
Bernhard Frohner, BSc.

Aortic Distensibility Estimation by
M-Mode Echocardiographic Data

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Biomedical Engineering

submitted to

Graz University of Technology

Univ.-Prof. Dipl.-Ing. Dr.techn., Christian Baumgartner

Institut für Health Care Engineering

 Diplom-Ingenieur

Supervisor

Graz, March 2018

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly marked all material which

has been quoted either literally or by content from the used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere

als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen

wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008;

Genehmigung des Senates am 1.12.2008

Acknowledgment

I would like to show my gratitude to my supervisor Prof. Christian Baumgartner

for his comprehensive, goal-driven and professional supervision and the extensive

support, far beyond the thesis over the last year. In addition, I would like to thank

Prof. Daniela Baumgartner and her colleagues to be on hand with help and advice for

me but also to make the testing phase at LKH-Univ. Klinikum Graz even possible. I

personally think that a supervisor showing interest on a master’s thesis for seven days

a week is certainly not a matter of course.

In addition, I would especially like to thank my mother for her faith in me from the

beginning of my studies to this day.

Danksagung

Ich möchte mich bei meinem Betreuer Prof. Christian Baumgartner für die überaus

umfassende, zielorientierte und professionelle Betreuung und auch die weit darüber

hinausgehende Unterstützung im letzten Jahr bedanken. Weiters gilt mein Dank auch

Prof. Daniela Baumgartner und ihren KollegInnen, die mit wissenschaftlichen Rat und

Tat zur Seite standen und die Testphase am LKH-Univ. Klinikum Graz überhaupt

erst ermöglicht haben. Ich persönlich sehe einen Betreuer/eine Betreuerin, der/die

sieben Tage pro Woche Interesse an einer Diplomarbeit zeigt, als alles andere als

selbstverständlich an.

Weiters möchte ich mich besonders bei meiner Mutter für das große Vertrauen in mich

von Anbeginn meines Studiums bis zum heutigen Tage bedanken.

Abstract

Bestimmung der Aortendehnbarkeit aus M-Mode Echokardiographie

Daten

Da die Ausdehnung und auch die beeinträchtigte Bioelastizität der Aorta für viel-

erlei kardiale und nicht-kardiale Erkrankungen von Interesse ist, sollten insbeson-

dere KardiologInnen die Möglichkeit haben mechano-elastische Gefäß-Parameter wie

beispielsweise die Dehnbarkeit bzw. den Steifigkeits-Index in-vivo und nicht-invasiv

erheben zu können. Ziel dieser Arbeit war es, dies mittels einer zu implementierenden

medizinischen Bildverarbeitungssoftware basierend auf M-Mode Echokardiographie-

Aufnahmen zu ermöglichen. Die Anwendung erfordert dabei die Spezifikation eines

M-Mode Ultraschallbildes, das die zeitlich aufgezeichnete Gefäßkontur der auf- oder

absteigenden Aorta zeigt (1), die parallel dazu aufgezeichnete EKG-Kurve (2) und

oszillometrisch erhobene Blutdruckwerte (3).

Während der Implementierung dieses Programms, war einerseits auf die Anforderun-

gen an die Software als Medizinprodukt gemäß der aktuell gültigen Medizinproduk-

teverordnung MDR 2017/745 zu achten, andererseits sollte auch der Softwareleben-

szyklus nach EN 62304:2006+A1:2015 beachtet werden.

Schlüsselwörter: Aorta, Dehnbarkeit, Ultraschall, Software, Medizinprodukt

Aortic Distensibility Estimation by M-Mode Echocardiographic Data

As the aortic enlargement and impaired bioelasticity are of interest in several cardiac

and non-cardiac diseases, especially cardiologists should have the possibility to gain

elastic parameters such as distensiblity and stiffness-index in-vivo and non-invasively.

The goal of this thesis was to facilitate this by implementing a medical image processing

software that establishes this by analysis of M-mode echocardiographic images. This

application requires the specification of an M-mode ultrasound image, showing the

time-based vessel’s edges of the ascending- or descending aorta (1), the ECG tracing

recorded in parallel (2) as well as oscillometric blood pressure values (3).

During the implementation of this program, requirements on software as a medical

product according to the Medical Device Regulation 2017/745 (MDR 2017/745) had to

be taken into account, as well as aspects of the software lifecycle under directive EN

62304:2006:A1:2015.

Keywords: Aorta, Distensibility, Ultrasound, Software, Medical Device

Contents

1 Introduction 1

1.1 Aorta . 1

1.1.1 Cardiac Cycle . 1

1.1.2 Biomechanical Behaviour . 2

1.1.3 Windkessel Model . 3

1.2 Echocardiography . 4

1.2.1 M-Mode . 4

1.2.2 Axial Resolution . 5

1.2.3 Temporal Resolution . 5

1.3 Image Processing Algorithms . 6

1.3.1 Image Filter Kernel . 6

1.3.2 Morphological Operators . 7

1.3.3 Canny Edge Detection . 8

1.3.4 Active Contour Model . 9

1.3.5 Morphological GAC . 9

1.3.6 Hough Line Transform . 12

1.4 Regulatory Aspects of Software as a Medical Product 12

1.4.1 EU Risk Classification . 13

1.4.2 Software Lifecycle . 14

1.4.3 Demand for Usability . 15

2 Scope of Work 17

2.1 Overall Goal . 17

2.2 Preliminary Work . 17

2.3 Minimum Requirements . 17

3 Methods 19

3.1 Calculated Aortic Parameters . 19

3.2 Software Requirement Specification . 21

3.3 Programming Environment . 21

3.4 Software Architecture . 22

3.4.1 GUI class . 22

3.4.2 UsImage class . 24

3.4.3 Backend Classes . 25

3.5 Edge Detection Process . 26

3.5.1 Load Image . 26

3.5.2 Detect Scales . 27

3.5.3 Detect Electrocardiogram (ECG) 28

3.5.4 Detect Aorta . 29

3.5.5 Detect Edges . 30

3.5.6 Calc Parameters . 36

3.6 Software Packaging . 37

3.7 Software Documentation . 38

3.8 Code Reviews . 38

3.9 Usability Testing . 39

4 Results 41

4.1 AortUs Usage . 41

4.1.1 Full Usage Example . 41

4.1.2 Manual Scale Detection Usage Example 52

4.1.3 Clinical Patient Reports . 55

4.2 Regulatory Aspects of AortUs . 56

4.2.1 Traceability and Identification of Software of Unknown Pedigree

(SOUP)s . 56

4.2.2 Risk Classification . 56

4.2.3 System Usability Scale . 56

5 Discussion 59

6 Conclusion 63

References 65

Appendix 69

Python Packages and Versions . 69

Software Requirement Specification . 71

Software Usability Scale Form . 109

AortUs Report of 21Y Female Marfan Syndrome Patient 111

AortUs Report of 4Y Female Healthy Patient 115

AortUs Report of 48Y Male Healthy Patient . 119

User Manual . 123

Software Documentation . 161

Acronyms

Notation Description Page List

adventitia tunica adventitia 2

AscAo ascending aorta 1, 17, 20, 25, 26, 37, 41, 60, 61

BF Bernhard Frohner, BSc. 21, 38

BP blood pressure 19, 23, 49

CB Univ.-Prof. Dipl.-Ing. Dr. techn. Christian Baumgartner 14, 17, 21, 38

CLAHE contrast limited adaptive histogram equalization 35

COV coefficient of variation 35

CVD cardiovascular disease 1

DBP diastolic blood pressure 1

DesAo descending aorta 1, 17, 20, 25, 26, 37, 61

ECG Electrocardiogram 2, 10, 24–26, 28, 29, 39, 45, 46, 55, 59, 61

GAC geodesic active contour 9, 11, 31, 33–36

GUI Graphical User Interface 21, 22, 24, 59

HSV hue saturation value 28

IDE integrated development environment 21

IEEE Institute of Electrical and Electronics Engineers 21

intima tunica intima 2

LoS line of sight 4, 19, 20, 61

MDA Medical Device Act 12

MDD Medical Device Directive 15

Notation Description Page List

MDR 2017/745 Medical Device Regulation 2017/745 7, 8, 13, 17, 56, 60, 63

media tunica media 2

MRI magnetic resonance imaging 59

OS operating system 21, 38, 41, 50

PDE partial differential equation 10, 11

PRP pulse repetition period 5, 6

PWV pulse wave velocity 20, 59

reST restructured text 38

ROI region of interest 25–30, 33–36, 44–47, 52–55

SBP systolic blood pressure 1

SOUP Software of Unknown Pedigree 10, 14, 56

SPL spatial pulse length 5, 6

SRS Software Requirement Specification 14, 21, 56, 63

SUS System Usability Scale 40, 58

TPR total peripheral resistance 3

TTE transthoracal echocardiography 1, 4, 55, 59, 63

US ultrasound 39, 60, 61

1 Introduction

Despite emerging medical background understanding of etiological factors and im-

proving surgical techniques, cardiovascular disease (CVD) remains the leading cause

of death worldwide [1]. One approach of early diagnosis is to study the physiological

and pathophysiological characteristics of the aorta during in-vivo diagnostic echocar-

diography examinations. To illustrate the importance of its mechanical properties, it

is essential to give a theoretical overview of the aortic anatomy and physiology with

respect to its appearance in transthoracal echocardiography (TTE). Another crucial

aspect gaining a sensitive diagnostic marker of impaired arterial bioelasticity is the

principle technical and medical background of TTE and how this is related to image

processing topics to extract time-based aortic wall distortion curves.

As the overall idea behind this software named AortUs is a later commercial use, also

regulatory medical device aspects will be outlined in advance.

1.1 Aorta

The aorta is the main artery in the human systemic circulation that supplies oxygenated

blood to all parts of the body. It has its origin in the left ventricle of the heart and

runs inferiorly down to the aortic bifurcation. Most commonly it is separated into

the ascending aorta (AscAo), the aortic arch, the descending aorta (DesAo) and the

abdominal aorta, where it splits up into the common iliac and further smaller arteries.

The aortic root diameter in healthy adults ranges from 25− 35mm with a normotensive

systolic blood pressure (SBP) of 103− 139mmHg and diastolic blood pressure (DBP) of

66− 89mmHg [2].

1.1.1 Cardiac Cycle

Throughout the systolic isovolumic contraction of the heart, the pressure within the

aorta increases as soon as it is exceeded by the left ventricular pressure. At this point,

the aortic valve opens and a pulsatile ejection supplies the arteries with oxygenated

blood until the isovolumic relaxation of the cardiac muscle takes place. This is where

the aortic valve closes again, as the ventricular pressure falls below the diastolic aortal

pressure like shown in Figure 1.

1

0 400 800
Time / ms

Pr
es

su
re

 /
m

m
H

g
120

90

60

30

0

Systole Diastole

Iso
volumic Contra

ctio
n

Ejectio
n Perio

d

Iso
volumic Relaxatio

n

In�ow and Diasta
sis

AV-valve closes

Aortic valve closes

AV-valve opens

Aortic valve
opens

ECG Tracing

Ventricular Pressure
Atrial Pressure

Aortic Pressure

Figure 1: Pressure course of the aorta, left atrium and ventricle as well as ECG tracing shown for one

cardiac cycle

1.1.2 Biomechanical Behaviour

During each cardiac cycle, the aortic walls are exposed to pulsatile changes of blood

pressure. These walls consist of three layers, the tunica intima (intima), which builds

a barring but stress sensitive smooth inner layer, the comparably thick tunica media

(media), contributing active stiffness regulation by its smooth muscle cells and the

tunica adventitia (adventitia), which provides nutritional support to outer connective

tissue regions. All three layers are composed of different types and quantities of

collagen and elastin in which the latter has more presence in large arteries [3]. The

main function of collagen is to bear tensile strength, whereas elastin can withstand large

strains without breaching [4]. This elastic behaviour is often designated as (arterial)

compliance C and can be calculated by the relationship of absolute volume change ∆V

per arterial pressure change ∆p (1).

The composition of these biological materials leads to a highly nonlinear stress-strain

behviour, like i.e. Zullinger et al. (2004) [5] successfully proved and modelled for

2

normotensive and hypertensive subjects. Although the arterial wall comprises non-

linear, anisotrop and viscoelastic properties, its stress-strain reaction can be roughly

characterised by a quantity called “pressure-strain” modulus Ep, defined by equation

(2) [3].

C =
∆V
∆p

(1)

Ep = R0
∆p

∆R0
(2)

In equation (2) R0 denotes the average outer artery radius.

In addition, every vessel builds up a resistance against the passage of blood, commonly

summarised for the whole circulary system as RTP, the total peripheral resistance

(TPR) (3), which relies on ∆p and the cardiac output QH.

RTP =
∆p
QH

(3)

1.1.3 Windkessel Model

One rough but comprehensible approach to model the vascular flow is the two-element

Windkessel model, developed by Otto Frank in 1899 [6]. A single chamber (Windkessel)

expresses the resilient behaviour of larger vessels to store blood temporarily, formally

known as compliance C. This first element is continuously filled by the time-variant

cardiac output QH(t) from the left ventricle. The second element represents the flow

resistance of the peripheral circulation RTP.

QH(t) Q(t)

C
RTP

Veins Heart Elastic arteries
(Compliance C)

Peripheral vessels
(Peripheral Resistance RTP)

Figure 2: Illustration of two-chamber Windkessel effect

3

Assuming the incompressiblity of blood and disregarding the small back pressure in

veins, the arterial blood flow can be expressed as a single ordinary differential equation

(4).

RC
dQ(t)

dt
+ Q(t) = QH(t) (4)

1.2 Echocardiography

In echocardiography, each element of a transducer array generates ultrasound pulses

that propagate along myocardial structures. These longitudinal mechanical waves with

a frequency of 1.5MHz up to 7.5MHz lead to image relevant reflexions at surface

boundaries with strongly differing acoustic impedance Z. As a matter of fact, not only

reflexions but also refraction and attenuation effects occur and may induce image

artefacts, which will not be discussed at this point. Reflected echos from surface

boundaries can then be detected by the transducer during the listening time, illustrated

in Figure 3. A common simplification is made by the assumption of an overall average

speed of sound in tissue, using the speed of sound in water cH20 = 1540m/s.

1.2.1 M-Mode

In TTE a common medical question addresses structure and functionality of heart

valves and chambers. This is usually done in B-mode (brightness), showing the reflected

amplitudes as different shades of gray encoded pixels in a constantly updated two

dimensional image.

In some cases, a grayscale image using one spatial dimension plotted over time is

sufficient to prove i.e. the correct opening or closing of the aortic valve. This depth

versus time image is also known as M-mode (motion) and uses one transducer element

only. The selection of this element recording a single line of sight (LoS) is typically

based on the correct positioning of the transducer array in B-mode beforehand.

When using this M-mode for an investigation of the aortic walls, different anatomic

landmarks can be used to measure its diameter. In echocardiography the most common

method called Leading Edge Technique defines this diameter from the leading edge of

the transducer-near to the leading edge of the transducer-far wall.

4

1.2.2 Axial Resolution

The axial resolution (6) of an ultrasound transducer depends on the spatial pulse

length (SPL) (5), in which n is denoted as the number of cycles per pulse whereas λ

specifies the wavelength (µm).

SPL = n · λ (5)

∆xax =
SPL

2
(6)

When the sonic frequency f (MHz) increases, a better axial resolution can be achieved

(7). This equation builds the fundamental relationship between wavelength, speed of

sound c and frequency f . The emitted sound intensity I0(x) (W/m2) can be adjusted

by the examining physician, which certainly affects the intensity of reflected waves

I(x). The attenuation of I0(x) does not just depend on the penetrated distance x, but

also on the attenuation coefficient α (dB/(cm ·MHz)) (8). This coefficient is a function

of material properties and sonic frequency.

λ =
c
f

(7)

I(x) = I0 · e−2α(f)·x (8)

1.2.3 Temporal Resolution

The temporal resolution plays a crucial role in M-mode ultrasound imaging. Consid-

ering a constant speed of sound c, the minimal temporal resolution, also referred to

as minimal pulse repetition period (PRP) depicted in Figure 3, only depends on the

penetration depth d set by the examiner (9). This value can be calculated easily for

H2O using d (cm) for depth of view in (10).

PRPmin =
d
c

(9)

PRPH20 =
d

154000
(10)

5

Spatial Pulse
Length Listening Time

Pulse Repetition Period

λ

Figure 3: PRP, SPL, listening time and wavelength λ of a ultrasound pulse sequence

1.3 Image Processing Algorithms

The emphasis of object boundaries, but also the reduction of noise are typical operations

used in image processing. The following sections will give an overview of image

convolution operations, as well as used edge- and line determination techniques used

in this work.

1.3.1 Image Filter Kernel

One way to for instance blur or sharpen images in spatial domain is to use symmetric

2D filter kernels. A convolution operation is used in order to calculate the resulting

filtered image. This can be imagined as the positioning of the kernel center on each

image pixel (neglecting border pixels) and replacing the current pixel value by the sum

of each kernel weighted elements.

-1 0 1

-1 0 1
-2 0 2

GS,X

0 1 0

0 1 0
1 -4 1

Gaussian
Filter Kernel

(approx. for σ=1)

Vertical Sobel
Filter Kernel

Laplacian Filter
Kernel

(4 neighbourhood kernel)

Lxy

1 2 1

1 2 1
2 4 21

16

Gσ

Figure 4: Examples of 3x3 Gaussian, vertical Sobel and Laplacian filter kernels

The Gaussian operator is based on a 2D Gaussian function and can be obtained by a

discretisation of Gσ(x, y) from (11).

6

Gσ(x, y) =
1

2πσ2 · e
− x2+y2

2σ2 (11)

Its discrete form is widely used to smoothen an image for noise reduction and

depends on the variance σ2 only.

In contrast to that, the Sobel operator GS is a simple edge detection filter which builds

the first order derivative for each pixel in filter direction and additionally smoothens

in the orthogonal direction. It is part of the intensity gradient determination for the

Canny Edge Detection.

The Laplacian filter aims to find the maximum of the gradients by the determination

of the second order derivative and its resulting zero crossings. These found gradient

maximum values are considered to be edges.

1.3.2 Morphological Operators

In contrast to the presented kernels in section 1.3.1, morphological operators are non-

linear since they set or reset each pixel based on the surrounding morphology and

shape. For simplicity, the following operations will be discussed for a 3x3 structuring

element with its origin at the center-pixel. This centered structure element is positioned

over each non-border pixel of a binary image in cartesian coordinates.

The basic morphological operators used in this work are the dilatation and erosion

Example (inactive px, active px)

1 1 1
1 1 1
1 1 1

Dilatation

1 1 1
1 1 1
1 1 1

Erosion

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

Figure 5: Examples of 3x3 dilatation and erosion operation on a binary image

7

operator. Dilatation enlarges object boundaries by setting the pixel at the current

position active, if at least one pixel in the structuring element matches the covered

pixel of the binary image. For a 3x3 structuring element with nine active pixels, the

current image pixel is kept inactive only, if all covered image pixels are inactive. Similar

to that, the erosion operation reduces the active boundary pixels for kernel positions

where at least one of the the structuring element pixels covers an inactive image pixel.

The principle of these operations is comprehensible by Figure 5.

1.3.3 Canny Edge Detection

In terms of image processing, an edge can be seen as curve characterised by an intensity

gradient perpendicular to its course. The result of its estimation algorithms are binary

only, meaning that a pixel can either be an edge pixel or not.

The Canny edge detector is a multi-stage algorithm, published by John F. Canny (1986)

[7] that focusses on detecting such edges of an image by passing the following stages:

• Gaussian blurring - The pre-implemented algorithm of the OpenCV (open

source) library uses a 5x5 Gaussian filter kernel in order to reduce noise.

• Intensity gradient calculation - A Sobel operator, in horizontal and vertical

direction at a time, is used to calculate the intensity gradient G(x, y) and its

direction Θ, denoted by (12) and (13).

G(x, y) =
√

Gx(x, y)2 + Gy(x, y)2 (12)

Θ = arctan
Gy(x, y)
Gx(x, y)

(13)

• Non maximum suppression - Each resulting value of G(x, y) is compared with

its neighbours in gradient direction. If the calculated intensity gradient of the

neighbour is greater than the current pixel’s gradient, the current pixel’s gradient

is set to zero. This results in a gradient image with single-pixel edges only.

• Hysteresis - Based on a defined lower and upper gradient threshold, the algo-

rithm finally determines which of the maximum gradient values are accepted.

Edges with gradient pixels greater than the upper threshold are certainly ac-

cepted, those that are below the lower threshold are rejected. If its value lies

in between the lower and upper threshold, it is accepted as edge only if it is

8

connected to an edge with values greater than the upper threshold.

1.3.4 Active Contour Model

“A snake is an energy-minimizing spline guided by external constraint forces and

influenced by image forces that pull it toward features such as lines and edges. Snakes

are active contour models: they lock onto nearby edges, localizing them accurately” [8].

A snake converges from its initial user defined position iteratively towards an object

by minimizing an energy functional E∗snake in (14). Its original formulation by M. Kaas

et al. (1988) [8] includes three energy terms.

E∗snake =
∫ 1

0
Esnake(vvv(s))ds

=
∫ 1

0
Eint(vvv(s)) + Eimage(vvv(s)) + Econt(vvv(s))ds

(14)

The snake itself is integrated as parametrised curve vvv(s) = (x(s), y(s)), modelled as

a combination of smoothness α and elasticity β parameters by the internal energy term

Eint. In addition, an external image related energy Eimage is part of the functional, as

well as a constraining energy Econt to specify prior knowledge about the image, which

can be disregarded for first approximations.

Main advantages of this computational costly edge detection method is its “insensitivity

up to a certain level of noise” [9], as well as the detection of not necessarily connected

structures.

1.3.5 Morphological GAC

One of the major problems of the previously presented approach in 1.3.4 is the

dependence of the result on the snake’s parametrisation. This issue can be addressed

using a morphological implementation of the geodesic active contour (GAC) model,

presented by Márquez-Neila et al. (2014) [10]. Instead of specifying the snake values α

and β, this level-set approach uses intrinsic geometric features of the image to evolve a

geodesic curve along the image content. The initial location and shape of the curve

must be defined, which encloses a binary hypersurface u : Zd → {0, 1} that takes

the value u(x) = 1 for every point x inside the hypersurface and u(x) = 0 for outer

9

points. It can be described using a level-set partial differential equation (PDE) approach

including three forces, composed in (15). The smoothing force, expressed by the curve’s

curvature |∇u|div
(
∇u
|∇u|

)
, the balloon force [11] in order to move the contour along

non-informative areas (driven by the balloon force parameter v ∈ R) and the image

attraction force g(I)∇u.

∂u
∂t

= g(I)|∇u|v + g(I)|∇u|div
(∇u
|∇u|

)
+ g(I)∇u (15)

g(I) =
1√

1 + α|∇Gσ ∗ I|
(16)

Relation (16) defines the edge attracting image content g(I) by convolving the image I

with the derivative of a α weighted Gaussian function Gσ.

Base for
discrete
SId and ISd

operations

Example (inactive px, active px)

for SId operation
=> set pixel inactive since
no operator matches for
active pixels

for ISd operation
=> leave pixel inactive since
P4 matches for inactive pixels

P1

P2

P3

P4

for SId operation
=> leave pixel active
since P2 matches for
active pixels

Figure 6: Base configurations for the SId ◦ ISd operator (left) and usage example (right)

In order to solve (15), the balloon as well as the smoothing force can be simplified

by using binary morphological operations. First of all, the balloon force is required

only, when the hypersurface is located far from the target border. Therefore it can be

substituted by a discrete dilatation Dd or erosion operation Ed (depending on the sign

of v) whenever g(I) exceeds a defined threshold denoted as θ.

Secondly, the actual edge attracting force can be determined straight forward by a

10

multiplication of the known g(I) with the spatial derivation of the current hypersurface

∇u.

Last of all, the smoothing force can be approximated by the combination of two

novel morphological operators denoted as SId (supremum-infimum) and ISd (infimum-

supremum). The principle of these operators can be obtained by Figure 6. For any active

pixel xi, the SId operator sets this pixel inactive if none of the curvature morphological

patterns matches and sets it active for a matching pattern. For the ISd operator a

similar procedure is carried out for inactive pixels. Márquez-Neila et al. defines this

composition SId ◦ ISd as discrete curvature morphological operator, that removes all sharp

inactive pixels by using ISd and repeats this task for active pixels with SId afterwards.

The number of smoothing repetitions and therefore the strength of smoothing can be

adjusted by the parameter µ ∈N. A combination of these simplifications lead to the

iterative morphological implementation of GAC snake un for iteration n in (17).

un+ 1
3 (x) =

(Ddun)(x), if g(I)(x) > θ and v > 0,

(Edun)(x), if g(I)(x) > θ and v < 0,

un(x), otherwise

un+ 2
3 (x) =

1, if ∇un+ 1

3∇g(I)(x) > 0,

0, if ∇un+ 1
3∇g(I)(x) < 0,

un+ 1
3 , if ∇un+ 1

3∇g(I)(x) = 0

un+1(x) =
((

SI
d
◦ IS

d

)µ

un+ 2
3

)
(x)

(17)

In a few words, the method of Márquez-Neila et al. executes the iterative curve

evolution process by approximating the solution of a time-dependent smoothing

function, using a combination of established morphological operators. This procedure

improves not just the stability of the solution, but also reduces the computational effort

to solve the underlying PDE.

11

1.3.6 Hough Line Transform

The Hough transformation can be used to detect any parametriseable figure on a

binary edge image, which can be generated by building the 2D-gradient of it. In case

of detecting lines, the parametrisation equation (18) can be used to describe any line

that crosses a chosen point (x, y) by a variation of α within [−90,+89] degree and d

limited to [−
√

x2
max + y2

max,
√

x2
max + y2

max].

d = x · cos α + y · sin α (18)

The idea is that each point (x, y) on a binary edge image is iterated and the parame-

ters of intersecting lines expressed by (18) with a variation of α are assigned to the 2D

Hough space. It is obvious that for fixed edge point x and y, the variation of α will

generate a sinusodial course in Hough space, like shown for the points P1− P3 in

Figure 7.

Image space
y

x

Hough space

α0

d0

P1

P2

P3

d

α

(d0, α0)

Figure 7: Points P1 - P3 on a line in image space shown as one single intersecting point in Hough space

Each time a sine-curve intersects this point (d0, α0), its value in the Hough space is

iterated by one. When each edge point in the image was transformed by equation (18)

with all possible α values, high values for discrete d and α positions are indicators for

a line with this parametrisation.

1.4 Regulatory Aspects of Software as a Medical Product

The Medical Device Act (MDA) is based on its overall objective, namely to adapt

the European law as well as to harmonise national regulations, on European but

12

also on national principles2. This Austrian law incorporates European regulations

(90/385/EWG, 93/42/EWG, 98/79/EG) to a national level. Since 25 May 2017, the

MDR 2017/745 takes over two of these former legislative regulations of general (MDD

93/42 EWG) and active implantable medical products (AIMD 90/385) to place medical

products on the European market. With a transition period of about three years

(application of regulation planned for 2020), it includes distinct rules to classify these

products into one of four risk classes. The relevant part of the MDR 2017/745 rules as

well as essential regulatory demands for this thesis will be outlined in the upcoming

sections.

1.4.1 EU Risk Classification

In order to place a medical product on the market, the manufacturer has to proof

conformity to be compliant to European directives. One major step in this process

of CE-marking is the specification of the medical product’s risk class (I, IIa, IIb, III).

According to the MDR 2017/745, a set of 22 rules define the classification of a medical

product based on its intended use, in which rule eleven specifies the classification of

software as follows:

“Software intended to provide information which is used to take decisions with diagnosis or

therapeutic purposes is classified as class IIa, except if such decisions have an impact that may

cause:

• death or an irreversible deterioration of a person’s state of health, in which case it is in

class III; or

• a serious deterioration of a person’s state of health or a surgical intervention, in which

case it is classified as class IIb.

Software intended to monitor physiological processes is classified as class IIa, except if it is

intended for monitoring of vital physiological parameters, where the nature of variations of

those parameters is such that it could result in immediate danger to the patient, in which case it

2“Das Medizinproduktegesetz (MPR) basiert entsprechend seiner hauptsächlichen Zielsetzung,

nämlich der Anpassung an europäisches Recht sowie der Vereinheitlichung der nationalen Vorschriften,

sowohl auf europäischer als auch nationalen Grundlagen” [12]. (translated by the Bernhard Frohner)

13

is classified as class IIb.

All other software is classified as class I.”

cited from [13]

1.4.2 Software Lifecycle

One major step towards the CE marking of medical products in Europe is a complete

technical documentation, authored by the manufacturer. This documentation must be

extensive enough to prove essential requirements which can be fulfilled by developing

the application along software lifecycle processes. The EN 62304:2006+A1:2015 defines

demands on medical software, including phases of software development, maintenance

and decommissioning in which this work will focus on the implementational phase.

This norm does not prescribe a certain process model for software development, though

it specifies mandatory documentation as mentioned in [14], including:

• Software Requirement Specification (SRS) - This document defines require-

ments for software interfaces (user, hardware, software, communication), safety,

security, quality, performance, runtime-behaviour, functionality and legal aspects.

• Architecture of software and detailed design - The software architecture should

identify, describe and classify software components, as well as their interfaces.

Other included aspects should be traceability, but also the identification and

requirements on SOUPs.

• Verification of sofware-units (code review) - This is not explicitly required, but

recommended by EN 62304:2006+A1:2015. As AortUs is implemented by one

developer only, this aspect will be treated superficially.

• Integration and system-tests, including test-specification and results - To en-

sure correct functionality of single software components but also of their assembly,

integration and system-tests are executed and results discussed. This part was

omitted due to its extensive effort, in accordance with Univ.-Prof. Dipl.-Ing. Dr.

techn. Christian Baumgartner (CB).

The extensiveness of this documentation mainly depends on the software-safety class

chosen by the manufacturer. The classes are divided into:

• Class A - No injury or damage of health possible

14

• Class B - Non serious injury is possibly

• Class C - Death or serious injury is possible

Especially the detailed documentation of software architecture and verification is

compulsory for classes B and C only. [14].

1.4.3 Demand for Usability

One part of the expiring Medical Device Directive (MDD) is its demand for usability

of medical products, in order to keep risks originating from insufficient usability as

low as possible. The EN 62366 [15] conducts this by following a “Usability Engineering

Process”, integrating the actual definition of the use specification, a comprehensive

statement of the medical device’s usability aspects and a verification and validation of

these aspects. [14].

15

2 Scope of Work

2.1 Overall Goal

The goal of this thesis was to implement a medical image processing software that

is capable of estimating the aortic distensibility, the stiffness-index and the systolic

diameter increase parameters based on M-mode echocardiography records. Besides the

implementational part, the software should also be classified into a risk class according

to the MDR 2017/745, with additional respect to the software lifecycle according to

EN 62304:2006+A1:2015.

2.2 Preliminary Work

Motivated by the outcome of the study of Baumgartner et al. (2005) [16], processed

M-mode images of the aorta turned out to be a powerful diagnostic indicator for

young people suffering from Marfan syndrome. It could be shown that the established

multiple regression model based on aortic mechanical parameters could achieve a

sensitivity of up to 100% and a specifity of 94.7%.

A subset of the AscAo and DesAo M-mode images for this study were provided by CB

in order to develop this software (33 images in total). These M-mode recordings used

during the implementation of AortUs were taken at two ultrasound transducer positions

- the proximal AscAo 10 to 20 mm distal to the sinotubular junction (parasternal long-

axis view) as well as the abdominal DesAo proximal to the branching off of the celiac

trunk (abdominal paramedian longaxis view) [16]. The examiners took care of correct

positioning of the line of sight, being perpendicular to the aorta’s long axis on the

circumferential position of maximal aortic diameter changes.

The images arise from ultrasound devices of two different manufacturers and were

provided in “*.JPG” format with 8-bit depth for each RGB-channel.

2.3 Minimum Requirements

The software should facilitate an easy way to calculate the aortic wall distensibility,

stiffness-index and systolic diameter increase, based on at least 5 cardiac cycles of M-

mode data of AscAo or DesAo. For this computations, it should be possible to process

17

or enter ECG-data recorded in parallel to the M-mode image as well as oscillometrically

established blood pressure values.

Intended users for this application are medical professionals, that control an intuitive

process of semiautomatic edge detection. The software should be implemented in

a way, that at least an interface for an optional extension for the surveillance of the

previously mentioned vascular parameters is integrated. If image artefacts disturb the

tracking of the physiological wall distension significantly, the software may also reject

this image from being processed.

For more detailed information of functional and non-functional requirements of

AortUs, the interested reader is referred to the Software Requirement Specification in

the Appendix.

18

3 Methods

In order to understand the assumptions for the calculation of elasticity parameters

but also the underlaying extraction process, the following sections will describe these

topics in detail.

3.1 Calculated Aortic Parameters

One very simple but interesting parameter is the systolic diameter increase dinc in (19)

dinc =
ds − dd

dd
(%) (19)

where ds denotes the systolic (maximal) and dd the diastolic (minimal) diameter of the

aorta. Based on this relation, the assumption of mainly radial arterial distension and

the definition for arterial compliance C in (1), one can also derive a similar relative

compliance parameter referred to as distensibility D.

D =
As − Ad

Ad · (ps − pd) · 1333
· 107(kPa−1 · 10−3) (20)

Equation (20) considers the systolic aortic lumen As as well as the diastolic minimal

aortic lumen Ad (both in mm2) and can therefore be seen as relative analogon to

equation (1) at fixed vessel length. Parameters ps and pd (both in mmHg) denote the

systolic and the diastolic blood pressure (BP), respectively. Although the systolic and

diastolic BP values from central BP measurement slightly differ from non-invasevly

determined from the right upper arm [17], the latter is still a good approximation

since the brachial artery originates from the first branch of the aortic arch. Therefore,

oscillometrically established systolic and diastolic BP values are used in this formula.

Another simplification is made, as As and Ad are assumed as perfectly circular lumen

with radius d/2. Since this is not always the case, one could make an error estimation

by assuming an elliptically shaped aorta with Aell = a · b · π, where a and b denote the

half width and height of the ellipse. When assuming an ellipse with shortened half

height b, the positioning of the LoS along b will result in a calculated area of size A1,

smaller than the actual area A2 (Area failure F1). Similarly, the calculated area A1 is

19

bigger than the actual area A2, when the LoS reflects along the direction of the half

width a (Area failure F2). Both cases F1 and F2 lead to an error of 25% like shown in

Figure 8.

A1 A2A1
A2

a
b a

b

Area
failure F1

(d=2b, A2 = 5A1/4)

Area
failure F2

(d=2b, A2 = 3A1/4)

Figure 8: Comparison of circular assumed aortic cross section with two elliptical cross sections

Another parameter similar to distensibility D used to address cardiovascular impair-

ment is the local arterial stiffness-index SI or known as β-index (21).

SI =
ln ps

pd

dinc
(dimensionless) (21)

Typical values for healthy patients younger than forty are for the AscAo (DesAo) a

dinc within 18.0± 6.1% (18.6± 6.1%), D within 62± 24kPa−1 · 10–3 (65± 30kPa−1 · 10–3)

and SI within 3.4± 1.4 (3.2± 1) [16]. Nevertheless, the gold standard to estimate the

arterial stiffness and distensibility is to measure the pulse wave velocity (PWV) [18, 19],

expressed by the length of a vessel segment L, divided by its pulse transmit time of

a pressure waveform to pass it. Fortunately the PWV is inversely proportional to the

square root of the distensibility, like shown by the Bramwell-Hill [20] equation in (22).

PWV ∝
1√
D

(22)

20

3.2 Software Requirement Specification

One major part of the technical documentation of software developed along the

software lifecycle EN 62304:2006+A1:2015 is the SRS. Its objective is to specify all

a-priori demands of the system, but also to drive the actual development process and

reduce risks in a systematic way.

Requirements regarding AortUs were defined on basis of the system specifications

elaborated and subscribed by CB and Bernhard Frohner, BSc. (BF), but were also

influenced by the goal to maximize the level of automation with whilst keeping the

software flexible enough to perform or correct certain image processing steps manually

(i.e. scales and resolution detection). The structure of the created SRS document was

taken over from the Institute of Electrical and Electronics Engineers (IEEE) 830-1998

standard and describes basically:

• the overall goal of this project and its users

• the layout and functionality of the Graphical User Interface (GUI)

• functional requirements

• demands of performance, safety, security, quality and legal aspects

Due to its extensiveness, the full Software Requirement Specification document can

be found in the Appendix. The consequences of these requirements are represented by

the sections Software Architecture and Edge Detection Process.

3.3 Programming Environment

Starting at the implementational part, one of the first tasks was to set up the main

demands for this software project. When reviewing programming possibilities, the

interpreted coding language Python 2.7 combines easy usage with manifold image and

math libraries including collaborative support. As the development of the software

is done on a Unix based system but most likely to be used on Windows (Microsoft,

Redmond, USA) operating system (OS), this programming language also convinces

by its platform independence. For a detailed listing of used packages, the interested

reader is referred to section Python Packages and Versions in the Appendix.

To simplify the set up of a Python 2.7 project, the integrated development environment

(IDE) PyCharm Community 2016.3 (JetBrains, Prague, Czech Republic) was used,

21

including version control by using the open source software plugin Apache Subversion

in combination with the Subversion@TU Graz service.

3.4 Software Architecture

Since functionally good but over-engineered software often remains unused due to

its high complexity, the focus of AortUs was a comprehensive high level of usability.

Considering this, the graphic appearance and user interaction related demands were

developed by the combination of unambiguous relatable patient information with

functional aspects based on the edge detection process, described in 3.5. This software

can therefore be roughly separated into three implemented software layers, depicted

in Figure 9.

Patient Box

Con�guration
Box

Image Box

step 1 ...

Log Box

step 1 step 1
State Box

Graphical User Interface

set current state exchange (image) data show user messages
State Control Interface

Image Processing Methods

Parameter and Curve Calculation
Patient Data
Calibration

Static Methods and Base Classes

automatic
semi-automatic

User Interface appearance
Image related plausibility parameters

Calculation and Storage Classes

Figure 9: Overview of AortUs software architecture layers

These layers are implemented as single (GUI and UsImage) and multiple backend

classes in an object oriented approach.

3.4.1 GUI class

The GUI is implemented as one single class named GUI, that creates a window em-

bedding five different kinds of boxes or also called layout containers. These containers

22

align widgets like push-buttons, textboxes, images, graphs that are can be easily inte-

grated and manipulated by using a well-known cross-platform frontend toolkit called

GTK+.

• Patient Box - This box embeds input fields for the patient’s first and last name,

the insurance number, the date of birth and of examination (both in format

“DD.MM.YYYY”) and the established systolic and the diastolic BP values (in

mmHg). Entered BP values are averaged and shown as colum label for systolic

and for diastolic values respectively.

The transducer position of the investigated body part can be selected in a list

with the predefined entries “Ascending Aorta” and “Descending Aorta”. It is

necessary to set this value correct in order to calibrate the detection algorithm’s

parameters and plausibility checks. In addition, the sections per centimeter (one

per default) as well as per second (five per default) must me calibrated manually

since AortUs is not capable of extracting this info from the image’s inter- and

main-scale intersections automatically.

The keyboard-input elements are implemented as input restrictive fields, so

that impossible combinations are rejected (i.e. numeric entries in name fields,

alphabetic entries in numeric fields, entered diastolic higher than systolic BP).

It should be noted, that all of the previously mentioned fields can be accessed

by pressing the “TAB” key, including the BP list, that is appended by an empty

entry automatically when pressing this key to enter its fields. Only if all input

fields are filled, the first state of the edge detection process is enabled.

The bottom of the Patient Box offers the actions “Clear Detection”, “Clear Patient”

and “Export Results”. Whenever the user wants to exit the current state of edge

detection, a click on “Clear Detection” instantly cancels the process, clears all

backend member objects and jumps back to the “Load Image” state. Addition-

ally, the patient-related information can be reseted as well by triggering “Clear

Patient”. Since the resulting aortic parameters may be of interest for later clinical

decisions, the determined aortic parameters as well as the single- and average

aortic diameter curves can be exported to a examination report PDF by the usage

of “Export Results” pushbutton.

• Configuration Box - In almost every state of the edge detection process, manual

23

corrections by the user are possible. The Configuration Box therefore contains

interactive pushbuttons and tables but also plain info text to inform and guide

the user.

• Image Box - Since the user should always be aware of the current state results,

the Image Box contains a tab to display the loaded M-mode image masked by

highlighted found image content (scale axes and ECG in green, boundaries

of aortic area in yellow, triggerpoints and wall edges in red). Some of this

highlighted components can be manually adjusted by the user at certain states,

as described in 3.5.

When the user successfully finishes the final edge detection state, a second tab

appears within the Image Box. This tab named “Aortic Parameters” contains:

– a plot showing the “Single Aortic Diameter Courses”

– a plot showing the overall “Averaged Aortic Diameter Course”

– a box listing the calculated aortic parameters, according to 3.1

– an interactive treelist to remove outlying single aortic diameter curves from

calculation

• State Box - Each of the edge detection states can be initiated by a click on the

related pushbutton in the State Box. Detection states that cannot be reached from

the current one, are restricted by disabling these buttons.

• Log Box - The Log Box provides the user with additional information about the

latest events and results (i.e. name of loaded image, detected axes resolution).

This information is not necessarily important for the moment, but may be relevant

for later commercial use.

3.4.2 UsImage class

To establish a flexible and clear way of communication between the GUI class and

the algorithm containing classes, an interface layer is used. The main advantage of

this separation of visual components from functional parts is that the former can be

replaced easily or even neglected in case of direct programmable control. Similarly

to the GUI class, this controlling interface is implemented as one single class named

UsImage. This class embeds basically two functionalities:

• Interface between GUI class and algorithm containing classes

24

• Control of backend classes by following the edge detection process

3.4.3 Backend Classes

The actual scaling axes and ECG extraction, as well as estimation for the aorta’s position

and the edge- and parameter calculation is processed in backend classes of AortUs.

The most relevant classes for further understanding are described in the following:

• Patient and Examination classes - These classes process and store all patient

relevant data including personal data, the loaded and processed image themselves

and the extracted diameter curves and parameters. Since AscAo as well as

DesAo images can be loaded, it also references to a list of TransducerPosTypes,

each element containing a list of Examinations. Since it is required to facilitate

processing multiple M-mode images of one patient to one parameter set, each

entry in this list of Examinations is created for one loaded image. Each examination

in turn contains a list of diameter curves for this image. The embedded structure

can be obtained by Figure 10.

Patient

Transducer Pos. List

AscAo Examinat. List
List of curves
List of curves
List of curves

...

Img 1
Img 2
Img 3

...

(Name, Date of Birth, ...)

(AscAo, DesAo)

DesAo Examinat. List
List of curves

...
Img 1

...

Figure 10: Storage structure of diameter curves in Patient class

• Scale class - This class handles the automatic detection, but also the manual scale

definition process. Its main target is to determine the M-mode resolution in pixel

per second, the pixel per centimeter as well as the position and dimension of the

actual M-mode region of interest (ROI).

25

• ECG and R-peaks classes - One requirement of loaded aortic images is the

parallel record of the patient’s ECG tracings in order to obtain the ventricular

contraction point at the R-peak. The ECG class implements the automatic extrac-

tion of this curves and creates a list of determined R-peaks used as triggerpoints.

These triggerpoints are used to average the diameter curves over heart-cycles.

• Aorta class - The Aorta class embeds the estimation of the position of the aorta

within the M-mode ROI, but also controls the detection of aortic wall’s edges

by calling methods of the Edges class. It can be seen as the interface between

the extracted M-mode image as input and the calculated list diameter curves as

output.

• (static) Edges class - This class provides several static methods to split, merge,

reconnect a passed list of edges, based on certain properties (i.e. geometric

distance, gradient of definition direction).

• Calibration classes - These classes are used to define general aspects of the

software project (flag definitions of debug modes), as well as physiologically

useful thresholds like minimal/maximal heart rate and time frames for the

detection of minimal and maximal diameters.

For more detailed information about the functionality and structure of the classes,

the interested reader is referred to the Software Documentation in the Appendix.

3.5 Edge Detection Process

The edge detection process is the backbone of AortUs and separates its aim into

six consecutive steps. It starts with loading an M-mode image and ends with the

calculation of aortic parameters and triggered aortic diameter curves over time. Each

of these steps can be initiated by a click on the according state button in the State Box

and is further processed by the UsImage class.

3.5.1 Load Image

When the user entered all patient relevant information in the Patient Box, the initiation

of the first state is enabled. The user is asked to pass a “*.jpg”, “*.png”, “*.tif” or

“*.bmp” M-mode image of the AscAo or DesAo that also includes a coloured ECG

26

tracing. Since there is no unique standard for M-mode images, no additional input

image plausibility check is performed at this point.

Its implementation is a very straight forward usage of the GTK+ FileChooserDialog. The

image itself is then stored and handled in the previously mentioned administrating

UsImage class.

3.5.2 Detect Scales

After an M-mode image was successfully loaded, the scale detection step is performed

in automatic mode first. It aims to find the main M-mode image axes, the ROI as a

result of the found axes that span it and their pixel-scalings (pixels per cm and sec).

Since the M-mode axes in the provided dataset are shown as bright lines on a black

background, the first step in the automated mode is to threshold and binarise the

image. For the detection of main axes, the resulting lines of the Hough Line Transform

are filtered and checked for plausibility. A certain length in relation to the image width

and height must be reached on one hand and the orientation must be purely vertical

and horizontal, respectively. The pixel resolution is then determined by averaging the

pixels used for inter-subsections on each axis.

This automatic algorithm fails whenever one of the axes is interrupted or not clearly

detectable (i.e. the user changes transducer-device settings during record which may

result in vertical black bar in the image, usage of ultrasound device-specific measure-

ment cursors). In this case, the user will be informed about the unsuccessful automatic

mode and guided through the manual scale detection process, based on interactions

on the image plane:

1. Selection of a rectangular M-mode image area (M-mode ROI)

2. Definition of a horizontal line, equal to one second

3. Definition of a vertical line, equal to one centimeter

Each of these steps is defined by a click-and-drag interaction in the Image Box, that

highlights a coloured rectangle or line and must be confirmed by a click on the “Next”

button in the Configuration Box.

27

3.5.3 Detect ECG

As already mentioned, the loaded and detected M-mode image area must also contain

a coloured ECG tracing. This ECG is used later on to split the consecutive aortic wall

curves into a list of cardiac cycle based curves.

The semiautomatic step starts with hue saturation value (HSV) filtering the image

to coloured content. Since the ECG tracings of the provided images are partially dis-

turbed by thick vertical coloured cursors, the next step to perform is a vertical line

suppression on the remaining image content. After this is done, a fast border following

edge detection algorithm is applied, based on the work of Suzuki et al. (1985) [21], to

detect the ECG tracing. To make sure that no image content is mistakenly classified as

ECG, the found contours are rated by the sum of the tracing’s absolute derivation in

time domain, as well as the derivation’s standard deviation and the relative coverage

of the found contours in time domain, compared to the M-mode ROI’s width.

200 400 600 800 1000
Time / ms

40

60

80

M
ag

ni
tu

de
 /

px

1) Original extracted ECG

200 400 600 800 1000
Time / ms

0

20

M
ag

ni
tu

de
 /

px

2) DC offset correction

200 400 600 800 1000
Time / ms

10

0

10

20

M
ag

ni
tu

de
 /

px

3) Bandpass Filtering

200 400 600 800 1000
Time / ms

5

0

5

M
ag

ni
tu

de
 /

px

4) Differentiation

200 400 600 800 1000
Time / ms

1

0

1

No
rm

5) Norming

200 400 600 800 1000
Time / ms

1

0

1

No
rm

6) 2nd Differentiation

Figure 11: R-peak area detection by using second order derivative calculation, based on a image extracted

ECG tracing

After the ECG tracing is extracted, the algorithm basically performs a bandpass

filtering of ECG relevant frequencies (fcuto f f = [10, 30]Hz, sixth order), then calculates

28

the first order derivative and norms all threshold exceeding data points to one or

zero. A second derivation of this rectangular graph is then used to mark start- and

end-indices for the expected R-peaks positions by finding the local maximum values.

Figure 11 shows this process on a cutout of an image’s ECG tracing from the provided

dataset.

Found peaks must fulfill the plausiblity critera to fit an average heart rate of [40, 220]bpm.

By default, the triggerpoints are offsetted to −50ms prior to these detected R-peaks if

possible. The result of this step is the masked, green highlighted ECG tracing on the

image, including red circles used for estimated triggerpoints.

Due to ECG tracing shifts, too small R-peaks or record artefacts, not all R-peaks may

be found correctly. Therefore the user can adjust the position of any red-circled trigger-

point by dragging it along the detected ECG tracing. Additionally the Configuration Box

offers a listview to interactively add (green “+”) or remove (red “-”) triggerpoints, but

also to set a time-based offset for one or even all of them (“*All” button at the bottom

of the list). Any added triggerpoint is created between the “last” triggerpoint in time

domain and the right M-mode image border. If at least two triggerpoints were found

or defined, the user can proceed to the next state.

3.5.4 Detect Aorta

This step does not detect the walls of the aorta, but its limiting aortic ROI used

for detection. It is necessary since the performance of the edge detection algorithm

increases for smaller images but also due to an easier error handling.

For an approximation of the aortic ROI, an algorithm was established, starting with

the previously mentioned contour finding algorithm [21] on a slightly blurred image

(Gaussian filter, σ = 0.33, kernel size = 3). Found contours are then rated and filtered

by their length but also their deviation over time. During the development of this

approach it turned out, that an image-row summation of rated contour-pixels produces

a good first estimation for the region of interest. The principle of this idea can be

obtained by Figure 12.

A peak detection is then performed on this projection and the most reliable combi-

nation of physiologically possible peaks is chosen to indicate the outer borders of the

aortic walls. These borders are highlighted as two yellow horizontal lines on the image.

29

de
pt

h

time

co
nt

ou
r r

at
in

g

ro
w

 p
ro

je
ct

io
n

Figure 12: Illustration of rated contours in aortic M-mode image and its projection over rows by

summation

Since this approach gives a good estimation for M-mode images with high aortic wall

contrast, other image components from connective tissue may disturb this approxi-

mation. Therefore, the user is requested to ensure correctness or manually adjust the

result by dragging the yellow-lines close to the outer borders of the aortic walls and

clicking the “Confirm” button in the Configuration Box.

3.5.5 Detect Edges

In the edge detection state, AortUs tries to find time-variant distortion of the vessel

borders within the aortic ROI. Basically there are a lot of image processing algorithms

available for this task, like i.e. the Sobel or Laplace convolution operators, or the well

known Canny edge detector. These algorithms could have been used easily in AortUs

since they are part of the vast OpenCV library. Although it looks like a simple task, it

is difficult to implement it this way since M-mode images typically come along with

challenging quality aspects:

• low general brightness resolution

• time dependent brightness changes (depending on transducer-body coupling

and organ movements)

• reverberation artefacts of ultrasound

• run-time dependent amplitudes of ultrasound reflexions (lead to unsharp con-

tours of deeper reflexions)

These attributes lead to discontinuous wall edges as well as the detection of irrelevant

edges for the mentioned algorithms. A comparison of three different edge detection

algorithms on an 8-bit grayscale aortic M-mode ROI is shown in Figure 13.

30

Original (smoothed with kernel size 3)

Laplacian

Canny

Geodesic Active Contours

Figure 13: Comparison of a thresholded Laplacian-, Canny- and GAC-edge detection algorithms of a

Gaussian blurred image (kernel size = 3)

Detecting edges by the usage of a Laplacian image kernel is a fast technique and its

resulting edges are independent of the brightness gradient orientations. Unfortunately

it is very sensitive to noise, even though it is smoothed by a 5x5 Gaussian kernel and

brightness thresholded for the upper 5 bits beforehand, which makes this approach

inappropriate for this use case. The Canny edge detector shows good results on

clearly detectable time-invariant wall edges, but lacks to find edges with differing

brightness. This is comprehensible since the definition of lower and upper thresholds

for hysteresis requires a tradeoff between false positive and false negative edges. The

usage of the morphological implementation of the GAC algorithm is less sensitive to

local brightness discontinuities, since the calculated curve must always be closed. Like

already explained in section 1.3.5, a few parameters needed to be estimated empirically

which showed overall good results on the given image dataset:

• α = 1000 - scaling factor for edge-based image g(I)

• σ = 3 - standard deviation for applied Gaussian kernel in g(I)

• µ = 1 - number of iterations for the smoothing step SId ◦ ISd

• θ = 0.31 - threshold for balloon force effectiveness

• v = 1 - (positive) strength for the exapnding morphological balloon

31

Snake Iteration 1

Snake Iteration 10

Snake Iteration 20

Snake Iteration 30

Snake Iteration 50

Snake Iteration 70

Figure 14: Six example iterations of the active contour approaching in 70 iterations

32

Based on this parameter set, the “Detect Edges” step first runs this active contour

algorithm and then processes the calculated snake to single wall curves of the aortic

wall’s leading edges. The snake itself approaches the image’s walls with a maximal

number of 350 iteration, in which the iteration’s premature acceptance criteria is

fulfilled, if the difference of the snake’s shape over the last 10 iterations did not change

significantly. Figure 14 shows an example of the snake, approaching in 70 iterations.

The procedure to split the estimated snake into actual leading edges, can be separated

into the following consecutively executed functions:

1. Run GAC Algorithm - The presented method in 1.3.5 is implemented in the

“Morphsnakes” class and returns the cartesian coordinates of the estimated 1D

curves on the aortic region of interest. This step is initialised by an elliptical

zero-levelset with 10px height and almost the ROI’s width, positioned within the

aortic lumen.

2. Break Snake on Image Borders - The calculated snake is split at the ROI’s vertical

borders and the two most reliable horizontal curves are defined as wall curves.

Since this morphological GAC approach naturally splits and merges its snakes,

this is also the step where small image artefacts between the aortic borders are

rejected.

3. Split Edges at Inflection Points - In aortic M-mode images, the wall diameter

changes are progressive over time. It is physiologically impossible that the wall

edges run along the negative time domain. Therefore this step focuses on splitting

the determined curves at found inflection points. This function gets a single

consecutive edge as input and returns a list of edges, based on the splitted input.

4. Reject Bulges - The previously created list is scanned for bulges by first detect-

ing entries whose definition points run against the proceeding time domain in

ascending and then descending definition order. These elements are depicted in

Figure 15 as the two gray vertically running edges of the already split bulge.

If such a combination of bulge elements is found, it will be removed from the list.

After this is done, the neighbouring main edges are reconnected by calculating

the euclidean distance of their endpoints and using a local endpoint-fixed original

active contour algorithm by Kaas et al. [8] (in Figure 15 shown as red edge).

33

direction of
course de�nition

aortic wall edgedepth

time

Figure 15: Illustration of estimated aortic wall edge including a already split bulge (gray), the

direction of edge definition (gray arrow) and the calculated connecting edge (red)

5. Clip Edge’s Definition Ends - The list of edges may just contain one element

(in best case), but may also include multiple not connected wall curves or even

edges from non-aortic objects. To facilitate a later reconnection of single edges

that actually focus the same wall in the image, this step clips off endpoints of

edges that overlap with ends of other edges in time domain.

6. Reject Outliers - In some cases, the GAC algorithm fails to detect the aortic walls

and “leaks” out. At this point, the created list of edges is scanned for elements

that match certain criterias:

• edges that contain a straight line, longer than a certain length (calibrated to

10% of the ROI’s width)

• edges that runs against proceeding time domain (not necessarily bulges)

• edges that have less number of definition points than a defined threshold

• edges that have an enormous overall gradient in depth domain

If at least one of this criterias matches for a list element, it is rejected.

7. Correct to Leading Edge - By default, the zero levelset is initialised within the

aortic walls. In ideal case the resulting list of curves represent the true edges

of vessel’s inner distortion. Since the diameter measurement should be done by

using the leading edge method, the transducer near edges must be corrected by

the thickness of the aortic wall in depth dimension. This task was accomplished

by a method that first convolves the ROI with a horizontal Sobel operator. The

result is a smoothed image of horizontal edges, where wall borders tend to have

a local minimum (strong negative gradient). The distance from each point of the

calculated GAC-edges and its determined horizontal in-line gradient minimum

is stored as a list, whose median value is taken as global shift value for the

34

GAC-edges. Ideally, this value equals the actual thickness of the aortic wall. If an

element of the edges list does not have any leading edge, it is being rejected.

8. Find and Connect Neighbours - Based on a list of curves that denote the leading

edges of the aorta’s walls, this method finally connects edges that are neighbours

in time dimension, as long as the gap between them does not exceed a certain

distance. This is done by finding each two list elements that have a minimal

euclidian distance and then again using the endpoint-fixed local active contour

algorithm to connect them.

The result of this procedure is one edge element describing the found transducer

near wall curve and a second one for the transducer far wall curve. Especially during

calibration of the previously explained methods, a quality metric of determined wall

curves turned out to be helpful. Established quality parameters were defined as follows:

• Cross correlation of transducer-near and far curves - To accomplish this, the

shorter curve is zero padded to equalise in length and the resulting scalar is

determined by calculating the correlation of the exactly overlapping curves only,

hereinafter referred as cross-correlation coefficient.

• Number of edges in each list

• Percentage of ROI width, covered by the list elements

• Curve’s mean distortion deviation value, its standard deviation and the coefficient

of variation (COV)

• Average absolute incline of the curve

Since the whole detection procedure is implemented iteratively, the outcome of the

quality metric calculation defines wheter another iteration of this detection state will

be executed for the whole ROI, for just a part of it or if it is accepted. This inner

iteration is especially useful for M-mode images with time variant wall contrast, like

exemplified in Figure 16.

In this case, the active contour leaks for the contrast low part on the left side of

Figure 16 (red arrow), which is rejected since no leading edge is found for this part.

Therefore, the percentage of ROI coverage of the transducer near curve is lower than

the calibrated threshold. For this sub-area of the ROI a contrast limited adaptive

histogram equalization (CLAHE) algorithm is applied, in order to enhance the contrast

35

Figure 16: Example of M-mode aortic ROI with time variant transducer near wall contrast including

leaking closed-end snake

of transducer near wall encoding pixels, before the inner iteration of the GAC algorithm

is executed. The resulting partial wall edge is then connected to the edge of the outer

iteration so that most of the ROI’s width is covered.

Another criteria for an inner iteration is i.e. a significantly low cross correlation of

the transducer-near and far curve. Since the edge between the aortic lumen and the

transducer-far wall is typically sharper than the edge to the transducer-near wall, a low

cross correlation is used as an indicator for a lacking detection of the transducer-near

edge. If the coefficient falls below a defined limit, another iteration is executed in order

to determine the leading aortic edge of the transducer near wall with the snake not

initialised within the lumen, but at the transducer near outside of the aortic wall.

Whenever the wall edges are accepted, the resulting curves are highlighted on the

loaded M-mode image in red. Since the results may need to be manually adapted, the

Config Box offers the possibility to activate the wall cursor (“Cursor” button), reset

the curves to their original “Detect Edges” results (“Undo” button) or confirm the

shown curves (“Confirm” button). When the manual cursor is activated, the user has

the possibility to click and drag on each of the shown wall curves to reset their depth

position to the current mouse cursor location. A click on the “Confirm” button releases

the activation of the next state.

3.5.6 Calc Parameters

The last state of the edge detection process finally calculates the heart-cycle based

diameter curves. This is done by first finding out which heart cycles are fully covered by

a transducer-near and far edge. In order to get a standardised list of heart cycle based

diameter curves, each element starts at its foregoing triggerpoint (“red circle”) and

ends at the determined shortest length of all curve elements. Based on this established

list, an average diameter curve is calculated and its found minimal and maximal

36

values within certain ranges are used for the calculation of defined aortic parameters

described in 3.1. The diameter minima is determined within pyhsiologically plausible

ranges of [0, 200]ms after the triggerpoint, the maxima within [100, 500]ms.

After this calculation, a second tab titled as “Aortic Paramters” will appear within the

Image Box, which embeds two graphs for single- and averaged-aortic diameter curves

on its top. Below those graphs the estimated aortic parameters are printed (“Systolic

Diameter”, “Diastolic Diameter”, “Systolic Diameter Increase”, “Distensibility” and

“Stiffness Index”), next to a list of named graphs of the single diameter plot. This list

offers the possibility to manually reject single curves from the parameter calculation

by clicking the red “-” sign next to the named entry. Whenever an entry is removed,

the two described plots are updated, as well as the calculated parameters.

At this point, it is possible to launch the edge detection process again from the start

(“Load Image”, “Detect Scales”, etc.), in order to merge the curves of the current image

with those of another image. To be able to distinguish between curves of multiple

images in the “Aortic Parameters” tab, the list of curves also contains a column

containing the image name assigned to each curve. It should be noted, that a second

run of the edge detection process for the same patient but using a different “Transducer

Pos” option will not merge the estimated diameter curves with the results of the first

run. It will append entries in the curves list for its according TransducerPosType (see

Figure 10).

Since the presented aortic parameters may be of clinical interest, the user is able

to export the shown edge-highlighted M-mode images, the plots and parameters

including personal data of a patient to a PDF report (“Export Results” pushbutton).

This report contains separate sections for each “Transducer Pos” (AscAo, DesAo) used

to analyse aortic M-mode images of the same patient. An anonymised Exemplary

Patient Report of a 20 year old patient suffering Marfan syndrome can be found in the

Appendix.

3.6 Software Packaging

One goal of this thesis was to build a simple standalone executable application in

order to be able to test and distribute AortUs. Since personal computers typically do

not have a Python interpreter installed, the implemented software project needed to be

37

packaged. This was done by a cross-platform Python toolkit called PyInstaller, which

collects the Python interpreter and all modules required to run the application in

a temporal pythonic environment. Finally this is all embedded by the PyInstaller’s

bootloader, called from a command window whenever the user runs the executable.

Since PyInstaller was not capable to find all required modules automatically for a

Windows OS, a specification file containing explicit paths and so-called hidden import

modules needed to be defined in order to successfully package the application. The

executables were distributed for 32 but also for 64 bit systems.

3.7 Software Documentation

In general, the documentation of software is not just essential to bear in mind the

developed classes and methods’ intention, but it is also part of the technical documen-

tation of any medical software product. Since it is a time-consuming task and prone be

forgotten for “quick and dirty” fixes in the code, the related documentation for AortUs

was not created by hand.

Instead a semi-automatic approach was used to parse the information embedded in the

comment headers of each created class, method and member variable. Among others,

the used open source tool called Sphinx offers the integration of the markup language

restructured text (reST), which was used to describe all implemented modules for

AortUs in their comment headers. These parsed modules are then recombined to the

output format, specified by the Sphinx related “config.py” configuration file but also

by module related layout “*.rst” files. In case of the Software Documentation in the

Appendix, the output format was chosen to create a “*.tex” file for the open source text

processing software“pdfTeX”. The whole procedure of the software documentation

build is controlled by a shell script and can be obtained by Figure 17.

3.8 Code Reviews

Since AortUs was implemented by one developer, code reviews were part of the daily

development process but not explicitly planned. Although, frequent functional review

meetings or at least status e-mails were sent in monthly intervals between CB and BF

to ensure the integration of functional demands on AortUs.

38

*.py

Created Python
Code including

reST comment header

sphinx-APIdoc

sphinx-build
.py.py

generate *.rst �les
that de�ne the type of shown

documentation content
and it‘s order

*.rst

*.rst

*.rst

*.py

*.rst

parse reST comment header ,
combine them with information from

*.rst �les create *.tex output �le

pdfTeX*.tex *.pdf

build output PDF �le

con-
�g.py

de�ne source-paths,
type of output,

resources for hyperlinks, etc.

Figure 17: Process of software documentation building for AortUs, controlled by a shell script

3.9 Usability Testing

One objective of this project was to integratively consider a high level of usability of

the developed application software. To verify the level of usability but also to test the

software under realistic conditions, a usability test was performed in collaboration

with the clinical department of paediatric cardiology at the LKH-Univ. Klinikum Graz3.

This test included four steps:

1. adaption of AortUs to the M-mode image standard used at this department

2. informational and applicational briefing of collaborating users

3. testing phase

4. completion of usability questionnaire

Since the recorded M-mode images of the ultrasound (US) device at this department

were different to the images provided for this thesis, software changes had to be made

beforehand. These changes focus the differing position of detected axes, as well as of

the position of the recorded ECG.

After a twenty minutes briefing and a testing phase of approximately one and a half

weeks, the completed questionnaires were collected. The usability questionnaire used

3Klinische Abteilung für Pädiatrische Kardiologie, Universitätsklinik für Kinder- und Jugend-

heilkunde, LKH-Univ. Klinikum Graz

39

was based on the well known standardised System Usability Scale (SUS) by J. Brooke

(1996) [22], slightly modified and translated to German. The used “Feedbackbogen

AortUs” can be found in the Appendix. The actual SUS score is calculated by rating

each question from 0 to 4, in which each question has a score of 1 for Strongly disagree

(Stimme überhaupt nicht zu in German) to 5 for Strongly agree (Stimme völlig zu in German).

Questions 1, 3, 5, 7, 9 contribute by score− 1, questions 2, 4, 6, 8, 10 by 5− score. The

resulting scores are summed and multiplied by 2.5 to reach a value within 0 for worst

imaginable usability and 100 for best imaginable usability. It has been shown, that

this SUS score is highly correlated with an overall question of user-friendliness of the

system [23], using the adjectives Worst Imaginable (SUS mean of ≈ 13), Awful (SUS

mean of ≈ 20), Poor (SUS mean of ≈ 36), OK (SUS mean of ≈ 51), Good (SUS mean of

71), Excellent (SUS mean of 86) and Best Imaginable (SUS mean of 91). The results of

this test is listed in section 4.2.3.

40

4 Results

The main result of this project is obviously the software itself, packed to be used as a

standalone executable for 32bit and 64bit Windows 7 (Microsoft Windows, Redmond,

USA) or higher OS. In order to make the previously described approaches more

comprehensible, the upcoming section will focus on the usage of the established

application and its documentation. In addition, a comparison of possible risk classes

will be outlined and the results from usability testing will be presented.

4.1 AortUs Usage

4.1.1 Full Usage Example

The following example is abstracted from the User Manual in the Appendix and will

give a usage example for two M-mode images of the AscAo of the same person, pro-

cessed by AortUs. The User Manual also includes more detailed information about an

(exemplary) usage intention, the intended user, image rejection criterias and additional

notes and warnings in shape of boxes.

Figure 18: Bootloader command window opened, when AortUs executable is started

AortUs is started with a double click on the executable. Soon the bootloader command

window will appear, listing “LOADER” entries of the Python bootloader shown in

Figure 18. After all modules are loaded, the software can be operated. To ensure

privacy, all input parameters as well as the used images were anonymised.

41

1. When AortUs is started, the main window shown in Figure 19 will appear. On

success, the Log Box will output the current version as well as the username.

Figure 19: Default appearance of AortUs after startup

Figure 20: Entered patient data

2. The required first name, last name, insurance number of the patient must be en-

42

tered, as well as the date of birth and of examination in format <DD>.<MM>.<YYYY>,

like shown in Figure 20. In addition, either the element Ascending Aorta or De-

scending Aorta in the Transducer Pos list must be adapted to the type of image.

3. When all input fields are set, the first image can be loaded by clicking the “Load

Image” button in the State Box. A dialogue presented in Figure 21 will appear

and the first image to load can be selected and confirmed by clicking “Open”.

Figure 21: AortUs load image dialogue

On success, the selected image will appear within the Image Box like shown

in Figure 22 and the calibration of “Sections per second” and “Sections per cm”

must be adapated if necessary. For the image shown in Figure 22, the settings

need to be corrected to 5 vertical sections encoding one second and 1 horizontal

section encoding one centimeter.

4. The next step for AortUs is to determine the number of pixels for 1cm and 1sec,

respectively. This action can be started clicking “Detect Scales”.

On success, the found main axes within the image will be highligted from the top

left of the M-mode’s area in green and the found pixel resolution will be printed

within the Log Box, shown by Figure 23.

43

Figure 22: AortUs showing the loaded image including adapted vertical and horizontal section

settings

Figure 23: AortUs showing the automatically detected scales

In some cases the main axes cannot be detected automatically, i.e. if the axes and

their neighbouring ROI content have similar brightness values. For this particular

44

case, the user can define the region of interest as well as the pixels used for 1sec

and 1cm manually like described in section 4.1.2.

5. When clicking “Detect ECG”, AortUs will try to find a coloured ECG tracing

including striking R-peaks in the image.

The updated main window appearance can be obtained by Figure 24, including

the found ECG tracing highlighted in green, as well as the R-peaks indicated by

red circles. The positions of these circles, also referred to as triggerpoints, define

the start- and endpoints of each diameter-period used for averaging.

Figure 24: AortUs showing the “Detect ECG” state including original locations of found R-peaks

In this case, AortUs is not able to find the image related peaks precisely, like

shown in Figure 24. Therefore, the user has two options for manipulation:

• click-and-drag on the red circles to modify their position along the found

ECG tracing

• remove, add or adjust positions of triggerpoints list items within the Config

Box.

The list is embedded within a scrollable window and itemises found triggerpoints

including their position in time domain, as well as an adjustable offset to this

position. This offset is −50ms by default and can be changed by simply clicking

45

into the field of a triggerpoint item. In addition, the list offers the following

functionality:

+ . . . add a triggerpoint

- . . . remove a triggerpoint

*All . . . set ± offset of all triggerpoints to the offset of the

selected one in ms
For the image shown, Peak 4 and Peak 5 needed to be inserted (“+”) and dragged

≈ 50ms prior to their missed R-peaks, comprehensible by Figure 25.

Figure 25: AortUs showing the adjusted triggerpoints on found ECG

6. When all triggerpoints are defined correctly, the user should move on to the

“Detect Aorta” state. This function aims to scale down the ROI vertically from the

whole M-mode region to the minimal image area arrogated by recorded aortic

walls. This is symbolised by limiting the ROI to the area between two yellow

lines, shown in Figure 26. For images with high wall contrast, the automatically

suggested positions of these boundaries closely approximate the outer borders of

aortic walls. Although, it is also possible to adjust the positions of these boundary

lines close to the outermost points of the aortic wall image, again by a mouse

click-and-drag action. In case of the image shown in Figure 26, the detected

borders suit the whole aortic representation and can therefore be accepted by

46

clicking the “Confirm” button inside the Config Box.

Figure 26: AortUs showing the “Detect Aorta” state to scale down ROI vertically to aortic walls

7. The main edge detecting function is the most performance demanding step

during a standard procedure of AortUs. When clicking “Detect Edges”, it might

take a few seconds to determine the leading edges, shown in Figure 27.

Since the internal edge detection algorithm cannot handle all sudden brightness

interruptions of the aortic walls, the user is asked to mend these outliers manually.

For this interaction, three mode buttons are shown within the Config Box:

. . . Activate manual cursor mode

. . . Reset edges to initial results from “Detect Edges”

. . . Proceed to “Calc Parameters”
When the manual cursor mode is activated, the user can click-and-drag on each

of the red shown circles. The positions of the cursor’s nearest edgepoints will

be reseted to the positions of cursor’s pathway, without splitting the edge. For

the edges shown in Figure 27, the region around the fourth triggerpoint of the

transducer-far edge is adjusted by first clicking “Cursor” and then correcting the

local transducer-far edge around the fourth triggerpoint from left to right. The

resulting image can be obtained by Figure 28. After the curve is corrected, the

user may proceed to the final “Calc Parameters” state by clicking the “Confirm

47

Walls” button.

Figure 27: AortUs showing the automatically detected aortic walls in “Detect Edges” state

Figure 28: AortUs showing the manually adjusted aortic wall edges in “Detect Edges” state

8. Finally AortUs will create a second tab within the Image Box named Aortic Pa-

rameters, containing two types of plots, the calculated parameters as well as a

48

list of curves that contribute to the shown plots. Each curve shown is extracted

from the double-edges of previous step only, if both edges fully cover each whole

heart cycle.

The left plot named Single Aortic Diameter Courses shows all diameter curves that

could be extracted, named from course 0 to course <n-1> for edges from “left

to right” where n denotes the number of diameter curves. The right plot named

Average Aortic Diameter Course shows the average diameter at each timepoint, in

which the determined Diast. Diameter as well as the Syst. Diameter are marked by

a red dot.

Figure 29: AortUs showing the determined curves including the estimated parameters in “Calc

Parameters” state

Next to the calculated parameters, a list of the curves contributing to the cal-

culation is shown, including the name of the image(s) used and the date of

examination. Similar to the functionality of the BP list, the “-” button can be

used to remove a certain curve from the calculation, which might be useful to

remove outliers. Whenever this is done, all plots and parameters are updated to

the current list of curves.

The Diast. Diameter and Syst. Diameter are determined by finding the local Minima

within [0, 250]ms and the Maxima within [200, 500]ms after the averaged origin of

49

diameter curves.

9. The attentive user will notice, that the “Load Image” button can be used again

at this “Calc Parameter” state. For a second M-mode image, steps 3 to 8 can be

repeated. In this example, the image AA13-2.JPG is loaded and the combined

results are shown in Figure 30.

Figure 30: AortUs showing the combined estimated parameter of image AA13-1.JPG and

AA13-2.JPG

10. In order to append the extracted information for instance to a patient record, the

user may want to export or print the shown results. At this point, the shown plots

as well as the estimated parameters can be exported to a PDF by clicking the

Export Results button. A dialogue shown in Figure 31 will open and ask for the

user’s credentials. By default, the username of the OS’s user will be proposed.

When submitted, a second dialogue will open to select a location for the cre-

ated PDF, shown in Figure 32. The content of the PDF is self explanatory and

includes all used M-mode images including highlighted edge curves, as well

as patient related data. The content of this final PDF can be obtained by Figure 33.

50

Figure 31: AortUs showing the dialogue to enter the examiner’s username

Figure 32: AortUs showing the dialogue to enter the location of the PDF export file

51

Figure 33: PDF export of the two analysed M-mode images

4.1.2 Manual Scale Detection Usage Example

In some cases, however, the automatic scale detection fails when clicking “Detect

Scales”. A Message Box will appear, and the Manual Scale Detection is activated auto-

matically. This process will guide the user through a manual definition of the M-mode

ROI, the scaling for 1sec and for 1cm respectively.

The following example should help to understand the process of Manual Scale Detec-

tion:

1. When clicking “Detect Scales”, a notification will appear to inform the user

about the launch of manual mode, like shown in Figure 34. The first step defines

the actual M-mode image ROI. To achieve this, it is recommended to click at

the very left top of the M-mode image content and drag down the appearing

green rectangle to the bottommost right end of the image, like shown in Figure

35. When the left mouse button is released, the defined ROI will be denoted

by highlighted green vertical- and horizontal axes, shown in Figure 36. This

definition of the M-mode ROI can be repeated until the user is satisfied with the

axes positions. If so, a click on the “Next” button within the Config Box switches

to the time-definition step.

52

Figure 34: AortUs showing the start of manual scale detection after user clicked “Detect Scales”

Figure 35: AortUs showing the manual definition of M-mode ROI by click-and-drag

53

Figure 36: AortUs showing the defined M-mode ROI as green axes

2. To define the pixels encoding 1sec, the user is asked to define a horizontal line

with the length of 1sec by (again) click-and-drag. It is recommended to define

this line based on the visible time axis, like shown in Figure 37.

Figure 37: Manual definition of 1sec

54

Similar to the definition of the M-mode ROI, this step can be repeated and

confirmed by clicking “Next”.

3. Equal to the time-definition step, the user is asked to define a vertical line with

length of 1cm. The resulting definition is shown in Figure 38.

When this is done (“Next”), the user can finish the Manual Scale Detection pro-

cess and AortUs enables to trigger the next state (“Detect ECG”).

Figure 38: Manual definition of 1cm

4.1.3 Clinical Patient Reports

Since no additional information about the patient’s age, sex and blood pressure values

related to examinations of the provided test image set was given, no reliable results

were estimated on this dataset.

Instead, three TTE patient recordings were performed at the LKH-Univ. Klinikum Graz

by Univ. Prof. Dr. Daniela Baumgartner. The images were processed by AortUs and its

resulting patient reports in the Appendix include recordings of a 21 year old female

patient suffering Marfan syndrome type 1, a 4 year old healthy female patient and a 48

year old male healthy patient.

55

4.2 Regulatory Aspects of AortUs

4.2.1 Traceability and Identification of SOUPs

Regarding software development, the term “Traceability” describes the verification and

documentation of the software architecture being compliant to its requirements. Due

to extensiveness, this is not explicitly outlined, but can be related by comparing the

functional and non-functional requirements of the SRS with the described architecture

and processes in sections 3.4 and 3.5.

Besides this, the EN 62304:2006+A1:2015 requires the identification of all software

components used, that are not developed and maintained by this norm’s requirements.

The modules used for the development of AortUs are Open-source only. Therefore it is

obvious, that this project mainly includes SOUP components.

4.2.2 Risk Classification

To roll out medical software on the market, the manfacturer has to approve the

conformity of the product by passing a conformity assessment procedure. The path

and, as a consequence, the level of regulatory requirements to be fulfilled depend on

the risk class chosen by the manufacturer. Since AortUs is a standalone application

treated as general medical product, one can choose a risk class by using rule eleven

of the MDR 2017/745 on the defined intended use. Table 2 compares the selection of

risk classes (columns), according to different levels of intended use specifications [14]

(rows). It should be noted, that classes IIb and III only differ in the impact of harm

resulting from diagnostic or therapeutic decisions for this particular case. Since the

therapeutic decisions have a vast range including long-term β-blocker medication up

acute surgery for dissecting aortic walls, no more detailed risk analysis was made.

4.2.3 System Usability Scale

The following section will summarise the outcome of the software usability testing, per-

formed at the clinical department of paediatric cardiology at the LKH-Univ. Klinikum

Graz. Since only three users participated this test, Table 3 shows their single scores

from 1 for strongly disagree to 5 for strongly agree for used questions. Table 4 shows the

scored values of the question related scores from Table 3.

56

Table 2: Possible classification of risk classes of AortUs versus their intended use definition

I IIa IIb III

Working	
principle

Medical	
Indication

The	software	establishes	
local	physiological	
parameters	of	
Distensibility,	Stiffness-
Index	and	Systolic	
Diameter	Increase	of	the	
the	AscAo	or	DescAo.

The	software	establishes	
aortic	parameters	to	
support	cardiologists	in	
questions	of	qualitative	
aortic	elasticitiy	changes.

Intended	
group	of	
patients

All	patients	whose	
ascending	or	descending	
aorta	can	be	examined	
with	TTE	in	M-mode.

All	patients	without	
previous	personal	or	
hereditary	cardiovascular	
disease	but	with	suspect	of	
impaired	bioelasticity	of	
the	aortic	wall,	whose	
ascending	or	descending	
aorta	can	be	examined	
with	TTE	in	M-mode.

Intended	
part	of	body

Intended	
usage	profile

Intended	
usage	
environment

The	software	is	intended	to	
be	used	in	daily	clinical	
cardiology	practice.
The	resulting	parameters	
and	curves	may	be	
attached	to	a	report	
database	for	i.e.	statistical	
evaluation	purposes.

The	software	is	executed	
on	a	Windows	7	OS	or	
higher,	under	usual	office	
working	conditions.

The	software	is	intended	to	
be	used,	whenever	the	
medical	specialist	wants	to	
make	a	diagnosis	of	
recorded	aortic	M-mode	
images.	

The	software	is	executed	
on	a	Windows	7	OS	or	
higher,	under	usual	office	
working	conditions.

Usage	
Exclusion

The	software	is	intended	to	be	used,	whenever	the	
medical	specialist	wants	to	monitor	a	cardiovascular	
therapy	or	makes	a	diagnosis	of	recorded	aortic	M-
mode	images.	

The	software	is	executed	on	a	Windows	7	OS	or	higher,	
under	usual	office	working	conditions.

All	M-mode	images	that	do	not	fulfill	at	least	one	of	the	following	conditions:
� 24bit	RGB	image,	embedding	a	grayscale	M-mode	image	with	clearly	visible	transducer-	near	and	far	aortic	
							walls	
� the	aorta	must	not	be	located	near	the	M-mode	region	of	interest's	boundaries
� coloured	ECG	tracing	recorded	synchronous	to	the	wall	distortions,	not	covering	wall	image	content
� each	image	covers	at	least	two	cardiac	cycles	
� the	LoS	representing	the	M-mode	recording	must	be	exactly	perpendicular	to	the	aorta
� the	LoS	should	represent	the	position	of	maximal	systolic	diameter	change
� the	image	must	not	contain	any	vertical	or	horizontal	cursors		from	the	TTE-device’s	measurement	tools
� the	image	must	not	contain	any	other	ROI	breaking	content,	i.e.	black	areas	within	the	M-mode	ROI	evoked	
						by	changes	of	TTE-device	settings
� the	axes	of	the	M-mode	area	must	be	defined	by	a	scaling	of	one	of	the	following	shapes
							–		a	purely	horizontal	line	including	orthogonal	intersection	lines	on	the	area’s	top	border
											as	well	as	a	vertical	line	including	orthogonal	intersection	lines	on	its	left	border
							–		no	vertical	or	horizontal	axes,	only	intersection	lines	on	the	area’s	right	border	(vertical)	as	well	as	on	the	
											area’s	bottom	border	(horizontal)
� the	image	exported	from	the	echocardiography	device	software	must	be	in	format	“JPG”	“PNG”,	“TIF”	or
							“BMP”

Standalone	application	to	determine	local	Distensibility	(kPa^-1	×	10^-3),	Stiffness-Index	and	Systolic	Diameter	
Increase	(%)	of	the	aorta	by	combining	the	average	values	of	entered	systolic-	and	diastolic	bloodpressure	
(mmHg)	with	average	values	of	systolic	minimal-	and	end-diastolic	maximal	aortic	diameters	(mm),	based	on	
processed	TTE	M-mode	images	of	the	ascending	or	descending	aorta.

The	examination	focusses	on	the	AscAo	and	DescAo,	which	may	be	related	to	general	elasticity	changes	of	the	
arterial	circulation.

The	software	establishes	aortic	mechanical	parameters	
that	may	indicate	pathological	structural	changes	of	
the	aortic	wall.

The	user	groups	may	be	differentiated	into	three	types:
� Cardiologist	(being	the	examiner,	has	experience	in	TTE	imageing	techniques,	fluent	in	English	and	German,	
							has	experience		in	handling	application	software)
� Graduated	Nurse	(has	experience	in	TTE,	has	an	instruction	to	run	the	software	by	a	cardiologist,	fluent	in	
							English	and	German,	experience	in	handling	application	software)
� Academic	User	(experience	in	TTE,	based	on	aortic	M-mode	images	recorded		by	a	cardiologist,		fluent	in	
							English	and	German,	experience	in	handling	application	software)

All	patients	with	diagnosed	cardiovascular	disease	or	
with	suspicion	of	impaired	arterial	elasticity,	whose	
ascending	or	descending	aorta	can	be	examined	with	
TTE	in	M-mode.

57

Table 3: Single scores of SUS question scores of each user (in German)

Nr Questions User 1 User 2 User 3

1 Ich denke, dass ich die Software gerne häufig be-

nutzen würde.

5 4 3

2 Ich fand die Software unnötig komplex. 1 1 2

3 Ich fand, die Software war einfach zu benutzen. 5 5 3

4 Ich glaube, ich würde die Hilfe einer technisch ver-

sierten Person benötigen, um die Software benutzen

zu können.

1 1 1

5 Ich fand, die verschiedenen Funktionen der Soft-

ware waren gut integriert.

5 4 3

6 Ich denke, die Software enthält zu viele Inkonsisten-

zen.

2 2 -

7 Ich kann mir vorstellen, dass die meisten Menschen

den Umgang mit dieser Software sehr schnell ler-

nen.

4 5 4

8 Ich fand die Software sehr umständlich zu nutzen. 1 1 3

9 Ich fühlte mich bei der Benutzung der Software sehr

sicher.

5 5 4

10 Ich musste eine Menge lernen, bevor ich mit der

Software arbeiten konnte.

2 1 1

Table 4: Summary of usability test using SUS scoring and related adjective for each user

Users Echocardiography

experience (Y)

Images

analysed

Sex (m/f) SUS score Adjective

User 1 > 20 ≈ 8 f 92.5 Best Imaginable

User 2 > 5 - m 92.5 Best Imaginable

User 3* > 5 ≈ 5 m 69.4 Good

It should be noted that User 3* only answered nine questions out of ten. The omitted

question was rejected form the SUS score.

58

5 Discussion

The presented approach focusses on determining local elastic properties of the aorta

by using well known image processing techniques on TTE M-mode images. Although

“Pulse wave velocity (PWV), a measure of regional aortic stiffness, is the most widely

studied and validated noninvasive method because it is a simple, accurate and repro-

ducible []” [24], it does not reflect arteriosclerosic changes in the aortic wall since

it is an indirect method of determining regional stiffness. In contrast to this, a stan-

dard echocardiography examination combined with the developed software enhances

the physician’s opportunities to gain local distension related parameters but also

offers to perform a quantitative investigation of the blood flow by using the Doppler

technique. Another method to address changes in local stiffness would be the usage

of a multi-slice 2D phase-contrast magnetic resonance imaging (MRI) technique to

measure the PWV [25]. Both methods require a synchronous recording of ECG for

triggering. Although this technology can produce a fairly good temporal resolution of

approximately 10− 30ms, amongst others the comparably long examination time due

to a required preceding angiography, as well as the high costs of an investigation make

this method inefficient for clinical use. As a matter of course, impaired bioelasticity

can be a result of a genetic mutation and therefore be detected using costly molecular

and cytogenetic methods.

Relating to the implementation of AortUs, an object oriented approach using Python

2.7 as a programming language turned out to be a promising combination for the

development and usage of inherited methods and classes. One example showing this

benefit is the development of entry fields, embedded in the GUI (i.e. First Name, Last

Name, etc.). The GTK+ framework does by default not offer such properties as the

automatic labeling of empty Gtk.Entry fields or input character restriction. Nevertheless,

the implemented inherited class MyEntry does imply these properties and therefore

integratively considers error prevention. Another developed method reducing the risk

of misuse of AortUs whilst keeping time demanding manual tasks as little as possible,

is the unidirectional backbone of this software, designated as edge detection process.

The automatically extracted image features, such as scale axes, triggerpoints and aortic

region boundaries, are presented to the user and can be adapted interactively within

the Image Box if necessary. Although the used active contour method in general fits the

59

aortic walls comparably accurately, local brightness blackouts may cause bulbes in the

semi-automatically segmented and corrected aortic walls on model based assumptions

(i.e. positions of found R-peaks, high cross-correlation of both wall edges, no edges

with negative temporal gradient), but may also be corrected manually. The excellent

result of the semi-automated wall contour analysis is expressed by the high scores

of the performed usability test. Even though the number of participating users was

low, preliminary results showed that the participated cardiologists seemed to handle

AortUs safely with a prior briefing of just twenty minutes.

The risk class of this medical product is defined by applying the rules of the MDR

2017/745 on its intended use. Since AortUs could be used as diagnostic decision sup-

port tool for suspected impaired bioelasticity, but also as a tool used for comprehensive

scientific evaluation purposes of aortic distensibility, there is no uniquely dedicated

risk class for this software application as demonstrated by Table 2. This depends,

however, on the clearly stated intended use of the software. When used as a direct

diagnostic tool, AortUs is most likely to be classified to classes IIa or IIb, otherwise

class I if AortUs only displays aortic parameters that are not used for an explicit

diagnostic decision or control of body function. Typically, the decision for or against

life-threatening therapeutic or surgical treatment is not based on one single parameter,

but on a combination of multiple diagnostic parameters. In addition, it can be stated

that risks originating from AortUs are limited, since the software delivers 3− 4 single

aortic parameters that are part of an extended catalogue of diagnostic criteria needed

for medical decision making and therapeutic patient management.

Examinations of 3 selected individuals, analysed by AortUs, showed broad differences

in estimated parameters. A subject diagnosed with Marfan syndrome (patient-report 1)

showed as expected decreased AscAo distensibility of 9.8kPa−1 · 10−3, compared to two

healthy persons with values of 42.4kPa−1 · 10−3 (patient-report 2) and 25.1kPa−1 · 10−3

(patient-report 3). It should be noted that the distensibility of the healthy patient 3 may

be also decreased because of his age of 48 years versus her age of 4 years.

One methodical weakness to extract elastic aortic parameters from M-mode images

is certainly its dependence of the cardiologist’s skills and the US device settings.

As shown in section 3.1, the accuracy of the measured diameter and therefore of

the gained parameters have a strong dependence on the shape of the cross section

60

focused by the LoS. Even if the aorta has an ideal circular cross section, a LoS not

perfectly perpendicular to the aorta’s center position leads to elliptical diameter records.

Furthermore the examiner is responsible for recording images with transducer settings

that emphasise the representation of distinct aortic wall segments whilst keeping noise

and artefacts within the aortic lumen as low as possible. This has a major effect on the

manual edge correction required to facilitate proper calculation of diameter curves.

For the usage of AortUs in clinical routine, the adaption of the parameters Sections per

sec and Sections per cm to a loaded M-mode image are prone to be forgotten since it is

unlikely to configure them before loading an image. This is a serious problem since

i.e. a default value of five sections per second in an image scaled by ten sections per

second and a heart rate of 140bpm cannot be rejected by an integrative method, since

this incorrect scaling leads to a calculated heart rate of 70bpm which is also within

plausible boundaries for the ECG detection.

Although the active contour calculation has an overall good performance on the test

dataset of AscAo images, there is still room for improvement especially for approaching

DesAo images. Besides the optimisation of US device settings by the examiner, the

correctness of estimated edges may also be enhanced by further customisation of the

snake’s parametrisation.

A time-consuming but necessary step to improve the stability and functionality of

this software would be the usage of a static code analysis tool to determine all possible

fault conditions in the software. This should go hand in hand with the setup, execution

and analysis of test cases for unit tests, based on the provided image dataset.

For commercial use, a high acceptance level is an indispensable prerequisite. Besides a

possible interface to automatically load the patient’s personal data to AortUs, another

functional extension that certainly limits the variety of possible risk classes would be a

module for tracking changes of local aortic stiffness over long time. This is of special

interest to monitor the effectiveness of a therapeutic treatment, for instance the regular

intake of β-blocker drugs after diagnosed decreased aortic distensibility.

61

6 Conclusion

The main objective of this thesis was to develop an easy to use medical software

along the software lifecycle (EN 62303:2006+A1:2015), that calculates the local aortic

parameters systolic diameter increase, distensibility as well as the stiffness-index based

on the estimated averaged systolic and diastolic diameter of an TTE M-mode image.

The necessary requirements to develop this application named AortUs were elaborated

in a Software Requirement Specification and the software itself was implemented in

Python and bundled to a standalone executable, in order to carry out a limited usability

test which was well received. The architecture was described in detail and a highly

automated approach was used in order to generate the Software Documentation.

Besides this, the scope of this work was to discuss this medical product in terms of

risk classification according to the MDR 2017/745. A comparison of possible intended

use definitions was devised and discussed with respect to rule eleven of the MDR

2017/745.

In conclusion, it should be stated that local elasticity parameters of the aorta are, by

now, not established in course of routine cardiological examinations, but may be a

powerful supportive tool in future, by using an automated image processing approach.

63

References

[1] World Health Organization. Global status report on noncommunicable diseases

2014.

[2] Daniel Levy Ramachandran S. Vasan, Martin G. Larson. Determinants of echocar-

diographic aortic root size. Circulation, 91(3), February 1995.

[3] C. Ross Ethier and Craig A. Simmons. Introductory Biomechanics, From Cells to

Organisms. Cambridge University Press, 2007.

[4] Gerhard A. Holzapfel. The extracellular matrix. Lecture 2 Slides of Class ’Mechan-

ics of Biological Tissues’, Graz University of Technology, Winterterm 2014/2015.

[5] Martin A. Zullinger, Alexander Rachev, and Nikos Stergiopulos. A constitutive

formulation of arterial mechanics including vascular smooth muscle tone. Amer-

ican Journal of Physiology-Heart and Circulatory Physiology, 287(3):H1135–H1143,

2004.

[6] Otto Frank. Die grundform des arteriellen pulses: Mathematische analyse. erste

abhandlung. Zeitschrift für Biologie, 1899.

[7] John F. Canny. A computational approach to edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

[8] Michael Kaas, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour

models. International Journal of Computer Vision, 1(4):321–331, 1988.

[9] Rudolf Stollberger. Deformable models - active contours. Lecture ’Basics of Image

Segmentation’ Slides of Class ’Biomedical Image Processing’, Graz University of

Technology, 12 2014.

[10] Pablo Márquez-Neila, Luis Baumela, and Luis Alvarez. A morphological approach

to curvature-based evolution of curves and surfaces. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 36(1):2–17, January 2014.

[11] Laurent D. Cohen. On active contour models and balloons. CVGIP: Image

Understanding, 53(2):211–218, 1991.

65

[12] Christian Baumgartner. Gesetzliche grundlagen. Lecture ’Medizinprodukte für

Europa, Hersteller und Händlersicht’ Slides of Class ’Medizinprodukterecht’,

Graz University of Technology, 2017.

[13] European Parliament and Council of Europe. Regulation (eu) 2017/745 of the

european parliament and the council of 5 april 2017 on medical devices, amending

directive 2001/83/ec, regulation (ec) no 178/2002 and regulation (ec) no 1223/2009

and repealing council directives 90/385/eec and 93/42/eec. Official Journal of

the European Union, May 2017.

[14] Christian Baumgartner. Software als medizinprodukt. Lecture ’Medizinprodukte

für Europa, Hersteller und Händlersicht’ Slides of Class ’Medizinprodukterecht’,

Graz University of Technology, 2017.

[15] European Committee for Electrotechnical Standardization. En 62366-1, medical

devices – part 1: Application of usability engineering to medical devices, August

2017.

[16] Daniela Baumgartner, Christian Baumgartner, Gabor Mátyás, Beat Steinmann,

Judith Löffler-Ragg, Elisabeth Schermer, Ulrich Schweigmann, Ivo Baldissera,

Bernhard Frischhut, John Hess, and Ignaz Hammerer. Diagnostic power of aortic

elastic properties in young patients with marfan syndrome. The Journal of Thoracic

and Cardiovascular Surgery, 129(4):730–739, April 2005.

[17] Nobuyuki Ohte, Tomoaki Saeki, Hiromichi Miyabe, Seichiro Sakata, Saiji Mukai,

Junichiro Hayano, Kiyomi Niki, Motoaki Sugawara, and Genjiro Kimura. Rela-

tionship between blood pressure obtained from the upper arm with a cuff-type

sphygmomanometer and central blood pressure measured with a catheter-tipped

micromanometer. Heart Vessels, 22(6):410–415, 2007.

[18] Roland G. Asmar, Jirar A. Topouchian, Athanase Benetos, Fady A. Sayegh, Jean-

Jacques Mourad, and Michael E. Safar. Non-invasive evaluation of arterial abnor-

malities in hypertensive patients. Journal of Hypertension. Supplement, 15(2):99–107,

1997.

66

[19] Roland Asmar, Athanase Benetos, Jirar A., Pierre Laurent, Bruno Pannier, Anne-

Marie Brisac, Ralph Traget, and Bernd I. Levy. Assessment of arterial distensibility

by automatic pulse wave velocity measurement. Hypertension, 26(3):485–490, 1995.

[20] John C. Bramwell, Archibald V. Hill, and Bryan A. MacSwiney. The Velocity of

the Pulse Wave in Man in Relation to Age as Measured by the Hot-wire Sphygmograph.

https://books.google.at/books?id=rQg0cgAACAAJ, 1923.

[21] Satoshi Suzuki and Keiichi Abe. Topological structural analysis of digitalized

binary images by border following. Computer Vision, Graphics and Image Processing,

30(1):32–46, 1985.

[22] John Brooke. Sus-a quick and dirty usability scale. Usability evaluation in industry,

189(194):4–7, 1996.

[23] Aaron Bangor, Philip Kortum, and James Miller. Determining what individual

sus scores mean: Adding an adjective rating scale. Journal of Usability Studies,

4(3):114–123, 2009.

[24] Jae Yeong Cho and Kye Hun Kim. Evaluation of arterial stiffness by echocardiog-

raphy: Methodological aspects. Chonnam Medical Journal, 52(2):101–106, 2016.

[25] Andrew L. Wentland, Thomas M. Grist, and Oliver Wieben. Review of mri-

based measurements of pulse wave velocit: a biomarker of arterial stiffness.

Cardiovascular Diagnosis & Therapy, 4(2):193–206, 2014.

67

Appendix

Python Packages and Versions

Programming language: Python 2.7.13

Installation via pip package manager:

Package Name Version Usage

XlsxWriter 1.0.2 create MS Excel (Microsoft Corporation, Redmond,

Washington, USA) files for data logging

scipy 0.19.0 morphological operators, image and signal filters

numpy 1.12.1 N-dimensional array operations (algebraic, boolean,

etc.)

scikit image 0.13.0 image processing algorithms

PeakUtils 1.1.0 peakfinding

matplotlib 2.0.0 graph and image plotting

PyPDF2 1.26.0 manipulate PDFs

reportlab 3.4.0 format content to PDF

Separate Installation (on Mac OS X i.e. via homebrew)

69

Software Requirement
Specification

for project AortUs

Bernhard Frohner

Version 1.2

Revision History

Version Date Author Description

1.0 09.06.2017 Bernhard Frohner initial setup of SRS

1.1 05.01.2018 Bernhard Frohner revision of system feature descriptions and nam-
ing conventions

1.2 22.03.2018 Bernhard Frohner typo mistake fixing after master’s thesis correc-
tion

Acronyms

AscAo ascending aorta 2, 3, 13, 14, 21, 22

BF Bernhard Frohner, BSc. 5, 9

CB Univ.-Prof. Dipl.-Ing. Dr. techn. Christian Baumgartner 5, 9

DesAo descending aorta 2, 3, 13, 14, 21, 22

ECG Electrocardiogram 11, 12, 16, 17, 20, 23

GUI Graphical User Interface 1, 4, 7, 8, 10, 12–14

LoS line of sight 4

MDR 2017/745 Medical Device Regulation 2017/745 25

MRI magnetic resonance imaging 2

OS operating system 4, 15

PACS Picture Archiving and Communication System 8

PWV pulse wave velocity 2

ROI region of interest 11, 12, 18, 19

SOH state of health 23

SRS Software Requirement Specification 3

TTE transthoracal echocardiography 1, 15

US ultrasound 1, 2, 12, 17, 18, 23

Contents

Acronyms 5

1 Introduction 1
1.1 Purpose . 1

1.2 Document Conventions . 1

1.3 Intended Audience and Reading Suggestions . 1

1.4 Project Scope . 1

1.5 References . 2

2 Overall Description 3
2.1 Product Perspective . 3

2.2 Product Functions . 3

2.3 User Classes and Characteristics . 3

2.3.1 Cardiologist . 4

2.3.2 Academic User . 4

2.4 Operating Environment . 4

2.5 Design and Implementation Constraints . 4

2.6 User Documentation . 5

2.7 Assumptions and Dependencies . 5

3 External Interface Requirements 7
3.1 User Interfaces . 7

3.2 Hardware Interfaces . 8

3.3 Software Interfaces . 8

3.4 Communications Interfaces . 8

4 System Features 9
4.1 System Feature 1 . 9

4.1.1 Description and Priority . 9

4.1.2 Stimulus/Response Sequences . 9

4.1.3 Functional Requirements . 9

4.2 System Feature 2 . 10

4.2.1 Description and Priority . 10

4.2.2 Stimulus/Response Sequences . 10

4.2.3 Functional Requirements . 10

4.3 System Feature 3 . 11

4.3.1 Description and Priority . 11

4.3.2 Stimulus/Response Sequences . 11

4.3.3 Functional Requirements . 12

4.4 System Feature 4 . 12

4.4.1 Description and Priority . 12

4.4.2 Stimulus/Response Sequences . 12

4.4.3 Functional Requirements . 12

4.5 System Feature 5 . 12

4.5.1 Description and Priority . 13

4.5.2 Stimulus/Response Sequences . 13

4.5.3 Functional Requirements . 13

4.6 System Feature 6 . 13

4.6.1 Description and Priority . 13

4.6.2 Stimulus/Response Sequences . 13

4.6.3 Functional Requirements . 13

4.7 System Feature 7 . 14

4.7.1 Description and Priority . 14

4.7.2 Stimulus/Response Sequences . 14

4.7.3 Functional Requirements . 14

4.8 System Feature 8 . 14

4.8.1 Description and Priority . 14

4.8.2 Stimulus/Response Sequences . 15

4.8.3 Functional Requirements . 15

4.9 System Feature 9 . 15

4.9.1 Description and Priority . 15

4.9.2 Stimulus/Response Sequences . 15

4.9.3 Functional Requirements . 15

4.10 System Feature 10 . 16

4.10.1 Description and Priority . 16

4.10.2 Stimulus/Response Sequences . 16

4.10.3 Functional Requirements . 16

4.11 System Feature 11 . 16

4.11.1 Description and Priority . 16

4.11.2 Stimulus/Response Sequences . 16

4.11.3 Functional Requirements . 17

4.12 System Feature 12 . 17

4.12.1 Description and Priority . 17

4.12.2 Stimulus/Response Sequences . 17

4.12.3 Functional Requirements . 17

4.13 System Feature 13 . 18

4.13.1 Description and Priority . 18

4.13.2 Stimulus/Response Sequences . 18

4.13.3 Functional Requirements . 18

4.14 System Feature 14 . 18

4.14.1 Description and Priority . 18

4.14.2 Stimulus/Response Sequences . 19

4.14.3 Functional Requirements . 19

4.15 System Feature 15 . 19

4.15.1 Description and Priority . 19

4.15.2 Stimulus/Response Sequences . 19

4.15.3 Functional Requirements . 19

4.16 System Feature 16 . 20

4.16.1 Description and Priority . 20

4.16.2 Stimulus/Response Sequences . 20

4.16.3 Functional Requirements . 20

4.17 System Feature 17 . 20

4.17.1 Description and Priority . 20

4.17.2 Stimulus/Response Sequences . 21

4.17.3 Functional Requirements . 21
4.18 System Feature 18 . 21

4.18.1 Description and Priority . 21
4.18.2 Stimulus/Response Sequences . 21
4.18.3 Functional Requirements . 21

4.19 System Feature 19 . 22
4.19.1 Description and Priority . 22
4.19.2 Stimulus/Response Sequences . 22
4.19.3 Functional Requirements . 22

5 Other Nonfunctional Requirements 23
5.1 Performance Requirements . 23
5.2 Safety Requirements . 23
5.3 Security Requirements . 23
5.4 Software Quality Attributes . 23
5.5 Business Rules . 24

6 Other Requirements 25
6.1 Legal Requirements . 25

1 Introduction

1.1 Purpose

This document describes the major software requirements for the ultrasound (US) image post-
processing software AortUs V 1.2. The objective of this standalone application is to support
an echocardiography-examining physician with important additional information of an M-mode
image of the aorta.
As the aortic enlargement and impaired bioelasticity are of interest in several cardiac and non-
cardiac diseases [1], especially cardiologists show great interest in gaining elastic properties of the
aorta. AortUs should support cardiology healthcare professionals in therapeutic and diagnostic
decisions by estimating these relevant properties like i.e. Distensibility and Stiffness Index fast
and intuitively.

1.2 Document Conventions

In the following sections, project-related proper names like Patient Box, Log Box etc. as well as
units like px-per-second, sec etc. are formatted in italic font type. All exemplary or implicitly
prescribed program code phrases are shown in typewriter font.
Collections of characters are expressed and collected within square brackets, separated by com-
mas [] (i.e. [1-9, ., ;, -, *]), whitespace character is expressed as “ ”.

1.3 Intended Audience and Reading Suggestions

Besides software development aspects, the reader should also be familiar with basic terms of US
equipment with respect to echocardiologic applications.
The upcoming chapters are separated into a general description of AortUs, its dependencies and
constraints (2), an explanation of interface requirements (3), functional requirements (4), non-
functional requirements (5) and other requirements (6). The functional requirements are sorted
starting from very general prescriptions like certain Graphical User Interface (GUI) behaviours
up to very accurate descriptions of how a certain manual or automatic state change must respond
to user interaction.

1.4 Project Scope

As already mentioned, AortUs has its field of application in giving an estimation of aortic
distensibility and stiffness of the aorta by processing M-mode echocardiography images. These
images can be differentiated in two transthoracal echocardiography (TTE) positions:

1

• proximal ascending aorta (AscAo) 10 to 20 mm distal to the sinotubular junction (paraster-
nal long-axis view)

• abdominal descending aorta (DesAo) proximal to the branching off of the celiac trunk
(abdominal paramedian longaxis view)

The gold standard to estimate the arterial stiffness and distensibility is to measure the pulse
wave velocity (PWV) [2, 3]. This is typically done by measuring the time a pressure wavelet
needs to pass a vessel of certain length. Although it gives accurate and reproducible results, it
is a measure of regional arterial stiffness and does not reflect local mechanical changes [4].
Naturally, one could determine the diameter curves of the aorta by using MRI based techniques.
While the temporal resolution for US can easily take values of 50 frames per second1, real-
time magnetic resonance imaging (MRI) techniques with 20ms temporal resolution are prone
to geometric distortions or even local signal losses [6]. Besides the high computational effort to
reconstruct these MRI images, inexact M-mode images can be recorded again easily with mobile
US systems.
Changes of elastic properties of the aorta are observed with advancing age, but may also be
related to genetic mutations of a patient. Therefore, also molecular and cytogenetic approaches
can be used to identify genetic disorders, accepting time demanding and expensive encoding
methods.

1.5 References

No external references are used in this specification document.

1Temporal resolution depending on the depth of sonic penetration, the number of focal points and the number
of scan lines per frame [5].

2

2 Overall Description

2.1 Product Perspective

After the development of a semi-automatic image processing software used in a clinical trial
with Marfan-syndrome patients [7], the approach to use this high diagnostic power features
extracted from M-mode images showed great response at cardiologic conferences all over the
world. Therefore this self-contained M-mode image processing software should act as general tool
to assess questions of aortic diameter changes noninvasively, but also to provide an interface to
easily append modules for i.e. therapeutic tracking of treatment or machine learning algorithms
based on all ever estimated imaging parameters of healthy/diseased subjects.

2.2 Product Functions

In this section the overview of the main functionality of AortUs should be given. First of all, the
user must enter valid input to all required patient data fields, in section 3.1 described in detail.
After this is done, the user should be permitted to load the first M-mode image and start the
actual image processing procedure. These steps involve

1. identification of the actual M-mode image

2. extraction of depth- and temporal-resolution (px-per-cm, px-per-sec)

3. identification of the ROI within the M-mode image (the aorta incl. its wall)

4. detection of wall edges applying the leading edge technique

5. computation of diameter over time curve

6. averaging and (optional) smoothing the triggered separated edges

7. calculation of aortic parameters (Distensibility, Stiffness-Index, Systolic Diameter Increase)

8. export the established parameters including patient data to a patient record file

9. if demanded by the user, load another M-mode image of the same patient and redo steps
1. - 8. to combine these results with those previously calculated

It should be possible to separate calculations, based on M-mode images of AscAo and DesAo
transducer positions of a patient.

2.3 User Classes and Characteristics

The intended user class mainly focusses on cardiologists with broad experience in fields of
echocardiography. In some cases also academic usage, i.e. for collecting Stiffness Index data
for a study, should be conceived. The upcoming subsections should explain those users more

3

detailed. In any case, the typical user does not have a signal or image-processing background.
Thus, expertise demanding procedures like i.e. manual definition of filter coefficients to use a
digital filter should be avoided.

2.3.1 Cardiologist

This is the main user class this product aims on, as the cardiologist typically gains interest in
cardial morphology and function, if a patient complains about cardiovascular problems. This
user does have a high expertise in fields of an echocardiograhpy examination and is therefore
responsible for recording well suited M-mode images of the aorta. The selected element of the
transducer to be used for the M-mode image (in the following referred as line of sight (LoS))
must be placed exactly perpendicular to the long axis of the aorta. Considering this, the view
should also show the largest achievable diameter in order to determine the diameter courses
accurately. It should be noted that the reliability of the calculated time-diameter curves (which
is the basis for further aortic parameters) strongly depends on transducer element position.

2.3.2 Academic User

When doing clinical trials with interest in aortic properties, the extraction of parameters like
the systolic or diastolic diameter, the Distensibility or the Stiffness-Index may be of interest -
just a few examples: [1, 7, 8]. Since AortUs has its focus on a fast and simple estimation of
these parameters, it may be an appealing tool for supporting these trials.

2.4 Operating Environment

This software should run on Windows 7 (32 and 64bit) or higher as a single executable file without
requiring additional dependencies. Besides this, no further operating system (OS) requirements
need to be considered.

2.5 Design and Implementation Constraints

The GUI does not require to be according to a designated corporate design, neither a regulatory
policy.
Since AortUs is a post-examinatory image processing tool, a fast execution speed of internal
processes is not mandatory, but recommended to enhance the usability. It is not planned that
AortUs requires interfacing to other external applications on the OS or databases, so that no
certain communication protocols must be provided.
The unauthorized access to use the application AortUs or patient records of it must be restricted
by the user or IT-responsibles for the computer. The latter are also responsible to install updates
of the application provided by the manufacturer.

4

2.6 User Documentation

A user documentation in form of a PDF file in English must be submitted with emphasis on
the intended usage and rejection criterias for M-mode images. A certain format or standard for
this user documentation is dispensable.

2.7 Assumptions and Dependencies

Most of the requirements listed in this document are based on a kick-off meeting of this project
on the 15th of March 2017, with Univ.-Prof. Dipl.-Ing. Dr. techn. Christian Baumgartner (CB)
and Bernhard Frohner, BSc. (BF) at the Institute of Health Care Engineering (University of
Technology Graz). These requirements had to be extended by BF in order to fulfill the objectives
of this software:

• intuitiveness

• simplicity

• plausibility checking

• error avoiding

Furthermore, these requirements had to be rendered more precisely at further meetings of CB
and BF, in order to enhance the clinical acceptance of AortUs.

5

3 External Interface Requirements

3.1 User Interfaces

The GUI is the main interaction window where the user controls the image feature extraction
procedure. The backend of the program should interface with one single window with a size
that fits the main screen of the computer.

Patient Box

First Name
Last Name

Date of Birth
Bloodpressure

...

Con�guration Box

Adjustment widgets
 for each step

Image Box

US image, it‘s processed
value + curves

step 1 step 2 step 3 step 4 ...

Log Box

Main Window

State Box

Load RecordClear Detection

Figure 1: Draft Layout of the GUI main window

As shown in Figure 1, the GUI should contain several layout boxes (rectangles with included
blue font box-names) and is not required to be resizeable.
The application should start in idle state, waiting for the user to enter patient data within the
Paitent Box and also to load the M-mode image. After this is done, the State Box should
guide the user through the typical image parameter extraction process. During each step of this
automated procedure, the Configuration Box should show relevant data and also allow manual
correction or interaction if necessary. After each of the state processes has finished, the applica-
tion should return back to idle state and wait for either manual adaption of the process results

7

(refer to Configuration Box) or for a click event on the next state button.
The Image Box should show the M-mode image or details of it. In particular, the aortic wall de-
flection over time including superposed lines or polygons of detected or processed image details.
For the last step of the feature extraction process, the Image Box may also contain the averaged
diameter curve as well as the discrete values of calculated aortic parameters. The bottom of the
GUI should contain the Log Box to give feedback during successful or failed process steps. The
full content of this logging widget should be accessible by a scrollbar.
Except the case the user clicks or switches through editable fields in the Patient Box, File-
Save/Open-Dialogues or items within the Configuration Box, the application should not respond
to keyboard interactions.
If one of the automated image feature extraction processes fails or the user enters invalid data,
a warning message should be given to the user by opening a Message Box with a meaningful
text-content and an OK-button.

3.2 Hardware Interfaces

For this application no external hardware nor related interface is required.

3.3 Software Interfaces

For this software version, no interface to other software component is planned. In further releases
there might be an interface to directly share M-mode images and the calculated results of AortUs
with a Picture Archiving and Communication System (PACS), or an electronic health record.

3.4 Communications Interfaces

For this application no network communication interface is planned.

8

4 System Features

This chapter describes the main functional requirements, listed as “System Features”. As some
of them depend on another, each feature that prerequisites other certain features, will link their
direct dependence in the Dependencies list.
Each description includes the attributes “Priority of consideration” and the related “estimated
Effort”. These subjective attributes are rated from 1 (low priority/effort) to 9 (high priority/-
effort) by the author of this document. The assigned priority is a result of previous meetings of
CB and BF, as well as aspects of usability whereas the estimated effort is based on the author’s
development experience and alternative possible ways of implementation.

4.1 System Feature 1

Input of Patient Data

4.1.1 Description and Priority

Each usage of the image feature extraction procedure is related to an M-mode image of an
echocardiographic examination of a patient.

Priority: 9
Effort: 7

4.1.2 Stimulus/Response Sequences

As long as at least one field of the Patient Box does not contain valid content, the image
extraction process must not be accessible. Furthermore changes in the Patient Box during this
state-process can be allowed, but the user shall not be able to proceed if the already valid patient
data is changed to invalid patient data.
The user must not be able to enter restricted characters to specific entry-fields. If the user enters
semantically incorrect or bad formatted data like i.e. “35.01.1992” in the date of birth field or
blood pressure values outside specified boundaries (see SF4.7), the entry-field must be cleared
and a Message Box must appear (see SF4.3). Each info-string of these Message Box calls must
also be printed to the Log Box.

4.1.3 Functional Requirements

The following patient specific information must be allowed to enter:

9

• First Name (max. 100 alphabetic characters incl. [, -], restricting numbers, mutated
vowels and other special characters)

• Last Name (same restrictions as First Name)

• Date of Birth (in format DD.MM.YYYY, allowing only realistic and past dates)

• Date of Investigation (same Date of Birth incl. today’s date)

• Insurance Number (max. 10 digits)

• Systolic and diastolic blood pressure of ascending- and descending aorta (see SF4.7)

To stop the acquisition procedure during any of the image data extraction states and also clear
all patient information fields, a “Clear Detection” button must also be available.
When the user successfully finished at least one run of the edge detection process, a “Export
Results” button should facilitate to generate a patient report (see SF4.18).
Any other patient specific information can be omitted.

Dependencies: SF4.7

4.2 System Feature 2

State Visualisation

4.2.1 Description and Priority

To ensure intuitive usage, a sequential visualization of the main image processing steps is re-
quired.

Priority: 9
Effort: 4

4.2.2 Stimulus/Response Sequences

This state visualisation should permit user interaction to proceed the main process (from step
1 → step 2, step 2 → 3 and so on) but in general prohibit reverse- and “Goto”-step jumps (i.e.
step 3 → 2, step 2 → 5), except it is explicitly demanded by any other requirement.

4.2.3 Functional Requirements

The GUI needs to include a State Box, embedding a visualisation of the main image processing
steps. For detailed information of these steps’ objectives, the reader is asked to refer to the
list in section 2.2. Except the implementation of the state process’s origin by a “Load Image”
button, the naming and layout of further steps is up to the developer.
If the user tries to trigger a forbidden (“Goto” or reverse) step, the application should stay in
the same state like before the state-trigger event happend.

Dependencies: SF4.3, SF4.1

10

4.3 System Feature 3

Message Popup Window

4.3.1 Description and Priority

A message window (Message Box) pops up if the user triggered an unexpected or restricted
event.

Priority: 9
Effort: 1

4.3.2 Stimulus/Response Sequences

Unexpected or restricted events are that

• the user entered an invalid date (see also SF4.1)

• the user entered invalid blood pressure values (see also SF4.7)

• the user passed an invalid image- or patient record file or the passed file could not be
opened

• the user tries to move triggerponits in the Electrocardiogram (ECG) outside the axes limits
(see also SF4.11)

• the image does not contain enough information for the extraction algorithm. This is the
case if

– no ECG tracing was found

– no region of interest (ROI) was found

– no edges could be extracted

• certain steps of the main process could not be executed automatically. This is the case if

– the scales could not be detected

– the ROI could not be detected

Unintended or restricted
event trigged. Please click

OK to continue.

Message Box

OK

Figure 2: Draft Layout of the Message Box

Figure 2 shows how the window of the Message Box could look like.

11

4.3.3 Functional Requirements

The Message Box must pop up in front of the GUI to inform the user about unexpected or
restricted events. To continue using the main window, the user must click the “OK” button.

Dependencies: SF4.7, SF4.8, SF4.10, SF4.11, SF4.12, SF4.14

4.4 System Feature 4

M-Mode image and estimated Parameter Box

4.4.1 Description and Priority

Box for displaying and interacting with loaded M-mode image and for representing calculated
results.

Priority: 9
Effort: 8

4.4.2 Stimulus/Response Sequences

The content of this box has to be adapted to the current state of the main image processing
procedure. If no image is loaded or the current detection process is cancelled, this box should
show a placeholder for the actual M-mode image.
In any other non-terminal state, the box should embed the loaded M-mode or ROI including
highlighted detected image elements (scales, ECG, triggerpoints, edges). If the application
successfully reached the last state, the box should also embed the established parameters, in
particular Distensibility, Stiffness-Index, Systolic Diameter Increase (described in [7]) and the
averaged (and optionally smoothed) diameter curve.

4.4.3 Functional Requirements

As already mentioned, highlighting detected image content is mandatory. Since the automatic
modes of the state-processes can fail due to deviating image resolution, bit depth or overlayed
disturbing US-specific image cursors i.e. from time measurement. Therefore the listed dependen-
cies include single state-processes where manual interaction can be done by click-events within
the Image Box and the state-specific content of the manual Configuation Box.

Dependencies: SF4.10, SF4.12, SF4.13, SF4.14

4.5 System Feature 5

Logging Information

12

4.5.1 Description and Priority

Information about just triggered GUI-events must be provided within the Log Box.

Priority: 8
Effort: 3

4.5.2 Stimulus/Response Sequences

Events that must certainly trigger an entry in the Log Box are the same as those from SF4.3
and additionally after

• all image load and clear events

• all state change events

4.5.3 Functional Requirements

The logging information should contain distinct information of the action triggerd in AortUs, in
form of a logging text. Each new entry must be appended to already existing entries in the Log
Box and start with a new line, followed by the characters “>> and the current time”.

Dependencies: SF4.1

4.6 System Feature 6

Choice between M-mode images of “Transducer Position Types” AscAo and DesAo

4.6.1 Description and Priority

The software should integratively consider the analysis of two different types of examinations
for one patient.

Priority: 7
Effort: 5

4.6.2 Stimulus/Response Sequences

It must be possible to define of the transducer position used for an acquired M-mode image,
before the edge detection process is started. When this process was finished successfully or
cancelled, it should be possible to change the transducer position type

4.6.3 Functional Requirements

To clearly distinguish between AscAo and DesAo parameter extraction, this information of
transducer position type must also be part of the exported PDF.

13

4.7 System Feature 7

Entry Field for Blood Pressure

4.7.1 Description and Priority

Multiple input fields for systolic and diastolic blood pressure records for the AscAo and the
DesAo

Priority: 9
Effort: 3

4.7.2 Stimulus/Response Sequences

This input field must be accessible only, when AortUs is not in any of the state processes (before
loading the first image). As great flexibility and usability is crucial, the user needs to have the
possibility to enter at least 5 blood pressure records that are averaged for the calculation of
Distensibility, Stiffness-Index and Systolic Diameter Increase. If invalid content is entered, a
Message Box should appear.

4.7.3 Functional Requirements

The input fields must allow to enter numeric systolic blood pressure values within 50mmHg and
300mmHg, diastolic values should be permitted within 30mmHg and 250mmHg. A Message
Box should not just appear for non-numeric input, but also for values that are physiologically
impossible (values outside defined boundaries, systolic < diastolic values).
As echocardiography examinations can focus the AscAo and the DesAo, input fields for both
types must be implemented.
In addition, the GUI must also show the averaged values of the entered systolic or diastolic
blood pressure values.

4.8 System Feature 8

Load Image

4.8.1 Description and Priority

A standard open file dialog must be available to pass either an M-mode image to AortUs.

Priority: 7
Effort: 1

14

4.8.2 Stimulus/Response Sequences

The file load dialog must appear if the user either clicks “Load Image” button of the state
visualisation. This should not be possible if the application is one of the image data extraction
states (every state after an M-mode image is loaded).
Successfully loaded files must lead to an information entry within the Log Box about which
file was chosen. Files that could not be opened, must also lead to an entry to Log Box and
additionally to a Message Box popup. If the user cancels or closes the dialog, the application
should be in the same state as before the dialog was opened.

4.8.3 Functional Requirements

The file dialog itself must offer the possibility to visit all OS available directories.

Dependencies: SF4.2, SF4.5, SF4.3

4.9 System Feature 9

Input M-mode Image

4.9.1 Description and Priority

It must be able to process an M-mode image with defined image format properties.

Priority: 2
Effort: 5

4.9.2 Stimulus/Response Sequences

Whenever the user is able and intends to load an M-mode image, AortUs must be able to process
an image with certain properties.

4.9.3 Functional Requirements

It must be possible to load an M-mode image from a TTE examination with following properties:

• RGB colouring

• 8bit resolution per channel

• format “jpg”, “png”, “tif” or “bmp”

Dependencies: SF4.8

15

4.10 System Feature 10

Spatio-temporal M-mode resolution

4.10.1 Description and Priority

To get information about the depth- and time scaling of the M-mode image, AortUs should be
able to extract this information.

Priority: 8
Effort: 7

4.10.2 Stimulus/Response Sequences

This functionality is necessary to accomplish berore the ECG triggerpoints for averaging can be
defined.

4.10.3 Functional Requirements

The application should be able to detect the vertical (depth) and horizontal (temporal) scales
and its subsections automatically, if the image resolution is high enough and no perturbing
image content covers the scales. If this is not the case, the user should be informed in form
of a Message Box and the application should provide the possibility to enter the vertical and
horizontal resolution manually (define px-per-cm and px-per-sec).

Dependencies: SF4.8

4.11 System Feature 11

Detection of ECG tracing

4.11.1 Description and Priority

In order to enable averaging the wall edge curves over multiple heart cycles, an ECG tracing
must be part of the M-mode image.

Priority: 7
Effort: 8

4.11.2 Stimulus/Response Sequences

This functionality depends on the definition of spatio-temporal resolution and is required to
furthermore start the edge detection. It is the basis step to facilitate the automatic detection of
possible R-peaks in the ECG tracing.

16

4.11.3 Functional Requirements

The ECG must be continuously present over the whole time axis of the M-mode image, without
being covered by US-device specific analysis tools (i.e. vertical bars that cover certain image
areas). It must be ensured that the ECG is located at the bottom part of the actual M-Mode
image, so that it does not cover any contour relevant parts of the image.
As the M-mode image is usually made up of different shades of grey, the ECG must set oneself
apart by using an outstanding color (i.e. cyan, magenta, yellow, red, green, blue). If these
prerequisites are fulfilled, an automated image detection algorithm should be able to extract the
ECG tracing in order to provide a baseline to set trigger points.
It the ECG cannot be detected automatically, the user must be informed that an edge detection
with the loaded image cannot be applied.

Dependencies: SF4.10

4.12 System Feature 12

Detection of R-peaks

4.12.1 Description and Priority

A basic suggestion of triggerpoints to facilitate averaging wall edges over heart-cycles has to be
made by the automatic detection of R-peaks within the ECG

Priority: 6
Effort: 5

4.12.2 Stimulus/Response Sequences

After the automated ECG detection was performed successfully, the detection of R-peaks within
this curve should take place.

4.12.3 Functional Requirements

The R-peak detection algorithm should be based on a one dimensional numeric datastream so
that high flexibility concerning other data sources (i.e. an additional bytestream-file containing
the ECG tracing) is provided. Each M-mode image must contain at least two heart-cycles,
in order to find discriminable R-peaks. If the automatic peak-detection algorithm fails, the
user must have the possibility to create such triggerpoints manually within a supportive tool
in the Configuartion Box. This manual sort of intervention should not just be available if the
automatic detection fails, but also when the user wants to define, remove, correct or offset certain
triggerpoints.
In addition, the calculated heart rate, based on the px-per-sec, must be within [40, 250]bpm.

Dependencies: SF4.11

17

4.13 System Feature 13

Detection of aortic ROI

4.13.1 Description and Priority

To get rid of uninteresting image content, AortUs should execute its wall detection on the aortic
ROI which is the minimal image section of M-mode image, showing the aorta’s wall over time.

Priority: 8
Effort: 5

4.13.2 Stimulus/Response Sequences

This image sectioning functionality should be executed before the detection actual edges is
performed.

4.13.3 Functional Requirements

As the usage of the ROI simplifies the implementation of the edge detection algorithm, it is a
crucial step. The boundaries are positions in depth dimension of the overall M-mode image,
defining the first and the last image row of the aortic ROI like shown in Figure 3. The determi-

Figure 3: Example for ROI

nation of the ROI can be manual or optionally automated.
It should be noted, that this image section is the only one used to determine the diameter
changes of the aorta and thus should not contain any vertical or horizontal cursors from US
device specific measurement tools.

4.14 System Feature 14

Aortic wall edge detection

4.14.1 Description and Priority

To estimate the aortic diameter changes for one heart cycle, the aortic wall deflections within
the M-mode image must be detected.

Priority: 9
Effort: 9

18

4.14.2 Stimulus/Response Sequences

The aortic wall edge detection algorithm must be executed after M-mode was reduced to the
actual ROI. A precise detection is also the basis for accurate aortic parameters, which are
calculated afterwards.

4.14.3 Functional Requirements

The edges should be detected according to the leading edge technique, so that the diameter
estimation does consider the wall thickness by measuring from the leading edge of the anterior
aortic wall to leading edge of the posterior aortic wall. Since some M-mode images do not show
distinct time continuous wall deflections, the user must have the possiblity to correct the found
edges manually.
If the image quality is not high enough or the visible difference between the aortic wall and its
environment is not strong enough, the algorithm can reject the image and inform the user about
this by showing a Message Box.

Dependencies: SF4.13

4.15 System Feature 15

Calculation and visualisation of extracted parameters

4.15.1 Description and Priority

The aortic elastic parameters must be calculated, based on heart-cycle triggered average diameter
curve over time.

Priority: 9
Effort: 4

4.15.2 Stimulus/Response Sequences

This is the very last state that can be reached in the edge extraction process. After this step, the
configuration of the “Transducer Position Type” (SF4.6), the export of established parameters
as well as loading and processing other images to this patient should be enabled.

4.15.3 Functional Requirements

It must be possible to combine at least 5 previously determined heart-cycle based diameter
curves in this step, to calculate reliable results. The systolic- ds and the diastolic diameter

dd of the aorta as well as their reasoned circular approximated areas As|d =
πds|d

2

4 lead to the
parameters:

• Distensibility D = As−Ad
Ad·(ps−pd)·1333 · 107(kPa−1 · 10−3)

19

• Stiffness-Index SI =
ln ps

pd
dinc

(dimensionless)

• Systolic Diameter Increase dinc = ds−dd
dd

(%)

Variables ps and pd denote the averaged entered systolic and diastolic blood pressure.
Furthermore the visualisation of the averaged aortic diameter changes over time must also be
implemented. These results should appear within the Image Box.

Dependencies: SF4.14, SF4.12, SF4.1, SF4.7, SF4.17, SF4.18

4.16 System Feature 16

Offset of triggerpoints

4.16.1 Description and Priority

The automatic and manual correction of positions of triggerpoints

4.16.2 Stimulus/Response Sequences

When the ECG was detected and R-peaks were found successfully, the Configuration Box should
offer a tool for manipulating the temporal position of shown triggerpoints by setting a positive
or negative temporal offset.

Priority: 3
Effort: 3

4.16.3 Functional Requirements

By default, triggerpoints must be shifted to −50ms prior to found R-peaks, in order to set
correct time ranges to find the systolic and diastolic diameter (see SF4.17). Since the adaption
of this automatically defined offset may be required in the future, a function to individually or
globally set a temporal offset value must be integrated.

Dependencies: SF4.12

4.17 System Feature 17

Determination of systolic and diastolic diameter

4.17.1 Description and Priority

The extraction of the systolic and diastolic diameter, based on the average diameter curve

Priority: 8
Effort: 1

20

4.17.2 Stimulus/Response Sequences

After diameter curves are extracted and averaged over heart-cycles, this curves should build the
basis for the determination of the systolic maximum and diastolic minimum diameter. By using
this extracted values, the actual parameters in SF4.15 can be calculated.

4.17.3 Functional Requirements

These minima and maxima values should be found in the following time ranges:

• Diastolic Minimum Diameter, minimal diameter within [−50, 200]ms around found R-
peaks

• Systolic Maximal Diameter, maximal diameter within [150, 450]ms around found R-peaks

It should be noted, that these values change to [0, 250ms] and [200, 500]ms for the default
triggerpoint offset of −50ms (see SF4.16).

Dependencies: SF4.16, SF4.14

4.18 System Feature 18

Export of calculated parameters and plots

4.18.1 Description and Priority

It must be possible to export parameters calculated for each edge detection run of AscAo and
DesAo to a patient examinations PDF

Priority: 8
Effort: 5

4.18.2 Stimulus/Response Sequences

This action can only be used if the user at least finishes one parameter calculation process
successfully. If no set of diameter curves and parameters is available, this function must be
restricted.

4.18.3 Functional Requirements

The exported PDF must contain at least the following information:

1. AortUs version, date of usage and name of user

2. all content of the patient data fields from SF4.1

3. average blood pressure values

4. processed M-mode images including superposed content (at least the wall edges)

21

5. calculated single- and averaged diameter curves as well as related calculated parameters

It should be noted that elements 4 - 5 must be separated for analysis of AscAo images from
DesAo images.

Dependencies: SF4.14

4.19 System Feature 19

Cancel main edge detection process

4.19.1 Description and Priority

Whenever the user is in one of the main image processing states, it should be possible to stop
this process by jumping back to the “Load Image” state.

Priority: 4
Effort: 2

4.19.2 Stimulus/Response Sequences

Except the entry point by loading the M-mode image, the order and actual implementation of
further main image processing steps are up to the developer. In any of these steps the user
should have the possibility to return to the “Load Image” state.

4.19.3 Functional Requirements

This cancellation must clear all data extracted by the main edge detection process so far. The
Image Box should show the idle image described in SF4.4.

Dependencies: SF4.2, SF4.4

22

5 Other Nonfunctional Requirements

5.1 Performance Requirements

In general, a global goal of the software should be to extract these parameters from one image
within around 10 minutes, assuming the user is already familiar with AortUs. Besides this, other
performance requirements can be neglected.

5.2 Safety Requirements

In case of a risk class IIa product, this product may be used as a diagnostic decision support for
questions regarding the biomechanical behaviour of the aorta. Thus the software does not have
an direct impact on the patient’s state of health (SOH), although serious deterioration of the
patient’s health can be a consequence of mistaken therapy, depending on the intended use. Thus
the definition of additional safety requirements can be neglected for the development process.

5.3 Security Requirements

The usage of AortUs itself is not restricted to certain users of the machine, as the misusage is not
dangerous. Nevertheless, the generated data of this application is sensible and must therefore
be protected against unauthorised usage by the user.

5.4 Software Quality Attributes

As AortUs is based on M-mode images of different diagnostic US manufacturers and models,
especially adpatibility, interoperability and maintainability plays a crucial role. For instance,
the detection of the ECG should not be based on it’s specific color or for the detection of the
scales the algorithm should not be based on a device specific certain pixel row, but on an certain
model independent general morphological conditions which should first of all be elaborated by
the different M-mode image examples provided. This conditional parametrisation should always
be central available at the top of a method or class code, including comments for the description
of it’s usage if not self-explanatory. To get the point, none of the image detecting algorithms
should be strictly fitted to one certain M-mode image type, but on at least 2 morphologically
different image types to facilitate a flexible solution.
Other quality aspects to be considered are robustness (in terms of subject an time-varying
quality changes) and a high level of usability. Differences in wall edge image quality can have
multiple reasons (physiological, technical, examination related) but they must be considered
when implementing the detection algorithms. To enhance the likelihood of clinical usage of

23

AortUs, not just the intuitive state based process is required (refer to SF4.2), but also a well-
arranged positioning of entry-fields and buttons must be ensured. It should be intuitive enough
so that a user without prior knowledge about this application should be able to step through
the main image feature extraction process within 20 minutes.

5.5 Business Rules

As there is just one single user mode, a definition of business rules can be neglected.

24

6 Other Requirements

6.1 Legal Requirements

The aim of this project is not just to develop the application itself, according to all previ-
ously described requirements, but also to consider Medical Device Regulation 2017/745 (MDR
2017/745) classification aspect to bring the software on the market. Based on the intended use
described in the user manual, AortUs modules will be classified to one of four risk classes.

25

Bibliography

[1] I. Voges, M. Jerosch-Herold, J. Hedderich, E. Pardun, C. Hart, D. D. Gabbert, J. H. Hansen,
C. Petko, H.-H. Kramer, and C. Rickers, “Normal values of aortic dimensions, distensibility,
and pulse wave velocity in children and young adults: a cross-sectional study,” Journal of
Cardiovascular Magnetic Resonance, no. 14:77, 2012.

[2] R. Asmar, J. Topouchian, A. Benetos, F. Sayegh, J. Mourad, and M. Safar, “Non-invasive
evaluation of arterial abnormalities in hypertensive patients,” Journal of Hypertension. Sup-
plement, vol. 15, no. 2, pp. 99–107, 1997.

[3] R. Asmar, A. Benetos, Jirar A., P. Laurent, B. Pannier, A. Brisac, R. Traget, and B. Levy,
“Assessment of arterial distensibility by automatic pulse wave velocity measurement,” Hy-
pertension, vol. 26, no. 3, pp. 485–490, 1995.

[4] J. Cho and K. Kim, “Evaluation of arterial stiffness by echocardiography: Methodological
aspects,” Chonnam Medical Journal, vol. 52, no. 2, pp. 101–106, 2016.

[5] A. Ng and J. Swanevelder, “Resolution in ultrasound imaging,” Continuing Education in
Anaesthesia, Critical Care & Pain, vol. 11, no. 5, 2011.

[6] M. Ueckera, S. Zhanga, D. Voita, A. Karausa, K. Merboldta, and J. Frahma, “Real-time mri
at a resolution of 20 ms,” NMR in Biomedicine, vol. 23, no. 8, pp. 986–994, June 2010.

[7] D. Baumgartner, C. Baumgartner, G. Mátyás, B. Steinmann, J. Löffler-Ragg, E. Schermer,
U. Schweigmann, I. Baldissera, B. Frischhut, J. Hess, and I. Hammerer, “Diagnostic power of
aortic elastic properties in young patients with marfan syndrome,” The Journal of Thoracic
and Cardiovascular Surgery, vol. 129, no. 4, pp. 730–739, April 2005.

[8] A. Redheuil, W. Yu, C. Wu, E. Mousseaux, A. de Cesare, R. Yan, N. Kachenoura,
D. Bluekme, and J. Lima, “Reduced ascending aortic strain and distensibility: Earliest
manifestations of vascular aging in humans,” Hypertension, vol. 55, no. 2, pp. 319–326, 2010.

27

Feedbackbogen	AortUs	
Danke,	dass	Sie	sich	trotz	des	hektischen	Klinkalltags	5	Minuten	für	ein	kurzes	
Gebrauchstauglichkeits-Feedback	von	AortUs	Zeit	genommen	haben.	J	
Die	Fragebögen	werden	anonym	ausgewertet	und	in	die	Masterarbeit	„Aortic	Distensibility	
Estimation	by	M-Mode	Echocardiographic-Data“	mit	aufgenommen.	
	
Anwender	 Erfahrungslevel	Echocardiographie	 Datum	
M	 W	 	 	 >5J	 >10J	 >15J	 >20J	 30J	 	 	
	
Anzahl	ausgew.	Bilder	mit	AortUs	
ca.	
	

1	 Ich	denke,	dass	ich	die	Software	gerne	häufig	benutzen	würde.	 �	 �	 �	 �	 �	

2	 Ich	fand	die	Software	unnötig	komplex.	 �	 �	 �	 �	 �	

3	 Ich	fand,	die	Software	war	einfach	zu	benutzen.	 �	 �	 �	 �	 �	

4	 Ich	glaube,	ich	würde	die	Hilfe	einer	technisch	versierten	Person	
benötigen,	um	die	Softare	benutzen	zu	können.	 �	 �	 �	 �	 �	

5	 Ich	fand,	die	verschiedneen	Funktionen	der	Software	waren	gut	
integriert.	 �	 �	 �	 �	 �	

6	 Ich	denke,	die	Software	enthält	zu	viele	Inkonsistenzen.	 �	 �	 �	 �	 �	

7	 Ich	kann	mir	vorstellen,	dass	die	meisten	Menschen	den	Umgang	mit	
dieser	Software	sehr	schenll	lernen.	 �	 �	 �	 �	 �	

8	 Ich	fand	die	Software	sehr	umständlich	zu	nutzen.	 �	 �	 �	 �	 �	

9	 Ich	fühlte	mich	bei	der	Benutzung	der	Software	sehr	sicher.	 �	 �	 �	 �	 �	

10	 Ich	musste	eine	Menge	lernen,	bevor	ich	mit	der	Software	arbeiten	
konnte.	 �	 �	 �	 �	 �	

	
Das	kann	passieren,	wenn	AortUs	einen	Fehler	in	der	Berechnung	macht	
(Folgerisiken):	 Fragen/Anregungen/	

Wünsche?	
	

Bernhard	Frohner	
frohner@student.tugraz.at	

+436604057005	

Das	möchte	ich	noch	sagen:	
	 	

DANKE!	

	

Stimme	
völlig		zu	

Stimme	
überhaupt	
nicht	zu	

AORTUS PARAMETER EXPORT REPORT
AORTUS VERSION: 1.0.2
DATE OF USE: 04.03.2018
EXAMINER: Daniela

Patient Data
First Name:
Last Name:
Date of Birth: 1997
Insr. Nr:

Transducer Position "AscAo"
Date of Examination: 28.02.2018
Filename: .bmp
Mean Sys/Dia BP (mmHg): 95.0/57.0

1

21 Year old Female
Marfan Syndrome Typ 1 Patient

Diast. Diameter (mm): 29.6
Syst. Diameter (mm): 31.0
Syst. Diameter Increase (%): 5.0
Distensibility (kPa-1^ 10^-3): 9.8
Stiffness Index: 10.3

Transducer Position "DesAo"
Date of Examination: 28.02.2018
Filename: .bmp
Mean Sys/Dia BP (mmHg): 95.0/57.0

2

Diast. Diameter (mm): 15.7
Syst. Diameter (mm): 17.5
Syst. Diameter Increase (%): 11.5
Distensibility (kPa-1^ 10^-3): 22.8
Stiffness Index: 4.4

3

AORTUS PARAMETER EXPORT REPORT
AORTUS VERSION: 1.0.2
DATE OF USE: 04.03.2018
EXAMINER: Daniela

Patient Data
First Name:
Last Name:
Date of Birth: 2013
Insr. Nr:

Transducer Position "AscAo"
Date of Examination: 04.12.2017
Filename: .bmp
Mean Sys/Dia BP (mmHg): 113.0/72.0

1

4 Year old Female
Healthy Patient

Diast. Diameter (mm): 14.6
Syst. Diameter (mm): 17.9
Syst. Diameter Increase (%): 23.2
Distensibility (kPa-1^ 10^-3): 42.4
Stiffness Index: 1.9

Transducer Position "DesAo"
Date of Examination: 04.12.2017
Filename: .bmp
Mean Sys/Dia BP (mmHg): 113.0/72.0

2

Diast. Diameter (mm): 9.1
Syst. Diameter (mm): 11.0
Syst. Diameter Increase (%): 21.5
Distensibility (kPa-1^ 10^-3): 39.3
Stiffness Index: 2.1

3

AORTUS PARAMETER EXPORT REPORT
AORTUS VERSION: 1.0.2

DATE OF USE: 14.03.2018

EXAMINER: BF

Patient Data
First Name:

Last Name:

Date of Birth:

Insr. Nr:

Transducer Position "AscAo"
Date of Examination: 30.04.2017

Filename: AA2_144X76F4Y.jpg

Mean Sys/Dia BP (mmHg): 126.5/92.5

Date of Examination: 30.04.2017

Filename: AA2_244X76F50.jpg
1

48 Year old Male
Healthy Patient

Mean Sys/Dia BP (mmHg): 126.5/92.5

Diast. Diameter (mm): 25.3

Syst. Diameter (mm): 28.2

Syst. Diameter Increase (%): 11.4

Distensibility (kPa-1^ 10^-3): 25.1

2

Stiffness Index: 2.8

3

User Manual

for project AortUs

March 2018

Bernhard Frohner

Version 1.2

Revision History

Version Date Author Description

1.0 23.02.2018 Bernhard Frohner initial setup of user manual

1.1 06.03.2018 Bernhard Frohner adaption of screenshots to current software ver-
sion V1.1

• correction of typos
• change of Message Box appearance reasons
• defining the Intended User Group
• adaption of System Requirements

1.2 22.03.2018 Bernhard Frohner typo mistake fixing after master’s thesis correc-
tion

Warning and Safety Instructions

This manual contains relevant warnings of the software, in the following referred to as AortUs,
which must be observed by the user.

The device is only intended for the designated use described in this documentation. This
manual will also explain essential prerequisites to ensure the correct, smooth operation of AortUs.
BF e.U. can not offer warranty nor except any liability if the software is used in applications
other than those described.

The software may only be used and operated by personnel, who, due to their qualifications, are
capable of understanding the instructions of AortUs during use and operation. The operation
principle of AortUs is such that the accuracy of calculated results depends not only on the
fulfillment of operating requirements for AortUs, but also on a variety of peripheral conditions
beyond the control of the manufacturer. Therefore, the results obtained from this software must
be released by an expert before any other diagnostic or therapeutic treatment is taken based on
those results.

Bernhard Frohner e.U.

Document Conventions

Typographic Conventions

Warning: Special care needs to be taken regarding the described warning, in order to
ensure correct calculated results.

Note: Useful remarks regarding the described topic may be given.

Text Styles and Variables

Bold Software Parameters; important text

Italic Software related names of boxes, buttons and other widget
elements; math expression

Typewriter Keyboard input or output

<User> wildcard for the term within the characters “<” and “>”

Abbreviations

This document contains abbreviations, explained with full name at the very first mention in
format <full name> (<abbreviation>) and abbreviated for all other usages. A full list of used
acronyms can be obtained in Acronyms on page 7.

Screenshot Examples

The following manual will describe the usage of AortUs by using real M-mode images of the
aorta. This is supported by screenshots of the software version V1.0.2. It should be noted
that supporting text-messages or defined boundaries may vary, depending on the used software
version. Furthermore, the patient’s personal data on the used images were anonymised and all
entered data in the upcoming examples are fictive.

Acronyms

AscAo ascending aorta 1, 7, 11

BP blood pressure 8, 11, 18, 21

DesAo descending aorta 1

ECG Electrocardiogram 1, 2, 14, 15, 21, 24, 27

LoS line of sight 2

OS operating system 2, 5, 12, 19

ROI region of interest 2, 3, 14–16, 21–24

TTE transthoracal echocardiography 1–3

Contents

Acronyms 7

1 General 1
1.1 Basic Information . 1
1.2 Intended User Group . 1
1.3 Definition of Parameters . 2
1.4 Examination Prerequisites . 2

2 Software Launch 5
2.1 System Requirements . 5
2.2 Logfile . 5
2.3 Start Up . 5

3 User Interface 7
3.1 Main Window . 7

3.1.1 Patient Box . 8
3.1.2 Config Box . 9
3.1.3 Image Box . 9
3.1.4 State Box . 10
3.1.5 Log Box . 10

4 Usage Example 11

5 Manual Interventions and Notifications 21
5.1 Message Box . 21
5.2 Manual Scale Detection . 21

6 Maintenance and Feedback 25

1 General

1.1 Basic Information

The measurement of aortic wall diameters is well used to address medical questions of aortic
properties such as distensibility and stiffness. The arterial stiffness does not just increase over
age, but can also be affected by the impairment of the connective tissue. A fast and economical
way of exploiting such changes, is transthoracal echocardiography (TTE). It is broadly used to
detect not just abnormal behaviour of cardiac valves, but also of the temporal changes of the
aortic diameters.

AortUs is a standalone software that calculates elastic aortic properties, based on such M-
mode echocardiography images of the ascending aorta (AscAo) and descending aorta (DesAo)
and on oscillometric blood pressure values. It is capable of processing recorded M-mode images
of the AscAo or DesAo in a semiautomatic way, that aims to detect the leading edges of the
aortic walls. These edges denote the vessel’s diameter over time and can therefore be averaged
over covered heart cycles, as long as the M-mode image also contains a coloured Electrocardio-
gram (ECG) tracing.
In order to extract these heart cycle based curves as simple as possible, the main Edge De-
tection Process of AortUs guides the user in six distinct steps to establish the following aortic
parameters:

• Diastolic Diameter (mm)

• Systolic Diameter (mm)

• Systolic Diameter Increase (%)

• Distensibility (kPa−1 · 10−3)

• Stiffness Index (dimensionless)

It is comprehensible that the M-mode image must at least contain two heart-cycle based
diameter curves in order to build the average diameter curves and based on this, derive previously
mentioned parameters. Since the accuracy of the estimated diastolic and systolic diameter
increases with the number of averaged diameter curves, AortUs facilitates to process multiple
images to one single aortic parameter set. The resulting curves and quantities can be exported
to a patient examination report PDF.

1.2 Intended User Group

AortUs primarily focusses on cardiologists that gain interest in impaired local bioelasticity of
the aorta. This user group has expertise in performing TTE examinations and is therefore
responsible for recording M-mode images that respect the criterias described in the Examination
Prerequisites.
Besides this, also academic users with know-how in terms of aortic M-mode images are intended

1

to use this software, when instructed by a cardiologist.
In any case, the user has to process M-mode images generated by a cardiologist and additionally
needs to be comfortable with the operating system (OS) as well as application software basics.

1.3 Definition of Parameters

The aortic parameters are calculated as follows

• Diastolic Diameter dd (the minimal diameter in the averaged wall curves)

• Systolic Diameter ds (the maximal diameter in the averaged wall curves)

• Systolic Diameter Increase dinc

dinc =
ds − dd

dd
(%) (1.1)

• Distensibility D

D =
As −Ad

Ad · (ps − pd) · 1333
· 107(kPa−1 · 10−3) (1.2)

• Stiffness Index SI

SI =
ln ps

pd

dinc
(1.3)

Formuals (1.1) till (1.3) take use of the approximated circular aortic cross section As for systolic
and Ad for diastolic diameter. Thus it should be noted that AortUs can give rough estimations
of the aorta’s properties with idealised shape. The parameters ps and pd denote the average
measured systolic and diastolic blood pressure, respectively (both in mmHg).

1.4 Examination Prerequisites

Since there is no universal image standard for TTE aortic M-mode images, the examiner must
ensure that the record respects the following conditions:

• 24bit RGB image, embedding a grayscale M-mode image with clearly visible transducer-
near and far aortic walls

• maximation of axial transducer resolution

• the aorta must not be located near the M-mode region of interest (ROI)’s boundaries

• coloured ECG tracing recorded synchronous to the wall distortions, not covering wall image
content

• each image covers at least two cardiac cycles (three clearly detectable R-peaks)

• the line of sight (LoS) representing the M-mode recording must be exactly perpendicular
to the aorta

• the LoS should represent the position of maximal systolic diameter change

• the image must not contain any vertical or horizontal cursors from the TTE-device’s
measurement tools

2

• the image must not contain any other ROI breaking content, i.e. black areas within the
M-mode ROI evoked by changes of TTE-device settings

• the axes of the M-mode area must be defined by a scaling of one of the following shapes

– a purely horizontal line including orthogonal intersection lines on the area’s top border
as well as a vertical line including orthogonal intersection lines on its left border

– no vertical or horizontal axes, only intersection lines on the area’s right border (ver-
tical) as well as on the area’s bottom border (horizontal)

• the image exported from the echocardiography device software must be in format “JPG”
“PNG”, “TIF” or “BMP”

It should be noted, that the quality of calculate aortic wall edges as well as the accuracy of
derived parameter set mainly depends on the quality of loaded TTE images.

3

2 Software Launch

2.1 System Requirements

Since AortUs is distributed as independent executable, no installation of internally used libraries
is required. Although, the execution of this software demands (minimum) system requirements:

• Operating system: Windows 7, 32bit/64bit

• Free disk space: > 300MB

Note: If the main drive of the OS does not provide enough free space, the bootloader will
close at startup without running AortUs.

2.2 Logfile

In addition to the printed information within the Loginfo Box of the main window, each us-
age of AortUs will append this log info content to a temporary Windows user related log file
“aortus log.tex”, created by default in the directory “C:\<Username>\AppData\Local\Temp”.
If AortUs hangs, terminates or produces incomprehensible results, this file will be of interest for
the support by BF e.U..

2.3 Start Up

When launching the executable, a Windows command window refered as Bootloader will appear,
showing the current state of loaded modules used in AortUs (see Figure 1). Depending on the
PC’s performance, this may take a while until finally the main window of AortUs appears.

Figure 1: Bootloader of AortUs

5

3 User Interface

The upcoming section will describe the user interface of AortUs and will give an example of two
loaded images for an AscAo parameter set.

3.1 Main Window

When AortUs is started, the bootloader will run and the main window will appear after all
modules are loaded, like depicted below (Figure 2).

Patient Box Image Box

Con�g Box

State Box

Log Box

Figure 2: Main Window of AortUs

Note: The main window of AortUs will be fitted to a certain ratio of the user’s main
screen size. It should not be resized to fit the whole screen, although it is possible.

Note: The main window will be terminated whenever the user closes the Bootloader, the
main window will be closed as well.

The main window can be separated into boxes, separated as follows.

7

3.1.1 Patient Box

Before the first image can be loaded, it is required to enter the patient’s personal as well as
related examination data for unique identification (first name, last name, insurance nr., date of
birth, date of examination). Impossible characters within the name-fields as well as impossible
entered dates will be restricted and a Message Box will appear. A filled example of the upper
part of this box is shown in Figure 3.

Figure 3: Example filled input fields of Patient Box

Right below the input field for “Date of Examination”, a dynamic list to enter the systolic
and diastolic blood pressure (BP) values is shown (see Figure 4). Click the leftmost symbols
+ . . . to add a row and enter sys./dia. blood pressure values
- . . . to remove a row

Figure 4: Example of three entries in dynamic BP list

Note: To enhance filling the previously describe entry fields, the user may also use the
“TAB” key to switch from one field to the next one. This is not just possible for the
fields “First Name”, “Last Name”, “Insurance Nr.”, “Date of Birth” and “Date of
Examination”, but also to create entries in the blood pressure list. Pressing “TAB”
switches to the next available field (“Sys” → “Dia”, “Dia” → new entry of “Sys”).

Entered BP values must be confirmed by pressing “Enter” or “Tab”. They are automatically
averaged and shown in the column’s name (i.e. “Sys (133 mmHg)”).
In addition, the examined part of the aorta must be specified within the Transducer Pos drop-
down list.
Since most M-mode images have axes with separators to define the scaling of sections per 1cm
and 1sec, the user is asked to define this scaling (default 5 sections for 1sec, 1 section for 1cm,
see Figure 5).

Figure 5: Settings for Transducer Pos and M-mode image scaling

8

The bottom of the Patient Box offers three actions in form of buttons, described below.

. . . Cancel the current state of detection

. . . Equal to Clear Detection including a refresh of patient data

. . . Export the results of the Aortic Parameters tab to a PDF

3.1.2 Config Box

The Config Box does not contain any content at startup. Whenever the user is in one of the Edge
Detection Process states, the Config Box may contain additional information, interactive lists
(list of triggerpoints in Detect ECG state) or guidance through semiautomatic steps (manual
mode of Detect Scales, adjustment of aortic boundaries in Detect Aorta, adjustment of found
edges after Detect Edges).

3.1.3 Image Box

The Image Box contains the illustration shown in Figure 6 at startup and is updated in each
step of the Edge Detection Process. The loaded M-mode image including highlighted image
content will be displayed in the tab M-Mode Image of this box.

Figure 6: Default appearance of Image Box

When the user reaches the Calc Parameters state, a second tab named Aortic Parameters
will appear, containing calculated single- and averaged aortic diameter courses as well as the
parameters described in section 1.3.

Note: Whenever AortUs is in any interactive mode (i.e. to adjust triggerpoints), interac-
tion referred to as “click” or “click-and-drag” event is related to events of the left

mouse button.

9

3.1.4 State Box

The State Box guides the user through the Edge Detection Process. Each state is represented by
one button that can be triggered by click event, whenever AortUs has all necessary information
to reach the next step.

Figure 7: Default appearance of State Box

3.1.5 Log Box

The Log Box provides useful information of successful or failing events of AortUs. It is embedded
within a scrollable window, automatically seeking the latest entries.

Figure 8: Example of Log Box

10

4 Usage Example

The following section will give a usage example two M-mode images of the AscAo of the same
person, processed by AortUs.

1. When AortUs is started, the Bootloader command window opens and the main window
shown in Figure 9 will appear when all modules are loaded successfully.

Figure 9: Default appearance of AortUs after startup

On success, the Log Box will give information of the current software version as well as
the applying user.

Note: The personal data of the patient as well as at least one BP-set must be entered
before the Edge Detection Process can be started by the State Box buttons.

2. The required first name, last name, insurance number of the patient must be defined, as
well as date of birth and of examination in format <DD>.<MM>.<YYYY>, like shown in
Figure 10. In addition, either the element Ascending Aorta or Descending Aorta in the
Transducer Pos list must be adapted to the type of image.

3. When all input fields are set, the first image can be loaded by clicking the Load Image
button in the State Box.
A dialogue presented in Figure 11 will appear and the first image to load can be selected,
and confirmed by clicking “Open”.
On success, the selected image will appear within the Image Box like shown in Figure

11

12 and the calibration of Sections per second and Sections per cm must be adapted if
necessary. For the image shown in Figure 12, the settings need to be corrected to 5

vertical sections encoding one second and 1 horizontal section encoding one centimeter.

Note: The naming of labels and buttons within the appearing dialogue might vary,
depending on the language settings of the OS.

Figure 10: Entered patient data

Figure 11: Load image dialogue

12

Figure 12: Image loaded

Warning: If necessary, the definition of the correct number of Sections per cm and
Sections per second must be adapted at this point. If these definitions are
incorrect, AortUs may succeed till the Edge Detection Process, although the
parameters and curves calculated are incorrect!

Figure 13: Scales detected automatically

4. The next step for AortUs is to determine the number of pixels for 1cm and 1sec, respec-

13

tively. This action can be started clicking Detect Scales.
On success, the found main axes within the image will be highlighted from the top left of
the M-mode’s area in green and the found pixel resolution will be printed within the Log
Box, shown by Figure 13.
In some cases the main axes cannot be detected automatically, i.e. if the axes and their
neighbouring ROI content have similar brightness values. For this particular case, the user
can define the region of interest as well as the pixels used for 1sec and 1cm manually like
described in section 5.2.

5. When clicking Detect ECG, AortUs will try to find a coloured ECG tracing including
striking R-peaks in the image.

Figure 14: Detect ECG including original locations of found R-peaks

The updated main window appearance can be obtained by Figure 14, including the found
ECG tracing highlighted in green, as well as the R-peaks indicated by red circles. The
positions of these circles, also referred to as triggerpoints, define the start- and endpoints
of each diameter-period used for averaging.

Note: Even though vertical cursors cover the ECG in the loaded image, AortUs is
able to detect the underlaying tracing. However, it is not recommended to use
vertical cursor in loaded M-mode images.

In this case, AortUs is not able to find the image related peaks preciesly, like shown in
Figure 14. Therefore, the user has two options for manipulation:

• click-and-drag on the red circles to modify their position along the found ECG tracing

• manually remove, add or adjust positions of R-peaks by the shown list inside the
Config Box.

14

The list is embedded within a scrollable window and itemises found triggerpoints including
their position in time domain, as well as an adjustable offset to this position. This offset
is −50ms by default and can be changed by simply clicking into the field of a triggerpoint
item. In addition, the list offers the following functionality:

+ . . . add a triggerpoint
- . . . remove a triggerpoint

*All . . . set ± offset of all triggerpoints to the offset of the selected
one in ms

For the image shown, Peak 4 and Peak 5 needed to be inserted (+) and dragged ≈ 50ms
prior to their missed R-peaks, comprehensible by Figure 15.

Figure 15: Adjusted triggerpoints on found ECG

Note: If a triggerpoint’s offset exceeds the ECG tracing, the user will be notified
and the offset is set to 0.

Warning: Incorrect positioning of triggerpoints as well as overlooked ones may lead
to in incorrect resulting parameter.

6. When all triggerpoints are defined correctly, the user should move on to the Detect Aorta
state. This function aims to scale down the ROI vertically from the whole M-mode region
to the minimal image area arrogated by recorded aortic walls. This is symbolised by lim-
iting the ROI to the area between two yellow lines, shown in Figure 16.
For images with high wall contrast, the automatically suggested positions of these bound-
aries closely approximate the outer borders of aortic walls. Although, it is also possible to
adjust the positions of these boundary lines close to the outermost points of the aortic wall
image, again by a mouse click-and-drag action. In case of the image shown in Figure 16,
the detected borders suit the whole aortic representation and can therefore be accepted
by clicking the Confirm button inside the Config Box.

15

Figure 16: Scale down ROI vertically to aortic walls

7. The main edge detecting function is the most performance demanding step during a stan-
dard procedure of AortUs. When clicking Detect Edges, it might take a few seconds to
determine the leading edges, shown in Figure 17.

Figure 17: Automatically detected aortic walls

Since the internal edge detection algorithm cannot handle all sudden brightness inter-
ruptions of the aortic walls, the user is asked to mend these outliers manually. For this
interaction, three mode buttons are shown within the Config Box :

16

. . . Activate manual cursor mode

. . . Reset edges to initial results from Detect Edges

. . . Proceed to Calc Parameters

When the manual cursor mode is activated, the user can click-and-drag on each of the
red shown circles. The positions of the cursor’s nearest edgepoints will be reseted to the
positions of cursor’s pathway, without splitting the edge. For the edges shown in Figure
17, the region around the fourth triggerpoint of the transducer-far edge is adjusted by
first clicking Cursor and then correcting the local transducer-far edge around the fourth
triggerpoint from left to right. The resulting image can be obtained by Figure 18.

Warning: Inaccurate or distorted edges may deform the resulting average aortic
diameter curves. Therefore it is of great necessity to pay attention to precise
edges.

Figure 18: Adjusted aortic wall edges

After the edge is corrected, the user may proceed to the final Calc Parameters state by
clicking the Confirm Walls button.

8. Finally AortUs will create a second tab within the Image Box named Aortic Parameters,
containing two types of plots, the calculated parameters as well as a list of curves that
contribute to the shown plots. Each curve shown is extracted from the double-edges of
previous step only, if both edges fully cover each whole heart cycle.
The left plot named Single Aortic Diameter Courses shows all diameter curves that could
be extracted, named from course 0 to course <n-1> for edges from “left to right” where
n denotes the number of diameter curves.

17

Figure 19: Determined curves including the estimated parameters

The right plot named Average Aortic Diameter Course shows the average diameter at each
timepoint, in which the determined Diast. Diameter as well as the Syst. Diameter are
marked by a red dot.
Next to the calculated parameters, a list of the curves contributing to the calculation is
shown, including the name of the image(s) used and the date of examination. Similar to
the functionality of the BP list, the “-” button can be used to remove a certain curve from
the calculation, which might be useful to remove outliers. Whenever this is done, all plots
and parameters are updated to the current list of curves.

Note: The Diast. Diameter and Syst. Diameter are determined by finding the
local Minima within [0, 250]ms and the Maxima within [200, 500]ms after the
averaged origin of diameter curves. Therefore it is importance to define these
triggerpoints accurately, so that the incline of each single curve starts approxi-
mately at the same point.

Note: The established parameters can serve as a first indicator for impaired
bioleasticity of the aorta. These values are affected by radial arterial wall
changes only and can therefore not fully characterise the aortic behaviour since
artery walls are anisotropic, viscoelastic and have a non-linear pressure-radius
relationship.

9. The attentive user will notice, that the Load Image button can be used again at this
Calc Parameter state. For a second M-mode image, steps 3 to 8 can be repeated. In this
example, the image AA13-2.JPG is loaded and the combined results are shown in Figure 20.

18

Figure 20: Combined estimated parameter of image AA13-1.JPG and AA13-2.JPG

10. In order to append the extracted information i.e. to a patient record, the user may want to
export or print the shown results. At this point, the shown plots as well as the estimated
parameters can be exported to a PDF by clicking the Export Results button.

Figure 21: Dialogue to set the examiner’s username

A dialogue shown in Figure 21 will open and ask for the user’s credentials. By default,
the username of the OS’s user will be proposed.

19

When submitted, a second dialogue will open to select a location for the created PDF,
shown in Figure 22.

Figure 22: Dialogue to set location of PDF export file

The content of this PDF is self explanatory and includes all used M-mode images including
highlighted edge curves, as well as patient related data. The content of this final PDF can
be obtained by Figure 23.

Figure 23: Created PDF

20

5 Manual Interventions and Notifications

In general, AortUs will notify the user about current events by the Log Box. In some cases, the
user needs to change input data or items of the current state. At this point, a Message Box is
shown and describes as below.

5.1 Message Box

This popup window will appear i.e. when relevant image content could not be extracted or one
of the integrated plausibility checks did not succeed. An example of this window is shown in
Figure 24.

Figure 24: Example for warning popup message

This window will appear, when

• General - entered BP is not a valid integer

• General - a diastolic exceeds systolic BP for one list-item of blood pressure list

• General - systolic BP exceeds plausible limits [50, 300]mmHg

• General - diastolic BP exceeds plausible limits [30, 250]mmHg

• Load Image - the input image cannot be opened

• Detect Scales - scale axes not found automatically and manual scale detection is active

• Detect ECG - no or less than 3 triggerpoints were found

• Detect ECG - entered Offset for triggerpoint(s) exceeds the time domain

• Detect Edges - no edges could be extracted due to bad image quality. At this point the
only possible solution is to call Clear Detection and load another image.

5.2 Manual Scale Detection

In some cases, however, the automatic scale detection fails when clicking Detect Scales. A
Message Box like described in 5.1 will appear, and the Manual Scale Detection is activated
automatically. This process will guide the user through a manual definition of the M-mode ROI,
the scaling for 1sec and for 1cm respectively.
The following example should help to understand the process of Manual Scale Detection.

21

1. When clicking Detect Scales, a notification will appear to inform the user about the launch
of manual mode, like shown in Figure 25.

Figure 25: Start of manual scale detection after user clicked Detect Scales

The first step defines the actual M-mode image ROI. To achieve this, it is recommended
to click at the very left top of the M-mode image content and drag down the appearing
green rectangle to the bottommost right end of the image, like shown in Figure 26.

Figure 26: Manual definition of M-mode ROI by click-and-drag

22

When the left mouse button is released, the defined ROI will be denoted by highlighted
green vertical- and horizontal axes, shown in Figure 27.

Figure 27: Defined M-mode ROI

This definition of the M-mode ROI can be repeated until the user is satisfied with the
axes positions. If so, a click on the Next button within the Config Box switches to the
time-definition step.

Figure 28: Manual definition of 1sec

23

2. To define the pixels encoding 1sec, the user is asked to define a horizontal line with the
length of 1sec by (again) click-and-drag. It is recommended to define this line based on
the visible time axis, like shown in Figure 28.
Similar to the definition of the M-mode ROI, this step can be repeated and confirmed by
clicking Next.

3. Equal to the time-definition step, the user is asked to define a vertical line with length of
1cm. The resulting definition is shown in Figure 29.

Figure 29: Manual definition of 1cm

When this is done (Next), the user can finish the Manual Scale Detection process and
AortUs enables to trigger the next state (Detect ECG).

24

6 Maintenance and Feedback

In order to improve AortUs’s stability and integrate performant functionality, this software is
updated by BF e.U.. A change log for these versions can be obtained by the appended Software
Version History on page 27.

To get in the mailing list for updates as well as for further improvement suggestions or infor-
mation, BF e.U. is looking forward to get in touch on the contact details below.

BF e.U.
Uhlandgasse 5
8010 Graz
A-Austria
frohner@student.tugraz.at

25

Software Version History

Version &
Date

Author Description

1.0.0
25.02.2018

Bernhard
Frohner

initial version

1.0.1
27.02.2018

Bernhard
Frohner

Bugs fixed

• click on Export Results, leaded to error message
when no patient is loaded
• complete reimplementation of ECG-detection in or-

der to be able do process images of LKH Graz’s
Philips ultrasound device M-mode images

Features added

• click on Clear Detection, also produces a Log if no
image is loaded.
• Detect Scales function, extended by a detection

function to also enable auto detection of axes for
files provided by the department of pedeatric cardi-
ology LKH Graz (QUICKNDIRTY_getScalesAuto()-
method)
• implemented accessibility and auto-appending func-

tionality of blood pressures list by pressing ”TAB”
key

Calibration values changed

• Detect ECG, adapted HSV-filtering thresholds
(“Value” threshold changes to 0.2)
• Detect ECG, change max. heart rate to 220bpm
• ECG triggerpoints automatically offsetted to
−50ms
• implemented thresholds to find local diastolic min-

imal diameters ([0, 250]ms from triggerpoint) and
local systolic maximal diameters [200, 500]ms from
triggerpoint)

1.0.2
04.03.2018

Bernhard
Frohner

Bugs fixed

• varying font size in exported PDF fixed

Features added

• multiple examinations for different transducer posi-
tions exportable for one patient

27

1.0.3 open Bernhard
Frohner

Bugs fixed

• None

Features added

• integrated auto-break for iterative snake-algorithm,
stops if the the last 10 differences of averaged 4 lev-
elsets is lower than a defined coefficient of variation
COV THRESH = 0.1

28

Software Documentation

for project AortUs

Bernhard Frohner

Version 1.0.0

Table of Content
1 Introduction 1

2 Algebra module 3

3 Aorta module 4

4 Calibration module 9

5 Configuration module 13

6 Ecg module 16

7 Edges module 18

8 Examination module 28

9 GUI module 29

10 Logging module 38

11 Morphsnakes module 39

12 MySubclasses module 43

13 Patient module 54

14 Rpeaks module 56

15 Scale module 60

16 UsFile module 64

17 UsImage module 65

1 Introduction

This Software Documentation should help the programmer to understand the function-
ality of the AortUs implementation in Python 2.7.13. Each of the following sections will
describe one module implemented and used for AortUs. These modules integrate classes,
that are described by their

• general class definition

• member variables

• methods

It should be noted, that most datatype definitions are integrated as hyperlink, so that
the reader can easily access a more elaborated explanation. If no parameter or return
type is documented for a variable of the described method, the datatype is unknown or
the function is void. Member variables are always listed including their default value (i.e.
fullname_ = None).

1

2 Algebra module

class Algebra.Algebra
This class implements static algebraic math functions as well as signal processing
methods.

static FWHM(X, Y, x_peak)

Find full width half maximum of a passed peak. If half maximum on one side
of the peak is not in the vector any more, the first/last element of the vector
will be taken for calculation

Parameters

• X (ndarray, Nx1) – x-values of function

• Y (ndarray, Nx1) – y-values of function

• x_peak (int64) – x-position of peak

Returns calculated full width half maximum

Return type int64

static butterBandpassFilter(data, lowcut, highcut, f_samp, order=5)
Bandpass filtering the input data with zero phase. If highcut is above the

nyquist frequency, a lowpass filter is used instead

Parameters

• data (ndarray, Nx1) – input data vector

• lowcut (float) – lower cutoff-frequency

• highcut (float) – upper cutoff frequency

• f_samp (int) – sampling frequency

• order (int) – order of bandpass filter

Returns bandpass filtered input vector

Return type ndarray, Nx1

static butterLowpassFilter(data, f_cut, f_samp, order=5)

Lowpass filtering the input data with zero phase.

Parameters

• data (ndarray, Nx1) – input data vector

• f_cut (float) – cutoff-frequency

• f_samp (int) – sampling frequency

• order (int) – order of lowpass filter

3

Returns lowpass filtered input vector

Return type ndarray, Nx1

static rejectOutliers(data, m=10.0)

Function to reject outliers which deviate too much from the median

Parameters

• data (ndarray) – input data vector

• m (float) – deviation factor for rejection

Returns outlier filtered input vector

Return type ndarray

static splitConsecutiveData(data, stepsize=1)

Splits an array or list of data by the stepsize of it’s content.

Parameters

• data (list, ndarray) – array/list to be split

• stepsize (int) – Deviation that two consecutive values in data
can have in order to be splitted. If stepsize is 1, i.e. the list
[1,2,3,5,6,7] would be splitted into [[1,2,3][4,5,6]].

Returns splitted array

3 Aorta module

class Aorta.Aorta(updateFcn, img_shown, img_obj, mmode_obj, mmode_dx,
mmode_dy, rpeaks, px_per_cm, px_per_sec)

This class describes the ultrasound M-mode-image related properties of the aorta.

It handles

• the first estimation where the aorta could be (getAorticBoundaries())

• the automatic extraction process to get the edges (getEdges())

• the callback functions to let the user adapt the found edges

Standard constructor

Parameters

• updateFcn (function) – function to call after the US-image has
been updated

• img_shown (ndarray, NxMx3) – currently shown US-image

4

• img_obj (ndarray, NxMx3) – original image used as ROI without
markups on the image

• mmode_obj (ndarray, NxM) – M-Mode image

• mmode_dx (int) – M-mode image offset within overall us-image
object in x-direction

• mmode_dy (int) – M-mode image offset within overall us-image
object in y-direction

• rpeaks (Rpeaks) – Rpeak object

• px_per_cm (int64) – nr. of pixels per cm

• px_per_sec (int64) – nr. of pixels per second

adjustEdgesManually(config_box_main, btn_calculate)
Set the GUI’s :obj:~GUI.GUI.config_box_main‘ content in order to provide

three functions:

• adjusting current edges (activate cursor by click on “Cursor” pushbutton)

• undo manipulated edges to initial found edge-curves (click on “Undo” but-
ton”)

• confirm the currently shown edge-curves in order to calculate the param-
eters afterwards

Parameters

• config_box_main (VBox) – configuration box where state-
related content is shown

• btn_calculate (Button) – button of next state to enable when
the user confirms the shown edges

Returns

calcDiameterOverHeartcycles()
Builds two internal lists of transducer contours (tnear_hc, tfar_hc) that

are triggered by the heart-cycle and finally calculates and stores the result-
ing diameter-vs-time courses in members diam_courses_ and time_course_
(in mm over sec).

Returns True if at least one fully defined heart-cycle was found

Return type bool

confirmSelCB(btn, btn_calculate)
User clicks “Confirm” button of config_box_main and therefore and enables

next state

Parameters

5

• btn (Button) – clicked button object

• btn_calculate (Button) – next state to enable after this step
was confirmed by the user

Returns

drawWallImage(tnear_wall=None, tfar_wall=None, thickness=2)

Draw aortic walls on the original markup image

Parameters

• tnear_wall (list) – list of Nx2 ndarray edge definitions of
transducer near wall

• tfar_wall (list) – list of Nx2 ndarray edge definitions of
transducer far wall

• thickness (int) – thickness of markup contour

Returns the currently shown RGB image, highlighted with passed
edges

Return type ndarray, NxMx3

getAorticBoundaries(y_linvals, cur_transd_pos_type, blur_kernel=3)

Estimate the aortic region of interest by calculating boundary values that are
likely to embed the aortic walls. This is basically done by

1. Canny Edge detection (canny())

2. Weighting for contours with high y-deviation per dx

3. Rejection of small-weighted contours (by histogram-classification)

4. Building a sum function along y-axis where each datapoint represents the
sum of contour px in this image-row

5. Detection of peaks of this mapping function

6. Weighting of peaks (height, FWHM - see FWHM(), physiologically realistic
diameter, centrality)

7. Selection of most reliable two peaks

Parameters

• y_linvals (ndarray, Nx1) – y-values of the ECG tracing within
the mmode_obj_

• cur_transd_pos_type (TransducerPosType) – currently se-
lected transducer type

• blur_kernel (int) – sigma of gaussian smoothing before
Canny Edge detection is applied

6

Returns the already mmode_obj_-offsetted y-values of the estimated
aortic boundaries

Return type (int, int)

getEdges(image_fullfile=None, waitFcn=None)
Create the local Edges object in order to find the roi_’s edges in a second

thread. Found edges are then shifted to match shown image positions and
interpolated to 1px-courses.

Parameters

• image_fullfile (string) – full path of currently loaded image

• waitFcn (function) – function called during execution of ex-
tensive edges thread

Returns true if edges could be found

Return type bool

mouseBtnPressPainterCB(x_pos, y_pos)
Callback function for pressed mouse button in “PAINTER_SEL” DrawState

when user wants to adjust the wall edges - starts cursor routine.

Parameters

• x_pos (int) – x-position of cursor on image pane

• y_pos (int) – y-position of cursor on image pane

Returns

mouseBtnReleasePainterCB()

Callback function to stop the cursor routine

Returns

mouseMovePainterCB(x_pos, y_pos)
Callback function executed, when user clicks and holds on one of the edges

(‘tnear’ or ‘tfar’ edge). Basically it calculates a linear interpolation between
the point of last click or the last end-of-interpolation.

Parameters

• x_pos (int) – current x-position of cursor in us-image

• y_pos (int) – current y-position of cursor in us-image

Returns

selDrawState(btn, draw_state)
Callback function to select the state of manual intervention of edges (select

7

Aorta.DrawState)

Parameters

• btn (Button) – button that called method

• draw_state (DrawState) – state that should be set

Returns

setAorticBoundaries((y_0, y_1), color=(255, 255, 0))

Sets the aortic ROI (roi_) by cropping the M-mode roi from from y_0_ (lower
boundary) to y_1_ (upper boundary)

Parameters

• y_0 (int) – first vertical boundary position within mmode_obj_

• y_1 (int) – second vertical boundary position within
mmode_obj_

• color ((int , int , int)) – tuple of 8Bit RGB values for
color of horizontal line boundary

undoSelCB(btn)

User clicked “Undo” button of config_box_main to reset edges to those origi-
nally detected.

Parameters btn (Button) – clicked button object

Returns

advise_label_ = None
information message shown for confirmation of set wall-boundaries

confirm_btn_ = None
confirm button object

diam_courses_ = None
NxM array of heart cycle-based diameter courses (end product of this class)

draw_state_ = None
state of drawing interaction after edges were found successfully

img_obj_ = None
original image is used as ROI (without possible markups)

img_shown_ = None
currently shown US-image

mmode_dx_ = 0
passed mmode_obj_ image offset in x-direction

mmode_dy_ = 0
passed mmode_obj_ image offset in y-direction

8

mmode_obj_ = None
M-mode image (which is a subimage of image_obj_)

px_per_cm_ = None
pixel per centimeter

px_per_sec_ = None
pixel per second

roi_ = None
aortic subimage (which is a subimage of mmode_obj_)

tfar_wall_ = None
transducer far object edge

tfar_wall_corr_ = None
manually adapted far wall edge

time_course_ = None
1xM array of timepoints, related to diam_courses

tnear_wall_ = None
transducer near object edge

tnear_wall_corr_ = None
manually adapted near wall edge

updateFcn = None
update function to call after the US-image has been updated

y_0_ = 0
lower boundary line for ROI of the used M-mode image

y_1_ = 0
upper boundary line for ROI of the used M-mode image

class Aorta.DrawState
Bases: enum.Enum

CONFIRM_SEL = 4
state where edges are accepted

NO_SEL = 1
state where no tool action or tool is selected

PAINTER_SEL = 2
state where painter is selected

UNDO_SEL = 3
state where edges should be reseted to initial edges

4 Calibration module

class Calibration.AortaCalibration
This class implements an object, that prescribes physiological parameters of different

9

patient ages and US-transducer positions. Its object is globally used for

• parametrisation of image-related detection-thresholds

• storing all possible TransducerPosType including their sub-list of
Examination

static getAorticParameters(diam_course=None, time_course=None,
pres_sys=None, pres_dias=None)

Calculates aortic elasticity related parameters, if diam_course is not empty.

This is done by searching the local minimum within the time defined in
DIA_MIN_START and DIA_MIN_END and the local maximum in SYS_MAX_START
and SYS_MAX_END.

Parameters

• diam_course (ndarray) – heart-cycle average diameter curves
over time

• time_course (ndarray) – hear-cycle average time curves

• pres_sys (float) – averaged systolic pressure (mmHg)

• pres_dias (float) – averaged diastolic pressure (mmHg)

Returns a ordered dictionary containing all calculated aortic param-
eters, index of minimal and maximal value within diam_course

Return type (OrderedDict, int, int)

getTransducerAbbreviations()

Getter for all defined transducer position abbreviations

Returns all abbreviations of transducer positions

Return type list

getTransducerFullNames()

Getter for all defined Transducer position names

Returns all full names of transducer-positions

Return type list

DIA_MIN_END = 0.25
diastolic minima location endpoint, referring to triggerpoint (ms) –> diastolic
minimum should be around [0, 250]ms after the triggerpoint which is offsetted
by “-50ms” from R-peak

DIA_MIN_START = 0
diastolic minimum location startpoint, referring to triggerpoint (ms)

SYS_MAX_END = 0.5
systolic maximum location endpoint (ms)

10

SYS_MAX_START = 0.2
systolic maximum location startpoint (ms)

cur_transducer_calib_ = <Calibration.TransducerPosType instance>
currently selected transducer calibration

sect_per_cm_ = 2
default nr. of sections per cm

sect_per_sec_ = 10
default nr. of sections per second

class Calibration.TransducerPosType(fullname, abbrev,
MIN_DIAM, MAX_DIAM,
THRESH_ROWSUM_PEAKHEIGHT)

This class defines the position of the ultrasound transducer used for this ex-

amination. Although its not an elegant solution, this object contains the list of
Examination objects for each TransducerPosType object. It is the main class to

• manage add/removal of an Examination

• set the current Examination

• calculate the list of “Single and Average Diameter Courses”, based on the passed
diameter curves

Standard constructor

Parameters

• fullname (string) – full name of transducer position

• abbrev (string) – abbreviation of transducer position

• MIN_DIAM (float) – minimal aortic diameter for this transducer
position type (in cm)

• MAX_DIAM (float) – maximal aortic diameter for this transducer
position type (in cm)

• THRESH_ROWSUM_PEAKHEIGHT (float) – float threshold within
normed [0.0, 1.0], that defines the minimal height of peaks for
the row-sum of M-mode image edges

addExaminations(diam_courses, time_course, date_of_exam, img_shown,
filename, bp_sys_mean, bp_dia_mean)

Adds a new Examination to the list of Examination and sets the current

Examination to index this list element.

Parameters

• diam_courses (ndarray of ndarray) – list of Nx2 diameter
curves

• time_course (ndarray) – time vector for diam_courses

11

• date_of_exam (datetime) – date of examination

• img_shown (ndarray) – markup RGB image of this
Examination, NxMx3

• filename (string) – name of image file

• bp_sys_mean (float64) – average systolic blood pressure
(mmHg)

• bp_dia_mean (float64) – average diastolic blood pressure
(mmHg)

Returns

clearTransducerPosExams()

Function to clean up all transducer position Examination, plots and parame-
ters, related to a patient.

Returns

getExaminationData()
Generates a resampled list of courses of different Examination on one single

time-curve.

Returns the numpy list of average- and single-diameter curves (from
possibly different images), their filenames, dates and time vector

Return type list, list, list, list, ndarray

removeExaminationData(remove_idx)

Remove the examination element on a certain index

Parameters remove_idx (int) – element in examinations_ that
should be removed

Returns

storeCurrentPlotsNParams(norm_diam_plt, avg_diam_plt, param_set)
Function to store current plots as pngs in the internal cur_norm_diam_plt_

and cur_avg_diam_plt_ buffer, as well as strings of calculated parameters in
cur_param_set_

Parameters

• norm_diam_plt (Figure) – plot object showing the single aortic
diameter curves

• avg_diam_plt (Figure) – plot object showing the average aortic
diameter curves

12

• param_set (OrderedDict) – dictionary containing the calcu-
lated aortic elasticity parameters

Returns

MAX_DIAM_ = 0
maximal aortic diameter for this transducer position type (in cm)

MIN_DIAM_ = 0
minimal aortic diameter for this transducer position type (in cm)

THRESH_ROWSUM_PEAKHEIGHT_ = 0
float threshold within normed [0.0, 1.0] that defines the minimal height of peaks
for the row-sum of M-mode image edges (“Detect Aorta” state)

abbrev_ = None
abbreviation of transducer position (i.e. “AscAo”)

cur_avg_diam_plt_ = None
current average diameters plot for this transducer pos

cur_norm_diam_plt_ = None
current normal diameters plot for this transducer pos

cur_param_set_ = None
current calculated parameter set for this transducer pos

examinations_ = []
list of different Examination with this transducer position of a patient (=super-
object)

fullname_ = None
full name of transducer position (i.e. “Ascending Aorta”)

i_examination_ = 0
index of current Examination

5 Configuration module

class Configuration.AortaQualityParam
Bases: object

Helper class that generates an Excel file, containing established quality parameters
of the edge detection process. It operates on one single xlsx worksheet containing the
quality parameters as columns and the processed images for each recursive iteration
as a row. In addition, the edge-highlighted image can be exported for each iteration
using the exportContourMarkupImg() method.

addQualityParams(recursion_cnt, coeff_xcorr, tnear_coeff_rcorr, tn-
ear_cont_metr, tfar_coeff_rcorr, tfar_cont_metr)

Write the contour metrics of the current analyzed file into a list of lists, which

13

is used in exportXlsxData() to write into the created Excel-file. Note that
this is only done if the file was created with initConfigurationPaths() first.

Parameters

• recursion_cnt (int) – recursion of calling sepSnakeToWall()
function

• coeff_xcorr (float) – scalar correlation coefficient of trans-
ducer near with transdcuer far curve

• tnear_coeff_rcorr (float) – correlation coefficient within
[0.0, 1.0] of transducer near course with R-peaks

• tnear_cont_metr (OrderedDict) – Dict containing
quality metrics of transducer near edge generated by
calcContourQuality()

• tfar_coeff_rcorr (float) – correlation coefficient within [0.0,
1.0] of transducer far curve with R-peaks

• tfar_cont_metr (OrderedDict) – Dict containing quality met-
rics of transducer far edge generated by calcContourQuality()

Returns

exportContourMarkupImg(img, cont, recursion_cnt, color=(0, 255, 0), thick-
ness=1)

Write the passed contours on the passed image in image_parampath_ and

name the file including the recursion_cnt.

Parameters

• img (ndarray, NxM) – aortic ROI image the edge is based on

• cont (list of ndarray, NxM) – list of contours

• recursion_cnt (int) – recursion of calling sepSnakeToWall()
function

• color ((int , int , int)) – color in (R,G,B)

• thickness (int) – thickness of markup line in px

Returns

exportXlsxData()
Initialises the content of the excel worksheet to write in with correct column

names.

Returns

initConfigurationPaths(image_parampath, image_fullfile=’No file speci-
fied’)

This function initialises the paths for the xlsx-file and the contour-markup

14

images. It must be called before addQualityParams() and exportXlsxData()
can be called.

Parameters

• image_parampath (string) – name of directory where
parametrisation images and xlsx-sheet should be created

• image_fullfile (sting) – name of xlsx sheet

Returns

b_write_headline = False
Flag indicating if column headers should be part of the CSV

image_fullfile_

image_parampath_ = ''
Path of parametrisation files (contour-markup images, csv-files etc.)

class Configuration.Config
The Config class defines global project configuration settings (i.e. debugging
modes)

static getResourcePath(relative_path)
Function returns the relative path to the executable. Note that

“sys._MEIPASS” only exists as virtual environment, generated by PyInstaller.

Parameters relative_path (string) – path of related file, relative
to the exe

Returns full path related file

b_aorta_calib = False
if true, metrics from the aortic edge detection quality estimation are exported
to calibration xlsx-file

b_debug = False
global debug mode flag - if True, each debugging step of AortUs will open a
separat Gtk-window for visualisation

b_export_snakeiteration = False
if True, each iteration of the Morphsnakes algorithm will be exported as jpg-
markup file incl. a movie in a subdir “~/snakeiteration”

b_extra_info = False
if true, some extra information i.e. position of M-mode ROI-points, found
R-peak indices, y-position of aortic boundaries etc. will be printed in the
command line

b_logfile = True
flag for creating/appending a logfile in tempdir

b_logimages = False
flag to save all files loaded by this AortUs session in the “tempdir/aortus_imgs”

15

bit_depth = 255
standard bit depth of each channel for loaded images

fig_cnt = 0
figure counter used for figures generated in debug mode

mouse_delta_det = 4
mouse detection value in px from the actual sensitivity value (i.e. a line is also
dragged if the cursor is +/- 4 px away from it)

mouse_radius = 3
mouse detection radius in px for image-interfacing functionalities

version = '1.0.2'
AortUs version

6 Ecg module

class Ecg.Ecg(img)
This class implements a single ECG tracing, recorded in parallel to the M-mode

image. It can be generated by using the getEcgCourse() functions. Its objective is
to find positions of R-peaks within its tracing, represented by entries of the Rpeaks
class.

Standard Constructor

Parameters img (ndarray, NxMx3) – overall loaded image used to find
the ECG on

DEBUG_drawContours(img, contours)

Debug function to draw and show contours on the given image

Parameters

• img (ndarray, NxMx3) – overall used US-image

• contours (list of ndarray) – list of contours to plot

Returns

DEBUG_plot2ndOrderPeakDetection(y_compare, t_compare, max_time,
fontsize=10)

Debug function to plot an overview of different states of the second order peak
detection on the ECG. It operates on a list of ECG tracings (different states)
including their related time vector.

Parameters

• y_compare (list of ndarray) – list of ECG-courses in different
states of 2nd order ECG detection

16

• t_compare (list of ndarray) – list of related time vectors

• max_time (int) – range of time values to take (ms)

• fontsize (int) – size of used titles, axes labels

Returns

contourDoubleToSingleDef(l_contours)

This function addresses the problem that the cv2.findContours() algorithm
typically returns the outer contours of a single contour. In terms of ECG, we
want to reduce this to one single y-value per x-value for each passed contour.
Note that this function also uniforms the direction in ascending x-dimension.

Parameters l_contours (list of ndarray) – list of double sided con-
tours

Returns the list of single sided contours

Return type list of ndarray

filterNCalcEcgEdges(contours, img, px_per_sec, cover_thresh=0.7)
This function filters the list of passed contours and returns those, that cover

at least cover_thresh width of the image, but has also got a huge overall x-
gradient in its definition (consecutively defined in x-direction).

Parameters

• contours (list of ndarray) – unfiltered list of contours

• img (ndarray, NxMx3) – overall used US-image

• px_per_sec (int) – pixels per second

• cover_thresh (float) – ECG course has to cover at least
cover_thresh width of image

Returns

getEcgCourse(px_per_sec, x_axis=None)

Function to extract the ECG tracing from overall US-image img_. It saves the
found ECG tracing values (datapoints) within it’s members x_linvals_ and
y_linvals_. Note: This function requires a bit depth of 8bit per channel.

Parameters

• px_per_sec (int) – used px-per-sec

• x_axis ((int , int , int , int)) – defining location of the
x-scale axis (p0x, p0y, p1x, p1y). When passed, the ECG will
be cropped to the range of the x-axis

Returns

17

getRPeaks()
Method to retrieve the position of R-peak values on an already found ECG

tracing. It basically uses a second derivation zero-crossing method to determine
the regions where possible R-peaks can be found.

Returns the list of indices within x_linvals_, that indicate an R-
peak

Return type list

plotEcgCourse(img, color=(0, 255, 0), thickness=1)

Function to plot the already extracted ECG tracing (from getEcgCourse())

Parameters

• img (ndarray, NxMx3) – overall used US-image

• color ((int , int , int)) – color of contour in plot

• thickness (int) – thickness of contour in plot

Returns

f_samp_ = 0
equals px-per-pec

img_ = None
overall used loaded US-image

max_hr_ = 200
maximal heart rate in BPS

min_hr_ = 40
minimal heart rate in BPS

t_ = None
time vector with length of x_linvals_

x_linvals_ = array([], dtype=float64)
x-values of ECG, relative to the overall loaded image

y_linvals_ = array([], dtype=float64)
y-values of ECG, relative to the overall loaded image

7 Edges module

class Edges.Edges(ready, snake_pos, img, rpeaks, recursion_cnt)

This class represents the actual methods used to split, merge and reject edges, based
on the returned closed contour resulting object type MorphGAC. It basically splits
this closed curve to a transducer near- and far list of edges and calculates quality

18

measurements of their relation. Its main procedure is started by calling the run()
method, which is the required function to start this class as an own thread.

Standard Constructor

Parameters

• ready (Event) – event used to init this thread, None if no second
thread should be started

• snake_pos (string) – either “within”, “above” or “under” to de-
fine the origin of the active contour in the img

• img (ndarray, NxM) – used image for active contour

• rpeaks (Rpeaks) – triggerpoints object

• recursion_cnt (int) – internal recursion counter for
sepSnakesToWall() method

static calcContourQuality(l_contours, img_shape)

Calculate quality measurements of a passed list of contours:

1. Nr. of contours in list

2. (merged) Total coverage of contours in x-direction, based on the image-
width

3. (merged) mean y-value of all contours

4. (merged) standard deviation of y-values of all contours

5. (merged) coefficient of variation of y-values of all contours

6. (merged) averaged y-deviation per dx of all contours

Parameters

• l_contours – contours to calculate the quality (mostly quality
criterias of merged list)

• img_shape (int , int) – width and height of related Aorta.
Aorta.mmode_obj_

Returns dictionary of calculated quality criterias

Return type OrderedDict

static calcCorrelation(l_cont1, l_cont2, shape, rpeaks=None)

This function calculates the cross correlation of two contours (not necessarily
equal length –> zero padded), but also the position of the contour’s extrema
(Minima/Maxima). These extrema must lie near the passed Rpeaks and be-
tween the passed Rpeaks, respectively.

To check these extrema postions, a sub-conotur (= windowed contour) is used
for determination, with the size of an average heart cycle in pixels. Therefore

19

we by default look around −𝑝𝑥−𝑝𝑒𝑟−ℎ𝑒𝑎𝑟𝑡−𝑐𝑦𝑐𝑙𝑒
2

up to +𝑝𝑥−𝑝𝑒𝑟−ℎ𝑒𝑎𝑟𝑡−𝑐𝑦𝑐𝑙𝑒
2

to the
right (balance = 50%) of an R-peak. As we don’t always have pixels-of-heart-
cycle/2 contour pixels left/right to an R-peak, we need to move window and
therefore the position of the R-peak within it to the very left/right contour
borders (near contour borders, balance != 50%).

Parameters

• l_cont1 (list of ndarray) – first list of contours that will be
merged to one contour

• l_cont2 (list of ndarray) – second list of contours that will be
merged to one contour

• shape ((int , int)) – shape of ROI

• rpeaks (Rpeaks) – position of the R-peaks within the M-mode
image

Return type (float, float, float, float)

Returns

1. cross correlation coefficient of first and second (merged) contour

2. ratio found Minima/Maxima at/between R-peaks to all Min-
ima/Maxima of l_cont1

3. ratio found Minima/Maxima at/between R-peaks to all Min-
ima/Maxima of l_cont2

static calcXCoverage(l_contours, img_shape)
Calculate the percentual coverage of image-width by the x-values of a list of

contours

Parameters

• l_contours (list of ndarray) – contours used for calculation of
used x-values

• img_shape (int , int) – width and height of related
mmode_obj_

Returns percentual value of x-coverage

Return type float

static clipoffAllContourEnds(l_contours)
Iterates through all contours and checks, if the ends of each contour may

interfere with ends of other contours (= are double defined in x-dimension). If
so, the end of the smaller contour gets cut off. This function is especially helpful
as findAndConnectNeighbours() can only connect right contour neighbours.

Parameters l_contours (list of ndarray) – list where double-
defined ends should get cut off

20

Returns list of short-ended contours

Return type list of ndarray

static clipoffContourEndsByTemplate(templ_cont, l_contours)

Iterates through a list of contours and checks if each one of its element’s ends
may interfere with ends the templ_cont (= are double defined in x-dimension).
If so, and if the found element is smaller than templ_cont, it gets cropped.

Parameters

• templ_cont (ndarray, Nx2) – contour that is used to cross
check ends with elements of l_contours

• l_contours (list of ndarray) – list where double-defined ends
of templ_cont should get cut off

Returns list of short-ended contours, regarding the ends of
templ_cont

Return type list of ndarray

static euclidDist((x0, y0), (x1, y1))

Calculates the euclidian distance between two points

Parameters

• x0 (int) – startpoint x-position

• y0 (int) – startpoint y-position

• x1 (int) – endpoint x-position

• y1 (int) – endpoint y-position

Returns euclidican distance between startpoint and endpoint

Return type float

static findAndConnectNeighbours(l_contours, img, max_x_gap,
max_y_gap, course_direction=0,
cont_clip=0)

Wrapper function to iteratively find and connect nearest neighbours with a

maximal px-gap distance in x- and y-direction

Parameters

• l_contours (list of ndarray) – contours to scan for internal
neighbours

• img (ndarray, NxM) – image the contours operate on

• max_x_gap (int) – maximal px-size a gap of two neighbouring
contours may has in x-direction

21

• max_y_gap (int) – maximal px-size a gap of two neighbouring
contours may has in y-direction

• course_direction (int) –

– 1 for courses whose definition ranges from x=img-width to
x=0 (descending)

– -1 for courses whose definition ranges from x=0 to
x=img_width (ascending)

– 0 if it should be automatically detected (if tnear and tfar is
not known yet)

• cont_clip (int) – nr of pixels that a contour should be reduced
at its endings, that will be connected

Returns list of connected contours

Return type list of ndarray

static findNeighbourContours(l_contours, max_x_gap=7,
max_y_gap=7, value_region=0.2)

Find and return the indices of possibly neighbouring contours within

l_contours

Parameters

• l_contours (list of ndarray) – list where neighbours to the
right should be identified

• max_x_gap (int) – minimum number of pixels that possibly
neighbouring contours are dislocated in x-direction

• max_y_gap (int) – minimum number of pixels that possibly
neighbouring contours are dislocated in y-direction

• value_region (float) – percentage factor that possibly neigh-
bouring contours may differ in y-mean/y-sd value

Returns

• a list of tuples containing (index of current contour, index of its
right neighbour)

• empty if no neighbour was found

Return type list of (int, int)

static getNearAndFarContour(l_contours, snake_pos)
Function to return the two largest (tnear, tfar) contours in a list of con-

tours, if possible. If only 1 or no contour is found, this one contour and [] or
([],[]) is returned. In addition, the returned contour curve directions are cor-
rected (tnear must be defined with ascending x-values, tfar with descending
x-values) if the snake was not started from the center of the contour.

22

Parameters

• l_contours (list of ndarray) – splitted snake contours

• snake_pos (string) – string that is either

– "within"

– "above" or

– "below",

indicating where the snake has started within the mmode_obj_.

Returns tuple of near- and far contour

Return type (ndarray, ndarray)

static linkContours(left_cont, right_cont, img, course_direction,
cont_clip)

Links the left contour with the right contour (vertically seen) by using fix-

point active contour. Note that this function takes care of the passed course
direction (1 –> ascending x, -1 –> descending x). If not passed, left_cont and
right_cont indicates this sorting and inserts the interpolated snake in between
the correctly concatenated courses.

Parameters

• left_cont (ndarray) – left contour that should be joined to
the right

• right_cont (ndarray) – right contour that should be joined to
the left

• img (ndarray, NxM) – mmode_obj_ where the active contour
operates on

• course_direction (int) –

– 1 for courses whose definition ranges from x=img-width to
x=0 (descending)

– -1 for courses whose definition ranges from x=0 to x=img-
width (ascending)

– 0 if it should be automatically detected (if tnear and tfar is
not known yet)

• cont_clip (int) – nr of pixels that a contour should be reduced
at it’s endings, that will be connected are clipped before, in ratio
to full contour length. This is only valuable for contours that are
not direct pixel-neighbours (= active contour has to be applied)

Returns joined contour

Return type ndarray

23

static mergeOldAndNewContours(l_new_contours, l_old_contours, img)

This function connects two “same contours” found at two different active con-
tour iterations for a “too short” old contour. Therefore following steps are
executed:

1. Check on which side of l_old_contours are less contour points within the
image-width

2. Find end-value on this side of l_old_contours

3. Find contour in list l_new_contours that includes this end-value

4. Cut the found contour of l_new_contours at this point and link it to
contour in l_old_contours

Parameters

• l_new_contours (list of ndarray) – contours found at new ac-
tive contour run

• l_old_contours (list of ndarray) – contours found at previous
active contour run. This must be a list containing one contour
only!

• img (ndarray, NxM) – image where active contour was used on

Returns the merged contour

Return type list of ndarray

static moveNearContourToLeadingEdge(l_conoturs, img,
pct_disting_walldet)

Moves each element of the passed list of contours to the median of the deter-
mined aortic-wall thickness (= next edge in y-direction). This is done by using
cv2.Sobel()-operator in y-direction. If a contour does NOT have a distinct
median minima, the contour is rejected.

Parameters

• l_conoturs (list of ndarray) – contours that should be moved
to the leading edge

• img (ndarray, NxM) – M-mode image where l_cont operates
on

• pct_disting_walldet (float) – percentage of px of a conotur
that must have a distinctly found Minima (=border) to not
reject the contour

Returns leading-edge-corrected contours

Return type list of ndarray

static rejectBulges(l_contours, course_direction, max_bulge_width)

24

This function analyses the (already split) list of contours for expanding bulges
(= bulges that are convex to the original snake) and removes them. It is
assumed, that l_contours is sorted along course of the found and splitted
snake.

Parameters

• l_contours (list of ndarray) – already splitted contour (into
list) that should be analyzed for bulges

• course_direction (int) – must be +1 for ascending and -1
for descending course definition in x-direction

• max_bulge_width (int) – maximal width of a gap that connects
to the bulge, in px

Returns The list of contours, excluding those who represent bulges

Return type list of ndarray

static rejectContourOutliers(l_contours, course_direction,
max_line_length, min_def_length=5,
max_y_grad=1)

Rejects contours whose main course

1. contains lines longer than max_line_length

2. is in negative x-direction

3. reject possibly correct contours within two rejected wrong-course contours

4. is smaller than min_def_length

5. has a y-gradient > max_y_grad

from a list of contours

Parameters

• l_contours – already splitted list of contours where outliers
should be detected and the related contour should be rejected

• course_direction (int) –

– 1 for courses whose definition ranges from x=img-width to
x=0 (descending)

– -1 for courses whose definition ranges from x=0 to x=img-
width (ascending)

• max_line_length (int) – maximal length of a definition gap
so that a line is plotted in this gap (using polylines)

• min_def_length (int) – minimal number of points a contour
needs to have

• max_y_grad – upper threshold for max. average gradient of
contour in y-direction

25

Returns list of outlier-rejected contours

Return type list of ndarray

run()

Starts this thread event

Returns

static runActiveContour(img, top_left, bottom_right, smoothing=1,
threshold=0.31, num_iters=350)

Initialises the zero-level-set of the start-object (rectangle with rounded edges)
and runs the geodesic active contours approach (see Morphological Snakes)

Parameters

• img (ndarray, NxM) – black-white image to operate on

• top_left (int , int) – x/y-top-left position of rounded rect-
angle within img

• bottom_right (int , int) – x/y-bottom-right position of
rounded rectangle within img

• smoothing (float) – strength of Gaussian pre-smoothing step
before active contour starts

• threshold (float) – determines which areas are affected by
the morphological balloon

• num_iters (int) – maximal nr of iterations for active contours
convergence

Returns found contours

Return type list of ndarray

static sepSnakeToWall(snake_pos, img, rpeaks, recursion_cnt,
p_tnear_cont_split=[], p_tfar_cont_split=[])

Splits one continuous snake to aortic wall edges

1. split snake on image borders

2. find possibly already splitted (but neighbouring) contours and join them

3. separate into transducer near- and far contours

4. split each of them at inflection points (where dx < 0)

5. reject bulges in contours list and contour outliers

6. reconnect contours at positions of rejected bulges

7. correct contour position to “leading edge”

26

8. merge contours of this recursion with possibly passed contours of outer
recursions

9. calculate quality parameters (correlation of contours to each other, to R-
peaks, avg. deviation in y-direction,. . .)

10. check for acceptance or launch an inner iteration with contrast-highlighted
sub-images (= decision tree)

Parameters

• snake_pos (string) – either "within", "above" or "under" to
define the origin of the active contour in the img

• img (ndarray, NxM) – used image for active contour

• rpeaks (Rpeaks) – triggerpoints object

• recursion_cnt (int) – internal recursion counter for this
method

• p_tnear_cont_split (list of ndarray) – list of transducer near
contours from outer recursion, empty if near contour should be
recalculated from scratch

• p_tfar_cont_split (list of ndarray) – list of transducer far
contours from outer recursion, empty if far contour should be
recalculated from scratch

Returns list of transducer near contours, transducer far contours,
and their cross correlation

Return type (list of ndarray, list of ndarray, float)

static splitContourAtInflection(l_contours, course_direction,
min_dev_pts=1)

Used to split a contour into a list of subcontours by calculating the consecutive
ascending or descending x-value course.

Parameters

• cont (ndarray) – contour that could be splitted into subcon-
tours if it runs against the preliminary direction (at some point).

• course_direction (int) – defining the predominant course di-
rection (1 -> ascending x, -1 -> descending x))

• min_dev_pts (int) – defining the number of points that must
run against the predominant direction to split the contour at
this position

Returns the list of splitted contour

Return type list of ndarray

27

static splitSnakeOnImgBorders(snake, img)
Splits the biggest found snake (= x- and y-values in snake) at the horizontal

image boundaries and returns the found list of x-axis-sorted contours.

Parameters

• snake (list of ndarray) – list of closed-contours (snakes)

• img (ndarray, NxM) – related mmode_obj_ the active contour
operated on

Returns splitted contours with open ends on the image borders

Return type list of ndarray

static uniformContourDirection(l_contours)

Uniforms the direction of contours to from-left-to-right.

Parameters l_contours (list of ndarray) – contours that should
uniquely be defined with ascending x-values

Returns contours all defined with generally incrementing x-values

Return type list of ndarray

coeff_xcorr = None
cross correlation of tnear_cont_split and tfar_cont_split

tfar_cont_split = None
list of transducer far edges

tnear_cont_split = None
list of transducer near edges

8 Examination module

class Examination.Examination(date_of_exam, diam_courses, time_course,
img_shown, filename, bp_sys_mean,
bp_dia_mean)

This class implements the most basic element - a single M-mode image and the

found diameter curves on it. It is typically used for listing, so that a list may
contains multiple analysed M-mode images. Note that the list of diam_courses_
do not necessarily have the same length!

Standard constructor

Parameters

• diam_courses (list of ndarray) – list of single diameter curves of
different lengths

28

• time_course (ndarray) – single time curve, related to longest
element in diam_courses

• date_of_exam (datetime) – date of examination

• img_shown (ndarray, NxMx3) – image with markup of axes, trig-
gerpoints and edges used for this examination

• filename (string) – name of image file

• bp_sys_mean (float) – average systolic blood pressure (mmHg)

• bp_dia_mean (float) – average diastolic blood pressure (mmHg)

bp_dia_mean_ = 0
diastolic mean blood pressure (mmHg)

bp_sys_mean_ = 0
systolic mean blood pressure (mmHg)

date_of_exam_ = None
date of investigation

diam_courses_ = None
NxM array of heart-cycle-splitted diameter curves

filename_ = None
M-mode US-file of this examination

img_ = None
M-mode image of this examination

time_course_ = None
1xM array of heart-cycle-based time vector

9 GUI module

class GUI.GUI
Bases: gi.overrides.Gtk.Window

This class implements the graphical user interface of AortUs. When called,
it generates a window of type Window that embeds boxes initialised by the
initEasyLayout() function.

• Patient Box - initialised by showPatientBox()

• Config Box - initialised by showConfigBox()

• State Box - initialised by showStateBox()

• Log Box - initialised by showLogBox()

• Image Box - initialised by showImageBox()

It should be noted, that the Image Box embeds an object of type
Notebook, showing two tabs:

29

1. “M-mode image”

2. “Aortic Parameters”

DEBUG_loadTestDataset()
Debug function to automatically start AortUs including an already entered

patient and optionally load and process one or more images. This function is
especially helpful to debug “late” functions in the edge detection process like
i.e. the “Calc Parameters” methods, since instead each run of AortUs would
require to enter all the data to get into this “Calc Parameters” state, manually.

Returns

autoscrollCB(*args)

Callback function to ensure that the scrollable-textview is always scrolled down
when a new entry is set

Parameters args – optional args

Returns

calculateParametersCB(btn)

Wrapping callback function for getAorticParametersHandler() method

Parameters btn (Button) – calling object

Returns

changeComboboxCB(box)

Sets active TrasducerPostype calibration of us-image (–> patient) object and
the name of the blood pressure list

Parameters box (ComboBox) – calling object

Returns

checkPatientDataCB(widget=None, lst_str_row=None, lst_str_txt=None)
This callback function is connected to each “changed” event of ca-

sual patient-fields (MyEntry) including the changed-event of blood pressure
(MyBloodpressure). Parameters lst_str_row and lst_str_txt are related to
the blood pressure changes.

Parameters

• widget (Widget) – calling widget

• lst_str_row (string) – row of changed cell in liststore of
MyBloodpressure

• lst_str_txt (string) – text of changed cell in liststore of
MyBloodpressure

30

Returns

clearDetectionCB(btn)

Clear loaded image from GUI and display idle image

Parameters btn (Button) – calling object

Returns

clearPatientDataCB(btn)

Clear detection (return to idle state) but also clear all Patient Box fields.

Parameters btn (Button) – calling object

Returns

closeAortus(widget, event, data=None)
Callback function emitted, when task manager closes the window (= user

wants to close the window)

Parameters

• event (Event) – triggered event

• data – optional data

Returns

confirmAortaDetectionCB(btn)

Function to end the state of automatic aortic wall region detection and enable
the next state (edge detection)

Parameters btn (Button) – calling object

Returns

createDefaultConfigBoxCont()

Initialises the Config Box with a default content.

Returns

detectAortaCB(btn)

Wrapping callback function for getAorticBoundariesHandler() method

Parameters btn (Button) – calling object

Returns

detectEcgCB(btn)

Wrapping callback function for getEcgHandler() method

31

Parameters btn (Button) – calling object

Returns

detectEdgesCB(btn)

Wrapping callback function for getEdgesHandler() method

Parameters btn (Button) – calling object

Returns

detectScalesCB(btn)

Wrapping callback function for getScalesHandler() method of UsImage

Parameters btn (Button) – calling object

Returns

enablePatientBox(b_sensitivity, type=’all’)
Enables or disables the accessibility of Patient Box fields whenever the user

enters or leaves the edge detection process.

Parameters

• b_sensitivity (bool) – True when it is intended to enable the
Patient Box widgets

• type (string) – Either “all” or “settings” to enable/disable just
personal data fields of the patient, or also enable/disable the
transducer- and section scale settings.

Returns

exportResults(btn)
Export all examinations of all non-empty TransducerPosType objects to an

PDF.

Parameters btn (Button) – calling object

Returns

focusBPEntryCB(widget, entry, data=None)

Function to automatically create a new blood pressure value, when user unfo-
cusses the prior entry field in the Patient Box. (date of examination)

Parameters

• entry (Event) – calling event

• widget (Widget) – widget that received this signal

• data – optionally passed data

32

Returns

initEasyLayout()

Initialises the default layout of the main AortUs window, including all embed-
ded boxes:

• Patient Box

• Config Box

• State Box

• Image Box

• Log Box

Returns

loadImageCB(btn)

Callback function which opens a file dialogue to select an US-image

Parameters btn (Button) – calling object

Returns

mouseBtnPressCB(event)
Callback function for pressed mouse button in GUI. It can roughly be differ-

entiated to the following functions:

• select the correct triggerpoint in Detect ECG mode

• set startpoint for manual mode in Detect Scales

• select the correct y-boundary line in Detect Aorta mode

• call aortic manual edge correction

Parameters event (Event) – calling event

Returns

mouseBtnReleaseCB(event)

Callback function for released mouse button in GUI. It can roughly be differ-
entiated to the following functions:

• reset the selected triggerpoint in Detect ECG mode

• accept scaling values (roi, px-per-cm, px-per-sec) in manual mode in Detect
Scales

• unselect the selected y-boundary line in Detect Aorta mode

• call aortic manual edge correction

33

Parameters event (Event) – calling event

Returns

mouseMoveCB(event)

Callback function for mouse move in GUI. It can roughly be differentiated to
the following functions:

• redraw the currently selected triggerpoint in Detect ECG mode

• draw the rectangle or line in the manual mode in Detect Scales

• reset boundary lines in Detect Aorta mode

• call aortic manual edge correction

Parameters event (Event) – calling event

Returns

resizeCB(window)

Resize window callback function (currently not connected to the callback)

Parameters window (Window) – window to resize

Returns

runSpinner(flag)
Function opening a frameless window, including a spinner object only. (cur-

rently unused)

Parameters flag (boolean) – true if window should be shown, false
if it should be hidden

Returns

secDepthChangeCB(btn)

Callback function for changed “Sections per cm”

Parameters btn (Button) – calling +/- button

Returns

secTimeChangeCB(btn)

Callback function for changed “Sections per sec”

Parameters btn (Button) – calling +/- button

Returns

setPatientBoxData(patient, date_of_exam, sys_bp, dia_bp)

34

Manually sets GUI patient data fields by passed patient object and examination
data.

Parameters

• patient (Patient) – patient object

• date_of_exam (datetime) – string containing examination
data (i.e. 20.09.2009)

• sys_bp (float) – systolic blood pressure

• dia_bp (float) – diastolic blood pressure

Returns

showAorticParameterBox()
(Late) Sub-Initfunction to create and arrange a second tab within the Image

Box and arrange the setup of plots, parameters and list to dynamically remove
outlying diameter curves.

Returns

showConfigBox(inter_box_spacing=10, within_box_border=5,
box_size=(None, None))

Sub-Initfunciton to create and arrange Config Box objects

Parameters

• inter_box_spacing (int) – spacing between widgets of this
box

• within_box_border (int) – inner border of this box to its wid-
gets

• box_size ((float , float)) – tuple of size values to setup
the size of this box, relative to the window size (between [0.0,
1.0]). By default, this size is not explicitly requested.

Returns

showImageBox(box_size=(None, None))

Sub-Initfunction to create and arrange Image Box objects

Parameters box_size ((float , float)) – tuple of size values to
setup the size of this box, relative to the window size (between
[0.0, 1.0]). By default, this size is not explicitly requested.

Returns

showLogBox(within_box_border=5)
Sub-Initfunction to create and arrange Log Box objects. Log info is filled by

the global Logging object of type Logging.

35

Parameters within_box_border (int) – inner border of this box to
its widgets

Returns

showPatientBox(within_box_border=5, box_size=(None, None))

Sub-Initfunction to create and arrange Patient Box objects

Parameters

• within_box_border (int) – inner border of this box to its wid-
gets

• box_size ((float , float)) – tuple of size values to setup
the size of this box, relative to the window size (between [0.0,
1.0]). By default, this size is not explicitly requested.

Returns

showStateBox(within_box_border=5)

Sub-Initfunction to create and arrange State Box objects

Parameters within_box_border (int) – inner border of this box to
its widgets

Returns

updateAorticParameterBox(diam_courses=None, avg_diam_course=None,
time_course=None, course_lbls=None,
bp_sys_mean=None, bp_dia_mean=None)

Update already initialised aortic parameter box’s curves and values by adding
new curves.

Parameters

• diam_courses (list of ndarray) – list of single diameter curves
of same lengths

• avg_diam_course (ndarray) – average diameter curves

• time_course (ndarray) – time curves with appropriate length
of single- as well as average diameter curves

• course_lbls (list) – labels of diam_courses

• bp_sys_mean (float) – average systolic blood pressure (mmHg)

• bp_dia_mean (float) – average diastolic blood pressure
(mmHg)

Returns

ao_param_names_ = None
names of the aortic parameters

36

ao_params_ = None
values of aortic parameters

ao_params_lbls_ = []
aortic parameter labels that are assigned when using method
showAorticParameterBox

avg_diam_plt = None
plot object containing average diameter curve

b_aorta_manual_ = False
True as long as manual aortic area correction is active

b_edge_manual_ = False
True as long as detected edges can be corrected

b_img_loaded_ = False
True when image was loaded successfully

b_rpeak_manual_ = False
True as long as manual R-peak correction is active

b_scales_manual_ = False
True as long as manual scale procedure is active

box_color = Gdk.Color(red=65535, green=65535, blue=65535)
standard filling color for framed boxes

canvas = None
canvas of us-image

export_path_ = ''
(default) export path for examination PDFs

frame_color_ = Gdk.Color(red=60000, green=60000, blue=60000)
standard frame color for (i.e.) boxes

frame_thickness = 5
thickness of frames

image_box_frame = None
interactive image box

img_height_ = 0
height of image –> for flipping by 180deg

img_r_move_ = None
image template for moving one peaks along the ECG

img_scale_det_ = None
temporary image for i.e. drawing the rectangle/line during manual scale de-
tection

import_path_ = ''
(default) import path for images

37

norm_diam_plt = None
plot object containing all single diameter curves

p0_ = (None, None)
x- and y-values of click-and-hold in image (start point) and for aortic-ROI
movements

p1_ = (None, None)
x- and y-values of click-and-hold in image (end point)

patient_box_frame = None
patient data box

sel_area = 4
area in px around R-peaks that is considered for the cursor moving R-peaks

sel_ind_ = -1
index of selected R-peak within the R-peaks liststore

sel_x_ = -1
x-value of currently selected R-peak

sel_y_ = -1
y-value of currently selected R-peak

us_image_ = None
globally used UsImage object

wait_spinner_ = None
spinner window which is activated for excessive calculation operations (when
multithreading is used)

10 Logging module

class Logging.Logging(timestmp_spacing=5, timestmp_format=’%d/%m/%Y
%H:%M:%S’)

Bases: gi.overrides.Gtk.TextBuffer

This class implements the the textbuffer used to fill the Log Box on one hand, and
the log-file in the temporary user related hidden directory on the other hand. This
is typically “C:\Users\<Username>\AppData\Local\Temp” for Windows operating
systems.

Standard constructor

Parameters

• timestmp_spacing (int) – number of spaces used between the
timestamp (left) and the actual message (right)

• timestmp_format (string) – format of timestamp

38

DEBUG_saveImg(name, img)
Debug function to save each originally loaded M-mode in tempdir, if flag

is true. This function is especially useful for debugging cases on computers,
different to the own.

Parameters

• img (ndarray, NxMx3) – image to save to the tempdir

• name (string) – name of file

Returns

endLogFile()

Function called when AortUs is closed, in order to close the logfile.

Returns

logfile_ = None
logfile id

logimg_path_ = None
logged images path (string)

new_log_

timestmp_format_ = ''
date format for timestamp creation

timestmp_spacing_ = 0
number of character from beginning of new line till start of text-entry (=
includes timestamp length!)

11 Morphsnakes module

class Morphsnakes.MorphGAC(data, smoothing=1, threshold=0, balloon=0)

Bases: object

Morphological GAC based on the Geodesic Active Contours.

Create a Morphological GAC solver

Parameters

• data (ndarray) – The stopping criterion g(I), see functions
gborders()

• smoothing (float) – The number of repetitions of the smoothing
step in each iteration. This is the parameter my.

39

• threshold (float) – The threshold that determines which areas
are affected by the morphological balloon. This is the parameter
theta.

• balloon (float) – The strength of the morphological balloon.
This is the parameter v.

set_balloon(v)

Set balloon force direction

Parameters v (float) – The strength of the morphological balloon

Returns

set_data(data)

Set the data that controls the snake evolution (the image or g(I))

Parameters data (ndarray) – passed data

Returns

set_levelset(u)

Set current levelset

Parameters u (ndarray) – passed levelset

Returns

set_threshold(theta)

Set threshold for balloon force

Parameters theta (float) – threshold

Returns

step()

Perform a single step of the morphological snake evolution.

Returns

balloon
The morphological balloon parameter (nu, not v).

data
The data that controls the snake evolution (the image or g(I)).

levelset
The level set embedding function (u).

threshold
The threshold value (theta).

40

class Morphsnakes.fcycle(iterable)

Bases: object

Call functions from the iterable each time it is called.

Morphsnakes.IS(u)

IS operator

Parameters u (ndarray) – levelset

Returns

Morphsnakes.ISoSI(u)

ISoSI operator

Morphsnakes.SI(u)

SI operator

Parameters u (ndarray) – levelset

Returns

Morphsnakes.SIoIS(u)

SIoIS operator

Morphsnakes.ellipse_levelset(shape, top_left, bottom_right, l_width=5,
rad_corner=5)

Initialise filled rounded rectangle levelset to passed positions

Parameters

• shape ((int , int)) – shape of behindlaying image

• top_left ((int , int)) – top left position of rounded rectangle

• bottom_right ((int , int)) – bottom right position of
rounded rectangle

• l_width (int) – line width of rounded rectangle in px

• rad_corner (int) – corner radius of rounded rectangle in px

Returns 2D mask with zeros, except the filled rounded rectangle with
ones

Return type ndarray

Morphsnakes.evolve(msnake, levelset=None, num_iters=20, DE-
BUG_img=None)

Evolution of a morphological snake.

41

Parameters

• msnake (MorphGAC or MorphACWE) – MorphGAC or MorphACWE
instance, the morphological snake solver

• levelset (ndarray, NxM) – If given, the levelset of the solver is
initialised to this. If not given, the evolution will use the levelset
already set in msnake.

• num_iters (int) – The number of iterations.

• DEBUG_img (ndarray, NxM) – The image to print each iteration
of the snake

Returns

Morphsnakes.gborders(img, alpha=1.0, sigma=1.0)

Calculate stopping criterion for image borders

Parameters

• img (ndarray, NxM) – image whose edges should act as stopping
criteria

• alpha (float) – weighting of smoothed image

• sigma (float) – gaussian smoothing standard deviation

Returns

Morphsnakes.rounded_rectangle(img, top_left, bottom_right, line_color,
l_width, rad_corner)

Create rounded rectangle on a passed image.

Parameters

• img – passed image to create the rounded rectangle on

• top_left ((int , int)) – top left position of rounded rectangle

• bottom_right ((int , int)) – bottom right position of
rounded rectangle

• l_width (int) – line width of rounded rectangle in px

• rad_corner (int) – corner radius of rounded rectangle in px

Returns img including rounded rectangle

Return type ndarray

Morphsnakes.curvop = <Morphsnakes.fcycle object>
curvature operator

42

12 MySubclasses module

class MySubclasses.MyBloodpressure(parent, def_str_sys, def_str_dia,
def_abbrev, valueChangedCB=None)

Bases: MySubclasses.MyDynamicTreeview

Class implementing a TreeView list that automatically averages and stores its
columns (systolic blood pressure, diastolic blood pressure) entries. It also checks
its content for consistency (within defined boundaries) and is per default append-
able.

Standard constructor

Parameters

• parent (Window) – parent window

• def_str_sys (string) – default column title for systolic column

• def_str_dia (string) – default column title for diastolic column

• def_abbrev (string) – abbreviation, shown as title of the “+”
column

• valueChangedCB (function) – callback function being called at
the very end of other callbacks, after the content was checked for
plausibility

addBPValues(sys_bp_lst=[], dia_bp_lst=[])

Function to add blood pressure values generically via passed lists.

Parameters

• sys_bp_lst (list of float) – list of systolic blood pressure
values to add

• dia_bp_lst (list of float) – list of diastolic blood pressure
values to add

Returns

clearList()

Call actual clear liststore function and remove member values.

Returns

editConfirmCB(_, row, entered_text, model, column)

Callback function when user entered and confirmed an BP-field with Enter but-
ton. This function also checks the entered value for plausiblity and calculates
the current mean value for the used column.

Parameters

43

• _ – omitted

• row (int) – selected row

• entered_text (string) – entered text

• model (TreeModel) – currently used model

• column (int) – selected column

Returns

updateMeanValues(*kwargs)
Function to update the mean values of the Systolic and Diastolic column.

The mean value will be integrated in the column title. If the mean cannot be
calculated, the default string will be used instead.

MAX_DIA_BP = 250
maximal diastolic blood pressure (mmHg)

MAX_SYS_BP = 300
maximal systolic blood pressure (mmHg)

MIN_DIA_BP = 30
minimal diastolic blood pressure (mmHg)

MIN_SYS_BP = 50
minimal systolic blood pressure (mmHg)

dia_mean = None
diastolic mean blood pressure (mmHg)

sys_mean = None
systolic mean blood pressure (mmHg)

type_
Get abbreviation name of BP-Treeview

Returns title of BP-Treeview

Return type string

valueChangedCB = None
callback function called at the very end of other callbacks, after entry was
checked for plausibility

class MySubclasses.MyCV
This class mainly embeds static helper functions for OpenCv.

static check_opencv_version(major, lib=None)

Function to check the currently installed OpenCV version

Parameters

• major (str) – major version (i.e. “2.”)

44

• lib – used library

Returns true if major is “2.” and used OpenCV version is i.e. 2.1

static findContours(image, mode, methods, contours=None, hierar-
chy=None, offset=None)

OpenCv version independent implementation of findContours(). Please refer
to the original documentation for more details regarding the datatypes.

Parameters

• image (ndarray, NxMx3) – image to find contours on

• mode (int) – contour retrieval mode

• methods (int) – contour approximation method

• contours (list of ndarray) – (output) detected contours

• hierarchy – (output) vector containing information about the
contour’s hierarchy

• offset ((int , int)) – offset by which every contour point is
shifted

Returns

static is_cv2()

Checks if OpenCV is of major version 2

Returns true if version is 2

static is_cv3()

Checks if OpenCV is of major version 3

Returns true if version is 3

Returns

class MySubclasses.MyDiameterPlt(x_vals=None, y_vals=None, title=”,
dpi=50, box_size=(None, None),
font_sze_title=22, font_sze_ticks=19,
font_sze_legend=17)

Bases: gi.repository.Gtk.VBox

Creates a diameter-time plot with a certain size (in inches). This plot is used within
a Notebook tab to show the single- and average diameter curves over time.

Standard constructor

Parameters

• x_vals (ndarray, Nx1) – array of x-values

45

• y_vals (ndarray) – array of y-values for at least one curve, NxM

• title (string) – title of plot

• box_size ((int , int)) – requested size of plot-box in inches

• dpi (int) – dots per inch - required for high resolution plots

• font_sze_title (int) – font size of plot title

• font_sze_ticks (int) – font size of axis ticks and label

• font_sze_legend (int) – font size of legend entries

addDataCourses(x_vals, y_vals, ind_highlight=None, course_lbls=None)

Add data-courses to this axes

Parameters

• x_vals (ndarray, Nx1) – array of x-values

• y_vals (ndarray) – array of y-values for at least one course,
NxM

• ind_highlight (list) – indices of element that should be high-
lighted in the plot

• course_lbls (list , M) – labels of courses

Returns

removeDatacourse(remove_idx)

Tries to remove datacourse from plot

Parameters remove_idx (int) – remove index

Returns

setDataCourses(x_vals, y_vals, ind_highlight=None, course_lbls=None)

First clears the axis-courses, then adds new axis-courses

Parameters

• x_vals (ndarray, Nx1) – array of x-values

• y_vals (ndarray) – array of y-values for at least one curve,
NxM

• ind_highlight (list) – indices of element that should be high-
lighted in the plot

• course_lbls (list , M) – labels of curves

Returns

ax_ = None
main axes object

46

fig_ = None
figure object

font_sze_legend_ = 0
font size of legend entries

font_sze_ticks_ = 0
font size of ticks and x/y-labels

font_sze_title_ = 0
font size of title

title_ = ''
title label

class MySubclasses.MyDynamicTreeview(parent, n_columns,
b_appendable=True)

Bases: gi.overrides.Gtk.TreeView

Base class of liststore treeview. This class implements a flat list of items stored in
its member bp_liststore that is appendable if b_appendable is true. It always
has at least 2 visible columns:

1. “+” column, to append an entry to this list

2. “-” column, to remove a certain element from this list

Additionally added columns therefore have at least the column index 2 and are
accessable by a single click in their field, or by pressing “TAB” (if editable).

Standard constructor

Parameters

• parent (Widget) – parent widget

• n_columns (int) – number of columns the user wants to create
(excluding “+”/”-” columns)

• b_appendable (bool) – true if Dynamic-Treelist is appendable

addListRow(l_entries, row=0)

Adds a row to list if enough columns are specified.

Parameters

• l_entries (list of string) – list of string items that should
be added to the column’s cells

• row (int) – row where entries should be inserted

Returns

clearList()

47

Clear all items in the list and restore to default view (incl. possible appendable
row)

Returns

clickPlusMinus(treeview, event)
Callback function for click-event on treeview. This function wraps the call of

three types of subfunctions:

• click on “+” (first column)

• click on “-” (second column)

• click on any other visible column

Parameters

• treeview (TreeView) – overall treeview

• event (Event) – calling event

Returns

getColVals(col_ind)

Function to retrieve all visible row values of a defined column in form of a list

Parameters col_ind (int) – column index

Returns list of row values, None if extraction is not possible

jumpToNextEditableCell(treeview, event)

Function to jump through MyDynamicTreeview editable cells by simply press-
ing “TAB” key. For appendable MyDynamicTreeview objects, a new row is
created when the user is currently in the last row and presses “TAB”.

Parameters

• treeview (TreeView) – overall treeview

• event (EventKey) – calling event

Returns

pmCallback(row, col, cb_fcn)
Helper function to call the passed callback function with two args of integer

row and column index

Parameters

• row (int) – clicked row index

• col (int) – clicked column index

• cb_fcn (function) – function to call

48

Returns

selectionChangedCB(sel)
Callback function for changing the selection of row in BP treeview. The

function basically restricts selecting the last row (which is actually just used
for putting buttons within the liststore).

Parameters sel (TreeSelection) – current selection

Returns

aux_cb_fcn = None
function called for click events on click events on non-empty entries in “+”/”-”
columns, except the actual “+”/”-” signs

b_appendable_ = False
flag indicating if dynamic-treeview-list should have appendable elements

b_sel_col = False
boolean flag indicating if user is currently in edit mode

bp_liststore = None
liststore object which is basically the table shown in this treeview

col_ind = -1
current column index

minus_cb_fcn = None
function called when “-” is clicked

minus_col_idx = -1
column index of “-” sign

n_columns = 0
number of data-columns to create

parent_ = None
parent object of this treeview

plus_cb_fcn = None
function called when “+” is clicked

plus_col_idx = -1
column index of “+” sign

sel_row_ = None
iterator of currently selected row

class MySubclasses.MyEntry(parent, default_str, type=”, changedCB=None,
max_chars=100)

Bases: gi.repository.Gtk.Entry

Subclass to create a restricting Entry-field for (i.e.) upper+lowercase letters only

Standard constructor

49

Parameters

• parent (Window) – parent window

• default_str (string) – displayed in the entry field in light gray
as long as the user gives no input

• type (string) – either “name”, “number” or “date”; defines the
charset that is allowed in this field

• changedCB (function) – function to call whenever input of this
field changed

• max_chars (int) – maximum characters allowed in this field

clear()

Reset Entry text to default_str

enterEntryCB(entry, widget)

Callback function being called when the user focusses this Entry

Parameters

• entry (Entry) – entered entry field

• widget (Widget) – calling widget

Returns

enterText(entry)

Fill Entry with text programmatically

Parameters entry (string, int, datetime) – data which should be
stored in Entry

Returns

entry2Int(entry)

Convert entry to integer

Parameters gentry (strin) – number which should be stored in
Entry

Returns

exitEntryCB(entry, widget)

Callback function being called when the user unfocusses from this Entry

Parameters

• entry (Entry) – exited entry field

• widget (Widget) – calling widget

50

Returns

isEmpty()

Checks if the Entry is empty or contains the default string

restrictToDate(entry)
Callback function checking if the entry is a valid date, according to defined

dateformats (date_formats_)

Parameters entry (Entry) – entered entry field

Returns

restrictToName(entry, charset)
Callback function checking and correcting if input of entry is not within the

charset or more than maxchars.

Parameters

• entry (Entry) – entered entry field

• charset (string) – defined charset, either name_chars_,
number_chars_ or date_chars_

Returns

date_chars_ = '0123456789.-/ '
chars allowed in date fields

date_formats_ = ['%d.%m.%Y', '%d/%m/%Y', '%d-%m-%Y', '%d %m %Y', '%d%m%Y']
date formats that are allowed

default_str = ''
default string which is shown in grey chars and vanishes when user clicks into
entry-field

entry_cont_ = ''
content which is either a (valid) string, a (valid) date or empty.

max_chars = 0
maximal characters allowed in this field

name_chars_ = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ -'
chars allowed in name fields

number_chars_ = '0123456789'
chars allowed in numeric fields

parent = None
parent class object

type = None
(optional) either one of (“name”, “number”, “date”) - defines the charset that is
allowed in this field

51

class MySubclasses.MyGtk
This class mainly embeds static helper functions for GTK.

static getNotebookTabLbls(notebook)

Returns a list of all Label texts of notebook tab pages.

Parameters notebook (Notebook) – notebook whose pages should
be iterated

Returns list of strings of tab-labels of notebook, “None” if tab is not
a Label

Return type list

static removeAllNotebookTabs(notebook)

Removes all existing tabs of the passed Notebook

Parameters notebook (Notebook) – notebook to clear

Returns

static removeBoxElements(box)

Static method removing all Widget s of a Box

Parameters box (Box) – Box whose widgets should be removed

Returns Box without any children

Return type Box

static setCurrentNotebookTab(notebook, tabname)

Trys to set the current notebook tab by its tabname

Parameters

• notebook (Notebook) – notebook whose current tab should be
changed

• tabname (string) – name of tab

Returns

class MySubclasses.MyInputDialog(txt, title, content=None, parent=None)

Bases: gi.overrides.Gtk.MessageDialog

Standardised input dialog that contains an Entry field and an “OK” button to
confirm.

Standard constructor

Parameters

• txt (string) – information text in this dialogue

52

• title (string) – title of this dialogue

• content (string) – default content of the Entry field

• parent (Window) – parent window

onClickOK(btn)

Set entered text

Parameters btn (Button) – calling button

Returns

content_ = None
entered text as string

class MySubclasses.MyMessagePopup(txt, parent=None, type=<enum
GTK_MESSAGE_WARNING of type
Gtk.MessageType>)

Bases: gi.overrides.Gtk.MessageDialog

Subclass to create standardised message popup windows.

Standard Constructor

Parameters

• txt (string) – information string to show

• parent (Window) – parent window

• type (MessageType) – message type

class MySubclasses.MyStateArrow(type=<enum GTK_ARROW_RIGHT of
type Gtk.ArrowType>, shadow=<enum
GTK_SHADOW_OUT of type
Gtk.ShadowType>)

Bases: gi.overrides.Gtk.Arrow

Class implementing the default layout of state arrows used within the State Box

Standard Constructor

Parameters

• type (ArrowType) – showing from left to right

• shadow (ShadowType) – shadowing

class MySubclasses.MyStateButton(label=”, cb_fcn=None, width=70,
height=50)

Bases: gi.overrides.Gtk.Button

Class implementing the default layout of state buttons used within the State Box

53

Standard Constructor

Parameters

• label (string) – label of this button

• cb_fcn (function) – callback function of this button

• width (int) – desired width of button

• height (int) – desired height of button

btn_ = None
button object within the HBox

class MySubclasses.MyWaitWindow(parent)

Bases: gi.overrides.Gtk.Window

Window containing a spinner

Standard Constructor

Parameters parent (Window) – parent object

b_waiting_ = False
flag indicating if the spinner is turning

spinner_ = None
spinner object

13 Patient module

class Patient.Patient(first_name, last_name, insurance_nr, date_of_birth,
updatePlotsNParams, gui=None)

Bases: MySubclasses.MyDynamicTreeview

Class implementing the patient relevant data, as well as the related list of
Examination (diameter curves).

Standard constructor

Parameters

• first_name (string) – first name

• last_name (string) – last name

• insurance_nr (string) – insurance number

• date_of_birth (datetime) – date of birth

• updatePlotsNParams (function) – function to call after exami-
nations have been added to the patient

• gui (Window) – parent window

54

addTransducerExamination(diam_courses, time_course, date_of_exam,
img_shown, filename, bp_sys_mean,
bp_dia_mean)

Add a new Examination to the currently selected global TransducerPosType.

Parameters

• diam_courses (list of ndarray) – list of single diameter curves
of different lengths

• time_course (ndarray) – single time curve, related to longest
element in diam_courses

• date_of_exam (datetime) – date of examination

• img_shown (ndarray, NxMx3) – image with markup of axes,
triggerpoints and edges used for this examination

• filename (string) – name of image file

• bp_sys_mean (float) – average systolic blood pressure (mmHg)

• bp_dia_mean (float) – average diastolic blood pressure
(mmHg)

Returns

initCourseList(gui)

Initialise the scrollable list of of diameter curves with columns “Image”, “Date”
and “Label” (of image). Note that this list is not appendable.

Parameters gui (Window) – parent window

Returns

rowRemovedCB(row, col)

Remove a certain course from the examination and update plots and calcula-
tions by changed items in this MyDynamicTreeview.

Parameters

• row (int) – row index to remove

• col (int) – column index to remove

Returns

cur_examination_
Get current Examination

Returns current Examination object if existing, None if not

cur_transd_pos_type_
Get current TransducerPosType

Returns currently selected TransducerPosType object

55

date_of_birth_ = None
date of birth as type datetime

first_name_ = ''
first name of patient

i_transd_pos_ = 0
index of current TransducerPosType

insurance_nr_ = 0
full insurance nr.

last_name_ = ''
last name of patient

transd_pos_ = []
list of different TransducerPosType that contain the list of Examination of
this patient

14 Rpeaks module

class Rpeaks.Rpeaks(parent, img, updateFcn, ecg_x, ecg_y, ecg_t, ecg_r_ind=[],
next_state_btn=None)

Bases: MySubclasses.MyDynamicTreeview

Triggerpoints list object, basically storing and managing the indices within the ECG
tracing, where triggerpoints are set.

Standard constructor

Parameters

• parent (Window) – parent window

• img (ndarray, NxMx3) – overall image

• updateFcn – update function being called whenever an R-peak
position is initialised or changed

• ecg_x (ndarray) – x values of Ecg tracing

• ecg_y (ndarray) – y values of Ecg tracing

• ecg_t (ndarray) – time values of x values

• ecg_r_ind (list) – indices of found R-peaks within the ecg_x,
ecg_y and ecg_t vectors

• next_state_btn (Button) – next state button to set sensitive

addRemoveListItemCB(row, col)
Callback function called, when user clicks on the ‘+’, ‘-‘ or “*All” in the

treeview

56

• “+” creates new entry at the end of the list

• “-” removes current entry

• “*All” resets all entry’s offsets to the currently selected one

Parameters

• row (int) – row index

• col (int) – column index

Returns

applyToAllCB(treeview, event, offset=None)

Apply Offset to

1. reset all rows to this offset

2. if offset is None, use selected row to set offset

Parameters

• treeview (TreeView) – used treeview object

• event – calling event

• offset (string) – offset to set all values to

Returns

correctIndByOffset(iter)

Aux function telling if t +/- offset is within time vector

Parameters iter (TreeIter) – iterator of R-peak that should be
corrected by offset

Returns the index of the closest ECG-value of t +/- offset, -1 if time
exceeds time-vector

editConfirmCB(_, row, entered_text, model, column)

Callback function called, when user entered and confirmed an offset with enter
button

Parameters

• _ – omitted

• row (int) – selected row

• entered_text (string) – entered text

• model (TreeModel) – used treemodel

• column (int) – selected column

57

Returns

getAvgHeartRate()

Calculates the average heartrate in px, if more than 2 R-peaks are defined.

Returns 0 if less than 2 R-peaks are defined, else the average nr. of
pixel per heart-cycle

initTreeView()

Initialise default appendable MyDynamicTreeview object with three columns

• Name of triggerpoint

• Time of triggerpoint

• Offset value (editable) of triggerpoint

Returns

plotRPeaks(img=None, x=None, y=None, color=(255, 0, 0), thickness=2,
radius=3)

Plot the passed passed x- and y-values (array of list) or (if not passed) the

already defined member x- and y-values

Parameters

• img (ndarray, NxMx3) – overall image used

• x (ndarray or list) – x-values of peaks to plot

• y (ndarray or list) – y-values of peaks to plot

• color ((int , int , int)) – RGB color

• thickness (int) – thickness of circle border line

• radius (int) – radius of circles

Returns

selectionChangedCB(sel)

Callback function for changing the selection of row in R-peaks treeview. The
function basically restricts selecting the last row.

Parameters sel (TreeSelection) – current selection

Returns

updateList(sort_idx)

Function to update the order of R-peak items in list (according to peaks from
“left to right” in the image)

58

Parameters sort_idx (ndarray) – array of sort indices

Returns

DEF_OFFSET = -50
default offset of triggerpoints is 50ms

MIN_NR_RPEAKS = 3
minimal nr. of R-peaks that need to be found in order to proceed to the next
state

b_ecg_peaks_ = False
flag indicating at least one R-peak element within the liststore

columns = ['', '', 'Name', 't (ms)', 'Offset (ms)']
column titles

ecg_end_ = None
Ecg end position (x,y)

ecg_r_ind_ = None
indices for R-peaks in Ecg vectors

ecg_start_ = None
Ecg start position (x,y)

ecg_t_ = None
Ecg time values of x-values

ecg_x_vals_ = None
x-values of Ecg course

ecg_y_vals_ = None
y-values of Ecg

img_ = None
image with scales

name = None
list of names that are a combination of peak_str and the index of the trigger-
point

next_state_btn_ = None
pushbutton to enable/disable next state after “Detect ECG”

offset = None
list of offsets of triggerpoints

peak_col_ = (255, 0, 0)
color of peak circle

peak_rad_ = 3
radius of peak circle in image

peak_str = 'Peak '
peak entry name

59

peak_thckn_ = 2
thickness of circle-border

sel_row_ = None
iterator of currently selected row

selection_ = None
current TreeSelection

15 Scale module

class Scale.Scale(img, updateFcn)

This class implements the scale objects within the shown image. It embeds

• the position of the detected or defined x-axis

• the position of the detected or defined y-axis

• the resulting position and dimension of the M-mode ROI

• the scaling in px-per-second and px-per-cm

Standard constructor

Parameters

• img (ndarray, NxM) – overall image

• updateFcn (function) – update function to call after
image_obj_ was manipulated

QUICKNDIRTY_getScalesAuto(n_horiz_sections, n_vert_sections)

This is a subfunction of getScalesAuto() to also enable the scaling-extraction
for Philipps ultrasound devices. It also operates on a thresolded image but does
not use the Hough lines, but the find contours approach to extract the sub-
scales of the (not existing) axes. These contours are detected as subscales,
if they all have the same start position in x-direction (for vertical scaling) or
y-direction (for horizontal scaling). If so, their orthogonal distance is averaged
and used as scaling. Note, that the axes start and end-definition depend on
the position of the first and last found subscale of this image.

Parameters

• n_horiz_sections (int) – number of horizontal sections per
second (defined by the user)

• n_vert_sections (int) – number of vertical sections per cm

Returns true, if scales and resolution could be extracted

Return type bool

60

findLines(img, cmp_type=’equal x’, max_linewidth=5)

This function aims to calculate the average distance between subscales of the
current axes. This is done by calculating the mean distance in the specified
direction (x/y) of non-zero elements (with certain min. length) in the passed
subimage of the overall image.

Parameters

• img (ndarray, NxM) – subimage of overall used image, contain-
ing vertical/horizontal subscales only

• cmp_type (string) – “equal x” to calculate mean vertical dis-
tance in the passed img, “equal y” to calculate mean horizontal
distance in the passed img

• max_linewidth (int) – maximal width of subscale lines in px

Returns

getScalesAuto(n_horiz_sections, n_vert_sections)
This function automatically estimates the axis on a given US-image and also

computes the used region of interest (= M-mode image pane). This is basically
done by the following steps:

• First threshold the image by suppressing content with a brightness value
lower than thresh. Then the goal is to find horizontal main axis (must
cover at least 90% of image width) as well as the vertical main axis (must
cover at least 50% of image height).

• If found, the distances of axes-orthogonal sub-lines are calculated and
therefore px-per-sec and px-per-cm are defined, as well as the positions
of the main axes and the M-mode ROI.

• If not found, the algorithm tries to find it in another way (for Philipps
devices) where no main axes are defined, but sub-sections for the horizontal
and vertical scaling exist on the right and bottom end of the M-mode ROI.
This is where QUICKNDIRTY_getScalesAuto() is called.

Parameters

• n_horiz_sections (int) – number of horizontal sections per
second (defined by the user)

• n_vert_sections (int) – number of vertical sections per cm

Returns True if both axes were found, False if not.

Return type bool

getScalesManual(btn, config_box_main, updateWindowFcn, btn_det_ecg)

This function will be called if the scales could not be found automatically. It

61

is a procedure that helps to set the most important parameters for this class
by switching through the ScaleState.

1. Definition of M-mode ROI

2. Definition of time-resolution

3. Definition of depth resolution

Each of these states can be confirmed (when definition succeeded) by clicking
the created “Next” button in the Config Box.

Parameters

• btn (Button) – calling “Next” button

• config_box_main (VBox) – Config Box container

• updateWindowFcn (function) – function to call after the con-
tent of the Config Box was manipulated

• btn_det_ecg (Button) – next state button which is enabled,
after this scale definition succeeded

Returns

plotScales(color=(0, 255, 0), thickness=2)

Function to plot the already found scales

Parameters

• color ((int , int , int)) – RGB color of axes

• thickness (uint) – thickness of lines as axes

Returns

setMMode((p0_x, p0_y), (p1_x, p1_y))

Sets the definitions for x- and y-axis, as well as the M-mode image object and
its dx/dy-offset. This is especially useful for API mode.

Parameters

• p0_x (int) – x-start position of roi

• p0_y (int) – y-start position of roi

• p1_x (int) – x-end position of roi

• p1_y (int) – y-end position of roi

Returns

setResolution(px_per_sec, px_per_cm)

Sets the current pixel resolution

Parameters

62

• px_per_sec (int) – pixel per second

• px_per_cm (int) – pixel per centimeter

Returns

advise_label_ = None
Label for advises in Config Box of GUI

b_interaction = False
true, if user is in manual interaction mode

image_obj_ = None
overall image object

mmode_dx_ = 0
x-offset of M-mode image within overall image

mmode_dy_ = 0
y-offset of M-mode image within overall image

mmode_obj_ = None
M-mode image object of type ndarray

next_btn_ = None

px_per_cm_ = 0
determined or defined pixel per centimeter

px_per_sec_ = 0
determined or defined pixel per second

st_manual_scale_ = None
State of type ScaleState in Manual State Detection process

updateImageFcn = None
update function to call after image_obj_ was manipulated

x_axis_ = None
definition of x-axis (p0x, p0y, p1x, p1y)

y_axis_ = None
definition of y-axis (p0x, p0y, p1x, p1y)

class Scale.ScaleState
Bases: enum.Enum

Enum defining states for manual scale detection

FINISH = 4

HORIZ_RESOLUTION_DEF = 3

ROI_DEF = 1

VERT_RESOLUTION_DEF = 2

63

16 UsFile module

class UsFile.UsFile(filename, mmode_settings=(None, None, None, None),
px_per_sec=None, px_per_cm=None, rpeak_idx=None,
y_roi=None)

The UsFile class implements the actually loaded ultrasound file and possible already
known properties for AortUs. This class is especially useful for testing in API mode
(refer to loadTestDataset()) or even for a later usage as save-file in a proprietary
format. It mainly contains properties used to bypass the time-consuming extraction
in the GUI by “already known” i.e. position of scales.

Standard Constructor

Parameters

• filename (string) – name of loaded image file

• mmode_settings ((int , int , int , int)) – position of M-
mode image area (p0_x, p0_y, p1_x, p1_y)

• px_per_sec (int) – pixels per second

• px_per_cm (int) – pixels per centimeter

• rpeak_idx (list) – list of indices within the Rpeaks

• y_roi ((int , int)) – tuple of y-positions of aortic boundaries
in M-mode image

filename_ = None
name of loaded ultrasound file

p0_x_ = None
(already known) M-mode startpoint x-position

p0_y_ = None
(already known) M-mode startpoint y-position

p1_x_ = None
(already known) M-mode endpoint x-position

p1_y_ = None
(already known) M-mode endpoint y-position

px_per_cm_ = None
(already known) pixels per centimeter

px_per_sec_ = None
(already known) pixels per second

rpeak_idx_ = []
(already known) list of indices within the Rpeaks

y_roi_ = (None, None)
(already known) tuple of y-positions of aortic boundaries in M-mode image

64

17 UsImage module

class UsImage.UsImage(parent, config_box_main, show_all, win_update,
win_size, image_path=None)

Bases: object

This class implements the interface between the GUI class and the backend classes
(Aorta, Ecg, Patient, Scales, Rpeaks). It handles input from the GUI, (in)activates
its widgets if necessary and calls MyMessagePopup if something notable happens.

Standard constructor

Parameters

• parent (GUI) – parent window

• show_all (function) – Show all update function for whole GUI

• win_update (function) – Update function to trigger after image
has been modified

• win_size ((int , int)) – Size of GUI window so that US-image
canvas will be created with the correct size

• image_path (string) – path+filename of image to (optionally)
load at this point

clearStateMembers()
Clear all object related state members (image name, image objects, Scale,

Ecg, Rpeaks, Aorta)

Returns

createIdleImage()

Creates idle image for the GUI, as long as no US-image is loaded.

Returns

createPatientExamination(first_name, last_name, insurance_nr,
date_of_birth, updatePlotsNParams, gui)

Wrapper function to create a Patient

Parameters

• first_name (string) – first name

• last_name (string) – last name

• insurance_nr (string) – insurance number

• date_of_birth (datetime) – date of birth

65

• updatePlotsNParams (function) – function to call after exam-
inations have been added to the patient

• gui (Window) – parent window

Returns

exportResultsHandler(fn, examiner, ao_params_names)
This function exports the current list of Examination elements for used

TransducerPosType elements, used in the current session of a patient to a
PDF. This PDF includes general information of AortUs and its version, all
personal data of the patient, processed and highlighted M-mode images as well
as the single- and averaged diameter curves of each TransducerPosType and
its related extracted parameters.

Parameters

• fn (string) – filename+path of PDF file to export (combina-
tion of personal data)

• examiner (string) – credentials of examiner

• ao_params_names (OrderedDict) – names of parameters to ex-
port

Returns

getAorticBoundariesHandler(y_roi=None)

Interface function from GUI to Aorta class. Its optional input parameter y_roi
makes it possible to skip the detection of aortic boundaries by using the tuple
y-values.

Parameters y_roi ((int , int)) – y-values of boundaries of used
to embed the aortic walls

Returns true if boundaries were found or set successfully

Return type bool

getAorticParametersHandler(date_of_exam, bp_sys_mean,
bp_dia_mean)

Handler function to call after curves were found successfully. Basically it

binds the calculated diameter vs time curves to the correct TransducerPosType
Examination.

Parameters updatePlotsNParams (function) – function to call af-
ter diameter curves list has changed

Returns

getEcgHandler(rpeak_idx=None, btn_det_aorta=None)
Interface function from GUI to Ecg class. Its optional input parameter

66

rpeak_idx makes it possible to skip the detection of R-peaks by using the
indices form the passed list.

Parameters

• rpeak_idx (list) – indices of triggerpoints within the ECG
course

• btn_det_aorta (Button) – next button to enable

Returns the ECG and R-peak highlighted image if both could be
extracted, None instead

Return type ndarray

getEdgesHandler(btn_calculate, waitFcn=None)

Interface function from GUI to Edges class. It first tries to retrieve these edges
and then plots them in the GUI on success.

Parameters

• btn_calculate (Button) – next button to enable

• waitFcn (function) – optional wait function to call during the
Edges object calculates the active contour in a second thread.

Returns true if edges were found

Return type bool

getFigureCanvas(win_size)
Get figure canvas of current image plot area and try to resize it to the GUI’s

window size

Parameters win_size ((int , int)) – tuple size of GUI’s window
size

Returns the figure canvas

Return type FigureCanvasGTK3Cairo

static getPdfYPos(canvas, y_pos, dist, y_0, y_1, font_type=’Helvetica’,
font_size=10)

Helper function to get the current y-position within the used PDF file by

calculating by the passed current position and the demanded distance to this
position. If the content does not fit the current page any more, a new page is
created and the position is updated to the top of this page.

Parameters

• canvas (canvas) – used pdf file

• y_pos (int) – current y-position within the file in pt

• dist (int) – desired distance form y-position in pt

67

• y_0 (int) – top-border for a A4 page in pt

• y_1 (int) – bottom-border for a A4 page in pt

• font_type (string) – font type

• font_size (int) – font size

Returns the new calculated y-position

Return type int

getScalesHandler(btn_det_ecg, (p0_x, p0_y), (p1_x, p1_y),
px_per_sec=None, px_per_cm=None,
n_horiz_sections=None, n_vert_sections=None)

Interface function from GUI to Scale class. Its optional input parameters

make it possible to skip the detection of scales by using the passed M-mode
area position points and the scalings per cm/sec.

Parameters

• btn_det_ecg (Button) – next state button to enable

• p0_x (int) – M-mode startpoint x-position

• p0_y (int) – M-mode startpoint y-position

• p1_x (int) – M-mode endpoint x-position

• p1_y (int) – M-mode endpoint y-position

• px_per_cm – pixel per centimeter

• px_per_sec – pixel per second

• n_horiz_sections (int) – number of horizontal sections per
second

• n_vert_sections (int) – number of vertical sections per sec-
ond

Returns True if Scales could be detected automatically, False if
Scales could not be found automatically and Manual Scale De-
tection got started

Return type bool

loadUsImage(full_img_path=None)

Load an image from a passed image path and shows it in the Image Box. This
function is especially useful for API mode.

Parameters full_img_path (string) – path+filename of image to
load

Returns true, if success

Return type bool

68

updateShownImage(img=None)
Update the current loaded image with a manipulated version of the

image_shown_

Parameters img (ndarray, NxMx3) – image that should be used to
update the GUI

Returns

aorta_ = None
Aorta object

ax_ = None
basic top-layer image axis

config_box_main_ = None
Config Box

dpi_ = 50
DPI used to optimize the shown image

ecg_ = None
Ecg object

examiner_ = ''
(default) examiner credentials

i_transd_pos_

image_file_

image_fullfile_

image_obj_ = None
original source image

image_path_

image_shown_ = None
source image + (i.e.) coloured axes

parent_ = None
GUI window object

patient_ = None
Patient object

rpeaks_ = None
Rpeaks object

scales_ = None
Scale object

showAll_ = None
Show All update function for whole GUI

winUpdate_ = None
Update function for Us-image to trigger after image has been modified

69

win_size_ = None
Size of GUI window (width in px, height in px)

70

