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Zusammenfassung

Monte Carlo und Quasi-Monte Carlo (QMC) Methoden sind ein essentielles Werkzeug, so-
wohl in der Finanz-, als auch in der Versicherungsmathematik, in Anbetracht der Notwen-
digkeit der Bewertung von Lebensversicherungen mit eingebetteten Optionen. Viele Pro-
bleme resultieren in hoch-dimensionalen Integralen, für welche herkömmliche Quadratur-
Regeln nicht geeignet sind. Die klassische Fehlerabschätzung für QMC Methoden, bekannt
als die Koksma-Hlawka Ungleichung, setzt einen Integranden mit endlicher Variation vo-
raus, was in vielen praktischen Fällen nicht gegeben ist. Trotzdem werden QMC Methoden
erfolgreich auch auf Integrale angewendet, welche die üblichen Bedingungen nicht erfüllen.
In dieser Arbeit werden Transformationen, welche beschränkte Integranden liefern, sowie
Möglichkeiten zur Glättung von nicht differenzierbaren Integranden präsentiert, was uns
schließlich ermöglicht, Integranden mit endlicher Variation zu konstruieren. Wir werden
zeigen, dass bestimmte Fälle von nicht differenzierbaren Funktionen endliche Variation
besitzen. In anderen Fällen werden wir die Funktion in einen glatten Anteil und in einen
kleinen, nicht glatten Rest zerlegen. Auf dem glatten Anteil lässt sich die Koksma-Hlawka
Ungleichung anwenden, während wir die Fehlerabschätzung auf dem nicht glatten Rest
mittels gewöhnlicher Monte Carlo Integration und einem Konfidenzintervall durchführen.
Die verschiedenen Methoden werden mit Ergebnissen aus MATLAB-Berechnungen ver-
anschaulicht.
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Abstract

Monte Carlo and quasi-Monte Carlo (QMC) methods are an essential tool in mathematical
finance as well as in actuarial mathematics, considering the need for the valuation of
life insurance contracts with embedded options. Common problems often result in high-
dimensional integrals, where traditional quadrature rules fail. The classical error estimate
for QMC methods, known as the Koksma-Hlawka inequality, requires the integrand to have
finite variation, which is not given in many practical cases. Nonetheless, QMC methods
are successfully applied to integrals, which do not fulfil the usual conditions. In the
context of this work, we will discuss transformations, which yield bounded integrands as
well as methods for smoothing non-differentiable integrands, which ultimately allows us to
construct integrands with finite variation. For special cases of non-differential functions,
we will prove, that they have finite variation. In other cases, we will decompose those
functions in a smooth part with finite variation and a small, non-smooth rest. While the
Koksma-Hlawka inequality is applicable on the smooth part, ordinary Monte Carlo can be
used in combination with a confidence interval, to estimate the error on the non-smooth
rest. The different methods considered in this work are illustrated with results obtained
from calculations performed in MATLAB.

vi



Contents

Abstract vi

Notation and Abbreviations ix

Motivation and Overview xi

1 Introduction to Monte Carlo Methods 1

1.1 Ordinary Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Inverse Transform Method . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 The Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 The Box-Muller Method . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.4 Generating Multivariate Normals . . . . . . . . . . . . . . . . . . . . 5

1.3 Introduction to QMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Variation in the Sense of Hardy and Krause . . . . . . . . . . . . . . . . . . 13

1.6 Koksma-Hlawka Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7 Randomized QMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7.1 Additive Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.7.2 Digital Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.7.3 Scrambled Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Introduction to Mathematical Finance 25

2.1 The General Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 The Fundamental Theorems of Asset Pricing . . . . . . . . . . . . . . . . . 29

2.3 The Black-Scholes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Practical Aspects 37

3.1 Transformation to the Unit Cube . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Truncation Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.3 Bounds on the Derivatives of the Normal Density . . . . . . . . . . . 41

3.1.4 Inverse Normal CDF Transformation . . . . . . . . . . . . . . . . . . 43

3.1.5 Logit Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Factorization of the Covariance Matrix . . . . . . . . . . . . . . . . . . . . . 48

vii



viii CONTENTS

4 Non-Differentiable Functions 51
4.1 Finite Variation of the Maximum Function . . . . . . . . . . . . . . . . . . 51
4.2 Approximation with Smooth Functions . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 The Indicator Function . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 The Positive-Part Function . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 Min, Max and Minmax-Functions . . . . . . . . . . . . . . . . . . . 58
4.2.4 Indicator Function on a Polyhedron . . . . . . . . . . . . . . . . . 58
4.2.5 Indicator Function on a Set with Restrictions . . . . . . . . . . . . 59
4.2.6 Convolution with a Bump Function . . . . . . . . . . . . . . . . . . 59

4.3 A Cliquet-Type Payoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Practical Examples 67
5.1 A Comparison between MC, QMC and RQMC . . . . . . . . . . . . . . . . 67
5.2 A Smoothed Indicator Function . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Cliquet-Type Payoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Transformations and Matrix Factorizations . . . . . . . . . . . . . . . . . . 75

6 Conclusion 79



Notation and Abbreviations

In this work we will use the following notations and abbreviations:

MC . . . Monte Carlo

QMC . . . Quasi-Monte Carlo

RQMC . . . Randomized Quasi-Monte Carlo

R.V. . . . random variable

a.s. . . . almost surely

PDF . . . probability density function

CDF . . . cumulative distribution function

iid . . . independent and identical distributed

d−→ . . .XN
d−→

N→∞
X, convergence in distribution

Is . . . the s× s identity matrix

Is . . . the index set {1, 2, . . . , s}

1 . . . the 1-vector (1, 1, . . . , 1)T , the number of entries should be clear from the context

U(0,1) or U([0, 1]) . . . the uniform distribution on [0, 1], s.t. X ∼ U(0, 1) if and only if
its CDF is FX(t) = P[X ≤ t] = t for t ∈ [0, 1]

U([0,1]s) . . . the multivariate uniform distribution on [0, 1]s, s.t. the vectorX = (X1, . . . , Xs) ∼
U([0, 1]s) if and only if Xj

iid∼ U(0, 1) for all j ∈ Is

a ≤ b for vectors a, b ∈ Rs . . . we say a ≤ b if and only if aj ≤ bj for all j ∈ Is

[a, b] for vectors a ≤ b ∈ Rs . . . the hyperrectangle which is the Cartesian product
[a, b] = [a1, b1]× . . .× [as, bs]

∂u for a set u ⊆ Is . . . the differential operator ∂u =
∏
j∈u

∂
∂xj

which takes the first

derivative with respect to each component variable

bxc for any x ∈ R . . . the largest integer n ≤ x, bxc := max{n ∈ N|n ≤ x}

(·)+ . . . the positive part function, (x)+ = max{x, 0}
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(·)− . . . the negative part function, (x)− = max{−x, 0}

(a± ε) . . . the open interval (a− ε, a+ ε)

[a± ε] . . . the closed interval [a− ε, a+ ε]



Motivation and Overview

Monte Carlo methods play an essential role in today’s context of scientific computing,
especially in mathematical finance. Basically, every method involving the use of random
numbers to estimate some quantity is called a Monte Carlo method. Our primary focus
lies on the calculation of an integral over an s-dimensional domain. Because an analytic
expression for the antiderivative cannot be found in most cases, one has to resort to
numerical methods. For high dimensional integrals, which are common in the field of
financial and actuarial mathematics, traditional quadrature rules often fail because of the
”curse of dimensionality”, while Monte Carlo methods are still able to produce good results
in many cases, with a convergence rate of O(N−1/2). A higher rate of convergence can be
achieved with the use of ”low-discrepancy sequences” instead of random numbers, which
is then called quasi-Monte Carlo method. The elements of a low-discrepancy sequence are
not random (and also not independent), but they have very good distributional properties,
which results in a better convergence rate. There are some restrictions to the applicability
of quasi-Monte Carlo methods, e.g. the dimension of the problem has to be bounded, and
it must be known a priori, which does not have to be the case for ”ordinary” Monte Carlo.
What makes quasi-Monte Carlo special is, that we have a deterministic error estimate, as
in contrary to ordinary Monte Carlo, where we have only a probabilistic error estimate (i.e.
a confidence interval). This estimate, known as the Koksma-Hlawka inequality, consists of
two factors, namely the discrepancy, which is a measure for the uniformity of the sequence
used for the integration nodes, and the variation of the integrand, or more specifically, the
variation in the sense of Hardy and Krause. Both of these terms, the discrepancy and the
variation, are rather hard to calculate, or even to find a good estimate. Another difficulty
is, that the variation of the integrand is unbounded for many integrands resulting from
problems in mathematical finance, and thus the error estimate is useless. The reason
for this is twofold: Low-discrepancy sequences are always defined on the s-dimensional
unit cube [0, 1]s, while the problems considered in this work result in integrals over the
domain Rs, and because of that, one needs to apply some transformation. Depending on
the choice of transformation, the resulting integrand can be bounded or unbounded, and
an unbounded integrand always implies unbounded variation. The second reason is, that
most payoff-functions, which define the structure of our integrands, are not differentiable,
because they involve some maximum-function etc. Although differentiability is only a
sufficient, but not a necessary criterion for the variation to be finite, the most convenient
way for estimating the variation of a function is by estimating its derivatives, which is
not possible, if the function is not differentiable. Despite these theoretical difficulties,
Monte Carlo and quasi-Monte Carlo methods are successfully applied in practice, and the
question, why quasi-Monte Carlo is performing so well, is a current field of research.

In this work, we will discuss different transformations and present methods for approx-
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imating non-differentiable functions often involved in mathematical finance with smooth
functions with finite variation. Also, we are going show, that special cases of non-
differentiable functions do have finite variation. Chapter 1 aims to give an introduction
on Monte Carlo methods in general and the theory behind quasi-Monte Carlo methods
and the error estimation. Chapter 2 is a formal introduction into the modelling world of
mathematical finance and the Black-Scholes model in particular, which is the main source
for the problems considered in Chapter 5. In Chapter 3, we discuss advantages and dis-
advantages of different transformations and the different ways to incorporate dependency.
The topic of Chapter 4 is non-differentiable functions, with the focus on ways to estimate
the variation and ways for smoothing functions with unbounded variation, thus making
the variation finite. In Chapter 5, we present some practical and numerical examples, with
a comparison of the performance of the different methods.



Chapter 1

Introduction to Monte Carlo
Methods

As already said in the motivation, our primary focus lies on the calculation of an integral
over an s-dimensional domain. Monte Carlo methods make the use of random numbers in
order to approximate such an integral numerically. This chapter should explain the basics
of Monte Carlo and quasi-Monte Carlo methods and is structured in the following manner:
In Section 1.1, we will give an overview about the ordinary Monte Carlo method, which
uses pseudo-random numbers, with the main sources being the introductory chapters in
Glasserman [5], Leobacher & Pillichshammer [15] and Dick & Pillichshammer [3]. Section
1.2 deals with the generation of random numbers, which lies at the heart of every Monte
Carlo simulation. Beginning with Section 1.3, our main focus will be the quasi-Monte Carlo
method, which uses specially constructed numbers instead of pseudo-random numbers to
achieve better rates of convergence. Sections 1.4 to 1.6 are about the error analysis of
QMC methods and preliminary definitions.

1.1 Ordinary Monte Carlo Method

Our aim is to to approximate the integral with some quadrature rule

IN (f) ≈
∫

[0,1]s
f(x)dx,

which is defined as

IN (f) :=
1

N

N∑
n=1

wnf(xn)

with weights wn and integration nodes xn.

In one dimension, the midpoint rule or trapezoidal rule work for most cases. Additio-
nally, if the integrand is sufficiently smooth, a higher order of convergence can be achieved
e.g. using Simpson’s rule. For example, with the trapezoidal rule, the numeric estimate
converges with a speed of O(N−2) for a twice differentiable function f , which means, the
integration error is |IN (f)−

∫ 1
0 f(x)dx| = O(N−2). For a four times differentiable function

f , the Simpson’s rule has a convergence of |IN (f)−
∫ 1

0 f(x)dx| = O(N−4). Another op-
tion would be the Gauss quadrature, which yields very good results for functions that

1



2 CHAPTER 1. INTRODUCTION TO MONTE CARLO METHODS

are well approximated by polynomials, because with N integration nodes, it is possible to
calculate the integral of a polynomial with a degree of 2N − 1 or less exactly.

However, as the dimension s increases, these methods show a big deficiency in the order
of convergence. In higher dimensions, these rules are constructed as the s-fold Cartesian
product of the one dimensional quadrature points, hence they form a regular lattice in the
unit cube. For the total number of quadrature points we have N = ms, where m is the
number of points in each coordinate dimension. The error of the trapezoidal rule is then
O(m−2), but written in terms of N , the error is∣∣∣∣IN (f)−

∫
[0,1]s

f(x)dx

∣∣∣∣ = O(N−2/s),

which is, even for moderate s, a poor rate of convergence, as the problem dimension can
be in the hundreds with practical problems. The so called ”curse of dimensionality” refers
to this difficulty when dealing with high dimensional problems. Because of this, we might
want to try a different approach, utilizing results from probability theory.

Proposition 1.1.1 (Strong Law of Large Numbers [6]). Let (Xn)n∈N be a sequence
of independent and identically distributed random variables and assume that E[|X1|] <∞.
Let XN be their arithmetic mean, XN = 1

N

∑N
n=1Xn. We have

lim
N→∞

XN = E[X1]

with probability 1.

Consider now a random variable X, uniformly distributed in [0, 1]s. The fact

α := E[f(X)] =

∫
[0,1]s

f(x)dx (1.1.1)

makes it possible, to draw iid-samples X1, X2, . . . from the U([0, 1]s)-distribution and use
their arithmetic mean to estimate the integral

α̂N :=
1

N

N∑
n=1

f(Xn) ≈
∫

[0,1]s
f(x)dx. (1.1.2)

This Monte Carlo estimator is unbiased because of equation (1.1.1) and Proposition 1.1.1
guarantees convergence.

Let

σ2
f :=

∫
[0,1]s

(f(x)− α)2dx (1.1.3)

be the variance of f . If σ2
f is finite, which is equivalent to the condition that f is square-

integrable, we have

Var[α̂N ] =
σ2
f

N
.

A proof can be found in [3], Theorem 1.5. Applying Jensen’s inequality, for the expected
error, one derives

E

[∣∣∣∣ ∫
[0,1]s

f(x)dx− α̂N
∣∣∣∣] ≤√Var[α̂N ] =

σf√
N
,
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which is of the order O(N−
1
2 ), because σ2

f does not depend on N . This rate of convergence
holds for all dimensions s and is superior to the trapezoidal rule already for s = 4, but that
does not mean, that ordinary Monte Carlo breaks the curse of dimension, because σf is
usually not independent of s. A remaining problem is the computation of σ2

f , because it is
again an s-dimensional integral, which also requires the knowledge of α. We are however
safe, if N is large enough, to use the sample variance

s2
f,N =

1

N − 1

N∑
n=1

(f(Xn)− α̂N )2 (1.1.4)

as a replacement for σ2
f , because E[s2

f,N ] = σ2
f and s2

f,N
a.s.−→

N→∞
σ2
f . For the actual compu-

tation of s2
f,N , the same realizations of Xn can be used as in the computation of α̂N . Now

we are going to present two well-known results from probability theory, in order to derive
a confidence interval with the Monte Carlo estimate.

Proposition 1.1.2 (Central Limit Theorem [6]). Let (Xn)n∈N be a sequence of inde-
pendent and identically distributed random variables with E[|X1|]2 <∞, and let µ = E[X1]
and σ2 = Var[X1] be their expectation and variance. We have

XN − µ
σ√
N

d−→
N→∞

N(0, 1).

Proposition 1.1.3 (Slutsky). Let (Xn)n∈N and (Yn)n∈N be sequences of random varia-
bles. If there exists a random variable X and a constant c, such that

XN
d−→

N→∞
X and YN

d−→
N→∞

c,

we have
XNYN

d−→
N→∞

cX.

With the help of the above propositions, we are able to derive

α̂N − α
sf,N√
N

=
α̂N − α

σf√
N

·
σf√
N

sf,N√
N︸︷︷︸

→1 a.s.

d−→
N→∞

N(0, 1),

thus, for ”large” N , one can say,

α̂N − α
approx.∼ N(0,

s2
f,N

N
). (1.1.5)

We are now able to construct a level-δ confidence interval for the the actual value α as[
α̂N − zδ/2

sf,N√
N
, α̂N + zδ/2

sf,N√
N

]
,

with zδ/2 = Φ−1(1−δ/2) being the quantile of the normal distribution. There is literature
dealing also with non-asymptotic error estimates, e.g. see Graham and Talay [6].

Despite the easy applicability of ordinary Monte Carlo methods, a convergence rate
of O(1/

√
N) is still to slow for many practical cases. Beginning with Section 1.3, we

will see quasi-Monte Carlo (QMC) methods, which achieve convergence rate of at least
O((logN)s/N).
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1.2 Random Number Generation

In order to apply any Monte Carlo method, we need some method, which supplies us
with an arbitrary amount of random numbers. There are well established algorithms,
with implementations in almost any programming language, which shall meet our needs.
Although we treat the numbers generated by such algorithms as random, they are not
truly random, but actually purely deterministic, hence such algorithms are called pseudo-
random number generators. For generating random numbers uniformly distributed
on [0, 1], one of the most widespread algorithms is the Mersenne Twister (MT19937),
developed 1997 by Matsumoto and Nishimura [18]. An introduction and overview of
different random number generators can be found in Chapter 2 of [5].

As nearly all random number generators are constructed to generate uniformly dis-
tributed samples, the question arises, how to get from the uniform distribution to some
other distribution F . The most straightforward way to do this is the inverse transform
method, which we shall see in the following section.

1.2.1 Inverse Transform Method

A real random variable X with cumulative distribution function F : R → [0, 1] fulfils
P[X ≤ x] = F (x) per definition. For the sake of simplicity let’s assume that F is strictly
increasing, which is equivalent to its probability density function f being positive. In this
case the inverse F−1 is well-defined on the interval [0, 1]. Let V ∼ U([0, 1]) be given, i.e.
P[V ≤ v] = v. By defining X as

X = F−1(V )

we can see, that X has the desired distributional property via

P[X ≤ x] = P[F−1(V ) ≤ x]

= P[V ≤ F (x)]

= F (x). (1.2.1)

In cases where F is not strictly increasing, but just non-decreasing, the classical inverse
F−1 does not exist. By defining

F−1(u) := inf{x : F (x) ≥ u},

this problem can be avoided, and the equation (1.2.1) holds again, as can be seen in [5].
So in order to sample from any distribution F , we first generate samples from the uniform
distribution and as a second step, apply the the inverse c.d.f. F−1 on them, to receive
samples with the desired distribution.

1.2.2 The Normal Distribution

Definition 1.2.1. A random variable X is normally distributed with parameters µ
and σ > 0, if it has PDF

fX(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
.
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Because neither the CDF of a normal distribution, nor its inverse can be written
in terms of elementary functions, numeric approximations have to be used. However,
available approximations are highly accurate and aren’t more complex than the evaluation
of functions e.g. involving exp or log, although these are elementary functions.

Definition 1.2.2. A random vector X = (X1, . . . , Xs) is (multivariate) normally
distributed with mean µ ∈ Rs and positive definite covariance matrix Σ ∈ Rs×s, if it
has the joint PDF

fX(x) =
1√

(2π)s| det(Σ)|
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
.

A random vector Y = (Y1, . . . , Ys) is said to be (multivariate) standard normally dis-
tributed, if it is normally distributed with µ being the s-dimensional zero-vector, and Σ
being the (s × s)-identity matrix. In this case, the PDF is just the s-fold product of the
PDFs of one-dimensional standard normal distributions.

1.2.3 The Box-Muller Method

For generating pairs of samples from the normal distribution, a somewhat more elegant
way than the inverse transform method can be obtained by the following observation [15]:

Consider a two-dimensional standard normal vector X = (X1, X2) , i.e., µ = (0, 0) and
Σ = [ 1 0

0 1 ]. Via substitution to polar coordinates we have

P[‖X‖2 ≤ t] =
1

2π

∫∫
‖X‖2≤t

exp(−1

2
(x2

1 + x2
2))dx1dx2

=
1

2π

∫ 2π

ϕ=0

∫ t

r=0
exp(−1

2
r2)rdrdϕ

= 1− exp(−t2/2).

This is an easily invertible CDF for the radius (the euclidean norm) of X, with the inverse
being F−1

R (u) =
√
−2 log(1− u). From the rotational symmetry of the PDF it follows,

that for a given radius, each polar angle has the same probability, e.g., it is uniformly
distributed in [0, 2π). Finally, the method can be described by the following steps:

1. Generate two independent U([0, 1))-variables V and W

2. Set R =
√
−2 log(1− V )

3. Set X1 = R cos(2πW ) and X2 = R sin(2πW )

1.2.4 Generating Multivariate Normals

Generating a s-dimensional standard normal distributed vector is easy, because one just
has to generate s one-dimensional independent and identical distributed (iid) samples. If
some dependency between the components of the vector is desired, things are bit different.
In this case, the proposition below should prove helpful.

Proposition 1.2.3. Let Y = (Y1, . . . , Ys) be standard normally distributed, µ ∈ Rs,
L ∈ Rs×s be a regular matrix and Σ = LLT . Then X := LY + µ is normally distributed
with mean µ and covariance-matrix Σ.
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Proof. First observe, that the PDF of Y is simply fY (y) = 1√
(2π)s

exp(−1
2y

T y). Let

φ(y) := Ly + µ and A ⊂ Rs. The transformation φ is invertible, because L is regular and
the inverse is φ−1(x) = L−1(x− µ). The determinant of its Jacobian equals

|det Jφ−1(x)| = |detL−1| = 1

| detL|
=

1√
| det Σ|

.

Studying the probability of the event [X ∈ A] leads to

P[X ∈ A] = P[φ(Y ) ∈ A]

= P[Y ∈ φ−1(A)]

=

∫
φ−1(A)

fY (y)dy,

(applying the change of variables theorem here)

=

∫
A
fY (φ−1(x))|det Jφ−1(x)|dx

=

∫
A

1√
(2π)s| det Σ|

exp
(
− 1

2
(x− µ)T (L−1)TL−1︸ ︷︷ ︸

=Σ−1

(x− µ)
)
,

which yields, that the PDF of X is exactly of the form

fX(x) =
1√

(2π)s|det(Σ)|
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
,

therefore the distribution of X is as stated in the proposition.

So if one wants to generate an s-dimensional N(µ,Σ)-distributed sample x, one first has
to find a matrix L such that LLT = Σ, then generate a vector y = (y1, . . . , ys) consisting of
s independent and standard normally distributed samples and finally setting x = Ly + µ.

If Σ is positive definite, there always exists a matrix L fulfilling LLT = Σ. The
most common methods for finding such a matrix are the Cholesky factorization and the
principal component decomposition, with implementation in almost every programming
language used for numerical computations. When applying the Cholesky factorization,
the resulting factor L is a lower triangular matrix, which has a numerical advantage
because half of its entries are 0. With the principal component decomposition, the original
matrix is decomposed into three factors Σ = V∆V T . Here the matrix ∆ is a diagonal
matrix with the eigenvalues of Σ as entries, and V is an orthogonal matrix. Via setting
L = V∆1/2, one has again LLT = V∆1/2∆1/2V T = Σ. This decomposition has some
statistical interpretation about the influence of each component via the corresponding
eigenvalues, that is occasionally useful [5]. Also, for given L with LLT = Σ and any
orthogonal matrix Q the new matrix L̃ = LQ fulfils L̃L̃T = LQQTLT = Σ.

1.3 Introduction to QMC

In ordinary Monte Carlo, we generate a uniformly distributed pseudo-random sequence
(xn)n≤N to estimate the true value of the integral via∫

[0,1]s
f(x)dx ≈ 1

N

N∑
n=1

f(xn). (1.3.1)
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If we take a look at Figure 1.3.1 on the left, one can clearly see, that there are on the one
hand areas, where many points are clustered, and on the other hand areas, that are rather
sparsely populated.
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Figure 1.3.1: 1000 Pseudo-random numbers (left) vs. the first 1000 points of the Halton
sequence (right).

This phenomenon lies in the nature of random numbers, but is in our case rather
unwanted. The question arises, how to construct sequences, that are more equally distri-
buted over the whole area, e.g. like the Halton sequence in Figure 1.3.1 on the right. This
is where quasi-Monte Carlo comes into play. QMC deals exactly with the construction
of such sequences and the error analysis when using those sequences to approximate the
integral (1.3.1). As it turns out, this is in many cases very efficient and beats ordinary
MC in terms of convergence. One thing we need to keep in mind is, that those sequences
aren’t random anymore but purely deterministic, which is why we don’t automatically
get an error estimator via the sample variance (1.1.4). We have, however, a deterministic
error bound at hand, if the integrand meets some smoothness condition, as we will see
in Chapter 1.6. This error bound, the Koksma-Hlawka inequality, is a product of two
terms, one is a measure for the ”uniformity” of the sequence and the other depends only
on the variation of the integrand, thus we can study the properties of the sequence and
the integrand completely separate. Classical references regarding QMC are Kuipers &
Niederreiter [12] and Drmota & Tichy [4], among the more recent literature one should
name Dick & Pillichshammer [3]. It remains to define the terms uniformity and variation
used here, which will be done in the following paragraph, respectively in Section 1.5. All
the definitions and results in this and the following section can be found in Leobacher &
Pillichshammer [15] with more details and proofs. We need them here to get an overview
and because they are often referred to in this work.

Consider an infinite sequence of points S = (xn)n∈N0 in [0, 1)s. Let us denote

A([a, b),S, N) = #{n ∈ N0 : 0 ≤ n ≤ N − 1 and xn ∈ [a, b)}

as the number of indices within the first N points of S, that lie in the hyper-rectangle
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[a, b) ⊆ [0, 1)s. Let λs be the s-dimensional Lebesgue measure, s.t. λs([a, b)) =
∏s
i=1(bi −

ai).

Definition 1.3.1. An infinite sequence S is said to be uniformly distributed modulo
one (or equidistributed), if for every interval of the form [a, b) ⊆ [0, 1)s we have

lim
N→∞

A([a, b),S, N)

N
= λs([a, b)). (1.3.2)

In other terms, the ratio of the number of points within the interval to the total number
of points should behave like the volume of the interval. The following theorem states a
particularly useful property of sequences which are uniformly distributed modulo one.

Theorem 1.3.2 ([15]). A sequence (xn)n∈N0 in [0, 1)s is uniformly distributed modulo
one if and only if for every Riemann integrable function f : [0, 1]s → R we have

lim
N→∞

1

N

N−1∑
n=0

f(xn) =

∫
[0,1]s

f(x)dx. (1.3.3)

A consequence of Theorem 1.3.2 is, that sequences which satisfy (1.3.2) are, at least
theoretically, viable choices as integration nodes. Still, we need some measure to quantify
the ”uniformity” of such a sequence, in order to compare different sequences and estimate
the convergence rate in (1.3.3). The discrepancy as such a measure is introduced in the
following section. But before we proceed, let’s look at an example.

Definition 1.3.3. Let b ∈ N, b ≥ 2. The b-adic radical inverse function is defined as
φb : N0 → [0, 1],

φb(n) =
∞∑
j=0

nj
bj+1

for n ∈ N0 with b-adic digit expansion n =
∑∞

j=0 njb
j , where nj ∈ {0, 1, . . . , b − 1} and

only a finite number of nj 6= 0.
The van der Corput sequence in base b is defined as (xn)n∈N0 with xn = φb(n).

Proposition 1.3.4 ([15]). The van der Corput sequence in base b is uniformly distributed
modulo one.

1.4 Discrepancy

Now we will introduce the discrepancy as a sequence’s measure of uniformity, or rather,
the deviation from uniformity.

Definition 1.4.1. Let P be a N -element pointset in [0, 1)s (where duplicates are allowed).
The extreme discrepancy DN of this point set is defined as

DN (P) = sup
a,b∈[0,1]s

a≤b

∣∣∣∣A([a, b),P, N)

N
− λs([a, b))

∣∣∣∣.
For an infinite sequence S the discrepancy DN (S) is the discrepancy of the first N

elements of S.
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Figure 1.3.2: The n-th line in this picture, taken from [5], represent the first n elements
of the van der Corput sequence in base 2

In words, the (extreme) discrepancy measures the worst case deviation of the fraction
of points within a hyperrectangle and its volume for all hyperrectangles in [0, 1]s. One
could also consider other shapes than hyperrectangles, e.g. balls, rotated rectangles or all
convex sets in [0, 1]s. These sorts of discrepancies are much harder to estimate, Matoušek
[17] deals with this topic. It seems somehow intuitive, that a sequence S is uniformly
distributed modulo one if and only if limN→∞DN (S) = 0 as it is indeed shown in [15],
Theorem 2.15. Sequences with lower overall discrepancy result in a faster convergence
in equation (1.3.3). In most cases it’s enough to consider a simplified version of the
discrepancy, where the supremum is taken only of hyperrectangles with a fixed corner in
the origin.

Definition 1.4.2. Let P be a N -element pointset in [0, 1)s. The star discrepancy D∗N
of this point set is defined as

D∗N (P) = sup
a∈[0,1]s

∣∣∣∣A([0, a),P, N)

N
− λs([0, a))

∣∣∣∣.
For an infinite sequence S the star discrepancy D∗N (S) is the star discrepancy of the first
N elements of S.

If we consider the dimension s as fixed, the star discrepancy and the extreme discre-
pancy are bounded by each other times a constant, as the following proposition states:

Proposition 1.4.3 ([15]). For every N-element point set P in [0, 1)s we have

D∗N (P) ≤ DN (P) ≤ 2sD∗N (P).

We have also lower bounds for the discrepancy:
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Proposition 1.4.4 ([15]). For every N-element point set P in [0, 1)s we have

DN (P) ≥ 1

N
and D∗N (P) ≥ 1

2sN
.

When thinking of point sets with low discrepancy, many would first come up with the
regular lattice, which is defined as the ms-element set

Γm,s :=

{(
2n1 + 1

2m
, . . . ,

2ns + 1

2m

)
: n1, . . . , ns ∈ {0, . . . ,m− 1}

}
. (1.4.1)

As it turns out, the regular lattice does not perform very good in terms of discre-
pancy, except in dimension 1, where it has the lowest possible discrepancy 1

N . In higher
dimensions, we shall see sequences with much lower discrepancy.

Proposition 1.4.5 ([15]). Let s,m ∈ N,m ≥ 2. For the star discrepancy of the regular
lattice Γm,s with N = ms elements in [0, 1)s it holds that

D∗N (Γm,s) = 1−
(

1− 1

2m

)s
.

Another reason, why the regular lattice is bad, can be seen in Figure 1.4.1: Consider
the integration of an additive function f : [0, 1]2 → R where f(x, y) = f1(x)+f2(y). When
projecting the 16 (blue) points of the regular lattice on the left to each of the coordinate
axes (red and green points), many of them coincide with each other and the effective
number of points used to estimate the integral is only 4. This is a waste of information
and computational resources, because if you position those 16 points in a smarter way,
like on the right, the projections still result in 16 distinct points on both of the coordinate
axes.
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The 2−dimensional regular lattice with 16 points
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The first 16 points of the 2−dimensional Sobol sequence

Figure 1.4.1: The regular lattice (left) vs. the Sobol sequence, each with 16 points.

The following result is interesting for analysing the asymptotic behaviour of the discre-
pancy, or to get an lower bound for the number of points required to achieve some given
accuracy:
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Proposition 1.4.6 (Roth [15]). For every dimension s ∈ N there exists a constant cs > 0
with the following property: for every N-element point set P in [0, 1)s,

DN (P) ≥ D∗N (P) ≥ cs
(logN)

s−1
2

N
.

As a first example of a uniformly distributed modulo one sequence in more dimensions
we will introduce the Halton sequence. This sequence is very popular because of its easy
implementation.

Definition 1.4.7. Let s ∈ N and let b1, . . . , bs ≥ 2 be integers. The Halton sequence
in bases b1, . . . , bs is the sequence Sb1,...,bs = (xn)n∈N0 whose n-th element is given by

xn := (φb1(n), φb2(n), . . . , φbs(n)),

where φbi is the radical inverse function from Definition 1.3.3.

Proposition 1.4.8 ([15]). Let s ∈ N and let b1, . . . , bs ≥ 2 be pairwise coprime integers.
For the star discrepancy of the Halton sequence Sb1,...,bs we have

D∗N (Sb1,...,bs) ≤
1

N

( s∏
j=1

bj log(bjN)

log bj

)
.

Hence asymptotically for N →∞ we have D∗N (Sb1,...,bs) = O( (logN)s

N ).

Unfortunately the discrepancy does not perform very well for growing dimension. Also,
if some of the bases used are really close together relative to their size, e.g. 41 and 43, the
resulting points are poorly distributed and can have strong dependence, as one can see in
Figure 1.4.2. Because of that, we will introduce another type of point-sets and sequences,
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Bases 41 and 43

Figure 1.4.2: The first 500 points of a 2-dimensional Halton sequence with different bases.

which have a very low star discrepancy, namely the (t,m, s)-nets and (t, s)-sequences.
These point-sets are constructed in a way, that their discrepancy is 0 for a large class of
intervals, hoping that this construction yields a low overall star discrepancy. First we need
to define the class of elementary intervals.



12 CHAPTER 1. INTRODUCTION TO MONTE CARLO METHODS

Definition 1.4.9. Let b ∈ N, b ≥ 2. An elementary interval in base b is an interval of
the form

J =

s∏
j=1

[
aj

bdj
,
aj + 1

bdj

)
,

where dj ∈ N0 and aj ∈ {0, 1, . . . , bdj − 1} for all j = 1, 2, . . . , s.

Definition 1.4.10. Let m, s, b ∈ N, b ≥ 2, and let t ∈ {0, . . . ,m}. A (t,m, s)-net in
base b is a bm-element point set P in [0, 1)s which satifies

A(J,P, N)

N
= λs(J)

for every s-dimensional elementary interval J in base b having volume b−m+t. The para-
meter t is called the quality parameter of the net. Furthermore, P is called a strict
(t,m, s)-net in base b, if t is the smallest number u ∈ {0, . . . ,m} such that P is a (u,m, s)-
net in base b.
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Figure 1.4.3: A (0, 4, 2)-net in base 2: every elementary interval with volume 2−4 = 1
16

contains exactly one point.

Definition 1.4.11. Let s, b ∈ N, b ≥ 2, and let t ∈ N0. An infinite sequence (xn)n∈N0

of points in [0, 1)s is called a (t, s)-sequence in base b, if for all integers m > t and
k ≥ 0, the point set {xkbm , xkbm+1, . . . , xkbm+bm−1} forms a (t,m, s)-net in base b. The
parameter t is again called the quality parameter, and a (t, s)-sequence is called a strict
(t, s)-sequence, if it is not a (t− 1, s)-sequence.
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Best known examples of (t, s)-sequences are the ones first constructed by I.M. Sobol
in 1967 and H. Faure 1982. Faure sequences are (0, d)-sequences and thus optimize the
quality parameter t. However, they require a base at least as large as the smallest prime
≥ s. Sobol sequences use base 2 regardless of the dimension (which has computational as
well as uniformity advantages) but their t parameter grows with the dimension s. Today,
it seems most convenient to construct (t, s)-sequences using H. Niederreiter’s approach via
digital nets, where both sequences mentioned before appear as special cases ([15] and [5]).
We don’t want to go into detail to describe the implementation and instead refer to the
literature, e.g. [15] for the basics of digital nets, or Bratley and Fox 1988 [1] respectively
Joe and Kuo 2003 [9] for the an algorithm generating Sobol points up to 1111 dimensions.
An implementation of the latter algorithm is available in MATLAB, which we will use in
the practical part of this work.

Proposition 1.4.12 ([15]). For the star discrepancy of a (t,m, s)-net P in base b we have

D∗bm(P) ≤ 1

bm−t

s−1∑
k=1

(
m− t
k

)
(b− 1)k.

Proposition 1.4.13 ([15]). For the star discrepancy of a (t, s)-sequence S in base b we
have

D∗N (S) ≤ bt(b− 1)

N

r∑
m=0

s−1∑
k=0

(
m− t
k

)
(b− 1)k,

where r = b logN
log b c.

1.5 Variation in the Sense of Hardy and Krause

Essential for the error estimation of the QMC integral is the right measure for the va-
riation of the integrand. It is not obvious how to generalize the total variation of an
one-dimensional function to more dimensions. In this chapter we will introduce the va-
riation in the sense of Hardy and Krause, which will appear in the formula for the error
estimation in the next section. Most definitions and results in this section are based on
Owen [20]. We are now going to set up some new notation and definitions, which we use
only in contexts of the Hardy-Krause-variation.

Definition 1.5.1. With Is we denote the index set {1, 2, . . . , s}. For u, v ⊆ Is write |u|
for the cardinality of u, and u− v for the set difference u \ v. For integers j ≤ k, the set
{j, j+ 1, . . . , k} is written as j : k. A unary minus denotes the complement with respect to
Is, s.t. −u = Is−u. For u ∈ Is, x ∈ Rs, the expression xu denotes the |u|-tuple consisting
of the components xj for j ∈ u. Suppose that u, v ⊆ Is and x, z ∈ Rs with u∪ v = Is and
u ∩ v = ∅. The symbol xu : zv represents the point y with yj = xj if j ∈ u and yj = zj for
j ∈ v. If t is a scalar value, xu : tv is the point y with yj = xj if j ∈ u and yj = t for j ∈ v.
The 3-fold ”:”-notation is defined in an analogue way: For a partition u ] v ]w = Is, the
expression xu : yv : zw denotes the point ξ with ξj = xj if j ∈ u, ξj = yj if j ∈ v and ξj = zj
if j ∈ w.

Let f : Rs → R and u ⊂ Is. With f(xu; y−u) we denote the function g : R|u| → R,
which is defined as g(zu) = f(zu : y−u) for zu ∈ R|u|.
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Let a, b ∈ R, a ≤ b and n ∈ N. A set Y = {y(0), y(1), . . . , y(n)} ⊂ R with a = y(0) <
y(1) < . . . < y(n) < b is called ladder on [a, b]. For each y ∈ Y, define its successor y+

as

y+ :=

{
y(k+1) if y = y(k) with k < n,

b if y = y(n).

For a, b ∈ Rs with a ≤ b let Yj be a ladder on [aj , bj ] for all j = 1, . . . , s. The
Cartesian product Y = Y1 × . . . × Ys is called a multidimensional ladder on [a, b].
The successor y+ of y = (y1, . . . , ys) ∈ Y is defined by its component-wise successors, s.t.
y+ = (y+

1 , . . . , y
+
s ).

Remark 1.5.2. Whenever it is clear from the context, we may leave the [a, b] out of the
notation, like in the short versions of the following definitions.

Definition 1.5.3. Let a, b ∈ Rs with a ≤ b, f : [a, b]→ R. The s-fold alternating sum
of f over [a, b] is

∆f = ∆(f ; a, b) =
∑
v⊆Is

(−1)|v|f(av : b−v).

For u ⊆ Is and a given hyperrectangle [a, b] ∈ Rs define the operator ∆u via

(∆uf)(x−u) = (∆u(f ; au, bu))(x−u) =
∑
v⊆u

(−1)|v|f(av : b(u−v) :x−u).
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Figure 1.5.1: When calculating ∆(f ; 0, 1) for an f : [0, 1]3 → R, the function has to be
evaluated at the corners of [0, 1]3 with the corresponding signs.

Remark 1.5.4. When speaking of (∆uf)(x−u), we say the components in u have been
differentiated, while we still can plug in any value for the components in −u, hence (∆uf)
is a function in x−u. For x−u = b−u, the definition of ∆u here coincides with the definition
of ∆u in [20], Section 4. Observe, that ∆Is = ∆, ∆∅f = f , and for u] v = w we have also
∆w = ∆v∆u.

Proof. The point ∆w = ∆v∆u is not that obvious, therefore we are going to prove it. Let
u, v, w ⊆ Is, with u ∪ v = w and u ∩ v = ∅. Set

g(x−u) := (∆uf)(x−u) =
∑
p⊆u

(−1)|p|f(ap : bu−p :x−u).
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We have

(∆vg)(y−u−v) =
∑
q⊆v

(−1)|q|g(aq : bv−q : y−u−v︸ ︷︷ ︸
=:x−u(q,v)

)

=
∑
q⊆v

(−1)|q|
∑
p⊆u

(−1)|p|f(ap : bu−p :x−u(q, v))

=
∑
q⊆v
p⊆u

(−1)|q|+|p|f(ap+q : bu+v−q−p : y−u−v)

[
w = v + u, r = p+ q

]
=
∑
r⊆w

(−1)|r|f(ar : bw−r : y−w) = (∆wf)(y−w).

Example 1.5.5. Consider a function f : [0, 1]2 → R in two variables, which we write as
f(x, y). We also write ∆x = ∆{1}, ∆y = ∆{2} and ∆xy = ∆{1,2}. We want to calculate
∆xy(f ; [x1, x2]× [y1, y2]), but first observe, that

(∆yf)(x) = f(x, y2)− f(x, y1),

which is a function still depending on the variable x. Applying ∆x, we obtain

∆x((∆yf)(x)) = ∆x(f(x, y2))−∆x(f(x, y1))

=
[
f(x2, y2)− f(x1, y2)

]
−
[
f(x2, y1)− f(x1, y1)

]
= ∆xyf.

Lemma 1.5.6 (Product rule for the ∆u-operator). Let a, b ∈ Rs with a ≤ b, f, g : [a, b]→
R and u ⊆ Is. We have

(∆u(fg))(x−u) =
∑
v⊆u

(∆vf)(bu−v :x−u) · (∆u−vg)(av :x−u). (1.5.1)

Proof. We will use an induction, with the assumption that (1.5.1) holds for all u with
|u| ≤ m.

Induction basis m = 1: Let j ∈ Is, set u = {j}.

(∆u(fg))(x−u) = f(bu :x−u)g(bu :x−u)− f(au :x−u)g(au :x−u)

= f(bu :x−u)g(bu :x−u)− f(bu :x−u)g(au :x−u)

+ f(bu :x−u)g(au :x−u)− f(au :x−u)g(au :x−u)

= f(bu :x−u)(∆ug)(x−u)︸ ︷︷ ︸
summand for v=∅

+ (∆uf)(x−u)g(au :x−u)︸ ︷︷ ︸
summand for v=u

.

Induction step m→ m+ 1:
Let u ⊂ Is with |u| = m < s, d ∈ Is − u and ũ = u ] {d}. Using the properties from
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Remark 1.5.4, we have

(∆ũ(fg))(x−ũ) = (∆{d}(∆u(fg)))(x−ũ)

= (∆u(fg))(b{d} :x−ũ)− (∆u(fg))(a{d} :x−ũ)

=
∑
v⊆u

(∆vf)(bu−v+{d} :x−ũ) · (∆u−vg)(av : b{d} :x−ũ)

−
∑
v⊆u

(∆vf)(a{d} : bu−v :x−ũ) · (∆u−vg)(av+{d} :x−ũ)

=
∑
v⊆u

[
(∆vf)(bu−v+{d} :x−ũ) · (∆u−vg)(av : b{d} :x−ũ)

− (∆vf)(bu−v+{d} :x−ũ) · (∆u−vg)(av+{d} :x−ũ)

]
+
∑
v⊆u

[
(∆vf)(bu−v+{d} :x−ũ) · (∆u−vg)(av+{d} :x−ũ)

− (∆vf)(a{d} : bu−v :x−ũ) · (∆u−vg)(av+{d} :x−ũ)

]
=
∑
v⊆u

(∆vf)(bu−v+{d} :x−ũ) · (∆u−v+{d}g)(av :x−ũ)

+
∑
v⊆u

(∆v+{d}f)(bu−v :x−ũ) · (∆u−vg)(av+{d} :x−ũ).

In the first sum, set ṽ = v, hence u−v+{d} = ũ− ṽ, and restrict the summation elements
to ṽ ⊆ ũ with d /∈ ṽ. In the second sum, set ṽ = v + {d}, hence u− v = ũ− ṽ and restrict
the summation elements to ṽ ⊆ ũ with d ∈ ṽ. Now the summands are exactly the same,
and both sums can be combined to one sum, which yields

(∆ũ(fg))(x−ũ) =
∑
ṽ⊆ũ

(∆ṽf)(bũ−ṽ :x−ũ) · (∆ũ−ṽg)(aṽ :x−ũ).

The cardinality of ũ is m + 1, and since the element d was arbitrary from Is − u the
induction step is complete.

Definition 1.5.7. Let a, b ∈ Rs with a ≤ b and Y be a (multidimensional) ladder on
[a, b]. The variation of f over Y is defined as

VY =
∑
y∈Y
|∆(f ; y, y+)|.

Definition 1.5.8. Let a, b ∈ Rs with a ≤ b and Y be the set of all ladders on [a, b]. The
variation of f on the hyperrectangle [a, b], in the sense of Vitali, is

V (f) = V[a,b](f) = sup
Y∈Y

VY .

If V (f) <∞, we also write f ∈ BV .
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Definition 1.5.9. The variation of f on the hyperrectangle [a, b], in the sense of Hardy
and Krause, is

VHK(f) = VHK(f ; a, b) =
∑
∅6=u⊆Is

V[au,bu](f(xu; b−u)).

If VHK(f) <∞, we also write f ∈ BVHK.

Proposition 1.5.10 ([20]). Let Y and Ỹ be ladders on the hyperrectangle [a, b] with Y ⊆ Ỹ.
Then VY(f ; a, b) ≤ VỸ(f ; a, b).

Remark 1.5.11. This result permits us, to replace the supremum over all ladders in
Definition 1.5.8 by the supremum over a subset Ỹ ⊆ Y of ladders, because if for every
Y ∈ Y there is a Ỹ ∈ Ỹ with Y ⊆ Ỹ, both suprema are equivalent. If [a, b] = [0, 1]s,
one can for example restrict oneself to ladders, which are the s-fold Cartesian product of
one one-dimensional ladder. As a proof, consider some general ladder Y = Y1 × . . .× Ys.
Construct a new one-dimensional ladder from the the union, s.t. Ȳ1 =

⋃s
j=1 Yj and choose

the new refined ladder as Ỹ = Ȳ1 × . . .× Ȳ1.

Proposition 1.5.12 ([20]). Suppose that f(x) is defined on the hyperrectangle [a, b] and
f(x) does not depend on xu for a non-empty u ∈ Is. Then V (f) = 0.

Definition 1.5.13. For a, b,∈ Rs, j ∈ Is and c ∈ [aj , bj ], the coordinate split of [a, b]
is the set {L,R} of hyperrectangles defined as.

L = {x ∈ [a, b]|xj ≤ c} and

R = {x ∈ [a, b]|xj ≥ c}.

A split of the hyperrectangle [a, b] is a set {[ai, bi]|1 ≤ i ≤ m <∞}, where
⋃m
i=1[ai, bi] =

[a, b] and [ai, bi) ∩ [aj , bj) = ∅, if i 6= j.

Proposition 1.5.14 ([20]). Let {[ai, bi]|1 ≤ i ≤ m <∞} be a split of [a, b] and f : [a, b]→
R. We have

V[a,b](f) =
m∑
i=1

V[ai,bi](f).

Proposition 1.5.15 ([20]). Let f(x) be defined on the hyperrectangle [a, b]. Let f̃(x) be
defined on the hyperrectangle [ã, b̃] by f̃(x) = f(x̃) where x̃j = φj(xj) with φj is a strictly
monotone increasing invertible function from [ãj , b̃j ] onto [aj , bj ], s.t. φj(ãj) = aj and
φj(b̃j) = bj . We have

V[ã,b̃](f̃) = V[a,b](f)

and also

VHK(f̃ ; ã, b̃) = VHK(f ; a, b).

Proposition 1.5.16 ([20]). Let f and g be functions on the hyperrectangle [a, b]. If
f, g ∈ BVHK, then f + g, f − g, and fg are in BVHK. If f ∈ BVHK with |f | > C > 0
then 1/f ∈ BVHK. If f, g ∈ BV , then f+g and f−g are in BV , but fg is in general not
in BV . For α, β ∈ R we have V[a,b](α+ βf) = |β|V[a,b](f) and VHK(α+ βf) = |b|VHK(f).
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Because the definition of the variation in the sense of Hardy and Krause is a bit
unwieldy, an alternative method of calculation would be desirable. The following results
provide such an alternative. If the derivative ∂s

∂x1···∂xs f(x) exists, it is easy to check that∫
[a,b]

∂s

∂x1 · · · ∂xs
f(x)dx = ∆(f ; a, b). (1.5.2)

To simplify the notation, for u ⊆ Is we define ∂u =
∏
j∈u

∂
∂xj

.

Proposition 1.5.17 ([20]). If ∂Isf is continuous on [a, b] then

V (f) =

∫
[a,b]
|∂Isf(x)|dx.

Especially, if ∂Isf is continuous, we have

V[a,b](f) ≤ V ol([a, b]) max
x∈[a,b]

|∂Isf(x)|. (1.5.3)

Remark 1.5.18. Using Proposition 1.5.17, we can calculate the Hardy and Krause vari-
ation of a function via

VHK(f) =
∑
∅6=u⊆Is

∫
[au,bu]

∣∣∂uf(xu : b−u)
∣∣dxu, (1.5.4)

which can in many cases be easier than the direct calculation through the definition. A dis-
advantage is of course, that this formula only holds, if the function is s-times continuously
differentiable.

Example 1.5.19. For
f(x1, x2) = Ix1+x2≤1(x1, x2)

we have V[0,1]2(f) =∞.

Proof. Choose n ∈ N and let Y1
n = {0, 1

n , . . . ,
n−1
n } be an equidistant ladder in one dimen-

sion. We define a two-dimensional ladder via Yn = Y1
n × Y1

n. Let

Sn =
{( i

n
,
n− i− 1

n

)∣∣∣i ∈ {0, 1, . . . , n− 1}
}

and observe, that Sn ⊂ Yn, as well as |Sn| = 1. For y = ( in ,
n−i−1
n ) ∈ Sn, we have

|∆(f ; y, y+)| = 1, because

|∆(f ; y, y+)| =
∣∣∣f( i+ 1

n
,
n− i
n

)
+ f

( i
n
,
n− i− 1

n

)
− f

( i+ 1

n
,
n− i− 1

n

)
− f

( i
n
,
n− i
n

)∣∣∣
= |0 + 1− 1− 1| = 1. (1.5.5)

Finally we have

V[0,1]2(f) ≥ VYn(f) =
∑
y∈Yn

|∆(f ; y, y+)| ≥
∑
y∈Sn

|∆(f ; y, y+)|︸ ︷︷ ︸
=1

= n→∞,

because this holds for all n.
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Figure 1.5.2: A plot of Example 1.5.19

Example 1.5.20. For

f(x) = min
( s∑
i=1

xi,
s

2

)
(1.5.6)

we have V[0,1]s(f) <∞ if s ≤ 2 and V[0,1]s(f) =∞ if s ≥ 3.

Proof. We perform the proof only for dimension s = 3: Again we define a ladder Yn =
Y1
n × Y1

n × Y1
n, with Y1

n being the same as in the previous example and the additional
assumption, that n is an even number. Let

Sn =
{( i

n
,
j

n
,
3

2
− i+ j + 1

n

)∣∣∣i ∈ {n
2
, . . . , n− 1}, j ∈ {0, 1, . . . , n

2
− 1}

}
,

the cardinality of which is |Sn| = n2

4 , and again, we have Sn ⊂ Yn. For y ∈ Sn one can
easily show in a similar way to the previous example, that |∆(f ; y, y+)| = 1

n , which gives
us

V[0,1]3(f) ≥
∑
y∈Yn

|∆(f ; y, y+)| ≥
∑
y∈Sn

|∆(f ; y, y+)|︸ ︷︷ ︸
=1/n

=
n2

4

1

n
=
n

4
→∞.

Remark 1.5.21. As you see in the previous examples, if the integrand is continuous,
but the subdomain, where the integrand is not differentiable is not part of a hyperplane
Hj,c := {x ∈ Rs|xj = c} (i.e., an (s−1)-dimensional subspace of Rs, where one component
xj is fixed at the constant value c) for some index j and constant c, it can be, that the
variation is infinite. If the non-differentiable domain would be part of some hyperplane
Hj,c, one could split the integration domain in the sense of Definition 1.5.13 along xj = c,
and thus by using Proposition 1.5.14, the variation can be calculated separately on each
(hyper)rectangle of the split. Within the hyperrectangles, the integrand is differentiable,
hence the variation is finite. With a similar reasoning, one can see, that a indicator
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Figure 1.5.3: A plot of Example 1.5.20 for s = 2

function on a rectangle (although discontinuous) has finite variation, if and only if the
rectangle is axis-parallel.

When first dealing with multidimensional variation, one might be surprised, how so
many well-behaving functions have infinite variation. In the case of Example 1.5.19, one
can blame the discontinuity, but then, even Example 1.5.20 has infinite variation, although
it is even Lipschitz-continuous. The key issue in the previous example is, that the number
of cubes in the ladder, which have a non-zero delta, grows quadratically, while the ∆f itself
decays only linearly. Clearly, if the delta of every single cube would decay fast enough, the
variation would be finite, which is of course the case for s-times differentiable functions.
But, just because the function is not differentiable, this doesn’t mean, that the variation
has to be infinite. In the case of Example 1.5.20, it depends on the number of dimensions.
The following example of a non-differentiable function has finite variation, regardless of
the number of dimensions:

Example 1.5.22. For

f(x) = max
i=1,...,s

xi (1.5.7)

we have V[0,1]s(f) = 1, which we are going to prove in Chapter 4.

1.6 Koksma-Hlawka Inequality

Definition 1.6.1. Let P = (x0, · · · , xN−1) be an N -element point set in [0, 1)s and
f : [0, 1]s → R. With e(f,P) we denote the integration error

e(f,P) =

∫
[0,1]s

f(x)dx− 1

N

N−1∑
n=0

f(xn).
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Figure 1.5.4: A plot of Example 1.5.22 for s = 2

Theorem 1.6.2 (Koksma-Hlawka inequality). Let P be an N -element point set in
[0, 1)s and f : [0, 1]s → R. We have

|e(f,P)| ≤ VHK(f)D∗N (P).

Proof. See e.g. Kuipers and Niederreiter (1974) [12].

1.7 Randomized QMC

Although the Koksma-Hlawka inequality by itself is sharp, the discrepancy and variation
are both very hard to calculate, and the discrepancy estimates we presented in Section 1.4
are very rough for growing dimension s, therefore they are often not feasible in practice.
Estimation of the variation of the integrand requires a deep understanding of its structure
and can often only be done with symbolic analysis, as in contrary to ordinary MC methods,
where one can basically plug in any function and receive a numerical error estimate via
the sample variance for free.

For these reasons, so called randomized QMC (RQMC) methods were introduced,
which combine the best of both worlds, namely:

� Fast convergence, like O(N−1+δ) for many functions, even if they are not smooth.

� The estimator is unbiased, as in contrary to QMC, where the estimator is only
asymptotically unbiased.

� Cheap error estimation, because a variance can be calculated from the randomized
results.

While the Koksma-Hlawka inequality and its variants provide the theoretical founda-
tions for the convergence rate of QMC methods, practical performance is then measured
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via the variance of the RQMC estimate. At the time of the writing of this work, resear-
chers are still working on theoretical explanations for the observed convergence rates with
unbounded and/or non-smooth integrands, which often outperform the rates predicted by
the existing theory.

1.7.1 Additive Shift

The strategy is to first construct a deterministic low-discrepancy point set, and then apply
a randomization, which on the one hand retains the good distributional properties of the
point set and on the other hand has enough randomness to yield an unbiased estimator
[3].

Let’s start with the most simple randomization technique, which we shall refer to as
additive shift, but first we need to define the fractional part in our context.

Definition 1.7.1. For any number x ∈ R define its fractional part as

frac(x) = x− bxc.

For a vector x = (x1, . . . , xs) ∈ Rs define

frac(x) = (frac(x1), . . . , frac(xs)).

Let N, q ∈ N and P = {x0, . . . , xN−1} ⊂ [0, 1)s be a N -element point set used for
QMC integration (e.g. from a Halton or Sobol sequence). We generate q s-dimensional

random numbers u0, . . . , uq−1
iid∼ U([0, 1]s) and for each k = 0, . . . , q − 1 define a new,

shifted sequence with P(k) = {y(k)
0 , . . . , y

(k)
N−1}, where

y(k)
n := frac(xn + uk). (1.7.1)

The fractional part is required here, so that the shifted points do not ”fall” out of the

interval [0, 1]s. Observe, that each shifted point y
(k)
n is uniformly distributed in [0, 1]s for

all n = 0, . . . , N − 1 and k = 0, . . . , q − 1.
With

I
(k)
N (f) =

1

N

N−1∑
n=0

f(y(k)
n ),

we denote the k-th RQMC repeat.
We have

E[I
(k)
N (f)] =

1

N

N−1∑
n=0

E[f(y(k)
n )] =

∫
[0,1]s

f(x)dx (1.7.2)

because of y
(k)
n

iid∼ U([0, 1]s), therefore this estimator is unbiased. As the final RQMC
estimate, we take the mean of all repeats,

ÎN,q(f) =
1

q

q−1∑
k=0

I
(k)
N (f).

To construct a confidence interval and measure the error, we also need an estimate for
Var[ÎN,q(f)]. With

s2
f,RQMC =

1

q(q − 1)

q−1∑
k=0

(I
(k)
N (f)− ÎN,q(f))2 (1.7.3)
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we have an unbiased estimator for the variance1 [2].
The number of repeats, q, is usually chosen fixed around 10-50, while N is taken in the

thousands or more. For a fair comparison between MC and RQMC, or between s2
f and

s2
f,RQMC respectively, one should take NMC = q · NRQMC , s.t. the number of function

evaluations is the same in both cases ([2]).
If P was a (t,m, s)-net, its shifted versions P(k) are no (t,m, s)-nets any more. In the

next sections, we shall see randomizations, which preserve the (t,m, s)-net structures of
the sequence.

1.7.2 Digital Shift

Definition 1.7.2. Let b ∈ N, b ≥ 2 and x, u ∈ [0, 1) with the base b representations

x = (0.x1x2 . . .)b and u = (0.u1u2 . . .)b.

The digit-wise addition operator in base b is defined as

y = x⊕b u,

where y = (0.y1y2...)b with the digits in base b being

yi = xi + ui mod b.

For vectors x = (x1, . . . , xs) and u = (u1, . . . , us) ∈ [0, 1s define

x⊕b u = (x1 ⊕b u1, . . . , xs ⊕b us).

The randomization technique using digital shift works completely analogue to the
additive shift, just replace Equation (1.7.1) by

y(k)
n := xn ⊕b uk. (1.7.4)

With this construction, we again obtain an unbiased estimator (see [3], Section 13.1). But
what is most important here is, that the digital shift preserves the (t,m, s)-net structure,

i.e., if P = {x0, . . . , xN−1} is a (t,m, s)-net in base b, then P(k) = {y(k)
0 , . . . , y

(k)
N−1} defined

via Equation (1.7.4) is again a (t,m, s)-net with probability 1 (a proof can be found e.g.
in [3], Lemma 4.67). This way, all the theoretical results for (t,m, s)-nets are still valid
for the digitally shifted point set.

Remark 1.7.3. For the Sobol sequence, which is a (t, s)-sequence in base 2, the digit-wise
addition can be easy implemented with bitwise XOR-operation.

1.7.3 Scrambled Nets

A more sophisticated way of randomizations are the scrambled nets introduced by Owen
1997 [19], therefore often also referred to as Owen’s scrambling. This algorithm uses a
hierarchy of permutations [5], for a single coordinate dimension this works as follows: Di-
vide the unit interval into b partitions of length 1

b and randomly permute those partitions.

1In the source, s2
f,RQMC is said to be an unbiased estimate for the mean square error, which coincides

with the variance in this context
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Further divide each partition into b subintervals of length 1
b2

and permute each of those
b partitions within itself, where each partition get its own random and independent per-
mutation. Continue this procedure, s.t. at the j-th step, bj−1 partitions are constructed,
each consisting of b subintervals of length 1

bj
, and permute each partition independently.

For a s-dimensional point set, apply this procedure to each coordinate, using independent
sets of coordinates for each dimension.

To make this description more formal, consider a point x ∈ [0, 1) in one dimension, with
base b expansion x = (0.x1x2 . . .)b. This point is mapped to a new point y = (0.y1y2 . . .)b
the following way:

� Choose a random permutation π on {0, . . . , b− 1} and set y1 = π(x1).

� For each of the b possible values of x1, fix a random permutation πx1 and set y2 =
πx1(x2).

� For each of the b2 possible value combinations of x1 and x2, fix a random permutation
πx1,x2 and set y3 = πx1,x2(x3).

� . . .

� In step j, fix bj−1 permutations for all possible combinations of x1, x2, . . . , xj−1 and
set yj = πx1,x2,...,xj−1(xj).

This algorithm yields again an unbiased estimator and also preserves the (t,m, s)-net
property with probability 1, as can be seen e.g. in [3]. What makes scrambling particularly
interesting, is the increased order of convergence. If the integrand is sufficiently smooth, a
convergence rate of O(N−3/2+δ) can be achieved (see e.g. Theorem 6.25 in [2]). A sufficient
condition on the integrand would be having square integrable partial mixed derivatives up
to order one in each variable.

Because Owen’s scrambling algorithm needs to generate and store all the necessary
permutations, the number of which grows exponentially with the depth of the algorithm,
this is again not feasible in practice. Matoušek proposed a simplified version in [16],
where he greatly reduces the number of permutations involved, while still preserving the
main properties of Owen’s scrambling. For the base b expansions of x = (0.x1x2 . . .)b and
y = (0.y1y2 . . .)b he only considers permutations of the form

yj =

j∑
i=1

hijxi + gj mod b, (1.7.5)

where the gj ’s and the hij ’s with i < j are chosen randomly and independently from
{0, 1, ..., b − 1}, and the hjj ’s are chosen randomly and independently from {1, 2, ..., b −
1}. Note, that Equation (1.7.5) also incorporates the permutation’s dependence on the
previous digits x1, . . . , xj−1 and therefore avoids the exponential number of permutations
required for the ”full scrambling”. This method, also called ”affine linear scrambling”
or ”affine matrix scrambling” (just write the above equation in matrix notation) is available
in MATLAB, with the references being [16] and [8].



Chapter 2

Introduction to Mathematical
Finance

Since the aim of this work is to apply the Monte Carlo and quasi-Monte Carlo methods,
discussed in the previous Chapter 1, to problems arising from mathematical finance, we
first introduce a general market model with a diffusion process and later state the Black-
Scholes model as a special case of the general model. The Sections 2.1 and 2.2 follow to
a great part the reasoning of Shreve [22]. The Black-Scholes model discussed in Section
2.3 is the main source for the problems in the practical part of this work. We assume the
reader to have knowledge about probability theory and stochastic calculus.

2.1 The General Diffusion Model

Definition 2.1.1 (Market Model 1). Let (Ω,F ,P) be a probability space with a filtra-
tion F(t), 0 ≤ t ≤ T , such that F(s) ⊆ F(t) ⊆ F for 0 ≤ s ≤ t ≤ T . We assume to have
an adapted interest rate process R(t), with which we define the discount process as

D(t) = e−
∫ t
0 R(u)du.

Furthermore we assume to have an adapted, d-dimensional Brownian motion W (t) =
(W1(t), . . . ,Wd(t)) and model the price of m stocks as

dSi(t) = αi(t)Si(t)dt+ Si(t)
d∑
i=1

σij(t)dWj(t), i = 1, . . . ,m (2.1.1)

where the mean rate of return vector (α1(t), . . . , αm(t)) and the m × d volatility matrix
(σij(t)) are also assumed to be adapted processes.

In this model, we are free to invest in a bank account with continuous interest rate
R(t), as well as in any of the m stocks with price S1(t), . . . , Sm(t). One unit of the bank
account is assumed to start with the value 1 at time t = 0, and its value at time t is given
as

e
∫ t
0 R(u)du =

1

D(t)
.

It is assumed, that the market is always liquid, that we have no transaction costs and that
short positions are possible.

25
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Proposition 2.1.2. The solution of equation (2.1.1) is given as

Si(t) = Si(0) · exp

(∫ t

0
αi(u)− 1

2

d∑
j=1

σ2
ij(u)du+

d∑
j=1

∫ t

0
σij(u)dWj(u)

)
Proof. We consider only the one-dimensional case (m = d = 1). Let f(x) = ex, and
X(t) =

∫ t
0 α1(u)− 1

2σ
2
11(u)du+

∫ t
0 σ11(u)dW1(u). Our candidate for the solution has then

the form S1(t) = eX(t) = f(X(t)). Applying the Itô-formula, which can be found in [22],
yields

dS1(t) = df(X(t)) = f ′(X(t))dX(t) +
1

2
f ′′(X(t))(dX(t))2

= eX(t)
(

(α1(t)− 1

2
σ2

11(t))dt+ σ11(t)dW1(t) +
1

2
σ2

11dt
)

= S1(t)
(
α1(t)dt+ σ11dW1(t)

)
.

The main application of models like this, is to determine the fair price of financial
derivatives, which often cannot be observed on the market. In this work, we will focus on
the pricing of European options in path-independent, as well as path-dependent settings.
A European option is a contract, that pays some amount V (T ) at a fixed time T (the
”maturity”), and this amount is explicitely defined through a payoff-function h. Thus,
V (T ) has to be a F(T )-measurable random variable. We consider only two cases:

� V (T ) = h(S1(T ), . . . , Sm(T )) in the path-independent setting, i.e., the payoff de-
pends only on the final value of one or more stocks, or

� V (T ) = h(S(t1), S(t2), . . . , S(tn)) in the path-dependent setting, which means, the
payoff depends on the history of the value of one stock at fixed observation points
0 < t1 < t2 < . . . < tn = T . Since we don’t observe the stock’s value at all times
0 < t < T , this is only an approximation, hence we call this a discretely sampled
path-dependent option.

A European call option on a single asset S has the payoff-function h(S(T )) = (S(T )−K)+,
where K is the strike price defined in the contract. Today’s approach to option pricing
is through the so-called ”risk-neutral measure”, which we will define in the following
paragraphs, but in order to be able to do this, we will first recall some useful tools from
probability theory and stochastic calculus.

Proposition 2.1.3 (Change of measure [22]). Let (Ω,F ,P) be a probability space and
let Z be an almost surely nonnegative random variable with E[Z] = 1. For A ∈ F define

P̃[A] =

∫
A
Z(ω)dP(ω). (2.1.2)

Then P̃ is a probability measure. Furthermore, if X is a nonnegative R.V., then

Ẽ[X] = EP̃[X] = E[XZ].

If Z is almost surely strictly positive, we also have

E[Y ] = Ẽ

[
Y

Z

]
.
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Definition 2.1.4. Let (Ω,F ,P) be a probability space with a filtration F(t), defined for
0 ≤ t ≤ T with F(T ) ⊆ F , where T is a fixed final time. Suppose further that Z is an
almost surely positive R.V. satisfying E[Z] = 1 and we define P̃ by (2.1.2). We call the
process

Z(t) = E[Z|F(t)], 0 ≤ t ≤ T (2.1.3)

the Radon-Nikodým derivative process.

Theorem 2.1.5 (Girsanov [22]). Let (Ω,F ,P) be a probability space with a filtration
F(t), defined for 0 ≤ t ≤ T , where T is a fixed final time. Let W (t) = (W1(t), . . . ,Wd(t))
be an adapted, d-dimensional Brownian motion, and let Θ(t) = (Θ1(t), . . . , Θd(t)) be an
adapted d-dimensional process. Define

Z(t) = exp

(
−
∫ t

0
Θ(u) · dW (u)− 1

2

∫ t

0
‖Θ(u)‖2du

)
, (2.1.4)

W̃ (t) = W (t) +

∫ t

0
Θ(u)du, (2.1.5)

and assume that E
[ ∫ T

0 ‖Θ(u)‖2du
]
< ∞. Set Z = Z(T ). Then E[Z] = 1, and under the

probability measure P̃ given as in (2.1.2), the process W̃ (t) is a d-dimensional Brownian
motion.

Consider now the Market Model 1 in one dimension (m=1) with one driving Brownian
motion (d=1), i.e.

dS(t) = α(t)S(t)dt+ σ(t)S(t)dW (t), (2.1.6)

with σ(t) > 0 almost surely. Because of dD(t) = −R(t)D(t)dt and Itô’s product rule, we
have for the differential of the discounted stock price

d(D(t)S(t)) = D(t)dS(t) + S(t)dD(t) + dS(t)dD(t)︸ ︷︷ ︸
=0

= D(t)(α(t)S(t)dt+ σ(t)S(t)dW (t)) + S(t)(−R(t))D(t)dt

= (α(t)−R(t))D(t)S(t)dt+ σ(t)D(t)S(t)dW (t) (2.1.7)

= σ(t)D(t)S(t)

(
α(t)−R(t)

σ(t)
dt+ dW (t)

)
. (2.1.8)

Let us set

Θ(t) =
α(t)−R(t)

σ(t)
(2.1.9)

and with that, define

W̃ (t) = W (t) +

∫ t

0
Θ(u)du, (2.1.10)

so we can rewrite (2.1.8) to

d(D(t)S(t)) = σ(t)D(t)S(t)dW̃ (t). (2.1.11)

If we now define a new measure P̃ as in Girsanov’s theorem, with the Θ(t) as in (2.1.9)

and the additional assumption E
[ ∫ T

0 Θ2(d)du
]
< ∞, then W̃ (t) is a Brownian motion

under P̃. In integral notation, the equation (2.1.11) writes as

D(t)S(t) = D(0)︸ ︷︷ ︸
=1

S(0) +

∫ t

0
σ(u)D(u)S(u)dW̃ (u), (2.1.12)
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which means, it is an Itô integral, hence, the discounted stock price is a martingale under
P̃. We call P̃ the risk-neutral measure, but let us define this more formally:

Definition 2.1.6. A probability measure P̃ is called a risk-neutral measure, if

1. P̃ and P are equivalent (i.e. P̃[A] = 0⇐⇒ P[A] = 0), and

2. under P̃, the discounted stock prices D(t)Si(t) are martingales for i = 1, . . . ,m.

The process Θ(t) = α(t)−R(t)
σ(t) is called market price of risk process and it requires the

volatility σ(t) to be strictly positive. The risk-neutral measure eliminates the deterministic
drift term - the market price of risk - from the differential equation (e.g. (2.1.8)), which
explains its name.

Now let us consider the evolution of a portfolio’s value under the risk-neutral measure.
Let X(t), 0 ≤ t ≤ T , denote the portfolio process, with initial capital X(0). Suppose at
each time t, the investor holds ∆(t) shares of stock. The position ∆(t) can be random, but
must be adapted to the filtration. The remainder of the portfolio value, X(t)−∆(t)S(t), is
invested in the bank account. This means, that the differential of the portfolio consists of a
capital gain ∆(t)dS(t) due to changes in the stock price, and interest earnings R(t)(X(t)−
∆(t)S(t))dt from the bank account. Hence we have

dX(t) = ∆(t)dS(t) +R(t)(X(t)−∆(t)S(t))dt.

Expanding the term for dS(t) yields

dX(t) = ∆(t)
(
α(t)S(t)dt+ σ(t)S(t)dW (t)

)
+R(t)

(
X(t)−∆(t)S(t)

)
dt

= R(t)X(t)dt+∆(t)(α(t)−R(t))S(t)dt+∆(t)σ(t)S(t)dW (t)

= R(t)X(t)dt+∆(t)σ(t)S(t)
(
Θ(t)dt+ dW (t)

)
.

Again, we apply Itô’s product rule to the differential of the discounted portfolio process:

d(D(t)X(t)) = X(t)dD(t) +D(t)dX(t) + dX(t)dD(t)︸ ︷︷ ︸
=0

= X(t)(−R(t))D(t)dt+D(t)R(t)X(t)dt

+∆(t)σ(t)D(t)S(t)
(
Θ(t)dt+ dW (t)

)
= ∆(t)σ(t)D(t)S(t)dW̃ (t) (2.1.13)

= ∆(t)d(D(t)S(t)). (2.1.14)

From equation (2.1.13) we can now see, via an argument analogue to equation (2.1.12), that
the discounted portfolio process is a martingale under P̃, if the investment strategy ∆(t)
meets some technical assumptions, e.g. progressive measurability and square integrability.

Let V (T ) be an F(T )-measurable R.V. representing the payoff of a derivative security
at time T . The payoff can be path-dependent, but we assume it to meet the integrability
condition E[V 2(T )] < ∞. Our aim is to find a hedge, which is a portfolio process X(t),
0 ≤ t ≤ T , with the corresponding investment strategy ∆(t) and initial capital X(0), s.t.

X(T ) = V (T ) almost surely.
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So regardless, how the payoff V (T ) will be, our hedging portfolio X should yield the exact
same payoff at time T. We shall see later, that this investment strategy actually exists.
Once we know the hedging portfolio (sometimes also replicating portfolio), we have

D(t)X(t) = Ẽ[D(T )X(T )|F(t)] = Ẽ[D(T )V (T )|F(t)],

because D(t)X(t) is a martingale under P̃. The value X(t) of the hedging portfolio is the
capital needed at time t in order to replicate the payoff V (T ) of the derivative security at
time T . Therefore, we can say, it is also the price V (t) of the derivative security at time
t, and rewrite the above equation to

D(t)V (t) = Ẽ[D(T )V (T )|F(t)], 0 ≤ t ≤ T.

We can divide the equation by D(t), because it is F(t)-measurable, and get

V (t) = Ẽ

[
D(T )

D(t)
V (T )|F(t)

]
= Ẽ

[
e−

∫ T
t R(u)duV (T )|F(t)

]
. (2.1.15)

With this formula, we are now able to determine the price of a derivative security with
a payoff only at terminal time T in a one-dimensional diffusion model, provided, the
investment strategy ∆(t), 0 ≤ t ≤ T , exists. The argumentation here is based on Shreve
[22]. The same formula holds in the multidimensional case with completely analogue
arguments and under the assumption, that we can find a risk-neutral measure and a
hedging investment strategy. We shall refer to equation (2.1.15) as the risk-neutral
pricing formula.

2.2 The Fundamental Theorems of Asset Pricing

In this section, we will discuss a bit more about, how a market model is qualified to be
used for asset pricing, which requirements it should fulfil and what it should not do. Two
key features stand out in this context: The absence of arbitrage and completeness.

Definition 2.2.1. An arbitrage is a portfolio value process X(t) satisfying X(0) = 0
and also satisfying for some time T > 0

P[X(t) ≥ 0] = 1, P[X(T ) > 0] > 0.

In other words, it is an investment strategy starting with zero capital, which never
makes losses, but it makes profits with a positive probability. It should be somehow clear,
that a sensible model must not allow arbitrage. If arbitrage is possible over a longer period
of time, everybody would be able to generate earnings in arbitrary height, which is not
realistic. Although there are sometimes possibilities for arbitrage in real markets, it is
assumed, that if people exploit this possibility, the market automatically rebalances its
prices through the supply and demand principle and eliminates the arbitrage.

Definition 2.2.2. A market model is complete, if every derivative security can be hed-
ged.

In order to come up with the risk-neutral pricing formula, we assumed, that a hedge
exists. Therefore, completeness of a market model is particularly useful, in the sense that,
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since we have a hedge for every derivative security, we can apply the risk-neutral pricing
formula to every derivative security within the model.

Now we present two characterizations about when a model fulfils these desired proper-
ties.

Theorem 2.2.3 (First fundamental theorem of asset pricing [22]). If a market
model has a risk-neural probability measure, then it does not admit arbitrage.

Theorem 2.2.4 (Second fundamental theorem of asset pricing [22]). Consider a
market model that has a risk-neutral probability measure. The model is complete if and
only if the risk-neutral probability measure is unique.

In our one-dimensional market model 1, we constructed the risk-neutral measure via
inserting the Θ(t) from (2.1.9) into Girsanov’s theorem. The risk-neutral measure is
unique, because the Θ(t) is unique (It can be shown that for every measure equivalent
to P one can find a Θ(t), i.e., two distinct measures have two distinct Θ(t)’s in Theorem
2.1.5). Hence this model is complete and free of arbitrage. We will now investigate the
multidimensional case (m > 1 and d > 0). One can derive a formula for the differentials
of the discounted stocks analogue to equation (2.1.7):

d(D(t)Si(t)) = D(t)Si(t)
(

(αi(t)−R(t))dt+
d∑
j=1

σij(t)dWj(t)
)
, i = 1, . . . ,m. (2.2.1)

In order to make the discounted stock prices martingales, we would like to rewrite
(2.2.1) as

d(D(t)Si(t)) = D(t)Si(t)
d∑
j=1

σij(t)
(
Θj(t)dt+ dWj(t)︸ ︷︷ ︸

=dW̃j(t)

)
, i = 1, . . . ,m (2.2.2)

and use Girsanov’s theorem, such that W̃ (t) is again a Brownian motion under the new
measure. We need to find the process Θ(t) = (Θ1(t), . . . , Θd(t)), s.t.

αi(t)−R(t) =

d∑
j=1

σij(t)Θj(t), i = 1, . . . ,m (2.2.3)

for the equations (2.2.1) and (2.2.2) to be equivalent. This is a system of m equations in the
d unknown processes Θ1(t), . . . , Θd(t), which are called the market price of risk equations.
To ensure the existence and uniqueness of a solution to (2.2.3), we add conditions to the
market model 1 and call it market model 1a.

Definition 2.2.5. Let the market model 1a be defined in the same way as market
model 1, with the following additional assumptions:

� m = d, s.t. the number of stocks is the same as the number of driving Brownian
motions. We shall refer to both parameters with d.

� The matrix σ(t) = (σij(t))i=1,...,d;j=1,...,d is invertible for all 0 ≤ t ≤ T .



2.2. THE FUNDAMENTAL THEOREMS OF ASSET PRICING 31

With these assumptions, we have exactly one solution to (2.2.3) and, with the help of
Girsanov’s theorem, a uniquely defined risk-neutral measure. This has the implication,
through the first and second fundamental theorem of asset pricing, that the market model
1a is free of arbitrage and complete.

The key tool to find the hedge of a derivative security is the following theorem:

Theorem 2.2.6 (Martingale representation [22]). Let T be a fixed positive time, and
assume that F(t), 0 ≤ t ≤ T , is the filtration generated by the d-dimensional Brownian
motion W (t),0 ≤ t ≤ T . Let M(t), 0 ≤ t ≤ T , be a martingale with respect to this
filtration under P with E[M2(T )] < ∞. Then there is an adapted, d-dimensional process
Γ (u) = (Γ1(u), . . . , Γd(u)), 0 ≤ u ≤ T , such that

M(t) = M(0) +

∫ t

0
Γ (u) · dW (u), 0 ≤ t ≤ T.

If, in addition, we assume the notation and assumptions of Theorem 2.1.5 and if M̃(t),
0 ≤ t ≤ T , is a P̃-martingale with E[M̃2(T )] <∞, then there is an adapted, d-dimensional
process Γ̃ (u) = (Γ̃1(u), . . . , Γ̃d(u)) such that

M̃(t) = M̃(0) +

∫ t

0
Γ̃ (u) · dW̃ (u), 0 ≤ t ≤ T.

Assume we have a derivative security with payoff V (T ) at the maturity T . It’s dis-
counted price process D(t)V (t), 0 ≤ t ≤ T , obtained through the risk-neutral pricing
formula, is a martingale under P̃. Because of the martingale representation theorem, we
know, that there is a process Γ̃ (u) = (Γ̃1(u), . . . , Γ̃d(u)) such that

D(t)V (t) = V (0) +
d∑
j=1

∫ t

0
Γ̃j(u)dW̃j(u), 0 ≤ t ≤ T. (2.2.4)

Let X(t) be a portfolio value process starting with captial X(0), and let ∆i(t) denote the
share of the i-th stock Si(t) at time 0 ≤ t ≤ T for i = 1, . . . , d. Analogue to equation
(2.1.14), we have

d(D(t)X(t)) =
d∑
i=1

∆i(t)d(D(t)Si(t))

=

d∑
i=1

d∑
j=1

∆i(t)D(t)Si(t)σij(t)dW̃j(t),

and the same equation in integral notation with swapping the sums writes as

D(t)X(t) = X(0) +

d∑
j=1

∫ t

0

d∑
i=1

∆i(u)D(u)Si(u)σij(u)dW̃j(u). (2.2.5)

If we want to achieve X(t) = V (t), we need to have

Γ̃j(t) =

d∑
i=1

∆i(t)D(t)Si(t)σij(t), j = 1, . . . , d.
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So here we have d equations in the d unknown processes ∆1(t), . . . ,∆d(t), 0 ≤ t ≤ T , which
are solvable under the assumptions of market model 1a. The problem here is, that the
martingale representation theorem is not constructive, it gives us only the existence of the
Γ1(u), . . . , Γ̃d(u), hence we have only the existence of the hedging strategy∆1(t), . . . ,∆d(t).
We shall see a concrete formula for the hedging strategy in the next section about the
Black-Scholes model.

2.3 The Black-Scholes Model

Definition 2.3.1. The d-dimensional Black-Scholes model is defined in the same way
as the market model 1a from Definition 2.2.5, but with the processes αi(t), σij(t) and R(t)
being deterministic and constant over time. Thus we write them without the dependence
on t, and call α = (α1, . . . , αd) the mean rate of return vector, σ = (σij)i=1,...,d;j=1,...d the
volatility matrix, which has to be invertible, and R the continuous interest rate.

In this model, the discounting factor D(t) becomes

D(t) = e−Rt.

The solution to the now simplified stochastic differential equation (2.1.1) becomes

Si(t) = Si(0) · exp

(
t
(
αi −

1

2

d∑
j=1

σ2
ij

)
+

d∑
j=1

σijWj(t)

)
, i = 1, . . . , d,

which writes completely without (stochastic) integrals.

Proposition 2.3.2. Let X(t) = (X1(t), . . . , Xd(t)) where Xi(t) = log Si(t)
Si(0) . Then X(t) is

multivariate normally distributed, with

E[Xi(t)] = t(αi −
1

2

d∑
j=1

σ2
ij) and Cov[Xi(t), Xk(t)] = t

d∑
j=1

σijσkj .

With Σ = σσT , this can be written as

X(t) ∼ N
(
t(α− 1

2
diag(Σ)), tΣ

)
.

Proof. Observe, that

Xi(t) = t(αi −
1

2

d∑
j=1

σ2
ij) +

d∑
j=1

σijWj(t).

Because of E[Wj(t)] = 0, the part E[Xi(t)] = t(αi − 1
2

∑d
j=1 σ

2
ij) can be easily seen. We

know, that Wj(t) and Wl(t) are independent for j 6= l and N(0, t)-distributed, hence we
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have

Cov[Xi(t), Xk(t)] = E
[
(Xi(t)− E[Xi(t)])(Xk(t)− E[Xk(t)])

]
= E

[ d∑
j=1

σijWj(t)

d∑
l=1

σklWl(t)
]

= E
[ d∑
j=1

σijσkjW
2
j (t)

]

=
d∑
j=1

σijσkjt,

because the summands with j 6= l are 0 under the expectation, and E[W 2
j (t)] = Var[Wj(t)] =

t.

Remark 2.3.3. The process X(t) from Proposition 2.3.2 is called log return.

Proposition 2.3.4. The price of an European option with payoff V (T ) = h(S1(T ), . . . , Sd(T ))
is

V (0) = e−RT Ẽ[h(S1(T ), . . . , Sd(T ))] = e−RT
∫
Rd
h(S(0) · ex)fX(x)dx,

where fX(x) is the PDF of the log return, i.e. the PDF of a multivariate normal distribu-
tion with mean and covariance matrix as in Proposition 2.3.2, and the short-hand notation
S(0) · ex denotes the element-wise product and exponential function, s.t.

S(0) · ex = (S1(0)ex1 , . . . , Sd(0)exd),

Consider the log return process in the one-dimensional case,

X(t) = t(R− σ2

2
) + σW (t). (2.3.1)

Since the risk-neutral measure is used here, we have α = R. We are interested in the
covariance of the value of X at two different times, e.g. u and v. We know from the
properties of the Brownian motion, that Cov[W (u),W (v)] = min(u, v), hence we have

Cov[X(u), X(v)] = Cov[σW (u), σW (v)] = σ2 min(u, v).

For d observation times 0 < t1 < . . . < td, the covariance matrix of the vector (X(t1), . . . , X(td))
has the form

Σ = σ2 ·


t1 t1 t1 . . . t1
t1 t2 t2 . . . t2
t1 t2 t3 . . . t3
...

...
...

...
t1 t2 t3 . . . td

 . (2.3.2)

For the mean we have

Ẽ[X(ti)] = ti(R−
σ2

2
), i = 1, . . . , d. (2.3.3)
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Proposition 2.3.5. We consider a discretely sampled path-dependent option in the one-
dimensional Black-Scholes model, with payoff only at maturity T and the observation points
being 0 < t1 < . . . < td = T . Let the payoff function be V (T ) = h(S(t1), . . . , S(td)). The
price of this option is

V (0) = e−RT Ẽ[h(S(t1), . . . , S(td))] = e−RT
∫
Rd
h(S(0)ex)fX(x)dx,

where fX(x) is the PDF of the log return (X(t1), . . . , X(td)), i.e., a multivariate normal
distribution with mean as in equation (2.3.3) and covariance matrix as in equation (2.3.2).

We are now going to show, how to construct a hedge in the one-dimensional Black-
Scholes model. Since the Brownian motion is a Markov process and the only source of
uncertainty, we can replace the condition on F(t) in the risk-neutral pricing formula with
the condition that the stock price process’ value is known, thus

V (t) = e−R(T−t)Ẽ[V (T )|F(t)] = e−R(T−t)Ẽ[V (T )|S(t) = x] =: F (t, x), for some x > 0.

The so defined function F (t, x) now represents the value of the option at time t, given
the stock price at this moment is S(t) = x, hence we have V (t) = F (t, S(t)). We want
a similar function for the discounted option value, where the second argument is the
discounted stock price, so we define

F̃ (t, x) = e−RtF (t, eRtx).

This new function F̃ (t, x) now fulfils

D(t)V (t) = F̃ (t,D(t)S(t)).

Expanding this equation with Itô’s formula (see e.g. [22] for more details), assuming
regularity of F̃ , yields

d(D(t)V (t)) = dF̃ (t,D(t)S(t))

=
∂F̃

∂t
(t,D(t)S(t))dt+

∂F̃

∂x
(t,D(t)S(t))d(D(t)S(t))

+
1

2

∂2F̃

∂x2
(t,D(t)S(t))(d(D(t)S(t))2

= U(t)dt+
∂F̃

∂x
(t,D(t)S(t))D(t)S(t)dσW̃ (t).

But we know, that D(t)V (t) is a martingale and has no deterministic drift term, hence
U(t) = 0 and we have

D(t)V (t) = V (0) +

∫ t

0

∂F̃

∂x
(u,D(u)S(u))D(t)S(u)σdW̃ (u). (2.3.4)

Compare this equation (2.3.4) with equation (2.2.5) and we can directly see, that

∆(t) =
∂F̃

∂x
(t,D(t)S(t)).
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In the multidimensional case, the x in F (t, x) as well as in F̃ (t, x) would be a vector with
d elements, and an analogue calculation with Itô’s formula would give us

D(t)V (t) = V (0) +
d∑
i=1

∫ t

0

d∑
j=1

∂F̃

∂xi
(u,D(u)S(u))D(t)Si(u)σijdW̃j(u). (2.3.5)

After comparison with (2.2.5), we see that

∆i(t) =
∂F̃

∂xi
(t,D(t)S(t)), i = 1, . . . , d.

Thus for options, where we know F (t, x) in a closed form, we can construct F̃ (t, x) as
above and calculate the derivatives to get the hedging strategy (∆i(t))i=1,...,d. In other
cases, this can be done approximatively with numerical methods.





Chapter 3

Practical Aspects

For the purpose of this work, we want to write all our problems in a standardized form.
As it is common in QMC literature, we denote the dimension of the integral with s. For
almost all cases in this section, X denotes a (general) multivariate normally distributed
R.V., whereas Y denotes multivariate standard normally distributed R.V.. In both cases
of options we mentioned in the Section 2.3, we had an integral of the form∫

Rs
h(Cex)fX(x)dx, (3.0.1)

where Cex = (C1e
x1 , . . . , Cse

xs) for a vector of constants C, and fX being the PDF of
a multivariate normal distribution N(µ,Σ). All of our problems considered in Chapter 5
can be written in the form of (3.0.1). In order to successfully apply a QMC-method to
this integral, we first need to decide on the following points:

� How to transform it from Rs to [0, 1]s,

� in which of the functions h and f we should incorporate the covariance, and

� how to factorize the covariance matrix.

Although the theoretical value of the integral is always the same, regardless how we re-
write or transform it, it can make a huge difference in the quality of the result and the
convergence of the QMC-method. We will mainly discuss three methods of transformation:

� Restricting the integral to the domain [−c, c]s and transform it linearly to [0, 1]s. By
restricting we also make an additional error, which needs to be estimated.

� Transform each coordinate with the inverse normal CDF xi = Φ−1(zi).

� Transform each coordinate with the inverse logistic function xi = logit(zi) = log zi
1−zi

As to the question, where to incorporate the covariance, we set g(x) = h(Cex) and consider
our problem integral (3.0.1), which writes now as

E[g(X)] =

∫
Rs
g(x)fX(x)dx. (3.0.2)

As X is in general not standard normally distributed, it’s components can have depen-
dence, and the covariance matrix hides in the PDF:

fX(x) =
1√

(2π)s| det(Σ)|
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
.

37
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But if we have a factorization L of Σ at hand, s.t. LLT = Σ and use the transformation
x = Ly + µ, one could also write

E[g(X)] =

∫
Rs
g(Ly + µ)fY (y)dy, (3.0.3)

where fY (y) is the PDF of a standard normal distribution. This representation can have
some numeric advantages, especially if one uses some special factorizations of L, which we
will see in Section 3.2. On the other hand, if g(x) has finite variation, but is not differenti-
able, it can happen, that g(Ly+µ) has infinite variation (because the multiplication with
L could cause some rotation), which is of course bad for our theoretical error estimation.

3.1 Transformation to the Unit Cube

3.1.1 Linear Transformation

The most simple way of transforming the integrand is to restrict our problem (3.0.1) to a
finite domain, which should be big enough to capture the essential part of the integrand,
and transform it linearly to the unit cube. We assume

∫
Rs
g(x)fX(x)dx ≈

∫
[−c,c]s

g(x)fX(x)dx = (2c)s
∫

[0,1]s
g(τ(z))fX(τ(z))dz, (3.1.1)

with the transformation being
τ(z) = 2cz − c1.

The determinant of its Jacobian equals

| det Jτ (x)| = (2c)s,

which explains the factor in front of the last integral in (3.1.1). An advantage of this
linear transformation is, that the structure of the integrand is not changed, it is just
rescaled, therefore calculating or estimating derivatives is equally easy (or hard) as for the
original integrand. Of course, we introduce an additional error through the truncation of
the integral domain, which is a disadvantage. In the following two sections, we provide
methods to estimate the truncation error and to estimate the derivatives of the normal
PDF, which can be used to further estimate the variation of the PDF. The availability of
these methods motivate the use of the linear transformation.

Example 3.1.1. Consider an European Call option with maturity T = 1 years, strike
K = 0.7 and starting value S(0) = 1. Let the parameters for the Black-Scholes model be
R = α = 0 and σ = 20% p.a. We write S(T ) = S(0)eX(T ), and we know the distribution
of X(T ) under the risk-neutral measure, which is

X(T ) ∼ N(−σ
2

2
T, σ2T ) = N(−0.02, 0.04).

Now we have to calculate∫ ∞
−∞

h(S(0)ex)fX(x)dx =

∫ ∞
−∞

(ex − 0.7)+ 1√
2π0.2

e−
(x+0.02)2

0.08 dx, (3.1.2)

which is actually not very hard to do in one dimension. We put this example here to show
plots of the integrand, and of the effect of the different transformations on the integrand.
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Figure 3.1.1: To the left, we see the original integrand from (3.1.2). For x ≤ logK ≈ −0.36,
the function is 0, whereas for x > logK, the function value is always greater than 0,
although it converges pretty fast. Hence it seems sensible, to truncate the integration
domain at ±1, s.t. that the truncation error is contained. To the right, we have the
integrand transformed from [−1, 1] to [0, 1]. In case of this simple payoff function, one can
of course also choose the integration domain as [logK, 1], s.t. no integration nodes are
used outside the support of the integrand. But for the most higher dimensional cases, this
cannot be that easily observed as for this plot of a one-dimensional function.

3.1.2 Truncation Error

Since we need to truncate the integral domain in order to use the linear transformation,
we also need to estimate the error introduced by the truncation. We do not want to have
to do this estimated for every integrand separately, hence we try to do it for a class of
integrands which contains many real world examples. We consider the class of derivative
securities, which have a payoff function fulfilling

0 ≤ h(S1, . . . , Ss) ≤ κ1S1 + . . .+ κsSs,

for some positive constants κ1, . . . , κs > 0. The variables S1, . . . , Ss here can either denote
the S1(T ), . . . , Ss(T ) as in Proposition 2.3.4 or the S(t1), . . . S(ts) as in Proposition 2.3.5.
Under this assumptions, the function g fulfils

g(x) = h(Cex) ≤ κ1e
x1 + . . .+ κse

xs . (3.1.3)

We truncate each component variable at ±c, hence our integration domain is [−c, c]s =
{x ∈ Rs|‖x‖∞ ≤ c}. We start with the representation (3.1.1), which we write as the sum∫

Rs
g(x)fX(x)dx =

∫
‖x‖∞≤c

. . . dx+

∫
‖x‖∞>c

. . . dx,

where the first term is the integral we actually calculate with some QMC-method, and the
second term is the truncation error, which we will denote as TE(c) from now on. Using
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our assumption on the payoff, we estimate the truncation error by

TE(c) :=

∫
‖x‖∞>c

g(x)fX(x)dx ≤
s∑
i=1

κi

∫
‖x‖∞>c

exifX(x)dx.

Each summand here can again be written as

κi

∫
‖x‖∞>c

exifX(x)dx = κi

(∫
Rd
exifX(x)dx︸ ︷︷ ︸

=:Ei

−
∫
‖x‖∞≤c

exifX(x)dx︸ ︷︷ ︸
=:Ri

)
,

where the term Ei can be easily calculated, because

Ei = E[eXi ] = eµi+Σii/2.

Since we want to estimate TE(c) from above, we need to estimate the terms Ri from
below. Let L be a decomposition of Σ with LLT = Σ and Li the i-th line of L. We
are here completely free in the choice of the decomposition. We use the transformation
x = Ly + µ, which yields

Ri =

∫
‖Ly+µ‖∞≤c

eLiy+µifY (y)dy,

where fY is the PDF of the multivariate standard normal distribution, which can be
factored into the densities of univariate N(0, 1)-distributions. If ‖y + L−1µ‖∞ ≤ c

‖L‖∞ it
follows from the definition of the operator norm, that

‖Ly + µ‖∞ = ‖L(y + L−1µ)‖∞ ≤ ‖L‖∞ · ‖y + L−1µ‖∞ ≤ ‖L‖∞
c

‖L‖∞
.

Therefore

{y ∈ Rs|‖y + L−1µ‖∞ ≤
c

‖L‖∞
} ⊆ {y ∈ Rs|‖Ly + µ‖∞ ≤ c},

and

Ri ≥
∫
‖y+L−1µ‖∞≤ c

‖L‖∞

eLiy+µifY (y)dy

= eµi
s∏
j=1

(∫ + c
‖L‖∞

−(L−1µ)j

− c
‖L‖∞

−(L−1µ)j

eLijyjfYj (yj)dyj

)
fYj is just a N(0, 1)-PDF, so via completing the square in the exponent, we get

= eµi
s∏
j=1

(∫ + c
‖L‖∞

−(L−1µ)j

− c
‖L‖∞

−(L−1µ)j

e
L2
ij
2

1√
2π
e−

(yj−Lij)2

2 dyj

)
substituting zj = yj − Lij yields

= eµi
s∏
j=1

(
e
L2
ij
2

∫ + c
‖L‖∞

−(L−1µ)j−Lij

− c
‖L‖∞

−(L−1µ)j−Lij

1√
2π
e−

z2j
2 dzj

)

= eµi+
Σii
2

s∏
j=1

(
Φ
( c

‖L‖∞
− (L−1µ)j − Lij

)
− Φ

(
− c

‖L‖∞
− (L−1µ)j − Lij

))
,
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also using the fact that
∑s

j=1 L
2
ij = Σii To summarize our results, our estimate for the

truncation error is

TE(c) ≤
s∑
i=1

κie
µi+Σii/2(1−Di), (3.1.4)

with

Di =
s∏
j=1

(
Φ
( c

‖L‖∞
− (L−1µ)j − Lij

)
− Φ

(
− c

‖L‖∞
− (L−1µ)j − Lij

))
.

Obviously, as c→∞, we have TE(c)→ 0. Since the choice of the decomposition LLT = Σ
is free, one can choose it to maximize the Di-terms in order to minimize TE(c), but this
would be another question by itself.

3.1.3 Bounds on the Derivatives of the Normal Density

We also want to point out an idea for estimating the mixed derivatives (up to order one
in each variable) of the normal density combined with the linear transformation, in order
to estimate the variation in the sense of Hardy and Krause. The estimate presented here
is very rough and it may be, that there are sharper bounds in the literature.

We consider just the PDF part of our integrand from equation (3.1.1),

ω(z) = (2c)sfX(τ(z))

with the transformation being τ(z) = 2cz − c1. We define some shorthand-notations, but
keep in mind, that the letters still denote functions in z:

Q := −1

2
(τ(z)− µ)TΣ−1(τ(z)− µ)

and

K =
(2c)s

(2π)s/2
√
| det Σ|

,

because then we can write the integrand as

ω(z) = KeQ.

Lets start with the derivatives of the exponent,

Qj :=
∂

∂zj
Q = −(Σ−1)j(τ(z)− µ)2c,

and

Qjk :=
∂2

∂zj∂zk
Q = −(Σ−1)jk4c

2.

Keeping this notation, we determine the mixed derivatives of the integrand ω(z):

∂{1}ω(z) = KeQQ1,

∂{1,2}ω(z) = KeQQ2Q1 +KeQQ12 = KeQ[Q12 +Q1Q2],

∂{1,2,3}ω(z) = KeQ[Q1Q2Q3 +Q12Q3 +Q13Q2 +Q1Q23],

∂{1,2,3,4}ω(z) = KeQ[Q1Q2Q3Q4

+Q12Q3Q4 +Q13Q2Q4 +Q14Q2Q3

+Q1Q23Q4 +Q1Q24Q3 +Q1Q2Q34

+Q12Q34 +Q13Q24 +Q14Q23].
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One can already observe the pattern here to write the general formula. For a set u ⊆ Is,
let P(u) denote the set of all partitions P of u, whose elements p are subsets of u with
only 1 or 2 elements. We have

∂uω(z) =
(∏
i∈u

∂

∂zi

)
ω(z) = KeQ

∑
P∈P(u)

∏
p∈P

Qp. (3.1.5)

Lets find bounds for Qj and Qjk:

max
j
|Qj | =

∥∥∥∥∥
Q1

...
Qd

∥∥∥∥∥
∞

≤ 2c‖Σ−1‖∞‖τ(z)− µ‖∞,

and

‖τ(z)− µ‖∞ ≤ max
i

(
max(|τi(0)− µi|, |τi(1)− µi|)

)
= max

i

(
max(|c+ µi|, |c− µi|)

)
,

since τ(z) is linear, and the extrema of a linear function always occur on the boundary.
For the second derivative of the exponent, we have√

|Qjk| ≤ 2cmax
j 6=k

√
|(Σ−1)jk|.

We define q as

q := 2cmax
(

max
j 6=k

√
|(Σ−1)jk|, ‖Σ−1‖∞max

i

(
max(|c+ µi|, |c− µi|)

))
,

because with this, we have |Qj | ≤ q, |Qjk| ≤ q2 and
∏
p∈P Qp ≤ q|u|. So for the derivatives

of the actual integrand, we have

|∂uω(z)| ≤ K eQ︸︷︷︸
≤1

|P(u)|q|u|. (3.1.6)

It would also be nice to have a formula for |P(u)|, which we obtain by the following
observation: The number of partitions of an n-element set into subsets of size 1 and 2 is
equal to the number of involutions on the set {1, 2, . . . , n}. An involution is a permutation,
that is self-inverse. For a permutation Π to be self-inverse, it either has to map an element
on itself, s.t. Π(i) = i, or if it maps an element to another element, Π(j) = k, then is also
has to map the other direction, s.t. Π(k) = j, in other words, it switches the pair (k, j).
Now it should be obvious, that each involution corresponds to exactly one partition with
subsets of size 1 and 2: The elements of the 1-element subsets are mapped on themselves,
and the elements of the 2-element subsets are swapped with each other. While we do not
dig more into combinatorics at this point, we might refer to the literature, e.g. [10] and
just state the results here.

Let Zn be the number of involutions on {1, 2, . . . , n}. It fulfils the recurrence relation
Zn = Zn−1 + (n− 1)Zn−2. Zn can be also calculated from the formula

Zn =

bn/2c∑
k=0

(
n

2k

)
(2k − 1)!! =

bn/2c∑
k=0

n!

2k(n− 2k)!k!
.

The first few numbers are Z1 = 1, Z2 = 2, it goes on with 4, 10, 26, 76, . . . , hence Zn grows
really fast. We can now replace the |P(u)| in equation (3.1.6) with Z|u|. Nonetheless, this
estimate is really rough and pessimistic and the practical use may be limited because of
the fast growth in |u|.
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3.1.4 Inverse Normal CDF Transformation

The transformation with the inverse CDF of the normal distribution seems natural for
integrands with a normal density function. Before we apply the transformation, we have
to decide, if we want to do it on the representation as in (3.0.3) or the representation
as in (3.0.2). Let Φ(y) be the CDF of the standard normal distribution, and Φ−1(z) be
it’s inverse. For vectors y and z, we define both Φ(y) = (Φ(y1), . . . ,Φ(ys)) and Φ−1(z) =
(Φ−1(z), . . . ,Φ−1(z)) element-wise. Let’s start with the representation (3.0.3), where fY
was the PDF of a standard normal R.V. and use the substitution zi = Φ(yi). We can
rewrite the differential as dz = fY (y)dy, so we have∫

Rs
g(Ly + µ)fY (y)dy =

∫
[0,1]s

g(LΦ−1(z) + µ)dz. (3.1.7)

Because of the choice of transformation, the PDF factor of the integrand has disappeared.
Sometimes, this can be an advantage. For a unbounded function g however, the integrand
is now also unbounded because Φ−1(z) is unbounded on [0, 1]s, therefore its variation is
also infinite. E.g., for a European call option with h(S(T )) = (S(T ) −K)+, we have an
unbounded integrand, whereas for a binary option, the payoff is in {0, 1} and the resulting
integrand also stays bounded. We also want to take a look at the case, in which we apply
the transform to the representation (3.0.2), where fX(x) was the PDF of a general (not
standard) normal distributed R.V. We substitute zi = Φ(xi), and receive∫

Rs
g(x)fX(x)dx =

∫
Rs
g(x)

fX(x)

fY (x)
fY (x)dx. =

∫
[0,1]s

g(Φ−1(z))
fX(Φ−1(z))

fY (Φ−1(z))
dz. (3.1.8)

The function fY (x) here is again the PDF of a standard normal R.V., and the idea
presented here is called Importance Sampling. One is not restricted, to use the standard
normal PDF here for fY . A sensible choice is, to use a distribution fY , that has an
easily invertible CDF, i.e., we have F−1

Y available. Depending on the integrand, it could
also make sense, to choose different transformations for each coordinate. In many cases,
importance sampling yields better results, because one can choose, to put more weight on
certain areas of the integration domain and less weight on areas, where e.g. the integrand
is almost constant.

Example 3.1.1 revisited We begin with the same original problem, but now we apply
the inverse normal CDF transformation. Consider first the transformation from (3.1.7):

∫ ∞
−∞

(ex − 0.7)+ 1√
2π0.2

e−
(x+0.02)2

0.08 dx =

∫ 1

0
(e0.2Φ−1(z)−0.02 − 0.7)+dz (3.1.9)

The other variant, from equation (3.1.8) yields:∫ ∞
−∞

(ex − 0.7)+ 1√
2π0.2

e−
(x+0.02)2

0.08 dx

=

∫ 1

0
(eΦ−1(z) − 0.7)+ 1

0.2
exp

(
Φ−1(z)2

2
− (Φ−1(z) + 0.02)2

0.08

)
dz (3.1.10)

In Figure 3.1.2, we have plots of both variants.

Remark 3.1.2. It is of course also possible, to transform pairs of coordinate dimensions
via the Box-Muller method.
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Figure 3.1.2: To the left, we have the integrand from (3.1.9). For z → 1, the integrand
tends to infinity, which is rather unwanted behaviour, because then, all sorts of theoretical
error estimates are useless. Despite that, QMC- and RQMC-methods can still yield viable
results, if one takes care, that the point 1 is excluded from the integration nodes. The
function on the right, which is based on (3.1.10), is bounded and converges towards 0 for
z → 1, hence there is no truncation error to take care of, and the variation is also finite,
s.t. theoretical error estimation is possible. It the one-dimensional case, it is easy to check,
that the integrand stays bounded, if and only if σ < 0.

3.1.5 Logit Transformation

A very useful transformation is the logit function

xi = F−1
Y (zi) = λi logit(zi) = λi log

zi
1− zi

,

with a scaling parameter λi > 0. For the differentials, we have then

dxi =
λi

zi(1− zi)
dzi, resp. dx =

( s∏
i=1

λi
zi(1− zi)

)
dz.

The inverse transformation is the logistic function

zi =
e
xi
λi

1 + e
xi
λi

=
1

1 + e
− xi
λi

,

which is also the CDF of the logistic distribution, hence it’s also a special case of impor-
tance sampling. To shorten up the notation, define

τ(z) = (τ1(z1), . . . , τs(zs)) =
(
λ1 log

z1

1− z1
, . . . , λs log

zs
1− zs

)
, (3.1.11)

and the resulting transformed integral from (3.0.2) is then∫
Rs
g(x)fX(x)dx =

∫
[0,1]s

g(τ(z))fX(τ(z))

s∏
i=1

λi
zi(1− zi)

dz. (3.1.12)
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We also give here the integrand, which results from applying the logit transformation to
representation (3.0.3):∫

Rs
g(Ly + µ)fY (y)dy =

∫
[0,1]s

g(Lτ(z) + µ)fY (τ(z))

s∏
i=1

λi
zi(1− zi)

dz. (3.1.13)

The usefulness of this transformations lies in the fact, that the integrand stays bounded,
if the function g does not grow ”too fast”. Under some weak conditions, the integrand
and all it’s derivatives are bounded and approach 0 at the boundary of [0, 1]s, which we
are going to show in the next proposition.

Proposition 3.1.3. Let g(x) : Rs → R, fX(x) be the PDF of an s-dimensional normally
distributed R.V. X, and τ(z) be defined as in equation (3.1.11). We assume g to be
piecewise continuously differentiable with a finite number of pieces, and that for every
M ⊆ Is, there exists constants CM1 , . . . , CMs , s.t.

∂Mg(x) ≤ CM1 ex1 + . . .+ CMs e
xs

holds almost everywhere. In this case, we have

lim
zi→1

∂M
(
g(τ(z))fX(τ(z))

s∏
i=1

τ ′i(zi)

)
= 0,

as well as

lim
zi→0

∂M
(
g(τ(z))fX(τ(z))

s∏
i=1

τ ′i(zi)

)
= 0

for every M ⊆ Is and every i ∈ Is, if the other components zj for j 6= i are fixed with
zj ∈ (0, 1).

Remark 3.1.4. The τ ′i(zi) = λi
zi(1−zi) , so the function considered here is exactly the

integrand in (3.1.12).

Proof. First observe, that we have the product rule ∂M (a(x)b(x)) =
∑

u⊆M ∂Ma(x)∂M−ub(x),
and the 3-fold product rule

∂M (a(x)b(x)c(x)) =
∑

u]v]w=M

∂ua(x)∂vb(x)∂wc(x).

Then, let’s recall the notation from Section 3.1.3: We write the PDF part as fX(τ(z)) =
K0e

Q with K0 = 1

(2π)s/2
√
| det Σ|

,

Q := −1

2
(τ(z)− µ)TΣ−1(τ(z)− µ),

but the τ(z) is from (3.1.11) this time. The derivatives of Q are now Qj = ∂{j}Q =
−(Σ−1)j(τ(z)− µ)τ ′j(zj) and Qjk = ∂{j,k}Q = −(Σ−1)jkτ

′
j(zj)τ

′
k(zk), if j 6= k. Keeping in

mind that the Q’s are slightly different to Section 3.1.3, the formula from equation (3.1.5)

∂u(fX(τ(z)) = K0e
Q
∑

P∈P(u)

∏
p∈P

Qp
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still holds (P(u) denotes the set of all partitions P of u, whose elements p are subsets of
u with only 1 or 2 elements). For M ⊆ Is, let’s determine an expression for the derivative
of the complete integrand:

∂M
(
g(τ(z))fX(τ(z))

s∏
j=1

τ ′j(zj)

)
=

∑
u]v]w=M

∂u(g(τ(u))∂v(fX(τ(z))∂w
s∏
j=1

τ ′j(zj)

=
∑

u]v]w=M

(∂ug)(τ(u))

(∏
j∈u

τ ′j(zj)

)(∏
j∈w

τ ′′j (zj)

)( ∏
j∈Is − w︸ ︷︷ ︸

=u+v

τ ′j(zj)

)
K0e

Q
∑

P∈P(v)

∏
p∈P

Qp

=
∑

u]v]w=M

∑
P∈P(v)

K0e
Q(∂ug)(τ(u))

(∏
j∈u

(τ ′j(zj))
2

)
︸ ︷︷ ︸

:=(T ′u)2

(∏
j∈v

τ ′j(zj)

)
︸ ︷︷ ︸

:=T ′v

(∏
j∈w

τ ′′j (zj)

)
︸ ︷︷ ︸

:=T ′′w

∏
p∈P

Qp

≤
∑

u]v]w=M

∑
P∈P(v)

K0e
Q
(
Cu1 e

τ1(z1) + . . .+ Cus e
τs(zs)

)
(T ′u)2T ′vT

′′
w

∏
p∈P

Qp︸ ︷︷ ︸
:=Su,v,w,P

For each summand Su,v,w,P here, we have to proof, that

lim
zi→1

Su,v,w,P = 0 and lim
zi→0

Su,v,w,P = 0.

Also, we have four cases to differentiate:

1. i ∈ u,

2. i ∈ w,

3. i ∈ v and i ∈ p with |p| = 1, or

4. i ∈ v and i ∈ p with |p| = 2.

We will carry out the proof only for limzi→1 in the case i ∈ v and i ∈ p with |p| = 2,
because all the other cases work in a similar fashion, thus we leave them to the reader.
All the components zj , j 6= i are fixed within (0, 1), thus we can assume everything, that
does not depend on zi, to be constant:

� K0e
Q = K0 exp

(
− Σii

2 τ
2
i (zi) +K1τi(zi) +K2

)
,

� Cu1 e
τ1(z1) + . . .+ Cus e

τs(zs) = Cui e
τi(zi) +K3 ≤ 2Cui e

τi(zi) for zi close enough to 1,

� (T ′u)2T ′′w = K4, the term has no dependency on zi at all,

� T ′v = K5τ
′
i(zi), and finally

�

∏
p∈P Qp = K6τ

′
i(zi).

We also want to note, that Σii = Var[Xi] > 0 is always positive, as well as the transfor-
mation’s scaling parameter λi is always chosen to be positive. Putting together our pieces
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(with K̃0 = K0e
K22Cui K4K5K6), we have,

lim
zi→1

Su,v,w,P = lim
zi→1

K̃0 exp
(
− Σii

2
τ2
i (zi) +K1τi(zi)

)
eτi(zi)(τ ′i(zi))

2

= lim
zi→1

K̃0 exp
(
− Σii

2
τ2
i (zi) + (K1 + 1)τi(zi) + 2 log τ ′i(zi)

)
= lim

zi→1
K̃0 exp

(
− Σiiλi

2
log2 zi

1− zi
+ K̃1 log

zi
1− zi

+ 2 log
λi

zi(1− zi)

)
= lim

zi→1
K̃0 exp

(
− Σiiλi

2
log2 zi

1− zi
+ K̃1 log

zi
1− zi

+ 2 log
zi

1− zi
+ 2 log

λi
z2
i

)
= lim

zi→1
K̃0 exp

(
log

zi
1− zi︸ ︷︷ ︸
→∞

(
−Σiiλi

2︸ ︷︷ ︸
<0

log
zi

1− zi︸ ︷︷ ︸
→∞

+K̃1 + 2
)

+ 2 log
λi
z2
i︸ ︷︷ ︸

→2 log λi

)

= 0,

because the exponent tends towards −∞.

Example 3.1.1 revisited 2 Once again we start with the same problem, but this time
we apply the logit-transformation, like in (3.1.13):∫ ∞

−∞
(ex −K)+ 1√

2πσ
e−

(x−µ)2

2σ2 dx

=

∫ ∞
−∞

(eσy+µ −K)+ 1√
2π
e−

y2

2 dy

=

∫ 1

0
(eστ(z)+µ −K)+ 1√

2π
e−

τ(z)2

2
1

z(1− z)
dz, (3.1.14)

y = τ(z) = log
z

1− z
.

We also try representation (3.1.12), but now we use a scaling parameter 6= 1, and we set
it λ = σ = 0.2, to be equal to the standard deviation.

∫ ∞
−∞

(ex −K)+ 1√
2πσ

e−
(x−µ)2

2σ2 dx

=

∫ 1

0
(eτ(z) −K)+ 1√

2πσ
e−

(τ(z)−µ)2

2σ2
σ

z(1− z)
dz, (3.1.15)

x = τ(z) = σ log
z

1− z
.

As we see in the Figure 3.1.3, both integrands are very similar, and both cover the interval
[0, 1] better than the other transformations. Depending on the parameters of the original
integrand, these variants can yield significantly different integrands, and one has to decide
in the particular case which, one is better suited. But both have in common, that there
is no truncation error, and the theoretical error estimates are applicable, because the
variation is finite.
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Figure 3.1.3: On the left, we have the plot of (3.1.14), and on the right, the plot of (3.1.15).

The transformations mentioned here are only examples, and one is free to use any
transformation one finds suitable. The paper [13] by Kuo et al. deals especially with
this topic, and although it is mainly about a different class of integrands, most points
also apply in our case. E.g., it could be worthwhile, to apply a linear transformation on
the integrand in Rs, s.t., the support is centered around the origin, and the component
variables are scaled properly with respect to each other, before mapping it to the unit
cube with some distribution.

3.2 Factorization of the Covariance Matrix

For many high dimensional problems, QMC-methods perform better than one would ex-
pect, and that is, because these problems have a low effective dimension. E.g., a additive
function f(x) = f1(x1) + . . .+ fs(xs) has effective dimension 1, because it can be written
as the sum of s one-dimensional functions, therefore calculating the integral of such a
function is just as hard as calculating s one-dimensional integrals. Every s-dimensional
function can be decomposed as a sum of 2s terms ([13])

f(z) =
∑
u⊆Is

fu(zu), (3.2.1)

s.t.
∫ 1

0 fu(zu)dzj = 0 for all j ∈ u. Here, fu is a function depending only on the component
variables zj for j ∈ u (see also the notation in Section 1.5). We also have ([13])

σ2
f =

∑
u⊆Is

σ2
fu ,

which is why this is known as the ANOVA (analysis of variance) decomposition. Now, if
there is a k < s, and f can be written as

f(z) =
∑
u⊆Is
|u|≤k

fu(zu),
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and k is the smallest number s.t. this equation still holds, then f is said to have the
effective dimension k. In this case, the behaviour of f is completely explained by the
interactions of order ≤ k. We also say, f has an effective low dimension, if σ2

f is to a great

part explained by the sum of the σ2
fu

terms for |u| significantly smaller than s, and while

the rest of the terms maybe not strictly 0, they only explain a small part, e.g. 1% of σ2
f .

The ANOVA decomposition itself can only be estimated and we want to refer to the
appendix of [13] for more details. However, we want to discuss a few simple ideas, that can
greatly reduce the number of important variables and thus efficiently lower the effective
dimension of a problem. These ideas also can be found in Leobacher and Pillichshammer
[15] in more detail.

Consider a path dependent option of the form as in Proposition 2.3.5, with s equidistant
observation times 0 < T

s < 2T
s < . . . < T . The covariance matrix of the log returns

X(ti) = log S(ti)
S(0) then takes the form

Σ = σ2T

s
·


1 1 1 . . . 1
1 2 2 . . . 2
1 2 3 . . . 3
...

...
...

...
1 2 3 . . . s

 .

If we were to write our problem in the representation (3.0.3), we have to find a decompo-
sition L fulfilling LLT = Σ, regardless of the transformation used to get from Rs to [0, 1]s.
The most straight forward method for finding such would be the Cholesky decomposition
of Σ, which we can write immediately:

Lc = σ

√
T

s
·


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

...
1 1 1 . . . 1

 .

Note also, that the matrix multiplication Lcy, which has to be done for every function
evaluation in the QMC-method, is actually equivalent to the cumulative sum of y times a
factor, i.e.

Lcy = σ

√
T

s
· (y1, y1 + y2, . . . , y1 + y2 + . . .+ ys),

and thus can be computed in O(s) time, instead of O(s2), as would be the naive matrix-
vector multiplication. In terms of reducing the effective dimension however, other decom-
positions might prove to be more efficient.

The PCA decomposition for example, which is actually a decomposition into three
factor matrices

Σ = V∆V T .

The middle matrix ∆ here is a diagonal matrix containing the eigenvalues of Σ, and V is an
orthogonal matrix. Hence we just can take the square root and set Lp = V

√
∆, so we have

LpL
T
p = Σ. We may assume the eigenvalues to be sorted from the largest to the smallest.

It is usually the case, that first eigenvalue is much larger than all the others, and that
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only the first few eigenvalues are significant at all. Thus, using this factorization, much
weight is put on a small number of coordinate dimensions, and little weight is put on the
rest, therefore the effective dimension should be reduced significantly. An increased rate of
convergence can be seen for this method in the practical section of this work. A drawback
for large s is, that the matrix multiplication Lpy takes O(s2) time, but there is also a
way to avoid this. We know, that there is an orthogonal matrix P , such that LcP = Lp,
and the multiplication Py corresponds to the discrete sine transform (DST) [15]. The
DST can be done in O(s log s) time, thus, the multiplication LcPy can be bypassed via a
combination of DST and a cumulative sum in at most O(s log s) time.

As a third option, we just want to mention the Brownian bridge construction, where
the first variable determines the Brownian motion at the last timestep WT , the second
variable determines WT/2 conditioning on already known value of WT , and so on. More

precisely, the construction works in the following way: Suppose Y1, . . . , Ys
iid∼ N(0, 1) and

s = 2r for some r.

� Step 0: Set W0 = 0 and WT =
√
TY1.

� Step 1: Set WT/2 = 1
2(W0 +WT ) +

√
T
4 Y2

� Step 2: Set WT/4 = 1
2(W0 +WT/2) +

√
T
8T Y3 and W3T/4 = 1

2(WT/2 +WT ) +
√

T
8 Y4

� Step k: For i = 1 to 2k−1: Set W 2i−1

2k
T = 1

2(W i−1

2k−1 T
+W i

2k−1 T
) +

√
T

2k+1Y(i+2k−1)

� Stop after step r.

The value of X(t) can then simply be observed from equation (2.3.1). The corresponding
decomposition of Σ is given as LH = LcH, and the orthogonal matrix H corresponds to
the inverse Haar transform. Also for this case, the potentially slow matrix multiplication
is of course not necessary, because the Brownian bridge construction can be executed in
linear time.



Chapter 4

Non-Differentiable Functions

4.1 Finite Variation of the Maximum Function

We want to show here, that the integrand resulting from an option pricing problem with
a payoff given as

h(S1, . . . , Ss) = (max{S1, . . . , Ss} −K)+

has finite variation, if we use the right representation in combination with the logit trans-
formation. First, observe the identity

(max{S1, . . . , Ss} −K)+ = max{(S1 −K)+, . . . , (Ss −K)+}.

Setting g(x) = h(ex), (we do not strictly need the constant C from equation (3.0.1), be-
cause we can incorporate it in the PDF part, if we adapt the expectation of X accordingly)
our problem integral then writes as∫

Rs
g(x)fX(x)dx =

∫
[0,1]s

g(τ(z))fX(τ(z))
s∏
i=1

1

zi(1− zi)
dz =

∫
[0,1]s

g̃(z)f̃(z)dz,

with τ(z) = (τ1(z1), . . . τ1(zs)) being the same transformation for each coordinate, defined
as in (3.1.11) with scaling parameter λ = 1, i.e. τ1(zi) = log zi

1−zi . We set

g̃(z) = g(τ(z)) = max
i=1,...,s

(eτi(zi) −K)+ and f̃(z) = fX(τ(z))

s∏
i=1

1

zi(1− zi)
, (4.1.1)

to shorten up the notation.

Lemma 4.1.1. The variation in the sense of Hardy and Krause of the product of the
functions g̃ and f̃ given in (4.1.1) on [0, 1]s is finite, i.e., VHK(g̃f̃ ; [0, 1]s) <∞.

Proof. As a first step, we are going to show, that

ω(x) = max
i=1,...,s

xi,

has finite variation on the interval [0, b]s for any b > 0.
Let Y1

n = {y(0), y(1), . . . , y(n)} ⊂ R with 0 = y(0) < y(1) < . . . < y(n) < b be a
ladder on [0, b]. We construct a s-dimensional ladder Yn =

∏s
i=1 Y1

n, which consists of the

51
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same points in each dimension. Investigating the variation on ladders of this form is no
restriction, because any ladder on [0, b]s can be refined to a ladder of this form, see also
Proposition 1.5.10 and Remark 1.5.11. For a non-empty subset of indices I ⊆ Is, define

BI := {x ∈ [0, b]s : xi = xj if i, j ∈ I, xi > xj if i ∈ I, j /∈ I},

which is the set, where the maximum is in the i-th component for every i ∈ I (maxx∈BI =
xi for all i ∈ I). BIs is just the diagonal of the s-dimensional hypercube. Observe, that

Figure 4.1.1: The BI ’s of the unit cube in 3 dimensions:
B{1,2,3} is the diagonal in red, B{1,2} is the green triangle (without the red diagonal),
B{2,3} is the yellow triangle, B{1,3} is the orange triangle, B{1} is the space limited by (but
not including) the green and orange triangle, B{2} is the space limited by the green and
yellow triangle, and B{3} is the space limited by the yellow and orange triangle.

the BI ’s form a partition of the unit cube, i.e.

[0, b]s =
⊎

∅6=I⊆Is

BI .

We define MI := BI ∩ Yn, such that the MI ’s form a partition of Yn. Considering the
variation on the ladder Yn as in Definition 1.5.7, we have

VYn(ω) =
∑
∅6=I⊆Is

VMI
(ω),

with
VMI

(ω) =
∑
y∈MI

|∆(ω; y, y+)|.

First, let’s look at VMI
for I 6= Is. The function ω does not depend on the variable(s) xj ,

where j /∈ I. It follows from Prop. 1.5.12, that the alternating sum is zero, and therefore
VMI

= 0. The case VMIs remains to be investigated. The ∆-operator writes as

∆(ω; y, y+) =
∑
v⊆Is

(−1)|v|ω(yv : y+
−v).
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As all y ∈ MIs lie on the diagonal, all components have the same value, so let’s write
y = (y1, y1, . . . , y1) only in terms of the first component y1.

ω(yv : y+
−v) =

{
y1 if v = Is,
y+

1 else.

This means, almost all the terms y+
1 cancel out except one, and the result is

|∆(ω; y, y+)| = y+
1 − y1. (4.1.2)

Taking the sum yields

VYn = VMIs =
∑

y∈MIs

|∆(ω; y, y+)| =
∑

y∈MIs

y+
1 − y1 = b− 0,

because this is a telescopic sum. The variation (in the sense of Vitali) is now

V[0,b]s(ω) = sup
n
VYn = b.

When calculating the Vitali-variations of lower order, at least one component is fixed at
the upper interval boundary b, therefore the maximum is always constant at b and the
variation is 0. This yields

VHK(ω; [0, b]s) = b.

As the second step, we are going to prove that g̃ has finite variation on the interval
[0, b]s for any fixed 0 < b < 1. Remember the definition of g̃,

g̃(z) = g(τ(z)) = max
i=1,...,s

(eτi(zi) −K)+,

but for now, we assume, that K = 0, and define φ1(zi) = eτ1(zi) = zi
1−zi and φ(z) =

(φ1(z1), . . . , φ1(zs)), such that we can write

g̃(z) = max
i=1,...,s

eτi(zi) = ω(φ(z)).

We are now able to directly apply Proposition 1.5.15, and with φ1(0) = 0, we receive

V[0,b]s(g̃) = V[φ(0),φ1(b)]s(ω) =
b

1− b
,

as well as

VHK(g̃; [0, b]s) =
b

1− b
.

As we see, for b → 1, the term b
1−b tends to ∞. For the last step, we have to take

into account the PDF-factor in the integrand. From Proposition 3.1.3 we know, that
g̃(z)f̃(z)→ 0 for zi → 1 or zi → 0, which lets us hope, that the variation stays bounded.
We have to apply the product rule for the ∆-operator (Lemma 1.5.1) which adds some
complexity, but luckily, most of the terms in the sum are 0. In our case, the product rule
writes as

∆(g̃f̃ ; y, y+) =
∑
v⊆Is

(∆v(g̃; y, y+))(y+
−v) · (∆−v(f̃ ; y, y+))(yv) for y ∈ Yn.
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Let ∅ 6= I ⊆ Is. Like before, we calculate the variation separately on each MI :

VMI
(g̃f̃) =

∑
y∈MI

∣∣∣∣ ∑
v⊆Is

(∆v(g̃; y, y+))(y+
−v) · (∆−v(f̃ ; y, y+))(yv)

∣∣∣∣. (4.1.3)

Choose any fixed i0 ∈ I. We will show, that

|(∆v(g̃; y, y+))(y+
−v)| =

{
φ1(y+

i0
)− φ1(yi0) if v = I,

0 else,
(4.1.4)

because:

Case v = I: The maximum can only be taken in components from I, the other
components have a smaller value per definition of MI . The result is φ1(y+

i0
) − φ1(yi0)

completely analogue to (4.1.2).

Case I\v 6= ∅: There exists at least one component j ∈ I\v that is not differentiated,
s.t.

(∆v(g̃; y, y+))(y+
−v) =

∑
u⊆v

(−1)|u|g̃(yu : y+
(v−u)+(−v)) =

∑
u⊆v

(−1)|u| φ1(y+
j )︸ ︷︷ ︸

const. for all u

= 0

Case v \ I 6= ∅: There exists at least one component j ∈ v \ I that g̃ does not depend
on, therefore the alternating sum is 0.

Using (4.1.4), equation (4.1.3) simplifies to

VMI
(g̃f̃) =

∑
y∈MI

∣∣∣(∆I(g̃; y, y+))(y+
−I) · (∆−I(f̃ ; y, y+))(yI)

∣∣∣
=
∑
y∈MI

(φ1(y+
i0

)− φ1(yi0))|(∆−I(f̃ ; y, y+))(yI)| (4.1.5)

Now let’s rewrite MI in the form

MI =
{

(y1, . . . , ys) ∈ Yn|yj ∈ Y1
n for j /∈ I, yi = yl > max

j /∈I
yj for i, l ∈ I

}
= {(y−I : tI) ∈ Yn|y−I ∈ (Yn)−I , t ∈ Y1

n, t > max
j /∈I

yj},

and by using the above interpretation of the set MI , we can write the sum from (4.1.5) as

VMI
(g̃f̃) =

∑
y−I∈(Yn)−I

∑
t∈Y1

n
t>maxj /∈I yj

(φ1(t+)− φ1(t))|(∆−I(f̃ ; y−I , y
+
−I))(tI)|

We use (1.5.3) here to estimate the ∆:

≤
∑

y−I∈(Yn)−I

∑
t∈Y1

n
t>maxj /∈I yj

(φ1(t+)− φ1(t)) max
z−I∈[y−I ,y

+
−I ]
|∂−I f̃(z−I : tI)|V ol([y−I , y+

−I ])

≤
∑

y−I∈(Yn)−I

V ol([y−I , y
+
−I ])

∑
t∈Y1

n

max
z−I∈[y−I ,y

+
−I ]
|∂−I f̃(z−I : tI)|(φ1(t+)− φ1(t)).
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Let
f̄ I(t) := max

z−I∈[0,1]|−I|
|∂−I f̃(z−I : tI)|,

which takes the scalar value t in all components of I, and which is finite, because f̃ is
continuously differentiable with bounded derivatives (see Prop. 3.1.3). We continue with
the above reasoning:

VMI
(g̃f̃) ≤

∑
y−I∈(Yn)−I

V ol([y−I , y−I+ ])
∑
t∈Y1

n

f̄ I(t)(φ1(t+)− φ1(t)),

−−−→
n→∞

V ol([0, b]|−I|])

∫ b

0
f̄ I(t)dφ1(t)

= bs−|I|
∫ b

0
f̄ I(t)φ′1(t)dt.

Because the integrand approaches 0 for t → 1, it is bounded on [0, 1] (this claim can be
proved with a reasoning analogue to Prop. 3.1.3), and

VMI
(g̃f̃) ≤

∫ 1

0
f̄ I(t)φ′1(t)dt︸ ︷︷ ︸

=:CI

<∞

for all b < 1, hence we can make the limit b→ 1 and still stay bounded.

V[0,1]s(g̃f̃) = sup
n
VYn(g̃f̃) = sup

n

∑
∅6=I⊆Is

VMI
(g̃f̃) ≤

∑
∅6=I⊆Is

CI

Since g̃f̃ is constant 0 at the boundary of [0, 1]s, the Vitali-variations of lower order are
again 0, and

VHK(g̃f̃) ≤
∑
∅6=I⊆Is

CI <∞.

We assumed here, that K = 0, so it still remains, to argue, that this also works for
K > 0. First of all, remember the definition of the Hardy and Krause-variation as a sum
of Vitali-variations:

VHK(g̃f̃ ; [0, 1]s) =
∑
∅6=u⊆Is

V[0,1]|u|(g̃f̃(xu; 1−u)).

In this sum, all the summands u $ Is have at least one component fixed at 1, which
means g̃f̃(xu; 1−u) is constant 0, and therefore V[0,1]|u|(g̃f̃(xu; 1−u)) = 0 for u $ Is. For
the remaining summand with u = Is, we divide the unit cube into 2s hyperrectangles Rv:
For v ⊆ Is we define

Rv = {x ∈ [0, 1]s : xj ≥
K

1 +K
for all j ∈ v and xj ≤

K

1 +K
for all j ∈ −v}.

The set {Rv|v ⊆ Is} forms a split of [0, 1]s in the sense of Definition 1.5.13, hence we have
V[0,1]s(g̃f̃) =

∑
v∈Is VRv(g̃f̃). Observe, that eτ1(K/(1+K)) = K and that (eτi(zi) −K)+ = 0

if zi ≤ K/(1 +K), and thus, for z ∈ Rv we can write g̃ as

g̃(z) = max
i=1,...,s

(eτi(zi) −K)+ = max
i∈v

eτi(zi)︸ ︷︷ ︸
g̃1(z)

−K.
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Now, onRIs , we know, that g̃f̃ = g̃1f̃−Kf̃ . We have already shown in the caseK = 0, that
VRIs (g̃1f̃) ≤ V[0,1]s(g̃1f̃) <∞, and we know, that VRv(Kf̃) <∞ because f̃ is continuously
differentiable on [0, 1]s with bounded derivatives. Since the sum and the difference of two
functions with bounded (HK-)variation also have bounded (HK-)variation (Proposition
1.5.16), we also have VRIs (g̃f̃) < ∞. For the cases v $ Is, we also have VRv(g̃f̃) < ∞,
which can be shown with very similar arguments.

4.2 Approximation with Smooth Functions

For non-differentiable functions, which are bounded, but have infinite variation, we propose
an alternative approach: Approximate a given integrand f with a smooth function fβ, i.e.,
a function that is infinitely times differentiable, s.t. its variation is finite. This way we can
apply a QMC-method, and estimate the error via the Koksma-Hlawka inequality (Theorem
1.6.2). For the residual f − fβ, which should be small by construction, we use ordinary
MC- or RQMC-methods and estimate the error with a confidence interval. This could be
interpreted as a variance reduction technique. We want to decompose the integral of f as∫

[0,1]s
f(x)dx =

∫
[0,1]s

fβ(x)dx︸ ︷︷ ︸
QMC with Koksma-Hlawka

+

∫
[0,1]s

f(x)− fβ(x)dx︸ ︷︷ ︸
MC with confidence interval

. (4.2.1)

The parameter β denotes the smoothness, a small β means, that the derivatives of fβ
are smaller and thus also the variation, whereas a large β means, that fβ is closer to the
original function f , and we have ultimately limβ→∞ fβ(x) = f(x) pointwise for x ∈ [0, 1]s.
We will give a few recipes for smoothing functions that are common in option pricing.

4.2.1 The Indicator Function

We start here with the indicator function I(0,∞)(x) : R → [0, 1] as a building block for
more complex functions. Let

SI(x) :=


1

1+e
−4x
1−x2

if |x| < 1,

1 if x ≥ 1 and

0 if x ≤ −1,

and for β > 0

SIβ(x) := SI(βx).

We have the following properties:

� SI ∈ C∞(R) and SIβ ∈ C∞(R),

� SIβ and I(0,∞) differ only on the interval (− 1
β ,

1
β ), and

� SIβ → I(0,∞) pointwise for β →∞.
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4.2.2 The Positive-Part Function

Consider the positive part f(x) = x+ = max(x, 0). Define

m(x) :=


(x+ 1− SI(x))SI(x) if |x| < 1,

x if x ≥ 1 and

0 if x ≤ −1,

,

and

mβ(x) :=
1

β
m(βx) for β > 0.
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Figure 4.2.1

We have again similar properties:

� mβ ∈ C∞(R),

� mβ(x) and (x)+ differ only on the interval (− 1
β ,

1
β ) with the maximum difference

being 1
4β , and

� mβ → (·)+ uniformly for β →∞, because the maximum difference also converges to
0.

Remark 4.2.1. Some more observations: For |x| ≥ 1
β and k ≥ 2 we have∣∣∣∣ dkdxkm(x)

∣∣∣∣ = 0.

Let’s assume, we have constants Ck, k ≥ 1 given, such that∣∣∣∣ dkdxkm(x)

∣∣∣∣ ≤ Ck for |x| ≤ 1

β
. (4.2.2)
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For k not too large, those constants can be obtained with programs that support symbolic
calculations. We have then∣∣∣∣ dkdxkmβ(x)

∣∣∣∣ = βk−1

∣∣∣∣ dkdxkm(βx)

∣∣∣∣ ≤ βk−1CkI(−1/β,1/β)(x), k ≥ 2.

Remark 4.2.2. By looking at the graphs of the first four derivatives of m, we estimated
the constants in (4.2.2) and obtained

C1 = 1,

C2 = 1.4,

C3 = 7.6 and

C4 = 70. (4.2.3)

4.2.3 Min, Max and Minmax-Functions

We these building blocks, it’s not hard to construct smooth versions of the functions
max(·, k), min(·,K) and the min-max-function Mm(·, k,K) := max(min(·,K), k). Ob-
serve, that

� max(x, k) = x+ (k − x)+,

� min(x,K) = x− (x−K)+, and

� Mm(x, k,K) = x+ (k − x)+ − (x−K)+.

For the smooth versions, replace the positive part (·)+ with the previously defined function
mβ(x), and we have

� Smaxβ(x, k) = x+mβ(k − x),

� Sminβ(x,K) = x−mβ(x−K), and

� Smmβ(x, k,K) = x+mβ(k − x)−mβ(x−K).

For Smmβ(x, k,K) assume, that K − k ≥ 2
β , because then, the smoothed areas around k

and K don’t overlap and we have (from the properties of mβ) for the k-th derivative

|Smm(k)
β (x)| ≤ βk−1Ck

(
I(k± 1

β
)(x) + I(K± 1

β
)(x)

)
for k ≥ 2. (4.2.4)

4.2.4 Indicator Function on a Polyhedron

Let ai for i = 1, . . .m the rows of A and b ∈ Rd. The indicator function, IAx≤b(x), on
the polyhedron {x ∈ Rd|Ax ≤ b} can be approximated by taking the product of indicator
functions on single restrictions, s.t.

SPβ :=

m∏
i=1

SI(β(bi − aTi x)). (4.2.5)
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4.2.5 Indicator Function on a Set with Restrictions

The restrictions do not need to be linear. We can take any set of restrictions of the following
form: Let ai : Rd → R for i = 1, . . . ,m be a set of differentiable functions. The indicator
function on the set B = {xd ∈ R|ai(x) ≤ bi for i = 1, . . . ,m} can be approximated by

SBβ :=
m∏
i=1

SI(β(bi − ai(x))).
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Figure 4.2.2: The indicator function IB(x) = I‖x≤1‖(x) and it’s smoothed variant SBβ(x)

4.2.6 Convolution with a Bump Function

A theoretically easy way to smooth any bounded, function is to convolve it with a bump
function, which is an infinitely times differentiable function with compact support. This
has the great advantage, that estimating the variation is very easy because of the properties
of the differential operator in combination with a convolution. The major drawback of
this variant is, that the convolution is again an s-dimensional integral, and one cannot
just calculate it numerically, because it still has a variable in it. Despite that, we do
present this idea here anyway, because we will construct a fairly simple error estimate for
(possibly non-differentiable) Lipschitz-continuous functions, without the need to calculate
the smoothed function explicitly.

Consider the function

φβ(x) :=
d

dx
SIβ(x) (4.2.6)

in the one-dimensional case, and

ψβ(x) :=
s∏
i=1

φβ(xi) (4.2.7)

in the multi-dimensional case. We have ψβ ∈ C∞0 (Rs), which means it is infinitely times
differentiable and has compact support, with supp(ψβ) =

[
− 1
β ,

1
β

]s
= {x ∈ Rs|‖x‖∞ ≤ 1

β}.
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Also, since ∫
Rs
ψβ(x)dx = 1,

ψβ fulfils all the properties of a mollifier. Let f : Rs → R be a bounded function with
f ∈ L1(Rs) and supp(f) ⊆ [0, 1]s. We define fβ as

fβ(x) := (f ∗ ψβ)(x) =

∫
[0,1]s

f(y)ψβ(x− y)dy. (4.2.8)

From the properties of the convolution we have (f ∗ ψβ) ∈ C∞0 (Rs) with supp(f ∗ ψβ) ⊆[
− 1

β , 1 + 1
β

]s
=: Uβ. Observe the identity for the integrals∫

Uβ

fβ(x)dx =

∫
Rs

(f ∗ ψβ)(x)dx

=

∫
Rs

∫
[0,1]s

f(y)ψβ(x− y)dydx

=

∫
[0,1]s

f(y)

∫
Rd
ψβ(x− y)dx︸ ︷︷ ︸

=1

dy

=

∫
[0,1]s

f(y)dy.

We will now try to estimate the Hardy and Krause-variation of fβ on Uβ using formula
(1.5.4), and again it suffices to consider the Vitali-variation, because the other terms are
0:

VHK(fβ;Uβ) =
∑
∅6=u⊆Is

∫
[− 1

β
,1+ 1

β
]|u|

∣∣∂ufβ(xu :(1 + 1/β)−u)
∣∣dxu

=

∫
[− 1

β
,1+ 1

β
]s

∣∣∂Isfβ(x)
∣∣dx+

∑
∅6=u$Is

∫
[− 1

β
,1+ 1

β
]|u|

∣∣∂ufβ(xu :(1 + 1/β)−u)
∣∣︸ ︷︷ ︸

=0

dxu.

Exploiting the properties of the differentiation of a convolution yields∫
Uβ

∣∣∂Isfβ(x)
∣∣dx =

∫
Rs
|∂Is(f ∗ ψβ)(x)|dx

=

∫
Rs

∣∣∣∣∣
∫

[0,1]s
f(y)∂Isψβ(x− y)dy

∣∣∣∣∣dx
≤
∫

[0,1]s
|f(y)|︸ ︷︷ ︸
≤Cf

∫
Rs
|∂Isψβ(x− y)|dx︸ ︷︷ ︸

=Cψ,β , independent of y

dy

≤ Cf · Cψ,β,

which is very nice, because the only thing we need to know from f is some upper bound
Cf . The Cψ,β is independent of the integrand f and can be calculated very easily in
advance. Since ψβ(x) =

∏s
i=1 φβ(xi), we have∣∣∣∂Isψβ(x)

∣∣∣ =
∣∣∣ s∏
i=1

φ′β(xi)
∣∣∣ =

s∏
i=1

|φ′β(xi)|.
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We know, that φ′β(xi) ≥ 0 if xi ≤ 0 and that φ′β(−xi) = −φ′β(xi), hence we can explicitly
calculate the integral∫

Rs
|∂Isψβ(x)|dx =

∫
Rs

s∏
i=1

|φ′β(xi)|dx =
s∏
i=1

∫ ∞
−∞
|φ′β(xi)|dxi

=
s∏
i=1

2

∫ 0

−∞
φ′β(xi)dxi =

s∏
i=1

2φβ(0)dxi = (2β)s, (4.2.9)

and as the final estimate for the variation in the sense of Hardy and Krause, we receive

VHK(fβ;Uβ) ≤ (2β)s sup
x∈[0,1]s

|f(x)|

The drawback here is, that the definition of fβ in (4.2.8) is an s-dimensional integral
in y, and still contains variable x, which is why we cannot just calculate this integral
numerically (at least not for a dimension s large enough, to be interesting in our context).
Fast and explicit evaluation of the function one wants to integrate is essential for all kinds
of numerical integration, which is not possible with this approach.

Under the additional assumption, that f is Lipschitz-continuous w.r.t. the ‖·‖∞-norm,
i.e., there exists a constant Lf > 0, s.t.

|f(x)− f(y)| ≤ Lf‖x− y‖∞ ∀x, y ∈ Rs, (4.2.10)

we are able to present an error estimate. Observe∣∣∣∣IP(f)−
∫

[0,1]s
f(x)dx

∣∣∣∣ ≤∣∣∣∣IP(f)− IP(fβ)

∣∣∣∣︸ ︷︷ ︸
≤‖f−fβ‖∞V ol(Uβ)

+

∣∣∣∣IP(fβ)−
∫
Uβ

fβ(x)dx

∣∣∣∣︸ ︷︷ ︸
≤VHK(fβ)D∗N (P)

+

∣∣∣∣ ∫
Uβ

fβ(x)dx−
∫

[0,1]s
f(x)dx

∣∣∣∣︸ ︷︷ ︸
=0

For all of these estimates, we do not need to explicitly calculate the convolution fβ = f∗ψβ.
But we know, that fβ(x) is a weighted mean of the values of f in an 1

β neighbourhood of
x (w.r.t. the ‖·‖∞-norm), which means

|f(x)− fβ(x)| ≤ sup
‖x−y‖∞≤ 1

β

|f(x)− f(y)| ≤ Lf
1

β
for all x ∈ Uβ,

utilizing the Lipschitz-continuity of f . We are now able to state the following lemma:

Lemma 4.2.3. Let f : Rs → R be bounded and Lipschitz-continuous, s.t. (4.2.10) holds,
and let supp(f) ⊆ [0, 1]s. Let P be an N -element point set in Uβ =

[
− 1

β , 1 + 1
β

]s
. We

have ∣∣∣∣IP(f)−
∫

[0,1]s
f(x)dx

∣∣∣∣ ≤ Lf 1

β

(
1 +

2

β

)s
+ (2β)s sup

x∈[0,1]s
|f(x)|D∗N (P).

Remark 4.2.4. The conditions, that f is (Lipschitz-)continuous and that it has compact
support implies, that f has to be 0 at the boundary of [0, 1], which is, if we were to apply the
transformations discussed in Section 3.1, a restriction on the choice of the transformation.
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4.3 A Cliquet-Type Payoff

Let Gi(x), i = 1, . . . , s be the distribution functions of lognormal distributions, i.e.

Gi(x) = Φ
( lnx− µi

σi

)
,

with Φ(x) being the standard normal CDF. We have the inverse relationship G−1
i (y) =

eµi+σiΦ
−1(y).

We consider an option with the payoff function

h(S(T )) = Mm
( s∑
i=1

Mm(Si(T ), f loori, capi), f loorg, capg

)
(4.3.1)

in the Black-Scholes model. Payoffs of this form appear e.g. in the work of Ralf Korn
[11]. We assume the stock price processes to be independent from each other, i.e. Si(t)
and Sj(t) are independent for i 6= j. A way for introducing dependency is presented at
the end of this section. To shorten notation, we set

fi := floori, ci := capi, fg := floorg and cg := capg.

We transform our integral with the inverse CDF:

I = e−RT
∫
Rd
h(S(0)ex)fX(x)dx = e−RT

∫
[0,1]s

h(eµ1+σ1Φ(y1), . . . , eµs+σsΦ(ys))dy, (4.3.2)

and with the Gi functions defined above (incorporate the Si(0) in the µi), we have

I = e−RT
∫

[0,1]s
h(G−1

1 (y1), . . . , G−1
s (ys))dy

= e−RT
∫

[0,1]s
Mm

( s∑
i=1

Mm(G−1
i (yi), fi, ci), fg, cg

)
dy.

Thus our integrand is the function

H(y) = Mm
( s∑
i=1

Mm(G−1
i (yi), fi, ci), fg, cg

)
. (4.3.3)

We set ui = Gi(ci) and di = Gi(fi). Obviously, the minmax function Mm in the given form
is not differentiable and it’s variation is unbounded (see e.g. Example 1.5.20), therefore we
use the Smmβ function instead for the QMC integral. But we just replace the outer Mm
function, we do not need to replace the inner Mm function, because in this form, the inner
Mm function (within the sum) only produces axis-parallel kinks where the function is not
differentiable, and axis-parallel kinks don’t destroy the boundedness of the HK-variation
(see Remark 1.5.21). Our smoothed integrand is then

Hβ(y) = Smmβ

( s∑
i=1

Mm(G−1
i (yi), fi, ci), fg, cg

)
.

For the error estimation of the integral, we have the deterministic error bound
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∣∣∣∣ ∫
[0,1]s

H(x)dx− IP(Hβ)

∣∣∣∣ ≤ ∣∣∣∣ ∫
[0,1]s

H(x)dx−
∫

[0,1]d
Hβ(x)dx

∣∣∣∣+

∣∣∣∣ ∫
[0,1]s

Hβ(x)dx− IP(Hβ)

∣∣∣∣
≤
∫

[0,1]s
|H(x)−Hβ(x)|dx+ VHK(Hβ) ·D∗N (P). (4.3.4)

We are going to analyse the Hardy and Krause variation of Hβ, but before we look at the
Vitali variation. We define γi(xi) as

γi(xi) :=
d

dxi
Mm(G−1

i (xi), fi, ci)

= (G−1
i )′(xi) · I[fi,ci]((G

−1
i )′(xi))

= (G−1
i )′(xi) · I[di,ui](xi). (4.3.5)

Calculating the variation via formula (1.5.2) gives us

V (Hβ) =

∫
[0,1]s

|∂IsHβ(x)|dx

=

∫ 1

0
· · ·
∫ 1

0

∣∣∣∣Smm(s)
β

( s∑
i=1

Mm(G−1
i (xi), fi, ci), fg, cg

) s∏
i=1

γi(xi)

∣∣∣∣dx1 · · · dxn

Since γi(xi) is 0 outside of [di, ui], we restrict the integration limits,

and the local minmax-functions can be left out.

=

∫ us

ds

· · ·
∫ u1

d1

∣∣∣∣Smm(s)
β

(∑
G−1
i (xi), fg, cg

)∣∣∣∣ s∏
i=1

γi(xi)dx1 · · · dxs

For the next step we use estimate (4.2.4):

≤ βs−1Cs

∫ us

ds

· · ·
∫ u1

d1

(
I(fg± 1

β
)(
∑

. . .) + I(cg± 1
β

)(
∑

. . .)
) s∏
i=1

γi(xi)dx1 · · · dxs

≤ βs−1Cs

∫ us

ds

· · ·
∫ u2

d2

(∫ G1(fg−
∑s
i=2 G

−1
i (xi)+1/β)

G1(fg−
∑s
i=2 G

−1
i (xi)−1/β)

γ1(x1)dx1

+

∫ G1(cg−
∑s
i=2 G

−1
i (xi)+1/β)

G1(cg−
∑s
i=2 G

−1
i (xi)−1/β)

γ1(x1)dx1

)
s∏
i=2

γi(xi)dx2 · · · dxs

The integration limits explain as following: For the indicator function I(fg± 1
β

) to be not

equal 0, we need to have
s∑
i=1

G−1
i (xi) ∈

[
fg ±

1

β

]
,

and this is equivalent to

G−1
1 (x1) ∈

[
fg −

s∑
i=2

G−1
i (xi)±

1

β

]
,

and thus also to

xi ∈
[
G1

(
fg −

s∑
i=2

G−1
i (xi)−

1

β

)
, G1

(
fg −

s∑
i=2

G−1
i (xi) +

1

β

)]
.
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Estimating the integral yields∫ G1(fg−
∑s
i=2G

−1
i (xi)+1/β)

G1(fg−
∑s
i=2 G

−1
i (xi)−1/β)

γ1(x1)dx1 ≤
∫ G1(fg−

∑s
i=2G

−1
i (xi)+1/β)

G1(fg−
∑s
i=2 G

−1
i (xi)−1/β)

(G−1
1 )′(xi)dx1

= G−1
1

(
G1

(
fg −

s∑
i=2

G−1
i (xi) +

1

β

))
−G−1

i

(
G1

(
fg −

s∑
i=2

G−1
i (xi)−

1

β

))
=
(
fg −

s∑
i=2

G−1
i (xi) +

1

β

)
−
(
fg −

s∑
i=2

G−1
i (xi)−

1

β

)
=

2

β
.

The same relations hold for the global cap cg. Continuing with V (Hβ) we have now

V (Hβ) ≤ βs−1Cs

∫ us

ds

· · ·
∫ u2

d2

[ 2

β
+

2

β

] s∏
i=2

γi(xi)dx1 · · · dxs (4.3.6)

= 4βs−2Cs

s∏
i=2

(∫ ui

di

γi(xi)dxi

)
(4.3.7)

= 4βs−2Cs

s∏
i=2

(
G−1
i (ui)−G−1

i (di)
)

(4.3.8)

= 4βs−2Cs

s∏
i=2

(ci − fi) (4.3.9)

The choice of the index 1 for the innermost integral, and therefore the index missing in
this final formula in the product, was arbitrary. It makes sense to choose the index i which
maximizes ci − fi, in order to make the product as small as possible by leaving out the
biggest factor. The Vitali-variations V[0u,1u](Hβ(xu; 1−u)) of lower order (u ( Is, |u| ≥ 2),
which we also need to be calculated as part of the variation in the sense of Hardy and
Krause, can be estimated with the same formula by using the following observation: For
the components j /∈ u, the xj is fixed at xj = 1 and we have Mm(G−1

j (xj), fj , cj) = cj ,
and thus

Hβ(xu; 1−u) = Smmβ

(∑
j /∈u

cj +
∑
i∈u

Mm(G−1
i (yi), fi, ci), fg, cg

)
.

If one shifts a function by an additive constant a =
∑

j /∈u cj , the variation does not change,
hence we are allowed to switch to the function

Hu
β (xu) := Hβ(xu; 1−u)− a = Smmβ

(∑
i∈u

Mm(G−1
i (yi), fi, ci), fg − a, cg − a

)
.

This new function Hu
β (xu) is of the same type as Hβ(x), only with an adapted global cap

and floor, and only depending on |u| variables instead of s. So the formula (4.3.9) can still
be applied, but s has to be replaced with |u|, and the product has to go over all indices
i ∈ u \ u0, where u0 ∈ u can be arbitrarily chosen. The Vitali-variations of order one,
where u = {j} has just one element, can be immediately estimated by

V[aj ,bj ](Hβ(x{j}; b−{j}) ≤ cj − fj .

This leads to the following lemma:
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Lemma 4.3.1. For u ⊆ Is, |u| ≥ 2, we define κ(u) := arg maxi∈u(ci− fi). Let β > 0 and
Ck be the constants from (4.2.2). We have

VHK(Hβ) ≤
s∑
i=1

(ci − fi) +
∑
u⊆Is
|u|≥2

4β|u|−2C|u|
∏

i∈u\κ(u)

(ci − fi).

As a second step, we want to estimate the smoothing error, the integral of the difference
between the original and the smoothed function:

SEβ =

∫
[0,1]s

|H(x)−Hβ(x)|dx =

∫
B
|H(x)−Hβ(x)| ≤ V ol(B) · 1

4β
, (4.3.10)

with
B = {x ∈ [0, 1]s|H(x) 6= Hβ(x)}.

Because V ol(B) ≤ 1, an easy estimate would be SEβ ≤ 1
4β . But our hope is, that

V ol(B) = O(β−1), because then we would have SEβ = O(β−2). We define the set E as

E = {x ∈ [0, 1]s|∀i = 1, . . . , s : xi ≥ ui ∨ xi ≤ di},

which denotes the corners of the hypercube, where in each coordinate the function G−1
i (xi),

is either larger or equal than ci or less or equal than fi. With

R = [0, 1]s \ E

we denote the rest. We investigate B ∩R and B ∩ E separately.
First let x ∈ B ∩ R: There exists an j ∈ {1, . . . , s}, s.t. dj ≤ xj ≤ uj , which is

equivalent to Mm(G−1
j (xj), fj , cj) = G−1

j (xi). The functions H(x) and Hβ(x) differ only
if ∣∣∣∣ s∑

i=1

Mm(G−1
i (xi), fi, ci)− fg

∣∣∣∣ ≤ 1

β
or

∣∣∣∣ s∑
i=1

Mm(G−1
i (xi), fi, ci)− cg

∣∣∣∣ ≤ 1

β
.

We continue with the left formula with fg, because the other case is completely analogue.
The condition ∣∣∣∣G−1

j (xj) +
s∑
i=1
i 6=j

Mm(G−1
i (xi), fi, ci)− fg

∣∣∣∣ ≤ 1

β

is equivalent to the left case above, and it is also equivalent to

Gj

(
fg −

s∑
i=1
i 6=j

Mm(G−1
i (xi), fi, ci)−

1

β

)
≤ xj ≤ Gj

(
fg −

s∑
i=1
i 6=j

Mm(G−1
i (xi), fi, ci) +

1

β

)
.

Because Gj is Lipschitz-continuous, we can estimate the size of this interval for xj :

Gj

(
fg −

∑
. . .+

1

β

)
−Gj

(
fg −

∑
. . .− 1

β

)
≤ LGj ·

2

β
.

Since the same calculation holds for the interval around cg, the variable xj now has to be
in one of two intervals of the size LGj

2
β . For the volume of B ∩ R, we are not allowed to
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fix a component xj , hence we have to take the maximum of the Lipschitz-constants for
our estimate to receive:

V ol(B ∩R) ≤ max
j=1,...,s

LGj
4

β
.

For the set B ∩ E first observe, that H(x) as well as Hβ(x) is constant there, be-
cause the local caps and floors are reached. Now if in a certain corner, the values of∑s

i=1Mm(G−1
i (yi), fi, ci) is within a 1/β-neighbourhood of fg or cg, it is still in domain

of Smmβ(·, fg, cg), where it differs from Mm(·, fg, cg). Then, as H(x) and Hβ(x) are con-
stant in this corner, they differ on the whole domain of the corner. This is a case that
hopefully doesn’t happen in many of the 2s corner domains of the unit-cube, and then,
maybe the volume of the corner is not that big. This has to be investigated in the concrete
case of the function. For the estimate, we write a sum over all of the corners, and hope,
that most of the summands, or even all, are actually 0:

Cc = V ol(B ∩ E) =
∑
v⊆Is

(
I(

∑
i∈v ci+

∑
i∈−v fi)∈(fg±1/β)∪(cg±1/β)

∏
i∈v

(1− ui)
∏
i∈−v

di

)
.

So here v are the components of the corner, where the xi ≥ ui, and −v are the components
with xi ≤ di. The indicator indicates, if the function value in the corner is within a 1

β
neighbourhood of fg or cg, and the products denote the volume of the concrete corner.
Now we have

V ol(B) ≤ max
j=1,...,s

LGj
4

β
+ Cc, (4.3.11)

and in most cases, Cc should be small.
We assumed independence between the Si(T ), i = 1, . . . , s, such that for the inverse

transformation applied in (4.3.2) we only had to transform each coordinate ”on its own”,
without any dependence on the other coordinate variables. If one wants to introduce
dependency, the variant of equation (3.1.8) would be suitable, because it doesn’t rotate
the argument of the payoff function factor, thus the HK-variation stays bounded.



Chapter 5

Practical Examples

5.1 A Comparison between MC, QMC and RQMC

We consider the function f : [0, 1]3 → R, which is defined as

f(x) = ψ2(x− 1/2 · 1) =

3∏
i=1

φ2(xi − 1/2),

where the functions ψ2 and φ2 are defined as in (4.2.7) respectively (4.2.6) with smoothing
parameter β = 2. Using the definition of f and (4.2.9), one can easily observe, that∫

[0,1]3
f(x)dx = 1 and VHK(f) = (2β)3 = 64.

The main reasons for the usage of this function here is, that we know the true value of
the integral, and the true value of the variation, s.t. we can compare the error estimates
and the actual error with each other. The graphic in Figure 5.1.1 depicts a plot of the
integrand in dependency of the first 2 components, and component x3 is fixed at 0.5.

In Figure 5.1.2 we have a comparison of the different errors, the estimates on the left,
and the actual error on the right. A Sobol-sequence was used for the (R)QMC-calculation.
For the QMC error estimate, the Koksma-Hlawka inequality (Theorem 1.6.2) was used,
where the discrepancy term was estimated with Proposition 1.4.13. The t-parameter in
the discrepancy estimate was assumed to be t = 0 [21]. For the RQMC-calculation, the
affine linear scrambling from Section 1.7.3 was used as a randomization technique, with
q = 64 repeats. The error estimates for MC and RQMC are 99%-confidence intervals,
where the variances were calculated with (1.1.4) and (1.7.3).

First observe, that for the ordinary Monte Carlo method (green), the error estimate and

the actual error coincide to a great degree, and both behave similar to N−
1
2 . Secondly,

the QMC error estimate (blue) starts with a value, which is higher than the estimates
of the other methods by a factor of 100(!). Although it decreases with a steeper curve
than MC, the order of convergence significantly less than N−1 (which is also due to the
rough discrepancy estimate), and it does by far not catch up with the error estimate of
the MC method for N = 106. This represents a big gap to the actual error of the QMC-
method, which clearly decreases at a rate of at least N−1. Finally, the RQMC-error and its
estimate behave roughly the same way, they start with values similar to the MC-method,
but decrease considerably faster with an order of convergence of O(N−1), which is clearly

67
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Figure 5.1.2: Comparison of the different errors in dependency of N

visible in the plots. One can conclude from this, that the suitability of the Koksma-Hlawka
inequality for practical purposes is questionable, because even in this toy example in only 3
dimensions, there is a huge gap between the estimate and the real error. As the variation in
this example grows exponentially with the number of dimensions, the situation for higher
dimensions is even worse. However, this should not diminish the applicability of QMC,
which yields excellent results. It seems, that if one wants to have a realistic error estimate,
one has to accept a tradeoff between the good results of the QMC-method for the results
of the RQMC-method, where we have the same order of convergence, but the actual error
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is higher.

The last plot in Figure 5.1.3 show the actual estimates of the integral in combination
with the confidence interval. As you can see, the width of the confidence interval decreases
much faster for RQMC than for MC. We didn’t include the QMC-error estimate in this
plot, because it’s larger by orders of magnitudes.

Figure 5.1.3: Confidence Intervals in dependency of N

5.2 A Smoothed Indicator Function

We consider a fictive binary option on two assets with a payoff that has infinite variation.
The time horizon is fixed at T = 1, the both assets have the starting value S1,2(0) = 2.
The payoff should be 1, if S1(T ) ≤ 3, S2(T ) ≤ 3, and S1(T ) +S2(T ) ≤ 4, and 0 otherwise.
With S = (S1(T ), S2(T ))T , we can write this payoff as

h(S) = IAS≤b(S), with A =

1 0
0 1
1 1

 and b =

3
3
4

 .

A plot of the payoff is given in Figure 5.2.1. As you see, the condition S1(T ) + S2(T ) ≤ 4
introduces an non-continuous and non-differentiable edge, which is also not axis-parallel,
and therefore causes the variation to be infinite. We assume S to follow the Black-Scholes
model, with R = 0, σ = ( 1 0

0 1 ), and for the integrand, we choose the logit-transform with
the representation as it is in (3.1.12). Thus our integrand is

Q(z) = g(τ(z))fX(τ(z))

s∏
i=1

λi
zi(1− zi)

= IAS≤b(e
τ(z))fX(τ(z))

s∏
i=1

λi
zi(1− zi)

,
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with fX being the PDF of a multivariate normal distribution X ∼ N(µ,Σ), where Σ =
σσT = ( 1 0

0 1 ) and

µ =

(
log(S1(0))− Σ11/2
log(S2(0))− Σ22/2

)
=

(
0.1931
0.1931

)
,

thus, we incorporated the starting value of the assets in the PDF part of the integrand.
For the scaling parameters of the logit-transform, we set λ1 = λ2 = 0.65, which is heu-
ristically chosen s.t. the integrand fills out the whole integration domain reasonably well
and the maximum value of the integrand is small (see also [13]). Now since we know,
that the integrand has infinite variation because of the term IAS≤b(·), we want to do a
decomposition in a smoothed part and a small rest, s.t. we can execute the idea presented
in (4.2.1), namely to apply QMC to the smoothed part and MC to the rest. For that
purpose, we replace IAS≤b with the smooth approximation SPβ, as given in (4.2.5), and
we receive our smoothed integrand

Qβ(z) = SPβ(eτ(z))fX(τ(z))
s∏
i=1

λi
zi(1− zi)

,

which is depicted in Figure 5.2.2 for different values of β. The smoothed integrands should
now have a finite HK-variation, and it would be nice, to have an estimate of the variation.
We recall the definition of the HK-variation,

VHK(Qβ) =
∑
∅6=u⊆Is

V[0u,1u](Qβ(xu; 1−u))

= V[0,1](Qβ(x{1}; 1{2})︸ ︷︷ ︸
=0

) + V[0,1](Qβ(x{2}; 1{1})︸ ︷︷ ︸
=0

)

+ V[0,1]2(Qβ),

thus it is sufficient to consider the Vitali-variation of Qβ. We estimate V[0,1]2(Qβ) nume-
rically with VYn(Qβ) over the ladder

Yn =
{ 0

n
,

1

n
, · · · n− 1

n

}
×
{ 0

n
,

1

n
, · · · n− 1

n

}
,
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Figure 5.2.2: The original integrand and its smoothed version for different smoothing
parameters

and for growing n→∞, one can clearly see, that VYn(Qβ) converges towards some value.
At least for β ∈ {1, 2, 3}, it suffices use n up to 4096, as one can see in Table 5.2.1. So to
be safe, we assume

VHK(Q1) ≤ 10.3,

VHK(Q2) ≤ 16.5 and

VHK(Q3) ≤ 22.3.

Let P = (x0, · · · , xN−1) the first N points of a 2-dimensional Sobol-sequence, and

y0, · · · , yN−1
iid∼ U([0, 1]s). We now decompose our integral, and approximate one part

with QMC and the other with MC, s.t. we have∫
[0,1]s

Q(z)dz =

∫
[0,1]s

Qβ(z)dz +

∫
[0,1]s

Q(z)−Qβ(z)dz

≈ 1

N

N−1∑
n=0

Qβ(xn) +
1

N

N−1∑
n=0

(Q(yn)−Qβ(yn)).
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n \beta 1 2 3

16 9.085173984 12.46328455 13.33008065
32 9.952346893 15.04226792 18.59282626
64 10.16048973 16.0081651 21.05236183
128 10.21684768 16.3347254 21.90322294
256 10.23135494 16.4329586 22.15252346
512 10.23592695 16.45643278 22.21395454
1024 10.23682124 16.46359306 22.23089217
2048 10.237049 16.46508687 22.23478838
4096 10.23710588 16.46546155 22.23585557

Table 5.2.1: The convergence of VYn(Qβ)

With that, our integration error E is also decomposed into E = EQMC + EMC , with

EQMC =

∫
[0,1]s

Qβ(z)dz − 1

N

N−1∑
n=0

Qβ(xn)

and

EMC =

∫
[0,1]s

Q(z)−Qβ(z)dz − 1

N

N−1∑
n=0

(Q(xn)−Qβ(xn)).

With Theorem 1.6.2, we have for the QMC-error the upper bound given as

|EQMC | = |e(Qβ,P)| ≤ VHK(Qβ) ·D∗N (P),

and for the MC-error, by using Equation (1.1.5), we receive

EMC
approx.∼ N

(
0,
s2
Q−Qβ
N

)
.

From the previous equation, we deduce, that

|EMC | ≤ zδ/2 ·
sQ−Qβ√

N

is fulfilled with the probability 1− δ. The discrepancy of the Sobol-sequence used for the
QMC-calculation can again be estimated via Proposition 1.4.13. We have now all the data
we need for a comparison of the results. If we look at the results for N = 220 = 1048576,
one can see, that the combined error of the decomposition method is still larger than
that of the pure MC. For the choice of β′s used here, the QMC error fraction is the
dominating part of the total error. All of the final values lie within the error-bounds of
every other method, which indicates the correctness of the different methods. It would
make sense, to choose the β even smaller, s.t. the QMC error fraction gets smaller in
comparison to the MC error fraction. The decomposition method in general can be seen
as a variance reduction technique and what is actually gained from this decomposition
is a reduction of variance, because the QMC result has no variance in it, and it’s error
estimate is deterministic. The part of the calculation, that is afflicted by randomness is
reduced, thus the result and its error bound can be seen as the safer one.
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N 256 1024 4096 16384 65536 262144 1048576

Pure MC value 0,62386 0,61802 0,63228 0,63187 0,62930 0,62791 0,62755 

error 0,05898 0,02972 0,01491 0,00743 0,00371 0,00186 0,00093 

Pure QMC value 0,62750 0,62444 0,62538 0,62643 0,62665 0,62671 0,62676 

beta = 1 value 0,61727 0,62358 0,62959 0,62529 0,62686 0,62670 0,62686 

error 1,82143 0,67111 0,23292 0,07738 0,02501 0,00795 0,00251 

beta = 2 value 0,61911 0,62427 0,62810 0,62561 0,62699 0,62674 0,62685 

error 2,90696 1,06869 0,36947 0,12222 0,03920 0,01230 0,00380 

beta = 3 value 0,62100 0,62426 0,62756 0,62597 0,62703 0,62673 0,62686 

error 3,92468 1,44171 0,49781 0,16444 0,05262 0,01644 0,00505 

beta = 1 QMC value 0,61586 0,61568 0,61602 0,61605 0,61604 0,61604 0,61604 

MC value 0,00141 0,00790 0,01358 0,00925 0,01081 0,01066 0,01082 

QMC error 1,81055 0,66387 0,22883 0,07544 0,02405 0,00747 0,00227 

MC error 0,01088 0,00724 0,00409 0,00194 0,00096 0,00048 0,00024 

beta = 2 QMC value 0,62162 0,62339 0,62430 0,62408 0,62408 0,62409 0,62409 

Components of the MC value 0,00251 - 0,00088 0,00380 0,00153 0,00290 0,00265 0,00277 

Decomposition Method QMC error 2,90039 1,06348 0,36658 0,12085 0,03852 0,01196 0,00363 

MC error 0,00657 0,00522 0,00289 0,00137 0,00068 0,00034 0,00017 

beta = 3 QMC value 0,62292 0,62436 0,62574 0,62558 0,62558 0,62558 0,62558 

MC value 0,00192 - 0,00010 - 0,00182 0,00039 0,00146 0,00114 0,00128 

QMC error 3,91992 1,43730 0,49543 0,16333 0,05206 0,01616 0,00491 

MC error 0,00476 0,00441 0,00237 0,00111 0,00056 0,00028 0,00014 

Decomposition Method

Table 5.2.2: A comparison between pure MC, pure QMC, and the decomposition method
for an integrand with infinite variation. The MC error estimates are 95%-confidence
intervals.

For most practical situations, the great effort in comparison to a RQMC method is
probably not worth it, given that estimation of the variation in the way we did it here is
not possible for higher dimensions, as well as the fact, that the possibly rough discrepancy
estimate may lead to an unreasonably high error estimate, as we have already seen in
Figure 5.1.2.

5.3 Cliquet-Type Payoff

We consider an option of the form (4.3.1) on three assets, with the following parameters:

� T = 1,

� S1(0) = S2(0) = S3(0) = 2,

� floor1 = floor2 = floor3 = 1,

� cap1 = cap2 = cap3 = 3,

� floorg = 7.5 and

� capg = 4.5.

We assume the Black-Scholes model with parameters

� R = 0,

� σ1 = σ2 = σ3 = 0.5 and no dependency between the assets.
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Thus, the terminal-value of both our assets has the form Si(1) = eX , where X ∼ N(µi, σ
2
i ),

with µi = log(Si(0))− σ2
i
2 = 0.5681. Now we have all ingredients for our integrand, which

is then

H(y) = Mm
( s∑
i=1

Mm(G−1
i (yi), fi, ci), fg, cg

)
(the cap’s and floor’s are abbreviated with c and f). This integrand is depicted in Figure
5.3.1 on the top right, while on the top left, we have the integrand, which would result, if
no global cap and no global floor was used. As one can see, all of the kinks, where this
function is not differentiable, are parallel to the x- or y-axis, thus the finite variation is
preserved for this part, because of Remark 1.5.21. Now when applying the global cap and
floor with the outer Min-Max-function (in the top right plot), additional non-differentiable
kinks are introduced, which run about diagonally (not exactly - they are slightly curved),
which causes the variation to be infinite, if the number of dimensions is greater equal 3.
So in order to bring down the variation to a finite level, the outer Min-Max-function is
replaced by the smooth approximation given in Section 4.2.3, which can be seen in the
lower left plot of Figure 5.3.1. In the lower right plot, we have the difference between
the original integrand and the smoothed variant. Observe, that the difference exists only
on two small stripes, and the maximum difference is 1

4β = 0.125. We are now going to
estimate the variation and the smoothing error. For the variation, we use Lemma 4.3.1:

VHK(Hβ) ≤
3∑
i=1

(ci − fi) +
∑

u⊆{1,2,3}
|u|≥2

4β|u|−2C|u|
∏

i∈u\κ(u)

(ci − fi).

The term (ci − fi) is always 2 in our case, C2 = 1.4 and C3 = 7.6, so we receive

VHK(Hβ) ≤ 3 · 2 + 3 · 4 · β2−2 · 1.4 · 2 + 4β3−1 · 7.6 · 22

= 39.6 + 121.6β.

In order to estimate the smoothing error SEβ, we need the Lipschitz-constants of Gi. Since
the Gi’s are CDF’s of the lognormal-distribution, it’s Lipschitz-constants are the maximum
of the PDF’s of the lognormal-distribution with given µi and σi. By looking at a plot of
the lognormal-PDF with our given parameters, we can easily say LG1 = LG2 = LG3 = 5.2.
In the sense of Equation (4.3.11), we have

V ol(B) ≤ 5.2 · 4

β
,

because Cc = 0. Via using (4.3.10), we have then

SEβ ≤ V ol(B) · 1

4β
= 5.2 · 1

β2
.

Combining our results, for the error in the sense of Equation (4.3.4), we have

Eβ =

∣∣∣∣ ∫
[0,1]s

H(x)dx− IP(Hβ)

∣∣∣∣ ≤ (39.6 + 121.6β) ·D∗N (P) + 5.2 · 1

β2
. (5.3.1)

If we assume, that we are given the pointset P with |P| = N and a discrepancy esti-
mate, one could e.g. determine the parameter β, s.t. (5.3.1) is minimized. Consider a
Sobol-pointset in 3 dimensions with N=220. Our often used discrepancy estimate from
Proposition 1.4.13 yields D∗N (P) ≤ 0.0014887. The total error is then minimized for
β = 3.8586, with the error being Eβ = 1.1067
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Figure 5.3.1: Different variants of the integrand. The component x3 is fixed at x3 = G3(2),
s.t. S3(1) = 2.

5.4 Transformations and Matrix Factorizations

Here we want to give a short comparison between different matrix factorizations and
transformations from Rs to [0, 1]s we discussed in Chapter 3. We consider a discretely
sampled Asian option in the sense of Proposition 2.3.5, with the payoff given as

h(S(t1), S(t2), . . . , S(ts)) =

(
1

s

s∑
i=1

S(ti)−K
)+

.

We assume the Black-Scholes model, with T = 1 year, strike K = 100, volatility σ = 0.17,
interest rate R = 0.03 and a starting price of S0 = 100. We transform our integrand
with the inverse normal CDF in the form of (3.1.7) and the logit-transform in the form of
(3.1.13). We heuristically chose the scaling parameters λ = 0.65 for the logit-transform,
the choice is motivated by the same argument as in Section 5.2. For the factorization L
of Σ, we use the Cholesky decomposition and the PCA decomposition, as discussed in
Section 3.2. We have done calculations for s = 3, 12, 52 and 120, which can be seen in
Figures 5.4.1 and 5.4.2. The number of RQMC repeats is always fixed at q = 64, while
the N in the plots is the number NRQMC of integration nodes used in each RQMC repeat.
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Figure 5.4.1: Standard deviation and integral estimates for s = 3 and 12

As one can clearly see, in the case s = 3, all of our four different methods converge with
O(N−1), although the ”PCA normal” is slightly better than the rest. For a rising number
of dimensions, the convergence speed is reduced in all cases, except for the ”PCA normal”
method. It is apparent, that for a large number of dimensions, both methods using the
logit-transform perform far worse than the ”PCA normal” method, and also significantly
worse than the ”Cholesky normal” method, with a convergence rate of ”only” O(N−1/2).
A calculation for s = 360 was also carried out, and the results from the methods involving
the logit-transform were not usable, at least for N17 = 131072, which was the maximum
number of points used for a single RQMC repeat. The results of the methods involving
the inverse normal transformation for s = 360 however were quite similar to the results
for s = 120. We assume, the bad performance of the logit-transformations is mainly due
to the density term in (3.1.13), which is

fY (τ(z))

s∏
i=1

λi
zi(1− zi)

=

s∏
i=1

fYi(τi(zi))
λi

zi(1− zi)
.
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Figure 5.4.2: Standard deviation and integral estimates for s = 52 and 120

While this term converges to 0 towards the boundaries of [0, 1]s, it has a huge peak in the
center, which grows exponentially with s. Hence the variation in the sense of Hardy and
Krause is enormous, and also the variance in the sense of (1.1.3). This term also adds a
big amount of complexity to the integrand, it depends equally on all variables and this
dependency cannot be reduced by the PCA decomposition in this representation, because
the matrix L only appears in the other factor of the integrand. These results partially
match the findings of Kuo et al. [13], where it is reported that for a certain class of
integrands, the normal-transformation always outperforms the logit-transformation, while
for another class, this is not the case. The interesting fact here in our example is though,
that in trying, to improve the theoretical error estimate by using a transformation s.t. the
integrand becomes bounded, the actual numeric results get worse.





Chapter 6

Conclusion

From the context of this work and other QMC literature, it should be clear, that, if
applicable, QMC methods perform at least as good as MC methods, and better in many
cases. With applicability here we do not mean boundedness and smoothness, but rather
that the problem dimension is finite and known. Through randomization we obtain error
estimates without any restrictions on the integrand and without any knowledge of its
structure, except of course a formula for evaluating the integrand at any given point.
While the error estimate of the Koksma-Hlawka inequality is not viable for most practical
purposes, because even for well behaving functions with a small number of variables, the
error estimate is still an order above the MC error estimate for a reasonably large amount
of integration nodes, its benefit is of theoretical nature, because the enhanced convergence
rates of QMC methods can be put on theoretical foundations, at least for functions with
finite variation. With the application of the logit transformation for unbounded payoffs on
the one hand, and the smoothing of non-differentiable kinks, which caused infinite variation
on the other hand, we were able to construct integrands with finite variation. For these
integrals we have an convergence rate of at least O( (logN)s

N ), which is the convergence rate
of the discrepancy of the Halton sequence from Prop. 1.4.8, and an expectedly better rate
with the use of the Sobol sequence. However, in the case of the practical example from
Section 5.4, we observed a better convergence with the use of the inverse normal CDF
transformation, despite unboundedness of the integrand, which may indicate, that the
classical Koksma-Hlawka inequality with the variation in the sense of Hardy and Krause
is not the best suited error analysis tool for these types of integrands. It may be worthwhile
to consider the function space setting introduced in [14], which deals with the integration
of functions on Rs that are weighted with some probability density, but with the use of
randomly shifted lattice rules and the corresponding error analysis, which was outside the
scope of this work. Under the category further reading, we also would like to mention the
paper [7] about non-differentiable integrands, with the central statement being, that most
terms in the ANOVA decomposition (3.2.1) (namely the ones of lower order and most
importance) are actually reasonably smooth, which could explain, that QMC also works
well such integrands, which are not smooth on the first sight.
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