
Bianca Beatrice TEUFL , BSc

Deterministic Asymmetric
Two-Player-Games with Perfect

Information

Master’s Thesis
to achieve the university degree of

Master of Science

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Assoc.Prof. Dipl.-Ing. Dr.techn. Oswin Aichholzer

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Graz, April 2018

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be found
online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated all
material which has been quoted either literally or by content from the sources
used. The text document uploaded to tugrazonline is identical to the present
master‘s thesis.

Date Signature

iii

Abstract

Games have been an integral part of many people’s lives for thousands of years.
Long before the printing press was invented, people developed games. The rules of
these games were passed on from person to person. As they were told and retold,
they have accumulated changes. This is one of the reasons why some games have
many different variations. These different variations are especially interesting in
asymmetric two-player games. These are games in which the two players may
have different game goals and therefore different strategies to reach them.

This thesis is about asymmetric two-player games with perfect information, using
the example of the games “Fuchs und Henne” and “Fox and Geese”. We describe
these two games in detail and present some possible variations. Then we consider
an upper bound of the state space of these two games. Moreover, we develop an
encoding and decoding process for strongly solving the games’ variations using a
C++ framework and we implement the games in this framework. This allows us to
play the games and some variations of them in a simple console application.

We show how to use the results of the different games’ variations to compare them
based on the number of their winning and losing states. This information can be
used to find a fairer variation of the games.

v

Kurzfassung

Seit tausenden Jahren spielen Spiele eine wesentliche Rolle im Leben vieler Men-
schen. Schon lange bevor die Druckerpresse erfunden wurde, entwickelten Menschen
Spiele. Die Regeln dieser Spiele wurden von Mensch zu Mensch weitergegeben,
indem sie erzählt und weitererzählt wurden. Durch die verbale Kommunika-
tion veränderten sich die Beschreibungen. Das ist einer der Gründe, warum von
manchen Spielen so viele unterschiedliche Varianten existieren.

Diese Varianten sind bei asymmetrischen Zwei-Spieler-Spielen besonders inter-
essant. Das sind Spiele, in denen die beiden Spieler unterschiedliche Spielziele
verfolgen und daher verschiedene Strategien haben, diese Ziele zu erreichen.

In dieser Arbeit behandeln wir asymmetrische Zwei-Spieler-Spiele mit perfekter
Information am Beispiel der Spiele “Fuchs und Henne” und “Fox and Geese”.
Wir beschreiben diese Spiele im Detail, stellen einige mögliche Varianten vor
und bilden eine obere Schranke für ihren Zustandsraum. Außerdem entwickeln
wir einen Codierungs- und Decodierungsprozess, den wir nutzen, um eine starke
Lösung für die Varianten der Spiele mit Hilfe eines C++ Frameworks zu finden.
Wir implementieren die beiden Spiele in diesem Framework. Das ermöglicht es
uns, die Spiele und einige ihrer Varianten in einer einfachen Konsolenanwendung
zu spielen.

Wir zeigen, wie wir die Ergebnisse der verschiedenen Spielvarianten nutzen können,
um sie anhand der Anzahl ihrer Gewinn- und Verlustzustände zu vergleichen.
Diese Information kann verwendet werden, um eine möglichst faire Variante der
Spiele zu finden.

vii

Contents

Abstract v

Kurzfassung vii

1 Introduction 1
1.1 Terms . 1

1.1.1 Perfect Information . 1
1.1.2 Determinism in Games . 1
1.1.3 Combinatorial Games . 2
1.1.4 Symmetric and Asymmetric Games 2

1.2 Motivation . 3
1.3 Objective . 3

2 ’‘Tafl’‘ Games 5
2.1 History . 5
2.2 Rules of “Fuchs und Henne” . 6

2.2.1 The Game Board . 6
2.2.2 Starting Point . 6
2.2.3 Allowed Moves . 9
2.2.4 End of the Game . 9
2.2.5 Selected Version . 10

2.3 Rules of “Fox and Geese” . 11
2.3.1 The Game Board . 11
2.3.2 Starting Point . 11
2.3.3 Allowed Moves . 13
2.3.4 End of the Game . 13
2.3.5 Selected Version . 14

3 Solving Games 17
3.1 Solving Games . 17
3.2 The Game Tree and the State Space 17

3.2.1 Reducing the State Space 18
3.3 Complexity of Games . 20
3.4 The Framework . 21

ix

Contents

4 State Space of “Fuchs und Henne” 25
4.1 Placing Foxes and Hens . 25
4.2 Positions of the Foxes . 26

4.2.1 Possible Placements for two Foxes 26
4.2.2 Possible Placements for one Fox 26
4.2.3 Possible Placements for no Foxes 26
4.2.4 Total Placements for the Foxes 27

4.3 Positions of the Hens . 27
4.4 All Possible Placements . 29
4.5 Symmetric Position . 30

4.5.1 Fingerprint of “Fuchs und Henne” States 31
4.5.2 Reduce Upper Bound of the State Space by looking at

Symmetric Positions . 34
4.5.2.1 Symmetric Positions with two Foxes 34
4.5.2.2 Symmetric Positions with one Fox 36
4.5.2.3 Fox Positions with Focus on Symmetries 36

4.6 All Possible Placements with Focus on Symmetries 37
4.7 A Selection of not reachable States 37

5 Encoding of “Fuchs und Henne” 39
5.1 Encoding of the Game Field . 39

5.1.1 Encoding of the Foxes . 40
5.1.1.1 Fox Code of no Fox 40
5.1.1.2 Fox Code for one Fox 40
5.1.1.3 Fox Code for two Foxes in Symmetric Position . . 41
5.1.1.4 Fox Code for two Foxes in Non-Symmetric Position 41
5.1.1.5 Fox Code for two Foxes on the same Side of the

Board . 41
5.1.2 Encoding of the Hens . 42
5.1.3 Encoding of the Player . 43
5.1.4 Calculating a Unique Code for a Game Situation 43

5.2 Decoding of the Game Field . 44
5.2.1 Split the Code in its Parts 44
5.2.2 Decoding of the Player . 45
5.2.3 Decoding of the Hens . 45
5.2.4 Decoding of the Foxes . 46

5.2.4.1 Decoding of States with no Fox 46
5.2.4.2 Decoding of States with one Fox 46
5.2.4.3 Decoding of States with two Foxes in Symmetric

Position . 47
5.2.4.4 Decoding of States with two Foxes in Non-Symmetric

Position . 47

x

Contents

5.2.4.5 Decoding of States with two Foxes on the left Side
of the Board including the Center Line 47

5.3 The Encoding Algorithm . 48
5.4 Encoding and Decoding of an Example State of “Fuchs und Henne” 49

5.4.1 Encoding of the Example State 50
5.4.2 Decoding of the Example State 53

5.5 Minimum and Maximum Code for “Fuchs und Henne” 59
5.5.1 Minimum Code for “Fuchs und Henne” 60

5.5.1.1 Calculation of the Minimum Code 61
5.5.2 Maximum Code for “Fuchs und Henne” 63

5.5.2.1 Calculation of the Maximum Code 64

6 State space of “Fox and Geese” 67
6.1 Placing Fox and Geese . 67
6.2 Positions of the Fox . 67
6.3 Positions of the Geese . 68
6.4 All Possible Placements . 69
6.5 Symmetric Positions . 69

6.5.1 Fingerprint of “Fox and Geese” States 70
6.5.2 Reduce Upper Bound of the State Space by looking at

Symmetric Positions . 71
6.6 All Possible Placements with Focus on Symmetries 71

7 Encoding of “Fox and Geese” 73
7.1 Encoding of the Game Field . 73

7.1.1 Encoding of the Fox . 73
7.1.2 Encoding of the Geese . 74
7.1.3 Encoding of the Player . 74
7.1.4 Calculating a Unique Code for a Game Situation 74

7.2 Decoding of the Game Field . 75
7.2.1 Split the Code in its Parts 75
7.2.2 Decoding of the Player . 76
7.2.3 Decoding of the Fox . 76
7.2.4 Decoding of the Geese . 76

7.3 Encoding and Decoding of an Example State of “Fox and Geese” . 77
7.3.1 Encoding of the Example State 77
7.3.2 Decoding of the Example State 79

7.4 Minimum and Maximum Code for “Fox and Geese” 84
7.4.1 Minimum Code for “Fox and Geese” 84

7.4.1.1 Calculation of the Minimum Code 85
7.4.2 Maximum Code for “Fox and Geese” 86

7.4.2.1 Calculation of the Maximum Code 87

xi

Contents

8 Variations of the Games 91
8.1 Variations of “Fuchs und Henne” 91
8.2 Variations of “Fox and Geese” . 92
8.3 Results . 94
8.4 Future Work . 95

Bibliography 99

xii

List of Figures

2.1 The game board of “Fuchs und Henne” 7
2.2 The start position of the most common version of “Fuchs und Henne” 7
2.3 The start position of “Fuchs und Henne” with 17 hens 8
2.4 The start position of “Fuchs und Henne” with 17 hens and one fox 8
2.5 Situations of “Fuchs und Henne” in which the hens are not able to

move . 10
2.6 The start position of the main version of “Fox and Geese” 11
2.7 The start position of the variation of “Fox and Geese” with 13 geese 12
2.8 The start position of the variation of “Fox and Geese” with 17 geese 12
2.9 The start position of the variation of “Fox and Geese” with 20 geese 13
2.10 Situation in which 6 geese surround the fox 14
2.11 Situation in which 4 geese surround the fox in the variation with

limited diagonals . 14

3.1 Beginning of the game tree of “Tic Tac Toe” 19
3.2 Symmetry operations of a “Tic Tac Toe” state 23
3.3 Symmetry operations on a “Nine Men’s Morris” state 24

4.1 The game board of “Fuchs und Henne” with its axis of symmetry 30
4.2 Two settings of “Fuchs und Henne” which we consider to be the same 31
4.3 Fingerprint of “Fuchs und Henne” given by higher located fox . . 33
4.4 Left and right indexing of game board 33
4.5 Example for symmetric fields in “Fuchs und Henne” 34
4.6 Center line of the game board of “Fuchs und Henne” 34
4.7 Positions of the game board described as left side 35
4.8 Symmetric fields coloured in 13 different colours 36
4.9 A selection of not reachable states of “Fuchs und Henne” 38

5.1 Game board for “Fuchs und Henne”, numbered in the order used
for encoding. 42

5.2 Path which the encoding algorithm uses on Pascal triangle 49
5.3 State of “Fuchs und Henne” for encoding and decoding example . 50
5.4 Fingerprint of “Fuchs und Henne” state for encoding and decoding

example . 50
5.5 Decoded hens of example state of “Fuchs und Henne” 57

xiii

List of Figures

5.6 Decoded foxes of example state of “Fuchs und Henne” both on left
side . 58

5.7 Decoded foxes of example state of “Fuchs und Henne” 59
5.8 Decoding result of an example state of “Fuchs und Henne” 59
5.9 Setting of the hens with the minimum hen code 60
5.10 State of “Fuchs und Henne” that results in the minimum code . . 61
5.11 Setting of the hens with the maximum hen code 63
5.12 State of “Fuchs und Henne” that results in the maximum code . . 64

6.1 Two states of “Fox and Geese” which we consider to be the same . 70

7.1 State of “Fox and Geese” for encoding and decoding example . . . 77
7.2 Fingerprint of the state of “Fox and Geese” for encoding and

decoding example . 78
7.3 State of “Fox and Geese” example after fox decoding 81
7.4 Decoding result of the “Fox and Geese” example state 84
7.5 State of “Fox and Geese” that results in the minimum code 85
7.6 State of “Fox and Geese” that results in the maximum code . . . 87

8.1 Initial states of variations of “Fuchs und Henne” with 9 to 20 hens 96
8.2 Initial states of variations of “Fox and Geese” with 4 to 15 geese . 97

xiv

List of Tables

3.1 Complexity of some well-known games [2] [16] 21

5.1 Fox code ranges of “Fuchs und Henne ” 40

8.1 States of “Fuchs und Henne” with different numbers of hens . . . 92
8.2 States of “Fox and Geese” with different numbers of geese 93

xv

1 Introduction

In this chapter we describe the key terms used for this thesis. This will provide us
with a common basis for understanding the topic. Afterwards, we introduce the
idea for this thesis and the main goal of our work. In the end of the chapter, we
deal with the structure of this document and outline the contents of the following
chapters briefly.

1.1 Terms

1.1.1 Perfect Information

Within games we talk about perfect information, if the following conditions are
present:

• The player knows which actions and moves have been done so far, up to the
actual point of the game
• No other player is allowed to move while one player makes his/her decision.

If one of this conditions is not fulfilled, we talk about imperfect information. If all
players of a game have perfect information, we call the game a game with perfect
information [18].

1.1.2 Determinism in Games

We call a game a deterministic game, if the produced result after an equal move of
a player at a given game situation is the same at any time without any exception.
In contrast, we call a game non-deterministic, if the result of two identical game
situations can be different without taking the move of the player into account.
This means the game is not predictable. [1]

1

1 Introduction

1.1.3 Combinatorial Games

Combinatorial games are typically deterministic two-player games with well-
defined rules in which the players take alternate turns. As both players have all
information about the game as described in Section 1.1.1, combinatorial games
are games with perfect information. [5]

Well-known games of this category are for example:

• Tic Tac Toe
• Chess
• Chomp
• Connect 4
• Fuchs und Henne
• Fox and Geese

In combinatorial games either one player wins and the other one loses or the game
results in a draw. These games start at a defined initial state. Then the players
take alternate turns and take their moves depending on their individual decisions
until they reach the end of the game [5].

1.1.4 Symmetric and Asymmetric Games

Symmetric games are games in which all players have the same game goals and
therefore the same set of strategies. The pay-off is a result of the played strategy,
not of who is the player [4]. Examples for symmetric games are “Tic Tac Toe”,
“Nine Men’s Morris” and “Connect Four”.

Asymmetric two-player games are games where the two players may have different
game goals and therefore different strategies to reach them. As there are different
goals for the two players, there are also different rules and strategies. The initial
position for the two players may be the same, but can also differ from each other.

Well-known games with these characteristics are “Fuchs und Henne”, “Fox and
Geese” and “Tablut”.

There are also asymmetric games in which the rules and strategies are the same
for both players, but the initial setting of the game is different for the two players.
For example, in chess both players are determined to reach the same goal and
have the same set of strategies. However, the starting position is not symmetric,
because both queens are placed on the D-line of the game board. This means that
the white queen is placed left to her king and the black one on the right side of
her king [13, p. 29].

2

1.2 Motivation

1.2 Motivation

People have developed games long before the printing press was invented. At that
time, rules and instructions of the games were passed on from family to family
and from generation to generation. In addition, games spread across the world.
This was favoured by the introduction of trade. However, this is not the only
reason why there are so many different variations for some of the games. We
adapt especially asymmetric games very often. One reason for this is certainly the
attempt to change the difficulty for each player. We often perceive asymmetric
games as unfair. We introduce a way to find a variation that is as fair as possible
within this thesis. We do this by developing a way to compare variations of the
games “Fuchs und Henne” and “Fox and Geese” by strongly solving them (we
will describe this term in the next chapter).

1.3 Objective

In this work we look at deterministic asymmetric two-player games with perfect
information. The thesis is organized as follows: In Chapter 2 we look at the history
of asymmetric two-player games. We describe the games “Fuchs und Henne” and
“Fox and Geese” in detail. In Chapter 3 we discuss some game theoretical aspects,
especially solving games. We also look at the C++ framework which we use to solve
“Fuchs und Henne” and “Fox and Geese”. In Chapter 4 we consider the state space
of the game “Fuchs und Henne”. The encoding of states of this game is described
in Chapter 5. In Chapter 6 we consider the state space of the very similar game
“Fox and Geese”. We describe the encoding of the states of this game in Chapter 7.
Chapter 8 is about the variations of the games “Fuchs und Henne” and “Fox and
Geese”. Finally, we compare the calculated upper bound of states with the actual
number of states of the variations.

In this work we use the framework described in Chapter 3.4 to strongly solve (we
describe this term in the next chapter) the games “Fuchs und Henne” and “Fox
and Geese”. For this we develop an encoding method in order to be able to store
the states of the games in a database with as few bits as possible.

With the results we try to find a way to create a variation that might be fairer
than the well-known ones.

3

2 ’‘Tafl’‘ Games

In this chapter we will look at the history of games, especially of so-called “Tafl”
Games. This is a category of deterministic asymmetric two-player games with
perfect information. We will have a closer look at two well-known games of this
category: “Fuchs und Henne” and “Fox and Geese”.

2.1 History

All over the world human have been playing board games for thousands of years.
Different cultures invented board games, writing different aspects of the history of
the games. That’s why the history of games is such a big and considerable topic.
People all over the world had the idea to create miniature battles, races, hunts and
so on to have fun. Probably they were also able to learn for the real life through
them. Some games stayed original in one culture while others arose through
trade and other contacts from others and so changed in different places. They
were influenced by trade, wars and also by science. Before the invention of the
printing press, the rules of games were passed on through verbal communication.
This created many different variations. The revolution of the industry not only
increased the popularity of board games, but also unified the rules of modern
games to some extent [12].

Some asymmetric two-player games are known under the name of “Tafl” Games.
That’s a family of strategy board games originated in Germania and from the
Celts [9]. The main idea of all these games is that a large number of attackers
fights against an in relation very small number of defenders [7]. In detail “Tafl”
games are battle games between two forces of uneven numbers: a smaller force,
which is equipped with special power and a larger force. The goal of the smaller
force is to destroy the other one or to break out, while the larger force tries to
lock in the opponent of war. These games appeared first in northern Europe [3].

The conditions of the game boards of this game family vary from game to game.
“Hnefatafl”, a battle game between the king and his army fighting against his
attackers, gets played on a field of size 11 x 11. “Tablut” is a variation of this
game. It gets played on a board of size 9 x 9 [14]. The game “Halatafl” gets played
on a board of size 7 x 7 with two enemies of size 22. Although “Halatafl” is a

5

2 ’‘Tafl’‘ Games

game with two equal enemies, it is sometimes referred to as a version of “Fox and
Geese” that was already known in the Middle Ages. We will have a closer look on
“Fox and Geese” in Section 2.3. The game is known at least since the 14th century
where a game called “Halatafl” was mentioned in the Grettis Saga - one of the
Icelander’s sagas. It is described there as a board game where dolls with nails can
be inserted into a board [11].

Even today “Tafl”-Games are very popular, especially “Fox and Geese” and “Fuchs
und Henne” which are included in many game collections. We will describe these
games in detail in the following sections.

2.2 Rules of “Fuchs und Henne”

For the asymmetric two-player game “Fuchs und Henne” (German for fox and hen)
we can find many different descriptions and rules. The reason for this is probably
the fact that the idea of this game was created a long time ago, most likely
somewhere in Iceland. It was passed to many different regions as we described in
the beginning of this chapter. We will look at the different rules and versions in
the following sections to get an overview of them.

2.2.1 The Game Board

“Fuchs und Henne” gets played on a game board with 33 fields which are arranged
in the form of a cross as shown in Figure 2.1. We use the same game board also
for other games like “Fox and Geese” (see Section 2.3), “Solitaire”, “Raubritter”
and many others. Originally, this board usually was made of wood [3]. Nowadays
we find it in almost every game collection, probably because we can use it in so
many different ways.

On this board there are horizontal and vertical lines between all playing fields.
Between some fields there are also diagonally lines. We will describe the meaning
of them for the game “Fuchs und Henne” in Section 2.2.3.

2.2.2 Starting Point

The most common version of “Fuchs und Henne” gets played with 20 hens and 2
foxes on the board described in Section 2.2.1. In Figure 2.2 we see the starting
position of the game in this version. We represent the hens by blue filled circles
and the foxes by yellow filled circles. We display the empty fields in grey. The
red surrounded circles represent the hen house, we will explain its meaning later

6

2.2 Rules of “Fuchs und Henne”

Figure 2.1: The game board of “Fuchs und Henne”

in this chapter. This coloured marker on the board is not always available. The
reason is that this game field can, as described in Section 2.2.1, also be used for
other games that do not require a hen house. The hen house has always a size of
3 x 3 and is placed on the side of the board where the fox player is positioned.

Figure 2.2: The start position of the most common version of “Fuchs und Henne”

One player plays the part of the hens, we call him/her the hen player. The other
one plays the foxes, we call him/her the fox player. The players take alternate
turns, whereupon the hen player opens the game.

In other versions of “Fuchs und Henne” the number of hens varies. The reason is
mostly the fact, that somebody wants to modify the difficulty of the game. But

7

2 ’‘Tafl’‘ Games

also different traditions of the game can be the reason as we already mentioned
above. If we play the game with 17 hens, the start arrangement of the tiles is
mostly like we see in Figure 2.3. Sometimes we play the game with just one fox.
We see the initial state of this version in Figure 2.4. Of course, it is possible to
vary the number of hens at will, and so we can change the difficulty for both
players.

Figure 2.3: The start position of “Fuchs und Henne” with 17 hens

Figure 2.4: The start position of “Fuchs und Henne” with 17 hens and one fox

8

2.2 Rules of “Fuchs und Henne”

2.2.3 Allowed Moves

In the most common version of “Fuchs und Henne” the hens are allowed to step
with a step size of one to an empty field forward or sideways but never back. The
hen player is never allowed to move diagonally.

The fox player moves after the hen player and is allowed to move to an empty
field forward, sideways and also backwards with a step size of one.

In some variations of the game the foxes are allowed to move diagonally. Sometimes
just at the diagonal lines drawn on the game board as shown in Figure 2.1,
sometimes at any possible diagonal.

Additionally, the foxes have to jump over a hen, if the field directly after the hen
is empty. That at the same time means, that this hen is beaten and gets removed
from the game field. It can not be rescued anymore. If the fox player ignores or
overlooks the possibility to jump over a hen, the hen player is allowed to remove
one fox from the game field. If the fox player beats the next hen, the second fox is
rescued. Then the hen player is allowed to place the fox to any empty field on the
game field [19]. In some variations we do not have this constraint to beat a hen if
possible and so also the removal of the fox does not happen.

In some versions multiple jumps are allowed. That means if the fox jumped over
a hen (and beat it), it can, if it is possible, jump over another hen (which also
gets beaten) as long as it is possible [8]. Some variations of the game do not allow
multiple jumps. In others the fox player has to jump over hens as long as possible
and so beat as many hens he/she can in this one move.

The fox player can not beat a hen that is already placed on a field within the hen
house.

2.2.4 End of the Game

The player who plays the hens wins, if he/she is able to carry 9 of his tiles into
the hen house. This is located on the opposite of him/her on the game board. The
hen house is characterised by the red outlines in Figure 2.2. If the fox player is
not able to move anymore, the hen player also wins. Additionally, the hen player
wins, if there are no foxes left on the game field. This can happen, if the fox player
ignores or overlooks the possibility to beat a hen twice, before he/she beats a hen
to get one fox back, as described above.

If the fox player beats so many hens that less than 9 are left he/she wins, because
the hen house can not be filled up with hens anymore. He/she also wins, if no
hen is able to move. Some situations where the hen player is not able to move
anymore are shown in Figure 2.5.

9

2 ’‘Tafl’‘ Games

Figure 2.5: Situations of “Fuchs und Henne” in which the hens are not able to move

2.2.5 Selected Version

For the further work we selected the following set of rules:

• 20 hens
• 2 foxes
• Hens are allowed to move forward and sideways but never back (and never

diagonally)
• Foxes are allowed to move one step in all directions and also over diagonals

but just if there is a line between the fields
• Foxes have to beat if possible by jumping over a hen, otherwise a fox gets

removed
• Foxes can jump over hens in all directions they are also allowed to move to
• Multiple jumps are allowed
• Hens in the hen house are not allowed to be beaten by the fox

10

2.3 Rules of “Fox and Geese”

2.3 Rules of “Fox and Geese”

“Fox and Geese” is also an asymmetric two-player game which we can play on the
same game board as “Fuchs und Henne” (see Chapter 2.2).

In this game one player plays the fox figure, while the other one plays the goose
figures.

2.3.1 The Game Board

The game board of “Fox and Geese” is similar to the game board described in
Section 2.2.1 but we need no hen house. This is because the goal of the game is
different as we will describe in Section 2.3.4

2.3.2 Starting Point

The main version of “Fox and Geese” is played with 15 geese and one fox. In
Figure 2.6 we show the starting point in this version of the game. The green
circles represent the geese and the yellow circle is the fox. The grey circles stand
for empty fields on the game board. The players take alternate turns. In this game
the geese player opens the game.

Figure 2.6: The start position of the main version of “Fox and Geese”

To alter the difficulty we sometimes reduce the number of geese to 13, and by
doing so we increase the difficulty for the geese player. Sometimes we increase the

11

2 ’‘Tafl’‘ Games

number of geese to 17 or 20 for a better balance. Figure 2.7 shows the setup for
13 geese, Figure 2.8 for 17 geese and Figure 2.9 for 20 geese.

Figure 2.7: The start position of the variation of “Fox and Geese” with 13 geese

Figure 2.8: The start position of the variation of “Fox and Geese” with 17 geese

12

2.3 Rules of “Fox and Geese”

Figure 2.9: The start position of the variation of “Fox and Geese” with 20 geese

2.3.3 Allowed Moves

The fox player is allowed to move the fox to empty spaces all around the fox -
forward, sideways, back and diagonally on any diagonal. Additionally the fox is
allowed to jump over a goose in all directions, if the field directly behind the
goose is empty. This means that the goose which has been jumped over is beaten.
The fox does not have to jump. Multiple jumps are allowed. The geese player is
allowed to move forward, sideways and diagonally forward but never back [6].

One variation of the game is that it is only allowed to use the drawn diagonals.
There are some variations with and without multiple jumps. Another variation is
that the geese player is not allowed to move diagonally.

2.3.4 End of the Game

The geese player wins, if the geese surround the fox in a way that it is not able
to move anymore. That means, that the fox player wins, if there are not enough
geese in the game to surround the fox.

To surround the fox 6 geese can be sufficient as shown in Figure 2.10. In the
variation where only the limited number of drawn diagonals is allowed, 4 geese
can be sufficient to surround the fox, as shown in Figure 2.11.

13

2 ’‘Tafl’‘ Games

Figure 2.10: Situation in which 6 geese surround the fox

Figure 2.11: Situation in which 4 geese surround the fox in the variation with limited diagonals

2.3.5 Selected Version

For the further work we selected the following set of rules:

• 15 geese
• 1 fox
• Geese are allowed to move forward and sideways and diagonally forward,

but never back
• The fox is allowed to move one step in all directions including all diagonals

14

2.3 Rules of “Fox and Geese”

• The fox may beat if possible by jumping over a goose but that is not a must
• The fox can jump over geese in all directions in which it is also allowed to

move
• Multiple jumps are allowed

In this chapter we had a look at the history of table games. Especially on a
category of deterministic asymmetric two-player games with perfect information
- “Tafl”-Games. We described two games of this category in detail: “Fuchs und
Henne” and “Fox and Geese”. We looked at different versions of this games and
we selected one version each for the further work.

In the next chapter we will discuss a branch of game theory: solving games. In
particular we deal with the different levels of solving games. For this we need to
know the terms game tree and state space and how to use symmetries. We also
look at the complexity of games. The last topic of this following chapter is the
description of a framework to strongly solve combinatorial games.

15

3 Solving Games

In this chapter we will look at a branch of game theory - solving games. At first
we will describe the different levels of solving games. Additionally, we will consider
the terms game tree and state space and how to use symmetries. Then we look
at the complexity of games. The last topic of this chapter is the description of a
framework that we can use to solve combinatorial games.

3.1 Solving Games

When we talk about solving games we know at least three definitions: Ultra-weakly
solved, weakly solved and strongly solved.

Ultra-weakly solved means that we know the result of the initial state(s) - that
means if the moving player has a winning strategy, the opposing player has a
winning strategy or no player has a winning strategy for the initial state given on
perfect play on both sides.

A game is weakly solved, if there is a sure strategy for the player who will win
the game or for both if it results in a draw. That means, that we know at least
the moves from the initial state to the end of an ideal game and it is proofed to
be optimal.

Strongly solved means that it is possible to know a winning move from any given
position of the game, no matter if there have been made bad decisions so far.
In other words we know the full classification (winning, losing or draw) of all
reachable states [10].

When we solve games, the goal is always to solve them strongly.

3.2 The Game Tree and the State Space

In graph theory a tree is an undirected graph that is connected and acyclic. In
the game theory we use trees to build the game tree of a game. Game trees have
game positions as nodes and plies as edges. In game theory we use the term ply

17

3 Solving Games

for the move of just one player while a move is the sum of the plies of both players
[16]. To build a game tree we use the initial state as the root of the tree. Then
we add all next states of this initial state as child nodes. For each of this new
nodes we determine the following states within the game and again add them to
the tree and so on. A node which has no following nodes is a leaf of the tree and
represents a final state of the game. We repeat this tree building until we have
found all leaves.

Figure 3.1 shows the building of the game tree of the Game “Tic Tac Toe” within
the first ply of each player, with removed similar states.

There are some characteristics of games that we can directly gather from such
game trees: The branching factor of a state shows out of how many different
possibilities the current player has to choose his/her move (ply). The average
branching factor of a game indicates how many possible plies are available on
average. Depending on the complexity of games it might not be possible to find a
formula to fully calculate the average branching factor of a game. That is because
there are sometimes too many different states to enumerate all of them. Then
the number gets approximated. We also use this factor to estimate the size of
the game tree. Additionally, we can use the game tree to calculate the game-tree
complexity and the state-space complexity of a game what we will describe in
Section 3.3 [16].

We call the set of all reachable states of a game the state space. Reachable means
that it can be produced when playing the game starting at its initial state. When
we transform the game field by operations like reflection or rotation for some
games it results in equal states. Because of these symmetries, the state space can
be reduced when we consider just one of those equal states. We do this in the
following subsection.

3.2.1 Reducing the State Space

As already mentioned above, the state space of a game can be reduced by taking
advantage of the symmetries of the game. For example, there is a horizontal, a
vertical and two diagonal axes of symmetry on many game boards. When we
apply these operations to a state of the game, the resulting states are equivalent
to the origin state. We can also combine the operations or use them more than
once.

18

3.2 The Game Tree and the State Space

Figure 3.1: Beginning of the game tree of “Tic Tac Toe”

19

3 Solving Games

In the mathematical group theory these equivalent positions are called a group.
We can create them by combining such transformations.

Which symmetry operations can be used depends on the game and its rules. We
will now look at some well-known games that include symmetric positions.

We can rotate a state of the game “Tic Tac Toe” or mirror it horizontally, vertically
and over both diagonals as shown in Figure 3.2. “Tic Tac Toe” is not an asymmetric
game (we described this term in Section 1.1.4). Although we are dealing with
asymmetric games in this work, we use it to describe symmetries in games, because
it is very well-known.

Some games have even more symmetric positions, for example the game “Nine
Men’s Morris”. It is not only possible to apply all transformations described above
for the game “Tic Tac Toe”. We can also swap the outer and the inner circle of
the game board to get equivalent states as shown in Figure 3.3. “Nine Men’s
Morris” is not an asymmetric game too. But as it has this one extra option to
create equivalent states, we use it here for the description of symmetries.

In Section 4.5 and Section 6.5, we describe how we find similar states of the
asymmetric two-player games “Fuchs und Henne” and “Fox and Geese”.

We only have to store one of those equal states of a game when we solve a game.
Therefore we have to define which representation of the state we want to use. We
define a so-called fingerprint function to do this. This function creates a unique
value for all states of the same state group. After we create a new state of the
game, we call the fingerprint function for this state. This results in a state which
we use to compare with the already stored data. If we already considered one
state of this group, we discard it, otherwise we store it. If we would not use this
fingerprint function, we would have to create each symmetric version of the state
and compare each of them with the already stored states. That would significantly
slow down the creation of all states of a game.

3.3 Complexity of Games

We can express the complexity of a game by the game-tree complexity and the
state-space complexity.

To calculate the game-tree complexity of a game we count the leaves of the game
tree. This is also the number of different instances of the game that we can play
starting with the initial state [2] [10]. This means these two references define
the state-space complexity as the number of different ways to play a game from
the beginning to its end. The setting of the tree used for this definition is not
described in detail. In general the number of nodes defines the complexity of a

20

3.4 The Framework

search tree. We are of the opinion, that counting the number of nodes of a tree,
what means at the same time to count all different settings of the game, results in
a more meaningful value for the complexity of a game. Of course, when we have
a tree with nodes of a limited degree, there is no asymptotic difference between
these two definitions of the game tree-complexity.

We calculate the state-space complexity of a game by counting all different
positions that can occur in a game [2] [10].

For complex games these values are difficult to describe exactly with a formula.
So sometimes it is necessary to fall back on estimated values or to define upper
and lower bounds.

We show the complexity of some well-known games in Table 3.1.

Game Game-Tree Complexity State-Space Complexity
Chess 10123 1046

Connect Four 1021 1014

Nine Men’s Morris 1050 1010

Go 10360 10172

Othello 1058 1028

Abalone 10180 1025

Pentago 1074 1016

Table 3.1: Complexity of some well-known games [2] [16]

3.4 The Framework

The framework was implemented in C++ and we use it to strongly solve combina-
torial two-player games with perfect information.

When we want to strongly solve a game using this framework, our first step is to
calculate the state space by determining the successor states of all already known
states of a game. For this the algorithm uses depth first search. It also takes care
of the extremely important point of looking at each already known state only once,
regardless of how often it occurs during the game. Thus it prevents unnecessary
long computation time or even an infinite loop.

After the framework creates all reachable states of a game, it classifies them. This
can either be done forward or backwards.

When we do the classification forward, we store the result of the classify method
for every state of the game. This is the setup phase. After this, the classification
of the terminal states of the game is already correct. Then the Algorithm iterates

21

3 Solving Games

through the states. If it finds a state that is not classified so far, it classifies all
his successor states. If one of them is a losing state, it classifies the originally
considered state as a winning state for the current player. But if there isn’t a
losing state within the successor states, the state stays not classified, if not all
successor states have been classified so far. Otherwise the algorithm scans the
successor states for a draw state. If it finds one or more, it classifies the state as a
draw state. If there is no draw state too, the original state is a losing state. The
algorithm repeats this until all states are classified.

When classifying backwards the algorithm needs an additional data structure. It
uses it to count the number of successor states that have not been classified as a
winning state so far. The first step of this classification is to set all states to draw
states except the terminal states. The algorithm also sets the value of the count
variable of these states to the respective number of successor states. A losing
state always means that all its predecessor states are winning states. So in case
of a losing state the algorithm sets the predecessor states of the state directly to
winning states. After classifying a state as a winning state, the algorithm reduces
the count variable of all predecessor states by one, because this variable represents
the number of not yet classified successor states of a state. If this number reaches
zero at any state, this means that all successor states are winning states for the
other player. So the current state is a losing state. We use the count variables to
avoid repeated access to the states.

The two algorithms need a similar amount of storage but the backward classifying
algorithm does less calculations and less read/write operations, so it is several
times faster than the forward classification algorithm. But for some games it is
not possible to get the predecessor states of each state. Then we have to use the
forward classification [15].

In this chapter we explained the three levels of solving games. We also had a look
at the game tree and the state space of games and how to use symmetries to
reduce it. We compared some games by their game-tree complexity and state-space
complexity. The last topic was the C++ framework that we use to strongly solve
combinatorial games.

In the next chapter we will consider the state space of the game “Fuchs und
Henne”.

22

3.4 The Framework

Figure 3.2: Symmetry operations of a “Tic Tac Toe” state

23

3 Solving Games

Figure 3.3: Symmetry operations on a “Nine Men’s Morris” state

24

4 State Space of “Fuchs und
Henne”

In Chapter 3 we described that games can be solved by considering their state
space. To do so computer programs are used, because the exact number of states
can usually not be described by a simple formula. But to get an approximate idea
of how many states a game has, an upper bound is usually calculated. For the
game “Fuchs und Henne” we will do this in this chapter.

When considering the possible different arrangements of the game pieces on the
game board this results in an upper bound of the number of states in the game.
This is caused by the fact that some of the states may can’t be reached within
the course of the game. We show some of them in Section 4.7. We calculate the
upper bound of states for the game ’Fuchs und Henne’ in the following sections.
For the game “Fox and Geese” we will do this in Chapter 6.

4.1 Placing Foxes and Hens

To calculate the upper bound of states for “Fuchs und Henne” we calculate all
different placements of the foxes and hens on the game board. To do this we use
combinatorics, more precisely, the combination without repetition.

The game board of “Fuchs und Henne” as shown in Figure 2.1 has 33 fields on
which the hens and the foxes can be placed. As the number of foxes is a maximum
of two, we place them first. We distribute the 9 to 20 hens to the remaining fields
as we will describe in detail in the following sections. This includes also placings
which can probably not be reached during playing the game starting at its initial
state. That is why this is just an upper bound.

25

4 State Space of “Fuchs und Henne”

4.2 Positions of the Foxes

4.2.1 Possible Placements for two Foxes

The game “Fuchs und Henne” starts initially with two foxes. We place these 2
foxes anywhere on the game board. We use combination without repetition. The
game board has 33 fields so we use the binomial coefficient 33 choose 2 to get all
situations:

(33
2) = 528

4.2.2 Possible Placements for one Fox

In “Fuchs und Henne” the hen player is allowed to remove a fox of the game
board if the fox player misses to beat a hen if it would be possible. Consequently
there is also the opportunity to have just one fox in the game. This one fox can
be placed anywhere on the game board. Here we have to place this one fox on
the board with 33 fields, so we use the binomial coefficient 33 choose 1 to get all
situations:

(33
1) = 33

4.2.3 Possible Placements for no Foxes

Of course, it is also possible that there is no fox on the game board of “Fuchs und
Henne”. This situation means, that the fox player loses. It can be reached if the
fox player misses to beat a hen - if it would be possible - twice, without beating a
hen in the meantime, what would have given him/her back one fox.

For this situation there is just one way as 33 choose 0 results in 1.

(33
0) = 1

We will not consider these states further as they represent the end of the game.

26

4.3 Positions of the Hens

4.2.4 Total Placements for the Foxes

To get all possible placements for the 0 to 2 foxes anywhere on the game field, we
have to sum up the results of the above considerations.

528 + 33 + 1 = 562

So all in all there are 562 ways to place the two to zero foxes anywhere on the
game field. This number of course is, as already mentioned, just an upper bound as
not all settings have to be reachable when playing the game. Some ways also drop
out as the game field is symmetrical. We describe this in detail in Section 4.5.

4.3 Positions of the Hens

The main version of “Fuchs und Henne” initially starts with 20 hens and to reach
the goal of filling the hen house at least 9 hens are needed. So there may be 9 to
20 hens on the field. As all settings with less than 9 hens result in the end of the
game, these emplacements will not be considered here.

After placing the zero to two foxes as we described above, there are still 31 to 33
possible empty fields for the hens left on which we can place the 9 to 20 hens. We
can represent the upper bound of the number of different placements by binomial
coefficients again.

Having a look at placing the hens on 31 free fields when still both foxes are in the
game, the following combinations are possible:

Place 9 to 20 hens on 31 fields:

(31
9) =20 160 075

(31
10) =44 352 165

(31
11) =84 672 315

...

(31
18) =206 253 075

(31
19) =141 120 525

27

4 State Space of “Fuchs und Henne”

(31
20) =84 672 315

To get the number of possible settings for 9 to 20 hens on 31 fields, we have to
sum up the values above:

20∑
i=9

(
31
i

)
= 2 060 049 510

If one fox gets removed from the board, there are 32 possible fields left to again
place the 9 to 20 hens:

(32
9) =28 048 800

(32
10) =64 512 240

(32
11) =129 024 480

...

(32
18) =471 435 600

(32
19) =347 373 600

(32
20) =225 792 840

We can calculate the number of different placements of 9 to 20 hens on 32 remaining
fields again by the sum of the values above:

20∑
i=9

(
32
i

)
= 4 043 315 430

In the case both foxes got removed from the board, the game ends because the
fox player is not able to move any more. As there is no further information in this
game-ending settings, all those settings without a fox do not have to be considered
further.

So the whole number of possible settings for 9 to 20 hens on 31 or 32 fields on the
game board can be calculated as follows:

20∑
i=9

(
31
i

)
+

20∑
i=9

(
32
i

)
= 2 060 049 510 + 4 043 315 430 = 6 103 364 940

28

4.4 All Possible Placements

4.4 All Possible Placements

As shown in Section 4.2.1 there are 562 different ways to place two foxes on the
game board and Section 4.3 shows that there are 2 060 049 510 different ways to
place the 9 to 20 hens on the remaining 31 fields.

To get all possible placements in the case of two foxes the number of possible fox
settings and the number of hen settings has to be multiplied:

20∑
i=9

(
31
i

)
∗ 528 = 1 087 706 141 280

If there is only one fox in the game, there are 33 different settings for just one fox,
as shown in Section 4.2.2. To place the 9 to 20 hens on the remaining 32 fields,
there are 4 043 315 430 different ways, as described in Section 4.3. Again these two
values have to be multiplied to get all game settings for these circumstances:

20∑
i=9

(
32
i

)
∗ 33 = 133 429 409 190

The number of different settings for 1 or 2 foxes and 9 to 20 hens can be calculated
by adding these two values:

20∑
i=9

(
31
i

)
∗ 528 +

20∑
i=9

(
32
i

)
∗ 33 = 1 221 135 550 470

As every state could occur either after the move of the hen player or after the
move of fox player, this number has to be multiplied by two to also take care of
this information:

(
20∑

i=9

(
31
i

)
∗ 528 +

20∑
i=9

(
32
i

)
∗ 33) ∗ 2 = 2 442 271 100 940

So “Fuchs und Henne” has an upper bound of 2 442 271 100 940 different states
without taking care of symmetric positions. We will consider this in the following
sections.

29

4 State Space of “Fuchs und Henne”

4.5 Symmetric Position

Section 3.2.1 describes how the state space of a game can be reduced using
symmetries. We can also use this property to improve the upper bound of the
state space of “Fuchs und Henne” we calculated above.

As already mentioned before, the game board of “Fuchs und Henne” includes
symmetric positions. This is caused by the fact, that the game board has a vertical
axis of symmetry as shown in Figure 4.1. At first glance, it looks like there is also
a horizontal axis of symmetry. But this axis wouldn’t be correct as there is the
hen house on the lower part of the game board. Another reason why the playing
field can not be mirrored horizontally is the fact, that the hens are allowed to
move in three directions only, as they are not allowed to move back.

For example, this means the two settings shown in Figure 4.2 can be considered
the same.

Figure 4.1: The game board of “Fuchs und Henne” with its axis of symmetry

When solving a game, the upper bound of the state space as calculated in
Section 4.4 can be reduced by using these symmetries. The similar states can
be found by vertical mirroring (in other games also by horizontally mirroring or
different rotations). To know which of the symmetrical states should be stored, a
mapping function is needed. This function returns the mapped state - so-called
fingerprint - of the state. This is described in detail in Section 3.2.1. In the
following section we describe how this fingerprint of symmetric states is defined
for “Fuchs und Henne”.

30

4.5 Symmetric Position

Figure 4.2: Two settings of “Fuchs und Henne” which we consider to be the same

4.5.1 Fingerprint of “Fuchs und Henne” States

To get the fingerprint of a state of “Fuchs und Henne”, we scan the game board from
the left upper corner to the right lower corner as described in Pseudo-code 1.

At first glance attention is paid to the foxes. If both foxes are on the left side of
the board, we already found the fingerprint. If both foxes are on the right side of
the board, we have to mirror the game board vertically to have both foxes on the
left side.

If one fox is placed on the left side and one fox on the right side, the higher
located fox determines the fingerprint as seen in Figure 4.3 in which we marked
the higher located fox of the original state by an orange circle. If the right fox
is higher located, we mirror the board vertically to create the fingerprint of the
state. If both foxes are placed on the same line, we index the foxes as shown in
Figure 4.4. The fox with the lower index has to be on the left side of the board.
Otherwise we mirror the board vertically to get the fingerprint of the state.

The foxes can also be arranged symmetrically. They can be placed one on the
right side of the game board and the other one on the symmetrically same spot
on the other side of the game board. We see an example for this in Figure 4.5
where one symmetric position is coloured orange and the other one violet. Another
way for a symmetrical fox position occurs, if both foxes are placed on the center
line of the game board. We see the fields of the center line in Figure 4.6 where
we coloured them turquoise. In these cases the fingerprint is determined by the
positions of the hens. The first position with a hen on one side of the game board
and an empty field on the symmetrical position on the other side of the game
board defines the fingerprint. If this first representative hen is on the right side,

31

4 State Space of “Fuchs und Henne”

the game board has to be mirrored vertically. If this hen is left, the fingerprint is
already found.

Of course it is also possible, that both hens and foxes are arranged symmetrically.
In this case, the fingerprint is already given.

Algorithm 1 Calculating the fingerprint for “Fuchs und Henne” state
1: procedure getFingerprint
2: bSize← 7
3: i← 0
4: j ← 0
5: pHen←′ .′
6: for i = 0→ i = 6 do
7: for j = 0→ j = 2 do
8: if board(i)(j) 6= board(i)(bSize− j − 1) then
9: if board(i)(j) = FOX then

10: return
11: else if board(i)(bSize− j − 1) = FOX then
12: reflectBoardLeftRight
13: return
14: else if board(i)(j) = HEN AND pHen =′ .′ then
15: pHen←′ l′
16: else if pHen =′ .′ then
17: pHen←′ r′
18: end if
19: end if
20: end for
21: end for
22: if pHen =′ l′ then return
23: else if pHen =′ .′ then return
24: else
25: reflectBoardLeftRight
26: end if
27: end procedure

32

4.5 Symmetric Position

Fingerprint

Figure 4.3: Fingerprint of “Fuchs und Henne” given by higher located fox

10 11

12

1

2

3 4 5

6 7 8

9

12

13 13

11 10 9

8 7 6

345

2

1

Figure 4.4: Left and right indexing of game board

33

4 State Space of “Fuchs und Henne”

Figure 4.5: Example for symmetric fields in “Fuchs und Henne”

Figure 4.6: Center line of the game board of “Fuchs und Henne”

4.5.2 Reduce Upper Bound of the State Space by looking at
Symmetric Positions

4.5.2.1 Symmetric Positions with two Foxes

To place two foxes on the game board, there are 3 placement categories. Either
both foxes are on the same side of the game board (left or right) including the
center line, or the foxes are on different sides of the game board. In the second

34

4.5 Symmetric Position

case there are again two different ways. Either the position is full symmetric or
not.

To place both foxes on the same side of the game board, the foxes must be placed
on the 20 left or respectively right fields including the center line. Which fields are
meant is shown in Figure 4.7, where we coloured the fields on the left side including
the center line pink. We calculate the number of settings for this conditions as
follows:

(
20
2

)
= 190

Figure 4.7: Positions of the game board described as left side

If the two foxes are placed on different sides of the game board in symmetric
position, there are 13 different ways to place them. We see this combinations in
Figure 4.8 where we coloured the symmetric position of a field in the yellow box
in the same colour as in the orange box.

If the foxes are not both on the same side of the board and not in symmetric
position, the number of placements can be calculated as follows:(

13
2

)
= 78

This is caused by the fact that if they are not in symmetric position, the fox on
the right side can (just for calculation) be mirrored to his symmetric position on
the left side and so there are two foxes on the 13 left fields.

35

4 State Space of “Fuchs und Henne”

Figure 4.8: Symmetric fields coloured in 13 different colours

4.5.2.2 Symmetric Positions with one Fox

If there is just one fox on the game board, it can be placed on one of the 20 fields
of one side of the game field including the center line (either on the right or on
the left side). In Figure 4.7 we coloured this fields pink.

4.5.2.3 Fox Positions with Focus on Symmetries

As described above, when observing the symmetries there are 190 ways to place
two foxes on the same side of the board, 13 ways for a symmetric position with
one fox on each side of the board and 78 ways for positions with one fox on each
side of the board without a symmetric position. If there is just one fox there are
20 different positions:

190 + 13 + 78 + 20 = 301

We reduced the number of fox position from 562 (as calculated in Section 4.2.4)
to 301, if symmetries are taken into account.

36

4.6 All Possible Placements with Focus on Symmetries

4.6 All Possible Placements with Focus on
Symmetries

In Section 4.4 the upper bound of states for the game “Fuchs und Henne” was cal-
culated to be 2 442 271 100 940 but this number also includes symmetric positions,
as mentioned above.

After taking care of symmetrical positions, we calculate the upper bound of the
total number of states for “Fuchs und Henne” as follows:

(
20∑

i=9

(
31
i

)
∗ 281 +

20∑
i=9

(
32
i

)
∗ 20) ∗ 2 = 1 319 480 441 820

There are still some symmetric positions included, because we count some states
with symmetric foxes twice with this formula. The Pseudo-code 1 shows how to
find a unique fingerprint for those states by looking at the hens positions. This is
not done in this formula, so we count them more than once. This adjustment would
complicate the formula and would not improve the upper bound significantly, so
we will not make that adjustment.

4.7 A Selection of not reachable States

The number of states we calculated above includes some states that can’t occur
while playing the game starting at its defined initial state. Some of them are
caused by the fact, that the hens are not allowed to move backwards on the game
field. This means, that the hens can never reach their setting of the initial state
again after the game has started, because there is a compulsion to move. Some
states that can not be reached are shown in Figure 4.9.

In this chapter we found an upper bound of states for the game “Fuchs und
Henne”. To solve the game, the real states have to be calculated. How to store
the states in a database using as less bits as possible, is described in the following
chapter.

37

4 State Space of “Fuchs und Henne”

Figure 4.9: A selection of not reachable states of “Fuchs und Henne”

38

5 Encoding of “Fuchs und Henne”

To solve “Fuchs und Henne” strongly, we implemented the game using the C++
game framework described in [15]. We use it to solve combinatorial games strongly.
In Section 3.4, we describe how the framework solves games.

To store all possible positions of the game, we have to encode the game board to
a number that requires as little bits as possible. Of course, the coding has to be
unique for each position and it also has to be possible to decode it again.

To accomplish this, our very first step is to apply the fingerprint function for the
respective state as described in Section 4.5.1.

For every game state the unique coding consists of 3 parts:

• The positions of the foxes
• The positions of the hens
• The current player

We code each of these three parts to a unique number. We then combine these
three numbers. This results in the encoded representation of the particular game
state. We describe the full encoding and decoding process of the game “Fuchs und
Henne” in the following sections.

5.1 Encoding of the Game Field

To get a unique code for each game situation, we have to calculate three different
numbers as we already mentioned above:

• Unique code for the foxes
• Unique code for the hens
• Unique code for the player

To reach the goal of getting a code for a game position which needs as little bits
as possible, each of these three codes has to need as less bits as possible too.

In the following subsections, we will describe how these codes get calculated.

39

5 Encoding of “Fuchs und Henne”

5.1.1 Encoding of the Foxes

In Section 4.5.2.3 we already described, that there are three different categories
of placements for two foxes on the game board:

• Both foxes are on the same side of the board (including center line) (190
placements)
• One fox on each side of the board in symmetric position (13 placements)
• One fox on each side of the board in non-symmetric position (78 placements)

Additionally, there are 20 ways to place one fox and one way for no fox.

The fox code reaches from 0 to 301 and gets split up as follows:

Type Fox code range
No fox 0
One Fox 1 - 20
Two foxes in symmetric position 21 - 33
Two foxes in non-symmetric position 34 - 111
Two foxes both left + center line 112 - 301

Table 5.1: Fox code ranges of “Fuchs und Henne ”

5.1.1.1 Fox Code of no Fox

There is just one way to place no fox on the game field, so every game situation
without a fox receives the fox code 0. If there is no fox in the game, the fox
player loses. Thus, it is not necessary to consider those states further, as already
mentioned.

5.1.1.2 Fox Code for one Fox

The fox code for a setting with just one fox gets a value in the range of 1-20. As
the fingerprint of the game field ensures, that the fox is placed on the left side
(including center line), we can use the index of the fox directly for the fox code.
The numeration of the game field is shown in Figure 5.1. As 0 is already reserved
for situations without a fox, we have to increment the calculated fox code by
one.

40

5.1 Encoding of the Game Field

5.1.1.3 Fox Code for two Foxes in Symmetric Position

The range for the value of the fox code for game situations with foxes in symmetric
positions reaches from 21 to 33. We calculate the respective unique fox code as
follows: Because the foxes are in symmetric position, one fox sets the unique
position of the other fox. Because of this, the index of the fox on the left side of
the game board specifies the fox code. The range for this case reaches from 21 to
33, so we have to increase the index by 21 to fit in the range and also to be able
to distinguish it from a fox code of only one fox.

5.1.1.4 Fox Code for two Foxes in Non-Symmetric Position

The fox code range for game situations with two foxes, where one fox is placed on
the left side of the game board and the second fox is placed on the right side of
the game board, reaches from 34 to 111. To calculate the individual number, we
mirror the fox on the right side of the game field to the corresponding position on
the left side of the game field. It is important that we use the fingerprint function
before the encoding, because otherwise a unique decoding will not be possible.
We convert the first 13 places of the game field into a binary sequence, in the
order shown in Figure 5.1, where positions with a fox are represented by a 1 and
the others by 0. We encode this binary value by using the algorithm described in
Section 5.3. We increase the resulting value by 34 to fit the range and to be able
to uniquely identify the type of the fox setting.

5.1.1.5 Fox Code for two Foxes on the same Side of the Board

The range for the fox code for game situations with both foxes on the left side
of the game board (including center line) reaches from 112 to 301. Because we
applied the fingerprint function as first step of the encoding process, we can be
sure to have both foxes on the left side of the board. They can be placed on the
20 fields on the left side of the board including the center line. To get the unique
value for those game situations, we create a binary value of size 20 for these fields.
The places where a fox is located, are represented by 1 and the others by 0. We
also encode this binary value using the algorithm described in Section 5.3. To get
the final value for the fox code, we have to increase the resulting number by 112
to fit the given range.

41

5 Encoding of “Fuchs und Henne”

5.1.2 Encoding of the Hens

In order to get a unique code for the hens placed on the game field, in the first step
the board gets traversed column by column from top to bottom and converted
into a binary number. This happens in the following way: If a hen is placed at
the current position, we write a one for this position. In any other case, we write
a zero.

In Figure 5.1 the game field is numbered the way the encoding process goes
through the game field.

We encode the resulting binary number with the algorithm described in Sec-
tion 5.3.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

1

2

3

4

5

6

7

8

9

0

Figure 5.1: Game board for “Fuchs und Henne”, numbered in the order used for encoding.

The algorithm needs to know the number of ones included in the binary sequence,
to know the starting point on the Pascal triangle. We need it for the encoding and
also for the decoding process. This means, that we have to store this information
in the code for the hens. That is why we add the following sum to the hen code:

nh−1∑
k=8

(
33
k

)

with: nh − Number of hens (ones)

With the minimum of 9 hens the hen-player could still reach the goal of filling up
the hen house. States with 8 hens are losing states. That’s why we start the lower
index of the sum at a value of 8.

42

5.1 Encoding of the Game Field

At this point we could improve the encoding a bit. The fields where a fox is placed
could be skipped when we create the binary sequence for the hens. But we have
to keep in mind, that the number of foxes can vary from zero to two. The states
without a fox are final states of the game. They do not have to be considered in
detail, as already mentioned before. That means, that there is at least one fox on
the game field and we could leave out its position at the encoding of the hens.
This wouldn’t improve the coding significantly, so we don’t do this improvement
here.

5.1.3 Encoding of the Player

To save the current player of the respective game situation, there is just one bit
necessary. If it is the hen player’s turn, we set the code to 0 and if it is the fox
player’s turn, we set the code to 1.

5.1.4 Calculating a Unique Code for a Game Situation

The unique code for the whole game situation consists of the code for the hen
positions, the code for the fox positions and the code for the player. We have to
combine these three codes to get the unique code for the respective game situation.
But it is important to connect the codes in a way to be able to clearly split them
again for the decoding process.

When combining the numbers the best way is to start with the hen‘s code as it
is the largest number. We multiply this number by the number of different fox
codes (what is the same as the maximum code increased by one). The fox code
for “Fuchs und Henne” reaches from 0 to 301 so there are 302 different fox codes.
This multiplication reserves the necessary space for the corresponding fox code
which we add to the now enlarged code. The last step is to add the code for the
player. Therefore we multiply the code by 2 (what again is the maximum code for
the player increased by one) to reserve the last bit for the code of the player. As
last step we add the code of the player to this enlarged number.

To sum this up we calculate the code gets as follows:

43

5 Encoding of “Fuchs und Henne”

code := (Ch ∗ num(Cf) + Cf) ∗ 2 + Cp (5.1)
with:
Ch - Code for hens
Cf - Code for foxes
Cp - Code for player

num(Cf) - Total number of fox codes = maximum fox code + 1

In the next section we will describe how we can decode this codes for states of
“Fuchs und Henne”.

5.2 Decoding of the Game Field

In this section we look at the decoding of “Fuchs und Henne” states. The codes
consist of three parts:

• Unique code for the foxes
• Unique code for the hens
• Unique code for the player

We will have a closer look at the decoding process in the following subsections.

5.2.1 Split the Code in its Parts

The formula to combine the three parts of the code of a “Fuchs und Henne” state
was the following:

code := (Ch ∗ num(Cf) + Cf) ∗ 2 + Cp (5.2)
with:
Ch - Code for hens
Cf - Code for foxes
Cp - Code for player

num(Cf) - Total number of fox codes = maximum fox code + 1

At the decoding process this calculation has to be reversed as follows:

44

5.2 Decoding of the Game Field

Cp := code & 0x01 (5.3)
Cf := (code >> 1) mod num(Cf) (5.4)

Ch := ((code >> 1)−Cf)/num(Cf) (5.5)
with:
Ch - Code for hens
Cf - Code for foxes
Cp - Code for player

num(Cf) - Total number of fox codes = maximum fox code + 1
& - Bitwise AND

0x01 - Binary number 00000001
>> - Bitwise right shift operator

We can now decode the three codes individually. This will result in one game
situation. In the following subsections we will describe the necessary details.

5.2.2 Decoding of the Player

The last element of the binary representation of the code is the code for the player.
It is either zero or one. We use the binary AND operation to receive it from the
code. This operation uses a logical conjunction on each pair of corresponding bits.
In the formula above, we used “&” as the notation for this operation. Specifically,
we use the binary AND to connect the binary number 00000001 with the code.
This results in a one if the last element of the binary representation of the code is
also a one. Otherwise it results in a zero. States with a player code of zero are
states of the hen player. States with a player code of one are states of the fox
player.

After we extracted the player code, we can truncate the last digit of the code in
the next calculations. We use bitwise shifting to the right for this. We used the
notation “>>” for this operation in the formulas above. With this, the number
is shifted right by the number of digits specified after the operator. The binary
number is padded with zeros from the left. A bit shift by 1 digit means an integer
division by 2.

5.2.3 Decoding of the Hens

We encoded the hens by converting them to a binary sequence. For the encoding
of this sequence we used the algorithm described in Section 5.3.

45

5 Encoding of “Fuchs und Henne”

When decoding the hen code we have to rebuild the binary sequence out of the
code again. We do this as described in the description of the algorithm. But
because we need to know the number of ones included in the sequence to use this
algorithm, we stored this information in the code while the encoding process. We
have to extract this number before we apply the algorithm.

To achieve this, we subtract (33
i) from the code as long as the result is positive.

The minimum number of hens in this game is 9. All states with 8 hens are losing
states. That is why we start with i = 8. For the further encoding of the hens we
use the last positive result of this calculation. We reconstruct the binary sequence
for the hens out of this value by using the algorithm.

We transfer the recovered sequence to the game field. We go through the sequence
from left to right and distribute the values on the board in the order shown in
Figure 5.1. At places with a one in the sequence we place a hen.

5.2.4 Decoding of the Foxes

To decode the fox code we first have to look which fox code range the code fits.
The ranges are shown in Table 5.1. The decoding process depends on the range.
We will now look at the different ways of the fox decoding.

5.2.4.1 Decoding of States with no Fox

If the fox code is 0 the original state has no fox. This is a losing state for the fox
player. States with no fox represent the end of the game and we do not need to
consider them further - as already mentioned.

5.2.4.2 Decoding of States with one Fox

If the fox code fits the range 1 to 20 the state has one fox. Since the fingerprint
function was applied before the coding process, we can be sure that the fox is on
the left side of the game field, including the center line. We decrement the code
by one because this value has been added to fit the range. The resulting code
represents the index of the fox on the game field where the fox has to be placed.
We can see the indices in Figure 5.1.

46

5.2 Decoding of the Game Field

5.2.4.3 Decoding of States with two Foxes in Symmetric Position

If the fox code fits the range 21 to 33 the state has two foxes - one fox on the
left side of the game board and one fox on the right side. They are placed in
symmetric position. As first step we reduce the fox code by 21, because this value
has been added to fit the range. The resulting code represents the index of the
fox on the left side of the game board. The indices are shown in Figure 5.1. We
get the position of the fox on the right side of the game board by mirroring the
position of the fox on the left side as shown in Figure 4.8.

5.2.4.4 Decoding of States with two Foxes in Non-Symmetric Position

If the fox code fits the range 34 to 111 the state has two foxes in non-symmetric
position with one fox on the left side of the board and one fox on the right side of
the board. The first step is to reduce the value by 34 to get the real value because
we added this value to fit the range. The remaining value has been encoded using
the algorithm described in Section 5.3. Because we mirrored the fox on the right
side of the board to the left side during the encoding, we know that 2 foxes are
on these 13 left fields. This means that the starting point for the decoding is (13

2).
This results in a binary sequence of length 13 including two ones. Because we
know that one fox has to be on the right side of the game board, one fox has to
be mirrored. We can find out which one it is when we compare the index they get
when we apply the scheme shown in Figure 4.4. The fox with the higher index
gets mirrored to the right side. Please mention that this is not the same index as
used or the creation of the binary sequence.

5.2.4.5 Decoding of States with two Foxes on the left Side of the Board
including the Center Line

If the fox code fits the range 112 to 301 the state has two foxes both on the left
side of the board including the center line. To encode it, at first we have to reduce
the code by 112 because this value has been added to fit the range. The resulting
code has been encoded using the algorithm described in Section 5.3. The original
binary sequence has a length of 20 and includes two ones. That means that the
starting point for the decoding is (20

2). We transfer the resulting sequence to the
game field. We go through the sequence from left to right and distribute the
values on the board in the order shown in Figure 5.1. At places with a one in the
sequence we place a hen.

47

5 Encoding of “Fuchs und Henne”

5.3 The Encoding Algorithm

In this section we will describe an algorithm to encode binary sequences of length
n with weight w where w means the number of ones included in this sequence [17].
We use this algorithm for the encoding and for the decoding of the states of the
games.

The following formula got proofed by induction:

i(t) =
n∑

k=1
tk

(
n− k

wk

)

wk =
n∑

i=k

ti

(
n

w

)
= 0 for w > n

with: n - length of the binary sequence
i(t) - resulting code for the sequence
tk - ∈ {0, 1}
wk - number of ones in the sequence

Since the binomial coefficient can be read from the Pascal triangle, this coding
algorithm can be easily shown on this triangle.

We use the example shown in this paper to describe the algorithm. If the binary
sequence ’010100’ gets encoded using the formula above, we move the following
path through the pascal triangle, what is shown in Figure 5.2: The sequence has a
size of 6 and includes 2 ones. This means the starting point is (6

2) = 15. We scan
the binary number from left to right digit by digit. If there is a zero on the current
place, we navigate one step in x-direction. If there is a one, we navigate one step
in y-direction and note the number that is standing next on x-direction.

In the example, we move from the starting point 15 in x-direction towards 10, as
there is a zero on the first position of the sequence. Because the next position is a
one, the path leads us in y-direction to 4. We note the next number on x-direction
- the 6. A zero comes next, what means that we move in x-direction to 3. Because
of the following one the next step is in y-direction again, to 1. We note the next
position in x-direction, in this case a 2. The next two digits are zeroes, so we move
in x-direction though the triangle up to its top.

48

5.4 Encoding and Decoding of an Example State of “Fuchs und Henne”

We add the noted numbers: 6 + 2 = 8

The encoding for the sequence ’010100’ is 8.

1

1 1

1 12

1 13 3

1 14 6 4

1 15 510 10

1 16 615 20 15

x

y

Figure 5.2: Path which the encoding algorithm uses on Pascal triangle

To decode a code, in this case an 8, we will use the Pascal triangle again. The
starting point is again the number (6

2) = 15. We compare the code with the next
number in x-direction, in this case 10. As 8 < 10 the path goes in y-direction to
10 and we note a zero. The next step is to compare the code 8 again with the
number in x-direction. As 8 > 6 we note a one which results in ’01’ and a step
in y-direction to 4 follows. Now the new current code is 8− 6 = 2. We compare
it to the next number in x-direction what is 3. Because of 3 > 2 we note a zero
resulting in ’010’ and we next move one step in x-direction to 3. The current code
2 is not less than the next number in x-direction so we note a one resulting in
’0101’ and the path leads us in y-direction. We reduce the code by 2 and the result
is 0. That means we have to do the last two steps in x-direction and we add zeros
to our sequence: ’010100’. The result is as expected the same sequence that we
encoded before and the path through the Pascal triangle is the same as in the
encoding process [17].

5.4 Encoding and Decoding of an Example State of
“Fuchs und Henne”

In this section we encode an example state of “Fuchs und Henne” and decode the
result again. The selected state is shown in Figure 5.3. As the current player also
gets encoded, we define that the state is a state of the fox player.

49

5 Encoding of “Fuchs und Henne”

Figure 5.3: State of “Fuchs und Henne” for encoding and decoding example

5.4.1 Encoding of the Example State

The first step of the encoding of a state of “Fuchs und Henne” is to create the
fingerprint of the respective state as described in Section 4.5.1. In this state
the foxes are not placed in a symmetric position, so it is possible to define the
fingerprint of the state by looking at the foxes. We compare the indices the foxes
get out of the schema shown in Figure 4.4. The fox with the higher index has to
be on the right side of the board. So we have to mirror the game board vertically.
We can see the result in Figure 5.4.

Figure 5.4: Fingerprint of “Fuchs und Henne” state for encoding and decoding example

Now we encode this fingerprint state. The first step is to encode the foxes. At

50

5.4 Encoding and Decoding of an Example State of “Fuchs und Henne”

first the type of fox position gets determined. In this case the foxes are positioned
on different sides of the game board in non-symmetric position. That means the
range for the fox code is 34 - 111 as shown in Table 5.1. The fox on the right
side of the board gets mirrored to its position on the left side of the board. Then
the first 13 places get converted into a binary sequence. The order in which we
traverse the board is shown in Figure 5.1.

The example state results in the following binary sequence for the foxes:
’0000010001000’

We encode this sequence using the algorithm described in Section 5.3.

Cf =

(
7
2

)
+

(
3
1

)
= 21 + 3 = 24

To fit the range, 34 gets added to this number:

Cf = 24 + 34 = 58

The code 58 represents the position of the two foxes on the game board.

The next step is to encode the hens. Therefore we scan the game field again the
way shown in Figure 5.1 and convert it into a binary sequence. Fields with a hen
get represented by a one, empty fields or fields with foxes get represented by zero:
’110110111010011100001110001100111’.

We also encode this sequence using the algorithm described in Section 5.3:

Ch =

1 ∗
(

32
19

)
+ 1 ∗

(
31
18

)
+ 0 ∗

(
30
17

)
+ 1 ∗

(
29
17

)
+

1 ∗
(

28
16

)
+ 0 ∗

(
27
15

)
+ 1 ∗

(
26
15

)
+ 1 ∗

(
25
14

)
+

1 ∗
(

24
13

)
+ 0 ∗

(
23
12

)
+ 1 ∗

(
22
12

)
+ 0 ∗

(
21
11

)
+

0 ∗
(

20
11

)
+ 1 ∗

(
19
11

)
+ 1 ∗

(
18
10

)
+ 1 ∗

(
17
9

)
+

0 ∗
(

16
8

)
+ 0 ∗

(
15
8

)
+ 0 ∗

(
14
8

)
+ 0 ∗

(
13
8

)
+

1 ∗
(

12
8

)
+ 1 ∗

(
11
7

)
+ 1 ∗

(
10
6

)
+ 0 ∗

(
9
5

)
+

51

5 Encoding of “Fuchs und Henne”

0 ∗
(

8
5

)
+ 0 ∗

(
7
5

)
+ 1 ∗

(
6
5

)
+ 1 ∗

(
5
4

)
+

0 ∗
(

4
3

)
+ 0 ∗

(
3
3

)
+ 1 ∗

(
2
3

)
+ 1 ∗

(
1
2

)
+

1 ∗
(

0
1

)
=

347 373 600 + 206 253 075 + 0 + 51 895 935+

30 421 755 + 0 + 7 726 160 + 4 457 400+

2 496 144 + 0 + 646 646 + 0+

0 + 75 582 + 43 758 + 24 310+

0 + 0 + 0 + 0+

495 + 330 + 210 + 0+

0 + 0 + 6 + 5+

0 + 0 + 0 + 0+

0 = 651 415 411

The algorithm to encode binary sequences needs to know the number of ones
included in the sequence for the encoding. We must add this information to the
code because the number of hens may varies from 8 to 20. We add the following
sum to the code for the hens:

nh−1∑
k=8

(
33
k

)

nh is the number of Hens. In our example there are 19 hens so the upper bound
of the summation is nh − 1 = 18:

Ch = 651 415 411 +
18∑

k=8

(
33
k

)
=

651 415 411 + 6 493 264 836 = 7 144 680 247

After this, the third factor of the encoding is the player. This state was defined as
state of the fox player, so the code for the player is Cp = 1.

The last step is to combine those three codes as described in Section 5.1.4. The
number of different codes for the foxes is 302 as shown in Table 5.1.

52

5.4 Encoding and Decoding of an Example State of “Fuchs und Henne”

(Ch ∗ num(Cf) + Cf) ∗ 2 + Cp =

(7 144 680 247 ∗ 302 + 58) ∗ 2 + 1 = 4 315 386 869 305

Thus, the example state is fully and uniquely encoded.

5.4.2 Decoding of the Example State

In the section above, we encoded the example state to the unique number
4 315 386 869 305. In this section we will decode it again.

Because the last step of the encoding was the addition of the player bit, the last
bit of the code represents the player. To decode it again, bit operations can be
used. With a binary AND of the code and the binary number 0x01 (what is binary
’00000001’) we get the last bit of the code - the code of the player.

Cp = 4 315 386 869 305 & 0x01 = 1

Because the last bit of the code is a one, the current player of this state is the fox
player.

The next step is to use a bit shift right by 1 position to reverse the multiplication
by 2.

4 315 386 869 305 >> 1 = 2 157 693 434 652

This code includes the code for the hens and the code for the foxes. Because the
hen code got multiplied by the maximum code of the foxes to be able to add
it to the end of the code, the reverse operation is a modulo calculation. After
calculating the code modulo 302 (that is the number of different fox codes), we
receive the code for the foxes:

Cf = 2 157 693 434 652 mod 302 = 58

To get the code for the hens, the code has to be subtracted by the fox code and
then divided by 302:

2 157 693 434 652− 58 = 2 157 693 434 594

Ch = 2 157 693 434 594/302 = 7 144 680 247

53

5 Encoding of “Fuchs und Henne”

As an alternative to these two steps, we could also directly do an integer division
by 302, which would lead us to the same result.

After we have extracted the individual code elements, we are able to decode
them.

To decode the hens, we have to reproduce the binary sequence out of the hen
code. The binary sequence has a length of 33 and 8 to 20 ones (hens) are included.
The number of hens was stored within the code of the hens. To get the number
of hens, again binomial coefficients get used. (33

ones) gets subtracted from the hen
code as long as the hen code is larger than the binomial coefficient. After each
subtraction the number of ones gets increased by one, it starts at 8 as this is the
minimum number of hens.

The calculation of the number of hens for the example is the following:

7 144 680 247−
(

33
8

)
= 7 130 796 091

7 130 796 091−
(

33
9

)
= 7 092 228 991

7 092 228 991−
(

33
10

)
= 6 999 667 951

6 999 667 951−
(

33
11

)
= 6 806 131 231

6 806 131 231−
(

33
12

)
= 6 451 313 911

6 451 313 911−
(

33
13

)
= 5 878 147 471

5 878 147 471−
(

33
14

)
= 5 059 338 271

5 059 338 271−
(

33
15

)
= 4 022 179 951

4 022 179 951−
(

33
16

)
= 2 855 376 841

2 855 376 841−
(

33
17

)
= 1 688 573 731

1 688 573 731−
(

33
18

)
= 651 415 411

54

5.4 Encoding and Decoding of an Example State of “Fuchs und Henne”

651 415 411−
(

33
19

)
= −167 393 789

The number of hens of the state is 19 and the code that represents the hens is
the last positive number of the listing above: 651 415 411. We decode it using the
algorithm described in Section 5.3. The start point is (33

19).

Comparison Binary Calculation

651 415 411 ≥ (32
19) 1 651 415 411− (32

19) = 304 041 81

304 041 811 ≥ (31
18) 1 304 041 811− (31

18) = 97 788 736

97 788 736 < (30
17) 0

97 788 736 ≥ (29
17) 1 97 788 736− (29

17) = 45 892 801

45 892 801 ≥ (28
16) 1 45 892 801− (28

16) = 15 471 046

15 471 046 < (27
15) 0

15 471 046 ≥ (26
15) 1 15 471 046− (26

15) = 7 744 886

7 744 886 ≥ (25
14) 1 7 744 886− (25

14) = 3 287 486

3 287 486 ≥ (24
13) 1 3 287 486− (24

13) = 791 342

791 342 < (23
12) 0

791 342 ≥ (22
12) 1 791 342− (22

12) = 144 696

144 696 < (21
11) 0

144 696 < (20
11) 0

144 696 ≥ (19
11) 1 144 696− (19

11) = 69 114

69 114 ≥ (18
10) 1 69 114− (18

10) = 25 356

25 356 ≥ (17
9) 1 25 356− (17

9) = 1 046

55

5 Encoding of “Fuchs und Henne”

Comparison Binary Calculation

1 046 < (16
8) 0

1 046 < (15
8) 0

1 046 < (14
8) 0

1 046 < (13
8) 0

Comparison Binary Calculation

1 046 ≥ (12
8) 1 1 046− (12

8) = 551

551 ≥ (11
7) 1 551− (11

7) = 221

221 ≥ (10
6) 1 221− (10

6) = 11

11 < (9
5) 0

11 < (8
5) 0

11 < (7
5) 0

11 ≥ (6
5) 1 11− (6

5) = 5

5 ≥ (5
4) 1 5− (5

4) = 0

0 < (4
3) 0

0 < (3
3) 0

0 ≥ (2
3) 1 0− (2

3) = 0

0 ≥ (1
2) 1 0− (1

2) = 0

0 ≥ (0
1) 1 0− (0

1) = 0

After this calculation we combine the binary values to the following sequence:
’110110111010011100001110001100111’. It is the same sequence as in the encoding

56

5.4 Encoding and Decoding of an Example State of “Fuchs und Henne”

in Section 5.4.1. We apply the sequence to the playing field in the order in which
it was taken. The order is shown in Figure 5.1. The result is shown in Figure 5.5
where the blue circles represent the hens on the game board.

Figure 5.5: Decoded hens of example state of “Fuchs und Henne”

In order to decode the fox code ’58’, at first we check in which fox code range it
belongs. The different ranges are shown in Table 5.1. In this case it is the range
34 - 111: Two foxes in non-symmetric position. To get the actual code, the fox
code has to be reduced by 34: 58 - 34 = 24. To decode 24 we apply the technique
described in Section 5.3 again. In this case the number of ones in the binary
sequence is already known. This information was hold in the fox code range. At
this state we have two ones in a sequence of the length 13. Therefore, the starting
point is (13

2).

Comparison Binary Calculation

24 < (12
2) 0

24 < (11
2) 0

24 < (10
2) 0

24 < (9
2) 0

57

5 Encoding of “Fuchs und Henne”

Comparison Binary Calculation

24 < (8
2) 0

24 ≥ (7
2) 1 24− (7

2) = 3

3 < (6
1) 0

3 < (5
1) 0

3 < (4
1) 0

3 ≥ (3
1) 1 3− (3

1) = 0

The resulting sequence is ’0000010001’. We fill it up with zeros to get a sequence
of size 13: ’0000010001000’. We transfer the sequence to the left side of the board.
The order is shown in Figure 5.1. The resulting setting of the foxes is shown in
Figure 5.6.

Figure 5.6: Decoded foxes of example state of “Fuchs und Henne” both on left side

One of the foxes has to be moved to the right side of the game field. For this, we
compare their index of the schema shown in Figure 4.4. Please notice that that is
not the same schema as for the binary sequences. The fox with the higher index
gets moved to the right side of the game field. The result of the decoding of the
fox code is shown in Figure 5.7.

The last step of the decoding process is to combine the results onto one single
game field as shown in Figure 5.8.

58

5.5 Minimum and Maximum Code for “Fuchs und Henne”

Figure 5.7: Decoded foxes of example state of “Fuchs und Henne”

Figure 5.8: Decoding result of an example state of “Fuchs und Henne”

5.5 Minimum and Maximum Code for “Fuchs und
Henne”

In this section, we determine the minimum and the maximum code for states of
this game. We need this information in order to estimate the range of the codes
for “Fuchs und Henne”.

59

5 Encoding of “Fuchs und Henne”

5.5.1 Minimum Code for “Fuchs und Henne”

To calculate the minimum code for “Fuchs und Henne” we have to find a state in
which all three parts of the code are minimal. We described the three parts of the
code in Section 5.1.

The minimum code for the player is 0, thus it is a state of the hen player.

In order to find the setting of the hens with the minimum code we have to create a
binary sequence with 8 ones, which is a losing state for the hen player. The value
we add to store the information of how many ones are included in the sequence
is 0 for this minimum number of hens. In order to encode the binary sequences
we use the algorithm described in Section 5.3. If all ones are at the end of the
sequence then the code is 0. Figure 5.1 shows the order in which we transfer the
fields of the board to the binary sequence. That means we have to place the nine
hens on the fields with the highest index as shown in Figure 5.9.

Figure 5.9: Setting of the hens with the minimum hen code

A state of the game “Fuchs und Henne” has zero to two foxes as described in
Section 2.2.3. We can see the ranges of the fox code in Table 5.1. The minimum
code for the foxes is 0, which means that there is no fox placed on the game field.
Considering the definition of the fingerprint function (see Section 4.5.1) we would
have to mirror this state vertically before the encoding process. After this, the
hens wouldn’t be placed at the end of the board anymore, but they would be on
the beginning of the board. Binary sequences with all ones at the beginning result
in the largest code. Because of this, the state without a fox is not the state with
the minimum code.

The next smallest fox code is 1. We assign this code if a state has only one fox
and this fox is placed in the field with the index 0. We see this field in Figure 5.1.

60

5.5 Minimum and Maximum Code for “Fuchs und Henne”

We see the resulting state in Figure 5.10.

Figure 5.10: State of “Fuchs und Henne” that results in the minimum code

Because this state has the fox on the left side of the board it will not be changed
by the fingerprint function.

5.5.1.1 Calculation of the Minimum Code

We now encode the state described above. The state is a state of the hen player.
That means the player code is 0:

Cp = 0

The fox is placed on the field with the index 0 thus the fox code is 0. To fit the
range we have to add 1 to this value:

Cf = 1

To encode the positions of the hens we have to create the binary sequence as de-
scribed above. The resulting sequence is ’000000000000000000000000011111111’

Ch =

0 ∗
(

32
9

)
+ 0 ∗

(
31
9

)
+ 0 ∗

(
30
9

)
+ 0 ∗

(
29
9

)
+

0 ∗
(

28
9

)
+ 0 ∗

(
27
9

)
+ 0 ∗

(
26
9

)
+ 0 ∗

(
25
9

)
+

61

5 Encoding of “Fuchs und Henne”

0 ∗
(

24
9

)
+ 0 ∗

(
23
9

)
+ 0 ∗

(
22
9

)
+ 0 ∗

(
21
9

)
+

0 ∗
(

20
9

)
+ 0 ∗

(
19
9

)
+ 0 ∗

(
18
9

)
+ 0 ∗

(
17
9

)
+

0 ∗
(

16
9

)
+ 0 ∗

(
15
9

)
+ 0 ∗

(
14
9

)
+ 0 ∗

(
13
9

)
+

0 ∗
(

12
9

)
+ 0 ∗

(
11
9

)
+ 0 ∗

(
10
9

)
+ 0 ∗

(
9
9

)
+

0 ∗
(

8
9

)
+ 1 ∗

(
7
8

)
+ 1 ∗

(
6
7

)
+ 1 ∗

(
5
6

)
+

1 ∗
(

4
5

)
+ 1 ∗

(
3
4

)
+ 1 ∗

(
2
3

)
+ 1 ∗

(
1
2

)
+

1 ∗
(

0
1

)
=

1 ∗ 0 + 1 ∗ 0 + 1 ∗ 0 + 1 ∗ 0 + 1 ∗ 0 + 1 ∗ 0 + 1 ∗ 0 + 1 ∗ 0 = 0

To store the information on how many ones the binary sequence consists of we
have to add the result of the following sum to the hen code:

nh−1∑
k=8

(
33
k

)

nh (here: 8) is the number of hens. That means the value we have to add to the
hen code is 0.

The last step is to combine the three codes with the formula described in Sec-
tion 5.1.4 as follows:

C = (Ch ∗ num(Cf) + Cf) ∗ 2 + Cp

C = (0 ∗ 302 + 1) ∗ 2 + 0 = 2

The calculation shows that the minimum code for “Fuchs und Henne” is 2.

62

5.5 Minimum and Maximum Code for “Fuchs und Henne”

5.5.2 Maximum Code for “Fuchs und Henne”

To find the maximum code of “Fuchs und Henne”, the three parts that the code
consists of must be as large as possible. Since the hens represent the basis of the
code and the other two codes are appended at the end, above all this code must
be as large as possible.

We get the maximum hen code when all hens are at the beginning of the binary
sequence that we create for the encoding. The value we add to store the number
of hens in the sequence is higher, if more hens are included. That is why we use a
state with the maximum number of hens which is 20 in this game. We see this
setting in Figure 5.11.

Figure 5.11: Setting of the hens with the maximum hen code

If we would place a fox on the remaining fields, the fingerprint function would
mirror the game field vertically. Then the hens would not be placed in the position
with the maximum code anymore. That means this setting without a fox is already
the state with the maximum code. However, if we have a closer look at this state
we see that this state is not reachable when we play the game starting at its initial
state. A state without a fox is a final state in this game. That means the fox
was removed during the previous move. This is just allowed, when the fox player
missed an opportunity to beat a hen. However, in this state due to the positions
of the hens there is no such opportunity.

That means we have to add a fox. We have to place it on the left side of the
game board including the center line. We select the field with the highest index
to keep the hen code as high as possible. This results in the state that we see in
Figure 5.12.

63

5 Encoding of “Fuchs und Henne”

Figure 5.12: State of “Fuchs und Henne” that results in the maximum code

We define the state as state of the fox player, because this results in the higher
player code.

5.5.2.1 Calculation of the Maximum Code

We now encode the state described above.

The state is a state of the fox player. That means the player code is 1:

Cp = 1

The state has one fox so we encode the fox as described in Section 5.1.1.2. The
index of the fox is 19. We increase it by 1 to fit the range.

Cf = 20

To encode the hens we create the following binary sequence:
’111111111111111111101000000000000’. We encode the binary sequence using the
algorithm described in Section 5.3. The starting point is (33

20).

Ch =

1 ∗
(

32
20

)
+ 1 ∗

(
31
19

)
+ 1 ∗

(
30
18

)
+ 1 ∗

(
29
17

)
+

1 ∗
(

28
16

)
+ 1 ∗

(
27
15

)
+ 1 ∗

(
26
14

)
+ 1 ∗

(
25
13

)
+

64

5.5 Minimum and Maximum Code for “Fuchs und Henne”

1 ∗
(

24
12

)
+ 1 ∗

(
23
11

)
+ 1 ∗

(
22
10

)
+ 1 ∗

(
21
9

)
+

1 ∗
(

20
8

)
+ 1 ∗

(
19
7

)
+ 1 ∗

(
18
6

)
+ 1 ∗

(
17
5

)
+

1 ∗
(

16
4

)
+ 1 ∗

(
15
3

)
+ 1 ∗

(
14
2

)
+ 0 ∗

(
13
1

)
+

1 ∗
(

12
1

)
=

225 792 840 + 141 120 525 + 86 493 225 + 51 895 935+

30 421 755 + 17 383 860 + 9 657 700 + 5 200 300+

2 704 156 + 1 352 078 + 646 646 + 293 930+

125 970 + 50 388 + 18 564 + 6 188+

1 820 + 455 + 91 + 0+

12 = 573 166 438

We have to add the result of the following sum to store the information of the
number of hens in the sequence:

nh−1∑
k=8

(
33
k

)
19∑

k=8

(
33
k

)
= 7 312 074 036

We add this value to the hen code:

573 166 438 + 7 312 074 036 = 7 885 240 474

Our last step is to combine the three values with the formula described in
Section 5.1.4:

C = (Ch ∗ num(Cf) + Cf) ∗ 2 + Cp

C = (7 885 240 474 ∗ 302 + 20) ∗ 2 + 1 = 4 762 685 246 337

Our encoding results in the maximum code of 4 762 685 246 337 for the game
“Fuchs und Henne”. This means we need 43 bits to store the data.

65

5 Encoding of “Fuchs und Henne”

To sum up, in this chapter we introduced a method to encode states of the game
“Fuchs und Henne”. We applied the method to an example state and then decoded
the state again. In addition we looked at the minimum and maximum code for
this game. In the next chapter we will examine the state space of the very similar
game “Fox and Geese”.

66

6 State space of “Fox and Geese”

In Chapter 4 we considered the state space of the game “Fuchs und Henne”. In
this chapter we consider the state space of a very similar game called “Fox and
Geese”. That is why we focus mainly on the particularity of “Fox and Geese” in
this chapter. At first we will have a look at the possible different placements of
the tokens on the board. Thereby we calculate an upper bound of the number of
reachable states of this game. Because we also consider states that we can not
reach when we play the game starting at its initial state, this is just an upper
bound. We then take care of symmetric positions, what will improve this upper
bound.

6.1 Placing Fox and Geese

We want to calculate the upper bound of states for the game “Fox and Geese”.
Therefore we use combinatorics without repetition to calculate the possible ar-
rangements on the game board.

We play “Fox and Geese” on a game board with 33 fields as shown in Figure 2.1.
Our first step is to place the fox on one of this fields. After this, we place the
geese on the remaining fields. This results also in states that can not be reached
when we play the game starting at its initial state. That is why this is just an
upper bound of the number of states for this game.

6.2 Positions of the Fox

We play the game “Fox and Geese” with one single fox. We can place it anywhere
on the game board. The game board for this game has 33 fields. We use the
binomial coefficient 33 choose 1 to get all situations:

(
33
1

)
= 33

67

6 State space of “Fox and Geese”

This number is just an upper bound as already mentioned above. It also includes
symmetric positions. We will describe this in detail in Section 6.5.

6.3 Positions of the Geese

We play “Fox and Geese” in our selected version with 15 geese. The geese player
wins if he/she is able to surround the fox in a way it is not able to move anymore.
We described this in Section 2.3.4. At our selected version we need at least 6 geese
to achieve this as we already described in Section 2.3.4.

That means there are 6 to 15 geese on the game board.

After we placed the fox on the game board, there are 32 free fields left to place
these 6 to 15 geese. To calculate the different possibilities to place them on the
board, we use binomial coefficients again:

(
32
6

)
= 906 192

(
32
7

)
= 3 365 856

(
32
8

)
= 10 518 300

(
32
9

)
= 28 048 800

(
32
10

)
= 64 512 240

(
32
11

)
= 129 024 480

(
32
12

)
= 225 792 840

(
32
13

)
= 347 373 600

(
32
14

)
= 471 435 600

(
32
15

)
= 565 722 720

68

6.4 All Possible Placements

To get the number of possible settings for 6 to 15 geese on the 32 remaining fields,
we have to sum up the values we calculated above.

15∑
i=6

(
32
i

)
= 1 846 700 628

6.4 All Possible Placements

We calculated the number of different placements for the fox in Section 6.2. The
result was 33. After this we calculated the number of different placements for 6 to
15 geese on the remaining 32 fields. The result for this was 1 846 700 628.

To get the total number of different settings we have to combine this two values
by multiplication:

15∑
i=6

(
32
i

)
∗ 33 = 60 941 120 724

Each of these states can either be a state of the fox player or a state of the geese
player. That is why we have to multiply the number of states by two to get the
full number of states:

15∑
i=6

(
32
i

)
∗ 33 ∗ 2 = 121 882 241 448

The game “Fox and Geese” has an upper bound of 121 882 241 448 different states.
Because we did not take care of symmetric positions, we are able to improve this
upper bound. We will consider this in the following sections.

6.5 Symmetric Positions

In Section 3.2.1 we described how the state space of a game can be reduced by
taking care of symmetric positions. In Section 4.5 we already did the reduction of
the state space for the game “Fuchs und Henne”.

The game board of “Fox and Geese” has a vertical axis of symmetry. That means
we can create similar states by mirroring the game board vertically. There is no
horizontal axis of symmetry although there is no hen house in this game. It is not

69

6 State space of “Fox and Geese”

possible that we create similar states by mirroring horizontally because the geese
are not allowed to move back.

In Figure 6.1 we see two states of “Fox and Geese” that we consider to be the
same.

Figure 6.1: Two states of “Fox and Geese” which we consider to be the same

In Section 6.4 we calculated an upper bound of the states for “Fox and Geese”.
We can reduce this number when we use the symmetry we described above. To
know which of the similar states we want to store, we again need a fingerprint
function as we already described in Section 3.2.1 and also for the game “Fuchs
und Henne”. In the following subsection we will describe the fingerprint function
for “Fox and Geese”.

6.5.1 Fingerprint of “Fox and Geese” States

To get the fingerprint of a state of “Fox and Geese” we have a look at the position
of the fox. We define the fingerprint of the state as the version where the fox is
on the left side of the game board. If the fox is on the right side of the board we
mirror the board vertically to get the fingerprint. If the fox is on the center line
of the game board what means that the fox is placed directly under the axis of
symmetry the fingerprint depends on the position of the geese. We compare the
fields in the same order as we did it for the game “Fuchs und Henne”. We see the
order in Figure 4.4. The first position where on one side of the board is a goose
and on the corresponding field on the other side is an empty field determines the
fingerprint. We define the state in which the goose is on the left side of the board
and the empty field is on the right side of the field as the fingerprint. If we have
the opposite positions we have to mirror the game field. If the foxes and all geese
are positioned symmetric the fingerprint is this one state.

70

6.6 All Possible Placements with Focus on Symmetries

6.5.2 Reduce Upper Bound of the State Space by looking at
Symmetric Positions

To improve the upper bound for the number of states of “Fox and Geese” we use
the symmetries we described above.

After we apply the fingerprint function to one state of “Fox and Geese” we can
be sure to have a state with a fox on the left side of the game board including the
center line. That means we are able to reduce the number of positions for the fox
from 33 - we calculated this number in Section 6.2 - to 20.

6.6 All Possible Placements with Focus on
Symmetries

We calculated the upper bound of states in Section 6.4. The result was
121 882 241 448. This number also includes the symmetric positions we described
above.

To improve the upper bound for the state space of “Fox and Geese” we have to
use the improved number of different states for the fox:

15∑
i=6

(
32
i

)
∗ 20 ∗ 2 = 73 868 025 120

This formula still includes some symmetric positions. We still count the settings
with the fox placed on the center line twice. That means the upper bound can still
be improved. But since this adjustment would complicate the formula and would
not improve the upper bound significantly, we will not make that adjustment.

In this chapter we considered an upper bound of the state space of “Fox and
Geese”. We took care of symmetric positions to improve this upper bound. In the
following chapter we will describe the encoding and decoding of the states of this
game.

71

7 Encoding of “Fox and Geese”

In Chapter 6 we considered the state space of the game “Fox and Geese”. In this
chapter we create an encoding method for states of this game. The encoding
method is similar to the one that we created for the game “Fuchs und Henne”.
We also want to strongly solve the game using the framework we described in
Section 3.4 which we also used for the game “Fuchs und Henne”. At the end of
this chapter we encode an example state of “Fox and Geese” and decode the result
again. The last section of this chapter deals with the minimum and the maximum
code for states of “Fox and Geese”.

To encode a situation of the game we need to find its numeric representation.
This number has to consist of as few bits as possible. We also have to be able to
decode it again.

7.1 Encoding of the Game Field

Our first step of the encoding is always to apply the fingerprint function for the
state.

The next step is to create a unique code for each of the following three parts of a
game state:

• The position of the fox
• The positions of the geese
• The current player

We encode each part separately to a unique number. After this we combine the
numbers and thus get the full code for one game state.

7.1.1 Encoding of the Fox

In Section 6.5.1 we defined that the fingerprint function always results in the
version of the state which has the fox on the left side of the board including the
center line. That means that the fox is placed on one of the 20 fields on the left
side of the game board. We number the game board to get the index of the fox

73

7 Encoding of “Fox and Geese”

position. We show the numeration of the fields on the board in Figure 5.1. Finally,
we use this index of the fox directly for the fox code.

7.1.2 Encoding of the Geese

We encode the geese nearly the same way we encoded the hens in the game “Fuchs
und Henne” in Section 5.1.2. The main difference for the encoding is that “Fox
and Geese” has always exactly one fox on the game board. That means when
creating the binary sequence for the encoding algorithm (Section 5.3) we don’t
need to consider the location of the fox. We convert the game field in the order
we see in Figure 5.1. We write a zero for each empty field and a one for each field
with a goose. We skip the field on which the fox is placed. The result is a binary
sequence of length 32.

In Section 5.1.2, we described that the encoding algorithm needs to know the
number of ones (geese) included in the sequence. We add this information to the
geese code. As the length of the sequence for “Fox and Geese” is just 32, we have
to add the following sum to the geese code:

ng−1∑
k=4

(
32
k

)

with: ng − Number of geese (ones)

7.1.3 Encoding of the Player

The encoding process of the player is exactly the same as used for “Fuchs und
Henne”. If it is the geese player’s turn we set the player code to 0 and if it is the
fox player’s turn we set the code to 1.

7.1.4 Calculating a Unique Code for a Game Situation

To create the unique code for one game situation we have to combine the following
three values: the code for the fox, the code for the geese and the code for the
player. We combine the three codes in the same way we did for “Fuchs und Henne”,
see Section 5.1.4.

74

7.2 Decoding of the Game Field

code := (Cg ∗ num(Cf) + Cf) ∗ 2 + Cp (7.1)
with:
Cg - Code for geese
Cf - Code for foxes
Cp - Code for player

num(Cf) - Total number of fox codes = maximum fox code + 1

In this game the total number of fox codes is 20. It reaches from 0 to 19.

7.2 Decoding of the Game Field

As mentioned above, the unique code of a “Fox and Geese” state consists of three
parts:

• Unique code for the fox
• Unique code for the geese
• Unique code for the player

In the following subsections, we will decode this unique code for a state of the
game “Fox and Geese”. In order to achieve this, we will split this code in its parts
and then we will decode each part separately.

7.2.1 Split the Code in its Parts

In Section 5.2.1, we created a formula to split the code of a “Fuchs und Henne”
state in its three parts. In this section we reuse this formula that we used for the
game “Fuchs und Henne”.

75

7 Encoding of “Fox and Geese”

Cp := code & 0x01 (7.2)
Cf := (code >> 1) mod num(Cf) (7.3)

Cg := ((code >> 1)−Cf)/num(Cf) (7.4)
with:
Cg - Code for geese
Cf - Code for foxes
Cp - Code for player

num(Cf) - Total number of fox codes = maximum fox code + 1
& - Bitwise AND

0x01 - Binary number 00000001
>> - Bitwise right shift operator

Since the decoding process for the game “Fox and geese” is the same as for “Fuchs
und Henne”, we won’t describe the extraction of the tree codes in this section.

In the following subsections we will look at the decoding of the three parts of the
code for “Fox and Geese”.

7.2.2 Decoding of the Player

Once we have extracted the player code, we can immediately determine whether
it is the fox player’s turn or the geese player’s turn. If the player code is 0, it is a
state of the geese player. If the player code is a 1, it is a state of the fox player.

7.2.3 Decoding of the Fox

The fox code is a number from 0 to 19. It directly represents the index of the fox
on the game board as shown in Figure 5.1. We place the fox on its index before
we place the geese, because we left out the place of the fox during the encoding
process.

7.2.4 Decoding of the Geese

We decode the extracted geese code with the algorithm described in Section 5.3.
This results in a binary sequence of size 32. We transfer this sequence to the game
board in the order we see in 5.1. We place a goose on each field which corresponds
with a 1 in the binary sequence. We must keep in mind to leave out the place
where the fox is located, because we didn’t encode this field.

76

7.3 Encoding and Decoding of an Example State of “Fox and Geese”

7.3 Encoding and Decoding of an Example State of
“Fox and Geese”

In this section we encode an example state of the game “Fox and Geese”. We will
also decode it again. We selected the state shown in Figure 7.1. We define the
state as state of the fox player.

Figure 7.1: State of “Fox and Geese” for encoding and decoding example

7.3.1 Encoding of the Example State

Our first step at the encoding process is to apply the fingerprint function to the
respective state. The fox has to be on the left side of the board which means we
have to mirror the state vertically as shown in Figure 7.2.

Now we can start with the encoding. The first step is to encode the fox. We use
the index of the fox like shown in Figure 5.1. In our example the fox has the index
8.

Cf = 8

The next step is to encode the geese. We transform the game field into a binary
sequence with a length of 32. The order is again as shown in Figure 5.1. We leave
out the field where the fox is located. For fields with a goose we write a one and
for empty fields we write a zero: ’11001010100111100001100000100110’

We encode the resulting sequence with the algorithm described in Section 5.3:

77

7 Encoding of “Fox and Geese”

Figure 7.2: Fingerprint of the state of “Fox and Geese” for encoding and decoding example

Cg =

1 ∗
(

31
14

)
+ 1 ∗

(
30
13

)
+ 0 ∗

(
29
12

)
+ 0 ∗

(
28
12

)
+

1 ∗
(

27
12

)
+ 0 ∗

(
26
11

)
+ 1 ∗

(
25
11

)
+ 0 ∗

(
24
10

)
+

1 ∗
(

23
10

)
+ 0 ∗

(
22
9

)
+ 0 ∗

(
21
9

)
+ 1 ∗

(
20
9

)
+

1 ∗
(

19
8

)
+ 1 ∗

(
18
7

)
+ 1 ∗

(
17
6

)
+ 0 ∗

(
16
5

)
+

0 ∗
(

15
5

)
+ 0 ∗

(
14
5

)
+ 0 ∗

(
13
5

)
+ 1 ∗

(
12
5

)
+

1 ∗
(

11
4

)
+ 0 ∗

(
10
3

)
+ 0 ∗

(
9
3

)
+ 0 ∗

(
8
3

)
+

0 ∗
(

7
3

)
+ 0 ∗

(
6
3

)
+ 1 ∗

(
5
3

)
+ 0 ∗

(
4
2

)
+

0 ∗
(

3
2

)
+ 1 ∗

(
2
2

)
+ 1 ∗

(
1
1

)
+ 0 ∗

(
0
0

)
=

265 182 525 + 119 759 850 + 17 383 860 + 4 457 400+
1 144 066 + 167 960 + 75 582 + 31 824+

12 376 + 792 + 330 + 10+

78

7.3 Encoding and Decoding of an Example State of “Fox and Geese”

1 + 1 = 408 216 577

The algorithm needs to know the number of ones that are encoded in the sequence
for the decoding. That is why we need to add the following sum to the code for
the geese:

ng−1∑
k=6

(
32
k

)

ng is the number of geese. In our example there are 14 geese, which means the
upper bound of the summation is ng − 1 = 13. The lower bound of the summation
is 6, because in this version at least 6 geese are necessary to lock the fox:

Cg = 408 216 577 +
13∑

k=6

(
32
k

)
=

408 216 577 + 809 542 308 = 1 217 758 885

The third and last factor that we need for the encoding is the code for the player.
We defined the state as state of the fox player. That means the code of the player
is Cp = 1.

To get a unique code for the whole state of “Fox and Geese” we have to combine
the three values as described in Section 7.1.4. The number of different codes for
the fox is 20.

(Cg ∗ num(Cf) + Cf) ∗ 2 + Cp =

(1 217 758 885 ∗ 20 + 8) ∗ 2 + 1 = 48 710 355 417

Now we have encoded the example state uniquely.

7.3.2 Decoding of the Example State

In the section above, we encoded the example state into the unique code 48 710 355 417.
In this chapter we decode it again.

Our first step is to split the code in its three parts as described in Section 7.2.1.
To get the code for the player we use the binary AND operation with the binary
number 0x01 (’00000001’). The result is the last bit of the code which at the same
time is the code for the player.

79

7 Encoding of “Fox and Geese”

Cp = 48 710 355 417 & 0x01 = 1

This means the state is a state of the fox player.

As we don’t need the last bit of the code anymore, we shift the number to the
right by one bit:

48 710 355 417 >> 1 = 24 355 177 708

This remaining code includes the code for the geese and the code for the fox. The
next step is to extract the fox code:

Cf = 24 355 177 708 mod 20 = 8

The last step is to get the code for the geese. We subtract the fox code from the
code and divide the result by the maximum fox code, thus by 20. Of course, we
can also directly do an integer division by 20 without subtracting the fox code first.
With this aproach the result would be the same. We do the fox code subtraction
just to show all steps of the reversal of the encoding formula.

24 355 177 708− 8 = 24 355 177 700

Cg = 24 355 177 700/20 = 1 217 758 885

Now we can decode the three individual codes.

We can directly decode the player code. One stands for a state of the fox player.

The fox code directly represents the index of the fox on the game board. We
compare it with Figure 5.1 to get the position and place the fox on the game
board. We see the result in Figure 7.3

To decode the geese code we use the algorithm described in Section 5.3. We added
the number of geese to the geese code, because we need this information for the
decoding algorithm. In order to find this value we have to subtract the binomial
coefficient (32

ones) as long as the geese code is larger than the binomial coefficient.
We start with 6, because this is the minimum number of geese.

Now we do this calculation for our example:

1 217 758 885−
(

32
6

)
= 1 216 852 693

1 216 852 693−
(

32
7

)
= 1 213 486 837

80

7.3 Encoding and Decoding of an Example State of “Fox and Geese”

Figure 7.3: State of “Fox and Geese” example after fox decoding

1 213 486 837−
(

32
8

)
= 1 202 968 537

1 202 968 537−
(

32
9

)
= 1 174 919 737

1 174 919 737−
(

32
10

)
= 1 110 407 497

1 110 407 497−
(

32
11

)
= 981 383 017

981 383 017−
(

32
12

)
= 755 590 177

755 590 177−
(

32
13

)
= 408 216 577

408 216 577−
(

32
14

)
= −63 219 023

The number of geese is 14 and the last positive number is the code for the geese:
408 216 577. Our next step is to decode it. For this we use the algorithm described
in Section 5.3. The starting point is (32

14), because it is a sequence of length 32
and includes 14 ones.

81

7 Encoding of “Fox and Geese”

Comparison Binary Calculation

408 216 577 ≥ (31
14) 1 408 216 577− (31

14) = 143 034 052

143 034 052 ≥ (30
13) 1 143 034 052− (30

13) = 23 274 202

23 274 202 < (29
12) 0

23 274 202 < (28
12) 0

23 274 202 ≥ (27
12) 1 23 274 202− (27

12) = 5 890 342

5 890 342 < (26
11) 0

5 890 342 ≥ (25
11) 1 5 890 342− (25

11) = 1 432 942

1 432 942 < (24
10) 0

1 432 942 ≥ (23
10) 1 1 432 942− (23

10) = 288 876

288 876 < (22
9) 0

288 876 < (21
9) 0

288 876 ≥ (20
9) 1 288 876− (20

9) = 120 916

120 916 ≥ (19
8) 1 120 916− (19

8) = 45 334

45 334 ≥ (18
7) 1 45 334− (18

7) = 13 510

13 510 ≥ (17
6) 1 13 510− (17

6) = 1 134

1 134 < (16
5) 0

1 134 < (15
5) 0

1 134 < (14
5) 0

82

7.3 Encoding and Decoding of an Example State of “Fox and Geese”

Comparison Binary Calculation

1 134 < (13
5) 0

1 134 ≥ (12
5) 1 1 134− (12

5) = 342

342 ≥ (11
4) 1 342− (11

4) = 12

12 < (10
3) 0

12 < (9
3) 0

12 < (8
3) 0

12 < (7
3) 0

12 < (6
3) 0

12 ≥ (5
3) 1 12− (5

3) = 2

2 < (4
2) 0

2 < (3
2) 0

2 ≥ (2
2) 1 2− (2

2) = 1

1 ≥ (1
1) 1 1− (1

1) = 0

0 < (0
0) 0

The resulting sequence is ’11001010100111100001100000100110’. It is the same
one as we encoded before.

Our last step is to transfer this sequence to the game board. We have to be careful
with the field where we already placed the fox. In this case the fox has the index 8
so we modify the sequence. We mark the position of the fox in the sequence (here
with an F) ’11001010 F 100111100001100000100110’. Then, we scan the game
board in the order we see in Figure 5.1 to place the geese. We place the geese on
fields where the binary sequence has a 1.

After this, the decoding is done. We see the resulting state in Figure 7.4.

83

7 Encoding of “Fox and Geese”

Figure 7.4: Decoding result of the “Fox and Geese” example state

7.4 Minimum and Maximum Code for “Fox and
Geese”

In order to estimate the range of the code we need to determine the minimum
and the maximum code for the game “Fox and Geese” in this section.

7.4.1 Minimum Code for “Fox and Geese”

To get the smallest possible code for “Fox and Geese” we have to get the smallest
code for the three parts the code consists of. We described these three parts in
Section 7.1.

The code for the player can either be zero or one. That is why the minimum code
is of a state of the geese player and has the player code 0.

To get the smallest geese code we have to select a state with just 6 geese which is
the minimum for this game. The encoding of binary sequences with all including
ones at its end results in the code 0. The value that we have to add to this code,
in order to know how many ones are included in this sequence, is also 0 because
6 geese are the minimum for each state. We show the calculation later in this
section.

To get the smallest fox code, we have to place the fox on the field with index 0.
We see the numbered game board in Figure 5.1.

84

7.4 Minimum and Maximum Code for “Fox and Geese”

We see the state with the minimum code in Figure 7.5. It is a state of the geese
player.

Figure 7.5: State of “Fox and Geese” that results in the minimum code

7.4.1.1 Calculation of the Minimum Code

As the state is a state of the geese player the player code is 0:

Cp = 0

The fox is placed on the field with the index 0, thus the fox code is 0:

Cf = 0

The binary sequence for the encoding of the geese is
’00000000000000000000000000111111’. It has a length of 32 and includes 6 ones.
We encode it using the algorithm described in Section 5.3. The starting point is
(32

6).

Cg =

0 ∗
(

31
6

)
+ 0 ∗

(
30
6

)
+ 0 ∗

(
29
6

)
+ 0 ∗

(
28
6

)
+

0 ∗
(

27
6

)
+ 0 ∗

(
26
6

)
+ 0 ∗

(
25
6

)
+ 0 ∗

(
24
6

)
+

85

7 Encoding of “Fox and Geese”

0 ∗
(

23
6

)
+ 0 ∗

(
22
6

)
+ 0 ∗

(
21
6

)
+ 0 ∗

(
20
6

)
+

0 ∗
(

19
6

)
+ 0 ∗

(
18
6

)
+ 0 ∗

(
17
6

)
+ 0 ∗

(
16
6

)
+

0 ∗
(

15
6

)
+ 0 ∗

(
14
6

)
+ 0 ∗

(
13
6

)
+ 0 ∗

(
12
6

)
+

0 ∗
(

11
6

)
+ 0 ∗

(
10
6

)
+ 0 ∗

(
9
6

)
+ 0 ∗

(
8
6

)
+

0 ∗
(

7
6

)
+ 0 ∗

(
6
6

)
+ 1 ∗

(
5
6

)
+ 1 ∗

(
4
5

)
+

1 ∗
(

3
4

)
+ 1 ∗

(
2
3

)
+ 1 ∗

(
1
2

)
+ 1 ∗

(
0
1

)
=

1 ∗ 0 + 1 ∗ 0 + 1 ∗ 0 + 1 ∗ 0 + 1 ∗ 0 + 1 ∗ 0 = 0

In order to add the information of how many ones the binary sequence consists
of, we have to add the result of the following sum to the geese code:

ng−1∑
k=6

(
32
k

)

ng is the number of geese, in this case 6. That means the value we have to add
is 0.

As all parts of the code are 0, the resulting code is also 0.

7.4.2 Maximum Code for “Fox and Geese”

In order to get the maximum code for the game “Fox and Geese” we have to find
the maximum code for the player, the geese and the fox.

The maximum code for the player is one. That means the state has to be a state
of the fox player.

The maximum fox code is 19. Thus we have to place the fox on the field with
index 19. We see the fields and their indices in Figure 5.1.

To get the maximum geese code we have to place the maximum number of geese
- 15 geese - on the board. To get the largest code we have to create a binary
sequence that has all its ones directly at the beginning. We use the algorithm
described in Section 5.3 to encode it. In addition we have to add the information

86

7.4 Minimum and Maximum Code for “Fox and Geese”

of how many ones the sequence consists of. Since we use the maximum number of
geese that can be on the board, this value is also the highest value that is possible.
We see the respective calculation in the following subsection.

We see the state with the maximum code in Figure 7.6. It is a state of the fox
player.

Figure 7.6: State of “Fox and Geese” that results in the maximum code

7.4.2.1 Calculation of the Maximum Code

As already mentioned above, the player code for this state is 1, because it is the
fox player’s turn:

Cp = 1

The fox is placed on the field with the index 19. Thus the fox code is as follows:

Cf = 19

The sequence for the encoding of the geese is ’11111111111111100000000000000000’.
It has 15 geese and a length of 32. We encode it with the algorithm described in
Section 5.3. The starting point is (32

15).

Cg =

1 ∗
(

31
15

)
+ 1 ∗

(
30
14

)
+ 1 ∗

(
29
13

)
+ 1 ∗

(
28
12

)
+

87

7 Encoding of “Fox and Geese”

1 ∗
(

27
11

)
+ 1 ∗

(
26
10

)
+ 1 ∗

(
25
9

)
+ 1 ∗

(
24
8

)
+

1 ∗
(

23
7

)
+ 1 ∗

(
22
6

)
+ 1 ∗

(
21
5

)
+ 1 ∗

(
20
4

)
+

1 ∗
(

19
3

)
+ 1 ∗

(
18
2

)
+ 1 ∗

(
17
1

)
=

300 540 195 + 145 422 675 + 67 863 915 + 30 421 755+
13 037 895 + 5 311 735 + 2 042 975 + 735 471+

245 157 + 74 613 + 20 349 + 4 845+
969 + 153 + 17 = 565 722 719

We have to add the information of how many ones are included in the sequence.
Therefore we have to add the following sum to the geese code:

ng−1∑
k=6

(
32
k

)

ng is the number of ones in the sequence, in this case 15. The value we have to
add is 1 280 977 908.

Cg = 565 722 719 + 1 280 977 908 = 1 846 700 627

To get the full code we have to combine the three values:

C = (Cg ∗ num(Cf) + Cf) ∗ 2 + Cp

C = (1 846 700 627 ∗ 20 + 19) ∗ 2 + 1 = 73 868 025 119

The maximum code for “Fox and Geese” is 73 868 025 119. We need 37 bits to store
this information. If we compare these values with the numbers we’ve calculated
for “Fuchs und Henne” in Section 5.5.2.1, we see that the the values for “Fox and
Geese” are considerably lower.

To sum up, in this chapter we created an encoding method for states of “Fox and
Geese”. We created unique codes for the current player, the position of the fox

88

7.4 Minimum and Maximum Code for “Fox and Geese”

and the positions of the geese. We combined these three codes to get the unique
code for the state. At the end of this state we encoded an example state of “Fox
and Geese” and decoded the result again. Finally, we determined the minimum
and the maximum code for the game “Fox and Geese”.

In the next chapter, we will look at some variations of the games “Fuchs und
Henne” and “Fox and Geese”.

89

8 Variations of the Games

In this chapter we look at some variations of the games “Fuchs und Henne” and
“Fox and Geese”. We strongly solve this variations and compare the results.

As already mentioned above, we sometimes perceive asymmetric games as unfair,
due to unequal opportunities and conditions. To overcome this we compare some
variations of the games by solving them strongly. Our goal is to find a variation
that is as fair as possible. Of course, this is possible only to a limited extent,
because the computer program lacks human aspects. Thus, we just compare the
number of possible winning states for the players and use this as a meassure for
the fairness of the game.

8.1 Variations of “Fuchs und Henne”

In this section we look at variations of the game “Fuchs und Henne”. As mentioned
in Section 2.2, there are many different variations of this game. In this section we
vary the number of hens in the initial state from 9, which is the minimum value
for this game, to 20. In Figure 8.1 we see the initial states for this variations. In
Chapter 4 we found an upper bound for the number of different states for this
game. We use the same approach for the variations of this game. We strongly
solve the variations and compare the results. In Section 3.4 we described the game
framework that we use. The encoding is the same as described in Chapter 5.

In order to get the upper bound of states of a variation of “Fuchs und Henne” we
can use the following formula:

(
x∑

i=9

(
31
i

)
∗ 281 +

x∑
i=9

(
32
i

)
∗ 20) ∗ 2

The parameter x is the number of hens of the variation. We start the index of this
sums at 9, because this is the game’s minimum number of hens. The first sum
represents the situations with two foxes. We multiply this value by 281 which is
the number of different positions for two foxes. The second sum represents the
situations with just one fox. We multiply it by 20, because this is the number of
possible positions for this one fox. We then multiply this sums by 2, because each

91

8 Variations of the Games

state can be the state of the fox player or of the hen player. We described this
formula for the main version of this game in Section 4.5.2.3.

No.
of

hens

Calc. upper
bound of

states

Exact
number

of states

States
hens
win

States
fox

wins

DB
size

9 12 451 914 150
10 39 958 320 480
11 92 705 140 710
12 181 046 589 360
13 310 855 761 510
14 478 745 764 560
15 670 278 262 950
16 863 225 068 140
17 1 034 886 555 990
18 1 169 658 208 140
19 1 262 862 887 190
20 1 319 480 441 820

Table 8.1: States of “Fuchs und Henne” with different numbers of hens

We do not have results for the variations of “Fuchs und Henne” so far. Due to
the complexity of this game, the computer program we developed for solving
“Fuchs und Henne” strongly is still running at the time of this writing, even for
the variation with the minimum number of 9 hens. This is why Table 8.1 is not
filled with data so far, except for the values we calculated for the upper bound of
states.

8.2 Variations of “Fox and Geese”

In this section, we look at variations of the game “Fox and Geese”. We vary the
number of geese at the initial state from 4 to 15. We show the arrangements of
the initial states for this variations in Figure 8.2. The method to calculate the
upper bound of states for this variations is described in Chapter 6 for the main
version of this game. Thus, we strongly solve these variations and compare the
results. We use the game framework which is described in Section 3.4 and the
encoding we developed in Chapter 7.

In order to find the upper bound of states of a variation of “Fox and Geese” we
use the following formula:

92

8.2 Variations of “Fox and Geese”

x∑
i=4

(
32
i

)
∗ 20 ∗ 2

The parameter x is the number of geese of the variation. The index of the sum
is starting at 4, because this is the minimum number of geese for this game. We
multiply the whole sum by 20 as this is the number of different positions for the
fox. Then we multiply this sums by 2, because each state can occur during either
player’s turn. We described this formula in detail in Section 6.6.

No.
of

geese

Calc. upper
bound of

states

Exact
number of

states

States
geese

win

States
fox wins

DB
size

4 1 438 400 1 270 717 0 666 912 13 MB
5 9 493 440 7 919 632 0 1 644 004 83 MB
6 45 741 120 37 820 778 16 3 478 337 431 MB
7 180 375 360 148 821 122 416 6 975 888 1.3 GB
8 601 107 360 495 481 299 5 224 12 936 253 4.7 GB
9 1 723 059 360 1 419 189 540 52 859 21 781 681 15 GB

10 4 303 548 960
11 9 464 528 160
12 18 496 241 760
13 32 391 185 760
14 51 248 609 760
15 73 877 518 560

Table 8.2: States of “Fox and Geese” with different numbers of geese

We do not have the results for all variations of this game so far at the time of this
writing. Due to the complexity of this game, the computer program we developed
for solving “Fox and Geese” strongly is still running at the time of this writing
for the remaining variations.

93

8 Variations of the Games

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

106

107

108

109

No. of Geese

N
o.

of
St

at
es

Upper bound and exact number of states
of different variations of “Fox and Geese”

Upper Bound of States
Exact No. of States

8.3 Results

In this work we developed an encoding for the games “Fuchs und Henne” and
“Fox and Geese”. We used a method that is as flexible as possible and thus can
also be applied for the different variations of these games.

We have already solved a few variations of “Fox and Geese” while writing this
thesis. Since the number of states increases exponentially as we increase the
number of hens or geese in the initial state, the computation time of the program
also increases exponentially.

For the variation of “Fuchs und Henne” with the minimum number of 9 hens
computing the creation of all states without a classification of them already took

94

8.4 Future Work

nearly one month. The classification process for these states is still running. This
is why we do not have results for this game at the time of this writing.

For “Fox and Geese” we already have results for the variations from 4 to 9 geese.
In this variations the fox player has clearly better chances to win the game.

The tables above show that a different number of hens or respectively geese
changes the result significantly. If we compare the results of the winning states
for both players, we can identify the variant with the smallest difference between
the values. That might be the fairest version for the game. However, since the
computer behaves differently than a human being, we can only assume that this
variant will be perceived as fair.

Additionally we can use the databases of the solved variations, for example to
play the games against the computer.

8.4 Future Work

The main goal of this work was to develop a method to solve different variations of
asymmetric two-player games, especially the games “Fuchs und Henne” and “Fox
and Geese”. Due to the high complexity of these games, we were able to strongly
solve only a few of these variations completely.

We can use the idea of the presented encoding also for other asymmetric two-
player games. The databases of the already solved versions can be used for playing
against the computer. As further work it would be interesting to create a user
interface for playing the games against the computer, because so far it is just
possible to play the games on the command line.

We were not able to solve all variations we described in this work strongly, thus it
is still unknown which variation could be considered the fairest. The goal of the
thesis was to develop the framework and the implementations, so this task can be
fulfilled in the near future, but after the time of finishing this thesis.

95

8 Variations of the Games

Figure 8.1: Initial states of variations of “Fuchs und Henne” with 9 to 20 hens

96

8.4 Future Work

Figure 8.2: Initial states of variations of “Fox and Geese” with 4 to 15 geese

97

Bibliography

[1] E. Aarseth, S. M. Smedstad, and L. Sunnan̊a. “A multidimensional typology
of games”. In: (2003). url: http://www.digra.org/wp-content/uploads/
digital-library/05163.52481.pdf (cit. on p. 1).

[2] L. V. Allis. Searching for Solutions in Games and Artificial Intelligence.
1994 (cit. on pp. 20, 21).

[3] R.C. Bell. Board and Table Games from Many Civilizations. Board and Ta-
ble Games from Many Civilizations Bd. 1-2. Dover Publications, 1979.
isbn: 9780486238555. url: https : / / books . google . at / books ? id =
5viitl9PvBoC (cit. on pp. 5, 6).

[4] S. Cheng, D. M. Reeves, Y. Vorobeychik, and M. P. Wellman. “Notes on
equilibria in symmetric games”. In: (2004), pp. 71–78 (cit. on p. 2).

[5] E. Demaine and R. Hearn. “Playing Games with Algorithms: Algorithmic
Combinatorial Game Theory”. In: CoRR cs.CC/0106019 (2001). url: http:
//arxiv.org/abs/cs.CC/0106019 (cit. on p. 2).

[6] Masters Traditional Games. The Rules of Fox & Geese. https://www.
mastersofgames.com/rules/fox-geese-rules.htm. Accessed: 2018-03-
08 (cit. on p. 13).

[7] E. Glonnegger. Das Spiele-Buch: Brett- und Legespiele aus aller Welt; Her-
kunft, Regeln und Geschichte. Drei-Magier-Verlag, 1999. isbn: 9783980679206.
url: https://books.google.at/books?id=Lzo3YAAACAAJ (cit. on p. 5).

[8] Winkler Schulbedarf GmbH. FUCHS und HENNE, WINKLER - Nr. 100685.
https : / / www . winklerschulbedarf . com / Documents / Anleitungen _
Werkpackungen/PDF_Ger/100685.pdf. Accessed: 2018-03-08 (cit. on p. 9).

[9] S. Helmfrid. Hnefatafl - the Strategic Board Game of the Vikings. http:
//hem.bredband.net/b512479/Hnefatafl_by_Sten_Helmfrid.pdf.
Published 2005-04-23, Accessed: 2018-03-21 (cit. on p. 5).

[10] H. Herik, J. Uiterwijk, and J. van Rijswijck. “Games solved: Now and in
the future”. In: 134 (Jan. 2002), pp. 277–311 (cit. on pp. 17, 20, 21).

[11] E. Magnússon. Grettis Saga. The Story of Grettir the Strong, translated
from the Icelandic by E. Magnússon and W. Morris. 1869. url: https:
//books.google.at/books?id=GtdUAAAAcAAJ (cit. on p. 6).

99

http://www.digra.org/wp-content/uploads/digital-library/05163.52481.pdf
http://www.digra.org/wp-content/uploads/digital-library/05163.52481.pdf
https://books.google.at/books?id=5viitl9PvBoC
https://books.google.at/books?id=5viitl9PvBoC
http://arxiv.org/abs/cs.CC/0106019
http://arxiv.org/abs/cs.CC/0106019
https://www.mastersofgames.com/rules/fox-geese-rules.htm
https://www.mastersofgames.com/rules/fox-geese-rules.htm
https://books.google.at/books?id=Lzo3YAAACAAJ
https://www.winklerschulbedarf.com/Documents/Anleitungen_Werkpackungen/PDF_Ger/100685.pdf
https://www.winklerschulbedarf.com/Documents/Anleitungen_Werkpackungen/PDF_Ger/100685.pdf
http://hem.bredband.net/b512479/Hnefatafl_by_Sten_Helmfrid.pdf
http://hem.bredband.net/b512479/Hnefatafl_by_Sten_Helmfrid.pdf
https://books.google.at/books?id=GtdUAAAAcAAJ
https://books.google.at/books?id=GtdUAAAAcAAJ

Bibliography

[12] F. Mäyrä. An Introduction to Game Studies. SAGE Publications, 2008.
isbn: 9781412934459. url: https : / / books . google . at / books ? id =
iI0kAQAAIAAJ (cit. on p. 5).

[13] L. Orbán. Schach für Anfänger: Alles über das ”königliche Spiel”. Regeln,
Strategien, Spielzüge. Leicht verständlich erklärt. humboldt, 2010. isbn:
9783869108179. url: https://books.google.at/books?id=HTUuBQAAQBAJ
(cit. on p. 2).

[14] S. L. Patterson. “Game on: Medieval players and their texts”. dissertation.
University of British Columbia, 2017. url: https://open.library.ubc.
ca/cIRcle/collections/ubctheses/24/items/1.0345627 (cit. on p. 5).

[15] O. Regenfelder. “Implementation of Games in a Generalized Framework
for Solving Combinatorial Games using the State Space”. Bachelor Thesis.
Faculty of Computer Science, Graz University of Technology, May 2010
(cit. on pp. 22, 39).

[16] W. Roth. “Entwicklung einer KI für das Spiel Pentago”. Bachelor Thesis.
Faculty of Computer Science, Graz University of Technology, 2012 (cit. on
pp. 18, 21).

[17] J. Schalkwijk. “An algorithm for source coding”. In: IEEE Transactions on
Information Theory 18.3 (May 1972), pp. 395–399. issn: 0018-9448. doi:
10.1109/TIT.1972.1054832 (cit. on pp. 48, 49).

[18] P.D. Straffin. Game Theory and Strategy. Anneli Lax New Mathemat-
ical Library Bd. 36. Mathematical Association of America, 1993. isbn:
9780883856376. url: https://books.google.at/books?id=3TB3m3RvAlcC
(cit. on p. 1).

[19] R. Winkler. Fuchs und Henne nach Spielregeln spielen - so geht’s. http:
//www.helpster.de/fuchs-und-henne-nach-spielregeln-spielen-
so-geht-s_81479. Accessed: 2018-03-08 (cit. on p. 9).

100

https://books.google.at/books?id=iI0kAQAAIAAJ
https://books.google.at/books?id=iI0kAQAAIAAJ
https://books.google.at/books?id=HTUuBQAAQBAJ
https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0345627
https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0345627
http://dx.doi.org/10.1109/TIT.1972.1054832
https://books.google.at/books?id=3TB3m3RvAlcC
http://www.helpster.de/fuchs-und-henne-nach-spielregeln-spielen-so-geht-s_81479
http://www.helpster.de/fuchs-und-henne-nach-spielregeln-spielen-so-geht-s_81479
http://www.helpster.de/fuchs-und-henne-nach-spielregeln-spielen-so-geht-s_81479

	Abstract
	Kurzfassung
	Introduction
	Terms
	Perfect Information
	Determinism in Games
	Combinatorial Games
	Symmetric and Asymmetric Games

	Motivation
	Objective

	'`Tafl'` Games
	History
	Rules of ``Fuchs und Henne''
	The Game Board
	Starting Point
	Allowed Moves
	End of the Game
	Selected Version

	Rules of ``Fox and Geese''
	The Game Board
	Starting Point
	Allowed Moves
	End of the Game
	Selected Version

	Solving Games
	Solving Games
	The Game Tree and the State Space
	Reducing the State Space

	Complexity of Games
	The Framework

	State Space of ``Fuchs und Henne''
	Placing Foxes and Hens
	Positions of the Foxes
	Possible Placements for two Foxes
	Possible Placements for one Fox
	Possible Placements for no Foxes
	Total Placements for the Foxes

	Positions of the Hens
	All Possible Placements
	Symmetric Position
	Fingerprint of ``Fuchs und Henne'' States
	Reduce Upper Bound of the State Space by looking at Symmetric Positions
	Symmetric Positions with two Foxes
	Symmetric Positions with one Fox
	Fox Positions with Focus on Symmetries

	All Possible Placements with Focus on Symmetries
	A Selection of not reachable States

	Encoding of ``Fuchs und Henne''
	Encoding of the Game Field
	Encoding of the Foxes
	Fox Code of no Fox
	Fox Code for one Fox
	Fox Code for two Foxes in Symmetric Position
	Fox Code for two Foxes in Non-Symmetric Position
	Fox Code for two Foxes on the same Side of the Board

	Encoding of the Hens
	Encoding of the Player
	Calculating a Unique Code for a Game Situation

	Decoding of the Game Field
	Split the Code in its Parts
	Decoding of the Player
	Decoding of the Hens
	Decoding of the Foxes
	Decoding of States with no Fox
	Decoding of States with one Fox
	Decoding of States with two Foxes in Symmetric Position
	Decoding of States with two Foxes in Non-Symmetric Position
	Decoding of States with two Foxes on the left Side of the Board including the Center Line

	The Encoding Algorithm
	Encoding and Decoding of an Example State of ``Fuchs und Henne''
	Encoding of the Example State
	Decoding of the Example State

	Minimum and Maximum Code for ``Fuchs und Henne''
	Minimum Code for ``Fuchs und Henne''
	Calculation of the Minimum Code

	Maximum Code for ``Fuchs und Henne''
	Calculation of the Maximum Code

	State space of ``Fox and Geese''
	Placing Fox and Geese
	Positions of the Fox
	Positions of the Geese
	All Possible Placements
	Symmetric Positions
	Fingerprint of ``Fox and Geese'' States
	Reduce Upper Bound of the State Space by looking at Symmetric Positions

	All Possible Placements with Focus on Symmetries

	Encoding of ``Fox and Geese''
	Encoding of the Game Field
	Encoding of the Fox
	Encoding of the Geese
	Encoding of the Player
	Calculating a Unique Code for a Game Situation

	Decoding of the Game Field
	Split the Code in its Parts
	Decoding of the Player
	Decoding of the Fox
	Decoding of the Geese

	Encoding and Decoding of an Example State of ``Fox and Geese''
	Encoding of the Example State
	Decoding of the Example State

	Minimum and Maximum Code for ``Fox and Geese''
	Minimum Code for ``Fox and Geese''
	Calculation of the Minimum Code

	Maximum Code for ``Fox and Geese''
	Calculation of the Maximum Code

	Variations of the Games
	Variations of ``Fuchs und Henne''
	Variations of ``Fox and Geese''
	Results
	Future Work

	Bibliography

