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Abstract

The scope of this thesis is a further development of the prediction model for 24h average

values of particulate matter PM10 in Graz. A first step is the extension of the current one-

day ahead prediction model to a two-days ahead model using linear regression models. This

model should be in line with the current model and should support the Styrian provincial

government for actions which can be planned in advanced. In the following we apply Clas-

sification and Regression Trees (CART) to the data-set of Graz-Mitte and Graz-Süd. More-

over, we apply the method of bagging and random forests which combine the results of many

tree models to one final output. Finally neural networks which are a very popular method of

machine learning were applied to the data. Especially the CART models could help to give

a fast and suitable indication of the exceedance of the critical threshold of 50 µg/m3.

Zusammenfassung

Diese Arbeit befasst sich mit der Weiterentwicklung der statistischen Modelle für die Vorher-

sage der 24h Mittelwerte der PM10 Konzentration in Graz. Das aktuell verwendete Regres-

sionsmodell wird in einem ersten Schritt erweitert, um längerfriste Planungen und Maß-

nahmen zur Reduktion der Feinstaubkonzentration zu ermöglichen. Darüber hinaus werden

Classification and Regression Trees (CART) auf die Datensätze der Messstationen Graz-

Mitte und Graz-Süd angewendet. Diese ermöglichen eine schnelle erste Indikation ob am da-

rauffolgenden Tag eine Überschreitung der kritischen Schwellen von 50 µg/m3 beobachtet

wird. Zusätzlich werden noch Random Forests und Neuronale Netze auf die Daten angewen-

det. Die Machine Learning Algorithmen sind sehr mächtig, bringen jedoch im Vergleich zum

derzeitigen Modell nur eine geringe Verbesserung.
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Chapter 1

Introduction

The scope of this thesis is a further development of the prediction model for particulate

matter PM10 in Graz. Air pollution in Graz attracts remarkable attention in the last years,

because during the winter season there is a permanent exceedance of the threshold value

for PM10. A detailed descriptive analysis, the origin of PM10 and the adverse influence on

health can be found in Hörmann et al. [11]. The current prediction model has been intro-

duced by Hörmann et al. [11] in the year 2004 and has been yearly updated and reviewed.

This work includes a detailed analysis of the data and a one day prediction of particulate

matter PM10 (24h average value) for different locations in Graz.

Based on the existing analysis we will implement possible, further developments of the

model within this thesis. The further developments should be used for prediction and not

only for statistical description of possible dependencies. The current model is a multiple

regression model for a one day ahead prediction of particulate matter PM10. Parameters for

predicting PM10 are meteorological values (like temperature and wind) and lagged particu-

late matters values, as well as categorical parameters like weekdays and weekends.

The goal of the first model is to expand the current model to a 2-day prediction model. This

enlargement of the model might help planning long-term actions in case of exceeding the

limit of 50µg/m3. To be in line with the current model, this model is based on a multiple

regression with additional parameters.

In the second model we will introduce tree based models for predicting one day ahead PM10

concentration or the exceedance of the critical threshold 50µg/m3. This models can be seen

as supplementary models for the current prediction models described in Stadlober et al. [23]

and [24]. The big advantage of the tree models are their simple overseeing structure and

representation. This models can help to get in a simple and very fast way a first indication if

there will be a breach of the critical limit on the next day or not.

Based on the tree models we use the bagging algorithm and random forest models to get

models with a good predictive power, which smooth out the weakness of single tree models

out. The advantage of these models is that in each run an implicit test of the forecasting error

is performed by the out-of-bag data. This helps to stabilize the results of the tree model.

In the final chapter we apply neural networks to PM10 data of Graz-Mitte and Graz-Süd.

1



2 CHAPTER 1. INTRODUCTION

Neural networks are widely used for predicting PM10 concentrations (compare Perez [19]).

The disadvantage of the last 3 model types is the black box characteristic. The formal repre-

sentation of the relationship (e.g. regression model) of the response and predictor variables

is not anymore available. But their predictive power is undisputed.



Chapter 2

2-Day Prediction Model of PM 10

This chapter is about the first possible extension of the current model described in Stadlober

et al. [23]. There is a continuous further development of the model described in Stadlober

et al. [23] and the current model for the prediction differs slightly. In general the model

uses similar input variables but they can sightly differ after the seasonal recalibration of the

model. The current model is based on a multiple regression predicting the 24-hour average

PM10 value of the following day (t+1). The prediction is based on the available information

at midday at day t. This condition is also essential for the extension to a 2-day prediction

model. The prediction 2 days ahead will be calculated at the same available information as

the current model. The extended model should be in line with the current model. Therefore

the modeling and calibration of models in the following sections is done for the winter season

(November-March) only. The idea of the extension to a 2-day ahead prediction model is

shown in Figure 2.1. The forecast of the 2 day prediction model is based on the similar

information available at midday at time t.

Figure 2.1: Extension to a 2-day prediction model

3



4 CHAPTER 2. 2-DAY PREDICTION MODEL OF PM 10

2.1 Graz-Mitte

The first model is developed for the site Graz-Mitte. This site represents the PM10 con-

centration for the center of Graz. For the model calibrating the available data sets for the

winter seasons (November 1st-March 31st) from 2003/2004-2013/2014 are used. The sea-

sons 2014/2015 and 2015/2016 are used for back-testing of the calibrated model to measure

the goodness of the prediction.

2.1.1 Data

The data set for Graz-Mitte contains 4841 observations (including summer season), starting

at January 1st 2003. In addition to particulate matter variables, the set contains meteorologi-

cal and date information for each observation. Hörmann et al. [10] mention that a calibration

of a reliable prediction model for PM10 without meteorological data is not possible. A de-

tailed analysis of the correlation of weather data and particulate matter concentration can be

found in Stadlober et al. [23]. Within this thesis the main focus lies on the extension of the

model and not on the descriptive statistical data analysis.

The data set includes 2 different PM10 variables. The first variable indicates the daily av-

erage PM10 concentration from 0:30h to 24h. This size is the average of half hour values

observed at a certain day. The daily average is the essential size for possible actions in case

of exceeding the limit value of 50 µ/m3 and is the response variable in the following models.

The second PM10 variable in the data set represents the average of the PM10 concentration

from 12:30h to 12h (PM mittag). This variable is essential for the current prediction model.

The prediction of the average daily PM10 concentration (0:30h-24h) at t+ 1 is based on the

PM mittag at t see Stadlober [23]. The prediction will be done in the afternoon of the pre-

vious day and uses PM mittag lag1 instead of the the lagged value of PM10. This improves

the accuracy of the model and reduces the lack of information from 24 hours to 12 hours.

In addition to the PM10 variables and other air pollutants like NOx, which are not considered

for the model, the data set includes meteorological variables like average temperature, wind

speed, precipitation and humidity. Some of these variables are transformed to dummy vari-

ables with values 0 and 1. In the following we list the number of missing PM10 observations

for the winter seasons.
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Winter Season Missing Values

2002/2003 no values before January 1st 2003

2003/2004 March 11th-March 22nd 2004

2004/2005-2008/2009 no missing values

2009/2010 December 11th 2009-February 17th 2010

2013/2014 January 26th-January 27th 2014

2014/2015-2015/2016 no missing values

Table 2.1: Missing PM10 Values Graz-Mitte

Considering the time series of daily PM10 concentration (Figure 2.2) from 2003 on, one

can see a slightly decrease of the PM10 concentration over time. This trend is emphasized

by considering the mean of the PM10 concentrations of each winter season in Table 2.2. The

decrease of the PM10 concentration originates from two effects. There is a obvious corre-

lation between meteorological data and the PM10 concentration. Higher temperatures and

fewer frost days might lead to a lower particulate matter concentration. In addition there is a

positive correlation between number of days with temperature inversion and the PM10 con-

centration. The second reason for the reduction of PM10 in the last years is linked to other

actions of the Styrian provincial government (like reduction of Speed Limits on highways

next to Graz) based on the current forecasting model.

Season Observations
Average Average Inversion Frost Strong

PM10 Temp in C◦ Days Days Wind

2002/2003 90 71.60 2.10 42 33 63

2003/2004 140 56.85 2.68 48 39 71

2004/2005 151 54.17 2.53 47 48 91

2005/2006 151 61.64 1.60 27 52 80

2006/2007 151 47.00 5.78 47 10 98

2007/2008 152 46.24 3.86 33 30 105

2008/2009 151 39.30 3.35 17 33 103

2009/2010 83 35.99 6.17 22 6 30

2010/2011 151 44.22 3.13 43 51 52

2011/2012 152 39.00 3.69 35 32 59

2012/2013 151 35.70 3.01 31 32 50

2013/2014 149 30.20 5.47 31 15 56

2014/2015 151 30.23 5.26 21 13 64

2015/2016 152 33.29 5.15 54 17 56

Table 2.2: Summary Graz-Mitte
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Figure 2.2: Daily PM10 average values for the winter seasons, Graz-Mitte

2.1.2 Model

To get a good and reliable model for the 2-days ahead prediction of PM10 at t + 2, we

choose all variables which may have positive impact on the calibration of the model. The

goal is to find the best model in the sense of described variance adjusted R2 and the number

of explanatory variables. Therefore we choose the following variables.

• PM10 lag1 This variable is the measurement of PM10 to the previous day t+ 1. This

variable should model the strong autocorrelation effect within the PM10 concentration.

The autocorrelation function for 3 seasons can be seen in Figure 2.3. Simply spoken

this high autocorrelation means that a day with high PM10 concentration is followed

by another day with high PM10 concentration.

• überschreitung lag1 This variable is the binary version of PM10 lag1 with respect

to the critical limit of 50 µg/m3.

• lute The variable represents the average temperature for the time period 0:30h-24h

at t + 2 and is a weather forecast. The variable is the average of half hour values

temperature measurements. As already seen in Table 2.2, there exists a correlation

between temperature and PM10 concentration.

• lute mittag This variable gives the average temperature of half hour values from mid-

day 12:30 day t+1 till 12:00 at day t+2. In contrast to the variable lute, which is the
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average temperature at day t+2, lute mittag lag1 is the variable, whose measurement

period ends already at midday of t+ 1.

• ltusg k The variable representing the average temperature difference of a measurement

point 360m above (Kalkleiten) the site Graz Mitte (350 meters above sea level) and

is based on weather forecasts for t + 2. Higher temperature at Kalkleiten (710 meters

above sea level) during the winter months means temperature inversion. The following

variable is the binary version of ltusg k.

• invers is 0 if no temperature inversion and 1 if temperature inversion for t + 2. Tem-

perature inversion has a significant impact on PM10 concentration. see: Hörmann et

al. [11] (weather forecast for t+ 2)

• frost is a dummy variable, which is 1 if the average temperature is below 0 degree and

1 otherwise for time t+ 2 (weather forecast).

• wind is a dummy variable which is 0 if the wind velocity is greater than 0.6m/s and 1

otherwise. Strong wind reduces the PM10 concentration significantly.

• nied01 is a dummy variable which is 0 if no precipitation and 1 otherwise. Precipi-

tation, especially rain reduces the PM10 concentration significantly (weather forecast

for t+ 2).

• suho is a categorical variable which represents Sundays and public holidays. Volume

of traffic is an essential factor for higher PM10 values, therefore a distinction between

holidays with lower traffic volume and week days might be reasonable.

• sat, wd similar to suho, representing saturdays and weekdays.

• nov, dec, jan, feb, mar dummy variables of every single month during the winter

season.



8 CHAPTER 2. 2-DAY PREDICTION MODEL OF PM 10

Figure 2.3: Autocorrelation of PM10 Values for Graz-Mitte

To find the best model for predicting the dependent variable
√
PM10, linear models with

all possible combinations of the variables described above are constructed. The linear model

consists of at least 4 explanatory variables. These calculations results 32192 different linear

models. A huge number of them are not very useful, because of too low adjusted R2 and

the combination of the prediction variables. But there are a lot of models which have very

similar size of variance described with different number of variables. The model with the

highest adjusted R2 of 0.677 is composed of 12 variables (see: Table 2.3).

Model Parameters Adjusted R2

PM10 lag1,lute mittag, ltusg k, lute, suho, jan, mar, dec, sat, wind, nied01 0.6772

PM10 lag1,lute mittag, ltusg k, lute, feb, mar, dec, sat, wind, nied01 0.6766

PM10 lag1,lute mittag, suho, ltusg k, lute, frost, feb, mar, sat, wind 0.6693

PM10 lag1,lute mittag, suho, ltusg k, lute, frost, mar, sat, wind 0.6664

PM10 lag1,lute mittag, suho, ltusg k, feb, mar, sat, wind 06618

PM10 lag1,lute mittag, suho, ltusg k, mar, sat, wind 0.6588

Table 2.3: Summary Graz-Mitte

For descriptive purposes this model might be satisfying, but this model should be used for

the prediction of PM10 concentration. This model includes explanatory variables which are
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transformations of other variables included in the model (e.g frost and lute). Such a model is

not desirable, therefore a reduction of the number of variables and a more rational selection

of them is necessary.

Reducing the number of variables to a maximum of 7 variables leads to a model without

meteorological dummy variables and an adjusted R2 of 0.6588. The
√
PM10 at t + 2 is

described by the PM10 concentration at t+ 1 (PM10 lag1) and lute mittag, suho, ltusg k,

mar, sat, wind for t + 2. The selection of the variables is reliable and in line with the cur-

rent one day prediction model. For the 2-days ahead forecast the information of the PM10

concentration at t + 1 is given by the current one day prediction model. Nevertheless the

prediction of the PM10 concentration depends essentially on the quality of the numerical

meteorological forecast values for lute mittag and ltusg k at t + 2. Therefore a possible

improvement of this model might be the replacement of all metric meteorological variables

by there transformed dummy variables (e.g lute by frost).

The assumption behind this step is that a prediction of the binary variable might be easier

than an exact numerical forecast of meteorological values. Especially forecasting daily aver-

age values of temperature and temperature differences could be a source of inaccuracy in the

latter 2 days ahead prediction of the PM10 concentration. Therefore we take into account

the trade-off of the goodness of fit of the model and the vulnerability of the model against

predictive errors of meteorological data. The lower described adjusted R2 of 62.3% for the

model excluding metric meteorological values will be compensated by its stability for the

prediction.

Models with the additional variable nied01 yields to slightly higher adjusted R2, but they do

not lead to better results in backtesting nor improving the quality of forecast.(In the sense

of the quality function see: Section 2.1.4). Therefore we choose for Graz-Mitte a model

without the precipitation variable.

In the following sections we are analyzing the models in detail and perform a backtesting.

2.1.3 Model Validation

The aim of this section is to present the estimation of the model parameters and to verify

the underlying normality assumptions. The estimation of parameters for the model including

metric meteorological data is based on the seasons 2002/2003-2013/2014.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.348008 0.082280 64.998 < 2e-16

pm10_lag1 0.036283 0.001083 33.507 < 2e-16

lute_mittag -0.096278 0.006049 -15.917 < 2e-16

suho -0.698200 0.069432 -10.056 < 2e-16

ltusg_k -0.230781 0.013915 -16.585 < 2e-16

wind 0.379790 0.058162 6.530 8.75e-11
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mar 0.591254 0.072641 8.139 7.76e-16

sat -0.539718 0.076203 -7.083 2.09e-12

The model fits quite good and all variables have a significant impact on the response variable√
PM10. For the verification of the assumptions of the regression model we have to analyze

the residuals. Considering Figure 2.4 and Figure 2.5 there is no indication of a violation of

the assumptions. The distribution looks symmetric and reasonable and the standard error of

the residuals is 1.051.

Figure 2.4: Q-Q-Plot of residuals vs. normal quantiles and Scatter-Plot of fitted values vs.

residuals

Figure 2.5: Histogram and Box-Plot of residuals

There are some outliers in the tails which leads to a rejection of the Shapiro-Wilk nor-

mality test.
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Shapiro-Wilk normality test

W = 0.98791, p-value = 1.626e-10

The model will underestimate low as well extreme high concentrations of PM10. The con-

sequence of this fact is a worse fit of the prediction values and a systematic under-prediction

of high concentrations. The predictions are more conservative, because the prediction values

of the model have a lower variance then the observed data points.

The fit of the model using only binary meteorological variables is reasonable and all

variables within the model have a significant impact on the response variable.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.201956 0.069841 60.165 < 2e-16

pm10_lag1 0.039855 0.001098 36.297 < 2e-16

invers 0.892807 0.070246 12.710 < 2e-16

frost 0.824005 0.066970 12.304 < 2e-16

suho -0.715761 0.072924 -9.815 < 2e-16

mar 0.313964 0.072953 4.304 1.78e-05

sat -0.593133 0.079990 -7.415 1.94e-13

wind 0.493994 0.060407 8.178 5.72e-16

Similar to the first model the Figures 2.6 and 2.7 show a symmetric and reasonable fit of

the model, but in comparison to the model with metric variables the standard error of the

residuals is 1.10 and therefore sightly higher. The Shapiro-Wilk test reject the normality

assumption caused by some outliers.

Shapiro-Wilk normality test

W = 0.9906, p-value = 7.935e-09
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Figure 2.6: Q-Q-Plot of residuals vs. normal quantiles and Scatter-Plot of fitted values vs.

residuals

Figure 2.7: Histogram and Box-Plot of residuals

2.1.4 Quality of Forecasting

In the previous section we described the calibration and the accuracy of two different linear

models for Graz-Mitte. The calculation of the coefficients βi and the evaluation of reasonable

models were performed. In this section we measure the quality of the model in forecasting

PM10 values. To fulfill the needed assumptions the linear models yield prediction values of√
PM10. By taking the square of the predicted values we receive the prediction of PM10.

For our purpose the resulting bias is negligible.

Measuring the quality of forecasting is performed for both models and 2 winter seasons

(2014/2015 and 2015/2016) separately. The first quality check of the model in forecasting

is performed with measured values of the prediction variables to check the theoretical per-

formance of the models. This assumption is very unrealistic in practice, because 2-days
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meteorological forecasts and one day PM10 forecast values might produce considerable ad-

ditional errors within the prediction.

The forecast results for the winter season 2014/2015 based on observed meteorological val-

ues and observed lagged PM10 values deliver satisfactory results for both models. For the

PM10 forecast the EU limit of 50 µg/m3 is essential for possible actions. Therefore our main

focus lies on that limit. In the season 2014/2015 at 13 days an exceedance of the limit was

observed. At 138 days the daily mean PM10 concentration was below the critical limit of 50

µg/m3. Considering the forecast results of the model using metric meteorological regression

variables in Table 2.4 we observe that the model fits the observation reasonably. Only at 17

days the 2-days ahead prediction model would forecast the wrong trend, which may imply

wrong actions linked to the limit of 50 µg/m3. The quality of the results of the model using

only binary meteorological values (binary model) is similar to the first model. The model

returns only in 16 cases a wrong indication of the PM10 concentration (Table 2.5).

But at one day a PM10 concentration higher than 100 µg/m3 was observed. Both models

cannot forecast this extreme value of PM10 concentration. Both models forecast a value

below 100 µg/m3, which gives a wrong indication. This high PM10 concentration was ob-

served at New Years day 2015 and this high concentration might stem from the fireworks.

Despite similar weather conditions at New years eve 2014 and at 2nd January 2015 the daily

average concentration is much lower. Such high concentrations of PM10 caused by external

events can not be covered by the models. Similar to the forecast of the previous season 19

forecasts for the winter season 2015/2016 of the metric model indicates a wrong tendency

and 23 in the model which uses binary meteorological variables (Table 2.6 and Table 2.7).

Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 131 7 0 138

Observation 50-100 µg/m3 8 3 1 12

Observation > 100 µg/m3 0 1 0 1

Total 139 11 1 151

Table 2.4: Forecasting Results of the metric Model, Winter Season 2014/2015

Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 134 4 0 138

Observation 50-100 µg/m3 9 2 1 12

Observation > 100 µg/m3 0 1 0 1

Total 143 7 1 151

Table 2.5: Forecasting Results of the binary Model, Winter Season 2014/2015
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Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3

Observation 0-50 µg/m3 114 15 129

Observation 50-100 µg/m3 4 19 23

Total 118 34 152

Table 2.6: Forecasting Results of the metric Model, Winter Season 2015/2016

Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 114 15 0 129

Observation 50-100 µg/m3 7 15 1 23

Total 121 30 1 152

Table 2.7: Forecasting Results of the binary Model, Winter Season 2015/2016

In more than 84 percent of observations for the winter seasons 2014/2015 and 2015/2016

the 2-days ahead prediction models give the right indication in sense of the EU limit of 50

µg/m3 for the average PM10 concentration. It’s a first good indication, but to get a bet-

ter feeling for the quality of fit Stadlober et al. [23] introduced a quality function which

is tailored to the particular needs of this limit. This function transforms absolute errors of

forecast-values and observed values to a reasonable rating system. In addition, this function

takes into account that a large deviation of the forecast from the observation, but indicating

the right decision have a better quality than small errors indicating possibly wrong actions.

In detail a forecast of 53 µg/m3 and an observation of 40 µg/m3 has a lower quality than

a forecast of 105 µg/m3 and an observation of 140 µg/m3. The first error implies wrong

actions, therefore a higher penalization of this forecasting error is necessary. The main focus

of this quality function lies on forecast and observation values above the limit of 50 µg/m3

and below the limit of 100 µg/m3. Forecasting errors where both values are below the criti-

cal limit of 50 µg/m3 have a lower penalization then errors causing a wrong action.

Definition 2.1 (Quality function I) The quality function Q(O,F ) assigns to each pair con-

sisting of an observation O and a forecast value F in [0, 1]. The quality function Q : R2
+ →

[0, 1] is given by:

Q(O,F ) = 1−min

{

a× |O − F |
D

, 1

}

with

D = 1 +
1

2

√

|O − 50|+ |F − 50|+ b× IB + c× IC
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where IB is the indicator function, if {O ≤ 50 and F ≤ 50} is fulfilled. IC is equal to 1 if

{O ≥ 100 and F ≥ 100} is fulfilled and zero otherwise. According Stadlober et al. [23]

the specific choice of the parameters is a = 0.1, b = 100 and c = 1000.

This quality function is limited to our specific problem in forecasting PM10 vales. The

choice of this functions guarantees the strongest penalties for the following events:

{O ≤ 50 and F ≥ 50} {O ≥ 50 and F ≤ 50}

A contour plot of the quality function can be found in Stadlober et al. [23]. The results of

the quality function are thereafter assigned to the following 5 grades (categorical values):

• Q(O,F ) ≥ 0.8 =⇒ ”excellent”

• 0.6 ≤ Q(O,F ) < 0.8 =⇒ ”good”

• 0.4 ≤ Q(O,F ) < 0.6 =⇒ ”satisfying”

• 0.2 ≤ Q(O,F ) < 0.4 =⇒ ”bad”

• Q(O,F ) < 0.2 =⇒ ”very bad”

The results of the quality function for the winter season 2014/2015 for both models can

be found in Table 2.8. More than 90 percent of forecasted values of the metric model and

around 90 percent of the binary model are rated with ”good” or ”excellent”, which is a re-

markable result for the theoretical prediction accuracy. The results for the season 2015/2016

(Table 2.9) look similar, the quality of the fit is still considerable, more than 90 percent are

in the category excellent or good.

Model with binary variables
Total

”excellent” ”good” ”satisfying” ”bad” ”very bad”

M
o
d
el

w
it

h

m
et

ri
c

v
ar

ia
b
le

s ”excellent” 107 9 0 0 0 116

”good” 9 10 1 0 0 20

”satisfying” 1 0 5 1 1 8

”bad” 0 1 0 2 0 3

”very bad” 1 1 1 0 1 4

Total 118 21 7 3 2 151

Table 2.8: Results of Quality function I for Winter Season 2014/2015
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Model with binary variables
Total

”excellent” ”good” ”satisfying” ”bad” ”very bad”

M
o
d
el

w
it

h

m
et

ri
c

v
ar

ia
b
le

s ”excellent” 95 10 2 2 0 109

”good” 10 10 2 2 0 24

”satisfying” 4 4 4 2 0 14

”bad” 0 0 1 1 0 2

”very bad” 0 0 0 2 1 3

Total 109 24 9 9 1 152

Table 2.9: Results of Quality function I for Winter Season 2015/2016

In the sense of the first quality function both models deliver remarkable results for the

forecasting values. The first quality function is a symmetric function, where the absolute

difference error between measured and estimated value has the same impact on the quality

of the estimation. There is no distinction, if the estimation is higher than the observed value

or vice versa. In addition the first quality function does not take into consideration if the

observation is below the limit and estimated value is above it or other way round. Especially

a forecast below the limit of 50 µg/m3 and a measured value above the limit should have

a separate penalization. This case has adverse consequences, because of the lower forecast,

actions needed to reduce the PM10 concentration are not performed, while the concentration

will exceed the limit. An estimation higher then the limit and higher than the observation

does not have such adverse consequences. A higher estimated concentration can be seen as

a more conservative approach. The higher forecast motivates short time actions for reducing

the PM10 concentration and its adverse health effect. Both situations with different penaliza-

tion are considered in the following quality function. The quality function is not symmetric

anymore.

Definition 2.2 (Quality Function II) The quality function Q(O,F ) assigns to each pair

consisting of an observation O and a forecast value F in [0, 1]. The quality function Q :

R
2
+ → [0, 1] is given by:

Q(O,F ) = 1−min

{

IA ∗min

{

d× |O − F |
D2

, 1

}

−min

{

a× |O − F |
D

, 1

}

, 1

}

with

D1 = 1 +
1

2

√

|O − 50|+ |F − 50|+ b× IB + c× IC

D2 = 1 +
√

min {|O − 50|, |O − 100|}+min {|F − 50|, |F − 100|}

where IA is equal to 1, if {F ≤ 50 and O ≥ 50} or {F ≤ 100 and O ≥ 100} is

fulfilled .IB is the indicator function, if {O ≤ 50 and F ≤ 50} is fulfilled. IC is equal to

1 if {O ≥ 100 and F ≥ 100} is fulfilled and zero otherwise. The specific choice of the

parameters is similar to the first quality function: a = 0.1, b = 100, c = 1000 and d = 1.
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The assignment of the quality function values to the different classes is performed similarly

to the first quality function. If both values are below 50 µg/m3 or above 100 µg/m3 the

quality function doesn’t change. The asymmetric property of the quality function can be

seen in Figure 2.8, especially for measured values and estimated values next to the limits of

50 µg/m3 and 100 µg/m3.

The results in the higher ratings of Quality Function II are very similar to the results of the

first Quality Function, but the number of ”very bad” forecasts increased sharply (see Tables

2.10 and 2.11). The reason for this increase is the higher penalization of lower forecasted

values linked to higher measured values.

Figure 2.8: Contour plot of the quality function II

Model with binary variables
Total

”excellent” ”good” ”satisfying” ”bad” ”very bad”

M
o
d
el

w
it

h

m
et

ri
c

v
ar

ia
b
le

s ”excellent” 107 9 0 0 0 116

”good” 9 8 0 0 0 17

”satisfying” 1 0 2 0 2 5

”bad” 0 1 0 0 0 1

”very bad” 1 1 1 0 9 12

Total 118 19 3 0 11 151

Table 2.10: Results of Quality function II for Winter Season 2014/2015
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Model with binary variables
Total

”excellent” ”good” ”satisfying” ”bad” ”very bad”

M
o
d
el

w
it

h

m
et

ri
c

v
ar

ia
b
le

s ”excellent” 94 9 2 1 2 108

”good” 10 8 2 2 2 24

”satisfying” 4 4 2 2 0 12

”bad” 0 0 1 1 0 2

”very bad” 1 0 0 2 3 6

Total 109 21 7 8 7 152

Table 2.11: Results of Quality function II for Winter Season 2015/2016

2.1.5 Possible further Improvements of the Model

Within this section we try to improve the chosen models for Graz-Mitte. In the first approach

we are reducing the seasons for the calibration of the model. In the data we see a slightly de-

creasing trend in the PM10 concentration, therefore another approach could be a detrending

of the PM10 concentration for the calibration of the models.

2.1.5.1 Reducing the amount of seasons

In the 2-days ahead forecasting of PM10 for the winter seasons 2014/2015 and 2015/2016

we see that the forecast is in general higher than the observation. Considering Figure 2.2

this effect is caused by the decreasing PM10 concentration over time. Within the data set

(see Table 2.1) we see in the season 2009/2010 a long period without any PM10 values.

The reason for that is the relocation of the measurement station for Graz-Mitte (February

18th 2010) see [23]. In addition to the decreasing PM10 concentration we have a structural

change in the data, due the relocation of the station. In the following the calibration of the

models is based on 4 winter seasons 2010/2011-2013/2014. Within this analysis the choice

of the parameters stays unchanged. Reducing the number of seasons lead to a reduction of the

variance described to 61.97% for the model using metric meteorological regression variables.

For the model using only binary meteorological variables the adjusted R2 is 0.5922.

The residuals are symmetrical distributed, except some outliers in the upper tail. Similar

to the model, with the whole data history and the structural break of measurements, the

Shapiro-Wilk Test is rejected. The standard error of the residuals with 0.912 for the metric

model and 0.944 for the binary model is lower than in the models in the former section.
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Figure 2.9: Q-Q-Plot of residuals vs. normal quantiles and Scatter-Plot of fitted values vs.

residuals

Figure 2.10: Histogram and Box-Plot of residuals

Shapiro-Wilk normality test

W = 0.99223, p-value = 0.003118

For the model using only binary regression variables the residuals looks very similar and the

model could be a good choice for the 2-days ahead prediction.
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Figure 2.11: Q-Q-Plot of residuals vs. normal quantiles and Scatter-Plot of fitted values vs.

residuals

Figure 2.12: Histogram and Box-Plot of residuals

Shapiro-Wilk normality test

W = 0.99466, p-value = 0.03395

Essential for the choice of the model is the quality of the forecast for the seasons 2014/2015

and 2015/2016 (compare: Tables 2.12 - 2.15). The forecast results for the critical level of the

50 and 100 µg/m3 daily average concentration in the season 2014/2015 are very similar to

the results of the forecasted values produced by the model using all available seasons. The

increase of the rate predicting the right indication for the season 2014/2015 is only 1 percent.

But for the season 2015/2016 the model calibrated to a data set of 4 winter seasons gives a

much higher ratio of true classification. The ratio of the right indication increases from 84%

to 89% for the binary model and from 87.5% to 91.4% for the metric model. Especially the
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increase of the ratio for the model using only binary weather variables is very pleasant. If

higher predictions are not rated as a wrong prediction, the hit ratio would increase to 92.7%.

Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 134 4 0 138

Observation 50-100 µg/m3 10 1 1 12

Observation > 100 µg/m3 1 0 0 1

Total 145 5 1 151

Table 2.12: Forecasting Results of the metric Model using 4 Seasons, Winter Season 2014-

2015

Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3

Observation 0-50 µg/m3 136 2 138

Observation 50-100 µg/m3 10 2 12

Observation > 100 µg/m3 1 0 1

Total 147 4 151

Table 2.13: Forecasting Results of the binary Model using 4 Seasons, Winter Season 2014-

2015

Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3

Observation 0-50 µg/m3 124 5 129

Observation 50-100 µg/m3 8 15 23

Total 133 19 152

Table 2.14: Forecasting Results of the metric Model using 4 Seasons, Winter Season 2015-

2016

Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3

Observation 0-50 µg/m3 123 6 129

Observation 50-100 µg/m3 10 13 23

Total 133 19 152

Table 2.15: Forecasting Results of the binary Model using 4 Seasons, Winter Season 2015-

2016

Considering quality function II for both seasons in Table 2.16 and Table 2.17 we see that

most of the predicted values are categorized with ”excellent” or ”good”. In contrast to the
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results of the model calibrated with the whole data history more predicted values are classi-

fied with ”very bad”. The model calibrated by using 4 winter seasons is reasonable, because

the bias from the relocation of the measurement station is removed.

Model with binary variables
Total

”excellent” ”good” ”satisfying” ”bad” ”very bad”

M
o
d
el

w
it

h

m
et

ri
c

v
ar

ia
b
le

s ”excellent” 113 8 0 0 0 121

”good” 8 6 1 0 0 15

”satisfying” 1 1 0 0 0 2

”bad” 1 0 1 0 0 2

”very bad” 0 0 0 0 11 11

Total 123 15 2 0 11 151

Table 2.16: Results of Quality function II for Winter Season 2014/2015

Model with binary variables
Total

”excellent” ”good” ”satisfying” ”bad” ”very bad”

M
o
d
el

w
it

h

m
et

ri
c

v
ar

ia
b
le

s ”excellent” 108 10 1 0 3 122

”good” 4 7 0 1 0 12

”satisfying” 0 1 5 0 1 7

”bad” 0 1 1 1 0 3

”very bad” 1 0 1 0 6 8

Total 113 19 8 2 10 152

Table 2.17: Results of Quality function II for Winter Season 2015/2016

By comparing the observed PM10 concentration with the forecasted values for the winter

season 2014-2015 in Figure 2.13 we see that the models underestimate a longer period of

higher PM10 values in February 2015 and in March 2015. Otherwise the model is very close

to the observations. For the winter season 2015/2016 except the overestimation of the PM10

concentration in march the comparison looks very good (Figure 2.14).
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Figure 2.13: Comparison of observed and predicted values for the winter season 2014/2015

Figure 2.14: Comparison of observed and predicted values for the winter season 2015/2016

In the Figures 2.15 and 2.16 see in the left upper corner and in the right lower corner a

Scatter-Plot of the observations and the predicted values of the according model combined

with the quality function. We see that especially for extreme observations the quality of the

fit is bad. In the right upper plot on can see that both models predict similar values. The

mass of the dots is close to the diagonal line.
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Figure 2.15: Analysis of the Forecasts for the winter season 2014/2015
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Figure 2.16: Analysis of the Forecasts for the winter season 2015/2016

In the next section we are trying to improve the model by detrending the particulate

matter concentration.

2.1.5.2 Detrending of PM10 concentration

We observe a continuously decrease of the PM10 concentration over the last years (see Fig-

ure 2.2). An alternative approach to model the particulate matter concentration is to detrend

the given observations using a linear trend. Detrending the daily average of the PM10 con-

centration yields to negative values of concentrations. Therefore modeling the square root

of the concentration is not possible anymore. For a linear model to the detrended PM10

concentrations the requirements for the residuals are not fulfilled. The distribution of the

residuals is not symmetric nor the variance of the residuals seems to be constant. In addition

the fit of the model is not an improvement of the models above.
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2.1.6 Backtesting under more realistic assumptions

In the previous section we carried out a continuous improvement of the models for Graz-

Mitte. The final model delivers reasonable results in the backtesting for the seasons 2014/2015

and 2015/2016. The backtesting in the previous section was based on observed weather and

particulate matter values. In this section we perform a backtesting of the models under more

realistic conditions. Therefore we have to adjust the data set used for the prediction.

For the lagged PM10 concentration in the model the observed values are replaced by the

predicted values of the current one-day ahead model for PM10. This model is described in

detail in Stadlober et al. [23]. In addition we are adding some random noice to the metric

variables in the model. The metric variables lute mittag and ltusg k are adjusted by adding

a random noise. The random noise is normally distributed with mean 0 and standard devia-

tion, which is two times the empirical standard deviation of the measured data set. For the

binary variables frost, invers and wind we assume that 35% of the meteorological 2-days

ahead predictions are wrong. Every third observation, i.e. around 50 days in the winter sea-

son are replaced by a wrong value. These modifications of the data used for the prediction

should give us an insight in the quality of the predictions under more realistic circumstances

and the robustness of the model. Considering the results for the season 2014/2015 in the

Tables 2.18 - 2.19 we still see a remarkable high hit ratio of the predictions. The ratio is still

above 85% for the metric model and almost unchanged for the binary model. Looking at

the quality function II of forecasts for this season (see Table 2.22) we see a slightly loss of

quality. The quality of some forecasts moves from ’excellent’ to ’good’.

For the winter season 2015/2016 the hit ratio for the metric model decreases from 89% to

78% and for the binary model from 91.4% to 80%. Similar to the theoretical prediction the

quality of the predictions under realistic assumptions decreases for season 2015/2016.

Within this backtesting we take into account the variability of the meteorological two-days

ahead forecast. On the one hand this analysis shows that the model delivers good forecasts

if the meteorological forecast is not exact, but on the other hand these results raises a ques-

tion if a model without any meteorological input could deliver reasonable results. In the

following section we calibrate a model which includes only lagged PM10 concentration and

calendarian variables.

Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 126 12 0 138

Observation 50-100 µg/m3 9 3 0 12

Observation > 100 µg/m3 1 0 0 1

Total 136 15 0 151

Table 2.18: Forecasting Results of the metric Model using 4 Seasons under realistic assump-

tions, Winter Season 2014-2015
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Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3

Observation 0-50 µg/m3 136 2 138

Observation 50-100 µg/m3 11 1 12

Observation > 100 µg/m3 1 0 1

Total 148 3 151

Table 2.19: Forecasting Results of the binary Model using 4 Seasons under realistic assump-

tions, Winter Season 2014-2015

Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3

Observation 0-50 µg/m3 110 19 129

Observation 50-100 µg/m3 14 9 23

Total 124 28 152

Table 2.20: Forecasting Results of the metric Model using 4 Seasons under realistic assump-

tions, Winter Season 2015-2016

Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3

Observation 0-50 µg/m3 117 12 129

Observation 50-100 µg/m3 18 5 23

Total 135 17 152

Table 2.21: Forecasting Results of the binary Model using 4 Seasons under realistic assump-

tions, Winter Season 2015-2016

Model with binary variables
Total

”excellent” ”good” ”satisfying” ”bad” ”very bad”

M
o
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s ”excellent” 78 12 0 0 1 91

”good” 20 10 0 0 0 30

”satisfying” 3 5 1 0 1 10

”bad” 6 0 0 0 0 6

”very bad” 2 2 0 0 10 14

Total 109 29 1 0 12 151

Table 2.22: Results of Quality function II for Winter Season 2014/2015
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Model with binary variables
Total

”excellent” ”good” ”satisfying” ”bad” ”very bad”

M
o
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s ”excellent” 51 23 4 2 4 84

”good” 14 11 1 0 2 28

”satisfying” 6 2 0 0 1 9

”bad” 6 1 1 1 0 9

”very bad” 2 3 2 0 15 22

Total 79 40 8 3 22 152

Table 2.23: Results of Quality function II for Winter Season 2015/2016

2.1.6.1 Model without meteorological variables

In the previous section we have demonstrated that the models give a good 2 days ahead

prediction of particulate matter for Graz Mitte if we simulate the meteorological prediction

errors and use the one day prediction values from the current model. The ratio of the right

indication according the EU limit of 50 µg/m3 for the model is still above 79% using simu-

lated values.

Hörmann et al. [10] mention that the PM10 concentration for Graz is highly correlated with

meteorological values like wind, temperature, inversion temperature. Therefore all consid-

ered regression models in the previous sections include meteorological values. But for the

considered 2-days ahead prediction models, 2-days meteorological predictions are needed

as input for a reasonable forecast of PM10. If a good indication of the PM10 concentration

is sufficient, a much simpler model without any meteorological components will deliver the

desired results. Using the model for forecasting in reality we deal with the compromise be-

tween the complexity of the model and the accuracy and quality of the forecast. Therefore

within this section we are analysing a model without any meteorological parameters.

The model will be calibrated to the data set, after the relocation of the measurement sta-

tion (4 winter seasons). Similar to the procedure for the model including meteorological we

try to find a model with a high adjusted R2 and a low number of variables. The following

variables are available for a possible model: suho, sat, wd, nov, dec, jan, feb, mar and

PM10 lag1. The model which explains the biggest part of the variance in the data is given

by the following variables:

PM10 lag1, suho, sat,mar

The adjusted R2 is 45.98% which is considerable lower than the R2 of the models includ-

ing meteorological variables. (see Section 2.1.5.1). The summary of the model shows that

PM10 lag1, suho, sat are very significant, while the significance of mar is much lower.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.239499 0.109388 38.757 < 2e-16

pm10_lag1 0.050127 0.002352 21.308 < 2e-16

suho -0.483630 0.119642 -4.042 5.99e-05
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sat -0.469583 0.130106 -3.609 0.000333

mar -0.214212 0.110455 -1.939 0.052929

By considering the residuals in Figure 2.17 and 2.18 more outliers in the tails can be

observed. Although the Shapiro-Wilk Test rejects the normal distribution of the residuals,

the histogram and the boxplot represent a sightly right skewed distribution. This fact will

lead to an underestimation of high PM10 concentrations. The standard error of the residuals

(1.087) is also higher than in the former models which emphasizes the underestimation. The

variance of the residuals is indicated in Figure 2.17 and looks constant. One of the outliers

marked in Figure 2.17 are New years day with a very high PM10 concentration caused by

fireworks.

Figure 2.17: Q-Q-Plot of residuals vs. normal quantiles and Scatter-Plot of fitted values vs.

residuals

Figure 2.18: Histogram and Box-Plot of residuals

Shapiro-Wilk normality test
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W = 0.9931, p-value = 0.006869

The fit of this model is worse than the model including meteorological variables, but it

is essential how this model performs in forecasting for the winter seasons 2014/2015 and

2015/2016. The performance test is already based on the predicted values of the current one

day PM10 model described in Stadlober et al. [23].

According the 50 µg/m3 limit the ratio of right indication is remarkable high for both sea-

sons. For the winter season 2014/15 the ratio is 91% (see Table: 2.24) and for the season

2015/16 the ratio is 86% (see Table: 2.25). The Table for the season 2015/2016 indicates an

underestimation of PM10-concentrations above 50 µg/m3 and emphasizes the assumption

assumed by considering the residual plots.

Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3

Observation 0-50 µg/m3 134 4 138

Observation 50-100 µg/m3 9 3 12

Observation > 100 µg/m3 1 0 1

Total 144 7 151

Table 2.24: Forecasting Results of the Model without meteorological variables under realistic

assumptions, Winter Season 2014-2015

Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3

Observation 0-50 µg/m3 127 2 129

Observation 50-100 µg/m3 18 5 23

Total 145 7 152

Table 2.25: Forecasting Results of the Model without meteorological variables under realistic

assumptions, Winter Season 2015-2016

In addition to the analysis of the right indication of the PM10 concentration we are

analysing the quality (in sense of quality function II) of the forecasts. On can see in Ta-

ble 2.26 and 2.27 that the quality of the model predictions is considerable. Most of the

forecast are classified as ’excellent’ or ’good’. The underestimated values are classified as

’very bad’, which is in line with the results shown in Table 2.24 and 2.25.

Model with no meteorologic variables
Total

”excellent” ”good” ”satisfying” ”bad” ”very bad”

85 44 9 2 11 151

Table 2.26: Results of Quality function II for Winter Season 2014/2015
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Model with no meteorologic variables
Total

”excellent” ”good” ”satisfying” ”bad” ”very bad”

96 34 3 1 18 152

Table 2.27: Results of Quality function II for Winter Season 2015/2016

In this section we analyzed the data for Graz-Mitte, considered different models for a

two-days prediction and improved them continuously. In the following section we calibrate

different models for the location Graz Süd.

2.2 Graz-Süd

Within this section we develop different 2-days prediction models for the site Graz-Süd.

This measurement station is located next the industrial zone and in an area with high traffic

frequency. The first PM10 concentration at this site was measured in April 2003.

2.2.1 Data

The measurement of the daily PM10 concentration at the site Graz Süd has been started at

April 25th 2003, therefore the data set contains 4725 entries (including summer season) of

daily average PM10 concentration data points. To set up a valid model for Graz-Süd the first

4 seasons (2002/03-2005/06) can not be considered, because recording of meteorological

values for Graz-Süd has been started at April 5th 2006. (see [23]) The variables contained

in the data set of Graz-Süd are the same as in the data set of Graz-Mitte. The number of

missing data for the individual winter seasons is represented in Table 2.28.

Winter Season Missing Values

2002/2003 no data available

2003/2004-2004/2005 no missing values

2005/2006 November 20th 2005-November 21st 2005

2006/2007 November 7th 2006-November 13th 2006

2007/2008-2015/2016 no missing values

Table 2.28: Missing PM10 Values Graz-Süd

Considering Figure 2.19 on can see a downward sloping trend of the average PM10

concentration over the last winter seasons. The reasons for this evolutions are similar to

Graz-Mitte, better action of the Styrian provincial government and the climate change. By

comparing the daily average PM10 concentration of Graz-Mitte with the average PM10 con-

centration at Graz-Süd on can see, that the PM10 concentration at Graz-Süd is higher (see:

Table: 2.29). The reason for this effect is that the measurement station is located next to

the industrial zone and in an area with higher traffic frequency. Stadlober et al. [23] show
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that correlation of PM10 concentration and meteorological factors at Graz Süd exists and is

similar to Graz-Mitte.

Figure 2.19: Daily PM10 average values for the winter seasons, Graz Süed

Season Observations
Average Average Inversion Frost Wind

PM10 Temp in C◦ Days Days Days

2006/2007 144 51.88 4.37 70 17 44

2007/2008 152 55.15 2.69 58 37 64

2008/2009 151 42.60 2.38 45 42 52

2009/2010 151 53.86 1.92 56 58 43

2010/2011 151 53.13 1.95 69 62 39

2011/2012 152 49.37 2.44 69 44 62

2012/2013 151 46.43 2.13 51 43 57

2013/2014 151 39.84 4.39 61 27 51

2014/2015 151 43.10 4.34 40 21 58

2015/2016 152 44.76 3.87 77 22 46

Table 2.29: Summary Graz-Süd
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2.2.2 Model

To calibrate a reasonable model for Graz-Süd the same methodology as for Graz-Mitte is

applied. First we generate the regression models with all possible combinations of regres-

sion variables (at least 4) described in section 2.1.2. Next we try to find a model which

fulfills the criteria of a low number of variables and a high ratio of described variance. As

for Graz-Mitte the model should be useful for 2 days ahead predication. In the following we

consider 2 models, with a manageable number of variables and a high adjusted R2. Similar

to Graz-Mitte we choose a model (metric model) containing metric meteorological variables

(lute) and one model (binary model) containing only binary meteorological variables (frost).

The use of the model forecasting the PM10 concentration 2-days ahead could be more stable

if the 2-days meteorological forecast isn’t a metric but rather a indication by binary variables

of the weather situation.

For the metric version the following model, which describes 65.5% of the variance the fol-

lowing variables are chosen:

pm10 lag1, lute, ltusg k, suho, mar, dec, sat, wind, nied01

In contrast to Graz-Mitte for Graz-Süd the variable nied01 is added to the model, because its

significance is much higher than in the models of Graz-Mitte. The adjusted R2 of the binary

model for Graz-Süd is 0.6162 and the regression variables are.

pm10 lag1, invers, frost, suho, dec, nov, sat, wind, nied01

The reason for increasing the number for the models to 9 is the higher ratio of true indications

in backtesting of the seasons 2014/2015 and 2015/2016.

2.2.3 Model Validation

The summary of the model calibrated on seasons 2006/2007-2013/14 shows that all variables

used in the model have a significant impact. To fulfill the assumptions of a constant variance

of the residuals the chosen response variable is
√
PM10. (similar to Graz-Mitte)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.586907 0.105509 52.952 < 2e-16

pm10_lag1 0.024157 0.001289 18.742 < 2e-16

lute -0.129713 0.007948 -16.320 < 2e-16

ltusg_k -0.233297 0.015433 -15.117 < 2e-16

suho -0.413396 0.082802 -4.993 6.84e-07

mar 0.426490 0.091538 4.659 3.53e-06

dec -0.456805 0.082456 -5.540 3.72e-08

sat -0.514484 0.091435 -5.627 2.29e-08

wind 0.959632 0.075629 12.689 < 2e-16

nied01 -0.298811 0.068057 -4.391 1.23e-05
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The summary of the binary model looks similar:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.504113 0.086141 52.288 < 2e-16

pm10_lag1 0.027177 0.001315 20.668 < 2e-16

invers 0.830944 0.077865 10.672 < 2e-16

frost 0.962314 0.079097 12.166 < 2e-16

suho -0.415890 0.087316 -4.763 2.14e-06

dec -0.390942 0.087228 -4.482 8.11e-06

nov -0.362952 0.088958 -4.080 4.80e-05

sat -0.546232 0.096404 -5.666 1.83e-08

wind 1.142708 0.077809 14.686 < 2e-16

nied01 -0.383627 0.071198 -5.388 8.57e-08

In Figure 2.20 on can see some extreme outliers of the residuals in the lower as well as

in the upper tail. The marked data point in the right upper area of the QQ-Plot is New years

day 2007 with a PM10 concentration above 200 µg/m3 caused by fireworks. The outlier in

the lower tail is January 2nd 2007, where a very high PM10 concentration is modeled. This

is caused by the extremely high observation at t− 1 (New Years day). Within the models we

will not remove such high concentrations caused by external events.

Figure 2.20: Q-Q-Plot of residuals vs. normal quantiles and Scatter-Plot of fitted values vs.

residuals
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Figure 2.21: Histogram and Box-Plot of residuals

There are some outliers in the tails which leads to a rejection of the Shapiro-Wilk nor-

mality test.

Shapiro-Wilk normality test

W = 0.96581, p-value = 3.303e-16

The Shapiro Test rejects the normality assumption but the distribution of the residuals is

symmetric (Figure 2.21). Using this model will lead to an underestimation of extremely

high values and it overestimates low PM10 concentrations. Overestimation of low values is

a more conservative approach, because they have not any adverse consequences. The stan-

dard error of the residuals for the metric model 1.071 as well the error for the binary model

1.13 is higher than for Graz-Mitte caused by the higher variability in the observations of

PM10 at Graz-Süd.

The residuals (Figure 2.22 and 2.23) of the model using only binary meteorological regres-

sion variables, look very similar to the residuals of the model calibrated with metric vari-

ables. The residuals are symmetric distributed, but some outliers yield a rejection of the

Shapiro-Wilk Test.

Shapiro-Wilk normality test

W = 0.9642, p-value < 2.2e-16



36 CHAPTER 2. 2-DAY PREDICTION MODEL OF PM 10

Figure 2.22: Q-Q-Plot of residuals vs. normal quantiles and Scatter-Plot of fitted values vs.

residuals

Figure 2.23: Histogram and Box-Plot of residuals

2.2.4 Quality of Forecasting

After calibrating the models and the calculation of the regression coefficients, we evalu-

ate the quality of the models by backtesting them with the winter seasons 2014/2015 and

2015/2016.

Similar to Graz-Mitte we first evaluate the right indication according the limit of 50 µg/m3

and thereafter we link the predicted values to a quality function. The focus is on the asym-

metric quality function II defined in Section 2.1.4.
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Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 90 9 0 99

Observation 50-100 µg/m3 21 26 2 49

Observation > 100 µg/m3 0 3 0 3

Total 111 38 2 151

Table 2.30: Forecasting Results of the metric Model Graz-Süd, Winter Season 2014/2015

Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 87 12 0 99

Observation 50-100 µg/m3 19 29 1 49

Observation > 100 µg/m3 0 3 0 3

Total 106 44 1 151

Table 2.31: Forecasting Results of the binary Model Graz-Süd, Winter Season 2014/2015

For the Season 2014/2015 both models indicate in 3 of 4 cases (around 76.8%) the right

range (Table 2.30 and 2.31). But one can see that there are 21 (respectively 19) predicted

values which give a too low indication of the PM10 concentration. The models indicate an

observation of 0-50 µg/m3 while the observed values are in the range of 50-100 µg/m3.

These prediction errors are critical, because they cause wrong actions for reducing the par-

ticulate matter concentration. Replacing the regression variables or increasing the number of

variables in the model will not reduce this prediction error. By considering the results for the

season 2015/2016 we see that the chosen models are still reasonable (Table 2.32 and 2.33).

The ratio for the right indication of the range increases for the season 2015/2016 to 84.8% in

the metric model resp. 81.5% in the binary model. The number of predicted values, which

are higher than the observed values decreases to 7 in the metric model and to 10 in the binary

model.

Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 82 14 0 96

Observation 50-100 µg/m3 5 47 2 54

Observation > 100 µg/m3 0 2 0 2

Total 87 63 2 152

Table 2.32: Forecasting Results of the metric Model Graz-Süd, Winter Season 2015/16
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Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 79 17 0 96

Observation 50-100 µg/m3 8 45 1 54

Observation > 100 µg/m3 0 2 0 2

Total 87 64 1 152

Table 2.33: Forecasting Results of the binary Model Graz-Süd, Winter Season 2015/2016

In the Tables 2.34 and 2.35 the categorization according quality function II of the back-

testing results is represented. The results reflect the results shown in Tables 2.30 - 2.33.

Model with binary variables
Total

”excellent” ”good” ”satisfying” ”bad” ”very bad”

M
o
d
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v
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le

s ”excellent” 74 18 1 1 1 95

”good” 8 7 1 0 1 17

”satisfying” 2 2 5 4 0 13

”bad” 0 0 0 1 1 2

”very bad” 2 1 1 0 20 24

Total 86 28 8 6 23 151

Table 2.34: Results of Quality function II for Winter Season 2014/2015 Graz-Süd

Model with binary variables
Total

”excellent” ”good” ”satisfying” ”bad” ”very bad”

M
o
d
el

w
it

h
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v
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b
le

s ”excellent” 77 13 3 0 2 95

”good” 17 6 4 2 2 31

”satisfying” 3 3 4 2 1 13

”bad” 1 0 0 3 1 5

”very bad” 2 0 1 0 5 8

Total 100 22 12 7 11 152

Table 2.35: Results of Quality function II for Winter Season 2015/2016 Graz-Süd

2.2.5 Possible further Improvements of the Model

Similar to the improvement of the model for Graz-Mitte, we try to get a better calibration of

the model by reducing the number of seasons. The regression factors of the current model

are calibrated using all available seasons (2006/2007-2013/2014). By reducing the number

of seasons, the first seasons with high PM10 concentrations are not considered. This step

might improve the fit to the data and could yield to a higher indication ratio in backtesting.

In contrast to Graz-Mitte there is no relocation of the measurement station at Graz-Süd. The
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iterative reduction of the number of seasons and the calculation of the linear model yields

the following result (Table 2.36 and 2.36).

Seasons Number of Seasons Adjusted R2

2006/2007-2013/2014 8 0.6550

2007/2008-2013/2014 7 0.6637

2008/2009-2013/2014 6 0.6620

2010/2011-2013/2014 5 0.6276

2011/2012-2013/2014 4 0.6248

Table 2.36: Adjusted R2 of Metric Model for Graz-Süd

Seasons Number of Seasons Adjusted R2

2006/2007-2013/2014 8 0.6161

2007/2008-2013/2014 7 0.6319

2008/2009-2013/2014 6 0.6326

2010/2011-2013/2014 5 0.5979

2011/2012-2013/2014 4 0.5847

Table 2.37: Adjusted R2 of Binary Model for Graz-Süd

The reduction of the number of seasons from 8 to 6 yields to a slighty higher adjusted R2

for both models. The estimated regression parameters of the metric model are as follows:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.438474 0.118080 46.058 < 2e-16

pm10_lag1 0.026285 0.001543 17.033 < 2e-16

lute -0.124257 0.008340 -14.899 < 2e-16

ltusg_k -0.199084 0.016740 -11.892 < 2e-16

suho -0.442630 0.089397 -4.951 8.81e-07

mar 0.457142 0.099113 4.612 4.56e-06

dec -0.519810 0.088656 -5.863 6.38e-09

sat -0.570695 0.098352 -5.803 9.06e-09

wind 0.959116 0.081311 11.796 < 2e-16

nied01 -0.314765 0.071923 -4.376 1.35e-05

The binary model is given by:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.451579 0.095515 46.606 < 2e-16

pm10_lag1 0.029129 0.001557 18.708 < 2e-16

invers 0.754579 0.082232 9.176 < 2e-16

frost 0.920970 0.081316 11.326 < 2e-16
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suho -0.447454 0.093136 -4.804 1.82e-06

dec -0.479646 0.093054 -5.155 3.13e-07

nov -0.332061 0.094698 -3.507 0.000477

sat -0.611417 0.102402 -5.971 3.40e-09

wind 1.104226 0.082548 13.377 < 2e-16

nied01 -0.391067 0.074034 -5.282 1.60e-07

All variables are significant within the models. Similar to the model calibrated to 8 sea-

sons the QQ-Plot (Fig: 2.24) indicates some outliers in the lower and upper tail. Similar to

the previous model the outliers are New Years days with high PM10 concentrations caused

by fireworks. The Shapiro normality test for the metric model is rejected, but considering

the histogram and the boxplot (Figure 2.25) a symmetric distribution of the residuals is given.

Shapiro-Wilk normality test

W = 0.98137, p-value = 2.393e-09

Figure 2.24: Q-Q-Plot of residuals vs. normal quantiles and Scatter-Plot of fitted values vs.

residuals
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Figure 2.25: Histogram and Box-Plot of residuals

The residuals of the binary model (Figures: 2.26 and 2.27) look similar to the residuals

of the metric model. The Shapiro Wilk test is rejected, but the distribution of the residuals is

symmetric and similar to a standard normal distribution (Histogram 2.26) and the standard

error is simliar to the model for Graz-Süd seen above.

Shapiro-Wilk normality test

W = 0.98477, p-value = 4.219e-08

Figure 2.26: Q-Q-Plot of residuals vs. normal quantiles and Scatter-Plot of fitted values vs.

residuals
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Figure 2.27: Histogram and Box-Plot of residuals

The increase of the described variance of the model by decreasing the number of seasons,

does not yield to better results in the backtesting of the seasons 2014/2015 and 2015/2016.

The results of the backtesting, illustrated in the Tables 2.38-2.40 show an insignificant in-

crease of the right indication according the 50 µg/m3 limit for the metric model and a slight

decrease for the binary model.

Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 92 7 0 99

Observation 50-100 µg/m3 20 28 1 49

Observation > 100 µg/m3 0 3 0 3

Total 112 38 1 151

Table 2.38: Forecasting Results of the metric Model Graz-Süd based on 6 winter seasons,

Winter Season 2014/2015

Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 87 12 0 99

Observation 50-100 µg/m3 21 27 1 49

Observation > 100 µg/m3 0 3 0 3

Total 108 42 1 151

Table 2.39: Forecasting Results of the binary Model Graz-Süd based on 6 winter seasons,

Winter Season 2014/2015
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Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 83 13 0 96

Observation 50-100 µg/m3 11 42 1 54

Observation > 100 µg/m3 0 2 0 2

Total 94 57 1 152

Table 2.40: Forecasting Results of the binary Model Graz-Süd based on 6 winter seasons,

Winter Season 2015/2016

Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 84 12 0 96

Observation 50-100 µg/m3 8 45 1 54

Observation > 100 µg/m3 0 2 0 2

Total 92 59 1 152

Table 2.41: Forecasting Results of the metric Model Graz-Süd based on 6 winter seasons,

Winter Season 2015/16

2.2.6 Backtesting under more realistic assumptions

Reducing the number of seasons for the calibration of the models yields an immaterial in-

crease of the adjusted R2, but no essential enhancement of the right indication can be ob-

served. In this section we are interested in the stability of the models under more realistic cir-

cumstances. Similar to the procedure described in Section 2.1.6 the predictions are not based

on observed values but on predicted values. For the prediction the observed pm10 lag1 is

replaced by the one day prediction value of the current model specified in Stadlober et al.

[23]. In addition we add a random noise to the meteorological values in the model to simu-

late the meteorological prediction error. For the binary meteorological variables in the model

we assume that 35% are wrongly predicted.

The results for the indication according the limit of 50 µg/m3 are given in the Tables 2.42

- 2.45. We see that the number of predictions in the range 0-50 µg/m3 increases and the

number the underestimated observations too. Especially the underestimation of observations

in the range 50-100 µg/m3 rises by approximately 50% in the season 2014/2015. The ra-

tio of right predictions decreases from 76.8% to 69.5% for the metric model in the season

2014/2015 and from 76.8% to 67.5% for the binary model. For the season 2015/2016 the

number of underestimated observations bigger than 50 µg/m3 and smaller than 100 µg/m3

doubled. The ratio of right predictions decreased by 15% for both models to 69.7% for the

metric model and 67.1% for the binary model.
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Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 92 7 0 99

Observation 50-100 µg/m3 34 13 2 49

Observation > 100 µg/m3 0 3 0 3

Total 126 23 2 151

Table 2.42: Forecasting Results of the metric Model Graz-Süd based on 6 winter seasons

under more realistic assumptions, Winter Season 2014/2015

Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 84 15 0 99

Observation 50-100 µg/m3 31 18 0 49

Observation > 100 µg/m3 2 1 0 3

Total 127 34 0 151

Table 2.43: Forecasting Results of the binary Model Graz-Süd based on 6 winter seasons

under more realistic assumptions, Winter Season 2014/2015

Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 69 26 1 96

Observation 50-100 µg/m3 18 33 3 54

Observation > 100 µg/m3 0 2 0 2

Total 87 61 4 152

Table 2.44: Forecasting Results of the metric Model Graz-Süd based on 6 winter seasons

under more realistic assumptions, Winter Season 2015/16

Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 > 100 µg/m3

Observation 0-50 µg/m3 61 35 0 96

Observation 50-100 µg/m3 19 35 0 54

Observation > 100 µg/m3 0 2 0 2

Total 80 72 0 152

Table 2.45: Forecasting Results of the binary Model Graz-Süd based on 6 winter seasons

under more realistic assumptions, Winter Season 2015/2016

Applying the asymmetric quality function to the predictions we see in Table 2.46 and

Table 2.47 a sharply increase of ”very bad” forecasts. More than one fifth of the forecasted
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values doesn’t give any considerable fit. In addition only two third of the forecasted values

are marked as ”excellent” or ”good” by using the quality function. Despite the decrease of

the prediction quality of the model, it may help to get a right indication of the PM10 concen-

tration two days ahead.

By comparing the observed PM10 concentration with the forecasted values for the winter

season 2014-2015 in Figure 2.28 we see that the models underestimate much more observa-

tions than for Graz-Mitte. For the winter season 2015/2016 the results looks very simliar.

(Figure 2.29).

Figure 2.28: Comparison of observed and predicted values for the winter season 2014/2015

Figure 2.29: Comparison of observed and predicted values for the winter season 2015/2016
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In the Figures 2.30 and 2.31 one can see in the left upper corner and in the right lower

corner a Scatter-Plot of the observations and the predicted value of the according model

combined with the quality function. We see that especially for extreme observations the

quality of the fit is bad. In the right upper plot on can see that both models predict similar

values. The mass of the dots is close to the diagonal line.

Figure 2.30: Analysis of the Forecasts for the winter season 2014/2015



2.2. GRAZ-SÜD 47

Figure 2.31: Analysis of the Forecasts for the winter season 2015/2016

Model with binary variables
Total

”excellent” ”good” ”satisfying” ”bad” ”very bad”

M
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s ”excellent” 34 26 1 6 4 71

”good” 12 10 5 1 4 32

”satisfying” 2 2 0 1 1 6

”bad” 0 1 1 1 0 3

”very bad” 3 4 5 0 27 39

Total 51 43 12 9 36 151

Table 2.46: Results of Quality function II for Winter Season 2014/2015 Graz-Süd



48 CHAPTER 2. 2-DAY PREDICTION MODEL OF PM 10

Model with binary variables
Total

”excellent” ”good” ”satisfying” ”bad” ”very bad”

M
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s ”excellent” 26 10 8 4 5 53

”good” 11 10 5 3 10 39

”satisfying” 5 3 2 0 6 16

”bad” 3 3 0 0 3 9

”very bad” 10 8 5 0 12 35

Total 55 34 20 7 36 152

Table 2.47: Results of Quality function II for Winter Season 2015/2016 Graz-Süd

A model for Graz-Süd which does not take any meteorological variables into considera-

tion, does not yield valuable results. The quality of the forecast and the stability of the model

are not valuable.



Chapter 3

Prediction Model of PM 10 based on

classification trees

Whitin this chapter we introduce models for the PM10 prediction based on classification and

regression trees for the locations Graz-Mitte and Graz-Süd. In contrast to the models consid-

ered in chapter 2 the tree models should give an easy and fast indication for an exceedance

1 day ahead. Before applying tree models to the PM10 data set we indroduce them in the

following sections. The implementations in R are performed by using the separate R pack-

age rpart (recursive partitioning) and party, which are one of the many packages in R for

implementing tree calculations.

3.1 Introduction to classification and regression trees

Classification and regression trees (CART) are a non parametric method, using a set of p pre-

dictor variables x1, . . . , xp to predict and model a categorical or numerical response variable

y. The goal is to find a model which predicts the response variable best. The idea of CART

models is a recursive partitioning of the data set, which is a stagewise process dividing the

data set into smaller and smaller pieces. The idea is to split the data in that way that in each

of the descendent subsets the data are purer than in the parent set. The response variable y

can be categorical or numerical. For categorical response variables the method produces a

classification tree and for continuous variables a regression tree.

CART is a very popular data analysis tool which were introduced in 1984 by Breiman, Fried-

man, Ohlsen and Stone [5]. In the last decades some refinements of CART and some similar

procedures, having the roots in computer science, were developed (e.g. C4.5, GUIDE). In

this chapter our discussions follow Berk [1] and Breiman et al. [5].

49
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3.1.1 Construction of a classification tree

A tree model splits the space X spanned by the predictor variables x1, . . . , xp stagewise into

smaller subspaces. The tree is constructed by repeated recursive partitioning the set of data

into two descendant subsets, beginning with the space spanned by x1, . . . , xp. The process

of splitting into subsets (subspaces) performs one partition by a prediction variable x a time,

which makes the models easier to interpret. A constructed partition is not reconsidered or

revisited in later splitting steps. Each subset is constructed so that the values of the response

variable are purer or more homogenous than in the previous subset. This procedure is re-

peated to each subset separately until a stopping criteria is met or the minimum size of the

subset is reached. The terminal subsets form a partition of the space X . Each terminal subset

is assigned by a prediction value, which is a class label for classification tree or a numeric

number for regression trees. Terminal subsets can be marked with the same class label.

At the beginning we consider the construction of a classification tree with a categorical re-

sponse variable with 2 classes (e.g. y ∈ {0, 1}). In the following the class labels will

represent the exceedance and non-exceedance of the critical limit of 50 µ/m3.

The process of building a tree starts by analyzing the whole data set X . The procedure looks

for the best split of the whole data set into two subsets X1 and X2 so that each subset is more

homogenous than the initial subset. Dividing in 2 subsets means that the procedure finds

a threshold in the values of one predictor variable x and group the response variables into

2 subsets according the threshold. In a next step the splitting of the subsets X1 and X2 by

other thresholds of any predictor variable can be performed. The splitting of the subset X1 is

independent of the splitting of the subset X2. The same process is applied to all subsequent

subsets until all cases are placed in a terminal subset. Each case can only be in one terminal

node, because the partitions do not overlap. The CART method performs the division into

subsets recursively. The representation of a CART is often shown as an inverted tree (tree

diagram) see Figure 3.2. The whole data set X is contained in the root nodes.

The remaining topics and questions for the complete understanding of the construction of a

tree model as follows:

1. What criteria will be used to determine the partitions of subsets?

2. Which criteria for the variable selection is required and how will the variable used to

define the new partition.

3. When should we label a node as terminal or continue in splitting it?

4. How to measure the goodness of a tree model.

3.1.2 Splitting criteria

An essential topic for tree models is how to split each node by using the information of the

predictor values. For a continuous variable with n distinct values, there are n − 1 possible

splits on that variable which need to be evaluated. For categorical predictor variables with n
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categories 2n−1 − 1 possible splits need to be calculated. CART estimates at the root node

all possible splits of all predictor variables and picks the best single split. To define the best

split of a subset we focus on the ”impurity” of a node. The first 3 questions above are linked

to this definition. The goal of partitioning the data is to receive resulting subsets which are

as pure (homogeneous) as possible. Further to have little impurity overall. Consider a binary

response variable, then a node has an impurity of zero if all response values are 0 or 1. The

maximum of impurity will be reached if the values are equally mixed, 50% of 0 values and

50% of 1 values.

Definition 3.1 (Impurity Function) The impurity of a node A is a non-negative function φ

of the probability P (Y = 1|A), with Y a random variable.

I(A) = φ(P (Y = 1|A)), (3.1)

with φ ≥ 0, φ(P ) = φ(1− P ) and φ(0) = φ(1) < φ(P ).

The impurity is a non-negative and symmetrical function with a minimum when the node A

is pure (containing only 0s or 1s) and a maximum when all classes are equally mixed. In the

following we consider 2 different impurity functions which are also discussed in Breiman et

al. [5]

Definition 3.2 (Gini Index) The Gini Index impurity function is given by

φ(P ) = P (1− P ), (3.2)

Definition 3.3 (Cross Entropy) The Cross Entropy impurity function is given by

φ(P ) = Plog(P )− (1− P )log(1− P ), (3.3)
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Figure 3.1: Impurity Functions

Both impurity functions fulfill the required properties. The Gini index is generally fa-

vored, because Breiman et al. [5] showed that it delivers more desirable results than other

impurity functions.

Finding a value in a predictor variable which splits the parent partition so that the resulting

partitions have an overall smaller impurity is the goal of the described setup. The CART

procedure evaluates all possible splits of all prediction variables and tries to find a value to

split a node, which reduces the impurity most. The improvement of the impurity resulting

from a split s performed on a node A is the impurity of the parent node A minus the impurity

of the left AL and right AR daughter node. The decrease of the impurity is given by

∆I(s, A) = I(A)− P (AL)I(AL)− P (AR)I(AR)

where I(A) is the initial impurity and P (AL) is the probability of a case falling into the

left node and P (AR) into the right node. The probabilities can be estimated by using the

marginal proportions and P (AL) + P (AR) = 1 . The decrease of the impurity is maximized

max
s,A

∆I(s, A).

The CART procedure chooses the biggest decrease in impurity to define the new partition.

The algorithm will stop if a node is reached where no significant decrease of impurity is

possible. A node is declared as terminal for a given threshold , β > 0, if

maxs,A∆I(s, A) < β.
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As already mentioned another stopping criteria is a minimum count of observations in each

terminal node or a maximum count of splits in the tree.

After constructing a tree with a set of terminal nodes, a class to every terminal node is as-

signed. The assignment of classes is determined by the majority of cases of a class i in the

terminal node A. Then the node is labled with class i.

This procedure points the strength of the CART procedure out. After assigning a class to each

terminal node the constructed tree makes an estimation of a possible outcome of new obser-

vations with unknown response variable very easy. In addition the tree gives us information

under which constellation and interactions between variables observations are assigned to a

specific class.

3.1.2.1 Model Evaluation

After fitting a tree, in each terminal node the proportion of right classification and failures

are calculated. For a given data set one is interested in the quality of the fitted tree and its

performance in classifying given observations correctly. Beside the resulting model error

the quality in backtesting of data which are not used for growing the tree might be essential.

One helpful method for representing the model error of a CART model for data is a confusion

table. It cross-tabulates the observed classes and the classes assigned by the CART model.

The table gives an indication how well a model fits the data which were used to build the

tree. In addition a confusion table can be used for evaluating the strength of the model for

forecasting purposes of that which were not used to build the model (test data).

In Tabel 3.1 the general structure of a confusion table fur a binary classification model is

shown. The letters in the table 3.1 is the number of observations falling in the accord-

Failure Prediction Success Prediction Model Error

Failure a b b/(a+ b)

Success c d c/(c+ d)

Use Error c
a+c

b
b+d

Overall Error = b+c
a+b+c+d

Table 3.1: General structure of a Confusion Table

ing class. The left upper cell represents the observations where the observed and predicted

(assigned) value is ”failure”. The table gives an overview of the overall prediction error

(b+ c)/(a+ b+ c+ d) as the sum of misclassified cases divided by the total number of ob-

servations. This proportion gives an initial quality of the fit. A tree with pure terminal nodes

results a table with no misclassified cases. A low misclassification proportion is desirable,

but must be compared with the classification of the model where no predictor is used.

The overall error neglects the different importance of the prediction variables. In some cases

the accuracy in one variable is more important than in another. For this purpose the table

gives an estimation of the the incorrectly classified observations of a class divided by the

total amount of observations of a class. The classification error caused by the CART model
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(model error) is shown in the last column of the table. There are two kinds of failures in the

model called false negatives b and false positives c. They give information on how common

it is for this procedure to be wrong. The column proportion shows the so called use error

of the model. The proportion gives information of times when a particular class is assigned

how common it is that the assignment is wrong.

The ratio of the number of false negatives and true positives gives an indication how the re-

sults are trading one kind of error for the other. If the proportion of false negatives is x-times

larger than false positives means that the model treats false negatives x-times more important

than false positives. Such ratios are important for our further interpretations of the results.

3.1.3 Misclassification Costs and Prior Probabilities

In the previous sections the terminal nodes were assessed to each class by majority vote. All

cases in a terminal node are classified with the label of the class with the greatest count of

cases in the terminal node. Consider a terminal node were the proportion of different classes

is nearly equal weighted. Within this terminal node a huge proportion of false negatives or

false positives is wrong classified. Such wrong classifications can lead to enormous costs in

forecasting and prediction using a modeled tree. Thinking of PM10 forecasting, the wrong

prediction of no exceedance of the critical value of 50 µ/m3 might produce higher costs than

the false prediction of an exceedance. Considering costs will be essential for a classification

algorithm because the way cases are forecasted or classified will vary depending on the costs

introduced. The costs that matters are the costs of classification errors, which will change

the results dramatically. Therefore we introduce costs to the CART method, where prior

probabilities and loss functions play a key role.

Each categorical response variable has a proportion of observations in each response cate-

gory. The term ”prior” has its origin in Bayesian statistics, where prior refers to the expecta-

tions of the data analyst. The beliefs from the data analyst come from past research or other

information about what the marginal proportions should be. With the help of prior probabil-

ities the actual proportion of the response variable, which is not reflected in the sample, can

be reproduced.

Definition 3.4 (Prior Probabilities) There are N observations and C classes of the re-

sponse variable and K terminal nodes. We define πi, i = 1, 2, . . . , C as the prior probability

of being in class i. For the binary case i would be 1 or 2. These marginal probabilities are

sometimes called as prior probabilities.

Definition 3.5 (Loss Matix) The loss matrix for the incorrect classification of a case that

is really an i as a j is defined by L(i, j). For the binary case the matrix is a 2 × 2 matrix

and captures the cost of classification errors. For correct classification in general the loss is

equal to zero which means that the diagonal of the loss matrix is zero.
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We define τ(x) the true class for an observation x. where x represents the vector of predictor

variable values for that observations. A denotes a node in the tree. τ(A) is the class assigned

to node A if A is a terminal node. The number of observations in the sample that are in class

i is Ni and NA represents the number of observations in node A. The number of observations

of class i in node A is given by NiA.

The probability of cases appearing in node A is given by P (A) and is equivalent to
∑C

i=1 πiP [x ∈ A|τ(x) = i]. The estimation of the probability is given by
∑C

i=1 πi(NiA/Ni).

On can see that the priors can influence the tree structure. The probability of class i given

that a case is in node A is denoted by p(i|A) or P [τ(x) = i|x ∈ A]. The probability equals

πiP [x ∈ A|τ(x) = i]/P [x ∈ A] and can be estimated by the number of cases of class i in

node A, divided by the total number of cases in that node πi(NiA/Ni)/
∑C

i=1 πi(NiA/Ni).

Here the priors could lead to big differences because the probability of a case with true class

i landing in A depends in part on the probability that a case is truely of class i to begin with.

Definition 3.6 (Risk of node A) The ”risk” of a node A is R(A) given by
∑C

i=1 p(i|A)L(i, τ(A)). τ(A) is chosen in such a way that the risk is minimized. The risk of

a node is a function of the probabilities and the costs.

Definition 3.7 (Risk of a tree) The ”risk” of a tree T is R(T ) which equals
∑K

j=1 P (Aj)R(Aj), where Aj are the terminal nodes of the tree. The risk of the tree is the

sum of the risk associated with each node, weighted by the probability of the cases falling in

that node.

Considering a loss matrix L(i, j) = 1 for all i 6= j and the priors are the observed class pro-

portions in the sample, then p(i|A) = NiA/NA and the riks of the tree R(T ) is the proportion

of misclassified cases. In an analog way R(A), the risk of a terminal node can be estimated.

Scaling up of the loss matrix L(i, j) with L(i, j) = m, with m constant, makes no difference

to the CART algorithm. If there is no adjustment of the priors the data determines everything

which is the same as the costs of classification errors in the loss function is the same and one

assumes that the given marginal distribution of the sample are the appropriate priors.

Adjusting the cost in the loss functions leads to different participation and classifications.

This method produces a more acceptable ratio of false positives and negatives. The risk of a

node is scaled by prior probabilities and the entries of the loss matrix. Suppose there exists

a π̃ and L̃(i, j) so that the following holds

π̃iL̃(i, j) = πiL(i, j).

The associated risk of a node stays unchanged as long as the equation holds and it does

not matter what the particular values of π̃ and L̃ are. The right hand side of the equation

represents the weight given to the classification errors for class i in a node. If a change in the

weight is desired the prior or the costs or both can be changed. For binary response variables
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this method called ”altered priors” can be given by

π̃∗
i =

πiL
∗
i

πiL∗
i + πjL∗

j

.

The values of πi are the marginal probabilities associated with the empirical prior distribu-

tion. L∗
i are the new costs of the loss matrix. All costs in the loss matrix are relative costs.

For binary problems the altered prior method is exact and affects the choice of splits. Think-

ing of an impurity function, which has its maximum if the classes are equal weighted, the

altered priors shift the maximum of the impurity function. This method is implemented in

the R package rpart.

3.1.4 Getting the right sized Tree (Pruning)

In this section we consider the topic of getting the right sized tree. For many analyses a too

large and complex tree is not desirable. The stepwise construction of a tree optimizes at each

step the impurity over all possible splits of the data. This procedure may lead to an overfitting

of the data set, which reduces the accuracy of prediction and the interoperability of the tree.

The increase of splits yields a decrease of the misclassification of the tree. For example a

tree where each terminal node contains only one data point, the node is classified by the case

it contains and the tree error is zero. A possible strategy to avoid such tree, is the setting

of a minimum sample size for each terminal node. Another widely used method is called

”pruning”, which removes undesired branches. Splits of the data sets which do not reduce

the heterogeneity sufficiently for the additional complexity are removed. It can be compared

with a stepwise linear regression, where additional prediction variables increase R2 but may

have no predictive power. Therefore the consideration of the adjusted R2 is desirable.

Recall the risk for a tree R(T ) =
∑K

j=1 P (Aj)R(Aj) which is equal to the sum of the

terminal nodes of the risk associated with each node times the probability of cases falling

in that node. The pruning process starts ideally with a saturated tree. The minimization of

the risk of the tree T would not lead to a smaller tree, because the reduction of the risk of a

tree is equal to that all terminal nodes are homogeneous and the risk would be zero. To solve

the problem of the right sized tree the introduction of a penalty for complexity parameters

must be introduced. It will be a tradeoff between bias and variance. Larger trees will have

terminal nodes with fewer classification erros, implying less bias. On the other hand a larger

tree implies greater instability because there are fewer cases in the terminal nodes. The

solution of this problem is given by the minimal cost complexity pruning of trees, which

includes a parameter which penalizes the complexity of a tree.

Definition 3.8 (Cost-Complexity Measure) For a tree T and α ≥ 0 the cost complexity

measure is given by

Rα(T ) = R(T ) + α|T̃ |.

With |T̃ | the number of terminal nodes in tree T.



3.1. INTRODUCTION TO CLASSIFICATION AND REGRESSION TREES 57

The cost complexity measure is given by the cost of the classification errors for the tree as

a whole and the penalty for complexity. The penalty for each additional terminal node is

quantified by α, larger α leads to a heavier penalty for complexity. Breiman et al. [5] proved

the following theorem.

Theorem 3.1 For every value of α, there exists a smallest minimizing subtree T (α)

Rα(T (α)) = minRα(T )

The existence of a unique smallest subtree for the cost complexity parameter α implies that

there cannot be two subtrees of the same size with the same α.

3.1.5 Missing Data and surrogate variables

Missing values create for nearly all statistical analyses and data algorithms the same diffi-

culties. Missing data sets are very common and lead to a loss of statistical power with the

reduction of the sample by ignoring incomplete observations. This is a common mechanism

to drop data with missing prediction variables. By missing the data completely at random

the main loss is statistical power. If the number of observations with missing response values

compared to the total data set is below a given percentage ignoring those cases is a valuable

method. Another possibility is to input the data outside of the CART itself. Using a conven-

tional regression of the response with a strongly related predictor, the resulting regression

equation can input the missing values.

An additional option to address the problem of missing data within the CART algorithm was

introduced by Breiman et al. [5]. The following approach is also available within the R

package rpart. Recall the selection of a split which will be chosen. The following quantity

will be maximized:

∆I(s, A) = I(A)− P (AL)I(AL)− P (AR)I(AR),

where I(A) is the value of the parent impurity. This term can be calculated without any pre-

dictors and is irrespective of missing data. For the calculation of the impurity of the daughter

nodes and their construction predictor variables are required. The impurity is evaluated as

usual for each optimal split by taking only data sets available. The associated probabilities

P (AL) and P (AR) are also calculated only over the relevant observations. After the deter-

mination of the split the observations have to be assigned to one of the two daughter nodes.

After the determination of the split the CART algorithm adjust P (AL) and P (AR) so that

they sum to P (A). To circumvent the assignment of observations where the predictor values

are missing a possible approach is to estimate the missing data by using other independent

variables. A variation of this approach is used by ”surrogate variables”. The surrogate vari-

ables are found by re-applying a partitioning algorithm to the predictor variable by using the

other independent variables. In detail the predictor used for splitting the node in the tree

becomes a binary response variable with the two classes determined by the split. The CART
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algorithm performs only one step of partitioning of the predictor variable with missing val-

ues using the other independent predictor variables. For each independent variable a split

is performed and ranked by the proportion of cases of the initial prediction variable that are

misclassified. The independent variable with the lowest classification error is used to assign

the cases of the missing values of the predictor variable.

This method of dealing with missing data rises some risks if there are a lot of missing val-

ues and surrogate variables are used. If a huge number of observations are manufactured an

additional error is introduced to the tree model. Berk [1] gives the advice to avoid surrogate

variables, because the temptations for misuse are given, and there is no clear threshold for

missing data where the use leads to misleading results.

3.1.6 Strengths and Shortcoming of CART Models

The interpretability of the results and the possibility of showing them in a tree diagram are

big advantages of the CART algorithm. It gives the possibility of an intuitive insight on the

data set and shows interactions and dependencies. The influence of a predictor variable to the

reduction of the impurity and its importance for the relationship with the response variable

is shown in the tree diagram. The higher above the prediction variable in the tree is the

more relevant it is. In Section 2.7 Breiman et al. [5] outline some advantages of the CART

procedure:

• It’s a very powerful and flexible classification tool which can be applied to any given

data set or structure. There are no assumptions about the distribution of the data needed

and can be applied to numerical or categorical variables.

• The final output is easy to interpret and can be used for predicting new data. In addition

the tree includes classification and misclassification probabilities.

• The stepwise selection of the variables includes implicite information about the im-

portance of a single variable in the model.

• It’s very robust with respect to outliers and missclassified data sets.

However there are also some shortcomings of the CART algorithm one has to deal with.

There is no formal representation which indicates that the algorithm will find the correct

relationship between predictors and response variables from a given data set, even with all

predictors provided and well measured. A suboptimal first split (or at one level) might allow

better splits on lower levels and might lead to a better overall tree structure and a lower mis-

classification rate. Predictor variables with a large number of distinct predictor values are

favored by the algorithm, therefore bias is included to the models. The flexible algorithm

tends to overfit the data set and can be data specific. The specific characteristics and idiosyn-

crasies of the data set have a huge influence on the final results. The outcome is not general

enough to fit new data. As already mentioned in previous sections that pruning may prevent

overfitting. Too small numbers of observations in a node can cause instability in the results.
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As outlined in Hastie et al. [9] an additional problem of tree models is their high variance. A

small change in the data can result a very series of splits, different classification results and

terminal nodes. This shortcoming of trees arise from the hierarchical nature of the process.

The effect of an error in the top split is propagated down to all of the splits below. The vari-

ance can be reduced by bagging which averages many trees and is described in Chapter 4.

Consider response variables that are unbalanced and highly skewed might create some prob-

lems for any type of CART models. Sparse data-sets can lead to unstable results or an

inability of the software to provide any results at all. Another problem is that rare observa-

tions may have a disproportional impact on the result, and a generalization to a bigger data

set can be problematic. For the purpose of this work the highly skewed response variable can

be problematic. It can be difficult to find predictors that are able to improve the overall fit.

Considering a binary response variable with the marginal distribution of 95% of 1s and 5%

of 0s. A good and accurate classification can be determined from this information alone. By

assigning the 1 category the classification will be correct 95% of the time without using any

predictors. Its hard to improve the results or do better than this. But using an adjustment of

the priors, by placing heavy weight on the misclassification of rare cases, may improve the

results. Its like saying there are more rare to be considered than the data indicate.

3.1.7 Unbiased Recursive Partitioning

As mentioned above the CART algorithm tends to choose predictor variables with more

possible splits as a partitioning variable. There is a selection bias build into the tree structure

and the results which are summarized in the terminal nodes. In their work Hothorn et al. [12]

present a solution of this problem and suggest a tree building algorithm based on hypothesis

testing. The procedure seems to be familiar with stepwise regression and has no bias toward

certain predictors. The selection of a variable used for a split is determined by the results of

a hypothesis test. A test of independence between any of the covariates and the response is

performed.

The procedure can be summarized as follows (see Berk [1] p. 137).

1. Perform the global null hypothesis test for the independence between each predictor

and the response variable.

2. Stop if the test cannot be rejected.

3. Select as the predictor having the strongest relationship with the response as splitting

variable, if the test is rejected.

4. Choose the best split using only the selected predictor.

5. While no further splits are indecated, repeat steps 1-4.

The hypothesis tests are based on the permutation distributions in which values of the

response variable are randomly shuffled. For each predictor a permutation test under the null
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hypothesis of no association is performed. In addition to the calculation of the p-value of

each predictor variable an overall p-value is also computed using methods for multiple tests

(e.g. Bonferroni correction). In step 3 of the procedure the predictor with the lowest p-value

is chosen if the global null hypothesis is rejected. The predictor with the lowest is equivalent

to the predictor with the strongest relationship to the response variable. The split can be

determined as usual. If a predictor variable is selected a split similar to the CART algorithm

can be performed or by using the permutation tests setup. (Details see Hothorn et al. [12])

The process is performed for every subsequent partition of the data set until the algorithm

stops.

In addition Hothorn et al. [12] showed in their work that the performance of prediction

accuracy of trees with early stopping is equivalent to the prediction accuracy of pruned trees.

This follows that this procedure offers a possible solution to the overfitting problem.

Nevertheless there are some concerns of this algorithm. For example, the result depends on

the sample size and there is a permutation variation coming from the response variable. For

details see Berk [1].

This procedure is implemented in the R package party.

3.1.8 Regression Trees

In this section we focus on the construction of trees with numerical response variables. The

main difference of regression trees and classification trees lies in the splitting criterion. Lets

consider a data set of N observations consisting of a numerical response variable and p

predictor variables. In the classification case the reduction of the impurity

max
s

∆I(s, A) = max
AL,AR

I(A)− P (AL)I(AL)− P (AR)I(AR)

is maximized. The impurity of node A in the regression case is given by the sum of squares

in the node

I(A) =
N
∑

i=1

(yi − ȳ(A))2.

The method and concept used for regression and classification trees is the same. The de-

viance for a node A is given by

D(x̃, A) =
n

∑

i=1

(yi − ȳ(A))2 −





nx̃,A
∑

i=1

(yi − ȳ1,x̃(A))
2 +

n
∑

i=nx̃+1,A

(yi − ȳ2,x̃(A))
2





with x̃ being the treshold at which a split is performed. So we are searching for

max
x̃

D(x̃, A).

It is not possible to use weights in regression trees, because it’s not possible to consider false

positives or false negatives. The impurity of the entire tree is given by the sum of overall
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terminal nodes. The initial impurity was the sum of square error of the root node. The

optimal sized regression tree can be reached by pruning, described in the former sections.

The output of a regression tree is assigning the mean of the terminal node to each observation

in that node. The assigned mean indicates the classification of an observation and represents

the relation of the prediction variables on the numerical response.

A formal representation of a regression tree is shown in Hastie et al. [9]. A regression tree

partitions the space spanned by the data set into disjoint regions R1, . . . , RJ , so that Rj is

represented by the jth terminal node of the tree. The regression tree models the response

variable y as constant in each region. By assigning a constant γj to each region than the

relationship between predictors x and response y is

x ∈ Rj =⇒ f(x) = γj.

A tree can be represented as

T (x,Θ) =
J
∑

j=1

γj1{x∈Rj}

with γj being the conditional mean of the response values that is assigned to terminal node j

and tree parameters Θ = {Rj, γj}.

3.1.9 Classification Tree models for Graz Mitte

The goal in this section is to find a reasonable tree model for predicting the concentration

of particulate matter or the exceedance of the critical vale of 50 µg/m3. In contrast to the 2

days ahead prediction model developed in Chapter 2 the tree model should be an extension

of the current prediction model described in Stadlober et al. [23]. the focus lies on a rea-

sonable prediction model 1 day ahead based on tree models. We will consider binary trees

as well as regression trees implemented in the rpart package for the software environment

R. In the following we compare the results applying Hothorn et al. [12] ideas of unbiased

recursive trees using the party package in R. Similar to the regression model in Chapter 2

we will calibrate the model for Graz-Mitte using the seasons 2011/2012-2013/2014 and test

the quality of the tree by applying them to the seasons 2014/2015 and 2015/2016.

First we consider a binary tree using the response variable ueberschreitung which is 1 if the

daily average PM10 concentration exceeds 50 µg/m3 and 0 if not. Our request to the tree

model is the usability as a prediction model. Therefore we will not use any variables which

are not available at midday for predicting the exceedance of the particulate matter concen-

tration for the next day. Excluded of this limitation are meteorologic variables which can be

forecasted in a proper way (e.g. precipitation, wind). In Figure 3.2 we see the first tree with

the binary response variable ueberschreitung fitted to the whole data set of the Site Graz

Mitte without any limitations. The resulting tree with 12 spilts seems to be quite complex

and confusing. But PM10 concentration at midday one day before (pm mittag lag1) is a

very important variable for splitting the data set. In addition the average temperature at mid-

day one day before (lute mittag lag1) the binary variables wind velocity (wind), inversion
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weather condition (invers) and precipitation (nied01) are used for spanning the tree. The

error in the root node is around one fifth. The tree with 12 splits reduces the error by around

40% to a classification error of 12%. The reduction of the relative error seems to be not cost

efficient in the sense of pruning and the tree is too large and complex. Pruning the tree with

an α = 0.02 gives us a very clear and easy tree structure (see: Figure 3.3) with 4 splits.

Figure 3.2: Unrestricted Binary Tree for Graz Mitte

Figure 3.3: Pruned Binary Tree for Graz Mitte with α = 0.02
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Similar to the unconstrained tree the first split of the data is using the variable

pm mittag lag1 at a threshold of 44 µg/m3. Air temperature and wind velocity (> 0.5

means low wind) are the remaining variables. Lower temperature and lower wind velocity

leads to a classification of an exceedance. This result is in line with the general observations

that lower ventilation in the basin area of Graz yields to exceedance of the critical level of

50 µg/m3.

Using the trees for forecasting the winter seasons 2014/2015 and 2015/2016 we receive the

results shown in tables 3.2 and 3.3

Unconstrained Tree Pruned Tree Total

Forecast Forecast Forecast Forecast
Total

0-50 µg/m3 50-100 µg/m3 0-50 µg/m3 50-100 µg/m3

Obs. 0-50 µg/m3 133 5 135 3 138

Obs. 50-100 µg/m3 12 1 11 2 13

Total 145 6 146 5 151

Table 3.2: Results of forecasting winter season 2014/2015 with tree models

Unconstrained Tree Pruned Tree

TotalForecast Forecast Forecast Forecast

0-50 µg/m3 50-100 µg/m3 0-50 µg/m3 50-100 µg/m3

Obs. 0-50 µg/m3 119 10 124 5 129

Obs. 50-100 µg/m3 11 12 16 7 23

Total 130 22 140 12 152

Table 3.3: Results of forecasting winter season 2015/2016 with tree models

The forecasting results of both trees for both periods are quite stable and a misclassifica-

tion rate of 9 respectively 14% for such a simple and transparent model is quite good. But

especially the forecast of observations with a particulate matter concentration higher than 50

µg/m3 should be improved. Before we introduce a loss matrix in the tree construction, we

consider for the sake of completeness a classification tree using unbiased binary recursive

partitioning.
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Figure 3.4: Classification Tree for Graz Mitte using unbiased binary recursive partitioning

The conditional inference tree in Figure 3.4, which was constructed using the package

party in R, differs slightly from the tree in Figure 3.2. The variable invers seems to be more

important. Furthermore the output in Figure 3.4 shows the corresponding p value of the hy-

pothesis tests for each node.

2014/2015 2015/2016

Forecast Forecast Forecast Forecast

0-50 µg/m3 50-100 µg/m3 0-50 µg/m3 50-100 µg/m3

Obs. 0-50 µg/m3 134 4 121 8

Obs. 50-100 µg/m3 11 2 12 11

Total 145 6 133 19

Table 3.4: Results of forecasting for winter seasons 2014/2015 and 2015/2016 with unbiased

recursive partitioning

By comparing the forecasting results for the seasons 2014/2015 and 2015/2016 both

trees deliver similar results (Table 3.2-3.4). In the following analyses we will use the rpart-

package only. The results of all trees are quite stable and deliver respectable results for

the season 2014/2015 and 2015/2016, but there should be still a possible improvement by

adding a loss matrix. Especially the forecast of non-exceedance in the case of a breach of the

critical threshold may generate high costs. Therefore we introduce a loss matrix to the tree,

where wrong predictions of an exceedance costs 4 times more than a wrong prediction of a

non-exceedance of 50 µg/m3. Using the generated tree for forecasting the winter seasons

2014/2015 and 2015/2016 we receive a higher total forecasting error of around 20%.(Table
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3.5). But the wrong forecasting of exceedance of 50 µg/m3 reduces to 9 respectively 3

observations for the winter seasons which is equivalent to 2 respectively 6%. Of course it’s

a trade-off of total error and a conservative approach of higher costs for wrong exceedance

classification. Nevertheless the resulting tree shown in Figure 3.5, might be an additional

tool for forecasting critical PM10 concentration for the site of Graz-Mitte. The tree seems

to be not too complex and in addition there is only one binary meteorological forecasting

variable needed. Only the prediction of an inverse temperature will be observed the next

day. All other values for lute mittag lag1 and pm mittag lag1 are already available for the

forecast.

2014/2015 2015/2016

Forecast Forecast Forecast Forecast

0-50 µg/m3 50-100 µg/m3 0-50 µg/m3 50-100 µg/m3

Obs. 0-50 µg/m3 119 19 104 25

Obs. 50-100 µg/m3 9 4 3 20

Total 128 23 107 45

Table 3.5: Results of forecasting for winter seasons 2014/2015 and 2015/2016 with loss

matrix

Figure 3.5: Classification Tree for Graz Mitte with loss matrix

3.1.10 Classification Tree models for Graz-Süd

For Graz-Süd we apply the same approach as for Graz-Mitte. First we consider a classifi-

cation tree with ueberschreitung as response variable. Then we are going to prune the tree
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and define the complexity parameter with the help of Figure 3.6. This figure shows us the

improvement of the cross-validation error by growing the tree and the according complex-

ity parameter. The optimal unconstrained pruned tree has 7 splits. Therefore the optimal

complexity parameter for pruning the tree is α = 0.013699. The according numbers can be

found in the following output.

CP nsplit rel error xerror xstd

1 0.300000 0 1.00000 1.00000 0.027670

2 0.068493 1 0.70000 0.73151 0.026053

3 0.023288 2 0.63151 0.66849 0.025411

4 0.020548 4 0.58493 0.61233 0.024744

5 0.017808 5 0.56438 0.59726 0.024548

6 0.013699 7 0.52877 0.58219 0.024346

7 0.010959 9 0.50137 0.57123 0.024194

8 0.010000 10 0.49041 0.56301 0.024077

Figure 3.6: Complexity Parameter Plot for Graz-Süd
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In comparison to Graz-Mitte the initial misclassification rate in Graz-Süd is much higher.

More than 44% of the observations exceed the critical concentration of 50 µg/m3. Therefore

the fitting of a tree halves the misclassification error for the seasons 2003/2004-2013/2014.

The variables for growing the tree (see Figure 3.7) are similar to the variables used for the

tree model for Graz-Mitte. The most important variable is the PM10 24 hours average con-

centration one day before pm mittag lag1. In addition the binary variable velocity of the

wind, the metric variable air temperature lute and the binary variable of a temperature in-

version invers for the day of the prediction are included in the tree model. That means that

the weather input variables are based on meteorological forecasts. A one day ahead meteo-

rological forecast is in most cases very exact.

Figure 3.7: Pruned tree for Graz-Süd

Similar to Graz-Mitte we try to evaluate the quality of the model by backtesting it with

data for the winter seasons 2014/2015 and 2015/2016. The results are shown in Table

3.6. The results are not satisfying because about 37% of the exceedances (> 50µg/m3)

are wrongly predicted for winter season 2014/2015 and about 23% for the winter season

2015/2016. In general the misclassification rate for both seasons is around 20%.
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2014/2015 2015/2016

Forecast Forecast Forecast Forecast

0-50 µg/m3 50-100 µg/m3 0-50 µg/m3 50-100 µg/m3

Obs. 0-50 µg/m3 83 16 76 20

Obs. 50-100 µg/m3 19 33 13 43

Total 102 39 89 63

Table 3.6: Results of forecasting for winter seasons 2014/2015 and 2015/2016 with the

pruned classification tree

The introduction of a loss matrix where a wrong prediction or misclassification of an

exceedance of the PM10 concentration costs 2 times more than a misclassification of the a

non-exceedance of 50 µg/m3. The resulting tree is shown in Figure 3.8.

Figure 3.8: Classification Tree for Graz-Süd with loss matrix

Noticeable for this tree is, that the loss matrix does not change the importance of the

prediction variables. The used splitting variables are very similar to the selected prediction

variables in Figure 3.7.

The backtesting results for the seasons 2014/2015 and 2015/2016 show a slightly improve-

ment against the results in Table 3.6.
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2014/2015 2015/2016

Forecast Forecast Forecast Forecast

0-50 µg/m3 50-100 µg/m3 0-50 µg/m3 50-100 µg/m3

Obs. 0-50 µg/m3 77 22 68 28

Obs. 50-100 µg/m3 14 38 8 48

Total 91 60 76 76

Table 3.7: Results of forecasting winter seasons 2014/2015 and 2015/2016 with loss matrix

Increasing the costs for a wrong classification of the exceedance of the critical threshold

would lead to an increase of the overall misclassification error, which is not desirable. Setting

the cost ratio to 3 to 1 or 4 to 1, would yield an increase of the misclassification error of 40%.

The wrong prediction of exceedances would sharply decrease, but the prediction error of

non-exceedances would double. Therefore a trade-off of overall error and prediction error

of exceedances is needed. This tree could help to get a fast indication if the next days PM10

concentration exceeds 50 µg/m3.

In the following we set up a regression tree model for Graz-Süd and compare the results with

the binary tree version.

3.1.11 Regression Tree for Graz-Süd

In previous sections we have seen tree models which could be used for predicting exceedance

or non-exceedance of the PM10 concentration, but it was not possible to get a value of con-

centration. Therefore we construct a regression tree for the site Graz-Süd. We will replace

the response variable ueberschreitung by the metric variable PM10. The total sum of square

error without any split is 1583625. The maximum regression tree would have 12 splits and

a very complex structure. In addition the number of observations in some leaves is rather

small, therefore pruning of the tree will be applied. In Figure 3.9 one can see that a com-

plexity parameter α = 0.29 delivers the optimal pruned tree with 5 leaves. The root square

error of the tree is reduced by around 37.5%.
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Figure 3.9: Complexity Parameter Plot for Regression Tree Graz-Süd

Similar to all other binary trees is that the most important variable in the regression

tree (Figure 3.10) is PM mittag lag1. The first split at PM mittag lag1 splits the data in

37.5% where PM mittag lag1 larger than 55 µg/m3 and 62.5% where PM mittag lag1

is smaller. Based on the correlation between lower wind velocity and the exceedance of

the threshold the second important variable is the wind velocity of wind. Observations with

lower PM mittag lag1 and higher wind speed (wind < 0.5) yield to a lower average response

of 33 µg/m3. One forth of the data is in this leave. 629 cases have lower PM mittag lag1

concentration than 55 µg/m3 and a wind speed lower than 0.6m/s and an average response

of 49 µg/m3. For all cases with a PM mittag lag1 larger than 55 µg/m3 the next split

performed is the wind speed and for those where the wind velocity is below 0.6m/s (binary

variable wind > 0.5) are additionally split using PM mittag lag1 concentration. The tree

structure is very simple and only two prediction variables are used.

Applying the regression trees to the seasons 2014/2015 and 2015/2016 for backtesting the

model, shows a high misclassification error (see table 3.8). We used the regression tree for

predicting the metric variable PM10 and transformed it to a binary variable.
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Figure 3.10: Complexity Parameter Plot for Regression Tree Graz-Süd
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2014/2015 2015/2016

Forecast Forecast Forecast Forecast

0-50 µg/m3 50-100 µg/m3 0-50 µg/m3 50-100 µg/m3

Obs. 0-50 µg/m3 93 6 86 10

Obs. 50-100 µg/m3 34 18 26 30

Total 127 24 112 40

Table 3.8: Results of forecasting for winter seasons 2014/2015 and 2015/2016 of the regres-

sion tree

In general the misclassification error is similar to the error of the binary trees for Graz-

Süd. For both seasons 2014/2015 and 2015/2016 we get an error of around one forth which

is only negligible higher than the error in Table 3.6, but the amount of false predicitions of

exceedances of the critical threshold is much higher and therefore this model is not suitable

for forecasting of the PM10 concentration.

Comparing the tree regression tree model with the linear regression model developed by

Stadlober et al. [23] the wrong classification of exceedances using the tree model is 3 times

higher for the seasons 2014/2015 and 2015/2016. The misclassification error of the binary

tree models in both seasons are similar to the current regression model used for prediction.

In spite of the simplicity of the model the binary tree model can not replace the current

model, because it does not return a PM10 concentration. It could only be a supplementary

tool which helps to give a quick indication of exceeding the threshold or not.

In the next section we will focus on models which use many sets of tree models to produce

their output and improve the results.



Chapter 4

Prediction Model of PM 10 using

tree-based models

In this chapter we consider methods generating multiple versions of results and using these

to get an aggregated output. In contrast to the models described in the previous chapter the

following methods take the results of several classification or regression trees and aggregate

them. The major transaction is from methods producing a single set of results to methods

using many sets of results for the final output.

The benefit of the approach of aggregating is that it can avoid over-fitting of data-sets. The

averaging procedure tends to exclude results based on idiosyncratic features of a given data

set. This can lead to a stabilization and increase of the accuracy of the model as well as a

reduction of the variance. This approach offers a solution for the bias variance trade off of

the CART algorithm. Such procedures reduce the instability of CART, while the flexibility

of tree models remains. Based on the outcome of tree models described in Chapter 3 we

use the ”bagging” algorithm going back to Breiman [2] and random forest introduced by

Breiman in 2001 [4] for predicting particulate matter concentration in Graz.

The shortcoming of this methods is that the information results of single trees get lost and

the descriptive representation of the tree does not exist anymore.

4.1 Bagging

Bagging which stands for ”Bootstrap Aggregating” first used by Breiman [2] for averaging

results of different tree models. It’s a combination of taking random bootstrapping samples

of a given data set, fitting trees to each sample and aggregate them. The algorithm of bagging

for the classification case, of a data set with N observations, can be described as follow (see

Berk [1]).

1. Draw a random sample of size N with replacement from the data set. (bootstrap sam-

ple)

2. Build a tree without pruning and assign a class to each terminal node.

73
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3. Store the class label of each single case and the prediction values for each observation.

4. Run step 1-3 for a large number of times e.g. 1000.

5. Count the different classifications of each observation over all generated trees.

6. Assign the final category for each observation by majority with one vote per tree over

all generated trees.

7. Construct a confusion table using the final classification.

The bagging algorithm can also be applied for the regression case, where in step 6 the result

for each case is achieved by averaging the results over all trees. Beside all advantages of

the bagging algorithm the biggest shortcoming is that the single tree structure does not exist

anymore. Therefore the tree diagram which gives a direct way to consider the predictors is

related to the output.

4.1.1 Out-of-bag observations

In the basis algortithm of bagging we draw a bootstrap sample with replacement of size N

and build a tree with these observations. This step implies that around one third of the data

samples are not used for building the tree (compare Breiman [4]). The data which are left

out are called ”out-of-bag” (OOB) samples and will be used for testing the constructed tree.

The OOB samples imply a model validation and one gets an internal estimation of the model

error.

There is no additional need for cross validation or an additional test data set. The OOB sam-

ples are dropped down the tree instead of the observations used for constructing the tree and

the observed response value is compared with the estimated value.

The OOB testing delivers an unbiased estimation of the prediction error. Breiman [4] men-

tions that the error estimation is as good as it would be produced with a separate test set. If

the number of trees goes to infinity the observed prediction error received by the OOB test

converts to the true prediction error (compare Breiman [4]).

4.1.2 PM10 prediction model for Graz-Mitte using bagging

We apply the bagging algorithm to the data set of Graz-Mitte by using the R-package ipred

and the function bagging. As an input we use the whole data set with 23 prediction variables

consisting of meteorological, PM10 and binary variables linked to the calendarian date. We

use 500 bootstrap replications and receive an out-of-bag misclassification error and a gen-

eral misclassification error around 16%. Using the bagging model for forecasting the winter

seasons 2014/2015 and 2015/2016 we receive sightly better results than using tree models

only (compare Table 3.3). In Table 4.1 one see the forcasting results of the calibrated model

for Graz-Mitte using the bagging algorithm. Similiar to the tree model it’s also possible to
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2014/2015 2015/2016

Forecast Forecast Forecast Forecast

0-50 µg/m3 50-100 µg/m3 0-50 µg/m3 50-100 µg/m3

Obs. 0-50 µg/m3 135 3 124 5

Obs. 50-100 µg/m3 10 3 14 9

Total 145 6 138 14

Table 4.1: Results of forecasting for winter seasons 2014/2015 and 2015/2016 using the

bagging algorithm

add a loss matrix to the bagging procedure. The additional input of the loss matrix to the

model (compare Section 3.1.9) yields no improvement of the forecasting results for the sea-

sons 2014/2015 and 2015/2016. One can see that averaging outputs of trees helps enhancing

the results.

4.1.3 PM10 prediction model for Graz-Süd using bagging

We apply the similar procedure used for Graz-Mitte also for Graz-Süd. The out-of-bag mis-

classification and real misclassification error is around 19.5% of the bagging model, which

is sightly better than for the tree model in Section 3.1.10. Using the bagging model for

forecasting the winter season 2014/2015 one receives a sightly better result of the overall

misclassification rate of 21%, but the error of wrong predictions of PM10 concentrations

where a breach of the limit is observed increases from 19 to 23. More than 44% of the ob-

served concentrations higher than 50µg/m3 is wrongly forecasted (see Table 4.2). Therefore

we will introduce a loss matrix to the bagging algorithm and try to improve the results. For

the winter season 2015/2016 the results of the bagging model are sightly better than results

of the tree model (compare Section 3.1.10). By adding a loss matrix where a wrong forecast

2014/2015 2015/2016

Forecast Forecast Forecast Forecast

0-50 µg/m3 50-100 µg/m3 0-50 µg/m3 50-100 µg/m3

Obs. 0-50 µg/m3 90 9 80 16

Obs. 50-100 µg/m3 23 29 12 44

Total 113 38 92 60

Table 4.2: Results of forecasting for winter seasons 2014/2015 and 2015/2016 using the

bagging algorithm

of a limit > 50µg/m3 costs double than a wrong forecast of no breach yields to no improve-

ment of the model.

In general the sightly improvement of the forecasting error by using the bagging model does

not satisfy the loss of the tree structure.
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4.2 Random Forest

Now we extend the bagging algorithm by combining it with a randomization of the input

variables that are used when considering candidate variables to split a specific node. Instead

of looking for the best split among all prediction variables, in random forests at each node

only a subset K of the predictors is used. Out of this subset the best split is estimated.

In contrast to the bagging algorithm random forests are extended by the randomness of the

variable selection for each split. Similar to bagging the predictive power of the random forest

is measured using OOB samples. A formal representation of random forest can be found in

Breiman [4]. The basic random forest algorithm for the classification case is given by the

following steps (see Berk [1]).

1. Draw a random sample of size N with replacement for the data (bootstrap sample).

2. Take a random subset of size K of the predictors.

3. Construct the first split of the tree, using the chosen predictors.

4. Repeat step 2 for each subsequent split in the tree. Do not prune.

5. Drop the OOB samples down the tree and store the assigned class of the observations.

6. Run steps 1-5 for a large number of times, e.g. 1000.

7. Use only the assigned class of the observation when that observation was an OOB

sample to calculate by majority vote its classification.

Bagging and Random forest do not overfit due the law of large numbers (proven in Breiman[4]),

reduce the variance and produce more stable results. The strength of random forest is deal-

ing with a large number of predictors and even the possibility to get valid models if the

number of predictors is larger than the number of observations. In contrast to single trees

the randomness allows more different predictors to contribute to the splits of nodes. The

large number of runs gives the possibility for each predictor at least several times to define a

split. Predictors that otherwise would not have been considered can play a certain role in the

model. Therefore the fitting process uses much more information of the data than a CART

model.

The absence of the interpretable tree structure and the black box algorithm are the big disad-

vantages of bagging and random forests.

4.2.1 Margins

Margins are an important concept for the understanding of random forests. The margin is the

difference between the proportion of times a case is correctly classified and the proportion

of times it is incorrectly classified. Therefore large margins of OOB observations for all data

sets are desirable, because this indicates a stable result
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4.2.2 Variable Importance

To measure the importance of a predictor variable Breiman [4] suggests to sum the weighted

impurity decreases. The following measure is called ”mean decrease Gini” if the Gini func-

tion is used as impurity function. (compare Louppe [8])

Impxm
=

1

NT

∑

T

∑

t∈T :v(st)=xm

p(t)∆I(st, t)

The importance of the prediction variable xm for predicting y is the average over all NT

trees in the forest of the weighted impurity decreases p(t)∆I(st, t) for all nodes t where xm

is used. p(t) is the proportion Nt/N of samples reaching t and v(st) is the variable used in

split st.

The above approach of measuring the average decrease of the impurity each time a given

variable is used to define a split is still valid. But this importance measure is based on infor-

mation used for building the tree. This measure ignores the forecasting skills of the random

forest, because it’s not calculated for a test data-set.

Therefore Breiman [4] proposed another measure which is based on the reduction in predic-

tive accuracy when a predictor is shuffled.

Dropping down the out-of-bag data in every constructed tree in the forest to get the predic-

tion error of the model E. Then the values of the desired predictor is randomly shuffled and

dropped down the tree again. This makes the predictor on the average unrelated to the re-

sponse and all other predictors. Run this for each predictor xm, (m = 1, . . . , p) and compute

Impxm
=

1

NT

NT
∑

nt=1

(Ent

m − E
nt)m = 1, . . . , p

where NT is the number of trees, Ent
m is the forecasting error with predictor m is shuffled in

the nt-th tree and E
nt is the general forecasting error in tree nt without shuffling.

In the following analysis of the PM10 data set we will identify the most important variables

by importance plots which use the measures above.

4.2.3 Partial Dependence

The relationship between the predictor variable and the response variable can be represented

by a partial dependence plot which is discussed for example in [1] Berk 2008 and [9] Hastie

et al. 2001. The plot is constructed as follows (see Berk [1]):

1. Grow a random forest.

2. Consider the prediction variable of interest e.g.xm, which has υ distinct values (υ ≤
N) in the training data.

3. Construct for each of the values υ of xm a new data set where xm only takes on that

value while all other prediction variables remains untouched.
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4. For each of the υ data sets predict the response using a random forest. Average over

each of the υ sets of response predictors to get υ single values.

5. Plot the average prediction against the different values of xm

6. Run steps 2-5 for each desired predictor.

The resulting plot shows the relationship between the different values of a given predictor

and the response averaged within each single value. All other predictors are set constant

during the procedure. Thus there is no information about the interaction effects unless the

corresponding interaction variable is constructed in advance and used as a predictor.

4.2.4 Random Forest Models for Graz-Mitte

In this section we fit a random forest model for the site Graz-Mitte. First we fit a classifi-

cation model of the binary variable überschreitung with 23 predictors. In the following we

construct a model for the metric variable PM10. The first fitted random forest consists of 500

trees and selects 4 variables randomly (by default) as candidate for each split. By consider-

ing the number of variables to choose randomly for each split in each tree the random forest

against the corresponding OOB-error in Figure 4.1 emphasizes the default assumptions of 4

splits.

Figure 4.1: Number of randomly choosen variables in each split and the corresponding OOB-

error
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The number of 500 trees in the random forest seems to be reasonable, because the error

rates in dependance of the number of trees in Figure 4.2 show a stabilization of the error rate

after 500 trees. There is a high fluctuation of the model error in forests with lower number

of trees. We see that using 1000 trees in the models seems to be too much and 300 too less.

Figure 4.2: Number of tree in the forest and the corresponding OOB-error

To reduce in the further steps the model complexity the variable importance is essential.

Figure 4.1 shows the 2 different variable importance measures described in Section 4.2.2.

We see that the importance measures deliver slightly different variables. The importance of

the variables mainly coincides with the classification tree model in Chapter 3 and the current

regression model used as prediction model described in Stadlober et al. [23]. The importance

of the variable pm mittag lag1 in the forest model (see Figure 4.3) is in line with the strong

auto-correlation in the data shown in Figure 2.3. We see that many calendarian variables are

negligible which is not total in line with our expectations.

The OOB-error of 14.31% of the full forest model is slighty lower than the OOB-error

of 15.81% of the forest model using only the 6 most important variables. But applying the

model for forecasting the exceedance of the critical limit of 50 µg/m3 to the winter seasons

2014/2015 and 2015/2016 the full model delivers much better results. The misclassfication

error of the full model for the winter season 2014/2015 is only 7% and for 2015/2016 is

around 10.5% (see Table 4.3). The shortcoming of this model is similar to the tree and bag-

ging models in the former chapters. It is still underestimation of the PM10 observations
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Figure 4.3: Importance functions of the random forest model for Graz-Mitte

above 50 µg/m3. An introduction of a loss matrix to the forest model does not decrease the

misclassification error for both seasons.

By applying the same steps of a forest model described above for the binary variable

2014/2015 2015/2016

Forecast Forecast Forecast Forecast

0-50 µg/m3 50-100 µg/m3 0-50 µg/m3 50-100 µg/m3

Obs. 0-50 µg/m3 137 1 126 3

Obs. 50-100 µg/m3 10 3 13 10

Total 147 4 139 13

Table 4.3: Results of forecasting for winter seasons 2014/2015 and 2015/2016 with a random

forest model

überschreitung to the metric variable PM10 yields to a similar forest structure. The num-

ber of trees in the forest is set to 500 and the randomly chosen variables for each split is 4.

The random forest model with regression trees describes only 51.15% of the variance in the

data and the RMSE of 13.3 which yields to weaker results in forecasting than the regression

model in Stadlober et al [23].

Now we consider the relationship between the predictor variables between 2 of the most im-

portant predictors pm mittag lag1and lute mittag lag1 using the partial dependence plot.

Figure 4.4 shows a linear relationship between the PM10 concentration and the concentra-
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tion of PM10 at midday the day before and an almost negative linear relationship of the

temperature and the PM10 concentration. These two plots emphasize the high autocorrela-

tion in the PM10 data and that the probability of exceeding the critical limit rises with lower

temperatures.

Figure 4.4: Partial dependence plots of 2 top contributing predictors for Graz-Mitte

4.2.5 Random Forest Models for Graz-Süd

For the site Graz-Süd we apply the same analysis steps as for Graz-Mitte. The number of

trees in the forest is set to 500 and the variables chosen for each split are estimated by 4. The

OOB-error of the calibrated forest model is 18.7%, which is lower than the misclassification

error of the tree models for Graz-Süd in Chapter 3. By considering the plot (Figure 4.5) of

the different importance functions we see that the result of the most important variables is

similar to the results of Graz-Mitte.
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Figure 4.5: Importance functions of the random forest model for Graz-Süd

The forecasting results for the season 2014/2015 and 2015/2016 of the forest model are

in the first season worse than the results of the tree model and in the second season slightly

better than the pruned tree (see Table 4.4).

2014/2015 2015/2016

Forecast Forecast Forecast Forecast

0-50 µg/m3 50-100 µg/m3 0-50 µg/m3 50-100 µg/m3

Obs. 0-50 µg/m3 90 9 76 20

Obs. 50-100 µg/m3 24 28 9 47

Total 114 37 85 67

Table 4.4: Results of forecasting for winter seasons 2014/2015 and 2015/2016 with a random

forest model

The high rate of wrong misclassifications of observations with PM10 concentrations higher

than 50 µg/m3 is a result of the margins within the calibrated model.
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Figure 4.6: Margins of the random forest model for Graz-Süd

In Figure 4.6 we see that nearly a third of the observations has margin below 0.5, and 200

obersvations a margin below 0 which can lead to instable results for forecasting the PM10

concentration.

One can see that the bagging and forest models yield sightly better results than the tree mod-

els and stabilizes the results. Similar to the tree model in the regression case the predictive

power is much lower than the current linear regression model for PM10 described in Stad-

lober et al. [23].
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Chapter 5

Prediction Model of PM 10 using Neural

Networks

Within this chapter we apply a widely used machine learning method for the prediction

of daily PM10 average concentration. Similar to Perez [19] we use neural networks for

modeling the particulate matter concentration of Graz. This black-box method uses concepts

borrowed from an understanding of human brains in order to model arbitrary functions. It

uses a network of artificial neurons or nodes to solve learning problems. During the last

decades, neural networks become more popular because of the increase of computational

power. The big advantage of neural networks is that a combined model for Graz-Mitte and

Graz Süd can be constructed.

5.1 Neural networks

Before applying neural networks to the PM10 data of the sites Graz-Mitte and Graz-Süd we

give a briefly introduction to neural networks, where we mainly follow Hastie et al. [9] and

Lantz [15]. A neural network is a non-linear statistical mdel and can be seen as a two-stage

regression model. The neural network is typically represented as a network diagram see

Figure 5.1.

85
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Figure 5.1: Sigmoid σ(υ) = 1/(1 + e−υ) activation function

The advantage of neural networks in comparison to regression models is that there are

several possible output units. A regression has only one possible output unit at the right hand

side of the figure Y1. Considering a K-class classification, there are K units at the right hand

side, with k target measurements Yk, k = 1, . . . , K where each is coded as a binary variable

for the k-th class.

The layer which is marked with Z is created from linear combinations of the input and is

called hidden layer. The target Yk is modeled as a function of linear combinations of Zm

Zm = σ(α0m + αT
mX, m = 1, . . . ,M

Tk = β0k + βT
k Z, k = 1, . . . , K

Y = fk(X) = gk(T ), k = 1, . . . , K

where Z = (Z1, Z2, . . . , ZM) and T = (T1, T2, . . . , TK). The function σ is called activation

function and is usually chosen to be sigmoid σ(υ) = 1/(1 + e−υ). (see Figure 5.2).
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Figure 5.2: Sigmoid σ(υ) = 1/(1 + e−υ) activation function

In the following we will observe an additional bias added to the neural network which

can be seen as an additional input feature. This bias is captured by the intercept (α0m and

β0k) in the model.

The output function gk(T ) allows a final transformation of the vector of outputs T. For re-

gression models typically gk(T ) is the identity function and for K-class classification often

the softmax function

gk(T ) =
eTk

∑K

l=1 e
Tl

.

used. The hidden layer Zm is not directly observed. In the further analysis we see that neural

networks can have more than one hidden layer. The hidden layer Zm is a basis expansion of

the original input using the according weights αm and the activation function σ. The differ-

ence of the basis expansion techniques using for a regression model is that the parameters

in the neural networks are learned from the data. If the activation function is the identity

function the neural network collapses to a linear model in the inputs. We see in Figure 5.2

that the non-linearity of transformation depends on the norm of the weights α. If ||α|| is very

small the unit will be operating in the linear part of the activation function.

5.1.1 Network topology

An essential attribute of neural networks is their topology and structure of interconnected

neurons. The topology of the network defines the complexity of the task that can be learned

by the network. Larger and more complex networks are capable to identify more complex

facts.

The network shown in Figure 5.1 is defined as a mulit-layer network with one hidden layer.

The number of hidden layers can vary for the different degree of complexity. We see that
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the network is fully connected which means that every node is connected with every node in

the next layer. Another essential input to the network is the number of nodes in each layer.

There is no reliable rule to determine the number of neurons in the hidden layer. The number

depends on the number of input nodes the amount of data sets and the complexity of the

learning task. Similar to tree models a trade-off of complexity and stability for prediction

must be met. Too complex networks need a huge computational power and may be poor in

the predictive power of new data.

The training of networks and adjusting the connection weights is very intensive, but can be

solved by the algorithm which is known as backpropagation (compare Hastie et al. [9]). This

algorithm makes neural networks common in the field of data mining and machine learning.

In the following we use the R-package neuralnet to create neural networks for Graz-Mitte

and Graz-Süd.

5.2 Neural network for Graz-Mitte

Similar to the tree based models we will train the neural networks using the seasons 2010/2011-

2013/2014 for training the network and validating its prediction power by applying it to sea-

son 2014/2015 and 2015/2016. As mentioned above there is no concrete rule for determining

the number of hidden layers as well as nodes in the hidden layer. Therefore we apply several

neural networks with different amount of nodes in the hidden layer and we vary the amount

of hidden layers between 1 and 2. After calibrating the neural network we compare the pre-

dictive power for the seasons 2014/2015 and 2015/2016 of each single network. We compare

the misclassification error of the exceedance of the critical limit of 50 µg/m3 and the quality

of the forecast using quality function II from Section 2.1.4. As input to the neural network

we use data which are available at midday before the desired day of prediction and binary

meteorological variables of the day of the prediction. The meteorological variables for day

t+1 are frost, invers and nied01. The indention for using those variables is, that a yes or no

prediction of those input variables should be possible for one day ahead. There are 19 differ-

ent input variables to the neural network for Graz-Mitte and the target variable is the average

PM10 concentration. The number of the nodes in the first hidden layer is limited with 12

nodes, and the nodes in the second hidden layer is limited with the number of nodes of the

first hidden layer. Using this procedure we receive 81 different neural networks starting with

a simple network with only one node in the first hidden layer up the the most complex model

with 12 nodes in the first hidden layer and 11 nodes in the second one. In Table 5.1 we see the

forecasting results for the winter season 2014/2015 for 78 different networks. Comparing the

results with the forecast for winter season 2015/2016 (see Table 5.2) we see that an increase

of nodes in the hidden layers is no guarantee for better forecasting results and the stability of

the neural network. On can see that for both seasons a neural network with 2 hidden layers

and 2 nodes in the first layer and 1 node in the second layer delivers good forecasting results.

There are more complex networks which deliver better results of each single season but for

both this neural networks looks reasonable. The final network is shown in Figure 5.3. The
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results are similar to the results of the tree and random forest models.

For modeling the binary variable überschreitung we will apply the similar procedure to get

a reasonable model. We will reduce the number of possible nodes in the first hidden layer to

8 and in the second to the half of the amount in the first hidden layer. The results of fore-

cast of the neural networks are very poor for both seasons. Therefore those models will not

discussed anymore in the following.

Figure 5.3: Neural network for Graz-Mitte

5.3 Neural network for Graz-Süd

To the data set of Graz-Süd we apply the same algorithm as for Graz-Mitte. In contrast to

the results of Graz-Mitte it is not obvious, that a higher number of nodes in the hidden layer

results in worse forecasting results. The neural network with 7 nodes in the first hidden

layer and 1 node in the second hidden layer gives a valid forecasting result for both winter

seasons (compare Table 5.3 and Table 5.4). While the overall misclassification error is low,

the quality of more than 10% in the winter season 2015/2016 of the forecasting results is

very bad. But the quality of a huge part is excellent and good. For the model with 8 nodes in

the first hidden layer and 7 nodes in the second hidden layer the algorithm could not find an

optimal solution, therefore no results can be calculated.

By comparing the observed PM10 concentration with the forecasted values for the winter
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season 2014-2015 in Figure 5.4 we see that the models overestimate much more observations

than the regression model. For the winter season 2015/2016 the results looks very simliar.

(Figure 5.5).

Figure 5.4: Comparison of observed and predicted values for the winter season 2014/2015

Figure 5.5: Comparison of observed and predicted values for the winter season 2015/2016

5.4 Conclusion

While the neural network algorithm delivers remarkable results for both sites by modeling

the average PM 10 concentration directly give the tree models and forest models good indi-

cations for a possible exceendance of the critical limit. The tree and forest model are very
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simple and can be used in addition to the current model. The neural network uses much more

input variables and is very complex to deal with. As we can see the stability of the neural

networks is not always given. Therefore the network models can not replace the current

linear regression model used for the one-day ahead prediction.

Table 5.1: Forecasting Results of the Neural networks for the

Winter Season 2014/2015 in Graz-Mitte

#

# nodes in # of wrong

Hidden classifications Quality Function II

Layer 0-50 > 50

1 2 µg/m3 µg/m3 Total excellent good satisfying bad very bad

1 1 0 2 9 11 119 21 1 0 10

2 2 0 2 9 11 121 17 2 0 11

3 2 1 2 8 10 121 20 1 0 9

4 3 0 0 9 9 120 18 2 1 10

5 3 1 6 8 14 118 21 1 1 10

6 3 2 8 8 16 115 20 2 3 11

7 4 0 7 9 16 110 25 4 1 11

8 4 1 1 10 11 120 18 2 0 11

9 4 2 6 8 14 116 22 4 0 9

10 4 3 1 8 9 118 22 2 1 8

11 5 0 7 8 15 105 29 5 2 10

12 5 1 2 9 11 126 13 1 0 11

13 5 2 1 7 8 120 22 0 0 9

14 5 3 2 8 10 116 21 5 0 9

15 5 4 4 9 13 116 21 2 1 11

16 6 0 3 8 11 118 19 2 1 11

17 6 1 3 8 11 114 25 1 0 11

18 6 2 5 8 13 111 25 3 1 11

19 6 3 10 7 17 111 25 4 2 9

20 6 4 10 9 19 116 14 5 3 13

21 6 5 4 9 13 117 19 3 0 12

22 7 0 7 7 14 118 18 2 3 10

23 7 1 5 9 14 112 23 2 2 12

24 7 2 9 8 17 115 22 2 2 10

25 7 3 11 7 18 105 26 6 2 12

26 7 4 2 9 11 116 23 1 0 11

27 7 5 7 9 16 111 25 2 2 11

28 7 6 4 9 13 105 33 3 0 10

29 8 0 5 8 13 111 26 2 1 11

30 8 1 7 9 16 106 28 1 5 11



92 CHAPTER 5. PREDICTION MODEL OF PM 10 USING NEURAL NETWORKS

#

# nodes in # of wrong

Hidden classifications Quality Function II

Layer 0-50 > 50

1 2 µg/m3 µg/m3 Total excellent good satisfying bad very bad

31 8 2 8 8 16 101 30 6 4 10

32 8 3 11 9 20 95 33 3 1 19

33 8 4 8 8 16 100 34 4 3 10

34 8 5 7 8 15 107 28 4 2 10

35 8 6 10 8 18 108 23 4 6 10

36 8 7 9 6 15 109 29 3 2 8

37 9 0 12 9 21 98 32 7 3 11

38 9 1 7 8 15 113 21 6 0 11

39 9 2 9 9 18 108 26 3 3 11

40 9 3 9 7 16 107 27 5 1 11

41 9 4 7 9 16 111 23 1 3 13

42 9 5 9 8 17 98 39 2 1 11

43 9 6 7 8 15 109 24 5 3 10

44 9 7 13 8 21 102 23 11 1 14

45 9 8 15 7 22 110 18 9 4 10

46 10 0 11 8 19 101 30 5 3 12

47 10 1 11 8 19 98 34 5 3 11

48 10 2 7 7 14 116 21 1 1 12

49 10 3 5 8 13 109 30 0 2 10

50 10 4 14 7 21 97 30 7 2 15

51 10 5 19 8 27 98 25 9 3 16

52 10 6 17 8 25 91 35 6 6 13

53 10 7 7 8 15 105 27 7 1 11

54 10 8 9 7 16 102 31 3 3 12

55 10 9 6 8 14 100 32 8 0 11

56 11 0 10 9 19 96 32 5 7 11

57 11 1 12 9 21 111 20 4 1 15

58 11 2 8 8 16 104 30 4 1 12

59 11 3 3 9 12 115 24 1 1 10

60 11 4 11 10 21 106 23 5 3 14

61 11 5 10 6 16 110 25 5 2 9

62 11 6 15 8 23 89 34 6 7 15

63 11 7 16 9 25 99 22 12 5 13

64 11 8 8 8 16 108 26 4 4 9

65 11 9 10 6 16 106 26 9 0 10

66 11 10 11 7 18 97 31 9 0 14

67 12 0 10 9 19 95 31 10 5 10
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#

# nodes in # of wrong

Hidden classifications Quality Function II

Layer 0-50 > 50

1 2 µg/m3 µg/m3 Total excellent good satisfying bad very bad

68 12 1 10 8 18 97 33 6 4 11

69 12 2 5 7 12 117 19 3 1 11

70 12 3 10 9 19 107 24 4 2 14

71 12 4 7 7 14 110 25 3 5 8

72 12 5 6 7 13 110 26 5 3 7

73 12 6 10 7 17 103 27 4 3 14

74 12 7 12 8 20 97 30 4 3 17

75 12 8 13 7 20 102 27 6 3 13

76 12 9 13 8 21 95 32 6 3 15

77 12 10 9 8 17 102 30 4 4 11

78 12 11 11 7 18 96 33 3 3 16

Table 5.2: Forecasting Results of the Neural networks for the

Winter Season 2015/2016 in Graz-Mitte

#

# nodes in # of wrong

Hidden classifications Quality Function II

Layer 0-50 > 50

1 2 µg/m3 µg/m3 Total excellent good satisfying bad very bad

1 1 0 5 12 17 114 18 7 2 11

2 2 0 5 11 16 118 17 3 3 11

3 2 1 4 12 16 115 18 5 2 12

4 3 0 7 15 22 111 17 5 3 16

5 3 1 7 13 20 111 17 4 3 17

6 3 2 11 12 23 107 21 5 3 16

7 4 0 13 12 25 101 25 5 6 15

8 4 1 5 15 20 108 19 7 1 17

9 4 2 9 9 18 109 23 4 3 13

10 4 3 3 16 19 112 17 4 1 18

11 5 0 8 15 23 107 19 5 3 18

12 5 1 7 16 23 110 21 1 3 17

13 5 2 13 16 29 104 21 7 2 18

14 5 3 11 10 21 105 26 3 7 11

15 5 4 10 14 24 98 28 5 2 19

16 6 0 15 15 30 95 23 9 7 18

17 6 1 5 16 21 105 23 3 4 17
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#

# nodes in # of wrong

Hidden classifications Quality Function II

Layer 0-50 > 50

1 2 µg/m3 µg/m3 Total excellent good satisfying bad very bad

18 6 2 16 15 31 91 29 7 8 17

19 6 3 12 11 23 98 30 8 2 14

20 6 4 20 13 33 98 20 7 5 22

21 6 5 7 15 22 101 25 5 2 19

22 7 0 8 15 23 100 26 4 4 18

23 7 1 13 16 29 103 20 6 4 19

24 7 2 8 13 21 108 17 6 4 17

25 7 3 7 14 21 101 24 8 3 16

26 7 4 9 16 25 97 28 5 2 20

27 7 5 6 17 23 103 24 4 2 19

28 7 6 6 15 21 107 20 6 2 17

29 8 0 11 12 23 99 27 7 3 16

30 8 1 13 13 26 98 25 5 5 19

31 8 2 8 15 23 101 25 3 3 20

32 8 3 19 15 34 88 27 7 5 25

33 8 4 5 11 16 103 21 11 4 13

34 8 5 14 12 26 95 27 6 4 20

35 8 6 9 17 26 103 20 8 2 19

36 8 7 11 18 29 93 33 2 4 20

37 9 0 13 14 27 95 27 4 7 19

38 9 1 14 11 25 98 26 8 5 15

39 9 2 13 14 27 94 28 6 5 19

40 9 3 11 14 25 92 31 7 5 17

41 9 4 16 13 29 99 22 4 5 22

42 9 5 12 13 25 99 25 2 6 20

43 9 6 10 14 24 95 27 5 4 21

44 9 7 8 13 21 98 29 5 3 17

45 9 8 10 11 21 97 30 6 4 15

46 10 0 10 16 26 91 32 4 5 20

47 10 1 20 15 35 91 24 3 8 26

48 10 2 8 17 25 101 25 4 2 20

49 10 3 5 16 21 99 29 1 5 18

50 10 4 20 14 34 78 37 5 7 25

51 10 5 14 10 24 92 29 7 8 16

52 10 6 16 11 27 98 26 6 3 19

53 10 7 7 16 23 105 22 5 1 19

54 10 8 8 18 26 98 25 4 3 22
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#

# nodes in # of wrong

Hidden classifications Quality Function II

Layer 0-50 > 50

1 2 µg/m3 µg/m3 Total excellent good satisfying bad very bad

55 10 9 15 14 29 90 27 9 5 21

56 11 0 10 13 23 94 30 7 3 18

57 11 1 15 9 24 105 22 6 7 12

58 11 2 14 14 28 102 20 3 6 21

59 11 3 7 15 22 103 25 2 6 16

60 11 4 16 13 29 96 25 8 3 20

61 11 5 11 16 27 91 31 5 4 21

62 11 6 14 14 28 89 26 11 8 18

63 11 7 14 9 23 92 34 9 4 13

64 11 8 10 15 25 96 24 5 5 22

65 11 9 24 11 35 86 26 10 8 22

66 11 10 14 14 28 98 20 5 7 22

67 12 0 19 12 31 89 27 9 3 24

68 12 1 14 13 27 96 27 4 4 21

69 12 2 7 18 25 99 27 4 1 21

70 12 3 9 18 27 97 22 6 3 24

71 12 4 15 14 29 91 19 16 3 23

72 12 5 16 14 30 82 34 9 4 23

73 12 6 14 13 27 86 35 7 7 17

74 12 7 17 13 30 94 25 3 6 24

75 12 8 14 13 27 90 29 8 6 19

76 12 9 18 11 29 85 30 9 10 18

77 12 10 19 11 30 89 29 9 9 16

78 12 11 13 14 27 88 32 2 4 26

Table 5.3: Forecasting Results of the Neural networks for the

Winter Season 2014/2015 in Graz-Süd

#

# nodes in # of wrong

Hidden classifications Quality Function II

Layer 0-50 > 50

1 2 µg/m3 µg/m3 Total excellent good satisfying bad very bad

1 1 0 10 7 17 101 33 4 3 10

2 2 0 9 8 17 92 42 5 2 10

3 2 1 12 8 20 96 34 8 3 10

4 3 0 9 8 17 102 32 6 1 10
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#

# nodes in # of wrong

Hidden classifications Quality Function II

Layer 0-50 > 50

1 2 µg/m3 µg/m3 Total excellent good satisfying bad very bad

5 3 1 11 9 20 99 35 4 1 12

6 3 2 11 9 20 101 29 5 3 13

7 4 0 10 8 18 102 32 5 1 11

8 4 1 16 7 23 93 37 8 3 10

9 4 2 11 7 18 103 31 6 2 9

10 4 3 11 7 18 96 36 7 1 11

11 5 0 9 8 17 108 26 4 2 11

12 5 1 10 9 19 95 35 4 5 12

13 5 2 8 9 17 103 31 6 0 11

14 5 3 10 9 19 98 36 4 2 11

15 5 4 16 8 24 79 49 8 3 12

16 6 0 12 8 20 97 36 5 3 10

17 6 1 11 8 19 100 33 4 3 11

18 6 2 17 8 25 91 37 8 3 12

19 6 3 13 5 18 99 31 9 3 9

20 6 4 8 9 17 96 38 4 0 13

21 6 5 15 7 22 84 45 10 2 10

22 7 0 14 7 21 99 34 7 3 8

23 7 1 10 8 18 103 28 6 3 11

24 7 2 12 8 20 101 29 7 3 11

25 7 3 12 8 20 93 40 4 4 10

26 7 4 9 8 17 99 33 5 2 12

27 7 5 10 9 19 98 33 4 2 14

28 7 6 12 9 21 104 24 6 6 11

29 8 0 11 8 19 100 32 5 3 11

30 8 1 14 8 22 98 32 4 7 10

31 8 2 9 8 17 103 28 4 4 12

32 8 3 13 7 20 101 31 7 2 10

33 8 4 16 7 23 95 36 3 6 11

34 8 5 13 9 22 96 33 5 4 13

35 8 6 14 8 22 99 30 7 4 11

36 9 0 8 9 17 100 35 3 2 11

37 9 1 11 7 18 91 44 4 2 10

38 9 2 11 9 20 97 35 3 4 12

39 9 3 11 8 19 90 40 7 2 12

40 9 4 13 8 21 96 37 2 4 12

41 9 5 10 9 19 105 27 4 2 13
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#

# nodes in # of wrong

Hidden classifications Quality Function II

Layer 0-50 > 50

1 2 µg/m3 µg/m3 Total excellent good satisfying bad very bad

42 9 6 16 5 21 93 37 6 4 11

43 9 7 11 7 18 99 32 7 2 11

44 9 8 17 7 24 102 26 4 7 12

45 10 0 12 8 20 108 23 3 5 12

46 10 1 10 7 17 104 30 2 5 10

47 10 2 10 8 18 102 33 4 1 11

48 10 3 13 8 21 100 28 6 2 15

49 10 4 11 7 18 106 24 6 4 11

50 10 5 11 11 22 104 24 4 3 16

51 10 6 17 7 24 92 32 6 3 18

52 10 7 12 8 20 101 31 7 0 12

53 10 8 9 8 17 98 33 6 4 10

54 10 9 12 6 18 103 27 6 7 8

55 11 0 16 5 21 96 36 5 6 8

56 11 1 18 8 26 95 30 9 4 13

57 11 2 16 9 25 91 37 6 4 13

58 11 3 11 8 19 97 35 4 4 11

59 11 4 7 9 16 109 27 1 3 11

60 11 5 12 9 21 101 29 5 4 12

61 11 6 16 6 22 95 32 10 4 10

62 11 7 17 8 25 100 27 10 3 11

63 11 8 16 7 23 91 36 5 7 12

64 11 9 18 8 26 92 32 9 5 13

65 11 10 13 8 21 92 35 6 5 13

66 12 0 13 6 19 107 22 7 5 10

67 12 1 8 9 17 103 32 2 2 12

68 12 2 13 8 21 94 36 5 4 12

69 12 3 14 8 22 99 30 4 6 12

70 12 4 9 10 19 96 36 3 4 12

71 12 5 11 7 18 101 30 5 2 13

72 12 6 17 7 24 89 34 14 3 11

73 12 7 19 9 28 91 32 7 10 11

74 12 8 16 9 25 97 26 7 4 17

75 12 9 17 10 27 93 29 9 4 16

76 12 10 13 5 18 94 39 5 5 8

77 12 11 14 9 23 100 28 6 5 12
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Table 5.4: Forecasting Results of the Neural networks for the

Winter Season 2015/2016 in Graz-Süd

#

# nodes in # of wrong

Hidden classifications Quality Function II

Layer 0-50 > 50

1 2 µg/m3 µg/m3 Total excellent good satisfying bad very bad

1 1 0 18 7 25 91 36 11 6 8

2 2 0 17 8 25 87 40 9 6 10

3 2 1 24 8 32 87 31 14 10 10

4 3 0 19 7 26 93 34 8 9 8

5 3 1 19 7 26 91 35 8 8 10

6 3 2 23 6 29 89 33 10 12 8

7 4 0 18 7 25 92 36 8 7 9

8 4 1 20 7 27 89 36 13 6 8

9 4 2 22 7 29 89 31 13 10 9

10 4 3 23 6 29 83 37 14 11 7

11 5 0 19 6 25 92 34 7 9 10

12 5 1 14 9 23 94 33 6 8 11

13 5 2 20 6 26 91 34 13 6 8

14 5 3 19 8 27 87 34 11 10 10

15 5 4 24 7 31 83 35 17 8 9

16 6 0 19 7 26 89 35 7 9 12

17 6 1 22 7 29 92 28 15 7 10

18 6 2 19 5 24 90 37 11 4 10

19 6 3 25 6 31 85 33 15 9 10

20 6 4 16 9 25 92 35 9 5 11

21 6 5 24 6 30 80 37 18 9 8

22 7 0 22 7 29 87 34 12 10 9

23 7 1 14 8 22 91 35 6 4 16

24 7 2 24 7 31 89 34 12 9 8

25 7 3 27 9 36 83 32 16 8 13

26 7 4 23 10 33 83 33 12 10 14

27 7 5 20 11 31 92 23 10 12 15

28 7 6 28 5 33 86 30 14 13 9

29 8 0 18 9 27 92 31 8 7 14

30 8 1 21 7 28 98 21 14 7 12

31 8 2 19 10 29 88 31 9 6 18

32 8 3 22 6 28 88 31 13 5 15

33 8 4 15 8 23 96 31 8 5 12

34 8 5 22 5 27 92 27 12 10 11
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#

# nodes in # of wrong

Hidden classifications Quality Function II

Layer 0-50 > 50

1 2 µg/m3 µg/m3 Total excellent good satisfying bad very bad

35 8 6 28 6 34 83 34 15 11 9

36 9 0 17 7 24 100 25 6 9 12

37 9 1 25 9 34 82 37 8 10 15

38 9 2 16 9 25 99 28 6 6 13

39 9 3 27 7 34 79 37 11 11 14

40 9 4 20 10 30 87 30 16 7 12

41 9 5 27 10 37 82 35 8 9 18

42 9 6 16 6 22 96 28 6 9 13

43 9 7 20 8 28 86 36 6 10 14

44 9 8 19 6 25 89 36 9 6 12

45 10 0 21 6 27 92 33 8 9 10

46 10 1 19 8 27 88 34 10 7 13

47 10 2 19 11 30 93 27 9 6 17

48 10 3 29 9 38 81 29 15 7 20

49 10 4 26 7 33 85 31 12 10 14

50 10 5 22 8 30 77 44 13 4 14

51 10 6 23 4 27 91 26 9 7 19

52 10 7 20 6 26 92 35 7 9 9

53 10 8 24 11 35 84 31 9 14 14

54 10 9 18 7 25 93 33 9 5 12

55 11 0 26 8 34 90 26 9 14 13

56 11 1 24 6 30 87 32 13 8 12

57 11 2 21 8 29 89 32 10 6 15

58 11 3 15 10 25 93 33 5 7 14

59 11 4 19 11 30 94 27 8 7 16

60 11 5 21 12 33 83 36 12 4 17

61 11 6 18 8 26 86 38 9 5 14

62 11 7 26 6 32 92 27 10 6 17

63 11 8 24 8 32 83 30 13 11 15

64 11 9 23 7 30 87 30 13 7 15

65 11 10 23 7 30 81 31 13 12 15

66 12 0 20 10 30 89 26 11 12 14

67 12 1 17 9 26 93 30 9 5 15

68 12 2 17 9 26 86 37 10 4 15

69 12 3 24 7 31 86 32 12 12 10

70 12 4 20 8 28 85 37 10 8 12

71 12 5 23 11 34 79 34 10 12 17
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#

# nodes in # of wrong

Hidden classifications Quality Function II

Layer 0-50 > 50

1 2 µg/m3 µg/m3 Total excellent good satisfying bad very bad

72 12 6 21 4 25 88 34 9 13 8

73 12 7 34 6 40 80 27 13 19 13

74 12 8 18 7 25 88 37 6 6 15

75 12 9 19 8 27 87 39 5 7 14

76 12 10 24 8 32 83 31 13 8 17

77 12 11 20 9 29 90 31 7 8 16
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