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1 Abstract

This work deals with the measurement of dislocation densities in complex martensitic alloys. In these
materials, dislocation motion is responsible for plastic deformation and thus determines properties
such as yield strength or creep resistance. Up to now, there has been no physically justified standard
procedure to determine this property with good statistical significance and reasonable experimental
effort. X-Ray diffraction (XRD) potentially is such a method, combining low experimental cost with
sufficient sample volume. Nevertheless, the complexity of the microstructure interferes with a straight-
forward application of standard methods usually applied in other, less complex, materials.
In this work, conventional XRD-methods are adapted to a martensitic 9% Cr steel (P91). The basic
physical concept is simple: An (ideally) monochromatic and parallel X-ray beam interacts with the
crystal structure of the sample, the diffraction angle(s) Θ is a measure of the interatomic distance(s)
according to Bragg’s law. The broadening of the diffraction peak results from (i) properties of the
experimental equipment and (ii) the microstructure of the sample. (i) is referred to as instrumental
broadening and includes properties of the beam, the slits and the lenses, (ii) comprises any effect
leading to local deviations from the ideal lattice constant, which is mostly dislocations and inner
boundaries of any type.
For the measurement, a PANalytical Empyrean XRD with Cu Kα radiation was used. The samples
were a NIST LaB6 standard and seven P91 samples (austenitized (1), austenitized and heat treated
(2-7)).
In a first step, the instrumental broadening was characterized by measurement of the LaB6 standard.
With this reference, the data from the steel samples could be de-convoluted into sample- and instru-
mental broadening. Finally, the sample broadening was split into microstrains and broadening due to
coherent domain size. For this procedure, some established methods like ”Williamson-Hall”, ”mod-
ified Williamson-Hall”, ”Warren-Averbach” and ”double-Voigt” are compared qualitatively to each
other. Furthermore, the frequently used “modified Warren Averbach” method and the most common
mistake with this method is discussed in detail. A workaround, by introducing the contrast factor of
dislocations into the double-Voigt method, is presented. In the modified Williamson-Hall and mod-
ified Warren-Averbach methods, the dislocation density is calculated assuming, that all microstrain-
inducing defects except dislocations are negligible.
Exemplarily, the results are compared to findings from high-precision dilatometry tests and the results
differ by less than a factor of two.
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2 Parameter List

Table 1: Parameter List

Parameter Meaning Definition in:

α Parameter: α = (K
D
)2 eq. 34a

β Integral breadth. Subscripts provide more information eq. 2
βS Integral breadth due to crystallite size eq. 13
βD Integral breadth due to microstrains eq. 14
βsample Total integral breadth due to crystallite size and micro-

strains
eq. 8

βinstrument Integral breadth due to instrumental broadening eq. 8
βobserved Integral breadth observed when measuring the strain-

broadened sample
eq. 8

γ Parameter: γ = πMb2ρ
2 eq. 34b

< ǫ2(L) > Mean-square-strain eq. 23

η Microstrains: η = ∆d
d

eq. 14a
Θ Diffraction angle fig. 3
Θ0 Bragg angle of Kα reflection maximum eq. 3
λ Used X-ray wavelength eq. 1
ρ Dislocation density eq. 25
A Real part of the curves’ Fourier series eq. 20
AD

n Distortion coefficient of A eq. 20
AS

n Size coefficient of A eq. 20

B Parameter: B = πb2

2 eq. 27a
C Average dislocation contrast factor eq. 25
Ch00 Dislocation contrast factor for (h00)-planes eq. 33
C(2Θ) Cauchy function eq. 3
D Crystallite size eq. 13
F Constant for dislocations interactions; in this work F = 1 eq. 45
f(x), F (x) Pure-specimen (physically) broadened profile and its Fourier

transform
eq. 7

g(x), G(x) Instrumentally broadened profile and its Fourier transform eq. 7
G(2Θ) Gauss function eq. 4
h(x), H(x) Observed broadened profile and its Fourier transform eq. 7

H Parameter: H2 = h2k2+h2l2+k2l2

h2+k2+l2
eq. 33a

K Shape factor; can be assumed as ≈ 1 eq. 13
L Fourier length L = n · a eq. 21
M and M ′ Parameters depending on the effective outer cutoff radius of

dislocations
eq. 25

PV II(2Θ) Pearson VII function eq. 6
Q A correlation factor eq. 25
Re Outer cut-off radius for dislocations: Re ≈ 1

2ρ eq. 27

V and ∆V Volume and volume change of dilatometry sample eq. 31
V (2Θ) Voigt function eq. 5
W Full-width-at-half-maximum sec. 4.1.4

X Parameter: X = (∆g)2−α

g2
eq. 36

Y Parameter: Y = ρBL2 ln(Re

L
) eq. 39

V
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a Unit of Fourier length in direction of the diffraction vector
g

eq. 21

b Burgers Vector eq. 25
d Interatomic distance fig. 3

g Variable in reciprocal space: g = 2sin(Θ)
λ

= 1
d

eq. 15a and 25

∆g Parameter: ∆g =
βsample2cos(Θ)

λ
eq. 25

g0 Some constant eq. 28
h, k, l Miller indices
j Constant that depends on the lattice; j = 14.4 for bcc eq. 45
k Slope for a linear y = kx+ d function
l and ∆l Length and length change of dilatometry sample eq. 31
m Shape factor for Pearson VII function eq. 6
n Some integer
q Parameter depending on elastic constants and dislocation

character
eq. 33

vdisl Specific excess free volume of dislocations eq. 32a
x General variable, usually either x = Θ or x = g eq. 7
⋆ Convolution: g(x) ⋆ f(x) =

∫

g(z)f(x− z) dz
Subscripts
f Denotes the pure-specimen (physically) broadened profile
f(η) Wilkens function eq. 26
g Denotes the instrumentally broadened profile
h Denotes the observed profile (instrumental and physical

broadened)
C Denotes the Cauchy component of the Voigt function
D Denotes the distortion relation of a parameter
G Denotes the Gaussian component of the Voigt function
S Denotes the crystallite size relation of a parameter

VI
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3 Introduction

In most metals, plastic deformation is determined by the movement of dislocations and properties
like yield strength and creep behaviour depend on them. For martensitic 9 % Cr steels (e.g. P91),
especially the creep behaviour is crucial. Until now mostly TEM, EBSD and X-ray diffraction were
used to determine dislocation densities. TEM has the disadvantages of very high costs combined with
very bad statistical evidence and EBSD measures geometrically necessary- and wall-dislocations only.
Thus, only X-ray diffraction combines moderate experimental costs with sufficient volumes for good
statistics. This is why many papers already used this technique (e.g. [1] [2]).
The basics of dislocation density measurements via XRD go back to the well known Scherrer formula
from 1918 ( [3]): Scherrer noted that not only the position of an XRD peak is important (Bragg’s
law), but its broadness is influenced by the material’s microstructure. He then denotes all peak
broadening to the size of coherently diffracting domains. In 1944, Stokes and Wilson noted that peak
broadening can be also caused by microstrains and developed a formula to quantify this ”apparent
strain” [4]. Later, Williamson and Hall combined these two approaches in their Williamson-Hall
method to separate size- and strainbroadening [5]. This method is still very popular nowadays, even
though its limitation to rough estimations has been stated multiple times (e.g. [6]). Later, the more
fundamental but also more time-consuming Warren-Averbach approach [7] was published, which is
also still used nowadays. The latest milestone for dislocation density measurements was done by T.
Ungàr at around 2000: He assumed all microstrains other than those of dislocations are negligible and
thus published his modified Williamson-Hall- and modified Warren-Averbach approach [8]. Since that
time, many authors used this techniques to evaluate dislocation densities and coherent domain sizes,
often neglecting limitations and uncertainties. A critical review about using integral breath methods
carelessly, especially the modified Williamson-Hall technique, is done in [9].
Nowadays there are two general approaches to apply the methods mentioned above to XRD data:

• Rietveld, Whole-profile-fitting,...: The first of this methods, the ”Rietveld refinement” [10]
was first introduced in the late 60s. In general, these methods share the same basic principle: All
phenomena that change peak properties have to be described in mathematical models. Then,
the whole profile measured is fitted according to these models. The differences between Rietveld,
Whole-profile-fitting,... are solely the included models. These are very powerful techniques in
general, but the operator needs to be very experienced because one wrong input afterwards may
be ”corrected” by other wrong results and controlling these programs is difficult (”black boxes”).

• Single peak fitting: In these methods, every peak is fitted separately and the mathematical
models describing the microstructures are applied afterwards. This has many advantages when
testing different data processing models, because the CPU-intensive fitting procedure is done a

priori. Furthermore, controlling the data analysis routines step-by-step is much easier. In this
work, only single peak fitting methods are used.

3.1 Task

Aim of this work was to evaluate the capabilities and limitations of dislocation density measurements
with X-ray diffraction on martensitic 9 % Cr steels (P91). To do so, methods to extract the instrumen-
tal broadening such as Cauchy-, Gauss-, Voigt- and Stokes deconvolution were tested and the most
popular methods of data processing were evaluated: Williamson-Hall-, Warren-Averbach-, double-
Voigt-, modified Williamson-Hall- and m. Warren-Averbach method. Groma’s peak tail analysis [11]
could not be used, as the measured data did not meet the required quality for this method.

To check the reliability of the XRD methods, dilatometry as an alternative method was also tested.

1
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4 Basics

4.1 General information about X-ray diffraction

4.1.1 Generation of X-rays

The generation of X-rays is well-described in many books, e.g. [12] and [13] . Nevertheless, because
many problems of this work are due to its specifics, a short overview is given in the following.
There are various ways of producing X-rays. The most important ones are synchrotron radiation,
braking radiation (”Bremsstrahlung”) and characteristic radiation. For this thesis, only braking radi-
ation and characteristic radiation are important. The origin for both of them can be described by the
bombardment of a metallic target with electrons:

• Braking radiation: The electrons are rapidly slowed down when they hit the target, which
includes a loss in energy. Most of this energy is transferred into heat, but some of it is dispersed
in form of radiation. This radiation is called ”braking radiation” or ”Bremsstrahlung”. Its
emission spectrum is continuous and the intensity increases with increasing acceleration voltage.
At the same time, the minimum wavelength λmin decreases with increasing acceleration voltage.

• Characteristic radiation: If an element is bombarded with high energy particles, in this case
electrons, there is the possibility that a bound electron from an inner shell is excited and an
electron from an outer shell takes its place. As the electron falls to the inner shell, it emits an
X-ray with a very specific wavelength, corresponding to the energy gap between the two electron
shells. This radiation can have several wavelengths, but its spectrum is discontinuous. Even
though the intensities of these X-rays are usually much higher than the intensities of the braking
radiation, there still is a contribution of the braking radiation. This results in a continuous
background radiation.

A typical spectrum of a molybdenum anode is shown in fig. 1 . The continuous background corresponds
to braking radiation, the Kα and Kβ peaks correspond to characteristic molybdenum radiation.

Figure 1: Example for the spectrum of a molybdenum anode. The continuous part corresponds to
the braking radiation, the two sharp peaks are characteristic radiation. [Fig.1]

2
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The setup for a typical X-ray tube (in this case a ”Coolidge tube”) is shown in fig. 2 .

Figure 2: Setup for a ”Coolidge tube” as typical example for an X-ray source. [Fig.2]

In most cases, the filament is made of tungsten. This together with the geometry shown in fig. 2 can
explain two major problems when performing X-ray diffraction (XRD).

1. The source is not perfectly dot-like. This together with not perfect slits, lenses, monochroma-
tors,... lead to the so called ”instrumental broadening”. 1

2. Tungsten from the filament evaporates and condenses again, especially at the anode and walls
of the tube. This deposition on the anode leads to absorption of some of the emitted X-rays and
to the presence of parasitic X-rays 2.

4.1.2 Bragg’s law

When the X-rays from the tube get reflected by a material (sample), they first interact with this
sample, then with each other (=interference). This can be described by Bragg’s law: [15]

2d sin(Θ) = nλ (1)

with the inter-atomic distance d, the X-ray wavelength λ and a positive integer n. Note that perfectly
narrow peaks only occur for defect-free (includes not distorted!) crystals (no changes in the inter-
atomic distance) A visualization of Bragg’s law can be seen in fig. 3:

Figure 3: Bragg’s law: Constructive interference is only possible, if wave maxima of both waves are
at the same position. This is the case, when the path difference (= 2d sin(Θ)) equals to
nλ. [Fig.3]

1A detailed evaluation of instrumental broadening factors is done in chapter 3.1 of [14]
2In general, all not coherent with the main source and not wanted X-rays are called ”parasitic”

3
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4.1.3 Setup of an X-ray diffractometer

The general setup of an X-ray diffractometer is shown in fig. 4 .

Figure 4: General setup of an X-ray diffractometer.
Divergence slit... limits horizontal divergence
Mask... guarantees, that the irradiated area is smaller than the sample
Anti-scatter-slit... filters stray light
Soller-slit... prevents vertical beam divergence
Monochromator... guarantees, that only selected wavelengths reach the detector

First, the X-rays have to pass a divergence slit, that limits horizontal beam divergence. Limiting the
beam divergence too much results in very weak intensities. After the divergence slit, a mask guarantees
that only the sample is irradiated, even at smaller 2Θ angles. After the sample, an anti-scatter-slit
filters stray light and a soller-slit prevents vertical beam divergence (it is quite common to have an-
other soller-slit directly after the X-ray tube, before the beam passes the divergence slit). Finally, a
monochromator suppresses all wavelengths except the Kα radiation, which also reduces background
radiation originating within the sample. [12] [13]
A typical XRD-measurement detects angle-dependent diffracted intensities. There are several mea-
surement methods that could be used described in [12]. Fig. 4 shows a normal Θ/2Θ-measurement
as used in this work.
More detailed descriptions on basics of X-ray diffraction can be found in books, e.g. [16].

4
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4.1.4 Peak characteristics

As described in the next section, there are several ways to model peak shapes. To nevertheless be able
to model universally applicable mathematical methods, some unique peak features were specified:

Half-width-at-half-maximum:
The half-width-at-half-maximum (HWHM) gives a good description of the peak broadness. One
advantage is, that the method is applicable for any fixed, symmetric random peak shape. One disad-
vantage is that not the full information of the peak is used. This makes it inaccurate for comparisons of
asymmetric and differently shaped peaks (e.g. if the Cauchy/Gauss ratio of Pearson VII or Voigt peaks
change). In some cases, the peak broadness is described by the full-width-at-half-maximum (FWHM),
that is two times the half-width-at-half-maximum. Both full- and half-width-at-half-maximum are
used for rough estimations and quick data analysis.
Fig. 5 graphically shows the half-width-at-half-maximum:

xx1 x2

f(x)

fmax

1/2*fmax

Figure 5: Graphical description of the half-width-at-half-maximum (HWHM)

Integral breadth:
For more precise analysis, the integral breadth (IB) should be used. In the following, the integral
breadth is referred to as β and it is defined in eq. 2:

β =
Peak Area

Peak height
(2)

As with the FWHM or the HWHM, the integral breadth method can be applied to any peak shape.
If the background level is evaluated carefully, it is much more robust to comparing differently shaped
and asymmetric peaks than FWHM/HWHM.

5
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4.1.5 Peak-shapes in XRD-measurements

The peak shape of an XRD Θ/2Θ-measurement does not fit into a single scheme and can only be
determined empirically. For rough estimations, Cauchy 3 (eq. 3) or Gaussian shapes (eq. 4) can
be used. Usually, neither of these describes the measured peak accurately. Mostly acknowledged
functions are the Voigt-function (eq. 5) and the Pearson VII function (eq. 6). [14]

Cauchy function: [14]

C (2Θ) =
2

πW






1 +

4
(√

2− 1
)

W 2
(2Θ− 2Θ0)

2







−1

(3)

with the full-width-at-half-maximum (FWHM) W and the peak maximum (usually of Kalpha1) Θ0.

Gauss function: [14]

G (2Θ) =
2

W

√

ln(2)

π
exp

[−4 ln(2)

W 2
(2Θ− 2Θ0)

2

]

(4)

Voigt function (is a convolution of a Cauchy- and a Gauss function): [14]

V (2Θ) = β−1
G Re



erfc

(√
π

βG
|2Θ− 2Θ0|+ i

βC
βG

√
π

)



 (5)

where:

• Re: real part of a complex function

• erfc: complex error function

• βC and βG: integral breadths of the Gaussian and Lorentzian components

• i: imaginary number

Since convolutions are quite CPU-intensive, most programs use the ”pseudo-Voigt” function, which is
a linear combination of a Cauchy- and a Gauss function 4, instead of the Voigt function.

Pearson VII function: [14]

PV II (2Θ) =
2
√
mΓ

(

2
1

m − 1
)

WπΓ (m− 0, 5)






1 +

4
(

2
1

m − 1
)

W 2
(2Θ− 2Θ0)

2







−m

(6)

where m is a shape factor (m < 1 super-Lorentzian; m = 1 Lorentzian and m >> 1 Gaussian) and Γ
is the Gamma function.

3Lorentzian and Cauchy function are the same
4”pseudo-”Voigt, because the linear combination is an approximation for the Voigt function’s convolution

6
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4.2 Instrumental broadening correction

In the last section, peak shapes were discussed. By fitting one of them to the measured data, the
discontinuous sets of data are described by a continuous function. The next step in data analysis is to
decompose the peak into different phenomena that contribute to its position, broadness and intensity
(in this work, only broadness will play a major role). Note that the peak broadening is dependent on
the diffraction angle 2Θ.
In general the observed peak is a convolution of the instrumentally broadened peak and the sample
broadened peak. [17]

h(x) = g(x) ⋆ f(x) (7)

with the observed broadened profile h(x), the instrumentally broadened profile g(x) and the physically
broadened sample profile f(x).
To determine the instrumental broadening only, there are two techniques used frequently:

• Simulation of the instrument with all slits and lenses used.

• Measurement of an external standard without sample broadening, e.g. some NIST standard 5.
For reasons of convenience, this is the technique used most.

Depending on the data processing technique used, there are different methods to perform this instrumental-
/sample broadening separation, the most important ones described in the following.

4.2.1 Cauchy-/Gauss deconvolution

If the measured XRD peaks can be fitted with either Cauchy- or Gauss peaks, the instrumental
broadening can be extracted with eq. 8 and eq. 9:

Cauchy: βsample = βobserved − βinstrument (8)

Gauss: β2
sample = β2

observed − β2
instrument (9)

with the integral breadth observed when measuring the strain-broadened sample βobserved, the integral
breadth due to crystallite size and microstrains βsample and the integral breadth due to instrumental
broadening βinstrument.

Since peak shapes usually are neither pure Cauchy nor pure Gaussian, the fit quality suffers. Widely
acknowledged peak shapes would be the Voigt profile (convolution of Cauchy and Gauss peaks),
the pseudo-Voigt profile (the convolution is approximated by a linear combination of Cauchy and
Gauss peaks) and the Pearson VII profile (see sec. 4.1.5). The deconvolution of Voigt- (and their
approximation, the pseudo-Voigt) functions is discussed in the next chapter.

4.2.2 Voigt deconvolution

In the so called double-Voigt approach, both instrument and observed peaks are modelled via Voigt-
or pseudo-Voigt functions. Since the convolution of two Voigt functions is also a Voigt function,
the Cauchy-/Gaussian parts can be deconvoluted separately and the instrumental broadening can be
extracted easily: [18]

βfC = βhC − βgC (10)

β2
fG = β2

hG − β2
gG (11)

5NIST: National Institute of Standards and Technology. Commonly used standards for XRD applications are NIST
SRM 660 (LaB6) and NIST SRM 640 (Si).
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with the Cauchy and Gaussian parts of the pure-specimen broadened integral breadths βfC and βfG,
of the observed integral breadths βhC and βhG and of the instrumentally broadened integral breadths
βgC and βgG.

4.2.3 Stokes deconvolution

Another deconvolution method is the method of Stokes [19]. From eq. 7 follows, that the deconvolution
can be done quite easily in fourier-space: [19]

F (z) =
H(z)

G(z)
(12)

F (z), H(z) and G(z) are the Fourier transforms of f(x), h(x) and g(x) (see eq. 7).
Transforming F (z) back into real space gives the pure physically broadened profile f(x). The big
advantage of this method is, that no assumption concerning peak shape have been done so far.

After the pure sample-broadened peak is separated, the size-/strain analysis can be done.

4.3 General information about size-/strain analysis

Most formulas in diffraction theory (like Bragg’s- and Laue’s law) were developed for perfect mono-
crystals. In real crystals, the perfect grid of atoms is tilted and bent through imperfections (e.g.
clusters of dislocations and twins). This divides the material in many small volumes, where Bragg’s
law can be applied, which are called ”coherent domains”. The domain size is usually called ”crystallite
size”, which is often confused with grain- or subgrain size. These two groups of microstructural features
are not identical and should not be mixed up. There are however special cases like defect free nano
powders (grain size) and fully recovered fine grained materials (subgrain size), where they are equal
to each other.
The topic in size-/strain analysis is how to separate the pure specimen-broadened peak into size-effects
(coherent domains) and microstrains.

4.4 Williamson-Hall method

Since the Williamson-Hall method assumes Cauchy- or Gaussian peak shapes, usually the method
described in sec. 4.2.1 is used for separation of the instrumental broadening.

A general approach to calculate the crystallite size is the Scherrer-formula: [3]

βS(Θ) =
K · λ

D · cos(Θ)
(13)

with the integral breadth due to crystallite size βS(Θ), the X-ray wavelength λ, the crystallite size D
and the diffraction angle Θ. The shape factor K can be assumed as ≈ 1.
The microstrains can be described by the Stokes-Wilson-formula: [4]

βD(Θ) = η · tan(Θ) (14)

with the integral breadth due to microstrains βD(Θ) and the microstrains

η =
∆d

d
(14a)

8
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in which d is the inter-atomic distance.
With

g =
2sin(Θ)

λ
(15a)

the integral breadth in real space (β(Θ)) can be transformed to reciprocal space (β(g)):

β(g) =
β(Θ)cos(Θ0)

λ
(15b)

With the Bragg angle of Kα reflection maximum Θ0.

In general the easiest way to differentiate between size and strain broadening is that strain broadening
in reciprocal space is dependent on the diffraction angle Θ and size broadening is not.
This implies different Θ dependences of size- and strain broadening in real space. The exact dependence
of the strain broadening on Θ varies with the evaluation model one chooses. [18] Common models are:
1) The ”apparent” strain defined by Stokes and Wilson [4] (which corresponds to a maximum strain)
that is used in all simplified integral breadth methods e.g. the Williamson-Hall approach. 2) The
mean-square strain defined by Warren [20] and used in the Warren-Averbach approach.

G.K. Williamson and W.H. Hall assumed, that either the integral breadths or their squares sum up
to the measured peak:

βn
sample(Θ) = βn

D(Θ) + βn
S(Θ) (16)

where n=1 for pure Cauchy and n=2 for pure Gaussian shapes. With this assumption the authors
were able to combine eq. 13 and eq. 14 6. Using n = 1 (Cauchy only!), eq. 17 is achieved: [5]

βsample(Θ) = βD(Θ) + βS(Θ) = η · tan(Θ) +
K · λ

D · cos(Θ)
(17)

By multiplying eq. 17 with cos(Θ) one gets eq. 18 [5].
Note that this equation is only valid for pure Lorentzian (=Cauchy) peak shapes and that the size
part of this equation is not dependent on Θ.

βsample(Θ) · cos(Θ) = η · sin(Θ) +
K · λ
D

(18)

By plotting βsample(Θ) · cos(Θ) vs. sin(Θ), the system can be treated as a simple linear equation

y = kx + d̄ (18a)

with
k = η (18b)

d̄ =
K · λ
D

(18c)

By doing so, the crystallite size and microstrains can be fitted conveniently, as seen in fig. 6.

6Nowadays, also mixed types, especially βS(Θ) → cauchy and βD(Θ) → gauss are popular.
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Figure 6: Example for a Williamson-Hall plot with β = βsample(Θ) [Fig.6].

4.5 Warren-Averbach method

For the Warren-Averbach method, either the Stokes deconvolution described in sec. 4.2.3 (recom-
mended frequently) or, for example if peak overlapping occurs, the Voigt deconvolution described in
sec. 4.2.2 is used.

The following derivation (from eq. 20 to eq. 24) only contains the essential steps and can be looked
up step by step in the original papers of B.E. Warren and B.L. Averbach [21] [22] [7].
The idea behind this method is the following: Since peak broadening is only due to two phenomena
(size- and microstrain effects), the measured peak (f(2Θ)) is a convolution of the size-broadened peak
(fS(2Θ)) and the strain-broadened peak (fD(2Θ)):

f(2Θ) = fS(2Θ) ⋆ fD(2Θ) (19)

Solving this problem in reciprocal space makes things much easier since the convolution (⋆) reduces
to a simple multiplication (see eq. 20). This transformation into Fourier space is done by expressing
the measured intensities (f(2Θ)) as Fourier series (a sum of cosine and sine components). According
to the theory, the sine components of these Fourier sums are negligible and only the real parts of the
Fourier series (the cosine components) contribute to the result. These real parts of the Fourier series
(An) then are a simple multiplication of the size contributions (AS

n) and the microstrain (=distortion)
contributions (AD

n ) with the harmonic number n:

An = AS
n ·AD

n (20)

This drastically reduces computational time for deconvolution compared to conventional Fourier trans-
formation.
The authors further introduce a, which is the unit of Fourier length in direction of the diffraction vec-
tor g and the Fourier length L. One way to interpret this is: As written in chapter 4.3, in diffraction
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theory materials can be considered consisting of coherent diffracting domains. According to Warren
and Averbach, each of these domains again is considered consisting of columns of cells along a specific
direction. This grid then has the length a and the distance between cell pairs (L) is defined in eq.
21:

L = n · a (21)

With this, An = A(n) can be converted to A(L) and eq. 22 is achieved:

ln
[

A (L)
]

= ln
[

AS (L)
]

+ ln
[

AD (L)
]

= ln
[

AS (L)
]

+ ln
{

< exp
[

2πigLǫ (L)
]

>
}

(22)

with the microstrain ǫ(L).
For not too large L and a Gaussian strain distribution the following approximation can be made:

< exp
[

2πigLǫ (L)
]

>≈ exp
[

−2π2g2L2 < ǫ2 (L) >
]

(23)

Where < ǫ2(L) > is the so called ”mean-square-strain” 7. It is the square of the non-uniform strain
averaged over the distance L.
Inserting eq. 23 into eq. 22, the seminal Warren-Averbach relation is achieved: [21] [22] [7]

ln
[

A (L)
]

= ln
[

AS (L)
]

− 2π2g2L2 < ǫ2 (L) > (24)

By plotting ln
[

A (L)
]

vs. the square of the diffraction vector, g2, one gets the Warren-Averbach plot
shown in fig. 7.

Figure 7: Example for a Warren-Averbach plot. The intercepts with the y-axis yield the size coeffi-
cients and the slopes the mean-square strains < ǫ2 (L) > (compare with eq. 24 ).

7also referred to as emss
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4.6 Modified Williamson-Hall and modified Warren-Averbach approach

T. Ungár noted, that most of the deviations from a straight line in the Williamson-Hall plot can be
due to simple phenomena [8]. For example considering strain broadening solely due to dislocations,
a contrast factor for dislocations (C) should be included to account for differences in intensity. Fur-
thermore, a logarithmic series expansion of the Fourier coefficients should be done. Doing this, the
modified Williamson-Hall equation is given in eq. 25: [8]

∆g ∼= K

D
+

√

πMb2

2
· ρ · g

√
C +

πM ′b2

2
·
√

Q · g2C (25)

With shape factor K (≈ 1), the crystallite size D, the Burgers Vector b, the dislocation density ρ,
a correlation factor Q and the average dislocation contrast factor C (see eq. 33 ). For a detailed
description of the dislocation contrast factor see [8] at p. 5. M and M ′ are parameters depending on
the effective outer cutoff radius of dislocations (Re) and the dislocation density (for determination of
dislocation densities, it is not necessary to evaluate these values). Parts of eq. 18 were merged to

∆g =
βsample(Θ)2cos(Θ)

λ
(25a)

g =
2sin(Θ)

λ
(25b)

T. Ungár also applied this approach to the Warren-Averbach equation. For the microstrains, eq. 26
was used:

< ǫ2(L) > =

(

b

2π

)2

πρf(η)C (26)

where f(η) is the Wilkens function. Approximating the Wilkens function in a series expansion, trun-
cating it after the quadratic term and inserting eq. 26 into the Warren-Averbach equation (eq. 24),
the modified Warren-Averbach equation (eq. 27) is achieved: [8]

ln
[

A (L)
] ∼= ln

[

AS (L)
]

− ρBL2 ln

(

Re

L

)

(

g2C
)

+QB2L4 ln

(

R2

L

)

ln

(

R3

L

)

(

g2C
)2

(27)

where

B =
πb2

2
(27a)

Note: Since the contrast factor of dislocations C accounts for differences in intensities for different
crystallographic planes, the corresponding X-ray pattern looks exactly like a pattern with macrotex-
ture. This can be fatal for all programs that fit the whole pattern at once and do not have the contrast
factor of dislocations included (e.g. Rietveld programs). In this case, the pattern will never fit unless
a (not existing) texture is included, subsequently leading to wrong results even though the fit quality
can be mathematically good.
Compared to methods where all peaks are fitted separately, e.g. the Warren-Averbach method: Not
including C results in very big scattering of data points, leading to very big errors that immediately
indicate a problem.

4.7 Groma’s method

I. Groma introduced a method to analyze the peak tails of single peaks. This method requires a very
good peak-to-background ratio and well resolved peak tails. Since this requirements cannot be fulfilled
in this work, this method is not used. A detailed description of the method is given in [11].
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4.8 Double-Voigt

In the Double-Voigt approach, D. Balzar suggests to model the diffraction peaks as Voigt functions.
After extracting the instrumental broadening (see section 4.2.2 ), the user can choose if the results
should correspond to a simplified integral breadth method (”apparent” strain) or to Fourier methods
(mean-square strain). [18]
In this work, the results will be compared with the results of the modified Warren-Averbach method.
Thus, the following relations to calculate the integral breadth parts for the mean-square strain are
used: [18]

βC(g) = βCS(g) + βCD(g)
g2

g20
(28)

β2
G(g) = β2

GS(g) + β2
GD(g)

g2

g20
(29)

With the reciprocal space variable g and βCS(g), βCD(g), βGS(g), βGD(g) and g0 are constants.

The mean-square-strain is given by eq. 30 and can be evaluated by inserting the integral breadths
from eq. 28 and eq. 29: [18]

< ǫ2(L) > =
1

g2

[

β2
GD (g)

2π
+

βCD (g)

π

1

L

]

(30)

4.9 Dilatometry

In dilatometry, length changes due to pre- defined temperature programs are measured. Some special
dilatometers measure volumes instead of lengths, but mostly the length changes have to be converted
into volumes: [23]

∆V

V
≈ 3∆l

l
(31)

where ∆V and ∆l are volume- and length changes and V and l are the total sample volume and length
respectively.

The measured volume/length changes can be due to many phenomena like thermal expansion, phase
transitions, grain growth and healing of crystal defects. For this work, especially the volume change
due to recovery of dislocations given in eq. 32 is important. [23]

(

∆V

V

)

disl

= vdisl · ρ (32)

with the dislocation density ρ and the specific excess free volume of dislocations [24]

vdisl = 0.5 · b2 (32a)

Since this shrinkage due to recovery of dislocations is very small compared to other effects, the mea-
surement is usually difficult or impossible. Even if all other effects can be excluded, the theory cannot
distinguish between dislocation annihilation and formation of subgrain- or grain boundaries. Fur-
thermore, there is no way to distinguish between dislocation annihilation in the grains and in the
boundaries. This makes the comparison with XRD data difficult, since XRD only measures disloca-
tions in the grains.
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5 Experimental

5.1 Mathematical considerations for data processing

In the basics section (modified) Williamson-Hall-, (modified) Warren-Averbach- and double-Voigt
methods were discussed separately. For data processing it can be convenient to combine some of these
models, as done in the following.

5.1.1 Combination of modified Williamson-Hall and modified Warren-Averbach

Estimating the average dislocation contrast factor C for the modified Warren-Averbach/Williamson-
Hall methods can be difficult. To avoid this, a combination of modified Williamson-Hall and modified
Warren-Averbach method could be used, as done by [25].
The contrast factor C can be expressed as:

C = Ch00(1− qH2) (33)

where Ch00 is the average dislocation contrast factor for (h00) reflections (can be looked up in books),
q is a parameter depending on the elastic constants of the crystal and the character of the dislocations
in the crystals and

H2 =
h2k2 + h2l2 + k2l2

(h2 + k2 + l2)2
. (33a)

The next steps aim at determining the constant q out of a set of experimental data.

With

α = (
K

D
)2 (34a)

and

γ =
πMb2ρ

2
(34b)

the modified Williamson-Hall equation (eq. 25 ) reduces to:

∆g − √
α

g
∼= √

γ ·
√
C +

πM ′b2

2
·
√

Q · g2C (35)

Bringing eq. 35 to quadratic form and inserting eq. 33 into it, eq. 36 is obtained (the high order
terms of eqs. 25/35 become negligible): [25] [26]

X =
(∆g)2 − α

g2
∼= γCh00(1− qH2) (36)

The crystallite size D (see eq. 34a ) has to be implemented implicitly, so that it keeps the left side of
eq. 36 linear.

As a result, q (together with other parameters as shown in section 9.2) and with eq. 33 C can be
determined by a plot X vs. H2 with linear extrapolation to X = 0 (see fig. 8)because

X = 0 ∼= γCh00(1− qH2) (37)

leads to
[

H (X = 0)
]2

=
1

q
(38)
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When looking at eq. 27, the linear slope can be merged to eq. 39:

Y = ρBL2 ln(
Re

L
) (39)

Eq. 39 can be determined in the modified Warren-Averbach plot (see eq. 27 and fig. 7) by a

y = ax2 + bx+ c

fit 8. By dividing eq. 39 through L2 and separating the logarithm, eq. 40 is achieved: [25] [1]

Y

L2
= ρB ln(Re)− ρB ln(L) (40)

By plotting Y
L2 vs. ln(L), the slope k

k = ρB =
ρπb2

2
(41a)

and
Y0 = ρB ln(Re) (41b)

at ln(L) = 0 can be evaluated as shown in fig. 9. Thus the dislocation density and the outer cutoff
radius of dislocations Re can be calculated.

Figure 8: Determination of the parameter q Figure 9: Determination of disl. density ρ [Fig.9]

In some cases, the determination of q and the contrast factor C as described above leads to an ill-
conditioned problem. If that is the case, the modified Warren-Averbach plot can be done for several
contrast factors C and an error minimization should reveal the ”true” C-parameter. This obviously
is very dangerous because errors might be ”corrected” with a false contrast factor. Controlling the
evaluated C is strongly advised!

Note: In the conventional Warren-Averbach analysis, the mean-square-strain is assumed to broaden
only the Gaussian part of the peak. Later (around 1980), [27] and [28] showed that the mean-square-
strain due to dislocations can be modeled by a sum of two strain-broadened profiles, one Cauchy and
one Gaussian shaped. [29] even introduced a very similar expression to eq. 30 into the conventional
Warren-Averbach method to correct this.
The modified Warren-Averbach method nevertheless introduced contrast factors for dislocations, but
did not include the Cauchy part of microstrains into the model.

8It is quite common to do a linear fit instead, since a is usually very small
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5.1.2 Combination of modified Warren-Averbach and Double-Voigt

If the Stokes deconvolution does not work e.g. because of Cu Kalpha1 / Kalpha2 overlapping, instrumen-
tal broadening can be extracted as suggested in the Double-Voigt-approach (section 4.2.2). Inserting
the instrumental-broadening-free integral breadths into eq. 42 give the normalized Fourier transform
of a Voigt function: [18]

A(L) = exp
[

−2LβC (g)− πL2β2
G (g)

]

(42)

Thus the (normal-/modified) Warren-Averbach routine can be continued.

As mentioned above, both (conventional- and modified-) Warren-Averbach methods assume that the
peak-broadening due to microstrains only affect the Gaussian curve. This is done because many
authors report Gaussian-like microstrain distributions, but it has never been physically justified. Even
the inventor of the double-Voigt approach, D. Balzar, wrote: ”Generally, it was shown that in the size-
broadened profile the Cauchy part must dominate. No similar requirement for the strain-broadened
profile exists. However, experience favors the assumption that it has to be more Gaussian.” [18]
Lets assume that both Cauchy- and Gaussian parts contribute to the microstrains, as done in Balzar’s
Double-Voigt approach. D. Balzar achieved these microstrains < ǫ2(L) > by comparison with the
Warren-Averbach method. For this reason, if the Cauchy-part of the microstrains are zero, the two
definitions of ”microstrains” are equal to each other. By substituting Balzar’s microstrains (eq. 30)
back into the Warren-Averbach-equation (eq. 24), eq. 43 is achieved: [18]

ln
[

A (L)
]

= ln
[

AS (L)
]

− 1

g2

[

πβ2
GD (g)L2 + 2βCD (g)L

]

g2 (43)

By following the (modified) Warren-Averbach method (plot ln[A(L)] vs. g2 (normal WA) or ln[A(L)]
vs. g2C (modified WA)) and determining

YDV

L2
= − 1

g2

[

πβ2
GD (g)− 2βCD (g)

L

]

(44)

one can see the 1
L
-contribution of the Cauchy-distortion parts. Since L is in the nm-region, this error

can get enormous, despite very small Cauchy-contributions to the microstrains.
To determine β2

GD(g) and βCD(g) a plot YDV

L2 vs. 1
L
is useful, since βCD(g) is in the slope and β2

GD(g)
is in the intercept with the y-axis.

If, as done in this work, the peaks were fitted as Voigt-peaks, the instrumental broadening was ex-
tracted as suggested in the Double-Voigt approach and the modified Warren-Averbach plot was fitted
with straight lines, the fit will correspond to 100% to the data. In this case, the plot could be substi-
tuted by a simple equation.
Note: Let’s call the intercept at 1

L
= 0 in fig. 10 Yinterc

L2 and the slope
Yslope

L2 . In this case

− 1

g2
· β2

GD =
Yinterc
L2π

(44a)

and

− 1

g2
· βCD =

Yslope
2L2

∗ L (44b)

which leads to a microstrain-term that is programmable much better when eq. 44a and eq. 44b are
inserted back into eq. 30:

< ǫ2(L) > =
Yinterc
2π2L2

+
Yslope
2π2L2

(44c)
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Figure 10: Determination of βCD from the slope and β2
GD from the intercept with the y-axis

Afterwards, the Y
L2 vs. ln(L) plot can be done as suggested in the modified Warren-Averbach method

and the fit can be done according to eq. 44. Again, the fit will exactly correspond to the data if the
peaks were fitted as Voigt-peaks, the instrumental broadening was extracted according to the Double-
Voigt approach and the modified Warren-Averbach plot was fitted with straight lines. This case can
be seen in fig. 11. The described method will be called ”contrast-corrected double-Voigt method” for
the rest of this work.

To convert the microstrains into dislocation densities, e.g. the Williamson-Smallman equation can be
used: [30]

ρ =
j < ǫ2 >

Fb2
(45)

j and F are constants that depend on the lattice and the interaction between dislocations respectively.
In this work, j = 14.4 for bcc structure and F = 1 where used. [30]

But notice: In both cases (modifiedWarren-Averbach and the contrast-corrected double-Voigt method)
it is assumed, that all microstrains are due to dislocations. Nevertheless, the modified Warren-
Averbach method assumes a ”internal dislocation density” (mobile + dipoles) and the Williamson-
Smallman assumes only mobile dislocations. This means that the calculated results are not comparable
one to one, but the trend should be the same.
Furthermore, the error can be evaluated: Comparing the terms for the microstrains of the conventional-
and the modified Warren-Averbach method (comparing the 2nd terms of eq. 24 and eq. 27) leads to
eq. 46:

πb2L2ρmWA

2
ln(

Re

L
)g2C = 2π2L2g2 < ǫ2(L) > (46)

which reduces to:

ρmWA

[

ln (Re)− ln (L)
]

g2C =
4π

b2
g2 < ǫ2(L) > (47)
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Figure 11: Modified Warren-Averbach method including microstrain-correction of cauchy-parts.
The orange fit with the new introduced ”contrast-corrected double-Voigt method” ex-
actly corresponds to the data points, while the linear modified Warren-Averbach fit
(black line) does not.

Inserting the Williamson-Smallman approach (eq. 45) and substituting g2 in the conventional Warren-
Averbach approach by g2 · C leads to eq. 48:

ρmWA

[

ln (Re)− ln (L)
]

g2C =
4π

b2
· b

2FρWS

j
g2C (48)

which reduces to:

ρmWA =
4π · F · ρWS

j
[

ln(Re)− ln(L)
] (49)
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5.2 Sample preparation

All steel samples were P91 steel, austenitized at 1060 °C, air quenched to room temperature, tempered
at 760 °C and again air quenched to room temperature. Table 2 clarifies the sample names and table
3 shows the tempering times.

Table 2: Sample names

Sample name Meaning

P91 name of the steel used
BH After austenitizing; no tempering at 760 °C was done
xxh 760C tempered for xx h at 760 °C
XX1 to XX2 measurement was done from XX1 ° 2Θ to XX1 ° 2Θ

Table 3: Heat treatments for steel samples:
Aust. t. [h]... Time for austenitization at 1060 °C in h
tempering t. [h]... Time for tempering at 760 °C in h

Sample Aust. t. [h] tempering t. [h]

P91 BH vib pol 1 0
P91 0p166h 760C 1 1/6
P91 0p5h 760C 1 0.5
P91 1p5h 760C 1 1.5
P91 12h 760C 1 12
P91 24h 760C 1 24
P91 36h 760C 1 36

For XRD measurement, all samples were grinded and polished. Especially polishing was tried to be
kept as short as possible (nevertheless making sure to remove all scratches), because long polishing
times tend to rip precipitates out, leaving back holes. Finally, vibration polishing was done for 1.5 h
with the OP-AA suspension from Struers (Code: APACI) and no sample holder. At first, polishing for
3 h was intended but checking of the surface under SEM after 1.5 h showed this time was completely
sufficient.

The dilatometry samples were austenitized and afterwards milled to square columns with 20x4x4 mm.
No further surface treatment or tempering was done.

5.3 X-ray diffraction

For the X-ray measurements, a PANalytical Empyrean X-ray diffractometer with copper anode and
monochromator in Θ/2Θ mode on the Institute for Solid State Physics on the TU Graz was used. De-
tailed measurement specifications are in the appendix. For the alignment, a copper beam attenuator,
the PIXcel alignment Anti-scatter slit 0,1 mm (on diffracted beam side) and the detector in alignment
mode were used.
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5.4 Dilatometry

For dilatometry, a self-assembled high precision laser dilatometer of the Institute of Materials Physics
of TU Graz was used. Heating was done with 4 halogen spotlights, the thermo wires were spot-welded
onto the samples. At first, only measurements under vacuum were possible. Later on, the machine
was remodeled and measuring under argon atmosphere got included. Since a considerable amount of
Cr evaporated at all measurements without argon (verified by EDX and EBSD measurements), only
the measurement under argon atmosphere is considered in this work.

5.5 Data processing

In the following, the data processing routines are described as flowcharts. The MATLAB code was
developed in this thesis and can be found in the appendix. Generally, the data processing is done in
3 steps and each step has its own Matlab program:

• Processing of raw XRD data: The measured data is fitted with pseudo-Voigt peaks and the
corresponding integral breadths (=IBs) are calculated. This has to be done for the standard
sample and the sample from which one wants to know the dislocation density and is done in the
Matlab program ”XXX IB ges Auswertung split.m”. The subroutine that performs the data fit
was not written by the author but was downloaded from the Net. [31]

• Interpolation of the instrumental broadening: The integral breadths of the standard
sample are plotted and interpolated with an exponential fit. The instrumental broadenings at
the peak positions of the to-be-evaluated sample are read out and stored into a file. This is done
in the Matlab program ”LaB6 IB fit aktuell.m”.

• Calculation of dislocation densities: The contrast factor of dislocations is evaluated with
the modified Williamson-Hall method. After that, the microstrains are qualitatively evaluated
with the modified Warren-Averbach and the contrast-corrected double-Voigt method. Both
microstrain-results are plotted into one figure and the internal dislocation density for the modified
Warren-Averbach method is put out. Furthermore, the microstrains according to the contrast-
corrected double-Voigt method are evaluated quantitatively and the according dislocation density
is calculated using the Williamson-Smallman approach. This is done in the Matlab program
”MWH MWA.m”.
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Flowchart symbols

Program name Input/Output Routine Decision

Figure 12: Flowchart symbols

5.5.1 Matlab programs for data processing

First of all, the XRD raw data (.xrdml files) have to be converted into .xy files. This can be easily
done with the program PANalytical Data Viewer, that comes with the used XRD machine. The .xy
files can then be imported into Matlab.
The following flowchart (fig. 13) shows how the Matlab routines work in general and how they are
connected to each other.

Processing of raw XRD data: Flowchart fig. 14 shows the structure of the peak fitting programs
XXX IB ges Auswertung split.m. In general, the mechanics of ”LaB6 IB ges Auswertung split.m”
and ”steel IB ges Auswertung split.m” are the same, the only difference are the presets.
”LaB6 IB ges Auswertung split.m” will automatically search for the LaB6 diffraction peaks and try to
create a fit for them. Likewise, ”steel IB ges Auswertung split.m” knows where the steel diffraction
peaks should be and in which range reasonable starting parameter could be. The subroutine that
performs the fitting itself (fitting ONE set of starting parameters to the data) was downloaded from
[31].
Note: The 3 repetitions are done to get a feeling how stable the fitting process is. If all 4 fits have
exactly the same minimum, the number of different starting parameter sets is more than sufficient. If
all 4 give different minima, one should increase the number of starting parameter sets.
The data output has to be copied into a .txt file manually. Also take into account that the Matlab
output often has ”,” as comma, but only accepts ”.” as input for the next routine.

Interpolation of the instrumental broadening (no flowchart): The program for fitting the
LaB6 integral breadths is very simple. The data achieved with the peak fitting program (and manually
stored into a .txt file) is read in for the LaB6 sample and the to-be-evaluated sample. The integral
breadths for the LaB6 sample are plotted and interpolated with an exponential fit. The (fitted) LaB6

integral breadths at the peak maxims of the to-be-evaluated sample are read out and considered as the
”instrumental broadening”. Since the instrumental broadening should not change too often 9, the LaB6

fitting program writes the results into a file which is automatically imported into ”mWH mWA.m”
every time ”mWH mWA.m” is used. So when testing something with the LaB6 fitting program,
changing the name of the output file is strongly recommended!

Calculation of dislocation densities: Flowchart fig. 15 shows how the program ”mWH mWA.m”
processes the integral breadths to calculate dislocation densities. A detailed, pure mathematical de-
scription is done in section 5.1.
Note: α is a variable that has to be determined implicitely, but the system is not very sensitive on it.
In this code, the plot is fitted for ∼ 5000 different values (can be changed) of α and the α that leads
to the most accurate fit (mean square error → min) is considered as correct.

9When evaluated carefully once, the instrumental broadening only changes when the measurement setup is changed.
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Input data
from XRD

XXX IB ges Auswertung split.m

Start Parameters

Fit peak to data
via ”Monte-

Carlo-method”

Use Kα1 peak
to calculate IBs

Are 3 reps.
done?

IBs and fit specs
for all 4 fits

Manually save the
output to a .txt file

Maximum posi-
tions of steel peaks

LaB6 or
steel data?

LaB6 IB fit aktuell.m
Fit exponential
fit to LaB6-IBs

Extract instrumental broad-
ening at steel peak positions

MWH MWA.m
Use MWH to calculate contrast fac-
tor of dislocations in this material

MWA
Contrast-corrected

double-Voigt method

Williamson-
Smallman equationDislocation density ac-

cording to the modified
Warren-Averbach method

Dislocation density according to a combi-
nation of the contrast-corrected double-
Voigt + Williamson-Smallman method

no

yes

LaB6

Steel

Figure 13: Flowchart of raw data processing routine.
IB... integral breadth
reps... repetitions
specs... specifications
MWH/MWA... modified Williamson-Hall/modified Warren-Averbach
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File names of
XRD data

Starting values
and variations
of HWHM

Max. integrated
intensities

Used XRD
wavelengths

Peak positions
and data range

Variation of
peak position

Number of sets of
starting parameters

Background
level in counts

XXX IB ges Auswertung split.m

Write starting values for current peak into temporary variables

Randomize starting values within given bounds

Perform peak fitting with this randomized starting parameters *

Is this fit better
than the previ-
ous best one?

Temporarily store fitting parameters

Is the number of
starting parameter

sets reached?

Store best fitting
parameters

permanentely

Are all 4 runs done?

Plots: Linear (data, all 4 fits, and dif-
ference plot); Logarithmic (Kα1/Kα2-
separation, background level, Kα1 peak

maximum, Gaussian- and Lorentzian peaks

Data: IBs (all together, Lorentzian and
Gaussian), integrated intensity, peak max.,
HWHM, shape parameter and asymmetry

yes

No

yes

Yes No

No

Figure 14: Flowchart of peak fitting routine.
*...Function downloaded from [31]
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Steel input
as .txt file

LaB6-IBs inputmWH mWA

Remove instrumental broadening by voigt-deconvolution (see sec. 4.2.2)

g = 2sin(Θ)
λ

∆g =
2βsample cos(Θ)

λ

Quadr. form of mWH is
(∆g)2−α

g2
∼= γCh00(1− qH2)

H2 = h2k2+h2l2+k2l2

(h2+k2+l2)2

A(L) = exp(−2LβC(g) −
πL2β2

G(g))
Plot (∆g)2−α

g2
vs. H2

q = 1
H2 at

(∆g)2−α

g2
= 0

C = Ch00(1− qH2)

modified Warren-Averbach
ln(A(L)) ∼= ln(AS(L))− Y (g2C)

+QY 2
1 (g

2C)2

Plot g2C vs ln(A)

Y
L2 = ρB ln(Re)− ρB ln(L)

(original modified Warren-Averbach)

Y ∼= slope in mWA-Plot
→ plot ln(L) vs. Y

L2

Slope k = ρπb2

2
with dislocation density ρ

(ρmWA to be exact) and mag-
nitude of burgers vector b

Y
L2 = − 1

g2

[

πβ2
GD (g)− 2βCD(g)

L

]

(Double-Voigt-microstrains)

Separation of βGauss and
βCauchy with a YDV

L2 vs. 1
L
plot

< ǫ2(L) > = 1
g2

[

β2

GD
(g)

2π + βCD(g)
π

1
L

]

ρDV = k<ǫ2>
Fb2

(Williamson-Smallman)

MWA and DV MWH

Figure 15: Flowchart to explain the combination of mWH with mWA and double-Voigt
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6 Results

6.1 X-ray diffraction

In this work, a NIST SRM 660 10 was spin-coated onto a Si waver and used to determine the in-
strumental broadening (see sec. 4.2). From a previous (not published) work [32] it was known that
strong parasitic peaks 11 interfere in some 2Θ regions. In order to exclude these regions and to save
machine time, the measurement was split into four parts and only usable regions were measured. The
corresponding data are plotted in fig. 16.
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Figure 16: Measurement of the LaB6 standard. The measurement was split into four parts and re-
gions with too strong parasitic peaks were left out

For steel and a XRD machine with copper anode, there are 6 peaks (110, 200, 211, 220, 310 and 222)
in the range between 40 ° < 2Θ < 140 °. To save machine time, every peak was measured separately
with a range of ∆2Θ = 10 °. Due to difficult background levels (determination of the integral breadth
β is highly unstable!), the 110 peak was left out.

10NIST: Nation Institute of Standards and Technology
SRM: Standard Reference Material
660: Reference material number for LaB6

11In general, all not coherent with the main source and not wanted X-rays are called ”parasitic”
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Figures 17 to 23 show the results of P91 steel measurements. Parasitic peaks can be seen very
clearly, especially the tungsten Kα peaks for the 65 ° and 82 °. Also, the Cu Kα1/Kα2-doublet can
be distinguished when looking at the LaB6 standard or the 0.5 h to 36 h tempered samples, see fig.
16 and fig. 19 to fig. 23. For the untempered or very short tempered samples, the Kα1/Kα2 peaks
melt to one peak (broader peaks!), and the doublet can’t be seen that clearly. When looking at the
untempered 200 peak (fig. 17), one can clearly see a second peak beneath the main peak (marked
with 200a). The author suspect it to be because of the bct-structure of untempered martensite. This
would explain the peak vanishing after very short tempering times, since the carbon then leaves the
octahedral sites to form carbides, allowing the steel to become (more or less) bcc.

Figure 17: Measurement of the austenitized (at 1060 °C) steel sample prior to tempering (P91 BH)
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Figure 18: Measurement of the austenitized (at 1060 °C) and afterwards 10 min tempered (at 760
°C) steel sample (P91 0p166h 760C)

Figure 19: Measurement of the austenitized (at 1060 °C) and afterwards 30 min tempered (at 760
°C) steel sample (P91 0p5h 760C)

27



Diploma Thesis Arthur Fuchs

Figure 20: Measurement of the austenitized (at 1060 °C) and afterwards 1.5 h tempered (at 760 °C)
steel sample (P91 1p5h 760C)

Figure 21: Measurement of the austenitized (at 1060 °C) and afterwards 12 h tempered (at 760 °C)
steel sample (P91 12h 760C)

28



Diploma Thesis Arthur Fuchs

Figure 22: Measurement of the austenitized (at 1060 °C) and afterwards 24 h tempered (at 760 °C)
steel sample (P91 24h 760C)

Figure 23: Measurement of the austenitized (at 1060 °C) and afterwards 36 h tempered (at 760 °C)
steel sample (P91 36h 760C)
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6.2 Dilatometry

The results of the dilatometry measurement under Argon atmosphere are plotted in fig. 24

Figure 24: Dilatometry measurement under Argon atmosphere.
∆l... length change
l... total sample length

Between 15 h and 30 h, there appears to be some peak. The author does not know what is causing it
but, unless one wants to know the dislocation density in this time-slot, it does not interfere with the
dislocation density calculation.
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7 Data Analysis and Discussion

7.1 Fitting of XRD peaks

There are many free-to-use peak fitting programs in the Internet. After some tests with ”Fityk” in
a previous project [32], it was clear that the fitting accuracy is not sufficient. For that reason, the
routine described in the flowchart fig. 14 was programmed and used for fitting the XRD data. For
the fitting procedure between 5 000 and 10 000 different randomized sets of starting parameters were
used, depending on how fast the global minimum was found. After completing the fit, there are some
mechanisms to qualitatively check the fit’s quality. In fig. 25 XRD data and all 4 fits are plotted
linearly. Beneath, there is a linear difference plot. If all 4 fits fall into the same minimum, the curves
are identical and only the last one (green curve) can be seen.
In fig. 26 a semi-logarithmic plot of the fit is shown. In this plot, the contributions of Kα1 and Kα2

as well as the background level are separated and the Kα1 peak maximum can be checked. When
looking at the Kα2-curve, a kink can be seen. This is an artifact from fitting the peak as split-peak
(left and right part of the peak are fitted separately).
Furthermore, plots with the following information can be enabled (mostly for searching bugs):

• Plot of the starting parameters that gave the best fit.

• Plot Kα1 + Kα2 fit to see if separation worked properly.

• Plot of Lorentzian and Gaussian parts of the peak.

Figure 25: Plot to check if all 4 fits fall into the same minimum. Linear plot of data and correspond-
ing fit(s) (upper plot) and difference plot (lower plot)
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Figure 26: Example for a semi-logarithmic plot to check Kα1 / Kα2 separation, background and Kα1

peak maximum.

As shown in figures 17 to 23, parasitic tungsten peaks appear a few degrees 2Θ beneath the 200 and
the 211 peaks. Furthermore, another parasitic peak is a bit above the 220 peak. Excluding these
parasitic peaks has to be done very carefully to keep potential errors as low as possible. For that
reason, the main peaks were cut off prematurely where parasitic peaks appear in this work. This can
be seen in figures 27 and 28 and is of course one source of errors.

For the 200 and the 211 peak, including the tungsten peak into the fitting procedure and fitting the
whole ∆2Θ = 10 ◦ was also tested. The result was the same as with the truncated fitting procedure,
but needed disproportionately longer.

The fits for all measured specimen can be found in figures 45 to 68 and tables 6 to 19 in the appendix
(pages 53 to 61 and 62 to 71).
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Figure 27: Same plot as fig. 25, but this time for a truncated peak.

Figure 28: Same plot as fig. 26, but this time for a truncated peak.
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7.2 Separation of size- and strainbroadening

Aim of this work was to evaluate the potential of X-ray diffraction in a standard laboratory diffrac-
tometer for measurements of dislocation densities in complex martensitic steels. To do so, the most
used and/or most promising methods were discussed in the basics chapter (section 4). Some poten-
tially good methods were excluded due to measurement or material restrictions, e.g. Groma’s peak tail
analysis [11] [33] [34] couldn’t be done because of parasitic peaks and variations in the peak tails.

7.2.1 Williamson-Hall method (also see chapter 4.4):

This method is for very rapid coherent domain size and microstrain analysis. It can be used to have
an impression if peak broadening is mostly due to coherent domain size or due to microstrains [9].
Even if the error bars are low, there is not more information to be extracted because the models used
are too rough. The strain model used in this method is called ”apparent strain” and represents a
strain maximum (not a mean value!) and the data points in the Williamson-Hall plot can vary a
lot. An example for a Williamson-Hall plot assuming size broadening solely affects Lorentzian and
microstrains solely Gaussian curve is shown in fig. 29. According to the theory, the coherent domain
size can be calculated from the intercept with the y-axis and the microstrains from the slope.

Figure 29: Williamson-Hall plot of sample P91 0p166h 760C with β = βsample.

Fitting a straight line to the strongly varying six data points of ferrite and calculating the microstrains
(and with them the dislocation density) from the slope usually give errors so huge, that presenting
them would be unscientific. This also applies to this work, even though other, more advanced methods,
do not have problems with scattering. This is why it is not used in this work.
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7.2.2 Modified Williamson-Hall technique (also see chapter 4.6):

T. Ungár’s modified Williamson-Hall technique improves the scattering in the Williamson-Hall
plot, thus decreasing the errors. Nevertheless, considerable scattering and most problems and limita-
tions of the conventional Williamson-Hall method remain. An example for a modified Williamson-Hall
plot from another paper is shown in fig. 30.

Figure 30: Example of a modified Williamson-Hall plot [Fig.30]

Please Note: As shown in section 5.1, the contrast factors for the modified Warren-Averbach method
in this work are calculated with the modified Williamson-Hall (mWH) technique. This is done by opti-
mizing C so the errors for the quadratic form of the modified Williamson-Hall method are minimized.
To insert these contrast factors back into the mWH-equation would be mathematically incorrect,
because all systematic errors would be ”corrected” with a wrong C. For comparison of the same
measurement with the other data evaluation methods, the mWH plot of sample P91 0p166h 760C is
shown in fig. 31.

Figure 31: Modified Williamson-Hall plot of sample P91 0p166h 760C
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Comparing fig. 30 and fig. 31, two things become evident:

• Fig. 30 has much more data points. This is because a different sample material and a different
X-ray wavelength were used.

• In fig. 30 a quadratic and in fig. 31 a linear fit is used. This is because there are too few data
points and a too small angular range for a quadratic fit in fig. 31. Because the quadratic part is
small (according to the method!), the error by neglecting it is smaller than the one introduced
by applying a quadratic fit to this data.

Furthermore, the very right part of fig. 30 indicates a negative slope, which is physically impossible.
This shows, that even though the scattering is reduced, the limitations are mostly identical to those
of the conventional Williamson-Hall method.

7.2.3 Warren-Averbach method (also see chapter 4.5):

Data processing takes a lot longer than for the Williamson-Hall method, but the data achieved have a
better reproducibility due to a more fundamental physical and mathematical basis. With this method,
a ”mean-square-strain” is evaluated. An example for a Warren-Averbach plot is shown in fig. 32.

Figure 32: Warren-Averbach plot of sample P91 0p166h 760C

Like for the Williamson-Hall method, there are problems with scattering of data points. If at least two
orders of the same reflection can be measured, only these peaks are used for data processing because
scattering should be negligible in that case. In many measurements, this approach is not possible
(like in this work). In these cases the scattering often can be reduced by using T. Ungár’s modified
Warren-Averbach method.
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7.3 Modified Warren-Averbach method (also see chapter 4.6):

The modified Warren-Averbach method is evaluated in detail later in this section. It is used
for data processing in this work and compared to the new method introduced in chapter 5.1.2. A
comparison to D. Balzar’s original double-Voigt method is not done because of the considerable scat-
tering of data points in the double-Voigt method for the used material. An example for a modified
Warren-Averbach plot is shown in fig. 33.

Figure 33: Modified Warren-Averbach plot of sample P91 0p166h 760C

7.3.1 Double-Voigt method (also see chapter 4.8):

It is, due to limitation of peak shapes to Voigt- and Pearson VII peaks (e.g. super-Lorentzian peaks
appear to be a problem), mathematically more restricted than the conventional Warren-Averbach
method. On the other hand, it has many improvements (as discussed later) and it is rather easy
to check if the restrictions apply to the to-be-evaluated sample. Nevertheless, it is the least used of
the evaluated models. Most authors just conclude that the evaluated microstrains are much higher
than the microstrains achieved with other methods. This is most likely because D. Balzar also in-
cludes Lorentzian contribution to the microstrains (in the double-Voigt method), whereas microstrains
are solely affected by the Gaussian contribution according to the Warren-Averbach method. In the
double-Voigt method, one can decide if the ”apparent strain” or the ”mean-square-strain” should be
evaluated. Furthermore, the extraction of the instrumental broadening is much easier than the Stokes
deconvolution that is usually used for the Warren-Averbach method. Some material properties, most
likely the high dislocation density, lead to considerable scattering of data points for the used material
(P91 steel). If at least two orders of the same reflection can be measured, the same ”trick” as for
the Warren-Averbach method can be used. Because the contrast-corrected double-Voigt method is
mathematically very similar to the conventional double-Voigt method, no example is shown here.
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7.4 Calculation of dislocation densities

The dislocation densities were calculated as described in section 5.5 with the modified Warren-
Averbach and the contrast-corrected double-Voigt method. The differences of these two methods
in short:
The modified Warren-Averbach method is an improvement of the conventional Warren-Averbach
method by including the contrast of dislocations into the model. This reduces scattering of data
points. Furthermore, the method directly puts out dislocation densities, not microstrains like the
conventional Warren-Averbach method. Even though [27], [28] and [29] prove that the strain field of
dislocations generally cannot be modeled by pure Gaussian shapes, this is assumed in this method.

The contrast-corrected double-Voigt method is basically a double-Voigt method including the con-
trast factor C (as suggested by T. Ungàr for the WH- and WA methods). This includes microstrains
< ǫ2 > as output and not, like the modified Warren-Averbach method, dislocation densities. Never-
theless, the microstrains can be converted to dislocation densities, e.g. by the Williamson-Smallman
approach. Notice: Even though the modified Warren-Averbach method puts out dislocation densities,
it implicitly first calculates microstrains, then converting them to dislocation densities assuming all
microstrains are due to dislocations.

The plots to determine q (see section 5.1, especially fig. 8) are shown in the appendix on pages
72 to 73 in figures 69 to 75. The fact, that the considerable scattering introduces an uncertainty
into q is accounted for in the following calculations. Nevertheless, q (if kept in physical meaning-
ful boundaries 12) for the measured material mainly influences the fit quality but not so much the
microstrains/dislocation densities.

In fig. 34 the plot to calculate the dislocation density according to the modified Warren-Averbach
method is done. The linear fit (as introduced in the modified Warren-Averbach method) is done for
several L-values and the according dislocation densities are calculated. In the title, the dislocation
density according to the contrast-corrected double-Voigt method is shown.
In [25], Ungár wrote: ”The straight line fitted to small values of L gives the dislocation density and
the effective outer cut-off radius of dislocations”. This would correspond to the fits with ρ = 3.3∗1016
m−2 (L = 1 to L = 3 nm) and ρ = 1.9 ∗ 1016 m−2 (L = 1 to L = 10 nm). In [25] he used values
1 nm < L < 9 nm.
Other authors ( [1] and [2]) used larger L-values, as it was done with the conventional Warren-Averbach
method (it was convention to compare microstrains at about L = 80 nm). This corresponds to the fit
with ρ = 9.5 ∗ 1014 m−2 for L = 40 to L = 80 nm (in [1] L = 40 − 80 nm and in [2] L = 40− 90 nm
were used).

This is different for the contrast-corrected double-Voigt method, since it is basically a conventional
double-Voigt method with a correction for the reflectivity contrast: The data points correspond exactly
to the fit and thus the microstrains do not depend on the evaluated range of L.

Many authors (e.g. [9]) correctly conclude, that XRD-measurements like this are solely to determine
trends in a series of measurements. One may think that neglecting the Cauchy part of the microstrains
is not a problem in this case, if the same range of L is used for all measurements. This assumption
only holds, if the Cauchy part of microstrains stays constant, which cannot be assumed a priori. If
this Cauchy contribution does change the division through L [nm], especially for small values of L,
again make the errors explode and can subsequently lead to false trends.

12q depends on the elastic constants of a crystal, thus the type of dislocations and the crystal structure. Calculated
q values for iron are: q = 1.2 for pure edge- and q = 2.8 for pure screw dislocations [26]. The experimental
determined value should be between those values in most cases.

38



Diploma Thesis Arthur Fuchs

Figure 34: Example how the linear fit in the modified Warren-Averbach method introduces errors.
All dislocation densities are given in [m−2]

7.4.1 Calculation of dislocation densities according to the contrast-corrected double-Voigt
method

Because of the problems with the modified Warren-Averbach method described in section 7.4, only
the contrast-corrected double-Voigt method is used for data processing.

In figures 35 to 38 the modified Warren-Averbach plots of the un- and short tempered samples are
shown (the modified Warren-Averbach plot is needed for the contrast-corrected double-Voigt method).
The corresponding dislocation densities tabulated in tab. 4 should be seen relative to each other and
not as absolute values. But note: The author expects the dislocation density of the untempered sample
(P91 BH vib pol) to be too high, since the untempered martensite holds very high microstrains (e.g.
due to carbon in the Fe octahedral sites) that do not come from dislocations. Nevertheless, the method
converts all microstrains to dislocation density, leading to this high value.

Table 4: Dislocation densities of the un- and short tempered samples according to the contrast-
corrected double-Voigt method

Sample Dislocation density ρ [m−2]
P91 BH vib pol 6 · 1016 13

P91 0p166h 760C 1 · 1016
P91 0p5h 760C 9 · 1015
P91 1p5h 760C 6 · 1015

The modified Warren-Averbach plots of the long tempered samples are shown in figures 39 to 41. The
dislocation densities for these samples are constant at ρ ≈ 5.5∗1015 m−2 and are thus not tabulated.
The author assumes this plateau is because the pure physically broadened integral breadth becomes
too small compared to the instrumental broadening.

13The author expects this dislocation density to be wrong, since the untempered martensite holds very high microstrains
(e.g. due to carbon in the Fe octahedral sites) that do not come from dislocations .Nevertheless, the method converts
all microstrains to dislocation density.
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Figure 35: Modified Warren-Averbach plot of sample P91 BH vib pol

Figure 36: Modified Warren-Averbach plot of
sample P91 0p166h 760C

Figure 37: Modified Warren-Averbach plot of
sample P91 0p5h 760C

Figure 38: Modified Warren-Averbach plot of
sample P91 1p5h 760C

Figure 39: Modified Warren-Averbach plot of
sample P91 12h 760C
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Figure 40: Modified Warren-Averbach plot of
sample P91 24h 760C

Figure 41: Modified Warren-Averbach plot of
sample P91 36h 760C

7.5 Dilatometry

With the theory in section 4.9 and the data from fig. 24, the dislocation densities in fig. 42 are
calculated. Since the sample length without any dislocations is not known, the length of the last
data point (after more than 60 h) is taken instead. For the taken tempering times (up to 20 h), this
introduces an error that is less than 10 %. Thus, the uncertainty by assuming all shrinkage is due to
dislocation annihilation is much higher, especially because this assumption cannot be proven true.

Figure 42: Dislocation densities according to the dilatometer measurement

Furthermore, the dislocation density for the first hour is not plotted since heating and precipitation
naturally dominated the length change of the sample. To nevertheless achieve the dislocation density
for this time frame, performing an exponential fit and extrapolating it to zero was tested. This was
not successful since the data does not follow a simple exponential behavior, as shown on the next
page.
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7.6 Comparison of results

In fig. 43 the dislocation densities according to the dilatometer- and the XRD measurements are
plotted.

Figure 43: Comparison of dislocation densities according to dilatometry- and XRD measurements

The exponential fit for the three data points of the XRD measurements shows a nearly perfect ex-
ponential decay, but the decay is different from the dilatometer measurement. A closer look on the
dilatometer measurement is done in fig. 44. By plotting ln(ρ) vs. time, all exponential decays appear
as straight lines.

Figure 44: Plot of ln(ρ) according to dilatometry. Exponential decays appear as straight lines.
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The two black lines indicate that two different exponential decays take place during the first 13 h. After
that, a peak, most likely because of some late precipitation, deviates from the exponential decay.

This way, the dilatometer measurements don’t prove the XRD measurements are wrong, but it is just
not possible to correlate them because too many different phenomena take place simultaneously in the
dilatometer. Another problem is that the time frame that is measurable by both techniques is very
small. This is because there is no chance to measure dislocation densities with the dilatometer while
precipitation takes place (measurement of ρ for short tempering times is not possible), but the XRD
machine that was used (in this setup) is limited to very high dislocation densities (measurement of ρ
for long tempering times is not possible).
Nevertheless comparing these two methods to see if they are in the same order of magnitude:
After 1.5 h tempering at 760 °C the dislocation density according to the dilatometer is ≈ 1016 m−2,
that is 5/3 times the dislocation density according to XRD (=6∗1015 m−2). Keeping in mind, that the
used XRD method measures dislocations in the grains only, whereas dilatometry gives total dislocation
densities, this is a good value.

Testing if the data achieved with XRD can be confirmed by positron annihilation measurements is
planned for a future project.
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8 Conclusion

Aim of this work was to test the capabilities of XRD dislocation density measurements for complex
martensitic steels. A summary of the data processing methods discussed is shown in tab. 5.

Table 5: Comparision of data analysis methods
D...”Apparent” crystallite size according to Scherrer
< D >...surface-weighted average domain size according to Bertaud; Warren and Averbach
η...(Upper-limit) Microstrain according to Stokes and Wilson
< ǫ2 >...Mean-square-strain
ρ...Dislocation density

Method Data Output Cauchy part included Achieved data quality
scattering in microstrains

Williamson- huge D,η ✗ only for very
Hall (WH) rough comparisons

Warren- high < D >,< ǫ2 > ✗(✓14) much better than WH
Averbach (WA)

Modified considerable D,ρ ✗ compared to WH, scattering
Williamson-Hall is strongly reduced

Modified small < D >,ρ ✗ good, but Cauchy part
Warren-Averbach of microstrains is still excluded

Double-Voigt high < D >,< ǫ2 > ✓ scattering is the
biggest problem

Contrast-corrected small < D >,< ǫ2 > ✓ good
double-Voigt

By introducing the contrast factor C into the double-Voigt method, it was possible to show how big
the error to neglect the Cauchy part of microstrains in the modified Warren-Averbach method really
is. Even when just comparing trends in a series of measurements (as it should be done in general),
checking if the Cauchy part of microstrains remains constant is strongly advised. Otherwise a change
in the Cauchy part might falsely change the calculated microstrains, leading to a false ”trend”.

The dislocation densities of a P91 steel after different tempering times then got evaluated with the
contrast-corrected double-Voigt method and a dilatometry measurement. Both methods show decays
and the dislocation density fraction ρdil/ρXRD is ≈ 5/3, but the dilatometer measurement did not
show the expected behavior. Instead of one exponential decay because of dislocation annihilation, at
least two different exponential functions in the first 13 h were discovered. Furthermore, the used XRD
machine setup only allows to measure very high dislocation densities, so the time frame covered by
both measurement methods is very small.

So even though an XRD method that also includes the Cauchy part of microstrains got improved by
greatly reducing the scattering of data points and the results look promising, the method is limited
to very high dislocation densities with the available XRD machine in the used setup. Furthermore, it
was not possible to fully confirm the achieved data with a complementary technique (dilatometry).

14Although the original Warren-Averbach method did not include the Cauchy part into the microstrains, the equation
itself can be remodeled, so the Cauchy part is included
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9 Appendix

9.1 XRD measurement specifications



15 mm



8,3 mm



Note: This is an automical generated report. Since some used slits couldn't be set correctly in the software, 
they had to be corrected by hand in this report. 
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9.2 Determining γ in the modified Warren-Averbach method

For steels and the used experimental setup, γ can be determined by evaluating the (200) plane. In
this case H2 = 0 and eq. 36 reduces to

(∆g)2−α

g2
∼= γCh00

→ γ ∼= (∆g)2−α

g2Ch00

and γ can be determined.

9.3 Plots of data fits

In the following, the plots for all fitted data are shown.

9.3.1 LaB6 standard

In the following, the fits for the LaB6 standard are shown. When the fits were done, the program was
still in German. Afterwards, the language was switched and the same plots for all later measurements
are shown in English.

Figure 45: Linear- (left) and semi-logarithmic (right) fits of the 21 ° LaB6 peak
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Figure 46: Linear- (left) and semi-logarithmic (right) fits of the 37 ° LaB6 peak

Figure 47: Linear- (left) and semi-logarithmic (right) fits of the 43 ° LaB6 peak

Figure 48: Linear- (left) and semi-logarithmic (right) fits of the 49 ° LaB6 peak
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Figure 49: Linear- (left) and semi-logarithmic (right) fits of the 54 ° LaB6 peak

Figure 50: Linear- (left) and semi-logarithmic (right) fits of the 76 ° LaB6 peak

Figure 51: Linear- (left) and semi-logarithmic (right) fits of the 80 ° LaB6 peak
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Figure 52: Linear- (left) and semi-logarithmic (right) fits of the 84 ° LaB6 peak

Figure 53: Linear- (left) and semi-logarithmic (right) fits of the 88 ° LaB6 peak

Figure 54: Linear- (left) and semi-logarithmic (right) fits of the 96 ° LaB6 peak
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Figure 55: Linear- (left) and semi-logarithmic (right) fits of the 100 ° LaB6 peak

Figure 56: Linear- (left) and semi-logarithmic (right) fits of the 104 ° LaB6 peak

Figure 57: Linear- (left) and semi-logarithmic (right) fits of the 108 ° LaB6 peak
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Figure 58: Linear- (left) and semi-logarithmic (right) fits of the 112 ° LaB6 peak

Figure 59: Linear- (left) and semi-logarithmic (right) fits of the 116 ° LaB6 peak

Figure 60: Linear- (left) and semi-logarithmic (right) fits of the 121 ° LaB6 peak
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Figure 61: Linear- (left) and semi-logarithmic (right) fits of the 131 ° LaB6 peak

Figure 62: Linear- (left) and semi-logarithmic (right) fits of the 136 ° LaB6 peak

Figure 63: Linear- (left) and semi-logarithmic (right) fits of the 142 ° LaB6 peak
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9.3.2 Steel samples

Figure 64: Linear- (left) and semi-logarithmic (right) fits of the 65 ° peak of the 1 h austenitized and
10 min at 760 °C tempered P91 sample

Figure 65: Linear- (left) and semi-logarithmic (right) fits of the 82 ° peak of the 1 h austenitized and
10 min at 760 °C tempered P91 sample

60



Diploma Thesis Arthur Fuchs

Figure 66: Linear- (left) and semi-logarithmic (right) fits of the 99 ° peak of the 1 h austenitized and
10 min at 760 °C tempered P91 sample

Figure 67: Linear- (left) and semi-logarithmic (right) fits of the 116 ° peak of the 1 h austenitized
and 10 min at 760 °C tempered P91 sample

Figure 68: Linear- (left) and semi-logarithmic (right) fits of the 137 ° peak of the 1 h austenitized
and 10 min at 760 °C tempered P91 sample
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9.4 Fit results

In this subsection, the corresponding results to the plotted data fits of the previous subsection are
tabulated.

Table 6: LaB6 standard

Integral breadth Integral breadth Integral breadth Integrated
pseudo-Voigt Cauchy Gauss intensity

0.113740222749642 0.132367463441248 0.0948719506512459 17884.6106108726
0.113740735946802 0.132368544322303 0.0948726521361968 17884.6003329712
0.113740768398450 0.132368400030091 0.0948725760926827 17884.6037876325
0.113740486259267 0.132368031500252 0.0948723240548382 17884.6029126597
0.133271870503564 0.152885341852420 0.109296559093271 9965.81007169609
0.133271988633088 0.152885920234073 0.109297004449128 9965.80085004098
0.133271714474834 0.152885549699805 0.109296730699754 9965.79971850123
0.133271950704298 0.152885258429148 0.109296479612961 9965.81454011559
0.140173408384346 0.157835321766393 0.111158157373015 4929.12549159506
0.140173408384346 0.157835321766393 0.111158157373015 4929.12549159506
0.140173576607415 0.157835374986523 0.111158166412878 4929.12712313214
0.140173576607415 0.157835374986523 0.111158166412878 4929.12712313214
0.141473207373062 0.161060807358797 0.113001209595199 9805.79868795496
0.141473207373062 0.161060807358797 0.113001209595199 9805.79868795496
0.141473207373062 0.161060807358797 0.113001209595199 9805.79868795496
0.141473207373062 0.161060807358797 0.113001209595199 9805.79868795496
0.145413065789622 0.166328657539993 0.116103434165877 5033.40435122657
0.145413065789622 0.166328657539993 0.116103434165877 5033.40435122657
0.145413065789622 0.166328657539993 0.116103434165877 5033.40435122657
0.145413050716555 0.166328513793693 0.116103333767051 5033.40536460108
0.170133734479694 0.191159132408559 0.131679199577469 1987.88406646569
0.170133734479694 0.191159132408559 0.131679199577469 1987.88406646569
0.170133734479694 0.191159132408559 0.131679199577469 1987.88406646569
0.170133734479694 0.191159132408559 0.131679199577469 1987.88406646569
0.181505776933465 0.194974707545910 0.133673986523230 315.415862044294
0.181506011130462 0.194974093249444 0.133673529866432 315.416468350936
0.181505568655242 0.194972901548768 0.133672684789216 315.416587159285
0.181505568655242 0.194972901548768 0.133672684789216 315.416587159285
0.186542910916687 0.208975541622441 0.143641888253041 1076.00055761562
0.186542910916687 0.208975541622441 0.143641888253041 1076.00055761562
0.186542833705588 0.208976521444752 0.143642567020533 1075.99809972294
0.186543379046421 0.208976896410744 0.143642841344490 1075.99957373043
0.194655068450157 0.217751992026790 0.149267107342917 2251.23553144254
0.194654769678021 0.217752146524258 0.149267225997058 2251.23296275034
0.194654769678021 0.217752146524258 0.149267225997058 2251.23296275034
0.194654769678021 0.217752146524258 0.149267225997058 2251.23296275034
0.212656759768239 0.235180369246794 0.160919745479342 2027.79951968874
0.212656759768239 0.235180369246794 0.160919745479342 2027.79951968874
0.212656759768239 0.235180369246794 0.160919745479342 2027.79951968874
0.212656746095571 0.235180362277494 0.160919741015815 2027.79944118630
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0.223180413724535 0.246487398442175 0.168492366826158 1696.18992124553
0.223180413724535 0.246487398442175 0.168492366826158 1696.18992124553
0.223181004179213 0.246489965473082 0.168494151964526 1696.18737255908
0.223181004179213 0.246489965473082 0.168494151964526 1696.18737255908
0.230920522732536 0.252578620302769 0.172462632764484 702.862040376335
0.230920522732536 0.252578620302769 0.172462632764484 702.862040376335
0.230920973016664 0.252578358992623 0.172462531197930 702.861781156520
0.230920973016664 0.252578358992623 0.172462531197930 702.861781156520
0.243385178705720 0.264674267334700 0.180575926312178 988.848941343270
0.243385178705720 0.264674267334700 0.180575926312178 988.848941343270
0.243386079054366 0.264676671323308 0.180577584982675 988.848179327951
0.243386079054366 0.264676671323308 0.180577584982675 988.848179327951
0.256783696639391 0.276855532829105 0.188875412390795 1940.17369656041
0.256783789801506 0.276855333381905 0.188875274103202 1940.17424813671
0.256783789801506 0.276855333381905 0.188875274103202 1940.17424813671
0.256783014013469 0.276853817814211 0.188874216377102 1940.17302964937
0.277152717209382 0.297376441065285 0.202685613493050 1014.78294741914
0.277153742020046 0.297380191526494 0.202688275140894 1014.78102583201
0.277153742020046 0.297380191526494 0.202688275140894 1014.78102583201
0.277153742020046 0.297380191526494 0.202688275140894 1014.78102583201
0.310026734930681 0.327717103846145 0.222987936329148 717.976725878305
0.310033603674938 0.327731431265359 0.222997966591581 717.980563018944
0.310033603674938 0.327731431265359 0.222997966591581 717.980563018944
0.310030106739735 0.327719001314929 0.222989335001603 717.984591185730
0.336815564349354 0.358606887166049 0.244265633328297 1014.56227250941
0.336815564349354 0.358606887166049 0.244265633328297 1014.56227250941
0.336815564349354 0.358606887166049 0.244265633328297 1014.56227250941
0.336814092416503 0.358603234778358 0.244263122689290 1014.56268691770
0.398144724617292 0.419700574736405 0.285587384915823 3849.57417445936
0.398144215738860 0.419699004498508 0.285586317368756 3849.57715262779
0.398142068868931 0.419693223692860 0.285582315050216 3849.57792380599
0.398142068868931 0.419693223692860 0.285582315050216 3849.57792380599
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Table 7: LaB6 standard

Peak HWHM Shape Asymmetry
maximum parameter

21.3884271649364 0.0313632071360818 0.585625535375824 1.06294256513561
21.3884272178622 0.0313635087818730 0.585615905556738 1.06294475406496
21.3884270338026 0.0313634998195822 0.585619533430704 1.06293612081357
21.3884271537451 0.0313633720765890 0.585620240787428 1.06294165522114
37.4988375385985 0.0340004458077274 0.630981855764799 1.06077175976268
37.4988375357265 0.0340005925117071 0.630973145957002 1.06077124111180
37.4988375731684 0.0340005078539366 0.630974304981516 1.06077311573567
37.4988374971210 0.0340004131234973 0.630985391306260 1.06076962658190
43.5692000307882 0.0341773284861275 0.699939387828430 1.03348367920340
43.5692000307882 0.0341773284861275 0.699939387828430 1.03348367920340
43.5691999444809 0.0341773110087495 0.699941961335800 1.03348185499016
43.5691999444809 0.0341773110087495 0.699941961335800 1.03348185499016
49.0266685090153 0.0352444719918997 0.674455781131947 1.03670006159017
49.0266685090153 0.0352444719918997 0.674455781131947 1.03670006159017
49.0266685090153 0.0352444719918997 0.674455781131947 1.03670006159017
49.0266685090153 0.0352444719918997 0.674455781131947 1.03670006159017
54.0630443811062 0.0363533658885596 0.667501328697057 1.01678451187657
54.0630443811062 0.0363533658885596 0.667501328697057 1.01678451187657
54.0630443811062 0.0363533658885596 0.667501328697057 1.01678451187657
54.0630444511687 0.0363533345552590 0.667503340328126 1.01678688056007
75.9400976243049 0.0412091721240406 0.726409824737839 0.996237539212653
75.9400976243049 0.0412091721240406 0.726409824737839 0.996237539212653
75.9400976243049 0.0412091721240406 0.726409824737839 0.996237539212653
75.9400976243049 0.0412091721240406 0.726409824737839 0.996237539212653
79.9720753028926 0.0412502698874813 0.838183061344497 1.10274786494301
79.9720752155603 0.0412501073862938 0.838193600665173 1.10274956988894
79.9720752461872 0.0412498447744054 0.838202315471030 1.10275012822668
79.9720752461872 0.0412498447744054 0.838202315471030 1.10275012822668
83.9582399896323 0.0449179967296640 0.735609638319486 1.01274440292375
83.9582399896323 0.0449179967296640 0.735609638319486 1.01274440292375
83.9582401346377 0.0449182007054309 0.735597039659949 1.01274442793164
83.9582400644587 0.0449182908830316 0.735599722989518 1.01274499004827
87.9098049823613 0.0464053328939600 0.741382559765623 1.01306730645094
87.9098050147889 0.0464053749670290 0.741377017302146 1.01306837572873
87.9098050147889 0.0464053749670290 0.741377017302146 1.01306837572873
87.9098050147889 0.0464053749670290 0.741377017302146 1.01306837572873
99.7820818351671 0.0502787778687344 0.770485810446388 1.00051642939354
99.7820818351671 0.0502787778687344 0.770485810446388 1.00051642939354
99.7820818351671 0.0502787778687344 0.770485810446388 1.00051642939354
99.7820818334116 0.0502787766169256 0.770485726004649 1.00051653484756
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103.808955362336 0.0526012164788070 0.774397812939374 0.993771213101137
103.808955362336 0.0526012164788070 0.774397812939374 0.993771213101137
103.808955365673 0.0526017753469023 0.774379148818204 0.993766507296094
103.808955365673 0.0526017753469023 0.774379148818204 0.993766507296094
107.907019700709 0.0537520403254519 0.798101266216986 1.01157090992810
107.907019700709 0.0537520403254519 0.798101266216986 1.01157090992810
107.907020026577 0.0537520446713019 0.798108009786767 1.01158620296752
107.907020026577 0.0537520446713019 0.798108009786767 1.01158620296752
112.101950041901 0.0562978665510730 0.812182798618977 1.01365826009174
112.101950041901 0.0562978665510730 0.812182798618977 1.01365826009174
112.101950131723 0.0562983784602818 0.812170167331704 1.01365745264514
112.101950131723 0.0562983784602818 0.812170167331704 1.01365745264514
116.425244967491 0.0589347355400611 0.832192823241807 1.00042447264914
116.425244951207 0.0589346907409217 0.832195336642995 1.00042591629683
116.425244951207 0.0589346907409217 0.832195336642995 1.00042591629683
116.425244866173 0.0589343507129160 0.832201080976269 1.00043034334504
120.915982234103 0.0631626090984507 0.843808643238230 0.986217086080292
120.915982596282 0.0631634874533441 0.843787915041249 0.986215082174311
120.915982596282 0.0631634874533441 0.843787915041249 0.986215082174311
120.915982596282 0.0631634874533441 0.843787915041249 0.986215082174311
130.644149710737 0.0694355204122869 0.878506942911689 1.02015672660576
130.644150663703 0.0694388049654912 0.878457931303763 1.02012781399280
130.644150663703 0.0694388049654912 0.878457931303763 1.02012781399280
130.644150537171 0.0694360715834513 0.878518206133544 1.02012759409337
136.065721585844 0.0763954196957784 0.861786374024273 0.987965515895827
136.065721585844 0.0763954196957784 0.861786374024273 0.987965515895827
136.065721585844 0.0763954196957784 0.861786374024273 0.987965515895827
136.065721521154 0.0763946372139189 0.861799640294168 0.987967085376948
142.084550077718 0.0890976189806021 0.884709979329335 0.979576737016389
142.084550213997 0.0890972958018407 0.884715507417503 0.979575571273365
142.084550023153 0.0890960279821621 0.884734408594966 0.979582833471231
142.084550023153 0.0890960279821621 0.884734408594966 0.979582833471231
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Table 8: P91 0p166h 760C

Integral breadth Integral breadth Integral breadth Integrated
pseudo-Voigt Cauchy Gauss intensity

0.527290119399441 0.649762786706706 0.437569658733183 5988.26509065383
0.527290119399441 0.649762786706706 0.437569658733183 5988.26509065383
0.527290119399441 0.649762786706706 0.437569658733183 5988.26509065383
0.527288732046739 0.649758277268281 0.437566772369075 5988.27209034689
0.570109437578331 0.664848017623619 0.467560666125258 10353.2844620845
0.570109437578331 0.664848017623619 0.467560666125258 10353.2844620845
0.570109437578331 0.664848017623619 0.467560666125258 10353.2844620845
0.570107268124486 0.664843120842662 0.467557657344037 10353.2865732479
0.700783444336066 0.770119323869001 0.552368331075112 4225.70818272576
0.700780044906837 0.770111575602760 0.552363114146670 4225.71230050969
0.700780044906837 0.770111575602760 0.552363114146670 4225.71230050969
0.700780044906837 0.770111575602760 0.552363114146670 4225.71230050969
1.12755603484098 1.29018831486239 0.899549248980856 7328.56745199267
1.12755603484098 1.29018831486239 0.899549248980856 7328.56745199267
1.12755603484098 1.29018831486239 0.899549248980856 7328.56745199267
1.12755603484098 1.29018831486239 0.899549248980856 7328.56745199267
1.22887486879813 1.32771006770420 0.959480432537655 2721.84802594968
1.22887486879813 1.32771006770420 0.959480432537655 2721.84802594968
1.22889176595041 1.32772412458233 0.959491093183323 2721.87410992779
1.22888530078116 1.32771822189133 0.959486761063414 2721.86815553721

Table 9: P91 0p166h 760C

Peak HWHM Shape Asymmetry
maximum parameter

64.8771566549783 0.173367167716769 0.521033180869180 1.24535863555926
64.8771566549783 0.173367167716769 0.521033180869180 1.24535863555926
64.8771566549783 0.173367167716769 0.521033180869180 1.24535863555926
64.8771557039396 0.173365872462965 0.521043626364064 1.24534854549737
82.1625179298473 0.163172742774584 0.606171295457613 1.17604168905240
82.1625179298473 0.163172742774584 0.606171295457613 1.17604168905240
82.1625179298473 0.163172742774584 0.606171295457613 1.17604168905240
82.1625165381724 0.163171502386559 0.606179899828647 1.17603082383996
98.7226773292644 0.183708979085349 0.749017857012887 1.07228168913006
98.7226759906612 0.183706843473346 0.749031834340486 1.07227973062992
98.7226759906612 0.183706843473346 0.749031834340486 1.07227973062992
98.7226759906612 0.183706843473346 0.749031834340486 1.07227973062992
116.080892625399 0.322325968860978 0.667862517551163 1.13173692223232
116.080892625399 0.322325968860978 0.667862517551163 1.13173692223232
116.080892625399 0.322325968860978 0.667862517551163 1.13173692223232
116.080892625399 0.322325968860978 0.667862517551163 1.13173692223232
136.732032735898 0.304415874047110 0.790433740193638 1.07664902032007
136.732032735898 0.304415874047110 0.790433740193638 1.07664902032007
136.732035393309 0.304419670663985 0.790442248452595 1.07667024585572
136.732037211124 0.304418121158347 0.790440005681302 1.07667730844157
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Table 10: P91 0p5h 760C

Integral breadth Integral breadth Integral breadth Integrated
pseudo-Voigt Cauchy Gauss intensity

0.414509964063693 0.476055746089340 0.337190469465058 5089.89594739535
0.414509964063693 0.476055746089340 0.337190469465058 5089.89594739535
0.414509964063693 0.476055746089340 0.337190469465058 5089.89594739535
0.414509964063693 0.476055746089340 0.337190469465058 5089.89594739535
0.417279253308333 0.458618374699876 0.331081627643383 9882.56447785912
0.417280700620139 0.458620549731061 0.331083243237469 9882.56440167673
0.417280700620139 0.458620549731061 0.331083243237469 9882.56440167673
0.417280700620139 0.458620549731061 0.331083243237469 9882.56440167673
0.530345531235751 0.572628066351387 0.411936414654916 4595.77846186262
0.530345531235751 0.572628066351387 0.411936414654916 4595.77846186262
0.530347766352230 0.572629525165320 0.411937508166826 4595.78853216560
0.530347766352230 0.572629525165320 0.411937508166826 4595.78853216560
0.908176293148979 0.999701749542010 0.721908970340945 6395.28293836444
0.908176657013753 0.999702431987376 0.721909433917736 6395.28294506710
0.908176657013753 0.999702431987376 0.721909433917736 6395.28294506710
0.908176657013753 0.999702431987376 0.721909433917736 6395.28294506710
0.938254724756315 1.02768876155645 0.727966912531045 2487.08831486430
0.938254724756315 1.02768876155645 0.727966912531045 2487.08831486430
0.938254724756315 1.02768876155645 0.727966912531045 2487.08831486430
0.938254724756315 1.02768876155645 0.727966912531045 2487.08831486430

Table 11: P91 0p5h 760C

Peak HWHM Shape Asymmetry
maximum parameter

64.8993395019358 0.115643440559515 0.639467062477988 1.12198360607521
64.8993395019358 0.115643440559515 0.639467062477988 1.12198360607521
64.8993395019358 0.115643440559515 0.639467062477988 1.12198360607521
64.8993395019358 0.115643440559515 0.639467062477988 1.12198360607521
82.1725390032892 0.104799311241647 0.742821774547169 1.04539273867422
82.1725389989058 0.104799863963083 0.742818012435179 1.04538970116443
82.1725389989058 0.104799863963083 0.742818012435179 1.04538970116443
82.1725389989058 0.104799863963083 0.742818012435179 1.04538970116443
98.7394966636709 0.129756379261171 0.795619727231197 1.03301723862404
98.7394966636709 0.129756379261171 0.795619727231197 1.03301723862404
98.7394964296277 0.129756744875696 0.795624263042565 1.03301380596677
98.7394964296277 0.129756744875696 0.795624263042565 1.03301380596677
116.112323923778 0.234380357936342 0.738101369289730 1.02574903115413
116.112324235493 0.234380536013117 0.738100600774243 1.02575065130667
116.112324235493 0.234380536013117 0.738100600774243 1.02575065130667
116.112324235493 0.234380536013117 0.738100600774243 1.02575065130667
136.750048926640 0.228077316272671 0.768487038186277 1.00085151669058
136.750048926640 0.228077316272671 0.768487038186277 1.00085151669058
136.750048926640 0.228077316272671 0.768487038186277 1.00085151669058
136.750048926640 0.228077316272671 0.768487038186277 1.00085151669058
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Table 12: P91 1p5h 760C

Integral breadth Integral breadth Integral breadth Integrated
pseudo-Voigt Cauchy Gauss intensity

0.366177261402393 0.414795953977922 0.297613320665316 5577.43057864836
0.366177261402393 0.414795953977922 0.297613320665316 5577.43057864836
0.366177261402393 0.414795953977922 0.297613320665316 5577.43057864836
0.366177261402393 0.414795953977922 0.297613320665316 5577.43057864836
0.379646949555851 0.408994791343633 0.293367629868689 10351.2273710940
0.379646949555851 0.408994791343633 0.293367629868689 10351.2273710940
0.379646654639386 0.408995508640324 0.293368192842500 10351.2185743290
0.379646891022587 0.408997226710955 0.293369515377593 10351.2085811920
0.464531687968059 0.492067573836691 0.350140861232518 4581.78271136102
0.464531881740614 0.492067641348398 0.350140906556368 4581.78387806017
0.464532174143415 0.492068491144420 0.350141551060399 4581.78236823877
0.464532174143415 0.492068491144420 0.350141551060399 4581.78236823877
0.770785959681230 0.845451279326925 0.610832425359612 6643.44832668966
0.770788976793776 0.845455831494055 0.610835800443739 6643.44946720184
0.770788126990665 0.845454672219675 0.610834938292847 6643.44852035973
0.770790966061206 0.845457961270153 0.610837349271493 6643.45242188789
0.836105572435249 0.865437631666447 0.606746763424706 2592.94557618829
0.836105572435249 0.865437631666447 0.606746763424706 2592.94557618829
0.836105572435249 0.865437631666447 0.606746763424706 2592.94557618829
0.836105572435249 0.865437631666447 0.606746763424706 2592.94557618829

Table 13: P91 1p5h 760C

Peak HWHM Shape Asymmetry
maximum parameter

64.8833797848310 0.0984230268271856 0.662789556821009 1.15285885641500
64.8833797848310 0.0984230268271856 0.662789556821009 1.15285885641500
64.8833797848310 0.0984230268271856 0.662789556821009 1.15285885641500
64.8833797848310 0.0984230268271856 0.662789556821009 1.15285885641500
82.1611315021426 0.0920186157537140 0.803867943373483 1.08180594982322
82.1611315021426 0.0920186157537140 0.803867943373483 1.08180594982322
82.1611315710677 0.0920187918095511 0.803860911761203 1.08180826224458
82.1611316833972 0.0920192141962710 0.803850918461782 1.08181019028618
98.7272618556633 0.109686661220961 0.853761285632002 1.05307821636404
98.7272618506488 0.109686676808984 0.853762021116452 1.05307766883353
98.7272618111474 0.109686884543075 0.853759095290150 1.05307664318315
98.7272618111474 0.109686884543075 0.853759095290150 1.05307664318315
116.086568355190 0.193511118250455 0.747800449897778 1.09423242308583
116.086568413151 0.193512299051580 0.747796123886198 1.09423096007994
116.086568386431 0.193511997746486 0.747796927713354 1.09423090862784
116.086568282595 0.193512845967704 0.747796285182399 1.09422523110658
136.731912583747 0.189816558014181 0.917717438072142 1.05330637473692
136.731912583747 0.189816558014181 0.917717438072142 1.05330637473692
136.731912583747 0.189816558014181 0.917717438072142 1.05330637473692
136.731912583747 0.189816558014181 0.917717438072142 1.05330637473692
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Table 14: P91 12h 760C

Integral breadth Integral breadth Integral breadth Integrated
pseudo-Voigt Cauchy Gauss intensity

0.333548421020954 0.384901033130752 0.277566062080759 6200.47682767727
0.333548421020954 0.384901033130752 0.277566062080759 6200.47682767727
0.333547782671893 0.384899598044171 0.277565108034469 6200.47682427697
0.333547782671893 0.384899598044171 0.277565108034469 6200.47682427697
0.349288909262619 0.386681703261704 0.276383278901306 11737.2852119510
0.349286432446009 0.386676787421091 0.276379514487305 11737.2966194642
0.349286432446009 0.386676787421091 0.276379514487305 11737.2966194642
0.349286432446009 0.386676787421091 0.276379514487305 11737.2966194642
0.416341918816186 0.445192173386239 0.314569608900544 3695.57157896648
0.416341918816186 0.445192173386239 0.314569608900544 3695.57157896648
0.416341918816186 0.445192173386239 0.314569608900544 3695.57157896648
0.416341918816186 0.445192173386239 0.314569608900544 3695.57157896648
0.683743329439318 0.764123038774808 0.549638620158321 6900.68486618953
0.683743329439318 0.764123038774808 0.549638620158321 6900.68486618953
0.683743329439318 0.764123038774808 0.549638620158321 6900.68486618953
0.683743329439318 0.764123038774808 0.549638620158321 6900.68486618953
0.755124165093155 0.783143790457269 0.546262396160159 2864.44423345055
0.755119489001784 0.783135278365550 0.546256150507176 2864.44347093061
0.755119489001784 0.783135278365550 0.546256150507176 2864.44347093061
0.755119489001784 0.783135278365550 0.546256150507176 2864.44347093061

Table 15: P91 12h 760C

Peak HWHM Shape Asymmetry
maximum parameter

64.9245282900980 0.0897420400351990 0.601866455106988 1.18367724997587
64.9245282900980 0.0897420400351990 0.601866455106988 1.18367724997587
64.9245279525372 0.0897417033959266 0.601871454378399 1.18367064749979
64.9245279525372 0.0897417033959266 0.601871454378399 1.18367064749979
82.2143763265198 0.0863697079908372 0.731746388673641 1.11796340689875
82.2143765227169 0.0863684597019364 0.731762837293301 1.11797021384826
82.2143765227169 0.0863684597019364 0.731762837293301 1.11797021384826
82.2143765227169 0.0863684597019364 0.731762837293301 1.11797021384826
98.7736801548981 0.0983140428206316 0.833122391738689 1.05810069202491
98.7736801548981 0.0983140428206316 0.833122391738689 1.05810069202491
98.7736801548981 0.0983140428206316 0.833122391738689 1.05810069202491
98.7736801548981 0.0983140428206316 0.833122391738689 1.05810069202491
116.126483214169 0.172524798199945 0.698744613002953 1.12388631033446
116.126483214169 0.172524798199945 0.698744613002953 1.12388631033446
116.126483214169 0.172524798199945 0.698744613002953 1.12388631033446
116.126483214169 0.172524798199945 0.698744613002953 1.12388631033446
136.774341862071 0.170691267907944 0.914431422867559 1.09631184153677
136.774342959736 0.170689298086170 0.914442767358552 1.09631605089046
136.774342959736 0.170689298086170 0.914442767358552 1.09631605089046
136.774342959736 0.170689298086170 0.914442767358552 1.09631605089046
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Table 16: P91 24h 760C

Integral breadth Integral breadth Integral breadth Integrated
pseudo-Voigt Cauchy Gauss intensity

0.305692509958350 0.346288860439689 0.250317257621689 5912.24864056680
0.305694016484607 0.346292444627294 0.250319862293378 5912.24205892435
0.305694016484607 0.346292444627294 0.250319862293378 5912.24205892435
0.305694016484607 0.346292444627294 0.250319862293378 5912.24205892435
0.323848006168151 0.352227226350850 0.249862598258243 10802.2933870654
0.323847497000257 0.352222720724925 0.249859116341985 10802.3235623512
0.323847497000257 0.352222720724925 0.249859116341985 10802.3235623512
0.323847497000257 0.352222720724925 0.249859116341985 10802.3235623512
0.390192721324623 0.417695456038596 0.293686726170199 3800.96551527486
0.390192668070817 0.417689718116537 0.293682447936976 3800.98701926415
0.390192668070817 0.417689718116537 0.293682447936976 3800.98701926415
0.390192668070817 0.417689718116537 0.293682447936976 3800.98701926415
0.613532669250457 0.676673954332981 0.482080263578520 7110.86743231929
0.613533313748809 0.676673287814297 0.482079652208242 7110.87435856377
0.613536798373287 0.676679310256803 0.482084200209241 7110.87148951862
0.613536798373287 0.676679310256803 0.482084200209241 7110.87148951862
0.695418230651589 0.712274325462526 0.494122933816402 2802.86967703749
0.695418230651589 0.712274325462526 0.494122933816402 2802.86967703749
0.695430585048691 0.712316451752918 0.494153179261912 2802.84303372179
0.695430585048691 0.712316451752918 0.494153179261912 2802.84303372179

Table 17: P91 24h 760C

Peak HWHM Shape Asymmetry
maximum parameter

64.9367094057584 0.0794152054440875 0.653622048349723 1.14683494039794
64.9367096818125 0.0794161161170344 0.653605959358552 1.14683731469033
64.9367096818125 0.0794161161170344 0.653605959358552 1.14683731469033
64.9367096818125 0.0794161161170344 0.653605959358552 1.14683731469033
82.2133188521652 0.0780424344617268 0.786100106256457 1.09946284615866
82.2133189070837 0.0780413370341047 0.786130733633185 1.09946083731188
82.2133189070837 0.0780413370341047 0.786130733633185 1.09946083731188
82.2133189070837 0.0780413370341047 0.786130733633185 1.09946083731188
98.7751517679573 0.0918418068009864 0.833072159664589 1.05193412173246
98.7751520111362 0.0918404664441726 0.833107106698686 1.05193849543373
98.7751520111362 0.0918404664441726 0.833107106698686 1.05193849543373
98.7751520111362 0.0918404664441726 0.833107106698686 1.05193849543373
116.136778683636 0.150900456514930 0.745043363951511 1.08698163250808
116.136778695893 0.150900288045291 0.745049176566665 1.08697596043069
116.136778315545 0.150901778368869 0.745039903781976 1.08696845150169
116.136778315545 0.150901778368869 0.745039903781976 1.08696845150169
136.771319937993 0.154461112829177 0.945098031378775 1.07171325190312
136.771319937993 0.154461112829177 0.945098031378775 1.07171325190312
136.771315650699 0.154470534146649 0.945001667283013 1.07168923566038
136.771315650699 0.154470534146649 0.945001667283013 1.07168923566038
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Table 18: P91 36h 760C

Integral breadth Integral breadth Integral breadth Integrated
pseudo-Voigt Cauchy Gauss intensity

0.343028070226883 0.403058552871494 0.289045080036953 5486.52454228142
0.343033867511387 0.403063397451939 0.289048272936817 5486.55129473957
0.343033867511387 0.403063397451939 0.289048272936817 5486.55129473957
0.343033867511387 0.403063397451939 0.289048272936817 5486.55129473957
0.356876204258982 0.396270366617179 0.283868511294068 11001.6754057003
0.356876081310387 0.396269958688344 0.283868194625187 11001.6772065470
0.356876081310387 0.396269958688344 0.283868194625187 11001.6772065470
0.356874950251742 0.396272034176421 0.283869747479185 11001.6394059249
0.410995870380892 0.441637618614087 0.311784947287338 3974.85911125956
0.410995870380892 0.441637618614087 0.311784947287338 3974.85911125956
0.410992796298037 0.441636957734514 0.311784576978154 3974.83982089386
0.410992796298037 0.441636957734514 0.311784576978154 3974.83982089386
0.673590865003337 0.750461204553644 0.539297253509963 6325.09638943283
0.673590865003337 0.750461204553644 0.539297253509963 6325.09638943283
0.673590865003337 0.750461204553644 0.539297253509963 6325.09638943283
0.673590865003337 0.750461204553644 0.539297253509963 6325.09638943283
0.743381199155224 0.759410369022161 0.528272811792164 2649.35553279751
0.743384772039110 0.759410093746513 0.528272323936304 2649.36253287116
0.743383214150202 0.759380864155774 0.528250554751332 2649.39495572746
0.743383214150202 0.759380864155774 0.528250554751332 2649.39495572746

Table 19: P91 36h 760C

Peak HWHM Shape Asymmetry
maximum parameter

64.9181032810008 0.0956611495560143 0.556338664668804 1.17733605134046
64.9181033213498 0.0956625246525295 0.556354729771529 1.17733185656184
64.9181033213498 0.0956625246525295 0.556354729771529 1.17733185656184
64.9181033213498 0.0956625246525295 0.556354729771529 1.17733185656184
82.2011440593872 0.0887723453167592 0.721222307051086 1.12577564872915
82.2011440489761 0.0887722446454527 0.721224312354766 1.12577519585724
82.2011440489761 0.0887722446454527 0.721224312354766 1.12577519585724
82.2011439015788 0.0887727854573157 0.721200508427309 1.12576723814695
98.7642710093593 0.0975836804586582 0.820988744979926 1.05493558664940
98.7642710093593 0.0975836804586582 0.820988744979926 1.05493558664940
98.7642714329932 0.0975835370368478 0.820973119852965 1.05494965724386
98.7642714329932 0.0975835370368478 0.820973119852965 1.05494965724386
116.114371190709 0.168950883037129 0.708545315666624 1.14080126668979
116.114371190709 0.168950883037129 0.708545315666624 1.14080126668979
116.114371190709 0.168950883037129 0.708545315666624 1.14080126668979
116.114371190709 0.168950883037129 0.708545315666624 1.14080126668979
136.755722172212 0.164950587268971 0.950718127730553 1.09315091489441
136.755727135771 0.164950055907528 0.950730286560340 1.09317258513773
136.755733342297 0.164942771336678 0.950815699196104 1.09319978390023
136.755733342297 0.164942771336678 0.950815699196104 1.09319978390023

71



Diploma Thesis Arthur Fuchs

9.5 Determination of q

The following figures (69 to 75) show the plots to determine the parameter q to then calculate the
contrast factor C.

Figure 69: Determination of the parameter q for sample P91 BH vib pol

Figure 70: Determination of the parameter q for
sample P91 0p166h 760C

Figure 71: Determination of the parameter q for
sample P91 0p5h 760C
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Figure 72: Determination of the parameter q for
sample P91 1p5h 760C

Figure 73: Determination of the parameter q for
sample P91 12h 760C

Figure 74: Determination of the parameter q for
sample P91 24h 760C

Figure 75: Determination of the parameter q for
sample P91 36h 760C

9.6 Matlab codes

9.6.1 Peak fitting

To run the programs please also download the routines ”pseudoVoigtAsym”, ”pseudoVoigtAsymDeriv”
and ”pseudoVoigtAsymFit” from http://www.xray.cz/xrdmlread/Add-ons.htm. Also the files ”pseu-
doVoigtAsym C G separate” and ”pseudoVoigtAsym separate” are needed (see below). These two
files are mostly identical to ”pseudoVoigtAsym” but have been adapted by the author of this work.

9.6.2 pseudoVoigtAsym C G separate

The Matlab code for ”pseudoVoigtAsym C G separate” is:
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function [y,y_c,y_g] = pseudoVoigtAsym(a,x)

%--------------------------------------------------------------

%%%%----This file was downloaded from

%%%%http://www.xray.cz/xrdmlread/Add-ons.htm

%%%%and the author only adapted minor changes!!!----

%-------------------------------------------------------------

% PSEUDOVOIGTASYM Calculate values of the asymmetric

% pseudo-Voigt function.

%

% [y] = pseudoVoigtAsym(a,x)

%

% a - parameters of the asymmetric pseudo-Voigt function

% x - a (row) vector of points where the asymmetric

% pseudo-Voigt should be calculated.

%

% y - calculated values of the asym. pseudo-Voigt function

%

% example: a Gauss-like peak

%

% x = [-10:0.1:10];

% a = [1.0, 2.0, 1.5, 0.0, 1.0];

% y = pseudoVoigtAsym(a,x);

% plot(x,y)

%

% The integral of the asym. pseudo-Voigt function is normalized

% to one and hence the function is defined as:

%

% y = a1 * { (1-a4) * sqrt[log(2)/pi/ss^2]

% * exp[-log(2)/s^2*(x-a2)^2]

% + a4 * 1/pi/ss * 1 / [ 1 + (x-a2)^2/s^2) ] },

%

% where ss and s are defined as follows:

%

% ss = 1/4*(2 + a5 + 1/a5)*a3

%

% s = 1/2*(1 + a5)*a3 for x < a2,

% s = 1/2*(1 + 1/a5)*a3 for x >= a2.

%

% Parameters have this meaning:

%

% a1 - integrated intensity

% a2 - maximum position

% a3 - HWHM - half width in the half of maximum

% (for symmetrical profiles)

% a4 - Cauchy/Gauss component weight (0 - Gauss, 1 - Cauchy)

% a5 - asymmetry (1 - symmetric)

%

% FWHM = 1/2*(2+a5+1/a5)*a3

%

% Function parametes (a) should be optionally stored in
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% a vector of the size (1 x 5). If input parameters (a)

% represent a matrix of size (n x 5), n pseudo-Voigt

% functions are returned in n rows of the output vector y.

%

% X-ray diffraction: global WAVELENGTHS

%

% Function support a global variable WAVELENGTHS that

% represent an array of size (m x 2), where m is a number

% of spectral lines. (In scripts if for example sigle peaks

% are generated take caution that these variables were not

% previosly defined by another script.) The WAVELENGTHS matrix

% has this interpretation:

%

% the 1st column - relative line intensity

% the 2st column - delta(Lambda)/Lambda ratio

% (Lambda is an averaged wavelength)

%

% example: CuKalpha1 + CuKalpha1 (Lambda = 1.5419)

%

% WAVELENGTHS =

% 1.0000 -0.0008

% 0.5000 0.0017

%

% Ref.: The function has been adapted from

% [1] H. Toraya, J.Appl.Cryst 23 (1990), 485-491

% [2] ObjCryst/FOX - V. Favre-Nicolin, J.Appl.Cryst. 35 (2002), 734-743

%

% See also pseudoVoigtAsymDeriv, pseudVoigtAsymFit

%

% version 1.1, 19.11.2013, (c) Zdenek Matej

%--------------------------------------------------------------

global WAVELENGTH_SEPARATE

global normierung

% check parameters

if ~exist(’WAVELENGTH_SEPARATE’,’var’) | isempty(WAVELENGTH_SEPARATE)

WAVELENGTH_SEPARATE=[1.0 0.0];

end

if size(x,1)>1 x = reshape(x,1,[]); end

if size(a,2)~=5 a = reshape(a,[],5); end

% calc. all sets (sum over all spectral lines)

y = zeros(size(a,1),length(x));

y_c = zeros(size(a,1),length(x));

y_g = zeros(size(a,1),length(x));

for j=1:size(a,1)

for k=1:size(WAVELENGTH_SEPARATE,1)

a2 = a(j,2)+tan(a(j,2)*pi/360)*WAVELENGTH_SEPARATE(k,2)*360/pi;

Lind = x < a(j,2);

s1 = (1. + a(j,5))*a(j,3)/2;

s2 = (1. + 1./a(j,5))*a(j,3)/2;

ss = (s1 + s2)/2;
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c = (1-a(j,4))*sqrt(log(2)/pi/ss^2);

y_g(j, Lind) = y_g(j, Lind) + WAVELENGTH_SEPARATE(k,1)*c*...

exp(-log(2)/s1^2*(x( Lind)-a2).^2);

y_g(j,~Lind) = y_g(j,~Lind) + WAVELENGTH_SEPARATE(k,1)*c*...

exp(-log(2)/s2^2*(x(~Lind)-a2).^2);

c = a(j,4)/pi/ss;

y_c(j, Lind) = y_c(j, Lind) + WAVELENGTH_SEPARATE(k,1)*...

c./(1+(x( Lind)-a2).^2/s1^2);

y_c(j,~Lind) = y_c(j,~Lind) + WAVELENGTH_SEPARATE(k,1)*...

c./(1+(x(~Lind)-a2).^2/s2^2);

y(j,:) = y_c(j,:) + y_g(j,:);

end

y_c(j,:) = a(j,1)*y_c(j,:)/normierung;

y_g(j,:) = a(j,1)*y_g(j,:)/normierung;

y(j,:) = a(j,1)*y(j,:)/normierung;

end

return;

9.6.3 pseudoVoigtAsym separate

The Matlab code for ”pseudoVoigtAsym separate” is:

function [y] = pseudoVoigtAsym(a,x)

%--------------------------------------------------------------

%%%%----This file was downloaded from

%%%%http://www.xray.cz/xrdmlread/Add-ons.htm

%%%%and the author only adapted minor changes!!!----

%-------------------------------------------------------------

% PSEUDOVOIGTASYM Calculate values of the asymmetric

% pseudo-Voigt function.

%

% [y] = pseudoVoigtAsym(a,x)

%

% a - parameters of the asymmetric pseudo-Voigt function

% x - a (row) vector of points where the asymmetric

% pseudo-Voigt should be calculated.

%

% y - calculated values of the asym. pseudo-Voigt function

%

% example: a Gauss-like peak

%

% x = [-10:0.1:10];

% a = [1.0, 2.0, 1.5, 0.0, 1.0];

% y = pseudoVoigtAsym(a,x);

% plot(x,y)

%

% The integral of the asym. pseudo-Voigt function is normalized

% to one and hence the function is defined as:

%
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% y = a1 * { (1-a4) * sqrt[log(2)/pi/ss^2]

% * exp[-log(2)/s^2*(x-a2)^2]

% + a4 * 1/pi/ss * 1 / [ 1 + (x-a2)^2/s^2) ] },

%

% where ss and s are defined as follows:

%

% ss = 1/4*(2 + a5 + 1/a5)*a3

%

% s = 1/2*(1 + a5)*a3 for x < a2,

% s = 1/2*(1 + 1/a5)*a3 for x >= a2.

%

% Parameters have this meaning:

%

% a1 - integrated intensity

% a2 - maximum position

% a3 - HWHM - half width in the half of maximum

% (for symmetrical profiles)

% a4 - Cauchy/Gauss component weight (0 - Gauss, 1 - Cauchy)

% a5 - asymmetry (1 - symmetric)

%

% FWHM = 1/2*(2+a5+1/a5)*a3

%

% Function parametes (a) should be optionally stored in

% a vector of the size (1 x 5). If input parameters (a)

% represent a matrix of size (n x 5), n pseudo-Voigt

% functions are returned in n rows of the output vector y.

%

% X-ray diffraction: global WAVELENGTHS

%

% Function support a global variable WAVELENGTHS that

% represent an array of size (m x 2), where m is a number

% of spectral lines. (In scripts if for example sigle peaks

% are generated take caution that these variables were not

% previosly defined by another script.) The WAVELENGTHS matrix

% has this interpretation:

%

% the 1st column - relative line intensity

% the 2st column - delta(Lambda)/Lambda ratio

% (Lambda is an averaged wavelength)

%

% example: CuKalpha1 + CuKalpha1 (Lambda = 1.5419)

%

% WAVELENGTHS =

% 1.0000 -0.0008

% 0.5000 0.0017

%

% Ref.: The function has been adapted from

% [1] H. Toraya, J.Appl.Cryst 23 (1990), 485-491

% [2] ObjCryst/FOX - V. Favre-Nicolin, J.Appl.Cryst. 35 (2002), 734-743

%
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% See also pseudoVoigtAsymDeriv, pseudVoigtAsymFit

%

% version 1.1, 19.11.2013, (c) Zdenek Matej

%--------------------------------------------------------------

global WAVELENGTH_SEPARATE

global normierung

% check parameters

if ~exist(’WAVELENGTH_SEPARATE’,’var’) | isempty(WAVELENGTH_SEPARATE)

WAVELENGTH_SEPARATE=[1.0 0.0];

end

if size(x,1)>1 x = reshape(x,1,[]); end

if size(a,2)~=5 a = reshape(a,[],5); end

% calc. all sets (sum over all spectral lines)

y = zeros(size(a,1),length(x));

for j=1:size(a,1)

for k=1:size(WAVELENGTH_SEPARATE,1)

a2 = a(j,2)+tan(a(j,2)*pi/360)*WAVELENGTH_SEPARATE(k,2)*360/pi;

Lind = x < a(j,2);

s1 = (1. + a(j,5))*a(j,3)/2;

s2 = (1. + 1./a(j,5))*a(j,3)/2;

ss = (s1 + s2)/2;

c = (1-a(j,4))*sqrt(log(2)/pi/ss^2);

y(j, Lind) = y(j, Lind) + WAVELENGTH_SEPARATE(k,1)*c*...

exp(-log(2)/s1^2*(x( Lind)-a2).^2);

y(j,~Lind) = y(j,~Lind) + WAVELENGTH_SEPARATE(k,1)*c*...

exp(-log(2)/s2^2*(x(~Lind)-a2).^2);

c = a(j,4)/pi/ss;

y(j, Lind) = y(j, Lind) + WAVELENGTH_SEPARATE(k,1)*...

c./(1+(x( Lind)-a2).^2/s1^2);

y(j,~Lind) = y(j,~Lind) + WAVELENGTH_SEPARATE(k,1)*...

c./(1+(x(~Lind)-a2).^2/s2^2);

end

y(j,:) = a(j,1)*y(j,:)/normierung;

%y(j,:) = a(j,1)*y(j,:)/sum(WAVELENGTH_SEPARATE(:,1));

end

return;

9.6.4 LaB6 peak fit

The Matlab code for the LaB6 peak fitting routine is:

close all

clear all

clc

%------------Specify x-ray radiation-----------------

Cu_K_alpha1 = 1.540598*10^-10; % Cu_K_alpha1 wavelength

Cu_K_alpha2 = 1.544426*10^-10; % Cu_K_alpha2 wavelength

intensity_Kalpha1 = 1; % Cu_K_alpha1 intensity

intensity_Kalpha2 = 0.5; % Cu_K_alpha2 intensity
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global WAVELENGTH_SEPARATE; % For separate K_alpha1/K_alpha2 calculations

global normierung % For Scaling area under peaks with intensity

normierung = intensity_Kalpha1 + intensity_Kalpha2;

global WAVELENGTHS %For combined K_alpha1/K_alpha2 calculations

Cu_K_alpha = (intensity_Kalpha1*Cu_K_alpha1 + intensity_Kalpha2...

* Cu_K_alpha2) / normierung;

delta_Cu_K_alpha1 = (Cu_K_alpha1 - Cu_K_alpha);

delta_Cu_K_alpha2 = (Cu_K_alpha2 - Cu_K_alpha);

WAVELENGTHS = [intensity_Kalpha1 delta_Cu_K_alpha1/Cu_K_alpha;...

intensity_Kalpha2 delta_Cu_K_alpha2/Cu_K_alpha];

% Import data: When measuring the whole data at once, use the M=... ,

% otherwise import the data with M_xx=... in separate files.

%M = load(’LaB6_standard_parallel_beam_20h.xy’,’-ascii’);

M_21 = load(’LaB6_18-24_SLD_mono.xy’,’-ascii’);

M_36_58 = load(’LaB6_36-58_SLD_mono.xy’,’-ascii’);

M_74_81 = load(’LaB6_74-81_SLD_mono.xy’,’-ascii’);

M_82_142 = load(’LaB6_82-142_SLD_mono.xy’,’-ascii’);

%peaknamen = [21 30 37 43 49 54 76 80 84 88 96 100 104 108 112 121 ...

% 131 136 142]; % If all peaks can be analysed

peaknamen = [21 37 43 49 54 76 80 84 88 96 100 104 108 112 116 121 131 ...

136 142]; % If the 30° peaks is too small to be analysed. Often

% happens when measuring with the physics department’s PANalytical

% x-ray-machine with monochromator.

% %Define evaluation range: Use this if all data was importet in one file:

% x_data_LaB6_21 = M(610:1050,1).’;

% y_data_LaB6_21 = M(610:1050,2).’;

% x_data_LaB6_30 = M(1350:1715,1).’;

% y_data_LaB6_30 = M(1350:1715,2).’;

% x_data_LaB6_37 = M(1905:2290,1).’;

% y_data_LaB6_37 = M(1905:2290,2).’;

% x_data_LaB6_43 = M(2360:2745,1).’;

% y_data_LaB6_43 = M(2360:2745,2).’;

% x_data_LaB6_49 = M(2820:3125,1).’;

% y_data_LaB6_49 = M(2820:3125,2).’;

% x_data_LaB6_54 = M(3200:3505,1).’;

% y_data_LaB6_54 = M(3200:3505,2).’;

% x_data_LaB6_76 = M(4875:5180,1).’;

% y_data_LaB6_76 = M(4875:5180,2).’;

% x_data_LaB6_80 = M(5180:5485,1).’;

% y_data_LaB6_80 = M(5180:5485,2).’;

% x_data_LaB6_84 = M(5485:5790,1).’;
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% y_data_LaB6_84 = M(5485:5790,2).’;

% x_data_LaB6_88 = M(5790:6095,1).’;

% y_data_LaB6_88 = M(5790:6095,2).’;

% x_data_LaB6_96 = M(6400:6705,1).’;

% y_data_LaB6_96 = M(6400:6705,2).’;

% x_data_LaB6_100 = M(6705:7010,1).’;

% y_data_LaB6_100 = M(6705:7010,2).’;

% x_data_LaB6_104 = M(7010:7315,1).’;

% y_data_LaB6_104 = M(7010:7315,2).’;

% x_data_LaB6_108 = M(7315:7620,1).’;

% y_data_LaB6_108 = M(7315:7620,2).’;

% x_data_LaB6_112 = M(7620:7925,1).’;

% y_data_LaB6_112 = M(7620:7925,2).’;

% x_data_LaB6_121 = M(8300:8610,1).’;

% y_data_LaB6_121 = M(8300:8610,2).’;

% x_data_LaB6_131 = M(9065:9300,1).’;

% y_data_LaB6_131 = M(9065:9300,2).’;

% x_data_LaB6_136 = M(9445:9750,1).’;

% y_data_LaB6_136 = M(9445:9750,2).’;

% x_data_LaB6_142 = M(9830:10285,1).’;

% y_data_LaB6_142 = M(9830:10285,2).’;

%Define evaluation range: Use this if data was importet in separated files:

x_data_LaB6_21 = M_21(210:end,1).’;

y_data_LaB6_21 = M_21(210:end,2).’;

x_data_LaB6_37 = M_36_58(55:245,1).’;

y_data_LaB6_37 = M_36_58(55:245,2).’;

x_data_LaB6_43 = M_36_58(510:702,1).’;

y_data_LaB6_43 = M_36_58(510:702,2).’;

x_data_LaB6_49 = M_36_58(892:1160,1).’;

y_data_LaB6_49 = M_36_58(892:1160,2).’;

x_data_LaB6_54 = M_36_58(1273:1578,1).’;

y_data_LaB6_54 = M_36_58(1273:1578,2).’;

x_data_LaB6_76 = M_74_81(1:215,1).’;

y_data_LaB6_76 = M_74_81(1:215,2).’;

x_data_LaB6_80 = M_74_81(344:496,1).’;

y_data_LaB6_80 = M_74_81(344:496,2).’;

x_data_LaB6_84 = M_82_142(39:191,1).’;

y_data_LaB6_84 = M_82_142(39:191,2).’;

x_data_LaB6_88 = M_82_142(306:534,1).’;

y_data_LaB6_88 = M_82_142(306:534,2).’;

x_data_LaB6_96 = M_82_142(953:1105,1).’;

y_data_LaB6_96 = M_82_142(953:1105,2).’;

x_data_LaB6_100 = M_82_142(1182:1448,1).’;

y_data_LaB6_100 = M_82_142(1182:1448,2).’;

x_data_LaB6_104 = M_82_142(1486:1791,1).’;

y_data_LaB6_104 = M_82_142(1486:1791,2).’;

x_data_LaB6_108 = M_82_142(1829:2057,1).’;

y_data_LaB6_108 = M_82_142(1829:2057,2).’;

x_data_LaB6_112 = M_82_142(2134:2362,1).’;
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y_data_LaB6_112 = M_82_142(2134:2362,2).’;

x_data_LaB6_116 = M_82_142(2438:2743,1).’;

y_data_LaB6_116 = M_82_142(2438:2743,2).’;

x_data_LaB6_121 = M_82_142(2819:3047,1).’;

y_data_LaB6_121 = M_82_142(2819:3047,2).’;

x_data_LaB6_131 = M_82_142(3543:3809,1).’;

y_data_LaB6_131 = M_82_142(3543:3809,2).’;

x_data_LaB6_136 = M_82_142(3961:4190,1).’;

y_data_LaB6_136 = M_82_142(3961:4190,2).’;

x_data_LaB6_142 = M_82_142(4380:end,1).’;

y_data_LaB6_142 = M_82_142(4380:end,2).’;

% Give approximate positions of peak maxima in 2Theta:

peakmax_data_21 = 21.4;

%peakmax_data_30 = 30.4;

peakmax_data_37 = 37.4;

peakmax_data_43 = 43.5;

peakmax_data_49 = 49.0;

peakmax_data_54 = 54.0;

peakmax_data_76 = 75.9;

peakmax_data_80 = 79.9;

peakmax_data_84 = 83.9;

peakmax_data_88 = 87.8;

peakmax_data_96 = 95.7;

peakmax_data_100 = 99.7;

peakmax_data_104 = 103.7;

peakmax_data_108 = 107.8;

peakmax_data_112 = 112.0;

peakmax_data_116 = 116.4;

peakmax_data_121 = 120.9;

peakmax_data_131 = 130.6;

peakmax_data_136 = 136.0;

peakmax_data_142 = 142.0;

fitting_iterations = 3000; % Define how many sets of starting parameters

% for "Monte-Carlo-method" should be given.

%------------------------Begin of peak evaluation------------------------

%!!!!Important:!!!!

% a(1) - integrated intensity

% a(2) - maximum position

% a(3) - HWHM - half width in the half of maximum

% (for symmetrical profiles)

% a(4) - Cauchy/Gauss component weight (0 - Gauss, 1 - Cauchy)

% a(5) - asymmetry (1 - symmetric)

% For-loop over all peaks:

for ges = 1 : numel(peaknamen)

% Get the right peak maximum for the peak:
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peakmax_data = eval([’peakmax_data_’ int2str(peaknamen(ges))]);

% Get right data range for the peak:

x_data = eval([’x_data_LaB6_’ int2str(peaknamen(ges))]);

y_data = eval([’y_data_LaB6_’ int2str(peaknamen(ges))]);

% Estimate starting parameters:

background = 1000; % Variable for background estimation in counts

x = 0.5; % Chauchy/Gauss (see a(4))

II_max = 120000; % Estimated maximum of integrated intensity in counts

HWHM_max = 0.1; % Estimatet Half-Width-at-Half-Maximum in 2Theta

HWHM_var = 0.1; % Variation around the estimated HWHM in 2Theta

peakvar = 0.3; % Variation of the estimated peak maxima

mu(1) = (x_data(1)+x_data(end))/2; %(see function: pseudoVoigtAsym.m)

mu(2) = x_data(end)-x_data(1); %(see function: pseudoVoigtAsym.m)

Linda = [1 1 1 1 1]; % Determine which parts of a(1-5) should be fitted:

% 1-Perform fit, 0-do not fit

b0 = [0 0 background]; % Guess background function y=b0(1)x^2+b0(2)x+b0(3)

Lindb = [1 1 1]; % Determine which parts of background b(1-3) should

% be fitted: 1-Perform fit, 0-do not fit

w = 1./y_data; %(see function: pseudoVoigtAsym.m)

% Define variables to be filled later:

rwp_final = 1000;

a_final = [0,0,0,0,0];

b_final = NaN;

a0_final = [0,0,0,0,0];

counter = 1;

a_final_faul = zeros(4,5);

IB_ges_faul = zeros(4,1);

IB_cauchy_faul = zeros(4,1);

IB_gauss_faul = zeros(4,1);

b_final_faul = zeros(4,3);

% For-loop to do each data processing 4 times to get a feeling of the fit

% stability:

for faul = 1:4

% Perform fitting with "Monte-Carlo-Simulation":

for counter = 1:fitting_iterations

% Randomize starting parameters:

h = rand * II_max; % Integrated intensity

j = HWHM_max + (2*rand -1) * HWHM_var; % HWHM

i = peakmax_data + (2*rand -1) * peakvar; % Peak maximum in 2Theta

k = x + (2*rand -1) * 0.5; % Chauchy/Gauss weight

% (0 - Gauss, 1 - Cauchy)

asym = 1 + (2*rand -1) * 0.1; % Asymmetry (1 - symmetric)
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a0 = [h, i, j, k, asym];

% Perform fitting:

[a_fit,b_fit,~,~,~,rwp] =...

pseudoVoigtAsymFit(x_data,y_data,w,a0,b0,mu,Linda,Lindb);

if 0<=a_fit(4) % Make sure peak shape is exact or between Gauss/Cauchy

if a_fit(4)<=1 % Make sure peak shape is exact or between Gauss/Cauchy

if rwp < rwp_final % Only save if fit is better than

a_final = a_fit; % previously best one.

b_final = b_fit;

a0_final = a0;

rwp_final = rwp;

intensity_Kalpha2_final = intensity_Kalpha2;

end

end

end

counter = counter +1

end

%---------------Define parameters for plotting:---------------

% Draw background function:

background = polyval(b_final,x_data,[],mu);

% Complete fit including Gauss & Cauchy and K_alpha1 & K_alpha2 parts:

yc_fit = sum(pseudoVoigtAsym(a_final,x_data),1)...

+background; % Convert data fit into curve

yc_schaetz = sum(pseudoVoigtAsym(a0_final,x_data),1)...

+polyval(b0,x_data,[],mu); % Convert starting parameters for best fit

% into curve

%Create curve for Gauss & Cauchy and K_alpha1 (NO K_alpha2!):

WAVELENGTH_SEPARATE = [intensity_Kalpha1 delta_Cu_K_alpha1/Cu_K_alpha];

yc_fit_Kalpha1 = sum(pseudoVoigtAsym_separate(a_final,x_data),1)...

+background;

%Also separate Gauss and Cauchy parts (of K_alpha1 peak):

[~,ycauchy1,ygauss1] = pseudoVoigtAsym_C_G_separate(a_final,x_data);

%Find maximum of K_alpha1 peak:

ind_ges1 = find(pseudoVoigtAsym_separate(a_final,x_data)>=...

max(pseudoVoigtAsym_separate(a_final,x_data)));

%Create curve for Gauss & Cauchy and K_alpha2 (NO K_alpha1!):

WAVELENGTH_SEPARATE = [intensity_Kalpha2 delta_Cu_K_alpha2/Cu_K_alpha];

yc_fit_Kalpha2 = sum(pseudoVoigtAsym_separate(a_final,x_data),1)...

+background;

%Again separate Gauss and Cauchy parts (of K_alpha2 peak):

[y,ycauchy2,ygauss2] = pseudoVoigtAsym_C_G_separate(a_final,x_data);

%Combine Cauchy_K_alpha1 and Cauchy_K_alpha2:

83



Diploma Thesis Arthur Fuchs

ycauchy = ycauchy1 + ycauchy2;

%Combine Gauss_K_alpha1 and Gauss_K_alpha2:

ygauss = ygauss1 + ygauss2;

%Combine Kalpha1 and Kalpha2 fit to make sure they give the same result as

%the combined fit:

yc_fit_Kalpha_test = yc_fit_Kalpha1 + yc_fit_Kalpha2...

-background;

%Check if Gauss/Cauchy separation worked correctly. If it works for Kalpha2

%peak, it is assumed that it also worked for Kalpha1:

if y ~= pseudoVoigtAsym_separate(a_final,x_data)

errormessage=[’Der Funktionierer ist kaputt!(Gauss+Lorentz-Kurve ’...

’~= Gesamtfit) \nThis usually happes if the fit function did ’...

’not find a minimum’];

error(errormessage,[ ])

end

% Get 2Theta angle of overall peak maximum (K_alpha1&2 together):

x1 = x_data(ind_ges1);

% Sum Cauchy parts and background for plotting:

ycauchy_plot = sum(ycauchy,1)+background;

% Find maximum position of Cauchy K_alpha1 peak:

ind_cauchy = find(ycauchy1>=max(ycauchy1));

% Sum Gauss parts and background for plotting:

ygauss_plot = sum(ygauss,1)+background;

% Find maximum position of Gauss K_alpha1 peak:

ind_gauss = find(ygauss1>=max(ygauss1));

%---Difference plot------

y_diff = y_data - yc_fit;

%!!!!!!!!!!!IMPORTANT!!!!!!!!!!!

% The plots here are done for every of of the 4 repetitions, one can

% visually analyse each peak and search for problems if something big

% goes wrong! For normal data analysis the two plots at the end should do.

% % This Plot is to compare the data with the fit, the K_alpha1 and

% % K_alpha2 peaks separately, the background function and the peak

% % maximum:

% figure

% semilogy(x_data,y_data,’k*’)

% hold on

% semilogy(x_data,yc_fit,’m’)

% semilogy(x_data,yc_fit_Kalpha1,’r’)

% semilogy(x_data,background,’y’)

% line([x1 x1], get(gca, ’ylim’),’color’,’c’,’LineStyle’,’-.’);

% semilogy(x_data,yc_fit_Kalpha2,’r’)

% xlabel (’Winkel 2 \Theta [°]’)
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% ylabel (’Counts [a.u.]’)

% legend (’Messdaten’,’Gefittete Kurve’,’K_{\alpha1} und K_{\alpha2}...

% separat gefittet’,’Untergrund’,’Maximum’)

% hold off

% % The next Plot is to compare the data with the fit, the starting

% % parameters that gave the best fit results, the background function, the

% % peak maximum and to check if separation has worked properly (The fittet

% % curve should be overplottet by a curve that is the sum of all

% % previously separated K_alpha1+K_alpha2 curves).

%

% figure

% semilogy(x_data,y_data,’k*’)

% hold on

% semilogy(x_data,yc_schaetz,’g’)

% semilogy(x_data,yc_fit,’m’)

% semilogy(x_data,yc_fit_Kalpha_test,’b’)

% semilogy(x_data,background,’y’)

% line([x1 x1], get(gca, ’ylim’),’color’,’c’,’LineStyle’,’-.’);

% xlabel (’Winkel 2 \Theta [°]’)

% ylabel (’Counts [a.u.]’)

% legend (’Messdaten’,’Geschaetzte Anfangsparameter’,’Gefittete Kurve’,...

% ’K_{\alpha1} + K_{\alpha2}’,’Untergrund’,’Maximum’)

% hold off

% % The next Plot is to compare the data with the fit, the background

% % function, the peak maximum, Cauchy and Gauss peaks separately and to

% % check if separation has worked properly (The fittet curve should be

% % overplottet by a curve that is the sum of the previously separated

% % Cauchy- and Gauss-curves).

% figure

% semilogy(x_data,y_data,’k*’)

% hold on

% semilogy(x_data,yc_fit,’m’)

% %semilogy(x_data,yc_fit_Kalpha1,’r’)

% semilogy(x_data,background,’y’)

% %semilogy(x_data,yc_fit_Kalpha_test,’b’)

% line([x1 x1], get(gca, ’ylim’),’color’,’c’,’LineStyle’,’-.’);

% semilogy(x_data,ygauss_plot,’g’)

% semilogy(x_data,ycauchy_plot,’c’)

% semilogy(x_data,ygauss_plot+ycauchy,’r’)

% %semilogy(x_data,yc_fit_Kalpha2,’r’)

% xlabel (’Winkel 2 \Theta [°]’)

% ylabel (’Counts [a.u.]’)

% legend (’Messdaten’,’Gefittete Kurve’,’Untergrund’,’Maximum’,...

% ’Gaussanteil’,’Cauchyanteil’,’Cauchy+Gaussanteil’)
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% hold off

% % Next is a LINEAR plot with just the data and the fit together with a

% % difference plot to evaluate the fit quality.

% figure

% pos1 = [0.1 0.25 0.8 0.68];

% subplot(’Position’,pos1)

% plot(x_data,y_data,’k*’)

% hold on

% plot(x_data,yc_fit,’m’)

% ylabel (’Counts [a.u.]’)

% legend (’Messdaten’,’Gefittete Kurve’)

% hold off

% set(gca,’xtick’,[])

% pos2 = [0.1 0.13 0.8 0.10];

% subplot(’Position’,pos2)

% plot(x_data,y_diff,’b’)

% xlabel (’Winkel 2 \Theta [°]’)

%----------------------Calculate integral breadths----------------------

%Calculate height of the peak as seen in the plot (K_alpha1 and K_alpha2

%usually are not separated):

height_ges = yc_fit(ind_ges1) - background (ind_ges1);

%Calculate height of Cauchy peak:

height_cauchy = ycauchy(ind_cauchy);

%Calculate height of Gauss peak:

height_gauss = ygauss(ind_gauss);

%Calculate area under Cauchy peak:

A_cauchy = a_final(1) * a_final(4);

%Calculate area under Gauss peak:

A_gauss = a_final(1) * (1 - a_final(4));

%Calculate integral breadth of peak as seen in the plot (K_alpha1 and

%K_alpha2 usually are not separated):

IB_standard_ges = a_final(1)/height_ges;

%Calculate integral breadth of Cauchy peak:

IB_standard_cauchy = A_cauchy ./ height_cauchy;

%Calculate integral breadth of Gauss peak:

IB_standard_gauss = A_gauss ./ height_gauss;

%If Cauchy or Gauss peaks have no maximum, show a message:

if numel(IB_standard_cauchy)>1

IB_standard_cauchy = max(IB_standard_cauchy)

disp(’IB_standard_cauchy hat kein maximum’)

elseif numel(IB_standard_gauss) > 1

IB_standard_gauss = max(IB_standard_gauss)
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disp(’IB_standard_gauss hat kein maximum’)

end

% Save the results before restarting the fitting procedure:

a_final_faul(faul,:) = a_final;

IB_ges_faul(faul,:) = IB_standard_ges;

IB_cauchy_faul(faul,:) = IB_standard_cauchy;

IB_gauss_faul(faul,:) = IB_standard_gauss;

b_final_faul(faul,:) = b_final;

faul = faul + 1

end

%----After all 4 repetitions are done, plot the results to compare fit----

%------------------------------stability:------------------------------

% Create variables to be filled in loop:

yc_fit_faul = zeros(4,numel(y_data));

y_diff_faul = zeros(4,numel(y_data));

y_data1 = [y_data;y_data;y_data;y_data];

farbe = [’r’,’b’,’m’,’g’];

%-----Plotten---------------

figure

pos3 = [0.1 0.25 0.8 0.68]; % Define position and height for upper plot

% [x y width height]

subplot(’Position’,pos3)

plot(x_data,y_data,’k*’) %Plot data

hold on

for i = 1:4

% Save fit data for all 4 repetitions:

yc_fit_faul = sum(pseudoVoigtAsym(a_final_faul(i,:),x_data),1)...

+polyval(b_final_faul(i,:),x_data,[],mu);

% Create difference plot for all 4 repetitions:

y_diff_faul(i,:) = y_data1(i,:) - yc_fit_faul;

plot(x_data,yc_fit_faul,farbe(i))

ylabel (’Counts [a.u.]’)

set(gca,’xtick’,[])

end

legend (’Messdaten’,’Gefittete Kurve 1’,’Gefittete Kurve 2’,...

’Gefittete Kurve 3’,’Gefittete Kurve 4’)

title([int2str(peaknamen(ges)) ’° Peak’])

pos4 = [0.1 0.13 0.8 0.10]; % Define position and height for lower plot

% [x y width height]

subplot(’Position’,pos4)

%Plot the difference plot:

for i = 1:4
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plot(x_data,y_diff_faul(i,:),farbe(i))

hold on

end

xlabel (’Winkel 2 \Theta [°]’)

hold off

%Also plot data, fit, K_alpha1, K_alpha2, background and peam maximum:

figure

semilogy(x_data,y_data,’k*’)

hold on

semilogy(x_data,yc_fit,’m’)

semilogy(x_data,yc_fit_Kalpha1,’r’)

semilogy(x_data,background,’y’)

line([x1 x1], get(gca, ’ylim’),’color’,’c’,’LineStyle’,’-.’);

semilogy(x_data,yc_fit_Kalpha2,’r’)

xlabel (’Winkel 2 \Theta [°]’)

ylabel (’Counts [a.u.]’)

legend (’Messdaten’,’Gefittete Kurve’,...

’K_{\alpha1} und K_{\alpha2} separat gefittet’,’Untergrund’,’Maximum’)

hold off

% Create output variable that can be copied into a .txt file and contains

% all important information. If this is done, the mWH/mWA data processing

% routine can import needed data easily:

if ges == 1

daten_exportieren =...

[IB_ges_faul IB_cauchy_faul IB_gauss_faul a_final_faul];

else

daten_exportieren =...

[daten_exportieren;IB_ges_faul IB_cauchy_faul IB_gauss_faul a_final_faul];

end

end

9.6.5 Steel peak fit

The Matlab code for the steel peak fitting routine is:

close all

clear all

clc

%------------Specify x-ray radiation-----------------

Cu_K_alpha1 = 1.540598*10^-10; % Cu_K_alpha1 wavelength

Cu_K_alpha2 = 1.544426*10^-10; % Cu_K_alpha2 wavelength

intensity_Kalpha1 = 1; % Cu_K_alpha1 intensity

intensity_Kalpha2 = 0.5; % Cu_K_alpha2 intensity

global WAVELENGTH_SEPARATE; % For separate K_alpha1/K_alpha2 calculations

global normierung % For Scaling area under peaks with intensity
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normierung = intensity_Kalpha1 + intensity_Kalpha2;

global WAVELENGTHS %For combined K_alpha1/K_alpha2 calculations

Cu_K_alpha = (intensity_Kalpha1*Cu_K_alpha1 + intensity_Kalpha2...

* Cu_K_alpha2) / normierung;

delta_Cu_K_alpha1 = (Cu_K_alpha1 - Cu_K_alpha);

delta_Cu_K_alpha2 = (Cu_K_alpha2 - Cu_K_alpha);

WAVELENGTHS = [intensity_Kalpha1 delta_Cu_K_alpha1/Cu_K_alpha;...

intensity_Kalpha2 delta_Cu_K_alpha2/Cu_K_alpha];

% Import data: When measuring the whole data at once, use the M=... ,

% otherwise import the data with M_xx=... in separate files.

%M = load(’BM_AR_vib_pol_parallel_beam_20h.xy’,’-ascii’);

% M_45 = load(’XXXXXXXXXX.xy’,’-ascii’);

M_65 = load(’P91_36h_760C_60_to_70.xy’,’-ascii’);

M_82 = load(’P91_36h_760C_77_to_87.xy’,’-ascii’);

M_99 = load(’P91_36h_760C_94_to_104.xy’,’-ascii’);

M_116 = load(’P91_36h_760C_111_to_121.xy’,’-ascii’);

M_137 = load(’P91_36h_760C_132_to_142.xy’,’-ascii’);

%peaknamen = [45 65 82 99 116 137]; %If 45° Peak is not currupted

peaknamen = [65 82 99 116 137]; %If 45° Peak is currupted. Often happens

% when measuring with the physics department’s PANalytical x-ray-machine

% with monochromator.

%Define evaluation range: Use this if all data was importet in one file:

% x_data_45 = M(2360:2895,1).’;

% y_data_45 = M(2360:2895,2).’;

% x_data_65 = M(4080:4342,1).’;

% y_data_65 = M(4080:4342,2).’;

% x_data_82 = M(5370:5637,1).’;

% y_data_82 = M(5370:5637,2).’;

% x_data_99 = M(6665:6950,1).’;

% y_data_99 = M(6665:6950,2).’;

% x_data_116 = M(7850:8300,1).’;

% y_data_116 = M(7850:8300,2).’;

% x_data_137 = M(9400:9900,1).’;

% y_data_137 = M(9400:9900,2).’;

%Define evaluation range: Use this if data was importet in separated files:

% x_data_45 = M_45(1:end,1).’;

% y_data_45 = M_45(1:end,2).’;

% x_data_65 = M_65(1:end,1).’;

% y_data_65 = M_65(1:end,2).’;

% x_data_82 = M_82(1:end,1).’;

% y_data_82 = M_82(1:end,2).’;

% x_data_99 = M_99(1:end,1).’;

% y_data_99 = M_99(1:end,2).’;

% x_data_116 = M_116(1:end,1).’;

% y_data_116 = M_116(1:end,2).’;
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% x_data_137 = M_137(1:end,1).’;

% y_data_137 = M_137(1:end,2).’;

x_data_65 = M_65(210:end,1).’;

y_data_65 = M_65(210:end,2).’;

x_data_82 = M_82(230:690,1).’;

y_data_82 = M_82(230:690,2).’;

x_data_99 = M_99(1:430,1).’;

y_data_99 = M_99(1:430,2).’;

x_data_116 = M_116(115:end,1).’;

y_data_116 = M_116(115:end,2).’;

x_data_137 = M_137(1:end,1).’;

y_data_137 = M_137(1:end,2).’;

% Give approximate positions of peak maxima in 2Theta:

peakmax_data_45 = 44.6;

peakmax_data_65 = 64.9;

peakmax_data_82 = 82.2;

peakmax_data_99 = 98.8;

peakmax_data_116 = 116.2;

peakmax_data_137 = 136.8;

fitting_iterations = 20; % Define how many sets of starting parameters

% for "Monte-Carlo-method" should be given.

%------------------------Begin of peak evaluation------------------------

%!!!!Important:!!!!

% a(1) - integrated intensity

% a(2) - maximum position

% a(3) - HWHM - half width in the half of maximum

% (for symmetrical profiles)

% a(4) - Cauchy/Gauss component weight (0 - Gauss, 1 - Cauchy)

% a(5) - asymmetry (1 - symmetric)

% For loop over all peaks:

for ges = 1 : numel(peaknamen)

% Get the right peak maximum for the peak:

peakmax_data = eval([’peakmax_data_’ int2str(peaknamen(ges))]);

% Get right data range for the peak:

x_data = eval([’x_data_’ int2str(peaknamen(ges))]);

y_data = eval([’y_data_’ int2str(peaknamen(ges))]);

% Estimate starting parameters:

background = 14000; % Variable for background estimation in counts

x = 0.5; % Chauchy/Gauss (see a(4))

II_max = 120000; % Estimated maximum of integrated intensity in counts

HWHM_schaetz = 0.7; % Estimatet Half-Width-at-Half-Maximum in 2Theta

HWHM_var = 0.7; % Variation around the estimated HWHM in 2Theta

peakvar = 0.5; % Variation of the estimated peak maxima
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mu(1) = (x_data(1)+x_data(end))/2; %(see function: pseudoVoigtAsym.m)

mu(2) = x_data(end)-x_data(1); %(see function: pseudoVoigtAsym.m)

Linda = [1 1 1 1 1]; % Determine which parts of a(1-5) should be fitted:

% 1-Perform fit, 0-do not fit

b0 = [0 0 background]; % Guess background function y=b0(1)x^2+b0(2)x+b0(3)

Lindb = [1 1 1]; % Determine which parts of background b(1-3) should

% be fitted: 1-Perform fit, 0-do not fit

w = 1./y_data; %(see function: pseudoVoigtAsym.m)

% Define variables to be filled later:

rwp_final = 1000;

a_final = [0,0,0,0,0];

b_final = NaN;

a0_final = [0,0,0,0,0];

counter = 1;

a_final_faul = zeros(4,5);

IB_ges_faul = zeros(4,1);

IB_cauchy_faul = zeros(4,1);

IB_gauss_faul = zeros(4,1);

b_final_faul = zeros(4,3);

% For-loop to do each data processing 4 times to get a feeling of the fit

% stability:

for faul = 1:4

% Perform fitting with "Monte-Carlo-Simulation":

for counter = 1:fitting_iterations

% Randomize starting parameters:

h = rand * II_max; % Integrated intensity

j = HWHM_schaetz + (2*rand -1) * HWHM_var; % HWHM

i = peakmax_data + (2*rand -1) * peakvar; % Peak maximum in 2Theta

k = x + (2*rand -1) * 0.5; % Chauchy/Gauss weight

% (0 - Gauss, 1 - Cauchy)

asym = 1 + (2*rand -1) * 0.1; % Asymmetry (1 - symmetric)

a0 = [h, i, j, k, asym];

% Perform fitting:

[a_fit,b_fit,~,~,~,rwp] =...

pseudoVoigtAsymFit(x_data,y_data,w,a0,b0,mu,Linda,Lindb);

if 0<=a_fit(4) % Make sure peak shape is exact or between Gauss/Cauchy

if a_fit(4)<=1 % Make sure peak shape is exact or between Gauss/Cauchy

if rwp < rwp_final % Only save if fit is better than

a_final = a_fit; % previously best one.

b_final = b_fit;
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a0_final = a0;

rwp_final = rwp;

end

end

end

counter = counter +1

end

%---------------Define parameters for plotting:---------------

% Draw background function:

background = polyval(b_final,x_data,[],mu);

% Complete fit including Gauss & Cauchy and K_alpha1 & K_alpha2 parts:

yc_fit = sum(pseudoVoigtAsym(a_final,x_data),1)...

+background; % Convert data fit into curve

yc_schaetz = sum(pseudoVoigtAsym(a0_final,x_data),1)...

+polyval(b0,x_data,[],mu); % Convert starting parameters for best fit

% into curve

%Create curve for Gauss & Cauchy and K_alpha1 (NO K_alpha2!):

WAVELENGTH_SEPARATE = [intensity_Kalpha1 delta_Cu_K_alpha1/Cu_K_alpha];

yc_fit_Kalpha1 = sum(pseudoVoigtAsym_separate(a_final,x_data),1)...

+background;

%Also separate Gauss and Cauchy parts (of K_alpha1 peak):

[~,ycauchy1,ygauss1] = pseudoVoigtAsym_C_G_separate(a_final,x_data);

%Find maximum of K_alpha1 peak:

ind_ges1 = find(pseudoVoigtAsym_separate(a_final,x_data)>=...

max(pseudoVoigtAsym_separate(a_final,x_data)));

%Create curve for Gauss & Cauchy and K_alpha2 (NO K_alpha1!):

WAVELENGTH_SEPARATE = [intensity_Kalpha2 delta_Cu_K_alpha2/Cu_K_alpha];

yc_fit_Kalpha2 = sum(pseudoVoigtAsym_separate(a_final,x_data),1)...

+background;

%Again separate Gauss and Cauchy parts (of K_alpha2 peak):

[y,ycauchy2,ygauss2] = pseudoVoigtAsym_C_G_separate(a_final,x_data);

%Combine Cauchy_K_alpha1 and Cauchy_K_alpha2:

ycauchy = ycauchy1 + ycauchy2;

%Combine Gauss_K_alpha1 and Gauss_K_alpha2:

ygauss = ygauss1 + ygauss2;

%Combine Kalpha1 and Kalpha2 fit to make sure they give the same result as

%the combined fit:

yc_fit_Kalpha_test = yc_fit_Kalpha1 + yc_fit_Kalpha2...

-background;

%Check if Gauss/Cauchy separation worked correctly. If it works for Kalpha2

%peak, it is assumed that it also worked for Kalpha1:

if y ~= pseudoVoigtAsym_separate(a_final,x_data)

errormessage=[’Der Funktionierer ist kaputt!(Gauss+Lorentz-Kurve ’...

’~= Gesamtfit) \nThis usually happes if the fit function did ’...

’not find a minimum’];

error(errormessage,[ ])
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end

% Get 2Theta angle of overall peak maximum (K_alpha1&2 together):

x1 = x_data(ind_ges1);

% Sum Cauchy parts and background for plotting:

ycauchy_plot = sum(ycauchy,1)+background;

% Find maximum position of Cauchy K_alpha1 peak:

ind_cauchy = find(ycauchy1>=max(ycauchy1));

% Sum Gauss parts and background for plotting:

ygauss_plot = sum(ygauss,1)+background;

% Find maximum position of Gauss K_alpha1 peak:

ind_gauss = find(ygauss1>=max(ygauss1));

%---Difference plot------

y_diff = y_data - yc_fit;

%!!!!!!!!!!!IMPORTANT!!!!!!!!!!!

% The plots here are done for every of of the 4 repetitions, one can

% visually analyse each peak and search for problems if something big

% goes wrong! For normal data analysis the two plots at the end should do.

% % This Plot is to compare the data with the fit, the K_alpha1 and

% % K_alpha2 peaks separately, the background function and the peak

% % maximum:

% figure

% semilogy(x_data,y_data,’k*’)

% hold on

% semilogy(x_data,yc_fit,’m’)

% semilogy(x_data,yc_fit_Kalpha1,’r’)

% semilogy(x_data,background,’y’)

% line([x1 x1], get(gca, ’ylim’),’color’,’c’,’LineStyle’,’-.’);

% semilogy(x_data,yc_fit_Kalpha2,’r’)

% xlabel (’Winkel 2 \Theta [°]’)

% ylabel (’Counts [a.u.]’)

% legend (’Messdaten’,’Gefittete Kurve’,’K_{\alpha1} und K_{\alpha2}...

% separat gefittet’,’Untergrund’,’Maximum’)

% hold off

% % The next Plot is to compare the data with the fit, the starting

% % parameters that gave the best fit results, the background function, the

% % peak maximum and to check if separation has worked properly (The fittet

% % curve should be overplottet by a curve that is the sum of all

% % previously separated K_alpha1+K_alpha2 curves).

%

% figure

% semilogy(x_data,y_data,’k*’)
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% hold on

% semilogy(x_data,yc_schaetz,’g’)

% semilogy(x_data,yc_fit,’m’)

% semilogy(x_data,yc_fit_Kalpha_test,’b’)

% semilogy(x_data,background,’y’)

% line([x1 x1], get(gca, ’ylim’),’color’,’c’,’LineStyle’,’-.’);

% xlabel (’Winkel 2 \Theta [°]’)

% ylabel (’Counts [a.u.]’)

% legend (’Messdaten’,’Geschaetzte Anfangsparameter’,’Gefittete Kurve’,...

% ’K_{\alpha1} + K_{\alpha2}’,’Untergrund’,’Maximum’)

% hold off

% % The next Plot is to compare the data with the fit, the background

% % function, the peak maximum, Cauchy and Gauss peaks separately and to

% % check if separation has worked properly (The fittet curve should be

% % overplottet by a curve that is the sum of the previously separated

% % Cauchy- and Gauss-curves).

% figure

% semilogy(x_data,y_data,’k*’)

% hold on

% semilogy(x_data,yc_fit,’m’)

% %semilogy(x_data,yc_fit_Kalpha1,’r’)

% semilogy(x_data,background,’y’)

% %semilogy(x_data,yc_fit_Kalpha_test,’b’)

% line([x1 x1], get(gca, ’ylim’),’color’,’c’,’LineStyle’,’-.’);

% semilogy(x_data,ygauss_plot,’g’)

% semilogy(x_data,ycauchy_plot,’c’)

% semilogy(x_data,ygauss_plot+ycauchy,’r’)

% %semilogy(x_data,yc_fit_Kalpha2,’r’)

% xlabel (’Winkel 2 \Theta [°]’)

% ylabel (’Counts [a.u.]’)

% legend (’Messdaten’,’Gefittete Kurve’,’Untergrund’,’Maximum’,...

% ’Gaussanteil’,’Cauchyanteil’,’Cauchy+Gaussanteil’)

% hold off

% % Next is a LINEAR plot with just the data and the fit together with a

% % difference plot to evaluate the fit quality.

% figure

% pos1 = [0.1 0.25 0.8 0.68];

% subplot(’Position’,pos1)

% plot(x_data,y_data,’k*’)

% hold on

% plot(x_data,yc_fit,’m’)

% ylabel (’Counts [a.u.]’)
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% legend (’Messdaten’,’Gefittete Kurve’)

% hold off

% set(gca,’xtick’,[])

% pos2 = [0.1 0.13 0.8 0.10];

% subplot(’Position’,pos2)

% plot(x_data,y_diff,’b’)

% xlabel (’Winkel 2 \Theta [°]’)

%----------------------Calculate integral breadths----------------------

%Calculate height of the peak as seen in the plot (K_alpha1 and K_alpha2

%usually are not separated):

height_ges = yc_fit(ind_ges1) - background (ind_ges1);

%Calculate height of Cauchy peak:

height_cauchy = ycauchy(ind_cauchy);

%Calculate height of Gauss peak:

height_gauss = ygauss(ind_gauss);

%Calculate area under Cauchy peak:

A_cauchy = a_final(1) * a_final(4);

%Calculate area under Gauss peak:

A_gauss = a_final(1) * (1 - a_final(4));

%Calculate integral breadth of peak as seen in the plot (K_alpha1 and

%K_alpha2 usually are not separated):

IB_standard_ges = a_final(1)/height_ges;

%Calculate integral breadth of Cauchy peak:

IB_standard_cauchy = A_cauchy ./ height_cauchy;

%Calculate integral breadth of Gauss peak:

IB_standard_gauss = A_gauss ./ height_gauss;

%If Cauchy or Gauss peaks have no maximum, show a message:

if numel(IB_standard_cauchy)>1

IB_standard_cauchy = max(IB_standard_cauchy)

disp(’IB_standard_cauchy hat kein maximum’)

elseif numel(IB_standard_gauss) > 1

IB_standard_gauss = max(IB_standard_gauss)

disp(’IB_standard_gauss hat kein maximum’)

end

% Save the results before restarting the fitting procedure:

a_final_faul(faul,:) = a_final;

IB_ges_faul(faul,:) = IB_standard_ges;

IB_cauchy_faul(faul,:) = IB_standard_cauchy;

IB_gauss_faul(faul,:) = IB_standard_gauss;

b_final_faul(faul,:) = b_final;

faul = faul + 1

end
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%----After all 4 repetitions are done, plot the results to compare fit----

%------------------------------stability:------------------------------

% Create variables to be filled in loop:

yc_fit_faul = zeros(4,numel(y_data));

y_diff_faul = zeros(4,numel(y_data));

y_data1 = [y_data;y_data;y_data;y_data];

farbe = [’r’,’b’,’m’,’g’];

%-----Plotten---------------

figure

pos3 = [0.1 0.25 0.8 0.68]; % Define position and height for upper plot

% [x y width height]

subplot(’Position’,pos3)

plot(x_data,y_data,’k*’) %Plot data

hold on

for i = 1:4

% Save fit data for all 4 repetitions:

yc_fit_faul = sum(pseudoVoigtAsym(a_final_faul(i,:),x_data),1)...

+polyval(b_final_faul(i,:),x_data,[],mu);

% Create difference plot for all 4 repetitions:

y_diff_faul(i,:) = y_data1(i,:) - yc_fit_faul;

plot(x_data,yc_fit_faul,farbe(i))

ylabel (’Counts [a.u.]’)

set(gca,’xtick’,[])

end

legend (’Data’,’Fitted curve 1’,’Fitted curve 2’,...

’Fitted curve 3’,’Fitted curve 4’)

title([int2str(peaknamen(ges)) ’° Peak’])

pos4 = [0.1 0.13 0.8 0.10]; % Define position and height for lower plot

% [x y width height]

subplot(’Position’,pos4)

%Plot the difference plot:

for i = 1:4

plot(x_data,y_diff_faul(i,:),farbe(i))

hold on

end

xlabel (’Angle 2 \Theta [°]’)

hold off

%Also plot data, fit, K_alpha1, K_alpha2, background and peam maximum:

figure

semilogy(x_data,y_data,’k*’)

hold on

semilogy(x_data,yc_fit,’m’)

semilogy(x_data,yc_fit_Kalpha1,’r’)

semilogy(x_data,background,’y’)

line([x1 x1], get(gca, ’ylim’),’color’,’c’,’LineStyle’,’-.’);
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semilogy(x_data,yc_fit_Kalpha2,’r’)

xlabel (’Angle 2 \Theta [°]’)

ylabel (’Counts [a.u.]’)

legend (’Data’,’Fitted curve’,...

’K_{\alpha1} and K_{\alpha2} fitted separately’,’Background’,...

’K_{\alpha1} max.’)

hold off

% Create output variable that can be copied into a .txt file and contains

% all important information. If this is done, the mWH/mWA data processing

% routine can import needed data easily:

if ges == 1

daten_exportieren =...

[IB_ges_faul IB_cauchy_faul IB_gauss_faul a_final_faul];

else

daten_exportieren =...

[daten_exportieren;IB_ges_faul IB_cauchy_faul IB_gauss_faul a_final_faul];

end

end

9.6.6 LaB6 exp fit

The Matlab code for creating an exponential fit for the LaB6 integral breadths and reading out the
instrumental broadening at the steel peak positions is:

close all

clear all

clc

%Import data

IB_LaB6 = load(’LaB_6_1.txt’,’-ascii’);

%------------Calculate peak positions-------------------

% Inculding the 30 ° peak:

% position_21 = mean(IB_LaB6(1:4,5));

% position_30 = mean(IB_LaB6(5:8,5));

% position_37 = mean(IB_LaB6(9:12,5));

% position_43 = mean(IB_LaB6(13:16,5));

% position_49 = mean(IB_LaB6(17:20,5));

% position_54 = mean(IB_LaB6(21:24,5));

% position_76 = mean(IB_LaB6(25:28,5));

% position_80 = mean(IB_LaB6(29:32,5));

% position_84 = mean(IB_LaB6(33:36,5));

% position_88 = mean(IB_LaB6(37:40,5));

% position_96 = mean(IB_LaB6(41:44,5));

% position_100 = mean(IB_LaB6(45:48,5));
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% position_104 = mean(IB_LaB6(49:52,5));

% position_108 = mean(IB_LaB6(53:56,5));

% position_112 = mean(IB_LaB6(57:60,5));

% position_121 = mean(IB_LaB6(61:64,5));

% position_131 = mean(IB_LaB6(65:68,5));

% position_136 = mean(IB_LaB6(69:72,5));

% position_142 = mean(IB_LaB6(73:76,5));

% position = [position_21;position_30;position_37;position_43;...

% position_49;position_54;position_76;position_80;position_84;...

% position_88;position_96;position_100;position_104;position_108;...

% position_112;position_121;position_131;position_136;position_142];

% Without the 30 ° peak:

position_21 = mean(IB_LaB6(1:4,5));

position_37 = mean(IB_LaB6(5:8,5));

position_43 = mean(IB_LaB6(9:12,5));

position_49 = mean(IB_LaB6(13:16,5));

position_54 = mean(IB_LaB6(17:20,5));

position_76 = mean(IB_LaB6(21:24,5));

position_80 = mean(IB_LaB6(25:28,5));

position_84 = mean(IB_LaB6(29:32,5));

position_88 = mean(IB_LaB6(33:36,5));

position_100 = mean(IB_LaB6(37:40,5));

position_104 = mean(IB_LaB6(41:44,5));

position_108 = mean(IB_LaB6(45:48,5));

position_112 = mean(IB_LaB6(49:52,5));

position_116 = mean(IB_LaB6(53:56,5));

position_121 = mean(IB_LaB6(57:60,5));

position_131 = mean(IB_LaB6(61:64,5));

position_136 = mean(IB_LaB6(65:68,5));

position_142 = mean(IB_LaB6(69:72,5));

position = [position_21;position_37;position_43;position_49;...

position_54;position_76;position_80;position_84;position_88;...

position_100;position_104;position_108;position_112;position_116;...

position_121;position_131;position_136;position_142];

%-------------------Calculate IBs-------------------

IB_ges = zeros(numel(IB_LaB6(:,1))/4,1);

IB_cauchy = IB_ges;

IB_gauss = IB_ges;

i=1;

ii = 1;

while i < numel(IB_LaB6(:,1))

IB_ges(ii) = mean(IB_LaB6(i:i+3,1));

IB_cauchy(ii) = mean(IB_LaB6(i:i+3,2));

IB_gauss(ii) = mean(IB_LaB6(i:i+3,3));

i = i + 4;

ii = ii+1;
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end

pos_rad = position / 180 * pi;

fit_ges = fit(position,IB_ges,’exp2’);

fit_gauss = fit(position,IB_gauss,’exp2’);

fit_cauchy = fit(position,IB_cauchy,’exp2’);

%plot(fit_ges,position,IB_ges,’*’)

%hold on

figure

plot(fit_cauchy,position,IB_cauchy,’*’)

title(’Cauchy’)

figure

plot(fit_gauss,position,IB_gauss,’*’)

title(’Gauss’)

% hold off

% legend(’IB-gesamt Daten’,’IB-gesamt Fit’,’IB-Cauchy-Anteil Daten’,...

% ’IB-Cauchy-Anteil Fit’,’IB-Gauss-Anteil Daten’,’IB-Gauss-Anteil Fit’)

%-----------Read data from LaB_6 fit at steel peak positions-----------

% With 45 ° peak:

% P91 = load(’P91_1.txt’,’-ascii’);

% pos_steel_45 = mean(P91(1:4,5));

% pos_steel_65 = mean(P91(5:8,5));

% pos_steel_82 = mean(P91(9:12,5));

% pos_steel_99 = mean(P91(13:16,5));

% pos_steel_116 = mean(P91(17:20,5));

% pos_steel_137 = mean(P91(21:24,5));

% pos_steel = [pos_steel_45 pos_steel_65 pos_steel_82 pos_steel_99...

% pos_steel_116 pos_steel_137];

% Without 45 ° peak:

P91 = load(’P91_1 - Kopie.txt’,’-ascii’);

pos_steel_65 = mean(P91(1:4,5));

pos_steel_82 = mean(P91(5:8,5));

pos_steel_99 = mean(P91(9:12,5));

pos_steel_116 = mean(P91(13:16,5));

pos_steel_137 = mean(P91(17:20,5));

pos_steel = [pos_steel_65 pos_steel_82 pos_steel_99 pos_steel_116...

pos_steel_137];

LaB6_cauchy_export = zeros(1,numel(pos_steel));

LaB6_gauss_export = zeros(1,numel(pos_steel));

for export_lauf = 1:numel(pos_steel)

LaB6_cauchy_export(export_lauf) = fit_cauchy(pos_steel(export_lauf));

LaB6_gauss_export(export_lauf) = fit_gauss(pos_steel(export_lauf));

end

g=1;
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save(’LaB6_export’,’LaB6_cauchy_export’,’LaB6_gauss_export’,’-ascii’)

9.6.7 mWH mWA

The file that finally calculates the dislocation densities via modified Williamson-Hall method combined
with modified Warren-Averbach/contrast-corrected double-Voigt method is:

close all

clear all

clc

%----------------------------Import Data----------------------------

% %--------------------Data import WITH 45° Peak----------------------

%

% % Load the data file for the (modified) Warren-Averbach analysis:

% IB_P91 = load(’BM_AR_vib_pol_parallel_beam.txt’,’-ascii’);

% LaB6_import = load(’LaB6_parallel_export’,’-ascii’);

%

% % Define inegral breadths (IBs) for cauchy parts and extract the

% % instrumental broadening.

% IB_C_45 = mean(IB_P91(1:4,2)) - LaB6_import(1,1);

% IB_C_65 = mean(IB_P91(5:8,2)) - LaB6_import(1,2);

% IB_C_82 = mean(IB_P91(9:12,2)) - LaB6_import(1,3);

% IB_C_99 = mean(IB_P91(13:16,2)) - LaB6_import(1,4);

% IB_C_116 = mean(IB_P91(17:20,2)) - LaB6_import(1,5);

% IB_C_137 = mean(IB_P91(21:24,2)) - LaB6_import(1,6);

% IB_C = [IB_C_45 IB_C_65 IB_C_82 IB_C_99 IB_C_116 IB_C_137];

%

% % Convert real space IBs to IBs in reciprocal space (IB(2\Theta) to

% % IB(g)):

% IB_C1 = [IB_C(1)*2*cos(mean(IB_P91(1:4,5))/2*pi/180)/(0.1540598*10^-9)...

% IB_C(2)*2*cos(mean(IB_P91(5:8,5))/2*pi/180)/(0.1540598*10^-9)...

% IB_C(3)*2*cos(mean(IB_P91(9:12,5))/2*pi/180)/(0.1540598*10^-9)...

% IB_C(4)*2*cos(mean(IB_P91(13:16,5))/2*pi/180)/(0.1540598*10^-9)...

% IB_C(5)*2*cos(mean(IB_P91(17:20,5))/2*pi/180)/(0.1540598*10^-9)...

% IB_C(6)*2*cos(mean(IB_P91(21:24,5))/2*pi/180)/(0.1540598*10^-9)];

%

% % Define inegral breadths (IBs) for gaussian parts and extract the

% % instrumental broadening.

% IB_G_45 = sqrt(mean(IB_P91(1:4,3)).^2 - LaB6_import(2,1).^2);

% IB_G_65 = sqrt(mean(IB_P91(5:8,3)).^2 - LaB6_import(2,2).^2);

% IB_G_82 = sqrt(mean(IB_P91(9:12,3)).^2 - LaB6_import(2,3).^2);

% IB_G_99 = sqrt(mean(IB_P91(13:16,3)).^2 - LaB6_import(2,4).^2);

% IB_G_116 = sqrt(mean(IB_P91(17:20,3)).^2 - LaB6_import(2,5).^2);

% IB_G_137 = sqrt(mean(IB_P91(21:24,3)).^2 - LaB6_import(2,6).^2);

% IB_G = [IB_G_45 IB_G_65 IB_G_82 IB_G_99 IB_G_116 IB_G_137];

%

% % Convert real space IBs to IBs in reciprocal space (IB(2\Theta) to

% % IB(g)):
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% IB_G1 = [IB_G(1)*2*cos(mean(IB_P91(1:4,5))/2*pi/180)/(0.1540598*10^-9)...

% IB_G(2)*2*cos(mean(IB_P91(5:8,5))/2*pi/180)/(0.1540598*10^-9)...

% IB_G(3)*2*cos(mean(IB_P91(9:12,5))/2*pi/180)/(0.1540598*10^-9)...

% IB_G(4)*2*cos(mean(IB_P91(13:16,5))/2*pi/180)/(0.1540598*10^-9)...

% IB_G(5)*2*cos(mean(IB_P91(17:20,5))/2*pi/180)/(0.1540598*10^-9)...

% IB_G(6)*2*cos(mean(IB_P91(21:24,5))/2*pi/180)/(0.1540598*10^-9)];

%

%

% if numel(IB_C) ~= numel(IB_G)

% error(’There must be the same amount of Lorentz- and Gauss-peaks!’)

% end

%

% IB_ges = IB_C + IB_G;

%

% % Define variables:

% deltag =...

% [IB_ges(1)*2*cos(mean(IB_P91(1:4,5))/2*pi/180)/(0.1540598*10^-9)...

% IB_ges(2)*2*cos(mean(IB_P91(5:8,5))/2*pi/180)/(0.1540598*10^-9)...

% IB_ges(3)*2*cos(mean(IB_P91(9:12,5))/2*pi/180)/(0.1540598*10^-9)...

% IB_ges(4)*2*cos(mean(IB_P91(13:16,5))/2*pi/180)/(0.1540598*10^-9)...

% IB_ges(5)*2*cos(mean(IB_P91(17:20,5))/2*pi/180)/(0.1540598*10^-9)...

% IB_ges(6)*2*cos(mean(IB_P91(21:24,5))/2*pi/180)/(0.1540598*10^-9)];

%

% g = [2*sin(mean(IB_P91(1:4,5))/2*pi/180)/(0.1540598*10^-9)...

% 2*sin(mean(IB_P91(5:8,5))/2*pi/180)/(0.1540598*10^-9)...

% 2*sin(mean(IB_P91(9:12,5))/2*pi/180)/(0.1540598*10^-9)...

% 2*sin(mean(IB_P91(13:16,5))/2*pi/180)/(0.1540598*10^-9)...

% 2*sin(mean(IB_P91(17:20,5))/2*pi/180)/(0.1540598*10^-9)...

% 2*sin(mean(IB_P91(21:24,5))/2*pi/180)/(0.1540598*10^-9)];

%

% C_h00 = 0.285; % Here, C_h00 of pure iron is used

% % ------End of data import WITH 45° Peak------

%--------------------Data import WITHOUT 45° Peak----------------------

% When using the physics department’s PANalytical x-ray-machine with

% monochromator, the 45° peak is usually corrupted. Use this import

% option then.

% Load the data file for the (modified) Warren-Averbach analysis:

%IB_P91 = load(’P91_1p5h_760C.txt’,’-ascii’);

IB_P91 = load(’P91_36h_760C.txt’,’-ascii’);

%IB_P91 = load(’P91_1.txt’,’-ascii’);

LaB6_import = load(’LaB6_export’,’-ascii’);

% Define inegral breadths (IBs) for cauchy parts and extract the

% instrumental broadening.

IB_C_65 = mean(IB_P91(1:4,2)) - LaB6_import(1,1);

IB_C_82 = mean(IB_P91(5:8,2)) - LaB6_import(1,2);

IB_C_99 = mean(IB_P91(9:12,2)) - LaB6_import(1,3);
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IB_C_116 = mean(IB_P91(13:16,2)) - LaB6_import(1,4);

IB_C_137 = mean(IB_P91(17:20,2)) - LaB6_import(1,5);

IB_C = [IB_C_65 IB_C_82 IB_C_99 IB_C_116 IB_C_137]*pi/180;

% Convert real space IBs to IBs in reciprocal space (IB(2\Theta) to

% IB(g)):

IB_C1 = [IB_C(1)*2*cos(mean(IB_P91(1:4,5))/2*pi/180)/(0.1540598*10^-9)...

IB_C(2)*2*cos(mean(IB_P91(5:8,5))/2*pi/180)/(0.1540598*10^-9)...

IB_C(3)*2*cos(mean(IB_P91(9:12,5))/2*pi/180)/(0.1540598*10^-9)...

IB_C(4)*2*cos(mean(IB_P91(13:16,5))/2*pi/180)/(0.1540598*10^-9)...

IB_C(5)*2*cos(mean(IB_P91(17:20,5))/2*pi/180)/(0.1540598*10^-9)];

% Define inegral breadths (IBs) for gaussian parts and extract the

% instrumental broadening.

IB_G_65 = sqrt(mean(IB_P91(1:4,3)).^2 - LaB6_import(2,1).^2);

IB_G_82 = sqrt(mean(IB_P91(5:8,3)).^2 - LaB6_import(2,2).^2);

IB_G_99 = sqrt(mean(IB_P91(9:12,3)).^2 - LaB6_import(2,3).^2);

IB_G_116 = sqrt(mean(IB_P91(13:16,3)).^2 - LaB6_import(2,4).^2);

IB_G_137 = sqrt(mean(IB_P91(17:20,3)).^2 - LaB6_import(2,5).^2);

IB_G = [IB_G_65 IB_G_82 IB_G_99 IB_G_116 IB_G_137]*pi/180;

% Convert real space IBs to IBs in reciprocal space (IB(2\Theta) to

% IB(g)):

IB_G1 = [IB_G(1)*2*cos(mean(IB_P91(1:4,5))/2*pi/180)/(0.1540598*10^-9)...

IB_G(2)*2*cos(mean(IB_P91(5:8,5))/2*pi/180)/(0.1540598*10^-9)...

IB_G(3)*2*cos(mean(IB_P91(9:12,5))/2*pi/180)/(0.1540598*10^-9)...

IB_G(4)*2*cos(mean(IB_P91(13:16,5))/2*pi/180)/(0.1540598*10^-9)...

IB_G(5)*2*cos(mean(IB_P91(17:20,5))/2*pi/180)/(0.1540598*10^-9)];

if numel(IB_C) ~= numel(IB_G)

error(’There must be the same amount of Lorentz- and Gauss-peaks!’)

end

IB_ges = IB_C + IB_G;

% Define variables:

deltag =...

[IB_ges(1)*2*cos(mean(IB_P91(1:4,5))/2*pi/180)/(0.1540598*10^-9)...

IB_ges(2)*2*cos(mean(IB_P91(5:8,5))/2*pi/180)/(0.1540598*10^-9)...

IB_ges(3)*2*cos(mean(IB_P91(9:12,5))/2*pi/180)/(0.1540598*10^-9)...

IB_ges(4)*2*cos(mean(IB_P91(13:16,5))/2*pi/180)/(0.1540598*10^-9)...

IB_ges(5)*2*cos(mean(IB_P91(17:20,5))/2*pi/180)/(0.1540598*10^-9)];

g = [2*sin(mean(IB_P91(1:4,5))/2*pi/180)/(0.1540598*10^-9)...

2*sin(mean(IB_P91(5:8,5))/2*pi/180)/(0.1540598*10^-9)...

2*sin(mean(IB_P91(9:12,5))/2*pi/180)/(0.1540598*10^-9)...

2*sin(mean(IB_P91(13:16,5))/2*pi/180)/(0.1540598*10^-9)...

2*sin(mean(IB_P91(17:20,5))/2*pi/180)/(0.1540598*10^-9)];

C_h00 = 0.285; % Here, C_h00 of pure iron is used
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% ------End of data import WITHOUT 45° Peak------

deltag_cauchy = deltag;

g_cauchy = g;

%-------------------------End of data import-------------------------

% Define H2=(h^2*k^2 + h^2*l^2 + k^2*l^2) / (h^2+k^2+l^2)^2

% with the Miller’s indices (hkl) of the analysed peaks:

H2_110 = (1^2*1^2 + 1^2*0^2 + 1^2*0^2) / (1^2+1^2+0^2)^2;

H2_200 = (2^2*0^2 + 2^2*0^2 + 0^2*0^2) / (2^2+0^2+0^2)^2;

H2_211 = (2^2*1^2 + 2^2*1^2 + 1^2*1^2) / (2^2+1^2+1^2)^2;

H2_220 = (2^2*2^2 + 2^2*0^2 + 2^2*0^2) / (2^2+2^2+0^2)^2;

H2_310 = (3^2*1^2 + 3^2*0^2 + 1^2*0^2) / (3^2+1^2+0^2)^2;

H2_222 = (2^2*2^2 + 2^2*2^2 + 2^2*2^2) / (2^2+2^2+2^2)^2;

% If the Data import WITH 45° peak is aktivated, use the following H2:

%H2 = [H2_110 H2_200 H2_211 H2_220 H2_310 H2_222];

% If the Data import WITHOUT 45° peak is aktivated, use the following H2:

H2 = [H2_200 H2_211 H2_220 H2_310 H2_222];

% % Use the modified Williamson-Hall method to determine the reflection

% % constant of dislocations C: C = C_h00 .* (1 - q .* H2);

%------------Guess alpha = (0.9/D)^2 andcalculate q------------

%----------------with the crystallite size D----------------

% Set a random alpha and only save it, if the fit results are better

% than the previously best one:

goffinal = 1000;

for i = 1:500

alpha = rand*200;

% Define parameters for (deltag^2-alpha)./(g^2) vs. H^2 plot:

y = (deltag_cauchy.^2-alpha)./(g_cauchy.^2);

x = H2;

% Make a linear fit and evaluate it’s quality:

[fitq, gof] = fit(x.’,y.’,’poly1’);

if gof.sse<goffinal

fitq_final = fitq;

goffinal = gof.sse;

y_final = y;

alphafinal = alpha;

end

end

%------Find Root of the best fit and calculate q------

fitq_final_vals = coeffvalues(fitq_final);

qq = roots(fitq_final_vals);
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q = 1 / qq;

%-----Plot-------

fitq_final_plot = fitq_final(0:0.001:0.5);

figure

plot (x,y_final,’o’)

hold on

plot(0:0.001:0.5,fitq_final_plot)

hold off

title([’Mit \alpha = ’ num2str(alpha)])

xlabel(’H^2’)

ylabel(’$\displaystyle\frac{(\Delta g)^2 - \alpha} {g^2}$’,...

’interpreter’,’latex’)

% %-----------------modified Warren-Averbach--------------------------

% % If one doesn’t want to use the modified Williamson-Hall method to

% % determine q, the following for-loop can be used instead. To do so,

% % scroll down ~100 lines and also uncomment the marked 5 lines there! The

% % loop will create a modified Warren-Averbach plot for each q and save

% % the estimated standard deviation. The last iteration is again done with

% % the "best q" (=lowest estimated standard deviation) and the program

% % continues with this value.

% delta_A0 = 10000;

% iter_max = 18; %By default, q starts at zero und increases with every

% %iteration by 0.1 . For steel q~1.2 (pure edge

% %dislocations) to q~2.8 (pure screw dislocations) is

% %realistic

%

% for ii=0:iter_max

% q = 1 + 0.1*ii;

% if ii == iter_max

% % close all %Uncomment if one does NOT want to controll the mWA-plots

% q = q_final;

% end

% If you already know your q (and do NOT use the for loop to evaluate it),

% please insert it here. Otherwise comment it out.

%q = 0;

% % If one wants to know gamma to determine the outer cutoff-radius and did

% % use the modified Williamson-Hall technique to determine q (see

% % PDF-document) please uncomment. Otherwise leave it commented.

%gamma = (deltag_cauchy(2)^2-alphafinal)/(g_cauchy(2)^2*C_h00);

%Calculate the contrast factor C:

if q == 0
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C=1;

else

C = C_h00 .* (1 - q .* H2);

end

%------Warren-Averbach ueber Double-Voigt-------

% Often used n ranges: (max. length of n is numel(n)=12 )

%n = [1 3 5 7 9 11 13 15];

%n = [1 2 3 5 10 15 20 25 30 35 40];

n = [1 2 3 10 20 30 40 50 60 80 100 150];

% The calculation of a3 is commented out, because n can be chosen so that

% L is a natural number. This would come to the same result we do, but

% would take some calculation time.

%a3(1) = (0.1540598*10^-9) / (2 * (sin(70/2*pi/180) - sin(60/2*pi/180)));

%a3(1) = (0.1540598*10^-9) / (2 * (sin(87/2*pi/180) - sin(77/2*pi/180)));

%a3(1) = (0.1540598*10^-9) / (2 * (sin(104/2*pi/180) - sin(94/2*pi/180)));

%a3(1) = (0.1540598*10^-9) / (2 * (sin(121/2*pi/180) - sin(111/2*pi/180)));

%a3(1) = (0.1540598*10^-9) / (2 * (sin(142/2*pi/180) - sin(132/2*pi/180)));

%n = n ./ a3 * 10^(-9);

%------------Calculate ln(A(L)) for Warren-Averbach-plot------------

% Define variables to be filled in loop:

A_L = zeros(numel(n),numel(IB_C));

ln_A_L = A_L;

L = zeros (size(n));

%Loop to calculate ln(A(L)):

for n_lauf = 1 : numel(n)

%L(n_lauf) = n(n_lauf) * a3; %Is used if a3 is calculated

L(n_lauf) = n(n_lauf) * 10^(-9);

for IB_lauf = 1 : numel(IB_C)

ln_A_L(n_lauf, IB_lauf) = -2 * L(n_lauf) * IB_C1(IB_lauf) -...

pi * L(n_lauf)^2 * IB_G1(IB_lauf)^2;

end

end

% Calculate g^2*C for modified Warren-Averbach plot

ss = g(1:end).^2 .*C(1:end);

%ss = ss([1 2 4 5 ]);

%ln_A_L = ln_A_L(:,[1 2 4 5]);

%Define colors and shapes for modified Warren-Averbach plot:

farben = [[1,0,0];[0,1,0];[0,0,1];[1,1,0];[0,1,1];[0.5,0.8,0.5];...

[0.3 1 0.8];[0.5 1 0.3];[0.3 0.5 0.8];[0.5 0.5 0.3];[0.5 0.8 0.8];...

[0.8 0.8 0.5]];

formen = [’+’,’o’,’*’,’x’,’s’,’d’,’^’,’v’,’>’,’<’,’p’,’h’];

%-----Calculate and plot fits for modified Warren-Averbach method-----
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% Define variables to be filled in loop:

Y_val = zeros(numel(n),2); %Y_val(:,1)=p1;Y_val(:,2)=p2 for y=p1x+p2 fit.

% Begin plot:

figure

hold on

plots = size(n); % Save plots to variable to insert correct legend later

for n_lauf = 1 : numel(n)

% Perform fit with moving zero-point to ensure convergation:

[A_fit,S_fit,mu_fit] = polyfit(ss.’, ln_A_L(n_lauf,1:end).’,1);

% Calculate y-values for this fit over wide range to evaluate slope

% later:

Y_val(n_lauf,:) =...

polyval(A_fit,10^19,S_fit,mu_fit) - polyval(A_fit,0,S_fit,mu_fit);

% Calculate y-values for this fit for plotting:

[A_fit_plot,delta_A] =...

polyval(A_fit,linspace(0,max(ss)+max(ss)*0.05,10),S_fit,mu_fit);

% Plot data and corresponding fits:

plots(n_lauf) = plot(ss,ln_A_L(n_lauf,:),formen(n_lauf), ’color’,...

farben(n_lauf,:),’DisplayName’,[’L = ’ int2str(L(n_lauf)*10^9) ’ nm’]);

plot(linspace(0,max(ss)+max(ss)*0.05,10),A_fit_plot,...

’color’,farben(n_lauf,:));

end

% Insert plot title, labels and legend:

if q==0

title(’Normal WA-Plot’)

xlabel(’g^2 [m^{-2}]’)

else

title([’mWA-Plot with q = ’ num2str(q)])

xlabel(’g^2 * C [m^{-2}]’)

end

ylabel(’ln(A)’)

legend(plots)

hold off

% % !!!!As mentioned at around line 280/290: !!!!

% % If one does not want to calculate q from the modified Williamson-Hall

% % technique, one can also fit the data for various q values and evaluate

% % the fit quality both numerically (best q = q_final) and graphically

% % (plots are done for all q-values). To do so, uncomment the 5 lines

% % below.

% if delta_A0 > delta_A

% q_final = q;

% end

% delta_A0 = delta_A;

% end
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% Continue with modified Warren-Averbach analysis:

Y = -Y_val(:,1)/10^19; % Get slope of mWA-plot for Y/L^2 vs. ln(L)-plot

YY = Y.’ ./ (L(1:end)).^2; % = Y/L^2

durchL = 1./L; %Create variable for cauchy-/gauss-separation

Y_durchL_fit = fit (durchL.’,YY.’,’poly1’); %Create Y/L^2 vs. 1/L fit

% Cauchy-/gauss-separation: Plot Y/L^2 vs. 1/L

% --> beta_gauss_distortion = Y/L^2 at 1/L = 0;

% --> beta_cauchy_distortion = slope of this plot

% Plot data and fit:

figure

plot(1./L,YY,’+’);

hold on

plot(Y_durchL_fit);

hold off

%xlabel(’1/L [nm^-1]’)

xlabel(’$\displaystyle\frac{1} {L}$ [nm$^-1$]’,’interpreter’,’latex’)

%ylabel(’Y_{DV}/L^2’)

ylabel(’$\displaystyle\frac{Y_{DV}} {L^2}$’,’interpreter’,’latex’)

% Continue calculation with cauchy-/gauss-separated data:

Y_bereinigt = coeffvalues(Y_durchL_fit);

propto_beta_GD2 = Y_bereinigt(2); %=beta_gauss_distortion^2 * pi *1/g^2

propto_beta_CD = Y_bereinigt(1); %=beta_cauchy_distortion * 2 * 1/g^2

e_G_ss = propto_beta_GD2./(2*pi^2); % calculate mean-squared-strain

% from gauss only

e_C_ss = propto_beta_CD ./ (2*pi^2); % calculate mean-squared-strain

% from cauchy only

e_mss = e_G_ss+e_C_ss; % calculate combined mean-squared-strain

% Calculate the dislocation density according to this kind-of double-Voigt-

% method with the Williamson-Smallman-equation:

rho_double_voigt = (14.4 .* e_mss) ./ ((0.248.*10.^(-9)).^2)

% Plot data according to kind-of double-Voigt-method:

L_plot = linspace(L(1),L(end),1000);

YY_new = propto_beta_GD2 + Y_bereinigt(1)./L_plot;

% Fit data according to the conventional modified Warren-Averbach method:

Y_fit1 = fit(log(L([1 2 3])).’, YY([1 2 3]).’,’poly1’);

% Use conventional modified Warren-Averbach method to determine

% dislocation density:

k_val = coeffvalues(Y_fit1); % Get values from fit

rho1 = -(k_val(1)*2)/(pi*(0.248*10^(-9))^2) % Calculate disloc. density

% Plot data, modified double-Voigt fit and linear fit according to mWA:

figure
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plot(log(L(1:end)),YY,’+’)

hold on

plot(log(L_plot),YY_new)

plot(Y_fit1,’k’)

hold off

xlabel (’ln(L)’)

ylabel(’$\displaystyle\frac{Y} {L^2}$’,’interpreter’,’latex’)

legend(’Data’,’New introduced method’,...

’Lin. fit (=modified Warren-Averbach)’)

title([’Disloc. density \rho = ’ num2str(rho_double_voigt,1)...

’ with q = ’ num2str(q,3)])
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