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Abstract

Subdivision surfaces, typically employed in the entertainment industry, are becoming
more and more relevant in the development of products. Creating subdivision control
meshes can either be done from scratch by a designer or can be derived from
existing models through re-meshing. A curvature sensitive mesh density is desired to
accurately model the features of a shape, while having a sparse set of control points.
This thesis aims to construct a Catmull-Clark subdivision control mesh from a triangle
reference mesh. Quad re-meshing is the most important step for this approach and a
well-researched topic. The quad-dominant re-meshing method developed in Jakob et
al., 2015 is modified so that it produces curvature sensitive quad meshes which are
then transformed into subdivision control meshes.
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1. Introduction

Many applications require 3-dimensional representations of smooth surfaces. Ex-
amples for these representations are 3D-models without underlying mathematical
properties such as triangle or quad meshes, combinations of parametric surface
patches, or surfaces based on iterative refinement, like subdivision surfaces. Subdi-
vision surfaces are defined through a control polygon which is refined iteratively.
Their limit surface is the resulting surface after infinite iterations of refinement. This
limit surface is are able to approximate complex shapes with a coarse set of control
points. There are many refinement schemes for subdivision surfaces with different
mathematical properties. All future references to subdivision surfaces will refer to
the Catmull-Clark subdivision scheme (Catmull and Clark, 1978) because it has be-
come the de facto standard in the CAD and entertainment industry for quadrilateral
meshes. The properties of subdivision schemes are:

Topology: Since subdivision surfaces are created through iterative refinement of an
arbitrary mesh, they can be used to model surfaces of arbitrary topology. This
sets them apart from parametric surfaces which are bound to a rectangular
domain.

Scalability: Due to their iterative nature, their level of detail (LOD) can be scaled. Ap-
plications for this include distance based density when rendering or controlling
the processing speed when performing calculations on the subdivision control
mesh.

Numerical Qualities: The mathematical properties and positions of the limit surfaces
of subdivision meshes are known and can be calculated without subdivision
even in non-regular regions, as shown by Stam, 1998. Because the limit surface
of Catmull-Clark subdivision control meshes is equal to uniform bi-cubic B-
spline patches in regular regions, subdivision surfaces are curvature continuous
everywhere except at extraordinary vertices (i.e. vertices which do not have a
valence of four).

Ease of Use: Through above-mentioned points, subdivision surfaces are favourable
compared to parametric representations in many applications. They are easy
to implement and no stitching of boundaries is needed to satisfy continuity
constraints in regular regions.
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1. Introduction

How to get the initial control meshes? Often, designers create real-life models of what
they are trying to design. The models are then scanned and their shape is captured
in the form of meshes. Because they closely capture the real-life models, these kinds
of meshes will be called reference meshes. To continue the design with subdivision
surfaces, they have to be transformed into subdivision control meshes.

Automatic conversion of a reference mesh to a quad-dominant Catmull-Clark sub-
division control mesh is the goal of this thesis. As will be discussed in Chapter 2,
a lot of research was done in the field of quad re-meshing. A new development
in quad-dominant re-meshing by Jakob et al., 2015, creates quad-dominant meshes
through quick local optimization from triangle or point cloud reference meshes.
These meshes can then be transformed into subdivision control meshes with limit
surfaces modelling the surfaces the scan data are describing. The method of Jakob et
al. is based on creating quads of equal size. This is not favourable for designers trying
to model objects with features because control meshes need to be dense enough to
accurately represent the finest detail and creating meshes with quad faces of equal
size may lead to unnecessary high overall densities. For this thesis, a pipeline is
created that is able to transform reference meshes into subdivision control meshes
with densities based on the curvature information of the referenced surface. The
pipeline will contain the following steps:

Reference Mesh
Triangle Mesh or Point Cloud

Quad-Dominant Mesh
With Curvature Dependant Density

Subdivision Control Mesh
Limit Surface Closely Approximating

the Reference Mesh

i) Modified Jakob et al., 2015

ii) Use the method from Thaller, Augsdörfer, and
Fellner, 2016 to position the control points such that
the limit surface approximates the surface of the
reference mesh

i) A reference mesh is transformed to a quad-dominant mesh by the method de-
veloped in Jakob et al., 2015 with the changes outlined in this thesis, to ensure the
density of the mesh is curvature-dependent.
ii) A subdivision control mesh is created from the quad-dominant mesh by moving
its points along the normal of the reference meshes surface until their corresponding
limit points closely approximate the surface.

2



The resulting subdivision control meshes can then be used for further modelling
by designers to fine-tune their creations. To compare and evaluate the results of the
pipeline, the following aspects are considered (adapted from Bommes, Zimmer, and
Kobbelt, 2009):

Individual Element Quality: Quads of the mesh should have 90-degree corners, be
planar and opposite edges should have same edge lengths

Orientation: Mesh edges should represent the principal curvature directions
Alignment: The mesh should represent the sharp features of the reference.
Global Structures: Careful positioning of as few extraordinary vertices as necessary is

important.
Semantics: Some requirements on the resulting subdivision mesh depend on its later

usage. On example for this is the ability to produce meshes suitable for design.
These meshes must have few vertices while still accurately representing a
given shape. One way to achieve this is adaptiveness of quad sizes to principal
curvature.

For this thesis, the quality, orientation and alignment of quads are considered to
create meshes suitable for design. Because the density of the control mesh adapts
to the features, the global structure suffers far more extraordinary vertices when
compared to meshes with an isotropic distribution. Consequently, the focus in this
thesis does not lie on positioning the extraordinary vertices.

This thesis is structured into the following parts:
Chapter 2 summarises previous work on the topics of mesh reconstruction, re-
meshing and mesh evaluation.
Chapter 3 explains the steps needed to create a quad-dominant mesh at a density
adapted to the curvature of the surface described by the reference mesh. To find
optimal methods for each step, different ones have been tried.
Chapter 4 performs a comparison of these methods, their combinations and the
quality of the computed quad-dominant meshes and their corresponding subdivision
control meshes.
Chapter 5 summarises the results of the work in this thesis and Chapter 6 gives an
outlook for future work.

3





2. Related Work

The field of surface (re-)meshing is of interest to a great number of industries and
their respective fields of research. Due to their natural alignment with the principal
curvatures and patch structure, quad-based meshes are preferred for modelling tasks
which focus on alignment and texture mapping (Bommes, Bruno, et al., 2012). Tensor
product surfaces (e.g. B-splines, NURBS) and quad-based formulations of subdivision
surfaces are all based on quadrangular meshes. Section 2.1 will discuss subdivision
surfaces while Section 2.2 will give an overview of the methods for quad-based
meshing.

2.1. Subdivision Surfaces

Subdivision surfaces describe surfaces derived by iteratively dividing a control mesh
by following a subdivision scheme. The subdivision scheme used for all subdivision
in this thesis is described by Catmull and Clark, 1978. They have created a subdivision
scheme that will resolve to a bi-cubic patch in the limit surface for regular regions
of the control mesh. This property is one of the most important features of Catmull-
Clark subdivision surfaces. It means that in the regular regions of a mesh, the
limit surface has curvature continuity. This property of subdivision surfaces allows
the modelling of complex surfaces with great flexibility without having to worry
about the mathematical properties of the limit surface in regular regions. In contrast,
when modelling with parametric bi-cubic spline patches, care must be taken when
stitching patches together to make sure the seams remain continuous (be it positional,
directional or curvature continuity). Since extraordinary vertices locally disturb
the regularity and slow down the convergence, careful placement of extraordinary
vertices(EVs) is important.

The desire to model with subdivision surfaces demands for ways to construct them.
The approach for the work in this thesis is by converting reference meshes into pure
quad or quad-dominant meshes and then converting them into subdivision control
meshes. While a quad mesh may define the topology of the control mesh, it does
not yet define which positions the control vertices should have such that the limit
surface lies on the reference mesh. To do this, the limit surface must be known.
As mentioned before, the limit of regular regions is known per definition. On and
around extraordinary vertices, this becomes more difficult.

5



2. Related Work

Halstead, Kass, and DeRose, 1993 create a subdivision control mesh with limit points
that interpolate the vertices of a reference mesh. They compute the position of the
control points by creating a linear system which combines the limit point calculation
with interpolation constraints. While the limit surface for regular vertices is known,
Halstead et al. derive an expression for the limit positions of all vertices in the
control mesh through an Eigen decomposition. The resulting surface, however, is not
satisfactory and an additional fairing step is needed. They subdivide once, adding
more degrees of freedom and improve the surface by minimising a smoothness norm
based on a linear combination of thin-plate and membrane energies. Their evaluation
of limit positions of control vertices is used in this thesis to create the subdivision
control mesh. Their condition for limit points to interpolate their corresponding
reference vertices is very restricting when trying to create a control mesh that models
the referenced surface. This restrictive approach and the need for additional fairing,
which increases the number of control points, make Halstead et al.’s method for
creating a subdivision surface not satisfactory for this thesis.

In Shen et al., 2014, this method of evaluation is used to convert NURBS surfaces to
subdivision control meshes. After analysing a NURBS surface and extracting a quad
mesh with help of the method of Bommes, Zimmer, and Kobbelt, 2009, the positions
of the control vertices are computed similarly to the approach of Halstead et al.

The method used to position the control points in this thesis was developed in Thaller,
Augsdörfer, and Fellner, 2016. Thaller et al. have created graph grammars that change
the topology of a subdivision control mesh based on rules. When adding new control
points, they have to be positioned such that the limit surface remains the same before
moving some of them to model the feature. Their approach is to move the control
points parallel to the normals in the surface until their limit positions lie on the
original surface.

As a note of interest, Stam, 1998 has derived the calculation of limit positions for
arbitrary points on the limit surface. Before his work, a direct evaluation of the limit
positions of points around extraordinary vertices (i.e. in non-regular areas) was not
known. The only solution was to decrease the non-regular area around an EV with
iterative subdivision until the point of interest would lie inside of the regular area.

2.2. Quadrangulation of Surfaces

The quadrangulation of surfaces can be split into two main categories: Pure quad
and quad-dominant meshes. Pure quad meshes have more constraints to ensure no
non-quads are created. Quad-dominant meshes are free to improve upon surface
properties by allowing non-quads. There is less research on creating meshes with

6



2.2. Quadrangulation of Surfaces

edge lengths that adapt to curvature because global sizing parameters facilitate high
regularity in the results. While some research bases edge length on curvature, often
the focus on isometry is such that the differences in edge length are very little or the
minimization of the number of singularities does not allow enough flexibility.

2.2.1. Pure Quad Mesh Extraction

This section will discuss methods on how pure quad meshes can be extracted
from triangles meshes. The discussion will part them into the following categories:
Parametrizations, curve-based approaches and a divide-and-conquer approach.
Parametrizations seem to have the biggest appeal because most research revolves
around them. They flatten the mesh and bring it into a disc-shaped domain, ideal
for quad meshing. Curve-based approaches create orthogonal sets of curves on the
reference mesh which form a quadrangular grid. Lastly, dividing-and-conquering
classifies parts of the mesh into areas where the quadrangulation is already known.

Parametrization

Parametrization based techniques try to flatten the reference mesh to a two-dimen-
sional domain. This transformation needs a parametrization of the mesh. It maps
vertices from the three-dimensional space of a mesh into a two-dimensional domain.
Orthogonal lines can then be used to extract a quad mesh from the parametrised
surface. The main difficulties when creating a parametrization are designing and
optimising the parametrization and finding orthogonal lines for quad mesh extrac-
tion.

The most important properties of a parametrization are (summarised by Bommes,
Bruno, et al., 2012 and Bommes, Zimmer, and Kobbelt, 2009):

Non-overlapping: Not connected areas of the reference mesh must be parametrised
such that they do not have the same coordinates in the parametrised space.
Handling of these areas is difficult and they would not create a flat parametriza-
tion.

Singularities on Boundaries: The inside of a parametrization is a grid of orthogonal
lines where intersections will be vertices of valence four. If a singularity were
to lie on the inside, it would distort the grid which would make it harder
to find proper solutions. When singularities are on the boundary of the two-
dimensional parametrization, pure quad quadrangulation is facilitated.

Continuity of Neighbours: When creating the parametrization, it is vital to ensure that
lines can be followed over neighbouring faces. This means that edges must
either have the same coordinates for both adjacent faces or have meaningful
transitions between them that do not destroy the grid lines. Generally, these
translations are an integer multiple of the grid size.

7



2. Related Work

There are two ways of creating a parametrization: Chart-based and global parametriza-
tions. Chart-based approaches have better topology but finding good solutions is
harder. Global approaches are more straight-forward and do not need to create
auxiliary structures.

Chart-Based: Chart-based approaches create a sub-graph spanning over the reference
mesh which consists of quadrangular patches called charts or patches. All singulari-
ties of the extracted quad mesh lie on the corners of the charts but not all corners have
to be singularities. This way, a pure quad mesh can be created where all singularities
lie on the boundaries of the charts and the insides of charts contain only quads.
The sub-graph is constructed such that, after finding the chart corners, the edges
of the charts are superimposed on the mesh and consist of a path of edges of the
original mesh. The number of charts is kept low compared to the size of the reference
mesh since only singularities prevent regular quadrangulation and their numbers are
limited. This reduces the solution space but the quality of the result depends on the
singularities’ placement. The created meshes are semi-regular quad meshes (c.f. the
categorization of Bommes, Bruno, et al., 2012) which are favourable because of the
low number of singularities.

Tong et al., 2006 use this method to create what they call a meta-graph. They find
singularities in a harmonic form and create edges by growing patches from the
singularities until boundaries are formed. Since the meta-graph of charts may have
a genus greater zero, it may need to be cut open. After solving a linear system to
generate two-dimensional coordinates for all vertices of the meta-graph, the tiling
of the parametrization is calculated via linear constraints enforcing the important
properties of the parametrization mentioned above.

Another variant for creating these chart graphs is using Morse-Smale complexes.
What seems to be the first use of Morse-Smales complexes for quad meshing is by
S. Dong, Bremer, et al., 2006. They define them as:

[...] a cellular decomposition of a scalar (Morse-Smale) function over
a manifold [...] computed more practically by tracing lines of steepest
ascent/descent.

Vertices are placed at minima, maxima or saddles of the Morse-Smale function and
together with the traced lines, they form a quadrangular chart structure. Dong et
al. computed the function via an eigenvalue decomposition of the matrix defined
by discrete harmonic weights of a Laplacian operator on piece-wise linear functions
over a triangle mesh. It is a spectral surface analysis where the eigenvalues form the
spectrum and the eigenvectors define piece-wise linear functions of progressively
higher frequencies. Sometimes it is better to use the quasi-dual complex which is
computed by exchanging edges and diagonals such that saddle vertices are removed,
reducing the number of vertices in the complex. After an additional simplification
of the complex, a parametrization is needed to optimise the layout of the patches
and their boundaries because it can be misshaped and produce degenerate patches.

8



2.2. Quadrangulation of Surfaces

The parametrization is initialized and iteratively refined by repeating three steps:
Solving a linear system to compute a parametrization, swapping vertices of the
original mesh between chart boundaries, and relocating vertices of the complex. The
mesh is generated by using a global parameter that divides the charts into an equal
number of quads. Positions can be retrieved from the parametrization. The quality
of the mesh depends on the choice of the eigenvector. Dong et al. can choose a set
of eigenvectors based on the desired number of singularities and use the one with
the lowest distortion. Huang et al., 2008 have added further control to this method
through control over size and alignment. They still create an isotropic mesh. Zhang
et al., 2010 add an anisotropic formulation to increase the manual control over the
sizing of the quads.

Chart-based quadrangulation is not favourable when trying to create meshes with
varying densities. The main issues are the boundary conditions between charts. To
ensure a correct quadrangulation, the number of segments on the boundary fixes
the number of quads in the respective direction of neighbouring charts. While these
methods are possible, the set of results is too restricted for the goals of this thesis.

Global: The second way of designing the parametrization is a global view. Instead of
first creating a sub-graph on the entire mesh, every triangle of the reference mesh is
mapped into the parametrised space. This means that there are more elements to be
parametrised, but an optimised parametrization is created on the mesh itself. Finding
a planar embedding for the entire mesh is harder since there are more elements to
consider. As before, it is important to cut the mesh at singularities. They should be
fixed to the boundary of the two-dimensional domain.

A simple form of a global parametrization was created by Hormann and Greiner,
2000. They assume a mesh with boundaries on which they produce a regular quad
mesh. First, they choose four fitting vertices to sit on the corners of the rectangle of
the parametrization. Since the mesh has boundaries, the boundary of the rectangle
will equate to the boundary of the reference mesh. The parametrization is optimised
iteratively such that the new vertex positions are calculated via a weighted sum
of their neighbours. Since they assume a mesh with boundaries, the number of
applications for this algorithm is limited.

A more involved method is done by Kälberer, Nieser, and Polthier, 2007. They derive
their parametrization with the use of branched covering spaces. They use an input
vector field to compute branch points (i.e. singularities) and parameters for edges to
ensure a globally continuous parametrization. Their derivation of constraints ensures
that branch points lie either on one of the grid’s vertices or in the centre of a grid
tile. If a branch point lies in the centre of a grid tile, it will produce a triangle on
extraction. To ensure a pure quad mesh, the size of the grid must then be halved. After
computing a cut graph (Kälberer, Nieser, and Polthier, 2007 claim that its computation
type does not influence the result significantly), the parametrization is computed
via a Hodge decomposition. The grid used for extraction is an integer based one.
Integer translations for all edges on the boundaries induced by the cut graph must
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2. Related Work

be added because parametrised positions of the edges of both adjacent faces may lie
on opposing sides. This method does not use density parameters. Because density
changes induce more singularities, which induce the need for subdivision, it is not
viable for the goals of this thesis.

For their parametrization, Bommes, Zimmer, and Kobbelt, 2009 have created a mixed
integer solver that allows them to specify linear constraints for the parametrization
in a straight-forward way. The solver is able to compute an optimal solution for
a problem with real and integer-valued parameters via computing a real-valued
solution and then performing a series of rounding and solving iterations which
progressively fix all integers. All fields and parametrizations are computed with
this solver. They first compute a smooth cross field which is optimised such that an
energy based on the angular difference of neighbours is minimised. The angles are
defined over orientations for each face, together with integers for each edge which
define the number of 90-degree jumps between both faces. An initial set of fixed
orientations which guides the optimization is computed from areas of the mesh
where its orientations are well defined (e.g. feature lines).
The mixed integer solver now has to find angles for each face and integer jump num-
bers for each edge which minimise the energy. Computing the optimal parametriza-
tion then follows a similar approach. First, the mesh is cut open via a cut graph. The
cut graph is calculated by generating a dual spanning tree having a random vertex as
the root and ensuring the singularities lie on the boundary of the cut. Now, the con-
straints for the solver can be defined. Inner edges must have equal parametrization up
to integer translation and rotational jumps (which are fixed by the cross field) while
edges on the cut must have integer positions at both ends and integer translations
between the parametrization of both adjacent faces. The energy that is minimised is a
local orientation energy for each triangle. They add an anisotropic norm to favour
different edge lengths over bad orientations, add feature alignment constraints, relo-
cate singularities and add local stiffening to improve results. Extracting a pure quad
mesh is done through an integer grid. Their comparisons with Huang et al., 2008 and
Kälberer, Nieser, and Polthier, 2007 show that their approach can produce similar if
not better results.
They improve upon this method in Bommes, Campen, et al., 2013 where, after com-
puting a globally smooth parametrization, they perform additional refinement steps
before creating the quad mesh. This mixed integer based solution is then refined
before a mesh is extracted. The refinement allows them to change the resolution of
the final mesh and improving the results.

For a more architectural approach, Liu et al., 2011 try to create a pure quad mesh that
where the quads are made planar in a post-processing step. Planarity is important
for construction because it is much easier to create such tiles. Their approach uses
a conjugate direction field to guide the parametrization. The parametrization is
computed by creating a mixed integer formulation and adopting Bommes et al.’s
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2.2. Quadrangulation of Surfaces

mixed integer solver. Singularities cannot be placed while creating the direction field,
but they can be moved at later stages. The final step is a planarity optimization which
has better results combined with their quad mesh when compared to other quad
re-meshing methods.

To change these isometric parametrization techniques into an anisotropic formu-
lation which adaptive edge lengths, Kovacs, Myles, and Zorin, 2011 have created
an anisotropic metric that may be used for feature-aligned parametrizations and
harmonic maps. The shown results are different depending on the parametrization.
Their results seem to struggle with alignment to features and principal curvature
directions sometimes and need manual constraints for alignment.

Curve Building

Using curves on the mesh to produce a pure quad mesh seems to be difficult. Most
approaches using curves, produce quad-dominant meshes. This is because creating
perfect layouts of curves, which do not get cut off by two neighbouring curves by
getting too close - thus creating a non-quad - cannot be avoided entirely.

Campen, Bommes, and Kobbelt, 2012 have an interesting approach to using curves.
Instead of creating a quad mesh from the curves, they use the curves as interme-
diary information. From a graph of curves, the dual graph creates a chart layout
like discussed earlier. The most important observation for this method is that the
loops must separate singularities of a curvature induced cross field. As discussed,
singularities must be represented by vertices in a chart layout. Since every patch in
the graph of loops will be a vertex in the dual graph, no two singularities may lie
within one patch. To construct the loops, all pairs of singularities need to be separated
with loops. Campen et al. use a greedy selection of loops where the largest of all
minimal loops for pairs of singularities is selected. This selection is chosen because it
leads to better, less locally oriented results. The created chart layout is optimised by
moving the vertices. Extensions to this method include an additional introduction
of feature curves, and curves improving the layout to increase alignment to mesh
features. Because this approach uses a chart layout, the same problems concerning
curvature adaptive edge lengths will arise as with the previously discussed methods
which do the same.

Divide-and-Conquer

For another variation of chart-based approaches, Zhang et al., 2013 create a chart
layout by segmenting the mesh into classified and unclassified patches. Classified
patches are patches where an optimal quadrangulation scheme is already known and
no further computation for the interior is necessary. They are built such that their
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densities can be changed through subdivision. Unclassified patches are quadrangu-
lated with a wave-based quadrangulation method and their result can be reused
for similar patches. To ensure a proper quad mesh, stitching constraints have to be
added that make sure the number of quad meshes is equal on both sides of chart
boundaries. After solving the stitching parameters with the mixed integer solver of
Bommes, Zimmer, and Kobbelt, 2009, the mesh can be extracted via stitching together
all sub-meshes of the charts. The results depend on the quality of the classification.
When much of the mesh can be classified, their results are fast and have good sym-
metry. For bad / no classification, the results are similar to related methods. Since
this method is based on chart layouts, it has similar problems when trying to create
curvature adapted edge lengths.

2.2.2. Quad-Dominant Mesh Extraction

Quad-dominant mesh extraction methods share many properties of pure quad meth-
ods, but often have decisions and techniques which allow or induce the creation
of non-quads. The research is split into three main concepts: Parametrised and
curve-based approaches - similar to the pure quad-based ones, and a triangle mesh
decimation approach. There seems to be less research being conducted on quad-
dominant re-meshing than on pure quad re-meshing. As mentioned before, quad
meshes are very favourable for a variety of tasks. For similar tasks, quad-dominant
meshes need special cases for non-quads or have a higher density and more singu-
larities when transformed to pure quad meshes via one step of subdivision. The
following discussion will lay out quad-dominant methods and how they differ to
similar pure quad mesh methods.

Parametrization

Quad-dominant parametrizations are very similar to pure quad-based ones. The
idea is the same but some techniques differ because they are more prone to create
non-quads.

Chart-Based: Marinov and Kobbelt, 2006 have created a re-meshing scheme based on
charts. The charts are computed via a slight variation of Cohen-Steiner, Alliez, and
Desbrun, 2004. Each chart is parametrised and their edge paths are approximated as
cubic curves. The difference to other chart-based approaches is that Marinov et al.
do not quadrangulate the local parametrizations for each patch but instead create a
network of orthogonal cubic curves. For this, the cubic curves of the chart boundaries
are mapped to the parametrization and are segmented. Boundary constraints are
introduced, ensuring an equal segmentation for adjacent charts. The segments are
seeds to create a curve network. Its curves are created from an initial setup based on
the segments that is then improved by swapping curves. Additionally, edges with
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sharp intersections are removed.
The result depends on an energy formulation. It can be modified to favour squares or
rectangles because the shapes of the resulting faces are defined by the intersections
of the curves. In some rare cases, T-joints or non-quads might be allowed to an extent
that can be defined in the energy definition. After re-meshing and smoothing of the
quadrangulated charts in parameter space, the positions are mapped to 3-dimensional
space, creating a quad-dominant mesh. While this method does not create a pure
quad mesh, it faces similar problems concerning curvature adapted edge lengths as
the pure ones. An alteration might allow for curves to be created in the centres of
charts to change the number of vertices on opposite boundaries of a chart. This would
add more flexibility to adapt edge lengths to curvature because densities would not
have to stay the same in one dimension of a chart. This change introduces a lot of
new degrees of freedom during optimization and would be difficult to achieve.

Global: What seems to be a cornerstone for parametrised approaches to quad re-
meshing is the research in Ray, Li, et al., 2006. Contrary to the approaches for global
parametrization discussed earlier, Ray et al. do not cut open the mesh via a cut
graph and use a periodic notion to define orthogonal lines in the parametrization
instead of integer lines. Like others, they use a principal direction based cross field
which is created by propagating directions from highly anisotropic regions. The
parametrization is done globally for each triangle with a constraint formulation
for neighbouring triangles allowing 90-degree rotations and integer multiples of
2π as translations (as opposed to integers in other approaches). Similar to other
methods, these constraints ensure continuous grid lines on the parameter domain. The
parametrization is computed via minimising Ray et al.’s quadratic error formulation
with a penalty against degeneracies. Mesh extraction is then done via tracing grid
lines on integer multiples of 2π on the parametrised domain.
Special handling of singularities via the splitting of triangles must be done because
the optimization for the parametrization does not incorporate them. Non-quads
might be constructed since singularities in the centre of a grid tile will produce
triangles. It is a good example why most other approaches take special care to
position singularities on the boundary of the cut graph and on grid intersections
of the parametrization to ensure a pure quad mesh. Like other approaches which
compute a global parametrization that relies on a regular grid for mesh extraction,
curvature adapted edge lengths cannot be enforced easily. Because this method allows
for a more flexible placement of singularities however, further research on a grid with
a density adapted to curvature information might be viable.
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Curve Building

Building curves on the reference mesh itself is a straight-forward way of meshing
quads. Enforcing the orthogonality such that only quads are created, however, is
difficult. Hence, as noted before, more quad-dominant approaches to curve building
were found than pure quad ones.

A very early example for curve building methods was created in Alliez et al., 2003.
They assume a genus-0 surface patch (i.e. with boundaries) as input. On this surface,
they compute a graph for tagged features (for curvature alignment) and a curvature
tensor as direction field. For faster processing, the curvature is then flattened to a
2-dimensional parametrization domain. Umbilical points on the surface are seeds for
a Runge-Cutta curve interpolation on the parametrization. Depending on the desired
distances, new seeds along the traced curves are placed in a priority queue for further
processing. Curve tracing may stop when it is too close to another curve - based
on the desired density. Around umbilical points, where density of the curves may
not be enough, additional point sampling is performed. After cleaning the data (e.g.
dangling lines, vertices with none or two attached segments, ...) the resulting mesh
is created by intersecting all curves to form quads and triangulating the remaining
points. This creates a quad-dominant mesh that explicitly allows anisotropy of the
resulting rectangles.

Further extending the approach of Alliez et al., Marinov and Kobbelt, 2004 add
methods to allow for inputs to be closed meshes with arbitrary genus. They do this
by not depending on a global parametrization and dealing with umbilical regions
differently. As before, a curvature tensor field is created. However, it is created so that
anisotropic regions propagate their directions into isotropic regions. This method
is found in similar approaches because it deals with the problem of not knowing
principal directions in umbilical regions. Seeds for lines are placed in anisotropic
regions for well-defined directions and may switch minimal/maximal principal
directions when integrating if needed. The rest is similar to Alliez et al.’s approach,
except for smaller differences in used data structures. This creates quad-dominant
meshes where non-quads are triangles or n-gons.

A different approach for creating direction fields for the curves was done in S. Dong,
Kircher, and Garland, 2005. The steps are similar to Marinov et al.’s work. First,
a cross field is created and then curves are traced on the surface with respects to
density and the desired amount of isotropy vs. anisotropy. The difference lies in
creating the cross field. Dong et al. do not use the principal curvature of the surface
but compute a constrained harmonic scalar field on the mesh as a foundation for the
directions. From this scalar field, a cross field can be computed by taking the gradient
as one direction and a 90-degree rotation around the normal as the second direction.
As an additional degree of freedom, a user may define vertices to be constant in the
scalar field which introduces the ability to place extrema. This is important because
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maxima/minima of the scalar field are where curves will converge. Similar to the
other approaches, curves are then integrated and sampled on the cross field. This
results in a method for quad-dominant mesh extraction which provides a user with
great control over the placement of singularities.

Curve-based approaches seem to incorporate curvature adaptive edges length well.
However, the distances between curves do not vary much. This means that these
curve-based approaches are less flexible in their adaptation to changes in curvature.

Triangle Mesh Decimation

Methods based on triangle mesh decimation do not try to re-mesh the surface as a
quad mesh but try to change the topology of a triangle mesh such that it becomes a
quad-dominant mesh. An example of such an approach is the work of Lai, Kobbelt,
and Hu, 2010. They create a quad-dominant mesh via iterative relaxation such that
edges of a triangle mesh align with the principal directions of a surface. The principal
directions are calculated via a curvature analysis which yields a direction field.
After smoothing the curvature tensor, the triangle mesh is re-meshed as a second
triangle mesh with a density that adapts to surface features. The base for the final
quad mesh is constructed via iteratively moving vertices to optimised positions
and changing the mesh topology where needed. Optimised positions for vertices
are calculated in a parametrization of the 1-ring neighbourhood of each vertex. A
quad-dominant mesh can be created by deleting all edges that are not aligned with
the direction field because they can be seen as the diagonals in feature-aligned quads.
This approach allows T-vertices and needs a post-process is to merge T-vertices to
reduce their numbers. The result is a quad-dominant mesh with non-quads in areas
of singularities of the principal direction field or because only a local minimum was
found in the optimization. While this approach uses curvature information to adapt
the density of the mesh, the differences in edge lengths are small and the authors have
not presented results which reduce the number of vertices by the amount needed for
the goals of this thesis.

2.2.3. Instant Meshes

Jakob et al., 2015 have created a method for meshing a surface into an isotropic
triangular or quad-dominant mesh. They achieve this by using methods similar
to existing techniques but use local approaches which do not need complex global
optimizations. Besides being quick, these local approaches also work for non-manifold
input which many other approaches are not able to process. Their method comprises
two types of optimization and an extraction step. Both optimizations are initialized
randomly. The following steps are performed:
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Orientation Field. The first step is the computation of an orientation field on the
reference mesh. The orientation field is based on the N-RoSy field from Ray, Vallet,
et al., 2008. It is defined through N evenly spaced tangential vectors for every vertex
which will serve as directions for further steps. Different values for N are possible,
but N = 4 is most important for this thesis since the resulting cross field is favourable
for creating a quadrilateral mesh.

The orientations of vertices are optimised by minimising an energy through local
iterations that resemble the Gauss-Seidl method. Orientations are represented by
one representative direction for each vertex and a set of integers for each pair
of neighbours to encode the ambiguity added by the rotational symmetry of the
orientation field. While optimising, the algorithm alternates between doing one
Gauss-Seidel iteration and finding the set of rotational integers which minimises the
energy via brute-force. While others use constraints to align their orientation fields
to anisotropic regions of the mesh, Jakob et al. have found an extrinsic smoothness
formulation to measure the energy during the minimization. Unlike the intrinsic
formulation, they do not rotate the orientation information of one vertex into the
tangent plane of its neighbour to compute an energy to be minimised. This leads to a
behaviour which naturally snaps to edges of the reference mesh and propagates the
orientations of these features to isotropic regions.

While their formulation does not need constraints for proper alignment, user interac-
tion is still possible. A user may add constraints that force orientations and may add
strokes to guide the orientations. When adding the integer rotations of a circular path
around a vertex, singularities in the orientation field, which will lead to extraordinary
vertices in the extracted mesh can be found. These singularities can be moved by a
user and may cancel each other when moved close together and if they are valence-3
and valence-5, respectively. While these interactions are favourable when trying to
extract a mesh manually, they are not used in this thesis because the focus lies on
automated extraction.

Position Field. The next step is creating a local, discontinuous parametrization for
each vertex. The parametrization is locally oriented along the computed orientation
field. Its grid size (i.e. the length of a translation by one) is defined through a global
scaling factor, which is determined by the desired amount of vertices on the extracted
mesh. Every vertex minimises its local smoothness energy by finding optimal integer
translations and an optimal representative position in the parametrization based on
its neighbours. Because the parametrization is discontinuous over edges, no time
consuming global optimization is necessary.

Similar to the orientation field, a representative position for each vertex and integer
translations for neighbouring pairs are optimised via local Gauss-Seidel iterations and
a brute-force search. Like before, an extrinsic smoothness energy is used that need
not rotate tangent planes and naturally snaps to surface features. After each iteration,
the representative positions of all vertices are rounded to the nearest position of the
integer grid of the parametrization.
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Since the computations of orientation and position field are very similar, manual
interaction is possible here as well. Singularities in the parametrization, which may
cause non-quads, can be found by summing integer jumps around a vertex. They
can be moved and opposing types can cancel each other. Like before, this process is
manual and automatic movement of these singularities does not warrant the increased
computation time.

The flexibility of not performing global optimizations and from allowing non-quads
is conductive to adapt the integer grid sizes according to curvature. A computation
of the position field with scaling of integer translations based on curvature is the
main point of change to this approach throughout this thesis. The different ways of
changing the grid size are discussed in Section 3.4.

Extract Mesh. Lastly, a mesh based on the computed parametrization is extracted.
Approaches which draw grid lines on the parametrization do not work here because
the parametrization is discontinuous over edges (Bommes, Zimmer, and Kobbelt,
2009 create a continuous parametrization, for example). Instead, the optimised integer
translations between neighbours are used to find the structure of the mesh to be
extracted. Neighbouring vertices with integer translations opposite in sign, lie on the
same integer position of the parametrizations’ integer grid. Taking the average of
the representative positions of a cluster of vertices on the same integer grid position
yields one vertex of the extracted mesh. Similarly, an integer jump of one in the
parametrization between neighbouring vertices indicates an edge in the extracted
mesh.

In their research, Jakob. et. al. have found that the Gauss-Seidel optimization will get
stuck in local minima easily. To combat this, they use a multi-resolution hierarchy
which merges vertices into connected components. The ordering based on which
vertices are merged is based on a weighted normal vector similarity measure. Other
approaches for weighing were made to influence the convergence of the position
field optimization which are discussed in Subsection 3.1.4. The optimization will
start at the coarsest level of the hierarchy and will use the results of each level to
initialize the parameters of the next level. This improves the results and avoids local
minima. Figure 2.1 shows an overview of the results of the whole process and a
comparison which highlights the improvements to the convergence when using a
multilevel-hierarchy.
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Figure 2.1.: An overview of the different steps in the Instant Meshes method
and a comparison with and without multi-resolution hierarchy
(Jakob et al., 2015).

18



3. Implementation

The goal of this thesis is a modified algorithm of Jakob et al., 2015 which creates
quad-dominant meshes where the edges are aligned with features and the edge
lengths adapt to curvature. To create such a mesh instead of an isotropic mesh,
several changes have to be made to the work of Jakob et al. Curvature must be
transformed into meaningful edge lengths and the algorithms by Jakob et al. must
be adapted to use these differing scales. To learn the intricacies of the position field
(mentioned in Section 2.2.3), many techniques to use curvature information in the
calculations have been introduced in this thesis. Every technique was evaluated, their
behaviour was observed and improvements were made.

The following steps are performed to extract a quad-dominant subdivision control
mesh:

Initialization: Build the multi-resolution hierarchy. For each level of the hierarchy:
Estimate the curvature (Section 3.1), compute the curvature adaptive grid scale
for every vertex (Section 3.2), and classify sharp feature vertices (Section 3.3)
like ridges or creases.

Orientation Field: Optimise the orientation field with respect to the constraints of the
classified feature vertices (Section 3.3).

Position Field: Optimise the position field (Section 3.4).
Mesh Extraction: Extract the mesh from the parametrization defined through the

optimised position field (Section 3.5).
Ensuring Manifoldness: Find and remove all non-manifold edges and vertices (Sec-

tion 3.6).
Mesh Post-Processing: Perform various post-processing steps to improve the topology

and geometry of the extracted mesh (Section 3.7).
Subdivision Control Mesh: Create a subdivision control mesh from the quad-dominant

mesh (Section 3.8).

The software developed by Jakob et al. has been adapted to incorporate all changes
and additional settings. Section 3.9 gives an overview of the changed interface and
the location of different sets of options.
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3.1. Curvature

Subdivision control meshes should be sparse while still being able to model all
necessary surface details of the object. This is not an easy task, as changes in detail of
modelled objects may happen quickly and the subdivision control mesh must adapt
its density accordingly. These changes in surface detail are measured by looking at
the curvature. Areas with high curvature represent high-detail features with more
creases and ridges, and a finer control mesh is necessary to model the level of detail.
Areas with low curvature can be represented accurately with few control points.
Changes in curvature need to be taken into consideration when adjusting the control
mesh’s density. These changes in the density of Catmull-Clark subdivision control
meshes are difficult to achieve because of their quad-based nature. Transitions from
low to high densities will introduce additional extraordinary vertices. The following
will introduce the extraction of curvature from the reference mesh and the changes
to the work of Jakob et al.

3.1.1. Curvature Estimation

There are two ways to estimate curvature on a piece-wise linear mesh: Fitting para-
metric surfaces locally around each vertex or estimating curvature in a discrete sense
based on the neighbourhood of a vertex. Petitjean, 2002 and Gatzke and Grimm,
2006 have surveyed many methods and give an overview. Parametric surface fitting
generally produces better results while having a greater time complexity. Most dis-
crete methods are linear in time because they compute sums over neighbours, but
are more susceptible to noise. A 1-ring neighbourhood is the standard case while
a 2-ring neighbourhood may combat the effects of noise. 3-ring neighbourhoods or
higher do not warrant the increased computational cost (Gatzke and Grimm, 2006).
Methods from both types were tried, but the principal curvatures were more precise
and uniform when fitting a parametric surface. The improved precision warranted
the increased time complexity (a factor of three for an input mesh with 50000 vertices
and 100000 faces).

Estimation via Discrete Sums: C. Dong and Wang, 2005 compares several curvature
estimation algorithms, and create a simple, yet effective one. They base their work
on the method of Chen and Schmitt, 1992 and change the matrix-based formulation
to a simpler summation over all neighbours. The curvature of a point on a two-
dimensional curve can be viewed as the inverse of the radius of the circle with the
same slope as the curve in the point. For three-dimensional surfaces, this formulation
becomes more complex because there is an infinite number of tangential curves on
the surface going through a point. The normal curvature of a point along a curve
is defined by the length of the projection of the curve’s second derivative vector
onto the normal plane of the surface in the point. All curves with the same tangent
line at this point have the same normal curvature. The expression to formulate the
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curvature κn of a point on the surface in any tangential direction t (defined via its
angle Θ to the principal directions) can be done with the principal directions (e1, e2)
and principal curvatures (κ1, κ2):

t = e1cos(Θ) + e2sin(Θ) (3.1)
kn = k1cos2(Θ) + k2sin2(Θ) (3.2)

The method in C. Dong and Wang, 2005 uses a reformulated version of Equation 3.2
where a least-squares method over all neighbours can find an approximation of the
principal curvatures:

κn(ti) = acos2(Φi) + bcos(Φi)sin(Φi) + csin2(Φi) (3.3)

Where κn(ti) are estimated normal curvatures toward each neighbour and Φi is the
angle between the tangent direction ti to neighbour i and a reference tangent direction.
Normal curvatures toward the neighbours are computed via normal differences and
the reference tangent direction points toward the neighbour with the largest estimated
curvature. This creates a reference coordinate system like the one the principal
directions are spanning (they are not known yet). Inserting these parameters into
Equation 3.3 defines a system of equations over all neighbours. Through least-squares
approximation the parameters a, b, and c are estimated and from them, the principal
directions and their curvatures can be calculated. While the estimated curvature
computed through this method yields acceptable results, the principal curvature
directions are not satisfying. Hence, a parametric surface fitting method was tried
out. Figure 3.1 compares the principal curvatures of both methods and shows why
the directions computed in C. Dong and Wang’s approach are not precise enough
when compared to the parametric surface fitting.

Cubic Order Parametric Surface Fitting: The parametric surface fitting method
of cubic order developed in Goldfeather and Interrante, 2004 estimates principal
curvature directions well and computes satisfying results. To estimate the principal
directions and curvature, a cubic order B-spline patch is fitted onto the neighbourhood
of a vertex. The B-spline patch is of order three because lesser orders produce less
accurate results (because they do not use the normals of the neighbourhood). Higher
orders do not improve the results considerably while needing a bigger neighbourhood
and more time. For estimation, a cubic surface is computed by bringing neighbouring
vertices into a local coordinate frame and creating a system of equations where the
neighbours describe the shape of the parametric surface. Every neighbouring point
introduces three equations with one equation for the position and two equations
for the normals. This system of linear equations can be written in matrix form and
its least-squares solution (computed via a QR decomposition) is the Weingarten
curvature matrix of the cubic surface. The Eigenstructure of the Weingarten curvature
matrix is such that its Eigenvalues are the principal curvatures and its Eigenvectors
are the corresponding principal directions.

21



3. Implementation

.

Figure 3.1.: This figure shows the resulting estimated principal curvatures for the approaches of C.
Dong and Wang, 2005 (left) and Goldfeather and Interrante, 2004 (right). Goldfeather
and Interrante’s approach estimates the principal directions more accurately and more
uniformly on feature lines. The most notable difference in accuracy is on the ridge where
C. Dong and Wang’s approach does not manage to estimate uniform principal directions.
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Both methods for curvature estimation allow a choice in the size of the neighbourhood
of each vertex. The term n-ring neighbourhood is used to describe this choice. The
parameter n defines how many additional neighbours of neighbours are considered
being part of the n-ring neighbours. It is important that the neighbourhood is not too
big because high-frequency detail might be lost. Conversely, a small neighbourhood
might not convey enough information for curvature calculation when it is malformed
(e.g. when all neighbours lie on one half of a circle in a 1-ring neighbourhood). Greater
neighbourhoods can decrease the influence of noise on the estimation. Differences
between the results of a curvature estimation with different neighbourhood sizes can
be seen in Figure 3.2. Empirically, a 2-ring neighbourhood is a reasonable choice.

3.1.2. Curvature Selection

When designing the method to convert curvature to edge length, there are several
values that result from the curvature estimation discussed in 3.1.1 which may be
chosen as reference values. For Gaussian curvature, no conversion to a scaling
factor exists because it characterises shape and its magnitude cannot be related to
edge length. While mean curvature does have a similar magnitude as the principal
curvatures, it is a shape characteristic as well and its value does not represent the
normal curvature of the mesh accurately. Using both principal curvatures as edge
length indicators (called directional curvature in this thesis) will lead to worse results.
This stems from the fact that having different scales for both directions in the position
field optimization of Jakob et al. introduces too much variation in the edge length
such that a proper virtual grid structure cannot form. Taking the largest absolute
value of both principal curvatures is the best choice (κ′ = max(|κ1|, |κ2|)) because
it ensures that no detail is lost. Figure 3.3 shows a comparison of these choices.
The curvature is estimated with a neighbourhood of two, is not averaged (to better
show the differences) and the edge length is calculated by the error based estimation
method using the osculating circle discussed in Section 3.2.
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1-ring neighbourhood. 2-ring neighbourhood.

3-ring neighbourhood. 5-ring neighbourhood.

Figure 3.2.: This figure shows the largest principal curvature (blue for negative and red for positive
curvature) estimated from differently sized neighbourhoods. Small neighbourhoods are
prone to noise while bigger neighbourhoods lose high-frequency detail. This can be
observed for 3-ring and 5-ring neighbourhoods on the neck. These neighbourhoods also
have outliers with false signs in curvature (e.g. at the base) because the neighbourhood
reaches too far into areas with different curvatures. Bigger neighbourhoods also take
exponentially more time to estimate the curvature. On a PC with 16GB RAM, and a
four core CPU with 3.5GHz, the run-times for 1-ring to 5-ring neighbourhoods on the
shown reference mesh are 62ms, 166ms, 343ms, 899ms and 3305ms, respectively. The
reference mesh has 14.000 vertices and 28.000 faces. These observations show that a 2-ring
neighbourhood is the best choice for avoiding noise while not losing too much detail
information.
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Largest Principal Curvature.

Directional curvature. Largest absolute principal curvature.

Figure 3.3.: This figure shows results for using both principal curvatures (directional curvature) to
compute the edge lengths and for using only the largest absolute principal curvature to
compute the edge length. Directional curvature creates rectangles and the largest principal
curvatures creates square quads. Both methods do not lose detail information by using the
largest principal curvature as a guide for edge length. The directional curvature selection
however, can represent the surface with less vertices. Unfortunately, directional curvature
introduces more variety into the position field optimization which decreases the quality
of the formed clusters for extraction (green dots) and often can not represent all sharp
features (e.g. at the base). This means that the directional curvature should have the same
accuracy in theory but the position field optimization does not always achieve this in
practice.
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3.1.3. Curvature Averaging

Observations have shown that a smooth distribution of curvature and little noise
improves the formation of clusters in the position field optimization. Since the
curvature estimation is discrete, the curvature information might not be as smooth as
needed for good results. This may be due to noise in the reference mesh or multiple
different features coming together in the mesh. To combat these issues, different
averaging methods were developed. When averaging curvature, absolute curvature
should be used because the magnitude of the curvature is important for defining
the edge lengths, not the sign. This is visible in hyperbolic areas of the surface -
where positive and negative curvature would negate each other through averaging.
Figure 3.4 shows this issue when using the simple averaging method mentioned
below.

Estimated Curvature Averaged Curvature Estimation

Figure 3.4.: These pictures show the issue when averaging the curvature without absolute curvature
values. The sum of positive and negative curvature value when averaging makes the
curvature vanish.
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3.1. Curvature

For all vertices of the reference mesh, the averaging methods described below compute
a weighted average over all neighbours and the vertex itself. There are three user-
controlled parameters. The number of averaging iterations n is a measure to control the
amount of averaging. More iterations will make curvature information more uniform
and curvature changes more gradual. A damping factor λ ∈ [0, 1] controls the influence
of the neighbours. Higher values for the damping factor will slow down the averaging.
Its name was taken from Lai, Kobbelt, and Hu, 2010 who use it for the same purpose.
The final parameter is the size of the neighbourhood (1-ring to 5-ring neighbourhood).
Empirically, more than a 5-ring neighbourhood is too big because the curvature
information becomes too uniform and iterations need much more time. Similar to
the curvature estimation described in Subsection 3.1.1, a greater neighbourhood can
compensate for noise in the reference mesh. The averaging methods define different
weights w and perform the following weighted sum:

procedure Averaging

for i = 1 to n do
for all v ∈ re f erence mesh do

W ← ∑
x∈neighbours(v)

wx(v)

curvnew(v)← λ · curvold(v) + 1−λ
W ∑

x∈neighbours(v)
wx(v) · curvold(x)

end for
curvold ← curvnew

end for
end procedure

Simple Average: The most simple method is an average of neighbouring vertices
where all neighbours x of vertex v have a weight of wx(v) = 1. Its goal is to smooth
the mesh’s curvature information. Through this, areas, where different curvatures
meet are smoother, sudden changes in curvature are replaced by more gradual
changes, there is less difference between the highest and lowest curvature, and small
spots of high or low curvature become bigger - albeit less extreme. Figure 3.5 shows
the differences in curvature and position field between multiple combinations of
neighbourhood sizes and averaging iterations with a damping factor λ = 0.5.

Similarity-Based Average: To see whether increased uniformity in areas with similar
curvature while not smoothing out gradual changes in curvature improves results, an
averaging method with weights based on the curvature similarity between neighbour-
ing points was created. Additionally, when similar curvature values have a higher
weight than differing ones, high curvature values are not reduced as quickly when
averaging.

The weights w for this averaging are defined as follows (v is the reference vertex and
x is the neighbour):

wx(v) =
1

(k ∗ |curv(v)− curv(x)|)2 + 0.01
(3.4)
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3. Implementation

No averaging. One averaging iteration.

Three averaging
iterations.

Six averaging iterations.

Figure 3.5.: This figure compares different averaging iterations for the simple average where all neigh-
bours have the same weight w = 1. The averaging shown here uses a 2-ring neighbourhood
and a damping factor of λ = 0.5. A higher number of iterations will create tighter clusters
in the parametrization (green dots) but will also lose detail in high-frequency areas and
spread high curvature information into low curvature areas. These observations are most
noticeable where low and high curvature areas meet. An example for the loss of detail
is the nose and the eyelids where edges become larger for a higher number of iterations.
Conversely, smaller edges than necessary can be seen at the back of the neck and around
the nose especially at six iterations. This means that some averaging will improve the
position field optimization but too much averaging will distort the curvature information.
The resulting meshes are shown in Appendix A, Figure A.1.
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3.1. Curvature
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Figure 3.6.: This figure shows the plot for similarity-based weights of neighbouring vertices with
different parameters. Equation 3.4 defines the shown weight wx(v) for vertex v with
neighbour x and a normalized curvature curv() for each vertex. The parameter k changes
the factor in front of the curvature difference. It influences the speed of decline for the
weights. linear and (cubed) show how the weighting would look like if the curvature
difference was linear or cubed instead of squared. Cubed behaviour declines too slowly
and linear behaviour declines too quickly.

The influence of vertex x on vertex v is scaled by an inverse square of the difference of
their normalised largest absolute principal curvatures. Because the limit approaches
infinity for points with very similar curvatures, a normalisation factor of 0.01 is added
which limits the value of the weight to 100 for differences close to zero. The scaling
k changes the strictness of the weight calculation. k = 2 and the squared behaviour
offer a balanced decrease of weights (otherwise most neighbours will have similar,
low, weights). Figure 3.6 shows a plot of this equation, why the square behaviour
was chosen and the influence of k. Figure 3.7 compares this averaging method to the
simple average with uniform weights wx(v) = 1.

An additional variation of above-mentioned averaging is one which increases the
weight further if the normals of vertices are very similar. It did, however, not change
much. The reason might be that vertices with very similar normals already have
similar curvatures.

Expand High Curvature: Observations on the behaviour of the changed variations
of the algorithm suggested that there are problems when areas of high curvature
are small. They are reduced too quickly by the previous averaging methods. Thus,
an averaging scheme which tries to expand high curvature areas was tried: Low
curvature areas have a constant low weight and higher curvatures have a weight
which increases with the curvature. The weight w is calculated based on a normalised
curvature c ∈ [0, 1] where the largest absolute principal curvature is normalised, a
breakpoint B ∈ [0, 1] where the constant influence changes to a squared behaviour,
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Curvature for similarity-based average with
k = 2.

Cruvature for simple averaging.

Resulting parametrization for similarity-based
average with k = 2.

Resulting parametrization for simple averaging.

Figure 3.7.: This is a comparison between the similarity-based averaging and the simple averaging
method. Both use a 2-ring neighbourhood, perform three iterations and have a damping
factor of λ = 0.5. The tow row shows the difference between curvatures. They are very
similar but the similarity-based average does not spread high curvature information as
quickly (at the base of the feet). The bottom row shows the resulting parametrizations.
Figure A.2 in Appendix A shows the meshes extracted from these parametrizations.
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Figure 3.8.: This figure shows the plot of the weights defined in Equation 3.5 for the expand high
curvature averaging (left) and the resulting parametrization (right). The parameters of the
weights are B = 0.005 and C = 0.3, the damping factor is λ = 0.5. High curvature regions
have more influence and the result has larger dense areas around creases. Unfortunately,
because of its dependence on the distribution of the curvature, its effectiveness is not
consistent. Figure A.3 in Appendix A shows the extracted mesh.

and the value C ∈ [0, 1] of the constant influence itself. A squared behaviour is
favoured over a linear one because this way, rising curvature gains weight more
quickly. The weight w is:

w(c) =

{
C if c < B
1− (1− c−B

1−B )
2 ∗ (1− C) otherwise

(3.5)

Since this weighting uses normalised curvature, it depends on a distribution of curva-
ture which does not have extreme outliers. The curvature estimation of Goldfeather
and Interrante, 2004 that is used tends to have bigger outliers which distort the
distribution so that most curvature values are in the lower 1%. This means that a
curvature of 1% cannot be considered completely flat. To ensure that only very flat
curvature has a constant weight, the breakpoint is set to be 0.005. A constant weight
of 0.3 works well for the tried meshes. Figure 3.8 shows the plot of the weights and
the resulting parametrization.
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3. Implementation

Figure 3.9.: The barycentric cell area for a vertex is defined over all adjacent triangles. It is the sum
of areas between the mid-points of the adjacent edges, the centre of mass and the vertex
itself, for each triangle.

3.1.4. Hierarchy and Curvature

The method in Jakob et al., 2015 creates a multi-resolution hierarchy of the reference
mesh to improve stability and convergence of the orientation and position field
estimation (see Section 2.2.3). The lowest level of the hierarchy contains all vertices of
the reference mesh and higher levels of the hierarchy merge vertices of the previous
level. It can be seen as a binary tree where the leaves represent the reference vertices
and parents represent merged vertices. Optimization starts at the highest level of the
hierarchy and computed solutions are the initial weights for the next lower level.

Hierarchy Creation: New levels of the hierarchy merge pairs of vertices with weights
in descending order. In the work of Jakob et al., 2015 a normal-based hierarchy is
created. The weights are calculated via the dot product of the normals of the vertices
and scaled by the quotient (max

min ) of their barycentric cells’ areas. Figure 3.9 defines
the barycentric cell and the areas of merged vertices are the sum of their children’s
areas. This weighting leads to a hierarchy that primarily merges vertices pointing in
the same direction, but not always. Sometimes the hierarchy merges vertices which
have less similar normals but a big difference in area to ensure that the hierarchy
tree is balanced. An example of what would happen without the scale to balance the
hierarchy is shown in Figure 3.10.
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3.1. Curvature

Figure 3.10.: This is a negative example of how the hierarchy would look like without the area-based
scaling to balance the hierarchy. Since only similarity and not the size is factored in,
the vertices at high levels (displayed here with differing colours) will be of different
sizes. Because the hierarchy is used to initialize the next lower levels with the optimised
values from higher levels to avoid local minima during optimization, an equal partition
is favourable.

33



3. Implementation

A second method for weighting was created, to see whether curvature similarity-based
merging would be better. This similarity-based hierarchy defines the weight for vertex
pair (vi, vk) as:

w(i, k) = −|curv(vi)− curv(vk)| ·
max(area(vi), area(vk))

min(area(vi), area(vk))
(3.6)

Where curv() is the curvature to be used (averaged or non-averaged largest absolute
principal curvature) and area() is the barycentric cell area of the vertices. As before,
vertices can only be merged once per level and the combinations with the highest
weight are merged first.

Figure 3.11 shows the main differences between both approaches. Both methods
produce similar results because normals and curvature are intertwined and because
of the influence of the additional barycentric cell scaling. The normal-based construction
is able to separate flat areas from non-flat areas further up the hierarchy, however.
The normal-based hierarchy will be used for all further meshing.

Curvature of Higher Levels: The changes to incorporate a custom scale for each
point must now be propagated up the hierarchy as well. To do this, two ways have
been explored.

The first method, curvature summation, uses curvature information from the next
lower level to compute the curvature information as a weighted sum of the merged
vertices. The weighting is based on the area of the vertices’ barycentric cells. They
are the same weights as the ones in the original work to compute the 3-dimensional
point of the merged vertices in the hierarchy.

The second method, curvature estimation per level, calculates the curvature on each
level of the hierarchy based on the points in the 3-dimensional space and their
adjacency. This way, the curvature information always represents the current state of
the mesh. Since vertices are merged through averages, the higher level mesh might
have areas with different curvatures than the reference mesh. Whether the curvature
information of higher levels resembles the curvature of the original mesh depends on
the weighting that decides which points are supposed to be merged at each level.

Figure 3.12 shows the different resulting parametrizations of these methods when
using the original, normal-based construction of the hierarchy. The hierarchy construc-
tions in Figure 3.11 use the second method while Figure 3.13 shows the results for a
curvature similarity-based hierarchy using the first method The normal-based hierarchy
construction is not affected by different higher level curvatures.

From the observations made, the original normal-based hierarchy creation and cur-
vature estimation at each hierarchy level produce the best results. The additional
time needed to estimate the curvature at each level is worth it for the improved
precision.
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3.1. Curvature

Normal-based hierarchy at level 8. Curvature similarity-based hierarchy at level 8.

Normal-based hierarchy at level 11. Curvature similarity-based hierarchy at level 11.

Figure 3.11.: This figure shows the differences between the normal-based and the curvature similarity-
based construction of the hierarchy. The differently coloured patches represent single
vertices in the hierarchy at that level. Due to the nature of normals and curvature, the
results are very similar. However the normal-based hierarchy keeps flat areas split from
non-flat areas until further up the hierarchy.
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(a) Resulting parametrization for normal-based hi-
erarchy and curvature summation.

(b) Resulting parametrization for normal-based hi-
erarchy and curvature estimation per level.

Figure 3.12.: This figure shows the resulting parametrizations for the different methods to define
curvature for higher levels of the hierarchy. The differences between them are visible
mostly around the base of the statue. When computing curvature as the sum of the
merged vertices, the parametrization will create vertices at the edges of the base instead
of in the middle. This is the same for the bottom of the statue. This behaviour creates a
problem when extracting vertices as the big centre squares will have many vertices at
their borders. The extracted meshes can be seen in Figure A.4 of Appendix A.
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3.1. Curvature

(a) Curvature similarity-based hierarchy with cur-
vature summation at level 8.

(b) Curvature similarity-based hierarchy with cur-
vature summation after 11 merges.

(c) Resulting parametrization for curvature
similarity-based hierarchy and curvature
summation.

Figure 3.13.: This shows the hierarchy and the resulting parametrization when using a curvature
similarity-based hierarchy construction and curvature summation. The hierarchy has overlaps
at feature lines and the base has a centred quad like in Figure 3.12. Figure A.5 in
Appendix A shows the resulting mesh.
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3.2. Edge Length from Curvature

A scale parameter existing in the work of Jakob et al., 2015 is used to define a global
desired edge length of the extracted mesh. This scale is influencing the position
field calculation and the extraction itself. In the position field, the scale defines the
positional invariance points of the field while in the extraction it is used to classify
edges and to remove unnecessary edges.

To adjust scale based on curvature, the first step is unravelling the global scale
by giving each point its own scale. While the goal of this thesis is an automated
extraction of quad-dominant meshes, a manual map from curvature to edge length
was developed to study the behaviour of Jakob et al.’s algorithm. Below, a manual
map and a direct way to define the desired edge lengths are introduced.

Transfer Function: Transforming curvature to scale is a one-dimensional map and
is very similar to a simple transfer function T(c) which maps scalar input to scalar
output. They take the normalised curvature c and map them to a scalar. This scalar
is then used to scale Jakob et al., 2015’s global desired edge length for each vertex.
So, a constant transfer function T(c) = 1 maps to the uniform edge lengths in
Jakob et al’s work. Manually defined transfer functions T(c) linearly interpolate
between n user-defined two-dimensional value-pairs (x0, y0), . . . , (xn−1, yn−1), which
are monotonically increasing in xi. Their properties are:

xi ∈ [0, 100]
x0 = 0, xn−1 = 100
yi ∈ R≥0

xi = xi+1 ⇒ xj 6= xi for j 6= i, i + 1

T(c) : [0, 100]→ R≥0

T(c) =

{
yn−1 if c = 100
yi +

yi+1−yi
xi+1−xi

· (c− xi) else xi = max
i
{xi ≤ c < xi+1}

A domain of [0, 100] is used for readability in the transfer function editor and has
no influence on the resulting scales. Piece-wise linear transfer functions were cho-
sen because they are very flexible and can approximate any other curve. Steps in
the interpolation are explicitly allowed for more flexibility. A simple linear transfer
function does not work well because the resulting mesh does not converge to small
edge lengths fast enough for high curvatures. This can be seen in Figure 3.14. Better
transfer functions, which approximate the edge length estimation through osculating
circles (see page 42), produce similar results as the non-approximated version. This
can be seen when comparing Figure 3.15 and Figure 3.19. Using steps is dangerous
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(a) A linear transfer function. (b) Resulting Parametrization.

Figure 3.14.: This is the plot for a linear transfer function (a) and the resulting parametrization (b). As
seen on the arms, edge lengths are too large for curved regions. This can be explained
by looking at the estimation of edge length from curvature through osculating circles
introduced on page 42, which is not linear. Additionally, the scaling is negatively affecting
the position field optimization because the clusters of positions of vertices are more spread
apart compared to Figure 3.15.

however, because they must be fitted to the reference mesh. An example of a bad
transfer function with steps is shown in Figure 3.16. They must be fitted to each refer-
ence mesh because the normalisation of curvature depends on the largest estimated
curvature.
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(a) Transfer function approximating osculating
circle estimation.

(b) Resulting parametrization.

Figure 3.15.: Shown are the results (b) for a transfer function (a) which linearly approximates the scale
estimation from osculating circles (see page 42). Values for the x-axis were set to fit the
distribution of the curvature. The results are similar to the ones in Figure 3.19.
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(a) A piece-wise constant transfer function. (b) Resulting parametrization.

Figure 3.16.: Thresholds for edge length estimation are dangerous. While this transfer function may
work well for other meshes, it does not work here (b). The flat areas have edge lengths
which are too big, smooth transitions of curvature on the reference mesh are not rep-
resented in the parametrization and high-curvature areas (e.g. the arms and the base)
have edge lengths which vary too much. Thresholding by using only steps in the transfer
function is not enough. Steps have to be mixed with linear transitions. Fitting such a
transfer function is specific and must be tailored to each reference mesh.
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Figure 3.17.: Estimated error ε when radiating out
from a vertex v with curvature κ by x.

Edge Length Estimation through the Osculating Circle: Transfer functions are very
flexible but the effectiveness of a user-defined transfer function may depend on
the meshes. All the information necessary to define a desired edge length for a
given vertex which fits the complexity of the underlying surface, is provided by the
curvature estimation. Normal curvature is the inverse radius of the osculating circle
that approximates a curve lying on the surface at a point. Therefore, the osculating
circle provides an error metric. See Figure 3.17 for a visual reference. While this error
metric works for any tangential direction, the direction of the largest absolute normal
curvature is the best choice. In this direction, the osculating circle is the smallest and
will ensure that no detail is lost.

For a point v with curvature κ along a tangential curve on the surface, the osculating
circle has radius 1

|κ| . When moving away from the point along this curve by x, the
estimated distance to the curve will be denoted as ε. These parameters have the
following properties:
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3.2. Edge Length from Curvature

r =
1
|κ|

r2 = (r− ε)2 + x2

x2 = r2 − (r− ε)2

x2 =
1
|κ|2 − (

1
|κ| − ε)2

x2 =
2
|κ| ε− ε2

x(ε) =

√
2
|κ| ε− ε2 0 ≤ ε ≤ 1

|κ|

x2 =
2
|κ| ε− ε2

0 = ε2 − 2
|κ| ε + x2

ε(x) =
1
|κ| ±

√
1
|κ|2 − x2 − 1

|κ| ≤ x ≤ 1
|κ|

ε(x) =
1
|κ| −

√
1
|κ|2 − x2 − 1

|κ| ≤ x ≤ 1
|κ|

When a maximum error, ε, to a curve along a tangent direction on the surface with
curvature κ is desired, the estimated edge length can be retrieved from x(ε) and for
an edge length, the estimated distance to the surface is ε(x).

Two ways of using this derivation to transform curvature to edge length can be used.
A simple way is taking an edge length of a (user-defined) factor of the radius of an
osculating circle of a curve on the surface. As noted in Section 3.1.2, the best choice is
the osculating circle of a curve going through the principal direction with the highest
absolute curvature. For a factor of 0.8, this would be the transfer function and result
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(a) Representing transfer function. (b) Resulting parametrization.

Figure 3.18.: This figure shows the transfer function (a) derived from an edge length estimation based
on a fixed factor 0.8 of the radius of the osculating circle along the largest absolute
principal curvature. The resulting parametrization (b) declines to smaller edge lengths
more quickly than the method that is using the error metric instead of a fixed factor.
Therefore, it produces meshes with a higher density than necessary. Figure A.6 in
Appendix A shows the extracted mesh.

given in Figure 3.18 and would yield an estimated error of:

ε(
4

5|κ| ) =
1
|κ| −

√
1
|κ|2 −

16
25|κ|2

ε(
1

2|κ| ) =
1
κ
−
√

9
25|κ|2

ε(
1

2|κ| ) =
1
|κ| −

3
5|κ|

ε(
1

2|κ| ) =
2

5|κ|

Which is a small error for big curvatures and a larger error for smaller curvatures.
Because 1

κ can become large for flat surfaces, the calculated values are bound via an
upper and lower bound. These bounds are based on the edge length calculated by
the original algorithm, thus, the error does not become too large for flat areas and
the edges do not become too small for curved areas. Since the values are bounded
for flat areas, the greater error in those areas does not have too much significance.
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3.2. Edge Length from Curvature

Another way is to calculate the edge length with the formula for x(ε). The error
ε is based on the size of the reference mesh. When assigned to an arbitrary value
independent of the scale of the reference mesh, the error does not have much meaning
and may induce overly big or small quads. So, ε is computed as a (user-defined)
fraction of the largest axis of the reference meshes’ bounding box. Figure 3.19 shows
that this error must be chosen carefully to not lose too much detail.

Alliez et al., 2003 have used a similar estimation that places the constructed edge
such that its endpoints are on opposing sides of the circle (i.e. the vertex is its centre).
This way, the same error ε will allow an edge length of 2x(ε). This factor of two is
different to just increasing the allowed error (i.e. quadrupling the error in the square
root) and, for medium curvature values, produces quads that are too big. Figure 3.20

compares the transfer function equivalents for the method with and without the
factor of two, with adjusted errors, and shows exemplary resulting control meshes.

The computed edge length does not prevent the error from exceeding the user-defined
error entirely: The edge lengths that are estimated based on the osculating circle
are capped to be below five times the global edge length because they tend toward
infinity as the curvature approaches zero. Conversely, the edge lengths are capped to
be larger than 70% of the global edge length because the optimization of the position
field relies on clusters of positions to extract vertices. In areas where the edge length
is too small for the density of the reference mesh, the position field can either not
form clusters or forms clusters that are too small to extract vertices. If not specified
differently by a user, the global edge length is set such that the expected number of
extracted vertices is 1/16th of the number of reference vertices (Jakob et al., 2015).
This expectation has become less precise due to varying quad sizes but is still a good
indicator to ensure that edge lengths do not become too small. Setting the minimal
edge length to be between 70% and five times the global edge length has proven to
be a good estimate.
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Figure 3.19.: When estimating edge length based on an error, it must be chosen carefully. Here, two
different ε(as a percentage of the largest bounding box axis) are used, together with the
corresponding subdivision control meshes (and the error for four steps of subdivision).
The mesh to the left is computed with ε = 0.02 while the one on the right is computed
with ε = 0.1. Both results are similar on the mane of the lion (because edge length is
capped at 70% of the global edge length), but the face is better approximated with the
smaller allowed error. An error between 0.02 and 0.04 is a good middle-ground between
precision and face reduction.
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Figure 3.20.: The additional factor of two used in Alliez et al., 2003 (right, blue) decreases the con-
vergence to smaller edge lengths significantly when compared to omitting this factor
and increasing the allowed error instead (left, red). The error is increased by a factor of
four to balance out the factor of two because the error is inside a square root in the edge
length estimation based on the osculating circle. While the behaviour for low curvatures
is similar, the slower descent in the middle produces larger quads that are not able to
represent the reference mesh as accurately. Depicted are the subdivision control meshes
and the error after four steps of subdivision.
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3.3. Orientation Field Optimization

While the orientation field computed in Jakob et al., 2015 produces satisfying orien-
tation fields, it is not without flaws. Especially for rotation symmetric objects, the
algorithm cannot always direct the orientation field so that the flow lines align with
feature lines (e.g. ridges, creases). To combat this, vertices lying on a feature line
use their principal directions as a constraint for their orientation. This is what most
approaches for quad re-meshing do for the orientation of their mesh. They use highly
anisotropic regions of the input mesh as constraints for the following optimization. It
is important to note that these constraints have to be used with care because they
may disturb/constrain the orientation field optimization too much. Constraints from
anisotropic regions of the mesh are used because the principal directions are well
defined in these regions.

There are more precise methods for feature line detection, but they rely on third order
derivatives of the surface. Their precision is not needed since not all vertices which
lie on feature lines are needed to constrain the orientation field. To save computation
time, a method which does not rely on derivatives to find feature vertices was
conceived.

To classify highly anisotropic regions, a threshold for the difference between minimal
and maximal curvature needs to be defined and the maximal curvature must exceed
some extent to make sure the anisotropic region is on a feature line with high
curvature in one direction. Because curvature is not scale-invariant, thresholds based
on absolute values for all reference meshes are not possible. Additionally, using
thresholds based on percentages of the curvature distribution is dangerous since
outliers may disturb the distribution. To classify anisotropy, a scale-invariant quotient
κ3 is used. It is computed from the (smoothed) principal curvatures k1 and k2:
κ3 = min(|κ1|,|κ2|)

max(|κ1|,|κ2|)
(Rugis and Klette, 2006). A threshold for high curvature is defined

by the median curvature of all principal curvatures for all vertices. The median of
the curvature distribution is less affected by outliers but depends on the shape of
the reference mesh and its distribution of curvature. It proved to be stable enough
as a measure for high curvature. Candidate vertices for feature lines can now be
defined to have κ3 < 0.1 and max(|κ1|, |κ2|) > median. Only one path of vertices is
needed to constrain the orientation along a feature line but the candidate vertices
are not limited to a single path yet. To remedy this, only vertices v, which have
max(|κv

1 |, |κv
2 |) > max(|κn

1 |, |κn
2 |) for each of its neighbours n and have at least one

neighbour which is a feature candidate are true feature vertices. True feature vertices
require a feature candidate neighbour to avoid stray feature candidates coming from
noise in the curvature estimation. A visualisation of the difference between candidate
vertices and true feature vertices can be seen in Figure 3.21. This classification is not
perfect, but it suffices to give a minimal set of constraints for the orientation field
optimization. The merits of classifying feature vertices and adding constraints to the
orientation field optimization can be seen in Figure 3.22.

48



3.3. Orientation Field Optimization

Feature Candidates True Feature Vertices

Figure 3.21.: This shows the difference between feature candidates (left) and true feature vertices
(right). Since only a minimal set of constraints is desired, only one path of vertices per
feature line is necessary.

Original Optimised Orientations Optimised Orientations With Constraints

Figure 3.22.: Left is the optimised orientation field with no changes and right is the improved ori-
entation field when adding principal directions as constraints for true feature vertices.
The original optimization is not able to detect the rotational symmetry of the reference
mesh and has a fault in the field where the quads on a ridge do not follow its orientation
(notice the cross of flow lines on the ridge). The constrained version does not have the
same issue.
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3.4. Position Field Optimization

The position field optimization of the algorithm of Jakob et al., 2015 calculates a local
parametrization for every vertex where each vertex ’votes’ for a position on its grid.
The size of the grid tiles for a vertex is defined by its computed scale. A positional
vote for each vertex is calculated via a sum of positions of its neighbours. For each
neighbour, an optimal position of the vertex and the neighbour is calculated based
on the grids spanned by both. The vertex position for the next neighbour is now a
weighted sum of both computed optimal position. In the end, the computed position
- which may not lie on the grid lines of the vertex - is rounded to lie on the closest
point of the vertex’ grid. For a parametrization where edge length is not global,
scales and grid sizes must differ from vertex to vertex. The following paragraphs will
describe three ways of influencing the grid sizes according to the scales.

Average: The first approach was averaging the scale parameter to use the original
scaling mechanism. For each neighbouring pair, the grid sizes are now a simple
arithmetic mean of the two scales. In areas with similar curvatures, this mean is
equal to the original algorithms’ behaviour. When the curvature changes drastically,
however, scales can differ greatly for different neighbours. This is not ideal because
the optimization then tries to find an optimal position based on a grid with differ-
ently sized tiles for each neighbour. The result is that the local parametrizations of
neighbouring vertices will not find concise clusters of ’votes’ from which a vertex
may be extracted.

Reference Point: As a second method, to keep the grid size more stable, only the
grid size of the reference point is used when computing optimal positions with all
neighbours. This way, neighbours will not contribute their curvature based scaling to
the reference points’ optimal position. This achieves much more concise clusters of
’voting’ points on the grid. However, it may still be improved.

Per-Vertex: As a final version, the grids for neighbouring vertices may have different
sizes when summing over all neighbours. Now, each point will always use its own grid
when computing optimised points with neighbours. This means that the reference
point and the neighbour use their differently sized grids when searching for optimal
positions on the grid. All vertices now compute their optimal grid positions (be it as
a reference point or as a neighbour) based on the same grid size.

Results of these variations can be seen in Figure 3.23. As mentioned, averaging the
grid positions results in less concise clusters of ’voting’ points on the virtual grid in
comparison with the other approaches.

Number of Iterations: Due to the increased complexity of differing grid sizes, the
number of iterations on each level of the hierarchy may be changed manually. Jakob
et al. recommended six iterations per level in their work. Observations show that
10-15 iterations are better for consistent results.
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3.4. Position Field Optimization

(a) Arithmetic mean scaling.

(b) Reference point only scaling.

(c) Per-vertex scaling.

Figure 3.23.: This displays the behaviour of the different scaling methods for position field. It can be
seen that clusters form more strongly for methods (b) and (c). The extracted meshes can
be seen in Figure A.7 in Appendix A
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3.5. Mesh Extraction

The extraction of the final mesh is done in two stages: extracting a graph of vertices
and their neighbourhood and then extracting a set of quad-dominant faces from
this neighbourhood. The following three changes were made to the mesh extraction
mechanism.

3.5.1. Minimal Vertex Cluster Size

In Jakob et al.’s work, extracted vertices are discarded when the size of their cluster
in the parametrization is smaller than one-tenth of the average cluster of all extracted
vertices. This is done to avoid stray extracted vertices. For most meshes, one-tenth is
appropriate. However, when the extracted mesh has large faces, the clusters of their
vertices may distort the average such that vertex clusters are discarded that would
still be needed. To give control over this behaviour, an option was added to change
the fraction of the cluster size below which vertices are discarded. An example for
this behaviour is shown in Figure 3.24 where a minimal cluster size of one-tenth of
the average is too large to keep small faces on high curvature areas of the reference
mesh.

3.5.2. Snapping Thin Triangles

When extracting vertices, Jakob et al.’s method sometimes produces thin triangles.
These triangles are addressed by changing their neighbourhood and positioning
so they form a line instead of a triangle. In the original work, three neighbouring
vertices are considered a thin triangle if any height of the triangle is below 30% of the
global scale. This scale defines the global edge length. However, since the scale is not
global anymore, this threshold does not work and each extracted vertex needs its own
scale. The new scales for the extracted vertices are based on the scales of the vertices
which contribute to their position in the parametrization. They are computed as a
weighted sum over all scales of contributing vertices, using the same weights as the
computation of the extracted vertex positions. A new threshold for thin triangles can
now be defined to be the sum of 10% of each extracted vertex’ scale. It is equivalent
to the one used by Jakob et al., 2015 when all vertices have the same scale.

If a thin triangle is encountered, the vertex from which the height was calculated
is moved. If this vertex is close to one of the other two vertices of the triangle (i.e.
its distance is smaller than the height threshold) then these two are merged and
their position is averaged. When the vertex to be moved lies between the other two
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3.5. Mesh Extraction

Minimal cluster size is too big. Better minimal cluster size.

Figure 3.24.: Vertices are not extracted when the size of their cluster is below a fraction of the average
cluster size. When mesh densities differ greatly, the average cluster size is influenced
by vertices with big clusters (i.e. the clusters of vertices next to big quads). When this
happens, the minimal cluster size must be set carefully. Left shows the result of extraction
with a minimal cluster size of 1/10 of the average cluster size. When set to 1/20 (right),
the small quads at the bottom are not removed.

vertices (i.e. it is not close to any of them) it is moved so that all three are collinear.
Unfortunately, this simple threshold is sometimes moving vertices away from feature
lines of the reference mesh. This decreases the quality of the meshing because sharp
features cannot be represented when no vertices lie on them.

The snapping is performed at a point in time where only the adjacency between
vertices is known. This reduces the effort of maintaining mesh information (there are
no edges or faces yet) but limits the available information to prevent bad snapping.
Computing curvature is not advisable because the neighbourhoods may be non-
manifold and the curvature may change while snapping. Since extracted vertices
are created through clusters of reference vertices, the number of feature vertices
(introduced in Section 3.3) and the average principal curvature of their clusters can
be computed. Additionally, from the oriented adjacency information, normal vectors
of potential faces can be computed by iterating over all adjacent pairs of neighbours.
If a pair of neighbours forms a nearly straight line (less than 10 degrees), the normal
is computed with the next edge of the potential face to increase accuracy. When any
two normals of a vertex have more than 45 degrees, the vertex is considered to be a
feature vertex.
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To prevent bad snapping, the position of merged vertices is set to be the position of
the vertex with the greater principal curvature (in any direction) instead of computing
an averaged position. Collinear snapping is only performed if the vertex to be moved
is not a feature vertex and its number of feature vertices is smaller than two or all
three vertices are feature vertices with more than one feature vertex. Figure 3.25

shows a mesh with no snapping, with the original snapping and with the improved
snapping.

3.5.3. Creating Quads

When extracting faces, the algorithm searches for polygons in the adjacency graph
of the extracted vertices. First, it searches for quads, then for triangles, then for
polygons with up to 8 vertices, in increasing order. After this is done, the mesh
might contain holes which are then filled. Creating faces is the same for the search of
polygons and for filling holes: A face is created if the polygon is a triangle, a quad or
a pentagon. n-gons for n > 5 are filled with quads until the remainder of the hole
can be filled with a triangle, quad or pentagon. Jakob et al. search for and fill holes
with up to 8 vertices. Because it is important for this thesis that no holes are left, the
maximum number of vertices is increased to 30 (which was big enough while testing).
The polygon search maximum remains at 8 vertices because missed polygons this
size (which are very rare) are found by the hole-filling. Selecting quads for filling
these n-gons follows a greedy scoring system. In the original paper, for an n-gon
v0, v1, ..., vn−1, the score of quad vi, vi+1 (mod n), vi+2 (mod n), vi+3 (mod n) is calculated
as a sum of the four next angles’ differences to a right angle, starting from i:

scorei =
3

∑
j=0
|90◦ −]vi+j (mod n)

vi+j+1 (mod n)
vi+j+2 (mod n)

|

In Jakob et al., 2015, no reasoning for this scoring is given and it does not try to
find perfect quads as only the first two angles (i.e. j = 0, j = 1) are part of the quad.
Figure 3.26 gives a visual representation of this scoring system. To favour optimal
quads, a new scoring system which does not use four consecutive angles but the
four angles of the quad in question is used. The score for the same quad as before is
defined as the following:

scorei =
3

∑
j=0
|90◦ −]vi+j (mod n)

vi+(j+1 (mod 4)) (mod n)
vi+(j+2 (mod 4)) (mod n)

|

54



3.5. Mesh Extraction

No snapping.

New snapping. Original snapping.

Figure 3.25.: When no snapping (top) is performed, more thin triangles are left in the mesh. When
large and small edge lengths come together, the snapping (bottom) also reduces the
number of small faces on the mesh because the larger edge lengths increase the threshold
for thin triangles. This is visible at the ridge in the picture because the snapping removes
the small quads. The differences in snapping between the new method (bottom left) and
the original (bottom right) are exaggerated in feature lines with flat sides. The original
snapping moves vertices away from the shown ridge such that face diagonals ’cut’ into
the ridge. This is avoided by the new method. Quads that still have diagonals ’cutting’
into the ridge will be aligned properly during post-processing (see Subsection 3.7.2).
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Figure 3.26.: This figure shows which angles are considered for the original scor-
ing of quads when extracting the mesh.

This scoring now fills the space with the most rectangular quad first. Figure 3.27 gives
a visual representation of this new scoring system. Observations on the behaviour
also suggest that the best quads are also well aligned with the principal directions
and that no additional consideration for this alignment is necessary. Figure 3.28

shows the different behaviours of these two methods.
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3.5. Mesh Extraction

Figure 3.27.: This figure shows which angles are considered for the new scoring
of quads when extracting the mesh.

Figure 3.28.: This figure shows the different results stemming from the two quad scoring methods
when creating the faces of the extracted mesh. Left is the new scoring and right is the
scoring by Jakob et al., 2015. The main difference is visible on the big face in the centre
where the original creates two distorted quads and the new scoring creates more regular
quads. The new scoring has a better average quad quality (see 4 for more detail on this
quality measure).
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3.6. Non-Manifold Clean-Up

After the extraction is done, the mesh must be cleaned. Because of the local nature of
the position field optimization and the greedy face creation, extracting a manifold
is not always possible. To remove the non-manifold parts of the mesh, Jakob et al.
have developed a simple algorithm. Their algorithm performs two passes where faces
introducing non-manifold edges and then all faces surrounding non-manifold vertices
are deleted. Since the goal of this thesis is a closed mesh, Jakob et al.’s approach is
not enough as deleting affected faces results in holes. The method of Jakob et al. was
changed to repair non-manifoldness instead of deleting it. Non-manifold normals
(i.e. neighbouring faces with opposite normals) are not created during the extraction
and do not need to be handled.

Non-Manifold Edges: Non-manifold edges can be detected in the half-edge data-
structure used to represent the extracted mesh when the same directed edge is
introduced by two faces. Removal of these edges is done by changing the affected
faces or by removing one face (as a last resort). If a non-manifold edge involves more
than two faces (very rare), the faces are detected iteratively such that only two faces
have to be considered at a time. Manifoldness is ensured for arbitrary triangulations
of the quad-dominant mesh and not just for the mesh itself. This means that all
diagonals can be non-manifold as well. The method to repair a non-manifold edge is
as follows: delete all vertices in both faces which are not part of the non-manifold
edge and are adjacent to only one or two faces in total. If no vertex is deleted, delete
one face as a last resort (if the non-manifold edge is a diagonal on one face, delete
this face - otherwise delete a random face). When the deleted vertices leave faces with
2 or fewer vertices, they are deleted as well. Figure 3.29 and Figure 3.30 show the
most common types of non-manifoldness and how the cleaned solutions look like.

Non-Manifold Vertices: Non-manifold vertices can be detected by creating a list of
all faces adjacent to the vertex, starting at a random neighbouring face, traversing the
neighbourhood of the vertex and removing all encountered faces off the list. If the
vertex is non-manifold, it has more than one neighbouring face loop. By starting at
a random face and traversing the local neighbourhood, only faces on the same face
loop as the starting face are removed from the list. So, if the list is not empty after
all faces were visited, the vertex is non-manifold. To find all loops, this loop-search
is repeated until all neighbouring faces have been assigned to a face loop. For each
additional face loop, a new vertex is created and all instances of the non-manifold
vertex are positioned to be the average of all adjacent vertices in their respective face
loop.
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Figure 3.29.: In this case, two triangles ( f 2, f 3) disturb the manifoldness of the surrounding mesh.
Two half-edges are non-manifold here because both triangles affect different ones. Since
the edges are handled in succession, two steps are needed to resolve the issue. The first
pair of faces is f 2 and f 1. The vertex of f 2 not on the edge has only two adjacent faces
and is deleted, which prompts the deletion of f 2 because only two vertices remain. Face
f 1 does not have vertices that need deletion. The same process is performed for f 3 and
f 4, with the only difference being that the vertex to be deleted has only one adjacent face.
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Figure 3.30.: Here, two 5-gons share vertex v which has adjacency to only these two faces. This
leads to a non-manifold diagonal, which would cause non-manifold edges for some
triangulations. After deleting these vertices, the non-manifoldness is resolved. When this
non-manifoldness occurs, 5-gons are reduced to quads, which is favourable.

While this method removes all non-manifold elements, it cannot guarantee that no
holes are created. This is because there are a few cases where faces cannot be changed
and must be deleted to ensure manifoldness. Since a closed mesh is the goal, the
hole-filling algorithm from the extraction (see Section 3.5) is used to find and patch
potential holes. To ensure that the hole-filling does not introduce non-manifoldness,
one more iteration of non-manifold clean-up is performed. Any holes that persist are
considered too complex to fill and are not patched.
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3.7. Mesh Post-Processing

After the non-manifold clean-up is performed, the extracted mesh still has potential
for improvement. The goal when extracting the mesh is an accurate representation of
the reference mesh while minimising the number of faces and vertices needed. All
post-processing is performed directly on the data-structure representing the mesh.
This means that half-edge information must be kept up to date for each step. This
increases the effort for development but decreases the run-time of the algorithms.
The following three additional passes for optimization are performed to improve
both metrics.

3.7.1. Flat T-Vertices

All T-vertices in the extracted mesh induce extraordinary vertices in the subdivision
control mesh. These T-vertices may be removed by changing two of the neighbouring
faces and removing the T-vertex from the third one. To prevent the loss of detail, the
two changed faces must lie on similar planes and their edges adjacent to the vertex
must lie on similar lines. For the purposes of this clean-up, two faces lie on similar
planes when their normals differ by less than five degrees. Two outgoing edges from
the T-vertex lie on similar lines when their angles are between 175 and 185 degrees.
These angles have shown to be a fitting threshold. Figure 3.31 shows the different
combinations of faces and their resolved topology. The size of the third face does
not matter as it is just reduced by one vertex (triangles reduced by one vertex are
lines and can be removed). In all cases where a T-vertex is cleaned, one non-quad is
removed and the reduced face may introduce a non-quad or become a quad. Most
removed T-vertices have 5-gons on one side and two flat faces on the other side. If
it was not a 5-gon it would be a very thin triangle or a distorted quad which the
position field optimization and extraction try to avoid. Because of this, the clean-up
tends to reduce the number of non-quads. Additionally, the number of extraordinary
vertices in the subdivision control mesh is reduced by one.

3.7.2. Feature-Aligned Quad Edges

Mis-aligned quad edges occur when quads along a feature line are rotated by
approximately 45 degrees. This means that one of its diagonals follows the feature
line instead of one of its edges. To preserve edge paths along these lines, two different
ways of dealing with the quads are used: remove them by merging both endpoints of
the diagonal on the feature line and putting the merged point on the middle of the
diagonal, or splitting them into two triangles. Removing quads, instead of splitting
them, does not introduce two non-quads but it must be done with caution, because
the quad may lie on a bent part of the feature line and removing it could increase
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Figure 3.31.: These are all the cases for T-vertex removal. The faces are changed such that the
mesh still only contains triangles, quads and 5-gons. Not all cases improve the
quality of the mesh: combining two quads (third right) is not feasible because
this would add a non-quad and might just shift the clean-up to the two faces
below, thus creating more non-quads.

the error to the reference mesh. Hence, only quads where the diagonal has a pair of
adjacent edges which lie on a common line are removed, and all others are split into
two triangles. A pair of outgoing edges from both ends of the diagonal is considered
to be on the same line as the diagonal when both of their angles to the diagonal are
less than 10 degrees. This angular threshold was determined empirically through
observations over all compared meshes. Figure 3.32 shows how detail is lost when a
quad is wrongfully removed instead of split.
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Figure 3.32.: The shown quad has no adjacent edges which lie on a common line and should be split
instead of removed. The blue line shows the topology after a split, while the green lines
show the topology after removing the quad by merging the two end-vertices of the blue
line. The grey circle shows why removing the quad loses detail in the extracted mesh. The
corner is gone and the green line cuts into the shape described before the quad removal.
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Finding these quads is a delicate task because false-positives must be avoided. The
most intuitive criteria are that the diagonal lies along the orientation of the two
end-vertices, that one diagonal is much farther away from the reference mesh (the
diagonal not on the feature line ’cuts’ into it), and that the quad is bent strongly
along the diagonal on the feature line. The following criteria produce the desired
classification of mis-aligned quads:

• The average angle between the orientation field of both end-vertices and the
diagonal (with 90-degree rotation symmetry) must be smaller than 15 degrees.
• The angle of the two triangles on both sides of the diagonal on the feature line

must be greater than 50 degrees.
• The average largest principal curvature of both end-vertices of the diagonal

must be greater than the one of the other diagonal.
• The closest face of the reference mesh must be closer to the centre of the

diagonal than the centre of the other diagonal.

The curvature and orientation of the extracted vertices is an average over the curvature
and orientation of the vertices that contributed to them in the position field.

The first three criteria make sure that only quads on sharp feature lines are considered.
The fourth criteria excludes false-positives where the removal or split would be
performed on the wrong diagonal and thus worsening the result.

This post-processing improves the feature alignment of the extracted mesh. Edges
follow the feature lines again and when a quad is removed, the endpoints of the
diagonal are combined. Mis-aligned quads on feature lines tend to have endpoints
with valence-3 (i.e. extraordinary) vertices and their combination creates a regular
vertex. When splitting vertices, two triangles are introduced. Both cases of clean-
up, their cleaned version and a corresponding subdivision control mesh that was
subdivided twice are shown in Figure 3.33.

3.7.3. Flat Neighbouring Triangles

When two neighbouring triangles lie on a similar plane, they are merged into one
quad. This reduces the number of non-quads and thus improves the quality of
the mesh. These kinds of triangles are avoided and removed during extraction but
because new triangles are introduced during the post-processing, newly created ones
must be addressed. Since only triangles on similar planes are combined, the loss
in detail is small. Two triangles are considered to lie on a similar plane when their
normals differ by less than 10 degrees, which is a good threshold when comparing
all meshes from Jakob et al., 2015’s work.
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(a) Quad to be removed (b) After quad removal

(c) Quad to be split (d) After quad split

Figure 3.33.: The difference between subdivision meshes where mis-aligned quads exist (a, c) and
where they have been removed (b, d) is most noticeable when looking at the topology of
the mesh. The feature lines are kept intact by removing or splitting the quads. Removing
(top) is the preferred solution but when the adjacent edges do not form a straight line
(bottom), the quads have to be split to avoid the loss of detail.
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Figure 3.34.: The difference between a non-smoothed (left) and a smoothed (right) extracted mesh.
Edge lengths become more similar and the distortion is lower after smoothing, which
improves the average quad quality.

3.7.4. Smoothing

The position field optimization does not always produce perfect quads. Especially in
areas where large edge lengths meet short edge lengths, some quads might be very
distorted. To improve the quality of distorted quads without losing detail, tangential
smoothing is performed. New vertex points are computed by averaging over all
neighbours in a 1-ring neighbourhood and then projecting them onto the tangential
plane of the original vertex. To preserve the features of the mesh, vertices are not
smoothed when the largest angle between the normals of their neighbouring faces is
greater than 50 degrees. Three iterations of smoothing are able to restore distorted
quads while not smoothing edge lengths by too much. The difference between a
smoothed and non-smoothed mesh can be seen in Figure 3.34.

3.8. Subdivision Control Mesh Creation

The next step is creating a Catmull-Clark subdivision control mesh from the extracted
mesh. First, the quad-dominant mesh is converted to a pure quad mesh via one
iteration of subdivision. Next, a subdivision control mesh is created via iteratively
moving the vertices of the quad mesh along their normal until the limit point closely
approximates the input mesh. Thaller, Augsdörfer, and Fellner, 2016 have formulated
this method. They stop either after 20 iterations - which they have determined to
be enough - or when the maximum distance between old and new positions for
vertices are below a threshold ε. In this thesis ε is 1/10000 of the greatest dimension
of the reference meshes bounding box. Boundary vertices remain fixed with the
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implication that they are fixed during subdivision as well. Because of the fixation, the
limit surface will not be a cubic B-spline at the boundary. Since the goal is to produce
a mesh without boundary, this case is very rare. The algorithm for the creation of a
subdivision control mesh is as follows:

mesh← output of curvature adaptive mesh generation
while Less than 20 iterations do

for all vertices ∈ mesh do
if vertex is not on boundary then

LimitPoint← limit point of vertex
I ← intersection of reference mesh and Ray[LimitPoint, normal]
NewVertexPos← vertex + (I − LimitPoint)

end if
end for
if max

v∈mesh
|NewVertexPos−OldVertexPos| < ε then

break while loop
end if
mesh← all NewVertexPos

end while

In order for this to work, the limit points of the extracted mesh need to be calculated.
Catmull-Clark subdivision surfaces correspond to bi-cubic b-splines in the regular
region. In the non-regular region, for extraordinary vertices with valences not equal to
four, Halstead, Kass, and DeRose, 1993 have derived a linear combination to compute
the limit point from the control points. It can be expressed as a stencil which is
convoluted with the mesh. Stencils for vertices with valence four and five can be seen
in Figure 3.35 and Figure 3.36. For regular vertices, this evaluation is equal to the
evaluation of a bi-cubic patch in the regular region(Catmull and Clark, 1978). In the
general case, for a vertex v with valence n, neighbours e and opposite vertices g the
stencil can be expressed by the following equation:

1
n(n + 5)

[
n2v + 4Σjej + Σjgj

]
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Figure 3.35.: The stencil together with the labels
of the vertices and their respective
weights for n = 4

Figure 3.36.: The stencil together with the labels of the vertices and their
respective weights for n = 5
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3.9. Software Interface

To show the methods developed in this thesis, the application developed by Jakob
et al. was expanded. The following will describe the application and where to find
the introduced settings. For the sake of brevity, only the changed or newly created
settings will be described. Figure 3.37 shows an overview.

The first set of settings is found in the panel for Pre-Load Options shown in Figure 3.38.
There, the settings for the estimation and averaging of curvature, and the hierarchy
construction can be found. Descriptions of what these settings are and what they
change can be found in Subsections 3.1.3 and 3.1.4.

After loading the mesh via the panel Open Mesh, further behavioural changes can
be set under Configuration details: Iterations per level described in Section 3.4, the
method for curvature transformation to edge length and a factor that determines
either the constant factor of the radius or the epsilon on which to base the edge length
(depending on the chosen method) from Section 3.2, the curvature to use as defined
in Subsection 3.1.2, whether to use averaged curvature, and the settings concerning
the position field that were introduced in Section 3.4. Figure 3.41 gives an overview
of these settings.

When choosing the transfer function as the method for calculating the edge length, a
transfer function can be defined under TransferFunction, as shown in Figure 3.39.

The application of Jakob et al. is able to display different layers of information of
the mesh or to filter displayed information based on hierarchy level. Various layers
have been added: The resulting subdivision control mesh, curvature information
and principal directions, feature vertices and the difference between orientations and
principal directions. The layer for curvature information is coloured such that the
maximal/minimal curvatures have the most intensive colour (violet being positive,
and green being negative curvature). Maximal/minimal curvatures are used as
normalisation factors by default. When the box next to the layer is ticked, then the
non-averaged curvature is always used for normalisation - this makes the visualisation
independent of the averaging. These layers can be accessed in panel Advanced which
is pictured in Figure 3.40.

The last panel, Export mesh, provides options to switch between exporting a pure
quad mesh and a quad-dominant mesh, to display additional edges for non-quads
(non-quads are stored as a ring of triangles around a virtual vertex), whether non-
manifold removal should be performed after extraction and the minimal cluster size
for vertex extraction. The option for additional smoothing after the extraction was left
in for flexibility. It is not needed for the purposes of this thesis as it is non-tangential
smoothing and will decrease the accuracy of the result. The panel also has buttons
for mesh extraction, for post-processing (optimization), for creating the subdivision
control mesh, and for performing optional subdivision steps. The subdivision control
mesh is coloured based on the distances of the control vertices to the reference mesh.
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Figure 3.37.: An overview of the look of the modified application of Jakob et al. To the left is the
control panel where the different steps of the algorithm can be executed and additional
panels for options can be accessed.

The colour intensity is normalised such that a distance of one percent of the maximal
bounding box axis of the reference mesh has the most intensive colour. Violet means
a difference along the normal of the control vertices while green is a difference in the
negative direction of the normal. The resulting mesh can then be saved as ’.ply’ or
’.obj’ file. The Export mesh panel can be seen in Figure 3.42

Additionally, the application has a console window which displays information
concerning the current or completed tasks. When extracting a mesh or when the
extracted mesh is processed further, the quality criteria defined in Chapter 4 are
displayed.
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Figure 3.38.: Pre-Load Options panel and the settings that can be changed there.
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Figure 3.39.: View of the transfer function editor where the points for a transfer function can be
defined.
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Figure 3.40.: The Advanced panel and the different layers that can show additional information.
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Figure 3.41.: The run-time options that are available.
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Figure 3.42.: The Export Mesh panel which contains the final steps for creating a quad
mesh from the reference and to create or subdivide a subdivision control
mesh.
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4. Observations

To achieve the goal of this thesis, different ideas for improvement in all steps of the
meshing were tried out. Chapter 3 has introduced the changes made to the original
method in Jakob et al., 2015. These changes must be evaluated to find an ideal
combination. The evaluation is made on the extracted quad-dominant meshes and
not on the subdivision control meshes because the quad-dominant meshes set the
basis for good subdivision control meshes. The following options were introduced:

Curvature Estimation (Subsection 3.1.1): The size of the neighbourhood of the estima-
tion can be changed.

Choice of Curvature (Subsection 3.1.2): Mean curvature, Gaussian curvature, curvature
in both directions (i.e. rectangles instead of squares) or the largest absolute
principal curvature may be chosen to adapt edge lengths.

Edge Length Computation (Section 3.2): The transfer from curvature to edge length
may be based on a transfer function, a simple inverse of the curvature, or the
root of the inverse. Additionally, an epsilon can be chosen when not using a
transfer function which defines a factor for the simple inverse or the allowed
error for the root of the inverse.

Curvature Averaging (Subsection 3.1.3): It is possible to choose whether to use aver-
aged curvature. An average of the curvature may be computed as a simple
average, a similarity-based one or an average that tries expand high curvature
regions. The calculation itself has options for the number of iterations, a self-
weight, the size of the neighbourhood and whether to use only absolute values
for smoothing.

Hierarchy Computation (Subsection 3.1.4): The weights for the merging of vertices may
be changed from normal to curvature similarity-based ones. Also, curvature
can either be propagated up the hierarchy or can be computed for each level.

Orientation Field Optimization (Section 3.3): The orientation field may be constrained
with the orientations of vertices at creases of the reference mesh.

Position Field Optimization (Section 3.4): The size of the grid for a pair of vertices may
be the average of the sizes of both points, the reference point’s size or separate
for both vertices.

Iterations: The number of iterations on each level of the hierarchy for the position
field and orientation field optimization can be chosen.
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As mentioned on various occasions in Chapter 3, some options are clear favourites
when compared with their alternatives: For curvature computation, the analysis
in Subsection 3.1.1 shows that a 2-ring neighbourhood is the ideal middle-ground
between precision and noise reduction. Subsection 3.1.2 explains how using the
largest absolute principal curvature is the best choice of curvature information to
define the position field grid scale. As discussed in Subsection 3.1.4, the changes to
the construction of the hierarchy have not improved the results. The best options are
the original construction of the hierarchy while estimating the curvature separately
for each of its levels. Finally, Section 3.3 shows that the grid sizes of the position field
optimization should be defined per-vertex. The demonstration for per-vertex grid
sizing shown in Figure 3.23 is consistent for all tested reference meshes.

Unfortunately, not all choices are as clear. To find the best choices and to compare the
results, different metrics must be calculated. The chosen metrics are some of the most
prevalent ones for comparing results in the papers that were discussed in Chapter 2.
The following metrics are computed after extraction, after optimization and after
creating a subdivision control mesh:

• Percent reduction of vertices compared to the reference mesh.
• Percentage of EV’s.
• Percentage of non-quads.
• Average distance between diagonal centre points, to measure the planarity of

quads.
• Average angle for quad corners, to measure the orthogonality of quads.
• Average ratio of opposite edge lengths of quads (as a measure for the deviation

from rectangles/squares)
• The average of an adapted quad quality measure introduced in Marinov and

Kobbelt, 2006, over all quads.
• Number of non-manifold and boundary vertices.
• The Hausdorff distance between the extracted mesh and the reference mesh.
• The average edge length and the standard deviation of edge lengths (to detect

meshes with uniform edge lengths).
• The average and maximum distance of face centres to the reference mesh.

Coarse meshes cannot model fine detail of the mesh well, and so their face
centres are further away from the reference mesh compared to meshes with
more density in these areas.
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The quad quality measure from Marinov and Kobbelt, 2006 combines orthogonality,
parallelism and the deviation from a square and a rectangle into one. For this
thesis, the distinction between rectangle and square was omitted because it is not as
important as the other three properties. For a quad with inner angles α0, . . . α3 and
edge lengths l0, . . . l3, the quad quality measure E has its lowest, most optimal value
at E = 0 and is defied as:

Orthogonality O =
3

∑
i=0
|αi − π/2|

Paralellism P =
3

∑
i=0
|αi + αi+1 (mod 4) − π|

Rectangularity R =

(
2− min(l0, l2)

max(l0, l2)

)
·
(

2− min(l1, l3)
max(l1, l3)

)

E = [(1−O) · (1− P) · R]− 1

The first observation when comparing results is that averaged curvature produces
much better results as non-averaged curvature. This is because when optimising the
position field, similar grid sizes improve the results. Since the curvature information
is just an estimation based on a reference mesh, noise cannot be avoided. Averaging
reduces the noise of this estimation. It has to be noted that, while averaging improves
the results, too much averaging will cause a mesh that has well-formed quads
(according to the metric for quad quality) but is not adaptive to the curvature
anymore because all points will have similar curvature information. Figure 4.1 shows
a comparison between averaged and non-averaged curvature together with some
quality criteria. As discussed in Subsection 3.1.3, absolute curvature is used when
averaging for all future comparisons.
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4. Observations

#Vert 705
EV’s 51.49%

Non-Quads 20.33%
Hausdorff 3.793

Avg. Quad Quality 6.071
Avg. Edge Length 6.647

Edge Length St. Dev. 5.313
Max Face Centre Dist. 4.295

(a) Without Averaging

#Vert: 741
EV’s 36.98%

NonQuads 14.82%
Hausdorff 2.245

Avg. Quad Quality 4.109
Avg. Edge Length: 6.841

Edge Length St. Dev. 4.746
Max Face Centre Dist. 2.217

(b) With Averaging

Figure 4.1.: This comparison shows the tremendous difference that averaging makes. While averaging
increases the number of vertices slightly (as very low curvature areas shrink slightly) and
the edge lengths become more uniform (as can be observed in the edge length standard
deviation), all other aspects of the extracted meshes’ quality improves. Most notably are
the drop in the number of EV’s and the improved face centre distance. The metrics not
shown here were improved as well but are left out for brevity.
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The remaining options are the curvature transformation to edge length, curvature
averaging and the number of iterations of the position field optimizer on each level
of the hierarchy. An analysis to find the ideal combination was performed. Together
with above-mentioned fixed options, the following is the range of options with which
the meshes were tested:

Curv. Estimation Neighbourhood 2-ring
Used Curvature Largest absolute principal curvature

Averaging Yes
Averaging Type Simple Average, Expand High Curvature

Averaging Neighbourhood 1-ring and 2-ring
Averaging Iterations 1, 3, 5

Averaging Self-Weight 0, 0.2, 0.5, 0.7
Hierarchy Creation Normal-Based

Curvature of Hierarchy Levels Computed at each level
Position Field Grid Size Per-Vertex

Iterations Per Level 6, 10, 15
Edge Length Epsilon 0.01, 0.02, 0.03, 0.04

Orientation Field Constraints Yes and No

Averaging types Simple Average and Expand High Curvature were chosen because
they showed the most promise. The options concerning the iteration number and
the self-weight were chosen such that they cover low, medium and high cases, from
which their influences can be inferred.

The metrics were analysed over the same meshes provided in Jakob et al., 2015. Jakob
et al. have incorporated a batch mode into their software which allows an automated
run of the extraction without a user interface and the need for user interaction. This
batch mode was adjusted to be configured with above-mentioned options and to test
a range of different option sets. The resulting meshes of these batch runs are saved
as ’.ply’ files and the computed quality criteria are saved in ’.csv’ files for further
evaluation. Since the quality criteria are saved in a format readable for matrix-based
computation, Matlab (MATLAB, 2017) was used to find optimal option sets. To avoid
randomization artefacts, all meshes were run three times for the whole range of
options.

To find the optimal option set, a measure for optimality must be created. Finding
this optimality measure is non-trivial as some metrics stand in conflict with each
other. Because not all metrics are needed the following ones were used: Average quad
quality measure, Hausdorff distance, inverted standard deviation of edge lengths
(more is better, it counteracts over-averaging), and the maximum distance of face
centres to the original mesh. Meshes with boundaries of non-manifold elements were
discarded because closed manifold meshes are the goal. The optimality measure is

81



4. Observations

the squared sum of the normalised values of these metrics. The best combination
of options according to this optimality measure differs even for multiple passes of
the same mesh. However, certain trends can be observed. The following is the set of
options derived from this evaluation that is recommended for best results overall:

Curv. Estimation Neighbourbood 2-ring
Used Curvature Largest absolute principal curvature

Averaging Yes
Averaging Type Simple Average

Averaging Neighbourhood 1-ring or 2-ring
Averaging Iterations 1− 3

Averaging Self-Weight 0.0− 0.5
Hierarchy Creation Normal-Based

Curvature of Hierarchy Levels Computed at each level
Position Field Grid Size Per-Vertex

Iterations Per Level 15
Edge Length Epsilon 0.02− 0.03

Orientation Field Constraints Yes

Averaging in this set of options is a well-balanced mixture of not over-averaging
but still removing enough noise and smoothing out the change of curvature. The
iterations per level have to be raised compared to the work in Jakob et al., 2015

because of the increased complexity of the optimization through the different grid
sizes in the parametrization. An increased run-time coming from more iterations is
acceptable for the increased quality of the results.
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The meshes resulting from the work in this thesis are able to represent reference
meshes accurately, with an emphasis on distributing vertices so that details are
preserved. A change in density leads to vertices with a valence different to four or
to the introduction of non-quads. Therefore, the resulting meshes in this thesis have
more singularities when compared with other approaches. Figure 5.1 displays the
whole pipeline of the developed method. The resulting quad-dominant mesh has
uniform quads in similar curved regions of the reference mesh and adapts to changes
in curvature with non-quads or EV’s. It has to be noted that the sizing of the faces
is dependent on the density of the reference mesh. As mentioned in Section 3.2,
the minimal edge length must be capped. To decrease the edge length further, the
reference meshes’ density must be increased through subdivision. Different levels of
detail representation can be achieved when changing the desired density. Figure 5.2
shows results of the same mesh with different desired densities. The developed
approach is able to reduce the number of vertices by up to 95% for the standard edge
length setting.

Most isotropic approaches find optimal pure quad or quad-dominant meshes while
trying to minimise the number of above-mentioned irregularities. This limits their
abilities to adapt to curvature. When compared with the method developed in this
thesis, the isotropic meshes of Jakob et al. have fewer extraordinary vertices and
non-quads, and have quads with better quality. However, they are less dense in
high curvature regions and thus cannot represent high-frequency detail as well
when compared to the work presented in this thesis. The number of EV’s and
non-quads of the method developed in this thesis depends on the number of tran-
sitions between low and high curvature regions because quad-dominant meshes
need non-quads or EV’s to make the corresponding transition of edge lengths.
To compare resulting quad-dominant meshes between the work in Jakob et al.,
2015 and this thesis, all reference meshes from Jakob et al.’s were processed. For
the original work, the default settings were used and for the work in this thesis
the accuracy was set such that a similar number of vertices was extracted. Both
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5. Results

(a) Reference (b) Orientation Field (c) Position Field

(d) Extraction (e) Optimization (f) Subdivision
Control Mesh

(g) Subdivided

Figure 5.1.: This shows the whole pipeline of the developed algorithm. After loading the reference
mesh (a) and estimating the curvature, the orientation field (b) and the position field
(c) are computed. The extracted mesh (d) is optimised (e) and its vertices are moved to
create a control mesh (f) where the limit surface closely resembles the reference mesh,
represented via subdividing three times(g). The colours on (f) and (g) indicate positive
(violet) and negative (green) distance form the reference mesh.

types of mesh are transformed into subdivision control meshes while comput-
ing their error metrics. Averaged over all meshes, the following can be observed:

Error Metric EV’s Hausdorff Distance Avg. Quad Quality Avg. Face Centroid Distance

Jakob et al. 0.28% 0.468 0.489 0.122

Thesis 0.89% 0.463 1.291 0.115

% Difference +246.011% -2.902% +180.787% -6.056%

This proves that the shifted vertex densities improve the Hausdorff distance between
limit surface and reference mesh. It also shows how the focus on adaptive edge length
worsens the number of extraordinary vertices and the quad quality.

Figures 5.3 shows the improved accuracy in detailed regions that curvature adapted
edge lengths are able to achieve when compared to the isotropic approach in Jakob
et al., 2015. The most notable differences are in regions with fine detail.
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(a) Reference (b) Low Density

(c) Default (d) High Density

Figure 5.2.: With the global edge length, higher and lower densities can be enforced. For low (b) and
default (c) densities, no subdivision is necessary but when trying to model the grooves of
the reference mesh (d), a denser version of the reference mesh is necessary.

While anisotropic approaches take the detail of the reference mesh into account when
extracting a mesh, their changes in edge length are less significant when compared to
the results in this thesis, or they may need additional manual input. While they have
more regularity, they cannot adapt to changing curvature as quickly and tend to have
a more uniform distribution of edge lengths. Figures 5.4, 5.5, 5.6 and 5.7 compare the
results of this thesis and of methods which have an anisotropic nature and adapt to
the curvature of the reference mesh to a certain extent. For better comparability, the
results are not transformed to subdivision control meshes yet.
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Bimba

Bunny
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Gargoyle

Igea
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5. Results

Lion Vase

Figure 5.3.: A comparison of the results of Jakob et al., 2015 and the work of this thesis. The extracted
quad-dominant meshes have about the same number of vertices and are both transformed
to subdivision control meshes with the method in this thesis. On the left are the surfaces
resulting from scan captures. 2nd from left: The subdivision control meshes generated
from the scan data. The limit surfaces derived from control meshes are shown (3rd from
left) before colouring the error between the scan data and limit surfaces (right).The top
rows show the results of the method presented in this thesis. Their control meshes are
dense in regions where it is required to capture fine detail, but coarse in low-curvature
regions. The resulting limit surface shows a lot more detail when compared to the bottom
rows, which shows results from Jakob et al., 2015’s method, which is more isotropic. As a
result, the bottom limit surfaces contain considerably less detail and the errors to the scan
data are larger.
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Figure 5.4.: A comparison between the work in Lai, Kobbelt, and Hu, 2010 (left) and an extracted and
optimised quad-dominant mesh from this thesis (right). While they do change the sizes of
their quads to fit the detail of the mesh, the differences are not as pronounced (e.g. the
cat’s tail). In their work they mention that a precise control over the size of the faces is
not easy - whereas in this work it can be done by setting a desired estimated number of
vertices.

Figure 5.5.: While the work of Zhang et al., 2010 (left) shows more regularity than the approach in
this thesis (right), it cannot change density quickly. While it is possible to enforce smaller
quads, these areas have to be defined manually.
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5. Results

Figure 5.6.: When compared with the results in Kovacs, Myles, and Zorin, 2011 with different under-
lying parametrizations (top), the approach in this thesis approach (bottom) either adapts
better to differences in surface detail (top left) or produces faces that follow principal
curvature more closely (top right).

Figure 5.7.: While the density of the results of Alliez et al., 2003 (top) can be similar to the results in
this thesis (bottom), they do not show the same variance in edge lengths.
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All additional methods and many options for the behaviour of the algorithms are
added to the software created in Jakob et al., 2015. With the embedded batch mode, a
user may extract quad-dominant or subdivision control meshes quickly based on a
set of default options - six seconds on the Stanford Bunny with 55684 vertices, 111364

faces (on a PC with 16GB RAM, and a four core CPU with 3.5GHz), for example.
Because of the variety of options, it is also possible to find better fitting sets of options
for specific meshes. Information (i.e. timing and mesh quality) is displayed on a
console window or output into additional files when in batch mode.
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6. Conclusion and Future Work

In this thesis, a quad-dominant meshing method with a focus on curvature-dependent
density to accurately capture high-frequency detail and a subsequent transformation
of the extracted meshes to subdivision control meshes was created. Because the
extraction is fast and initialisations are random, trying different options to find good
solutions is easy. Also, possible defects in the parametrization have been addressed
through post-processing steps. Through this, it is possible to create subdivision
control meshes which precisely model arbitrary meshes with a low number of
vertices while still accurately representing the reference mesh. The trade-off, however,
is a diminished regularity of the surface.

The design is very flexible and may be adapted to more specialised applications. The
focus of this thesis was on an automated process which is able to produce satisfying
results for a variety of inputs. Further work may include more post-processing to
ensure that the extracted meshes fulfil the demands of more specific applications,
more specialised settings for a subset of meshes or different constraints on the
parametrization.
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Appendix A.

Extracted Meshes from
Parametrizations

No averaging. One averaging
iteration.

Three averaging
iterations.

Six averaging
iterations.

Figure A.1.: This figure shows the resulting quad-dominant meshes for the parametrizations of
different averaging iterations shown in Figure 3.5.
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Appendix A. Extracted Meshes from Parametrizations

Extracted mesh for similarity-based average with
k = 2.

Extracted mesh for simple averaging.

Figure A.2.: This figure shows the resulting mesh from the parametrizations of Figure 3.7.

Figure A.3.: This is the mesh that was extracted from the parametrization in Figure 3.8 which displays
the effect of the extend high curvature averaging method.
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(a) Extracted mesh for normal-based hierarchy
and curvature summation.

(b) Extracted mesh for normal-based hierarchy
and curvature estimation per level.

Figure A.4.: These are the resulting extracted meshes from the parametrizations in Figure 3.12. They
compare hierarchies with curvature summation and on curvature estimation per level.

(a) Resulting mesh for curvature similarity-
based hierarchy and summed curvature.

Figure A.5.: This is the extracted mesh from the parametrization in Figure 3.13 which uses a curvature
similarity-based hierarchy and summed curvature.
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Appendix A. Extracted Meshes from Parametrizations

Figure A.6.: This figure shows the extracted mesh for an edge length based on the osculating circle
fixed factor formulation with a factor of 0.8. The parametrization this mesh is based on
can be seen in Figure 3.18.
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(a) Arithmetic mean scaling.

(b) Reference point only scaling.

(c) Per-vertex scaling.

Figure A.7.: These are the extracted meshes for the parametrizations shown in Figure 3.23. They are
computed with different position field grid scaling methods.
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