
Markus Hobl, B.Sc.

Behaviour-driven development of a 3D
programming environment

Master’s Thesis

Graz University of Technology

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Supervisor: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Graz, April 2018

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Acknowledgments

Ich möchte mich zuallererst bei meinen Eltern Doris und Franz für die
Unterstützung in all den Jahren ganz herzlich bedanken.

Desweiteren möchte ich mich bei meiner Schwester Claudia bedanken,
welche meine Masterarbeit Korrektur gelesen hat und mir immer ein großes
Vorbild war.

Ich möchte mich auch bei meiner Freundin Klaudia für die Unterstützung
in den letzten Jahren bedanken.

Abschließend möchte ich mich noch bei Wolfgang Slany und dem Catrobat
Team bedanken, welche mir ein unvergessliches Erlebnis ermöglicht haben
in einem tollen Team und an einem sehr interessanten Produkt mitzuar-
beiten.

v

Abstract

Behaviour-driven development (BDD) is a software development approach
which tries to avoid misleading communication between software devel-
opers and stakeholders. It aims to support software development teams to
define test cases as such that stakeholders and developers have a common
understanding of what these test cases should test/do. As a result, BDD
supports software development teams to increase the quality of their soft-
ware. For implementing BDD concepts in software projects, development
teams can make use of different tools. Cucumber which is an easy to use
BDD tool to test and document software.
Pocket code, the Android implementation of the visual programming lan-
guage Catrobat, presents the results of the program execution on a 2-
dimensional stage. Catroid3D, is based on Pocket Code, but adds a third
dimension for visual programming in a 3D environment, and hence enables
the user to make more complex and realistic projects.
Catroid3D is currently in its early alpha stage. It has implemented a 3D
engine to render 3D models and an easy user interface to move and rotate
the camera to build a simple 3D environment with a preset of included 3D
models. This work describes the development steps which have been tested
and documented with BDD and Cucumber and provides an outlook on
potential next implementation steps in Catroid3D.

vii

Zusammenfassung

Behaviour-driven development (BDD) ist ein Softwareentwicklungsansatz,
der versucht irreführende Kommunikation zwischen Softwareentwicklern
und deren Interessensgruppen zu vermeiden. Die Konzepte von BDD sollen
Softwareentwicklungsteams helfen Testfälle zu definieren, welche von allen
Projektbeteiligen verstanden werden können und diese dadurch wissen,
was diese Testfälle tun sollten. BDD soll Softwareentwicklungsteams helfen
die Qualität ihrer Software zu steigern. Es gibt verschiedene Werkzeuge um
die Konzepte von BDD in Softwareprojekten umzusetzen. Cucumber ist ein
einfach zu handhabendes Werkzeug für BDD um Software zu testen und
zu dokumentieren.
Pocket Code ist eine Android-Implementierung der visuellen Programmier-
sprache Catrobat. Pocket Code stellt die Ergebnisse der Ausführung des
Programms auf einer 2-dimensionalen Bühne dar. Catroid3D basiert auf
Pocket Code, aber es fügt eine dritte Dimension hinzu und ermöglicht damit
das visuelle Programmieren in einer 3D Umgebung. Es ermöglicht dem
Benutzer komplexere und realistischere Projekte zu bauen.
Catroid3D ist aktuell in einer frühen Alphaphase. Die 3D Grafik-Engine,
um 3D Modelle zu rendern, wurde implementiert und eine einfache Be-
nutzersteuerung wurde hinzugefügt um die Kamera zu bewegen und zu
rotieren und um eine einfache 3D Umgebung aus inkludierten 3D Mod-
ellen zu erstellen. Diese Arbeit beschreibt die Entwicklungsschritte, welche
durch BDD und Cucumber getestet und dokumentiert wurden und soll
einen Ausblick auf die nächsten Schritte in der Entwicklung von Catroid3D
geben.

ix

Contents

Abstract vii

1. Introduction 1

2. Behavior Driven Development 3
2.1. Where it all began . 3

2.1.1. Test-Driven Development 3

2.1.2. Acceptance Test-Driven Development 4

2.2. BDD - A new software development approach 5

2.2.1. Traditional software development projects 5

2.2.2. The solution is behavior driven development 7

2.3. Tools for implementing BDD 9

2.3.1. Cucumber . 9

2.3.2. JBehave . 11

2.3.3. RSpec . 12

2.3.4. Specflow . 13

3. Visual 3D Programming Environments 15
3.1. Alice . 15

3.2. Microsoft Kodu . 17

3.3. Starlogo Nova . 18

3.4. Beetle Blocks . 20

3.5. Superpowers . 21

3.6. Catroid3D . 23

3.6.1. Catroid . 23

3.6.2. What is the intention behind Catroid3D? 25

3.6.3. The current version of Catroid3D in detail 25

xi

Contents

4. Specification by example of a 3D environment 29
4.1. Defining the problem . 29

4.1.1. User interface testing with Robotium and Cucumber . 29

4.1.2. Using LibGDX graphic engine for the complete ren-
dering of Catroid3D . 29

4.2. Testing user interface elements 30

4.2.1. Defining the main menu 31

4.2.2. Defining the project build screen 33

4.3. Testing correct camera behaviour 35

4.3.1. Defining camera rotation 35

4.3.2. Defining camera moving 36

4.3.3. Defining camera zooming 38

4.4. Interacting with 3D objects . 39

4.4.1. Adding new objects to the environment 40

4.4.2. Removing objects from the environment 42

4.4.3. Moving objects within the environment 43

5. Future work 49
5.1. Adopting game logic from Pocket Code from 2D space into

3D space . 49

5.1.1. Control bricks . 50

5.1.2. Motion bricks . 51

5.1.3. Sound, look and data bricks 54

5.2. Executing bricks and showing the result - the stage 55

5.3. Building a 3D model database 56

5.3.1. Finding or creating 3D models 56

5.3.2. Animating 3D models 58

5.4. Persistent save function and project sharing 61

5.5. Adding new objects and defining object paths 62

5.6. Shaping the world . 64

5.6.1. Block-based shapes . 64

5.6.2. Model shapes . 65

6. Conclusion 69

A. Acronyms 71

xii

Contents

Bibliography 73

xiii

List of Figures

2.1. Waterfall model, adapted from Royce [20] 6

3.1. Alice 3: Edit scene screen . 15

3.2. Alice 3: Edit code screen . 16

3.3. KGL: Emtpy world view . 17

3.4. Kodu Game Lab: Definition of a path 18

3.5. Starlogo Nova script editor . 19

3.6. Starlogo Nova scene view . 20

3.7. Beetle Blocks Editor . 21

3.8. Superpowers editor . 22

3.9. Catroid - A visual 2D programming environment 24

3.10. Main menu screen or splash screen 25

3.11. World view or project build screen 26

3.12. Add object dialog box . 27

4.1. Project build screen menu buttons: (a) move-camera button,
(b) move-object button, (c) add-or-remove-ground button, (d)
add-object-button . 31

4.2. Currently available 3D models: (a) palm tree, (b) tropical
plant with long leafs, (c) tropical plant with thick leafs, (d)
wood barrel . 39

4.3. Splitted add-object window . 40

4.4. Object dialog box . 43

5.1. ‘When project started‘ brick . 50

5.2. ‘When tapped‘ brick . 50

5.3. Flow control bricks series 1 . 51

5.4. Flow control bricks series 2 . 51

5.5. Flow control bricks series 3 . 51

xv

List of Figures

5.6. Motion control bricks series 1 52

5.7. Motion control bricks series 2 52

5.8. Motion control bricks series 3 52

5.9. Motion control bricks series 4 53

5.10. Motion control bricks series 5 53

5.11. Motion control bricks series 6 54

5.12. Motion control bricks series 7 54

5.13. Motion control bricks series 8 54

5.14. Example for sound, look and data bricks 55

5.15. ‘MoveAndOrientTo‘ Procedures in Alice3 56

5.16. Scanning and rendering a wax pig with 123D Catch 57

5.17. Open source software Blender on Android device 58

5.18. How skeleton building could look like in Pocket Paint 3D . . 60

5.19. Possible start and end animation bricks 61

5.20. Catrobat website [25] for project sharing 62

5.21. KGL screen for adding a new object 63

5.22. KGL functions for creating paths for objects 64

5.23. KGL functions for editing the ground 65

5.24. KGL functions for defining areas with water 66

5.25. Alice 3 - Defining model shapes 67

xvi

Listings

2.1. JUnit sample test class . 8

2.2. Agiledox conversion of the JUnit example 8

2.3. Cucumber example feature . 10

2.4. Cucumber step definitions in Java 12

4.1. Main menu feature file . 31

4.2. Step definition of the ‘I am in the main menu’ step 32

4.3. Step definition of the ‘I press on the splash screen‘ step 32

4.4. Step definition of the ‘I should see the world‘ step 33

4.5. Project build screen feature - background definition 34

4.6. Project build screen feature - add-or-remove-ground button
definition . 34

4.7. Step definition of the ‘The add-or-remove-ground button
should be checked‘ step . 35

4.8. Step definition of the ‘The add-ground button should be
visible‘ step . 35

4.9. Camera rotation feature - Swiping my finger to the left 36

4.10. Step definitions of both steps of the camera rotation feature . 37

4.11. Camera moving feature - Swiping my finger to the left 38

4.12. Camera zooming feature - Zooming in 38

4.13. Step definition of the ‘I zoom in with my fingers‘ step of the
camera zooming feature‘ . 39

4.14. Add object feature - Adding object from ground objects menu 41

4.15. Add object feature - Adding object from miscellaneous objects
menu . 42

4.16. Removing object feature - Remove object from the world view 42

4.17. Step definition of the ‘I long click on model‘ step 44

4.18. Moving object feature - Moving object onto the ground 44

4.19. Step definition of the ‘When I drag the barrel to the left‘ step 45

xvii

Listings

4.20. Moving object feature - Moving object off the ground 45

4.21. Step definition of the ‘And the barrel should fall down be-
cause of gravity‘ step . 46

4.22. Object collision feature - Dynamic object collides with another
dynamic object . 46

4.23. Step definition of the both steps of the ‘Dynamic object with
mass collides with another dynamic object with mass‘ scenario 47

4.24. Object collision feature - Dynamic object collides with static
object . 48

xviii

1. Introduction

The current software life cycles and update rates have motivated software
engineers to rethink the development process of software. Especially the fast-
growing gaming industry has been driving this process. The main challenge
for developers evolves around testing software as a main criteria for deliv-
iering functioning software, while also delivering the right software. The
second point is based on a working relationship and interaction between soft-
ware developers and business stakeholders. Behavior-Driven-Development
is an approach to combine the concept of Test-Driven-Development with
the requirements of the business stakeholders and make everybody in the
team speak the same language, also called ubiquitous language.

Catrobat is a visual programming language which is developed parallel for
different operating systems. The idea behind Catrobat is to omit the pitfalls
in which a novice developer can fall, if a standard programming language
is used. Catrobat uses a stage, where the user can interact with different
objects, costumes and sounds. This stage is currently a 2-dimensional space.
Catroid3D is a 3-dimensional Android implementation of Catrobat which
will be focused in the next chapters.
This master thesis is titled Specification by example of a 3D environment and
focuses on the behaviour-driven development process of a 3D version of
the Pocket Code project. The first chapter discusses different concepts
of Test-Driven-Development and will have a view on Behavior-Driven-
Development and the tools for implementing BDD. The second chapter
gives a brief overview of the different 3D programming environments and
especially the Catrobat and Catroid3D project. The third chapter presents
the implementation of BDD with Cucumber for the Catroid3D project. The
fourth chapter outlines possible future work and the conclusions are drawn
in the final chapter.

1

2. Behavior Driven Development

2.1. Where it all began

In the early 1970s Royce [20] described a sequential process of software
development later known as the waterfall model. The concept was developed
to define requirements and design the software, to implement all features
defined before and to test the written code. It became clear quickly that the
larger the software project, the more time is needed to test the implemented
software. A great amount of projects, using the waterfall model, exceeded
their deadlines or budgets or both and were therefore canceled. Kent Beck
was searching for another process to develop software in time and with a
high amount of quality. The findings of his research were described in his
book Extreme Programming Explained: Embrace Change [2], a process that can
be summerized within the agile software development area.

2.1.1. Test-Driven Development

The Extreme Programming (XP) development cycle, explained by Beck,
contains several processes which are used to produce the ideal outcome.
Test-driven development (TDD) is one of these processes and follows some
simple steps to test software in a more efficient way. To understand the
basics of TDD it is important to understand the basics of XP.
The XP development cycle runs in iterations which will last one up to
three weeks depending on the development team. The starting point of an
iteration is a meeting, called planning game, where all members get together
and discuss the work that has to be conducted in the next iteration. If a new
feature should be added to the current development status the team will

3

2. Behavior Driven Development

split up the feature into smaller tasks which are manageable in one iteration.
Then a group consisting of two programmers takes one task and starts to
work on this task based on a test-driven development approach. Beck [3]
described a five step cycle to implement TDD:

1. Add a test case
2. Run all test cases and see if one fails
3. Write the code to implement the currently added test
4. Run all tests again
5. Refactor the tests

Firstly a test case will be added to test one functionality of a task. Secondly
all test cases will be executed and it is clear that the test case which is not yet
implemented will fail, but it is an important purpose that this test case fails
before any lines of code are written. Now the time has come to implement
the failing test and rerun all test cases to see that the just created test goes
well and no other test case is failing because of a possible code break with
the new written lines of code. If all tests are passing, the last thing to do is
to refactor all tests, hence if an old test case is now irrelevant then update
the test or delete it completely.

2.1.2. Acceptance Test-Driven Development

Test-driven development focuses on unit tests, meaning that stakeholders of
a software project, for example the customer, the project leader or other non-
developing project members, understand that the piece of code performs the
required function. However, they do not know if the complete process deliv-
ers the full required outcome. For that reason another software development
process, the so called acceptance test-driven development (ATDD), has been
defined. In case of ATDD the stakeholders do write acceptance criteria for a
new functionality which should be implemented, but the cycle is the same
as in the TDD process. The acceptance criterion is defined before one line
of code has been written. After the implementation the stakeholders and
testers can verify by means of the acceptance test, if the piece of code does
what the stakeholders wanted it to do.

4

2.2. BDD - A new software development approach

2.2. BDD - A new software development
approach

Why was there a need for a new development process? Dan North, the
founder of behavior-driven development (BDD), has worked on several
software development projects, where he used agile software development
practices such as TDD. There was clear consensus within developers’ key
questions, independently of the project.

“ Programmers wanted to know where to start, what to test and what not to
test, how much to test in one go, what to call their tests, and how to understand

why a test fails. [16] ”
However before this quote will be cut into pieces and discussed in de-
tail, it is very important to understand how traditional projects work and
why they are failing, as outlined by Chelimsky et al. [4]. The next section
will focus on how traditional projects work and why are some of them
failing.

2.2.1. Traditional software development projects

Traditional software development projects follow the waterfall model, de-
scribed by Royce [20]. Figure 2.1 illustrates the waterfall model where the
development process flows top down like a waterfall. At first business stake-
holders define requirements for a problem and how it should be solved
without any technical details. Secondly the design phase starts and the
project team tries to find the right software design for the recently defined
requirements. If the design of the software is finished, the development
team starts to implement the new software. After the implementation phase
the team for testing the software begins to verify if the developed software
meets the requirements of the first phase. When all tests have been success-
fully finished, the software product will be deployed and the maintenance
phase begins. During the maintenance phase small bugs will be fixed and
updates will be released over a period of time.

5

2. Behavior Driven Development

Figure 2.1.: Waterfall model, adapted from Royce [20]

Thus why are many projects
failing if the waterfall model
or an adapted form of this
model is used as develop-
ment process? The years
have shown that the later a
defect is found in the pro-
cess, the more expensive it is
to fix this defect which leads
to the first problem deliver-
ing software too late or over
budget.
The second problem evolves
from misunderstandings be-
tween stakeholders and de-
velopers, e.g. when the team
for testing software detects a
requirement which has not
been met by current imple-
mentation or worse the user
who buys the software, detects such a missing requirement. If it turns out
then that the project team has developed the false software or partially false
software it has to be re-designed, re-implemented and re-tested which will
cost additional time and money.
The third problem comes up when the software design was poorly conceived,
the implementation and testing process runs through and the software will
be deployed. After some years many developers will have left the project
team and it will be very difficult for new software engineers to make changes
in the source code, thus the software is costly to maintain.

6

2.2. BDD - A new software development approach

2.2.2. The solution is behavior driven development

The problems described in the section before occur mostly since software
development teams and also agile software development teams which have
already successfully practiced the XP techniques, misunderstand business
stakeholders’ requirements. Hence developers implement features which
are not relevant for the business stakeholders or, more worse, they do not
implement the features which are defined by the business stakeholders.
In the next section the quotation of North [16] will be discussed based on
the example of an online shop.

Where to start

A common problem for developers is that they do not know where they
should start with the development. The business stakeholders deliver for-
mal descriptions of features which should be implemented, the so called
acceptance criteria, for example an online shop checkout. That means ac-
ceptance criteria have to be split up into several features which have to be
implemented by the developers, for instance the user of the online shop can
pay with credit card. The developer takes one feature which is missing in
the current version of the project and starts developing. As it should be best
practiced in the concept of TDD, firstly the developer writes a test case for
the feature and secondly it will be implemented by the developer.

What to call a test

The developer knows the feature which should be implemented. If the
project context and the feature are wrapped together, it can be said, the fea-
ture should do something in the project context, as in the current example,
it should be possible to pay with a credit card. Now the developer has the
name of the test case and can write the test case implementation as it can
be seen in Listing 2.1.
In the JUnit test framework classes and functions always contain the word
test in their names, thus the names were often hard to read and to under-
stand what the test does. Stevenson [24] developed a simple tool, called

7

2. Behavior Driven Development

1 public class OnlineShopCheckoutTest extends TestCase {

2

3 public void testShouldPayItemWithCreditCard () {

4 }

5

6 public void testShouldPayItemWithPayPal () {

7 }

8 }

Listing 2.1: JUnit sample test class

agiledox which reads JUnit tests and prints out the names of the classes and
functions as written text. Additionally it strips away the word test from every
phrase. Hence the outcome of agiledox for Listing 2.1 would be something
like the following lines in Listing 2.2. These lines are much easier to read and
to understand what this test case should test. This conversion makes test
cases readable for everyone, hence business stakeholders can also read the
test cases and can counter check if the test cases meet the requirements of
the acceptance criteria. The project team has now one ubiquitous language
as discussed by Evans [8].

1 Online Shop Checkout

2 - should pay item with credit card

3 - should pay item with pay pal

Listing 2.2: Agiledox conversion of the JUnit example

What to test and what not to test and how much to test in one go

Every feature which is defined by the business stakeholders and the devel-
opers, needs to be tested. If a feature can not be described in a way which
leads to a sentence similar to ‘feature B should do something‘, then the
feature is too complex and should be split up in several tasks. These tasks
can be implemented together in a sub class, called dependency injection,
meaning that the sub class needs its own test cases for the newly defined
tasks. Nevertheless the sub class should be defined in the same way as

8

2.3. Tools for implementing BDD

before and the feature test case has to ensure the correct behavior of the sub
class.

How to understand why tests fail

There are four reasons, why test cases can fail. First a test case can fail, if the
implementation of the test case is missing. This is the standard process for a
TDD implementation, where the test has to fail first, before the developer
starts to implement the feature. This case is the easiest one, the missing
functionality has to be implemented until the test case passes. Second, if
the developer has introduced a bug into the project, then a test case can
fail and the newly introduced bug needs to be fixed. Thirdly a test case can
fail, if the implementation of the test case has moved to another business
domain of the project, then the test case has to be moved into the same
business domain. Last, if a feature has been obsolete, then a test case can
fail. In this case the test case needs to be deleted which is often a problem
for developers, as they think deleting a test case leads to a bad software
quality.

2.3. Tools for implementing BDD

2.3.1. Cucumber

Cucumber, founded by Aslak Hellesoy, is a development tool to help soft-
ware developers and business stakeholders to communicate with less mis-
understandings and to automatically test acceptance criteria, as described
in Section 2.1.2, against the system. According to Wynne and Hellesoy [27]
it is necessary that developers and business stakeholders are talking about
the same thing. Evans [8] described in his book Domain-driven Design the
need of an ubiquitous language, a language which all project members can
understand whatever their function in the project team is, business stake-
holders and developers can talk on a joint basis. Cucumber provides the
possibility to write acceptance tests in spoken language and directly test it
against the system.

9

2. Behavior Driven Development

Cucumber is a command-line tool which interprets so called feature files.
An example of such a feature file can be seen in Listing 2.3.

1 Feature: Change password

2

3 The password change in the profile menu should be easy

4

5 Scenario: Password successfully changed

6

7 If the user enters the correct old password and enters

8 the new password and repeats it , the user should

9 see a password changed message.

10

11 Given I have chosen to change my password

12 When I enter my old password

13 And I enter my new password

14 And I repeat my new password

15 Then I should see a password changed message

Listing 2.3: Cucumber example feature

Features

Features describe available functions for the user of the software which will
be tested with Cucumber. As in Listing 2.3 Change password is a function
which the user can perform, it is a behavior of the software. The text in line
3 describes the feature in detail. The description of the feature should be
in spoken language, thus every person can understand what this feature is
about. A feature can consist of several scenarios.

Scenarios

Scenarios define different actions which can be performed within the cor-
responding feature. Password successfully changed is an action which can be
executed within the Change password feature. Other scenarios would be Old

10

2.3. Tools for implementing BDD

password is false or Repeated password is false. Every scenario has a detailed
description in spoken language, as it can be seen in Listing 2.3 line 7 - 9

which makes it clear to understand, what this scenario should perform.

Steps

Steps describe what has to be done to fulfill the scenario. Every step is
one execution in Cucumber and can either be true or false. If only one
step fails, the complete scenario fails. In Listing 2.3 line 11 - 15 there are
several blue highlighted phrases such as Given, When, And and Then. These
phrases follow a special syntax which is called Gherkin. Gherkin is a line
based language which can either be read by native persons, for example
business stakeholders or developers, and can also be automatically read
by Cucumber. The Given statement defines a prerequisite for the current
scenario, hence these are the first steps which will be executed. Furthermore
the When statements define what has to be performed to get a result from
the system. Lastly the Then statement is the correct result which should
happen after all steps are executed.

Step definitions

Features, scenarios and steps define a Cucumber test case, however this
test case can currently not be executed until the step definitions will be
defined. The step definitions are the executable statements in the respective
programming language, for example Java or Ruby on Rails as it can be seen
in Listing 2.4. The equivalent Cucumber steps are matched via the @Given,
@When and @Then annotations of the Java methods.

2.3.2. JBehave

JBehave is pure Java implementation of the behavior-driven development
process. Dan North, the founder of BDD, developed a tool which helps to
support the BDD process, as such JBehave was born [17]. North tried to
implement JBehave in a way which makes it self-verifying [16]. JBehave has

11

2. Behavior Driven Development

1 public class ChangePasswordTest extends TestCase {

2

3 @Given("^I have chosen to change my password$")

4 public void i_have_chosen_to_change_my_password () {

5 }

6

7 @When("^I enter my old password$")

8 public void i_enter_my_old_password () {

9 }

10

11 @Then("^I should see a password changed message$")

12 public void i_should_see_a_password_changed_message () {

13 }

14 }

Listing 2.4: Cucumber step definitions in Java

its own syntax, hence files can either be formatted in JBehave syntax or
can be formatted in Gherkin syntax. Furthermore it has the possibility to
integrate it in common Java IDE’s or directly in an Ant project or a Maven
project for a complete build and execution concept.

2.3.3. RSpec

Steven Baker was inspired by Dan North and his idea of BDD and founded
the RSpec project in 2005 as outlined by Chelimsky et al. [4]. RSpec is a BDD
implementation for the programming language Ruby on Rails and currently
available in version 3.x. The difference between RSpec and Cucumber is in
the definition of the behavior. RSpec focuses on the behavior of software
elements which will be directly described in the Ruby code. In contrast
Cucumber defines separate specifications which will then be executed, hence
Cucumber allows to describe the software as a whole.

12

2.3. Tools for implementing BDD

2.3.4. Specflow

Specflow is a .NET implementation of the BDD concepts and is part of the
Cucumber project as it was originally ported from the Cucumber for .NET
project. Specflow can parse Gherkin formatted specifications and can execute
and evaluate the outcomes. Specflow is available for the .NET, Xamarin and
the MONO framework. The reporting tools and some further features, for
instance test execution in Visual Studio or parallel test execution, are only
available in the paid version Specflow+. The company behind Specflow+,
TechTalk, has a lot more projects which fit perfectly together with Specflow,
for example SpecLog which handles your feature backlog.

13

3. Visual 3D Programming
Environments

3.1. Alice

Alice was originally developed by the University of Virginia. In 1997 it has
been continued by a research group of the Carnegie Mellon University led by
Randy Pausch. The idea behind Alice is to give students a possibility to learn
the basics of programming in a visual way. In the first version Alice used
the Microsoft’s Direct 3D Retained Mode (D3DRM) as rendering software
as shown by Conway et al. [5]. Firstly Alice gives the user the possibility

Figure 3.1.: Alice 3: Edit scene screen

15

3. Visual 3D Programming Environments

to load various 3D models from a library into a scene and to position the
model in the scene. Secondly it gives the user the opportunity to animate
the models with different program blocks such as ‘Move‘, ‘Turn‘ or ‘Play
Sound‘. Additionally one can aggregate several commands with looping
functions for example ‘Do In Order‘ (serial command) or ‘Do Together‘
(parallel command). There are currently two different versions of Alice
available, as explained by Dann and Cooper [7], Alice 2 and Alice 3.
Alice 2 is for users that want to get in touch with visual programming. It
has a large 3D model library, including all 3D models of the video game
The Sims, and a great set of preset 3D environments which makes it a lot
easier to start as can be seen in Figure 3.1. Alice 3 is a richer and more
complex version of Alice 2. It gives the user the possibility to develop in
Java or to export the program code in a Java IDE. There is also a plugin for
the Netbeans IDE, hence the user can do both implement the objects in Java
in the Netbeans IDE and design the world in the scene editor of Alice 3, as
depicted in Figure 3.2.

Figure 3.2.: Alice 3: Edit code screen

16

3.2. Microsoft Kodu

3.2. Microsoft Kodu

Microsoft Kodu Game Lab, or short KGL, was first released in 2009 for XBOX
360 and introduced as a free version on PC in 2010. MacLaurin [14] mentions
that personal computers in the early 1980’s like the Commodore PET or
the Apple II provided the basis for a tool to design a completely dynamic
world. Kodu Game Lab differentiates between objects, sounds, paths and
the environment. Objects can be programmed and are all entities which are
either characters, such as a submarine or a person, or environment items,
for example stones, trees, fruits. The major difference between characters
and environment items is that characters can be controlled by the player.
There are two types of sounds available, sound effects such as an explosion
or a hitting sound and background sounds such as a blowing wind, as
explained by Fowler, Fristce, and MacLauren [10]. Further Kodu Game Lab
gives the user the possibility to define paths for objects. So for example

Figure 3.3.: KGL: Emtpy world view

an object can move on a defined path which gives the environment more
dynamic feeling. Figure 3.4 shows the definition of a path for an object,
where the object follows the blue path. Last but not least KGL provides

17

3. Visual 3D Programming Environments

features for changing the environment, such as creating hills, build hidden
walls, set the overall volume, define day and night cycles or positioning
different cameras. All these different possibilities give the user a handy tool
to develop the user’s own 3D application. Compared to Alice, Kodu Game

Figure 3.4.: Kodu Game Lab: Definition of a path

Lab is less complex and is therefore easier to use for novice programmers.
Furthermore KGL has a highly abstracted graphical user interface (GUI)
reducing the failure rate to a minimum as depicted in Figure 3.3. If the user
deletes the move block in Figure 3.4 then KGL automatically deletes the
other three blocks.This is because with the extinction of the move block the
other blocks do not make sense and the whole process would result in a
compiler error. KGL has also implemented easy-to-use features to shape the
3D environment. It enables the user to create hills, valleys and areas with
water with a few simple clicks.

3.3. Starlogo Nova

Starlogo Nova is project of the MIT Scheller Teacher Education Program
developed by Wendel [26]. It is a 3D programming environment for educa-
tional purposes. Starlogo Nova runs directly in the browser and is therefore
available on any device with internet connection.
Starlogo Nova has two different windows. Figure 3.5 shows the script editor
which enables the user to build program logic based on script blocks. The
left view of the script editor lists every available script block. The user can
drag and drop the script blocks into the right view to create some more
or less complex program code for the current breed. Breeds are different
objects which can be switched by clicking on the different tabs.
Figure 3.6 presents the scene view of Starlogo Nova. If the script blocks

18

3.3. Starlogo Nova

Figure 3.5.: Starlogo Nova script editor

of all breeds will be executed, it will show the result in the scene view.
The Starlogo Nova scene view enables the user to add widgets to the user
interface. Widgets can either be informative fields such as tables and graphs
or can be interactive elements such as buttons and sliders. These widgets
can be easily accessed in the script editor to show informations to the user
or to process the user input. The speed of the rendering engine can also be
changed to slow down or fasten up the rendering process.

In contrast to Alice and Kodu Game Lab, Starlogo Nova has less built-
in 3D models, but it supports an import function to add new 3D models to
the project. One advantage is that it has many different script blocks which
makes it a very powerful 3D programming environment.

19

3. Visual 3D Programming Environments

Figure 3.6.: Starlogo Nova scene view

3.4. Beetle Blocks

Beetle Blocks [19] is a visual 3D designing environment which runs directly
in the web browser. The main difference to the 3D environments described
before, is that Beetle Blocks was developed as a designing tool. It enables the
user to create 3D models with basic shapes and different visual program-
ming blocks as can be seen in Figure 3.7. It is based upon Snap! developed
by Mönig [15] which is an extended reimplementation of Scratch [11], and
three.js a Javascript 3D library.
Beetle Blocks is presented to the user in three views. The left view shows all
available script blocks which enables the user to perform different actions
onto objects. The user can drag and drop those script blocks from the left
view to the middle view. The middle view is the execution area, where all
script blocks will be executed. The right view displays the 3D environment,
where the objects defined in the execution area, will be drawn as 3D model.
Furthermore Beetle Blocks supports the export of 3D models for different
standard formats, so that they can be easily re-imported in other 3D envi-
ronments.

20

3.5. Superpowers

Beetle blocks has an great advantage, as it is based on Snap! the usage
is nearly the same. Thus every user who has already written Snap! projects
or Scratch projects, can easily write Beetle blocks projects. It has an in-
teresting concept and can be used to create 3D models and export these
3D models to use them in other 3D programming environments such as
Catroid3D.

Figure 3.7.: Beetle Blocks Editor

3.5. Superpowers

Superpowers is another programming environment developed by Sparklin
Labs [13]. It enables the user to build games either in a 2D environment
or in a 3D environment. The difference between Superpowers and KGL
and Alice is that Superpowers is developed in HTML5. Hence it requires

21

3. Visual 3D Programming Environments

a web server, where the HTML5 game can be executed. Superpowers has
integrated web servers which can have different configurations for different
use cases. Superpowers convinces with a friendly, simple user interface.
Every function is available on one screen as can be seen in Figure 3.8.
In contrast to KGL and Alice, Superpowers does not use visual programming
blocks. It enables the user to develop the behavior of different objects in
Type Script, a programming language based on Java Script. Furthermore
Superpowers does not have included 3D models, however new models can
be easily imported. But Superpowers has a great advantage. It provides the
feature to directly animate objects, for example a running animation of a
character.

Figure 3.8.: Superpowers editor

22

3.6. Catroid3D

3.6. Catroid3D

Catroid3D is based upon the Catroid project which is available in the Google
Play Store named Pocket Code [23]. Pocket Code is also developed for other
platforms such as iOS or web browsers. Further Pocket Code has its own
painting app which is called Pocket Paint and a web page where all Pocket
Code projects can be shared with other users. This provides the user the
functionality to play and remix other projects directly on the device. ’Remix-
ing’ in that sense means to edit an existing project and upload the new
version.
Catroid3D is currently in an alpha status. The main objective in the develop-
ment process was the implementation of the 3D graphic engine, so that 3D
models can be rendered correctly. The second objective in the development
process was the implementation of object-based 3D models, so that every 3D
model can store more information for example physics behavior or program
logic.

3.6.1. Catroid

Catroid is a visual programming environment for mobile devices such as
smart phones or tablets (Figure 3.9a). The target audience of Catroid are
teenagers. Slany [22] argues that the vision behind the Catroid project is the
problem of the stagnating amount of computer science alumni in a strongly
raising computer science economy. Therefore Catroid should motivate kids
to try programming and to prevent them from typical programming prob-
lems such as syntax errors, unreadable code bulks and frustrating compiler
errors. In contrast to the programming environments described before,
Catroid enables the user to create a program solely on the mobile device
without any need for a PC, as discussed by Slany [21].
The programming environment is visually displayed as colored blocks,
comparable to Lego bricks, as can be seen in Figure 3.9b. There are different
bricks for different actions which can be applied onto objects. These bricks
are divided into seven categories Event bricks, Control bricks, Motion bricks,

23

3. Visual 3D Programming Environments

(a)Start screen of Catroid (b)Brick definition in Catroid

Figure 3.9.: Catroid - A visual 2D programming environment

Sound bricks, Looks bricks, Pen bricks and Data bricks. Catroid will also sup-
port in the future the user’s own bricks called My Bricks, where predefined
bricks can be stored, edited and used. An object has a defined name and
can have several costumes and/or sounds. Costumes are pictures which
can either be a photo taken with the camera of the device, imported from
the local storage, selected from a built-in media gallery of looks, or directly
drawn in the drawing tool Pocket Paint. Sounds can either be recorded
with the microphone, selected from a built-in media gallery of sounds, or
imported from the local storage. If the user runs a Pocket Code project, the
actions behind the bricks will be executed sequentially and the stage will
be drawn. The stage is the rendering engine of Pocket Code and shows up
the different objects with their different Looks and Sounds. The user can also
interact with the stage, if there are bricks defined which process the user
input. Pocket Code projects are stored locally on the SD card, but can be
directly uploaded to the Pocket Code sharing web site.

24

3.6. Catroid3D

Figure 3.10.: Main menu screen or splash screen

3.6.2. What is the intention behind Catroid3D?

Catroid enables the user to act in a two-dimensional world using an x
and y coordinate system. For a first-time or casual user this is normally
enough complexity in a programming environment. Catroid3D builds upon
the same graphic engine as Catroid does, LibGDX which was founded
by Zechner [28], but adds a third dimension to the engine and thus the
opportunity to render 3D objects on a smart phone or a tablet. Further it
fully integrates the Bullet Physics engine, developed by Coumans [6], for all
possible physic mechanics such as gravity and collision detection.

3.6.3. The current version of Catroid3D in detail

The current version of Catroid3D focuses on the rendering part and the
possibility to build a simple world on ground elements and a few exclusive
3D models which are integrated in the project. Figure 3.10 shows the start

25

3. Visual 3D Programming Environments

Figure 3.11.: World view or project build screen

screen of Catroid3D, a splash screen that indicates Catroid3D is starting.
Thus Catroid3D loads the world view, a defined standard project in its
ProjectManager class. The splash screen disposes automatically, when all
objects where successfully loaded, and shows the world view, also called
project build screen as can be seen in Figure 3.11. Catroid3D consists of an
Android Activity, called WorldActivity, which starts up the App and runs
an ApplicationListener class to render all 3D objects. Catroid3D implements
its own Object base class which is defined by the name of the object, the
position matrix in the world view, the mass, the 3D model, the texture of
the model and an entity class. The entity class describes the objects physic
state, therefore the Bullet Physics library generates a body construct of the
3D model to check whether the object collides with other objects or not.
Further a proper class exists, the World class which handles all entities and
checks periodically if entities collide with other entities.
Catroid3D has included a simple user interface. The user can swipe with
the finger to rotate the camera, move the camera, move objects or add new
ground elements based on chosen menu on the left side of Figure 3.11. The
user can add new objects to the world view by opening the ‘Add object‘

26

3.6. Catroid3D

dialog box which is shown in Figure 3.12.
The next chapter will focus on the implementation of testing the behavior of
positioning objects in a 3D environment, detect collisions and how gravity
is applied to objects.

Figure 3.12.: Add object dialog box

27

4. Specification by example of a
3D environment

4.1. Defining the problem

4.1.1. User interface testing with Robotium and Cucumber

There are two parts which are essential for the test implementation. On the
one hand Cucumber is used for the behavior-driven test implementation
which is described in Chapter 2.3.1. The detailed Cucumber implementation
of Catroid3D is part of the next few sections.

On the other hand Robotium is integrated, as it originally was in use in
Catroid (now replaced by the Espresso testing framework), as test automa-
tion framework to handle automatic user interface interactions. Robotium
provides a class called solo which gives the user direct access to all UI
elements in an Android application.

4.1.2. Using LibGDX graphic engine for the complete
rendering of Catroid3D

As described in the previous chapter Catroid3D uses the same graphic
engine as Catroid, LibGDX, but it interacts slightly different with LibGDX
as Catroid does. Catroid’s user interface (UI) is based on the Android view
implementation, the base class for all UI objects in Android applications.
LibGDX is only used for rendering the graphic objects, such as backgrounds
and costumes of Catroid objects in Catroid’s stage class, where all visual

29

4. Specification by example of a 3D environment

effects are shown. The advantage of the Android view class is that Robotium
can interact with these UI objects very well.

In case of Catroid3D, LibGDX renders also the complete user interface
like buttons, list views or 2D images. LibGDX is build upon OpenGL [18]
which is a very fast, high performance graphic processing engine. However
Robotium does not support the LibGDX library, therefore a wrapper class
for the LibGDX UI implementation and the solo class of Robotium has to
be written first. Further the coordinate system of Android which starts at
the top left corner of the screen with x-coordinate is 0 and y-coordinate is 0,
differs from the LibGDX coordinate system which starts in the bottom left
corner of the device screen. Consequently Robotium causes touch events on
different positions as LibGDX receives these events.

The next sections will describe in detail how the different functionalities of
Catroid3D are tested with Cucumber and Robotium. The description of the
different test cases is written in the Cucumber language which means that
scenarios, features, steps and step definitions are Cucumber specific wordings
as outlined in Section 2.3.1. Furthermore the Java implementation of the
Cucumber test cases uses the SoloLibGdxWrapper class named solo which
transforms coordinates from the LibGdx coordinate system to the Robotium
coordinate system.

4.2. Testing user interface elements

In the current version of Catroid3D two menu elements are implemented.
The first menu is a simple main menu which consists of a splash screen and
an image to show to the user that the system is loading, as can be seen in
Figure 3.10. The main menu can be tapped to switch to the world view a
second menu called project build screen. The project build screen, as shown
in Figure 3.11, gives the user the possibility to change the camera position,
rotation and zoom factor, as well as the opportunity to add objects to the
world or remove objects from the world.
These functions can be performed via the buttons at the top left corner of
the project build screen as can be seen in Figure 4.1.

30

4.2. Testing user interface elements

(a) (b) (c) (d)

Figure 4.1.: Project build screen menu buttons: (a) move-camera button, (b) move-object
button, (c) add-or-remove-ground button, (d) add-object-button

• Move the camera on the x-y plane (Figure 4.1a)
• Move an object on the x-z plane (Figure 4.1b)
• Add or remove a ground element (Figure 4.1c)
• Add a new object to the world (Figure 4.1d)

4.2.1. Defining the main menu

The first cucumber feature file, shown in Listing 4.1, describes the steps
which have to be done to see the world view. Apart from that, these steps
will be called by every other scenario as a background definition in the
feature file. There are three steps which have to be fulfilled to pass the feature
test. The first step is the ‘Given I am in the main menu‘ step, where the

1 Feature: Main menu

2

3 Main menu is currently a splash screen

4 which can be pressed to see the world view.

5

6 Scenario: The main menu has a splash screen

7 Given I am in the main menu

8 When I press on the splash screen

9 Then I should see the world

Listing 4.1: Main menu feature file

initial activity, the WorldActivity, will be started. The SoloLibgdxWrapper

31

4. Specification by example of a 3D environment

class extends the Solo class from Robotium and adds several functions for
transforming coordinates from LibGDX space to Robotium space and getter
methods for all kinds of variables.
The SoloLibGdx wrapper class starts up a new instance of the WorldActivity
class which starts the main menu screen as shown in Listing 4.2. The check
whether the main menu screen is the active screen can be found in lines 10

and 11. The second step is the ‘When I press the splash screen‘ step where

1 public class MainMenuSteps extends AndroidTestCase {

2

3 @Given("^I am in the main menu$")

4 public void I_am_in_the_main_menu () {

5 SoloLibgdxWrapper solo =

6 (SoloLibgdxWrapper) Cucumber.get(Cucumber.KEY_SOLO_WRAPPER);

7 solo.waitForActivity(WorldActivity.class , 5000);

8 solo.sleep (1000);

9 try {

10 assertTrue("I am not in the main menu.",

11 solo.getActiveScreen () instanceof MainMenuScreen);

12 } catch (Exception e) {

13 fail("No active screen!");

14 }

15 }

16 }

Listing 4.2: Step definition of the ‘I am in the main menu’ step

1 @Given("^I press on the splash screen$")

2 public void I_press_on_the_splash_screen () {

3 SoloLibgdxWrapper solo =

4 (SoloLibgdxWrapper) Cucumber.get(Cucumber.KEY_SOLO_WRAPPER);

5 solo.clickOnScreen (500, 500);

6 solo.sleep (1000);

7 }

8 }

Listing 4.3: Step definition of the ‘I press on the splash screen‘ step

Robotium clicks on the splash screen to skip to the world view, as can be
seen in Listing 4.3. Last in the ‘Then I should see the world‘ step, the solo

32

4.2. Testing user interface elements

class waits for a condition which continuously checks if the project build
screen is the current displayed screen, described in Listing 4.4.
These the steps will be called by every scenario described in the next few
sections, as they all start with steps in the project build screen.

1 @Given("^I should see the world$")

2 public void I_should_see_the_world () {

3 SoloLibgdxWrapper solo =

4 (SoloLibgdxWrapper) Cucumber.get(Cucumber.KEY_SOLO_WRAPPER);

5 solo.waitForCondition(new Condition () { ... }, 10000);

6 try {

7 assertTrue("I am not seeing the world.",

8 solo.getActiveScreen () instanceof ProjectBuildScreen);

9 } catch (Exception e) {

10 fail("No active screen!");

11 }

12 }

13 }

Listing 4.4: Step definition of the ‘I should see the world‘ step

4.2.2. Defining the project build screen

There are several possibilities where the user can interact with the system, as
described in the introduction of Section 4.2. Except for the add-object button
all buttons are simple toggle on-off buttons which can either be pressed or
not pressed. Consequently only one scenario will be discussed given that
the scenarios of the other buttons are similarly implemented. Listing 4.5
represents both the description of the feature as well as the background
definition which is based on the steps outlined in Section 4.2.1. As the add-
or-remove-ground button is the most complex one, the appropriate scenario
will be discussed in detail. Complexity is driven by two functions as both
the hidden add-ground button and the hidden remove-ground button will
become visible if the add-or-remove-ground button is pressed. Firstly the
‘When I press the add-or-remove-ground button‘ step, as can be seen in
Listing 4.6, finds the button by its name and extracts the position of the
button onto screen. These screen coordinates are converted into Robotium

33

4. Specification by example of a 3D environment

1 Feature: Ui elements in the project build screen

2

3 The first screen where the user can interact

4 with the system is the project build screen.

5 There are several toggle on-off buttons which

6 can be checked or unchecked.

7

8 Background:

9 Given I am in the main menu

10 When I press on the splash screen

11 Then I should see the world

Listing 4.5: Project build screen feature - background definition

coordinates, because of the different coordinate systems of LibGDX and
Robotium and passed to the clickOnScreen method of Robotium. Secondly
Listing 4.7 shows the next step definition whether the add-or-remove-ground
button is checked or is not checked. Further the add-ground button and the
remove-ground button should be visible at the same time when the add-or-
remove-ground button is pressed. Listing 4.8 outlines the visibility check of
the add-ground button. This check is equal for the remove-ground button.
Lastly the add-or-remove-ground button will be pressed again and will be
unchecked and the add-ground button and the remove-ground button will
be invisible again. These step definitions are nearly the same as the only
change is the assertTrue methods are changed to assertFalse methods.

1 Scenario: Tapping the add -or-remove -ground button twice

2 When I press the add -or -remove -ground button

3 Then the add -or -remove -ground button should be checked

4 And the add -ground button should be visible

5 And the remove -ground button should be visible

6 When I press the add -or -remove -ground button

7 Then the add -or -remove -ground button should be unchecked

8 And the add -ground button should not be visible

9 And the remove -ground button should not be visible

Listing 4.6: Project build screen feature - add-or-remove-ground button definition

34

4.3. Testing correct camera behaviour

1 @Then("^the add -or-remove -ground button should be checked$")

2 public void the_add_or_remove_ground_button_should_be_checked () {

3 SoloLibgdxWrapper solo =

4 (SoloLibgdxWrapper) Cucumber.get(Cucumber.KEY_SOLO_WRAPPER);

5 assertTrue(solo.isToggleOnOffButtonChecked(

6 Constants.UI_GROUND_BUTTON));

7 }

Listing 4.7: Step definition of the ‘The add-or-remove-ground button should be checked‘
step

1 @And("^the add -ground button should be visible$")

2 public void the_add_ground_button_should_be_visible () {

3 SoloLibgdxWrapper solo =

4 (SoloLibgdxWrapper) Cucumber.get(Cucumber.KEY_SOLO_WRAPPER);

5 assertTrue(solo.isButtonVisible(Constants.UI_ADD_GROUND_BUTTON));

6 }

Listing 4.8: Step definition of the ‘The add-ground button should be visible‘ step

4.3. Testing correct camera behaviour

Catroid3D uses a camera, as most 3D environments do and it is supported
by LibGDX, to define the perspective. Hence the camera has an explicit
position, rotation and a field of view from where the environment will be
seen. These camera parameters can be manipulated by either dragging the
finger on the screen for rotating the camera, pinching with two fingers for
zooming in or zooming out or clicking the move-camera button for dragging
the camera left and right or up and down.
The next sections will describe all camera functions and how they are tested
with Cucumber.

4.3.1. Defining camera rotation

When Catroid3D is started and the project build screen is displayed, the
standard camera configuration is the function to rotate the camera by
swiping the finger over the display. Therefore the first feature which will be

35

4. Specification by example of a 3D environment

described is the camera rotation feature as can be seen in Listing 4.9. The
feature contains a scenario for each direction of swiping. The scenarios are
defined as scenario outlines which has the advantage of testing different
rotation angles with only one scenario description. This implementation

1 Scenario Outline: Swiping my finger to the left

2 When I swipe my finger to the left and rotate the

3 camera around <Degree >

4 Then the camera should rotate to the right and x should

5 be "<x>" and y should be "<y>" and z should be "<z>"

6

7 Examples:

8 | Degree | x | y | z |

9 | 90 | >0 | >0 | <0 |

10 | 180 | <0 | >0 | <0 |

11 | 270 | <0 | >0 | >0 |

Listing 4.9: Camera rotation feature - Swiping my finger to the left

tests the angles 90
◦, 180

◦ and 270
◦.The given angle will be passed to the

solo class which calculates the length to swipe over the display to get the
desired rotation angle, as defined in Listing 4.10. The next step is evaluating
if the camera is at the right position after the rotation, therefore the examples
statement in the feature file verifies for each coordinate if the value is
positive or negative and passes these arguments as method parameters
to the step definition. The evaluateRotation method in line 17 and 18 in
Listing 4.10 checks the new camera position against the given x, y and z
parameters and returns true or false if valid or not valid.
The definition of the three other possible swiping directions is equal to the
currently described left swiping scenario. The only difference is the varying
x, y and z parameter in the examples statement. Hence these scenarios will
be not discussed in detail.

4.3.2. Defining camera moving

Moving the camera means to change the position of the camera on the
x-y plane or in other words to move the camera left and right or up and

36

4.3. Testing correct camera behaviour

1 @When("^I swipe my finger to the left and rotate the

2 camera around (\\d+)$")

3 public void I_swipe_my_finger_to_the_left(int degrees) {

4 SoloLibgdxWrapper solo =

5 (SoloLibgdxWrapper) Cucumber.get(Cucumber.KEY_SOLO_WRAPPER);

6 solo.swipeLeftForRotation(degrees);

7 solo.sleep (1000);

8 }

9

10 @Then("^the camera should rotate to the right and x should

11 be \"([^\"]*)\" and y should be \"([^\"]*)\" and

12 z should be \"([^\"]*)\"$")

13 public void the_camera_should_rotate_to_the_right(String xShouldBe , String yShouldBe , String zShouldBe) {

14 SoloLibgdxWrapper solo =

15 (SoloLibgdxWrapper) Cucumber.get(Cucumber.KEY_SOLO_WRAPPER);

16 PerspectiveCamera camera = solo.getCamera ();

17 assertTrue(UtilTest.evaluateRotation(

18 camera.position , xShouldBe , yShouldBe , zShouldBe));

19 }

Listing 4.10: Step definitions of both steps of the camera rotation feature

down. Listing 4.11 describes the ‘Swiping my finger to the left‘ scenario and
its background definition. Further the background definition contains two
more steps as the camera-move button has to be pressed before the function
for moving the camera is activated. The step definitions of these two steps
at line 6 and 7 simply call the solo class to click onto the move-camera
button and check whether the button is pressed or not pressed. In the first
step the scenario forces the solo class to swipe with the finger to the left
and secondly it verifies if the corresponding camera coordinate, in this case
the x-coordinate, changes in order to the right direction, as in the above
example the x-coordinate has to have a higher value.
All other directions for swiping are similiar and it will be not discussed in
detail.

37

4. Specification by example of a 3D environment

1 Background:

2 Given I am in the main menu

3 When I press on the splash screen

4 Then I should see the world

5 When I press the camera move button

6 Then I should be in the camera moving mode

7

8 Scenario: Swiping my finger to the left

9 When I swipe my finger to the left

10 Then the camera should move to the right

Listing 4.11: Camera moving feature - Swiping my finger to the left

4.3.3. Defining camera zooming

Most touch devices and operating systems allow the user to zoom. Normally
the user puts two fingers onto the display and drags both fingers apart
from each other to zoom in or drags both fingers together to zoom out. This
operation is called pinching. Catroid3D permits the user also to pinch either
for zooming in or zooming out. The steps of the scenario are rather simple as
it can be seen in Listing 4.12. Firstly the step definition of the ‘I zoom in with

1 Scenario: I’m zooming in (drag two fingers apart from each other)

2 When I zoom in with my fingers

3 Then the camera should zoom in

Listing 4.12: Camera zooming feature - Zooming in

my fingers‘ step, described in Listing 4.13, saves the current camera position
in the startPosition vector for verification afterwards. Secondly the solo class
pinches onto the display to zoom in and lastly the new camera position will
be checked against the startPosition vector in order to check that the single
coordinate values have been changed in the right direction. The scenario for
zooming out is equivalent to the steps and step definitions above, besides
that the solo class pinches out, hence it simulates the dragging of two fingers
together which leads to a change of the coordinate values in the opposite
direction.

38

4.4. Interacting with 3D objects

1 @When("^I zoom in with my fingers$")

2 public void I_zoom_in_with_my_fingers () {

3 SoloLibgdxWrapper solo =

4 (SoloLibgdxWrapper) Cucumber.get(Cucumber.KEY_SOLO_WRAPPER);

5 PerspectiveCamera camera = solo.getCamera ();

6 startPosition.set(camera.position.cpy ());

7 solo.pinchToZoomIn ();

8 solo.sleep (1000);

9 }

Listing 4.13: Step definition of the ‘I zoom in with my fingers‘ step of the camera zooming
feature‘

4.4. Interacting with 3D objects

The previous sections discussed features for testing interactions with user
interface elements and camera functions. This section focuses on the in-
teraction with 3D objects, called entities, in the world view. The current
version of Catroid3D supports several functions to add, remove or move
different kinds of objects. Further it has a fully integrated physics library,
called Bullet Physics which applies gravity to the environment and adds
masses to the entities. Furthermore the collision detection functionality from
Bullet Physics is integrated in Catroid3D, hence entities can collide with
each other and what is more important entities are colliding with the static
ground, therefore they stay on the ground.

(a) (b) (c) (d)

Figure 4.2.: Currently available 3D models: (a) palm tree, (b) tropical plant with long leafs,
(c) tropical plant with thick leafs, (d) wood barrel

39

4. Specification by example of a 3D environment

4.4.1. Adding new objects to the environment

The add-object button (Figure 4.1d) in the top left project build screen menu
opens a new window where the user can add different kind of objects. There
are currently four predefined 3D models available which can be added to
the world view as can be seen in Figure 4.2.
Therefore the first Cucumber feature describes the functionality of adding

Figure 4.3.: Splitted add-object window

new objects on the ground within the environment. Listing 4.14 shows
the first scenario, in this case a scenario outline with three out of the four
models of Figure 4.2. This scenario firstly runs the background definition
and secondly opens up the splitted add-object window. On the left side the
user can change between ground objects and miscellaneous objects and on
the right side the user can select a 3D model which the user is able to add to
the world (Figure 4.3). The 3D models are created as entities. Entities have a
defined body and can have three types of physic states. The first physic state
is Static and no collision detection, meaning that the entity has a fixed position
within the world, it has no mass and can not collide with other entities, for
example a tropical plant which makes the world view look better but has

40

4.4. Interacting with 3D objects

no relevant function. The palm tree is an example for the second physic
state Static and collision detection. As before the palm tree has a fixed position
in the environment but it can collide with other entities, therefore it is a
typical barrier. The last physic state is called Dynamic and collision detection.

1 Background:

2 Given I am in the main menu

3 When I press on the splash screen

4 Then I should see the world

5 When I press the add -object button

6 Then the choose object split pane should show up

7

8 Scenario Outline: Adding new object from the ground objects menu

9 When I click on the "<image >" image

10 Then the choose object split pane should hide

11 And a "<image >" should be placed in the middle of the ground

12

13 Examples:

14 | image |

15 | tree |

16 | plant1 |

17 | plant2 |

Listing 4.14: Add object feature - Adding object from ground objects menu

The wood barrel is an example with a defined mass that can collide with
other objects, might fall over and change its current position.
If an entity is added via the add-object button then it is placed at the point
of origin of the environment, as it can be moved afterwards anyway. The
step definition of the last step checks whether an entity with the respective
name at the point of origin is rendered through the LibGDX engine or not.

Listing 4.15 describes the steps for adding objects under the miscellaneous
category, hence Cucumber has to enter this category via the miscellaneous
button shown in line 3. In the current version of Catroid3D there is only a
wood barrel available under the miscellaneous category but as it can be seen
in the examples it is very simple to add another 3D model to this category
and to test if it is correctly placed within the environment.

41

4. Specification by example of a 3D environment

1 Scenario Outline: Adding new barrel object from the

2 miscellaneous objects menu

3 When I press the miscellaneous button

4 And I click on the "<image >" image

5 Then the choose object split pane should hide

6 And a "<image >" should be placed in the middle of the ground

7

8 Examples:

9 | image |

10 | barrel |

Listing 4.15: Add object feature - Adding object from miscellaneous objects menu

4.4.2. Removing objects from the environment

One function has not been discussed until now. It is the possibility to long-
click onto an entity to open up a dialog box in the upper right corner with
two buttons Delete and Cancel as it can be seen in Figure 4.4. Listing 4.16

shows the steps for removing an entity from the environment. As before the
steps are defined as a scenario outline and can therefore be easily expanded
for more entities to be removed. In the current feature file the palm tree and
the wood barrel will be removed from the environment. Firstly the entity

1 Scenario Outline: Removing object from the world view

2 When I long click on the "<model >"

3 Then the object context menu should show up

4 When I click on the delete button

5 Then the "<model >" should be removed from the world view

6

7 Examples:

8 | model |

9 | tree |

10 | barrel |

Listing 4.16: Removing object feature - Remove object from the world view

will be long-clicked. Listing 4.17 shows the step definition of the ‘I long click
on the model‘ step, where the method checks which entity has to be long-
clicked and then the solo wrapper class extracts the position vector of the

42

4.4. Interacting with 3D objects

Figure 4.4.: Object dialog box

entity and executes the Robotium long-click method with screen coordinates
which are transformed out of the position vector. Secondly the dialog box
opens up and Cucumber can execute the third step by clicking onto the
delete button to remove the selected entity from the environment. The
step definition where Cucumber checks whether the entity is successfully
removed from the environment is the same as before except that the model
has not be in the list of rendered objects of LibGDX.

4.4.3. Moving objects within the environment

Moving an entity from one position to another is a fairly fundamental
function and can be performed in Catroid3D by activating the move-object
status. This is done by pressing the move-object button as it can be seen in
Listing 4.18, where an optional line is added to the background definition
in the moving object feature with the step ‘When I press the move-object
button‘. Afterwards the scenario starts and drags the wood barrel to a new
position which is represented in Listing 4.19 where the ‘When I drag the

43

4. Specification by example of a 3D environment

1 @When("^I long click on the \"([^\"]*)\"$")

2 public void I_long_click_on_the_model(String model) {

3 SoloLibgdxWrapper solo =

4 (SoloLibgdxWrapper) Cucumber.get(Cucumber.KEY_SOLO_WRAPPER);

5 if(model.contains("tree")) {

6 solo.clickLongOnEntity(standardTreeModelName);

7 }

8 else if(model.contains("barrel")) {

9 solo.clickLongOnEntity(standardBarrelModelName);

10 }

11 else {

12 throw new PendingException ();

13 }

14 solo.sleep (500);

15 }

Listing 4.17: Step definition of the ‘I long click on model‘ step

barrel to left‘ step is defined. The position vector with the new position is
saved as member variable to verify the position after dragging the entity. The
dragEntityToPosition method of the solo class does not set the wood barrel
to the new position, otherwise the dragging function would be entirely
excluded. Furthermore the solo class calculates the projection of the wood
barrel position and the new position in 3D space to the screen position in
2D space and drags the cursor between these two screen points. This is
followed by the verification of the new position of the wood barrel.
As described in the beginning of this chapter, Catroid3D also integrates a

1 Background:

2 Given I am in the main menu

3 When I press on the splash screen

4 Then I should see the world

5 When I press the move -object button

6

7 Scenario: Moving object onto the ground

8 When I drag the barrel to the left

9 Then the barrel should move to the corresponding position

Listing 4.18: Moving object feature - Moving object onto the ground

44

4.4. Interacting with 3D objects

1 @When("^I drag the barrel to the left$")

2 public void I_drag_the_barrel_to_the_left () {

3 SoloLibgdxWrapper solo =

4 (SoloLibgdxWrapper) Cucumber.get(Cucumber.KEY_SOLO_WRAPPER);

5 positionVector.set(200, 0, 200);

6 solo.sleep (1000);

7 solo.dragEntityToPosition(standardBarrelModelName , positionVector);

8 solo.sleep (500);

9 }

Listing 4.19: Step definition of the ‘When I drag the barrel to the left‘ step

physics engine which applies gravity to all entities with defined masses. The
ground plate is an entity with no mass and is therefore ignored by the force
of gravity, although it has a collision detection mechanism hence entities
can not fall through the ground plate. Thus it is very important to verify if
gravity is applied to entities and this will be tested by the following feature
in Listing 4.20. At first the wood barrel will be dragged to a new position,
as in the Cucumber step above, however the position is not on the ground
plate therefore the barrel should fall down. Listing 4.21 describes the step
definition where the solo class verifies if the wood barrel is falling down.
The physics engine calculates the velocity if an entity is accelerated by the
force of gravity, hence if the velocity is greater than zero the entity is falling
down.

1 Scenario: Moving object off the ground

2 When I drag the barrel to the left off the ground

3 Then the barrel should move to the corresponding position

4 And the barrel should fall down because of gravity

Listing 4.20: Moving object feature - Moving object off the ground

Moving objects against other objects

If the user moves objects within the environment, there is a possible chance
to hit other objects. Catroid3D supports three physic states of entities as

45

4. Specification by example of a 3D environment

1 @And("^the barrel should fall down because of gravity$")

2 public void the_barrel_should_fall_down_because_of_gravity () {

3 SoloLibgdxWrapper solo =

4 (SoloLibgdxWrapper) Cucumber.get(Cucumber.KEY_SOLO_WRAPPER);

5 solo.isEntityFallingDown(standardBarrelModelName);

6 assertTrue(solo.isEntityFallingDown(standardBarrelModelName));

7 }

Listing 4.21: Step definition of the ‘And the barrel should fall down because of gravity‘ step

described in Section 4.4.1. The collision detection itself is calculated via the
Bullet Physics library which is fully integrated in Catroid3D. Listing 4.22

shows the first scenario and the background definition of the object collision
feature file. The background steps start up Catroid3D, as it has been done in
the other feature files before, to open up the choose object split pane where
a new wood barrel is added to the environment, as shown in Section 4.4.1.
The scenario consists of two steps, where at first the newly added wood
barrel will be dragged against the already existing wood barrel, secondly
the already existing wood barrel will be pushed away and will be checked in
the follow up step. As it can be seen in Listing 4.23 in the step definition of

1 Background:

2 Given I am in the main menu

3 When I press on the splash screen

4 Then I should see the world

5 When I press the add -object button

6 Then the choose object split pane should show up

7 When I press the miscellaneous button

8 And I click on the barrel image

9 Then the choose object split pane should hide

10 And a barrel should be placed in the middle of the ground

11 When I press the move -object button

12

13 Scenario: Dynamic object with mass collides with another

14 dynamic object with mass

15 When I move the barrel towards the second barrel and hit it

16 Then the second barrel should be pushed away in the same direction

Listing 4.22: Object collision feature - Dynamic object collides with another dynamic object

46

4.4. Interacting with 3D objects

the ‘When I move the barrel towards the second barrel and hit it‘ step, where
the solo class drags the newly added barrel to a new position behind the
already existing barrel forcing a collision between the two entities. This is
followed by the step definition where Cucumber tests whether the collided
wood barrel is pushed away or not. The checkEntityCollision method calls an
internal Bullet Physics method which checks if the two entities do have a
collision and the isEntityAtPosition method verifies if the already existing
barrel has been moved because of the collision force. The last scenario shown

1 @When("^I move the barrel towards the second barrel and hit it$")

2 public void I_move_the_barrel_towards_the_second_barrel_and_hit_it () {

3 SoloLibgdxWrapper solo =

4 (SoloLibgdxWrapper) Cucumber.get(Cucumber.KEY_SOLO_WRAPPER);

5 positionVector.set(0f, 0f, -400f);

6 solo.sleep (1000);

7 solo.dragEntityToPosition(standardBarrelModelName , positionVector);

8 solo.sleep (500);

9 }

10

11 @Then("^the second barrel should be pushed away in

12 the same direction$")

13 public void the_barrel_should_be_pushed_away_in_the_same_direction () {

14 SoloLibgdxWrapper solo =

15 (SoloLibgdxWrapper) Cucumber.get(Cucumber.KEY_SOLO_WRAPPER);

16 assertTrue(solo.checkEntityCollision(standardBarrelModelName ,

17 barrelModelNameToHit));

18 assertFalse(solo.isEntityAtPosition(barrelModelNameToHit ,

19 Math.createPositionMatrix(new Vector3(0, 0, -200))));

20 }

Listing 4.23: Step definition of the both steps of the ‘Dynamic object with mass collides
with another dynamic object with mass‘ scenario

in Listing 4.24 describes the collision of a dynamic object with mass and a
static object with collision detection, in this case a wood barrel as dynamic
object and a tree as static object. The step definition of the ‘When I move
the barrel towards the tree and hit it‘ step is the same as in the above step
definition in Listing 4.23 except for a different position vector. Catroid3D
verifies the step, whether the two entities collide or not, equally as with two
dynamic entities. Hence the difference between these two scenarios is the
tree which has to stay at the same position after the collision and this will

47

4. Specification by example of a 3D environment

be checked with the isEntityAtPosition method which has to return true if
the position vector after the collision is equal to the position vector before
the collision.

1 Scenario: Dynamic object with mass collides with a static object

2 When I move the barrel towards the tree and hit it

3 Then the tree should stay at its position

Listing 4.24: Object collision feature - Dynamic object collides with static object

48

5. Future work

The previous chapter described the current state of Catroid3D and the
test environment. Nevertheless there are more functions which should be
implemented in a 3D environment to make it easier for the user to create
a 3D game with Catroid3D. Kodu Game Lab, Alice 3 and Superpowers
have already implemented a great set of features. This section will focus
on functions which would be useful in the the feature set of Catroid3D,
and how to implement these functions in Catroid3D. The next few sections
outline the required additional work.

5.1. Adopting game logic from Pocket Code from
2D space into 3D space

Pocket Code describes its game logic with different functions the user can
work with. These functions are called bricks, referring to the functionality of
Lego bricks. In the future Catroid3D should be able to import Pocket Code
projects and convert it from 2D space into 3D space. Therefore the bricks
have to be converted into a 3-dimensional form. This section will describe
if the most important bricks can be adapted and if yes, how they can be
adapted to successfully work in the 3D space.

49

5. Future work

5.1.1. Control bricks

When program started

The ‘When program started‘ brick (Fig. 5.1) defines the entry point of the
game logic. It is the first step when the project will be executed. Hence this
function does not need an adaption.

Figure 5.1.: ‘When project started‘ brick

When tapped

The ‘When tapped‘ brick (Fig. 5.2) indicates, if an object has been tapped
onto the screen. This function can be equally transformed into Catroid3D,
whereas objects can also be hit by a tap on the screen.

Figure 5.2.: ‘When tapped‘ brick

Flow control bricks

The following bricks do only change the flow of the program, hence there
is no difference between a 2D project or a 3D project in case of the pro-
gram flow. Consequently all following bricks can be directly converted into
Catroid3D. The ‘Note‘ brick (Fig. 5.3c) can be pictured as a speech bubble.
Thus it looks like the object will say something. All broadcast bricks, as
can be seen in Figure 5.4, define points where the program flow can jump
similar to a GoTo statement. The ‘When physical collision between‘ brick,

50

5.1. Adopting game logic from Pocket Code from 2D space into 3D space

(a)‘Wait x seconds‘ brick (b)‘If x is true then‘ brick (c)‘Note‘ brick

Figure 5.3.: Flow control bricks series 1

(a)‘When I receive‘ brick (b)‘Broadcast‘ brick
(c)‘Broadcast and wait‘

brick

Figure 5.4.: Flow control bricks series 2

in Figure 5.5, can be directly converted into 3D space, as there is the same
functionality in the current version of Catroid3D. The ‘Forever‘ and the ‘Re-
peat x times‘ brick can be seen as loops and do not need any modifications.

(a)‘When physical collision
between‘ brick

(b)‘Forever‘ brick (c)‘Repeat x times‘ brick

Figure 5.5.: Flow control bricks series 3

5.1.2. Motion bricks

This subsection contains all motion bricks which define different movements
objects can be transformed to. Hence Catroid3D adds a third dimension to
the world, the conversion of motion bricks has do be described in detail.
The ‘Place at x and y‘ brick can be transformed into the given x and y value
and an additional z value. As the object should stand onto the ground, the
initial z value should be equal the z value of the ground. The ‘Set to x‘
and ‘Set to y‘ brick of Figure 5.6 can be directly converted into the given

51

5. Future work

x respectively y value without making any modifications to the other two
dimensions.
The conversion of the ‘Change x by‘ and ‘Change y by‘ bricks behaves the

(a)‘Place at x and y‘ brick (b)‘Set to x‘ brick (c)‘Set to y‘ brick

Figure 5.6.: Motion control bricks series 1

same way as the ‘Set to‘ bricks. The ‘If on edge bounce‘ brick which can be
seen in Figure 5.7, checks whether the object has a contact with the edge
of the device display. This brick has to be modified for the 3-dimensional
space, hence every object can hit another object and not only the edges of
the world.
The ‘Move steps‘ brick moves an object in the current direction with a

(a)‘Change x by‘ brick (b)‘Change y by‘ brick (c)‘If on edge bounce‘ brick

Figure 5.7.: Motion control bricks series 2

defined number of steps, where a step is a fixed multiplier. In 3D space this
brick is equivalent by moving the object in the direction, where the object is
looking. Figure 5.8 shows the ‘Turn left‘ and ‘Turn right‘ brick which turns
the object around the z-axis by given degree value. In 3D space these bricks
need an additional field for the axis to define direction of rotation.
The next motion control brick series in Figure 5.9 shows the ‘Point in

(a)‘Move steps‘ brick (b)‘Turn left‘ brick (c)‘Turn right‘ brick

Figure 5.8.: Motion control bricks series 3

direction‘ brick. It is equivalent to the ‘Turn‘ bricks which also need an
additional field for an axis. Further the ‘Point towards‘ brick rotates in the

52

5.1. Adopting game logic from Pocket Code from 2D space into 3D space

direction of the given object. This can be converted without any changes,
hence the objects direction vector points towards the given object. The ‘Glide
to‘ brick glides to a given position over a specified time. This brick needs
the third dimension as parameter. As a default value, the z value can be the
same as the ground which leads to a gliding over the ground.
The conversion of the ‘Go back layer‘ and ‘Go to front‘ brick in Figure 5.10

(a)‘Point in direction‘ brick (b)‘Point towards‘ brick (c)‘Glide to‘ brick

Figure 5.9.: Motion control bricks series 4

can be skipped, since these bricks do only change the z-position of an object
in 2D space. Thus the depth of an object in 3D space is defined through the
third dimension, these two bricks are not necessary any more in Catroid3D.
The last brick of this series, the ‘Vibrate for seconds‘ brick, can be converted
without any changes.
The ‘Physical object‘ brick describes which type of physical state the object

(a)‘Go back layer‘ brick (b)‘Go to front‘ brick
(c)‘Vibrate for seconds‘

brick

Figure 5.10.: Motion control bricks series 5

has. Pocket Code has currently three different states ‘Dynamic‘, ‘Static‘
and ‘No‘. These physic states can be converted into 3D space without any
changes, since Catroid3D has the same physic object states as described in
Section 4.4. Further the ‘Set velocity to‘ brick, as can be seen in Figure 5.11,
sets the velocity of an object to a defined value. Hence the object will move
in the direction of the objects direction vector. The ‘Turn left degrees‘ and
‘Turn right degrees‘ brick rotates the object by a given amount of degrees
around the z-axis either in the left or the right direction. The ‘Set gravity
to‘ brick defines a acceleration vector for the x-axis and the y-axis. The ‘Set
mass to‘ brick is the last one in Figure 5.12 and can be directly converted

53

5. Future work

(a)‘Physical object‘ brick (b)‘Set velocity to‘ brick
(c)‘Turn left degrees/s‘

brick

Figure 5.11.: Motion control bricks series 6

(a)‘Turn right degrees/s‘
brick (b)‘Set gravity to‘ brick

(c)‘Set mass to‘ brick

Figure 5.12.: Motion control bricks series 7

into Catroid3D, as there is also a mass for all 3D objects available. The last
motion control brick series in Figure 5.13 contains two physic bricks. The
‘Set bounce factor to‘ brick indicates how hard or soft will the object be
bounced back from colliding with other objects. This value is defined in
Bullet Physics as the restitution value of an object. Furthermore the ‘Set
friction to‘ brick can also be directly transformed into the equivalent friction
value of an object in Bullet Physics.

(a)‘Set bounce factor to‘ brick (b)‘Set friction to‘ brick

Figure 5.13.: Motion control bricks series 8

5.1.3. Sound, look and data bricks

The sound, look and data bricks are the last three categories of possible
bricks in Pocket Code. As these bricks do not have any restrictions regarding
a conversion to 3D space, Figure 5.14 shows one brick for each category as
an example. The sound bricks are used to define different audio files for
different objects and actions and to play or pause these files. The look bricks

54

5.2. Executing bricks and showing the result - the stage

give the user the possibility to change the look of an object, thus Catroid3D
needs the possibility to change the model of an already existing object
which has to implemented in the future. The data bricks are variables which
can be defined by the user. The user can write and read variable values to
create more complex projects. These bricks can be directly converted into
Catroid3D.

(a)Sound: ‘Start sound‘
brick

(b)Look: ‘Switch to look‘
brick (c)Data: ‘Set variable‘ brick

Figure 5.14.: Example for sound, look and data bricks

5.2. Executing bricks and showing the result - the
stage

Catroid3D has beside the splash screen which loads the project in the back-
ground and starts up the rendering process, only one window the Project-
BuildScreen. The ProjectBuildScreen enables the user to define the world and
every object in this world. If the bricks and the execution process of bricks
will be implemented in Catroid3D as described in the Section 5.1 before,
the stage for showing the result of the execution process should also be
considered.
Pocket Code starts its stage and sequentially executes the bricks, when the
user clicks the play button. Pocket Code presents all objects as 2-dimensional
objects and the hole display of the device of the user is the users’ point of
view. Catroid3D shows all objects as 3D objects which requires a camera
position to define the users’ point of view. Different types of games require
different types of camera positions with different camera behaviors. For
example first person games or third person games use a camera which is in
the main character or some distance behind the main character and follows
the main character automatically which is normally controlled by the user.

55

5. Future work

Whereas strategy games have more often a camera position in a bird’s-eye
view which can be changed manually by the user.
Kodu Game Lab enables the user to bind the keyboard or the game pad
to an object and this object will be automatically followed in the execution
mode. Alice 3 has special camera bricks to follow objects or to let the user
manipulate the camera position as depicted in Figure 5.15.

Figure 5.15.: ‘MoveAndOrientTo‘ Procedures in Alice3

5.3. Building a 3D model database

As discussed in Section 4.4, the most recent version of Catroid3D supports
four implemented 3D models. Hence there is a huge potential for adding
more models to the application or as a better solution build a 3D model
online database, where the models can be downloaded and saved onto the
device. Models are the basis for a successful 3D programming environment,
as without a large amount of models the building of a 3D world does not
appeal to the user.

Therefore two questions remain to be addressed. From where to retrieve
3D models? How to add a skeleton to a 3D model and animate it, as the
normal 3D model is only a body with a texture and can not be animated?

5.3.1. Finding or creating 3D models

Free online resources

There are several online resources which share 3D models of different
artists over a web platform for example opengameart.org, founded by

56

5.3. Building a 3D model database

Kelsey [12]. The world wide web is hosting many more free 3D model
websites, but differing publishing licenses could be a problem. In the case of
opengameart.org all models are compatible with GPL licenses and therefore
compatible with Catroid3D.
A possible solution could be to build a comprehensive database with several
other 3D model websites, where all 3D models can be hosted and shared
with other persons.

Scanning real objects with a smart phone camera and build 3D models

Since 3D printing is a cheap technology and everybody can use it, the
demand for 3D models has raised significantly in the last years. Improving
hardware in smart phones, allows building 3D models out of spin images,
for example with the Android application Autodesk [1] 123D Catch. Fig-

(a)Scanning a wax pig with 123D Catch (b)Rendered pig from 123D Catch

Figure 5.16.: Scanning and rendering a wax pig with 123D Catch

57

5. Future work

ure 5.16a shows 123D Catch while capturing images of a wax pig. 123D
Catch needs 20 to 40 images, depending on the object, for the modeling
process. After all pictures have been taken, the images will be sent to a
processing server which calculates the model and sends the 3D model back
to the device, as can be seen in Figure 5.16b.

This technology can be used to generate 3D models on the fly and im-
port it directly into Catroid3D or upload it into an online model database.

5.3.2. Animating 3D models

Pocket Code 3D also supports animated 3D models, for example people
walking or car wheels turning. Animating a 3D model is not that simple.
Firstly the model needs a skeleton which consists of a number of bones and
joints. These bones can be transformed to another position or can be rotated
around one ore more axis. Secondly the transformation must be recorded
over time to generate a fluent movement. Furthermore the 3D model has to

Figure 5.17.: Open source software Blender on Android device

58

5.3. Building a 3D model database

be exported including the animation in a format which can be imported in
Catroid3D.
Blender, developed by the Stichting Blender Foundation [9], is an open
source 3D modeling and animation software which can be used for the
steps described above. Blender is also available on Android, as can be
seen in Figure 5.17. Since the full Blender user interface is shown onto the
small smart phone screen, it is very hard to interact with Blender onto the
device.

Adopting Pocket Paint to use it for 3D models

Pocket Paint is a 2D painting tool for mobile devices, developed by the
Catrobat team, to paint a complete new picture or adapt an available picture
and import it into Pocket Code. It has different tools for example to change
the line thickness or shape and uses a complete color palette.
Adding a third dimension to Pocket Paint could be an idea for future devel-
opment. Thus 3D models can be adopted directly onto the device.
The concept for a Pocket Paint 3D version has to be changed compared to
the current version, hence the 3D version will be more a tool for animating
models and less for designing models. The problem for designing 3D mod-
els emerges in the rendering process which takes a huge amount of CPU
and main memory which will not be available for standard smart phones
in the near future. Therefore the tools for painting pictures and the color
palette can be removed from the 3D version and new tools for importing 3D
models, moving the camera around the different axes and adding a bone
structure to the 3D model should be added.
Furthermore Pocket Paint 3D needs a possibility to animate the bones which
were added in the step before. Animating a 3D model means, to set the
bones to fixed position for each moment in a defined period of time. Thus
it will need a time frame which can be adapted by the user and the user
can move between every timestamp and define the position of the animated
bones. Thus the functionality for moving the bones in different directions
and also for moving the camera needs to be implemented. The animating
view needs also a play, pause and automatic reloop function, so that the
animation can be seen as a complete motion.
Figure 5.18 shows a mock-up for Pocket Paint 3D where a skeleton is build

59

5. Future work

upon the previously scanned wax pig. This could be a way to firstly scan
a 3D object from a real object with a scanning tool as explained before,
secondly add a skeleton to the 3D object with a possible Pocket Paint 3D
version and lastly animate it directly in Pocket Paint 3D and import it into
a Catroid3D project or upload it into a 3D model database as described in
Section 5.3.
Given capacity improvements (CPU, RAM) on mobile devices or outsourc-

Figure 5.18.: How skeleton building could look like in Pocket Paint 3D

ing opportunities from device to server, there might be a possibility to
implement designing and rendering tools comparable to Autodesk’s 123D

60

5.4. Persistent save function and project sharing

Catch.
An object can have several different animations, e.g. idle, running, jumping,
fighting. Catroid 3D needs an adaption to execute different animations for
one object. There should be two new bricks in a future version of Catroid3D
the ‘Start animation‘ brick and the ‘End animation‘ brick as can be seen in
Figure 5.19. The ‘Start animation‘ brick defines the name of the animation
which should be executed, and how often the animation should be executed.
Furthermore animations can overlap, for example a person character has an
idle animation, if the user runs with this character, it should perform the
running animation and if the character stands still it should execute the idle
animation again. This animation stack has to be handled by Catroid3D. The
‘End animation‘ brick cancels immediately the selected animation.

(a)‘Start animation‘ brick (b)‘End animation‘ brick

Figure 5.19.: Possible start and end animation bricks

5.4. Persistent save function and project sharing

Catroid3D does not support a persistent save functionality in its current
version. It has an internal project manager class which handles the current
project with all objects. This project is currently stored in the main memory
and therefore only temporary saved as long as Catroid3D is up and running.
The project needs to be stored on a persistent storage, e.g. SD card or hard
drive. This functionality is already implemented in Pocket Code and can be
inherited in Catroid3D. Furthermore Pocket Code enables the user to upload
the projects to the Catrobat sharing website, developed by the Catrobat Team
[25], as depicted in Figure 5.20. Therefore the Catrobat sharing website needs
also an adaption to preview 2D projects as well as 3D projects.

61

5. Future work

Figure 5.20.: Catrobat website [25] for project sharing

5.5. Adding new objects and defining object paths

The current version of Catroid3D has a lightweight screen for adding three
simple objects to the world. A greater set of objects needs to be added, as
discussed in Chapter 5. After a new object is added to the environment,
it is automatically set to the point of origin. If more objects are added,
then the view can be confusing, because the objects will overlap. The first
improvement would be the possibility to set the objects’ position directly
while adding the object to the environment. KGL enables the user to click
onto a position on the ground element and then to choose the object from
an object menu, as can be seen in Figure 5.21. The object will be inserted
on the position, where the user has made the click on the ground element.
Another solution would be to choose the object first, as it is done already in
Catroid3D, and then bind it to the cursor to move it to the suitable position.

The next feature is the basis for a dynamic 3D environment. If a user
plays a game and all objects in an environment would stay on its original
position, it will not feel realistic to the user. Therefore objects should have
the possibility to move in different directions to give the environment a
more dynamic feeling. KGL uses paths for this feature which enables the

62

5.5. Adding new objects and defining object paths

Figure 5.21.: KGL screen for adding a new object

user to create different paths in different directions, where objects can move
on, as can be seen in Figure 5.22. If the user runs the game the objects will
automatically move onto the defined path and will make a turn if the path
ends. KGL enables the user to program objects and paths, e.g. the user can
set the velocity of the objects to make them move slower or faster. KGL
considers also the gravity of objects which follow a path. If an object is set
to a high velocity and has to make a sharp turn, then the object will be
dragged away from the path. Afterwards the object tries to get back to its
original path. This behavior gives the user a very realistic feeling of moving
objects. Every path can have a color to differ between the other paths of
objects, because programming objects on paths follows always the concept
of ’Move on path with color black’.
Thus Catroid3D would need additional bricks to implement the object-path
behavior, e.g. ’Move on path with color x’ brick.

63

5. Future work

Figure 5.22.: KGL functions for creating paths for objects

5.6. Shaping the world

The current implementation of Catroid3D enables the user to place objects
only at y-coordinate is zero which means a completely flat ground. A
3D environment looks more attractive, if it consists of different shapes
such as mountains, valleys, hills and lakes. The next improvement for
Catroid3D would be a feature for shaping the 3D environment. There are
two approaches which would fit in the concept of Catroid3D, block-based
shapes and model shapes.

5.6.1. Block-based shapes

KGL has its own block-based shaping tool which gives the user the possibil-
ity to create hills by simply clicking on the desired position. This shaping
tool enables the user to flatten hills and to create plateaus and to completely
remove the hills. KGL defines the 3D environment as a set of blocks as can
be seen in Figure 5.23. This is necessary for dynamically changing the shape

64

5.6. Shaping the world

Figure 5.23.: KGL functions for editing the ground

of the environment.
Catroid3D defines the ground elements, in its current version, as thin
cuboids, thus it looks like a ground plate. The implementation needs an
adaption for block-based shapes. A possible shaping tool in Catroid3D has
to create multiple cubes at a defined area to represent the effect of dynami-
cally building hills.
The shaping tool of KGL has also the possibility to define areas with water
as depicted in Figure 5.24. It enables the user to click onto an area and fill
it with water. The boundary can either be a hill or at least the edge of the
current ground plate. The water area is also a block-based shape and can be
handled the same way as the ground shaping tool.

5.6.2. Model shapes

Another solution for shaping the environment is using model shapes. Alice 3

uses 3D models to shape the environment as depicted in Figure 5.25. It uses
different kind of 3D models to define a shape. The user can set the position
of each model by either dragging the model to the desired position or by

65

5. Future work

Figure 5.24.: KGL functions for defining areas with water

entering a position vector. The models can be overlapped which enables the
user to build associated shapes with a few different models, for example a
mountain chain.
The advantage of model shapes compared to block-based shapes is that
the user can build more complex and more realistic environments. The
disadvantage is that the software has to give the user a great set of different
models to build a realistic environment in different regions, for example a
desert region, a rain forest region or a nordic region.
Catroid3D can define a model in its current version which makes it easy
to implement model shapes. However Catroid3D can move models only
at y-coordinate is Zero. This function needs an adaption so it enables the
user to enter a position vector with a y-coordinate not equal Zero. In the
concept of Catroid3D these models are not objects with a physic state. If
these models need be a border line between other objects and the edge of
the game environment, then these models have to be defined as objects with
the physic state Static and collision detection as discussed in Section 4.4.1;

Block-based shapes are an easy and fast tool to create shapes in an en-
vironment. Whereas model shapes require more designing ability of the

66

5.6. Shaping the world

Figure 5.25.: Alice 3 - Defining model shapes

user to make it look realistic. Both concepts have their advantages and
also a combined solution would possible. There are more minor changes
which would give the user a better user interface. Kodu Game Lab and
Alice can help to make Catroid3D a more intuitional 3D programming
environment.

67

6. Conclusion

Chapter 2 outlined different concepts of Test-Driven-Development above
all Behavior-Driven-Development and the different tools for implementing
BDD. Furthermore distinct 3D programming environments were discussed
and the implementation of BDD with Cucumber for Catroid3D was de-
scribed in Chapter 3. The possible future work for migrating the equivalent
bricks from Pocket Code into Catroid3D was shown in the final chapter
and it also presented an update for a possible Pocket Paint 3D version.
Moreover further features for shaping the environment and for building a
more dynamic world were discussed in the last section.

BDD has a lot advantages which can lead to improve a software product.
The use of an ubiquitous language is one of the most important concepts of
BDD which makes the communication between software developers and
business stakeholders a lot easier. Furthermore Cucumber feature files can
be directly used as source code documentation as it is written in spoken
language. However there are also some disadvantages which occur with
Cucumber. If the behavior of a software product changes which specifica-
tion is already defined in Cucumber, the existing feature files have to be
refactored which means to describe the new behavior and to refactor every
step definition in the JUnit test framework, as the step definition is the
exact description of the step in the Cucumber feature file. If there are some
breaking changes for future releases of a software product, the amount of
work for refactoring the feature files and the unit tests can be very high.

Catroid3D is still in its very early stages, where the basic 3D functionality is
tested and implemented. It enables the user to render different 3D models
and to set different physic states. Moreover it also supports animated 3D
models and gives the user the possiblity to move every object to a different
position in the environment. However further development is required to

69

6. Conclusion

present an alpha version of this project. A key point will be the implementa-
tion of a peristent save functionality, given that Catroid3D currently has an
internal project structure, where all 3D objects including all informations,
such as position vector, physic state, 3D model and textures, are stored in
the main memory, but not be saved on a persistent storage. Furthermore the
Catroid3D project is not integrated in the Jenkins test environment, created
by the Catrobat team which makes it possible to automatically execute all
tests defined in the project. The final chapter described the migration of
bricks from Pocket Code to Catroid3D. Another key implementation will be
the logic behind the execution of the bricks or in other words the execution
of the Catrobat language. Furthermore Catroid3D supports only a few 3D
models in the current version. There must be the possibility to either upload
own 3D models to Catroid3D or directly download 3D models from an
external 3D model database.

Catroid3D in combination with the Cucumber implementation of Behavior-
Driven-Development has a big potential and should be pushed to the next
level.

70

Appendix A.

Acronyms

ATDD: Acceptance test-driven development

BDD: Behaviour-driven development

KGL: Kodu Game Lab

TDD: Test-driven development

UI: User interface

XP: Extreme programming

71

Bibliography

[1] Autodesk. 123D Catch. url: http://www.123dapp.com/catch/ (cit. on
p. 57).

[2] Kent Beck. Extreme Programming Explained: Embrace Change. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2000. isbn:
0201616416 (cit. on p. 3).

[3] Kent Beck. Test-Driven Development By Example. Addison Wesley, 2002.
isbn: 0321146530, 9780321146533 (cit. on p. 4).

[4] David Chelimsky et al. The RSpec Book: Behaviour Driven Development
with Rspec, Cucumber, and Friends. 1st. Pragmatic Bookshelf, 2010. isbn:
1934356379, 9781934356371 (cit. on pp. 5, 12).

[5] Matthew Conway et al. “Alice: Lessons Learned from Building a 3D
System for Novices.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’00. The Hague, The Netherlands:
ACM, 2000, pp. 486–493. isbn: 1581132166. doi: 10.1145/332040.
332481. url: http://doi.acm.org/10.1145/332040.332481 (cit. on
p. 15).

[6] Erwin Coumans. Bullet Physics. 2003. url: http://bulletphysics.
org/wordpress/ (cit. on p. 25).

[7] Wanda Dann and Stephen Cooper. “Education: Alice 3: Concrete to
Abstract.” In: Commun. ACM 52.8 (Aug. 2009), pp. 27–29. issn: 0001-
0782. doi: 10.1145/1536616.1536628. url: http://doi.acm.org/10.
1145/1536616.1536628 (cit. on p. 16).

[8] Eric Evans. Domain-driven design: tackling complexity in the heart of soft-
ware. Addison-Wesley Professional, 2004. isbn: 0321125215, 9780321125217

(cit. on pp. 8, 9).

73

http://www.123dapp.com/catch/
http://dx.doi.org/10.1145/332040.332481
http://dx.doi.org/10.1145/332040.332481
http://doi.acm.org/10.1145/332040.332481
http://bulletphysics.org/wordpress/
http://bulletphysics.org/wordpress/
http://dx.doi.org/10.1145/1536616.1536628
http://doi.acm.org/10.1145/1536616.1536628
http://doi.acm.org/10.1145/1536616.1536628

Bibliography

[9] Stichting Blender Foundation. Blender. url: https://www.blender.
org/ (cit. on p. 59).

[10] Allan Fowler, Teale Fristce, and Matthew MacLauren. “Kodu Game
Lab: a programming environment.” In: The Computer Games Journal
1(1) Whitsun 2012. The Computer Games Journal, 2012, pp. 17–28. url:
http://tcjg.weebly.com/uploads/9/3/8/5/9385844/fowler_et_

al_tcgj_11_whitsun_2012.pdf (cit. on p. 17).

[11] Lifelong Kindergarten Group. Scratch. MIT Media Lab. url: https:
//scratch.mit.edu/ (cit. on p. 20).

[12] Bart Kelsey. opengameart.org. url: http://opengameart.org (cit. on
p. 57).

[13] Sparklin Labs. Superpowers. url: http://superpowers-html5.com/
(cit. on p. 21).

[14] Matthew B. MacLaurin. “The Design of Kodu: A Tiny Visual Pro-
gramming Language for Children on the Xbox 360.” In: Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’11. Austin, Texas, USA: ACM, 2011,
pp. 241–246. isbn: 9781450304900. doi: 10.1145/1926385.1926413.
url: http://doi.acm.org/10.1145/1926385.1926413 (cit. on p. 17).

[15] Jens Mönig. Snap! University of California at Berkeley. url: https:
//snap.berkeley.edu (cit. on p. 20).

[16] Dan North. Introducing BDD. 2006. url: http : / / dannorth . net /

introducing-bdd/ (cit. on pp. 5, 7, 11).

[17] Dan North. JBehave. 2003. url: http://dannorth.net/introducing-
bdd/ (cit. on p. 11).

[18] OpenGL. OpenGL. 1997. url: https://www.opengl.org/ (cit. on
p. 30).

[19] Eric Rosenbaum et al. Beetle Blocks. url: http://beetleblocks.com
(cit. on p. 20).

[20] Winston W Royce. “Managing the development of large software
systems.” In: proceedings of IEEE WESCON. Vol. 26. 8. Los Angeles.
1970 (cit. on pp. 3, 5, 6).

74

https://www.blender.org/
https://www.blender.org/
http://tcjg.weebly.com/uploads/9/3/8/5/9385844/fowler_et_al_tcgj_11_whitsun_2012.pdf
http://tcjg.weebly.com/uploads/9/3/8/5/9385844/fowler_et_al_tcgj_11_whitsun_2012.pdf
https://scratch.mit.edu/
https://scratch.mit.edu/
http://opengameart.org
http://superpowers-html5.com/
http://dx.doi.org/10.1145/1926385.1926413
http://doi.acm.org/10.1145/1926385.1926413
https://snap.berkeley.edu
https://snap.berkeley.edu
http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/
https://www.opengl.org/
http://beetleblocks.com

Bibliography

[21] Wolfgang Slany. “A mobile visual programming system for Android
smartphones and tablets.” In: Visual Languages and Human-Centric
Computing (VL/HCC), 2012 IEEE Symposium on. Sept. 2012, pp. 265–266.
doi: 10.1109/VLHCC.2012.6344546 (cit. on p. 23).

[22] Wolfgang Slany. “Catroid: A Mobile Visual Programming System
for Children.” In: Proceedings of the 11th International Conference on
Interaction Design and Children. IDC ’12. Bremen, Germany: ACM, 2012,
pp. 300–303. isbn: 9781450310079. doi: 10.1145/2307096.2307151.
url: http://doi.acm.org/10.1145/2307096.2307151 (cit. on p. 23).

[23] Wolfgang Slany and Catrobat Team. Pocket Code. International Catrobat
Association. 2013. url: http://www.pocketcode.org (cit. on p. 23).

[24] Chris Stevenson. agiledox. 2003. url: http://agiledox.sourceforge.
net/index.html (cit. on p. 7).

[25] Catrobat Team. Catrobat Share Website. International Catrobat Associ-
ation. url: https://share.catrob.at/pocketcode/ (cit. on pp. 61,
62).

[26] Daniel Wendel. StarLogo Nova. MIT Scheller Teacher Education Pro-
gram. url: https://www.slnova.org (cit. on p. 18).

[27] Matt Wynne and Aslak Hellesoy. The Cucumber Book: Behaviour-Driven
Development for Testers and Developers. Pragmatic Bookshelf, 2012. isbn:
1934356808, 9781934356807 (cit. on p. 9).

[28] Mario Zechner. LibGDX. 2010. url: http://libgdx.badlogicgames.
com/index.html (cit. on p. 25).

75

http://dx.doi.org/10.1109/VLHCC.2012.6344546
http://dx.doi.org/10.1145/2307096.2307151
http://doi.acm.org/10.1145/2307096.2307151
http://www.pocketcode.org
http://agiledox.sourceforge.net/index.html
http://agiledox.sourceforge.net/index.html
https://share.catrob.at/pocketcode/
https://www.slnova.org
http://libgdx.badlogicgames.com/index.html
http://libgdx.badlogicgames.com/index.html

