
Christian Burghard, BSc

Model-based Testing of Measurement Devices
Using a Domain-specific Modelling Language

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Telematik

submitted to

Graz University of Technology

Supervisor

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Bernhard Aichernig

Institute of Software Technology

Graz, April 2018

Affidavit

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to tugrazonline is identical to the present master‘s thesis.

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in tu-
grazonline hochgeladene Textdokument ist mit der vorliegenden Dissertation identisch.

Datum Unterschrift

ii

Abstract

The practice of model-based testing finds increasing application in industry, due to its
potential to cope with the ever rising complexity of technical systems. For this reason, the
AVL List GmbH is introducing a model-based testing methodology for the application
to its portfolio of automotive measurement devices. In a previous project by AVL, the
Graz University of Technology and the Austrian Institute of Technology, a model-based
mutation testing approach has been developed. While this approach has been successfully
validated in terms of functionality, it was rejected by AVL’s test engineers as they deemed
its UML-based modelling front-end too difficult to use in their specific industrial setting.

In the thesis at hand, we examine the tool composition-, usability- and experience-related
reasons which have lead to the rejection of this modelling approach. We present a textual
domain-specific language which we specifically tailored to the sole purpose of modelling
AVL’s measurement device state machines. To ensure the intended improvement in the user
experience of the modelling formalism, we developed the language in close and frequent
collaboration with the test engineers. The resulting domain-specific language, called MDML,
turned out to be very easy to learn and to be able to efficiently encode measurement device
state machine models.

In conjunction with MDML, we further developed a dedicated modelling tool, based on the
well-known Eclipse-IDE. As we did with the language, we tailored this modelling tool to
our use case and we also enriched it with a number of features providing user guidance and
direct connection to AVL-internal data sources. Most importantly, we integrated a test case
generation toolchain which we built around the pre-existing MoMuT test case generator.
This toolchain involves a model transformation from MDML into object-oriented action
systems to serve as input for the generator. It further involves the concretion of MoMuT’s
abstract test case into executable test code.

Lastly, we show that the capabilities of our model-based testing methodology are at least
on-par with those of the previous UML-based one by means of a case study involving the
generation and execution of tests for one of AVL’s measurement devices.

Keywords: Model-Based Mutation Testing, Domain-Specific Language, State Machines,
UML vs. DSL, Test Case Generation, User Experience, Model Transformation, OOAS.

iii

Kurzfassung

Aufgrund ihrer Fähigkeit, die stetig wachsende Komplexität technischer Systeme be-
herrschbar zu machen, findet die Praxis des modellbasierten Testens zunehmende An-
wendung in der Industrie. Demzufolge führt die AVL List Gmbh eine modellbasierte
Testmethodik zur Anwendung auf ihr Portfolio an Messgeräten für den Automotivbereich
ein. Aus einem früheren Projekt der AVL, der Technischen Universität Graz und des Aus-
trian Institute of Technology ging ein modellbasierter Mutationstest-Ansatz hervor. Obwohl
sich dieser Ansatz aus funktionaler Sicht bewährte, wurde er von AVLs Testingenieuren
abgelehnt, da sie ihn in ihrem speziellen Umfeld als zu kompliziert empfanden.

In der vorliegenden Arbeit untersuchen wir die toolkompositionalitäts- usability- und er-
fahrungsbezogenen Gründe, die zu der Ablehnung des Modellierungsansatzes geführt haben.
Wir stellen eine domänenspezifische Sprache vor, die wir speziell darauf zugeschnitten
haben, die Zustandsmaschinen von AVL-Messgeräten zu modellieren. Um die angestrebte
Verbesserung der User Experience sicherzustellen, haben wir die Sprache in naher und
häufiger Zusammenarbeit mit den Testingenieuren entwickelt. Die daraus hervorgegangene
Sprache, genannt MDML, erwies sich als sehr leicht erlernbar und fähig, Zustandsmaschi-
nenmodelle von Messgeräten effizient auszudrücken.

Zusätzlich zu MDML haben wir, basierend auf der bekannten Eclipse IDE, ein spezial-
isiertes Modellierungstool entwickelt. So wie die Sprache haben wir auch das Tool auf
unseren Anwendungsfall zugeschnitten und es außerdem mit Fetures ergänzt, die die Be-
nutzerführung unterstützen sowie die direkte Kopplung mit AVL-internen Datenquellen
erlauben. Das wesentlichste Merkmal ist die integrierte Testfall-Generierungs-Toolkette,
die wir um den vorab vorhandenen Testfallgenerator MoMuT herum geschaffen haben.
Diese Toolkette beinhaltet eine Modelltransformation von MDML zu objektorientierten
Action-Systemen um Verwertbarkeit durch den Testfallgenerator herzustellen. Außerdem
beinhaltet sie die Konkretisierung von MoMuTs abstrakten Testfällen zu ausführbarem
Testcode.

Anhand einer Fallstudie zur Testfallgenerierung und -ausführung an einem der AVL-
Messgeräte zeigen wir letztendlich, dass unsere modellbasierte Testmethodik funktionell
zumindest gleichwertig zu der vorherigen UML-basierten Methodik ist.

Schlagworte: Modellbasiertes Mutationstesten, Domänenspezifische Sprache, Zustands-
maschinen, Vergleich UML zu DSL, Testfallgenerierung, User Experience, Modelltransfor-
mation, OOAS.

iv

Acknowledgements

This work would not have been possible without the support of a number of people whom
I would like to thank:

First of all, I want to thank my supervisor Prof. Bernhard K. Aichernig who, despite my
frequent disappearance into AVL-internal business, reliably helped me in navigating the
shallows of writing this thesis.

I would also like to thank Robert Korošec who constantly managed to keep the balance
between AVL’s business interests and my thesis-related needs. He always had an open ear
for me and is a personal role model of mine. My gratitude also goes to Gerald Stieglbauer for
providing me with an adequate learning curve throughout my work and for the occasional
push beyond my previous limitations.

Furthermore, I would like to thank the team of AVL’s systems engineering laboratory for
their tireless and eager support in technical questions and other “geeky” subjects. Special
thanks goes to Matthias Seidl who brought AVL’s measurement device testing initiative to
my attention in the first place.

Most of all, I want to thank my parents Gerlinde and Kurt for giving me the opportunity
for a good education and for being my lovely mom and dad.

Christian Burghard
Graz, April 4th, 2018

v

Contents

Abstract iii

List of Figures xi

Abbreviations xiii

1 Introduction 1
1.1 Motivation for Model-Based Testing . 1
1.2 Research Problem . 4
1.3 Research Projects . 5

1.3.1 TRUCONF . 5
1.3.2 DLUX . 5
1.3.3 MOGENTES . 6
1.3.4 TRUFAL . 6

1.4 Published Material . 6
1.5 Toolchain Overview . 7
1.6 Thesis Structure . 8

2 Preliminaries 9
2.1 Object-Oriented Action Systems . 9

2.1.1 Formal Structure . 9
2.1.2 Syntax Example . 11

2.2 Model-Based Mutation Testing . 12
2.2.1 Mutation Analysis . 12
2.2.2 Input-Output Conformance . 13
2.2.3 Test Case Synthesis . 14

3 A Measurement Device Modelling Language 15
3.1 Lessons Learned from the TRUFAL Project 15

3.1.1 Model Creation . 15
3.1.2 Test Case Generation . 18
3.1.3 Test Case Execution . 18

3.2 Motivation for a Domain-Specific Modelling Language 19
3.2.1 MDE Application versus MDE Introduction 19
3.2.2 Textual versus Graphical Notations 20
3.2.3 Choosing a Textual DSL . 21

3.3 Requirements for the Modelling Language 22
3.4 MDML Model Example: AVL740 . 25

3.4.1 Model Life Cycle . 26

vii

Contents

4 MDML Specification 29
4.1 Basic Model Structure . 29

4.1.1 Device . 29
4.1.2 State Variables . 30
4.1.3 Inputs . 30
4.1.4 Given Statements . 31
4.1.5 When Statements . 31
4.1.6 Then Statements . 32
4.1.7 Code Comments . 33
4.1.8 A Functioning Model . 33

4.2 Multidimensional Models . 34
4.2.1 Common Decision Tree Structures 36
4.2.2 Unordered Decision Trees . 37

4.3 Timed Behaviours . 38
4.4 Advanced Features . 39

4.4.1 Secondary Actions . 39
4.4.2 Last-Transitions . 40
4.4.3 Private State Variables . 41
4.4.4 Self-Transitions . 42
4.4.5 Annotations . 42

4.5 MDML Grammar . 43

5 An Eclipse-Based IDE for MDML 45
5.1 Requirements for an Eclipse-Based IDE . 46
5.2 Implementation Using the Xtext Framework 47

5.2.1 Domain-Specific Editor . 48
5.2.2 Code Generator . 48
5.2.3 Content Assist . 48
5.2.4 Model Validation . 48
5.2.5 Tooltips . 49
5.2.6 Quickfixes . 49

5.3 Device Knowledge Base Integration . 50
5.4 Model Zoo Integration . 51
5.5 Test Case Generator Integration . 52
5.6 User Experience Evaluation . 53

6 Model Transformation from MDML to OOAS 55
6.1 Code Generator Architecture . 56

6.1.1 Ecore Model . 57
6.2 Model Transformation Logic . 58

6.2.1 Notation . 58
6.2.2 Base Structure Strategy . 60
6.2.3 Type Enum Strategy . 60
6.2.4 Event Enum Strategy . 61
6.2.5 State Variable Strategy . 61
6.2.6 Last-Variable Strategy . 61

viii

Contents

6.2.7 Secondary Action Queue Strategy 62
6.2.8 Queue Secondary Action Strategy 62
6.2.9 Dequeue Secondary Action Strategy 63
6.2.10 Secondary Action Trigger Strategy 63
6.2.11 Changed-Observable Strategy . 64
6.2.12 State Variable Setter Strategy . 64
6.2.13 Tree Action Strategy . 66
6.2.14 Tree Strategy . 66
6.2.15 Primary Action Strategy . 69
6.2.16 Secondary Action Strategy . 70
6.2.17 Do-Od Block Strategy . 70

7 Test Case Generation with MoMuT 71
7.1 Tool Overview . 71

7.1.1 Generation 1: Enumerative Back-End 71
7.1.2 Generation 2: Symbolic Back-End 71
7.1.3 Generation 3: Search-Based Back-End 72

7.2 Mutation Operators . 73
7.3 Common Mutation Patterns . 74

7.3.1 Mutations on Equality Expressions 74
7.3.2 Mutations on List-Based Expressions 74
7.3.3 Mutations on other OOAS Elements 76

7.4 Abstract Test Cases . 77

8 Transformation from Abstract to Concrete Test Cases 79
8.1 The Test Automation Framework . 79
8.2 Transformation Schemes . 81

8.2.1 Concrete Device (AK-Commands) 81
8.2.2 Concrete Device (Simple) . 82
8.2.3 Device Abstraction Layer . 83

9 Case Study: AVL489 85
9.1 Experiment Setup . 85

9.1.1 AVL489 UML Model . 85
9.1.2 AVL489 MDML Model . 87
9.1.3 Test Case Generator . 90
9.1.4 System Architecture . 90
9.1.5 System Under Test . 91

9.2 Test Suite S (Shallow) . 92
9.2.1 Generation . 92
9.2.2 Execution . 94

9.3 Test Suite D (Deep) . 95
9.3.1 Generation . 95
9.3.2 Execution . 95

9.4 Test Suite F (Full) . 97
9.4.1 Changing the Code Generator . 97

ix

Contents

9.4.2 Generation . 98
9.4.3 Execution . 98

9.5 Results . 100
9.5.1 Gains . 101
9.5.2 Possibilities for Improvement . 101
9.5.3 Unsolved Problems . 102

10 Concluding Remarks 103
10.1 Related Work . 103

10.1.1 DSL-Based Test Case Generation Toolchains 103
10.1.2 CNL-Based Test Case Generation Toolchains 104
10.1.3 State Machine Representation in Textual Languages 105

10.2 Future Work . 106
10.2.1 Graphical Model Representation . 106
10.2.2 Test Execution and Evaluation . 107
10.2.3 Non-Functional Requirements . 107

10.3 Summary . 108
10.4 Conclusion . 109

Bibliography 111

x

List of Figures

1.1 The general model-based testing process, based on [103, p.3]. 1

1.2 An overview of the test case generation toolchain. 7

3.1 Preliminary state machine diagram of AVL489 [89, p.21]. 17

3.2 State machine diagram of AVL FuelExact PLU (AVL740), based on [19,
p.132]. 25

4.1 A UML state machine diagram of the fictional AVLDEMO model. 33

4.2 A UML state machine diagram of the multidimensional model example. . . 34

4.3 An example cascade of secondary actions. 40

5.1 A screenshot of the MDML IDE. 46

5.2 A screenshot of the new-file wizard which uses information from the DKB. 50

5.3 A screenshot of the model zoo import wizard. 51

5.4 A screenshot of the model submission wizard which starts the test case
generator. 52

5.5 The structure of the heuristic walkthroughs [97, p.649]. 53

6.1 Software architecture of the OOAS code generator. 56

6.2 Excerpt from the Ecore-based object model of MDML. 57

8.1 A simplified class diagram of the test fixture. 80

8.2 A simplified class diagram of the DAL test fixture. 83

9.1 Final UML class diagram representing the test interface of AVL489, created
during TRUFAL. 85

9.2 Final UML state machine diagram of AVL489, created during TRUFAL. . 86

9.3 System architecture of the experiment set-up. 90

xi

LIST OF FIGURES

9.4 Mutation coverage results for Test Suite S. Results for Test Suite D are
identical. 93

9.5 A teardown hiccup, as shown on the user interface of NUnit. 96

9.6 Mutation coverage results for test suite F. 99

9.7 Number of kills per SUT mutant and test suite. 100

10.1 The TRUCONF toolchain as envisioned during project inception. 106

xii

Abbreviations

AK Standardization of Exhaust Measurement
(Ger.: Standardisierung Abgasmesstechnik)

AIT Austrian Institute of Technology

BFS Breadth-First Search

CDH Configurable Device Handler

CNL Controlled Natural Language

DKB Device Knowledge Base

DSL Domain-specific Language

DSML Domain-specific Modelling Language

EBNF Extended Backus-Naur Form

EGPML Extensible General-Purpose Modelling Language

EMF Eclipse Modelling Framework

IDE Integrated Development Environment

IOCO Input-Output Conformance

IOTS Input-Output Transition System

LTS Labelled Transition System

MBE Model-based Engineering

MBT Model-based Testing

MBMT Model-based Mutation Testing

MDE Model-driven Engineering

MDML Measurement Device Modelling Language

NFR Non-functional Requirement

OOAS Object-oriented Action System

RRT Rapidly exploring Random Tree

SMT Satisfiability Modulo Theories

xiii

Abbreviations

SSoT Single Source of Truth

SUT System Under Test

SysML System Modelling Language

TAF Test Automation Framework

TBSimu Testbed Simulator

TFMS Testfactory Management Suite

TCT Test Case Transformator

UML Unified Modelling Language

VNC Virtual Network Computing

xiv

1 Introduction

1.1 Motivation for Model-Based Testing

Over the past decades, technical systems have exhibited a tremendous increase in complexity
and will most certainly continue to do so in the foreseeable future. If left unaddressed,
system complexity would eventually outgrow the capabilities of domain experts and of
the tools at their disposal [44]. In spite of this trend, system complexity must still remain
manageable to ensure product quality in a time- and cost-efficient manner. Model-driven
engineering1 (MDE) has established itself as a sustainable methodology to adequately
tackle this problem [70]. It takes the burden of rising complexity off the engineers’ shoulders
by having them interact with abstract system models rather than with concrete systems
directly. The information content within these models has been reduced to its very essence
so that the task of translation between the abstract problem domain and the concrete
implementation domain no longer has to be performed ad-hoc by the engineers.

Test Adapter

Requirements
Test Selection

Criteria

Abstract
Test Cases

Concrete
Test Cases

Test
Model

System
Under

Test

Test
Verdict

C
o

n
fo

rm
?

1

2

3

4 4

5

6 6

Test Case
Specifi-
cations

Figure 1.1: The general model-based testing process, based on [103, p.3].

1Also known as Model-based engineering (MBE)

1

1 Introduction

All these demands also fully apply to the process of system testing. As a sub-discipline of
MDE, model-based testing (MBT) is a wide research and development field, comprising a
vast amount of test derivation strategies which are applied to an equally vast amount of
model domains and applications [37, 103]. As varied as this field may be, the process of
model-based testing can in many cases be generalized to the form depicted in Figure 1.1,
comprising the following steps [103]:

1. The input of the model-based testing process is generally a set of requirements
which apply to the system under test (SUT). These requirements are compiled
into a test model which describes the SUT’s intended behaviour. This modelling
process is kept separate from the SUT’s implementation process. In this way, a
redundant specification is produced which has a lowered probability of sharing
common faults with the SUT. Pretschner and Philipps [84] have pointed out that
it would theoretically be possible to generate both the test cases and the system
under test from the same model or to extract the testing model from the SUT.
However, in both cases, the SUT would only be tested against itself which precludes
the generation of meaningful verdicts.

2. In order to test the requirement conformance of the SUT to the extent prescribed by
the overall test policy2, well-suited test selection criteria must be chosen to guide the
test case generation process. These criteria can be based on the structural coverage
of the model (e.g. of states, transitions, statements, conditions, paths or different
combinations thereof), on the coverage of previously defined requirements or data
spaces or on the exclusion of predefined faults. Generally, tests could also be selected
on a random basis or ad-hoc by a test engineer.

3. The test selection criteria are concretized into test case specifications. Depending
on the criterion, these specifications include the coverage of a concrete set of states,
transitions, requirements, data values, faults, etc.

4. A set of test cases - also known as a test suite - is generated from the test model and
the test case specifications. Note that generated test cases and specifications generally
exhibit an m : n relationship. This means that one test case can cover multiple test
case specifications and one test case specification can be covered by multiple test
cases. A test suite of high quality will cover a high number of test case specifications
with a low number of test cases. It is possible that the test suite contains no test
case which covers a certain specification. This can be due to the specification being
unfulfillable in principle which calls for the revision of the requirements and the test
model. Alternatively, the problem of finding a test case for this particular specification
could be computationally too expensive to solve.

5. Per definition [94, p.132], a model always constitutes an abstract representation of
the original, merely including a limited amount of information. As yet, the generated
test cases still reside on the high abstraction level of the test model. To be executable
against the SUT, they must be transformed into concrete test cases which include
the previously abstracted information - e.g. technical specifics of the SUT or the
test environment which are of no direct relevance to the test selection criteria.
Alternatively, the abstract test cases are forwarded directly to the test adapter which

2“A high-level document describing the principles, approach and major objectives of the organization
regarding testing.”[50, p.61]

2

1.1 Motivation for Model-Based Testing

performs the concretion on-the-fly during test case execution.
6. The test adapter instruments the SUT to enable the execution of test cases. Depending

on the nature of the SUT, the test adapter can be of a physical or purely virtual
nature. Although the test execution process can be automated in many cases, the test
adapter can also involve partial or exclusive human interaction (e.g. in the case of a
test driver on a vehicle testbed). Each test case is executed against the system under
test with the intent of falsifying the assumption that the SUT conforms to the test
model. If the SUT passes all test cases of the test suite, this falsification has failed,
thereby increasing confidence in the conformance of the SUT to the test model. As
its end product, the model-based testing process yields a test verdict which includes
information about passed and failed test cases and perhaps detailed failure reports.
If a fault-based test selection strategy has been chosen, the test verdict also allows
to reason about the absence of certain faults within the SUT.

The arguments for model-based testing boil down to a few key advantages: Through
abstraction and elimination of redundancy, the effort to create and maintain a test suite
for a given system is greatly reduced. It is generally easier to define the components of a
complex system than defining a representative set of system traces. A localized change in
a system specification can easily translate to numerous changes in the corresponding test
suite. The manual application of these changes is a time-consuming (and therefore costly)
and very error-prone process. However, one change in the specification will in most cases
only result in a single change in a test model if the abstraction level is well-chosen. Through
the application of model-based testing tools, the issue of test coverage is effectively reduced
to the question of model completeness, the chosen coverage metric and the quality of the
test case generation algorithm. A well-designed tool will eliminate the need for ad-hoc
coverage analysis and provide the test engineer with a detailed coverage report of the test
suite.

Nevertheless, the application of model-based testing also requires a distinct skill set on the
test engineers’ part - particularly, the knowledge of modelling notations [37]. Minimizing
the required skill for the application of MBT (or MDE in general) means minimizing
the semantic gap between the the test engineers’ mental understanding of the problem
domain and the modelling formalism at hand [97]. Over the past two decades, two schools
of thought have emerged on how this minimization can be achieved [44, 70]:

Extensible general-purpose modelling languages (EGPMLs) are domain-independent but
offer meta-modelling functionalities which allow the modellers to tailor the modelling
notation to their specific problem domain. The prime example of such a language is the
Unified Modelling Language (UML) which has become a de-facto standard for industrial
applications [72]. In a survey on model-based testing approaches performed by Dias Neto
et al. [37] in 2007, about one in four surveyed approaches was based on UML. Due to its
high prevalence and standardization [48], UML has the advantage to be understandable to
a large number of engineers across different application domains [44].

A fundamentally different approach is the creation of domain-specific languages (DSLs)
[60, 44, 34] which are engineered from scratch to fit the individual requirements of their
user bases and application domains. Such application domains can reach from functional
and non-functional software testing [87, 25] over automotive battery development [82] to

3

1 Introduction

home automation [55], landscape dynamics [42] and marine biology [58], to name a few.
Compared to EGPMLs, DSLs tend to require a higher effort for language and tool design
and maintenance but offer the possibility to reduce the semantic gap to near-zero.

1.2 Research Problem

The AVL List GmbH is the leading developer of instrumentation and test systems for
automotive applications and supplies companies in the automotive industry all over the
world. Such instrumentation and test systems include testbeds for engines, powertrains,
batteries, inverters, chassis and e-motors. All testbed types are complex systems of systems
which include a certain set of measurement devices, specific to their respective application
and customer needs.

In the recent past, AVL has made an effort to apply model-based testing methods to its
measurement device portfolio. In cooperation with the Austrian Institute of Technology
and the Graz University of Technology, a model-based mutation testing method [6, 56, 18]
has been developed to facilitate the integration testing process of individual measurement
devices into the testbed control system. While the testing method has been verified,
the initial industrialization effort failed due to the poor reception of the corresponding
modelling formalism.

In this thesis, we present a domain-specific modelling language (DSML) which we created
as a front-end formalism for the previously existing test case generator to further the
industrializability of the model-based testing approach. We tailored this DSML specifically
to AVL’s application domain. We developed it in close and frequent collaboration with its
intended user base to ensure an appropriate learning curve through intuitive understand-
ability, which in turn increased its user acceptance. Moreover, we integrated the language
into a specialized tool environment and incorporated it into the test case generation
toolchain. To reflect its domain-specific nature, we named the language “Measurement
Device Modelling Language” (MDML).

4

1.3 Research Projects

1.3 Research Projects

The work presented in this thesis was conducted as part of - or influenced by - a series of
different research projects. Specifically, the author was involved in the projects TRUCONF
and DLUX, building on ground work laid in the MOGENTES and TRUFAL projects. All
of these projects are described below:

1.3.1 TRUCONF

TRUst via COst function driven model based test case generation for Non-
Functional properties of systems of systems3 (2014-2018)
This recent research project was conducted by the Austrian Institute of Technology, AVL
and the Graz University of Technology. It focused on increasing the ease of functional
testing through the development and application of easily accessible modelling languages,
as well as on the development of testing methodologies for non-functional properties of
complex systems. The automated integration testing process of automotive measurement
devices was chosen as a use case of this project, primarily focusing on the modelling
language aspect. The work presented in this thesis was mostly conducted as part of this
use case. The development of a non-functional testing methodology for load data of an
automotive web-service was chosen as another use case for the project. More details on
this use case can be found in Section 10.2.3. The work on this project was funded by the
Austrian Federal Ministry of Transport, Innovation and Technology under the program
“ICT of the Future”.

1.3.2 DLUX

Domain-specific Language User eXperience4 (2017-2018)
This project was started during the later phases of TRUCONF by AVL and the Vienna
University of Economics and Business. It focused on the development of empirical methods
to assess the user experience of software tools. These methods were applied to different
in-house development tools within AVL. The modelling environment for MDML was chosen
as one such use case. Some parts of this work - especially those described in Chapter 5
- were conducted as part of the DLUX project. Another use case of DLUX concerned
itself with a graphical state machine editor which was used within AVL’s measurement
device development department. The work on this project was funded by the Austrian
Federal Ministry of Transport, Innovation and Technology under the program “ICT of the
Future”.

3http://truconf.ist.tugraz.at/
4https://dlux.wu.ac.at/

5

1 Introduction

1.3.3 MOGENTES

MOdel-based GENeration of Tests for dependable Embedded Systems5

(2008-2011)
MOGENTES was a large multinational project within the 7th EU framework program.
Its goal was to improve the automatic testing and verification of embedded systems and
increase confidence in safety-relevant components. It saw the initial development of the
MoMuT::UML test case generator by the Austrian Institute of Technology and the Graz
University of Technology. AVL was not involved in this project.

1.3.4 TRUFAL

TRUst via failed FALsification of complex dependable systems using auto-
mated test case generation through model mutation6 (2011-2014)
This project constitutes the thematic link between the MOGENTES and TRUCONF
projects. It was conducted by the Austrian Institute of Technology, AVL, the Technical
University Graz and Thales. Here, model-based testing methodologies were first applied to
AVL’s measurement devices. The project resulted in a proven functional testing methodol-
ogy but nevertheless a failed industrialization thereof. This lead to the inception of the
following TRUCONF project. The project was funded by the Austrian Federal Ministry of
Transport, Innovation and Technology under the program FIT - IT - Trust in IT Systems

1.4 Published Material

During his work on this thesis, the author has been involved in the creation of two
thematically related papers:

Introducing MDML - A Domain-specific Modelling Language for Automotive
Measurement Devices
This paper gives a coarse overview of the contents provided in Chapter 3 as well as selected
information from the Chapters 4 and 5. It was co-written with Gerald Stieglbauer and
Robert Korošec and presented by the author of this thesis at the International Workshop on
Digital Eco-Systems co-located with the 28th International Conference on Testing Software
and Systems (ICTSS) 2016 in Graz, Austria [28].

A Daily Dose of DSL - MDE Micro Injections in Practice
This paper describes an agile method for the introduction of model-driven engineering
methodologies into an industrial environment. This introduction strategy - called MDE
micro injections - is illustrated by example of the TRUFAL, TRUCONF and DLUX
projects. The paper contains selected information from Chapters 3 and 5. Otherwise,
this paper is only tangentially related to the contents of this thesis as it deals with the
introduction of our MDE methodology rather than with the methodology itself. It was

5http://www.mogentes.eu/
6https://trufal.wordpress.com/

6

1.5 Toolchain Overview

co-written with Gerald Stieglbauer, Stefan Sobernig and Robert Korošec and presented
by the author of this thesis (filling in for Gerald Stieglbauer) at the 6th International
Conference on Model-Driven Engineering and Software Development MODELSWARD
2018 in Funchal, Portugal [97].

1.5 Toolchain Overview
M

D
M

L
Ed

it
o

r

MDML
Model

C
o

d
e

G
en

er
at

o
r

OOAS

Look-
Up

Table

Te
st

 C
as

e

G
e

n
e

ra
to

r

Abstract
Tests

Te
st

 C
as

e
 T

ra
n

sf
o

rm
at

o
r

Test
Suite

Device
KB

Device
Manual

Test Case Generation Toolchain

Test Engineer

Transfor-
mation

Schemes

Figure 1.2: An overview of the test case generation toolchain.

The test case generation toolchain developed in the TRUCONF project builds upon the
TRUFAL toolchain, described in detail by Auer [18]. The toolchain is depicted in Figure
1.2 and involves the following steps:

1. A test engineer creates an MDML model of a specific measurement device, using a
dedicated MDML editor. The content of the model is based on an informal source
of information - typically on the device handbook and, if available, development
artefacts. In some cases, information about the testing interface can be directly
imported from the device knowledge base (DKB), a database which is used and
maintained by the measurement device development department.

2. A code generator converts the MDML model into an object-oriented action system
(OOAS) [26, 99]. This representation encodes the functional contents of the MDML
model and serves as the input to the test case generator. Additionally, a lookup
table is created which serves as a link between the OOAS model elements and their
counterparts in the MDML model. The OOAS formalism is described in more detail
in Section 2.1.

3. The MoMuT::UML test case generator7 [64] reads the OOAS and generates a series
of abstract test sequences. The tool was initially designed to read input in the form
of UML [48] models but it also uses OOAS as a second input language.

7https://momut.org/

7

1 Introduction

4. The test case transformator reads the abstract test sequences and compiles them
into a test suite. This test suite is a valid C# class and can be incorporated into
AVL’s test automation framework (TAF). The transformation to C# code is guided
by a purpose-specific transformation scheme, which is selected by the test engineer.
Information from the original MDML model (such as element names) can be easily
retrieved via the previously generated lookup table.

5. The generated test suite is manually incorporated into the TAF. Automation of this
and subsequent steps goes beyond the scope of the TRUCONF project and will be
subject of future work.

6. Once incorporated, the TAF provides the necessary infrastructure to run the test
suite on the corresponding measurement device.

1.6 Thesis Structure

The rest of this thesis is structured as follows: Chapter 2 provides an overview of the
underlying concepts of object-oriented action systems and model-based mutation testing.
Chapter 3 describes the lessons learned over the course of the TRUFAL project with
focus on relevance to TRUCONF. It further describes the motivation for the use of a
DSML and elaborates on concrete language requirements. It concludes with an example
MDML model of a measurement device. The Chapters 4-8 roughly mirror the toolchain
elements described above. Chapter 4 contains a full language specification of MDML with
a focus on practical usage. Chapter 5 describes the Eclipse8-based integrated development
environment (IDE) which has been developed in parallel with the language and serves as a
user front-end. Chapter 6 states transformation rules between MDML and OOAS elements,
resulting in a formal semantics for MDML. Chapter 7 describes the test case generation
process with MoMuT. It focuses on the relevant mutation operators and describes the
resulting fault modes in the device models. The quality of the generated test suites is
examined in terms of mutation coverage. It also gives examples of the generated abstract
test sequences. Chapter 8 describes the transformation process from abstract test sequences
to a concrete test suite. It highlights the differences between various transformation schemes
and describes the structure of the finished test suite. In Chapter 9, a case study of the test
case generation process for the AVL489 Particle Counter [20] is presented. The capability
of our testing method to uncover faults is directly assessed and compared to the results of
the TRUFAL project. Finally, Chapter 10 gives an overview of related work with sections
focusing on model-based testing toolchains involving domain-specific languages and textual
state machine representations. The last section focuses on future work on our measurement
device testing methodology.

8http://www.eclipse.org/

8

2 Preliminaries

2.1 Object-Oriented Action Systems

Object-oriented action systems are based on the action system formalism which was
introduced by Back et al. [22, 23, 21] to describe distributed systems in a way that allows
the application of a refinement calculus. Later, Bonsangue et al. [26] introduced an object-
oriented version which can be translated back to simple action systems, thereby preserving
their beneficial properties. Several other modifications were made by Krenn et al. [63]
who used OOAS as an intermediate language in their MoMuT::UML toolchain [64]. These
modifications include the addition of a prioritized composition operator and complex data
types like maps or lists. Tiran [99] has provided a praxis-oriented manual for this version
of the language. Parts of the formalism resemble Dijkstra’s guarded command language
[38] and its definition relies on the weakest precondition calculus. Event-B1, created by
Abrial, is another well-known formal method which is based on action systems [2, 3].

2.1.1 Formal Structure

Since we use MoMuT in our work, we adopt a simplified version of the object-oriented
action system definition by Krenn et al. [63]:

AS =df |[var V : TV = IV

methods M1
N = M1

B; . . . ;Mm
N = Mm

B

actions A1
N = A1

B; . . . ;Aa
N = Aa

B

do X od

]|

A single action system AS consists of a vector of variables V with types TV and initial
values IV , a set of m methods and a set of a named actions. Each method consists of a
method name M i

N and a method body M i
B. Analogously, each named action consists of an

action name Aj
N and an action body Aj

B. Methods may have a return value, while actions
have none. Furthermore, named actions are guarded commands and can be marked as
controllable (ctr), observable (obs) or internal (no marking). This distinction will play
a significant role regarding the conformance relation of the mutation testing approach
described in Section 2.2. Since version 3.0 of MoMuT::UML, calls of methods and/or
named actions can be arbitrarily cascaded, with the exception that direct or indirect

1http://www.event-b.org/

9

2 Preliminaries

Action Notation wp(Action, q)
Sequential Cmp. A1;A2 wp(A1, wp(A2, q))
Nondeterministic Cmp. A1[]A2 wp(A1, q) ∧ wp(A2, q)
Prioritized Cmp. A1//A2 wp(A1, q)∧

(¬gd(A1)→ wp(A2, q))
Guarded Command requires c: A end c→ wp(A, q)
Assignment y := e q[y := e]
Skip skip q

Table 2.1: Semantics of basic actions [63, p.191].

recursive calls are forbidden. Lastly, the action system contains a do-od block which
is a variant of Dijkstra’s guarded iteration statement or “repetitive construct” [38]. X
denotes an arbitrary2 action or composition thereof. The do-od block will execute this
action until its execution guard gd(X) =df ¬wp(X, false) becomes false. Note that this
definition of OOAS lacks the aspects of system distribution and object-orientation since
the action systems presented in this work make no use of these features. Nevertheless, the
overall structure of an OOAS is still dictated by the requirement to accommodate different
objects:

OOAS =df |[types T

system SAB

]|

Each OOAS consists of two parts. The first part is the type definition block which holds
the set of type definitions T. These types are either derivations of basic data types like
integers or enumerations or complex types. However, at least one of the types is a class
definition C which is of the form of an action system AS as defined above: Furthermore,
each class definition relies on the type definition block for the definitions of variable and
method types. The second part of the OOAS is the system assembly block SAB. Generally,
the system assembly block consists of a composition of different classes, which represents
an analogue composition (and therefore prioritization) of their respective do-od blocks.
In our case, each OOAS only instantiates a single object and therefore contains only one
class definition.

As stated above, the semantics of object-oriented action systems is defined by the weakest
precondition calculus. Thus, Table 2.1 shows the semantics of the subset of basic actions
which are used in our work. Here, A, A1 and A2 denote other basic and/or named actions
which enables recursive definition. The symbol → denotes logical implication. In case of
the sequential composition, two actions are executed consecutively. Note that the preceding
action can potentially affect the enabledness guard of the succeeding action which, in
turn, can affect the guard of the whole composition. Therefore, the preceding action
must be precomputed in order to compute the guard of the composition. The sequential
composition operator ; exhibits the strongest binding of all composition operators. In case
of the nondeterministic composition, the system may choose to execute either A1 or A2,

2Most of the cited sources only discuss nondeterministic composition of actions.

10

2.1 Object-Oriented Action Systems

provided that both of them are enabled. While this can generally lead to nondeterministic
system behaviour, the OOAS in our use case3 will be set up in such a way that at most one
action will be enabled at a given time. If, on the other hand, several controllable actions are
composed in this way, the choice between these actions is up to the outside observer. The
nondeterministic composition operator [] binds weaker than the sequential composition
operator but stronger than the prioritized composition operator. The prioritized composition
behaves similarly to the nondeterministic composition but will always prefer A1 if it is
enabled. The prioritized composition operator // exhibits the weakest binding of all
composition operators. The guarded command is enabled when the action A is enabled
and the boolean condition c evaluates to true. The assignment action and the skip action
are always enabled.

2.1.2 Syntax Example

A short example of an OOAS, taken from Tiran [99, p.6] is shown below:

 types
 Greeter = autocons system
 |[
 var
 done : bool = false
 actions
 obs HelloWorld = requires done = false :
 done := true
 end

 do
 HelloWorld
 od
]|
 system
 Greeter

In this example, the lines 1 to 13 make up the action system definition of the class
Greeter, which is instantiated in the system definition block in lines 14 to 15. The keyword
autocons denotes that a single instance of this class is created at system start. Its variable
definition block is introduced by the keyword var and contains a single variable done of
type bool and initial value false. The variable definition block would generally be followed
by the method definition block (denoted by the keyword methods) which is absent in this
example. The action definition block (denoted by the keyword actions) contains a single
observable action named HelloWorld which is also included in the do-od block. When the
system Greeter is started, HelloWorld is enabled since done is initially false. Upon its first
execution, the action sets done to true. The system terminates after the first iteration,
since the execution guard of HelloWorld now evaluates to false. More information about
this example and object-oriented action systems in general can be found in [99].

3Discounting mutated systems.

11

2 Preliminaries

2.2 Model-Based Mutation Testing

Model-based mutation testing [5] is a powerful testing methodology. It is fault-based, which
means that it is able to detect - and therefore guarantee the absence of defined sets of
faults. Depending on the nature of these faults, it is able to subsume a number of different
test coverage criteria [76]. Model-based mutation testing arose from the combination of
model-based testing (described in Section 1.1) with mutation analysis.

2.2.1 Mutation Analysis

Mutation analysis [35, 51] is a method to assess the quality of a given test suite by
testing its ability to distinguish faulty versions of a system - the so-called mutants - from
the correct system. Each mutant has been injected with a syntactic change (mutation),
generally resulting in deviant behaviour. If the mutation produces no observable difference
in behaviour, the mutant is said to be equivalent. A test is said to kill a mutant if it is
able to distinguish the mutant from the correct system. Therefore, equivalent mutants
can never be killed. The overall quality of the test suite is reflected by its mutation score
(ms):

ms =df
|Mkilled|
|M \Meq|

Here, M denotes the overall set of mutants, Mkilled ⊆M denotes the subset of killed mutants
and Meq ⊆M denotes the subset of equivalent mutants. Informally, the mutation score
denotes the percentage of killable mutants which are killed by the test suite. Computing
the mutation score may be non-trivial since the equivalence of a mutant is generally
non-decidable.

The set of mutants is produced by applying a set of mutation operators to the original
system. Each mutation operator is a transformation pattern for a small syntactic change
and generally produces a number of mutants when applied to different parts of the original
system. Therefore, each of these simple or first-order mutants only implements a small
localized fault. However, a competent programmer is assumed to primarily implement
faults which do not exceed this magnitude. Also, while the test suite is only guaranteed to
detect these simple mutants (provided that they have been killed), it is assumed to also
detect the presence of more complex faults. These two assumptions were first formulated
by DeMillo et al. in the form of the competent programmer hypothesis [35, p.34] . . .

“Programmers have one great advantage that is almost never exploited: they
create programs that are close to being correct!”

. . . , as well as the coupling effect [35, p.35]:

“Test data that distinguishes all programs differing from a correct one by only
simple errors is so sensitive that it also implicitly distinguishes more complex
errors.”

12

2.2 Model-Based Mutation Testing

The coupling effect was empirically proven by Offutt and Jefferson [73] and formally proven
for mutations on boolean formulas by Kapoor [59]. On the other hand, Devroey et al. [36]
have efficiently performed mutation analysis with higher-order mutants which comprise
multiple different mutations at once.

An extensive survey of mutation analysis has been provided by Jia and Harman [54].

2.2.2 Input-Output Conformance

The systems which are examined in mutation analysis do not necessarily need to be concrete
implementations. Instead, mutation analysis has been applied to software specification
models relatively early on by Gopal and Budd [27, 77] although their method required a
working implementation, as well as a human tester who supplied the test cases.

Formally, the model domain used in our work can be described as an input-output transition
system (IOTS) [101]:

IOTS =df 〈S, L, T, s0〉

Here, S denotes a set of states, including the initial state s0. L = LI ∪ LO denotes
a set of labels, consisting of exclusive input labels LI and exclusive output labels LO.
T ⊆ S × (T ∪ {τ})× S is a set of transition relations from an origin state to a target state,
accompanied by a label. The label τ denotes an unobservable internal action. The distinction
of LO, LI and τ directly corresponds to controllable, observable and internal actions of
object-oriented action systems. Moreover, each IOTS is required to be input-enabled, which
means that it must be able to accept any input label in any state.

Tretmans [101] has laid important groundwork for the derivation of test cases from specifi-
cations, which are used to test concrete implementations. Arguably, his main contribution
is the definition of a number of implementation relations, defining the circumstances
under which a concrete implementation conforms to a more abstract specification. The
input-output conformance or ioco relation deserves special mention since it is utilized by
MoMuT::UML and therefore strongly related to our work:

I ioco S =df ∀σ ∈ Straces(S) : out(I after σ) ⊆ out(S after σ)

Here, I (“Implementation”) denotes an input-output transition system. S (“Specification”)
belongs to a superclass of IOTS called labelled transition system (LTS). Straces(S) denotes
the set of suspension traces of S - the set of all possible sequences of labels (L ∪ {δ})∗
which are allowed by the IOTS starting from its initial state. The symbol δ denotes the
absence of output and can be emitted arbitrarily often in states which have no outgoing
transitions labelled with LO. IOTS after σ denotes the state which is reached by the
IOTS after it has traversed the trace σ4. out(X) ⊆ LO ∪ {δ} denotes the set of possible
output symbols which the IOTS can produce in the state X, or {δ} if no outputs can be
produced. Informally speaking, after any suspension trace included in the specification S,

4For nondeterministic IOTS, this expression denotes the set of possible states which are reached after
σ.

13

2 Preliminaries

the implementation I can only exhibits outputs which are allowed by S. Note that the
distinction of input and output symbols and the requirement for input-enabledness do not
apply to a general LTS. This makes the ioco relation well-suited for the application in our
use case since it only takes traces of the specification into account and ignores traces which
include unspecified inputs. This allows ioco to describe conformance to a specification
which only partially covers the implementation. An in-depth description of ioco and other
conformance relations has been provided by Tretmans [101].

2.2.3 Test Case Synthesis

The central idea of model-based mutation testing (MBMT) is to synthesize test case with
the specific goal to kill all mutants of a given model-based specification, thereby maximizing
the mutation score of the test suite. Aichernig [5] has developed a general formal framework
which allows for the generation of test suites for an implementation, based on mutants
of a specification model, thereby combining model-based testing and mutation testing.
His theory is general in the sense that it can be applied using an arbitrary transitive
preorder relation. Generally, ioco is not a transitive relation but if the specification is
input-complete, ioco reduces to trace preorder, which is transitive [101, 105]:

I ≤tp S =df traces(I) ⊆ traces(S)

with traces(X) = Straces(X) ∩ L∗

However, the requirement of input-completeness negates the primary advantage of ioco of
supporting underspecification. One technique to reconcile both properties is called demonic
completion [102, 12] and is achieved by making all unassigned input labels point to a newly
introduced “undefined” state su ∈ S, from where all input labels perform self-loops. This
operation preserves both input-enabledness and underspecification, thereby allowing the
ioco relation to be incorporated into the general theory of model-based mutation testing.
This further allows for the test case generation to be reduced to a constraint satisfaction
problem concerning the reachability of a state in which the mutant exhibits a forbidden
output [5]. As a side-effect of this reachability analysis, a trace to the state in question is
discovered. This trace directly translates to a test case which kills the mutant. The solution
of this problem in practice has been demonstrated on several tools [10, 12] including Ulysses
[7], which served as a back-end for MoMuT::UML and used an enumerative exploration
strategy. A substantial amount of ongoing research focuses on the efficient solution of
this constraint satisfaction problem. To name a few examples, Jöbstl [56] has created a
symbolic refinement checker which reduced the runtime by up to 90% compared to Ulysses.
Later, Krenn and Schlick [62] have rebuilt MoMuT::UML to follow a search-based approach
instead of solving a constraint satisfaction problem and to exploit concurrency in mutant
exploration. These measures enabled the tool to support industrial-sized models. In a
similar, but unrelated effort, Devroey et al. [36] have achieved a significant performance
increase by combining all mutants into a featured mutant model which has the added
benefit of exploring higher-order mutants.

14

3 A Measurement Device Modelling
Language

Some parts of this chapter have already been published in DECOSYS 2016 [28], as well as
in MODELSWARD 2018 [97].

3.1 Lessons Learned from the TRUFAL Project

This chapter recapitulates the final results of TRUFAL, as they have been published by
Aichernig et al. [6] and/or presented in the TRUFAL evaluation report [61], with a strong
focus on the learned lessons which are applicable to the TRUCONF project. These lessons
can be divided into the categories of model creation, test case generation and test case
execution.

3.1.1 Model Creation

The AVL Particle Counter [20] - also known as AVL489 - was used as a benchmark
measurement device for the TRUFAL project. This device measures the concentration of
particles in vehicle exhaust through their scattering of laser light. AVL’s measurement
device development process produces no artefacts in the form of device models which
would be directly suitable for test case generation. Instead, the model of AVL489 had to
be reverse-engineered from documentation and/or specification documents. This reverse-
engineering process was experienced as tedious, time-consuming and error-prone. It is also
worth noting that large parts of the modelling work were conducted off-site by our project
partner, which introduced an additional time delay and the potential for communication
errors. Nonetheless, the reverse-engineering process also had the side-effect of familiarizing
the modellers with the measurement devices as well as furthering their understanding of
the test acceptance criteria [61].

Once a prototype model had been created, it underwent a considerable evolution before it
was suitable for test-case generation. An initial model could be created relatively fast but
it deviated from the intended behaviour in multiple corner cases. Each deviation required
several hours of investigation [61]. Many of these corner cases were not covered by the
reference material on which the model was based. Eventually, the mature model covered
all relevant corner cases, but severely lacked in readability and understandability.

15

3 A Measurement Device Modelling Language

Even with the the measurement device’s intended behaviour fully known, translating it
into UML became a challenge to the modellers, as illustrated by the examples in the rest of
this section. Some of them have already been addressed in our previous work [28, 97]. The
examples are further illustrated by the state machine diagram of the AVL489 measurement
device in Figure 3.1.

State machines of AVL measurement devices are generally multi-dimensional. This aspect
is translated to UML by subdividing the state machine diagram into several orthogonal
regions. These regions are strongly intertwined in terms of their behaviour and the modeller
had to take them all into account in order to understand the behaviour of the overall
model. Flattening the regions into a one-dimensional state machine was not attempted
due to the expected additional workload of recreating the model from scratch.

Furthermore, the model incorporated several internal variables to pass information between
the different regions. This aspect can be seen in Figure 3.1 in the form of the variable
Manual for the Control region (lower left), as well as the variable Busy for the Transition
region (right). The value of the variable Manual is set in the entry actions of the states in
the Control region and then used in transition guards of the Operating region (upper left).
The value of Busy is set in the Operating region, triggering a state change in the Transition
region. The usage of variables which need to directly mirror the state of a particular
region adds a high and, arguably, unnecessary level of complexity and redundancy to
the model. The modeller must be careful to always propagate all necessary information
between variables and regions. Furthermore, the purely textual representation of these
variables undermines the overall graphical nature of the model.

The semantics of UML regarding self-transitions did not mirror the intended behaviour.
When a self-transition (a transition originating and ending in the same state) is performed,
the input should be consumed but the exit and entry actions should not trigger. In the
final model, nested sub-machine states were used to model this behaviour. This aspect
could also have potentially been modelled using internal1 transitions, but according to the
initial definition of the modelling formalism to be used for the MoMuT front-end [65], they
were not part of the used UML subset. The distinction regarding self-transitions is absent
in the preliminary model depicted in Figure 3.1.

In addition to the state machine diagram shown in Figure 3.1, the UML model also needed
to incorporate several other diagrams to specify the test interface: a profile definition for
the used stereotypes, other class diagrams for signal definitions as well as test interface
specification and a small Object diagram to instantiate the system under test (SUT) and
the test environment.

At the conclusion of the TRUFAL project, it was proposed to directly create test models
as part of the measurement device engineering process instead of having them reverse-
engineered by the users. However, this goal has since been relativized, since using the same
model both for engineering and testing of the SUT has implications which are detrimental
to our use case. Pretschner and Phillips [84] have pointed out that such a setup would
rather serve as a test to the model transformation toolchain itself, since the test suite will be

1Note that the definition of the word “internal” in the UML standard [48] does not correspond to the
one established in Sections 2.1-2.2 and used in the rest of this work.

16

3.1 Lessons Learned from the TRUFAL Project

F
ig

u
re

3.
1:

P
re

li
m

in
a
ry

st
a
te

m
a
ch

in
e

d
ia

g
ra

m
o
f

A
V

L
4
8
9

[8
9
,

p
.2

1
].

17

3 A Measurement Device Modelling Language

effectively blind to all errors present in the model. While an existing single source of truth
(SSoT) can be used to retrieve the test interface definition, the behavioural model must be
a redundant human-made system interpretation to uphold the four-eyes principle.

3.1.2 Test Case Generation

With the test model in place, several test case generation trial runs were performed. During
these trial runs, three different test-suites were generated: one test suite (henceforth called
M) was generated by a computationally expensive mutation-based algorithm. The second
one (R) was randomly generated. The third one (C) was a combined test suite with a
number of random test cases and additional mutation-based test cases to cover remaining
mutants. Test suite C was deemed the most effective in the a-priori evaluation, since it
achieved the highest mutation score (81,25%) with the lowest number of test cases (57).
The generation of the test suites roughly took 44h, 2h and 68h2, respectively. Though
slightly longer than expected, this result was acceptable since test case generation could
be performed over the course of a weekend without human interaction and the process did
not have to be repeated very often. Nevertheless, for the test suites M and C, more than
60% of this time was spent checking equivalent mutants. The trial runs were performed on
a computer with two 6-core Intel Xeon processors with 3.47 GHz and 190 GB of RAM,
which is far above the system specifications of standard-issue hardware within AVL.

3.1.3 Test Case Execution

In addition to the a-priori evaluation summarized above, all test suites were applied to a
set of faulty simulation models of the AVL Particle Counter to assess their actual ability
to uncover faults. The test suite R was deemed the most ineffective, since it exhibited
the highest execution time of 1h 36min, as well as the lowest SUT mutation score3 of
62.5%. Both M and C had execution times of 29 minutes and SUT mutation scores of
75% and 81.25%, respectively. In any case, the execution times of the test suites were a
significant improvement over previously used testing methodologies within AVL. Combined
with the results from the previous section, this makes test suite C (combined random and
mutation-based) the most effective one overall.

Further details on the generation and evaluation of the test suites M, R and C are included
in the corresponding paper by Aichernig et al. [6], as well as in Chapter 9 of this work,
where test suites generated by the TRUCONF toolchain are evaluated against the same
set of SUT faults.

2Generation times for M and C are not comparable due to different exploration depths. Both of them
took advantage of 21 concurrent worker threads.

3Mutation score in terms of killed SUT mutants

18

3.2 Motivation for a Domain-Specific Modelling Language

3.2 Motivation for a Domain-Specific Modelling
Language

3.2.1 MDE Application versus MDE Introduction

Even though the overall model-based testing methodology had been successfully verified,
the modelling formalism was not accepted by the test engineers. Some of the reasons for this
rejection have already been stated in Section 3.1.1. However, we argue that these previously
mentioned difficulties are symptoms of a deeper underlying reason. To understand this
reason, we examine why UML was chosen as the modelling formalism for the MoMuT
front-end in the first place. The development of the MoMuT::UML test case generator
began during the MOGENTES project in which AVL was not involved. The objective of
this project was to improve the reliability of safety-critical systems through automated
generation of test cases. During an early project stage, the project participants had to
chose adequate modelling formalisms as front-ends for their test case generators. In a
report about the chosen modelling formalisms, Kroening [65, p.5] wrote:

“Instead of inventing new formalisms or forcing academic formalisms on the
engineers, we rely on the existing and widely accepted modelling languages
Simulink and UML. This approach allows to use the existing, mature tools
readily available on the market today. The domain experts at the industrial
partners participating in the MOGENTES project already have experience
with at least one of these modelling formalisms.”

In contrast to the initial users of MoMuT::UML, the test engineers at AVL had little or
no previous experience with the UML language or UML tools. In our previous work [97]
we used our experience from TRUFAL to argue that one of the root causes for a failed
adoption of MDE methodologies is a missing distinction between applying MDE in an
environment where it is already prevalent and introducing MDE in an environment where
it has never or scarcely been applied before. During the TRUFAL project, the initial effort
to introduce MDE methods had not been anticipated which caused a failure to adopt the
model-based testing methodology despite its obvious advantages. However, it is also worth
mentioning that extensive efforts to invent new modelling formalisms and/or to customize
the modelling tool were well beyond the scope of the TRUFAL project.

To overcome the various technical and social difficulties of an industrial MDE adoption
process, Stieglbauer and Rončević [98] proposed the application of a process called MDE
micro injections - the iterative design, development and introduction of MDE formalisms
and tools in close collaboration with the intended user base, executed in a series of many
short sprints.

Domain-specific languages are especially well suited for an introduction via MDE micro
injections since they generally have good chances of fulfilling their key characteristics, such
as customizability, adaptability and various user experience aspects like user guidance,
comprehensibility or adequate learning curves. A DSL can be tailored to the needs of
its users, which helps to facilitate (or, in the best case, eliminate) their task of mentally

19

3 A Measurement Device Modelling Language

mapping the semantics of the application domain to the semantics of the model domain
[60]. In our previous paper [97], we further detailed the application of MDE micro injections
as our means to introduce the MDML language and modelling tool in the AVL Test Center
over the course of the TRUCONF project.

3.2.2 Textual versus Graphical Notations

The debate about the merits of graphical languages in comparison to textual ones has been
going on since at least three decades. While results vary greatly over different problem
domains [33, 46], the notion that both formalism types have their own complementary
strengths and weaknesses has long been prevalent [83, 34]. While the two initially mentioned
studies concluded in strong superiority of graphical and textual notations, respectively,
recent eye tracking studies on UML diagrams vs. natural language [53], as well as a
requirement modelling language with both textual and graphical representations [92] have
found no significant difference between graphical and textual notations in terms of accuracy
(efficiency in conveying the correct information). The wide variety of conclusions over
different application domains suggests that the question about the merits of textual and
graphical languages is not a trivial one and cannot be categorically answered, even with
respect to concrete characteristics, such as accuracy or structural clarity.

Before we state the concrete reasons for our choice of modelling formalism, we present some
arguments for both graphical and textual notations. Dejanović et al. [34] have compiled a
list of advantages and disadvantages of both notation forms, based on their experience. We
present a selection of these arguments, comment on some of them from our own experience
and make some additional references to the studies mentioned above.

Arguments for Graphical Notations

Structural Clarity: Graphical languages seem to be better suited to convey static struc-
tural information about a model. This proposition is largely consistent with our own
experience with measurement device state machine diagrams. While not categorically
supported by Heijstek et al. [53], they concluded that diagrams can provide a good
first impression of a model’s structure.

Easy Navigation: Graphical editors tend to allow more navigational freedom, in terms
of zooming and panning. Some text editors allow folding of specific text portions
and navigation via a model outline while others are limited to scrolling. It is also
generally easier to maximize, minimize or hide parts of the model.

Appropriate Learning Curve: Dejanović et al. make the claim that graphical languages
are easier to learn, based on the assumption that the graphical editor offers a visible
pallet of its model elements to the user and therefore allows for learning by trial and
error while the textual editor initially only shows a blank screen. However, we argue
that an intuitively comprehensible textual language, combined with well-designed
user guidance features (e.g. importable templates, tool-tips, quick-fixes, etc.) of the
editor can ensure an equally steep learning curve.

20

3.2 Motivation for a Domain-Specific Modelling Language

Arguments for Textual Notations

Familiarity: Graphical MDE methods have not been previously used at the AVL Test
Center. While the test engineers are not guaranteed to have a background in software
engineering, most of them have more experience with textual formalisms than with
graphical ones, which should make a textual language more attractive to them.

No Serialization: Textual languages require no serialization since they consist only of
a character string which can be directly saved to a file. This allows for the use of
version control systems like Git4, which is already in use at the AVL Test Center.
Graphical models, on the other hand, must be converted to character strings in
order to be saved to files. Depending on the serialization algorithm, this process may
be incompatible with automatic file merging algorithms as used by version control
systems, resulting in corrupted files.

Text Editors as Backup Tools: Simple text editors could be used as backup editing
tools if no dedicated tools are available. We also point out the related aspect that all
elements of a textual model are plainly accessible while some important elements of
the UML model created during the TRUFAL project were buried deep within the
menu hierarchy of the editor.

3.2.3 Choosing a Textual DSL

While all the previously mentioned factors impacted our use case to some degree, we
arrived at our decision by observing the habitual workflows of our test engineers. One
of them used a textual notation when designing his test cases with pen and paper. This
textual notation turned out to be similar to a behaviour-driven development [93] language
called Gherkin5 [107]. Gherkin describes a system through a set of scenarios written in a
subset of natural language. Each scenario reads like an English sentence, structured in the
Given-When-Then format. The keyword Given is followed by a statement which specifies
the scenario’s precondition. Statements introduced by the keyword When specify a trigger
action. The scenario definition ends with the keyword Then, followed by a postcondition
and/or the system’s reaction. Colombo et al. [31] have previously used Gherkin to model a
state machine representing a web application. They used the Given statement to encode
the current state of the system, the When statement to encode input symbols which trigger a
state transition and the Then statement to encode the target state and other postconditions,
if necessary. When applied to our use case, a single scenario in a measurement device
model would look like this:

 Scenario: Switch from Standby to Measurement
 Given the OperatingState is Standby
 And the TransitionState is Ready
 And the ControlState is Remote
 When the command SMES is received
 Then the OperatingState switches to Measurement
 And the TransitionState switches to Busy.

4https://git-scm.com/
5https://cucumber.io/docs/reference

21

3 A Measurement Device Modelling Language

We decided to follow the same general approach as Colombo et al. regarding the application
of the Given-When-Then structure to encode state machines and used Gherkin as a baseline
for the development of MDML.

To develop the language prototype in parallel with the editor prototype, we used a DSL
framework for Eclipse called Xtext6 [108]. This framework turned out to be well-suited to
provide the test engineers with rapid prototypes of both the language and the editor on a
regular basis, as prescribed by the MDE micro injection process. More information about
the implementation of our dedicated MDML editor can be found in Section 5.2.

Although we chose to follow a purely textual approach for the time being, the idea to
incorporate additional graphical model views and thereby combining the best aspects
of both worlds soon took shape. We expect this measure to significantly improve the
structural clarity of our model representation for the reasons outlined in Section 3.2.2.
Such graphical views could be created using compatible Eclipse frameworks such as Sirius7

or by customizing the existing UML modelling environment for Eclipse, called Papyrus8.

3.3 Requirements for the Modelling Language

This section contains a list of requirements for MDML, as we have stated them at the
beginning of the TRUCONF project. Each requirement is enclosed in quotation marks
and followed by a short statement on its fulfilment at the time of project conclusion. The
requirements 1, 6 and 7 have already been addressed in our previous work [28].

1. “The modelling language has to provide an efficient way to create device models in a
compact form.”

Since MDML is textual, all model features are plainly visible and accessible. The
language design provides numerous degrees of freedom in terms of model structure and
allows the user to choose the most appropriate alternative. The size of a preliminary
model rarely exceeds one screen page in the dedicated IDE (see Chapter 5).

2. “The modelling language has to be composed of a textual and a graphical represen-
tation. The textual representation facilitates the editing of model details while the
graphical representation makes it easy to get an overview of the model. The graphical
representation also has to be editable.”

At the time of this work, no industrializable version of a graphical representation has
been created yet. A first attempt at a visualization concept for MDML has been made
by Altenhuber [16] who studied the impact of non-editable graphical visualizations
on the understandability of otherwise textual models. With minimal cooperation
by the author, he created several different visualizations for MDML, including a
flattened state machine representation, separate state diagrams for individual state

6https://www.eclipse.org/Xtext/
7http://www.eclipse.org/sirius/
8http://www.eclipse.org/papyrus/

22

3.3 Requirements for the Modelling Language

dimensions as well as interactive explorative views. A series of interviews with AVL
test engineers showed a slight preference for the former two visualization methods
as well as the importance of offering different visualization options according to the
individual user’s needs. While Altenhuber’s study laid important groundwork for a
visualization of MDML models, more work is needed to improve the visualization
concept according to the test engineers’ varied feedback and to create an industrial-
izable implementation. This, however, goes beyond the scope of this thesis.

3. “The modelling language has to be of a modular structure so that the individual
devices can be modelled individually (and possibly be composed of several modules)
and then combined to create test cases for parallel running measurement devices on
one PUMA system.”

The idea of composing device models of several interacting parts has eventually been
dropped. Passing the state variables from one module to another made the language
feel too much like a programming language and less like a black-box specification,
which would contradict requirement 6. Currently, the language is also not able to
describe any kind of inheritance hierarchy between models.

4. “The semantic of the modelling language has to be clearly defined, especially regarding
possible parallel executions and priority of individual statements over others.”

The model transformation from MDML to object-oriented action systems (OOAS)
implicitly fulfils this requirement. OOAS has a clearly defined semantics which is
described in Section 2.1, as well as in [26, 99]. By relating all language elements to
OOAS elements, as described in Chapter 6, the semantics of MDML is clearly defined.
The language has been especially designed to exclude prioritization or conflicting
statements. This can lead to a slightly increased model complexity but it also spares
the user the effort to learn potentially complicated precedence rules similar to the
ones applying to UML state machine diagrams [48]. See Sections 4.1.5 and 4.2 for
concrete examples of this paradigm.

5. “The modelling language should be iteratively developed in close collaboration with
its final users.”

The language design for MDML was formally conducted from January to September
2015. During this time period, the language has been iteratively developed in close
collaboration with test engineers and domain experts. After several prototypes, we
arrived at a design which satisfied the expectations of the end users. This process
followed the idea of introducing the modelling method to its end users in the form of
MBE micro injections, as suggested by Stieglbauer and Rončević [98]. We thoroughly
described the application of MDE micro injections to our use case in [97].

6. “The modelling language has to be intuitively understandable to their users (e.g.
testing engineers) who do not necessarily have experience in software engineering. For

23

3 A Measurement Device Modelling Language

example, syntactic structures such as object.method(); should be avoided since
they are not intuitively understandable to non-software engineers.”

The set of operators and separators within the language syntax was kept to a
pragmatic minimum. Otherwise, the syntax is mainly comprised of meaningful
keywords. The intuitive understandability of MDML in practice has been informally
evaluated by the author during its design phase, as well as formally evaluated by our
project partners from the Vienna University of Economics and Business within the
DLUX project, which aims to improve the user experience of MDE tools within AVL.

7. “The modelling language has to support test case generation from partial device
models. The initial state must be present in the model. Every model trace originating
from the initial state should be available for testing.”

The system under test is related to the model via the ioco relation (see Section 2.2.2)
which restricts the required conformance of the SUT to only those traces which are
present in the model. Any additional traces, which might be implemented in the
SUT, are not examined.

8. “The modelling should be facilitated by a plugin for the Eclipse IDE.”

An Eclipse-based IDE has been developed and is described in Chapter 5. For IDE-
specific requirements see Section 5.1.

9. “The semantics of the modelling language should make it easy to convert it into UML
or SysML for compatibility with other models.”

The models can be structured according to the state normal form (see Section 4.2.1)
which groups all transitions by their originating states. This is analogous to the UML
state machine diagram notation where states are represented by boxes and transitions
are represented by outgoing arrows. This similarity facilitates bidirectional conversion
to both UML and SysML [49] state machine diagrams.

10. “Up to this point it has not been defined whether the modelling language should
provide means to express non-functional requirements, in addition to expressing the
required behaviour.”

The development of a general testing methodology for non-functional requirements has
eventually grown out-of-scope for the measurement device use case of the TRUCONF
project. However, the MDML language is able to model timed transitions and the
test environment imposes limits on the response times of commands sent to the
measurement device, both of which can arguably be classified as non-functional
requirements.

24

3.4 MDML Model Example: AVL740

System Error

Pause Busy
Pause

System Error

SFIF

Pause

Fill Fuel

Drain Fuel

Fill Water

Drain Water

Standby Busy

Standby

Venting Measurement

Emergency Stop
Reset

SFIW

Pause
auto

Pause
auto

SDRF SDRW

STBY

SVNT

STBY
auto

SMES

STBY
auto

Figure 3.2: State machine diagram of AVL FuelExact PLU (AVL740), based on [19, p.132].

3.4 MDML Model Example: AVL740

Having laid out all the necessary background and reasoning for the introduction of MDML,
we present a small preliminary model of the AVL FuelExact PLU measurement device
(also known as AVL740) which measures the fuel mass flow to a combustion engine while
simultaneously regulating the fuel temperature. This MDML model shall provide a first
impression of the modelling language before each language element is presented in detail
in Chapter 4. Later stages of the TRUCONF toolchain will also be explained by means
of this MDML model. The model was created from the information present in its official
product guide [19], which constitutes a common workflow for a test engineer. The product
guide offers a list of AK commands [57] which are used to control the device over Ethernet,
as well as an informal state machine diagram (Figure 3.2). The state machine diagram
was chosen as the primary information source with the command list as a backup. In this
diagram, the Operation and Transition state variables which were separated in the state
machine diagram of AVL489 (see Figure 3.1) have been folded into a one-dimensional
state machine. The Control state variable is absent from the diagram and will therefore be
ignored in the model. It is assumed that the device is in the state Remote at the beginning
of each test sequence. The representation of system errors and emergency stops has been
omitted. The remaining arrow pointing to the state configuration Pause/Busy is assumed
to originate in all other state configurations except Standby/Busy, FillFuel and FillWater
with the latter two having explicit transitions to Pause/Ready. All transitions with the
trigger “auto” are timed transitions. Since this is a preliminary device model and reliable
information about the time-outs of timed transitions tends to be difficult to come by, all
transition times in this model are assumptions made by the author. When C# test suites
are generated from an MDML model, all state variables and states must be mapped to

25

3 A Measurement Device Modelling Language

enumerations and enum symbols of the test automation framework object model. Lacking a
strict naming convention, their names cannot be automatically inferred and must therefore
be annotated in the MDML model. All states were annotated with their corresponding
enum symbols. For more information on the test automation framework and necessary
annotations, see Chapter 8, as well as Section 4.4.5 for the concrete annotation syntax.
The MDML model, which was based on this information, is presented on Page 27.

The first line identifies the model by device name and version number. Lines 3-12 contain
the definition of the state variable DeviceState. Each possible state has been annotated
by its corresponding enum symbol. The state variable definition ends with the definition
of its initial state (Pause). Lines 14-17 contain the definition of the state variable Status
which is structured in the same manner. Line 19 contains the definition of an input channel
UserAction, containing eight different AK commands which can be received by the device.
The rest of the model is structured as a decision tree. State transitions are performed,
based on the current values of the state variables DeviceState and Status, as well as the
received UserAction.

3.4.1 Model Life Cycle

Generally, fully consistent and complete information about the behaviour of a particular
measurement device is hard to obtain from the product guide alone. Information from
different sources has to be pieced together and reconciled with the intended behaviour.
This data inconsistency continues to be a persistent obstacle in the measurement device
testing process. The connection of the modelling environment to a single source of truth
SSoT can mitigate this problem to a certain degree (see Section 5.3 for an example). These
circumstances dictate a life cycle for measurement device models. The model starts as an
initial draft which is then continuously compared to a prototypical system under test. All
observed cases of non-conformance have to be evaluated and classified as either modelling
errors or SUT bugs. As previously stated in Section 3.1, UML-based device models exhibit
the same life cycle. Nonetheless, MDML aims to reduce the model editing effort to the
point of negligibility.

26

3.4 MDML Model Example: AVL740

 device AVL740 version 4.00 {
 // Definition of Operating states, annotated with corresponding C# enum symbols
 public statevar DeviceState {
 Pause(AVL740.States.Pause),
 Standby(AVL740.States.Standby),
 FillFuel(AVL740.States.Fill_Fuel),
 DrainFuel(AVL740.States.Drain_Fuel),
 FillWater(AVL740.States.Fill_Water),
 DrainWater(AVL740.States.Drain_Water),

 Venting(AVL740.States.Venting),
 Measurement(AVL740.States.Measurement)
 } = Pause;
 // Definition of Transition states, annotated with corresponding C# enum symbols
 public statevar Status {
 Ready(AVL740.TransitionStates.Ready),
 Busy(AVL740.TransitionStates.Busy)
 } = Ready;
 // Definition of AK commands which can be received by the device
 input UserAction {SPAU, STBY, SFIF, SDRF, SFIW, SDRW, SVNT, SMES};

 // Decision tree

 given Status = Ready {
 // Transitions between Operating states
 given DeviceState = Pause {
 when UserAction = STBY then DeviceState -> Standby and Status -> Busy;
 when UserAction = SFIF then DeviceState -> FillFuel;
 when UserAction = SDRF then DeviceState -> DrainFuel;
 when UserAction = SFIW then DeviceState -> FillWater;
 when UserAction = SDRW then DeviceState -> DrainWater;
 }
 given DeviceState = Standby {
 when UserAction = SVNT then DeviceState -> Venting;
 when UserAction = SMES then DeviceState -> Measurement;
 }
 given DeviceState = Venting when UserAction = STBY then DeviceState -> Standby;

 given DeviceState = Measurement when UserAction = STBY then DeviceState -> Standby;

 //Transitions to Pause
 given DeviceState in {FillFuel, DrainFuel} {
 when UserAction = SPAU then DeviceState -> Pause;
 }
 given DeviceState not in {FillFuel, DrainFuel} {
 when UserAction = SPAU then DeviceState -> Pause and Status -> Busy;
 }
 }

 // Return to Ready; Timeouts assumed
 given Status = Busy {
 given DeviceState = Pause when 10 sec elapsed then Status -> Ready;
 given DeviceState = Standby when 15 sec elapsed then Status -> Ready;
 }

 // Timed states; Timeouts assumed
 given DeviceState = Venting when 30 sec elapsed then DeviceState -> Standby
 and Status -> Ready;
 given DeviceState = Measurement when 30 sec elapsed then DeviceState -> Standby
 and Status -> Ready;
 given DeviceState = FillFuel when 30 sec elapsed then DeviceState -> Pause
 and Status -> Ready;
 given DeviceState = FillWater when 30 sec elapsed then DeviceState -> Pause
 and Status -> Ready;
 }

27

4 MDML Specification

Some parts of this chapter have already been published in DECOSYS 2016 [28].

This Chapter contains a thorough description of the MDML language with focus on
practical usage, as well as a full grammar. The description will initially focus on the most
basic language features necessary to produce a simple model. Thereafter, it expands on
multidimensionality and advanced language features. In some cases, parallels are drawn to
common programming languages (mainly those of the C family) to better illustrate certain
concepts.

4.1 Basic Model Structure

4.1.1 Device

Each MDML model encodes the description of a particular measurement device. The model
is framed by an all-encompassing block which represents a named device:

 device AVLDEMO {
 ...
 }

Currently, the parentheses serve a purely visual purpose: they make it easier to distinguish
a full MDML model from a mere MDML snippet. Optionally, the device can be annotated
with the firmware version number to distinguish between different model versions:

 device AVLDEMO version 1.00 {
 ...
 }

The content of a device can be roughly separated into a header and a body section although
they are not explicitly declared as such. The header section contains all declarations and
initializations in the form of state variable and input definitions. The body section is
composed of a hierarchy of given, when and then statements which describe the intended
behaviour of the device. As such, the body section can be thought of as a decision tree,
embedded in an implicit infinite loop. This decision tree determines the next state, based
on the current state and the current input.

29

4 MDML Specification

4.1.2 State Variables

The state variables define the state space of the device. Although all state machines
could possibly be described with only a single state variable [104], MDML was specifically
designed to handle multi-dimensional state machines.

Each state variable declaration begins with an access specifier:

public: If the state variable is declared public, its changes are considered to be visible to
the environment. Translated to an OOAS, a public state variable will propagate its
values via an observable action. This is the general case for state variables.

private: The value of the state variable is not visible to an outside observer. This is used
in special situations, as described in Section 4.4.3.

The access specifier is followed by the keyword statevar and the unique variable name. It
is followed by a list of all possible states of this state variable, enclosed in curly brackets.
The declaration ends with the assignment of an initial value, which must be one of the
states declared beforehand. The declaration is terminated by a semicolon. Consequently, a
state variable definition works similar to a combination of an enumeration type definition
(as they occur e.g. in languages of the C family) and an enumeration variable initialization.
In some cases, the declared states must receive annotations. For more information on this
matter, see Sections 4.4.5 and 8.2.

 public statevar DeviceState {Pause, Standby, Measurement} = Pause;

4.1.3 Inputs

An input event is a signal which can be received and processed by the device. As such, it
directly translates to a controllable action in OOAS. Input events are grouped into input
channels which help to keep the models more orderly. The definition of an input channel
roughly resembles the declaration segment of a state variable definition. It starts with
the keyword input, followed by the channel name and a list of possible input symbols,
enclosed in curly brackets. The declaration is terminated by a semicolon.

 input UserAction {STBY, SMES, SPAU};

Ideally, the communication over input events is synchronous, with input events being
processed at the same time at which they are issued. However, this hinges on the imple-
mentation of the underlying communication drivers and device firmware. As mentioned
before in the discussion about the ioco relation (Section 2.2.2), measurement devices are
input-output transition systems and accept any input in any state. Therefore, transitions
associated with undefined inputs must be ignored during test case generation.

30

4.1 Basic Model Structure

4.1.4 Given Statements

A given statement encodes a comparison expression (e.g. equality) on the value of a
specific state variable:

 given DeviceState = Pause ...

It defines an enabling condition for a specific portion of the decision tree. As such, it is
functionally equivalent to the condition in an if statement, as it is known from various
programming languages. As opposed to many popular programming languages, MDML
uses a single equals sign rather than a double equals sign as a relational operator since
value assignments are handled by the transition operator (->, see Section 4.1.6). A given

statement can be either directly followed by a when statement (see Section 4.1.5) or
by a block which allows multiple when statements and/or cascading with other given
statements:

 given DeviceState = Pause when ...
 given DeviceState = Standby {
 when ...
 when ...
 given ...
 }

Additionally, given statements can be formulated as inequality- and set-based conditions
on state variables. An exhaustive list of different types of expressions is given below:

 given DeviceState != Pause ...
 given DeviceState in {Pause, Standby} ...
 given DeviceState not in {Pause, Standby} ...

If a new state is added to the state variable DeviceState in the above example later on,
it will implicitly enable the given statements in Line 1 and 3 which can potentially lead
to unintended behaviour. Nevertheless, such negative expressions can still be useful since
they are more intuitively understandable than long inclusive lists.

4.1.5 When Statements

A typical when statement is composed of the keyword when, which is followed by an input
channel name, an equals sign and a specific input event from the range of the channel.

 when UserAction = SPAU ...

This statement makes the device react to an input event or other type of specified event
(see Sections 4.3, 4.4.1). In practice, many input events are only available in a specific
state or state configuration1. This is encoded by the position of the when statement in the
hierarchy of given statements which forms the decision tree. If a when statement is not
enclosed by any given statements it is enabled in all possible state configurations.

1The overall state of a state machine, consisting of the assigned states of all its state variables. Compare
with the UML specification [48, p.306].

31

4 MDML Specification

Additionally to the equality expression described above, when statements on input channels
can take various other shapes. An exhaustive list of them is given below:

 when UserAction != SPAU ...
 when UserAction in {SPAU, STBY} ...
 when UserAction not in {SPAU, STBY} ...
 when UserAction = any ...

An explanation of the previous code snippet, enumerated by line number:

1. This statement is triggered by all input events in the channel UserAction other than
SPAU.

2. This statement is triggered by the input events SPAU and STBY. The set of input
events cannot be empty.

3. This statement is triggered by all input events in channel UserAction other than
SPAU and STBY. The set of input events cannot be empty.

4. This statement is triggered by all input events in channel UserAction. If the device
contains only one channel, this statement encompasses all input events.

Separating the input events in different input channels can be useful when combined with
these features. Nevertheless, if a new input event gets added to the channel UserAction in
the above example later on, it will implicitly trigger statements in Line 1, 3 and 4, which
could potentially lead to unintended behaviour.

Note that a measurement devices must always behave deterministically. Therefore, it
is forbidden to have a specific input event handled multiple times in a specific state
configuration. This design choice was made to prevent the need for potentially confusing
precedence rules2, but it could also result in slightly longer and more redundant models.
If an input event would trigger two or more different when statements in a specific state
configuration, a Duplicate Path Error is reported.

4.1.6 Then Statements

A typical then statement describes the reaction of the device to an event. Most commonly,
this reaction is a state transition. A state transition is encoded by the keyword then,
followed by the name of the state variable, an arrow-shaped transition operator and the
name of the target state. A semicolon denotes that the current branch of the decision tree
is terminated and all subsequent statements are part of a different branch:

 ...then DeviceState -> Pause;

If the source state is identical to the target state, the state transition has no effect. Such a
transition is only meaningful if the enclosing given statements are enabled for a broader
state range which makes the identity implicit. Diagonal state transitions with several state
variables changing at once are described in Section 4.2.

2Contrast the UML state machine diagram semantics [48, pp.315-316], which incorporates precedence
relations for conflicting transitions.

32

4.1 Basic Model Structure

4.1.7 Code Comments

Before more complex language elements are described, the commenting syntax of MDML
needs to be addressed. MDML adopts its commenting syntax from C. Thus, it offers two
different comment styles, illustrated in the example below. Single-line comments begin
with the character string // and end at the next line break. In-line or block comments
begin with the character string /* and end with */. This style allows the comment to span
multiple lines and/or to be placed within code lines.

 given DeviceState = /*in-line comment*/ Standby { // single-line comment
 ...

4.1.8 A Functioning Model

Utilizing the previously described language elements in their simplest forms, it is now
possible to build a functioning model of a measurement device, as illustrated by the
fictitious example below. An equivalent UML state machine diagram of the model is given
in Figure 4.1.

 device AVLDEMO {
 public statevar DeviceState {Pause, Standby, Measurement} = Pause;
 input UserAction {STBY, SMES, SPAU};

 given DeviceState = Pause {
 when UserAction = STBY then DeviceState -> Standby;
 }
 given DeviceState = Standby {
 when UserAction = SPAU then DeviceState -> Pause;

 when UserAction = SMES then DeviceState -> Measurement;
 }
 given DeviceState = Measurement {
 when UserAction = SPAU then DeviceState -> Pause;
 }
 }

Figure 4.1: A UML state machine diagram of the fictional AVLDEMO model.

33

4 MDML Specification

4.2 Multidimensional Models

Most measurement devices within the AVL portfolio are multidimensional, which means
that they require more than one state variable. As stated above, it would be possible to
describe every state model with just one state variable. This is rarely done in practice since
this measure tends to produce a large number of states. The most common state variables
in AVL measurement devices, as well as their general behaviours are listed below:

DeviceState (Operating State): The “main” state variable which denotes the opera-
tion which is currently being performed by the device. Common states include Pause,
Standby and Measurement.

Status (Transition State): If a device needs to perform some internal mechanical action
(like e.g. opening and closing valves during the transition between Operating States),
it will not respond to any commands until this action is completed. This behaviour
is reflected in the Status state variable which contains the states Ready and Busy.
In some cases, a change of DeviceState will also result a change of Status to Busy.
While Status is Busy, the device cannot receive any commands. Status will later
revert back to Ready via a timed behaviour (see Section 4.3).

UserLevel (Control State): This state variable denotes whether the device receives its
commands remotely or by direct manual input. Like Status, it usually is a binary state
variable which contains the states Manual and Remote or some variation thereof.
While in the state Manual, the device can usually only receive the command to
switch to Remote.

If a then statement causes the change of two or more state variables, the keyword and is
used. The order of different state transitions concatenated by and only has an effect on
the model’s behaviour if secondary actions (see Section 4.4.1) are involved.

 ...then DeviceState -> Purging and Status -> Busy;

Note that the repeated assignment of a particular state variable within one then statement
is forbidden and results in a Contradictory State Transition Error.

With the above mentioned language elements, it is now possible to build a simple multidi-
mensional model, as exemplified below. A UML state machine diagram of the example
model is given in Figure 4.2.

Figure 4.2: A UML state machine diagram of the multidimensional model example.

34

4.2 Multidimensional Models

 device AVLDEMO {
 public statevar DeviceState {Pause, Standby} = Pause;
 public statevar UserLevel {Manual, Remote} = Remote;
 input UserAction {SPAU, SMES, SMAN, SREM};

 given UserLevel = Remote {
 when UserAction = SMAN then UserLevel -> Manual;

 given DeviceState = Pause {

 when UserAction = STBY then DeviceState -> Standby;
 }

 given DeviceState = Standby {
 when UserAction = SPAU then DeviceState -> Pause;
 }
 }

 given UserLevel = Manual {
 when UserAction = SREM then UserLevel -> Remote;
 }
 }

No measurement device within the AVL portfolio contains final states (states without any
outgoing transitions). The following model provides several examples of such unwanted
final states:

 device AVLDEMO {
 public statevar DeviceState {Pause, Standby, Measurement} = Pause;
 public statevar UserLevel {Manual, Remote} = Remote;
 input UserAction {SPAU, STBY, SMES};

 given UserLevel = Remote {
 given DeviceState = Pause {
 when UserAction = STBY then DeviceState -> Standby;
 }

 given DeviceState = Standby {
 when UserAction = SPAU then DeviceState -> Pause;
 when UserAction = SMES then DeviceState -> Measurement;
 }
 }
 }

For this model, the IDE would yield an Unhandled State Configuration Warning of the
following form:

This model contains unhandled state configurations:

Measurement/Remote

---/Manual

This warning message alerts the user to two unhandled state configurations:

1. The state configuration Measurement/Remote is unhandled. This is a problem, since
this state can be reached from the initial state.

2. None of the state configurations with UserLevel = Manual are handled. However,
this is a false positive, since there is no way to reach these configurations.

35

4 MDML Specification

Nevertheless, due to the properties of the ioco relation (see Section 2.2.2), models with
unhandled state configurations can still be used for the generation of meaningful test cases.
Each test sequence reaching an unhandled state configuration will simply terminate.

4.2.1 Common Decision Tree Structures

Our experience has shown that certain decision tree structure patterns tend to occur during
practical application. These patterns are by no means required model features and they
do not need to be implemented in the exact way described below. During the rest of this
section, it is assumed that the common state variables (DeviceState, Status, UserLevel)
are present and implemented as described in Section 4.2. The code example below reflects
the most common structure of a decision tree:

 given Status = Ready {
 given UserLevel = Remote {
 given DeviceState = Pause ...
 given DeviceState = Standby ...
 ... // given statements regarding DeviceState go here
 }
 given UserLevel = Manual {
 ... // handling of Manual state goes here
 }

 }
 given Status = Busy {
 ... // handling of Busy state goes here
 }

Note that the outermost level distinguishes by Status. If the device is Busy, all inputs tend
to be disabled an the Busy state is left via a timed behaviour (see Section 4.3). The second
layer distinguishes by UserLevel. The state Manual tends to only permit one particular
input which causes the device to switch to Remote. Most of the model code is usually
contained within the given block for the state configuration Ready/Remote where the
distinction by DeviceState is located. This distinction tends to assume one of the following
forms:

State Normal Form

 given DeviceState = Pause {
 when UserAction = STBY then DeviceState -> Standby;
 when UserAction = SMES then DeviceState -> Measurement;
 }
 given DeviceState = Standby {
 when UserAction = SPAU then DeviceState -> Pause;
 when UserAction = SMES then DeviceState -> Measurement;
 }
 given DeviceState = Measurement {

 when UserAction = SPAU then DeviceState -> Pause;
 when UserAction = STBY then DeviceState -> Standby;
 }

In the state normal form, all transitions are grouped by their originating DeviceState.
This normal form tends to be intuitively understandable and can also be easily related to

36

4.2 Multidimensional Models

corresponding UML state machine diagrams where states and transitions are represented
by boxes and outgoing arrows, respectively. Nevertheless, it tends to produce longer models
since transitions with the same trigger and target state still require full when and then

statements for each origin state.

Input Normal Form

 given DeviceState in {Standby, Measurement} {
 when UserAction = SPAU then DeviceState -> Pause;
 }
 given DeviceState in {Pause, Measurement} {
 when UserAction = STBY then DeviceState -> Standby;
 }
 given DeviceState in {Pause, Standby} {
 when UserAction = SMES then DeviceState -> Measurement;
 }

In the input normal form, all transitions are grouped by their input event and target state.
This implicitly assumes that input events and target states always correlate. The possible
origin states for each transition are defined as list expressions in the given statements.
This normal form makes an intuitive understanding of the model more difficult but it
tends to be significantly shorter and to contain less redundancy. It also allows for fast
modelling if the user obtains the underlying information from AVL’s official measurement
device manuals. These documents contain a list of possible commands which is structured
analogously to this normal form.

4.2.2 Unordered Decision Trees

It is generally advisable to create models with ordered decision trees. This means, for
example, that the outermost level of the tree exclusively distinguishes by the state variable
Status, the next level distinguishes by UserLevel and the innermost level exclusively distin-
guishes by DeviceState. Usually, this practice results in more intuitively understandable
models. However, in some cases it is reasonable to create models which depart from this
structure. From a purely functional point of view, this is never strictly necessary, but
it should be done to avoid redundancy within the model. For example, a hypothetical
measurement device contains a timed behaviour (see Section 4.3) in the state Measurement
which is activated regardless of the UserLevel being Remote or not. This situation would
warrant the following kind of decision tree:

 given DeviceState = Measurement {
 ... // timed behaviour goes here
 }

 given UserLevel = Remote {
 given DeviceState = Pause ...
 given DeviceState = Standby ...
 given DeviceState = Measurement ... // everything else goes here
 }

37

4 MDML Specification

The timed behaviour would be modelled in Line 2 which is enabled regardless of the value
of UserLevel. In this case, the device can act autonomously in a state configuration where it
cannot receive any commands from the user. All commands which are enabled in the state
configuration Remote/Measurement are modelled in Line 8. If the decision tree was well
ordered, the timed behaviour would have to be implemented twice, for the configurations
Manual/Measurement and for Remote/Measurement.

However, this freedom in decision tree structure also comes with several possibilities for
pitfalls. From a syntactical point of view, the following construct would be allowed:

 given DeviceState = Pause {
 given DeviceState = Standby {
 ...
 }
 }

Since both given statements are mutually exclusive, all statements within the inner bracket
are always disabled. If such constructs exist, an Infeasible Path Error is reported. However,
the following construct would be semantically correct and, under certain circumstances,
advisable:

 given DeviceState in {Pause, Standby} {
 when ...
 when ...
 given DeviceState = Standby {
 ...
 }
 }

4.3 Timed Behaviours

Nearly every measurement device within the AVL portfolio contains some sort of timed
behaviour. MDML is able to handle state transitions which occur after a specified time.
For example, the following when statement triggers after 3 seconds:

 when 3 sec elapsed then ...

Currently supported units of time are min, sec and ms. The timer starts running as soon
as a state configuration is reached which enables the timed behaviour. If the device changes
to a state configuration which disables the timed behaviour before it triggers, the timer is
aborted and resets. For instance, the timed behaviour in the following example will trigger
3 seconds after Flip1 and Flip2 have been received at least once. However, Flop1 can
abort the timer by resetting Switch1.

38

4.4 Advanced Features

 public statevar Switch1 {Off, On} = Off;
 public statevar Switch2 {Off, On} = Off;
 input UserAction {Flip1, Flip2, Flop1};

 when UserAction = Flip1 then Switch1 -> On;
 when UserAction = Flip2 then Switch2 -> On;
 when UserAction = Flop1 then Switch1 -> Off;

 given Switch1 = On {

 given Switch2 = On {
 when 3 sec elapsed then Switch1 -> Off and Switch2 -> Off;
 }
 }

It is important to note that a generated test will also yield a pass verdict if the system
under test exhibits the timed behaviour before the timer expires. There are currently no
mechanisms in place which assert that no transition has occurred before the specified
time.

Currently, there is no measurement device known to the author which would require two or
more concurrent timed behaviours. To keep the complexity of MDML models to a minimum,
this limitation is strictly enforced in the language. If two or more timed behaviours are
enabled in a specific state configuration, a Multiple Time Triggers Error is reported.

4.4 Advanced Features

4.4.1 Secondary Actions

In Section 4.2 it has been stated that state transitions which affect multiple state variables
are written as:

 ... then DeviceState -> Purge and Status -> Busy;

However, if a transition of one state variable into a specific state always results in a
transition of another state variable into a specific state, this can alternatively be written
as a secondary action:

 when DeviceState -> Purge then Status -> Busy;

These secondary actions can also include and statements and result in further state
transitions. Any direct or indirect multiple assignment of a state variable will result in
a Multiple Assignment Error. Cascades of secondary actions are evaluated breadth-first.
For example, consider a number of state variables Va, Vb, . . . , Vl which are interlinked by a
hierarchy of secondary actions. The transition of Va causes a transition of Vb and Vc, each
of which cause subsequent secondary actions on their own:

39

4 MDML Specification

 when Va -> Sa then Vb -> Sb and Vc -> Sc;
 when Vb -> Sb then Vd -> Sd and Ve -> Se;
 when Ve -> Se then Vh -> Sh;
 when Vh -> Sh then Vk -> Sk;
 when Vc -> Sc then Vf -> Sf and Vg -> Sg;
 when Vg -> Sg then Vi -> Si and Vj -> Sj;
 When Vi -> Si then Vl -> Sl;

Independently of the order of the individual when statements, the ensuing cascade of
secondary actions, depicted in Figure 4.3, would evaluate exactly in alphabetical order, due
to breadth-first traversal of the cascade. Knowledge of the evaluation order of secondary
actions is important if one considers placing them within given statements which can be
affected by previous transitions.

Va->Sa

Vb->Sb and Vc->Sc

Vd->Sd and Ve->Se Vf->Sf and Vg->Sg

Vi->Si and Vj->SjVh->Sh

Vk->Sk Vl->Sl

Figure 4.3: An example cascade of secondary actions.

4.4.2 Last-Transitions

Certain states behave in such a way that, after the operation associated with the state has
finished, the device returns to its previous state. In order to model this kind of behaviour,
MDML offers a very simple history in the form of the last keyword. A last-transition will
cause the specified state variable to return to its previous state. For instance, if the state
Measurement is entered from Pause in the following example, the state variable will return
to Pause. If the state is entered from Standby, it will return to Standby. As a result, the
word “last” is disallowed as a state name.

40

4.4 Advanced Features

 given DeviceState in {Pause, Standby} {
 when UserAction = SUMS then DeviceState -> Measurement;
 }
 given DeviceState = Measurement {
 when UserAction = SUME then DeviceState -> last;
 }

If a last-transition is entered repeatedly, the state variable will alternate between two
states. If a last-transition is entered from the initial state, it has no effect.

In order to keep the complexity of MDML models to a minimum, the state in which a
last-transition can occur should be as clearly defined as possible. If a then statement
containing a last-transition is enabled in more than one state of the specified state variable,
an Unclear Last-Transition Warning is reported. This is no impediment to the functionality
of the model but it greatly diminishes its understandability.

4.4.3 Private State Variables

Sometimes, looking at the observable state of a device is not enough to determine, what it
is going to do next. Last-transitions, for example, model a specific variety of this behaviour
and should be used if applicable. But as a general solution to this problem, MDML allows
the definition of private state variables. In the following example, the inputs SMES and
SUMS both cause the DeviceState to change to Measurement. But only when entered
via SMES, the DeviceState automatically reverts back to Standby. This behaviour is
modelled by introducing a private state variable. This, however, is a last resort because
adding an additional state variable can lead to the emergence of many meaningless state
configurations.

 public statevar DeviceState {Standby, Measurement} = Standby;
 private statevar TM {On, Off} = Off;
 input UserAction {STBY, SMES, SUMS};

 given DeviceState = Standby {
 when UserAction = SMES then DeviceState -> Measurement and TM -> On;
 when UserAction = SUMS then DeviceState -> Measurement and TM -> Off;
 }

 given DeviceState = Measurement {
 when UserAction = STBY then DeviceState -> Standby;
 given TM = On when 20 sec elapsed then DeviceState -> Standby;
 }

41

4 MDML Specification

4.4.4 Self-Transitions

It is common for measurement devices to accept inputs which do not alter the current
state. This behaviour can be expressed through the following construct:

 ... then DoNothing;

In our initial implementation, the system stayed quiescent when enacting the DoNothing

command (see δ, Section 2.2.2). There was no way to test whether the state configuration
actually remained unchanged. This changed when we made a last-minute alteration to our
algorithm which made self-transitions verifiable (see Section 9.4).

4.4.5 Annotations

In all currently known cases, input events and state transitions are mapped to method
calls of measurement device PageObjects in the test automation framework. These method
calls require parameters which can be annotated in the state- and input channel definition,
respectively.

 public statevar DeviceState {Standby(1), Purging(12)} = Standby;
 input UserAction {Standby, Purge(20,false)};

Here, the state Purging would be replaced by the state code 12 while the method Purge
would be called with an integer argument and a boolean argument. In the context of MDML,
this feature is merely an annotation and therefore completely optional. However, it might be
required by the testing environment, depending on the used test case transformation scheme.
The allowed types of parameters are integers, strings within double quotation marks, IDs
(a letter or underscore, followed by any number of letters, numbers or underscores) and
hierarchical IDs (An ID, followed by an arbitrary number of IDs, separated by periods).
For more information about annotations, we refer to the description of the various test
case transformation schemes in Chapter 8.

42

4.5 MDML Grammar

4.5 MDML Grammar

To conclude our description of MDML, we present a full grammar of the language in
extended Backus-Naur form (EBNF, [106]) in Table 4.1. Curly brackets signify the 0-to-
∞-fold occurrence of their contents while square brackets signify 0-to-1-fold occurrence.
Terminal symbols are enclosed by single quotation marks. The terminal rules ID, INT and
STRING are predefined in the Xtext framework. According to the Chomsky hierarchy, the
grammar of MDML can be classified as context-free since the left side of each production
rule consists of a single non-terminal while the right side consists of a non-empty string of
terminals and non-terminals [29].

Each device is composed of a header and a body section. Both header and body are not
explicitly syntactically marked but are distinguished by their different types of content.
The header resolves into a list of state variable definitions and input channel definitions
which can alternate in arbitrary order. To establish a connection between the grammar
of MDML and the formal considerations in the upcoming chapters, we define a series of
symbols which will be used later on. For example, the sets of all state variables and input
channels defined in the header of a device D will be referred to as StateVariablesD and
InputChannelsD, respectively. As stated in Section 4.1.2, the definition of a state variable
v ∈ StateVariablesD includes a set of possible states Statesv, as well as the declaration
of its initial state InitialStatev. Analogous to state variables, the definition of an input
channel c ∈ InputChannelsD includes a list of possible input events Eventsc, as stated in
Section 4.1.3.

The body of a device contains a set of behaviours, henceforth referred to as BodyD. The
recursive definition of a behaviour is the basis for MDML’s decision tree structure. It can
resolve to given or when blocks, the former of which either contains a behaviour or a
behaviour block which, in turn, contains a list of behaviours. A when statement defines an
event which triggers appropriate reactions, defined in the form of a then statement. Such
events can either be input-based (see Section 4.1.5), secondary actions of state transitions
(see Section 4.4.1) or timed behaviours (see Section 4.3). The set of all timed behaviours
which occur within a device is called TimeTriggersD and will also be of importance later
on.

43

4 MDML Specification

Device := ‘device’ ID [‘version’ VNr] ‘{’ Header Body ‘}’
VNr := (VP | INT) {‘.’ INT}
VP := (‘A’. . . ‘Z’) (‘0’. . . ‘9’) {‘0’. . . ‘9’}
Header := {StateVariable | InputChannel}
StateVariable := (‘public’ | ‘private’) ‘statevar’ ID

‘{’ State {‘,’ State} ‘}’ ‘=’ ID ‘;’
State := ID [‘(’ Parameter ‘)’]
Parameter := ([‘-’] INT) | STRING | (ID {‘.’ ID})
InputChannel := ‘input’ ID ‘{’ InputEvent {‘,’ InputEvent} ‘}’ ‘;’
InputEvent := ID [‘(’ Parameter {‘,’ Parameter} ‘)’]
Body := {Behaviour}
Behaviour := GivenBlock | WhenBlock
GivenBlock := GivenStatement (BehaviourBlock | Behaviour)
GivenStatement := ‘given’ (StateEqualsExp | StateListExp)
StateEqualsExp := ID (‘=’ | ‘!=’) ID
StateListExp := ID [‘not’] ‘in’ ‘{’ ID {‘,’ ID} ‘}’
BehaviourBlock := ‘{’ Behaviour {Behaviour} ‘}’
WhenBlock := WhenStatement ThenStatement
WhenStatement := ‘when’ (StateTransition | InputEqualsAct |

InputListAct | TimeTrigger)
StateTransition := ID ‘->’ ID
InputEqualsAct := ID (‘=’ | ‘!=’) (ID | ‘any’)
InputListAct := ID [‘not’] ‘in’ ‘{’ ID {‘,’ ID} ‘}’
TimeTrigger := INT UnitOfTime ‘elapsed’
UnitOfTime := ‘min’ | ‘sec’ | ‘ms’
ThenStatement := ‘then’ (‘DoNothing’ | Reaction

{‘and’ Reaction}) ‘;’
Reaction := StateTransition
ID := [‘^’] Letter {Letter | Digit}
Letter := ‘A’. . . ‘Z’ | ‘a’. . . ‘z’ | ‘ ’
Digit := ‘0’. . . ‘9’
INT := Digit {Digit}
STRING := ‘"’ (‘\\’ | !(‘\\’ | ‘"’)) {‘\\’ | !(‘\\’ | ‘"’)} ‘"’ |

‘’’ (‘\\’ | !(‘\\’ | ‘’’)) {‘\\’ | !(‘\\’ | ‘’’)} ‘’’

Table 4.1: EBNF grammar of MDML.

44

5 An Eclipse-Based IDE for MDML

Some parts of this chapter have already been published in DECOSYS 2016 [28], as well as
in MODELSWARD 2018 [97].

As domain-specific languages need dedicated tooling support to be used to their full
potential [44], we developed MDML in parallel with a dedicated modelling tool. While
MDML models could be theoretically developed with an off-the-shelf text editor alone, the
benefits of a dedicated tool justify the implementation effort [47]. According to Abrahão et
al. [1], a model editor must be tailored to the application domain in a number of different
ways: it must offer guidance for workflows which are specific to the application domain,
thereby reducing the training effort [97]. It must be designed in a minimalistic way so
that it only offers features which are relevant to the application domain. Ideally it would
also offer some sort of domain-specific graphical representation of the models, even if the
modelling language is of a textual nature. These criteria are valid for all modelling tools
but are especially important when designing a domain-specific tool from scratch.

With these basic guidelines in mind, we developed an MDML editor based on the well-
known Eclipse IDE1 which is easily extensible through a flexible plugin API. During
the later stages of tool development, we received support from the Vienna University of
Economics and Business as part of the DLUX project. This support was mainly given in
the form of implementation assistance and the planning and execution of user interviews
which provided additional development guidance.

Our tool provides a dedicated MDML modelling environment which integrates relevant
data sources from within AVL and encapsulates the test case generation toolchain (see
Section 1.5). This chapter mainly focuses on the editor and the data source integration.
Figure 5.1 gives a representative impression of the MDML IDE.

1https://www.eclipse.org/

45

5 An Eclipse-Based IDE for MDML

Figure 5.1: A screenshot of the MDML IDE.

5.1 Requirements for an Eclipse-Based IDE

Analogous to the DSL-based testing formalism as a whole, a set of initial requirements was
defined for the MDML IDE at the beginning of the TRUCONF project. As in Section 3.3,
we quote the initial requirements and comment on them, based on the results achieved at
project conclusion.

1. “The Eclipse plugin has to provide a modelling environment for both the textual and
graphical modelling language.”

As previously stated in Section 3.3 - req. 2, the graphical representation of MDML
models has grown out of scope for the TRUCONF project. All further requirements
concerning the graphical representation are omitted.

2. “The Eclipse plugin should provide ways to quickly generate code structures in the
textual representation like, for example, wizards, code completion, quickfixes and
module templates which can then be filled by the users.”

The Eclipse-based MDML IDE was created using the Xtext framework (see Section
5.2) which provides the developer with the opportunity to easily implement tooltips,
quickfixes, content assist, etc. These functionalities were used to provide the users
with as much information and guidance as possible. Moreover, a series of wizards

46

5.2 Implementation Using the Xtext Framework

was implemented to import information from the device knowledge base (DKB, see
Section 5.3) as well as the model zoo (see Section 5.4).

3. “The Eclipse plugin should provide syntactic and semantic coding tips to the user.”

Syntactic content assist is largely provided out-of-the-box by the Xtext framework.
Furthermore, descriptive tool tips of syntactic elements have been implemented.
To the extent of its availability within the DKB, semantic information has been
integrated into these tooltips.

4. “The Eclipse plugin has to provide information from AVLs device database [sic!].
(The nature of this information is currently subject to debate, but state and signal
names will most likely be provided automatically).”

The MDML IDE supports the import of outward device interfaces - specifically, input
events and states - from the DKB. While the knowledge base would also contain
behavioural information like state transitions, it is intentionally left out of the test
model to uphold the four-eyes principle. A redundant behavioural specification
prevents the masking of faults within the original specification [84].

5.2 Implementation Using the Xtext Framework

Xtext2 [108] is an open-source framework for the creation of domain-specific language editor
plugins for the Eclipse IDE. It is mainly being developed by the itemis AG3 in cooperation
with the Eclipse Foundation. Our decision to use Xtext for the development of an MDML
editor is strongly linked to our decision to create a textual domain-specific language. Xtext
was suggested by a member of the TRUCONF steering board who already had positive
experiences with the framework as well as good relations to the Eclipse community. As it
turned out, Xtext is well-suited for the rapid prototyping of a domain-specific editor [97].
It proved to be sufficiently robust during the early stages of language development when
we were faced with frequent and substantial changes of the grammar definition. An initial
formal implementation of the MDML grammar could be completed within a single working
day. Afterwards, this initial grammar gradually evolved while we generated tool prototypes
on a regular basis. These tool prototypes gave an early impression of what the finished
product would eventually look like. As the grammar definition settled into a largely stable
state, the implementation of usability-related features gained momentum. Once a valid
grammar file has been created, Xtext uses it as a basis for the automatic creation of a
plugin for the Eclipse IDE. This auto-generated plugin comprises a multitude of features
with different degrees of out-of-the-box maturity and openness to customization. The most
relevant of these features are described in the rest of this section.

2https://www.eclipse.org/Xtext/
3http://www.itemis.com

47

5 An Eclipse-Based IDE for MDML

5.2.1 Domain-Specific Editor

Most prominently, Xtext creates a dedicated editor view for MDML which interfaces with
Eclipse modelling framework 4 (EMF). An auto-generated parser and serializer convert
between the textual representation of the MDML model and an Ecore model which is
kept in memory. Basic syntax highlighting is supported out-of-the-box but more intricate
highlighting rules can be defined by implementing the corresponding method stub. The same
is true for auto-formatting. By default, the serializer creates a textual representation as a
monolithic block of text. A dedicated method stub allows for the definition of whitespacing
rules for the serializer and the auto-formatter.

5.2.2 Code Generator

In model-driven development, models are generally used to easily create artefacts which
reside on a lower abstraction level and are considered too complex to be handled directly.
For this purpose, Xtext offers a method stub for code generation, based on the contents of
the current model. Per default, the code generator takes the Ecore model as input and
writes to an output file within the currently opened project in the Eclipse workspace. This
segment of the IDE contains the transformation from MDML to object-oriented action
systems as it is described in Chapter 6.

5.2.3 Content Assist

Content assist5 - also known as intelligent code completion or, in Microsoft products, Intel-
liSense - is the functionality of providing the user with a list of context-aware suggestions
for model elements and keywords during the modelling process, based on syntax, predefined
scoping rules and specialized rules for certain language elements [108, p.200]. In most
cases, Xtext provides syntactic content assist out-of-the-box. However, when referencing a
language element in a place other than its definition (e.g. referencing a state from within
a given statement) the scope of this reference has to be defined by the DSL engineer.
Afterwards, the appropriate content assist options will be given to the user. The MDML
IDE provides a few cases of semantic content assist which are described in Section 5.3.

5.2.4 Model Validation

The structural freedom of MDML is bought with a large potential for modelling mistakes
and ad-hoc validation of MDML models can be a difficult and tedious task. Thankfully,
Xtext provides a validator class which can be extended with individual validation methods
for different fault modes, e.g. having multiple state variables of the same name. Depending
on the severity of the violation, the testing methods can emit a warning or an error,

4http://www.eclipse.org/modeling/emf/
5https://www.eclipse.org/pdt/help/html/working with code assist.htm

48

5.2 Implementation Using the Xtext Framework

the latter of which precludes code generation. The corresponding erroneous parts of the
textual model are underlined in yellow or red, respectively. Yet, MDML demands more
sophisticated validation operations, e.g. ensuring that an input event is handled only
once for a given state configuration. For this purpose, a Prolog-based model validator
was created which allows for the declarative specification of validation rules. The Prolog
validator was implemented by the author as a project work for his master’s studies and was
thus kept separate from the work which is presented in this thesis. It is able to diagnose
the following errors and warnings, relating to different sections of Chapter 4:

Duplicate Path Error: Two or more different reactions are defined for a certain input
event in a certain state combination (see Section 4.1.5).

Infeasible Path Error: The decision tree contains unreachable branches due to contra-
dictory transitions. This is not to be confused with a full state reachability analysis
(see Section 4.2.2).

Multiple Time Triggers Error: Multiple timed behaviours are enabled in a certain
state configuration (see Section 4.3).

Contradictory State Transition Error: A state variable is assigned multiple times in
a state transition, taking secondary actions into account (see Section 4.2).

Redundant Conditions Warning: A condition on the decision tree does not alter the
enabling state space of its child branch.

Redundant Condition Information Warning: A condition on the decision tree ex-
plicitly grants degrees of freedom which are prohibited by subsequent conditions.

Unclear Last-Transition Warning: A particular definition of a last-transition is en-
abled in more than one state configuration (see Section 4.4.2).

Unhandled State Configuration Warning: There are state configurations which pos-
sess no outgoing transitions. This validation function may yield false positives if said
state configurations are unreachable in the first place (see Section 4.2).

5.2.5 Tooltips

Per default, tooltips simply show the name of the grammar rules (see Section 4.5) which
correspond to the model element over which the cursor currently hovers. We extended
this information by a short static documentation text for each type of model element.
Xtext tooltips support text formatting by HTML tags which can be used to support their
readability. In addition to syntactic information, the MDML IDE in a few cases offers
semantic tooltips which are described in Section 5.3.

5.2.6 Quickfixes

Quickfixes are offered as mitigation for specific validation violations. For example, Xtext
supports the correction of misspelled state references in given statements under the
condition that their scope has been defined. More sophisticated quickfixes have to be
implemented by the DSL developer. See Section 5.3 for examples.

49

5 An Eclipse-Based IDE for MDML

5.3 Device Knowledge Base Integration

Figure 5.2: A screenshot of the new-file wizard which uses information from the DKB.

The information on which MDML models are based - e.g. states, input events, etc. - is
originally generated by the device firmware developers. Until recently, however, the best
source for the test engineers in terms of availability were the measurement device handbooks
which are written by the documentation department. Even while these handbooks are not
always kept perfectly up-to-date, the test engineers prefer them over other more complete
or correct information sources because they are easily available. An effort to increase data
transparency between different departments of AVL has recently led to the establishment
of the so-called device knowledge base (DKB). While this database can be accessed from
anywhere within the company, the measurement device development department holds the
sole authority over its contents, thereby establishing a single source of truth (SSoT). The
DKB contains the names and firmware versions for each device as well as the corresponding
states and AK commands [57] which are used as input events. For the latter, each entry
contains a short semantic description of its meaning or purpose. The MDML IDE uses this
information in several different ways:

• Figure 5.2 depicts a wizard for the creation of new MDML files which offers the
option to import device headers (name, firmware version, AK commands, states)
from the DKB. The range of imported states and AK commands may vary depending
on the selected firmware version.
• If the name of an existing MDML model can be matched to a device within the DKB,

a quickfix offers the option to import the previously mentioned header information.

50

5.4 Model Zoo Integration

If, e.g. an input channel contains some of the device’s AK commands, the remaining
commands can be added via a quickfix.
• When adding AK commands to an input channel per hand, a full list of them is

provided for the current device via content assist, including the semantic description
of each command.
• The same semantic information is added to the tooltip text of each AK command.

5.4 Model Zoo Integration

Figure 5.3: A screenshot of the model zoo import wizard.

The so-called model zoo is the most recent addition to the list of features of the MDML
IDE. As it turned out, our test engineers found it easier to create a model based on
pre-existing content rather than entirely from scratch. Consequently, we established a
centralized repository which we populated with all MDML models which are currently at
our disposal. The MDML IDE offers the option to clone this repository via an encapsulated
Git6 implementation. As can be seen in Figure 5.3, a dedicated import wizard allows the
user to browse the local model zoo repository and copy prototypical models to the Eclipse
workspace. The model zoo was designed to be an SSoT under the authority of one or few
administrators. While the work on an export functionality to the model zoo is ongoing,
the exact details of the model submission and review process have not yet been defined.

6https://www.eclipse.org/jgit/

51

5 An Eclipse-Based IDE for MDML

5.5 Test Case Generator Integration

Figure 5.4: A screenshot of the model submission wizard which starts the test case generator.

The TRUFAL toolchain was realized by three different tools, namely a UML editor,
MoMuT::UML and the test case transformator, the latter two being the command line
tools. By contrast, the TRUCONF toolchain is entirely encapsulated by the MDML IDE
to uphold the design principle of separation of concerns [97]. The test case generation
process can be configured by a dedicated wizard which gives the user control over several
selected parameters of MoMuT (see Figure 5.4 for a screenshot of the wizard, as well as
[68] for more details on the parameters). The test case generation process can be started
either from within the wizard or by pressing a single button on the toolbar of the IDE if
the configuration has been completed beforehand. The process starts by executing the code
generator which transforms the MDML model into an OOAS. Then, MoMuT is started in
an external process and generates a set of abstract test cases. The output of the MoMuT
process is fed to the console view of the IDE to let the user monitor the progress. After
MoMuT has terminated, the abstract test cases are read by the test case transformator
which outputs a single .cs file containing the completed test suite into the currently opened
project folder within the workspace. For an overview of the test case generation toolchain,
see Section 1.5 as well as the Chapters 6, 7 and 8 for further details on the previously
mentioned operations. In Figure 5.4, it is evident that the wizard for test case generation
has been named “Configure submission”. This is due to the fact that it is planned to move
the test case generator to a centralized location in future versions of the toolchain. More
details on this matter can be found in Section 10.2.2.

52

5.6 User Experience Evaluation

5.6 User Experience Evaluation

The notion of user experience (UX) goes far beyond the mere usability of a software tool
[1, 98, 97]. Instead, a good user experience entails a minimization of disturbance to the
users during the tool introduction phase as well as the general minimization of all negative
emotions that the users might associate with the tool - e.g. the fear of losing control over
ones own workflows or working conditions.

Figure 5.5: The structure of the heuristic walkthroughs [97, p.649].

Hence, the DLUX project was launched with the goal to develop an empirical user experience
evaluation method kit and to apply it to AVL internal software tools - among others, the
MDML IDE [97]. In addition to our regular feedback sessions, we conducted a series of so-
called heuristic walkthroughs with our test engineers. A heuristic walkthrough is a usability
inspection method which combines scenario-based and heuristic-based inspection processes
[67]. First, our test engineers were handed a short questionnaire about their previous
experience with MDML. Afterwards, they performed a series of short but practically
relevant tasks with the MDML IDE while narrating their cognitive processes. Afterwards,
they were asked to rate both the language and the IDE according to different criteria,
e.g. user guidance, minimalistic design, efficiency, documentation, error mitigation, and
others. The overall process, including a short wrap-up, took approximately two hours
(see Figure 5.5). Afterwards, the transcripts of these interviews were analysed and the
aggregated information was used as a guideline for the planning and prioritization of
further development steps (e.g. the model zoo).

Aside from the heuristic walkthroughs, the user experience of MDML has been tested
multiple times. The formalism was used by regular employees, student trainees and summer
interns - both with and without prior experience of the application domain. In one notable
case, a student trainee taught herself MDML without any supervision but solely based on
the information presented in Chapter 4. The estimated effort for the relevant tasks from
the first contact with the modelling formalism to creating a mature test model are given

53

5 An Eclipse-Based IDE for MDML

in Table 5.1. Our modelling formalism has been shown to exhibit an adequate learning
curve - even without prior domain knowledge. Both the initial learning time and the time
to create a first model draft have been reduced to 1-2 hours. The high debugging effort
during TRUFAL was mainly caused by communication overhead due to the modeller being
located off-site. As previously mentioned in Section 3.4.1, we believe that a bug-fixing
and fine-tuning phase will always be necessary. Nevertheless, though we are still lacking
long-term data, we expect to significantly reduce the necessary effort since - in addition
to the improved user experience - the test engineer and the modeller will no longer be
separate individuals.

Activity TRUFAL TRUCONF
Learning the modelling formalism 6 1-2
Implementing the first draft implementation 4 1-2
Debugging and fine-tuning 40 �40

Table 5.1: Compared effort in h of different tasks for the modelling methodologies used during the TRUFAL
and TRUCONF projects [61, 97].

54

6 Model Transformation from MDML
to OOAS

This chapter describes the model transformation from MDML models to object-oriented
action systems which, in turn, can be processed by the MoMuT test case generator. From
now on, we refer to the MDML-to-OOAS transformation as model transformation when
focusing on the algorithm or code generation when focusing on the implementation. The
requirements to the code generator have been defined as follows:

1. “The code generator needs to be designed in such a way that it can be easily main-
tained and that functionality can be added or changed with little effort.”

Due to its modular implementation as by the strategy pattern [45], individual func-
tionalities can be added or removed in the form of strategies.

2. “The functionality of the code generator must be specified and verified according to
the practice of test-driven development [24].”

During the implementation process of the code generator, the practice of test-driven
development has been observed, which resulted in a verifiable specification for the
transformation logic. As the time of writing this thesis, the test base for the code
generator comprises 33 different unit tests.

3. “The code generator must be able to handle complicated m:n relationships between
model elements.”

The modular structure mentioned in Req. 1 keeps the individual strategies short and
relatively simple. Together with a rigorous test-driven development practice as in
Req. 2, this gave us the ability to handle the complexity of the code generator.

4. “The model transformation needs to be designed in such a way that it produces as
little unreachable code as possible.”

It was deemed important to limit the number of equivalent mutants since they
consumed about 60% of test case generation time during experiments within the
TRUFAL project [6]. However, the introduction of MoMuT’s search-based back-end
is also less susceptible to performance loss by equivalent mutants, depending on the
chosen search strategy (see Section 7.1.3)

55

6 Model Transformation from MDML to OOAS

BaseStructureStrategy

TypeEnumStrategy

EventEnumStrategy

StateVariableStrategy

LastVariableStrategy

QueueStrategy

M2M Transformation

...

SetterStrategy

MDML
Ecore
Model

OOAS
Ecore
Model

X
te

xt
Pa

rs
er

 f
o

r
M

D
M

L

X
te

xt
 S

er
ia

liz
er

fo
r

O
O

A
S

Textual
MDML
Model

Textual
OOAS
Model

Code Generator Implementation

MDML
Ecore

Lookup

Figure 6.1: Software architecture of the OOAS code generator.

The rest of this chapter describes the architecture of the code generator, followed by a
thorough description of the model transformation logic.

6.1 Code Generator Architecture

Since many MDML and OOAS model elements exhibit a complex m:n relationship, early
attempts to produce a linear stream of output code while traversing the MDML model
resulted in failure. As the need for an object model of the target representation became
clear, we chose to implement an Xtext grammar for a subset of OOAS and to exploit the
ability of the auto-generated serializer to transform Ecore models back into their textual
representations, as depicted in Figure 6.1.

The remaining task of translating between the Ecore representations of MDML and OOAS
was split up into a series of strategies as by the strategy pattern [45]. The first of these
strategies creates the basic model structure (type definition block, system, variable block,
etc.). Thereafter, each of the remaining strategies adds a particular feature to this structure
(e.g. the variable setter methods). With the exception of the base structure strategy, all
strategies can be executed in arbitrary order. Each strategy is described in detail in Section
6.2. Additionally, a lookup table is created to map named references of MDML model
elements (like OOAS state variable names, event enum values, etc.) to their corresponding
MDML Ecore objects. This lookup table is an artefact of the code generation process and
serves as an additional input to the test case transformator.

When the OOAS Ecore model is complete, Xtext saves it as a resource. During this process,
each Ecore model element is mapped to its representation in the abstract syntax tree of
the OOAS grammar. The resulting textual representation is formatted according to some
simple predefined rules (concerning line breaks, indents, etc.). This approach grants the
ability to add, change or remove functionality by simply adding or removing individual
strategies.

56

6.1 Code Generator Architecture

6.1.1 Ecore Model

«interface»
Device

DeviceImpl

«interface»
MDMLFactory

MDMLFactory
Impl

«interface»
EObject

BasicEObject
Impl

Interfaces Implementations

«interface»
StateVariable

StateVariable
Impl

*
1

«creates» « creates»

Figure 6.2: Excerpt from the Ecore-based object model of MDML.

We conclude the implementation-focused description of the code generator by giving a
small impression of MDML’s Ecore object model. This description is limited to the use case
at hand and merely scratches the surface of this vast topic. A comprehensive reference on
the Eclipse modelling framework, which includes the Ecore meta-model, has been provided
by Steinberg et al. [96].

Figure 6.2 shows an excerpt of the class hierarchy which was generated from the MDML
grammar. On first glance, it is evident that the object model strictly separates interfaces and
implementations as per the bridge pattern [45]. The creators of the EMF imposed this design
choice to adhere to best practice and to enable multiple inheritance [96, p.22]. All model
elements indirectly derive from the EObject interface and its implementation, respectively.
EObject provides basic functionality like resource handling, navigation through the model
hierarchy or cross-referencing. Specific model elements like Device and StateVariable are
generated from the MDML grammar and manage their respective attributes like device
version numbers or initial states.

When interacting with objects from a parsed MDML model, the DSL engineer handles
instances of the implementations but always addresses them through their interfaces.
Therefore, new model elements cannot be created by constructor calls when building a
model from scratch with EObjects. Instead, EMF uses the abstract factory pattern [45]. A
factory interface declares creation methods for all types of model elements and the concrete
factory provides the respective implementations.

57

6 Model Transformation from MDML to OOAS

6.2 Model Transformation Logic

6.2.1 Notation

Before describing the different transformation strategies, the formalisms used within these
descriptions must be properly defined. These include rewrite rules, conventions on the
usage of sets and vectors, as well as the definition of several Boolean predicates.

Rewrite Rules

The notation we use to describe the various rewrite rules was inspired by a model transfor-
mation notation used by Johannes Eriksson in his PhD thesis [41]:

P
R1−→ T

The above statement describes the rewrite rule R1 which transforms a pattern P into the
term T . If P contains further variables, they can be used on the right-hand side within T
and be subjected to other rewrite rules. The instantiation of a rewrite rule is indicated by
pointed brackets, followed by its superscript name:

P1 or P2
R2−→ 〈P1〉R1 || 〈P2〉R1

In this way, all named rewrite rules of the model transformation are described, with the
following exceptions: The rules Name, EName, LName, OCName, SATName, SName and
TName map to character strings identifying different OOAS model elements which are
derived from the same MDML model element. A full list of them has been given in Section
4.5. Different types of names and names of different MDML element types receive different
prefixes to prevent naming collisions within the OOAS. These names are also used as index
for their corresponding MDML model elements within the lookup table.

Vectors, Sets and Families

The description of the model transformation involves both vectors ~X and sets X of elements.
Both vectors and sets are written in boldface. Additionally, MDML element attributes like
InputChannelsD, StateVariablesD, etc. can be identified as sets since they are designated
by a plural noun. We use the convention that, within the definition of a rewrite rule, vectors
and sets of the same name relate in the following way:

∀i ∈ {1, . . . , dim(~X)} : ~Xi ∈ X

∀x ∈ X ∃i ∈ {1, . . . , dim(~X)} : x = ~Xi

In this way, the set retains all elements of the vector but loses all information about
multiplicity and order of elements. Sets are used whenever the transformation algorithm

58

6.2 Model Transformation Logic

does not depend on the order of elements and/or when a given vector must be cleared
of duplicate elements. Furthermore, we will often use indexed element sequences of the
following form:

~X1 . . . ~Xm

While the indexing of vector elements is straightforward, the indexing of set elements
requires the definition of a family (Xi) which is linked to X in the following way:

∀x ∈ X ∃i ∈ {1, . . . , |X|} : x = Xi

This measure effectively turns X into an indexable set. Moreover, whenever indexed
sequences occur, we adhere to the convention that the sequence invariably iterates over
all elements of the vector or set. We use this shorthand notation to avoid the explicit
definition of index ranges on every occurrence.

~X1 . . . ~Xm ⇒ m = dim(~X)

X1 . . .Xn ⇒ n = |X|

The alteration of a set over the course of the model transformation process is signified by
the transformation operator (7→).

Boolean Predicates

The description of the model transformation logic employs several Boolean predicates in
conditional statements or set definitions. These predicates are defined as follows:

The predicate hasSA(s) is true iff the MDML model of the device D contains a secondary
action trigger when v -> s with v ∈ StateVariablesD, s ∈ Statesv. Furthermore:

hasSA(v)⇔ ∃s ∈ Statesv : hasSA(s)

hasSA(D)⇔ ∃v ∈ StateVariablesD : hasSA(v)

The predicate hasLT (v) is true iff the MDML model of the device D contains a last-
transition v -> last with v ∈ StateVariablesD. The predicate public(v) is true iff the state
variable v ∈ StateVariablesD has been declared public upon definition.

59

6 Model Transformation from MDML to OOAS

6.2.2 Base Structure Strategy

The first strategy adds the basic structural blocks of every OOAS to the empty model. This
includes a type definition block T with a single class definition C which, in turn, receives a
variable definition block V, a method definition block M, an action definition block A and
a do-od block DOOD. Finally, the system assembly block SAB references the single class
definition. The blocks V, M, A and DOOD are implicitly assumed to be attributes of the
class C. The formal description of the transformation step performed by this strategy is
given below, followed by a code snippet to give an impression of the transformation result.
We will use the same structure to describe all subsequent strategies.

T := {C(NameD)}
V := {}
M := {}
A := {}

DOOD not yet defined

SAB := C

 types

 AVL740 = autocons system
 |[
 var

 methods

 actions

 do

 od
]|
 system AVL740

6.2.3 Type Enum Strategy

For each state variable present in the MDML model, an enum type encompassing all its
possible values is added to the type definition. These values are prefixed with the name of
the state variable to allow different state variables to contain a state of equal name while
still preserving the ability to index the original EObject by name.

T 7→ T ∪ {〈v〉Type | v ∈ StateVariablesD}

v
Type−−−→ 〈v〉TName = {SN

1 , . . . ,S
N
n }

SN = {〈s〉Name | s ∈ Statesv}

 types
 t_DeviceState = {DeviceState_Pause , ... , DeviceState_Measurement} ;
 t_Status = {Status_Ready , Status_Busy} ;
 ...

60

6.2 Model Transformation Logic

6.2.4 Event Enum Strategy

Another enum type is created for all possible events which can trigger a when statement.
This includes input events, secondary actions and time triggers. Note that the type name
is prefixed with “e ” instead of “t ” to prevent name collisions with possible state variables
called “Event”.

T 7→ T ∪ {TEvent (EN)}
EN = {〈e〉Name | e ∈ Eventsc, c ∈ InputChannelsD} ∪

{〈s〉EName | s ∈ Statesv, v ∈ StateVariablesD, hasSA(s)} ∪
{〈t〉Name | t ∈ TimeTriggersD}

 types
 ...
 e_Event = {i_UserAction_SPAU , ... , tt_TimeTriggerImpl585ce5c8} ;
 ...

6.2.5 State Variable Strategy

Each state variable of the MDML model receives a direct representation in the variable
definition block which is of the previously created enum type. Each OOAS state variable is
initialized with the initial state specified in the MDML model.

V 7→ V ∪ {〈v〉V ar | v ∈ StateVariablesD}

v
Var−−→ 〈v〉Name : 〈v〉TName = 〈InitialStatev〉Name

 var
 v_DeviceState : t_DeviceState = DeviceState_Pause ;
 v_Status : t_Status = Status_Ready

6.2.6 Last-Variable Strategy

If a state variable experiences last-transitions at some point, it needs a backup variable
of the same type to store its value previous to the last-transition. The last-variable is
initialized with the same state as its corresponding state variable. Therefore, taking a
last-transition from the initial state has no effect. While the model of AVL740 contains no
such feature, an example from another model is given below:

V 7→ V ∪ {〈v〉LV ar | v ∈ StateVariablesD, hasLT (v)}

v
LVar−−→ 〈v〉LName : 〈v〉TName = 〈InitialStatev〉Name

 var
 ...
 last_DeviceState : t_DeviceState = s_DeviceState_Pause

61

6 Model Transformation from MDML to OOAS

6.2.7 Secondary Action Queue Strategy

If the model contains secondary actions, a corresponding queue VSAQ in the form of an array
of type e Event must be added to the variables. The secondary action queue is limited in
length to the number of state variables present in the model which constitutes a simple upper
limit of possible consecutive secondary actions. If the model does not contain secondary
actions, this strategy produces no change in order to prevent the generation of unreachable
code. Several of the following strategies employ similar conditional transformations for the
same reason. The model of AVL740 does not contain secondary actions and therefore lacks
this feature and all other features related to secondary actions.

V 7→

{
V ∪ {VSAQ(|StateVariablesD|)} hasSA(D)

V otherwise

 var
 ...
 secondary_action_queue : list [2] of e_Event = [nil]

6.2.8 Queue Secondary Action Strategy

If the model contains secondary actions, the secondary action queuing method MQSA gets
added. The content of this method is static in the sense that it is independent from the
MDML model.

M 7→

{
M ∪ {MQSA} hasSA(D)

M otherwise

 methods
 ...
 queueSecondaryAction(event : e_Event) =
 secondary_action_queue := secondary_action_queue ^ [event]
 end

62

6.2 Model Transformation Logic

6.2.9 Dequeue Secondary Action Strategy

Similarly, if the model contains secondary actions, a static dequeuing method MDSA must
be added which removes and returns the first element in the secondary action queue.

M 7→

{
M ∪ {MDSA} hasSA(D)

M otherwise

 methods
 ...
 dequeueSecondaryAction : e_Event =
 result := hd secondary_action_queue ;
 secondary_action_queue := tl secondary_action_queue
 end

6.2.10 Secondary Action Trigger Strategy

Let v be a state variable which, at some point, triggers secondary actions. Whenever v
experiences a transition which causes secondary actions, the transition must be added to
the secondary action queue. Hence, a method must be created for each v which takes its
newly assigned value as a parameter, queues the corresponding secondary action via the
queuing method MQSA if necessary and skips otherwise:

M 7→M ∪ {〈v〉SAT | v ∈ StateVariablesD, hasSA(v)}

v
SAT−−→ 〈v〉SATName (value : 〈v〉TName) = (SQ

1 2 . . .2 SQ
n) � skip

SQ = {〈s〉QSA | s ∈ Statesv, hasSA(s)}

s
QSA−−→ requires value = 〈s〉Name : MQSA(〈s〉EName) end

 methods
 ...
 trigger_DeviceState_SecondaryActions(value : t_DeviceState) =
 (
 requires value = s_DeviceState_Pause :
 queueSecondaryAction(se_DeviceState_Pause)
 end []
 requires value = s_DeviceState_Standby :
 queueSecondaryAction(se_DeviceState_Standby)

 end
) //
 skip
 end

63

6 Model Transformation from MDML to OOAS

6.2.11 Changed-Observable Strategy

Each public state variable receives a dedicated observable action which reports its changed
value to an outside observer. This action performs no further operations and therefore
only contains a skip action. In accordance with the remark in Section 4.4.4, the changed-
observable is not emitted if the value of a state variable does not change during a transition.
This behaviour is encoded in the setter method of each state variable.

A 7→ A ∪ {〈v〉OC | v ∈ StateVariablesD, public(v)}

v
OC−−→ ObsC(〈v〉OCName, 〈v〉Type)

 actions
 obs obs_DeviceState_Changed(value : t_DeviceState) = requires true :
 skip
 end ;

 obs obs_Busy_Changed(value : t_Busy) = requires true :
 skip
 end

6.2.12 State Variable Setter Strategy

For each state variable, a setter method is created. This method handles all additional
operations related to the assignment of this state variable. If a state variable is private
and experiences no last-transitions or secondary actions, the setter method takes a very
simple form. It takes the argument actual value and sets the state variable to this value.

M 7→M ∪ {MSet(v) | v ∈ StateVariablesD}

MSet(v) =

{
MSetSimple(v) ¬public(v) ∧ ¬hasLT (v) ∧ ¬hasSA(v)

MSetFull(v) otherwise

MSetSimple(v) = 〈v〉SName(〈v〉AA) = X

X = 〈v〉Name := actual value

v
AA−−→ actual value:〈v〉TName

 methods
 ...
 # Example. AVL740’s Busy is actually public.
 setBusy(actual_value : t_Busy) =
 v_Busy := actual_value
 end

64

6.2 Model Transformation Logic

If at least one of the aforementioned conditions is violated, the content of the setter
method is guarded with the condition that the assigned value is different from the current
value of the state variable. If the state variable experiences last-transitions, its value is
copied to the last-variable prior to being set. After a public state variable has been set, its
changed-observable is triggered to report the newly assigned value to the environment. For
public state variables, the setter method takes an additional argument reported value which
serves as an input for the observable. In the original OOAS, setter methods are always
called with the same assignment of both reported value and actual value. The method is set
up in this way so that both values can be mutated independently from each other. Lastly,
if the state variable triggers secondary actions, the call to its secondary action trigger is
inserted.

MSetFull(v) =

{
〈v〉SName (〈v〉AR, 〈v〉AA) = Y public(v)

〈v〉SName (〈v〉AA) = Y otherwise

Y = requires actual value <> 〈v〉Name : Z end � skip

Z =

{
〈v〉LName := 〈v〉Name; A hasLT (v)

A otherwise

A =

{
B;〈v〉SATName (actual value) hasSA(v)

B otherwise

B =

{
X;〈v〉OCName (reported value) public(v)

X otherwise

v
AR−−→ reported value : 〈v〉TName

 methods
 ...
 setDeviceState(reported_value : t_DeviceState , actual_value : t_DeviceState) =
 requires actual_value <> v_DeviceState :
 # last_DeviceState := v_DeviceState;
 v_DeviceState := actual_value ;
 obs_DeviceState_Changed(reported_value) #;
 # trigger_DeviceState_SecondaryActions(actual_value)
 end //

 skip
 end ;

65

6 Model Transformation from MDML to OOAS

6.2.13 Tree Action Strategy

Whenever the OOAS processes an event, it is evaluated via the decision tree, specified in
MDML. However, under certain circumstances, certain additional operations have to be
performed, either before or after decision tree traversal. These additional actions can be
called in a static action which encapsulates the call of the decision tree.

A 7→ A ∪ {IntTA}

 actions
 ...
 treeAction(event : e_Event) = requires true :
 # Housekeeping actions go here
 tree(event)
 # Housekeeping actions go here
 end

While all of these “housekeeping” operations have been removed during the development of
the MDML-to-OOAS transformation, we left treeAction in the OOAS as an intermediate
calling stage. This did not impact test case generation in a negative way and proved quite
helpful when we introduced last-minute changes of the model transformation (see Section
9.4) .

6.2.14 Tree Strategy

The decision tree within the MDML model directly carries over to the OOAS in the form
of the action tree which takes the current event and processes it depending on the current
state configuration. The transformation of model elements within the tree is described by
the recursive rewrite rule 〈X〉T . BodyD is the root of the decision tree structure of device

D. In every case, BodyD maps to a behaviour list ~B1 . . . ~Bm. Such behaviour lists also
occur in block form when preceded by given statements.

A 7→ A ∪ {IntT (D)}
IntT (D) = tree(event : e Event) requires true : 〈D.Body〉T end

~B1 . . . ~Bm
T−→ 〈~B1〉T 2 . . .2 〈~Bm〉T

{~B1 . . . ~Bm}
T−→ 〈~B1〉T 2 . . .2 〈~Bm〉T

 actions
 ...
 tree(event : e_Event) = requires true :
 ...
 end

66

6.2 Model Transformation Logic

Given Statements

As described in Section 4.1.4, given statements can encode different equality and set-based
conditions on state variables. Although OOAS offers an equivalent of the ∈ operator,
element inclusion was translated as a disjunction of equality conditions. This offers the
potential to produce more fine-grained mutants upon test case generation. Note that
list-based conditions are cleared of duplicates to reduce the potential of equivalent mutants
(see Section 7.3 for more information).

given condition content
T−→ requires 〈condition〉GS : 〈content〉T end

v = s
GS−→ 〈v〉Name = 〈s〉Name

v != s
GS−→ 〈v〉Name <> 〈s〉Name

v in {~S1 . . . ~Sm}
GS−→ 〈v = S1〉GS or . . . or 〈v = Sn〉GS

v not in {~S1 . . . ~Sm}
GS−→ not(〈v = S1〉GS or . . . or 〈v = Sn〉GS)

 # given DeviceState = Pause
 requires v_DeviceState = Pause : ... end ...
 # given DeviceState != Pause
 requires v_DeviceState <> Pause : ... end ...
 # given DeviceState in {Pause, Standby}
 requires v_DeviceState = Pause or v_DeviceState = Standby : ... end ...
 # given DeviceState not in {Pause, Standby}
 requires not (v_DeviceState = Pause or v_DeviceState = Standby) : ... end ...

67

6 Model Transformation from MDML to OOAS

When Statements

A when statement can be triggered by input events (see Section 4.1.5), state transitions
(as a secondary action, see Section 4.4.1) or by timed behaviours (see Section 4.3). In the
latter two cases, the rewrite rules are straightforward. In the case of input events, however,
the situation is more complicated. Since the grouping of input events into input channels
has never been explicitly defined in the OOAS, the conditions involving !=, not in and =

any cannot simply be written as inequalities or set exclusions. Instead they are written as
set inclusions on all possible input events of channel c, minus those which are excluded by
the when statement. Again, the list-based expressions are cleared of duplicates to reduce
the potential of equivalent mutants (see Section 7.3 for more information).

when trigger reaction
T−→ requires 〈trigger〉WS : 〈reaction〉T end

v -> s
WS−−→ event = 〈s〉EName

t elapsed
WS−−→ event = 〈t〉Name

e
IE−→ event = 〈e〉Name

c = e
WS−−→ 〈e〉IE

c in {~E1, . . . , ~Em}
WS−−→ 〈{〈e〉IE | e ∈ E}〉OR

X
OR−−→ X1 or . . . or Xn

E(c,X) ={〈e〉IE | e ∈ Eventsc \X}

c != e
WS−−→ 〈E(c, {e})〉OR

c = any
WS−−→ 〈E(c, {})〉OR

c not in {~E1, . . . , ~Em}
WS−−→ 〈E(c, {E1, . . . ,En})〉OR

 # when DeviceState -> Pause
 requires event = s_DeviceState_Pause : ... end ...
 # when 3 sec elapsed
 requires event = tt_TimeTriggerImpl585ce5c8 : ... end ...
 # when UserAction = SPAU
 requires event = i_UserAction_SPAU : ... end ...
 # when UserAction != STBY
 # when UserAction in {SPAU, SMES, ...}
 # when UserAction not in {STBY, ...}

 # when UserAction = any (list includes STBY)
 requires event = i_UserAction_SPAU or event = i_UserAction_SMES or ... : ... end ...

68

6.2 Model Transformation Logic

Then Statements

The leaves of the decision tree are represented by then statements. Each then statement
includes a vector of reactions ~R which are executed consecutively. Reactions can either be
state transitions (see Section 4.1.6), self-transitions (see Section 4.4.4) or last-transitions
(see Section 4.4.2). Transitions are encoded as calls to the setter method of the respective
state variable. In the case of simple state transitions, the method call receives the target
state enum value as its argument. In the case of last-transitions, the last-variable itself
serves as the setter argument. If the state variable is public, the method call receives a
second argument which is identical to the first one.

then ~R1 and . . . and ~RM;
T−→ 〈~R1〉TS ; . . . ; 〈~RM〉TS

DoNothing
TS−→ skip

v -> s
TS−→

{
〈v〉SName (〈s〉Name, 〈s〉Name) public(v)

〈v〉SName (〈s〉Name) otherwise

v -> last
TS−→

{
〈v〉SName (〈v〉LName, 〈v〉LName) public(v)

〈v〉SName (〈v〉LName) otherwise

 # then DoNothing
 skip
 # then DeviceState -> Pause
 setDeviceState(s_DeviceState_Pause , s_DeviceState_Pause)
 # then Busy -> False (private, example)
 setBusy(s_Busy_False)
 # then DeviceState -> last
 setDeviceState(last_DeviceState , last_DeviceState)
 # then Busy -> last (private, example)

 setBusy(last_Busy)

6.2.15 Primary Action Strategy

The controllable Primary action is the sole means by which an outside observer can supply
input to the OOAS. It is a static action which calls the treeAction without any additional
operations.

A 7→ A ∪ {CtrPA}

 actions
 ...
 ctr ctr_PrimaryAction(event : e_Event) = requires true :
 treeAction(event)
 end

69

6 Model Transformation from MDML to OOAS

6.2.16 Secondary Action Strategy

If the model contains secondary actions, they are processed via a dedicated static action.
A secondary action is removed from the front of the queue. If the decision tree cannot
process it further, the secondary action is simply “swallowed”. This action is disabled if
the secondary action queue is empty.

A 7→

{
A ∪ {IntSA} hasSA(D)

A otherwise

 actions
 ...
 int_SecondaryAction = requires len secondary_action_queue > 0 :
 treeAction(dequeueSecondaryAction()) //
 dequeueSecondaryAction()
 end ;

6.2.17 Do-Od Block Strategy

Finally, the do-od block is filled with a disjunction of all possible PrimaryActions - first
and foremost, those triggered by input events. While a more intricate handling of time
triggers has been planned, they are currently processed in the same way as input events.
If the model contains secondary actions, the do-od block also needs to contain a call to
SecondaryAction which processes all pending internal transitions and gets priority over all
PrimaryActions.

DOOD :=

{
IntSA �X hasSA(D)

X otherwise

X = EP
1 2 . . .2 EP

m 2 TP
1 2 . . .2 TP

n

EP = {〈e〉PA | e ∈ Eventsc, c ∈ InputChannelsD}
TP = {〈t〉PA | t ∈ TimeTriggersD}

y
PA−→ CtrPA(〈y〉Name)

 do
 # int_SecondaryAction() //
 ctr_PrimaryAction(ie_UserAction_SPAU) []
 ... []
 ctr_PrimaryAction(ie_UserAction_SMES) []
 ctr_PrimaryAction(tt_TimeTriggerImpl2b097067) []
 ... []
 ctr_PrimaryAction(tt_TimeTriggerImpl237abfe5)
 od

70

7 Test Case Generation with MoMuT

7.1 Tool Overview

MoMuT::UML [64] (read: “MoMuT for UML”) is an academic tool for model-based
mutation testing of state machines, created by the Austrian Institute of Technology (AIT),
as well as the Graz University of Technology. The front-end supports a defined subset of
UML [63] which is translated to OOAS for further processing. Alternatively, OOAS is also
accepted as a direct input language which makes the tool suitable for our DSL use case.
Additionally, the MoMuT tool family also includes MoMuT::TA [12] for timed automata
(a variant of LTS, extended by timing constraints [17]), as well as MoMuT::REQs for
requirement-driven test case generation [9]. Since its inception during the MOGENTES
project, MoMuT::UML went through several development stages which are described
below:

7.1.1 Generation 1: Enumerative Back-End

The first back-end of MoMuT::UML was a conformance checker named Ulysses [7]. As
its input, Ulysses takes the original OOAS, as well as a mutated version. It computes
the LTSs of both systems in a breadth-first manner and combines them into a product
graph while checking ioco on-the-fly. Ulysses enumerates all possible system traces which
results in a high memory consumption and restricts its applicability to simple and slightly
complex models [8, 56, 62]. Therefore, Ulysses requires data type ranges to be restricted
within the OOAS definitions to mitigate a state space explosion [64].

7.1.2 Generation 2: Symbolic Back-End

During TRUFAL, a symbolic conformance checker was developed as an alternative to
Ulysses’ enumerative approach [56]. Like Ulysses, the system was written in Prolog, but
it also interfaces to Microsoft’s Z31 solver [69]. While the former enumerated all possible
system traces, the latter approached test case generation as a constraint satisfaction
problem. In addition to ioco, the symbolic back-end utilizes/offers another conformance
relation called refinement [11]. Compared to ioco, refinement is far more strict since it
imposes a condition on the internal state of a system rather than on observables:

I refines S =df ∀ V,V′ : I(V,V′)⇒ S(V,V′)

1https://github.com/Z3Prover

71

7 Test Case Generation with MoMuT

Here, both I and S denote (object-oriented) action systems, V and V′ denote sets of system-
internal variables encoding the pre- and post-state of an arbitrary action. Furthermore, if
refinement is fulfilled, ioco also holds [105]:

I refines S ⇒ I ioco S

The symbolic back-end starts by performing a refinement check on the mutant which is
computationally significantly cheaper than an ioco check. Only if a refinement violation is
detected, a targeted ioco check is performed. This approach resulted in a runtime reduction
of up to 90% compared to Ulysses. In terms of resources, the algorithm is tied to CPU
speed, rather than memory capacity. During experiments performed within the TRUFAL
project, the symbolic back-end was able to cope with tasks which caused the enumerative
back-end to run out of memory [6].

7.1.3 Generation 3: Search-Based Back-End

At the beginning of the TRUCONF project, MoMuT::UML entered an extensive modifica-
tion process with the goal of increasing its performance to make it applicable to large-scale
models as they are used in other industrial branches [62]. The working principle of the
back-end was changed from formal conformance checking to a search-based approach
which is also more suitable for workflow parallelization. The programming language was
switched to C++ in order to have better control over resource consumption. Other than
for the enumerative and symbolic back-ends, no mutated models are generated. Instead,
information about each individual mutation is added to the original model which is then
compiled to machine code to allow for an efficient execution. Thereafter, the model is
executed under the control of an external scheduler that decides which model traces should
be explored. If the execution trace reaches a point were a mutation becomes effective, the
corresponding mutant is marked as found. If a found mutant crashes or can be made to
show observable behaviour which constitutes an ioco violation, it is classified as killed.
A found mutant which could not be shown to violate refinement of the original model
is classified as equivalent2. If a mutant could not be killed despite violating refinement,
it is classified as weakly killed [75]. The research on adequate search strategies is still
ongoing. A recent publication [43] details the use of rapidly exploring random trees (RRTs)
which were designed to be applicable to a broad class of path planning problems [66].
This strategy requires the definition of distance metrics between state configurations as
well as different heuristics for start and successor states for the currently explored branch.
Another important strategy is breadth-first search (BFS). While this strategy is still under
development, it was used in our case study due to its ability to find all reachable mutants
(see Chapter 9).

2The corresponding algorithm is still under development. Since it is currently unable to show that
the internal state of the mutant is identical to the internal state of the original under all circumstances,
MoMuT::UML currently does not exclude equivalent mutants from the mutation score.

72

7.2 Mutation Operators

7.2 Mutation Operators

In 1996, Offutt et al. [74] conducted a study to determine which mutation operators
contribute the most to the mutation score of a test suite. The OOAS-related mutation
operators of MoMuT [68] are largely consistent with those found by the study. Another
study by Offutt et al. [76] has shown that mutation coverage on some of these operators
subsumes various structural coverage criteria. A list of all mutation operators which are
relevant to our use case, offered by MoMuT or otherwise relevant to the above mentioned
studies are given below:

Absolute Value Insertion (ABS): For our use case, the relevant ABS operations are
enum value replacement and guard falsification. At the time of our experiments, enum
value replacement was only supported in assignment actions. Guard falsification
replaces the guard expression of a guarded command with false which, depending
on the individual circumstances, can change or eliminate many system traces at once.
MoMuT also offers the replacement of integer and Boolean values which are not
relevant to our use case.

Arithmetic Operator Replacement (AOR): Arithmetic operators (+, -, ·, ÷, mod)
do not occur in our OOAS architecture and therefore do not contribute to the
generated set of mutants.

Logical Connector Replacement (LCR): The replacement of logical connectors (∧,
∨, →, ↔) greatly contributes to our mutant sets, as it is later described in Section
7.3. Coverage of LCR mutants ensures decision coverage and, in combination with
ROR, decision condition coverage, as well as multiple condition coverage.

Relational Operator Replacement (ROR): In relational expressions on enum values,
MoMuT supports the operators = and 6=. In special cases, the OOAS includes
relational expressions on integers which elicit the full range of ROR mutations (=,
6=, >, <, ≥, ≤). Coverage of ROR mutants ensures condition coverage and, in
combination with LCR, decision condition coverage, as well as multiple condition
coverage.

Statement Analysis (SAN): This mutation operator ensures statement coverage by
replacing individual statements with a fail statement which results in a kill as soon
as it is reached. Currently, MoMuT does not support such an operator.

Unary Operator Insertion (UOI): Of this category, only the mutation ¬e 7→ e is
relevant to our use case. MoMuT further supports mutations on unary integer
expressions (abs, +, -).

Set-Based Operators: Although not examined by Offutt et al. [76, 74], nor relevant
to our use case, MoMuT provides mutations on set-based operators and quantifiers
(∈,/∈,∀,∃).

73

7 Test Case Generation with MoMuT

7.3 Common Mutation Patterns

This Section contains a description of the different mutation patterns which MoMuT
produces on OOASs generated by our test case generation toolchain. For each mutation
pattern, an examination of its potential to produce equivalent or non-equivalent mutants
is given. Generally, all given and when statements are mapped to guarded commands. A
guard falsification (gd(A) 7→ ⊥) of a guarded command will always result in the loss of all
system traces which include the action A. This may directly or indirectly lead to an ioco
violation although this is entirely dependent on the individual model contents.

7.3.1 Mutations on Equality Expressions

Both given and when statements include a term T ⇔ variable = value when written in
their simplest form:

 given DeviceState = Pause ...
 when UserAction = STBY ...

Through the mutation = 7→6=, all traces in which the term was previously fulfilled are lost.
The reverse case is true for MDML statements which are represented as T ⇔ variable 6=
value. This is only the case for given statements of the following form:

 given DeviceState != Pause ...

Here, the mutation 6=7→= also eliminates all original traces.

7.3.2 Mutations on List-Based Expressions

To illustrate the effect of mutations on list-based expressions, we define a set E of n equality
conditions ei which are mutually exclusive:

∀ei, ej ∈ E : (ei ∧ ej)⇒ (i = j)

This mutual exclusivity had to be enforced during model transformation by eliminating
duplicate cases from list-based expressions (see Section 6.2.14). In the OOAS, list inclusion
expressions have been translated as disjunctions of equality conditions with each list
element:

T ⇔ e1 ∨ · · · ∨ ei ∨ ei+1 ∨ · · · ∨ en with ej ⇔ variable = valuej

The following types of MDML statements are represented in this way:

 given DeviceState in {Pause, Standby, ... } ...
 when UserAction != STBY ...
 when UserAction in {SPAU, SMES, ... } ...
 when UserAction not in {SPAU, SMES, ... } ...
 when UserAction = any ...

74

7.3 Common Mutation Patterns

We will now examine all relevant mutations on the ∨ operator between ei and ei+1, starting

wit ∨ 7→ ∧. The modified logical implication operator
E
=⇒ implicitly takes the mutual

exclusivity of all e ∈ E into account:

e1 ∨ · · · ∨ ei ∧ ei+1 ∨ · · · ∨ en
E
=⇒ e1 ∨ · · · ∨ ei−1 ∨ ei+2 ∨ · · · ∨ en

The ∧ operator binds stronger than ∨. Due to their mutual exclusivity, the expressions
ei and ei+1 are effectively eliminated from the term, resulting in the loss of all traces
associated with them.

e1 ∨ · · · ∨ ei → ei+1 ∨ · · · ∨ en
E
=⇒ ¬e1 ∧ · · · ∧ ¬ei

The → operator binds weaker than ∨. This results in the loss of all traces associated with
the expressions e1 to ei.

e1 ∨ · · · ∨ ei ↔ ei+1 ∨ · · · ∨ en
E
=⇒ ¬e1 ∧ · · · ∧ ¬en

The↔ operator binds weaker than ∨. In this case, the term is only fulfillable if none of the
expressions are true. All previously associated traces are eliminated. Finally, we examine
the mutation = 7→6= by representing it as ei 7→ ¬ei:

e1 ∨ · · · ∨ ¬ei ∨ · · · ∨ en
E
=⇒ ¬ei

While this mutation adds traces for all cases which were not included in the list, it also
removes all traces associated with ei.

Analogously to the list inclusion (∈) case, list exclusion (/∈) expressions are represented as
negated inclusions:

T ⇔ ¬(e1 ∨ · · · ∨ ei ∨ ei+1 ∨ · · · ∨ en)

Of all MDML statements, only list exclusions on state variables are represented in this
way:

 given DeviceState not in {Pause, Standby, ... } ...

We will again examine all relevant mutations, starting with ∨ 7→ ∧:

¬(e1 ∨ · · · ∨ ei ∧ ei+1 ∨ · · · ∨ en)
E
=⇒ ¬e1 ∧ · · · ∧ ¬ei−1 ∧ ¬ei+2 ∧ · · · ∧ ¬en

Analogous to the list inclusion case, the mutation ∨ 7→ ∧ results in the removal of ei and
ei+1 from the term, thereby weakening it. This mutation is equivalent since it preserves all
original model traces.

¬(e1 ∨ · · · ∨ ei → ei+1 ∨ · · · ∨ en)
E
=⇒ e1 ∨ · · · ∨ ei

The mutation ∨ 7→ → forces one of the cases e1 to ei. If the list covered all possibilities
(∃e ∈ E : e = >) the term would have been unfulfillable in the first place. Generally, this
is not the case and all previously allowed traces disappear.

¬(e1 ∨ · · · ∨ ei ↔ ei+1 ∨ · · · ∨ en)
E
=⇒ e1 ∨ · · · ∨ en

75

7 Test Case Generation with MoMuT

In combination with ¬, the↔ operator produces an exclusive disjunction which is equivalent
to a negation of the original term. All original traces disappear.

¬(e1 ∨ · · · ∨ ¬ei ∨ · · · ∨ en)
E
=⇒ ei

The mutation = 7→6= removes all traces associated with values which were not included in
the list while forcing the value associated with the mutated expression.

¬¬(e1 ∨ · · · ∨ en)
E
=⇒ e1 ∨ · · · ∨ en

Finally, the mutation¬ 7→ ¬¬ removes all original traces while adding all traces associated
with each value within the list.

7.3.3 Mutations on other OOAS Elements

We conclude our considerations by presenting some less frequently occurring mutation
patterns:

• A guard falsification on an observable action prevents the observable from ever
occurring. Unless the observable is never shown in the first place, this always results
in a non-equivalent mutant.
• A guard falsification within a setter method (see Section 6.2.12) effectively reduces

it to a skip action. This will prevent the associated state variable from ever being
set to a new value and disable the associated changed-observable, resulting in a
non-equivalent mutant. The mutation 6= 7→= on the guard has a similar effect while
also showing a disallowed observable on self-transitions.
• Setter arguments can be mutated3 in two different ways: changing the enum argument

for the reported value results in the emission of a disallowed observable and a non-
equivalent mutant. Mutating the enum argument for the actual value merely changes
the internal system state and may or may not indirectly cause an ioco violation,
depending on the model. If the mutated target state allows all transitions which are
allowed by the original target state, the mutant is equivalent.
• The guard of a secondary action (see Section 6.2.16) asserts the length of the secondary

action queue to be greater than zero. It can be subjected to guard falsification, as
well as relational operator replacements. In the first case, as well as with >7→<,
all traces containing secondary actions disappear. The mutation >7→6= is always
equivalent because the length of the secondary action queue cannot be negative. The
mutations >7→ (≤,=,≥) cause the OOAS to crash because the dequeuing method
(see Section 6.2.9) is executed on an empty list.
• Guard falsifications and = 7→6= within the secondary action trigger methods (see

Section 6.2.10) prevent the queuing of certain secondary actions at the appropriate
time, resulting in the alteration of all traces associated with them. Additionally,
=7→6= causes the queuing of inappropriate secondary actions which may also cause
the emission of disallowed observables.

3At the time of our experiments, MoMuT only supported the mutation of enum values within variable
assignments. Therefore, we added two temporary variables for each state variable. Before referencing each
setter method, the arguments were assigned to these variables which were then used as setter arguments.
We did not mention this makeshift mechanism in Chapter 6 for brevity reasons.

76

7.4 Abstract Test Cases

7.4 Abstract Test Cases

As its output, MoMuT produces a set of abstract test cases. They can be thought of
as small labelled transition systems, each depicting an individual execution trace of the
OOAS. Abstract test cases are encoded as directed graphs in the Aldebaran4 file format.
An example test case, generated from the AVL740 model is given below:

 des (0, 5, 5)
 (0,"ctr _AVL740_root.ctr_PrimaryAction(event=ie_UserAction_STBY);
 obs _AVL740_root.obs_DeviceState_Changed(value=s_DeviceState_Standby);
 obs _AVL740_root.obs_Status_Changed(value=s_Status_Busy) ",1)
 (1,"ctr _AVL740_root.ctr_PrimaryAction(event=tt_TimeTriggerImpl15d81201);
 obs _AVL740_root.obs_Status_Changed(value=s_Status_Ready) ",2)
 (2,"ctr _AVL740_root.ctr_PrimaryAction(event=ie_UserAction_SMES);
 obs _AVL740_root.obs_DeviceState_Changed(value=s_DeviceState_Measurement) ",3)
 (3,"ctr _AVL740_root.ctr_PrimaryAction(event=ie_UserAction_SPAU);

 obs _AVL740_root.obs_DeviceState_Changed(value=s_DeviceState_Pause);
 obs _AVL740_root.obs_Status_Changed(value=s_Status_Busy) ",4)
 (4,"pass",4)

The first line gives an overview over the size of the encoded graph, specifically, the index
of the initial node (0), the overall number of transitions (5) and the overall number of
nodes (5). All test cases generated by our toolchain are deterministic and are therefore
represented by a linear graph. For non-deterministic OOASs, MoMuT would generate
branching test cases. The rest of the file encodes the transitions, each containing the index
of their source node, one or more actions within quotation marks and the index of the
target node. Actions can be either controllable or observable which are executed in the
order of appearance. The last of the transition denotes an explicit “pass” verdict which
is reached at the end of the test sequence. A failure of the SUT to produce any of the
required observables at the appropriate time is considered a test failure.

4http://www.inrialpes.fr/vasy/cadp/man/aut.html

77

8 Transformation from Abstract to
Concrete Test Cases

The previously described abstract test cases lie at the same high abstraction level as the
MDML model. Therefore, they must be transformed into concrete test cases which can be
executed against actual measurement devices. During the TRUFAL project, this task was
performed by a small command line tool called the test case transformator [sic!] (TCT) [18].
Each abstract test case was parsed by a regular expression grammar and each controllable
or observable was replaced by a C# statement from an XML-based template. This XML
file was device-specific and had to be created manually in addition to the device model.
During the early stages of the TRUCONF project, MoMuT was changed to accommodate
cascaded calls of methods and/or actions within object-oriented action systems. As a
side-effect, the format of abstract test cases was changed so that several controllables and
observables could be concatenated within a single node. This change was incompatible
with the original implementation of the test case transformator. Due to these functional
and usability-related problems, the algorithm was rewritten from scratch as part of the
MDML IDE. Instead of regular expressions, a dedicated Xtext grammar was created to
parse the Aldebaran files. Since the internal logic of the TCT was much simpler than that
of the code generator, we forwent a rigorous test-driven development practice.

8.1 The Test Automation Framework

The test automation framework (TAF) [18] is used by the AVL test center to manage
all automated tests for the PUMA Open system. It was created during the TRUFAL
project to bundle all test automation code into a single C# source tree. This source
tree compiles into a .dll file which can be run within the NUnit1 unit testing framework.
The TAF makes extensive use of PageObjects, a concept adopted from the Selenium2

software testing framework for web applications. In the context of our particular use
case, a PageObject encapsulates the device driver used by PUMA Open to connect to a
specific measurement device via an Ethernet connection. Figure 8.1 shows a simplified3 class
diagram of the measurement device test fixture as it exists within the TAF. Its object model
is separated into two distinct regions, one related to PageObjects, the other related to test
suites. Each measurement device PageObject is derived from a common base class called

1http://nunit.org/
2http://www.seleniumhq.org/
3The class diagram only shows classes, members and methods which are relevant to our immediate use

case.

79

8 Transformation from Abstract to Concrete Test Cases

PageObjects

Tests

AVL740MDMLTests

avl740
instanceName

+ SetUp()
+ TearDown()

AVL740MDMLTests

+ Test_A01()
+ Test_A02()
+ Test_A03 ()
…

AVL740MDMLTests

+ Test_B01()
+ Test_B02()
+ Test_B03()
…

partial

AVL740

+ State
+ User
+ Busy

+ Standby()
+ Pause()
…

MeasurementDevice

+ SendAK(command, instance)
+ WaitForChannelValue(channel, value, timeout)
…

Figure 8.1: A simplified class diagram of the test fixture.

MeasurementDevice, which provides rather low-level and device-unspecific functionalities
like the transmission of AK commands [57] via the SendAK method or the assertion of
the value of a system channel within a certain time frame via the WaitForChannelValue

method. The PageObjects for individual devices provide a series of system channels
corresponding to the Operation, Transition and Control state variables, as well as a series
of more high-level methods which manage the transitions to different system states, like
Pause or Standby. These methods send a control sequence to the configurable device
handler (CDH) which in turn sends a series of related AK commands to the device. Note
that the naming patterns of PageObject members and methods may differ substantially
from the naming conventions used in the specification material. As it was already done
during TRUFAL [18], the TRUCONF test suites employ a programming concept called
partial classes which allows to distribute the definition of a class over different source
files. For each measurement device, a test suite base file (Figure 8.1, lower left) must be
created. This file contains an instantiation of the measurement device PageObject, as well
as the definition of test setup and teardown methods which perform any tasks necessary
before and after the execution of a test case (like resetting the SUT to its initial state
configuration). While the test suite base file has to be created manually, its declaration as
a partial class allows for the incorporation of additional source files, each of which adds a
set of automatically generated test methods to the class definition (Figure 8.1, lower right).
This architecture allows individual test suites to be seamlessly added or removed without
causing compilation problems. However, since arbitrary auto-generated test suites must be
compatible with each other in a common TAF build, the collision of file and test method
names must be prohibited. Therefore, each file or method name receives a unique number,
based on the date and time at which the test suite was generated.

80

8.2 Transformation Schemes

8.2 Transformation Schemes

A test suite can be transformed according to several different test case transformation
schemes (TCT schemes). Each TCT scheme is a collection of different code templates
and transformation rules to synthesize test cases for different purposes. In contrast to the
architecture used within TRUFAL, the TCT schemes are not specific to any measurement
device, but instead utilize all available regularities within the TAF object model and naming
patterns and draw all other necessary information from names and annotations within the
MDML model. The MDML IDE currently supports three different transformation schemes,
described in detail below.

8.2.1 Concrete Device (AK-Commands)

This transformation scheme makes exclusive use of the methods WaitForChannelValue

and SendAK within the class MeasurementDevice and completely bypasses the high-level
methods of the dedicated device class4. It also has the benefit of allowing the user to leverage
the largest amount of information from the DeviceKB. However, of all currently implemented
TCT schemes, it requires the most thorough naming and annotation conventions to be
compatible with the PageObject. We provide an example of this transformation scheme by
applying it to the abstract test case shown in Section 7.4:

 [Test]
 [Category(TestCategory.Priority.Medium)]
 public void BFS_test_1712291106_00()
 {
 avl740.SendAK("STBY", instanceName);
 avl740.WaitForChannelValue(avl740.DeviceState, AVL740.States.Standby, 2);
 avl740.WaitForChannelValue(avl740.Status, AVL740.TransitionStates.Busy, 2);
 Waiting.ForSeconds(15);
 avl740.WaitForChannelValue(avl740.Status, AVL740.TransitionStates.Ready, 2);

 avl740.SendAK("SMES", instanceName);
 avl740.WaitForChannelValue(avl740.DeviceState, AVL740.States.Measurement, 2);
 avl740.SendAK("SPAU", instanceName);
 avl740.WaitForChannelValue(avl740.DeviceState, AVL740.States.Pause, 2);
 avl740.WaitForChannelValue(avl740.Status, AVL740.TransitionStates.Busy, 2);
 }

The above example also illustrates the naming conventions required by the transforma-
tion scheme: The MDML device name determines the name of the PageObject variable
(transformed into lower case). State variables must be named like their corresponding
system channels (e.g. DeviceState). States must be annotated with their corresponding
enum values (e.g. AVL740.States.Standby). Input events must be written as 4-letter AK
commands (e.g. STBY), annotated with additional arguments for the method SendAK, if
necessary.

4This TCT scheme is called “concrete” in contrast to the DAL transformation scheme (see Section
8.2.3).

81

8 Transformation from Abstract to Concrete Test Cases

8.2.2 Concrete Device (Simple)

In addition to the AK command-based transformation scheme described above, we also
implemented a “simple” transformation scheme which utilizes the high-level controllable
methods provided by the concrete device PageObjects. This TCT scheme was added on
request from our test engineers who used high-level methods in their hand-crafted test
cases. It also requires a far less rigorous naming convention within the MDML model.
Input events must be named after their associated method names and annotated with
arguments, if necessary.

 [Test]
 [Category(TestCategory.Priority.Medium)]
 public void BFS_test_1712291106_00()
 {
 avl740.Standby();
 Waiting.ForSeconds(15);
 avl740.Measurement();
 avl740.Pause();
 }

In addition to initiating a state transition, the high-level methods assert both the pre- and
post-state of the transition. Also, they block during transient states like Busy to ensure
that the device is in a stable state upon method termination. This has several detrimental
implications for model-based testing: The transformation scheme is unable to test model
traces which include the abortion of transient states like Busy. Therefore, such traces must
be absent from the model if this TCT scheme is to be utilized. Furthermore, the high-level
methods do not explicitly assert that transient states ever occur, which makes a full ioco
check of transient states impossible and should substantially limit our ability to find faults
via the coupling effect.

High-level PageObject methods have previously been used in test cases created by the
TRUFAL tool chain [18]. At this time, they offered the possibility to disable the pre- and
post-state assertions through a boolean argument. However, this functionality has since
been removed. Since their function is either fulfilled or impaired by the automatic pre- and
post-state assertions within the controllables, all observables present in the abstract test
case are hidden by the transformation scheme. Also, note that the Waiting method at line
6 of the above example only executes after the transient state has already elapsed. Thus,
the waiting time is completely pointless and only unnecessarily increases the execution time
of the test case. However, we chose not to hide timed transitions in the TCT scheme since
we cannot rule out the possibility that the high-level methods allow for the asynchronous
execution of timed behaviours on some occasions. Overall, the simple TCT scheme will
require a substantially different and more coarse MDML modelling style in order to produce
functioning test suites.

82

8.2 Transformation Schemes

8.2.3 Device Abstraction Layer

IFuelMeterMDMLTests

dalIFuelMeter
dalIDal

+ SetUp()
+ TearDown()
…

IFuelMeterMDMLTests

+ Test_A01()
+ Test_A02()
+ Test_A03 ()
…

IFuelMeterMDMLTests

+ Test_B01()
+ Test_B02()
+ Test_B03()
…

partial

AVL740DALTests

+ AVL740DALTests()

AVL735DALTests

+ AVL735DALTests()

DALInterface

…

DALIFuelMeter

+ Standby()
+ Pause()
…

DALIDAL

+ GetDeviceState()

AVL720DALTests

+ AVL720DALTests()

PageObjects

Tests

Figure 8.2: A simplified class diagram of the DAL test fixture.

The device abstraction layer (DAL) groups similar measurement devices into common device
classes, e.g. FuelMeters, SmokeMeters, Opacimeters, ParticleCounters or Conditioning
devices. The devices within a class usually share large parts of their state models. Due to the
properties of the ioco implementation relation described in Section 2.2.2, the overlapping
part of the state spaces can be covered by a common MDML model. The object model of
the test fixture, as seen in Figure 8.2, differs noticeably from the test fixture object model
for concrete devices which was described in Section 8.1. PageObjects of DAL interfaces are
entirely detached from the MeasurementDevice class hierarchy and are instead derived
from the base class DALInterface. Moreover, the state retrieval method GetDeviceState

is located in a separate interface called DALIDAL which is implemented by all measurement
devices. While DAL test suites are valid for all devices within a class, a concrete system
under test must be specified in order to execute them. In the object model, this SUT
specification must be kept separate from the test suite definition to keep the test suites
to keep the tests device-independent. Therefore, the test fixture class serves as a base for
device-specific derived classes (Figure 8.2, bottom) which instantiate the SUT reference
with a concrete measurement device within their constructors.

83

8 Transformation from Abstract to Concrete Test Cases

 [Test]
 [Category(TestCategory.Priority.Medium)]
 public void BFS_test_1712291106_00()
 {
 dalIFuelMeter.Standby().AssertReturnCodeIs(1);
 dalIDal.GetDeviceState().AssertDeviceStateIs(DeviceState.StandBy);
 Waiting.ForSeconds(15);
 dalIFuelMeter.ContinuousMeasurement().AssertReturnCodeIs(1);
 dalIDal.GetDeviceState().AssertDeviceStateIs(DeviceState.Measurement);

 dalIFuelMeter.Pause().AssertReturnCodeIs(1);
 dalIDal.GetDeviceState().AssertDeviceStateIs(DeviceState.Pause);
 }

On first glance, the controllable methods like Standby or Pause strongly resemble the
high-level methods of concrete device PageObjects. In fact, they also abstract Busy phases
of the device which requires a similarly adapted modelling style as the simple TCT scheme
for concrete devices. Other than the high-level methods, the DAL controllables do not
make any assertions about pre- and post-states. They are merely followed up by a method
which asserts the absence of device errors during the execution of a command. The DAL
transformation scheme requires a moderately extensive naming convention. The Operation
state variable must be named DeviceState to match the name of the state retrieval method.
This naming convention has not been abstracted in case that other state variables of the
device should eventually become observable through state retrieval methods. The names of
input events must match the controllable method names and they must be annotated with
arguments, if necessary. Since the controllable methods hide the Transition state variable,
it can be omitted in MDML models. The Control state variable can be influenced through
the methods RequestControl and ReleaseControl, but cannot be observed. Therefore it
should be declared private within the MDML model.

84

9 Case Study: AVL489

To validate the TRUCONF test case generation toolchain, we conducted a series of
experiments based on an MDML model of the AVL Particle Counter (AVL489) [20]. We
used this model to generate a series of test suites and executed them against a testbed
simulation model of AVL489 which was modified to exhibit a predefined set of faults
(subsequently called SUT mutants). The experiments were designed to mirror a similar set
of trials which were performed at the conclusion of the TRUFAL project and documented
in a corresponding paper [6].

9.1 Experiment Setup

9.1.1 AVL489 UML Model

+Busy : boolean = false
+PCRF : DilutionValue = PCRF_1
+Manual : boolean = false
+Integral : boolean = false

<<from_environment>> <<reception>> +DilutionSelection()
<<reception>> <<from_environment>> +LeakageTest()
<<reception>> <<from_environment>> +ResponseCheck()
<<reception>> <<from_environment>> +SetPurge()
<<reception>> <<from_environment>> +SetZeroPoint()
<<reception>> <<from_environment>> +StopIntegralMeasurement()
<<reception>> <<from_environment>> +SetPause()
<<reception>> <<from_environment>> +SetStandby()
<<reception>> <<from_environment>> +StartMeasurement()
<<reception>> <<from_environment>> +StartIntegralMeasurement()
<<reception>> <<from_environment>> +SetManual()
<<reception>> <<from_environment>> +SetRemote()
<<reception>> <<from_environment>> +StartMeasurementB()

<<system_under_test>>
AVL489

<<reception>> +SPAU_state()
<<reception>> +STBY_state()
<<reception>> +SMGA_state()
<<reception>> +SINT_state()
<<reception>> +SPUL_state()
<<reception>> +SLEC_state()
<<reception>> +SNGA_state()
<<reception>> +SEGA_state()
<<reception>> +StatusReady()
<<reception>> +StatusBusy()
<<reception>> +RejectNA()
<<reception>> +RejectBusy()
<<reception>> +RejectSyntax()
<<reception>> +ResponseOff()
<<reception>> +Online()
<<reception>> +Offline()

<<environment>>
TestEnvironment

+testEnvironment

0..*

1

Figure 9.1: Final UML class diagram representing the test interface of AVL489, created during TRUFAL.

To maximize the comparability of our results to those of the TRUFAL case study, we used
the final UML model of AVL489 as a reference to develop the MDML model. Figure 9.1
depicts the test interface of the UML model. It shows that, in addition to observables
reflecting the system state (e.g. SPAU state, StatusReady or Offline), the test environment
can also receive additional signals like RejectBusy. While the TRUFAL toolchain was
able to handle incomplete models due to its usage of the ioco relation [6], this property
was not harnessed during evaluation. Instead, an input-complete model was used which
rejected disallowed inputs with an appropriate error observable. These rejections have

85

9 Case Study: AVL489

entry /
 body = send SPAU_state() to testEnvironment;

exit /
Activity2

 body =
 send StatusBusy() to testEnvironment;
 Busy = true;

entry /
body = send STBY_state() to testEnvironment;

exit /
 Activity3
 body =

send StatusBusy() to testEnvironment;
 Busy = true;

entry /
body = Manual = true;

entry /
body = Manual = false;

entry /
 body = send SPUL_state() to testEnvironment;

entry /
body = send SLEC_state() to testEnvironment;

entry /
 body = send SPUL_state() to testEnvironment;

entry /
body = send SEGA_state() to testEnvironment;

entry /
body = send SNGA_state() to testEnvironment;

entry /
 body = send SMGA_state() to testEnvironment;

entry /
body = send SINT_state() to testEnvironment;

State

Active

Initial_top

Pause_0

isReady

Manual Remote

Initial_middle

Pause_internal
Initial_pause

Initial_standby

StandBy_internal

Initial_bottom

Init_IsBusy

isBusyInternal

Standby_1

Timed

Purging_Pause_12

Leakage_11

Purging_Standby_12

Response_14

isBusy

Timeless

ZeroGas_10

Measurement_2

Integral_9

when Busy

20

SetStandby [not Busy] / set not Manual

/ send StatusReady

StartIntegralMeasurement [not (oclIsInState(State::Active::Timeless::Measurement_2) or oclIsInState(State::Active::Timeless::Integral_9))
and not Manual and not Busy] / send RejectBusy

StopIntegralMeasurement [not oclIsInState(State::Active::Timeless::Integral_9) and not Manual and not Busy and not Integral] / send ...

SetPurge [not(oclIsInState(State::Pause_0) or oclIsInState(State::Standby_1)) and not Manual and not Busy] / send RejectBusy

StartMeasurement [not (oclIsInState(State::Standby_1) or oclIsInState(State::Active::Timeless::Integral_9)) and not Busy] / send RejectBusy, set not Manual

LeakageTest, ResponseCheck [not (oclIsInState(State::Standby_1)) and not Manual and not Busy] / send RejectBusy

DilutionSelection / setDilution

SetZeroPoint [not oclIsInState(State::Active::Timeless::Measurement_2) and not Manual and not Busy] / send RejectBusy

30 [not (oclIsInState(State::Active::Timed::Response_14) or
oclIsInState(State::Active::Timed::Purging_Standby_12) or
oclIsInState(State::Active::Timed::Leakage_11) or
oclIsInState(State::Active::Timeless::ZeroGas_10) or
oclIsInState(State::Active::Timed::Purging_Pause_12))] / set not Busy - send StatusReady

LeakageTest, ResponseCheck, SetPurge, SetZeroPoint, StopIntegralMeasurement, StartIntegralMeasurement [not Manual] / send RejectBusy

SetRemote

SetManual / send Offline

DilutionSelection, LeakageTest, ResponseCheck, SetPurge, SetZeroPoint, StopIntegralMeasurement, StartIntegralMeasurement / send RejectOF

SetManual

/ send Offline

ResponseCheck [not Busy and not Manual]

SetPurge [not Busy and not Manual]

LeakageTest [not Busy and not Manual]

StartMeasurement [not Busy] / set not Manual

20
SetZeroPoint [not Busy and not Manual] / send busy, set busy

StartIntegralMeasurement, StopIntegralMeasurement [not Manual]

StartIntegralMeasurement [not Manual and not B

SetPurge [not Busy and not Manual]

SetPause / set not Manual

SetStandby [not Busy] / send Busy, set Busy, set not Manual

SetPause / set not Manual

20

20

20

when not Manual / send Online

SetStandby / set not Manual

SetStandby [not Busy and not oclIsInState(State::Active::Timeless::Measurement_2)] / set not Manual

SetRemote / send Online

StartMeasurementB / set not Manual

SetPause / set not Manual

SetStandby [oclIsInState(State::Pause_0)] / send RejectBusy, set not Manual

SetStandby / send Busy_set_Busy_set_not_manual

StartMeasurement [not oclIsInState(State::Active::Timeless::Integral_9) and not Manual] / send RejectBusy, set not Manual

Figure 9.2: Final UML state machine diagram of AVL489, created during TRUFAL.

86

9.1 Experiment Setup

been modelled as self-transitions in the Transition and Control region of the state machine
diagram (see central and bottom region in Figure 9.2).

9.1.2 AVL489 MDML Model

The MDML model of AVL489 was created based on the information present in the UML
model. A major difference to the UML model is that all functionality related to error
handling has been omitted. During the development of MDML, the refusal of erroneous
commands had a low priority as a test target, compared to other functionalities. The
ineffectiveness of input actions could be modelled by the DoNothing command. This,
however, would only pose an indirect solution since the model transformation does not
support the explicit observability of unchanged state variables1. Furthermore, since the
ability to employ partial device models for test case generation is a key requirement to
MDML (see Section 3.3, req. 7), we took the chance of examining a model with partially
unspecified behaviour2. The MDML model of AVL489 used in this case study is given
below in its full extent:

1This shortcoming has been resolved over the course of the experiments. See test suite F (Section 9.4)
for more information.

2While the model size was somewhat decreased by this measure, the change is insufficient to explain
the significant reduction in test case generation time observed throughout the case study.

87

9 Case Study: AVL489

 device AVL489 {
 public statevar DeviceState {
 Pause_0, Standby_1, Measurement_2, Integral_9, ZeroGas_10, Leakage_11,
 Purging_12, Response_14
 } = Pause_0;
 public statevar Status {Ready, Busy} = Ready;
 public statevar UserLevel {Manual, Remote} = Remote;
 input UserAction {
 SetDilution(1), LeakageTest, ResponseCheck, Purge, ZeroPoint,

 StopIntegralMeasurement, Pause, Standby, StartMeasurement,
 StartIntegralMeasurement, Manual, Remote
 };

 // OPERATING STATE ***
 given Status = Ready {
 given UserLevel = Remote {
 given DeviceState = Pause_0 {
 when UserAction = Purge then DeviceState -> Purging_12 and Status -> Busy;
 }
 given DeviceState = Standby_1 {
 when UserAction = LeakageTest then DeviceState -> Leakage_11
 and Status -> Busy;
 when UserAction = Purge then DeviceState -> Purging_12 and Status -> Busy;
 when UserAction = ResponseCheck then DeviceState -> Response_14
 and Status -> Busy;
 }
 given DeviceState = Measurement_2 {
 when UserAction = StartIntegralMeasurement then DeviceState -> Integral_9;
 when UserAction = ZeroPoint then DeviceState -> ZeroGas_10
 and Status -> Busy;
 }
 }

 // Only Ready
 given DeviceState = Pause_0 {
 when UserAction = Standby then DeviceState -> Standby_1 and Status -> Busy
 and UserLevel -> Remote;
 }
 given DeviceState = Standby_1 {
 when UserAction = Standby then Status -> Busy and UserLevel -> Remote;
 when UserAction = StartMeasurement then DeviceState -> Measurement_2
 and Status -> Busy and UserLevel -> Remote;
 }
 // Compound returns
 given DeviceState in {Integral_9, ZeroGas_10}{
 when UserAction = Standby then DeviceState -> Standby_1
 and UserLevel -> Remote;
 }
 }

 // Always possible
 given DeviceState = Pause_0 {
 when UserAction = Pause then UserLevel -> Remote;
 }
 given DeviceState = Standby_1 {
 when UserAction = Pause then DeviceState -> Pause_0 and Status -> Busy
 and UserLevel -> Remote;
 }
 given DeviceState = Measurement_2 {
 // Compound returns
 when UserAction = Standby then DeviceState -> Standby_1 and Status -> Busy
 and UserLevel -> Remote;
 }
 given DeviceState = Integral_9 {
 given UserLevel = Remote when UserAction in {

88

9.1 Experiment Setup

 StartIntegralMeasurement, StopIntegralMeasurement
 } then DeviceState -> Measurement_2;
 }

 // Compound returns
 given DeviceState in {
 Measurement_2, Integral_9, ZeroGas_10, Leakage_11, Purging_12, Response_14
 } when UserAction = Pause then DeviceState -> Pause_0 and UserLevel -> Remote;
 given DeviceState in {Leakage_11, Purging_12, Response_14}
 when UserAction = Standby then DeviceState -> Standby_1 and UserLevel -> Remote;

 given DeviceState = ZeroGas_10 when 20 sec elapsed
 then DeviceState -> Measurement_2;
 given DeviceState = Leakage_11 when 20 sec elapsed then DeviceState -> Standby_1;
 given DeviceState = Purging_12 when 20 sec elapsed then DeviceState -> last;
 given DeviceState = Response_14 when 20 sec elapsed then DeviceState -> Standby_1;

 // TRANSITION STATE **
 given Status = Busy {
 given DeviceState not in {ZeroGas_10, Leakage_11, Purging_12, Response_14} {
 when 30 sec elapsed then Status -> Ready;
 }
 }

 // CONTROL STATE ***
 when UserAction = Manual then UserLevel -> Manual;
 when UserAction = Remote then UserLevel -> Remote;
 given UserLevel = Remote when UserAction = SetDilution then DoNothing;

 }

While the above model was built to support the simple TCT scheme for concrete devices,
several test suites within the case study required the AK-based TCT scheme. Therefore,
the names of several state variables, states and input events had to be altered and/or
annotated to match naming conventions present in the TAF source code. The header
section of the AK-based model variant is given below. Apart from the changes mentioned
above, it is identical to the one supporting the simple transformation scheme.

 device AVL489 {
 public statevar State {
 Pause(AVL489.States.Pause),
 Standby(AVL489.States.Standby),
 Measurement(AVL489.States.Measurement),
 Integral(AVL489.States.IntegralMeasurement),
 ZeroGas(AVL489.States.ZeroPoint),
 Leakage(AVL489.States.Leakage),
 Purging(AVL489.States.Purging),

 Response(AVL489.States.Response)
 } = Pause;
 public statevar Busy {False, True} = False;
 public statevar User {
 Manual(MeasurementDevice.UserLevel.Manual),
 Remote(MeasurementDevice.UserLevel.Remote)
 } = Remote;
 input UserAction {
 EKGA(1), SLEC(1), SEGA, SPUL, SNGA, SINA,
 SPAU, STBY, SMGA, SINT, SMAN, SREM
 };
 ...

89

9 Case Study: AVL489

Ethernet

TBSimu TAF

Test Case Generation & Control

Supplies Test Cases / ControlsControls

Interacts

Occasionally over WLAN

Figure 9.3: System architecture of the experiment set-up.

9.1.3 Test Case Generator

In the time before and during the execution of this case study, the MoMuT test case
generator was undergoing substantial modifications. To give us access to its newest features
like the breadth-first search strategy, the developers provided us with a development snap-
shot of the tool which had not yet undergone the appropriate quality assurance practices.
Furthermore, we were informed that the mutation-based and combined mutation/random
search strategies employed during the TRUFAL evaluation phase [6] would be discontinued.
Despite it being currently under development, we chose the breadth-first search (BFS)
strategy for all our experiments because it was able to find all reachable mutants within
our model.

9.1.4 System Architecture

The experiment setup was made up of three individual computers:

1. One computer was used to compile and run the test suites within the test automation
framework. The compiled TAF projects are executed within NUnit which causes an
instance of PUMA Open 2.0 to start and to connect to all configured measurement
devices which are reachable over Ethernet.

2. One computer was used to run a testbed simulation (TBSimu) model of the AVL489
measurement device. Over an Ethernet connection, this simulator is indistinguishable
from a real AVL Particle Counter. Such simulation models are used by the AVL
test center as an inexpensive way to easily recreate different system configurations
without the need to have the actual devices present [6, 18].

90

9.1 Experiment Setup

3. One computer was used to run the test case generation toolchain and to control the
other two machines by means of virtual network computing (VNC).

The physical experiment setup can be seen in its entirety in Figure 9.3. While the system
specifications of the TBSimu and TAF machines are comparable (or identical) to those
of the TRUFAL evaluation, we used a standard-issue laptop for test case generation, as
opposed to a high-end computer, as it was used within TRUFAL. A comparison of their
hardware properties is given in Table 9.1.

TRUFAL TRUCONF
Processor Model 2×6-core Intel Xeon 2-core Intel Core i5-6300U
Processor Frequency 3.47 GHz 2.40 GHz
Logical Cores 24 4
Memory 190 GB 8 GB
Operating System 64 bit Debian 7.1 64 bit Windows 10

Table 9.1: Hardware comparison of the computers used for test case generation within the TRUFAL [6,
56] and TRUCONF projects.

9.1.5 System Under Test

ID Description
1 Operation SetManual disabled in state Measurement
2 Operation SetManual disabled in state IntegralMeasurement
3 Operation SetManual disabled in state Purging
4 Device will not become Busy when changing to state Pause
5 Device will not become Busy when changing to state Standby
6 Device will not become Busy when changing to state Leakage
7 Operation SetRemote disabled in state ZeroGas
8 Operation SetRemote disabled in state Purging
9 Operation SetRemote disabled in state Leakage
10 Duration the device stays Busy divided in half
11 Duration the device stays Busy doubled
12 Operation StartMeasurement disabled
13 Operation StartIntegralMeasurement disabled
14 Operation SetPurge disabled
15 Operation ZeroGas disabled
16 Device becomes Busy after SetPause in state Pause

Table 9.2: The faults (SUT mutants) which can be simulated by the modified testbed simulation model of
AVL489 [6, p.13].

As our system under test, we used a testbed simulation model of AVL489 which had been
modified to simulate one of 16 different faults, called SUT mutants. A description of all
SUT mutants is given in Table 9.2. As it has been indicated in the table, the mutants can
be roughly separated into 6 different groups, each of which share a similar failure mode.

91

9 Case Study: AVL489

During the rest of this case study, we will refer to the SUT mutants as M1 to M16, as well
as M0 for the unchanged SUT. The modified simulation model was created to mirror the
simulation model which was used during the evaluation phase of the TRUFAL project.
However, our SUT had to be recreated from scratch because the original simulation model
was not available any more. Therefore we cannot guarantee that details which are not
specified by Table 9.2 are consistent with the original (most prominently, the duration of
the additional Busy phase of M16).

9.2 Test Suite S (Shallow)

9.2.1 Generation

Setup

For an initial test run, we generated a test suite S utilizing the simple TCT scheme for
concrete devices. As described in Section 8.2.2, this transformation scheme utilizes high-
level PageObject methods. Since these methods do not explicitly assert that transient states
like Busy ever occurred, S is effectively blind to faults associated with them. Therefore,
we expected this test suite to exhibit only a limited coverage of SUT mutants.

Generation Run

Due to the recent improvements made to MoMuT, the test case generation was completed
in a mere 3 seconds on standard-issue hardware. This is an immense improvement over the
performance of the TRUFAL toolchain which took a minimum of 44 hours to generate a
mutation-based test suite on a high-end system. The speed-up of the test case generation is
likely due to the combination of the rebuilt MoMuT back-end with an OOAS architecture
that relies less on parametrized actions and therefore possesses a smaller parameter space
than that which was used during the TRUFAL project. Since test case generation times of
this magnitude are negligible for our industrial application, we will not consider them any
further in this case study.

Model-Based Coverage Analysis

We chose MoMuT’s breadth-first exploration strategy for this and all subsequent test case
generation runs because it left no reachable model mutant undiscovered. Moreover, MoMuT
discovered one case of unreachable model content: the only mutant classified as “not found”
only took effect in the state configuration ZeroGas/Ready, which could not be reached by
the model. This highlights a model-internal inconsistency. S reached an overall mutation
score of 60.37%. However, while reaching almost all branching points, MoMuT was unable
to kill a noticeable amount of weakly non-equivalent mutants. This is most likely due to the
functionality of the BFS search strategy which stops after all reachable state configurations

92

9.2 Test Suite S (Shallow)

Strong Kill; 262;
60%

Weak Kill; 159;
37%

Equivalent; 13; 3% Not Found; 1; 0%

Figure 9.4: Mutation coverage results for Test Suite S. Results for Test Suite D are identical.

are visited. According to the MoMuT developers, the algorithm currently does not explore
any further if a mutant gets activated shortly before this point. This is a known limitation
and will be corrected in an upcoming release.

The live mutants include all mutations of the actual value argument of the DeviceState
setter, which cause the model to internally perform a different state transition than the one
reported to the environment. They make up 75% of the live mutants while all corresponding
mutants of DeviceState’s reported value have been killed. 13 mutants were classified to
be weakly equivalent. However, while three of them match our equivalence considerations
(see Section 7.3), closer investigation has shown the remaining 10 to be wrongly classified.
The problem affected the MDML code segment from line 71 to 75 in the MDML model (see
Section 9.1.2), labelled “Compound returns”. Here, MoMuT was unable to identify missing
traces from Measurement, Integral, ZeroGas or Leakage to Pause and from Leakage to
Standby. As a direct consequence of the search depth being limited by state configuration
coverage, all generated tests had a depth of 6 or lower. Our test engineers found this to
be beneficial since shorter test sequences are easier to debug. The results of the coverage
analysis are depicted in Figure 9.4. The lightning symbols denote the unusually high
number of weak kills produced by a yet imperfect algorithm as well as a definite bug
regarding several mutants falsely labelled as equivalent.

93

9 Case Study: AVL489

9.2.2 Execution

SUT-Based Coverage Analysis

The fault-free system M0 passes3 all test cases of S but one. This test case tries to verify
that the SUT can change from IntegralMeasurement back to Measurement through the
repeated calling of the method StartIntegralMeasurement. This is bound to fail since
the method asserts the state Measurement as its precondition. This example highlights
how the simple TCT scheme is unable to represent certain model features. As expected, S
uncovered only about a third of the SUT mutants. Out of M1-M3, S was only able to kill
M2. While not impossible in principle, S does not explore the other two paths. Similarly,
S also misses M7-M9

4 and M16. The mutants M4-M6 and M10, on the other hand, could
not be killed because the high-level methods do not recognize the absence or shortening
of transient states. S was unable to distinguish M0 from M11 unless the built-in time-out
of the PageObject methods was reduced from 45 sec to 3 sec by way of trial. M12-M15

are very coarse mutants and could be relatively easily killed, despite the aforementioned
limitations of the test suite.

Causes fore Limited Effectiveness

The cause for the limited effectiveness of S may be a combination of several factors: First, as
stated above, the simple transformation scheme for concrete devices is relatively insensitive
to transient states. Secondly, the decision tree within the OOAS is structurally identical to
the one in MDML. An efficiently structured decision tree contributes to the readability of
the MDML model but has a comparatively low potential for mutations. This should lead
to fewer, more coarse mutants and, subsequently, more granular tests. This phenomenon,
described by Schlick et al. [88] as “factoring”, constitutes a violation of the separation of
concerns paradigm by introducing a conflict between the efficient representation of model
features and the quality of the generated test suite. Since the limitation caused by the high
number of weak kills also applies to the other test suites in this case study, it cannot be
stated as a cause for the relative ineffectiveness of S.

Other Observations

Furthermore, we observed the occasional and irreproducible failure of high-level page object
methods. These high-level methods execute CDH sequences which, in turn, cause the
device driver to send a series of consecutive AK commands to the SUT. Our test engineers
hypothesized that these AK commands are sent in such rapid succession that the SUT
occasionally fails to process them. If correct, this would be unavoidable without altering
the device driver. This hypothesis would also entail that these irreproducible failures should
not appear in test suites generated with the AK transformation scheme. For the sake of
brevity, we will henceforth refer to this failure mode as CDH hiccup.

3All tests but one have been observed to pass at least once. See “Other Observations”.
4The Mutants M7 and M9 could not be killed by any TRUFAL or TRUCONF test suite.

94

9.3 Test Suite D (Deep)

9.3 Test Suite D (Deep)

9.3.1 Generation

As a next step, we created a second test suite D, which utilized the AK-based TCT scheme.
Although we specified the same MoMuT input parameters as for test suite S, the generation
run yielded one more test case than the previous run. Since MoMuT’s search algorithm
is supposed to be deterministic, we relayed this observation to the development team for
further investigation. The model coverage of D is identical to the one of test suite S.

9.3.2 Execution

Tuning of Time-Out Values

While wrong time-outs in the model were masked by the insensitivity of test suite S,
they significantly affected the execution result of test suite D. Therefore, we iteratively
reduced the time-outs within the model and the WaitForChannelValue methods to the
minimal value which allowed D to pass on M0. This measure was dictated by our lack of
information about representative time-outs. Ideally, the correct time-out values should be
known beforehand, e.g. from a specification document. However, our experiments show
that D can uncover time-out violations if the correct values are used. We also retroactively
tuned the time-outs of test suite S to obtain a representative value of its execution time.

SUT-Based Coverage Analysis

Of M1-M3, D missed M3. In contrast to S, D killed M5 and M6. While M5 was killed by 17
test cases, the test suite missed M4. Mutants M7-M9 were missed because they required the
SUT to change from state configuration X/Y/Remote to X/Y/Manual and would then
refuse the transition back to X/Y/Remote. These traces are beyond the exploration scope
of the breadth-first search strategy which stops after every reachable state configuration
has been visited once. M10 and M11 have been killed after the time-outs of D had been
tuned to appropriate values. The test suite killed all of the coarse mutants M12-M15. One
test performed the state transition needed to reach M16. However, due to the limited state
surveillance, it did not assert the state of the Busy state variable, which was assumed to
be unchanged.

Instances of Non-Conformance

As opposed to S, D uncovered 3 cases of non-conformance between the model and the
SUT. As it turned out, the states ZeroGas, Leakage and ResponseCheck in fact do not
revert back to their predecessors within 20 seconds.

95

9 Case Study: AVL489

Figure 9.5: A teardown hiccup, as shown on the user interface of NUnit.

Superfluous Test Cases

As a side effect of the limited state surveillance, D contained 3 test cases which only
consisted of a call to SendAK and contained no assertions due to executing a command
which did not change the state configuration. These test cases add no value to the test suite.
This observation calls the design decision of limited state surveillance into question.

Other Observations

As expected, we did not observe any CDH hiccups within the test methods. However, we
still observed their occurrence in the test teardown method which still utilizes high-level
page object methods. This observation strengthens our belief that CDH hiccups are indeed
caused by AK commands being sent in too rapid succession. We also occasionally observed
reproducible assertion failures during test teardown. However, since a test case has already
been passed at the time of teardown, we do not consider these assertion failures to be test
failures. While they currently have to be manually identified when reviewing the execution
results, they are also relatively easy to spot on the user interface of NUnit (see Figure
9.5). We will henceforth refer to all failures occurring during test teardown as teardown
hiccups.

96

9.4 Test Suite F (Full)

9.4 Test Suite F (Full)

Within the TRUFAL project, the idea to poll all state variables of the SUT had been
abandoned due to performance reasons [6]. This measure prevented a full ioco check and
limited the ability of the test suite to uncover faults via the coupling effect. However, based
on our experiments with test suite D, we decided to create a test suite which polls all
public state variables of the SUT after every input event and timed behaviour, thereby
increasing the impact of the coupling effect. Another aim of this measure was to prevent
tests without asserts, like they have occurred in test suite D. To accomplish this, we had
to modify the code generator in the least invasive way possible, in order to save valuable
laboratory time.

9.4.1 Changing the Code Generator

As a first step, all changed-observables in the OOAS needed to be disabled. The least
invasive way to do this was to change them to internal actions, thereby rendering them
inert.

∀v ∈ StateVariablesD, public(v) : observable(ObsC(v)) := ⊥

 actions
 ...
 obs_DeviceState_Changed(value : t_DeviceState) = requires true :
 skip
 end ;
 ...

Secondly, an observable action had to be created, which communicates the values of all
public state variables to the environment.

M 7→M ∪ {〈D〉OF}

D
OF−−→ obs FullState (PF

1 , . . . , PF
n) requires true : skip end

PF = {〈v〉OFA | v ∈ StateVariablesD, public(v)}

v
OFA−−→ 〈v〉ArgName : 〈v〉TName

 actions
 ...
 obs obs_FullState(v_DeviceState_arg : t_DeviceState , v_Busy_arg : t_Busy)
 = requires true :
 skip
 end

This observable action needs to be triggered after every traversal of the decision tree. The
body of the action treeAction is modified in order to trigger the observable.

BodyIntTA
:= tree(event) ; obs FullState (VP

1 , . . . , VP
n)

VP = {〈v〉Name | v ∈ StateVariablesD, public(v)}

97

9 Case Study: AVL489

 actions
 ...
 treeAction(event : e_Event) = requires true :
 tree(event) ;
 obs_FullState(v_DeviceState , v_Busy)
 end
 ...

All of the above changes were implemented as a single strategy which was scheduled to
execute at the very end of the model transformation workflow. This measure leaves all
previously defined strategies intact and makes the modification easily reversible. Note that
this modification would report the full system state in-between secondary actions. Since
secondary actions are supposed to represent internal transitions, this behaviour has to
be corrected. However, due to our limited laboratory time and the fact that our model
of AVL489 does not include secondary actions, we limit the modifications to the model
transformation to the above mentioned actions for the time being. It is also worth noting
that this measure in its current form negates the improvement in mutant granularity of
distinguishing reported and actual state changes. This shortcoming must be addressed in
the final implementation.

9.4.2 Generation

Upon generation, test suite F yielded 1 additional mutant and 19 additional kills. This
resulted in a slightly higher mutation score of 64.6%. The modification produced no
equivalent or unreachable mutants. However, according to the MoMuT developers, the
increased number of kills is most likely due to a bug present in the development snapshot
of MoMuT, which caused the non-appearance of observables to be counted as an empty set
of output labels rather than the δ label. Therefore, MoMuT did not register the mutation
as an ioco violation. This behaviour was masked by the changed OOAS architecture which
causes an observable to occur invariably after every interaction with the environment.
Overall, the test case generation process yielded 29 test cases. The results of the coverage
analysis are depicted in Figure 9.6.

9.4.3 Execution

Execution Time

Despite the additional polling commands, the 29 test cases of F took 16 minutes to execute
on the original SUT. The mean execution time per test case does not significantly differ
from that of test suite D. We believe that improvements on the PUMA Open system made
after the TRUFAL project have solved the performance issues that caused the need for an
incomplete state surveillance.

98

9.4 Test Suite F (Full)

Strong Kill; 281;
65%

Weak Kill; 141;
32%

Equivalent; 13; 3% Not Found; 1; 0%

Figure 9.6: Mutation coverage results for test suite F.

SUT-Based Coverage Analysis

With 12 out of 16 killed SUT mutants, test suite F improves on the coverage of D as
expected. M7-M9 were missed due to reasons detailed in Section 9.3.2. M16 was visited
but the test case failed to recognize the short additional Busy phase when performing
a self-transition on the state Pause. Based on further experimentation, we believe that
this is due to the method WaitForChannelValue being too insensitive to detect transient
states which are shorter than 2 seconds. Notably, this SUT mutant has been uncovered
by TRUFAL test suites. Since we are not aware of any changes in the PageObject or the
underlying device driver, it is possible that the former simulator model implemented a
longer Busy phase. A more thorough observation of this issue on device driver level was
impossible due to limited laboratory time.

Instances of Non-Conformance

Test suite F uncovered five instances of non-conformance between the model and the
SUT, including the three instances discovered by D. Additionally, it was revealed that the
transition from IntegralMeasurement to Standby causes the SUT to change to Busy, while
the transition from Standby to Pause does not.

99

9 Case Study: AVL489

9.5 Results

Figures
Test Suites

S D F M R C
TCT Scheme Simple AK AK - - -
Mutants 435 435 436 3103 3103 3103
Killed 262 262 281 2551 2173 2420
Weakly Killed 159 159 141 - - -
Weakly Equivalent 13 13 13 - - -
Not Found 1 1 1 - - -
Mutation Score 60.37% 60.37% 64.6% 82.21% 70.03% 77.99%
Tests 25 24 29 67 238 57
Maximum Depth 6 6 6 19 25 20
Generation Time 3 sec 5 sec 5 sec 44:09 01:44 67:35

Execution Time
(00:24) (00:22)

00:15 00:29 01:36 00:29
00:15 00:12

Mean Ex. Time / TC 36 sec 30 sec 32 sec 26 sec 24 sec 30 sec
SUT Mutant Kills 5 10 12 12 10 13

Table 9.3: Generation and execution details of the generated test suites (S, D and F) in comparison with
the test suites from TRUFAL (M, R and C) [6]. Times are given in hh:mm unless specified
otherwise. Italic values have been measured before the time-outs have been tuned to appropriate
values.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

K
ill

in
g

Te
st

s
[#

]

SUT Mutant ID

Shallow Deep Full

Figure 9.7: Number of kills per SUT mutant and test suite.

100

9.5 Results

9.5.1 Gains

At the time of the TRUFAL project, mutation-based test case generation with Mo-
MuT::UML required several tens of hours on high-end hardware while the concurrent
approach implemented in the newer versions of the tool [62] terminates in mere seconds on
standard-issue hardware. This significant improvement gives us the flexibility to experiment
with more intricate and expensive forms of mutation in our future work. While the gener-
ated test suites are shorter and based on fewer killed mutants, they achieve a comparable
level of SUT mutant coverage while needing less time to execute. All figures associated
with these conclusions are given in Table 9.3. The kill rates of each test suite for individual
mutants are depicted in Figure 9.7. Furthermore, we no longer weaken our testing approach
by limiting the state surveillance to changing state variables which improves our ability to
find faults via the coupling effect and brings us closer to an actual ioco check.

9.5.2 Possibilities for Improvement

The aforementioned performance gain could be invested in a depth increase of the breadth-
first search algorithm. This might help to reduce the number of weakly killed mutants and
increase the number of strong kills. According to the MoMuT developers, reducing weak kills
is one of the main priorities of their future work. Another avenue for improvement would be
the pre-processing of the MDML decision tree to encode the transitions for all possible state
configurations separately into the OOAS. This approach, called “de-factoring” [88], could
potentially produce very fine-grained mutants but would require an extensive reachability
analysis in order to prevent the generation of unreachable OOAS code. As mentioned
above, further modification must be made to the model transformation to account for
secondary actions in combination with full state observability. The implementation of
these modifications must adhere to the practice of test-driven development, which was
not observed during our on-the-fly modifications during the evaluation phase. While
teardown hiccups might pose an annoyance to test engineers, general CDH hiccups are only
identifiable by (repeatedly) re-running all failed tests of a test suite. However, they are
limited to test suites generated by the simple transformation scheme. The concrete fields
of application of each TCT scheme must be evaluated by trial and hands-on experience.
While the test engineers complimented the shortness of the generated test cases, they also
expressed the need for meaningful test method names as opposed to the currently used ID
numbers.

101

9 Case Study: AVL489

9.5.3 Unsolved Problems

When several state variables of a measurement device change at once, this change is atomic
and therefore occurs in no particular order. With the recent modification of the model
transformation, this atomic change has been introduced into the OOAS representation.
However, due to the test case transformation algorithm, assertions on different state
variables are executed in order of state variable declaration5 in the MDML model. While
the first state variable experiences the shortest time-out, the last state variable implicitly
experiences the longest. This constitutes a violation of the paradigm of separation of
concerns, as well as the semantics of the MDML language which states that the order of
elements in the set of state variables has no effect. Furthermore, the test suites allow a
SUT to perform arbitrary state variable changes as long as it exhibits the expected state
configuration before the time-out expires. Therefore, intermediate state configurations
which are too short to be recognized by the WaitForChannelValue methods must be
disregarded when creating the MDML model.This problem has been known since the
TRUFAL project but we found that it, with few exceptions, had little practical impact on
the applicability of our testing method.

5This is a side effect of the code generator internally representing sets as ordered lists.

102

10 Concluding Remarks

10.1 Related Work

The main contributions of this work are the development of a textual DSL as a means
to specify the behaviour of measurement devices in the form of state machines and
its integration with a pre-existing model-based mutation testing methodology into an
industrializable toolchain. In this section, we examine related work which mirrors one or
both of these aspects.

10.1.1 DSL-Based Test Case Generation Toolchains

Törsel [100] has created a model-based testing tool for web applications which resembles
our test case generation toolchain in several aspects: the front-end DSL structures the
modelled information primarily by views, bundling their outgoing transitions. Therefore
it bears resemblance to MDML when written in the state normal form (see Section
4.2.1). The toolchain is largely composed of the same operations, with the exception of
an additional model transformation step which enhances the abstract test cases with
additional information while still keeping them independent from the testing tool.

Efkemann and Peleska [40, 39] perform model-based test case generation for safety-critical
avionic systems using a graphical DSL called ITML. A dedicated IDE provides a modelling
front-end as well as the automated generation of executable test procedures. They ensure the
right level of abstraction by hiding unnecessary details of the test environment. Efkemann
also highlights the importance of tool-workflow integration - e.g. by using the Eclipse
framework - and the assurance of tool usability [39, p.156].

Similarly, Haxthausen and Peleska [52] have developed a toolchain for the model-based
verification and testing of railway systems which uses a graphical DSL in conjunction
with a dedicated editor and well-formedness checker. Due to the large number of resulting
test cases, a test selection heuristic is used. They use the semantics of input/output state
transition systems which differ from IOTS by representing inputs and outputs as variables
rather than labels.

Stefanescu et al. [95] have developed a graphical DSL called MCM for the model-based
testing of service choreographies (the communication protocols within a service-based
architecture). In an interesting antiparallel to the TRUFAL toolchain, they convert their
MCM models into UML models which are then executed by a dedicated engine for the
purpose of test case generation and debugging. The resulting abstract test suite can be

103

10 Concluding Remarks

made to satisfy different coverage criteria, each of which are based on input coverage,
possibly in relation with test steps. The MCM editor has been realized as an Eclipse plugin
with the integrated transformation from MCM to UML.

Olajubu et al. [79, 78] have automated the generation of test cases based on software
requirements. These requirements are modelled in a textual DSL which, like MDML, tries
to bridge the gap between natural language and formal specification. An Xtext-based
IDE is used to specify the requirements which are then directly translated to test cases
by model-to-text transformation scripts. The test selection criteria are dependent on the
respective kind of requirement - e.g. representative values for equivalence class-based
requirements or modified condition/decision coverage for logical requirements.

Proetzsch et al. [85] have created a testing toolchain for mobile robots, involving multiple
DSLs. While one is used to directly specify generic test cases, the other is used for the
graphical specification of test models. These models contain transitions between different
locations which the robot can visit, possibly weighted by probability, thereby gaining the
semantics of a Markov chain. Test cases can be derived either randomly or according to
coverage-based strategies.

10.1.2 CNL-Based Test Case Generation Toolchains

Controlled natural languages (CNLs) are subsets of natural languages and are used to make
formal specifications accessible to a very broad range of users regardless of their previous
knowledge or experience [91]. While these languages might not look domain-specific on
the surface, they are clearly defined in terms of scope and semantics. Both aspects are
to a certain extent tailored to a specific domain in order to make the languages machine-
readable. The intuitive understandability of CNLs was part of the reason why Gherkin
was chosen as a baseline for the development of MDML.

The work of Colombo et al. [31] was previously mentioned as prototypical for our use case.
They specified a web service through a state machine formalism in the form of Gherkin
scenarios. These scenarios are then combined into a common model which serves as an input
for a property-based testing (PBT) tool called QuickCheck1 [30]. QuickCheck generates a
series of test sequences, attempting to falsify the postconditions specified in the Gherkin
scenarios.

Nogueira et al. [71] have developed a model-based testing tool which takes use cases in CNL
form as input and converts them into a common labelled transition system. This method is
akin to the manual process of compiling individual usage scenarios into a common MDML
model. Finally a test suite covering all transitions of the LTS is generated. Moreover, they
observed that the use of a CNL made their tool desirable to a large user base.

1http://www.cse.chalmers.se/∼rjmh/QuickCheck/

104

10.1 Related Work

10.1.3 State Machine Representation in Textual Languages

Lastly, we present a few ways in which state machines have been represented in textual
languages. Since this category blurs with those of graph specification languages and general
purpose languages which have been used for state machine specification, we will restrict
this Section to a few non-exhaustive examples. The works of Törsel [100] and Colombo et
al. [31] deserve repeated mentioning in this category as they specify their web-services in
terms of views and scenarios which resemble the state normal form and a fully de-factored
modelling style in MDML, respectively.

Conway and Edwards [32] have developed a DSL for the specification and automated gener-
ation of device drivers (e.g. Ethernet adapters). Their language allows for the independent
declaration of each state. The notion of different state variables is only implied through
the existence of sets of mutually exclusive states. Like in UML state machine diagrams,
states may contain entry actions which can specify further state transitions, similar to
MDML’s secondary actions.

The FSMLanguage developed by Agron [4] is used to specify state machines in the context of
hardware/software co-design. Here, states and transitions are defined separately. Transitions
are guarded and grouped by their source state. Their evaluation priority is determined
by their order of declaration. The language only supports one-dimensional state spaces
but allows interaction with other state machines via message passing mechanisms, thereby
resembling an intermediate development stage of MDML.

Ouimet et al. have created the Timed Abstract State Machine Language [80, 81] to
specify timed abstract state machines, including non-functional properties like resource
consumption. The models contain type and variable definitions, followed by guarded
transition rules, resembling the basic header/body structure of MDML models. The
language also allows for the parallel composition of multiple state machines.

Ratiu et al. [86] have proposed several extensions to the C programming language, one of
which was designed to encode state machines. A state machine definition starts with the
declaration of input and output symbols. Analogous to MDML’s state normal form, each
state is specified as a block statement which contains the definitions of outgoing transitions,
including their associated inputs, guards and outputs.

105

10 Concluding Remarks

10.2 Future Work

Figure 10.1: The TRUCONF toolchain as envisioned during project inception.

10.2.1 Graphical Model Representation

The opportunities of future work can be adequately illustrated by our initial plans for
the TRUCONF toolchain, depicted in Figure 10.1. Starting with the activity of model
creation, the first issue to address is that of the graphical representation of measurement
device state machines. Though initially planned as part of the TRUCONF project, it has
grown out of scope due to our prevalent difficulties with presenting a multidimensional
state space in a form which is intuitively understandable to our end-users. Nevertheless,
we understand that an adequate graphical representation would significantly enhance the
intuitive understandability of device state machines at first glance. Altenhuber [16] has
already laid important groundwork for the development of graphical views on MDML
models which includes concepts for several different state space representations as well as
feedback from our test engineers. With this information as a baseline, we endeavour to
extend the MDML IDE with adequate graphical views.

106

10.2 Future Work

10.2.2 Test Execution and Evaluation

Currently, the TRUCONF toolchain ends with the generation of a test suite in the form of a
partial PageObject class file. This file has to be manually transferred to the TAF computer
and incorporated into the TAF source tree which then takes about 10 minutes to compile.
Afterwards, the generated tests can be run against a connected measurement device via
the NUnit framework. Future versions of the TRUCONF toolchain could separate the
test case generation from the modelling front-end and move it to a server which also runs
a TAF instance. A test engineer would submit an MDML model to the server, together
with instructions for test case generation and transformation. The test suite would then
be automatically generated, integrated and executed. By incorporating information from
already existing MoMuT and NUnit reports (both of which are machine-readable XML
files), the test engineer could be given an immediate feedback on the mutants which are
probably implemented by the SUT. The model transformation could also be improved by
an additional de-factoring step which decouples the structure of the MDML model from
the granularity of the generated mutants.

10.2.3 Non-Functional Requirements

While timed transitions and communication time-outs can arguably be considered as non-
functional requirements, the development of a dedicated NFR measurement and verification
method never reached an adequate level of maturity. This was mainly due to the focus of
the measurement device use case of the TRUCONF project shifting away from NFR testing
and towards usability and industrialization of the functional testing method. While an
NFR testing method for measurement devices was developed, the concrete test targets (e.g.
for CPU usage or memory consumption), as well as the accuracy of the method (e.g. for
network latency) remain unclear. Further work on NFR testing methods for measurement
devices will require a more targeted approach which takes the behaviour of the system on
the device driver level into account. A closer collaboration with the measurement device
engineering department for the purpose of requirement transparency will be necessary.

It may also be possible to incorporate research done within the second use case of the
TRUCONF project. This use case concerned itself with the testing of functional and
timing-related characteristics of an AVL web service called testfactory management suite
(TFMS) [13, 15, 14, 90]. The business logic of the web service is represented in the form of
a so-called rule engine model from which an extended finite state machine model is derived
as input for the test case generation toolchain. Test cases are then either directly generated
by a property-based testing tool called FsCheck2 or indirectly by the incorporation of an
external test case generator like MoMuT. The latter was used to generate test cases which
are short yet still meet predefined coverage criteria. The test cases are then executed on
the SUT to test its functional conformance while simultaneously obtaining probability
distributions for certain costs (e.g. individual transition times). These cost measurements
are then combined into a cost model, analogous to the feedback loop depicted in Figure
10.1. Via statistical model checking, certain properties of the cost model can be evaluated,

2https://fscheck.github.io/FsCheck

107

10 Concluding Remarks

e.g. the probability that a transition meets a given time constraint. Afterwards, a minimal
number of sample measurements are taken on the SUT in order to verify that it meets
the predictions made from the cost model. The cost model learning, model checking and
verification steps could be integrated into the extended toolchain as it was described
in Section 10.2.2. Moreover, the approach would also allow for the testing of several
measurement devices which are running in parallel and are operated from the same PUMA
system.

10.3 Summary

A domain-specific language has been created as a front-end modelling formalism to facilitate
the industrialization of a previously existing model-based mutation testing methodology for
automotive measurement devices. This DSL was designed in close and frequent cooperation
with the test engineers who would constitute its eventual user base. After observing their
habitual workflows, the controlled natural language Gherkin was chosen as a baseline for
the development of the measurement device modelling language (MDML).

The scenario-based structure of Gherkin was altered to represent state machines as decision
trees which determine the next state transition based on the current state configuration
and the current input. These decision trees need not be strictly structured according to the
different state variables but offer a large degree of freedom for different modelling styles.
This freedom in model structure is bought with an increased margin of modelling errors
which demands enhanced user guidance by a dedicated modelling tool.

Along with the language, a plugin for the Eclipse IDE was developed, using the Xtext
domain-specific language workbench. This plugin was developed to a full-fledged MDML
tool which was integrated with AVL-internal data sources like the device knowledge base.
Testing interfaces for device models can be imported directly from the DKB, thereby
reducing the need for tedious manual data-gathering. On the other hand, the functional
MDML model content has been purposefully kept redundant to uphold the four-eyes
principle.

The MDML tool encapsulates the whole test case generation workflow, starting with the
transformation of the MDML models to object-oriented action systems. The transformation
has been realized as a series of strategies as per the strategy pattern. Therefore, it is easy
to maintain the transformation logic by removing, changing or adding individual strategies.
The transformation logic, in conjunction with the formal semantics of OOAS, constitutes
a formal semantics of MDML.

The OOAS are processed by the MoMuT test case generator which was developed by the
Austrian Institute of Technology and the Graz University of Technology. MoMuT uses
a fault-based test selection criterion, combined with a search-based test case generation
approach. It enhances the OOAS with a set of individual mutations and attempts to find
model traces which uncover these mutations through an observable difference in behaviour.
The combination of the different mutation operators with the model transformation logic

108

10.4 Conclusion

results in the emergence of recurring mutation patterns. These mutation patterns have
been examined in terms of their functional non-equivalence.

After an abstract test suite has been generated, it must be transformed to a concrete test
suite which resides on the abstraction level of the system under test and can be incorporated
into the test automation framework. The sequence of controllable and observable actions
which comprises a test case is replaced by method calls to a measurement device PageObject.
Depending on the model, this transformation can be guided by different transformation
schemes. The simple transformation scheme uses high-level PageObject functionality while
the AK-command-based transformation scheme operates on communication protocol level.
A third transformation scheme directly leverages the properties of the ioco conformance
relation by covering equal state machine sections of similar measurement devices by common
MDML models.

The overall MBT methodology has been evaluated in a case study on the AVL Particle
Counter, also known as AVL489. The measurement device was emulated by a testbed
simulator which was programmed to exhibit a set of different implementation faults. This
case study mirrored a similar series of experiments which were conducted at the conclusion
of the TRUFAL project, resulting in a direct comparison between the former and current
MBT approaches.

10.4 Conclusion

The necessity from which the MDML modelling formalism arose dictates two main re-
quirements: first, it must be significantly more desirable to the test engineers than the
previously existing approach developed in the TRUFAL project. And secondly, it must
be functionally on par with the previous approach. As part of the work presented in this
thesis, both of these requirements have been verified.

From an early development stage onward, the MDML language has been subjected to
repeated user trials by test users with varying degrees of domain knowledge. Our experience
shows that MDML is easy to learn and efficient for creating measurement device models.
Invariably, all test subjects were able to use the modelling language after 1-2 hours of
training. At later development stages, the focus of the evaluations shifted more and more
away from the DSL itself and towards the user experience of the dedicated modelling tool.
In the conducted walkthroughs, it proved itself to be well-tailored to its purpose, providing
the test engineers with the right balance of flexibility and user guidance. The necessary
redundancy of implementation and test data still dictates a life-cycle for MDML models.
An initial model is built and iteratively reconciled with the SUT. Any non-conformances
are classified as either actual implementation faults or modelling errors. While this model
life cycle is unlikely to be disestablished in the foreseeable future, we are confident that
the necessary effort for model maintenance has been significantly reduced.

To assess its functional quality, the MDML test case generation toolchain was subjected to
the same trial as the previously existing TRUFAL toolchain. In some cases, it was hard to
distinguish between the contributions of the revised MoMuT test case generator and those

109

10 Concluding Remarks

of the encapsulating modelling and model transformation method as many different factors
came into play at once. Nevertheless, it has been shown that the MDML toolchain is on par
with the TRUFAL toolchain with respect to test case quality, as evident by the number of
SUT mutant kills. This conclusion is strengthened by the fact that this result was achieved
using a still imperfect version of MoMuT which produced an excessive amount of weak kills
and false cases of mutant equivalence. The mutant coverage statistics, along with closer
examination of the individual model mutants have shown that the model transformation
yields a low number of equivalent mutants. Furthermore, the testing methodology was
improved to perform full state surveillance, bringing it closer to an actual ioco check. The
case study has also uncovered notable differences in the functional quality of different
test case transformation schemes. While the AK-command-based TCT scheme yields the
best results, the question remains whether or not the simple transformation scheme is of
long-term practical relevance.

110

Bibliography

[1] S. Abrahão, F. Bourdeleau, B. H. C. Cheng, S. Kokaly, R. F. Paige, H. Störrle,
and J. Whittle, “User experience for model-driven engineering: Challenges and
future directions,” in 20th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS 2017, Austin, TX, USA, September
17-22, 2017, 2017, pp. 229–236 (cit. on pp. 45, 53).

[2] J. Abrial, Modeling in Event-B - System and software engineering. Cambridge
University Press, 2010 (cit. on p. 9).

[3] J. Abrial and S. Hallerstede, “Refinement, decomposition, and instantiation of
discrete models: Application to Event-B,” Fundamenta Informaticae, vol. 77, no. 1-
2, pp. 1–28, 2007 (cit. on p. 9).

[4] J. Agron, “Domain-specific language for HW/SW co-design for FPGAs,” in DSL ’09,
Proceedings of the IFIP TC 2 Working Conference on Domain-Specific Languages,
Oxford, UK, July 15-17, 2009, 2009, pp. 262–284 (cit. on p. 105).

[5] B. K. Aichernig, “Model-based mutation testing of reactive systems - from semantics
to automated test-case generation,” in Theories of Programming and Formal Methods
- Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday, 2013, pp. 23–
36 (cit. on pp. 12, 14).

[6] B. K. Aichernig, J. Auer, E. Jöbstl, R. Korosec, W. Krenn, R. Schlick, and B. V.
Schmidt, “Model-based mutation testing of an industrial measurement device,” in
Tests and Proofs - 8th International Conference, TAP 2014, Held as Part of STAF
2014, York, UK, July 24-25, 2014. Proceedings, 2014, pp. 1–19 (cit. on pp. 4, 15,
18, 55, 72, 85, 90, 91, 97, 100).

[7] B. K. Aichernig, H. Brandl, E. Jöbstl, and W. Krenn, “Efficient mutation killers in
action,” in Fourth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2011, Berlin, Germany, March 21-25, 2011, 2011, pp. 120–129
(cit. on pp. 14, 71).

[8] B. K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, and S. Tiran, “Killing
strategies for model-based mutation testing,” Software Testing, Verification and
Reliability, vol. 25, no. 8, pp. 716–748, 2015 (cit. on p. 71).

[9] B. K. Aichernig, K. Hörmaier, F. Lorber, D. Nickovic, and S. Tiran, “Require, test,
and trace IT,” International Journal on Software Tools for Technology Transfer,
vol. 19, no. 4, pp. 409–426, 2017 (cit. on p. 71).

[10] B. K. Aichernig, E. Jöbstl, and M. Kegele, “Incremental refinement checking for test
case generation,” in Tests and Proofs - 7th International Conference, TAP 2013,
Budapest, Hungary, June 16-20, 2013. Proceedings, 2013, pp. 1–19 (cit. on p. 14).

111

Bibliography

[11] B. K. Aichernig, E. Jöbstl, and M. Tappler, “Does this fault lead to failure?
combining refinement and input-output conformance checking in fault-oriented
test-case generation,” Journal of Logical and Algebraic Methods in Programming,
vol. 85, no. 5, pp. 806–823, 2016 (cit. on p. 71).

[12] B. K. Aichernig, F. Lorber, and D. Nickovic, “Time for mutants - model-based
mutation testing with timed automata,” in Tests and Proofs - 7th International
Conference, TAP 2013, Budapest, Hungary, June 16-20, 2013. Proceedings, 2013,
pp. 20–38 (cit. on pp. 14, 71).

[13] B. K. Aichernig, S. Marcovic, and R. Schumi, “Property-based testing with external
test-case generators,” in 2017 IEEE International Conference on Software Testing,
Verification and Validation Workshops, ICST Workshops 2017, Tokyo, Japan, March
13-17, 2017, 2017, pp. 337–346 (cit. on p. 107).

[14] B. K. Aichernig and R. Schumi, “Property-based testing with FsCheck by deriving
properties from business rule models,” in Ninth IEEE International Conference on
Software Testing, Verification and Validation Workshops, ICST Workshops 2016,
Chicago, IL, USA, April 11-15, 2016, 2016, pp. 219–228 (cit. on p. 107).

[15] B. K. Aichernig and R. Schumi, “Property-based testing of web services by deriving
properties from business-rule models,” Software & Systems Modeling, pp. 1–23, 2017
(cit. on p. 107).

[16] A. Altenhuber, “Improving the comprehension of domain-specific languages by
utilizing visualizations,” Master’s Thesis, Vienna University of Technology, 2016
(cit. on pp. 22, 106).

[17] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical computer science,
vol. 126, no. 2, pp. 183–235, 1994 (cit. on p. 71).

[18] J. Auer, “Automated integration testing of measurement devices,” Bachelor’s thesis,
Graz University of Technology, Aug. 2013 (cit. on pp. 4, 7, 79, 80, 82, 90).

[19] AVL FuelExactTMPLU - product guide, AVL List GmbH, Nov. 2015 (cit. on p. 25).

[20] AVL Particle Counter - product guide, AVL List GmbH, Nov. 2013 (cit. on pp. 8,
15, 85).

[21] R. Back and R. Kurki-Suonio, “Distributed cooperation with action systems,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 10, no. 4,
pp. 513–554, 1988 (cit. on p. 9).

[22] ——, “Decentralization of process nets with centralized control,” Distributed Com-
puting, vol. 3, no. 2, pp. 73–87, 1989 (cit. on p. 9).

[23] R. Back and K. Sere, “Stepwise refinement of action systems,” Structured Program-
ming, vol. 12, no. 1, pp. 17–30, 1991 (cit. on p. 9).

[24] K. Beck, Test-driven development: by example. Addison-Wesley Professional, 2003
(cit. on p. 55).

[25] M. Bernardino, A. F. Zorzo, and E. de M. Rodrigues, “Canopus: A domain-specific
language for modeling performance testing,” in 2016 IEEE International Conference
on Software Testing, Verification and Validation, ICST 2016, Chicago, IL, USA,
April 11-15, 2016, 2016, pp. 157–167 (cit. on p. 3).

112

Bibliography

[26] M. M. Bonsangue, J. N. Kok, and K. Sere, “An approach to object-orientation in
action systems,” in Mathematics of Program Construction, MPC’98, Marstrand,
Sweden, June 15-17, 1998, Proceedings, 1998, pp. 68–95 (cit. on pp. 7, 9, 23).

[27] T. A. Budd and A. S. Gopal, “Program testing by specification mutation,” Computer
languages, vol. 10, no. 1, pp. 63–73, 1985 (cit. on p. 13).

[28] C. Burghard, G. Stieglbauer, and R. Korošec, “Introducing MDML - a domain-
specific modelling language for automotive measurement devices,” in Joint Pro-
ceedings of the International Workshop on Quality Assurance in Computer Vision
and the International Workshop on Digital Eco-Systems co-located with the 28th

International Conference on Testing Software and Systems (ICTSS) 2016, Graz:
CEUR Workshop Proceedings, pp. 28–31 (cit. on pp. 6, 15, 16, 22, 29, 45).

[29] N. Chomsky and M. P. Schützenberger, “The algebraic theory of context-free
languages,” in Studies in Logic and the Foundations of Mathematics, vol. 35, Elsevier,
1963, pp. 118–161 (cit. on p. 43).

[30] K. Claessen and J. Hughes, “QuickCheck: A lightweight tool for random testing
of Haskell programs,” in Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (ICFP ’00), Montreal, Canada, September
18-21, 2000., 2000, pp. 268–279 (cit. on p. 104).

[31] C. Colombo, M. Micallef, and M. Scerri, “Verifying web applications: From busi-
ness level specifications to automated model-based testing,” in Proceedings Ninth
Workshop on Model-Based Testing, MBT 2014, Grenoble, France, 6 April 2014.,
2014, pp. 14–28 (cit. on pp. 21, 104, 105).

[32] C. L. Conway and S. A. Edwards, “NDL: a domain-specific language for device
drivers,” in Proceedings of the 2004 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES’04), Washington,
DC, USA, June 11-13, 2004, 2004, pp. 30–36 (cit. on p. 105).

[33] N. Cunniff and R. P. Taylor, “Graphical vs. textual representation: An empirical
study of novices’ program comprehension.,” in Empirical Studies of Programmers:
Second Workshop, Ablex Publishing, Norwood, NJ, 1987, pp. 114–131 (cit. on p. 20).

[34] I. Dejanovic, M. Tumbas, G. Milosavljevic, and B. Perisic, “Comparison of textual
and visual notations of DOMMLite domain-specific language,” in Local Proceed-
ings of the Fourteenth East-European Conference on Advances in Databases and
Information Systems, Novi Sad, Serbia, September 20-24, 2010, 2010, pp. 131–136
(cit. on pp. 3, 20).

[35] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help
for the practicing programmer,” IEEE Computer, vol. 11, no. 4, pp. 34–41, 1978
(cit. on p. 12).

[36] X. Devroey, G. Perrouin, M. Papadakis, A. Legay, P. Schobbens, and P. Heymans,
“Featured model-based mutation analysis,” in Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22,
2016, 2016, pp. 655–666 (cit. on pp. 13, 14).

113

Bibliography

[37] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, “A survey
on model-based testing approaches: A systematic review,” in Proceedings of the
1st ACM international workshop on Empirical assessment of software engineering
languages and technologies: held in conjunction with the 22nd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE) 2007, ACM, 2007,
pp. 31–36 (cit. on pp. 2, 3).

[38] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal derivation of
programs,” Communications of the ACM, vol. 18, no. 8, pp. 453–457, 1975 (cit. on
pp. 9, 10).

[39] C. Efkemann, “A framework for model-based testing of integrated modular avionics,”
PhD thesis, University of Bremen, 2014. [Online]. Available: http://elib.suub.
uni-bremen.de/edocs/00104131-1.pdf (visited on 04/09/2018) (cit. on p. 103).

[40] C. Efkemann and J. Peleska, “Model-based testing for the second generation of
integrated modular avionics,” in Fourth IEEE International Conference on Software
Testing, Verification and Validation, ICST 2012, Berlin, Germany, 21-25 March,
2011, Workshop Proceedings, 2011, pp. 55–62 (cit. on p. 103).

[41] J. Eriksson, “Tool-supported invariant-based programming,” PhD thesis, Turku
Centre for Computer Science, Aug. 2010 (cit. on p. 58).

[42] A. Fall and J. Fall, “A domain-specific language for models of landscape dynamics,”
Ecological modelling, vol. 141, no. 1-3, pp. 1–18, 2001 (cit. on p. 4).

[43] A. Fellner, W. Krenn, R. Schlick, T. Tarrach, and G. Weissenbacher, “Model-based,
mutation-driven test case generation via heuristic-guided branching search,” in
Proceedings of the 15th ACM-IEEE International Conference on Formal Methods
and Models for System Design, MEMOCODE 2017, Vienna, Austria, September 29
- October 02, 2017, 2017, pp. 56–66 (cit. on p. 72).

[44] R. B. France and B. Rumpe, “Model-driven development of complex software: A
research roadmap,” in International Conference on Software Engineering, ISCE
2007, Workshop on the Future of Software Engineering, FOSE 2007, May 23-25,
2007, Minneapolis, MN, USA, 2007, pp. 37–54 (cit. on pp. 1, 3, 45).

[45] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of
reusable object-oriented software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995 (cit. on pp. 55–57).

[46] T. R. Green and M. Petre, “When visual programs are harder to read than textual
programs,” in Human-Computer Interaction: Tasks and Organisation, Proceedings
of ECCE-6 (6th European Conference on Cognitive Ergonomics). GC van der Veer,
MJ Tauber, S. Bagnarola and M. Antavolits. Rome, CUD, 1992, pp. 167–180 (cit. on
p. 20).

[47] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel, “MontiCore:
A framework for the development of textual domain specific languages,” in 30th
International Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, Companion Volume, 2008, pp. 925–926 (cit. on p. 45).

114

http://elib.suub.uni-bremen.de/edocs/00104131-1.pdf
http://elib.suub.uni-bremen.de/edocs/00104131-1.pdf

Bibliography

[48] OMG Unified Modelling Language. Version 2.5, Mar. 2015. [Online]. Available:
http://www.omg.org/spec/UML/2.5 (visited on 04/09/2018) (cit. on pp. 3, 7, 16,
23, 31, 32).

[49] OMG System Modelling Language. Version 1.5, May 2017. [Online]. Available:
http://www.omg.org/spec/SysML/1.5 (visited on 04/09/2018) (cit. on p. 24).

[50] ISTQBR© GTB Standardglossar der Testbegriffe, 2015. [Online]. Available: http:
//www.german- testing- board.info/wp- content/uploads/2016/08/CT_

Glossar_DE_EN_V30.pdf (visited on 04/09/2018) (cit. on p. 2).

[51] R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE Transactions
on Software Engineering, vol. 3, no. 4, pp. 279–290, 1977 (cit. on p. 12).

[52] A. E. Haxthausen and J. Peleska, “Model checking and model-based testing in the
railway domain,” in Formal Modeling and Verification of Cyber-Physical Systems,
1st International Summer School on Methods and Tools for the Design of Digital
Systems, Bremen, Germany, September 2015, 2015, pp. 82–121 (cit. on p. 103).

[53] W. Heijstek, T. Kühne, and M. R. V. Chaudron, “Experimental analysis of textual
and graphical representations for software architecture design,” in Proceedings of the
5th International Symposium on Empirical Software Engineering and Measurement,
ESEM 2011, Banff, AB, Canada, September 22-23, 2011, 2011, pp. 167–176 (cit. on
p. 20).

[54] Y. Jia and M. Harman, “An analysis and survey of the development of mutation
testing,” IEEE Transactions on Software Engineering, vol. 37, no. 5, pp. 649–678,
2011 (cit. on p. 13).

[55] M. Jimenez, F. Rosique, P. Sanchez, B. Alvarez, and A. Iborra, “Habitation: A
domain-specific language for home automation,” IEEE software, vol. 26, no. 4, 2009
(cit. on p. 4).

[56] E. Jöbstl, “Model-based mutation testing with constraint and SMT solvers,” PhD
thesis, Graz University of Technology, Institute for Software Technology, Apr. 2014
(cit. on pp. 4, 14, 71, 91).

[57] K. Jogun, “A universal interface for the integration of emissions testing equipment
into engine testing automation systems: The VDA-AK SAMT-interface,” in SAE
Technical Paper, SAE International, Mar. 1994 (cit. on pp. 25, 50, 80).

[58] A. N. Johanson and W. Hasselbring, “Effectiveness and efficiency of a domain-
specific language for high-performance marine ecosystem simulation: A controlled
experiment,” Empirical Software Engineering, vol. 22, no. 4, pp. 2206–2236, 2017
(cit. on p. 4).

[59] K. Kapoor, “Formal analysis of coupling hypothesis for logical faults,” Innovations
in Systems and Software Engineering, vol. 2, no. 2, pp. 80–87, 2006 (cit. on p. 13).

[60] S. Kelly and J. Tolvanen, Domain-specific modeling - Enabling full code generation.
Wiley, 2008 (cit. on pp. 3, 20).

[61] R. Korošec, “Automotive development test process design,” AVL List GmbH, Tech.
rep. TRUFAL Deliverable D4-3, Jun. 2014 (cit. on pp. 15, 54).

115

http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/SysML/1.5
http://www.german-testing-board.info/wp-content/uploads/2016/08/CT_Glossar_DE_EN_V30.pdf
http://www.german-testing-board.info/wp-content/uploads/2016/08/CT_Glossar_DE_EN_V30.pdf
http://www.german-testing-board.info/wp-content/uploads/2016/08/CT_Glossar_DE_EN_V30.pdf

Bibliography

[62] W. Krenn and R. Schlick, “Mutation-driven test case generation using short-lived
concurrent mutants–first results,” arXiv preprint, 2016. [Online]. Available: http:
//arxiv.org/abs/1601.06974 (cit. on pp. 14, 71, 72, 101).

[63] W. Krenn, R. Schlick, and B. K. Aichernig, “Mapping UML to labeled transition
systems for test-case generation - A translation via object-oriented action systems,”
in Formal Methods for Components and Objects - 8th International Symposium,
FMCO 2009, Eindhoven, The Netherlands, November 4-6, 2009. Revised Selected
Papers, 2009, pp. 186–207 (cit. on pp. 9, 10, 71).

[64] W. Krenn, R. Schlick, S. Tiran, B. K. Aichernig, E. Jöbstl, and H. Brandl, “Mo-
MuT::UML model-based mutation testing for UML,” in 8th IEEE International
Conference on Software Testing, Verification and Validation, ICST 2015, Graz,
Austria, April 13-17, 2015, 2015, pp. 1–8 (cit. on pp. 7, 9, 71).

[65] D. Kroening, “Modelling languages,” ETH Zurich, Tech. rep. MOGENTES Deliv-
erable D3.2b, Jun. 2010. [Online]. Available: http://www.mogentes.eu/public/
deliverables/ (visited on 04/09/2018) (cit. on pp. 16, 19).

[66] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path planning,”
Department of Computer Science, Iowa State University, Ames, IA 50011 USA,
Tech. Rep., 1998 (cit. on p. 72).

[67] T. Mahatody, M. Sagar, and C. Kolski, “State of the art on the cognitive walkthrough
method, its variants and evolutions,” International Journal of Human–Computer
Interaction, vol. 26, no. 8, pp. 741–785, 2010 (cit. on p. 53).

[68] MoMuT::UML user manual, Austrian Institute of Technology, Jun. 2017 (cit. on
pp. 52, 73).

[69] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings, 2008, pp. 337–340 (cit. on p. 71).

[70] G. Mussbacher, D. Amyot, R. Breu, J. Bruel, B. H. C. Cheng, P. Collet, B. Combe-
male, R. B. France, R. Heldal, J. H. Hill, J. Kienzle, M. Schöttle, F. Steimann,
D. R. Stikkolorum, and J. Whittle, “The relevance of model-driven engineering
thirty years from now,” in Model-Driven Engineering Languages and Systems - 17th
International Conference, MODELS 2014, Valencia, Spain, September 28 - October
3, 2014. Proceedings, 2014, pp. 183–200 (cit. on pp. 1, 3).

[71] S. Nogueira, E. Cartaxo, D. Torres, E. Aranha, and R. Marques, “Model based test
generation: An industrial experience,” in 1st Brazilian Workshop on Systematic
and Automated Software Testing, 2007 (cit. on p. 104).

[72] A. Nugroho and M. R. V. Chaudron, “A survey into the rigor of UML use and
its perceived impact on quality and productivity,” in Proceedings of the Second
International Symposium on Empirical Software Engineering and Measurement,
ESEM 2008, October 9-10, 2008, Kaiserslautern, Germany, 2008, pp. 90–99 (cit. on
p. 3).

116

http://arxiv.org/abs/1601.06974
http://arxiv.org/abs/1601.06974
http://www.mogentes.eu/public/deliverables/
http://www.mogentes.eu/public/deliverables/

Bibliography

[73] A. J. Offutt, “Investigations of the software testing coupling effect,” ACM Transac-
tions on Software Engineering and Methodology (TOSEM), vol. 1, no. 1, pp. 5–20,
1992 (cit. on p. 13).

[74] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An experimental
determination of sufficient mutant operators,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 5, no. 2, pp. 99–118, 1996 (cit. on
p. 73).

[75] A. J. Offutt and S. D. Lee, “An empirical evaluation of weak mutation,” IEEE
Transactions on Software Engineering, vol. 20, no. 5, pp. 337–344, 1994 (cit. on
p. 72).

[76] A. J. Offutt and J. M. Voas, “Subsumption of condition coverage techniques by
mutation testing,” Tech. Rep., 1996 (cit. on pp. 12, 73).

[77] V. Okun, “Specification mutation for test generation and analysis,” PhD thesis,
University of Maryland, Baltimore County, 2004 (cit. on p. 13).

[78] O. Olajubu, “A textual domain specific language for requirement modelling,” in
Proceedings of the 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, 2015, pp. 1060–
1062 (cit. on p. 104).

[79] O. Olajubu, S. Ajit, M. Johnson, S. J. Turner, S. Thomson, and M. Edwards, “Auto-
mated test case generation from domain specific models of high-level requirements,”
in Proceedings of the 2015 Conference on research in adaptive and convergent sys-
tems, RACS 2015, Prague, Czech Republic, October 9-12, 2015, 2015, pp. 505–508
(cit. on p. 104).

[80] M. Ouimet and K. Lundqvist, “A mapping between the timed abstract state machine
language and UPPAAL’s timed automata,” Mälardalen University, Department of
Computer Science and Electronics, Tech. Rep., 2007 (cit. on p. 105).

[81] M. Ouimet, K. Lundqvist, and M. Nolin, “The timed abstract state machine
language: An executable specification language for reactive real-time systems,”
Proceedings of the 15th International Conference on Real-Time and Network Systems
RTNS’07, March 23-29, 2007, Nancy, France, p. 15, 2007 (cit. on p. 105).

[82] M. Paczona, “Model-based code generation for a battery test and battery emulation
system,” Master’s Thesis, CAMPUS 02 - University Of Applied Sciences, Graz,
Austria, 2016 (cit. on p. 3).

[83] M. Petre, “Why looking isn’t always seeing: Readership skills and graphical pro-
gramming,” Communications of the ACM, vol. 38, no. 6, pp. 33–44, 1995 (cit. on
p. 20).

[84] A. Pretschner and J. Philipps, “10 methodological issues in model-based testing,”
Model-based testing of reactive systems, pp. 11–18, 2005 (cit. on pp. 2, 16, 47).

117

Bibliography

[85] M. Proetzsch, F. Zimmermann, R. Eschbach, J. Kloos, and K. Berns, “A systematic
testing approach for autonomous mobile robots using domain-specific languages,”
in KI 2010: Advances in Artificial Intelligence, 33rd Annual German Conference on
AI, Karlsruhe, Germany, September 21-24, 2010. Proceedings, 2010, pp. 317–324
(cit. on p. 104).

[86] D. Ratiu, B. Schätz, M. Völter, and B. Kolb, “Language engineering as an enabler
for incrementally defined formal analyses,” in Proceedings of the First Interna-
tional Workshop on Formal Methods in Software Engineering - Rigorous and Agile
Approaches, FormSERA 2012, Zurich, Switzerland, June 2, 2012, 2012, pp. 9–15
(cit. on p. 105).

[87] D. Santiago, A. Cando, C. Mack, G. Nunez, T. Thomas, and T. M. King, “Towards
domain-specific testing languages for software-as-a-service,” in Proceedings of the
2nd International Workshop on Model-Driven Engineering for High Performance
and CLoud computing co-located with 16th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2013), Miami, Florida,
USA, September 29, 2013., 2013, pp. 43–52 (cit. on p. 3).

[88] R. Schlick, W. Herzner, and E. Jöbstl, “Fault-based generation of test cases from
UML-models - Approach and some experiences,” in Computer Safety, Reliability,
and Security - 30th International Conference, SAFECOMP 2011, Naples, Italy,
September 19-22, 2011. Proceedings, 2011, pp. 270–283 (cit. on pp. 94, 101).

[89] B. V. Schmidt, Automatische Testfallgenerierung aus UML-Modellen, Presentation
at CON.ECT Requirements Engineering Trends and Best Practices, Vienna, Austria,
Nov. 2013. [Online]. Available: https://trufal.files.wordpress.com/2013/11/
20131120_con-ect_v2_split2.pdf (visited on 04/09/2018) (cit. on p. 17).

[90] R. Schumi, P. Lang, B. K. Aichernig, W. Krenn, and R. Schlick, “Checking response-
time properties of web-service applications under stochastic user profiles,” in Testing
Software and Systems - 29th IFIP WG 6.1 International Conference, ICTSS 2017,
St. Petersburg, Russia, October 9-11, 2017, Proceedings, 2017, pp. 293–310 (cit. on
p. 107).

[91] R. Schwitter, “Controlled natural languages for knowledge representation,” in
COLING 2010, 23rd International Conference on Computational Linguistics, Posters
Volume, 23-27 August 2010, Beijing, China, 2010, pp. 1113–1121 (cit. on p. 104).

[92] Z. Sharafi, A. Marchetto, A. Susi, G. Antoniol, and Y. Guéhéneuc, “An empirical
study on the efficiency of graphical vs. textual representations in requirements
comprehension,” in IEEE 21st International Conference on Program Comprehension,
ICPC 2013, San Francisco, CA, USA, 20-21 May, 2013, 2013, pp. 33–42 (cit. on
p. 20).

[93] C. Soĺıs and X. Wang, “A study of the characteristics of behaviour driven develop-
ment,” in 37th EUROMICRO Conference on Software Engineering and Advanced
Applications, SEAA 2011, Oulu, Finland, August 30 - September 2, 2011, 2011,
pp. 383–387 (cit. on p. 21).

[94] H. Stachowiak, Allgemeine Modelltheorie. Springer-Verlag, 1973 (cit. on p. 2).

118

https://trufal.files.wordpress.com/2013/11/20131120_con-ect_v2_split2.pdf
https://trufal.files.wordpress.com/2013/11/20131120_con-ect_v2_split2.pdf

Bibliography

[95] A. Stefanescu, S. Wieczorek, and A. Kirshin, “MBT4Chor: A model-based testing
approach for service choreographies,” in Model Driven Architecture - Foundations
and Applications, 5th European Conference, ECMDA-FA 2009, Enschede, The
Netherlands, June 23-26, 2009. Proceedings, 2009, pp. 313–324 (cit. on p. 103).

[96] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse modeling
framework. Pearson Education, 2008 (cit. on p. 57).

[97] G. Stieglbauer, C. Burghard, S. Sobernig, and R. Korošec, “A daily dose of DSL -
MDE micro injections in practice,” in Proceedings of the 6th International Conference
on Model-Driven Engineering and Software Development, MODELSWARD 2018,
Funchal, Portugal, January 22-24, 2018., Jan. 2018, pp. 642–651 (cit. on pp. 3, 7,
15, 16, 19, 20, 23, 45, 47, 52–54).

[98] G. Stieglbauer and I. Roncevic, “Objecting to the revolution: Model-based engineer-
ing and the industry - root causes beyond classical research topics,” in Proceedings
of the 5th International Conference on Model-Driven Engineering and Software
Development, MODELSWARD 2017, Porto, Portugal, February 19-21, 2017., 2017,
pp. 629–639 (cit. on pp. 19, 23, 53).

[99] S. Tiran, “The Argos manual,” Institute for Software Technology, Graz University
of Technology, Graz, Austria, Tech. rep. 2012 (cit. on pp. 7, 9, 11, 23).

[100] A. Törsel, “A testing tool for web applications using a domain-specific modelling
language and the NuSMV model checker,” in Sixth IEEE International Confer-
ence on Software Testing, Verification and Validation, ICST 2013, Luxembourg,
Luxembourg, March 18-22, 2013, 2013, pp. 383–390 (cit. on pp. 103, 105).

[101] J. Tretmans, “Test generation with inputs, outputs and repetitive quiescence,”
Software - Concepts and Tools, vol. 17, no. 3, pp. 103–120, 1996 (cit. on pp. 13, 14).

[102] ——, “Model based testing with labelled transition systems,” in Formal Methods
and Testing, An Outcome of the FORTEST Network, Revised Selected Papers, 2008,
pp. 1–38 (cit. on p. 14).

[103] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based testing
approaches,” Software Testing, Verification and Reliability, vol. 22, no. 5, pp. 297–
312, 2012 (cit. on pp. 1, 2).

[104] A. Wasowski, “Flattening statecharts without explosions,” in Proceedings of the
2004 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’04), Washington, DC, USA, June 11-13, 2004, 2004,
pp. 257–266 (cit. on p. 30).

[105] M. Weiglhofer and B. K. Aichernig, “Unifying input output conformance,” in
Unifying Theories of Programming, Second International Symposium, UTP 2008,
Dublin, Ireland, September 8-10, 2008, Revised Selected Papers, 2008, pp. 181–201
(cit. on pp. 14, 72).

[106] N. Wirth, “Extended Backus-Naur form (EBNF),” ISO/IEC Standard 14977:1996(E),
1996 (cit. on p. 43).

119

Bibliography

[107] M. Wynne, A. Hellesoy, and S. Tooke, The Cucumber book: behaviour-driven
development for testers and developers, ser. Pragmatic Programmers. Pragmatic
Bookshelf, 2017 (cit. on p. 21).

[108] Xtext documentation, Eclipse Foundation / itemis AG, Sep. 2014. [Online]. Avail-
able: http : / / www . eclipse . org / Xtext / documentation / 2 . 7 . 0 / Xtext %

20Documentation.pdf (visited on 04/09/2018) (cit. on pp. 22, 47, 48).

120

http://www.eclipse.org/Xtext/documentation/2.7.0/Xtext%20Documentation.pdf
http://www.eclipse.org/Xtext/documentation/2.7.0/Xtext%20Documentation.pdf

