
Ana Maria Stănescu

Semantic Segmentation of Dense 3D
Point Clouds with Geometric Primitives

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieurin

Master’s degree programme

Computer Science

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Dieter Schmalstieg

Institute of Computer Graphics and Vision

Advisor

Dipl.-Ing. Dr.techn. Clemens Arth

Institute of Computer Graphics and Vision

Graz, Austria, April 2018

Computer science inverts the normal. In
normal science you’re given a world and
your job is to find out the rules. In
computer science, you give the computer
the rules, and it creates the world.

Alan Kay

iii

Abstract

This thesis presents an approach for structural modeling from dense unstructured 3D point

clouds. The core contribution is an efficient method for fitting geometric primitives based

on Support Vector Machines. Dense 3D point clouds are acquired together with color

images on a mobile device with an attached depth sensor. Then, after a surface normal-

based segmentation, geometric primitives that describe the geometry of the point cloud

are robustly estimated: planes, spheres and cylinders. The fit is refined using non-linear

optimization. Close similar primitives are merged together, simplifying the representation

of the scene. This is followed by an evaluation based on classification of features encoding

the quality of the fit. The approach iterates over successive frames to optimize the fitting

parameters or replace a detected primitive by a better fitting one. As a result, we obtain

a semantic model of the scene consisting of a set of geometric primitives. We evaluate the

approach on an extensive set of scenarios and discuss the results, measuring the primitive

detection performance in terms of precision and recall. Finally, we present thoughts on

the future improvements to the method.

v

Kurzfassung

Diese Arbeit stellt eine Methode für das strukturelle Modellieren von dichten unstruk-

turieren 3D Punktwolken vor. Der Kern dieses Verfahrens beschäftigt sich mit dem ef-

fizienten Schätzen von geometrischen Primitiven welches mit Hilfe von Support Vector

Machines erfolgt. 3D Punktwolken mit dazugehörigen Bildern werden mit einem Mobil-

gerät aufgenommen, das mit einem Tiefensensor bestückt ist. Nach einem normalvektor-

basierten Segmentierungsverfahren werden Ebenen, Sphären und Zylinder in der Szene ro-

bust geschätzt. Der Fit der Objekte wird mit einer nicht-linearen Optimierung verbessert,

und gleichzeitig werden nahestehende ähnliche Objekte miteinander verschmolzen, was

die Repräsentation der Szene vereinfacht. Daraufhin wird eine Evaluierung verschiedener

Eigenschaften vorgenommen, welche das Qualitätsmaß des Fits für die einzelnen Objekte

wiederspiegeln. Diese Methode verarbeitet eine Reihe von aufeinanderfolgenden Bildern

und optimiert gleichzeitig die Parameter der Schätzung der Objekte. Dies kann dazu

führen, dass bereits detektierte Objekte durch besser approximierte Objekte ersetzt wer-

den. Daraus ergibt sich ein sematisches Model, welches die Szene beschreibt und aus

geometrischen Primitiven besteht. Wir evaluieren die beschriebene Methodik anhand

von zahlreichen Beispielszenen und erörtern die Ergebnisse anhand der Trefferquote und

Genauigkeit. Zuletzt werden Verbesserungsvorschläge für diesen Ansatz erläutert.

vii

Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master’s

thesis dissertation.

Date Signature

Acknowledgments

Firstly, I would like to thank Dipl.-Ing. Dr.techn. Clemens Arth for the advice and the

guidance. Your enthusiasm and ideas amplified my motivation and my curiosity.

Thank you Univ.-Prof. Dipl.-Ing. Dr.techn. Dieter Schmalstieg for your support. It

is an inspiration to work in an environment of passionate people such as your group.

I am very grateful to Rafael Roberto for his dedication and patience when introducing

me to this topic. Your work and our discussions unraveled for me new perspectives in the

field that I have decided that I will further pursue.

I want to express my gratitude towards Christoph Klug for the thorough explana-

tions from which I have learned a lot. Our conversations were always very helpful and

interesting.

Also, I would like to thank Philipp Fleck for the ideas and the help, and my office

colleagues Mina Basirat and Evelyn Gutschier for the encouragement. I am grateful to all

those who were by my side in the awesome experience that brought me to the end of my

studies.

My greatest thanks go to my family, especially to my mother and to my grandfather

Mihai for always believing in me.

Thank you Filip for your tireless support.

xi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 3

2 Related Work 5

2.1 Geometric Approaches . 5

2.2 Machine Learning Approaches . 9

2.3 Mixed Approaches . 11

2.4 Context . 14

3 Overview 17

3.1 Denomination Conventions . 18

3.2 Overview . 18

4 Structural Modeling 19

4.1 Segmentation . 19

4.1.1 Geometric Segmentation into Surfaces 20

4.1.2 Geometric Segmentation into Convex Objects 21

4.2 Primitive Fitting . 22

4.2.1 RANSAC . 22

4.2.2 Plane Model Fitting . 24

4.2.3 Sphere Model Fitting . 25

4.2.4 Cylinder Model Fitting . 26

4.2.5 Fitting Decision . 26

4.2.5.1 Size Restriction on Spheres and Cylinders 27

4.2.5.2 Normal Curvature . 27

4.2.5.3 Inlier Distribution on the Primitive Surface 27

xiii

xiv

4.3 Label Propagation and Search Radius Expansion 29

4.4 Primitive Refinement . 31

4.5 Primitive Merging . 33

4.6 Handling Remaining Points . 36

5 Classification 37

5.1 Training Data . 37

5.2 Features . 38

5.3 Samples Generation . 39

5.4 Training and Testing . 39

6 Experiments 41

6.1 Datasets . 41

6.1.1 Real World Datasets . 41

6.1.2 Synthetic Datasets . 42

6.1.2.1 Generation . 42

6.1.2.2 Limitations . 45

6.1.2.3 Labeled Artificial Datasets 45

6.2 Results . 46

6.2.1 Real Datasets . 46

6.2.2 Synthetic Datasets . 49

6.3 Experimental Setup . 50

7 Discussion 51

7.1 Known Limitations . 51

7.1.1 Sensor Flaws . 51

7.1.2 Normals Orientation Ambiguity . 51

7.1.3 Merging Due to Collinearity between Camera and Primitives 52

7.1.4 Convex Hulls Implicit Restrictions 53

7.1.5 Non-expressible Objects . 54

7.1.6 Contextual Relations . 54

7.1.7 Small Objects Detection and Classification 54

7.2 Possible Improvements . 55

7.2.1 Runtime . 55

7.2.2 Machine Learning Models . 55

7.3 Conclusion . 56

A List of Acronyms 57

Bibliography 59

List of Figures

1.1 Teaser: algorithm output . 1

2.1 Point cloud segmentation results from related work using primitive fitting . 6

2.2 Point cloud segmentation results from related work using mixed approaches 11

3.1 Overview of the algorithm steps . 17

4.1 Segmentation of a point cloud into surfaces 21

4.2 Segmentation of a point cloud into convex objects 22

4.3 The deviation of the surface normals when fitting a cylinder 28

4.4 Label propagation and search radius expansion 30

4.5 The effect of moving the camera backwards on the inliers’ search radius . . 31

4.6 The Huber loss function . 33

4.7 Steps for computing the minimal polygon-to-polygon distance in 3D 33

4.8 Edge cases of computing minimal distance between triangles in 3D 34

4.9 Introducing new vertices for computing the minimal polygon-to-polygon

distance in 3D . 35

4.10 Handling the remaining points after primitive fitting 36

5.1 Labels transfer from an artificial point cloud to a real point cloud 38

5.2 Parallel coordinate plot of generated samples for classification 40

6.1 Ipad with attached Structure sensor . 41

6.2 Point clouds captured with the Structure sensor 42

6.3 Steps required for generating artificial datasets 43

6.4 A frame of an artificial data set . 44

6.5 Labeled artificial point clouds . 45

xv

xvi LIST OF FIGURES

6.6 Average-filtered precision and recall for real datasets 1-8 48

6.7 Results showing detected primitives in selected frames of real datasets 1-8 . 48

6.8 Results showing the improvement of the fit over time in real dataset 1 . . . 49

6.9 Average-filtered precision and recall for artificial datasets 1-8 49

6.10 Results showing detected primitives in selected frames of artificial datasets

1-8 . 50

7.1 Transparent object not being captured by the Structure sensor 52

7.2 Reflective sphere causing sensor noise . 52

7.3 Faulty plane merging . 53

7.4 Exaggeration in the expansion of a fit plane 53

7.5 Unstable algorithm behavior when dealing with challenging object shapes . 54

7.6 Plane fit of multiple objects at once caused by lack of contextual information 55

List of Tables

2.1 Point cloud segmentation methods overview. 15

5.1 Support Vector Machine (SVM) classifiers properties and accuracy. 40

6.1 Experimental results in terms of precision and recall 47

xvii

1
Introduction

Contents

1.1 Motivation . 1

1.2 Outline . 3

1.1 Motivation

(a) Input RGB image from the
camera.

(b) Dense unstructured 3D
point cloud as captured by the
Structure sensor.

(c) Overlay of detected primi-
tives in a video for a live-view
AR application.

Figure 1.1: A captured point cloud with the corresponding color image and the primitives de-
tected by the proposed method superimposed on the color image.

The availability of dense 3D point clouds with registered RGB images allows for entirely

new levels of understanding of the environment and opens new ways to interact with it.

The ultimate goal would be that the objects from which the 3D points are sampled from

are fully recovered with their spatial and semantic properties. It can be regarded as two

separate tasks: segmentation and classification. Firstly, objects or regions of interests

need to be delimited. Secondly, they need to be identified as concrete object categories.

1

2 Chapter 1. Introduction

Modeling real environments with polygonal meshes and other geometric primitives is

often referred to as structural modeling. 3D depth sensors acquire the approximate shape

of the underlying scene in the form of a dense 3D point cloud. These point clouds have

to be further processed to generate meshed surfaces. Despite a high computational effort,

a meshed surface usually has no semantic meaning. However, our everyday environment

largely consists of very few geometric primitives, mostly planes, boxes, cylinders and

spheres. This prior knowledge can support mesh generation in a significant way. If a

point cloud can be transformed into a set of geometrically meaningful entities, Augmented

Reality (AR) interactions, like placing virtual objects or automatic object highlighting in

the environment, become feasible.

Fitting geometric primitives for structural modeling has been investigated in various

contexts. Examples include robot grasping and robot localization [1], collision detec-

tion [2–4], architectural modeling [5–8], 3D reconstruction [9], and scene denoising and

compression [9]. Extensions to AR [10–12] have a stronger emphasis on real-time aspects

and online acquisition of input data. Most methods build on RANSAC [13] or Hough

transform [14] for robust primitive fitting.

Semantic modeling from real-world assemblies is supported in some commercial model-

ing products, but usually requires substantial manual interaction. For example, Curvsurf1

requires manual labeling of 3D point clouds. Based on the fit of a primitive, parts of

the geometric primitive are meshed, and points replaced. Although this approach gives

reasonable results, choosing geometric primitives, scaling them and finally aligning them

in 3D is tedious. Clearly, the ability to automatically determine geometric primitives in

dense 3D point clouds has high potential for scientific and commercial use.

In the proposed method, we aim to segment a dense, unstructured, noisy point cloud

captured by a 3D sensor over time, by fitting 3D primitives to it: planes, spheres and

cylinders. The choice of representing the environment with primitives is based on the idea

that the majority of man-made objects can be modeled with these shapes [3, 15]. We

can also argue that the primitives carry semantic meaning, in the sense that, for example,

in a tabletop scenario, planes can be a book or the table surface, while cylinders can be

bottles, pens or cups. In an industrial scenario, identifying cylinders could be equivalent

to finding pipes and levers.

In comparison to approaches that segment or classify concrete object instances, in

the case of fitting geometric primitives, the model carries less specific semantics. This is

why the primitives can approximately describe anything, independent of size or pose, and

specific, restricting assumptions about the scene are not needed. The result is a lightweight

generalized representation of the scene, as shown in Figure 1.1. Here an image of a scene is

exhibited together with the corresponding point cloud captured by a depth sensor. Figure

1.1c shows the results of the proposed method.

1http://www.curvsurf.com/

http://www.curvsurf.com/

1.2. Outline 3

1.2 Outline

First, approaches related to structural modeling and semantic segmentation of a 3D scene

are presented in Chapter 2. We identify three main directions in this research area:

geometric methods, Machine Learning (ML) methods, and a mixture of the two. This is

accompanied by a short discussion regarding advantages and disadvantages of the methods.

We also argue the relevance of our approach in its field, compared to similar approaches.

Chapter 3 outlines the proposed algorithm and offers an overview of the pipeline.

Furthermore, the role of the individual steps is specified with an emphasis on their inter-

dependence.

The stages of the proposed structural modeling method are explained in Chapter 4.

We provide details about the choice of algorithms and discuss their parametrization.

A classification approach of primitives based on their parameters as well as the def-

inition of the used features are presented in Chapter 5. We offer an insight on labeling

training data and on the properties of the data. Furthermore, experimental conclusions

regarding the used classifiers are presented.

The obtained results are discussed in Chapter 6. The acquisition setup and properties

of used datasets and equipment are described, visually exemplifying captured point clouds.

In order to test our approach on noiseless data, we manually create artificial datasets

which are presented in this chapter. We show an evaluation of the proposed algorithm

on both real and artificial datasets in terms of precision and recall regarding the correct

identification of primitives. A short description of the used software and hardware tools

is also provided.

In Chapter 7, the limitations of our approach are exemplified and discussed. Solutions,

prospective improvements and future work are brought to attention. Finally, we draw

conclusions regarding our work.

2
Related Work

Contents

2.1 Geometric Approaches . 5

2.2 Machine Learning Approaches 9

2.3 Mixed Approaches . 11

2.4 Context . 14

The borders between segmentation and classification are ambiguous, as it is a chicken-

and-egg problem: one has to classify objects in a scene, but, in order to partition the

scene into regions with similar features, one has to know the partitioning criterion. Thus,

segmentation and classification are tightly connected. We present methods relevant for

the context of the presented work. We focus particularly on geometric segmentation by

using geometric primitives, as it is the direction that our method follows.

2.1 Geometric Approaches

A method dealing with efficient segmentation of unorganized point clouds with RANdom

SAmpling Consensus (RANSAC) [13] is introduced by Schnabel et al. [9]. It is based on

iteratively fitting five geometric primitives, plane, sphere, cylinder, cone and torus, to a

point cloud in an efficient way, without global relations between the primitives. They

propose an effective sampling strategy for RANSAC that maximizes the likelihood of con-

vergence in a small amount of steps. Each of the five primitive categories is fit to the

point cloud and the quality of the fit is described by a score, according to multiple criteria

like number of inliers, curvature, connectivity. The points belonging to a fit shape are

removed, and the algorithm continues performing fitting. It is also suited for noisy data,

as their results show.

Rusu et al. [2] propose an approach to reconstruct and segment a scene by fitting

geometric primitives to a point cloud: planes, spheres, cylinders and cones. In order to

5

6 Chapter 2. Related Work

capture object details, small regions that do not fit into the parametric models are modeled

with meshes, obtaining a hybrid model. The assumption of the existence of a horizontal

planar table is considered. First, the scene is split into table inliers, by fitting planes

and clusters supported by the table. An octree connectivity segmentation is performed to

segment and fit primitives to clusters. After checking intersections, the model with the

most inliers is chosen. Each model is refined with non-linear optimization. Afterwards

object handles are identified by triangulating surface areas defined by points neighboring

the primitives. The outliers that are left after the model fitting step are also triangulated

and added to the shape.

(a) (b) (c)

Figure 2.1: Examples of point cloud segmentation with primitive fitting from related literature:
[2] - left, [9] - middle, [16] - right.

Holz et al. [3] introduce a method to segment planes from RGB-D images in real-time,

for a mobile robot, in the context of collision avoidance and object grasping. This approach

focuses on performance, and has two main stages: calculating surface normals from depth

images and clustering the normals into plane segments. The clustering algorithm is based

on comparison of normal orientation in-between space voxels. When extracting semantics

needed for the functionality of the robot, this method assumes that the vertical direction

of the scene is known, so that the floor can be identified. RANSAC is used to refine plane

fitting robustly. Object candidates are detected by projecting points on the convex hull

of plane candidate inliers, by assuming that their size is between 1 and 10 centimeters, so

that the robot can grasp them. The approach runs in real time and manages to detect

obstacles with 100% accuracy, as long as they are neither too small nor far away from the

sensor.

A method using RANSAC for primitive fitting that focuses on global relations between

the fit primitives is proposed by Li et al. [16]. First there is an initial RANSAC primitive

fitting, where each found primitive together with its inliers is removed from the point cloud

before the next primitive is fit. Then a graph is built that contains relations between the

primitives such as perpendicularity and parallelism. The relations are optimized and more

complex behaviors are modeled such as angles between primitives; also equality checks

2.1. Geometric Approaches 7

are performed. Finally RANSAC and primitive fitting are run again on the remaining

points, and a re-alignment step is performed. The drawback of the method is that it is

computationally expensive.

Another method that focuses on the 3D segmentation of a tabletop scenario is in-

troduced by Ückermann et al. [4]. The algorithm uses depth maps and has two stages:

splitting the scene into regions delimited by strong variations in orientations of surface

normals and further dividing of the clusters into object hypotheses. Using depth maps,

angles between neighboring surface normals are calculated for each image pixel, in eight

directions. The smallest angle between normals is taken into account to decide if there is

an object edge region. The point cloud regions in between the edges are then clustered

together by means of a region growing algorithm. There is the assumption that an indoor

scene contains large planar surfaces: tabletops, walls, floor. Therefore, RANSAC is used

to fit planes to clusters with large enough number of points. Unprocessed points are as-

sociated with their closest plane segment, and very small clusters are discarded. Then,

clusters are merged together if they are close to each other. The algorithm displays sta-

bility, decreasing in performance and increasing in run-time when dealing with cluttered

regions.

An approach related to the one by Ückermann et al. [4] was introduced by Tateno

et al. [17], focusing on a semantic segmentation of an indoor scene in real time with Si-

multaneous Localization and Mapping (SLAM). The method covers two aspects, SLAM

reconstruction and the scene segmentation into a Global Segmentation Map (GSM). The

latter is based on the idea that objects in the real world are convex and delimited by

concave regions. Mathematical quantities are introduced to measure such regions for sep-

arating convex objects, similarly to criteria in [4] for finding 3D object edges. Afterwards

points composing object surfaces are clustered together by means of a connected com-

ponent algorithm. The object labels are propagated from frame to frame by projecting

segmented objects onto the image plane and comparing their labels with the labels of the

current segmentation. Objects that most likely belong to the same label are merged based

on a confidence scheme. This approach is effective, as only visible objects are segmented

and used for updates each frame, so the complexity remains constant. It does not use

primitive fitting; the results are obtained only by splitting the scene into convex objects.

Hettiarachchi et al. [12] use 3D primitive fitting in an AR context. Virtual objects are

matched to real objects approximated by 3D primitives to enhance a user’s experience

when handling them, by providing haptic feedback. After the horizontal support plane is

identified in the scene, point clusters are segmented with a clustering algorithm. Primitives

are fit to the point clusters using the approach proposed by Schnabel et al. [9]. The

detected primitives are compared to user-defined objects composed of primitives, taking

into account similarities between the parameters of the primitives. The similarities per

object are quantified into a score. Then a global maximum for the whole scene is found in

terms of this score. The identified primitives with overlaid virtual objects are tracked in

real-time, in an AR application. Results about the detection rate of the primitives are not

8 Chapter 2. Related Work

mentioned, as the paper focuses on user experience, presenting the successful outcome of

a user study in terms of usability.

Our method is the most similar to the ones proposed by Roberto et al. [18], where a

primitive fitting of planes, spheres and cylinders is proposed. After fitting primitives in

a sparse noisy point cloud with the Efficient RANSAC of Schnabel et al. [9] in a certain

keyframe, the best fit for a shape is chosen by looking at the mean distance from the

point cloud to the projected points on the primitive. Similar primitives are merged.

Afterwards, a check is performed to decide if a shape is good enough, based on criteria

such as number of inliers, dispersion of points on the surface, average distance to the

primitive and accepted radius, in the case of spheres and cylinders. The method keeps

track of detection history, such that primitives that are detected more often and more

precisely are kept, while unstable primitives are discarded. It achieves a better F1-score

than Schnabel et al. [9] in all tested scenarios.

Roberto et al. [19] propose another version of their algorithm, with improvements such

as a computation of a detection history-based score for deciding the best fitting primitive.

This score is also used for shape recovery. This involves validating a shape that was

rejected in previous frames. For the tested scenarios, 100% precision is achieved, showing

an improvement in comparison to the previous version of the algorithm.

Oesau et al. [6] introduce a method for segmenting a large-scale indoor point cloud

representing building floors into categories such as floor, ceiling and walls, using RANSAC

and the Hough transform [14]. The point cloud is projected along the vertical world

direction, considering that regions with dense projection indicate floor splitting. The

dense regions in the 1D projection are identified as ceilings and floors with mean shift in

the histogram of 1D point positions. The regions between floor and ceiling are then split

into wall slices, where walls are detected, in three stages: the walls in a wall bounding

box are projected into the horizontal plane, omitting the points where the normals are not

parallel to the horizontal plane, as it is assumed that walls are all vertical. After being

downsampled, the 2D projected wall points are used for 2D line fitting with RANSAC.

Then they are clustered according to the fit lines and additionally with the bilateral filter

on normal directions, and then all 2D lines are detected with the Hough transform. The

rooms are obtained by stacking the 2D slices after merging similar segments. Finally,

the 3D model of the floors split in rooms is created by labeling the cells between plane

intersections as empty or full space as a global energy minimization problem which is

solved with a graph cut algorithm. The method can deal with some noise as well, and is

able to approximate non-planar surfaces. However, it is limited to vertical walls.

Xiao et al. [7] fit geometric primitives in the form of cuboids to retrieve the plans

of museums. They use data with little noise, acquired by repeated closeup laser scans

in museum rooms. They estimate the surrounding surfaces by using Inverse Constructive

Solid Geometry models. This is a combination of cuboids aligned with the horizontal plane,

having any rotation around the vertical world axis. First, horizontal slices are extracted,

containing line segments found with the Hough transform. The segments are put together

2.2. Machine Learning Approaches 9

into candidate rectangles. These are then combined together in a greedy fashion into 2D

models. Similarly, a set of 3D candidate cuboids is built, by trying different combinations

of stacking 2D rectangles; they are chosen to be part of the final model by making use of

a score that measures whether they are part of a surface. Extra post-processing steps of

the cuboids are performed to retrieve a realistic floor plan and to apply a texture on the

obtained model. This method is specialized on rooms and floor plans. This is the reason

for the choice of cuboids to describe the point cloud.

An approach for scene segmentation that handles only ellipsoidal objects in proposed

by Georgiev et al. [20]. This implements a horizontal plane-sweep-like method, where 2D

ellipses are fit to each horizontal plane slice cutting the scene. They suggest an algorithm

that analytically fits multiple 3D spheres and can deal with noise. Afterwards, the 3D

objects are reconstructed by checking geometrical properties of the objects resulting from

putting the slices together, obtaining spheres, cylinders and cones. The approach runs in

real-time and uses a Kalman filter for object tracking and noise reduction, as the Microsoft

Kinect introduces systematic noise. However, it is limited to 3D geometric primitives that

are based on 2D ellipses.

This kind of methods allow for a generalized abstraction of the scene, less dependent

on the type of objects. Nevertheless, some assumptions are made, such as the scene setup,

or the vertical orientation of the scene. The choice of primitives is adapted to the context:

When trying to retrieve building plans, boxes or orthogonal planes are chosen, while for

small, cluttered objects, appropriate categories are planes, spheres, cylinders, cones, torii

and others. For industrial scenarios, cylinders are a more appropriate choice. For collision

avoidance of a robot, planes are used to estimate the environment.

Depending on the use case, the idea of using primitives can be both an advantage and

a drawback. On the one hand, the shapes do not model the scene exactly, depending on

the primitive categories chosen and on the type of scene captured. On the other hand,

one obtains a very general, compact, straight-forward representation of the scene.

2.2 Machine Learning Approaches

The method introduced by Nan et al. [21] is based on segmenting a scene, classifying

scene clusters and inferring semantics by fitting pre-learned 3D deformable object tem-

plates. First, the scene is segmented into patches with similar normal orientation. Then,

patch triplets composed of nearby patches are expanded by adding neighbor patches. This

expanded point set is classified with Random Decision Forests into concrete object cate-

gories, then removed from the original point cloud. The features used for the classification

are computed by fitting the clusters into a bounding box and segmenting it into three

slices along the vertical axis according to the density of the points distribution along this

axis. The features are based on the aspect ratio of the three sub-boxes. The classifier

is trained with point clouds of common man-made objects. The classification is followed

by a template fitting step. After common object templates are overlaid on point clusters,

10 Chapter 2. Related Work

parts of the template are scaled to fit better in terms of minimizing the Euclidean distance.

To preserve the general object shape and properties, a structure-preserving deformation

optimization is also run after each deformation step. More templates of the same class

are fit. The best one is chosen, and outliers are removed. The method is applied on dense

point clouds with little noise and manages to correctly segment and identify the objects

most of the time. The approach faces a challenge when the objects are not approximately

in vertical position. Another drawback is that the algorithm is not successful when large

parts of the objects are missing.

Hackel et al. [22] propose a method for segmenting point clouds of outdoor scenes using

kD-trees. The approach focuses on efficiency and achieves it by using multiscale features

and efficient data structures for storing and manipulating the point cloud. The features

used are purely geometrical, based on properties of the local point neighborhoods at dif-

ferent scales. They are derived from the local 3D structure tensor of a point and its nine

nearest neighbors, as well as from a cylindrical neighborhood properties. Other 3D de-

scriptors are tried, such as Signature of Histogram of Orientations [23] and Shape Context

3D [24], but they are proven to be inefficient, while only slightly improving the classifica-

tion performance. After concluding that points located closer to edge regions carry more

information, they are used for the scene segmentation. The segmentation method uses

Random Forests as classifiers with five to seven classes depicting concrete object classes:

trees, pedestrians, facades and other similar categories. They reach a precision of over 90

percent for classifying Facades, Ground and Car, while the classification of Motorcycle,

Pedestrians or Traffic Sign achieves a poorer performance.

As neural networks have become increasingly popular, they have also been used for

3D segmentation. Some recent work include SEGCloud by Tchapmi et al. [25], a 3D

point cloud segmentation approach using a joint pipeline composed of a 3D Fully Con-

volutional Neural Network together with Conditional Random Field (CRF) to predict

point-wise class labels. This method is comparable to Machine Learning-based state-of-

the-art approaches and partly outperforms them, when measuring classification success on

benchmark databases such as Semantic3d.net [26], Stanford Large-Scale 3D Indoor Spaces

Dataset [27], NYU v2 [28], or KITTI [29].

Also McCormac et al. [30] use Convolutional Neural Network (CNN) for 3D semantic

segmentation, in the context of real-time robotic navigation with a SLAM system. The

classification is performed by a CNN on RGBD images, getting a per-pixel probability

distribution over the possible classes as an output that is updated between frames in-

corporating prior predictions in a Bayesian sense. CRFs are used for regularization by

making use of the geometric neighborhood between surfels. The results on the NYU v2

[28] dataset show improvements over RGB-only methods using CNN.

Armagan et al. [31] use semantic segmentation of building facades from images for

pose estimation and 3D localization. After semantically segmenting images of an outdoor

scenes into facades, edges and background by feeding the color images of the scene to

a Fully Convolutional Network, they preform geo-localization. For this, the pose is es-

2.3. Mixed Approaches 11

timated at each frame by sampling more candidate poses and checking which yields the

highest likelihood in terms of predicted labels at certain positions, from the 2D map of

the surroundings.

These approaches use trained models to segment and gain semantic information about

a 3D scene. The modeled object is based on prior information about an its inherent

properties. This means that the ability of the models to capture an object’s distinctive

traits and the variety of models is of crucial importance. While this results in more exact,

semantically rich model of a scene, it also implies that the category of expected objects in

known.

2.3 Mixed Approaches

(a) (b) (c)

Figure 2.2: Examples of point cloud segmentation results from related literature using mixed
approaches: [32] - left, [33] - middle, [34] - right.

Rusu et al. [32] propose a CRF-based classification approach for point clouds, using

efficient point features based on the geometrical properties of the point neighborhood,

namely Fast Point Feature Histogram (FPFH). An indoor tabletop context is assumed.

After removing the support plane, a clustering is performed to separate objetcts on the

table. Afterwards, FPFH features are calculated for each point. A CRF represents neigh-

borhood relations between points, connected to their computed FPFH features. This model

is used together with Support Vector Machine (SVM)s to classify points as belonging to

the following primitive-like surfaces: cylinder, edge, corner, torus, plane. The training

is run on manually labeled point clouds. Experimental results show better classification

accuracy of the CRF over SVM, reaching over 90 percent. This approach runs on low noise

laser-scanned point clouds.

Xiong et al. [35] use CRF to model contextual relationships in a laser-scanned point

cloud, with the goal of extracting an architectural model of one or more rooms. Regions

such as wall, floor, ceiling, and clutter are identified. Similarly to Holz et al. [3], the

point cloud is initially approximated by grouping the points into voxels and calculating

a normal per voxel, by means of plane fitting in a neighborhood. Then a region growing

12 Chapter 2. Related Work

algorithm is used to cluster planes with similar orientations, and boundaries are delimited

by convex hulls of the resulting planes. Next, a CRF model is built, representing the

plane patches as nodes. The nodes use features such as orientation, area and height

and pairwise relations such as orthogonality, parallelism, adjacency and coplanarity. The

model is trained on dense registered point clouds, which are partially manually annotated.

In comparison to other room modeling methods, this approach identifies clutter and does

not use the assumption that the rooms are mostly empty. However, the vertical orientation

is considered to be known.

Xiong et al. [36] propose an improvement to their method, by identifying doorways

and window openings after the classification into wall, floor ceiling and clutter. Instead of

CRF, a stacked learning algorithm is used. After clutter removal, raytracing is performed

to distinguish between occluded voxels and openings in the walls. The openings are then

classified with SVM. A 3D inpainting approach is run to improve the coherence of the

labels. The algorithm manages to detect more than 90% of the openings and surpasses

the initial classification performance of the previous approach, but still has difficulties with

distinguishing clutter from walls. A surface-based model is obtained, which can be further

processed into a Building Information Modelling (BIM). This approach uses manually

labeled points for training and dense point clouds from professional laser scans with low

noise.

Koppula et al. [37] introduce a graphical model based classifier for semantic scene in-

terpretation. First, they over-segment the point cloud based on normal orientation and

surface continuity, then classify each obtained segment into concrete object classes. The

features used for learning regard individual segments and relations between segments and

include not only geometrical and positional properties, but also color-based features. The

method is tested on large dense indoor point clouds captured with a Kinect sensor, and

shows the relevance of the contextual relationships’ impact on the classification perfor-

mance. The paper also presents experiments with a robot that has to place and find

various objects in a scene.

The graphical model approaches make use of the scene context and manage to learn

properties of scenes inspired by human perception such as associations between objects

that typically occur together, and common positions of objects in a scene. Of course, the

trade-off is lack of generality and the fact that they are suitable for specific scenarios.

Huang et al. [34] present a method for point cloud segmentation and classification in

an industrial scenario. Here the predominant shapes are planes and pipes. Binary class

SVMs are trained to distinguish five classes: plane, pipe, edge, thin pipe; the rest of the

points are classified as other. The features used for this procedure are FPFH. After the

classification, points are clustered together in point cloud components and removed. The

rest is filtered by relevance, and compared to components that already have semantic

information associated for further classification, by using other point features, namely

3D self-similarity descriptors [38]. A RANSAC variant is used in this step to calculate a

rigid transformation between point clouds. The algorithm is successful at detecting the

2.3. Mixed Approaches 13

discussed categories in cluttered scenes; however, the data used has little noise, and large

curved surfaces are mistakenly identified as planes.

Methods have been proposed that try to model a scene by using only planes. Nguyen

et al. [33] introduce such a method, that aims to represent a scene by an ensemble of

planes with global relations, in the context of a SLAM system. A set of initial planes is

found in a region-growing manner, starting with a set of seed locations and fitting planes

by minimizing a linear least squares problem in inverse depth representation. Isolated

pixels are reassigned to components based on a neighborhood vote. A connected com-

ponent algorithm is run to re-group the points into individual components. Geometric

relations between plane segments are found: parallelism, coplanarity, incidence, orthogo-

nal incidence. Plane segments that overlap are merged into a same-plane cluster, called

plane features. The remaining planes also define plane features on their own. Geometric

relations between plane features are inferred, then checked. Afterwards, camera poses are

optimized together with plane features using the Ceres solver [39]. The scene is stored as

a half-edge data structure that describes plane borders. Further refinement steps on the

data structure are performed. A final polygon fitting step using Expectation Maximiza-

tion is performed to further simplify the estimated models. The resulting reconstruction

is evaluated by comparison to a ground truth model, showing an accuracy of up to two

centimeters. This method runs in real time, but can only approximate planar structures.

Among the Computer Aided Design (CAD) related approaches, Ochmann et al. [8] try

to reconstruct an ensemble of rooms from laser-scanned point clouds by using RANSAC

based plane fitting, global optimization and extra refinement steps, while keeping track

of the rooms in a graph data structure. First, the point cloud is coarsely segmented into

rooms, based on the fact that, in general, there is one scan per room. Walls are being

assigned a thickness in the form of a parallel plane to the wall plane. Then a plane fitting

stage using the RANSAC-based approach introduced by Schnabel et al. [9] is performed.

After the wall candidates are obtained, global optimization is used to attribute the best

wall labels, and to model the plane adjacencies. The optimized cost function is based

on wall properties such as point distribution within a wall surface, or assignment of the

points to more than one plane. Points that are not part of the walls are clustered together

and classified with SVMs into doors, windows, virtual walls and invalid components, where

virtual walls are non-existent walls, created by overlaps. The datasets are captured with

professional laser scanner equipment and have negligible noise and high density.

In contrast to the aforementioned method by Oesau et al. [6], Armeni et al. [27] parse

large-scale point clouds representing rooms of a building by trying to detect the spaces

between walls and floors, by using a projection of the points on a horizontal axis. By ana-

lyzing the discrete distribution of the projected points with signal processing techniques, a

partitioning in rooms is obtained. Furthermore, objects in the rooms are classified inside

of a 3D sliding window using a pipeline of binary SVMs for a set of candidate class labels

withing a voxel. CRF is used for maximizing the likelihood of the labels being found next

to each other, together with the confidence score from the SVM. The results are compared

14 Chapter 2. Related Work

to two geometric approaches, [7, 9], exceeding their mean detection precision on labeled

benchmark point cloud datasets.

For more details, Chen et al. [40] offer an overview of 3D indoor scene modeling meth-

ods, up to 2015, including comparisons and discussions. Another general overview of

existing 3D segmentation methods up to 2017 is presented in the work of Grilli et al. [15].

2.4 Context

As discussed, ML techniques such as SVM [8, 32, 34] and probabilistic graphical mod-

els [32, 35, 37] have been used for structural modeling of geometric primitives. Our

proposed approach uses a segmentation-fitting-refinement pipeline [2, 18, 33], applied over

multiple frames to detect primitives. SVM classification is used to discard outdated shapes.

In contrast to previous work [2, 32], our method is designed to improve the structural mod-

eling in time over multiple frames. Unlike some related work [18], we focus on dense point

clouds. Also, in a particular frame, we employ ML to decide where refitting of a primitive

is necessary. Therefore, our approach introduces a novel criterion for reasoning about the

quality of the fit, which is analyzed in this thesis.

Table 2.1 shows an overview of the discussed related work, with relevant information

such as the models used for scene modeling, the scene context, the type of data used,

and a rough estimation of the noise level. The last table entry represents our proposed

approach for comparison.

2.4. Context 15

Y
ea

r
R

ef
er

en
ce

Primitives

Plane
1

Sphere

Cylinder

Cone

Torus

Globalrel.

RANSAC

ML2

C
o
n
te

x
t

D
a
ta

se
t

Noisy3

Multiframe
4

2
0
0
7

S
ch

n
a
b

el
et

a
l.

[9
]

X
X

X
X

X
X

X
g
en

er
a
l

p
o
in

t
cl

o
u

d
X

2
0
0
9

R
u

su
et

a
l.

[2
]

X
X

X
X

X
X

X
ta

b
le

to
p

p
o
in

t
cl

o
u

d
X

2
0
0
9

R
u
su

et
a
l.

[3
2
]

X
X

X
X

X
X

ta
b

le
to

p
p

o
in

t
cl

o
u

d
2
0
1
0

X
io

n
g

et
a
l.

[3
5
]

X
X

X
X

b
u

il
d

in
g

fl
o
o
rs

p
o
in

t
cl

o
u

d
2
0
1
1

H
o
lz

et
a
l.

[3
]

X
X

X
in

d
o
o
r

R
G

B
D

X
X

2
0
1
1

L
i

et
a
l.

[1
6
]

X
X

X
X

X
X

X
3
d

o
b

je
ct

p
o
in

t
cl

o
u

d
X

2
0
1
1

K
o
p

p
u
la

et
a
l.

[3
7
]

X
X

in
d

o
o
r

p
o
in

t
cl

o
u

d
,

R
G

B
D

X
2
0
1
2

N
a
n

et
a
l.

[2
1
]

X
in

d
o
o
r

p
o
in

t
cl

o
u

d
2
0
1
3

X
io

n
g

et
a
l.

[3
6
]

X
X

X
X

b
u

il
d

in
g

fl
o
o
rs

p
o
in

t
cl

o
u

d

2
0
1
3

Ü
ck

er
m

a
n

n
et

a
l.

[4
]

X
X

X
ta

b
le

to
p

d
ep

th
m

a
p

s
X

X
2
0
1
3

H
u
a
n

g
et

a
l.

[3
4
]

X
X

X
X

X
in

d
u

st
ri

a
l

p
o
in

t
cl

o
u

d
2
0
1
4

O
es

a
u

et
a
l.

[6
]

X
b

u
il

d
in

g
fl

o
o
rs

p
o
in

t
cl

o
u

d
X

2
0
1
4

X
ia

o
et

a
l.

[7
]

X
X

X
b

u
il

d
in

g
fl

o
o
r

p
o
in

t
cl

o
u

d
2
0
1
5

N
g
u

y
en

et
a
l.

[3
3
]

X
X

X
in

d
o
o
r

R
G

B
D

X
X

2
0
1
5

T
a
te

n
o

et
a
l.

[1
7
]

in
d

o
o
r

d
ep

th
m

a
p

s
X

X
2
0
1
6

G
eo

rg
ie

v
et

a
l.

[2
0
]

X
X

X
X

o
b

je
ct

s
o
n

fl
o
o
r

p
o
in

t
cl

o
u

d
X

X
2
0
1
6

O
ch

m
a
n

n
et

a
l.

[8
]

X
X

X
X

X
b

u
il

d
in

g
fl

o
o
r

p
o
in

t
cl

o
u

d
2
0
1
6

H
a
ck

el
et

a
l.

[2
2
]

X
o
u

td
o
o
r

p
o
in

t
cl

o
u

d
X

2
0
1
6

A
rm

en
i

et
a
l.

[2
7
]

X
X

b
u

il
d

in
g

fl
o
o
rs

p
o
in

t
cl

o
u

d
X

2
0
1
6

H
et

ti
a
ra

ch
ch

i
et

a
l.

[1
2
]

X
X

X
X

X
X

ta
b

le
to

p
p

o
in

t
cl

o
u

d
X

X
2
0
1
7

R
o
b

er
to

et
a
l.

[1
8
]

X
X

X
X

X
g
en

er
a
l

p
o
in

t
cl

o
u

d
X

X
2
0
1
7

T
ch

a
p

m
i

et
a
l.

[2
5
]

X
g
en

er
a
l

p
o
in

t
cl

o
u

d
X

2
0
1
8

R
o
b

er
to

et
a
l.

[1
9
]

X
X

X
X

X
g
en

er
a
l

p
o
in

t
cl

o
u

d
X

X
2
0
1
7

P
ro

p
o
se

d
a
p

p
ro

a
ch

X
X

X
X

X
X

g
en

er
a
l

p
o
in

t
cl

o
u

d
X

X

1
P

la
n

e
m

o
d

el
p
re

se
n

ce
a
ls

o
re

fe
rs

to
cu

b
o
id

s.
2

M
a
ch

in
e

L
ea

rn
in

g
is

u
se

d
(c

la
ss

ifi
ca

ti
o
n

).
3

A
ti

ck
m

ea
n

s
re

la
ti

v
el

y
m

ed
iu

m
to

h
ig

h
n

o
is

e,
w

h
et

h
er

n
o

ti
ck

si
g
n

ifi
es

re
la

ti
v
el

y
lo

w
n
o
is

e,
fo

r
ex

a
m

p
le

,
a
s

p
ro

v
id

ed
b
y

a
d

en
se

la
se

r
sc

a
n

.
4

M
u

lt
if

ra
m

e
ca

p
a
b

il
it

ie
s

ca
n

in
d

ic
a
te

,
b

u
t

n
o
t

n
ec

es
sa

ri
ly

im
p

ly
,

re
a
l-

ti
m

e
p

er
fo

rm
a
n

ce
.

T
a
b

le
2
.1

:
P

o
in

t
cl

o
u

d
se

g
m

en
ta

ti
o
n

m
et

h
o
d

s
ov

er
v
ie

w
.

3
Overview

Figure 3.1: Overview of algorithm pipeline: the initialization phase takes place when processing
the first frame. Afterwards the algorithm runs in the frame loop mode, which includes the residual
points handling phase.

The goal of our method is to achieve a segmentation of a 3D scene into geometric

primitives from a stream of frames. The models need to be improved over time and adapt

to newly discovered geometry, as the acquisition device moves through the scene. This

scenario is relevant when using an AR system relying on SLAM, where new parts of the

scene are discovered opportunistically, and the user expects a quick system response.

While we do not rely on a consistent relationship between individual 3D points, we

assume the point clouds are dense and already registered in a global coordinate system.

The scenarios are static, due to the nature of the sensors, and using SLAM implies that

a significant amount of noise is present. We assume indoor scenes consisting of objects

that can be approximated with the geometric primitives supported in our system, but

17

18 Chapter 3. Overview

otherwise make no further assumptions about the structure of the scene.

3.1 Denomination Conventions

In the following, we refer to the 3D point cloud, the related RGB image and the camera

pose as a frame. We use the terms cluster or segment for a set of 3D points, and we

assume a 3D representation for all object unless otherwise noted. A 3D primitive may

be referred to as primitive, shape or model. The discussed thresholds are chosen for real

datasets.

3.2 Overview

The proposed algorithm is shown in Figure 3.1. In the initialization phase, we segment the

3D points from the first frame based on the orientation of their normals. As a result, we

obtain segments C = {c1, ..., cn} which are coherent w.r.t. their normal orientation. We

then apply a fitting phase, considering all types of 3D primitives for each segment, choosing

only a single primitive which fits best. For this stage, we incorporate the number of

inliers and the surface normals orientation, obtaining a set of primitives, P = {p1, ..., pn}.
As this is the most computationally expensive part of our algorithm, a full point cloud

segmentation and fitting is not repeated for the rest of the modeling process.

For all subsequent frames, the procedure is outlined in the frame loop in Figure 3.1.

First, the segments are refined by defining a region of interest obtained by projecting

convex hulls of the inliers of previously detected primitives onto the image plane. We

use a modified camera pose to expand the search radius by moving the camera slightly

backwards along its z-axis. This way, more 3D points are projected into the image plane.

After obtaining the new segments, the inliers are reassigned, resulting in an updated set

of primitives, P . More details are later described in Section 4.3.

The refinement of each primitive pk is performed by means of non-linear optimization

(see Section 4.4). Afterwards, based on features describing the quality of the fit, a set

of SVMs is used to decide whether pk represents an invalid or a valid fit. In the former

case, the primitive is discarded, and its inliers are released to the set of unassigned 3D

points. At the same time, primitives are merged together based on proximity and on the

similarity of the parameters, further described in Section 4.5.

At this stage of the algorithm, there exists a subset of 3D points that does not belong

to any primitive. These 3D points are again segmented, and primitives are fit to obtain

a smaller set of new primitives Pnew. They are merged with the set of already detected

primitives, P = P ∪ Pnew; we refer to this step as residual points handling in Figure 3.1.

More details can be found in Section 4.6.

4
Structural Modeling

This chapter presents in detail the methods used to perform structural modeling of a scene

in the context of a stream of incoming frames. While the Sections 4.1, 4.2, 4.4, 4.5 and

4.6 refer to procedures applied on a single frame, Section 4.3 describes how the detected

primitives are propagated from one frame to another.

4.1 Segmentation

Given a point cloud, we aim to segment it first into regions defining objects or object

surfaces, so the primitives are fit in the obtained regions. Our approach performs a

surface normal-based segmentation, making use of the fact that spatial edges delimit

objects and surfaces. The idea of first segmenting the scene based on normals information

as a prerequisite of fitting some model is used in related work [2, 21], while the general

idea of a normal-based segmentation of 3D data is also similar to related approaches

[3, 4, 17, 35–37].

The surface normals are calculated as follows: For each point, a plane is fit locally to its

six closest neighbors. The normal on the plane is set as the normal in the respective point.

The number of neighbors is set experimentally, according to the density and level of noise

of the used point clouds. An alternative choice of neighbors would pick all the points in a

certain radius around the given point. Either way, the neighborhood has to be neither too

large nor too small. If the neighborhood is too large, it is equivalent to the assumption

that the region is a smooth surface, whereas choosing a too small neighborhood would

make the normal orientation too sensitive to noise [3].

We employ two similar segmentation methods presented in related literature. While the

segmentation introduced by Tateno et al. [17] focuses on convex objects, the segmentation

approached described by Ückermann et al. [4] partitions the scene into object surfaces

delimited by any large variation in the normals’ orientation.

19

20 Chapter 4. Structural Modeling

4.1.1 Geometric Segmentation into Surfaces

This method is based on the approach proposed by Ückermann et al. [4], namely splitting

the scene into surfaces and edges. It implies using a point cloud operator to threshold the

cosine between neighboring normals.

λi = np · ni (4.1)

λp = min λi (4.2)

where n indicates a normal of a point, p is the index of the point where the operator is

calculated, and i is the index of neighboring points within a radius r.

In contrast to the approach that inspired the segmentation method [4], we do not

consider an 8-direction neighborhood for detecting the concavity, as we work directly with

point clouds and not depth maps.

We choose the smallest angle between a normal in a point and the normals in the

points within a radius r as edge criterion. If this angle is smaller than a threshold, we

consider to have found an edge region. The threshold is set to to 0.8, which corresponds

to around 36.9 degrees. We choose a low threshold, so that noise does not introduce edges

erroneously [4]. The edges are removed, and the rest of the points are clustered. Clusters

with fewer points than 0.04% of the whole point cloud are not considered further. The

result of such a thresholding based on normal concavity is shown in Figure 4.1a.

After obtaining the edge and surface regions, we aim to retrieve the subsets of the

point cloud that correspond to different object surfaces. The points marked as edges are

removed from the cloud, and the Density Based Spatial Clustering of Applications with

Noise (DBSCAN) [41] algorithm is used for clustering the remaining data. The algorithm

works in a region-growing way: it starts with a seed point as belonging to a cluster and

then it expands to neighboring points. A point located inside the cluster is called a core

point, whereas a point situated on the edge of the cluster is called a border point. A

core point has at least MinPts neighbors in the ε radius around it in order to be a core

point, and a border point can be in the neighborhood of such a core point. The algorithm

starts with a random point, and expands the cluster based on the number of neighbors

within a radius ε. When no points can be added anymore, another unused random point

is chosen and the procedure is started again. The expansion can be performed only from

core points. If the chosen point is not a core point, another point is picked instead.

There are two parameters to be set in the algorithm: the neighbor radius ε, and

MinPts, the number of neighbors needed for a point to be considered a core point. We

choose these parameters empirically, suited for the point clouds from our experiments. An

example of obtained clusters is seen in Figure 4.1b.

4.1. Segmentation 21

(a) Output of point cloud edge detection
from criterion 4.1. Points plotted in blue are
clusters, while red points are cluster edges.

(b) Clusters obtained after running the DB-

SCAN algorithm on the point cloud after re-
moving the identified spatial edges.

Figure 4.1: Segmentation of a point could into surfaces.

4.1.2 Geometric Segmentation into Convex Objects

As introduced by Tateno et al. [17], two operators are used to create a segmentation of

a point cloud into convex objects. The first operator regards concave regions, and it is

defined as follows:

φi =

{
1, if (pi − p) · np > 0

np · ni, otherwise
(4.3)

φp = min φi (4.4)

Here, p is the index of a point in the point cloud, i are the indices of the 9 nearest neighbors

of the point with index p, and n indicates the normal in a point. After computing the

value for each neighbor, the minimum is attributed to the point.

The second operator we consider when segmenting the point cloud is:

Γp = max |(pi − p) · np| (4.5)

A threshold is applied to the values of the operators, using 0.96 for the first operator and

0.0013 for the second operator. The thresholds and the number of neighbors have been

empirically chosen for the expected noise levels in the used dataset. The points where the

φ operator is smaller than its threshold or the Γ operator is larger that the corresponding

threhsold are considered edges in the point cloud. In Figures 4.2a and 4.2b, the outputs of

the operators can be seen. The edges are removed and an undirected graph is built from

22 Chapter 4. Structural Modeling

the point cloud based on point proximity. Afterwards, a connected component algorithm

is applied on the graph, obtaining object segments. All segments with fewer points than

0.05% of the whole point cloud are not considered further, as they are likely just noise. If

the cluster is supported by multiple objects, we assume that they will be detected in later

frames, due to the strategy described in Section 4.6.

An example of the obtained clusters is depicted by Figure 4.2c, where each cluster is

colorized differently. They are then used as input segments for the primitive fitting. This

is described in Section 4.2.

(a) Output of point cloud edge
detection from criterion de-
scribed in Equations 4.3 and
4.4. Points plotted in blue are
clusters, while red points are
cluster edges.

(b) Output of point cloud
edge detection from criterion
4.5.

(c) Point clusters obtained af-
ter a connected components
algorithm on the point cloud
after removing identified spa-
tial edges.

Figure 4.2: Segmentation of a point could into convex objects.

4.2 Primitive Fitting

Three primitive types are fit to the clusters: plane, sphere and cylinder. After all three

types are fit, the decision is taken regarding the best fitting primitive according to criteria

described in detail in Section 4.2.5. The fitting is performed with RANSAC.

4.2.1 RANSAC

RANSAC is a robust iterative meta-algorithm for estimating parameters of mathematical

models, when given data that contains noise. The main idea of RANSAC is that, by

repeatedly picking as few samples as possible from a set of noisy data, there is a high

chance that one chooses the right samples to correctly estimate the underlying model.

It can be compared to a Least Squares approach: while Least Squares uses all available

data for an estimate to even out the noise, RANSAC does exactly the opposite [42]. The

algorithm can be briefly described by the following steps:

4.2. Primitive Fitting 23

1. Randomly choose the smallest possible set of data needed to be able to estimate the

desired model.

2. Estimate the model from the chosen subset and check how many samples support this

model, i.e. how many samples are within a distance d from the model; these samples

are the consensus set.

3. If the consensus set is large enough, this model is taken into consideration.

4. Repeat steps 1 - 4, until a model with enough inliers t has been found, or maximum

number of iterations k is reached.

5. Reestimate the model using all the inliers.

RANSAC uses the following parameters: d - the error threshold to decide whether a sample

is an inlier, t - the number of inliers that suffice to state that the model has been found,

and k - the maximum number of iterations allowed.

The parameter d is set empirically, based on the scale of the scene. The parameter t is

not needed in our approach, as the variant of RANSAC that we use does not include it. The

maximum number of allowed iterations k is set to 1000, not restricting the algorithm, as

the expected number of iterations for the algorithm to find the correct model with 99.99%

certainty, assuming 70% inliers is 22 for planes, 34 for spheres, 14 for cylinders. This is

calculated following the formula [13]:

k =
log(1− z)
log(1− wn)

(4.6)

Here, z is the probability that the correct model was found, w is the ratio of inliers to the

total number of points, and n is the number of points one needs to sample for estimating

the model.

M-estimator Sampling and Consensus (MSAC) [43] is an improved variant of RANSAC

implemented by MATLAB, which we use for performing primitive fitting. RANSAC mini-

mizes the following objective function with its associated per-point cost [43]:

C =
∑
i

cost(error2i) (4.7)

cost(error2) =

{
0, if error2 < θ

c, otherwise
(4.8)

Here, c is a constant and θ is a threshold. In contrast to this, MSAC uses the following

cost function per point:

cost(error2) =

{
error2, if error2 < θ

θ, otherwise
(4.9)

24 Chapter 4. Structural Modeling

Therefore, while RANSAC penalizes each outlier the same way, MSAC also accounts for

how precisely the inliers fit the model, using a modified cost function that accumulates

the cost for each inlier, while keeping a constant penalty for the outliers.

The complexity of the two algorithm variants is the same. As pointed out by Torr et

al. [43], both MSAC and Maximum Likelihood Consensus (MLESAC) outperform RANSAC.

MLESAC, a Maximum Likelihood Estimation (MLE) variant of RANSAC, outperforms

MSAC, but requires more computations. Therefore, in our case, where we aim to run

the algorithm each frame, choosing MSAC is a good trade-off between performance and

efficiency.

RANSAC cannot deal with finding more than one model when more underlying models

are present in the dataset, but, in our case, this problem is avoided in two ways. First of

all, the scene is segmented before the fit into clusters with coherent normal orientation,

as previously described. Secondly, the points that were not assigned to any model are

segmented again, and there is another attempt to fit primitives to them. This is presented

in Section 4.6.

Step 2 of the RANSAC algorithm, regarding the model estimation, is described in the

following subsections with details about estimating the parameters of the geometric mod-

els.

4.2.2 Plane Model Fitting

A 3D plane is characterized by its orientation, or normal, and by its positioning in 3D

space, represented by a distance from the origin. The general form of the plane equation

is:

ax+ by + cz + d = 0 (4.10)

Here, the normal n =

ab
c

, −d is the distance from the origin to the plane, and x, y,

z are the coordinates of a point that satisfies the plane equation. The set of parameters

defining a plane are:

Pplane = {a, b, c, d} (4.11)

In the RANSAC loop, the plane is estimated from three points: p1, p2, p3. The normal

on the plane and the parameter d are calculated as:

n = ||(p2 − p1)× (p3 − p1)|| (4.12)

d = −p1 · n (4.13)

4.2. Primitive Fitting 25

4.2.3 Sphere Model Fitting

The general form of the sphere equation is:

(x− a)2 + (y − b)2 + (z − c)2 − r2 = 0 (4.14)

Here, a, b and c are the coordinates of the center of the sphere, r is the radius, and x, y,

and z are the coordinates of a point lying on the sphere. The set of parameters defining

a sphere are:

Psphere = {a, b, c, r} (4.15)

These are the parameters that have to be estimated. In the RANSAC loop, the sphere is

estimated from four points, p1, p2, p3, p4, by solving a linear system of equation with four

equations and four unknowns using Cramer’s rule:

a = −Da

2D
b = −Db

2D
c = −Dc

2D
(4.16)

r =

√
a2 + b2 + c2 − 4 · Dr

D
(4.17)

where

D =

∣∣∣∣∣∣∣∣∣
p1x p1y p1z 1

p2x p2y p2z 1

p3x p3y p3z 1

p4x p4y p4z 1

∣∣∣∣∣∣∣∣∣ (4.18)

Da =

∣∣∣∣∣∣∣∣∣
d1 p1y p1z 1

d2 p2y p2z 1

d3 p3y p3z 1

d4 p4y p4z 1

∣∣∣∣∣∣∣∣∣ Db =

∣∣∣∣∣∣∣∣∣
p1x d1 p1z 1

p2x d2 p2z 1

p3x d3 p3z 1

p4x d4 p4z 1

∣∣∣∣∣∣∣∣∣ (4.19)

Dc =

∣∣∣∣∣∣∣∣∣
p1x p1y d1 1

p2x p2y d2 1

p3x p3y d3 1

p4x p4y d4 1

∣∣∣∣∣∣∣∣∣ Dr =

∣∣∣∣∣∣∣∣∣
p1x p1y p1z d1
p2x p2y p2z d2
p3x p3y p3z d3
p4x p4y p4z d4

∣∣∣∣∣∣∣∣∣ (4.20)

d1 = −(p21x + p21y + p21z)

d2 = −(p22x + p22y + p22z)

d3 = −(p23x + p23y + p23z)

d4 = −(p24x + p24y + p24z)

(4.21)

26 Chapter 4. Structural Modeling

4.2.4 Cylinder Model Fitting

As there is no closed form equation for a finite cylinder, we fit an infinite cylinder and

then define the caps.

The estimation is performed as follows: two randomly sampled points are chosen to

be candidates on the surface of the cylinder. The closest distance between the normals

of the two points is calculated, and the intersection of the two normals is considered to

be on the cylinder axis. If the normals do not intersect, the point in the middle of the

shortest connecting segment is chosen. The orientation of the axis is calculated as the

cross product of the two normals. The radius is the mean distance from the surface points

to the axis point. Six neighbor points are used to calculate the surface normals for each

point. The calculation of the normals in described in Section 4.1.

The points situated on the surface of the cylinder caps are not included into the cylinder

fitting procedure. Therefore, they are neither counted in in the RANSAC loop as inliers,

nor do they add up their cost from Equation 4.9 during the minimization. Thus, they

have no influence on the resulting cylinder. In other words, tubes are fit.

An estimated cylinder is defined by the axis a =

axay
az

, a point on the axis p =

pxpy
pz


and the radius r:

Pinfinite cylinder = {ax, ay, az, px, py, pz, r} (4.22)

The height of the infinite cylinder is limited by projecting all its inliers on the cylinder

axis and choosing the axis limits as the minimum and maximum of the inlier projections.

A cylinder model is obtained that is defined by the the center of the first cylinder cap

c1 =

c1xc1y
c1z

, the center of the second cylinder cap c2 =

c2xc2y
c2z

 and the radius r.

Pcylinder = {c1x, c1y, c1z, c2x, c2y, c2z, r} (4.23)

4.2.5 Fitting Decision

In order to decide which primitive is fit, three criteria are taken into consideration:

• the maximal allowed radius, in the case of cylinder and spheres. This is described

in Section 4.2.5.1.

• number of inliers where the surface normals do not deviate from the direction of

the normals on the surface of the fit primitive within a threshold. This criterion is

further described in Section 4.2.5.2.

• the uniformity of the distribution of the inliers on the primitive surface. This crite-

rion is described in more detail in Section 4.2.5.3.

4.2. Primitive Fitting 27

4.2.5.1 Size Restriction on Spheres and Cylinders

When noise is present, each plane can be approximated by a large enough sphere or

cylinder. Such a case is shown in Figure 4.3b. In order to avoid fitting very large such

primitives to planes, we restrict the allowed size of the spheres and cylinders. This also

means that we assume that we cannot have spheres and cylinders with the diameter larger

than 80% of the width, depth and height of the bounding box of the scene. The primitives

that are larger than this allowed size are set as invalid fits. A similar criterion is used by

Roberto et al. [19].

4.2.5.2 Normal Curvature

An additional criterion for a good fit, also used by Schnabel et al. [9], is the deviation of

the point cloud surface normals in comparison to the normals of the fit primitive. From

the inliers delivered by RANSAC, only the inliers that respect this criterion are taken into

consideration for choosing the best primitive for a cluster.

The cosine of the angle between normals is calculated as follows:

ψi(n
i
f ,n

i
p) =

{
ni
f · ni

p, if ni
f · ni

p ≥ 0

ni
f · −ni

p, otherwise
(4.24)

Here, ni
f is the normal on the surface of the fit primitive at point i, while ni

p is the normal

corresponding to point pi based on its neighbors in the point cloud. If the calculated angle

is larger than 180 degrees, one of the normals is flipped. An example showing the normals

on a fit cylinder is displayed in Figure 4.3a.

In our case, the inliers are not accurate regarding the inside and outside of a surface, as

the underlying shapes are unknown, and the point clouds are captured by multiple poses

and merged together inside of the sensor. Therefore, in case the cosine is negative, or, in

other words, the angle is obtuse, it means that one normal is pointing inside and another

one outside. In this case, we flip one normal and recalculate the cosine. We threshold this

deviation angle, by allowing a maximum of 18 degrees deviation, to account for noise in

the cloud [4].

4.2.5.3 Inlier Distribution on the Primitive Surface

Another measure to discard cylinders and spheres that approximate noisy planar surfaces

is considering the surface inliers distribution based on the observation that, in the situation

of a wrong fit, the inliers are distributed in a highly non-uniform way on the primitive

surface. We propose to quantify the similarity of the distribution of the inliers on the

cylinder or sphere surface to a uniform distribution.

As a similarity measure, we use the Hellinger distance. The Hellinger distance is

defined for discrete distributions as:

28 Chapter 4. Structural Modeling

(a) Normals on the point cloud surface
(purple) and normals on the fit cylinder
surface (yellow); the angle between them is
used as a criterion to further filter inliers.

(b) Large cylinder approximating a noisy
region of a horizontal plane.

Figure 4.3: The influence of the deviation of the point cloud surface normals from the primitive
surface normals when fitting a cylinder.

H(P,Q) =
1√
2

√√√√ n∑
i=1

(
√
pi −

√
qi)2 (4.25)

Here, P and Q are the two discrete distributions, where pi and qi are the probabilities

of the outcome with index i. Intuitively, it can be understood as the Euclidean distance

between the square roots of multidimensional distribution vectors; the distance is maxi-

mal when one distribution has zero probabilities while the other distribution has positive

probabilities.

Two distributions need to be determined: the surface distribution P and the ideal

uniform distribution Q. To calculate the surface probabilities, we discretize the areas, by

splitting each shape surface into a number of surface bins. The probability of a point

being in bin i is calculated as follows:

pi =
pbi
n

(4.26)

qi =

n
nb

n
=

1

nb
(4.27)

4.3. Label Propagation and Search Radius Expansion 29

Here, pbi is the number of points in bin i on the primitive surface, n is the total number

of points on the surface, and nb is the number of bins. The bins are defined as follows, for

each primitive type:

Plane

The plane and its inliers are rotated to be parallel with the horizontal plane. Then, it is

split into a 2D grid of 8× 8 bins.

Sphere

The 3D Euclidean coordinates of the inliers are transformed into spherical coordinates,

defined by azimuth, elevation and radius. As the radius does influence the distribution

on the surface and as the inliers are very close to the surface, we take into account the

azimuth and elevation and calculate a 2D histogram, split into 6× 6 bins.

Cylinder

In the case of a cylinder, a similar procedure is performed. The cylinder is rotated to

vertical position and brought to the origin. The 3D Euclidean coordinates of the cylinder

inliers are transformed into cylindrical coordinates, defined by angular, radial and elevation

coordinates. The radius is ignored, as we assume the inliers are close to the cylinder

surface, and the other two coordinates are not influenced by the radius. We calculate the

8× 2 2D histogram of the angular and elevation coordinates.

The reason to choose more bins when considering the angular coordinates, is that the

most representative indicator of a good cylinder fit consists of the distribution of the points

around the axis and not along the axis.

For each shape, we calculate the discrete distribution P by counting the number of

inliers per bin and dividing by the total number of inliers, as described in Equation 4.26.

The discrete distribution is compared to a uniform distribution in terms of the Hellinger

distance, obtaining an indicator of uniformity of the distribution of the points on the

surface. The chosen uniformity threshold is very tolerant, as just extreme cases need to

be excluded, where the points are clustered together tightly in isolated clusters on the

surface; a threshold of 0.7 is chosen, considering that possible values of the distance lay

in the interval [0, 1].

4.3 Label Propagation and Search Radius Expansion

When a new frame needs to be processed, there is no correspondence between the inliers

of a shape in a given frame k, and its inliers in the next frame k+ 1. A strategy is needed

for propagating the labels in the point clouds between frames and also for expanding the

shapes by adding new inliers. For each primitive si, where i is the index of the primitive

in its frame, the following steps are performed:

30 Chapter 4. Structural Modeling

• A new set of camera parameters for frame k+ 1 is calculated by moving the camera

center backwards by a fixed offset along the vector that is connecting the camera

center to the centroid of the inliers of the shape si; we obtain the modified projection

matrix P ′i+1 = Ki+1 · R(I| − C ′), where K is the camera intrinsics matrix, R is the

rotation matrix, and C ′ is the modified camera center.

• We project the convex hull of the set of inliers of primitive s on the image plane

of frame k + 1 using P ′i+1. This has the effect that the search cone for finding new

inlier candidates is increased, as if the camera would be able to see more around the

inliers. Figure 4.4b shows this effect in a simplified scenario.

• All the points that lie in this new convex hull are considered inlier candidates. A

check is performed to decide which of the new inlier candidates fit to primitive s,

according to its inlier criterion.

(a) Label propagation between frame k and frame k + 1,
by projecting the inliers of each primitive onto the camera
plane corresponding to a modified pose obtained by moving
the camera backwards by a fixed offset.

(b) Simplified scenario to show the
effect of the size of a fixed object
in the image caused by moving the
camera backwards.

Figure 4.4: Propagating primitive labels and expanding inliers search region between two con-
secutive frames.

The procedure is depicted in Figure 4.4 and 4.5. This strategy defines a search cone for

each primitive in the next frame. The objects that are behind or in front of the considered

primitive are not assigned to the primitive, as they do not pass the inlier criterion, which

is taking into account the spatial proximity to the model.

A similar idea based on label projection on the image plane to propagate the object

labels between frames is proposed by Tateno et al. [17].

This approach works because a static scene is assumed; both the camera and the objects

have little movement between the frames, therefore, little optical flow. By expanding the

search regions of the inliers, the support of the primitive is also potentially increased.

4.4. Primitive Refinement 31

(a) (b) (c)

Figure 4.5: Expanding the search region of a plane’s inlier candidates in the next frame. The
inliers of the book cover (left) are projected onto the image plane with modified camera matrix P ′,
creating a region growing effect (right). The middle image shows the mask of the projected inliers
using the original projection matrix P .

When there is a plane in the scene that is perpendicular on the camera plane, the

projected inliers are collinear. The convex hull of the cluster cannot be calculated. In

such a case, the projected convex hull needs to be artificially expanded. If the number

of inliers is small, and the convex hull cannot be calculated because of collinearity in

the projection, the projected binary mask of the cluster is dilated with a 3 × 3 all-ones

structuring element. Then the convex hull of this expanded mask is calculated, obtaining

a search window for inlier candidates in frame k + 1. A similar procedure is proposed by

Nguyen et al. [33], where single-pixel paths of a segmented cluster in the image plane are

increased by adding surrounding pixels.

4.4 Primitive Refinement

After the parameters of the primitives have been estimated, a refinement step follows per-

forming non-linear optimization to improve the fit. Rusu et al. [2] also use a non-linear

optimization after RANSAC primitive fitting. This optimization step accounts for nonlin-

earities caused by sensor distortions or noise. Using the Ceres solver [39], we initialize

the optimization process with the already estimated primitive parameters, and optimize

iteratively using the Levenberg-Marquardt algorithm. The Ceres solver offers the option

to automatically calculate gradients, which we choose in our implementation. Dense QR

decomposition is used as a linear solver.

For each shape, the cost function for a 3D point p is defined as follows:

Plane

costplane =

∣∣∣∣n · p + d

||n||

∣∣∣∣ (4.28)

32 Chapter 4. Structural Modeling

The variables are defined in Section 4.2.2, as well as the set of parameters that we optimize,

Pplane.

Sphere

costsphere = |||c− p|| − r| (4.29)

c is the center of the sphere, p is a point on the sphere and r is the length of the radius

of the sphere. The set of parameters that we optimize is Psphere, as described in Section

4.2.3.

Cylinder

Having a cylinder defined by its axis, a point on the axis and its radius, we define the cost

function as the distance from the point to the surface of the cylinder. This distance is

obtained by first calculating the distance from the point to the cylinder axis, by using the

fact that the cross product of two vectors is the area of the parallelogram spanned by the

vectors. By dividing the parallelogram area by half, the area of a triangle is obtained. As

the triangle is spanned by the cylinder axis vector and the distance from the point to the

cylinder axis, the distance can be calculated by using the formula for the area of a triangle.

Finally, the radius is subtracted to get the distance from the point to the cylinder surface.

costp =

∣∣∣∣axis′ × (paxis − p)

||axis||
− r
∣∣∣∣ (4.30)

paxis is a point on the cylinder axis, and p is a point on the surface. The set of parameters

that we optimize is Pcylinder, as described in Section 4.2.4.

To make the fitting more robust to outliers, a loss function is used, which is provided

by the Ceres solver. We choose the Huber loss function, and the Ceres solver implements

this variant:

ρ(r) =

{
r2, if |r| ≤ α
2 · α · |r| − α2, otherwise

(4.31)

Here, r is the residual, and α is a threshold for defining an outlier in terms of distance

from the sample to the model. In this way, the fitting converges to the actual underlying

shape.

The effect of this function on top of the cost function is that the points with a large

cost, which are likely to be outliers, influence the fit less than the points that are closer

to the shape, making the measure more robust. The plot of a Huber loss function applied

on a convex parabola can be seen in Figure 4.6.

4.5. Primitive Merging 33

Figure 4.6: Quadratic function and the Huber loss function applied on the quadratic function,
with threshold α = 1.

4.5 Primitive Merging

When primitives have similar parameters and are close to each other, we assume that they

describe the same primitive, so a merging strategy is needed. The merging is necessary if

the geometric segmentation led to over-segmentation, or an object was partly occluded by

other objects and, in later frames, the updated geometry reveals that previously isolated

parts belong to the same object. The merging strategy is different depending on the

primitive type. The thresholds used for checking shape similarities are empirically chosen

and scaled according to the nature of the point clouds.

Plane

Plane primitives are fit, resulting in plane segments. We define plane segments as convex

hulls of plane inliers projected on the plane [3, 16, 35]. A discussion about the use of

convex hulls for representing planes is included in Section 7.1.

Figure 4.7: The steps required for computing the minimal polygon-to-polygon distance in 3D.

34 Chapter 4. Structural Modeling

In order to merge two plane segments, more checks have to be performed. One of the

checks is that the angle between the normals of the two plane models has to be smaller

than a threshold, which we set to approximately 10 degrees. Next, the plane segments

have to be close to each other. As we are dealing with finite plane segments, it is not

sufficient to compare the parameters of the planes, because the proximity of the plane

segments depends on the spatial location of the plane segments on the planes. Thus, the

minimal distance between the two plane segments has to be computed as the minimal

distance between two polygons in 3D. The steps for calculating the polygon-to-polygon

3D distance are also shown in Figure 4.7.

First, it is checked whether the polygons intersect in 3D; if they intersect, the distance

between them is zero. This check is performed by intersecting each edge of a polygon with

the plane of the other polygon, and then checking whether the intersection is inside the

second polygon. As soon as such an intersection point is found, the two polygons intersect.

If the polygons do not intersect, the polygon-to-polygon distance is calculated. Differ-

ent situations of positions of triangles are shown in Figure 4.8.

Figure 4.8: Different situations of minimal distances between triangles in 3D [1].

The polygon-to-polygon distance is based on the idea of computing the minimum of the

the minimal distances from each vertex of a each polygon to the other polygon. However,

there are also cases when the minimal distance between two polygons cannot be calculated

as a point-to-polygon distance. Such a situation can be seen in Figure 4.8 and in Figure

4.9. In this case, the minimal distance is an edge-to-edge distance. Because of this, we

introduce new vertices in the polygons, by projecting them on each other and calculating

the intersection of their edges in 2D. The intersections are then projected back on to the

polygons in 3D, resulting in new vertices on the convex hull.

After this step, the discussed vertex-to-polygon minimal distance can be computed.

This is implemented based on the point-to-polygon 3D distance [44]: Given a point and a

polygon, the point is projected onto the plane of the polygon, and they are both projected

on one of the orthogonal planes XY, XZ, or YZ, based on the least variation of the points

in the plane, indicated by the maximum of the three components of the normal vector.

Now the problem has been reduced to a 2D point-to-polygon minimal distance. This can

be solved by calculating the minimal distance between the point and each edge of the

4.5. Primitive Merging 35

polygon. Once the points on the polygon or within the polygon that yield the minimal

distance are found, they are projected back to 3D on the polygon’s plane. The point-to-

polygon minimal distance in 3D is found by taking the 3D distance between these back

projected points and the original 3D point.

(a) Distance between 2 convex polygons in
3D before introducing vertexes by intersect-
ing of the 2D projections of the polygons on
each other.

(b) Distance between 2 convex polygons in
3D after introducing vertexes by intersecting
of the 2D projections of the polygons on each
other.

Figure 4.9: Introducing new vertices in a polygon for calculating the minimal polygon-to-polygon
distance in 3D.

The inliers of the new shape are set as the union of the inliers of both shapes. In

the refinement step, all inliers will be taken into consideration for adjusting the plane

parameters, therefore, the shape will be updated with respect to all inlier candidates.

The new convex hull is the convex hull of the points defining the two convex hulls. The

parameters of the plane are the parameters of the plane with the most inliers.

Sphere

In the case of sphere merging, the parameters of the two spheres are compared. If the

distance between the sphere centers and the difference between the radii are below accepted

thresholds, the two spheres are merged. The parameters of the resulting sphere are the

the ones of the sphere with the most inliers, and the inliers are the union of the two inlier

sets.

Cylinder

For cylinders, first, the angle between the axes is checked. If this angle and the difference

between the radii are smaller than a threshold, the minimal distance between the cylinder

axes is calculated. It is assumed that the cylinders have the same parameters and further

checks are necessary regarding a cylinder intersection.

More situations for cylinder intersections can be distinguished: The cylinders can either

36 Chapter 4. Structural Modeling

overlap each other partly, or one can be contained in the other. These cases are dealt with

by projecting their caps on one axis, and then considering the 1D line segment overlap.

Thus, if the cylinders intersect, they are merged and the obtained cylinder receives the

parameters of the cylinder with the most inliers, except the coordinates of the caps. These

are computed in the same way as when a new cylinder is fit. The inliers are in this case

also the union of the inliers of both shapes.

4.6 Handling Remaining Points

Figure 4.10: The workflow of the algorithm integrating the new primitives detected by handling
the remaining points: Primitives P are fit to the point cloud. The primitive inliers are removed
from the original point cloud. New primitives Pnew are fit to the remaining points; they are
eventually merged with the already detected primitives.

After computing a set of primitives P = {p1, ..., pn} for a frame k, there are some points

that are still unassigned. The points are left from previous steps in the algorithm, such as

the initial segmentation, where they were identified as edges, or they belonged to clusters

that were considered too small. Alternatively, they were discarded as outliers in the

model fitting or model refinement steps. The reasons for this are either because they were

considered noise, or because the segmentation was not granular enough so that the cluster

that the points belong to described more than one primitive. As RANSAC can only fit one

model at a time, just part of the points were assigned. However, most of the remaining

points come from the classification step, where the primitive they had been assigned to

was discarded. For these points, new primitives have to be fit.

The remaining points are therefore segmented into clusters like in the initial segmen-

tation described in Section 4.1, but in this case, the segmentation criterion described in

Section 4.1.1 is used, obtaining a finer segmentation. Thereby, smaller objects and more

subtle details are modeled as well.

Primitives are fit to the resulting clusters, obtaining a new set of shapes Pnew that are

either merged with existing primitives, or added in the global set of primitives. This step

makes sure that all points are used, and that new primitives come in, revealing new or

updated geometry.

Figure 4.10 shows an outline of this step. In the algorithm pipeline, this procedure is

described as the residual point handling, depicted in Figure 3.1.

5
Classification

During acquisition, objects are only partially visible to the sensor. In certain cases, espe-

cially at the beginning of a scanning session, this leads to the detection of wrong primitives,

as only little data is available. Therefore, a criterion is needed to decide when to discard

these misfits at a later stage, such that a refitting step can be rerun in this particular

region.

Deep learning would likely be able to handle such a challenging decision; recent work

in 3D semantic segmentation with neural networks is showing promising results [25, 30].

However, training requires vast amounts of largely noise-free training data, which, in our

case, is exhausting to acquire, as public datasets are not available. We therefore decided

in favor of SVM as a more traditional classification technique, which can be applied on a

standard CPU with manageable training effort. We use three binary SVMs that, given five

features describing the fit of a primitive, evaluate whether it should be kept or discarded.

The classification is run every three frames on the set of detected primitives, before the

handling remaining points step.

5.1 Training Data

As there are no publicly available labeled primitive datasets, we generated our own. After

experimenting with training on artificial labeled datasets, we found that using the classi-

fiers on real-world data sets yields a rather poor performance. This is due to the nature

of the noise that is not modeled accurately by the artificial data by assuming normal

or uniform distributions. Therefore further investigation into the nature of the noise is

needed.

Because of this, labeled real-world datasets are created: First, objects are placed on

grid paper so that their exact position is known. Four 3D targets are placed at the edges of

the scene for scaling purposes. Then the scene is recorded with the sensor and the object

setup is recreated in Blender and sampled to obtain point clouds. The two dense point

37

38 Chapter 5. Classification

(a) Image of objects placed on grid paper. (b) Captured point cloud.

(c) labeled artificial point cloud built as a
replica of the real point cloud.

(d) Real point cloud with transferred labels.

Figure 5.1: Transferring primitive labels from the artificial point cloud (replica of the real data)
to the real-world point cloud.

clouds are scaled and then aligned with Iterative Closest Point (ICP), considering only

the four targets. The Blender scene is color-coded, meaning that each point has a color

that indicates the type of shape it belongs to. These labels are transferred by calculating

the nearest neighbor of each point from the real-world point cloud in the artificial point

cloud. The result is a labeled real-world point cloud, as depicted in Figure 5.1.

This procedure requires a lot of effort, hence, the small datasets for training and

testing.

5.2 Features

Each model fit is described by five signature features, which capture geometric properties

of the primitive and its inliers. The features are defined as follows:

5.3. Samples Generation 39

1. #inliers: the number of points that are located within a tolerated distance to the

fit primitive. Primitives with over 10,000 inliers are not classified at all; they are

considered reliable.

2. rmse: the root mean squared error of the distance from all the inliers to the fit

primitive.

3. #inliers nde: the number of inliers that agree with the direction of the normals

on the surface of the shape. This criterion is further described in Section 4.2.5.2.

4. mnde: the mean error, in cosine of angles, of the deviation of the surface normals

from the normals on the primitive, also described in Section 4.2.5.2.

5. hellinger dist: the uniformity of the distribution of the inliers on the primitive

surface. This criterion is described in more details in 4.2.5.3.

A sample s is a 5-dimensional vector of the form:

s = {#inliers, rmse, #inliers nde, nde, hellinger dist}
Each feature is scaled to [0, 1] by dividing by its maximum value.

5.3 Samples Generation

The samples are generated by running the algorithm on real-world labeled datasets and

identifying correct and incorrect fits. The runs are carried out in cycles of two frames,

so that every two frames a segmentation of the whole point cloud takes place. Without

update over multiple frames, samples are less interdependent.

The algorithm is run three times, every time force-fitting a primitive type, in order to

acquire positive and negative samples of the respective type.

At a given frame k, a sample skpi is generated for each detected primitive pki . The class

label of the sample is computed as follows: the real type of the primitive is deduced from

the labeled inliers, as the type of the majority of the inliers, indicated by their color [35].

The real primitive type is compared to the primitive type of pki . If they are the same, then

the class label of the sample is set to 1, otherwise, 0.

Plots of the median values with lower and upper quartiles of the generated samples are

shown in Figure 5.2, where the separability of the classes can also be seen. By inspecting

this visualization, we expect that the sphere is the easiest to classify, because the #inliers

and the #inliers nde features strongly indicate the class of the samples.

5.4 Training and Testing

For each primitive type, and each kernel type, we perform 5-fold cross-validation and train

a binary SVM. We experimented with radial basis function kernels, third degree polynomial

kernels and linear SVM.

40 Chapter 5. Classification

(a) Median of plane features. (b) Median of sphere features. (c) Median of cylinder features.

Figure 5.2: Parallel coordinates plot of feature values for each primitive type, with median
(continuous line) and upper and lower quartiles (dotted line) per class.

Moreover, we also repeat this procedure for feature selection to find the best combi-

nation of features for a particular primitive type. The following configurations of features

were evaluated:

{1, 2, 3, 4, 5} {3, 4, 5} {1, 3, 4, 5} {1, 3, 4} {1, 2, 3, 4} {3, 4}

This experiment is conducted in a grid search loop in the case of polynomial and radial

basis function kernels to find the best parameters of the SVM in terms of kernel scale and

box constraint. The box constraint is a parameter that controls the weighting of the

samples that are outside the SVM margins when performing the training to minimize the

cost of the samples.

The best-performing configurations identified for the individual primitives were chosen

for our system. Details about the configurations and the classifiers used are listed in Table

5.1. The used configurations lead to around 79% accuracy for planes, 97% for spheres and

89% for cylinders. The number of support vectors give an indication about the complexity

of the problem to be solved by the SVM. While the number of support vectors is very low

for spheres, it is considerably higher for cylinders.

The planes are the hardest to separate, as about 16% of the samples are supporting

the class separation surface. A reason for this is that there is a greater variety of planes

than the other two shapes, making then more challenging to separate. The set of chosen

features is still not fully suitable to describe planes and capture their inherent properties.

Classifier Kernel Feature # Training # Support Accuracy
set Samples Vectors

Plane rbf {1, 3, 4, 5} 3008 507 79.85%
Sphere polynomial {1, 2, 3, 4} 1491 30 97.57%
Cylinder rbf {1, 2, 3, 4, 5} 1582 258 89.3%

Table 5.1: SVM classifiers properties and accuracy.

6
Experiments

In this chapter, we present experimental results. We describe the experimental setup for

data acquisition, as well as the generation and properties of artificial data. The perfor-

mance of the algorithm is measured using precision and recall when detecting primitives

in a scene. Moreover, we show video frames with rendered detected primitives, like they

would be used in an AR application.

6.1 Datasets

6.1.1 Real World Datasets

Figure 6.1: Ipad with attached Structure sensor.

We recorded static indoor scenes with the help of an Ipad with an attached Structure

sensor [45]. The sensor uses infrared structured light to recover depth by projecting a non-

uniform pattern of dots in the scene [46]. It calculates a 640 × 480 pixels depth map that

is then back projected to 3D obtaining a point cloud. We work directly on point clouds,

41

42 Chapter 6. Experiments

already registered in a global coordinate system. The registration is computed locally

on the Structure sensor, by a recording application using the Structure sensor Software

Development Kit (SDK).

The acquired data sets encompass between 50 and 300 frames. Per frame, there a un-

structured point cloud containing between 16,000 and 30,000 points registered in the global

coordinate system, the camera pose and an image of the scene. The intrinsic parameters

of the color camera are also available. The span of the cloud is of approximately 1 cubic

meter because of the size of the scan-cube of the Structure sensor software. However, the

algorithm is not dependent on this restriction.

(a) (b) (c) (d)

Figure 6.2: Samples of scenes captured with the Structure sensor, showing images of the scenes
with corresponding point clouds.

Samples of captured data can be seen in Figure 6.2. The point cloud at a given frame is

obtained from merging and downsampling all the previous point clouds up to the current

frame. It contains noise that decreases in time, as more points are accumulated because

of the camera movement. The internal implementation of the data acquisition in the

Structure sensor is gradually increasing the accuracy of the reconstruction. The noise also

increases with depth. A pixel in the depth map offers less precise depth information the

further away the objects are from the sensor. More detailed properties of the Structure

sensor are discussed later in the Results Section 6.2.

We aim to capture various scene setups with diverse geometric properties, needed to

extensively test the designed algorithm, focusing on man-made objects, as the primitive

fitting approach is suitable for such scenarios.

6.1.2 Synthetic Datasets

6.1.2.1 Generation

In order to evaluate the approach on data with no noise for a baseline performance, clean

datasets are needed, containing primitives with known parameters. Therefore we generate

artificial datasets, according to the pipeline seen in Figure 6.3.

First, a scene is created in Blender manually, and a camera path is specified. Then, a

script is run that outputs the rendered images from Blender for all frames, along with the

Z-buffer output. The depth map is saved in OpenEXR format, so that raw depth values

6.1. Datasets 43

3D Scene

Images

Depth maps

Point cloud Point cloud

Blender renderer

Blender renderer

Voxel grid
filtering

Accumulated
filtered

pointclouds

 Back projection

Figure 6.3: Steps required for generating artificial datasets.

are preserved. An example is shown in Figure 6.4a. Along with the frames, the camera

parameters are also saved.

For each frame, a 3D reconstruction of the scene is performed, as described by Equa-

tions 6.1, 6.2 and 6.3. Given the camera intrinsics K, the extrinsics as rotation matrix

R and camera center C, and the depth per pixel as distance from the camera plane to

world point, we back project the points x from the camera plane back to the real world

point, Xworld. From the depth between the world point and the camera plane, we calculate

the depth from the world point to the camera center with the use of triangle relations.

Afterwards, we back project the points to 3D world coordinates, obtaining a point cloud

as seen in 6.4b. The back projection is computed as follows:

ray = K−1 · x (6.1)

Xcamera = ray · depth (6.2)

Xworld = (R′ ·Xcamera) + C (6.3)

We sample the points at high resolution, in comparison to what is needed. A down-

sampling is needed as the density of the points is higher in the regions closer to the camera,

because there are more pixels to back project per unit of area. To solve this, we apply

a modified voxel grid filter on each frame. In the voxel grid filter, a grid of voxels is

overlapped on the scene, and the mean point position is taken as an output for each voxel.

As we do not want to introduce any noise into the point cloud during downsampling, it is

not the mean point position per voxel that is saved, but the position of the point closest

to the center of gravity of the voxel. An output of this step is shown in Figure 6.4c. This

step does not only downsample the cloud, but also ensures a more even distribution on

the point on the surface, as pointed out by Hackel et al. [22], where a voxel grid filter is

also used for pre-processing a point cloud before semantic segmentation.

Because point cloud properties that resemble a real-world dataset are preferred, the

clouds have to be merged together over the frames. The structure of the scene needs to

accumulate points from a multitude of viewpoints, without changing the density of the

point clouds. For example, if one would turn the camera around a cylinder in a circular

44 Chapter 6. Experiments

(a) Depth map in OpenEXR format repre-
senting distances from objects to the camera
plane.

(b) Reconstructed point cloud.

(c) Downsampled point cloud with the Vox-
elGrid filter.

(d) Point cloud obtained from merging point
clouds from previous frames together with the
current frame.

Figure 6.4: Depth map, color image and point cloud of a frame of an artificial dataset.

trajectory, in the end one would have a point cloud of the whole cylinder, and not just a

part of it. We merge point clouds obtained at previous frames and downsample the results

according to Formula 6.4, where P k is a point cloud corresponding to frame k, and ’+’

denotes point cloud merging:

P k
filtered = V oxelGridF ilter(P k + P k−1

filtered) (6.4)

To increase the density of the points along the frames, an extra voxel grid filter with

increasingly large voxel sizes is applied on the whole dataset. Results of this step can be

seen in Figures 6.4c and 6.4d.

The artificial datasets encompass sets of 99 frames, with 9000 to 30,000 points per

frame. Similarly to the real-world datasets, per frame we generate a point cloud, that

6.1. Datasets 45

is registered in a global coordinate system, a camera pose and an image of the scene.

Intrinsic parameters of the virtual camera are provided by Blender.

(a) (b)

Figure 6.5: Examples of labeled artificial point clouds.

6.1.2.2 Limitations

The synthetic datasets are used as ground truth; however, they have some defects. The

density of the points is not the same on all surfaces, because of the 3D reconstruction

and of the scene discretization in pixels in 2D. In Blender, the primitives are meshes,

which means that they are represented by faces, so the sphere and cylinder surface are

not perfectly smooth. Therefore, the sampled points on the shape faces are not satisfying

the parametric equations exactly, but are approximations.

6.1.2.3 Labeled Artificial Datasets

The 3D point clouds used later for training and testing need to be labeled, so that a

point carries the label of the type of primitive it comes from. Because of the labels, we

create primitives in Blender that are color-coded: planes are blue, sphere are green and

cylinders are yellow. When performing the 3D reconstruction the color of the primitives is

transferred to the points, representing the primitive label. The cylinder caps are labeled

as planes, as seen in Figure 6.5. The expected behavior of our approach is to fit planes to

the cylinder caps; the points on the caps are not taken into account in the minimization

problem when fitting a cylinder.

46 Chapter 6. Experiments

6.2 Results

We evaluate the performance of the algorithm in terms of precision and recall, on both

real and artificial datasets.

The precision and recall achieved when running the algorithm are calculated as follows

for a dataset: The algorithm is run on the whole dataset, resulting in sets of fit primitives

Pdetected for each frame. The set of fit primitives for the last frame is manually inspected

and adjusted to correspond to the expected ground-truth primitives. A reference primitive

set Pref = pref1 , pref2 , ..., prefn is obtained.

For each frame, the set of detected primitives Pdetected is compared to the reference

primitives Pref. The comparison is done by using the merging criteria described in Section

4.5. The results encompass correctly detected planes Pplanes, correctly detected spheres

Pspheres and correctly detected cylinders Pcylinders.
Precision and recall are calculated as follows:

Precision =
|Pplanes|+ |Pspheres|+ |Pcylinders|

|Pdetected|
(6.5)

Recall =
|Pplanes|+ |Pspheres|+ |Pcylinders|

|Pref |
(6.6)

The precision and recall per shape class is calculated using the same principle, namely

dividing the number of true positives by the number of true positives and false positives

for precision and diving the number of true positives by the number of relevant samples

for recall.

6.2.1 Real Datasets

Using the trained SVMs, we tested our algorithm on a total of eight scenes with known

object parameters. The performances obtained are listed in Table 6.1.

Planes reach the poorest precision due to the fact that they are chosen to approximate

any shape. Cylinders achieve a higher precision, but still lower than the spheres. The

reason is likely that cylinders can reasonably well approximate both spheres and parts of

planes, leading to ambiguities in certain regions. Spheres reach a high precision, due to a

sphere’s neighborhood more specific curvature, which makes it harder to mistake a sphere

for a cylinder and even harder to mistake it for a plane.

In terms of recall, planes perform the best, while cylinders and spheres reach similar

results. This means that the planes are the easiest to identify.

In Figure 6.6, the average-filtered precision and recall achieved when running the al-

gorithm on each individual dataset is depicted. One can see that both precision and recall

are low in the beginning and steeply increase over the first few frames, as the point clouds

get denser, and new geometry is revealed. Precision tends to stay the same or to decrease

slightly. This is due to the fact that the algorithm tries to fit shapes to remaining parts of

6.2. Results 47

Dataset Primitive Precision Recall

Dataset 1 Planes 0.874 0.997
Cylinders 0.982 0.976
Total 0.914 0.988

Dataset 2 Planes 0.976 0.940
Spheres 1 1
Cylinders 0.985 0.975
Total 0.980 0.953

Dataset 3 Planes 0.928 0.995
Cylinders 0.969 0.963
Total 0.945 0.981

Dataset 4 Planes 0.910 0.919
Spheres 1 1
Total 0.899 0.926

Dataset 5 Planes 0.224 1.000
Spheres 0.959 0.321
Cylinders 0.293 0.980
Total 0.295 0.656

Dataset 6 Planes 0.914 0.841
Spheres 1 0.993
Cylinders 0.997 1
Total 0.934 0.880

Dataset 7 Planes 0.797 0.878
Cylinders 0.867 0.977
Total 0.796 0.885

Dataset 8 Planes 0.772 0.814
Spheres 1 0.989
Cylinders 0.971 0.908
Total 0.801 0.836

Total Planes 0.796 0.921
Spheres 0.994 0.859
Cylinders 0.821 0.885

Dataset Primitive Precision Recall

Artificial Planes 0.926 0.931
dataset 1 Spheres 1 1

Cylinders 0.943 0.944
Total 0.936 0.942

Artificial Planes 0.920 0.987
dataset 2 Spheres 1 0.975

Cylinders 0.973 1
Total 0.937 0.987

Artificial Planes 0.936 0.843
dataset 3 Spheres 0.997 0.960

Cylinders 0.591 0.995
Total 0.858 0.873

Artificial Planes 0.979 0.904
dataset 4 Spheres 1 1

Cylinders 0.968 0.995
Total 0.981 0.947

Artificial Planes 0.972 0.997
dataset 5 Cylinders 0.918 0.960

Total 0.940 0.979

Artificial Spheres 1 1
dataset 6 Total 0.998 1

Artificial Planes 1 0.870
dataset 7 Total 0.997 0.870

Artificial Planes 1 0.834
dataset 8 Spheres 1 1.000

Cylinders 1 1
Total 1 0.859

Total Planes 0.960 0.909
Spheres 0.999 0.989
Cylinders 0.894 0.982

Table 6.1: Results of experiments in terms of precision and recall, on real (left) and artificial
(right) datasets.

the point cloud that are not captured completely by the sensor yet, or that cannot be fully

modeled by our approach. This is discussed in more detail in Section 7.1.5. The algorithm

tries to fit different primitives to newly discovered or freed areas in the point cloud, while

some of these fit primitives are not correct. Recall increases as expected, reflecting the

48 Chapter 6. Experiments

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6 (g) Dataset 7 (h) Dataset 8

Figure 6.6: Average-filtered precision and recall for real datasets 1-8.

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6 (g) Dataset 7 (h) Dataset 8

Figure 6.7: Results showing overlaid detected primitives in selected frames of real datasets 1-8.

successful retrieval of the primitives over time. This is an expected behavior because, over

time, the point cloud expands, providing more geometrical details, and therefore the fit

also improves.

Results of the algorithm are shown in Figures 6.7 and 6.8. The latter emphasizes the

improvement of the fit over time.

6.2. Results 49

(a) Frame 1 (b) Frame 4 (c) Frame 10 (d) Frame 14

Figure 6.8: Results showing the improvement of primitive fitting over time in selected frames of
real dataset 1.

6.2.2 Synthetic Datasets

For comparison, the algorithm is also run on artificially created datasets of scenarios

similar to the real datasets. The thresholds are empirically tuned for the artificial datasets,

according to scale and to the noise level. For the artificial data, the noise level is expected

to be very low.

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6 (g) Dataset 7 (h) Dataset 8

Figure 6.9: Average-filtered precision and recall for artificial datasets 1-8.

Looking at the precision and recall curves as shown in Figure 6.9, they ascend more

smoothly and with less oscillations than in the real-world datasets. This is the expected

behavior of the algorithm when running on artificial data, due to the nature of the objects

and to the low noise level.

Here cylinders reach the smallest precision, which means that they are overdetected.

This effect was also partially reflected in the results of the real-world dataset. In contrast

to the real datasets, however, planes achieve the lowest recall, but the recall for all shapes

50 Chapter 6. Experiments

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6 (g) Dataset 7 (h) Dataset 8

Figure 6.10: Results showing overlaid detected primitives in selected frames of artificial datasets
1-8.

is over 0.9, which indicates the success of the method. Selected frames from the artificial

datasets with overlaid detected primitives are shown in Figure 6.10.

6.3 Experimental Setup

All experiments are run in a desktop setup, on a Lenovo P50 laptop with an eight core

Intel Core i7 CPU running at 2.60 GHz. The experiments are run solely on the CPU,

partly parallelized.

Most of the software is written as MATLAB scripts, using MATLAB 2015b. The

artificial data generation and the processing of the datasets are using Python 3.5 and the

Point Cloud Library [47] Python wrapper [48].

The non-linear optimization using the Ceres solver is written in C++. This is compiled

into MEX files, then called from MATLAB.

7
Discussion

In this chapter, we discuss challenges faced by the algorithm, both from a hardware and

software point of view. We show concrete scenarios where known weaknesses are displayed

as well as present ideas for further improvement of the method.

7.1 Known Limitations

7.1.1 Sensor Flaws

As any structured light sensor, the Structure sensor has difficulties dealing with transpar-

ent objects; namely, they are not captured at all. An example is shown in Figure 7.1. Also

highly concave regions of point clouds are inaccurately captured due to reflections [49].

An example of noise introduced by reflections is shown in Figure 7.2, where the bottom

part of the sphere is reconstructed at a wrong depth.

From our experiments, we deduced that the Structure sensor captures noisy points on

red object surfaces. The source code that calculates depth vales inside of the sensor is not

publicly available; we assume that the quality of points on the surface of red objects is

poorer because of the use of infrared light. With red objects, it is harder to distinguish

infrared light from the red object surface color.

It is a known weakness of structured light sensors that they are sensitive to surface

reflectance and to the scene color, as well as scene illumination [49].

7.1.2 Normals Orientation Ambiguity

The Structure sensor captures point clouds and merges them locally in each frame. As

the surface normals are calculated after this step from combined point clouds merged

from more views and as there is no correspondence between previous point clouds, we

cannot know where the sensor was located when capturing a certain point pi. Therefore,

the direction of the normals does not provide accurate information about the inside and

outside of objects. This is a possible source of error when performing segmentation based

51

52 Chapter 7. Discussion

(a) Scene containing a transparent object. (b) The point cloud of the scene cap-
tured with the Structure sensor.

Figure 7.1: The structured light sensor cannot capture transparent objects; the bottle (left) is
missing from the point cloud, and its only non-transparent part, the sticker, was captured (right).

(a) Scene containing a
reflective sphere.

(b) Front view of captured point
cloud.

(c) Side view of captured point
cloud.

Figure 7.2: Scene containing a highly reflective sphere that causes noise in the point cloud.

on normal orientation. A solution would imply keeping track of the sensor position when

capturing each point in the point cloud.

7.1.3 Merging Due to Collinearity between Camera and Primitives

A faulty merging happens when primitives with similar parameters are aligned with the

camera, as shown in Figure 7.3, while performing a label propagation and search radius

expansion step. If the camera and the primitives are collinear, the inliers of the primitives

are projected onto the camera plane very closely to each other. As the 2D search region of

primitive sk is increased, it overlaps the inliers of primitive sl. Because the primitives of

sl pass the inlier criterion using the parameters of sk, they are wrongfully assigned to sk.

This newly expanded primitive sk is sometimes rejected by the surface inliers distribution

criterion described in Section 4.2.5.3. However, because the threshold is permissive, also

primitives with multiple surface inliers clusters are accepted, like the orange plane in

Figure 7.3a.

7.1. Known Limitations 53

(a) Scenario when two horizontal planes
and the camera are collinear.

(b) Color image of the scene from the perspec-
tive of the camera.

Figure 7.3: Erroneous plane merging example in artificial dataset 4, because of the proximity of
the two planes in the image that leads to a wrong label propagation.

(a) Faulty plane expansion, as inliers of the middle
plane are wrongfully assigned to the side planes.

(b) Faulty plane expansion, as the inliers
of the vertical pink plane pass the inliers
criterion of the light blue plane.

Figure 7.4: Primitive search radius expansion leading to wrongfully assigned inliers for planes in
artificial datasets 3 and 8.

The inlier expansion can also fail in case a primitive expands over another primitive, as

there is no check whether the new inliers are spatially close enough to the cluster formed

by the inliers of a primitive. This is illustrated in Figure 7.4. Calculating the distance to

the nearest inlier neighbors when adding an inlier to a primitive would solve this problem,

but add computational complexity to the algorithm.

7.1.4 Convex Hulls Implicit Restrictions

All planar surfaces are approximated by their convex hulls, obtaining plane segments. This

is a potential cause of inaccurate results.

Such a situation can occur when merging planes, because it is possible that planar

surfaces are not supported by convex objects. In such a case, the object surfaces would

be concave, but they are merged, because their convex hulls are very close to each other

54 Chapter 7. Discussion

or overlap each other in regions where there are no inliers.

Because of this effect, one of the future improvements of the work includes handling

concave polygons when dealing with plane segments, which would make the approach more

exact.

7.1.5 Non-expressible Objects

The more regular objects are, the easier it is to represent them as geometric primitives.

When the geometry is complex or ambiguous, the proposed algorithm tries to model it

with the known primitives, becoming locally unstable in-between frames by oscillating

between chosen primitive types.

This behavior is shown in Figure 7.5, running on the real-world dataset 5. The lowest

precision and recall performance is achieved from all tested datasets, because the shapes

of the two bottles are ambiguous and challenging to model with the primitives. Even for

a human, it is hard to tell whether the bottles are, in reality, spheres or cylinders.

(a) Frame 70 (b) Frame 91 (c) Frame 93 (d) Frame 104

Figure 7.5: Selected frames from real dataset 5, showing the unstable behavior of the algorithm
when dealing with objects having challenging shapes.

7.1.6 Contextual Relations

In real-world datasets 2, 7 and 8, the edges of different stacked books are partly merged

together into the same plane. This is because the algorithm is relying on the geometry

only, without any further context regarding object separation. Thus the algorithm is

unable to separate object instances, as shown in Figure 7.6. A possible improvement is

the addition of contextual relations or specific constraints between primitives [16, 33].

7.1.7 Small Objects Detection and Classification

The current implementation faces challenges when modeling small objects. This is mainly

due to the segmentation step based on the orientation of surface normals. In case of mod-

eling small spheres and cylinders, even when they have a locally smooth surface, the angles

between their normals are above the acceptable thresholds for performing segmentation

reliably. This leads to categorizing the inliers as cluster edges instead of surfaces. Con-

sequently, those points are not taken into consideration for primitive fitting. A possible

7.2. Possible Improvements 55

(a) (b)

Figure 7.6: Ambiguous plane merging on the side of the stacked books in real datasets 7 and 8.

improvement is the use of adaptive thresholds for the geometric segmentation, dependent

on cluster scale and expected noise level. Adaptive thresholds will likely improve the over-

all performance of the algorithm, as the segmentation step has crucial influences on the

detection of primitives.

Another issue with small objects is that they are rejected more often by the classifiers

because small primitives are often fit wrongly in an attempt to approximate noisy regions.

Therefore, they are also learned by the classifiers as wrong fits. A solution would be the

introduction of classes based on size, i.e. small cylinder and large cylinders [34].

7.2 Possible Improvements

7.2.1 Runtime

Although our current implementation is running close to real-time on desktop hardware,

it is not ready for application at interactive rates on mobile devices yet.

Efficiency improvements such as an efficient calculation of surface normals from depth

maps [3] would improve the runtime. The algorithm also has high parallelization potential.

The primitive fitting, refinement, and classification steps can be parallelized due to the

pre-segmentation, because segmented point cloud regions are processed independently.

Similar approaches that run in real time [17, 18] provide a hint that our method

can achieve this. The only possible bottleneck, which is the SVM classification, is a fast

procedure and would not represent a problem.

7.2.2 Machine Learning Models

Inspired by recent work progress in ML presented in Section 2.2 and 2.3 and by our own

experiments with the SVM, we think that using a different approach for classification such

as CNNs or CRFs would be useful for separating classes more effectively. Moreover, we

56 Chapter 7. Discussion

think that experimenting with more features like the geometric neighborhood features

used in [22] or FPFH could also improve the classification results.

7.3 Conclusion

We introduce an approach for structural modeling of indoor static scenes using planes,

spheres and cylinder as geometrical primitives. The method is capable of inferring the

missing geometry from point clouds in an incremental way. Because the user moves the

sensor to reveal new geometrical properties of the captured objects, the algorithm is can

discard outdated fits automatically based on outputs of SVM classifiers, improving the

modeled structure of the scene over time.

Being suited for a stream of point clouds incoming from a mobile device, the system

outputs a compact representation of the scene as a set of parametric models for each

frame. This primitive set is ready to be further used by AR applications that, considering

the recent progress in the field, will surely be a part of our near future.

A
List of Acronyms

AR Augmented Reality

BIM Building Information Modelling

CAD Computer Aided Design

CNN Convolutional Neural Network

CRF Conditional Random Field

DBSCAN Density Based Spatial Clustering of Applica-

tions with Noise

FPFH Fast Point Feature Histogram

ICP Iterative Closest Point

ML Machine Learning

MLE Maximum Likelihood Estimation

MLESAC Maximum Likelihood Consensus

MSAC M-estimator Sampling and Consensus

RANSAC RANdom SAmpling Consensus

SDK Software Development Kit

SLAM Simultaneous Localization and Mapping

SVM Support Vector Machine

57

BIBLIOGRAPHY 59

Bibliography

[1] Andrew T Miller and Peter K Allen. Graspit! a versatile simulator for robotic

grasping. IEEE Robotics & Automation Magazine, 11(4):110–122, 2004. (page 2, 34)

[2] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and Michael Beetz. Close-

range scene segmentation and reconstruction of 3d point cloud maps for mobile ma-

nipulation in domestic environments. In Intelligent Robots and Systems, 2009. IROS

2009. IEEE/RSJ International Conference on, pages 1–6. IEEE, 2009. (page 2, 5, 6,

14, 15, 19, 31)

[3] Dirk Holz, Stefan Holzer, Radu Bogdan Rusu, and Sven Behnke. Real-time plane seg-

mentation using rgb-d cameras. In Robot Soccer World Cup, pages 306–317. Springer,

2011. (page 2, 6, 11, 15, 19, 33, 55)

[4] Andre Ückermann, Christof Elbrechter, Robert Haschke, and Helge Ritter. 3d scene

segmentation for autonomous robot grasping. In Intelligent Robots and Systems

(IROS), 2012 IEEE/RSJ International Conference on, pages 1734–1740. IEEE, 2012.

(page 2, 7, 15, 19, 20, 27)

[5] F. Remondino, D. Lo Buglio, N. Nony, and L. De Luca. Detailed Primitive-Based

3d Modeling of Architectural Elements. ISPRS - International Archives of the Pho-

togrammetry, Remote Sensing and Spatial Information Sciences, pages 285–290, July

2012. (page 2)

[6] Sven Oesau, Florent Lafarge, and Pierre Alliez. Indoor scene reconstruction using fea-

ture sensitive primitive extraction and graph-cut. ISPRS Journal of Photogrammetry

and Remote Sensing, 90:68–82, 2014. (page 8, 13, 15)

[7] Jianxiong Xiao and Yasutaka Furukawa. Reconstructing the world’s museums. In-

ternational journal of computer vision, 110(3):243–258, 2014. (page 8, 14, 15)

[8] Sebastian Ochmann, Richard Vock, Raoul Wessel, and Reinhard Klein. Automatic

reconstruction of parametric building models from indoor point clouds. Computers

& Graphics, 54:94–103, 2016. (page 2, 13, 14, 15)

[9] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Efficient ransac for point-cloud

shape detection. In Computer graphics forum, volume 26, pages 214–226. Wiley

Online Library, 2007. (page 2, 5, 6, 7, 8, 13, 14, 15, 27)

[10] Jonathan Ventura and Tobias Hollerer. Online environment model estimation for

augmented reality. In Mixed and Augmented Reality, 2009. ISMAR 2009. 8th IEEE

International Symposium on, pages 103–106. IEEE, 2009. (page 2)

60

[11] Renato F Salas-Moreno, Ben Glocken, Paul HJ Kelly, and Andrew J Davison. Dense

planar slam. In Mixed and Augmented Reality (ISMAR), 2014 IEEE International

Symposium on, pages 157–164. IEEE, 2014. (page)

[12] Anuruddha Hettiarachchi and Daniel Wigdor. Annexing reality: Enabling oppor-

tunistic use of everyday objects as tangible proxies in augmented reality. In Proceed-

ings of the 2016 CHI Conference on Human Factors in Computing Systems, pages

1957–1967. ACM, 2016. (page 2, 7, 15)

[13] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated cartography. In

Readings in computer vision, pages 726–740. Elsevier, 1987. (page 2, 5, 23)

[14] Paul VC Hough. Method and means for recognizing complex patterns, December 18

1962. US Patent 3,069,654. (page 2, 8)

[15] E Grilli, F Menna, and F Remondino. A review of point clouds segmentation and

classification algorithms. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci,

42(2):W3, 2017. (page 2, 14)

[16] Yangyan Li, Xiaokun Wu, Yiorgos Chrysathou, Andrei Sharf, Daniel Cohen-Or, and

Niloy J Mitra. Globfit: Consistently fitting primitives by discovering global relations.

In ACM Transactions on Graphics (TOG), volume 30, page 52. ACM, 2011. (page 6,

15, 33, 54)

[17] Keisuke Tateno, Federico Tombari, and Nassir Navab. Real-time and scalable incre-

mental segmentation on dense slam. In Intelligent Robots and Systems (IROS), 2015

IEEE/RSJ International Conference on, pages 4465–4472. IEEE, 2015. (page 7, 15,

19, 21, 30, 55)

[18] Rafael Roberto, Hideaki Uchiyama, João Paulo Lima, Hajime Nagahara, Rinichiro

Taniguchi, and Veronica Teichrieb. Incremental structural modeling on sparse visual

slam. IPSJ Transactions on Computer Vision and Applications, 9(1):5, 2017. (page 8,

14, 15, 55)

[19] Rafael Roberto, João Paulo Lima, Hideaki Uchiyama, Clemens Arth, Veronica Te-

ichrieb, Rinichiro Taniguchi, and Dieter Schmalstieg. Incremental structural modeling

based on geometric and statistical analyses. In IEEE Winter Conf. on Applications

of Computer Vision (WACV), pages 1–8, 2018. (page 8, 15, 27)

[20] Kristiyan Georgiev, Motaz Al-Hami, and Rolf Lakaemper. Real-time 3d scene de-

scription using spheres, cones and cylinders. arXiv preprint arXiv:1603.03856, 2016.

(page 9, 15)

BIBLIOGRAPHY 61

[21] Liangliang Nan, Ke Xie, and Andrei Sharf. A search-classify approach for cluttered

indoor scene understanding. ACM Transactions on Graphics (TOG), 31(6):137, 2012.

(page 9, 15, 19)

[22] Timo Hackel, Jan D Wegner, and Konrad Schindler. Fast semantic segmentation of

3d point clouds with strongly varying density. ISPRS Annals of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 3:177–

184, 2016. (page 10, 15, 43, 56)

[23] Federico Tombari, Samuele Salti, and Luigi Di Stefano. Unique signatures of his-

tograms for local surface description. In European conference on computer vision,

pages 356–369. Springer, 2010. (page 10)

[24] Andrea Frome, Daniel Huber, Ravi Kolluri, Thomas Bülow, and Jitendra Malik.

Recognizing objects in range data using regional point descriptors. Computer vision-

ECCV 2004, pages 224–237, 2004. (page 10)

[25] Lyne P Tchapmi, Christopher B Choy, Iro Armeni, JunYoung Gwak, and Silvio

Savarese. Segcloud: Semantic segmentation of 3d point clouds. arXiv preprint

arXiv:1710.07563, 2017. (page 10, 15, 37)

[26] Timo Hackel, Nikolay Savinov, Lubor Ladicky, Jan D Wegner, Konrad Schindler,

and Marc Pollefeys. Semantic3d. net: A new large-scale point cloud classification

benchmark. arXiv preprint arXiv:1704.03847, 2017. (page 10)

[27] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer,

and Silvio Savarese. 3d semantic parsing of large-scale indoor spaces. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 1534–1543,

2016. (page 10, 13, 15)

[28] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmen-

tation and support inference from rgbd images. In European Conference on Computer

Vision, pages 746–760. Springer, 2012. (page 10)

[29] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets

robotics: The kitti dataset. The International Journal of Robotics Research,

32(11):1231–1237, 2013. (page 10)

[30] John McCormac, Ankur Handa, Andrew Davison, and Stefan Leutenegger. Semantic-

fusion: Dense 3d semantic mapping with convolutional neural networks. In Robotics

and Automation (ICRA), 2017 IEEE International Conference on, pages 4628–4635.

IEEE, 2017. (page 10, 37)

[31] Anil Armagan, Martin Hirzer, and Vincent Lepetit. Semantic segmentation for 3d

localization in urban environments. In Urban Remote Sensing Event (JURSE), 2017

Joint, pages 1–4. IEEE, 2017. (page 10)

62

[32] Radu Bogdan Rusu, Andreas Holzbach, Nico Blodow, and Michael Beetz. Fast geo-

metric point labeling using conditional random fields. In Intelligent Robots and Sys-

tems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages 7–12. IEEE,

2009. (page 11, 14, 15)

[33] Thanh Nguyen, Gerhard Reitmayr, and Dieter Schmalstieg. Structural modeling

from depth images. IEEE transactions on visualization and computer graphics,

21(11):1230–1240, 2015. (page 11, 13, 14, 15, 31, 54)

[34] Jing Huang and Suya You. Detecting objects in scene point cloud: A combinational

approach. In 3DTV-Conference, 2013 International Conference on, pages 175–182.

IEEE, 2013. (page 11, 12, 14, 15, 55)

[35] Xuehan Xiong and Daniel Huber. Using context to create semantic 3d models of

indoor environments. In BMVC, pages 1–11, 2010. (page 11, 14, 15, 19, 33, 39)

[36] Xuehan Xiong, Antonio Adan, Burcu Akinci, and Daniel Huber. Automatic creation

of semantically rich 3d building models from laser scanner data. Automation in

Construction, 31:325–337, 2013. (page 12, 15)

[37] Hema S Koppula, Abhishek Anand, Thorsten Joachims, and Ashutosh Saxena. Se-

mantic labeling of 3d point clouds for indoor scenes. In Advances in neural information

processing systems, pages 244–252, 2011. (page 12, 14, 15, 19)

[38] Jing Huang and Suya You. Point cloud matching based on 3d self-similarity. In Com-

puter Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer

Society Conference on, pages 41–48. IEEE, 2012. (page 12)

[39] Sameer Agarwal, Keir Mierle, and Others. Ceres solver. http://ceres-solver.org,

2018. (page 13, 31)

[40] Kang Chen, Yu-Kun Lai, and Shi-Min Hu. 3d indoor scene modeling from rgb-d data:

a survey. Computational Visual Media, 1(4):267–278, 2015. (page 14)

[41] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based

algorithm for discovering clusters in large spatial databases with noise. In Kdd,

volume 96, pages 226–231, 1996. (page 20)

[42] Alireza Bab-Hadiashar and David Suter. Data segmentation and model selection for

computer vision: a statistical approach. Springer Science & Business Media, 2012.

(page 22)

[43] Philip HS Torr and Andrew Zisserman. Mlesac: A new robust estimator with appli-

cation to estimating image geometry. Computer Vision and Image Understanding,

78(1):138–156, 2000. (page 23, 24)

http://ceres-solver.org

BIBLIOGRAPHY 63

[44] Philip Schneider and David H Eberly. Geometric tools for computer graphics. Elsevier,

2002. (page 34)

[45] Structure sensor official website. https://structure.io/, 2018. (page 41)

[46] M Kalantari and M Nechifor. Accuracy and utility of the structure sensor for col-

lecting 3d indoor information. Geo-spatial information science, 19(3):202–209, 2016.

(page 41)

[47] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL).

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai,

China, May 9-13 2011. (page 50)

[48] Python wrapper for the point cloud library source. https://github.com/strawlab/

python-pcl, 2018. (page 50)

[49] Pietro Zanuttigh, Giulio Marin, Carlo Dal Mutto, Fabio Dominio, Ludovico Minto,

and Guido Maria Cortelazzo. Time-of-flight and structured light depth cameras.

Springer, 2016. (page 51)

https://structure.io/
https://github.com/strawlab/python-pcl
https://github.com/strawlab/python-pcl

	Introduction
	Motivation
	Outline

	Related Work
	Geometric Approaches
	Machine Learning Approaches
	Mixed Approaches
	Context

	Overview
	Denomination Conventions
	Overview

	Structural Modeling
	Segmentation
	Geometric Segmentation into Surfaces
	Geometric Segmentation into Convex Objects

	Primitive Fitting
	RANSAC
	Plane Model Fitting
	Sphere Model Fitting
	Cylinder Model Fitting
	Fitting Decision
	Size Restriction on Spheres and Cylinders
	Normal Curvature
	Inlier Distribution on the Primitive Surface

	Label Propagation and Search Radius Expansion
	Primitive Refinement
	Primitive Merging
	Handling Remaining Points

	Classification
	Training Data
	Features
	Samples Generation
	Training and Testing

	Experiments
	Datasets
	Real World Datasets
	Synthetic Datasets
	Generation
	Limitations
	Labeled Artificial Datasets

	Results
	Real Datasets
	Synthetic Datasets

	Experimental Setup

	Discussion
	Known Limitations
	Sensor Flaws
	Normals Orientation Ambiguity
	Merging Due to Collinearity between Camera and Primitives
	Convex Hulls Implicit Restrictions
	Non-expressible Objects
	Contextual Relations
	Small Objects Detection and Classification

	Possible Improvements
	Runtime
	Machine Learning Models

	Conclusion

	List of Acronyms
	Bibliography

