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Kurzfassung

Die Möglichkeit die Position von Objekten innerhalb eines Gebäudes zu bestimmen, ist
ein begehrtes Feature. Insbesondere im Kontext von Internet of Things (IoT) wird diese
Funktion in naher Zukunft sehr gefragt sein.

Das Ziel dieser Arbeit ist es, ein skalierbares verteiltes und selbstorganisierendes Lokali-
sierungssystem basierend auf der Ultrabreitband (UWB) Funktechnologie zu entwickeln.
Dieses System besteht aus statischen Knoten, die in einer beliebigen Umgebung verteilt
sind. Jeder dieser Knoten besteht aus einem STM32 Nucleo Evaluierungsboard und dem
ersten kommerziell verfügbaren IEEE 804.15.4 kompatiblen Ultrabreitband Transceiver
DW1000. Nach einer Setupphase werden UWB Signale benutzt, um die Position mobiler
Knoten zu bestimmen. Dabei unterstützt das System die passive Lokalisierung von
mobilen Knoten, als auch Selbst-lokalisierung. Bei der passiven Lokalisierung ermittelt
das Lokalisierungssystem die Position eines mobilen Knotens basierend auf einem vom
letzteren ausgesendeten UWB Signal. Bei der Selbst-Lokalisierung nutzt ein mobiler
Knoten die von dem Lokalisierungssystem gesendeten UWB Signale um seine eigene
Position zu bestimmen.

Um dieses Ziel zu erreichen wurde das Problem in drei Teile aufgeteilt und untersucht:
Lokalisierungsalgorithmen, Zeitsynchronisation und Clusterbildung. Um die Skalierbar-
keit zu gewährleisten, ist es empfehlenswert die sogenannte time difference of arrival
(TDOA) Methode zu benutzen. Basierend auf dieser Annahme wird in dieser Arbeit ein
entsprechendes Lokalisierungs- und Kommunikationsschema vorgestellt.

Weiters wird die Lokalisierungsgenauigkeit und die Konvergenzrate verschiedener Algo-
rithmen untersucht. Um die TDOA Methode nutzen zu können, müssen alle statischen
Knoten zeitlich äußerst genau synchronisiert sein. Daher wird in dieser Arbeit das sta-
tistische Verhalten der Oszillatoren der Funkmodule analysiert und darauf basierend
statistische Filter parametrisiert, um den Synchronisationsfehler zu minimieren.

Da es unmöglich ist, eine netzwerkweite Synchronisation im Nanosekundenbereich zu
erreichen, ist es notwendig das Netzwerk der statischen Knoten in zeitsynchrone Cluster zu
unterteilen. In dieser Arbeit wird ein deterministischer Clusteringalgorithmus vorgestellt
und mit einem probabilistischen Clusteringalgorithmus verglichen. Für beide Algorithmen
wird evaluiert, wie genau die Position mobiler Knoten mittels der gebildeten Cluster
bestimmt werden kann.





Abstract

Determining the position of objects inside of a building is a highly desirable feature that
is required by location-aware applications. Especially, in the context of Internet of Things
(IoT) this feature will be in high demand in future.

This thesis aims to build a scalable, distributed, and self-organizing ultra-wideband
(UWB) based localization system. This system is composed out of static UWB capable
nodes placed in an arbitrary area. Each node is made of a STM32 Nucleo evaluation
board and the first commercially available IEEE 802.15.4-compliant ultra-wideband
(UWB) transceivers produced by DecaWave. As soon as the system started up, UWB
signals are used to estimate the position of mobile nodes. The proposed system supports
passive as well as self-localization. For the passive localization, the system estimates
the position of a mobile node based on the reception of a single UWB signal at several
anchor nodes. For self-localization, a mobile node can use the emitted UWB signals from
the anchor nodes to estimate its position.

To reach this goal the problem is split into three separated parts, namely: localization
techniques and algorithms, high-precise time synchronization, and clustering. To fulfill
the requirement of a scalable solution the need for the time difference of arrival (TDOA)
localization method is identified. Based on this, a scalable localization and communication
scheme that supports passive as well as self-localization is proposed.

To find suitable algorithms to perform localization, the convergence rate and localization
accuracy of different localization algorithms are analyzed.

The TDOA method requires that all nodes are time-synchronous in the sub-nanosecond
range, thus, in this thesis, the statistical parameters of the clock uncertainties are
determined and used to parametrize a statistical filter that minimizes the synchronization
error between nodes.

As network-wide synchronization in the sub-nanosecond range is impossible to achieve, the
need for time-synchronous clusters is identified. In this thesis, a deterministic clustering
algorithm is proposed and compared to a probabilistic algorithm. For both algorithms, it
is evaluated how well they can partition a network of many nodes into time-synchronous
clusters that yield high localization accuracy.

Apart from the synchronization, all parts were evaluated theoretically offline. Thus,
future work has to port the other parts to the Nucleo platform and evaluate the whole
system online.
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CHAPTER 1
Introduction

Positioning is the act of determining the position of any objects given some position-
related information, e.g., distance to some anchor points. A coarse classification of
positioning systems is done by separating them into indoor and outdoor positioning
systems. While the outdoor positioning problem can be considered to be solved by the
GPS system and its rivals Galileo, GLONASS and Beidou, indoor positioning is still an
active field of research.

Being able to determine the position of objects inside a building precisely is a key
enabler for many applications. Some examples are intelligent logistic centers, warehouses,
hospitals or shopping malls. In logistic centers, an indoor localization system can be used
to coordinate robots, people and to locate parcels. In hospitals, an indoor localization
system is useful if expensive equipment has to be localized or to locate patients in case
of an emergency. A system that provides such a service should ideally be insensitive to
measurement uncertainties, resilient against failures, small and energy efficient, such that
it remains almost unnoticed.

Several different techniques such as acoustic signals, radio waves or image processing
can be employed to determine the position of objects inside buildings. The decision on
which technique is used heavily depends on the use case and the resulting constraints.
For example, image-based position estimation methods usually require expensive cameras
as well as powerful processing units. If thousands of objects should be able to localize
themselves or to be localized, such a system may be too expensive and energy consuming.
Connecting thousands of objects is part of what is called the Internet of Things (IoT).
In this domain, we are usually confronted with energy-constrained devices (i.e., battery-
powered nodes). Hence, energy-demanding data and image processing may not be an
option. Furthermore, a desired feature of IoT is that the presence of devices stays
unnoticed, thus also, the size of a device plays an important role.
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1. Introduction

1.1 Motivation

This thesis aims to design a low-cost, precise, efficient, scalable and self-organizing
indoor localization system. We use the first commercially available IEEE 802.15.4
compliant ultra-wideband (UWB) radio modules produced by DecaWave to achieve this
goal. These modules allow to measure the duration of radio waves propagating through
space, also called time-of-flight (TOF), with high precision. To be able to determine
the TOF precisely, it is important to have synchronized clocks, as poorly synchronized
clocks introduce errors into TOF and distance measurements. An indoor localization
system based on UWB modules uses fixed anchor nodes with known position, and the
position of mobile nodes is determined by measuring the distance to the anchor nodes by
estimating the TOF. A localization system that directly uses the distances is based on
the time-of-arrival (TOA).

To achieve high precision, scalability, and efficiency, we decided to use a localization
method called time-difference of arrival (TDOA). This method essentially does not
measure the distance to an anchor node, but rather the difference of the distances
between the mobile node and two anchor nodes. This method has several benefits: first,
synchronization is only required among the anchor nodes. Second, it allows determining
the position of a mobile node with a single message. Third, it allows mobile nodes to
localize themselves without any interaction with the anchor nodes, thus allowing for an
arbitrary number of mobile nodes to participate. A TDOA system requires that all anchor
nodes are synchronized with high precision, and in this thesis, we investigate how tight
these nodes can be synchronized. As highly precise network-wide synchronization cannot
possibly be achieved, clustering is used to form time-synchronized clusters. Within these
synchronized clusters, mobile nodes can localize themselves or can be localized. As the
localization precision depends on the distribution of anchor nodes within a localization
cluster, we investigate how well simple clustering algorithms are suited to form localization
clusters with high localization precision.

1.2 Contribution

The overall goal of this thesis is to design an efficient indoor localization system that is
scalable and easy to deploy. Towards this goal, we split the problem into several smaller
parts: for each part, we present a solution and all parts combined form the proposed
indoor localization system. The first part is the localization part. The second building
block is the synchronization part. The third block takes care of clustering. The fourth
block is a proposed communication and localization scheme.

Regarding the localization part, the contribution of this thesis is to research and compare
three localization algorithms and their convergence towards the final position under the
presence of TOF measurement noise. We also evaluate if this localization algorithm
requires a good initial guess of the final position, or if a weak guess (e.g., at the center of
the cluster) is sufficient to ensure convergence.

2



1.3. Thesis Outline

The contribution of the synchronization part is fourfold. First, possible network-wide
synchronization methods are analyzed and theoretically evaluated for our use case.
Second, the statistical uncertainties of the crystal clocks of radio modules are determined.
Third, the simple skew clock correction method and a statistical signal processing based
clock correction method are compared regarding accuracy offline. Fourth, both methods
were implemented on our test platform and are evaluated online.

In the clustering part we propose a deterministic clustering algorithm and compare it to a
probabilistic algorithm. Probabilistic algorithms use random values to determine whether
a node becomes a cluster-head or not. Deterministic algorithms use locally available
information such as the number of unclustered neighbors or node position to decide on its
role. We, therefore, apply both algorithms to a set of anchor nodes distributed on a map.
The generated clustering is then used to calculate the theoretical localization accuracy
for each point on the map and to compare the accuracy of the clustering generated by
both algorithms.

We then propose a novel communication and localization scheme where passive, as well
as self-localization of mobile nodes, is supported. Passive localization is performed by the
sensor network by receiving a single message issued from the mobile node. Self-localization
means that a mobile node localize itself by only receiving messages issued by the anchor
nodes. In detail, the anchor nodes record the reception time-stamp of any messages
and return the gathered data to the cluster-head. With this data, the cluster-head can
determine the position of mobile nodes. Furthermore, the data messages can be used by
a mobile node to perform self-localization to determine its location.

1.3 Thesis Outline

Chapter 2 gives an introduction to the topic of localization and synchronization in
wireless sensor networks. To do so, we first describe topic-specific notations and explain
different algorithm concepts that are used to achieve localization and synchronization in
sensor networks. Afterward, we give an introduction to the three building blocks of the
proposed localization system in this thesis, namely: localization, synchronization, and
clustering. In the localization part of this chapter, we briefly discuss different radio-based
localization techniques. In the synchronization part, we give an introduction to different
time synchronization protocols and possible sources of synchronization errors. The
clustering part gives an introduction to the topic of sensor network clustering.

In Chapter 3 we summarize available literature about TDOA systems built with the De-
caWave chip, and discuss their weaknesses. Furthermore, the proposed indoor localization
system and communication scheme are explained.

In Chapter 4 localization is discussed in more detail. Here we lay the mathematical
foundation for position estimation given a set of distance (TOA) or difference of distance
(TDOA) measurements. We first show closed-form solutions for TOA as well as TDOA
systems and discuss why closed form solution might not find the optimal solution. We

3



1. Introduction

present the iterative Taylor-series expansion method to find the position given a set of
measurements. In the evaluation section of this chapter, we compare the convergence
performance of the Taylor-series expansion method with the Gauss-Newton and Maximum-
Likelihood Gauss-Newton optimization method.

In Chapter 5 clock synchronization is discussed in more detail. First, an iterative model
is derived from a discretized sinus oscillator. Then the same iterative state model is
derived from stochastic differential equations (SDE), with this method, the relationship
to the Allan variance can be shown. This relationship is then used to perform model
identification, i.e., to identify the variances of the noise terms in the SDE equations.
With the knowledge of the noise parameters, we create a Kalman filter and compare
the performance with the simple skew correction model. In the evaluation section, we
compare the Kalman filter with the simple skew model in an offline testing setup and
online testing on the Nucleo board.

In Chapter 6 a probabilistic and deterministic iterative cluster algorithm is presented
and evaluated regarding localization accuracy. To do so, we came up with three different
realistic scenarios where anchors were placed in a room, in a hallway, or in an open
area. We used those scenarios to simulate each clustering algorithm and calculate the
localization accuracy via the Cramèr-Rao Lower Bound (CRLB).

In Chapter 7 the findings of this thesis are discussed, and further work is proposed.

4



CHAPTER 2
Localization and Time

Synchronization in Wireless
Sensor Networks

Advances in miniaturizing microelectronics over the last decade make it possible to
develop small wireless, distributed sensors, and actuators. This new technology is now on
edge to turn many people’s vision into reality: a vision where hundreds or thousands of
planned or ad-hoc deployed small devices can work together to capture current ambient
conditions, identify presence or absence of objects and people, or determine the movement
of these objects. Space and time have a close relationship and are playing an essential
role in enabling these services, as both are used to distinguish between events and their
effects that are captured by one or more nodes within networks of sensors. More precisely,
time synchronization is important to be able to assign the change of sensory output of
multiple devices to a particular event. Spatial localization is important to differentiate
between events in a network that happened concurrently but at different locations. If
a sensor network achieves high spatial resolution and precise time synchronization, it
can be used to track objects along the deployed area. This is the use-case discussed
in this thesis: thus, we focus on methods that can achieve high precision of space and
time localization. Additionally, when it comes to reliable and efficient communication,
precise time synchronization is essential, as it is required to coordinate individual nodes
accessing a shared medium, using a method commonly known as time-division multiple
access (TDMA). Being able to precisely determine when a packet is expected to arrive
at a node is also advantageous if one wants to reduce the on-time of a radio receiver to
minimize energy consumption.

5



2. Localization and Time Synchronization in Wireless Sensor Networks

2.1 Space-time

The concept of space-time in sensor networks was introduced in [1], where a unified view
on the topics space and time in sensor networks was developed. In the world as we know
it, a point in space is usually defined by a three-dimensional orthogonal space also known
as the Euclidean or Cartesian coordinate system. Starting from a reference point O, each
point in space can be reached by a linear combination of the 3-scaled basis vectors e1, e2,
e3. In space-time there is an additional fourth dimension, which accounts for the time of
a point in space: hence, there is a fourth basis vector e4. A consequence of the additional
time dimension is that we do not speak of a point in space, but rather of an event that
occurs in space-time.

A particular event in the space-time coordinate system is described by the reference point
O and a scaled version of the four basis vectors (O, e1, e2, e3, e4). Given a point p with
its coordinates (p1, p2, p3, p4), the event in space-time can now be expressed in terms of
the previously defined coordinate system as follows: p = O + p1e1 + p2e2 + p3e3 + p4e4.
With this in mind, we can define the spatial distance between two events as follows [1]:

d =
√

(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2 (2.1)

The temporal distance is given by |p4 − q4|. With this notation, it becomes clear
that localization and synchronization can be regarded as a process of determining the
coordinates of an event p in space-time with respect to a coordinate system. Such an
event can be the transmission or the reception of data packages, or, in other words, when
their corresponding radio waves leave and arrive, at a sensor node at a particular position
and time in space-time.

The previously mentioned separated view of distance metrics for spatial and temporal
separation is, in fact, a simplification that is sufficient if one only wants to separate events
above nano-second range. In physics and in particular in special relativity theory, the
Minkowski geometry is used to describe space-time. The distance metric of this geometry
is quite similar but differs a little bit as the additional time dimension is included in
the metric (Equation 2.2). It is well known that Equation 2.2 yields zero if objects that
connect two events are moving at speed of light, just like radio waves do. Hence, we can
deduce from equation 2.2 that the time difference between two events (transmission and
reception of a message), which are causally connected at speed of light, depends on their
spatial distance.

In most wireless sensor network (WSN) applications this fact is neglected, and transmitted
packets are regarded to arrive almost instantaneous at all receivers. However, if one wants
to operate on timing information in sub-nanosecond range, this property has to be taken
into account. On the one hand, this causes additional complexity for synchronization. On
the other hand, it is this property of nature that allows us to perform spatial localization.

6



2.1. Space-time

(∆s)2 = 0 = −(∆ct)2 + (∆x)2 + (∆y)2 + (∆z)2

(∆t)2 = (∆x)2 + (∆y)2 + (∆z)2

c2

(2.2)

2.1.1 External and Internal Coordinate System

In [1], the authors differentiate between internal and external localization in space-time.
External localization uses a given coordinate system to localize each event in space-time,
while for internal localization no external reference coordinate system is given. In this
case, the nodes have to agree on a single common coordinate system. An example of
an external reference system would be the usage of GPS, which enables nodes to locate
themselves spatially, as well as to synchronize their clocks to a global reference system.

2.1.2 Global and Local Coordinate System

Another attribute of localization in space-time is whether it happens in a global or local
context. In a global context, the coordinates of two events in space-time must be known
with respect to a single global reference coordinate system. If such a global context
coordinate system can be established, it is easy to compare two events in space-time.
In case of local context, groups of several nodes or even single nodes establish a local
coordinate system, which hinders one to compare two events that are recorded by nodes in
different local coordinate systems. The solution to this problem is to apply the coordinate
transformation to bring recorded events into the same coordinate system. Of course,
this can only be done if knowledge of the relationship between two coordinate systems is
present at a certain stage in the transformation process. Border nodes connecting two
local coordinate systems can be used for this purpose.

2.1.3 Space-time Location Algorithms

Over recent years, different centralized and distributed time and space localization algo-
rithms have been proposed. The goal of all these algorithms is to minimize the error of
the estimated and the true location of a node in space-time. Locating nodes in space-time
with high precision allows establishing a local or global coordinate system among nodes.
Only with the help of such a coordinate system, events that happen within the covered
area of the sensor nodes can be precisely located in space-time. A concrete example for
this is this thesis, where we try to establish a common space-time coordinate system
among a group of anchor nodes. Only if this is successful, we can exploit Equation 2.2
and infer the position of an event (transmission of a packet from a mobile node) from
the time difference of arrival events at the anchor nodes. Space-time location algorithms
can be coarsely classified as distributed, distributed-centralized or centralized, as it was
done in [2]. They can then be further classified into anchor-based or cooperative, single
or multi-hop, relative or absolute location [2].

7



2. Localization and Time Synchronization in Wireless Sensor Networks

Centralized algorithms
Centralized algorithms such as presented in [3] use information of all nodes to calculate
the position in space-time on a single computer. These algorithms usually produce
superior performance regarding accuracy, as they can combine all available information of
the network. The downside of this approach is that dealing with a considerable amount
of data requires more processing power, which is not always desired in power-constrained
sensor networks. Another problem is that all the information has to be gathered on a
single point which requires additional communication effort resulting in higher energy
usage, and poses the threat of a single-point of failure. Furthermore, these algorithms
usually do not scale well with the size of a network: an increased number of participating
nodes results in a higher computational effort and takes the algorithm longer to converge.
In general, centralized algorithms are preferred if a network infrastructure exists for data
aggregation, if the network is relatively small, and if accuracy is more important than
energy consumption [2]. In [4] the authors propose a localization algorithm based on
matrix completion with a modified Newton method, which seems to yield stable and
good localization results while reducing the complexity dramatically.

Distributed algorithms
Distributed algorithms do not run on a centralized (sometimes dedicated) node, but
rather on each participating node. These algorithms use only locally available information
(e.g., distance and position of neighbors) to establish their position in space-time. Their
performance is usually considered worse than those of centralized algorithms, though
their energy consumption is lower [2]. During the execution of distributed algorithms, it
is often required to establish a common value, such as a global time or a global space
coordinate system among participating nodes. This kind of algorithm is called distributed
consensus-based algorithms, where a parameter is iteratively estimated until all nodes
agree on a common value. In [5] Calafiore et al. present a distributed Gauss-Newton
algorithm that converges to the same solution as the centralized counterpart. Their
solution is consensus-based, meaning that, for each update step, nodes have to exchange
information with their neighbors, but no information has to be exchanged with a central
station.

Distributed-centralized algorithms
Distributed-centralized algorithms are a combination of distributed and centralized al-
gorithms. The idea is to apply centralized algorithms to overlapping clusters of the
network. Border nodes which join two or more clusters function as mediators to stitch
clusters together. With this method, it is possible to run centralized algorithms on a
small subspace of nodes such that even low-power nodes can handle the amount of data.
In [2] Stone et al. point out that this kind of algorithms yields higher accuracy than
distributed algorithms while having a low communication overhead.
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Cooperative
According to Stone et al. [2], localization algorithms can further be classified as anchor-
based vs. cooperative-based. Anchor-based localization uses fixed anchor nodes to localize
node in space-time, while cooperative-based algorithms use pairwise distances to establish
their position. Anchor-based systems usually yield higher accuracy performance, as the
positions of the anchors are known in advance or are determined with high precision
during several iterations of a localization algorithm. Cooperative-based algorithms,
instead, use the locally available information to localize nodes with respect to other
nodes. Algorithms of any of the previously discussed classes (centralized, distributed,
centralized-distributed) can be either cooperative or anchor-based [2]. Apart from this
strict separation, combinations of both approaches are also possible. Nodes can for
example use anchors to localize themselves with respect to the anchors; after that,
they can use cooperative localization to refine their position estimation further. With
this method, anchor-nodes can "inject" a global coordinate system into the cooperative
localization process, which can only establish a local coordinate system.

2.2 Ultra-wideband and DecaWave DW1000 Radio
Ultra-wideband (UWB) communication systems refer to transceivers making use of high
bandwidth for data transmission. There are several ways of emitting an UWB signal: the
most common one is to emit very short pulses, which is also called impulse-radio UWB
(IR-UWB). According to Federal Communications Commission (FCC) an UWB signal is
a signal exceeding an absolute bandwidth B >= 500MHz (resulting in a pulse width of
Tp ≈ 1/B ≤ 2ns), or a signal exceeding a relative bandwidth Br > 0.2 (or 20%).

Over the last few years, UWB got more attention for several reasons. First, it can achieve
high throughput over short distances, which can meet the requirements of interconnected
home entertainment systems. Second, it also allows a high density of nodes, which
will be essential for the ever-increasing number of smart devices and sensor networks.
Third, higher immunity to multi-path fading and a very good time-domain resolution
allow for precise position estimation. The DecaWave DW1000 is the first low-cost IEEE
802.15.4-compliant UWB transceiver that can be used for both data transmission and
highly precise time-stamping.

Another appealing feature of the DW1000 chip is the ability to output an estimation of
the channel impulse response (CIR). The CIR determines how an input pulse is changed
through the wireless channel. The CIR gives an idea of the surroundings, e.g., if there is
line-of-sight (LOS) connection and information about reflections from walls or scattering
from other objects.

2.3 Localization
The ability to localize sensor nodes in a network is a highly desirable capability. Only
with this feature environmental monitoring can give sense to the collected data such as
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temperature, noise, movements, and air quality. Furthermore, the ability to precisely
determine the position of nodes in sensor networks enables many new upcoming technolo-
gies such as robotics, automated driving, traffic monitoring, or inventory management.
For all these applications, different requirements regarding accuracy, reliability, and speed
of position estimation are posed. For example, in robotics, it is desired to have high
precision position estimation with possibly many participants. Both self-localization
and localization of a robot at a central computer might be required. For warehouse or
inventory management this constraint might be relaxed, and localization of assets at a
central entity can be sufficient.

Position estimation techniques can be coarsely classified into three categories: RSS
profile-based, distance-based and angle of arrival (AOA)-based. In this section, we give
an overview of radio-based localization techniques and compare their strengths and
weaknesses.

2.3.1 Signal Strength Based Distance Measurement

Most radio devices allow determining the received signal strength (RSS) by reading a
received signal strength indicator (RSSI). This value can be utilized to determine the
relative distance between two nodes. As the RSS indicator is readily available in most
devices, this technique is appealing, as coarse position estimation can be enabled without
any additional hardware or communication effort.

The basis for this technique to work is the fact that the RSS value in free space decreases
proportionally with the squared distance (d2) between two nodes. The relationship
between the transmitted power Pt and the received power Pr is given through Friis
equation 2.3, where Gt and Gr are the transmitter and receiver antenna gain, and where
λ is the radio wave length [6].

Pr(d) = PtGtGrλ
2

(4π)2d2 (2.3)

This free-space model is idealized and it is commonly known that Pr is influenced by
reflection, diffraction and scattering. Furthermore, Gt and Gr as well as Pt can be
device-dependent, causing additional localization error.

Based on empirical evidence, it is commonly accepted that the Pr(d) can also be modelled
as a log-normally random distributed variable with a distance-dependent mean, as given
by Equation 2.4

Pr(d)[dBm] = P0(d0)[dBm]− 10nplog10

(
d

d0

)
+ χσ (2.4)

where Pr(d) is the distance-dependent received signal strength in dBm, P0(d0) is the
RSS value in dBm at a known distance d0. χσ is a zero mean Gaussian-distributed
random variable with a deviation of σ which represents the RSS fluctuation introduced
by obstacles affecting the wave propagation. np is an empirically determined path loss
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exponent that is different for different environments. From this model, we can derive the
estimated distance as shown in Equation 2.5. Contrary to Equation 2.4, Pr and P0 are
given in milliwatts instead of dB.

d̂ = d0

(
Pr

P0(d0)

)− 1
np

(2.5)

The relationship between the true distance d and d̂ is given by Equation 2.6.

d̂ = de
− χσ
ηnp (2.6)

where η = 10
ln(10) . What we can observe from this equation is that the true distance

highly depends on the environmental variable np and the random noise χσ. Especially in
dynamic environments, this can lead to major distance measurements errors.

2.3.2 RSS Profiling

This technique also uses the signal strength value of the received signal and can thus
be used with most of the existing radio devices. Contrary to the method discussed in
Section 2.3.1, no relative distance to an anchor node is calculated based on the RSS
value. The idea is to split a region into cells, where in each cell the signal strengths of all
available anchor nodes are recorded. These measurements are then used to calculate an
inverse radio map that contains the mean and standard deviation of the RSS value of
each anchor node in each cell. To perform localization, this radio map can be used in
conjunction with the Bayes theorem to calculate the most likely cell based on observed
RSS values as follows [7]:

P (Ci|S) = P (S|Ci) · P (Ci)
P (S) (2.7)

where P (Ci|S) is the probability of being in cell i given the observed signal strength
vector S = [sj , ..., sk] of anchors j...k. P (Ci) is the prior probability of being in cell i
and it is usually assumed to be uniformly distributed (e.g., P (Ci) = 1

Number of Cells). The
likelihood of observing the signal vector S in cell i is given by [7]:

P (S|Ci) =
N∏
j=1

P (sj |Ci) =
N∏
j=1

1
2πσji

· e
sj−µji
σji (2.8)

where µji is the mean value of the signal strength of anchor j in cell i and σji is the
standard deviation of the signal strength of j in cell i. To calculate the probability of being
in a specific cell, Equation 2.7 is applied iteratively. After each iteration the posterior
probability P (Ci|S) is considered as the apriori probability P (Ci). Already after a few
(3-5) iterations, the probabilities converge to the estimated cell. While today this method
is the most commonly used method for coarse localization, it has a big downside: the
radio map has to be built and must be updated regularly as even small changes of objects
in a room can influence the received signal strengths. Also, the localization accuracy is
limited to a few meters and changes over time, depending on the presence or absence of
people or objects.
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Figure 2.1: Illustration of the AoA method. Modified from [8]

2.3.3 Angle of Arrival

The angle of arrival (AoA) method uses the angle of incoming radio waves to infer the
position of the transmitter. If several stations can measure the angle of a single incoming
signal, these angles can be used to calculate the position by triangulation [2] [6]. Such
a system is shown in Figure 2.1, where the angle of an incoming signal is evaluated at
two antenna clusters, the position of the transmitter of the signal, is then found at the
intersection of the two bearing lines. There exist different techniques to estimate the
angle of an incoming signal. One method is to use an antenna array that allows changing
the reception pattern by manipulating the phase offset of individual antennas. One can
imagine that the beam of the antenna array is rotated electrically instead of rotating
antennas mechanically. The angle of arrival is then found at the maximal reception
strength [6]. Other techniques make usage of the time-difference-of-arrival (TDOA) or
phase difference of arrival (PDOA) of the same radio wave at different antennas [9]. A
major downside of this method is that the error increases with the distance, such that
systems with low angular resolution are accurate in the near field, but not in the far field.

2.3.4 TOA

The Time-Of-Arrival (TOA) estimation method allows to measure distances: thus, it
can be used in combination with trilateration to find the position. The simplest form
of a TOA estimation system is when two nodes exchange a single message containing
a global transmission time-stamp, where the receiving node must be able to determine
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the global reception time-stamp precisely. The distance can then be inferred from the
time difference between the transmission and reception time. To be able to determine
both time-stamps precisely, it is required that the clocks of both nodes are precisely
synchronized and maintain global time, even small timing errors result in large distance
errors. Once the distance to at least three anchor nodes is determined, the position of
a mobile node can be found at the intersection of the individual circles as depicted in
Figure 2.2a.

(a) (b)

Figure 2.2: Figure 2.2a shows a visualization of the TOA localization process, the position
is found at the intersection of the three circles. Figure 2.2b shows a visualization of the
TDOA localization process, the position is found at the intersection of the hyperboloids.
In case of only three anchor nodes, there may be two points where the hyperboloid
intersects.

The simplest form of a TOA measurement is the one-way time-of-arrival method, where
it is required that the clocks of both nodes are synchronized and maintain a global time.
If this condition is met then the sending node (i) simply sends a packet containing the
transmission time (t̂tx), the receiving node (j) records the reception time of the packet
(t̂rx). The time of flight is then calculated by t̂ji = t̂rx,j − t̂tx,i and the corresponding
distance d̂ij by multiplying t̂ji with the speed of light c. For the rest of this thesis, we
use a simplified notation and express the distance between a mobile node j to anchor
node i as ri. The accuracy of this method highly depends on the accuracy of the clock
synchronization, as a difference in the current clock offset is falsely considered as a longer
or shorter time-of-flight (TOF).

One way to compensate for different time offsets is by sending two messages: this method
is called two way ranging (TWR). The node (i) which wants to determine its distance to
another node j initiates the measurement by sending an initial message to node j. The
transmission time of message 1 at Node i is denoted by t1tx,i and the reception time of
message 1 at node j by t1rx,j . For the response message, the transmission time at node j
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is denoted by t2tx,j and the reception time at node i by t2rx,i. The time-of-flight can then
be calculated with Equation 2.9

t̂ij =
(t2rx,i − t1tx,i)− (t2tx,j − t2rx,j)

2 (2.9)

Although this method compensates for the clock offset errors, it cannot compensate for
the clock skew error. As described in Section 2.4, quartz clocks can run at different speeds
due to manufacturing imperfections as well as due to environmental influences such as
temperature. The term (t2tx,j − t2rx,j) in Equation 2.9 is the so called turn-around time,
i.e., the time that module j needs to send a response message. This value is subtracted
from the time difference between the reception of the second message at node i and the
transmission of the first message at node i (t2rx,i − t1tx,i). If the clocks of node j and i run
at different speed the turn-around time recorded at node j does not correspond to the
turn-around time from the point of view of node i. For example, a clock error of 1ppm
(parts per million) with a turn-around time of 10ms would result in a turn-around error
of 10ns, which is equal to an error of 3 meters.

The solution to this problem is the symmetric double sided two-way ranging (SDS-TWR)
[10]. The SDS-TWR method uses an additional message to calculate the clock skew
between two modules to compensate for it. Although this method yields high accuracy
and works well with the DecaWave DW1000 modules, its downside is that three messages
have to be exchanged with each anchor node.

2.3.5 TDOA

Time-Difference-of-Arrival (TDOA) uses the difference in time between messages arriving
at two different base stations. The possible positions of a mobile node given a single
TDOA measurement can be represented by a hyperbola (Figure 2.2b) where the base
stations are in the foci of the hyperboloids. The position of a mobile node can be found
at the intersection of at least 2 such hyperbolas. However, this can lead to ambiguity, as
two hyperbolas can intersect at two points. To uniquely identify the position of mobile
nodes, the TDOA method requires at least four anchor nodes with known position and
synchronized clocks in 2D space [11]. The huge advantage of this method is that only one
message has to be sent to the mobile node. Thus a node can be passively localized. This
does also mean that the mobile node is not required to perform any clock synchronization
or skew compensation.

2.3.6 TOA vs. TDOA

From the previous discussion, we can see that there are fundamental differences between
the two localization methods. Both methods use time-stamps, but TOA can exploit
additional information, i.e., the transmission time of a packet. As a simple example, we
can compare both methods when using only one anchor node. In this case, the TOA
method can determine that the mobile node’s position is constrained to a circle around
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the anchor node. Contrary, the TDOA method is not able to constrain the mobile node’s
position. With two anchor nodes, the TOA method can constrain the position to either
two or one places, whereas the TDOA method is only able to find an infinite number of
possible positions lying on the hyperboloid. Only if there are four or more anchor nodes,
the TDOA method can find a single position, while the TOA method requires only three
anchor nodes [11].

Regarding localization accuracy, it is known that under the presence of time-stamping
noise the TOA method performs better than TDOA. This is due to the geometry of the
hyperboloids where small changes introduced by noise can have greater effects on the
curve. However, in [12] the authors found through simulation that both methods perform
almost equally well.

In Figures 2.3a and 2.3b we can see the messages exchanged for a TWR-TOA system
and a TDOA system on a timeline. Something that can instantaneously be concluded
from this image is that the TOA system requires several messages to be exchanged per
anchor. In this illustration only two messages are exchanged, but, to compensate for
the skew (SDS-TWR method), three or four messages have to be exchanged. Another
advantage of the TDOA system that is illustrated in Figure 2.3b is the ability to support
self-localization of mobile nodes. Once all anchor nodes are synchronized, they can send
localization packets at pre-determined time-slots. A mobile node can receive the packages
and compare the expected reception time with the true reception time. This information
can be exploited in the same way as in the reversed system (passive localization) to
perform localization. This localization can support an infinite number of self-localizing
mobile nodes. Putting all together, we can conclude that the TDOA system can scale
better at the cost of localization accuracy and additional complexity introduced by the
synchronization system.
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Figure 2.3: Figure 2.3a shows an illustration of the message exchange of a TWR-TOA
localization system. Figure 2.3b shows an illustration of the message exchange of a
passive and self-localization TDOA system. A1...A3 are anchor nodes. M is the mobile
node and CH is a cluster-head.
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2.3.7 Cramér-Rao lower bound

The Cramér–Rao lower bound (CRLB) is used in estimation theory to express a lower
bound on the variance that can be achieved by an estimator. Given a set of anchor
nodes and a variance of the measurement uncertainty the CRLB can be used to calculate
how the measurement uncertainty influences the variance of the position estimation in
each point. We follow the approach described in [13] and [12] to calculate the estimated
position variance in each point given a set of anchor nodes with a measurement variance
of 1. In Figure 2.4 we can see the CRLB calculated for a grid of 16x14 meters. What
can be seen from this example is that the localization accuracy degenerates outside of
the convex hull spanned by the anchor nodes. We use this method to calculate the
localization accuracy in the clustering section.

In [12] Kaune et al. analyzed the theoretical performance of TOA and TDOA localization
systems. In their work, they intuitively assumed that the performance of a TOA system
is better because the angle of intersection of the circles generated by the TOA system is
greater than the angle of intersection of the hyperboloids generated by a TDOA system.
They further strengthened their assumption by calculating the angle of intersection for
a given placement of anchors for each point on a map. Indeed, it was found that the
angle of the intersection outside of the convex hull of the setup was lower for the TDOA
system than for the TOA system. Kaune et al. then simulated localization for two
scenarios where some stationary anchor nodes are placed on a grid. For each point of the
grid, TOA measurements are generated, and white Gaussian noise is added. The TDOA
measurements are obtained by calculating the difference between two TOA measurements.
The simulation was run 100 times for each point of the grid, and an ML estimator
was used to calculate the position given a set of TOA and TDOA measurements. The
simulation showed surprising results:

" The differences between TDOA and TOA localization are not significant. TDOA local-
ization based on the full measurement set shows in the inner area between sensors better
performance than the localization using a fixed reference sensor. Overall, TDOA and
TOA localization yield roughly the same results. [...] These results do not support the
expectations resulting from the angle study. One reason for the surprising performances
is the larger dimensionality of the parameter vector for the TOA optimization process. "
[12]

Because of this results we decided to use their approach and calculate the CRLB for the
TDOA system using the simpler formulas of the TOA case.
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Figure 2.4: Estimated location uncertainty given three anchor nodes with a measurement
uncertainty of σ = 1 meter. The colorbar on the right is logarithmic and shows the
mapping between the localization variance and the corresponding color. According to
[12] and [13] the TOA and TDOA are only differ marginally.

2.4 Time Synchronization

In this section, we give an introduction to computer clocks, how they work and what
are the strengths of different types of clocks. Furthermore, we want to give an overview
of existing synchronization protocols. These protocols can be classified into different
synchronization schemes based on how many messages are exchanged and on whether
they use a broadcast mechanism.

2.4.1 Computer Clocks

The clocks of all modern computers and embedded systems are made out of crystal
oscillators. These are electronic oscillator circuits that use the mechanical resonance of
piezoelectric materials to produce a periodically varying electric signal with a constant
frequency. Because of their low cost and small size, quartz crystal oscillators are the
most common type of electronic oscillators nowadays. A well-recognized problem is
the stability of crystal oscillators, as their resonant frequency can highly depend on
environmental factors such as temperature, shocks and power supply stability. Also,
manufacturing imperfections influence the output frequency of the oscillator circuit, such
that some modules run faster than others. In Figure 2.5 we can see the time reported
by three different clocks A, B, and a reference clock running at frequency f. Clock A
runs faster than the reference clock, thus its frequency is fA = f ∗ (1 + eA) where eA
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is the frequency deviation or skew of clock A. Clock B runs slower than the reference
clock, thus its frequency is fB = f ∗ (1 + eB) where eB is the frequency deviation or
skew of clock B. The local time CA(t) reported by clock A is CA(t) = (1 + eA) · f · t, and
CB(t) = (1 + eB) · f · t. The relative skew γ = (fA − fB)/fB [10] [14].

Figure 2.5: Shows the clock count of two clocks evolve over time. Taken from [10].

According to the different price, accuracy, and stability requirements, different types of
crystal oscillators were developed [15]. Especially for applications such as our proposed
TDOA system, high frequency stability is required where even small changes introduced
by temperature change can have a huge impact on the accuracy.

Different types of temperature compensation techniques have emerged to solve this
problem, each with their specific cons and pros [15].

Simple Packaged Crystal Oscillator (SPXO). These oscillators only include the
main oscillator circuit and an output circuit without any temperature compensation.
As they are cheap to produce, they are the most common crystal oscillators. However,
they cannot be used if high-frequency stability is required. Typical frequency stability
between 0◦C and 70◦C is ± 10ppm.

Temperature Compensation Crystal Oscillator (TCXO). This kind of oscilla-
tor uses analog or digital temperature compensation circuits. These circuits use the
output signal of a temperature sensor to generate a correction voltage that is applied
to the crystal oscillator circuit to compensate the temperature drift. Typical TCXO
oscillators reach temperature stability of ± 0.5ppm over a temperature range of 0◦C to
70◦C. They are a good trade-off between SPXO oscillators and OCXO oscillators, as they
are still affordable (10$-100$) and require less energy (0.04W) than OCXO oscillators [15].
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Oven Controlled Crystal Oscillator (OCXO). These oscillators are embedded into a
heating block. Via additional temperature sensors, a constant temperature is maintained
within the block, such that the oscillator outputs a constant frequency. They reach a
stability of ± 0.003ppm in a range of 0◦C to 70◦C, which is the highest accuracy of all
three clock types. The downside of this type of oscillator is the relatively high power
consumption of 0.6W and its high cost (more than 200$) [15].

2.4.2 Synchronization schemes

As indicated at the beginning of this section, time-synchronization protocols can be
classified based on how many messages are exchanged as well as on whether broadcast
messages are used or not.

One-Way
The simplest way to carry out pairwise synchronization are one-way message protocols,
where one node (i) broadcasts a synchronization message containing the transmission
time tntx,i and where the reception time at node j is denoted with tnrx,j . The time difference
or offset θn at time instance n (or message n) n between the two nodes can be then
calculated with θnj +D = tnrx,j − tntx,i at node j. D is the time a synchronization message
needs to travel between the two nodes. Thus, D contributes to θ, leading to an imperfect
offset synchronization [16]. If θnj , θn−1

j and the interval τ (with respect to node i) between
two messages are known then, the relative skew between two clocks can be computed as
follows:

γn =
θnj − θ

n−1
j

τ
(2.10)

For simplification, for the rest of the thesis it the reported time of the reference node is
considered as the true time. This means that eref = 0 or fref = f , and τ = t2 − t1 is
always with respect to the reference clock.

Two-Way Synchronization
For the two-way message exchange synchronization protocols, node j replies to the first
message of node i with a second message containing the reception time of the first message
(t1rx,j) and the transmission time of the second message (t2tx,i). Node i then records the
reception time t2rx,i of the second message [16]. Assuming that the propagation delay
and clock skew did not change over the time of the message exchange, node i can now
determine the propagation delay Dn, and the offset θn by computing:

Dn =
(tn−1
rx,j − t

n−1
tx,i ) + (tnrx,i − tntx,j)

2 (2.11)

θn =
(tn−1
rx,j − t

n−1
tx,i )− (tnrx,i − tntx,j)

2 (2.12)
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In comparison to the one-way message exchange, the two-way message exchange allows
node i to check whether the calculated value D lies within certain bounds. For example, D
should not be negative and should not exceed a certain threshold value Dmax. This simple
check allows dismissing synchronization messages that have unusually high propagation
delays, which may be an indicator for erroneous measurements. The downside of this
method is that the number of required message exchanges increases with the number of
participating nodes [17]. Like for the one-way message exchange, we can use θn and θn−1

to calculate the skew.

Figure 2.6: (a) One-Way synchronization, (b) Two-Way synchronization, (c) Receiver-
receiver synchronization.

Receiver - Receiver Synchronization (Reference-Broadcast)
The receiver - receiver (or reference-broadcast) approach is different from the pairwise
synchronization method, as it only considers the reception time of the same message at
different receivers. No transmission time-stamp is needed thus it is not carried in the
broadcast message [16]. This approach requires that the same message can be received by
multiple receivers. Thus it only works in broadcast environments. The synchronization
accuracy is mainly influenced by the propagation delay of the same message to the
different receivers.

2.4.3 Uncertainties

Uncertainties in the reception time-stamp as well as in the transmission time-stamp can
have a huge impact on the synchronization accuracy. As discussed in [18] the following
different origins of uncertainties exist:

Send time
Depending on the used hardware, the medium access layer control (MAC) layer might
not allow to set the transmission time and is influenced by the software stack. In this
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case, the actual transmission time depends on various factors such as current system load
and scheduling. Hence, the transmission time is non-deterministic.

Access time
Depending on the current network medium usage, it can take milliseconds or up to
seconds until an error-free transmission of a packet can be guaranteed.

Transmission time
This is the time it takes a receiver to transmit a packet. While this is regarded as an
uncertainty, it may not be relevant for the reception time-stamping.

Propagation time
This is the time a packet requires to travel from one node to an other. While this may be
deterministic in a fixed setup with LOS condition between nodes, it is non-deterministic
if the nodes move around or if the packet is forwarded via several nodes. The latter is
mainly because of the random delays introduced by each hop.

Reception time
Likewise, for the send time, the MAC layer might not support time-stamping such that
the recorded reception time is influenced by the software stack, i.e., by the system load,
scheduling, etc. Also, if the hardware supports reception time-stamping, it cannot always
determine the reception time with absolute certainty.

Uncertainties in the case of the DW1000 module
The DW1000 can precisely set the transmission time and measure the reception time.
Though, the accuracy of the reception time depends on the strength of the received
signal. Moreover, it does not perform any medium access checks. Thus, there is no access
time delay. The uncertainty that is most relevant for this chip is the propagation delay,
however, this delay is used to measure the TOF.

2.4.4 Multi-hop synchronization

One inherent property of sensor networks is that they can be distributed over large areas
where not all sensors can communicate with each other, i.e., non-line of sight condition
(NLOS). Thus, to establish a common time base in a large sensor network, multi-hop
synchronization is required. As discussed previously, the synchronization accuracy vastly
depends on access and measurement uncertainties, which are difficult to estimate on a
logical link that is based on many physical hops. According to [17] four schemes can be
identified and can be used to overcome this problem.

Out-of-band synchronization
This is the simplest scheme to achieve network-wide synchronization. It simply assumes
that a large amount of master nodes is distributed in the network, such that every node
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has a direct connection to at least one master node. In this case, out-of-band means
that techniques other than the communication interface (wired or wireless) are used to
synchronize the master nodes. An example is the GPS system. The downside of this
scheme is that expensive GPS hardware and line-of-sight condition to the GPS satellites
are required.

Clustering
This approach was proposed by the authors of the reference broadcast algorithm (RBS)
[19], described in Section 2.4.5. The idea is to split a big sensor network up into small
clusters, and all nodes within a cluster synchronize their clocks based on reference
broadcast. As described in the previous section, the synchronization within a cluster
can come in different variations: the simplest one is that all nodes synchronize to one
reference node. To achieve network-wide synchronization, nodes can be part of several
clusters. These nodes (gateway nodes) can transform the time of one cluster into the
time of another. The size of the cluster influences the number of clusters in a sensor
network. With increased size of clusters, the number of clusters is reduced, but more
energy is required for transmitting packets. Moreover, a higher communication range
also means that fewer nodes can communicate at the same time. A smaller cluster size
means that more clusters are formed in the sensor network. Thus, if one sends a packet
containing a time-stamp from one side of the cluster to another, the time-stamp has to
be transformed several times, leading to an increased synchronization error.

Figure 2.7: How clustering is used to achieve network wide synchronization. All nodes of
one cluster synchronize to their reference head (P1 or P2 ). A gateway node (B) is used
to translate time-stamp from one cluster to another. Taken from [20].
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Tree Construction
This scheme is the most commonly used synchronization scheme in sensor networks. The
idea is to construct a hierarchical topology in the form of a spanning tree. Starting from
the root node, each child node is synchronized via pairwise synchronization. Three main
problems are identified for this scheme: First, with increasing tree depth, synchronization
errors accumulate such that nodes with a high level might be considerably worse synchro-
nized than nodes that are directly connected to the root node. Then, again, if the depth
is kept low (resulting in higher tree-width), many child nodes have to perform pairwise
synchronization with their parent, resulting in an increased computational and energy
demand for the parent nodes. Second, the tree construction algorithms must adopt to
topology changes as quickly as possible. Furthermore, if the root node fails, a new root
node must be elected as fast as possible. Third, if two physically nearby nodes have
a large logical distance in the tree, their synchronization might be considerably worse
compared to direct synchronization.

Figure 2.8: Illustration of a tree-based synchronization protocol. Nodes of level 1 use
pairwise synchronization to synchronize their clocks to the reference node. As soon as
they are synchronized, nodes at higher levels use them as reference node. Taken from [20].

2.4.5 Synchronization Protocols

The most prominent examples of each of the previously discussed synchronization schemes
are presented next.

The Network Time Protocol (NTP)
NTP is the most widely used time synchronization protocol, as it is used to synchronize
clocks of computers and other devices via the Internet. The NTP protocol assumes that
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many time reference nodes are present in the network and each node synchronizes to one
of the reference nodes.

Reference-Broadcast synchronization (RBS)
One of the most prominent receiver-receiver synchronization protocols is the reference-
broadcast synchronization (RBS) protocol [19]. The simplest form of this protocol works
in the following way:

• A transmitter broadcasts a synchronization packet.

• Two nodes record the reception time-stamp of this packet.

• The two nodes exchange their recorded reception time-stamps.

After they exchanged their recorded time-stamps, both nodes can deduce the current
time of the other node by comparing their recorded time-stamps with the time-stamps of
the other node. This very simple form of RBS does neglect the clock skew and assumes
that the time-stamping is perfect. In practice, however, the reception time-stamp is
Gaussian-distributed around the true value, and the clock skew is not zero. Hence,
several reference broadcast messages have to be exchanged to estimate the clock skew
and minimize the time-stamping error [19].

For bigger networks, the RBS protocol can be extended to work in multi-hop environments.
Therefore, the network has to be clustered in such a way that each cluster is synchronized
by one reference broadcast node. Gateway nodes that are part of two clusters can be
used to transform the time coordinate system of one cluster into the coordinate system
of another cluster.

Timing-sync Protocol for Sensor Networks (TPSN)
The TPSN synchronization protocol [21] uses the two-way message synchronization
principle and works in two phases. During the first phase (level discovery phase), each
node is assigned a level with only one node having level 0. This node is connected to an
external time reference and starts to send level discovery packets. All nodes that receive
this packet assign themselves to level 1. Afterward, all nodes of level 1 start to send level
discovery packets. This process is repeated until all nodes are assigned to a level that
is greater than the one of the parent node. During the second phase (synchronization
phase) nodes of a lower level (level n-1) start to synchronize nodes of a higher level (level
n) via two-way message exchange [22].

Tiny-Sync and Mini-Sync
Mini-Sync and Tiny-Sync [23] are using multiple round messages to obtain time-offset
data-points, each data-point represents the clock offset between two nodes. As previously
described in Section 2.4.2 (Equation 2.11), the round messages can be used to calculate
the distance or propagation delay between two nodes such that this value is subtracted
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from the time offset measurements. Both protocols keep multiple data-points to employ
the line-fitting technique to estimate the offset and rate change between two modules.

Flooding Time Synchronization Protocol (FTSP)
The FTSP protocol [18] uses a flooding approach in which the time synchronization
messages are flooded through the network. A master-node, usually the node with the
lowest ID, starts to broadcast synchronization messages containing its local transmission
time. Each nearby node receives several of these messages and computes the time-offset
and skew (rate difference) by linear regression. Afterward, it starts to forward or re-
broadcast the synchronization messages of the master node, but with updated time
information, i.e., it compensates for the delay between the reception and transmission
of the synchronization message. In contrast to the RBS protocol, FTSP contains a
transmission time-stamp of the broadcasting node, such that a global time can be
established among all nodes.

Glossy
Glossy [24] is another flooding approach to synchronize sensor networks. As described
earlier, the FTSP flooding protocol simply starts to issue synchronization packets as soon
the clock skew was determined. Some problems that can arise from such a broadcast
protocol are discussed in [25]. Redundancy arises if a node starts to broadcast a
synchronization message to nodes that have already received a synchronization packet in
the last round. Congestion arises if many nodes try to re-broadcast a synchronization
message at almost the same time, leading to a reduced performance of the network and
synchronization accuracy. Collisions can happen if two nodes broadcast a synchronization
packet at the same time. As noted in [24], finding a collision-free broadcast schedule
is an NP-complete problem and is even more complicated if the topology changes
suddenly. The Glossy protocol resolves this issues by considering concurrent transmission
as an advantage rather than an issue. In their paper [24], Ferrari et al. describe how
simultaneous transmission of the same packet can interfere constructively, allowing a node
to decode a packet sent by two or more nodes with even higher probability. The huge
advantage of Glossy compared to most other protocols is that it can run decoupled from
other application tasks (as shown in Figure 2.9), such that no complicated synchronization
message exchange has to be orchestrated.

2.5 Clustering
The act of finding a suitable partitioning of the network is called clustering, where each
cluster is composed of a cluster-head (CH) or reference-head, and some member nodes.
Since finding an optimal clustering is an NP-hard problem, all clustering algorithms are
heuristic, meaning that no clustering method can guarantee to be optimal or perfect,
but sufficient to meet immediate goals [26]. Clustering of nodes in sensor networks is
performed with different objectives in mind. The main objective of clustering is to improve
network lifetime by reducing energy consumption: this can be achieved by clustering in
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Figure 2.9: Glossy decoupling from application tasks. Taken from [24].

several ways. Many (WSN) applications require only aggregated values to be reported
to a central entity: for example, it may be sufficient to report the mean, maximal, or
minimum value of a sensed parameter within an area. In this scenario, a cluster-head is
used to collect this values from its member nodes and only forwards a single value to the
central entity. Another way to save energy using clusters is by reducing the transmission
power: the member nodes can report sensed values to their central cluster-head with low
transmission power (and range). The cluster-head then forwards gathered information to
the next cluster-head with a higher transmission power. Moreover, lower transmission
range can help to reduce collisions and congestions in sensor networks. An illustration of
how data can flow through a clustered sensor network can be seen in Figure 2.10.

In the remainder of this section, we give an introduction and discuss different clustering
algorithms. For this purpose, we follow the classification of cluster-head selection
algorithms as it was done in [27]. Afsar et al. classify the clustering-algorithms based on
their cluster-head selection mechanism as shown in Figure 2.11. As there are numerous
algorithms we are only discussing the most prominent one of each class to get an idea of
the underlying mechanism and its strengths and weaknesses.

2.5.1 Clustering characteristics

In [27] Afsar et al. define three main characteristics to classify different clustering
algorithms: cluster properties, cluster-head properties, and clustering process properties.

Cluster properties cover properties such as the cluster-size (either equal or unequal),
cluster-count (constant/preset or variable), inter-cluster communication (single-hop or
multi-hop) and intra-cluster communication (single-hop or multi-hop).

Cluster-head properties define the properties of the cluster-head, such as whether they
are mobile or stationary. Furthermore, properties are whether the node types are
heterogeneous or homogeneous and the role of a cluster-head, i.e., if the CH simple relays
data or if it performs data aggregation/fusion.
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Figure 2.10: Illustration of data flowing through a clustered network. Member nodes
report data to their cluster-heads via intracluster communication with low transmis-
sion power (and range). Cluster-heads forward aggregated information with higher
transmission power (and range) to the next cluster-head. Taken from [26].

Figure 2.11: Classification of different clustering algorithms. Taken from [27].

Clustering process properties define properties of the clustering algorithms. They dis-
tinguish between the method, e.g., distributed or central: the objective function of the
clustering process, and the CH election mechanism: preset, probabilistic, and deterministic.
Other properties of the clustering-process are the algorithm complexity and whether the
nodes are dynamic or static.

2.5.2 Probabilistic clustering

The objective of most probabilistic clustering algorithms is to maximize the network
lifetime as much as possible. These algorithms usually have a low protocol overhead, as
the decision of each node turning itself into a cluster-head is made randomly. The most
prominent probabilistic algorithm is the LEACH protocol [28].

In LEACH, the time is divided into rounds, each round is further divided into a setup
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and steady-state phase. During the setup-phase the cluster-heads are elected randomly,
i.e., each node decides to become a cluster head with a certain probability. During the
steady-state phase, data is transmitted to the base-station. This approach ensures that
each node is elected as cluster-head at least once, such that the load is distributed among
all nodes in the network equally. In detail, each node is generating a random value
between 0 and one during the setup phase. Each node that has not been previously
elected as cluster-head computes a second value T (n):

T = p

1− p (r mod1
p)

(2.13)

where p is the desirable percentage of cluster-heads in the network, and r is the current
round. If a node has already been selected as cluster-head in the last 1/p rounds, T
is simply set to 0. Each node then compares its randomly generated value with the
calculated value T . If the randomly generated value is less than T a node elects itself as
cluster-head and broadcasts a cluster-head advertisement packet. If the value is greater
than T , a node simply sends a join request to its nearest cluster-head.

Hybrid probabilistic methods combine random methods with some kind of available
parameters like residual energy or node degree. An extension of the LEACH protocol
that uses residual energy in its election process was proposed in [29]. One approach they
propose is to modify Equation 2.13 by adding the current residual energy, resulting in:

T = p

1− p (r mod1
p)
Ecurrent
Emax

(2.14)

where Ecurrent is the current energy and Emax is the maximal energy of a node. Simula-
tions have shown that the network life-time was increased by up to 30%.

Another hybrid clustering algorithm is the Clustering Algorithm via Waiting Timer
prosed in [30]. This algorithm randomly sets a waiting timer, and it declares itself as
a cluster-head as soon as the timer expires. Additionally, a node decreases the waiting
timer as soon as a neighbor is detected. Thus nodes compete with each other, as the
nodes with higher degree tend to declare themselves as cluster-head earlier.

2.5.3 Deterministic clustering

Deterministic clustering algorithms do not use randomly selected values to decide their
role in a sensor network. Instead, they use the locally available information to elect a
suitable node as cluster-head, such as residual energy, node degree, or centrality. This
kind of information can be exchanged via messaging, which can introduce an additional
overhead depending on the diameter and number of nodes. As depicted in Figure
2.11, deterministic algorithms can be further classified into weight-based, fuzzy-based,
heuristic-based, and compound.

Weight-based algorithms use some metrics to compute a weight that is then used for
the selection of the CH. The idea of this kind of algorithms is that nodes compete with

29



2. Localization and Time Synchronization in Wireless Sensor Networks

surrounding nodes where the node with the highest weight wins and is elected as a
cluster-head. Usual metrics that are used in such algorithms are the residual energy, node
degree, centrality, and distance to the base station. An example of such an algorithm is
the Distributed Clustering Algorithm (DCA) proposed in [31]. This algorithm uses a
generic weight value that is calculated locally based on some metrics such as residual
energy or node degree. Each node decides on its role (cluster-head or member) solely
based on the decision of the neighbor nodes with a higher weight, that is, if a node with
higher weight decides to be a cluster head, it broadcasts a cluster-head advertisement
message. Each nearby node with lower weight will then join this cluster-head. However,
if no such advertisement message is received by a node, it declares itself a cluster-head
and starts to send cluster-head advertisement messages.

Fuzzy-based clustering algorithms use fuzzy logic to select the best cluster-head. These
algorithms consist of four main parts: a fuzzifier, a defuzzifier, a fuzzy inference engine,
and fuzzy rules. The fuzzifier converts raw input data into a set of linguistic values.
These linguistic values are then used by the fuzzy engine in combination with the fuzzy
rules to produce an output. The output is then converted by the de-fuzzifier to the
required data format [27].

Heuristic-based algorithms try to find the best set of cluster-heads and cluster-sizes by
optimizing a fitness function. Different optimization algorithms such as particle swarm
optimization (PSO), genetic algorithm (GA) or Ant and bee colony are used to find
the solution given a fitness function with different parameters. As stated in [27], PSO
has shown better performance than other algorithms. These algorithms often require
a centralized approach thus do not scale well with bigger networks. An example of a
heuristic based clustering algorithm is the Genetic Clustering Algorithm (GCA) [32]. It
uses a genetic algorithm (GA) to prolong the network lifetime by optimizing the number
of cluster-heads and the sum of all distances between the cluster-head and its members.

Compound-based algorithms use multiple phases to achieve a reasonable clustering.
An example of such an algorithm is the ACE [33] algorithm, which minimizes the number
of formed clusters across the network by minimizing the overlapping area. The clustering
emerges from repeated local interaction and feedback between nodes. Thus it is also
called an emergent clustering protocol. It is composed of two main phases: spawning
and migration. During the spawning phase, a node decides to become a cluster-head if
the number of neighbor nodes that would become a member of this node is bigger than
a time-dependent value. The time-dependent value decreases exponentially over time:
nodes with a high number of potential cluster members declare themselves a cluster-head
earlier than nodes with a lower number of potential members. In the second (migration)
phase the clusters are moved to decrease the overlapping area. To do so, a cluster-head
evaluates nearby nodes that would be better suitable as cluster-head and hands over the
cluster-head role if it can find one.
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CHAPTER 3
Proposed Localization System

The previous chapter gave an introduction to sensor networks, time synchronization,
localization and clustering. In this chapter, we introduce our proposed UWB-based
TDOA indoor localization system. To do so, we first review existing UWB TDOA based
indoor localization systems, and we then describe the localization and communication
scheme of the proposed system.

3.1 Existing work

Although the principle of TDOA systems has been well known for decades, only with
the availability of the DW1000 transceivers IEEE 802.15.4 compatible, high accuracy,
and low-cost indoor localization systems can be built. Because of this, there is not much
literature about TDOA systems using these new transceivers. Essentially, there are
currently two groups with a couple of publications dealing with the topic of wireless
synchronization and TDOA localization using the DW1000 transceivers.

In [13] Ledergerber et al. describe a self-localization TDOA system, meaning that the
anchor nodes broadcast synchronization and localization messages such that a robot can
localize itself. Ledergerber et al. first analyze the theoretical localization accuracy of TOA
and TDOA systems and propose a lightweight synchronization and localization protocol.
The lightweight one-way synchronization protocol uses a reference node that broadcasts
two synchronization messages with a known delay. Afterward, all other anchor nodes
calculate the skew and offsets from this synchronization messages and start broadcasting
localization messages containing the corrected transmission time-stamp (with respect to
the reference anchor). Ledergerber et al. also propose to use a Kalman filter for clock
synchronization but it remains unclear how the filter parameters are derived, and no
comparison with the simple extrapolation method is conducted.
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In [34] Tiemann et al. propose an indoor localization system for an unmanned aerial
vehicle (UAV) in GNSS denied environments. Their system uses TWR and they calculate
the position via the Taylor-Series (TS) expansion method. The position is then converted
into earth-centered earth-fixed (ECEF) coordinates, which can directly be used by existing
navigation systems in UAVs. They analyze the influence of the antenna characteristics
on the ranging performance and found that the error is not uniform and conclude that
the orientation of the antenna has a significant impact on the rangings.

In [35] a multi-user TDOA based localization system is proposed and validated. Tiemann
et al. use eight anchor nodes which are synchronized to a reference node via wireless
clock synchronization. To ensure a high reception rate of the synchronization packets,
they use different preamble codes for synchronization and localization messages, and this
method is called SyncCDMA. Contrary to the system presented in [13] their localization
system is inverted and receives localization messages rather than transmitting them. For
localization, they used a closed form solution to estimate the position from the acquired
TDOA measurements and analyzed the localization accuracy for different synchronization
rates. They found that a synchronization rate of 1Hz is sufficient to have localization
errors smaller than 20cm with a probability of 90%.

In [36] Tiemann et al. improve the system introduced in [35] and changed their localization
algorithm to an extended Kalman filter (EKF). This system uses a wired backbone to
transmit the recorded reception time of localization packets to a localization engine
written in C++, the code of the localization back-end system is published online.

The biggest limitation of the localization systems proposed by the two groups is that
they do not consider larger networks. We address this issue in Chapter 6 by investigating
possible clustering algorithms to form time-synchronous localization clusters. The two
groups also do not investigate the synchronization accuracy but rather evaluate the
localization accuracy with several anchor nodes. Another weakness of the Kalman filter
proposed by Ledergerber et al. is that they did not determine the clock uncertainty
of the radio modules but rather used parameters that are typical for crystal quartz
oscillators. We did this in Chapter 5. Moreover, Tiemann et al. and Ledergerber et al.
do not investigate the convergence of their localization algorithms inside and outside
of the convex hull of their localization algorithms. In this thesis, we investigate this in
Chapter 4.

3.2 Requirements

In this section, we list the requirements for our proposed localization system.

• Self-organizing: The nodes of proposed localization system should be able to
form time-synchronous clusters that allow localization within its convex hull and
its surrounding with high accuracy. This process should be distributed and not
governed by a central entity. Two simple algorithms are compared in Chapter 6.
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• High localization accuracy: The accuracy of localization within a cluster mainly
depends on how accurate the nodes within a cluster are synchronized, and how
the nodes are distributed. The high synchronization accuracy is achieved via
statistical signal processing, as described in Chapter 5. The distribution of nodes
cannot be changed, but the clustering algorithm indirectly prefers clusters where
the cluster-head is at its center, and the anchor nodes are distributed around the
center. We evaluated the theoretical localization accuracy of clusters established
by two simple clustering algorithms in Chapter 6.

• Scalable: The system should be scalable in two ways. First, there should be no
constrains on the size of the localization network. Second, ideally, an infinite
number of mobile nodes can participate.

• Self-localization: Self-localization allows mobile nodes to localize themselves solely
by receiving localization messages issued by the anchor nodes. As this scheme does
not require mobile nodes to transmit any messages an infinite number of mobile
nodes can participate.

• Passive localization: In this scheme, a mobile node only has to transmit a single
message. Only one message is enough for the proposed system to localize the
position of the mobile node.

• Efficient: The number of messages used to localize a node should be minimized.
The passive localization scheme only requires a single message, and for the self-
localization scheme data, messages are used to further reduce the number of
transmitted messages.

3.3 Overview
To allow localization over a large network, it is required to separate the network into
smaller localization clusters, where each cluster has its own cluster-head that is used as
a time reference and executes the localization algorithms. Hence, our synchronization
protocol follows the receiver-receiver synchronization approach, and it is thus similar to
the RBS protocol (introduced in Section 2.4.5), but requires line of sight (LOS) condition.
Two different methods to correct clock errors are described in Section 5.

The proposed indoor localization system uses an external space coordinate system, as the
position of the anchor nodes has to be known beforehand, and a local time coordinate
system, as each cluster has its own time reference. The system is composed of several
homogeneous nodes using the DW1000 UWB transceiver and Nucleo STM32 evaluation
board. Homogeneous means, that each node can act as a cluster-member or cluster-head,
and thus can perform data aggregation/localization or receiving/transmitting localization
messages. The role of each node (e.g., cluster-member or cluster-head) is determined
by the system itself during the start-up phase and is based on a simple deterministic
clustering algorithm (see Chapter 6) that is executed on each node. Essentially, each
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node decides to become a cluster-head, if no other cluster-head is in its communication
range and the number of unclustered neighbors exceeds a time-depending threshold value.

Once the start-up phase is completed, the cluster-head assigns data communication and
localization time-slots to each of the cluster members. Afterward, the cluster-members
start to receive localization messages during the passive localization phase, and return the
recorded reception time-stamps to the cluster-head at their assigned timeslots during the
intra-cluster communication and self-localization phase. As soon as the recorded reception
time-stamps are received by the cluster-head, it runs the localization algorithm to localize
a mobile node within the cluster. Another way to determine the position of a mobile node
is to use the self-localization feature of the proposed system. As described in the next
section, the data-messages of the cluster-members contain a transmission time-stamp that
can be used in combination with the reception time-stamp by mobile nodes to localize
themselves. A comparison and analysis of different localization algorithms is presented
in Chapter 4.

The calculated position of mobile nodes are then forwarded to any destination within
the network. How and when this inter-cluster communication happens has not been
addressed yet. A simple solution may be to add a phase at the end of each round where
inter-cluster communication between clusters happens. Another solution could be to use
every x-th round for inter-cluster communication, where x has to be determined such
that all packets receive their destination in reasonable time.

In Figure 3.1b one cluster of the proposed system is depicted where the orange arrows
represent synchronization messages, the blue arrows TDOA data exchange, and the black
arrows are localization messages. In Figure 3.1c the messages of the proposed systems
can be seen on a timeline.

3.4 Protocol timing

In Figure 3.2 the timing of the protocol can be seen in more detail. The localization
system executed periodically, each round is composed out of a sync phase, intra-cluster
communication and self-localization phase as well as a passive localization phase. In the
sync phase the cluster-heads broadcast synchronization messages that are used by the
cluster members to synchronize their clocks and establish a common time-base. During
the intra-cluster communication and self-localization phase all anchor nodes return the
corrected reception time-stamps of all previously received localization packets to their
cluster-head. As they send these messages at defined time-slots, a mobile node can
use these messages to perform self-localization. During the passive localization phase
all cluster members are listening to localization messages issued by mobile nodes, the
recorded reception time-stamps are returned in the next round during the intra-cluster
communication phase.

The reason for putting the intra-cluster communication before and not after the passive
localization phase is that clock synchronization is higher at the beginning of each round
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Figure 3.1: 3.1a shows a sensor network of 15 nodes, where 3 nodes are cluster-heads
and the other nodes are cluster-members (anchor nodes). Two nodes (A9, and A6) are
in the range of two cluster-heads, thus they can be used as gateway nodes. The mobile
nodes are localized within each cluster. Additionally, there are three mobile nodes. 3.1b
shows an illustration of one cluster of our proposed localization. In 3.1c the exchanged
messages are depicted.

than at the end. As self-localization can support an arbitrary number of mobile nodes,
all nodes that use self-localization benefit from a higher localization accuracy.

3.5 Conclusion

The proposed localization system can organize a network of many nodes into localization
clusters via a deterministic clustering algorithm. Each cluster-head is used as a time-
reference and performs localization within the range of the cluster. This can be seen as
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Figure 3.2: Illustration of the protocol timing, green means that a message is transmitted
and orange that a message is received. The protocol works periodically. Each period is
divided into the Sync phase, intra-cluster communication and self-localization phase, and
passive localization phase. In the Sync phase all member nodes of a cluster listen for
synchronization massages. During the intra-cluster communication and self-localization
the recorded reception time-timestamps of the passive localization phase are returned
to the cluster-head. During this phase mobile nodes can also localize themself by using
the data messages as localization messages. During the passive localization phase mobile
nodes can send localization packets, the reception times of this packets are recorded at
each anchor and returned in the intra-cluster communication and self-localization phase
to the cluster-head

data aggregation such that only the final position may be forwarded to a specific node
in the network. The localization and communication scheme allows for self-localization
as well as passive localization of mobile nodes. To the author’s knowledge, this system
is the first low-cost TDOA system that combines both schemes in the described way.
As nodes are homogeneous, each node can substitute an erroneous cluster-head, which
makes the system more resilient.

In the next chapters, the individual building blocks of the localization system are
investigated in more depth. In detail, we describe possible localization algorithms in
Chapter 4 and investigate their performance, two synchronization methods are compared
in Chapter 5, and two clustering algorithms are simulated in Chapter 6 to investigate if
they are able to establish a good clustering for localization.
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CHAPTER 4
Localization algorithms

In this chapter localization via TOA and TDOA is investigated in more depth. The
reason why both methods are described is that most literature and books are describing
the TOA case and its localization methods. The intention was to show the similarities
between TOA and TDOA, and that most TOA algorithms can solve the TDOA case with
only slight adjustments. At the end of this section, three different localization algorithms
for the TDOA case are compared, and their performance is evaluated.

4.1 Overview of TOA and TDOA
Trilateration is the process of calculating the position given a set of distances (TOA),
or differences of distance measurements (TDOA). To uniquely determine the position
of a mobile node with TOA distance measurements to at least three anchor nodes are
required, in the three-dimensional space, at least four anchors are required [16]. In [37]
several methods that can be employed to solve the trilateration problem are compared
and analyzed. Some prominent ones are the analytical method (AM), the least squares
method (LS), the Taylor series method (TS), and the Gauss-Newton (GN) method. While
the analytical method is the simplest one it does not allow to use more measurements
than undefined variables, hence, additional anchors cannot contribute to higher accuracy.
The LS method allows to solve an overdetermined equation system; hence, additional
measurements can improve the accuracy. However, as TOA, and TDOA yields a set of
non-linear equations they first must be linearised, this results in a linearized least square
(LLS) system. The TS estimation method is an iterative solution, and the equation
system is first linearised around an initial estimated position and then used to update
the estimated location iteratively.

Given the anchor nodes i = 1...n with position pi = (xi, yi), the location of the mobile
node x = (x, y), the relationship to the distance ri is expressed by equation 4.1 for the
TOA case [16] [38].

37



4. Localization algorithms

fTOA(x) = rTOA

fTOA(x) =

(x1 − x)2 + (y1 − y)2

...
(xn − x)2 + (yn − y)2

 , rTOA =

r2
1
...
r2
n

 (4.1)

For the TDOA case the relationship is a little bit different. As can be seen in equation
4.2 the right hand side of the equation systems does not contain the distances ri but
rather the difference of distances mi. In this example the difference is always with respect
to anchor 1 but it can be any anchor node.

fTDOA(x) = rTDOA

fTDOA(x) =


√

(x2 − x)2 + (y2 − y)2 −
√

(x1 − x)2 + (y1 − y)2

...√
(xn − x)2 + (yn − y)2 −

√
(x1 − x)2 + (y1 − y)2


rTDOA =

m2,1
...
mn,1

 ,mi,1 = ri − r1

(4.2)

4.2 Linearized Least squares (LLS)
Since there are two unknown parameters, namely x and y the system can be solved in
closed form if there are only three independent equations (three distance measurements).
In many situations, there are more anchor nodes available. Thus more than three
measurements are available leading to an overdetermined system. In this case, we use
the least squares (LS) technique to obtain and improve the location estimate [39]. In
order to apply the LS technique the equation systems 4.1 and 4.2 have to be linearised
(by arithmetic), thus the set of non-linear equations is transformed into a set of linear
equations [16] [40].

In the case of TOA measurements, the estimated position is at the intersection of the
circles of the TOA measurements, as can be seen in Figure 2.2a. To find a solution,
i.e., the position of the mobile node, the relationship between measured distances and
positions of the anchor nodes must be solved. The TOA system,in Equation 4.1, can
be easily linearised by expanding the polynomials and subtracting equation one from
all other equations, this removes the squared unknown (x2 and y2) from the equation
system [39]. After some rearranging the following linear system is found:

2Ax = b (4.3)

with A defined as

A =

 (xn − x1) (yn − y1)
...

(xn − xn−1) (yn − yn−1)

 (4.4)
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and b

b =

 r2
1 − r2

n + kn − k1
...

r2
n−1 − r2

n + kn − kn−1

 (4.5)

kn = x2
n + y2

n (4.6)

The estimated position of the mobile node x̂ = (x̂, ŷ) can then be calculated by using
[16] [37] [38]:

x̂ = 1
2(ATA)−1ATb (4.7)

Finding a closed form solution for the TDOA case is a little bit more complicated than
for the TOA case. Specifically, we have to use the approach from [41], where one anchor
(anchor 1) serves as a reference point and the whole system is transformed in such a way
that the position of the reference anchor is mapped to the origin of the 3D Cartesian
coordinate system [39] [37]. For this method, we have to start with an equation system
that is similar to the one of the TOA system (4.1), but as can be seen in equation 4.8
the distance measurements of anchors n > 1 are transformed with respect to the position
of anchor 1. Moreover, we will see later the solution t of the LS system is a solution with
respect to the position of anchor 1.


(x1 − x)2 + (y1 − y)2

(x2 − x)2 + (y2 − y)2

...
(xn − x)2 + (yn − y)2

 =


r2

1
(r1 +m2,1)2

...
(r1 +mn,1)2

 (4.8)

As in the TOA case the polynomials have to be expanded and the first equation has to
be subtracted from equation n > 1. After some rearranging as described in [37],[39], the
solution is:

t = 1/2(ATA)−1AT (c+ 2r1d) (4.9)

with

c =

k′2 −m2,1
...

k′n −mn,1

d =

−m2,1
...
−mn,1

 t =
[
x′

y′

]
=
[
x− x1
y − y1

]

x′i = xi − x1, y
′
i = yi − y1, k

′
i = x

′2
i + y

′2
i

(4.10)

As can be seen in equation 4.9 the solution depends on distance variable r1. In order to
arrive at a final solution this value has to be determined as described in [39]:
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r1 = dTBBc

2dTBBd
,B = I −A(ATA)−1AT (4.11)

In reality, the position of the anchor nodes xn = (xn, yn) cannot be determined with
absolute accuracy, and also the measurements rn are subject to noise. For this reason
and because we loose information about the system during the linearization process, this
method is not as accurate as iterative methods. However, the linearized equation systems
cost function is unimodal meaning that the LS technique can find a globally optimal
solution. This is important as iterative methods cannot guarantee convergence towards
the optimal global solution if the initial guess is not set correctly [11].

4.3 Iterative solutions
There are several iterative methods such as the Taylor-Series-Least-Squares (TS-LS),
Gauss-Newton (GN), or the Maximum-Likelihood Gauss-Newton (ML-GN) method. The
idea of these algorithms is similar: first, an initial guess of the position is obtained by a
non-iterative method. Second, this initial position is updated iteratively until some error
threshold is reached. These algorithms can be applied either to static or moving objects
[39] [11].

In this section we focused on the TS method, as it is easy to implement. To be able to
have comparable results we also implement the Gauss-Newton, and Maximum-Likelihood
Gauss-Newton (ML-GN) method, but do not explain in detail how they work.

4.3.1 Iterative optimization

For this method the non-linear equation 4.1 can be directly used to find a suitable
solution. For this an error function has to be defined:

JNLS,TOA = (rTOA − fTOA(x̃))T (rTOA − fTOA(x̃)) (4.12)

x̂ = arg min
x̃

JNLS,TOA(x̃) (4.13)

Methods like Newton-Raphson, Gauss-Newton or steepest descent can be used to find a
suitable value x̃ such that the corresponding value of the error function JNLS,TOA(x̃) is
minimized [11]. Given a known measurement error distribution, the Maximum-Likelihood
approach maximizes the probability that the observed distance measurements match the
estimated position. It can be shown that the ML estimator is equivalent to minimize the
following error function:

JML,TOA = (rTOA − fTOA(x̃))TC−1
TOA(rTOA − fTOA(x̃)) (4.14)

where CTOA is the Gaussian-distributed error covariance matrix.

x̂ = arg min
x̃

JML,TOA(x̃) (4.15)
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When C−1
TOA is proportional to the identity matrix, then the ML method reduces to the

NLS method.

For the TDOA case, the cost function JNLS,TDO has to be replaced with:

JNLS,TDOA = (rTDOA − fTDOA(x̃))T (rTDOA − fTDOA(x̃)) (4.16)

and
JML,TOA = (rTDOA − fTDOA(x̃))TC−1

TDOA(rTDOA − fTDOA(x̃)) (4.17)

where CTDOA is the noise covariance matrix of the TDOA system.

4.3.2 Taylor-Series Expansion

In this method, a set of non-linear equations is linearised around a given initially estimated
point by a Taylor series expansion. The new equation system is a LLS problem, and its
solution can be easily found. Afterward, the new solution (estimated position) is used to
update the initial guess. These steps are iteratively applied until the system converges to
the estimated point.

First we have to define a function f(x, y) that can describe range measurements.

fi(x, y) =
√

(x− xi)2 + (y − yi)2 = ri (4.18)

where ri are the range measurements.

For the TDOA case fi is adjusted and looks as follows:

fi(x, y) =
√

(x− xi+1)2 + (y − yi+1)2 −
√

(x− x1)2 + (y − y1)2 = mi,1 (4.19)

where mi,1 are the range difference measurements with respect to anchor 1.

Given an initial position estimation

xv = [xv, yv]T (4.20)

the true position x is at position x = xv + δx and y = yv + δy. The position estimation
error is denoted by

δ = xv − x = [δx, δy]T (4.21)

where x is the estimated position.

Expanding equation 4.18 by a Taylor series with only the first two terms leads to

fi,v + ai,1δx + ai,2δy = ri (4.22)
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where
fi,v = fi(xv, yv),

ai,1 = ∂fi
∂x

∣∣∣∣
xv ,yv

= xv − xi
ri

,

ai,2 = ∂fi
∂y

∣∣∣∣
xv ,yv

= yv − yi
ri

(4.23)

For the TDOA system we have to use fi,v defined in Equation 4.19. ai,1 and ai,2 change
accordingly:

fi,v = fi(xv, yv),
fi,v + ai,1δx + ai,2δy = mi,1

ai,1 = ∂fi
∂x

∣∣∣∣
xv ,yv

= x1 − xv
ri

− xi+1 − xv
ri+1

,

ai,2 = ∂fi
∂y

∣∣∣∣
xv ,yv

= y1 − yv
ri

− xi+1 − xv
ri+1

(4.24)

Equation 4.22 can be rewritten in Matrix form as

Aδ = D (4.25)

where
Ai,j =ai,j

D =[r1 − f1,v, r2 − f2,v, ..., rn − fn,v]T
(4.26)

For the TDOA case with fi,v from Equation 4.19 is defined as:

D = [m2,1 − f1,v,m3,1 − f2,v, ...,mn,1 − fn,v]T (4.27)

The least square estimator of 4.25 is

δ = (ATA)−1ATD (4.28)

The initial position estimation xv can be updated accordingly: xv = xv + δx, yv = yv + δy.
These steps are performed iteratively until xv converges to the true position. Similar to
the ML-GN estimator also the TS-LS estimator can be extended to incorporate the noise
covariance matrix to obtain a weighted TS-LS estimator. The covariance matrix Q is
defined as

Q = E[εεT ] = diag(σ2, ...σ2) (4.29)

in the case of zero-mean Gaussian random variables this results in a diagonal matrix.
Considering the noise covariance matrix equation 4.28 changes to:

δ = (ATQ−1A)−1ATQ−1D (4.30)
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4.4 Performance evaluation
To be able to compare the performance of different position estimation methods we
implemented the Taylor-Series expansion method, Gauss-Newton, ML Gauss-Newton,
and the LLS method in Matlab for the TDOA case. As a starting point, we took the
TOA example of the Gauss-Newton and ML Gauss-Newton from [11].

In Figure 4.1a we can see a simulated localization setup. The four blue asterisk symbols
are the anchor nodes, the green circle is the initial position guess and the red circle is the
position of the mobile node. The colored dotted lines are the TDOA hyperbolas of anchor
two, three and four with respect to anchor 1 (left bottom anchor). We added normally
distributed noise with standard deviation of 1 to each of the TDOA measurements; thus
the TDOA lines do not intersect at a single point. The solid lines with the � symbol,
the ◦ symbol, and � symbol represent one step of one of the localization algorithms,
respectively. As it can be seen all algorithms end up at the same point but the Taylor-
Series expansion takes considerably more steps. This issue can be further seen in Figure
4.1b, where the RMSE error of the estimated position is plotted for each algorithm after
each iteration.

The bad performance of the TS method in Figure 4.1b and 4.1a seems to be a worst-case
scenario that happens if the initial guess is bad. In Figure 4.2a, and 4.2b the initial guess
was chosen close to the final position. In this case all algorithms converge at almost the
same rate.
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Figure 4.1: Simulation of different localization algorithms with a bad initial position
guess. In this case the TS method takes considerably longer than GN and ML-GN to
converge.
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Figure 4.2: Simulation of different localization algorithms with an initial guess close to
the final position. In this case the convergence performance and accuracy of the TS
algorithm is almost equal to the other algorithms.
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To further investigate the localization accuracy and the convergence of the iterative
algorithms we simulated the localization process 2000 times, where the position of the
mobile point is anywhere between x=[0, 10] and y=[0, 10]. The TDOA measurements
were modified with Gaussian distributed noise with a standard deviation of 0.1m. We then
compare the mean RMSE error of each algorithm in each iteration. As the ML Gauss-
Newton estimator is the same as the Gauss-Newton estimator under equal measurement
noise, we omit the simulation of this estimator and instead simulated the linearised Least
Squares (LLS) estimator. As single simulations, where an algorithm does not converge
influences the RMSE error greatly, therefore we decided to omit simulations where the
RMSE error in the last iteration was greater than 10 meters. If that happens, we consider
it not to converge.

The RMSE of each localization algorithm in each iteration was calculated with:

RMSE =

√√√√ 1
2L

L∑
i=1

(x̂i − x)+(ŷi − y)2 (4.31)

where L is the number of simulations. The mean CRLB value was calculated via

MeanCRLB =

√√√√ 1
2L

L∑
i=1

(var(xi) + var(yi)) (4.32)

where var(xi) and var(yi) are the variance of the x and y position of the mobile node in
the i-th iteration. These values were calculated via the method described in [13].

We did this simulation with either a fixed starting point at the middle of the convex hull
(xv = 5, yv = 5) (Figures 4.3a, 4.4a, 4.5a), and the estimated position of the LLS solution
(Figures 4.3b, 4.4b, 4.5b). Moreover, we repeated the simulations with the position of
the mobile node constrained to the inside of the convex hull and outside of the convex
hull (Figures 4.4 and 4.5).

In Figure 4.3a we can see the mean error with the starting point at the center and in
Figure 4.3b with the starting point at the estimated position of the LLS estimator, for
both plots the positions of the mobile node were constrained to the inside of the convex
hull. During the 2000 simulations the TS method did not converge once, the GN method
two times and the LSS method delivered 38 results where the final position exceeded the
10 meter threshold.

We repeated the same simulations, but now the position of the mobile node was constrained
the outside of the convex hull (x = [10, 15], y = [10, 15]). In Figure 4.4a we can see the
RMSE with the initial point set to xv = 5, yv = 5 and in Figure 4.4b where the initial
guess is taken from the LLS solution. For both simulations, the TS method did not
converge two times, but GN and LLS deliver a reasonable estimation every time. This
changed when we increased the possible location outside of the convex hull to x = [10, 20],
and y = [10, 20]. During these simulations, we could observe that the TS method did
not converge 64 times, the GN 12 times and the LLS method did not deliver reasonable
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results five times. The results were even worse for the TS method if the initial point was
set to the middle of the convex hull (xv = 5, yv = 5). In this case, the TS method did
not converge 700 times, the GN method 13 times, and the LLS did deliver wrong results
four times.

The plots can be interpreted as follows: The LLS estimator can deliver good initial
estimates, but does not always find the right solution (especially outside of the convex
hull) and is not as accurate as the TS or GN methods. The GN method seems to converge
faster than the TS method (Figure 4.3a) , however, given a good initial estimation also
the TS method converges fast, as shown in Figure 4.3b. If the mobile node is inside of the
convex hull, the accuracy of the iterative methods is higher than the LLS method, but
outside of the convex hull, the LLS method is even better. This seems counter-intuitive
as the iterative methods are supposed to yield better results; future has to be done on
this issue.

A detailed explanation why the LSS method may not always deliver good results under
the presence of noise can be found in [11].
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Figure 4.3: MSE error of the estimated position in each iteration with the position of the
mobile node constrained to be inside of the convex hull. Figure 4.3a with initial guess at
x=5,y=5. Figure 4.3b with the initial guess obtained by the LLS solution.
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Figure 4.4: MSE error of the estimated position in each iteration with the position of the
mobile node constrained to be outside of the convex hull. Figure 4.4a with initial guess
at x=5,y=5. Figure 4.4b with the initial guess obtained by the LLS solution.
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Figure 4.5: MSE error of the estimated position in each iteration with the position of the
mobile node constrained to be further outside of the convex hull. Figure 4.5a with initial
guess at x=5,y=5. Figure 4.5b with the initial guess obtained by the LLS solution.
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4.5 Conclusion
In this chapter we evaluated three prominent TDOA localization methods, for this we
analyzed the convergence rate and accuracy of one closed form and two iterative solutions
and compared them with the theoretical lower bound. In general, the convergence of
both iterative algorithms depends on a good initial estimate, but the GN method seems
to be more robust if the initial estimate is wrong. The LSS method can be used to find a
good initial guess, but as described in [11] also this method can fail under the presence
of noise, thus, may produce bad initial estimates. If this happens both iterative methods
may not converge. Adding a fifth anchor node seems to solve this problem as in this
case all methods converge. To measure the performance of each algorithm we measured
the execution time of one iteration of each algorithm on a notebook with an Intel Core
i7 3517U processor with 1,9GHz. The TS method is the fastest and only took 0.06ms,
followed by the GN method which took 0.15ms to complete, the lowest method is the
LLS method which took 0.24ms to finish. However, as the iterative methods require
several iterations, the LSS is the fastest. The biggest issue that we could identify is that
both iterative methods may not converge if the initial guess is wrong, and also the LSS
method does not always deliver a good initial guess. A solution might be to calculate the
LLS solution with respect to different reference anchors and chose a plausible solution.
Another issue that we could observe is that the iterative methods do not approach the
CRLB if the mobile node is outside of the convex hull. Contrary to our implementation,
in [12] Kaune et al. take the full measurement set to calculate the position. That is, each
TDOA measurement is not only taken with respect to one anchor but with respect to all
other anchor. This is one explanation why the results of our simulations are different to
the results presented in [12].
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CHAPTER 5
Synchronization

In this section, we present and evaluate the clock synchronization problem in more detail.
To do so, we first present relevant literature which is used to derive an iterative and a
stochastic differential equation (SDE) model of crystal clocks. After the model is derived,
we show how to obtain the noise parameters from subsequent time offset measurements.
These parameters are then used to parameterize an iterative filter, which is then evaluated
offline as well as online one the STM32Nucleo platform.

5.0.1 Overview

In [42] the authors describe a distributed algorithm that can jointly estimate the clock
offset as well as to perform localization. The proposed algorithm takes the noisy nature
of TOA measurements into account and thus uses a probabilistic approach. The diffusion
or averaging algorithm ensures that each clock converges to a global reference.

In [43] Zucca et al. show how to model atomic clocks with three-dimensional stochastic
differential (SDE) equations, Zucca et al. further state that this model can also be
applied to other types of clocks. Based on this model Zucca et al. derive a closed form
and an iterative solution of the SDE equation system, the iterative solution can be seen
as a state space representation of the clock and can be used to simulate clocks under
the presence of noise. Based on the iterative solution Zucca et al. analyze how the noise
propagates through the system and derive a link to the Allen variance, this link can be
exploited to perform model parameter identification, i.e., to deduce the process noise
parameter of a real system based on subsequent time-stamping measurements. This
relationship is essential as optimal filtering is only possible if one knows how the noise
influences the reported time.

The goal of [44] is to evaluate how clock accuracy, message exchange rate, and time-
stamping accuracy influences the synchronization accuracy in networks employing the
Precision Time Protocol (PTP). Giorg et al. first introduce an ideal sine wave oscillator.
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Consequently, this oscillator is then used to derive an iterative representation of the
clock. Giorg et al. then introduce Gaussian noise to the iterative clock model to model
a realistic evolution of the clock over time, this ultimately leads to the idea to use a
Kalman filter as state estimator. Afterward, the results from [44] are used to show how
the required parameters, i.e., the process noise of the iterative model, can be determined.
Giorg at a. then evaluate their method through simulation: The iterative model is used
to simulate the evolution of the clock under the presence of process noise. The clock
values are then corrected with the offset calculated by Kalman filter and compare the
corrected values to the ones of the unregulated clocks. Giorg et al. also investigate
how the time-stamping uncertainty influences the proposed synchronization method and
conclude: If the time-stamping accuracy increases, also the clock offset error decreases to
a certain limit that depends on the intrinsic stability of the unregulated clock, i.e., the
process noise. In other words, synchronization of clocks below a certain threshold is not
possible. Then again if the time-stamping uncertainty is increased the usage of accurate
clocks cannot improve the synchronization accuracy. The conclusion is that both, the
clocks process noise and the time-stamping accuracy must meet certain criteria to yield
reasonable synchronization accuracy.

In [20] Wu et al. quickly analyze different synchronization protocols and their underlying
nature, i.e., single message, multi-message as well as receiver - receiver synchronization.
The authors further discuss the simple least square (LS) method for clock skew and
offset estimation, and conclude that this method yields good results if the underlying
distribution of message delay is Gaussian distributed. In the second part, the authors
discuss more advanced statistical filtering methods such as the maximum likelihood (ML),
linear programming (LP) and composite particle filters (CPF). The idea behind the CPF
approach is to model the clock in the state space representation and to make usage of
the Bayesian framework for state estimation. The authors state that if the problem is
linear and with Gaussian noise, the Kalman filter provides the solution to the Bayesian
framework. If the noise is not Gaussian, they take the approach from [45] to approach
the non-Gaussian noise with a bank of Kalman filters.

5.1 Clock Model

Frequency or time deviation in clocks can be categorized into systematic deviations
and random deviations. Systematic deviations originates from variations during the
manufacturing process, temperature control, aging, or in the case of time deviation
simply the delay when two clocks were switched on. Random deviations originate from
random perturbation by thermo-mechanical noise in the electrical circuit or crystal
structure, resulting in random fluctuation of phase and frequency. The random frequency
fluctuation accumulates over time. Hence, it can be described as a random-walk model
as the instantaneous time deviation depends upon the sum of all previous random steps.

In Figure 5.2 we see different types of errors that all accumulate to the instantaneous
clock error between a reference and local time. The blue line denotes the true time.
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The cyan line is the phase jitter or phase noise, which is responsible for random timing
errors in the reported time, this error is categorized as random error. The red line
is the skew and is caused by inaccuracy of the clock frequency, which is categorized
as systematic error. The green line is the offset which is caused by different start-up
time of two clocks and is also categorized as systematic error. Despite the fact that the
skew is categorized as systematic it does also contain some randomness as it can vary
over time due environmental influences (e.g., temperature change) and as previously
mentioned random frequency changes. However, in most cases, the drift is assumed to be
middle/long-term stable.

Figure 5.1: Clock errors. Taken from [47]

5.1.1 Sin Generator Model

The purpose of the following section is to derive an iterative state model of a clock from
the sin model presented in equation 5.1. In Section 5.1.4 a more advanced model of the
clock is presented.

The sin output of a frequency source can be modelled by equation 5.1 [46]. As can be
seen, the correctness of the clock output depends upon the random process φ(t).

V (t) = [V0 + ε(t)]sin(2π[f0t+ φ(t)
2π ])

where
f0 = nominal frequency

φ(t) = phase deviation
V0 = nominal peak output
ε(t) = amplitude deviation

(5.1)

For the rest of this chapter we are ignoring the amplitude deviation ε(t).
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Figure 5.2: An illustration of the frequency, phase and amplitude instability of the sin
clock model. The frequency instability is a result of the fluctuations of the period of
an oscillator. The phase fluctuations is due to instability of the zero crossing. The
fluctuations in the peak value results in amplitude instability. Taken from [46].

Let us consider the ideal time Tn and time C(Tn) which is recorded via a non-ideal clock,
both time stamps are recorded at event kn. The difference of these two time-stamps is
denoted by the instantaneous time offset θ(Tn):

Θ(Tn) = C(Tn)− Tn (5.2)
Next we will discover where this offset comes from. In the case of an ideal clock, equation
5.3 is satisfied, where k is an integer value. In real clocks, however, the occurrence of
clock ticks is disturbed by a time depending φ(t) as shown in equation 5.4.

f0Tn + φ0
2π = kn (5.3)

f0Tn + φ(t)
2π = kn (5.4)

Under the assumption that φ0 = 0 we can calculate the time Tk at step k of the ideal
clock with C(Tn) = kn/f0 whereas the time-stamp of the non-ideal clock contains an
error introduced by φ(t). In [44] Giorgi et al. state that φ(t) can be further separated
into at least two components. First, the deviation of the oscillator’s frequency fi from its
nominal frequency f0, this deviation accumulates over time. Second, the instantaneous
phase fluctuations expressed by 2πf0ψ(t), this corresponds to an instantaneous time
offset fluctuation.

To get to an iterative representation of the clock model, Tn can be expressed as an
accumulation of the differences of all previous time-stamps [44] :

Tn =
n−1∑
i=0

(Ti+1 − Ti) (5.5)
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such that in the case of the optimal clock 5.3 with φ = 0 the following equality holds.

kn = f0

n−1∑
i=0

(Ti+1 − Ti) (5.6)

For the real clock this equation differs as we have to account for the frequency deviation
and the phase fluctuation in every step. Here we can see fi as the mean frequency
deviation over an interval [44] .

kn =
n−1∑
i=0

fi[Ti+1 − Ti] + 2πf0ψ(Tn)
2π

=
n−1∑
i=0

[fi[Ti+1 − Ti] + f0ψ(Tn)
(5.7)

In order to compare the optimal and the real clock we have to introduce the instantaneous
time offset in 5.2 in equation 5.6 of the optimal clock [44].

kn = f0[
n−1∑
i=0

(Ti+1 − Ti) + θ(Tn)] (5.8)

This allows us to equate equation 5.7 with 5.8, which can be then used to directly
calculate the error term θ(Tn). The dimensionless value (fi − f0)/f0 is the so called skew
of the two clocks and is represented by γ(Tn)

θ(Tn) =
n−1∑
i=0

[fi − f0
f0

(Ti+1 − Ti)] + ψ(Tn) (5.9)

As Ti is generated at a constant rate at the reference clock, the difference of subsequent
Ti is always ∆T and thus we can replace Tn with n. With this we can express one time
step of equation 5.8 via [44]:

θ(n+ 1)− θ(n) = γ(n)∆T + ψ(n+ 1)− ψ(n) =
θ(n+ 1) = θ(n) + γ(n)∆T + ψ(n+ 1)− ψ(n)

(5.10)

where γ(n) = γ is assumed to be constant which corresponds to a constant skew model.

To realistically model the clock behaviour we have to model how skew and offset fluctuation
influence the iterative clock model. To do so both the skew fluctuation and offset
fluctuation can be modelled as two uncorrelated Gaussian random processes with zero
mean [44]:

ψ(n+ 1) = ψ(n) + ωθ(n)
γ(n+ 1) = γ(n) + ωγ(n)

(5.11)

The resulting iterative model is expressed by:
θ(n+ 1) = θ(n) + γ(n)∆T + ωθ(n)
γ(n+ 1) = γ(n) + ωγ(n)

(5.12)
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5.1.2 Stochastic Differential Equation Model

Next the iterative model is derived from a stochastic differential equation (SDE) model.
This is done to show the link to the Allan variance and to emphasis that the optimal
solution of the offset and skew calculation can be found by a Kalman filter. The
instantaneous clock offset is modelled by a three-state stochastic differential model as
described in [43].

dX1(t) = (X2(t) + µ1)dt+ σ1dW1(t)
dX2(t) = (X3(t) + µ2)dt+ σ2dW2(t)
dX3(t) = µ3dt+ σ3dW3(t)

(5.13)

with initial condition
X1(0) = c1

X2(0) = c2

X3(0) = c3

(5.14)

where the variable X1 represents the phase deviation, the derivation Ẋ1 is the frequency
deviation or skew and X2 contributes to this frequency deviation. X3 represents the
change of the skew over time, it is called aging. σ1,2,3 are the diffusion parameters of the
noise components and represent the random nature of phase offset and frequency deviation.
W1,2,3 are Wiener processes with time independent (stationary) random increments, thus,
W (t2 − t1) = W (t2) − W (t1) = dW (t) ∼ N (0, t2 − t1). dW1 is contributing to the
phase deviation and is the white frequency noise (WFN). dW2 is acting on the frequency
deviation can be seen as the random walk frequency noise (RWFN). µ1,2,3 represent the
deterministic part of the clock error, i.e., initial clock frequency offset (µ1), constant
frequency aging (µ2) and time variable aging (µ3).

Next, we are going to simplify the three-state model in 5.13. First, we can neglect X3
as in the case of crystal oscillators the aging value is usually very small, in the order
of 1 · 10−7s per year. Hence we can ignore this part of the differential equation system
(µ3 = σ3 = 0) [48]. Instead, X3 could be used to model a frequency change introduced
by environmental changes, e.g., temperature change. However, we assume that all radio
modules have reached their working temperature and that the environmental temperature
stays constant during the short synchronization intervals. Second, initial frequency offset
µ1 can also be expressed by the state variable X2 such that the frequency deviation is
now solely expressed by X2. Accordingly we have to move the frequency offset µ1 into
the initial condition X2(0) = µ1 + c2. Third, we expect that there is no constant skew
change thus µ2 is set zero. The system 5.14 changes to:

dX1(t) = X2(t)dt+ σ1dW1(t)
dX2(t) = σ2dW2(t)

(5.15)

This stochastic differential equation system (5.15) can be rewritten in matrix form

dX = (FX(t) +M)dt+QdW (t) (5.16)
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with

F =
[
0 1
0 0

]
,Q =

[
σ1 0
0 σ2

]
,M =

[
0
0

]
,X =

[
X1(t)
X2(t)

]
dW =

[
dW1(t)
dW2(t)

]
(5.17)

These differential equations are a strictly linear stochastic differential equation system,
thus the solution can be obtain in closed form [49] [43] [50].

5.1.3 Solution of the SDE Model

To derive a discrete time solution of the SDE system (5.15) we first point out that the
differential system 5.15 can be rewritten in its integral from [51]:

X(t) = Φ(t− t0)X(t0) +
∫ t

t0
Φ(t− s)dW (s)ds

X(t) = Φ(t− t0)X(t0) +Gt

(5.18)

The transition matrix Φ is calculated by Taylor expansion:

Φ(t) = eF (t) = I + F (t)

=
[
1 t
0 1

]
(5.19)

And the innovation of the stochastic process X(t) is described by the noise vector Gt

Gt =
[
σ1
∫ t
t0
dW1(s)ds+ σ2

∫ t
t0

(t− s)dW2(s)ds
σ2
∫ t
t0
dW2(s)ds

]
=
[
σ1W1(t) + σ2

∫ t
t0
W2(s)ds

σ2W2(t)

]
(5.20)

X1(t) = x0 + y0t+ σ1W1(t) + σ2

∫ t

t0
W2(s)ds

X2(t) = y0 + σ2W2(t))
(5.21)

The closed form solution 5.21 contains the initial skew (y0 = µ1) and initial phase offset
(x0). From this solution it can be seen that the instantaneous clock offset contains a
deterministic part, which is expressed by x0 + y0t, and the stochastic part, which is
expressed by σ1W1(t) + σ2

∫ t
t0
W2(s)ds. Where W1(t),W2(t) are the Wiener processes

obtained by integrating dW1(t) and dW2(t).

The covariance matrix Covt of the noise vector Gt is [43]:

Covt = E[GtGTt ]

Covt =
[
σ2

1t+ σ2
2
t3

3 σ2
2
t2

2
σ2

2
t2

2 σ2
2t

]
(5.22)
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We now derive the iterative solution of the stochastic differential equation system. The
motivation for this is twofold. First, we want to show the similarity between the model
derived in section 5.1.1 and second the iterative solution is used in the next section to
determine the noise parameter of the covariance matrix.

To move to the discrete iterative representation we can rewrite 5.16 by replacing t with
discrete time intervals t0 < t1 < tN and τ = tk+1 − tk. Equation 5.21 is then rewritten
as follows [49]:

X1(tk+1) = X1(tk) +X2(tk)τ + Jk,1

X2(tk+1) = X2(tk) + Jk,2
(5.23)

where Jk is

Jk,1 = σ1(W1(tk+1)−W1(tk)) + σ2

∫ tk+1

tk

(W2(s)−W2(tk))ds

Jk,2 = σ2(W2(tk+1)−W2(tk))
(5.24)

and is normal distributed with zero mean covariance matrix Covτ : [49]

Covτ = E[JτJTτ ]

Covτ =
[
σ2

1τ + σ2
2
τ3

3 σ2
2
τ2

2
σ2

2
τ2

2 σ2
2τ

]
(5.25)

What is now left to do is to determine the noise parameters of the covariance matrix
5.25. As we will see in the next section, these values can be calculated by using the Allan
variance.

5.1.4 Allan deviation

David Allan defined the Allan deviation in [52]. It is a two-sample variance and measures
the variance between two subsequent measurements, rather than calculating the difference
between the mean value and a sample as it is usually done for standard deviation
calculation. It is defined as:

σ2
y(τ) = 1

2〈(yn+1 − yn)〉 (5.26)

where τ is the time between sample yn+1 and yn. It can be used to identify different
types of clock noise. In Figure 5.3 we can see the Allan variance for different values of
τ . From this figure we can identify five different regions with different slopes; each of
these regions corresponds to a different type of noise. In our case we are interested in
the white frequency noise (WFN) and the random walk frequency noise (RWFN), we
expect these two noise terms to be the major source of error in our clock model.
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5.1. Clock Model

Figure 5.3: Sample plot of the Allan variance analysis results. WFN is the angle random
walk with a slope of -1/2. RWFN is the rate random walk with a slope of 1/2. Taken
from [53].

In [43] Zucca et al. show the relationship between the Allen variance and the parameters
σ1, σ2, which allows one to identify the parameters of the covariance matrix (Q) of the
state space representation.

The frequency deviation is defined as

Y k = 1
τ

∫ tk+1

tk

Ẋ1(t) ∗ dt

= 1
τ

(X1(tk+1)−X1(tk))
(5.27)

and can be inserted into the previously defined Allen variance:

σ2
y(τ) = 1

2τ2E[(Y k+1 − Y k)2]

= 1
2τ2 (E[(X1(tk+2)− 2X1(tk+1) +X1(tk))2])

= 1
2τ2 (E[(∆)2])

(5.28)

after inserting the iterative solution 5.23 iteratively into 5.28 ∆ is as follows:

∆ = X1(tk+2)− 2X1(tk+1) +X1(tk)
= Jk+1,1 + [−Jk,1 + τJk,2]

(5.29)

The expectation value and variance of the individual terms of equation 5.29 are given in
[43] by

E[∆] = 0 (5.30)
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σ2
y(τ) = E[∆2]

= 1
2τ2 (V ar[∆] + E[∆]2)

= σ2
1
τ

+ σ2
2τ

3

(5.31)

In this equation σ1 refers to the white frequency noise (WFN) and σ2 to the random walk
white frequency noise (RWFN). The noise identification is then done by fitting equation
5.31 to values calculated by the Allan variance.

5.2 Clock Error Correction
As we saw in the last section, the time error between two modules contains an offset
error, which originates from the different times when the modules are switched on, as well
as a skew error which originates from imperfections of the clocks. When synchronizing
clocks, we want to minimize the error between a reference and local clocks such that we
can establish a common timebase among different nodes in a network. In the following
section, we discuss the simple skew model (SKM) and statistical filtering that can be
used to compensate for the errors.

5.2.1 Simple Skew Model

Lets assume that trx,n = C(Tn) is the time of arrival of the n-th packet at the anchor
node and ttx,n = Tn is the time of transmission of the n-th packet at the reference node
and τ is the time between two subsequent time reference message broadcasts.

The time offset between two nodes is calculated as:

θ(n) = trx,n − ttx,n (5.32)

What is left to do is to in cooperate the offset error that arises from the propagation
delay. For this the distance r to the reference node has to be known. θ(n) then changes
to

θ(n) = trx,n − ttx,n −
r

c
(5.33)

where c is the value of the speed of light.

The skew is calculated by:

γn = θ(n)− θ(n− 1)
τ

(5.34)

Now lets assume we receive a packet at time Ti after two synchronization packet broadcasts
have been received such that Tn−1 < Tn < Ti < Tn+1. We can then use the calculated
skew and offset of the last two preceding synchronization packets to transform the recorded
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5.2. Clock Error Correction

local reception time into local time of the reference node. Recalling the notation of space-
time we would call this a coordinate transformation, in particular the transformation of
the locale time coordinate system into the coordinate system of a reference node. To
calculate the corrected reception time-stamp trxc,i of packet i we have to add the offset
of the last reference packet and an extrapolated skew correction term to the reception
time trx,i [36] [14].

θ(i) = θ(n) + γ(n)(trx,i − trx,n)
trxc,i = trx,i + θ(i)

(5.35)

5.2.2 Kalman filter

Once the clock model ( equation 5.12, and 5.23 ) has been identified it can be used to
build a recursive estimator, the Kalman filter. The model can be rewritten in matrix
form:

x(n) = Ax(n− 1) + ω(n− 1)
x(n) = [θ(n)γ(n)]T , ω(n) = [ωθ, ωγ ]T

A =
[
1 ∆T
0 1

] (5.36)

The Kalman filter holds information about the current state as well as the uncertainties
of the states and works in two steps: prediction and update. During the prediction step,
the Kalman filter estimates the next state based on the current state. In this step also
the uncertainty of the states is increased. In the update step, new measurements are
used to update the current state using a weighted average. The weights result from the
uncertainties of the current states and the uncertainties of the measurements.

The state prediction step is defined as

x̂(n) = Ax(n− 1) + Bu(n− 1)
P(n) = AP(n− 1)AT + Q

(5.37)

The state update equation of the recursive Kalman filter is defined as

K(n) = P(n− 1)HT [HP(n− 1) + R]−1

x̂(n) = x̂(n− 1) + K(n)(z(n)− x̂(n− 1))
P = [I−K(n)]P(n− 1)

(5.38)

R is the measurement uncertainty and expresses the uncertainty of new measurements.

P(n-1) is the apriori error prediction covariance matrix while P(n) is the a posterior
error covariance matrix. Essentially, these two matrices represent the uncertainty of the
process at the current and next step and influence the Kalman-gain, thus determine how
strong new measurement updates influence the state variables.
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Figure 5.4: Concept of the Kalman filter. In the prediction step, the next state is predicted
from the current state but also the uncertainty increases. In the update step, the current
state is combined with the new measurements weighted by the state uncertainty and the
measurement uncertainty. In this step, the uncertainty of the state is decreased. Taken
from [54].

K(n) is the Kalman gain and is calculated from the apriori error covariance matrix and
the measurement uncertainty matrix R.

Q(n) is the process noise covariance matrix which determines how strong the uncertainty
of a process evolves. As described in [44] it is a diagonal matrix with the time offset and
skew uncertainty as its diagonal entries. The results from [43] suggest that it is not a
diagonal matrix, but as the nondiagonal entries have little influence , thus, we follow the
approach from [44].

Q =
[
σ2
θ∆T 0
0 σ2

γ∆T

]
(5.39)

H is the output matrix and is an identity matrix.

To use the Kalman filter to correct the reception time-stamp of an incoming packet i we
use equation 5.35 but use θ(n), γ(n) from the Kalman filter.

5.3 Measurement Setup
For initial data generation to compare the simple skew model with the Kalman filter, we
used a simple measurement setup where we use three modules. The reference module
consists of a Nucleo board (Node A) and one DW1000 transceiver and is continuously
transmitting synchronization packets containing the transmission time-stamp at a constant
rate of 10Hz, or every 10ms, respectively. The receiving module (Node B) consists of a
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Nucleo board and two DW1000 transceivers are connected to the same SPI bus but with
different chip select lines. The receiver software works in polling mode and alternates the
chip select pin to fetch new packets from either of the transceivers. For each message,
the reception time-stamp is recorded and forwarded together with the synchronization
message ID and the transmission time-stamp to MATLAB. In general, the evaluation
works in the following way: First, a couple of synchronization messages are sent and
the offset between the local time and the time of the reference node as well as the skew
is calculated. Second, we use these values to correct the reception time-stamp of the
next packet and compare the calculated value with the true transmission time-stamp.
To compare two modules or localization packet time-stamps, we calculate the corrected
time-stamp for two modules and compare these time values. Ideally, for both scenarios,
the error should be zero.

Two datasets were recorded, each consists of 300000 data points, which correspond to
roughly 50 minutes of recording time. In Figure 5.6a we can see the instantaneous time
offset of the two modules of the first dataset. Additionally, we added two straight lines
that connect the first and the last timestamps. The received time-stamps differ from
those straight lines, hence, the time does not evolve in a strictly linear manner indicating
a frequency change. This effect is even more visible if we plot the difference of subsequent
timestamps as shown in 5.6b. We reckon that this is due to the temperature change after
the modules are switched on as this behavior was not observed in our second dataset,
which was recorded after the first dataset. Although our model does not account for this
error, experimental results with an update rate of 10Hz suggest that the performance of
the Kalman filter and the simple extrapolation method is not influenced by the constant
temperature change. We reason that the rate of change is too slow compared to the
update rate. During the online testing, however, we could observe that the temperature
change decreases the synchronization accuracy.

5.4 Noise identification
We then used Matlab to calculate the Allan variance and used the curve fitting toolbox
of Matlab (Listing 5.1) to fit equation 5.31 to the calculated Allan variance. In Figure 5.5
the Allan variance and the fitted curve is depicted. The calculated noise parameters can
be seen in Table 5.1 and the measurement uncertainty was taken from [55] and adjusted
experimentally.

Listing 5.1: Curve fitting in Matlab
f = f i t t y p e ({ ’1/x ’ , ’ x / 3 ’ } ) ;
f i t o b j e c t = f i t ( a l lan_t imesteps , a l lan_var iance , f )
s i g 1 = f . a ;
s i g 2 = f . b ;
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Figure 5.5: Allan variance and fitted curve.

Table 5.1: Kalman Parameter

Parameter Value

σθ 2.05−9.
σγ 4.93−9
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Figure 5.6: 5.6a shows the reception time of the same packets at two nodes. Figure 5.6b
shows the difference of subsequent reception times, as the reference module broadcasts at
20Hz it should be ideally 5ms.
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5.5 Offline evaluation
To compare the performance of the two synchronization methods we calculated the error
between the corrected reception time-stamp and the transmission time-stamp embedded
in the synchronization message, the errors are then visualized in CDF plots. We did this
for different update rates 5Hz (5.7a), 10Hz (5.7b) and 20Hz (5.7c). As we can see the
Kalman filter outperforms the SKM at high update rate. Another observation is that
both synchronization methods performed by far worse for the second module, which we
cannot explain at the moment and further tests with more modules have to be conducted.
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Figure 5.7: CDF of synchronization error between nodes and reference node depending
on different update rates. Figure 5.7a depicts the CDF for an update rate of 5Hz, Figure
5.7b for 10Hz and Figure 5.7c 20Hz. Figure 5.7d shows the 90th percentile time offset
error for different update rates.

Like before we were interested in the synchronization error but this time in the synchro-
nization error between the two nodes. The CDF of the error can be seen in Figure 5.8,
again for update rates 5, 10, 20 Hz, respectively. We also calculated the 90th percentile
of the error for different update rates which is shown in Figure 5.8d. What we can see in
this figure is that the trend of the error follows the one of the first module in Figure 5.7d,
hence, the overall performance is mostly influenced by the worse module.
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Figure 5.8: CDF of synchronization error between two nodes. Figure 5.8a depicts the
CDF for an update rate of 5Hz, Figure 5.8b for 10Hz and Figure 5.8c 20Hz. Figure 5.8d
shows the 90th percentile time offset error for different update rates.
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5.6 Online evaluation
To evaluate the performance of both synchronization methods, we implemented them on
the Nucleo board and used them to correct and compare the reception time-stamps of
synchronization messages as well as the reception time-stamps of localization messages.
Likewise, for the offline testing, we use node A to constantly broadcast synchronization
messages which are received by node B where two DW1000 modules are connected, a
third node (node C) is used to issue localization packets. For our first evaluation, we
broadcast the synchronization packets with a rate of 10Hz and node C issues localization
packets 80ms after every second synchronization message. In Figure 5.9 the error of the
synchronization messages is shown. In Figure 5.10 the error of the localization messages
is shown.
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Figure 5.9: 5.9a shows the histogram of the error between the corrected timestamps (trxc)
of synchronization messages between two modules. Ideally it should be zero. 5.9b shows
the CDF, and Figure 5.9c shows the CDF of the absolute error with the mean removed.
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Figure 5.10: 5.10a shows the histogram of the error between the corrected timestamps
(trxc) of localization messages between two modules. Ideally it should be zero. 5.10b
shows the CDF, and Figure 5.10c shows the CDF of the absolute error with the mean
removed.
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5.7 Conclusion
Precise time synchronization in the sub-nanosecond range is a challenging task as the
accuracy depends on several factors. What we could observe during our online evaluation
was that small temperature changes can influence the accuracy over short periods leading
to an offset error of 1-2 nanoseconds. Initially, we assumed that once all radio modules
have reached their working temperature, the clock skew stays the same over short
synchronization intervals. What we could observe is that even blowing at one module
changes the frequency and thus has an influence on the accuracy.

In general, the Kalman filter yields better results when high synchronization rates are
used, but unfortunately, it did not improve the synchronization accuracy in the case of
low update rates. What we could also observe is that the Kalman filter lags behind if
sudden changes of the clock offset happen. Especially if the clock skew changes due to a
temperature change the Kalman filter produces results where the mean value is not at
zero but shifts by a constant value as can be seen in Figure 5.10b.

To compensate for this we temporarily introduced a third state in the Kalman filter
to track the skew change introduced by the temperature change; the results were not
distinct. In situations with a slow (almost constant) temperature change the third state
helped to reduce the error. However, it also decreased the sensitivity of the Kalman filter
to sudden changes, e.g., when we quickly changed the temperature. In this situations,
the Kalman filter seemed to lag even more behind the simple skew model. It also made
the Kalman filter more sensitive to wrong measurement updates as it required much
longer to recover from single wrong measurement updates. Moreover, it was difficult
to find a suitable noise parameter for the third state. One solution to this might be to
reset and re-initialize the Kalman filter if such a case is detected. To make the two-state
Kalman filter more sensitive one could increase the values of the process noise matrix,
but this would also decrease the accuracy if the skew is stable.
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CHAPTER 6
Clustering

While energy efficiency is the main motivation for most clustering algorithms, our
requirements are different. The main objective is to maximize the localization accuracy
within the sensor network. To achieve reasonable localization accuracy, it is required
that all anchor node’s clocks are synchronized in sub-nanosecond range. As we discussed
earlier, multi-hop synchronization may not be suitable for large sensor networks with tight
synchronization bounds. To overcome this problem, we have to partition the network into
smaller clusters. In each cluster, all members (anchor nodes) synchronize their clocks to
the cluster-head such that each cluster forms a small TDOA system on its own. For our
system, the cluster-head performs several tasks such as coordinating the communication
of the anchor nodes, the localization of mobile nodes within its cluster, or simply data
aggregation by removing redundant TDOA measurements.

One challenge along the way of building a distributed and self-organizing localization
system is to find a suitable clustering such that each cluster allows for high localization
accuracy. On top of that, it is also required that such a system yields high overall
localization accuracy, meaning that there should be no areas between clusters where
localization accuracy is reduced.

So far no clustering algorithms with the objective to maximize localization accuracy
within the convex hull of a cluster but also optimizing the overall localization accuracy
exist. As a starting point, a simple probabilistic and deterministic clustering algorithm
shall be evaluated through simulation.

For the evaluation, several realistic scenarios where anchor nodes are placed with some
randomness on a map are created. The two clustering approaches are then used to
compute a possible clustering for the given maps. Afterward, we used the approach
from [13] to calculate the Cramér-Rao lower bound (CRLB) to calculate the localization
uncertainty in each point of the map.
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6.1 Requirements

The requirements for a suitable clustering algorithm depend on the exact use case,
however, some requirements are universal for a localization system:

• High local localization accuracy: Within each cluster, the localization performance
should be high. To achieve this, the anchor nodes should be arranged circularly
around the center of the cluster.

• High global localization accuracy: The overall localization performance should
be high. Thus, there should be no areas between clusters where the localization
accuracy is low.

• Little overlapping areas: The clusters should overlap as little as possible.

• Scalable: The algorithm should be able to partition large sensor networks.

Some additional requirements that are important for our system are:

• Self-organizing: The algorithm should be self-organizing, meaning that only locally
available information is used and processed to find a reasonable partition of the
sensor network.

• Distributed: No central unit should be responsible for the clustering.

For this thesis it is assumed that nodes are not running on battery and the anchor nodes
are fixed. Hence the requirement mentioned next are relaxed.

• Fast convergence: A suitable clustering should be found as fast a possible. Although
this requirement is fundamental in many situations, it is relaxed for our system
as we assume to have static anchor nodes. Thus, it is of no harm if the clustering
takes longer during the setup phase.

• Little overhead: As few messages as possible should be exchanged. Also, this
requirement is relaxed in our system as clustering is only active during the setup
phase.

• Network lifetime: The clusters should be arranged in such a way that the network
lifetime is increased. Again this is relaxed for our system as the static nodes do not
run on battery.

From the previously discussed requirements, and the structure of the proposed system
described in Chapter 3, the following cluster-characteristics are identified:
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• Cluster properties: The cluster-size should be as big as possible but can be
unequal and the cluster number as small as possible, thus can be variable. Inter-
cluster communication is required but might be realized via gateway nodes (gateway
nodes are nodes that are part of two clusters and can be used to exchange data
between clusters). Intra-cluster communication is single-hop, i.e., each member of
a cluster can directly communicate with its cluster-head.

• Cluster-head properties: The cluster-head is expected to be homogeneous, thus
the cluster-head is of the same type as all other nodes. The cluster-head is stationary,
and it does perform data aggregation and fusion.

• Clustering process properties: The clustering process has to be deterministic,
i.e., it has to be weight-based such that nodes that can create large clusters with
high localization accuracy are preferred over nodes that can only form small clusters
with low localization accuracy. Moreover, it has to be dynamic and must be able
to react if nodes stop working.

To the author’s knowledge there exists no clustering algorithm that was intentionally
designed to solve our objective: finding a clustering of our sensor network that allows
localization with high accuracy within the whole covered area.

6.2 Clustering algorithms

In this section, a probabilistic and a deterministic iterative algorithm are presented.
Both algorithms are quite similar but the deterministic uses a time-depending function
to decide on each nodes role, thus, it is more predictable. Both algorithms are later
analyzed.

6.2.1 Probabilistic

The probabilistic algorithm works iteratively. In each iteration, all nodes broadcast their
current state, i.e., clustered, unclustered or cluster-head if its state has changed since the
last iteration. This allows all nodes to maintain their Neighbours list which is important
for the next step.

To become a cluster-head three conditions must be met. First, there is no other cluster-
head in communication range. Second, at least two other unclustered nodes must be in
range, which is required to localize a node in the 2D plane. Third, each node generates a
random value between 0 and 1, only if the value is greater than 0.8 it decides to become
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a cluster-head, thus only with 20% probability a node becomes a cluster-head.

Algorithm 6.1: Probabilistic algorithm
Result: Decide on nodes role

1 role := unclustered;

2 while time < maxtime do
3 random← generate random value between 0 and 1;

4 CHs ← get CH in range;

5 UCs ← get unclustered nodes in range;

6 if number(CHs) > 1 then
7 join clusterhead;

8 role := clustered;

9 end

10 if number(CHs)== 0 and random > 0.8 and number(UCs)> 3 then
11 role := clusterhead;

12 return

13 end

14 end

6.2.2 Deterministic

The deterministic algorithm works similar to the previously described probabilistic
algorithm. The main difference is that no random value is used to decide on the role of a
node, it rather uses an exponentially decaying time depending function (equation 6.1) as
proposed in [33]. In detail, as soon as the decaying time depending function is smaller
than the number of unclustered neighbors the node becomes a cluster-head.

f = exp(−k1
t

tmax
− k2)d (6.1)

Where k1 = 2.3 and k2 = 0.1 were empirically found by [33]. t is the local time of a node
and d is the desired cluster size. tmax is the maximal duration time of the protocol. The
idea behind this method is that equally sized clusters are preferred over clusters with
different size and that the cluster-size can be controlled via the parameter d. Furthermore,
it leads to a repulsion effect between clusters as nodes that are close to the border of a
cluster have less unclustered neighbors, thus they become late a cluster-head.

74



6.3. Simulation

Algorithm 6.2: Deterministic algorithm
Result: Decide on nodes role

1 role := unclustered;

2 while time < maxtime do
3 CHs ← get CH in range;

4 UCs ← get unclustered nodes in range;

5 if number(CHs) > 1 then
6 join clusterhead;

7 role := clustered;

8 end

9 f ← exp(−k1
time

timemax − k2)d ;

10 if number(CHs)== 0 and f < number(UCs) and number(UCs)> 3 then
11 role := clusterhead;

12 return

13 end

14 end

6.3 Simulation

Our simulation framework is built in Matlab, and it can simulate the communication
between nodes, i.e., send and receive messages within the communication range of the
nodes. It also allows to simulate and report collisions when two nodes send messages at
the same time, this feature, however, was not used for simplicity.

Each node in our simulation framework holds the following properties:

• Position

• cstatus. This field represents the cluster role. It can be either unclustered, clustered
or cluster-head.

• Neighbours. This field contains all IDs of nodes in range and their cstatus.

• MyFollowers. This field contains all nodes that are following a node. A node A
considers a node B following itself if the cluster ID of node B corresponds to the
cluster ID of node A, or if the cluster ID of node B is 0.

75



6. Clustering

• Time. Each node holds its local time, however, for simplification it is assumed that
all nodes are switched on at the same time.

In this section, three scenarios are presented where it is shown that the deterministic
algorithm is advantageous over the probabilistic. This is done by calculating the CRLB
of any point in the area where the anchor nodes are placed after the clustering algorithms
were used to calculate a clustering. The background color indicates the calculated
localization uncertainty in each point. For this simulation, we assume that there is a
standard deviation of 1 meter between all anchor nodes which does not correspond to
the previously empirically determined variance in the synchronization section. This can
be justified by the fact that we are only interested in the comparison of the performance
of the individual clustering algorithms and not in the actual localization accuracy. For
all simulation, we assume that the range of each sensor is 5 meters, the iteration time is
tmax = nrnodes · 10, where nrnodes is the number of nodes, the desired cluster size d was
set to 10 in all simulations.

6.3.1 Room

In this example, we assume that one node is placed in each corner of a room with
a dimension of 5x4 meters. A fifth node is placed in the middle of the room. The
communication range of each node is 5 meters such that the only node that can synchronize
all nodes at once is the node at the center of the room. As can be seen in Figure 6.1a, the
probabilistic algorithm might select one of the nodes in the corner as the cluster-head. It
can be seen that not all nodes are part of the cluster and the localization accuracy is
low in the upper right part of the room. In contrast, the deterministic algorithm (Figure
6.1b) is able to successfully select the node in the middle of the room as the cluster-head.
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Figure 6.1: Simulated clustering of the room example. Blue nodes are cluster-heads,
green nodes are unclustered and pink nodes are clustered. The background color is the
calculated CRLB at the position given a set of anchor nodes with a fixed variance of
1 between all anchor nodes. Figure 6.1a is the clustering generated by probabilistic
algorithm. Figure 6.1b is the clustering generated by deterministic algorithm.
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6.3.2 Hallway

In this scenario a hallway with a size of 40x5 meters is simulated, where anchor nodes are
placed in a regular pattern on each side of the hallway. Additionally, nodes are placed
in the center of the hallway. In order to add some randomness in the anchor placement
each node position is randomly moved by maximal ±0.5 meters. As we can see in Figure
6.2a the probabilistic approach leads to some areas where localization accuracy is very
low (red areas), and eight anchor nodes are neither a cluster-head nor clustered. For the
same map, the deterministic algorithm yields better results as can be seen in Figure 6.2b.
For this algorithm, only two nodes are not part of any cluster, and there is no area in
between two clusters where the localization accuracy is reduced. To further confirm the
intuition we simulated this scenario 200 times and stored the localization uncertainty
of each point of each simulation. These values were then used to calculate the overall
probability that an area is exceeding a certain localization uncertainty. The results can
be seen in Figure 6.4a where the cumulative distribution function of the localization
accuracy is depicted. From this figure, we can deduce that the deterministic clustering
algorithm leads to clustering where the localization variance does not exceed 1.6m in
90% of the area. Contrary, the probabilistic algorithm performs worse and does not even
reach the 90% mark.

6.3.3 Open area

In this scenario a large area of 20x20 meters was simulated 200 times. Again the anchor
nodes were placed in a regular pattern and randomized by uniformly distributed value
between ±0.5 meters. As can be seen in Figure 6.3a the probabilistic algorithm produces
clusters of equal size but large areas of the clusters are overlapping. Additionally, there
are large areas where localization performance is low and several anchor nodes are
unclustered.

In contrast, the deterministic algorithm leads to a clustering with larger clusters and the
repulsive effect leads to less overlapping areas as can be seen in Figure 6.3b. Furthermore,
there are fewer areas with poor localization accuracy, and only one anchor node is not
part of any cluster.

As in the hallway example we calculated the cumulative probability of each point in the
map exceeding a certain localization uncertainty (Figure 6.4b). As can be seen in this
figure the overall localization accuracy is worse than in the hallway example, but the
deterministic algorithm does still perform better than the probabilistic algorithm. The
localization accuracy is high at the center of the area, but the localization performance
is low at the border of the grid.
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Figure 6.2: Simulated clustering of the hallway example. Blue nodes are cluster-heads,
green nodes are unclustered and pink nodes are clustered. The background color is the
calculated CRLB at the position given a set of anchor nodes with a fixed variance of
1 between all anchor nodes. Figure 6.2a is the clustering generated by probabilistic
algorithm. Figure 6.2b is the clustering generated by deterministic algorithm.
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Figure 6.3: Simulated clustering of the open area. Blue nodes are cluster-heads, green
nodes are unclustered and pink nodes are clustered. The background color is the calculated
CRLB at the position given a set of anchor nodes with a fixed variance of 1 between all
anchor nodes. Figure 6.3a is the clustering generated by probabilistic algorithm. Figure
6.3b is the clustering generated by deterministic algorithm.
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Figure 6.4: CDF of the CRLB for the hallway example (Figure 6.4a) and open area
(Figure 6.4b) after 200 simulations.
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6.4 Conclusion
In this section, the performance of two simple iterative clustering algorithms was evaluated.
Our simulation showed that already a very simple probabilistic iterative clustering
algorithm could yield reasonable localization accuracy for different scenarios. The
improved deterministic version of the simple iterative algorithm seems to produce higher
overall localization accuracy as well as produce less overlapping areas and leaves fewer
nodes unclustered. Further improvements may take the spatial information into account
such that clusters, where the cluster-head is located at the center of the clusters, are
preferred over clusters where the cluster-head resides at the border of a cluster.
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CHAPTER 7
Conclusions and Future Work

This thesis proposes an indoor localization system that is self-organizing, scalable, and
efficient. The system follows the "throw and go" principle, that is, homogeneous nodes
can be randomly placed within a building, and the system can organize itself such that
efficient localization with high accuracy is possible. Along the way to a final system
design, several challenges must be solved, namely: localization, synchronization, and
clustering. To allow for an efficient localization system the need for a TDOA system was
identified in Chapter 2. Suitable algorithms for positioning, their performance and their
sensitivity to noise are investigated in Chapter 4. The findings are that the linearised
closed form solution can give reasonable results inside of the convex hull of a cluster if the
measurement uncertainties are small. However,it fails if the measurement uncertainties
are increased or if the final position is far outside of the convex hull. In general, the
iterative algorithms perform better regarding localization accuracy and both methods
converge to the CRLB inside of the convex hull of the cluster. The Gauss-Newton
algorithm is more robust to wrong initial guesses than the TS method. Outside of the
convex hull both methods require good initial guesses to converge. Future work may
investigate how to verify the estimated position of the closed form solution, and how
to find alternative solutions. A non-line-of-sight detection can be employed to discard
measurements from anchor nodes that do not have line-of-sight condition. Moreover, at
the moment it is assumed that the position of the anchor nodes are known beforehand,
thus, suitable algorithm to identify the position of the anchor nodes via pairwise distance
measurements has to be found.

In TDOA systems the measurement uncertainties heavily depend on the clock synchro-
nization accuracy. In this thesis, two clock synchronization methods are compared in
Chapter 5. The statistical parameters of the crystal oscillators of the DW1000 modules
were identified via the Allan variance, and used in the Kalman filter for optimal offset
and skew estimation. Compared to the simple skew estimation method the Kalman
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filter yields superior results with high synchronization rates, however, the simple skew
estimation method is almost equally good at synchronization rates below 5Hz. During
the evaluation, a high-temperature dependency was observed resulting in a change of
the skew value. As the Kalman filter combines previous states with new measurement
updates, it can lag behind the true skew value if only two states are used. To compensate
for this, a third state was temporarily introduced in the Kalman filter to track the
change of the skew value. On the one hand, this yields better results when the change
of skew was constant. On the other hand, it took the Kalman filter much longer to
converge to the true values if sudden changes or synchronization messages with large
reception time uncertainties occurred. Future work might investigate this issue to find
methods to reinitialize the Kalman filter if this happens such that a third state can be used.

In Chapter 6 two simple clustering algorithms were compared, and the theoretical
localization accuracy was computed for clustered networks. The results suggest that the
deterministic algorithm produces slightly higher localization accuracy and less overlapping
clusters. Furthermore, the simulation for a single room in Section 6.3.1 shows the superior
of the deterministic algorithm if only one cluster is required and the ideal cluster-head
is the node which can connect the most nodes to its cluster. However, the results from
Chapter 4 suggest that the localization algorithms do not always converge outside of the
convex hull. Hence, the convergence of these algorithms should be investigated in more
detail for larger areas with a clustered network. Further work may investigate how the
spatial distribution can be taken into account for the cluster-head selection algorithm.
Another issue that was not addressed in this thesis is a coarse time synchronization that
is required by the time-depending deterministic clustering algorithm presented in Section
6.2.2. A solution might be the use of the Glossy synchronization method, but it has to be
investigated if this method works reliably with many nodes using the DW1000 module.

The proposed communication and localization protocol in Chapter 3 allows for efficient
and accurate passive localization as well as self-localization. The messages required
for self-localization are placed at the beginning of each round. Thus, the accuracy for
self-localization is increased. With this design choice, an arbitrary number of nodes can
localize themselves with high accuracy. Something that has not been taken into account
is the inter-cluster communication and how cluster interference can be mitigated. As
proposed in Chapter 3 different preamble codes can be used for interference mitigation,
and inter-cluster communication can take place at defined time intervals.

At the current stage, only the synchronization and message exchange is implemented on
the Nucleo platform. To make the system usable, also the localization and clustering
algorithms have to be ported to the Nucleo platform. Afterward, the localization accuracy
must be evaluated for different real-world use cases.
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CHAPTER 8
Appendix

This chapter describes the message format used to establish synchronization and to
transmit TDOA data. As the clustering is not implemented yet we do not describe
these messages. However, as the clustering requires only to transmit/receive the role of
neighbor nodes these messages are expected to be rather simple.

uint8 packet_type: Each message contains an 8-bit packet-type identifier to distinguish
between synchronization, localization, and data messages.

8.1 Synchronization Messages
enum_sync_t: Especially during the development phase, it was handy to let the
reference node specify when data should be returned to the reference node and when
mobile nodes are allowed to transmit data. With this value, we assign a whole round to
a specific purpose. Possible values are:

• Only mobile nodes are allowed to send localization messages.

• Only anchor nodes are allowed to return data to the cluster-head

• None of the above, only synchronization is allowed.

Synchronization message:
Each synchronization message contains the following four fields:

• uint8 packet_type: This value identifies the type of the packet, it is used to call the
appropriate packet handler.

85



8. Appendix

• uint32 pkt_id: The packet ID or sequence number is an increasing number that is
incremented by the reference node. It is used to identify the packet synchronization
message uniquely. The purpose of this value is twofold: first, it is used to identify
synchronization packet loss to adjust the skew estimation mechanism accordingly.
Second, it is used for debugging purposes of relating any kind of events between
two separate nodes.

• uint8 txt[5]: This is the 5 byte transmission time.

• enum_sync_t interval_type: This is the type of the current synchronization interval.
As described previously, we assign each synchronization interval a special purpose
such as allowing mobile nodes to broadcast localization packets or to allow anchor
nodes to transmit data to the cluster-head.

• uint8 crc[2]: This array contains the CRC value of the received packet. Note that
the DW1000 module already checks for the correctness of the CRC value. In case
it is not correct the RX ready flag is not set.

8.2 Localization

Localization message format
The localization packet format is used by mobile nodes when they want to be localized.
It contains all the information required by the TDOA system to relate the reception
time-stamps of a localization packet at different anchor nodes.

• uint8 packet_type: This value identifies the type of the packet, and it is used to
call the appropriate packet handler.

• uint8 node_id: This id is used to identify the node that issued a localization packet
uniquely. This value can be assigned dynamically when a node registers at the
TDOA system or at a cluster reference node. For this thesis, the node id is assigned
statically.

• uint32 local_packet_id: This value is used to uniquely identify a localization packet.

TDOA measurement message
The packet type packet_tdoa_meas_t is used by the anchor nodes to return the measured
reception time of a previous localization packet to the cluster head. At the current state,
only one measurement is returned, but in a later version, the length (and therefore the
number of returned TDOA measurements) can be extended.

• uint8 packet_type: This value identifies the type of the packet, and it is used to
call the appropriate packet handler.
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• uint8 anchor_id: This id is used to identify the anchor node that sent a data packet
uniquely. This value can be assigned dynamically when clusters are spawned. For
this thesis, the anchor id is assigned statically.

• uint32 local_packet_id: This is the packet id of the localization message that is
reported to the cluster-head.

• uint8 node_id: This is the mobile node’s id, which sent the localization message.

• uint64 rxt: This is the reception time of the localization message with id lo-
cal_packet_id issued by mobile node with id node_id and received at anchor with
id anchor_id.

• uint8 crc[2]: This array contains the CRC value of the received packet. Note that
the DW1000 module already checks for the correctness of the CRC value. In case
it is not correct the RX ready flag is not set.

For a final version, it would not be required to include the local_packet_id to match the
reception time of the same localization packet at different anchor nodes. Instead, we
propose to use the global time and to define a margin value, i.e., if a packet is received at
anchor 1 at t1 it is matched to a packet received at anchor 2 if its reception time t2 lies
within the margin value ma such that t1 −ma < t2 < t2 +ma. Currently, we are using a
6-byte long value for the global time. Hence, we require 7 bytes (6 bytes + 1 byte for the
node_id for a single TDOA measurement set to be sent to the cluster head).

The DW1000 module allows to send 127 byte in standard mode and 1024 byte in extended
mode. The IEEE 802.15.4 header takes 7 bytes: packet_type, anchor_id and crc requires
4 bytes, all together 11 bytes. To gain the maximal amount of TDOA measurement data
that can be transmitted in a single packet we have to subtract 11 from the maximal
allowed transmitted bytes resulting in 116 bytes for the standard mode and 1013 for
the extended mode, respectively. Dividing this values by 7 (6-byte time-stamp + 1-byte
node_id) gives us the final amount of TDOA measurements that can be transmitted
to the cluster head in a single packet. In the case of the standard mode, this would
allow us to return 16 measurements and for the extended mode 144 measurements. For
further optimization, we can reduce the maximal value of rxt. This can be done if we
assume that all nodes receive the same message within the same synchronization interval.
Thus the most significant bits do not differ for all measurements. For example, during a
synchronization interval of 100ms, 34 bits are enough to express each time-stamp within
the 100ms range such that the required size for a single TDOA measurement reduces to 42
bits. This results in up to 22 measurements for the standard mode and 192 measurements
for the extended mode.
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