(t, St))0≤t≤T with

F g(t, St) = E∗
[
e−

∫ T
t rudug(ST )|Ft

]
= E∗

[
e−r(T−t)ST |Ft

]
= E∗

[
S∗T |Ft

]
= St,

where we used the martingale property of S∗t with respect to P∗. Fur-
thermore, the intrinsic value process is

V ∗t = (lx −Nt)T−tpx+tB
−1
t F g(t, St) = (lx −Nt)T−tpx+te

−rtSt =

= (lx −Nt)T−tpx+tS
∗
t ,

=⇒ V ∗0 = lxTpxS
∗
0 .

So we can use Theorem 4.2.6 to determine the risk-minimizing admis-
sible strategy

(ξt, ηt) =
(

(lx −Nt−)T−tpx+tF
g
s (t, St), (lx −Nt)T−tpx+tB

−1
t F g(t, St)− ξ∗t S∗t

)
=

=
(

(lx −Nt−)T−tpx+t, (lx −Nt)T−tpx+tS
∗
t − (lx −Nt−)T−tpx+tS

∗
t

)
=

=
(

(lx −Nt−)T−tpx+t,∆NtT−tpx+tS
∗
t

)
with ∆Nt = Nt − Nt− . This means, that the number of stocks equals
the expected number of individuals left in the insurance portfolio at
time t. The amount of bonds is rebalanced at any time a death occures
to make sure that the value of the financial strategy V ϕ

t equals the
value of the claim V ∗t for all t.

Furthermore, the final aggregated loss is given by

LHt =

∫ T

0

νudMu = −
∫ T

0

B−1
u F g(u, Su)T−upx+udMu = −

∫ T

0

S∗uT−upx+udMu
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and the intrinsic risk process can be written as

Rϕ∗

t = (lx −Nt)

∫ T

t

E∗
[
(νHu )2|Ft

]
u−tpx+tµx+udu =

= (lx −Nt)

∫ T

t

E∗
[
(S∗u)

2
T−up

2
x+u|Ft

]
u−tpx+tµx+udu =

= (lx −Nt)T−tpx+tS
∗
t

∫ T

t
T−upx+uµx+udu.

(2) Now we consider a unit-linked contract with a guarantee g(s) = max(s,K),
where K is a non-negative constant describing the level of guaran-
tee. Since we can write g(s) = K + (s − K)+, the price-process
(F g(t, St))0≤t≤T can be determined by using Black-Scholes’ formula for
European call options, that states

Theorem 4.2.7. [10] The fair price CBS(t, St) = E∗
[
e−r(T−t)(ST −

K)+|Ft
]

of a call option with strike K at time t is

CBS(t, St) = StΦ(d+)−Ke−r(T−t)Φ(d−),

where

d± =
log(St

K
) + (r ± 1

2
σ2)(T − t)

σ
√
T − t

and Φ denotes the distribution function of a standard-normal distributed
random variable.

Therefore, we get

F g(t, St) = E∗
[
e−

∫ T
t rudug(ST )|Ft

]
= e−r(T−t)K + E∗

[
e−r(T−t)(ST −K)+|Ft

]
=

= e−r(T−t)K + E∗
[
e−r(T−t)(ST −K)+|Ft

]
=

= e−r(T−t)K + StΦ(d+)−Ke−r(T−t)Φ(d−) =

= Ke−r(T−t)Φ(−d−)K + StΦ(d+).

Hence the first order derivative with respect to s is F g
s (t, St) = Φ(d+)
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and using Theorem 4.2.6 we obtain the risk-minimizing strategy

ξt =(lx −Nt−)T−tpx+tΦ(d+),

ηt =(lx −Nt)T−tpx+te
−rt)F g(t, St)− (lx −Nt−)T−tpx+tΦ(d+)S∗t =

=(lx −Nt)T−tpx+t

(
e−rtKe−r(T−t)Φ(−d−) + e−rtStΦ(d+)

)
−

− (lx −Nt)T−tpx+tΦ(d+)S∗t =

= (lx −Nt)T−tpx+tKe
−rTΦ(−d−)−∆NtT−tpx+tΦ(d+)S∗t

and the intrinsic risk process

Rϕ∗

t = (lx −Nt)

∫ T

t

E∗
[
(νHu )2|Ft

]
u−tpx+tµx+udu =

= (lx −Nt)

∫ T

t

E∗
[(
− e−ruF g(u, Su)T−upx+u

)2

|Ft
]
u−tpx+tµx+udu =

= (lx −Nt)T−tpx+t

∫ T

t

E∗
[(
− e−ruF g(u, Su)

)2

|Ft
]
T−upx+uµx+udu.

(3) The last contract function we will consider defines the benefit as a
deterministic payment K, i.e., g(s) = K, for a non-negative constant
K. Then we have for the price process

F g(t, St) = E∗
[
e−

∫ T
t rudug(ST )|Ft

]
= E∗

[
e−r(T−t)K|Ft

]
=

= e−r(T−t)K.

Hence the risk-minimizing trading strategy is

(ξt, ηt) =
(

0, (lx −Nt)T−upx+ue
−rTK

)
.

Since the insurance payment is deterministic now, the insurer does not
need to held risky stocks in his financial portfolio to hedge the insurance
claim. The only uncertainty is coming from the life length of the policy
holders, which is hedged by rebalancing the amount of bonds according
to the expected value of persons still alive.
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The intrinsic risk process can be written as

Rϕ∗

t = (lx −Nt)

∫ T

t

E∗
[
(νHu )2|Ft

]
u−tpx+tµx+udu =

= (lx −Nt)

∫ T

t

E∗
[(
− e−ruF g(u, Su)T−upx+u

)2

|Ft
]
u−tpx+tµx+udu =

= (lx −Nt)

∫ T

t

E∗
[(
− e−rue−r(T−u)KT−upx+u

)2

|Ft
]
u−tpx+tµx+udu =

= (lx −Nt)

∫ T

t

e−2rTK2
T−up

2
x+uu−tpx+tµx+udu =

= (lx −Nt)e
−2rTK2

T−tpx+t(1−T−t px+t).

(4) As a last example let us consider the unit-linked contract function with
guarantee g(s) = max(s,K) from example (4.2.2.2) with one person
insured only. Therefore, specify the number of policy holders equal to
one, lx = 1, and obtain the following risk-minimizing strategy

ξt =(lx −Nt−)T−tpx+tΦ(d+) = (1− I(T1 ≤ t))T−tpx+tΦ(d+) =

= I(T1 > t)T−tpx+tΦ(d+),

ηt =(lx −Nt)T−tpx+tKe
−rTΦ(−d−)−∆NtT−tpx+tΦ(d+)S∗t =

= (1− I(T1 ≤ t))T−tpx+tKe
−rTΦ(−d−)− I(T1 = t)T−tpx+tΦ(d+)S∗t

= I(T1 > t)T−tpx+tKe
−rTΦ(−d−)− I(T1 = t)T−tpx+tΦ(d+)S∗t

where we used the definition of the counting process Nt (see (4.1.4)).
The intrinsic value process simplifies to

V ∗t = (lx −Nt)T−tpx+tB
−1
t F g(t, St) =

= (1− I(T1 ≤ t))T−tpx+t

[
e−rTKΦ(−d−) + e−rtStΦ(d+)

]
=

= I(T1 > t)T−tpx+t

[
e−rTKΦ(−d−) + S∗t Φ(d+)

]
.

This equals the expactiation of the price of a European call option at
time t in the Black-Scholes model, conditioned on the event of being
still alive at time t. This term is equivalent to the prospective re-
serve from traditional life insurance mathematics, which is defined as
the discounted expected difference between future benefits and future
premiums.

As we can see in all previous examples, the number of stocks and bonds
held in the financial portfolio heavily depend on the number of survivors in
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each time period. ”Thus, the risk-minimizing strategies reflect the actual de-
velopment in the insurance portfolio, and bring to the surface the uncertainty
associated with the insured lives.” [7]

4.3 Risk-minimizing strategy for term insur-

ance

As a second example, we use Föllmer and Sondermann’s (1986) theory to
determine the risk-minimizing strategy for the simple term insurance, which
was introduced in Section 4.1.2. As we saw in the previous section, the first
step will be to find the Galtchouk-Kunita-Watanabe decomposition of the
martingale V ∗t and secondly to directly apply Föllmer and Sondermann’s
unique risk-minimization result.

Recall, that the claim corresponding to the term insurance was given by

HT =

∫ T

0

g(u, Su)B
−1
u dNu (4.3.1)

and let us prove the following requested decomposition of the intrinsic value
process V ∗t of the claim HT .

Theorem 4.3.1. [7] For the claim HT in (4.3.1) the process V ∗ defined by
V ∗t = E[HT |Ft] has the decomposition

V ∗t = V ∗0 +

∫ t

0

ξHu dS
∗
u +

∫ t

0

νHu dMu,

where (ξH , νH) are given by

ξHt = (lx −Nt−)

∫ T

t
u−tpx+tµx+uF

gu
s (t, St)du, (4.3.2)

νHt = g(t, St)B
−1
t −

∫ T

t

F gu(t, St)B
−1
t u−tpx+tµx+udu. (4.3.3)

Where we define F gu(t, St) as the fair (arbitrage-free) price of the payout
function g(u, Su) at time t and u ≥ t

F gu(t, St) = E∗
[
e−

∫ u
t rτdτg(u, Su)|Gt

]
(4.3.4)

and F gu
s (t, St) stands for the first derivative of the fair price with respect to

the price of the asset.
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Proof. Note the following expression for the intrinsic value process V ∗t , where
we used Fubini’s Theorem twice

V ∗t =E∗[HT |Ft] = E∗
[ ∫ T

0

g(u, Su)B
−1
u dNu|Ft

]
N and (B,S) are F−adapted

=

=

∫ t

0

g(u, Su)B
−1
u dNu + E∗

[ ∫ T

t

g(u, Su)e
−

∫ u
t rτdτB−1

t dNu|Ft
]

=

=

∫ t

0

g(u, Su)B
−1
u dNu +

∫ T

t

F gu(t, St)B
−1
t (lx −Nt)u−tpx+tµx+udu

Analogously to the proof of Theorem 4.2.1 in this chapter, we can show

d(B−1
t F gu(t, St)) = F gu

s (t, St)dS
∗
t . (4.3.5)

Finally let us apply Itô’s formula to the expression of V ∗t , that we derived
above,

V ∗t =V ∗0 +

∫ t

0

−B−1
τ F gτ (τ, Sτ )(lx −Nτ−)µx+τdτ +

∫ t

0

g(τ, Sτ )B
−1
τ dNτ+

+

∫ t

0

(∫ T

τ

B−1
τ F gu(τ, Sτ )u−τpx+τµx+udu

)
d(lx −Nτ )+

+

∫ t

0

(∫ T

τ

B−1
τ F gu(τ, Sτ )(lx −Nτ−)µx+ud(u−τpx+τ )

)
dτ+

+

∫ t

0

(∫ T

τ

(lx −Nτ−)u−τpx+τµx+udu

)
d
(
B−1
τ F gu(τ, Sτ )

)
.

By using F gt(t, St) = g(t, St), (lx − Nt−)µx+tdt = λtdt and (4.3.5) we
simplify the integrals to

V ∗t =V ∗0 +

∫ t

0

−B−1
τ g(τ, Sτ )λτdτ +

∫ t

0

g(τ, Sτ )B
−1
τ dNτ+

−
∫ t

0

(∫ T

τ

B−1
τ F gu(τ, Sτ )u−τpx+τµx+udu

)
dNτ+

+

∫ t

0

(∫ T

τ

B−1
τ F gu(τ, Sτ )u−τpx+τµx+udu

)
µx+τ (lx −Nτ−)dτ+

+

∫ t

0

(∫ T

τ

F gu
s (τ, Sτ )u−τpx+τµx+udu

)
(lx −Nτ−)dS∗t .
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Note that dMu = dNu − λudu and obtain the desired result

V ∗t =V ∗0 +

∫ t

0

(∫ T

τ

F gu
s (τ, Sτ )u−τpx+τµx+udu

)
(lx −Nτ−)dS∗t +

+

∫ t

0

−B−1
τ g(τ, Sτ )λτdτ +

∫ t

0

g(τ, Sτ )B
−1
τ dNτ+

−
∫ t

0

(∫ T

τ

B−1
τ F gu(τ, Sτ )u−τpx+τµx+udu

)
dNτ+

+

∫ t

0

(∫ T

τ

B−1
τ F gu(τ, Sτ )u−τpx+τµx+udu

)
µx+τ (lx −Nτ−)dτ =

=V ∗0 +

∫ t

0

ξHt dS
∗
u +

∫ t

0

νHu dMu.

Remark 4.3.2. As Møller (1998) points out, the term νHt can be interpreted
as the immediate loss of the insurer, if death of one of the policy holders
occurs at time t. On the one hand the insurer has to pay g(t, St) and on the
other hand the company readjusts its expectations of future developments
of the insurance portfolio, which leads to a decrease in its reserves by the
amount

∫ T
t
F gu(t, St)B

−1
t u−tpx+tµx+udu.

We now use Föllmer and Sondermann’s Theorem 3.1.15 to directly deter-
mine the unique risk-minimizing trading strategy for hedging the insurer’s
risk process. The proof is analogously to the proof of Theorem 4.2.6 in the
present thesis.

Theorem 4.3.3. [7] For the term insurance given by the contingent claim
(4.3.1) the unique admissible risk-minimizing strategy is given by

ξ∗t =(lx −Nt−)

∫ T

t
u−tpx+tµx+uF

gu
s (t, St)du,

η∗t =

∫ t

0

g(u, Su)B
−1
u dNu + (lx −Nt)

∫ T

t

F gu(t, St)B
−1
t u−tpx+tµx+udu+

+ ξ∗t S
∗
t , 0 ≤ t ≤ T.

The intrinsic risk process Rϕ∗
is given by

Rϕ∗

t = (lx −Nt)

∫ T

t

E∗
[
(νHu )2|Ft

]
u−tpx+tµx+udu,

where νH is taken from (4.3.3).
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Remark 4.3.4. Note that the final portfolio ϕ∗ = (ξ∗, η∗) is determined such
that the value of this strategy at time t is given by

V ∗t =

∫ t

0

g(u, Su)B
−1
u dNu + E∗

[ ∫ T

t

g(u, Su)B
−1
u dNu|Ft

]
.

”Thus, V ϕ∗

t is determined as the sum of the benefits set aside to deaths
already occurred and the expected discounted value of payments associated
with future deaths.” [7]

Example 4.3.5. To illustrate the obtained results for term insurance contracts
let us consider a simple example in the standard Black-Scholes financial world
and a contract function with guarantee that is adjusted by a constant term
of inflation δ, g(u, s) = max(s,Keδu). First we obtain the function F gu(t, St)
with the Black-Scholes pricing formula for European options as we already
did in subsection (4.2.2) Example (2)

F gu(t, St) = Keδue−r(u−t)Φ(−d−) + StΦ(d+),

with

d± =
log( St

Keδu
) + (r ± 1

2
σ2)(u− t)

σ
√
u− t

Applying Theorem 4.3.3 we obtain the optimal risk-minimizing financial
portfolio with

ξ∗t =(lx −Nt−)

∫ T

t
u−tpx+tµx+uΦ(d+)du,

η∗t =

∫ t

0

g(u, Su)B
−1
u dNu + (lx −Nt)

∫ T

t
u−tpx+tµx+uB

−1
t Keδue−r(u−t)Φ(d−)du+

+ (lx −Nt)

∫ T

t
u−tpx+tµx+uB

−1
t StΦ(d+)du−

− S∗t (lx −Nt−)

∫ T

t
u−tpx+tµx+uΦ(d+)du =

=

∫ t

0

g(u, Su)B
−1
u dNu + (lx −Nt)

∫ T

t
u−tpx+tµx+uKe

−(r−δ)uΦ(d−)du−

−∆Nt

∫ T

t
u−tpx+tµx+uΦ(d+)du.
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4.4 Extending the financial market by rein-

surance possibilities

In the previous two sections we tried to hedge the risk for the insurer arising
from different insurance contracts, where the financial model consists of two
assets only, a risk-free bond and a risky stock with price process B respec-
tively S. When combining this financial model with the uncertainty coming
from the remaining lifetimes of the insured persons, Ti, we derived an in-
complete model and therefore, not every claim is perfectly hedge-able. This
means, that the insurer is left with some intrinsic risk, when selling a pure
endowment or a term insurance contract, see Sections 4.2 and 4.3.

Møller (1998) suggested to extend the financial model by an asset cor-
responding to the uncertainty coming from mortality to hedge the insurer’s
remaining risk completely. In this section we will use Møller’s additional
asset to derive the perfect hedging portfolio for the pure endowment insur-
ance. For reasons of simplicity we will consider the risk-free interest r to be
constant over time.

Møller (1998) defined the price process of the new asset related to the
survival probability of the insured persons by Z = (Zt)0≤t≤T , where

Zt := (lx −Nt)T−tpx+te
−r(T−t), (4.4.1)

for all t ∈ [0, T ].
The initial value Z0 = lxTpxe

−rT represents the discounted expected num-
ber of persons still alive at time of maturity T . Furthermore, this amount is
equal to the price of lx pure endowment insurance contracts with sum insured
1 at time 0. When we assume that premiums are paid as single premiums at
time 0, Zt equals the traditional prospective reserve at time t, since it equals
the discounted expected benefits arising from lx pure endowment insurance
contracts each on with sum insured 1 at time t.

Therefore, this new financial asset given by the price process Z can
be interpreted as a trade-able reinsurance possibility on the market. Even
though ”trading on the reinsurance markets will typically be controlled by
certain restrictions such as short-selling constraints and upper limits for the
amount reinsured” [7], we will not restrict trading on the new financial mar-
ket (B, S, Z). Also note, that the reinsurance asset Z evolves independently
from the other financial products (B, S).

Recall the definition of the claim arising from selling lx pure endowment
contracts given in (4.1.7)

H = (lx −NT )TpxB
−1
T g(ST ). (4.4.2)
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The claim H is affected by the uncertainty coming from the risky stock S as
well as by the stochastic mortality of the insured persons.

Analogously to the deflated price process S∗ let us define the deflated
price of the reinsurance asset Z∗ = (Z∗t )0≤t≤T by

Z∗t =
Zt
Bt

= (lx −Nt)T−tpx+te
−rT , (4.4.3)

for all t ∈ [0, T ].
In the new financial setup given by (B, S, Z) at any time t ∈ [0, T ] a trad-

ing strategy ϕ is given by a sufficiently integrable process ϕt = (ξt, ηt, ϑt),
where ξt, ηt and ϑt define the amounts of stocks, bonds and reinsurance con-
tracts, respectively, held at time t. Furthermore, ξ and ϑ needs to be F -
predictable and η is F -adapted. Now the discounted value V ϕ

t at time t of
the trading strategy ϕ is given by

V ϕ
t := ξtS

∗
t + ϑtZ

∗
t + ηt. (4.4.4)

Next we want to show, that the deflated price process Z∗ is an (F ,P∗)-
martingale. This follows directly by using

(lx −Nt)T−tpx+t = E∗[(lx −NT )|Ft],

which was shown in the proof of Theorem 4.2.1. For s ≤ t we get

E∗[Z∗t |Fs] = E∗[(lx −Nt)T−tpx+te
−rT |Fs] = e−rTE∗

[
E∗[(lx −NT )|Ft]|Fs

]
=

= e−rTE∗[(lx −NT )|Fs] = (lx −Ns)T−spx+se
−rT = Z∗s .

Hence, (S∗, Z∗) are (F ,P∗)-martingales and we can again use P∗ as an
equivalent martingale measure to show the next statement.

Theorem 4.4.1. [7] Consider the pure endowment with present value (4.4.2)
and assume that standard pure endowment contracts with sum insured 1 are
traded freely on a financial market with constant short rate of interest. A
self-financing admissible (risk-minimizing) strategy ϕ∗ is given by

ξ∗t = (lx −Nt−)T−tpx+tF
g
s (t, St),

ϑ∗t = er(T−t)F g(t, St),

η∗t = V ∗t − ξ∗t S∗t − ϑ∗tZ∗t

for all 0 ≤ t ≤ T . Furthermore, the intrinsic risk process Rϕ∗
is identically

0.
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Proof. To show the statement we need to find a decomposition for the intrin-
sic value process V ∗t with respect to S∗ and Z∗. From the proof of Theorem
4.2.1 we already know

V ∗t = V ∗0 +

∫ t

0

ξHu dS
∗
u +

∫ t

0

νHu dMu, (4.4.5)

where (ξH , νH) are given by

ξHt := (lx −Nt−)T−tpx+tF
g
s (t, St),

νHt := −B−1
t F g(t, St)T−tpx+t,

for 0 ≤ t ≤ T .

Next let us use a slightly adapted version of the proof of Theorem 4.2.1:
We set Bt ≡ 1, g(St) ≡ 1 and consider the claim H̃ := B−1

T (lx − NT ) =
Z∗T . Then using the martingale property of Z∗t we get for the intrinsic value

process of the claim H̃

Ṽ ∗t = E∗[H̃|Ft] = E∗[Z∗T |Ft] = Z∗t .

Therefore, by inserting the special choice of g(ST ) into Theorem 4.2.1, we
obtain for the price of the reinsurance contract

Z∗t = Z∗0 −
∫ t

0

F̃ g(u, Su)B
−1
u T−upx+udMu =

= Z∗0 −
∫ t

0

BuB
−1
T B−1

u T−upx+udMu =

= Z∗0 −B−1
T

∫ t

0
T−upx+udMu.

Here we used the fact that the first derivative of F̃ g with respect to the asset
price equals zero, i.e. F̃ g

s (t, St) = 0, since we set g(St) ≡ 1.

With this expression for Z∗t we can write

dZ∗u = −
(
e−rT T−upx+udMu

)
. (4.4.6)
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Combining (4.4.5) with (4.4.6) we get the required decomposition of V ∗t

V ∗t = V ∗0 +

∫ t

0

ξHu dS
∗
u +

∫ t

0

νHu dMu =

= V ∗0 +

∫ t

0

ξHu dS
∗
u +

∫ t

0

−B−1
u F g(u, Su)T−upx+udMu =

= V ∗0 +

∫ t

0

ξHu dS
∗
u +

∫ t

0

er(T−u)F g(u, Su)dZ
∗
u =

= V ∗0 +

∫ t

0

ξHu dS
∗
u +

∫ t

0

ϑHu dZ
∗
u.

We showed that the intrinsic value process can be represented as sum of two
integrals with respect to the price process of the two risky financial products.

Hence, the intrinsic risk process Rϕ
t = E∗

[
(RH

T −RH
t )2|Ft

]
is identically 0 for

all t ∈ [0, T ] in the extended financial market model.

We showed, that the insurer is able to eliminate the risk completely by
continuously rebalancing the amount of stocks, bonds and reinsurance con-
tracts in the financial portfolio given in Theorem 4.4.1.

Using expression (4.2.6) for the intrinsic value process we obtain

V ∗t = (lx −Nt)T−tpx+tB
−1
t F g(t, St) = ϑ∗tZ

∗
t . (4.4.7)

This means, that the intrinsic value of the optimal risk-eliminating portfolio
equals the value of ϑ∗t standard pure endowment insurance contracts at any
time 0 ≤ t ≤ T , i.e., the insurer passes the risk arising from the insurance
portfolio completely to the reinsurance company.

Furthermore, note that inserting (4.4.7) into the expression for the amount
of bonds in the optimal financial portfolio η∗ derived in Theorem 4.4.1 we
get

η∗t = V ∗t − ξ∗t S∗t − ϑ∗tZ∗t = −ξ∗t S∗t .

Møller (1998) summarized this result with stating that the amount of stocks
held in the financial portfolio, which equals the amount of stocks if we use the
incomplete market (B, S) see Theorem 4.2.6, ”is financed by an equivalent
short position η∗t in the risk-free asset”[7].
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Chapter 5

Second application:
Generalized insurance payment
streams

This chapter deals with the problem of finding a risk-minimizing trading
strategy to hedge an insurance portfolio consisting of contracts with general
payment streams. The theory and results presented in this chapter are based
on a paper of Møller (2001).

First we will have to point out the differences of general payment streams
compared to the simple world of the previous chapters and give some addi-
tional definitions. Then, we will have to work out a generalization of Föllmer
and Sondermann’s (1986) theory of risk-minimization in incomplete markets.
Finally, we will be able to apply the obtained results to an insurance portfolio
consisting of general unit-linked life insurance contracts.

5.1 Additional definitions

Basically, all assumptions, definitions and statements presented in the pre-
vious chapters still hold true in the extended theory of this chapter. Again
we work with the financial model consisting of the two financial products
B and S defined in (2.1.1)-(2.1.2), the equivalent martingale measure P∗
and all other known definitions. In the advanced set-up the only difference
compared to the simple world is coming from the generalization of the insur-
ance payment streams. Therefore, note that all assumptions, definitions and
statements coming from prior chapters still hold true except those which are
explicitly pointed out in this section.

In Møller’s (1998) simple model of insurance payment streams all benefit

51
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payments arising from an unit-linked life insurance contract were described
by a single claim H payable at some fixed time T (T-claims). Now we
change the setting to Møller’s (2001) advanced model of general payment
streams. These payment streams are specified in the following definition.

Definition 5.1.1. [8] A payment stream A = (At)0≤t≤T is an F-adapted,
square-integrable, càdlàg process.

For some 0 ≤ s ≤ t ≤ T we will interpret At − As as the total dis-
counted outgoing cash-flows (benefit payments) minus total discounted in-
coming cash-flows (premium payment stream) in the time interval (s, t] from
the insurer’s point of view.

Since we generalized the definition of insurance payment streams, we
additionally have to adapt the idea of the cost process C associated with
a trading strategy ϕ and a payment process A.

Definition 5.1.2. [8] The cost process of the strategy ϕ and the payment
process A is given by

Cϕ
t = V ϕ

t −
∫ t

0

ξudS
∗
u + At, (5.1.1)

for all 0 ≤ t ≤ T , where ξt refers to the amount of stocks held at time t.

To motivate this definition we have a look at the costs associated with a
trading strategy ϕ and a payment stream A. During the infinitesimal small
time interval (t, t+dt] the costs are given by the sum of changes in the stock
and the bond position of the financial portfolio and the insurer’s cash-flows
arising from the insurance contracts. Mathematically, the change of the cost
process can be written as

dCϕ
t = Cϕ

t+dt − C
ϕ
t =

= (ξt+dt − ξt)S∗t+dt + (ηt+dt − ηt) + At+dt − At,

where the trading strategy is given by ϕ = (ξ, η) with ξt and ηt the amount
of stocks and bonds held at time t, respectively. Using now the definition of
the deflated value process (2.3.3) we can rewrite the above equation to

dCϕ
t = V ϕ

t+dt − V
ϕ
t − ξt(S∗t+dt − S∗t ) + At+dt − At =

= dV ϕ
t − ξtdS∗t + dAt

and the formal definition of the cost process (5.1.1) follows directly.
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Note that the cost process C is an F -adapted, square-integrable process,
because of the assumptions we set up for the payment process A and the
trading strategy ϕ.

Furthermore, note that the cost process Cϕ
t should be interpreted as the

insurers cumulative costs during the time interval [0, t]. Since the payment
process A owns càdlàg and hence right-continuous paths, the cost process at
time t, Ct, includes all payments At. Therefore, the value process Vt should
be interpreted as the value of the financial portfolio ϕ after the payments
At. As Møller (2001) pointed out, the terminal value of the portfolio VT is
the value of the portfolio after all liabilities and premiums are settled and
therefore it is a natural condition to restrict the scope of portfolios to those
with terminal value 0

V ϕ
T = 0,

the so called 0-admissibility.

We go on by defining self-financing trading strategies and attainability
for payment streams in the extended set-up.

Definition 5.1.3. [8]

(i) A strategy ϕ is called self-financing for a payment process A if Cϕ
t =

Cϕ
0 P∗-a.s. for all 0 ≤ t ≤ T .

(ii) A payment process A is said to be attainable if there exists a self-
financing, 0-admissible strategy ϕ, i.e. V ϕ

T = 0 P-a.s.

In the previous chapter we already showed that a trading strategy is self-
financing (in the sense of the elementary model, see Definition 2.3.3) if and
only if the condition of Definition 5.1.3 (i) holds true, i.e., if and only if
Cϕ
t = Cϕ

0 P∗-a.s. for all 0 ≤ t ≤ T . Furthermore, the following Lemma states
the equivalence of the concepts of attainability in both models.

Lemma 5.1.4. [8] The payment process A is attainable (in the sense of Def-
inition 5.1.3 (ii)) if and only if the T -claim H = AT is classically attainable.

The proof of Lemma 5.1.4 follows directly by both definitions of attain-
ability.

Finally, we need to slightly adapt the definition of the intrinsic value
process, which was given by the conditional expected value of the claim H
given all information up to a specific point in time.
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Definition 5.1.5. [8] The intrinsic value process V ∗ = (V ∗t )0≤t≤T is defined
by

V ∗t := E∗[AT |Ft],

for all 0 ≤ t ≤ T .

We end this section by comparing Møller’s (1998) simple model with the
extended model of Møller (2001):

Remark 5.1.6. Comparison of the simple model and the generalized one11:

Definition 3.1.1 gives the cost process Ct
ϕ

in the elementary model with
claims H in one point in time only

Ct
ϕ

= V ϕ
t −

∫ t

0

ξudS
∗
u. (5.1.2)

Remember that in the simple model we restricted claims H to be contingent
claims with maturity T only, i.e., V ϕ

T = H. As one can see, this definition
is independent of the claim H, because trading on the financial market and
paying the insurance benefits H were clearly separated in time. In this simple
model, no trading took place after paying the benefits. In the extension of
the model, we exchangee T -claims H by general payment streams A, with
possible payments at any point in time during the observed time horizon
[0, T ]. Therefore, the cost process can no longer be defined independently
from the payment stream A.

We quit this comparison by showing that the extended framework reduces
to the elementary world by setting

At = −κ+ It≥TH, 0 ≤ t ≤ T,

for some constant κ ∈ R and H ∈ L2(P∗S). Additional set κ = 0 and restrict
to 0-admissible strategies ϕ, then the total costs at maturity T are given by

Cϕ
T = V ϕ

T −
∫ T

0

ξudS
∗
u + AT = −

∫ T

0

ξudS
∗
u +H. (5.1.3)

On the other hand, define a simple, elementary trading strategy ϕ = (ξ, η)
by setting ξt = ξt for all 0 ≤ t ≤ T and ηt = ηt for all 0 ≤ t < T with ηT =
H− ξTS∗T . Obviously, the strategies ϕ and ϕ differ by their terminal amount

of cash only. Therefore, both cost processes are equal, i.e., Cϕ
t = Ct

ϕ
, for all

0 ≤ t < T . Furthermore, the cost process at maturity are also equivalent.
This follows by (5.1.2) together with V ϕ

T = H and equation (5.1.3).

11In this remark we equip all object corresponding to the simple model with a bar .̄
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5.2 Generalization of risk-minimization in in-

complete markets

Before we are able to find risk-minimizing trading strategies hedging general
unit-linked life insurance contracts, we need to extend Föllmer and Sonder-
mann’s (1986) theory of risk-minimization in incomplete markets.

As in the elementary framework, the risk-minimizing trading strategy is
found by applying the Galtchouk-Kunita-Watanabe decomposition of mar-
tingales (see Theorem 3.1.6) for the martingale V ∗. Therefore, let us first
recall the result of decomposing the intrinsic value process in accordance to
the Galtchouk-Kunita-Watanabe decomposition.

Theorem 5.2.1. [8] The intrinsic value process V ∗ can be uniquely decom-
posed by use of the Galtchouk-Kunita-Watanabe decomposition as

V ∗t = V ∗0 +

∫ t

0

ξAu dS
∗
u + LAt , (5.2.1)

for all 0 ≤ t ≤ T , where LA is a zero-mean martingale which is orthogonal
to S∗, i.e., the process S∗LA is a martingale, and ξA is a predictable process
satisfying the integrability condition ξA ∈ L2(P∗S).

With the help of this expression for the intrinsic value process V ∗, we are
able to formulate the extension of Föllmer and Sondermann’s (1986) mean
squared error minimization of the remaining risk of the insurer.

Theorem 5.2.2. There exists a unique 0-admissible risk-minimizing strategy
ϕ = (ξ, η) for the payment stream A given by

(ξt, ηt) = (ξAt , V
∗
t − At − ξAt S∗t ), (5.2.2)

for all 0 ≤ t ≤ T . The associated risk process is given by Rϕ
t = E∗[(LAT −

LAt )2|Ft].

The proof is similar to the proof of the corresponding theorem in the
simple set-up (see proof of Theorem 3.1.15).

Proof. The statement is shown in three steps:

(i) 0-Admissibility:
The trading strategy ϕ defined in (5.2.2) fulfils the 0-admissibility prop-
erty, since for the value process at time T we get

V ϕ
T = ξTS

∗
T + ηT = ξAT S

∗
T + V ∗T − AT − ξAT S∗T = E∗[AT |FT ]− AT = 0.
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(ii) Risk-minimization:
We begin this part of the proof by showing the following expression for
the payments at maturity, AT ,

AT =E∗[AT |FT ] = V ∗T = V ∗0 +

∫ T

0

ξAu dS
∗
u + LAT =

=V ∗t −
∫ t

0

ξAu dS
∗
u − LAt +

∫ T

0

ξAu dS
∗
u + LAT =

=V ∗t +

∫ T

t

ξAu dS
∗
u + LAT − LAt .

where we used (5.2.1) to rewrite the intrinsic value process at time 0
and T .

Let us introduce an arbitrary 0-admissible trading strategy by ϕ̃ =
(ξ̃, η̃). Using V ϕ̃

T = 0 together with the above expression for AT we
can rewrite the difference of the costs of the strategy ϕ̃ at time t and
maturity T

C ϕ̃
T − C

ϕ̃
t =V ϕ̃

T −
∫ T

0

ξ̃udS
∗
u + AT −

(
V ϕ̃
t −

∫ t

0

ξ̃udS
∗
u + At

)
=

=−
∫ T

0

ξ̃udS
∗
u +

(
V ∗t +

∫ T

t

ξAu dS
∗
u + LAT − LAt

)
−

−
(
V ϕ̃
t −

∫ t

0

ξ̃udS
∗
u + At

)
=

=
(
V ∗t − At − V

ϕ̃
t

)
+
(
LAT − LAt

)
+

∫ T

t

(
ξAu − ξ̃u

)
dS∗u.

Finally, with the orthogonality of LA and S∗ and the Ft-measurability

of
(
V ∗t − At − V

ϕ̃
t

)
the remaining risk process of ϕ̃ can be written as

Rϕ̃
t =E∗

[(
C ϕ̃
T − C

ϕ̃
t

)2|Ft

]
=

=E∗
[(
LAT − LAt

)2|Ft

]
+
(
V ∗t − At − V

ϕ̃
t

)2

+

+ E∗
[∫ T

t

(
ξAu − ξ̃u

)2
d[S∗]u|Ft

]
.

Now we can see, that the remaining risk can be minimized by first
choosing ξ̃ = ξA and then setting η̃ such that V ϕ̃

t = V ∗t − At for all
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0 ≤ t ≤ T . With this choice, the remaining risk process reduces to

Rϕ
t = E∗

[(
LAT − LAt

)2|Ft

]
.

(iii) Uniqueness:
Analogously to step (iii) in the proof of Theorem 3.1.15.

The result of Theorem 5.2.2 is consistent with the corresponding theorem
in the elementary framework, which declared the following risk-minimizing
trading strategy (see Theorem 3.1.15):

(ξt, ηt) = (ξHt , V
∗
t − ξHt S∗t ), 0 ≤ t ≤ T.

Setting At = −κ + It≥TH, 0 ≤ t ≤ T with κ = 0 the generalized result
reduces to the simple trading strategy, hedging the single T -claim H.

Furthermore, notice that in the generalized set-up the amount of cash on
the savings account, η, is reduced by the total outgoing cash-flow the insurer
has to face at time t, i.e., At. This additional adjustment term ensures that
the value of the financial portfolio equals the conditional expected amount
of all cumulated future outgoing cash-flows from the insurer’s point of view
given all information up to the present point in time. Mathematically, this
means:

V ϕ
t =ξtS

∗
t + ηt = ξAt S

∗
t − V ∗t − At − ξAt S∗t = E∗[AT |Ft]− At

At is Ft-m.a.
=

=E∗[AT − At|Ft].

5.3 General unit-linked life insurance contracts

In this section we will find the optimal financial portfolio, which minimizes
the remaining risk, the insurer has to face when selling general unit-linked
life insurance contracts. These type of insurance contracts were analyzed by
Møller (2001) and are specified by outgoing benefit and incoming premium
payments (from the insurer’s point of view), both contingent on the life-
length of the policy holder. The premium payments are predefined in the
insurance contract and are paid until either the maturity of the contract (T )
or the time of death of the insurance holder take place. In return, the policy
holder receives some benefit payments, which depend on the life length of
the insured person, e.g. a fixed payment when the insurance holder survives
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up to time of maturity or a payment immediately upon some contractually
predefined event. Both cash-flows are allowed to depend on the price process
of the underlying stock, S.

We will proceed analogously to the simple set-up, meaning that we first
find the Galtchouk-Kunita-Watanabe decomposition of the intrinsic value
process and afterwards apply the theory of risk-minimization in incomplete
markets. To complete the theory in the advanced framework, we will give
some explicit examples at the end of this section.

5.3.1 The generalized insurance model

Before starting with finding the required decomposition of the intrinsic value
process, we need to specify the underlying insurance model, introduced by
Møller (2001). There are two big differences now, compared to the insurance
model in the simple elementary set-up:

• In contrast to the previous chapters we do not analyze a whole portfolio
of insurance contracts, but rather we will concentrate on one single
unit-linked life insurance contract.

• The simple insurance model was based on a two-state Markov model,
since with the counting process N we counted the amount of deaths up
to a specific time. In this chapter we work with a multi-state Markov
model and the contractual cash-flows will depend on the current state
of the policy.

The insured lives

Let us define this finite set of possible policy states by a set J = {0, 1, ..., J},
where 0 is the initial state. The Markov process describing the states of the
policy over time is given by Z = (Zt)0≤t≤T , which is F -adapted and right-
continuous with values in J . Since we defined 0 to be the initial state, the
initial distribution of Z is given by (1, 0, ..., 0).

As in the previous chapters we again make some simplifying assumptions.
First we assume H = (Ht)0≤t≤T to be the P∗-augmented natural filtration
of the Markov process Z. Furthermore, let the processes Z and (B, S) be
independent of each other and finally assume F to be the P∗-augmented
natural filtration of Z and (B, S).

Next let us define the multivariate counting process N = (N jk)j 6=k for
all states j, k ∈ J by

N jk
t = #{s|s ∈ (0, t], Zs− = j, Zs = k}, (5.3.1)
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for all 0 < t ≤ T . N jk
t counts the number of transitions from state j to state

k during the time interval [0, t].
Further, introduce the indicator processes I = (Ij)j∈J by

Ijt = I{Zt=j} =

{
1 if Zt = j

0 otherwise
, (5.3.2)

for all 0 ≤ t ≤ T .
Analogously to the previous chapters we assume that there exist tran-

sition rates λjk and continuous deterministic hazard rates µjk for the
Markov chain Z given by

λjkt = Ijt−µ
jk
t , for all 0 ≤ t ≤ T, (5.3.3)

i.e., the transition rate to move from state j to state k corresponds to the
hazard rate of the appropriate states at time t, if the policy stays in state
j before time t. Otherwise, if the policy is in any other state at time t the
transition rate equals 0.

Next define the compensated counting processes M = (M jk)j 6=k by

M jk
t = N jk

t −
∫ t

0

λjku du, for all 0 ≤ t ≤ T. (5.3.4)

Since we assumed µjk being continuous, deterministic functions, it follows
that the compensated counting processM jk areH-martingales and the count-
ing processes N jk possess intensities. Furthermore, the martingales M jk are
orthogonal to each other and their quadratic variation is given by

[M jk]t =

∫ t

0

λjku du =

∫ t

0

Ijuµ
jk
u du, for all 0 ≤ t ≤ T, (5.3.5)

due to the fact that the processes N jk do not have any simultaneous jumps.
Note also that the compensated counting processes M jk and the dis-

counted stock prices process S∗ are independent, since we assumed Z to be
independent of the economic informations given via the filtration G. There-
fore, they can be separated taking the expectation

E∗
[
S∗tM

jk
t |Fs

]
= E∗

[
S∗t |Fs

]
E∗
[
M jk

t |Fs
]
,

for 0 ≤ s ≤ t ≤ T . Together with Remark 3.1.7 it follows that S∗ and M jk

are orthogonal.
Finally, we end the description of the insured lives with defining the

transition probabilities of the Markov process Z by

pjk(t, u) = P(Zu = k|Zt = j), (5.3.6)
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for all 0 ≤ t ≤ u ≤ T and for all j, k ∈ J . This means, that pjk(t, u) gives the
probability of being in state k at time u, if the process sojourned in state j
at time t. The transition probabilities can be determined by Kolmogorov’s
backward differential equations:

d

dt
pjk(t, u) =

∑
l,l 6=j

µjlt
(
pjk(t, u)− plk(t, u)

)
, for all 0 ≤ t ≤ u, (5.3.7)

pjk(t, t) = 1{j=k}. (5.3.8)

For a detailed proof of this statement see Koller (2010) Theorem 2.3.4. Basi-
cally, Koller (2010) gives a firm and well-written overview of Markov process
in insurance mathematics in Chapters 2.2-2.4.

The insurance contracts

As Møller (2001) we analyze unit-linked insurance contracts consisting of two
different basic benefit payments:

• General life insurances:
Immediately upon transition from state j to state k at time t the insurer
has to pay the amount gjkt = gjk(t, St).

• State-wise life annuities:
If the policy sojourns in state j at time t, the annuities are described
by continuous payments with rate gjt = gj(t, St).

For all j, k ∈ J , the functions (t, s) → gjk(t, s) and (t, s) → gj(t, s) are
functions of the current stock price St only and are assumed to be measurable
and fulfil

E∗
[
(B−1

t gjk(t, St))
2
]
<∞, (5.3.9)

E∗
[
(B−1

t gj(t, St))
2
]
<∞, (5.3.10)

which ensures that the processes
∫
B−1gjkdM jk to be square-integrable mar-

tingales. All these assumption guarantee, that the single benefit payments
described by gjk(t, St) and gj(t, St) are just simple t-claims in the sense of
Definition 2.3.4 (i). Together with the completeness of the financial market
(B, S), these claims are attainable (see Definition 2.3.4 (ii)) and can uniquely
be priced arbitrage-free on the financial market.
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Let the prices of the single claims gjk(u, Su) and gj(u, Su) at time t
be denoted by

F jk(t, St, u) = E∗
[
BtB

−1
u gjk(u, Su)|Gt

]
, (5.3.11)

F j(t, St, u) = E∗
[
BtB

−1
u gj(u, Su)|Gt

]
, (5.3.12)

for all 0 ≤ t ≤ u ≤ T . These prices reduce to the arbitrage-free price process
in the elementary model (see Definition 2.3.6) if we only allow T -claims
instead of general u-claims. We assume the price processes (t, s, u)→ F jk and
(t, s, u)→ F j to be measurable functions, that are continuously differentiable
w.r.t t and two times differentiable w.r.t. s. Furthermore, we assume the
first partial derivatives w.r.t. s (as in the prior chapters denoted by F jk

s and
F j
s ) to be uniformly bounded, i.e.∃K <∞ such that for all t, s, u and all F jk

and F j it holds that

|F jk
s (t, s, u)| ≤ K <∞, (5.3.13)

|F j
s (t, s, u)| ≤ K <∞. (5.3.14)

Note that the prices processes F jk and F j are martingales by definition and
that

F jk(t, St, t) = gjk(t, St) = gjkt , (5.3.15)

F j(t, St, t) = gj(t, St) = gjt (5.3.16)

holds true. Analogously, to the elementary set-up (see proof of Theorem
4.2.1), the following expressions for the differentials of the discounted price
processes under the measure P∗ can be shown

d(B−1
t F jk(t, St, u)) = F jk

s (t, St, u)dS∗t , (5.3.17)

d(B−1
t F j(t, St, u)) = F j

s (t, St, u)dS∗t . (5.3.18)

Next let us specify the payment process, Â = (Ât)0≤t≤T , arising from
selling one unit-linked life insurance contract consisting of general life insur-
ance claims, gjk, and state-wise life annuities, gj,

dÂt =
∑
j∈J

Ijt g
j
tdt+

∑
j,k,j 6=k

gjkt dN
jk
t =

∑
j∈J

(
Ijt g

j
tdt+

∑
k,k 6=j

gjkt dN
jk
t

)
. (5.3.19)

From this, the following expression for the discounted value of payments
can be easily derived:

At = A0 +

∫ t

0

B−1
u dÂu = A0 +

∫ t

0

B−1
u

∑
j∈J

(
Iju−g

j
udu+

∑
k,k 6=j

gjku dN
jk
u

)
.

(5.3.20)
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Møller (2001) summarized the underlying insurance model by stating that
the process A ”specifies payments that are contingent on the development
of the policy (as described by Z) and are linked to the development on the
financial market in that the amounts gju and gjku are time-dependent functions
of the stock price” [8].

Next let us consider the intrinsic value process V ∗ given in Definition 5.1.5
when choosing the payment process A in accordance with (5.3.20). In the
following we use E∗[dN jk|Ht− ] = λjkt dt = Ijt−µ

jk
t dt, the martingale property

of
∫
B−1gjkdM jk and the independence between Z and (B, S) to derive

V ∗t =E∗
[
AT | Ft

]
= At + E∗

[
(AT − At) | Ft

]
=

=At + E∗
[∫ T

t

B−1
u

∑
j∈J

(
Iju−g

j
udu+

∑
k,k 6=j

gjku dN
jk
u

)
| Ft

]
=

=At + E∗
[∫ T

t

B−1
u

∑
j∈J

(
Iju−g

j
udu+

∑
k,k 6=j

gjku I
j
u−µ

jk
u du

)
| Ft

]
=

=At +B−1
t

∑
j∈J

∫ T

t

pZtj(t, u)

(
F j(t, St, u) +

∑
k,k 6=j

µjku F
jk(t, St, u)

)
du.

Instead of writing pZtj we introduce auxiliary processes V i for i ∈
J , that give the state-dependent expected value of total cumulated future
benefits less premiums and are mathematically expressed by

V i(t, St) =
∑
j∈J

∫ T

t

pij(t, u)

(
F j(t, St, u) +

∑
k,k 6=j

µjku F
jk(t, St, u)

)
du,

for 0 ≤ t ≤ T . Equivalently, these auxiliary processes can formally be defined
with the help of conditional expectation

V i(t, s) = E∗
[
Bt

∫ T

t

B−1
u dÂu | Zt = i, St = s

]
. (5.3.21)

V i(t, St) can be interpreted as the current market price of the insurance
contract with payment stream A at time t conditioned on the fact that the
policy sojourns in state i at time t and on the stock price at time t, St.

Conditioned on being in state i at time t (expressed by multiplication
with I it) and summed up over the finite set of all possible states of the policy,
J ,the intrinsic value process V ∗ can be written as

V ∗t = At +
∑
i∈J

I itV
i(t, St)B

−1
t . (5.3.22)
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5.3.2 The risk-minimizing trading strategy

In this section we will determine the risk-minimizing trading strategy, hedg-
ing the insurer’s risk arising from selling a general unit-linked life insurance
contract with payment stream A defined in (5.3.20). Therefore, we will first
find the Galtchouk-Kunita-Watanabe decomposition of the martingale V ∗

(see Møller (2001) Lemma 3.2) and then use this representation to apply
Theorem 5.2.2 to obtain the insurer’s optimal trading strategy (see Møller
(2001) Theorem 3.4).

Theorem 5.3.1. [8] The Galtchouk-Kunita-Watanabe decomposition of V ∗

is given by

V ∗t = V ∗0 +

∫ t

0

(∑
j∈J

I iu−ξ
i
u

)
dS∗u +

∑
j,k,j 6=k

∫ t

0

νjku dM
jk
u , (5.3.23)

where

ξit =
∑
j∈J

∫ T

t

pij(t, u)

(
F j
s (t, St, u) +

∑
k,k 6=j

µjku F
jk
s (t, St, u)

)
du, (5.3.24)

νjkt = B−1
t

(
gjkt + V k(t, St)− V j(t, St)

)
. (5.3.25)

Proof. The proof is structured in several steps:

(i) First we show that the discounted auxiliary processes V i(t, St) fulfil

B−1
t V i(t, St) =V i(0, S0) +

∫ t

0

ξiτdS
∗
τ −

∫ t

0

(
B−1
τ giτ +

∑
k,k 6=i

µikτ ν
ik
τ

)
dτ.

Therefore, we introduce the following notation for all i ∈ J and 0 ≤
t ≤ u ≤ T

Y i,u
t =

∑
j∈J

pij(t, u)B−1
t

(
F j(t, St, u) +

∑
k,k 6=j

µjku F
jk(t, St, u)

)
,

such that B−1
t V i(t, St) =

∫ T
t
Y i,u
t du. Next we use the product rule,

equations (5.3.17)-(5.3.18) and Kolmogorov’s backward differential equa-
tion 5.3.7 for pij

dpij(t, u) =
(∑
l,l 6=i

µilt (pij(t, u)− plj(t, u)
)
dt (5.3.26)
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to obtain

dY i,u
t =

∑
j∈J

dpij(t, u)B−1
t

(
F j(t, St, u) +

∑
k,k 6=j

µjku F
jk(t, St, u)

)

+
∑
j∈J

pij(t, u)

(
d
(
B−1
t F j(t, St, u)

)
+
∑
k,k 6=j

µjku d
(
B−1
t F jk(t, St, u)

))
(5.3.26) and (5.3.17)−(5.3.18)

=

=
∑
j∈J

∑
l,l 6=i

µilt pij(t, u)B−1
t

(
F j(t, St, u) +

∑
k,k 6=j

µjku F
jk(t, St, u)

)
dt

−
∑
j∈J

∑
l,l 6=i

µilt plj(t, u)B−1
t

(
F j(t, St, u) +

∑
k,k 6=j

µjku F
jk(t, St, u)

)
dt

+
∑
j∈J

pij(t, u)

(
F j
s (t, St, u)dS∗t +

∑
k,k 6=j

µjku F
jk
s (t, St, u)dS∗t

)
=

=
∑
l,l 6=i

µilt

(
Y i,u
t − Y

l,u
t

)
dt

+
∑
j∈J

pij(t, u)

(
F j
s (t, St, u) +

∑
k,k 6=j

µjku F
jk
s (t, St, u)

)
dS∗t .

For keeping notation simple we set

dY i,u
t = αi,ut dt+ βi,ut dS∗t , (5.3.27)

with

αi,ut =
∑
l,l 6=i

µilt

(
Y i,u
t − Y

l,u
t

)
,

βi,ut =
∑
j∈J

pij(t, u)

(
F j
s (t, St, u) +

∑
k,k 6=j

µjku F
jk
s (t, St, u)

)
.

Furthermore, using the integral form of (5.3.27)

Y i,u
t = Y i,u

0 +

∫ t

0

dY i,u
τ = Y i,u

0 +

∫ t

0

αi,uτ dτ +

∫ t

0

βi,uτ dS∗τ
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together with (5.3.27) for t ≤ u we obtain

B−1
t V i(t, St) =

∫ T

t

Y i,u
t du =

∫ T

t

(
Y i,u

0 +

∫ t

0

αi,uτ dτ +

∫ t

0

βi,uτ dS∗τ

)
du =

=

∫ T

0

(
Y i,u

0 +

∫ t

0

I{τ≤u}α
i,u
τ dτ +

∫ t

0

I{τ≤u}β
i,u
τ dS∗τ

)
du

−
∫ t

0

(
Y i,u

0 +

∫ u

0

αi,uτ dτ +

∫ u

0

βi,uτ dS∗τ

)
du =

=

∫ T

0

Y i,u
0 du−

∫ t

0

Y i,u
u du+

∫ T

0

∫ t

0

I{τ≤u}α
i,u
τ dτdu

+

∫ T

0

∫ t

0

I{τ≤u}β
i,u
τ dS∗τdu.

Now we rewrite all four integrals involved in the expression above to
derive the required result:

By definition of Y i,u the first integral reduces to∫ T

0

Y i,u
0 du = V i(0, S0)

and the second integral can be written as

∫ t

0

Y i,u
u du =

∫ t

0

[∑
j∈J

pij(u, u)B−1
u

(
F j(u, Su, u) +

∑
k,k 6=j

µjku F
jk(u, Su, u)

)]
du =

=

∫ t

0

[
B−1
u

(
F i(u, Su, u) +

∑
k,k 6=i

µiku F
ik(u, Su, u)

)]
du

(5.3.15)−(5.3.16)
=

=

∫ t

0

[
B−1
u

(
giu +

∑
k,k 6=i

µiku g
ik
u

)]
du,

since the policy sojourns in state i at time u.

Note that for all i ∈ J the functions (ω, t, u)→ αi,ut (ω) are measurable
and ∫ T

0

∫ t

0

I{τ≤u}|αi,uτ |dτdu <∞ P− a.s.
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Hence, using the standard Fubini theorem we can rewrite the first dou-
ble integral by interchanging the order of the integrals and get∫ T

0

∫ t

0

I{τ≤u}α
i,u
τ dτdu =

∫ t

0

∫ T

τ

αi,uτ du dτ =

=

∫ t

0

∫ T

τ

∑
l,l 6=i

µilτ

(
Y i,u
τ − Y l,u

τ

)
du dτ =

=

∫ t

0

(∑
l,l 6=i

µilτ

∫ T

τ

(
Y i,u
τ − Y l,u

τ

)
du

)
dτ =

=

∫ t

0

(∑
l,l 6=i

µilτB
−1
τ

(
V i(τ, Sτ )− V l(τ, Sτ )

))
dτ.

Since there is a stochastic integral involved in the second double in-
tegral, Fubini’s standard theorem is not applicable, though the Fubini
theorem for stochastic integral does the job, see [3]. Therefore, again
note that for all i ∈ J the functions (ω, t, u)→ βi,ut (ω) are measurable
and due to assumptions (5.3.13)-(5.3.14) uniformly bounded for each
i ∈ J . Using Fubini’s theorem we obtain∫ T

0

∫ t

0

I{τ≤u}β
i,u
τ dS∗τdu =

∫ t

0

∫ T

τ

βi,uτ du dS∗τ =

=

∫ t

0

∫ T

τ

∑
j∈J

pij(τ, u)

(
F j
s (τ, Sτ , u) +

∑
k,k 6=j

µjku F
jk
s (τ, Sτ , u)

)
du dS∗τ =

=

∫ t

0

ξiτdS
∗
τ .

All four rewritten integrals put together show step (i):

B−1
t V i(t, St) =V i(0, S0)−

∫ t

0

[
B−1
τ

(
giτ +

∑
k,k 6=i

µikτ g
ik
τ

)]
dτ +

∫ t

0

ξiτdS
∗
τ

+

∫ t

0

(∑
k,k 6=i

µikτ B
−1
τ

(
V i(τ, Sτ )− V k(τ, Sτ )

))
dτ =

=V i(0, S0) +

∫ t

0

ξiτdS
∗
τ −

∫ t

0

(
B−1
τ giτ +

∑
k,k 6=i

µikτ ν
ik
τ

)
dτ,

where we set u = τ in the second integral and l = k in the fourth one.
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(ii) Finally with the help of the result of point (i), we proof the decompo-
sition of V ∗.

Using

dI it =
∑
k,k 6=i

(
dNki

t − dN ik
t

)
, (5.3.28)

and the partial integration formula for V ∗t = At +
∑

i∈J I
i
tV

i(t, St)B
−1
t

from (5.3.22), we obtain

dV ∗t =dAt +
∑
i∈J

I it−d
(
V i(t, St)B

−1
t

)
+
∑
i∈J

V i(t−, St−)B−1
t− dI

i
t

(5.3.20),(5.3.28) and (i)
=

=B−1
t

∑
i∈J

(
I itg

i
tdt+

∑
k,k 6=i

gikt dN
ik
t

)
−
∑
i∈J

I it−

(
B−1
t git +

∑
k,k 6=i

µikt ν
ik
t

)
dt

+
∑
i∈J

I it−ξ
i
tdS

∗
t +

∑
i,k,i6=k

B−1
t

(
V k(t, St)− V i(t, St)

)
dN ik

t .

Rearranging the terms we see that the B−1
t

∑
i∈J I

i
tg
i
tdt term cancels

out and the expression reduces to

dV ∗t =
∑
i,k,i6=k

B−1
t

(
gikt + V k(t, St)− V i(t, St)

)
dN ik

t

−
∑
i,k,i6=k

I it−µ
ik
t ν

ik
t dt+

∑
i∈J

I it−ξ
i
tdS

∗
t =

=
∑
i,k,i6=k

B−1
t νikt dM

ik
t +

∑
i∈J

I it−ξ
i
tdS

∗
t ,

and that shows decomposition (5.3.24) with setting index j = i.

(iii) The last step is to show that the terms included in the decomposition
fulfil all requirements listed in Theorem 5.2.1.

First note that assumptions (5.3.9)-(5.3.10) ensure that gjk, V k and V jk

are square-integrable and that the integrals w.r.t. the compensated
counting process M jk are square-integrable, zero-mean martingales.

Furthermore, the boundedness of F jk
s and F j

s (assumptions (5.3.13)-
(5.3.14)) guarantee that the integral w.r.t. the discounted stock price
S∗ is a square-integrable martingale and ξA a predictable process.

Finally with the orthogonality of S∗ and M jk all conditions are fulfilled.
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This proof is based on the proof by Møller (2001). Additionally, he
presents the idea of a proof of Theorem 5.3.1 when assuming V i to be con-
tinuously differentiable w.r.t. t and twice continuously differentiable w.r.t.
s, i.e. V i ∈ C1,2. With this assumption the proof is shorter than the general
one we stated above, but as Møller (2001) points out ”proving that V i ∈ C1,2

turns out to be rather laborious” [8]. Hence this paper presents the general
proof only and for detailed information about proving statement 5.3.1 with
the special assumption for V i see Møller (2001).

Before obtaining the risk-minimizing trading strategy, the Galtchouk-
Kunita-Watanabe decomposition will be interpreted in the following.

Remark 5.3.2. In (5.3.23) the integral w.r.t. the compensated counting pro-
cess M jk∑

j,k,j 6=k

∫ t

0

νjku dM
jk
u =

∑
j,k,j 6=k

∫ t

0

B−1
u

(
gjku + V k(u, Su)− V j(u, Su)

)
dM jk

u

can be seen as the non-hedgeable part of the insurer’s payment stream A.
Compared with the theory of traditional life insurance the νjku represents the
sum at risk of the reserve of the insurance company. In particular, B−1

u gjku
gives the discounted benefit payment when the policy transitions from state j

to state k at time u. Furthermore, the difference B−1
u

(
V k(u, Su)−V j(u, Su)

)
represents the loss or gain of the actuarial reserve if the state of the policy
changes from state j to state k at time u.

Finally we will apply Theorem 5.2.2 to determine the risk-minimizing
trading strategy and its intrinsic risk process.

Theorem 5.3.3. [8] For the payment process (5.3.20), the unique 0-admissible
risk-minimizing hedging strategy is given by

ϕt = (ξt, ηt) =

(∑
i∈J

I it−ξ
i
t,
∑
i∈J

I itB
−1
t V i(t, St)− S∗t

∑
i∈J

I it−ξ
i
t

)
, (5.3.29)

with the intrinsic risk process Rϕ given by

Rϕ
t =

∑
i∈J

I it

∫ T

t

∑
j,k,j 6=k

E∗
[(
νjku
)2 | Ft

]
pij(t, u)µjku du, (5.3.30)

where ξi and νi were determined in Theorem 5.3.1 and are given by

ξit =
∑
j∈J

∫ T

t

pij(t, u)

(
F j
s (t, St, u) +

∑
k,k 6=j

µjku F
jk
s (t, St, u)

)
du,

νjkt = B−1
t

(
gjkt + V k(t, St)− V j(t, St)

)
.
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Proof. The proof is a direct application of Theorem 5.2.2 together with The-
orem 5.3.1.

For the amount of stocks held in the portfolio at time t, ξt, it follows that

ξt
Theorem 5.2.2

= ξAt
Theorem 5.3.1

=
∑
i∈J

I it−ξ
i
t,

and for the amount of cash at the bank account at time t, ηt, we get

ηt
Theorem 5.2.2

= V ∗t − At − ξAt S∗t
(5.3.22)

=

=At +
∑
i∈J

I itV
i(t, St)B

−1
t − At − ξAt S∗t =

=
∑
i∈J

I itV
i(t, St)B

−1
t − S∗t

∑
i∈J

I it−ξ
i
t.

To get the required expression for the intrinsic risk process use Theorem
5.2.2, the orthogonality of the M jk and the independence between Z and
(B, S)

Rϕ
t =E∗

[(
LAT − LAt

)2

| Ft

]
= E∗

[(∫ T

t

∑
j,k,j 6=k

νjku dM
jk
u

)2

| Ft

]
=

=E∗
[∫ T

t

∑
j,k,j 6=k

(
νjku
)2
d[M jk]u | Ft

]
(5.3.5)

=

=E∗
[∫ T

t

∑
j,k,j 6=k

(
νjku
)2
λjku du | Ft

]
=

=

∫ T

t

∑
j,k,j 6=k

E ∗
[(
νjku
)2 | Ft

]
E∗
[
λjku | Ht

]
du

(5.3.3)
=

=
∑
i∈J

I it

∫ T

t

∑
j,k,j 6=k

E∗
[(
νjku
)2 | Ft

]
pij(t, u)µjku du.

The discounted value process V ϕ corresponding to the risk-minimizing
trading strategy specified in (5.3.29) is given by

V ϕ
t = ξtS

∗
t + ηt =

∑
j∈J

I itB
−1
t V i(t, St),

for all 0 ≤ t ≤ T . Since by (5.3.21) the V i equals the prospective reserve
in state i ∈ J of classical life insurance theory, which is defined as the
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discounted expected value of future benefits less premiums conditioned on
the policy’s state. Therefore, the optimal hedging strategy ϕ is defined such
that its value V ϕ equals the prospective reserve at any time t, which makes
the concept of risk-minimization very natural.

5.3.3 Examples

We conclude this chapter by discussing two examples presented by Møller
(2001) (Examples 3.7-3.8). Analogously to Section 4.2.2 we work with the
Black-Scholes model (see Example 2.1.3), where we assume constant deter-
ministic interest rate r, drift term α and volatility σ.

(1) First we consider a single term insurance with single premium.
This means that we analyze one insurance contract that pays its benefit
immediately upon death of the insured person, if this happens before
time of maturity T . We already discussed a term insurance in Example
4.3.5 and we will see that with the following assumptions the extended
model will reduce to the simple one and we will derive an optimal
trading strategy in accordance to the one in Example 4.3.5. The only
difference will be the time of payments, since in the simple set-up we
restricted claims to be H-claims only, in the generalized model we allow
benefit payments occurring at any time t ∈ [0, T ].

We define a two-state space by J = {0, 1}, where state 0 represents the
initial state insured person alive and state 1 means insured person dead.
Further, let x be the age of the insured person at time 0 and Tx the time
of death of the insured person or the person’s remaining lifetime after
time 0. Since state 1 (death) is absorbing, the multivariate counting
processes N jk reduces to

N01
t = I{Tx≤t},

and the intensity is given by the deterministic function µ01 = µ. There
are two transition probabilities. The survival probability

p00(t, u) = u−tpx+t = e−
∫ u
t µτdτ for 0 ≤ t ≤ u ≤ T,

which gives the probability that the insured person survives up to
time u conditioned that she is still alive at time t, and the proba-
bility of death, which equals the complementary probability of p00, i.e.
p01 = u−tqx+t = 1− p00. The payment stream is defined by the benefit
payment function

g01(t, St) = max(St, Ke
δt),
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which pays at least a guarantee Keδt at time of death, and the premium
stream

∆G0
0 = −κ,

where K, δ and κ are some constants. For the expected value of fu-
ture benefit payments, the Black-Scholes pricing formula for European
options (see (4.2.2) Example (2) Theorem 4.2.7) gives

F 01(t, St, u) =E∗
[
e−r(u−t)

(
Keδu + (Su −Keδu)+

)
| Ft
]

=

=Keδue−r(u−t) + StΦ(d
(u,t)
+ )−Keδue−r(u−t)Φ(d

(u,t)
− ) =

=Keδue−r(u−t)Φ(−d(u,t)
− ) + StΦ(d

(u,t)
+ ),

where

d
(u,t)
± =

log( St
Keδu

) + (r ± 1
2
σ2)(u− t)

σ
√
u− t

,

and Φ denotes the distribution function of a standard-normal dis-
tributed random variable. Applying Theorem 5.3.3 we obtain the risk-
minimizing trading strategy

ξt =
∑
i∈J

I it−ξ
i
t =

=
∑
i∈J

I it−
∑
j∈J

∫ T

t

pij(t, u)

(
F j
s (t, St, u) +

∑
k,k 6=j

µjku F
jk
s (t, St, u)

)
du =

=I{Tx≥t}

∫ T

t

p00(t, u)µuΦ(d
(u,t)
+ )du,

ηt =
∑
i∈J

I itB
−1
t V i(t, St)− S∗t

∑
i∈J

I it−ξ
i
t =

=
∑
i∈J

I itB
−1
t

[∑
j∈J

∫ T

t

pij(t, u)

(
F j(t, St, u) +

∑
k,k 6=j

µjku F
jk(t, St, u)

)
du

]

− S∗t I{Tx≥t}
∫ T

t

p00(t, u)µuΦ(d
(u,t)
+ )du =
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=I{Tx>t}

∫ T

t

p00(t, u)µu

(
Ke−(r−δ)uΦ(−d(u,t)

− ) + S∗t Φ(d
(u,t)
+ )

)
du

− S∗t I{Tx≥t}
∫ T

t

p00(t, u)µuΦ(d
(u,t)
+ )du =

=I{Tx>t}

∫ T

t

p00(t, u)µuKe
−(r−δ)uΦ(−d(u,t)

− )du

− S∗t I{Tx=t}

∫ T

t

p00(t, u)µuΦ(d
(u,t)
+ )du.

Even though the optimal strategy ϕ does not depend on the amount
of the single premium κ, the initial cost is influenced by κ:

Cϕ
0 =V ϕ

0 − κ = ξ0S
∗
0 + η0 − κ =

=

∫ T

0

p00(0, u)µuΦ(d
(u,0)
+ )du

+

∫ T

0

p00(0, u)µuKe
−(r−δ)uΦ(−d(u,0)

− )du− κ =

=

∫ T

0

p00(0, u)µuF
01(0, S0, u)du− κ.

Therefore, we obtain a fair market price for the term insurance contract
given by the single premium

κ =

∫ T

0

p00(0, u)µuF
01(0, S0, u)du.

(2) We extend Example (1) by discussing an insurance portfolio of n term
insurance contracts with the same contractual terms as in (1). Fur-
thermore, we assume the remaining lifetimes Ti to be i.i.d. and use
a common hazard rate function µ. To describe a portfolio of n con-
tracts with our present model, we need to define the state space as
J = {0, 1..., n}, where state i ∈ J represents the state of the portfolio
if exactly i insured persons having died. Then the transition rates can
be written as

λikt = I itI{k=i+1}(n− i)µt,

for i, k ∈ {0, 1, ..., n − 1} and the probability for switching from one
state to another between time points u and t are given by

pii(t, u) = e−
∫ u
t (n−i)µτdτ ,
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pik = 0 for i > k ∈ {0, 1, ..., n− 1} and pik for i < k ∈ {0, 1, ..., n− 1}
determined by Kolmogorov’s backward differential equation (5.3.7). We
can again use F 01 from (1) and obtain for the risk-minimizing strategy
for hedging the whole insurance portfolio

ξt =
∑
i∈J

I it−ξ
i
t =

=
∑
i∈J

I it−
∑
j∈J

∫ T

t

pij(t, u)

(
F j
s (t, St, u) +

∑
k,k 6=j

µjku F
jk
s (t, St, u)

)
du =

=

∫ T

t

n∑
j=Zt−

pZt−j(t, u)(n− j)µuΦ(d
(u,t)
+ )du,

ηt =
∑
i∈J

I itB
−1
t V i(t, St)− S∗t

∑
i∈J

I it−ξ
i
t =

=
∑
i∈J

I itB
−1
t

[∑
j∈J

∫ T

t

pij(t, u)

(
F j(t, St, u) +

∑
k,k 6=j

µjku F
jk(t, St, u)

)
du

]

− S∗t
∫ T

t

n∑
j=Zt−

pZt−j(t, u)(n− j)µuΦ(d
(u,t)
+ )du =

=

∫ T

t

n∑
j=Zt−

pZt−j(t, u)(n− j)µue−rt
(
Keδue−r(u−t)Φ(−d(u,t)

− ) + StΦ(d
(u,t)
+ )

)
du

− S∗t
∫ T

t

n∑
j=Zt−

pZt−j(t, u)(n− j)µuΦ(d
(u,t)
+ )du.

To reduce the terms in the strategy, note the following property of the
Markov process Z: Since we assumed the remaining lifetimes of the
insured persons to be i.i.d. with common hazard rate function µ, the

conditional distribution of (n−Zu) given Zt is Bin
(

(n−Zt), e−
∫ u
t µτdτ

)
distributed, for 0 ≤ t ≤ u ≤ T . This implies

n∑
j=Zt−

pZt−j(t, u)(n− j) = E∗
[
(n− Zu) | Zt

]
= (n− Zt)e−

∫ u
t µτdτ ,
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and with this ϕ reduces to

ξt =(n− Zt−)e−
∫ u
t µτdτ

∫ T

t

µuΦ(d
(u,t)
+ )du,

ηt =(n− Zt)
∫ T

t

e−
∫ u
t µτdτµuKe

−(r−δ)uΦ(−d(u,t)
− )du−

−∆ZtS
∗
t

∫ T

t

e−
∫ u
t µτdτµuΦ(d

(u,t)
+ )du.



Chapter 6

Numeric example

This thesis will be completed by the presentation of some numeric results
according to the simple model of Chapter 4. We will analyze the portfolio
consisting of pure endowment insurance contracts.

Financial model:
The financial world is simulated by a Black-Scholes model with risk-free
interest rate r = 0.03 and initial stock and bond prices, S0 = 1 and B0 = 1,
respectively. We specify a time horizon with starting point 0 and maturity
T and furthermore define a number of intervals n, that divide the observed
period [0, T ] into n parts of the same length ∆t = T

n
. Then the vector of

bond prices B is given by

Bi = er∗i∆t for i ∈ {0, 1, ..., n}.

For simulating the stock prices at every point of the mesh of the partition,
we need to simulate n i.i.d. standard normal distributed random variables,

i.e., zi
i.i.d∼ N (0, 1) for i ∈ {0, 1, ..., n} and obtain one path of the stock price

under the equivalent martingale measure P∗ as

Si = exp

((
r − σ2

2

)
i∆t+

i∑
k=1

zi
√
σ2∆t

)
, for i ∈ {0, 1, ..., n}.

Since we want to apply Monte Carlo simulation, we need to simulate not
only one path of stock prices but many different possibilities. The num-
ber of paths is specified by m. Hence we get a matrix of stock prices
S = (Sji )i∈{0,1,...,n},j∈{0,1,...,m}.

Mortality model:
We model the mortality of the insured persons by the Gompertz-Makeham

75
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law [13], which is specified by the hazard rate function

µx+i∆t = A+Bcx+i∆t, for i ∈ {0, 1, ..., n}.

Because of (4.1.1) the i∆t-year survival probability of an x-year old is given
by

1− F (i∆t) := i∆tpx = exp

(
− At− Bcx+i∆t

ln(Bc)
+

Bcx

ln(Bc)

)
, for i ∈ {0, 1, ..., n},

where the last term in the sum guarantees that the 0-year survival probability
equals 1. Furthermore, the counting process Ni∆t which gives the number of
deaths up to time i∆t is modelled by

Nx+i∆t =
lx∑
k=1

I{Tk≤i∆t}, for i ∈ {0, 1, ..., n},

with Tk
i.i.d∼ F . The random variables Tk give the time of death of the

x-year old insured persons and are sampled with the help of the inversion
method, i.e., for every path j ∈ {1, ...,m} we sample lx independent standard

uniformly distributed random variables (Uk
i.i.d∼ U(0, 1) for k ∈ {1, ..., lx}) and

use the well known fact that

Tk = F−1(Uk)⇒ Tk ∼ F, for k ∈ {0, 1, ..., lx}.

Pure endowment insurance:
We want to obtain the optimal risk-minimizing hedging strategy for an in-
surer selling unit-linked endowment contracts with a guarantee K. The pay-
ment stream for this sort of contract is specified by g(s) = max(s,K), where
K gives the non-negative constant guarantee. In Example (2) in Section
4.2.2 we used the fact that the benefit payment function g equals the pay-
ment stream of an European Call Option with strike price K and so with the
help of the Black-Scholes’ pricing formula, (see Theorem 4.2.7) we obtain

F g(i∆t, Si∆t) = Ke−r(T−i∆t)Φ(−d−) + Si∆tΦ(d+), for i ∈ {0, 1, ..., n}.

Furthermore, using Monte Carlo simulations we can directly calculate the
number of stocks, ξ, and bonds, η, in the insurer’s risk-minimizing portfolio
at all points of the grid, which splits the time horizon,

ξi∆t =(lx −N(i∆t)−)T−i∆tpx+i∆tΦ(d+),

ηi∆t =(lx −Ni∆t)T−i∆tpx+i∆tKe
−rTΦ(−d−)−∆Ni∆tT−i∆tpx+i∆tΦ(d+)S∗i∆t
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for i ∈ {0, 1, ..., n}.
To calculate the intrinsic value process we again use Monte Carlo simu-

lation and

Vi∆t = (lx −Ni∆t)T−i∆tpx+i∆tB
−1
t F g(i∆t, Si∆t), for i ∈ {0, 1, ..., n},

(6.0.1)

Finally, we can give explicit numeric results for the initial intrinsic risk by
using

Rϕ
0 = lxTpx

∫ T

0

E∗
[(
− e−ruF g(u, Su)

)2
]
T−upx+uµx+udu =

= lxTpx

n−1∑
i=0

E∗
[(
− e−r∗i∆tF g(i∆t, Si∆t)

)2
]
T−i∆tpx+i∆tµx+i∆t∆t,

for i ∈ {0, 1, ..., n}, where we apply numeric integration and Monte Carlo
simulation.

In the last part, some numeric results are presented. If not otherwise
mentioned, all of them are based on the following parameters:

• time horizon T = 20,

• number of time intervals n = 100 and number of simulated paths m =
1000,

• initial age of the policy holders x = 30,

• starting number of policy holders lx = 100,

• volatility σ = 0.25,

• guarantee K = 1.1 and

• mortality parameters A = 0.05, B = 0.0009 and c = 1.01904.

Note Table 6.1, which gives the legend for all following figures.

– Number of bonds
– Number of stocks

Table 6.1: Legend
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Figure 6.1: Number of deaths, one path

To give a first idea about the step function N and the number of stocks
and bonds held in the portfolio ϕ = (ξ, η), we plot one path of the m × lx-
dimensional matrix N and one path of the portfolio ϕ, see Figure 6.1 and
Figure 6.2.
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Figure 6.2: Portfolio, one path

Now we want to interpret the results by varying the parameters of the
model. Therefore, we analyze the variation of single parameters only, in order
to understand their influence on the results.

6.1 Variation of the number of paths m

Is 1000 a reasonable number of paths to obtain stable results from Monte
Carlo simulation? To answer this question consider Figure (6.3). The aver-
age (mean) financial portfolio, consisting of ξ number of stocks (black line)
and η number of bonds (red line) behaves nearly the same in all three con-
sidered situations. One can only observe a slight smoothing of the lines when
the number of simulations is increased. Generally, we see that the average
number of bonds in the optimal financial portfolio stays almost constant over
time and the average number of stocks decreases slowly.

Furthermore, in Table 6.2 the influence of the number of paths on the
initial intrinsic value, V ∗0 , and the initial intrinsic risk, Rϕ

0 is analyzed. We
can see, that the initial fair price of the insurance portfolio of pure endowment
contracts, V ∗0 , does not depend on the number of paths, which corresponds
with expression (6.0.1) and the fact that F g(0, S0) is independent of the future
stock price. In contrast to the value of the portfolio, the initial intrinsic risk,
Rϕ

0 , which the insurer has to face when selling pure endowment insurance
contracts, varies significantly with changing the number of simulations.
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Figure 6.3: Variation of the number of paths m; Portfolio

m = 100 V ∗0 = 51.58 Rϕ
0 = 59.18

m = 1000 V ∗0 = 51.58 Rϕ
0 = 116.98

m = 10000 V ∗0 = 51.58 Rϕ
0 = 94.70

Table 6.2: Variation of the number of paths m; Value and risk

6.2 Variation of the volatility σ

Next we discuss the behaviour of the financial portfolio, when varying the
volatility of the stock price process in the Black-Scholes model. Figure 6.4
shows, that for all considered volatilities the optimal financial portfolios be-
have very similar, meaning that the average number of bonds stays almost
constant and the average number of stocks decreases over time. One can
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observe that the optimal number of bonds increases, when the volatility of
the stock increases, i.e., if the stock gets more risky the insurer should have
more bonds in the portfolio to minimize the risk. Additionally, the number
of stocks decreases when the volatility of the risky asset increases.

Figure 6.4: Variation of the volatility σ; Portfolio

Table 6.3 shows the influence of the variation of the financial market’s
volatility on the initial intrinsic value and the initial intrinsic risk. We can
see that the insurer’s risk at time t = 0 depends heavily on the uncertainty
of the financial market. If the volatility of the stock increases the initial
risk increases disproportionately high. The market price of the insurance
portfolio also increases with growing volatility, but is less affected by the
variation of the volatility then the initial risk.
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σ = 0.1 V ∗0 = 45.65 Rϕ
0 = 75.17

σ = 0.25 V ∗0 = 51.58 Rϕ
0 = 116.98

σ = 0.35 V ∗0 = 53.75 Rϕ
0 = 162.48

Table 6.3: Variation of the volatility σ; Value and risk

6.3 Variation of the mortality parameter c

Let us analyze the behaviour of the optimal trading strategy when the mor-
tality parameter c changes. Figure 6.5 shows the number of stocks and bonds
held at time t in accordance with the risk-minimizing trading strategy. The
three situations give no significant difference. But when observing the initial
intrinsic value and the initial intrinsic risk, see Table 6.4, we see that the
initial intrinsic risk, Rϕ

0 , as well as the initial fair price of the insurance port-
folio, V ∗0 , increase when the hazard rate function increases. Note, that the
risk reacts more sensitive in changing the mortality than the intrinsic value.

c = 1 V ∗0 = 51.57 Rϕ
0 = 114.27

c = 1.01904 V ∗0 = 51.58 Rϕ
0 = 116.98

c = 1.2 V ∗0 = 55.59 Rϕ
0 = 721.54

Table 6.4: Variation of the mortality c; Value and risk

6.4 Variation of the time of maturity T

Finally we will see that the time of maturity has a big influence on the
optimal financial portfolio as well as on the intrinsic value and the intrinsic
risk. As Figure 6.6 shows, the average number of bonds and stocks in the risk-
minimizing financial portfolio decreases when the time of maturity increases.
This means, that if the insured persons need to survive a longer period of
time to obtain their sum insured (T increases), the insurer is able to hold
a small financial portfolio. In contrast to the situation when the time of
maturity is very small, i.e., the insured persons will survive the end of the
contract with a high probability. Then the insurer has to hold a big number
of stocks and bonds in the optimal financial portfolio to ensure that all policy
holders get their sum insured at the end of the contract.

Furthermore, the intrinsic value and the intrinsic risk also depend heavily
on the time of maturity of the contracts. If T is small the insurer has to invest
a lot of money in the financial portfolio to hedge the risk arising from the
insurance contracts. Therefore, the initial fair price of the insurance portfolio
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Figure 6.5: Variation of the mortality c; Portfolio

is higher than the price of the same portfolio when the time of maturity is
larger. Finally, as one would expect, the intrinsic risk of the insurer increases
with increasing time of maturity.

T = 5 V ∗0 = 107.98 Rϕ
0 = 38.71

T = 20 V ∗0 = 51.58 Rϕ
0 = 116.98

T = 40 V ∗0 = 17.17 Rϕ
0 = 385.68

Table 6.5: Variation of the time of maturity T ; Value and risk
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Figure 6.6: Variation of the time of maturity T ; Portfolio



Chapter 7

Conclusion

The aim of this thesis was to find the risk-minimizing trading strategy to
hedge the insurer’s risk, that arises from selling unit-linked life insurance
contracts. Therefore, we used Föllmer and Sondermann’s (1986) theory of
risk-minimization in incomplete markets, which is to minimize the condi-
tional expected value of the squared difference of the cost process. Based on
Møller (1998) we found the risk-minimizing hedging strategies for unit-linked
insurance contracts with claims at maturity by directly using Föllmer and
Sondermann’s (1986) results. For this simple claims we showed that the risk
could even be eliminated by extending the financial market with a reinsur-
ance possibility. Some numeric results round up the theory of the simple
model where we discussed the influence of single model parameters on the
initial risk, the initial value and the financial portfolio. The second part of the
thesis was based on a paper by Møller (2001). Föllmer and Sondermann’s
(1986) theory of risk-minimization was extended to claims payable at any
time in the contract’s duration. Using this generalization we were able to
find risk-minimizing trading strategies for life insurance contracts specified
by arbitrary payment streams.

In the course of the thesis, there were a lot of rather strict assumptions
made. Hence, possible extensions of the obtained results could be generaliza-
tions of the financial model, e.g. stochastic interest rates or transaction costs.
Another disadvantage is that we worked with continuous trading possibilities,
but in real life a trading strategy can not be shifted infinitely often.
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Appendix A

Solution of SDE for the
stockprice

In Chapter 2 the financial market consisting of two assets, a stock and a bond,
is introduced, where the price of the stock St is driven by the dynamics

dSt = α(t, St)Stdt+ σ(t, St)StdWt (A.0.1)

with S0 > 0. Øksendal (2013) proved that a solution for (A.0.1) exists if one
assumes a Lipschitz and a linear boundary condition for the functions σ and
α. He considers the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt (A.0.2)

with b(t, x) ∈ R and σ(t, x) ∈ R and a Brownian motion B and proved the
following existence and uniqueness theorem

Theorem A.0.1. [11] Let T > 0 and b(., .) : [0, T ] × Rn → Rn, σ(., .) :
[0, T ]× Rn → Rn×m be measurable functions satisfying

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|), x ∈ Rn, t ∈ [0, T ]

for some constant C, (where |σ|2 =
∑
|σ2
ij) and such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|, x, y ∈ Rn, t ∈ [0, T ]

for some constant D. Let Z be a random variable which is independent of
the σ−algebra F (m)

∞ generated by Bs(.), s ≥ 0 and such that

E
[
|Z|2

]
<∞.
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Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, 0 ≤ t ≤ T,X0 = Z

has the unique t-continuous solution Xt(ω) with the property that Xt(ω) is
adapted to the filtration FZt generated by Z and Bs(.) for s ≤ t and

E
[∫ t

0

|Xt|2dt
]
<∞.

Obviously our original problem (A.0.1) can be written in the form of
(A.0.2) and therefore owns a unique, path-wise continuous solution with ex-
isting variance. For the proof of the above theorem and more information on
this topic see Øksendal (2013, Chapter 5).
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