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Kurzfassung 

Um einen wirksamen Gewässerschutz zu erreichen, sind Niederschlagsabflüsse 
urbaner Siedlungsgebiete hinsichtlich ihrer Stoffbelastung zu bewerten und ab-
hängig des Verschmutzungspotenzials einer zentralen oder dezentralen Behand-
lungsanlage zuzuführen. Zur Abschätzung der einzugsgebietsspezifischen Stof-
femissionen und zur Bemessung von Niederschlagswasserbehandlungsanlagen 
werden Stofffrachtmodelle eingesetzt, die jedoch die maßgebenden Stoffpro-
zesse Entstehung, Akkumulation und Abtrag lediglich stark vereinfacht abbilden. 
Aufgrund der mangelnden Prozessnähe ist die Modellierung von Stoffprozessen 
von großen Unsicherheiten geprägt. Hierdurch kann die Kosteneffizienz von Be-
handlungsanlagen sinken oder sogar eine inakzeptable Gewässerbelastung ent-
stehen. Die notwendige Verbesserung bestehender Modellkonzepte bedingt ein 
verbessertes Prozessverständnis. Hierzu sind zeitlich hochaufgelöste Messda-
ten erforderlich, die sowohl die räumliche und zeitliche Prozessvariabilität berück-
sichtigen als auch meteorologische und anthropologische Einflüsse einbeziehen. 
 
In der vorliegenden Arbeit wurde daher die Niederschlagsabflussqualität von vier 
repräsentativen, urbanen Einzugsgebietstypen i) Flachdach, ii) Parkplatz, iii) 
Wohngebiet mit Trennsystem und iv) stark befahrene Hauptverkehrsstraße mit-
tels kontinuierlicher Gütemesstechnik und begleitender Beprobung erfasst. Im 
Vordergrund der Untersuchung stand der Summenparameter abfiltrierbare Stoffe 
(AFS), dessen orts- und ereignisspezifische Dynamik durch den Surrogatpara-
meter Trübung ermittelt wurde. 
 
Die erhobenen Messdaten wurden ereignisbasiert mit statistischen Methoden un-
tersucht und Abhängigkeiten zu meteorologischen Randbedingungen ausgewer-
tet. Es zeigte sich eine signifikante Korrelation zwischen Niederschlagsintensität 
und AFS-Ereignisfracht für kleine Einzugsgebiete mit einem hohen Versiege-
lungsanteil. Weiterhin wurde die Stoffabtragsdynamik innerhalb eines Ereignis-
ses mit Masse-Volumen-Kurven (MV-Kurven) analysiert. Erstmalig wurden diese 
je Abfluss Quantil gruppiert und statistisch mit Boxplots beschrieben, um eine 
generelle Einzugsgebietscharakteristik des Stoffabtrags zu identifizieren. Wäh-
rend das Flachdach eine frachtlimitierende Abtragscharakteristik aufwies, konnte 
am Parkplatz und für die stark befahrene Straße eine transportlimitierte Dynamik 
beobachtet werden. Eine jahreszeitliche Auswertung verdeutlichte jedoch die 
hohe Prozessvariabilität. 
 
Die beobachtete Prozessvariabilität und die damit verbundenen stochastischen 
Einflüsse auf Stoffgenese und -transport führte zur probabilistischen Prozessbe-
schreibung. Hierzu wurden empirische Verteilungsfunktionen der AFS-Ereignis-
frachten für alle Standorte ermittelt und zur Anpassung von theoretischen Vertei-
lungsfunktionen verwendet. Funktionsparameter wurden mittels maximum like-
lihood estimation (MLE) ermittelt. Es konnte gezeigt werden, dass die Lognormal-



 

Verteilung zur Beschreibung des Datenmaterials gut geeignet ist. Allerdings fiel 
auch auf, dass der Stichprobenumfang signifikant die Anpassungsgüte beein-
flusst. Ergebnisse einer Monte-Carlo-Simulation empfehlen einen Stichproben-
umfang von mindestens 40 Ereignissen. 
 
Die parametrisierten Lognormal-Verteilungen wurden weiterhin verwendet um ei-
nen innovativen Kalibrierungsansatz des Niederschlags-Abfluss Modells SWMM 
zu entwickeln. Im Gegensatz zur konventionellen Kalibrierung, der eine ereignis-
basierte Bewertung zugrunde liegt, wird hierbei die empirisch ermittelte Vertei-
lungsfunktion der simulierten AFS-Ereignisfrachten durch die vorgegebene, the-
oretische Verteilungsfunktion approximiert. Die numerische Differenz der Vertei-
lungsfunktionen wird durch die Kolmogorov-Smirnov Statistik ausgedrückt, die 
als Zielfunktion der Kalibrierung dient. Modellparameter der Stoffprozesse wur-
den mit Hilfe eines evolutionären Algorithmus optimiert. Obwohl die Stoffpro-
zesse vereinfacht abgebildet werden, verdeutlichen die Kalibrierergebnisse und 
Parameterunsicherheiten die erfolgreiche Anwendbarkeit des Kalibrieransatzes 
zur Ermittlung von Jahresfrachten. Im Vergleich zur Simulation mit mittleren Er-
eigniskonzentrationen bleibt zudem noch die Ereignisdynamik erhalten, dass 
eine weitergehende Analyse durch MV-Kurven ermöglicht. Der entwickelte Kalib-
rieransatz verbessert stadthydrologische Planungen durch realitätsnähere Simu-
lationsergebnisse von Stofffrachtmodellen und trägt somit zu einer höheren Kos-
teneffizienz im Gewässerschutz bei. 
 



 

Abstract 

The pollution of urban stormwater runoff requires measures to reduce negative 
impacts on the receiving water. Depending on land usage or level of pollution, 
common stormwater management strategies employ both centralized and decen-
tralized measures. To design stormwater treatment facilities and to evaluate the 
emission of pollutants from an urbanized environment, stormwater quality models 
are usually applied. However, available models only provide simplified model 
concepts to simulate the origin, accumulation and transport of pollutants on urban 
surfaces which subsequently leads to uncertain model results. As a conse-
quence, stormwater management measures are less cost-effective designed or 
even do not appropriately protect the receiving water. Hence, more realistic 
model outputs relating to stormwater quality are required. In this respect, the anal-
ysis and an in-depth understanding of natural stormwater pollutant processes is 
crucial to improve model concepts. Spatial and temporal variations need to be 
considered as well as meteorologic and anthropologic conditions. For this, high-
resolution monitoring data of stormwater quality is essential. 
 
In this thesis, a long-term monitoring and sampling program has therefore been 
conducted at four common types of urban subcatchments to obtain the required 
measurement data. Stormwater quality data from i) a flat roof, ii) a parking lot, iii) 
a residential catchment with a separated sewer system and iv) a high traffic street 
was collected. With primary focus on the quality parameter Total Suspended Sol-
ids (TSS), turbidity signals were used as a surrogate to derive continuous TSS 
time series.  
 
Measurement data were subjected to extensive statistical analyses and corre-
lated with meteorological characteristics. The analysis revealed a strong relation-
ship between rainfall intensity and event loads for small catchments with a high 
proportion of impervious surface. Moreover, intra-event TSS load distributions 
were studied with dimensionless Mass-Volume-Curves (MV-Curves). For the first 
time, MV-curves were grouped at runoff quantiles and statistically described with 
box-plots. From this analysis the wash-off process could be site-specifically as-
sessed. While the wash-off process of subcatchment flat roof tends to be source-
limited, a transport-limited behavior could be observed at sites parking lot and 
high traffic street. A seasonal analysis of MV-curve distributions demonstrated a 
large variability.  
 
Empirical TSS event load distributions were derived for all experimental sites and 
used to fit a set of theoretical distribution functions. Parameters of the targeted 
distribution functions were optimized with respect to a likelihood function. The 
lognormal distribution function was found to be most expressive to approximate 
empirical TSS event load distributions at all experimental sites. However, the 
goodness-of-fit of the statistical model strongly depends on the number of events 



 

taken into account. Results of a Monte-Carlo resampling strategy suggest to pro-
vide about 40 events. 
 
Fitted lognormal distribution functions were finally used to develop an innovative 
calibration approach of the stormwater quality model SWMM. The method incor-
porates practical needs, respects stochasticity of pollutant processes and priori-
tizes to probabilistically simulate TSS event load characteristics instead of repli-
cating its occurrence and extent with chronologic precision. For this purpose, 
SWMM's model parameters of the exponential equations for pollutant accumula-
tion and washoff have been numerically optimized by means of a differential evo-
lution algorithm. The objective function to be minimized describes the numerical 
difference between the cumulated distribution function of simulated TSS event 
loads and the catchment-specific lognormal distribution function. Although a sim-
plified stormwater quality model concept is applied, both model results and pa-
rameter uncertainties demonstrate the suitability of the approach to estimate an-
nual TSS event loads. Additionally, compared to the conventional Event-Mean-
Concentration (EMC) concept, intra-event dynamics are still preserved. This in 
turn facilitates purposive stormwater management strategies which consequently 
yield to both environmental end economic benefits. 
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Introduction 1 

1 Introduction1 

A general introduction is given in the following chapter. First, an overview of urban 
stormwater quality, contaminants and influences is outlined. Relevant processes 
and phenomena are presented. Stormwater quality modelling approaches and 
current limitations are introduced. Based on this, research gaps are identified. 
Finally, the objectives of this thesis are specified. 

1.1 Background 

1.1.1 Stormwater runoff quality and urbanization 

Stormwater runoff from urban areas is considered as a major nonpoint source of 
pollutants affecting the quality of the receiving water (Allen Burton and Pitt 2001). 
Makepeace et al. (1995) presented a literature review of stormwater pollution re-
search and differentiated the hazardous effects of various contaminants with re-
gard to humans and aquatic life. Their summary showed that especially i) solids, 
ii) heavy metals, iii) hydrocarbons and iv) nutrients are the most critical contami-
nants. However, the effect on the receiving environment depends on the conta-
minant and may result in acute or chronic toxicity (Aryal et al. 2010, Welker 2004). 
Certain polycyclic aromatic hydrocarbons (PAH) are classified as carcinogenic. 
Besides aesthetical issues, suspended solids (SS) fill interstitial spaces and ad-
sorb PAHs and organic matter (Bilotta and Brazier 2008). Consequently, urban 
stormwater related emissions significantly degrade the aquatic environment and 
compromise the receiving ecosystem. To mitigate negative impacts stormwater 
treatment measures are required. However, naturally stormwater quality proces-
ses are complex and highly dynamic (Hvitved-Jacobsen et al. 2010) which impe-
des to implement cost-effective stormwater management strategies. Knowing re-
levant processes is therefore of high relevance (Barbosa et al. 2012, Beck and 
Birch 2013). 
Numerous studies were conducted in the last three decades to investigate pollu-
tion processes and to quantify stormwater pollution with respect to i) solids (Char-
ters et al. 2015, Chebbo and Bachoc 1992, Deletic and Maksimovic 1998, Rossi 
et al. 2013, Sansalone and Buchberger 1997), ii) heavy metals (Beck and Birch 
2012, Davis and Birch 2010, Wijesiri et al. 2016, Zafra et al. 2017), iii) hydrocar-
bons (Aryal et al. 2005, Herngren 2005, Krein and Schorer 2000, Mummullage et 
al. 2016) and iv) nutrients (Bratieres et al. 2008, Miguntanna et al. 2013, Yang 
and Toor 2017).  
The studies generally revealed that distribution and concentration of pollutants 
spatially and temporarily varies and stormwater quality is further affected by cli-
matic and anthropologic conditions. However, land use (Goonetilleke et al. 2005), 
surface characteristic and human induced traffic (Fallah Shorshani et al. 2014, Li 
et al. 2017, Liu et al. 2015, Markiewicz et al. 2017) are identified as key influential 

                                            
1 This chapter is partly composed of paragraphs from Leutnant et al. (2018a, 2016, 2018c, 
2018b) 
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factors which are coherently related to urban infrastructure and processes of ur-
banization. 
According to United Nations (2015), urbanization is expected to increase notably 
on a global level in the next decades: In 1950 one third of the worlds populations 
was urban which is projected to be the case for two third of the population by the 
year 2050. With respect to stormwater quality, this highlights the needs for pur-
posive urban stormwater strategies as land use and traffic will significantly 
change (Gunawardena et al. 2018). 

1.1.2 Process overview and phenomenology 

Stormwater quality is affected by processes occurring both in the atmosphere 
and close to urbanized surfaces.  
Pollutants accumulating in the atmosphere are assigned to atmospheric buildup. 
In contrast, atmospheric deposition describes the process of pollutants being 
transferred to the ground. It is further distinguished, whether particles are depo-
sited due to humid (wet deposition, “rain washout”) or due to windy conditions 
(dry deposition). Surface buildup describes the process of pollutant accumulation 
on urbanized surfaces which is assumed to take place during dry weather peri-
ods. In case of rainfall-induced washoff, pollutants on surface are first separated 
from the surface, subsequently mobilized or dissolved and finally transported by 
surface runoff (Gunawardena et al. 2018). 
 
Atmospheric dry deposition of pollutants to terrestrial environments is mainly in-
fluenced by meteorological factors (wind velocity, humidity), particle size and 
shape and surface characteristics (roughness, temperature, friction velocity) 
(Amodio et al. 2014). Wet deposition additionally is dependent on rainfall intensity 
and duration (Gunawardena et al. 2018). Frequent rainfall with longer duration 
may cause dilution effects resulting in low pollutant concentrations. 
 
Pollutant buildup on surfaces is influenced by both internal and external factors 
(Gunawardena et al. 2018). Particle size distribution is considered as major inter-
nal factor as different fractions tend to have different buildup characteristics (Wije-
siri et al. 2015). In their study, in which particles were fractioned into the two 
groups > 150 µm and < 150µm, the buildup rate of the finer particle fraction de-
creased as function of time. The fraction with coarser particles was observed to 
behave conversely. External factors may either promote or suppress the accu-
mulation of particles. Emissions from both anthropogenic (e.g. traffic, land use) 
and natural activities (e.g. soil erosion) promote buildup on surface and in the 
atmosphere as they increase the general availability of pollutants. In fact, traffic-
related emissions are known to substantially contribute to heavy metal, PAH and 
particulate matter loadings (Egodawatta et al. 2013, Fallah Shorshani et al. 2014, 
Grottker 1987, Gunawardena et al. 2012, 2013, 2014, Helmreich et al. 2010, Pet-
rucci et al. 2014, Sansalone and Buchberger 1997).  
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It is also reported, that accumulation of pollutants is subjected to seasonal in-
fluences. For example, Deletic and Orr (2005) showed that during road salting 
periods sediment loading significantly increased. A study by Brezonik and Sta-
delmann (2002) also indicated significant seasonal differences in loadings and 
concentrations of contaminants with highest pollutant contributions during snow-
melt and spring runoff period (late January to early March). Seasonal affects were 
also studied by Lee et al. (2004). Their research revealed that initial storms of the 
wet season are higher polluted than storms near the end of the wet season. Helm-
reich et al. (2010) highlighted the use of gravel during winter periods which cau-
ses an increased wear and tear of surfaces and tires. Additionally, surface cha-
racteristics such as texture, roughness and relief affect buildup because refugial 
areas for pollutants are potentially created. International studies investigated pol-
lutant contributions from different urban environments. Wang et al. (2013) deter-
mined stormwater contaminant concentration and loadings from common land 
uses (roofs, roads, residential and commercial catchments) in China. They found 
that urban roads contribute significantly higher total suspended solids (TSS) and 
chemical oxygen demand (COD) loads than other catchments. Egodawatta et al. 
(2012) quantified pollutant contributions from roof surfaces in Australia (Gold 
Coast) by means of simulated rainfall. They concluded, that roof surfaces play an 
import role concerning stormwater quality especially when roofs are dominating 
the land usage. Liu et al. (2015) point out that pollutant buildup on roads differs 
with different surface roughness or traffic characteristics. Especially, heavy metal 
buildup was observed to be more related to traffic congestion instead of traffic 
volume. The impact of antecedent dry weather period is however controversially 
presented in the literature. While several studies reported a significant impact 
(Miguntanna et al. 2010, Murphy et al. 2015, Shen et al. 2016), others found only 
a weak influence (Deletic and Orr 2005, Helmreich et al. 2010, Leutnant et al. 
2016). Relevant processes suppressing pollutant buildup on urbanized surfaces 
are street sweeping, wind and air turbulences. However, effectiveness of street 
sweeping depends on frequency and method applied (Bender and Terstriep 
1984). 
 
Pollutant washoff is mostly influenced by rainfall characteristics such as intensity 
(Shen et al. 2016) and duration (Liu et al. 2012). In recent years, researchers 
used rainfall simulation to get a more in-depth understanding of the washoff pro-
cess. Rainfall simulators were originally developed to analyse soil erosion and 
infiltration (Iserloh et al. 2012). For example, an Australian study used simulated 
rainfall to evaluate the effect of rainfall intensity, surface slope and texture (Ego-
dawatta et al. 2007). Their study highlights that rainfall has only a specific capa-
city to mobilise a fraction of pollutants available on surface. Based on their fin-
dings they introduce the capacity factor (CF), reflecting the kinetic energy of rain-
fall and the turbulence in overland flow induced. It is further noted that high inten-
sity rainfall events are able to mobilise coarser particles due to the injection of 
high turbulence. Default values for CF as function of rainfall intensity are given 
for three intensity classes. 
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A portable rainfall simulator configuration equipped with continuous flow and tur-
bidity measurements was used on three sidewalks in the Paris region (Al Ali et 
al. 2017). Their application used a constant intensity of 120mm h-1 and demonst-
rated that especially fine (<16µm) to medium-sized (<100µm) particles are 
conveyed by surface runoff. It is also shown that smooth surfaces support particle 
transportation and that residual particles still remain after an event although the 
intensity was of high intense.  
Muthusamy et al. (2018) conducted an experiment in which the influences of pa-
rameters i) rainfall intensity, ii) surface slope and iii) initial load were systemati-
cally investigated. They observed an increased washoff with increasing slope and 
rainfall intensity. It has been seen that only a fraction of available masses was 
completely washed-off, confirming previous studies. However, the maximum frac-
tion that can be washed off from the surface increases with both rainfall intensity 
and the surface slope.  

1.1.3 Modelling stormwater quality 

Stormwater quality models are essential tools to support planning of urban water 
infrastructure. They are mainly used to evaluate emissions of pollutants from an 
urbanized environment which in turn affects stormwater management strategies 
and consequently the design of treatment devices. Having reliable model outputs 
is therefore of high relevance since infrastructural stormwater measures are cost-
intensive and have a long service life. However, available stormwater quality mo-
dels still replicate natural pollutant processes in a simplified manner, which in turn 
lead to uncertain model results (Dotto et al. 2011, 2009). 
Stormwater quality models commonly differentiate the two conceptional phases 
i) buildup and ii) washoff (cf. 1.1.2) which both are deterministically described by 
empirical formula developed in the early 1970s (Sartor and Boyd 1972). In prin-
ciple, this model concept assumes that the amount of pollutant masses at surface 
generally increases to a maximum as a function of antecedent dry weather peri-
ods and decreases in consequence of rainfall/runoff. 
Previous studies however demonstrated the inadequacy of this simplified concept 
to continuously model pollutant concentrations. Muschalla et al. (2008) calibrated 
a buildup/washoff approach of a stormwater quality model to simulate chemical 
oxygen demand (COD) concentrations in stormwater discharges by means of a 
multi-objective auto-calibration scheme. Results obtained did not outperform a 
model employing a constant stormwater concentration approach. Sage et al. 
(2015) applied a bayesian calibration scheme based on Markov chain Monte-
Carlo (MCMC) method to assess the build/washoff model performance to repli-
cate continuous total suspended solid (TSS) concentrations and event loads. The 
authors confirmed the poor predictive power of the model applied and generally 
questioned the buildup/washoff approach. 
Bonhomme and Petrucci (2017) indicate that pollutant models and its parameters 
lack of a physical meaning and thus represent rather black-box models. In fact, 
numerous authors propose a modified washoff equation to appropriately account 
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for rainfall characteristics. Egodawatta et al. (2007) and Muthusamy  et al. (2018) 
for example suggest a capacity factor to reflect the impact of rainfall intensity and 
that only a fraction of pollutants are mobilized during storm events (cf. 1.1.2). Both 
rainfall intensity and a ratio of sediment mass per unit catchment area to rainfall 
intensity are also considered in a modification suggested by Zhao et al. (2015). 
Besides the sensitivity of rainfall intensity on the washoff process, Alias et al. 
(2014) highlights the intra-event variability of rainfall as another influential factor. 
Obviously, washoff is also influenced by particle characteristics and environmen-
tal variables such as surface type and land use as pointed out by Egodawatta et 
al. (2007) and Zhao et al. (2018). 
 
Recent model developments have shown that physically-based washoff models 
are outperforming long-existing conceptual models. For example, Shaw et al. 
(2006) developed a saltation-type washoff model from laboratory experiments. 
Being mainly adapted from soil erosion research, the model detaches particles 
proportional to rainfall intensity and masses available at surface. Hong et al. 
(2016b) modelled the washoff process of a small road near Paris using a model 
system coupling the shallow water equations for overland flow and the Hairsine-
Rose model for sediment detachment and transport (Delestre et al. 2017, Le et 
al. 2015). Results for water quantity and quality indicated a well agreement with 
in-situ observations. However, as a significant amount of input data is required 
and the simulation is computational expensive, the authors point out that the me-
thod proposed is currently not suitable for large urban catchments. 
 
While a more physically-based description of rainfall induced washoff which also 
appropriately respects environmental and surface conditions would clearly im-
prove representativity of model outputs, both pollutant buildup and washoff are 
significantly affected by stochastic inputs (Shaw et al. 2010) which in turn can 
hardly be predicted. As a consequence, Sage et al. (2015) stress the need for an 
alternative modelling approach, which also incorporates effects of stochasticity 
on pollutant buildup and washoff. This aligns with Harremoës (1988) who already 
claimed to respect stochasticity when using stormwater quality data. 
 
Calibration of stormwater quality models conventionally aims to minimize the dif-
ference between observed and simulated pollutographs (Niazi et al. 2017). While 
this allows to incorporate intra-event variability, pollutant stochasticity is rarely 
taken into account as goodness-of-fit is generally calculated event-specific. 
 
Several studies in the past decades respected probabilistic pollutant characteris-
tics. Scholz (1995) applied an autoregressive moving-average modelling ap-
proach for both continuously buildup and washoff of pollutant concentrations to 
account for unpredictable environmental impacts. However, the approach could 
not be appropriately calibrated because of lack of data. Motivated by unavailable 
urban storm runoff quality data, Osman Akan (1988) analytically derived a fre-
quency distribution to predict annual solids washoff from impervious urban areas. 
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His concept takes rainfall characteristics and catchment parameters for buildup 
and washoff into account and is exemplified for an artificial industrial catchment. 
Due to lack of data, the approach could also not be validated. A probabilistic ap-
proach to model TSS loads and dynamics of urban areas has also been proposed 
by Rossi et al. (2005). Their concept uses i) a parameterized power function to 
approximate intra-event TSS dynamics with normal distributed exponent ii) log-
normal distributed event mean concentrations (EMC) to estimate total TSS mas-
ses per event and iii) a uniform distributed daily wastewater discharge combined 
with a constant TSS concentration. While the practical benefit of the model is 
clearly highlighted, the authors point out the simplified process description and 
its limited predictive power. Chen and Adams (2007) introduce a general proba-
bility distribution approach in which cumulated distribution functions for pollutant 
loads and event mean concentrations are obtained from probabilistic rainfall-run-
off transformation. Sharifi et al. (2011) performed Monte-Carlo simulations and 
used corresponding results to assess the effects of stormwater best management 
practices on water quality for six toxic metals. As Rossi et al. (2005) they also 
assumed a power law relationship between runoff and pollutant concentrations 
during an event. However, they stochastically considered the exponent of the 
used power equation for the intra-event relationship, which in turn led to a large 
amount of pollutographs to be analyzed. 
A refinement of the exponential washoff equation by incorporating stochastic fluc-
tuations is analyzed by Daly et al. (2014). Here, the coefficient dominating the 
washoff process is assumed to be random and consequently addressed by ad-
ding gaussian noise. A good agreement to empirical distributions for TSS and TN 
(Total Nitrogen) is reported, which required large amount of data, though. Qin et 
al. (2013) obtained frequency distributions of i) event pollutant load, ii) event 
mean concentration and iii) peak concentration of COD from a continuous simu-
lation of an urbanized catchment. Exponential equations for buildup and washoff 
were employed and calibrated with regard to continuous COD concentration 
measurement data using a genetic algorithm. It is however mentioned, that the 
predictive power is limited because the study site undergoes further develop-
ments. Annual loads for micropollutants have been estimated based on theoreti-
cal distribution functions of event mean concentration for three residential catch-
ments by Hannouche et al. (2017). 

1.2 Research gap 

Stormwater quality models are known to be far from being reliable (Francey et al. 
2010). The predictive capability of available stormwater quality models to repli-
cate pollutographs is inferior to hydrographs (Niazi et al. 2017). Improving quality 
models is crucial to produce more reliable model results. In this respect, in-depth 
knowledge of processes is a key requirement which consequently demands mea-
surement data.  
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In recent years much effort has been spent to investigate the influence of mete-
orological influences and catchment characteristics on stormwater quality based 
on samples at small sites (Alias et al. 2014, Egodawatta et al. 2012, Liu et al. 
2013). Samples support the assessment of stormwater quality and the estimation 
of pollutant loads. However, due to low sampling frequency, intra-event dynamics 
are hardly revealed. 
In this respect, the development of advanced on-line monitoring techniques in the 
past two decades allows both researchers and practitioners to get more insights 
of stormwater pollutant processes. High resolution online data supports the ana-
lysis of environmental, temporal and spatial influences on flushing characteristics 
of e.g. the parameter total suspended solids (TSS). Continuous signals of UV-Vis 
spectrometers or turbidity sensors are frequently used to study intra-event pollu-
tant processes and to estimate event loads or event mean concentrations (Ber-
trand-Krajewski et al. 1998, Bertrand-Krajewski 2004, Caradot et al. 2015, Di Mo-
dugno et al. 2015, Gruber et al. 2004, Métadier and Bertrand-Krajewski 2012, 
Sun et al. 2015). Studies which employed on-line techniques generally presented 
heterogeneous data indicated by significant variability of pollutographs. This evi-
dently demonstrates the complex nature of pollutant processes (Métadier and 
Bertrand-Krajewski 2012). However, it has not been investigated whether the pro-
cess variability is also significant for small sites. It is believed that monitoring at 
small urban environments is required to isolate relevant pollutant processes and 
to reduce interfering influences of catchment size and environment. Conse-
quently, applying continuous on-line monitoring techniques to monitor small sites 
creates a novel opportunity to study pollutant process at small sites.  
Furthermore, stormwater pollutant processes are affected by stochastic in-
fluences which have to be considered (Shaw et al. 2010). As available models 
show poor performance to replicate long-term pollutant processes, alternative 
model approaches are required (Sage et al. 2015). The literature review of storm-
water quality modelling (section 1.1.3) shows various approaches to take 
stochasticity of pollutant processes into account. While early studies primarily 
used probabilistic methods to overcome scarcity of stormwater quality data, re-
cent studies using continuous quality data tend to admit the variability of natural 
pollutant processes by employing stochastic concepts. With regard to continuous 
long-term stormwater quality simulations, alternative modelling approaches 
presented incorporate stochasticity through i) probabilistic description and trans-
formation of model input data (rainfall-runoff), ii) modification of empirical pollu-
tant buildup/washoff equations, iii) distribution-based parameterization of intra-
event dynamics and iv) probabilistic analysis of model results after calibration 
(post-processing). 
It has however not been investigated, whether available stormwater quality mo-
dels can be calibrated towards probabilistic pollutant characteristics. Using a dis-
tribution-based calibration proposes an additional alternative to incorporate pol-
lutant stochasticity. In contrast to approaches already introduced, this method 
maintains existing model concepts and avoids expensive post-processing. 
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This however requires sufficient stormwater quality data, especially of event 
loads and concentration. 
 
This work fundamentally aims towards new insights of stormwater quality proces-
ses and modelling which in turn improves urban stormwater management. Rese-
arch questions identified address i) application of continuous online monitoring 
techniques at small sites, ii) process analyses using high resolution online data 
and iii) modelling with respect of natural pollutant stochasticity. 

1.3 Objectives 

According to the research gap identified in section 1.2, the main objective of this 
thesis is to develop a general applicable methodology to increase reliability of 
stormwater quality models.  
High-resolution online data of stormwater quality are prerequisite and thus col-
lected at common urban environments such as i) flat roof (FR), ii) parking lot (PL), 
iii) residential catchment (RC) and iv) high traffic street (HT). Compact monitoring 
stations equipped with quality probes and peripheral hardware are developed and 
locally installed. An innovative data management system is implemented to guar-
antee high-quality data. Data are subjected to extensive statistical analysis to 
assess correlations of environmental conditions and stormwater quality. Proba-
bilistic analyses are conducted to respect random pollutant processes, primarily 
for the parameter total suspended solids (TSS). Parameters of the deterministic 
stormwater quality model SWMM are innovatively calibrated to account for pollu-
tant stochasticity. 
 
The first paper (Paper I, Leutnant et al. (2016)) introduces the experimental sites 
selected including the monitoring devices and sampling setup employed. Results 
of the long-term monitoring program and of the statistical analysis are given. Intra-
event pollutant processes are described with Mass-Volume-Curves with respect 
to experimental site and season. 
The second paper (Paper II, Leutnant et al. (2018c)) investigates the data further 
by means of probabilistic analysis. Theoretical distribution functions are fitted to 
approximate site-specific TSS event loads. Goodness-of-fit is assessed for both 
the entire event data, yearly grouped events and randomized sampled events to 
evaluate sensitivity and representativity of data acquired. 
Paper III (Leutnant et al. 2018a) shortly communicates on an R package to sup-
port modelling with SWMM. The package fundamentally prepares Paper IV 
(Leutnant et al. 2018b) to allow for rapid and flexible prototyping of new model 
calibration schemes and assessment methods.  
Finally, the fourth paper (Paper IV, Leutnant et al. (2018b)) presents an innova-
tive distribution-based calibration approach for urban stormwater quality models. 
Its application is exemplified at the two experimental sites i) flat roof and ii) park-
ing lot. Benefits, limits and requirements of the developed methodology are dis-
cussed. 
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More specifically, the objectives of this dissertation are to 
 
(i) develop and install monitoring stations to continuously observe stormwater 

runoff quality at small urban environments 

(ii) analyse environmental, climatic and anthropologic impacts on the pollutant 
processes using continuous turbidity measurement data 

(iii) evaluate pollutant characteristics with probabilistic methods 

(iv) develop a stormwater runoff quality modelling approach which accounts for 
natural stochasticity 

(v) apply and validate the modelling approach with measurement data from the 
experimental sites 
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2 Experimental sites and monitoring setup2 

Chapter 2 introduces the experimental sites used to collect stormwater quality 
measurement data. Monitoring techniques, sampling setup and the developed 
measurement data management system are presented. 

2.1 Experimental sites 

A meaningful analysis of stormwater quality processes accumulation and washoff 
requires the selection of representative experimental sites. Relevant urban envi-
ronments can be classified into i) roofs, ii) roads and iii) residential catchments. 
To identify possible sites for each class, spatial information of the city of Muenster 
and sewer system data were queried by means of geographic information system 
(GIS). The following seven criteria were defined and checked: 
 
1. The catchment must be representative with respect to urban characteristics 

and pollutant loads (e.g. catchments with construction sites need to be 
excluded as they contribute unpredictable loads of contaminants). 

2. The catchment must be drained with separated sewers with no additional in-
filtration water to specifically measure stormwater quality.  

3. The catchment size should not exceed approx. 10 ha to isolate relevant pro-
cesses and to minimize unknown process interferences. 

4. The catchment should be in close proximity to the institute as logistical ex-
penditures are required to be minimized. 

5. Power and water supply is available. 
6. Accessibility to sewer must be safe and simple. 
7. Discharge measurement is free of interference and no backwater occurs. 

 
After potential locations were GIS-based determined, each site was individually 
assessed by in-situ inspections. Criteria accessibility and discharge measure-
ment were particularly restrictive since many sewers were not safely accessible 
or reliable flow measurements could not be installed. As a result, four sites were 
identified to reliable measure stormwater runoff and quality continuously. 
 
The experimental sites selected are (i) a 50 m2 flat roof (FR); (ii) a parking lot (PL) 
with approx. 2,350 m2 and 78 parking spaces; (iii) a 9.4 ha residential catchment 
(RC) in a suburb of Muenster, Germany (separate sewer system); and (iv) a high-
traffic (HT) street in the center of Muenster (2.5 ha, 30,000 vehicles per day).  
The roof is covered with bitumen sheeting and has an average slope of 2%. Run-
off is drained via a downpipe with a nominal diameter of DN 110, whose inlet is 
arranged in the corner area. Surfaces of the parking lot are asphalt (55%), porous 
pavement (40%, 8% thereof being joints) and small vegetated pervious areas 
(5%) which do not contribute to runoff. The impervious area has a slope of 2.5%. 
Stormwater runoff is discharged via a DN 300 concrete sewer. The residential 
catchment consists of streets (25%), flat and steep roofs (25%), and pervious 

                                            
2 This chapter is partly composed of paragraphs from Leutnant et al. (2016) 
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area (50%). At site HT surfaces mainly consist of asphalt (60%), porous pave-
ment (10%, 8% thereof being joints), flat and steep roofs (25%), and discon-
nected pervious area (5%). Figure 2-1 shows the location of experimental sites 
used in this thesis.  
 

 
Figure 2-1. Location of experimental sites Flat Roof (FR), Parking Lot (PL), Resi-

dential Catchment (RC) and High Traffic Street (HT) in the City of 
Muenster, North Rhine-Westphalia, Germany. 
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2.2 Monitoring and sampling setup 

Individual rain gauges of type Pluvio2 (OTT) are directly installed at FR, PL, and 
RC. Rainfall data from FR is also used for HT, being 2 km off FR. Runoff at FR 
runs from a downpipe into a horizontal measurement pipe (63 mm, PVC) in which 
an electromagnetic flowmeter (Promag50W25, Endress + Hauser) and quality 
sensors for turbidity, electrical conductivity, and pH (VisoTurb700IQ, Tetra-
Con700IQ, and SensoLyt700IQ, WTW) are installed (Figure 2-2). Samples are 
taken from the measurement pipe with an automatic sampler (vacuum sampler 
ASP Station, Endress + Hauser). Sampling begins if runoff is above 0.03 L/s and 
repeats every 10 min. Each sample consists of five subsamples of about 200 mL. 
The capacity of the automatic sampler is 12 samples.  
 

 
Figure 2-2. Installation of monitoring devices at site FR 

The control section at PL is a 300 mm circular concrete pipe (length 55 m, slope 
1.8%). Runoff is calculated from measured water level by the Manning-Strickler-
equation because of uniform flow conditions and no backwater effects. Manning’s 
roughness coefficient n was experimentally determined with artificial inflows and 
ranges between 0.015 and 0.017. At RC and HT runoff is calculated from mean 
flow velocity and water level (POA, NIVUS). The control section at RC is a 900 
mm circular concrete pipe (length 46 m, slope 1.8%). Manning’s roughness coef-
ficient n was also identified with artificial inflows and is about 0.0105. At HT, flow 
sensors are installed in a 500 mm circular concrete pipe (length 30 m, slope 
0.6%). 
In contrast to FR, quality sensors at PL, RC, and HT are integrated in a horizontal 
measurement pipe (63 mm, PVC, length: 1.5 m) of an external monitoring station 
(Figure 2-3 and Figure 2-4). In case of an event, stormwater is pumped to the 
measurement pipe by a peristaltic pump (Delasco 2Z3, PCM) through a hose (20 
mm, PVC) whose orifice is fixed in the middle of the stormwater pipe 1.5 cm 
above the ground (Figure 2-4). 
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The suction velocity in the hose is about 1.5 m s-1 with a corresponding flow of 
approx. 0.5 L s-1. Stormwater flows with approx. 0.18 m/s through the measure-
ment pipe and is later discharged to the sewer. At these sites, the sampling pro-
gram starts if the water level in the stormwater pipe exceeds 1.5 cm. Samples of 
all sites are tested for total suspended solid (TSS) concentrations based on a 
standard method given in (US-EPA 1971), and fine solids less than 63 µm 
(TSS63) according to the protocol given in Dierschke and Welker (2015). 
 

 
Figure 2-3. Schematic overview of the monitoring station developed (Leutnant 

et al. 2016). 
 

  
 
Figure 2-4. Installation of suction hose and flow meter in separated sewers (left) 

and compact monitoring station for urban stormwater runoff (right). 
Runoff is pumped by a peristaltic pump from the sewer into a meas-
urement pipe equipped with quality sensors. 
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2.3 Data management 

Monitoring urban stormwater quality include manifold, heterogeneous and spa-
tially distributed data sources. Commonly, high-resolution online sensors and sig-
nal processing technologies are applied which have led to an increased amount 
of environmental data. This consequently requires an appropriate Information 
Technology (IT) infrastructure. Typically, this is defined and covered by core func-
tions of Supervisory Control and Data Acquisition (SCADA) systems available 
(Campisano et al. 2013). However, available systems are mostly proprietary, 
cost-intensive and require a case-specific customization. Moreover, the use of 
different systems for data acquisition and provision for further analysis, such as 
time series analysis, validation or visualization, eventually lead to complex work 
flows and thus is prone to errors. In this respect, the open source language and 
environment for statistical computing R (R Core Team 2018) is becoming vastly 
popular for data management or visualization tasks. Its functions can easily be 
extended due to its flexible package-oriented concept. Using R for urban drain-
age data acquisition and further processing is seen to be an efficient alternative 
to address data challenges. 
 
In this thesis, data of all monitoring stations were automatically processed and 
quality controlled with the Online Supervisory Control and Urban Drainage Data 
Acquisition system with R (OSCAR) (Leutnant et al. 2015). Applying an auto-
mated data processing system greatly reduces data maintenance costs and sig-
nals eventual errors or malfunctions promptly. As this thesis heavily relies on high 
quality data, a supportive data management and provision system is of high rel-
evance. In fact, the amount of data to be analyzed is considerable which high-
lights the importance of an adequate data analysis environment. 
All sensor signals were logged with a 1 min frequency. High-resolution online 
runoff and quality data is available for approx. 2.5 years for sites FR and RC, 1.5 
years for PL, and 0.5 years HT, respectively (Table 2-1). 
 
Table 2-1. Site-specific time range of stormwater quality measurement data ac-

quired 

site 
measurement data range 

from (yyyy-mm) to (yyyy-mm) years 

FR 2013-03 2015-11 2.5 

PL 2013-05 2014-11 1.5 

RC 2013-07 2015-11 2.5 

HT 2015-10 2016-03 0.5 
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3 Methodology 

The following chapter 3 presents the methods employed to address the objecti-
ves of this thesis. Initially, methods to prepare and analyse the measurement data 
are given. An extended probabilistic analysis concept is outlined. In addition, 
computational steps required are described. Furthermore, an alternative storm-
water quality model calibration approach is introduced. As the approach was pro-
totyped within the programming language R, the developed R package to auto-
calibrate the stormwater management model SWMM is illustrated. 

3.1 Analysis of monitoring data3 

3.1.1 Continuous TSS time series from turbidity data 

Total suspended solids (TSS) are a key parameter to assess emissions related 
to urban stormwater. Test methods to determine TSS concentrations in water 
samples are internationally standardized and approved (DIN 38409-2 1987, US-
EPA 1971). Testing water samples according to the standards is considered ele-
mentary but requires substantial financial and labor resources. Investigating 
stormwater pollutant processes implies sampling at high frequency as stormwater 
pollutant processes are known to be highly dynamic. This in turn would lead to 
immense analytical costs as a high number of samples would be subjected to 
analysis. 
Advanced online monitoring techniques have been developed and applied in the 
past two decades which allows both researchers and practitioners to get more 
insights of stormwater pollutant processes. In contrast to sampling, online sen-
sors provide continuous signals and thus allow an analysis based on high reso-
lution. With respect to the quality parameter TSS, UV-Vis spectrometers (Caradot 
et al. 2015, 2013, Gruber et al. 2004) or turbidity sensors (Bertrand-Krajewski 
2004, Deletic 1998, Lacour et al. 2009a, Leutnant et al. 2016, Métadier and Ber-
trand-Krajewski 2012) are frequently used as surrogate. This means, the signal 
monitored needs to be converted by an appropriate correlation function to obtain 
the parameter of interest (“equivalent parameter”). Correlation functions are 
strongly dependent on the water matrix and need to be site-specifically estimated 
(Métadier and Bertrand-Krajewski 2012). 
To obtain correlation functions, turbidity of selected samples was measured be-
fore TSS analysis. Initially, this has been conducted in the original sample bottle 
(PE, squared base, slightly transparent). Due to significant variance of the meas-
ured turbidity, a black cylindrical PE-HD bottle (diameter 10.8 cm, height 18.1 cm) 
has been used later. While measuring the turbidity, the sample is homogenized 
with a magnetic stirrer at 450 rpm. The five-minute mean of the turbidity is rec-
orded and assigned to the TSS concentration. Calibration of turbidity probes was 
conducted with formazine primary standard solutions. TSS concentrations and 

                                            
3 This section is partly composed of paragraphs from Leutnant et al. (2016) 



Methodology 18 

the corresponding turbidity values were subjected to correlation analysis. Result-
ing linear regression equations are used to create continuous TSS time series 
from raw turbidity signals. It is to be noted, that the process of converting turbidity 
to TSS concentration introduces uncertainties which are thoroughly discussed in 
the literature (Bertrand-Krajewski 2004, Hannouche et al. 2011, Lepot et al. 
2013). 

3.1.2 Rainfall event definition 

Site-specifically acquired rainfall time series (Table 2-1) are used to extract rele-
vant rainfall events. An event is considered relevant if the minimum rainfall depth 
H exceeds 2 mm and maximum rainfall intensity in 60 minutes Imax60 exceeds 2.5 
mm h-1. Rainfall events below these criteria usually do not contribute to relevant 
runoff. Missing values in either runoff or turbidity data caused an event to be ex-
cluded. 

3.1.3 Calculation of runoff and TSS event characteristics 

Based on continuous runoff and TSS time series, event volumes (Vol), event 
loads (loads), and event mean concentrations (EMC) are calculated according to 
Equations 3-1 - 3-3 for the events selected. 
 

Event volume (m3): !"# = 	∑ '(∆*+(,-  3-1 

Event load (kg): ."/0 = ∑ '(1(∆*+(,-  3-2 

Event mean concentration (mg L-1): 231 = 	 4567859  3-3 

where i = index of time series, n = number of data points of an event, Qi = runoff at index i, Δt = 
time interval (i.e., 1 min), and Ci = TSS concentration at index i. 

3.1.4 Correlation analysis 

To investigate the correlation of different event characteristics on TSS event load, 
Pearson's empirical correlation coefficient is used. It is calculated according to 
Equation 3-4 and compares the empirical covariance to the root of the product of 
the standard deviations. However, it should be noted that the correlation coeffi-
cient only describes linearity between two variables. Nonlinear relationships can-
not be identified. 
 

correlation	coeefficient	(−):	r	 = H (I( − I̅)(K( − KL)M
N,-

O∑ (IN − xL)QM
N,- ∑ (KN − yL)QM

N,-
 3-4 

where K = observation of variable y, I = observation of variable x, KL = mean of observation of 
variable y, I̅ = mean of observation of variable x. 
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3.1.5 Analysis of TSS intra-event dynamics 

Intra-event distributions of TSS loads are examined by means of mass-volume-
curves (MV-curves) (Bertrand-Krajewski et al. 1998, Geiger 1987). MV-curves 
describe the proportion of transported mass at a given runoff volume proportion. 
This method is usually used to visualize transported mass proportions and to an-
alyze the first-flush phenomenon. Knowledge of catchment-specific first-flush 
characteristics is crucial to design cost-effective treatment or storage structures. 
However, MV-curves tend to be site-specific and vary greatly from event to event 
(Métadier and Bertrand-Krajewski 2012). Aggregation of similar MV-curves is 
therefore required to extract relevant information. Lacour et al. (2009b) for exam-
ple, divide MV-curves in three different zones to classify similar events. Zone A 
contains curves with a dominant first-flush effect, while curves in Zone C tend to 
be more last-flush affected. Curves in Zone B are near the bisecting line and 
show a runoff-proportional mass transport. 
This thesis also uses MV-curves to characterize the two types of wash-off pro-
cess, namely source-limited and transport-limited wash-off (Bai and Li 2013, 
Zhao et al. 2016). Source-limited runoff events have, in general, sufficient energy 
to wash off all available particles on the surface. This occurs if either mass on 
surface is rather limited or the kinetic energy of rainfall/runoff is high enough. 
Transport-limited events are not able to completely remove available masses. 
Typically, these events occur either if the available masses are adequately high 
or the kinetic energy of runoff is insufficient. MV-curves are calculated for the four 
study sites and compared. A seasonal differentiation is conducted. Instead of us-
ing zones to classify MV-curves, boxplots of the transported mass proportions 
are created at runoff volume quantiles. With calculated and visualized interquar-
tile ranges (IQR), the event variability and main wash-off trends can be observed 
and characterized. 

3.2 Probabilistic modelling of TSS event loads4 

3.2.1 Theoretical distribution functions 

Site-specific distributions of empirical TSS event loads are derived and used to 
approximate theoretical distribution functions given in Table 3-1. For this purpose, 
distribution functions of type i) Exponential, ii) Gamma, iii) Lognormal and iv) 
Weibull are selected, as they closely correspond to observed distributions. In par-
ticular, these functions are only defined for positive values (x > 0) so that they 
inherently reflect one of the main characteristics of the empirical data. Addition-
ally, parameters of the theoretical distribution functions are listed in the table. 
While the Exponential distribution has only one parameter, the Gamma, Lognor-
mal and Weibull distributions offer two parameters to be estimated. 
 

                                            
4 This section is partly composed of paragraphs from Leutnant et al. (2018c) 
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Table 3-1. Theoretical distribution functions (Leutnant et al. 2018c)  

name (abbreviation) formula parameter 

Exponential (exp) S(I) = T 0, I ≤ 0
1 − YZ[\, I > 0 a (rate) 

Gamma (gamma) S(I) = ^
0, I ≤ 0

_`
Γ(b) × d *`Z-

\

e
YZfg0*	, I > 0 p (shape), b (rate) 

Lognormal (lnorm) S(I) = ^
0, I ≤ 0

1
h√2k ×d

1
* Y

Z-Ql
9+ gZ	m
n o0*

\

e
, I > 0 µ (meanlog), 

s (sdlog) 

Weibull (weibull) S(I) = p 0, I ≤ 0
1 − YZ[\q, I > 0 a (scale), b (shape) 

 
To fit theoretical distribution functions to an empirical distribution, distribution pa-
rameters need to be optimized. In this thesis, parameters are estimated by max-
imum likelihood method (exact standard error model: µ = 0, s = 1) because this 
also enables to analyse the standard error of estimated parameter. The likelihood 
function in general can be stated as follows (Equation 3-5): 

ℒ(s) = t(I-, IQ,… , I+|	s) = 	wt(I(|s)
+

(,-
 3-5 

 with xi the n observation of variable X (i.e., TSS event loads) and f(×|q) the density func-
tion of the theoretical distribution function used. Parameters to be optimized are denoted by q. 
 
Since computation of likelihoods could result in very small numbers which may 
cause numerical precision problems, the logarithm of likelihoods (LL) is taken 
instead. Fitting of theoretical distribution functions and numerical goodness-of-fit 
computations were utilized with R (R Core Team 2018) and the package fitdis-
trplus (Delignette-Muller and Dutang 2015). Once optimal parameters are esti-
mated, the goodness-of-fit is evaluated by Kolmogorov-Smirnov (KS) and Ander-
son-Darling (AD) test statistics which are calculated according to Equations 3-6 
and 3-7 given in Table 3-2. 
 
Table 3-2. Goodness-of-fit statistics used to evaluate the fitting (Fn denotes the 

empirical distribution function, F represents the fitted theoretical distri-
bution function, sup abbreviates supremum which indicates the least 
element of x that is greater than or equal to all elements of x (“least up-
per bound”)) (Leutnant et al. 2018c). 

statistic (abbreviation) Formula  

Kolmogorov-Smirnov (KS) x+ = 	 yzbI 	|S+(I) − S(I)| 3-6 

Anderson-Darling (AD) {Q = |	d }S+(I) − S(I)~Q
S(I)}1 − S(I)~

�

Z�
0S(I) 3-7 
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In general, both tests are used to test whether a sample follows a specific distri-
bution by calculating the maximum distance between empirical and theoretical 
distribution function. This means smaller test statistics indicate a lower numerical 
distance to the distribution analyzed. The AD test refines the KS test and gives 
more weight to the distribution tails. The tests are applied to decide whether the 
null hypothesis H0 “The sample follows a specified distribution” can be accepted 
or must be rejected at a specified significance level. Alternatively, hypothesis HA 
is defined as “the sample does not follow a specified distribution”. Critical values 
for the acceptance decision of the KS test are calculated according to Equation 
3-8 for sample sizes > 35. For sample sizes below 35, critical values are obtained 
from Hedderich and Sachs (2012). 
 

0[ = 	Ä
Ze.Ç	ÉM	(ÑÖ)

√+ , for n > 35 3-8 

with sampling size n and significance level a. 

3.2.2 Monte-Carlo resampling to determine minimum sample size 

A Monte-Carlo simulation based resampling strategy without replacement has 
been conducted to analyse the effect of different sample sizes on the quality of 
distribution fitting. Motivated by the idea to determine a minimum sample size 
required, the computational steps are as follows: 
 
1. Estimating parameters of lognormal distribution function by maximum like-

lihood taking all samples into account. 
2. Sampling k (Ü ∈ ℕ, 0	 < Ü	 ≤ |) events from all events n with 1000 repetiti-

ons. If less than 1000 repetitions are possible, all possible combinations are 
taken into account (Equation 3-9). 

äYbY*ã*ã"|y = 3åç él|Üo , 1000è 3-9 

with population n and sample size k. 
 
3. Computing of KS distance between empirical cumulative distribution function 

of sample and theoretical distribution function with estimated parameters for 
all repetitions. 

4. Computing of mean, standard deviations of KS distances for all repetitions. 
 
The results are then interpreted and visually compared to the critical values for 
the Kolmogorov-Smirnov test statistic at 90 % significance level. 
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3.3 Software environment for model calibration5 

Calibration of stormwater quality models by means of an optimization algorithm 
is considered computational expensive as numerous simulation runs need to be 
executed. Having an efficient and flexible software environment is required to 
configure and control the optimization task. For calibrating the stormwater quality 
model SWMM, both commercial (cf. Niazi et al. 2017) and free software are avail-
able (Henrichs 2015). However, implementing user defined objective functions is 
limited. In addition, depending on simulation duration and time step, the size of 
model output files is potentially huge. An efficient processing of simulation results 
can be addressed with modern computer architectures and programming lan-
guages. In this respect, the free software environment for statistical computing 
and graphics R (R Core Team 2018) is frequently used by both scientists and 
engineers. Since R’s capabilities can be extended by packages containing arbi-
trary functions, the development of alternative algorithms is promoted. In fact, a 
huge variety of add-on packages is already available which could be employed 
to address issues related to urban drainage modeling such as model parameter 
optimization (e.g. Ardia et al. 2016), visualization (Vanderkam et al. 2017, Wick-
ham 2016), time series management (Ryan and Ulrich 2017) or statistical analy-
sis. Consequently, the availability of these packages enables an efficient data 
management and supports modelling with SWMM.  
To bridge the gap between SWMM and R, the swmmr package (Leutnant et al. 
2018a) has been developed and used in this thesis. Core functions of the pack-
age comprise fast reading and writing of SWMM files, conversion between GIS 
data and the SWMM input file format as well as model data transformation to 
produce expressive visualization. 
 
At its core, the package relies on the tidy data concept (Wickham 2014) which is 
expressed through a set of harmonized packages sharing common data repre-
sentation principles (“tidyverse” - Wickham 2017). Although most tasks could 
have been addressed with base R6, packages from the “tidyverse” tend to simplify 
both the programming and the data analysis. For example, swmmr uses tibbles 
(Müller and Wickham 2017) instead of R’s build-in data.frame class to repre-
sent SWMM model sections. This becomes apparent in functions which parse 
SWMM text files, i.e. read_inp(), read_rpt() and read_lid_rpt() (Table 
3-3). Generally, these functions take the path to a corresponding SWMM file (*.inp 
or *.rpt) and parse its content to a named list of tibbles or a single tibble, 
respectively. 
 
read_inp() creates an object of class inp, whose list element names are iden-
tical to the names of SWMM input sections available in lower letters (e.g. options, 

                                            
5 This section is partly composed of paragraphs from Leutnant et al. (2018a) 
6 base R refers to a set of default packages which R is actually based upon without any additio-
nal packages loaded. 
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subcatchments). read_rpt() creates a named list of class rpt containing sum-
mary sections from the report file of SWMM (e.g. subcatchment_runoff_sum-
mary). While both of the aforementioned functions maintain the original SWMM 
file structure, read_lid_rpt() interprets text files from specific LID elements. A 
single tibble or index-based time series data of class xts object is returned 
accordingly. 
 
Reading simulation output data from the binary .out file is supported by 
read_out(). Because of the potentially huge size of .out data, the function de-
sign aims for fast data processing, enabled by embedded C++ code through Rcpp  
(Eddelbuettel and François 2011). Output data per system element and model 
variable is always represented as object of class xts and conveniently stored in 
a list environment.  
 
The function write_inp() writes an inp object to disk, which addresses cases 
where an inp object has been modified within R and changes need to be saved 
back to disk (e.g. model parameter calibration). Thus, it takes an existing inp 
object and creates a model file on disk which can be read and run by SWMM. 
A SWMM simulation run can be initiated from the R console with run_swmm() 
which takes the path to an .inp file and calls the SWMM executable with the re-
quired file paths as arguments. 
 
Moreover, swmmr uses the simple features class (“sf” - Pebesma 2018) to rep-
resent SWMM input sections with spatial reference (e.g. subcatchment). Conver-
sion of sections is supported with corresponding *_to_sf() functions. 
Based on the conversion of SWMM input sections to simple feature geometries, 
an inp object can be converted to the popular .shp file format with 
inp_to_files(). Additionally, .txt files containing simulation settings, storage 
and pumping curves are returned as well as files containing SWMM time series 
data. As a counterpart the function shp_to_inp() converts spatial data given in 
.shp files into an inp object. 
Information on simulation settings, rainfall time series etc. can be given in .txt files 
to complete the model data. While the conversion to sf objects already enables 
common spatial analysis of SWMM model data in R, this also allows using the 
plotting interface of ggplot2 through geom_sf(). 
 
The R package presented has been submitted to the Comprehensive R Archive 
Network (CRAN7) and can also be installed from GitHub8, where users might in-
spect or contribute to the code basis. In addition, the reader is referred to three 
package vignettes which explain how to auto-calibrate a SWMM model with 
swmmr or how to convert GIS and SWMM model data with swmmr. 

                                            
7 https://cran.r-project.org/package=swmmr 
8 https://github.com/dleutnant/swmmr 
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Table 3-3. Functions for the R environment provided by swmmr (modified from 
Leutnant et al. 2018a). 

Name Inputs Description 

run_swmm() paths of .inp, .rpt and .out file Initiate a SWMM run from the 
R console  

read_inp() path of .inp file Reads a SWMM model as 
list of tibbles (i.e. inp object)  

read_out() path of .out file 
Reads SWMM simulation re-
sults (time series) as list of 
xts objects 

read_rpt() path of .rpt file 
Reads SWMM simulation re-
sults (summary) as list of 
tibbles 

read_lid_rpt() path of LID report file Reads a SWMM LID Report 
File as tibble or xts object 

write_inp() inp object (optionally mod- 
ified) and filename 

Writes an inp file to disk 
which can be read and run 
by SWMM 

*_to_sf() inp object 

Converts SWMM objects as 
tibble with simple feature ge-
ometries (supported objects 
are junctions, links, orifices, 
out- falls, pumps, raingages, 
storages, subcatchments, 
weirs) 

inp_to_sf() inp object 
Converts an entire inp object 
as list of tibbles with simple 
feature geometries 

inp_to_files() inp object, model name and 
directory path  

Converts .inp to .shp and .txt 
files 

shp_to_inp() s. package manual Converts .shp files as list of 
tibbles (i.e. inp object) 
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3.4 Continuous modelling of stormwater quality9 

3.4.1 Stormwater management model SWMM 

In this thesis pollutant processes for buildup and washoff are modelled with the 
widely used exponential equations implemented in the stormwater management 
model SWMM5 (Rossman 2010). Buildup B(t) is mathematically described as 
function of antecedent dry weather days t (Equation 3-10). Pollutant washoff W(t) 
is expressed as function of current runoff rate q(t) and available masses on sur-
face B(t) (Equation 3-11). Both functions offer two individual parameters to be 
calibrated. Additionally, the initial buildup B0 at the beginning of simulation (t=0) 
needs to be estimated. Table 3-4 shows the parameter used for calibration. Cor-
responding parameter ranges were extracted from literature (Gamerith et al. 
2013, Sage et al. 2015) and harmonized with authors experience. 
 

ê(*) = Ü ∗ (1 − YZa∗g) 3-10 
 
with buildup coefficient k (g m-2), buildup exponent a (d-1), t denotes number of preceding dry 
weather days. 
 
 

í(*) = 1- ∗ ì(*)îÖ ∗ ê(*) 3-11 
 
with washoff coefficient C1 (-), washoff exponent C2 (-), runoff rate q (mm h-1), available pollutant 
masses on surface B (g m-2) and time index t. 
 

Table 3-4. Quality model parameter and corresponding ranges used for calibration 
(Leutnant et al. 2018b) 

parameter description unit range 

B0 masses available at the beginning of 
simulation (t = 0) g m-2 [1; 5] 

K maximum possible buildup g m-2 [0.0001; 2] 

a rate constant of buildup per day d-1 [0.0001; 0.2] 

C1 washoff coefficient - [0.0001; 1] 

C2 washoff exponent - [0.0001; 3] 

3.4.2 Concept of model calibration 

SWMM models are calibrated using a distribution-based approach. Instead of 
replicating single-event characteristics or pollutographs, the approach aims to mi-
nimize the difference between observed and simulated TSS event load distribu-
tion. Since observed TSS event load distributions can be well approximated with 
theoretical distribution functions (Leutnant et al. 2018c), the calibration uses a 
parameterized lognormal distribution as reference. 
The approach focuses probabilistic event load distribution and puts less empha-
size on intra-event dynamics. Model results are therefore required to be analyzed 

                                            
9 This section is partly composed of paragraphs from Leutnant et al. (2018b) 
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by means of Mass-Volume-Curves (MV-Curves) (Bertrand-Krajewski et al. 1998). 
Sites FR and PL are modelled only, as sufficient data to calibrate is available. 

3.4.3 Parameter estimation and goodness-of-fit assessment 

For both sites to be modelled, parameters affecting runoff generation and hydro-
graph characteristics are initially calibrated by means of the multi-objective algo-
rithm NSGA-2 (Deb et al. 2000). The algorithm allows to optimize multiple objec-
tives simultaneously and identifies pareto-optimal solutions from which a compro-
mise can be drawn. Here, a single objective is defined as an event-specific Nash-
Sutcliffe-Efficiency (NSE) (Nash and Sutcliffe 1970). 8 rainfall-runoff events were 
taken into account which consequently yields 8 objectives to be optimized. The 
compromise solution follows the L2-metric (Deb 2008) which calculates the eu-
clidean distance of all pareto-optimal solutions to an ideal solution. The solution 
with smallest euclidean distance is considered as compromise. Model parame-
ters i) surface roughness, ii) depression storage and iii) characteristic width of the 
overland flow are considered for calibration. The calibration yielded an average 
event-specific NSE of 0.73 for site FR and 0.72 for site PL (results of water quan-
tity calibration are not further discussed in this thesis). 
 
Once optimized parameters of runoff calibration are estimated, model parameters 
for pollutant buildup and washoff (Table 3-4) are optimized. The calibration aim 
is to fit the simulated TSS event loads distribution to the parameterized lognormal 
distribution. For this purpose, the Kolmogorov-Smirnov (KS) statistic Dn which 
numerically describes the equality of two distributions and tests whether a sample 
follows a specific distribution (Hedderich and Sachs 2012) is used as objective 
function. This means the smaller the KS statistic Dn gets, the higher the good-
ness-of-fit of the calibration. The KS statistic ranges from 0 £ Dn £ 1. As this cali-
bration only considers a single objective, a single objective optimization algorithm 
is used. A differential evolution algorithm (Price et al. 2005) implemented by Ardia 
et al. (2016) is applied. The following computation steps are performed: 
 
1. Simulation with a new set of parameters generated by the optimization algo-

rithm. 
2. Determine and split events from simulation time series which satisfy selec-

tion criteria (Table 3-5). An event starts when runoff starts and ends if the 
maximum runoff within a predefined window is 0.  

3. Computation of runoff volume and TSS load per event. 
4. Selection of events which exceeds a minimum runoff volume (Table 3-5). 

This step is introduced because the small size of the catchments leads to a 
significant number of events with numerically low runoff volume which would 
result in disproportionately weights to these events. 

5. Computation of cumulative TSS event load distribution function for the 
events remaining. 

6. Computation of Kolmogorov-Smirnov Distance Dn according to Equation 3. 
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	 	x+ = 	 yzbI 	ïSñóòò(I) − S95ô+5öõ69(m,n)	(I)ï 3-12 
with FSWMM being the simulated cumulative TSS event load distribution function and 
Flognormal the site-specific parameterized lognormal distribution function. 
 

7. Repeat steps 1 – 7 to minimize Dn until convergence. 
 

Table 3-5. Summary of simulation period and rainfall-runoff event selection criteria  

 flat roof parking lot 

simulation duration (observation period) 2013/03 – 2015/11 2013/04 – 2014/10 

simulation duration (a) 2.7 1.6 

days with rainfall ³ 2 mm d-1 250 137 

event selection criteria   

event window (min) 480 

min. runoff volume (L) 19 (~0.4 percentile) 465 (~0.2 percentile) 

events selected (-) 224 107 

 
The goodness-of-fit of the calibrated stormwater quality model is numerically as-
sessed and visually evaluated through a direct comparison of the simulated dis-
tribution function and the parameterized lognormal distribution function for TSS 
event loads. Residuals of the simulated event loads and observed event loads 
are computed. Simulated intra-event dynamics are analyzed by means of Mass-
Volume-Curves (MV-Curves). 

3.4.4 Concept of model validation 

The calibration uses measurement data from site-specific stormwater quality ob-
servation period. Estimated parameters are expected to be valid beyond this pe-
riod. Model validation therefore uses all available rainfall data from the 5 years 
period (2013/03 – 2018/04). Equality of simulated TSS event load distributions 
from the 5 years period and the observation period are evaluated using Kolmo-
gorov-Smirnov’s distance KS DN (cf. Equation 3-6). 

3.4.5 Model parameter uncertainty analysis 

The differential evolution algorithm applied belongs to the class of genetic algo-
rithms which minimize an objective function by evolving a population of candidate 
solutions through successive generations (Ardia et al. 2016). In this study, the 
configuration of evolution strategy and mutating operators (crossover probability 
and differential weighting factor) follows the developers recommendations. How-
ever, the maximum number of iterations is set to 400 and the number of popula-
tion members (i.e. parameter sets per iteration) is set to 100, which result in 
40.000 simulation runs per model in total. For estimating model parameter uncer-
tainties, simulation results are divided into behavioral and non-behavioral groups. 
Parameter sets which yield to the best 20 % solutions are attributed behavioral 
and subjected to statistical analysis. 
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3.4.6 Estimation of annual TSS loads10 

The calibrated stormwater quality models are finally used to estimate annual TSS 
event loads and event mean concentrations originated from the study sites. An-
nual TSS event loads are estimated by considering all event loads from a moving 
window of 12 consecutive months to account for natural rainfall variability. Using 
the extended rainfall series, the simulation period comprises ~5 years with 62 
months which yields 50 (62 – 12) moving years. 

3.5 Summary of methods applied 

The methods applied in this thesis are visually summarized in Figure 3-1. Based 
on continous stormwater quality measurement data, event characteristics are in-
itially determined and characterized. TSS concentrations and event loads are cal-
culated and statistically analyzed. Afterwards, characteristics are probabilistically 
described and finally used for model calibration. 
 

 

Figure 3-1. Overview of methods used in this thesis

                                            
10 This section is partly composed of paragraphs from Leutnant et al. (2018b) 
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4 Results and discussion 

Chapter 4 presents results of this thesis. First, descriptive statistics of events ob-
served are discussed. Intra-event processes are interpreted by means of Mass-
Volume-Curves. Probabilistic TSS event load distributions are site-specifically in-
ferred. Results of the developed calibration approach are shown. Finally, simula-
ted annual loads for selected sites are given. 

4.1 Stormwater quality analysis11 

4.1.1 TSS sample statistics 

Table 4-1 summarizes TSS sample statistics at the four study sites. Statistics 
were also calculated for the dataset excluding outliers. Due to non-normality of 
the dataset, outliers are conservatively considered and defined as points beyond 
the mean ± four times the standard deviation. Mean and standard deviation are 
iteratively computed while potential outliers are excluded. 
 
At site FR, 193 samples were analyzed from 40 events. With the 0.75 percentile 
being 14.2 mg L-1, the flat roof clearly shows low TSS potential and distributions 
are similar to other findings (Dierschke and Welker 2013, Förster 1999, Kobencic 
2002). 
For site RC, 269 samples of 39 events were taken. The distribution of TSS con-
centration also reveals low TSS contribution. Compared to the results of Brom-
bach et al. (2005), values are lower than TSS concentrations of a separated 
sewer system in Germany. The mean value of 114.3 mg L-1 and the standard 
deviation of 339 mg L-1 indicates high variation. However, these statistics are 
strongly influenced by the maximum value of 3645 mg L-1. The 0.9 percentile 
being at 205 mg L-1 confirms this. 
140 samples from 38 events were analyzed for site PL. TSS concentration ranges 
from 7.3 mg L-1 to 1842 mg L-1, with the median at 170 mg L-1. 
At HT, 92 samples of 17 events were collected. Compared to other studies at 
high-trafficked streets (Helmreich et al. 2010), the TSS statistics are significantly 
lower. For example, the median of 77.4 mg L-1 is less than half as the median in 
their study (175 mg L-1). 
  

                                            
11 This chapter is partly composed of paragraphs from Leutnant et al. (2016)  
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Table 4-1. Site-specific TSS sample statistics (FR: flat roof, RC: residential catch-
ment, PL: parking lot, HT: high-traffic street) (Leutnant et al. 2016). 

Site 
Outlier 

excl. 
n Events 

TSS (mg L-1) 

Min 0.1-P 
0.25-

P 

Me-

dian 

0.75-

P 
0.9-P Max Mean Sd 

FR 
no 193 40 0.6 2 4 7 14 46 674 22 60 

yes 182 39 0.6 2 4 7 12 28 85 12 16 

             

RC 
no 269 39 1.4 6 10 21 73 205 3646 114 340 

yes 256 39 1.4 6 9 19 63 133 569 56 92 

             

PL 
no 140 38 7.3 20 59 169 335 551 1842 248 278 

yes 139 38 7.3 20 59 168 334 547 1189 237 244 

             

HT 
no 92 17 2.9 26 53 77 99 129 237 79 41 

yes no outliers detected 

4.1.2 Relationship between TSS and turbidity 

To create continuous TSS data from online turbidity data, correlation functions 
are determined. Due to the change of bottle type in which the turbidity was meas-
ured, correlation functions were established with only a subset of all samples pre-
sented in Table 4-2. The range of the sample subset is within the range of all 
samples with outliers being excluded. Only the maximum value at site RC is 
slightly higher (580.1 mg L-1 compared to 569.1 mg L-1) and therefore still used 
for analysis. Both linear and non-linear relationships were tested. Since non-lin-
ear functions did not significantly outperform linear functions, only linear regres-
sion coefficients are listed in Table 4-3. The goodness-of-fit of the linear regres-
sion is visually verified and numerically expressed by r-squared. With the lowest 
r-squared being at 0.68, all linear regression models show a good fit of the un-
derlying dataset. 
 
Table 4-2. Site-specific TSS sample statistics of samples used for turbidity correla-

tion (FR: flat roof, RC: residential catchment, PL: parking lot, HT: high-
traffic street) (Leutnant et al. 2016). 

Site n Events 
TSS (mg L-1) 

Min 0.1-Perc. 0.25-Perc. Median 0.75-Perc. 0.9-Perc. Max Mean Sd 

FR 36 4 2 3 4 5 9 23 43 9 10 

RC 60 7 2 9 18 42 65 150 580 71 108 

PL 96 33 2 7 18 41 98 137 460 67 77 

HT 85 16 1 19 41 67 82 103 141 64 32 
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Table 4-3. Linear regression coefficients for correlation of TSS and turbidity (TSS 
= f(turbidity) = a + b * turbidity, FR: flat roof, RC: residential catchment, 
PL: parking lot, HT: high-traffic street) (Leutnant et al. 2016). 

Site a b R2 

FR −3.52 1.89 0.835 

RC −20.9 3.69 0.823 

PL 1.97 0.84 0.683 

HT 7.93 0.97 0.681 

 

4.1.3 Event database 

An overview of the event database with continuous measurement data is given 
in Table 4-4. It contains the number of total observed events and the number of 
events which are excluded from further analysis. Events are rejected if either se-
lection criteria are violated or if measurement data is doubtful. In this respect, 
sites FR and RC show a high number of events with doubtful data. This is mainly 
caused by almost constantly low turbidity values (FNU < 15) in the course of an 
event. For site FR this can be justified with few particles in the runoff. At site RC, 
this is also caused by pumping difficulties. Gaps due to measurement failures of 
runoff and quality sensors are rarely present. Turbidity gaps are only observed if 
stormwater contained substances which caused intensive foaming in the meas-
urement pipe. However, in total, 65 events were analyzed at FR, 23 at site RC, 
46 at PL, and 16 at HT. Descriptive statistics of selected event characteristics are 
given in Table 4-5. Figure 4-6 depicts empirical cumulative distribution functions 
and boxplots of site-specific monitored TSS event loads. 
 
Table 4-4. Description of event database with continuous monitoring data (FR: flat 

roof, RC: residential catchment, PL: parking lot, HT: high-traffic street) 
(Leutnant et al. 2016). 

Site 
Total Observed 

Events 

Events Violating 

Selection Criteria 

Events with 

Doubtful Data 
Valid Events 

Valid Events/ 

Total Observed Events 

FR 415 275 75 65 16% 

RC 324 199 102 23 7% 

PL 152 87 19 46 37% 

HT 40 11 13 16 40% 

 
  



Results and discussion 32 

Table 4-5. Descriptive statistic data (min, 0.1-, 0.25-, 0.5-, 0.75-, 0.9-percentiles, 
max, mean, standard deviation) of site-specific event characteristics; 
rainfall depth: H, max. rainfall intensity in 60 minutes (Imax60), max runoff 
(Qmax), runoff volume (Vol), TSS loads (Loads), and TSS event mean 
concentrations (EMC) (FR: flat roof, RC: residential catchment, PL: 
parking lot, HT: high-traffic street) (Leutnant et al. 2016). 

Parameter Site Min 0.1-P 0.25-P Median 0.75-P 0.9-P Max Mean Sd 

H (mm) 

FR 2.0 2.1 3.1 4.3 7.3 9.6 22.7 5.6 3.8 

RC 2.2 3.8 4.3 7.1 13.4 18.9 29.1 9.8 7.2 

PL 2.1 2.6 3.1 5.1 10.0 18.8 31.0 8.0 6.9 

HT 2.3 3.2 3.6 6.2 8.7 17.5 21.8 8.0 5.9 

            

Imax60 (mm h-1) 

FR 2.6 2.8 3.3 4.6 8.2 15.2 49.4 7.4 8.1 

RC 2.5 2.7 3.0 3.7 5.2 6.6 10.4 4.4 2.1 

PL 2.5 2.7 2.9 5.5 10.4 18.7 44.9 8.6 8.2 

HT 1.1* 1.3 1.8 2.3 2.6 4.7 7.5 2.7 1.7 

            

Vol (m3) 

FR 0.0 0.0 0.1 0.2 0.3 0.4 1.2 0.2 0.2 

RC 18 46 65 116 233 428 716 192 191 

PL 1 3 3 6 12 30 71 12 14 

HT 81 105 122 166 336 581 784 269 211 

            

Qmax (L s-1) 

FR 0.0 0.0 0.1 0.1 0.3 0.4 1.6 0.2 0.3 

RC 9 10 16 29 95 148 216 61 67 

PL 1 2 4 8 13 23 55 11 11 

HT 13 16 20 27 52 82 133 41 33 

            

Loads (kg ha-1) 

FR 0.0 0.0 0.1 0.2 1.7 4.9 19.4 1.7 3.6 

RC 0.1 0.3 0.6 0.9 3.5 7.4 9.4 2.6 2.9 

PL 0.1 0.5 0.9 1.3 2.6 6.3 11.1 2.3 2.6 

HT 1.6 3.1 3.6 8.0 13.6 29.2 47.5 12.6 12.7 

            

EMC (mg L-1) 

FR 0 1 3 9 35 94 250 33 55 

RC 4 11 18 50 92 152 364 77 94 

PL 5 13 24 49 80 112 254 60 49 

HT 27 38 54 120 172 242 297 125 84 
*Note: Event is considered valid although the Imax60 criteria is violated. 
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Figure 4-1.  Empirical cumulative distribution functions and boxplots of site-spe-

cific monitored TSS event loads (FR: Flat Roof, HT: High Traffic 
Street, PL: Parking Lot, RC: Residential Catchment) (Leutnant et al. 
2018c). 

4.1.4 Correlation analysis 

Table 4-6 shows Pearson correlation coefficients for TSS loads and selected var-
iables at the four study sites. A strong correlation of rainfall intensities and 
mean/max runoff to TSS loads can be observed at site FR. This effect is also 
evident but less intense at sites PL and HT. However, the variable Imean (mean 
rainfall intensity) has only a strong influence at FR (0.8). Rainfall depths seem to 
be strongly correlated to TSS loads at site HT, only. The overall rainfall duration 
does not correlate with TSS loads at any site. Correlation of the variables runoff 
volume (Vol) and antecedent dry weather periods (ADWP) to TSS loads can be 
noticed only at site HT and PL, respectively. 
 
Table 4-6.  Site-specific Pearson correlation coefficients (FR: flat roof, RC: residen-

tial catchment, PL: parking lot, HT: high-traffic street) for TSS loads and 
selected variables: rainfall depth, duration, and intensities (H, Dp, 
Imean:Imax60), runoff characteristics (Qmean, Qmax, volume), and antecedent 
dry weather period (ADWP). Bold values indicate correlation coeffi-
cients > 0.5 (Leutnant et al. 2016). 

Site  H DP Imean Imax1 Imax5 Imax60 Qmean Qmax Vol ADWP 

FR 

Loads 

0.39 −0.09 0.80 0.68 0.80 0.82 0.90 0.88 0.37 0.20 

RC 0.19 −0.03 0.40 0.47 0.43 0.26 0.45 0.35 0.29 −0.06 

PL 0.50 0.08 0.48 0.69 0.69 0.63 0.49 0.64 0.38 0.56 

HT 0.80 0.30 0.41 0.73 0.74 0.64 0.62 0.59 0.78 −0.06 
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From the correlation analysis it is stated, that firstly rainfall intensity (Imax5, Imax60) 
has a strong influence on TSS loads at small catchments with a high proportion 
of impervious surfaces (FR, PL, HT). Secondly, this effect decreases with in-
creasing catchment size. Thirdly, in residential catchments which consist of mul-
tiple subcatchments (e.g., roofs, streets, parking lots) the correlation between 
rainfall event characteristics and TSS loads is strongly attenuated. The low cor-
relation of the antecedent dry weather period suggests that this parameter is in-
appropriate to describe the pollutant build-up. However, in this study, the average 
antecedent dry weather period is about three days. This means pollutants are 
mostly accumulated shortly after an event and therefore exposed to other influ-
ential processes such as wind-driven processes (cf. 1.1.2). 

4.1.5 Intra-event TSS load distributions 

Intra-event distributions of TSS load are studied with site-specific MV-curves (Fig-
ure 4-2). Clearly, all sites show large variability of intra-event TSS load distribution 
which confirms findings of other studies (Métadier and Bertrand-Krajewski 2012, 
Sun et al. 2015) also for microscale sites. However, from the four study sites it 
can be observed that the more curves are taken into account the variability in-
creases. Therefore, boxplots at runoff volume quantiles are used to depict the 
main tendency of wash-off behavior. This enables a visual comparison between 
site and season-specific MV-curves. 
 

 
Figure 4-2.  Site-specific MV-curves (FR: flat roof, RC: residential catchment, PL: 

parking lot, HT: high-traffic street) (modified from Leutnant et al. 
(2016)). 
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Figure 4-3 shows boxplots of MV-curve distributions at given runoff volume quan-
tiles for each of the study sites. At site FR, in most cases a large portion of pollu-
tion loads tend to be washed-off in the first period of an event. In addition, dis-
tances between the first and third quartile (interquartile range, IQR) increases 
until 20% of runoff volume and decreases afterwards. This generally indicates a 
decreasing event variability. In this respect, after 60% of runoff volume, most pol-
lutants are already washed off. With regard to site PL and RC, the IQR rises until 
20% of runoff volume and almost constantly continues up to 60% of runoff vol-
ume. At site HT, the IQR is merely changing in the first 80% of runoff volume. 
Although, the number of events taken into account is likely to affect the interquar-
tile ranges, MV-curves from site HT are noticeably closer to the bisecting line than 
MV-curves from site FR. Similarly, MV-curves from PL are closer to the bisecting 
line compared to the MV-curves from site RC. 
 

 
Figure 4-3. Site-specific boxplots of MV-curve distributions at runoff volume 

quantiles (FR: flat roof, RC: residential catchment, PL: parking lot, 
HT: high-traffic street). Box ranges correspond to the first and third 
quartiles. Median is indicated by a solid black horizontal line. Whisk-
ers comprise lowest/highest value within 1.5 × inter-quartile range. 
Outliers exceed whiskers’ ends and are indicated by solid black dots 
(modified from Leutnant et al. (2016)).  

Analysis of MV-curves suggests, that firstly, small urban catchments analysed 
generally show a more pronounced first-flush effect and only a few events with a 
delayed wash-off process. Secondly, the wash-off process at FR seems to be 
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runoff volume and the IQR is significantly low at the end of the events. Thirdly, in 
contrast, PL and HT show a more transport-limited wash-off because the IQR is 
closer to the bisecting line at the end of the events. Finally, it is assumed, that 
RC’s wash-off processes are influenced by a composition of subcatchment-spe-
cific (i.e., roofs, streets, and parking lots) wash-off characteristics, which is ex-
plained by the intermediate position of RC in comparison to FR, HT, and PL. In 
fact, runoff from different surfaces is superposed and therefore pollution transport 
processes are mixed. 

4.1.6 Seasonal intra-event TSS load distributions 

Figure 4-4 shows MV-curve distributions for different seasons. At FR, the MV-
curves start steeper in spring, summer, and autumn periods, which indicates a 
more pronounced first flush. Contrarily, in winter, the MV-curves show a less 
dominant wash-off behavior at the beginning of the events. At site PL, the varia-
bility is highest during spring and autumn periods. Events during summer months 
show similar wash-off behavior, which is indicated by relatively low IQR. The 
three events in the winter are characterized by a delayed wash-off but cannot be 
statistically interpreted due to small number of events available. MV-curve distri-
butions at site RC are comparable to PL with highest variability during spring and 
autumn months. Pollutants tend to be washed-off in the first periods of an event. 
For site HT, monitored events are available in the autumn and winter months, 
only. Both seasons show comparable washoff behavior, which is characterized 
by washoff almost proportional to runoff, low IQR, and close distance to the bi-
secting line. 
 
From seasonal MV-curves it can be observed, first, that MV-curve distributions at 
FR show the largest variability in the first 50% of runoff volume throughout the 
seasons except for spring. The delayed wash-off process during winter months 
can be caused by a low pollutant potential on surfaces, coarser particles with high 
densities, or by events with low rain intensities. Second, variability of MV-curve 
distribution, in general, is largest during autumn, especially for sites FR, RC, and 
PL. It can be assumed that this is mainly caused by high variability of rainfall 
intensities in conjunction with varying pollutant masses available at surface. It 
must also be noted, that only few events were monitored during the winter 
months, which must be taken into account for further statistical analysis. 
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Figure 4-4. Seasonal- (horizontal) and site- (vertical) specific boxplots of MV-curve distributions at runoff volume quantiles (FR: flat roof, RC: 
residential catchment, PL: parking lot, HT: high-traffic street). Box ranges correspond to the first and third quartiles. Median is 
indicated by a solid black horizontal line. Whiskers comprise lowest/highest value within 1.5 × inter-quartile range (IQR). Outliers 
exceed whiskers’ ends and are indicated by solid black dots (modified from Leutnant et al. (2016)). 
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4.2 Probabilistic modelling of TSS event loads12 

4.2.1 Derived theoretical distribution functions 

Results of fitting theoretical distribution functions to the empirical TSS event load 
distribution are presented in Table 4-7. It shows site- and distribution-specific 
goodness-of-fit values and estimated parameters. Figure 4-5 illustrates the 
approximation with lognormal distribution function for all sites. 
 
Table 4-7.  Results of fitting empirical TSS load distribution functions to theoretical 

distribution functions (FR: Flat Roof, HT: High Traffic Street, PL: Park-
ing Lot, RC: Residential Catchment, LL: LogLikelihood, AD: Anderson-
Darling statistic A2, KS: Kolmogorov-Smirnov statistic Dn) (Leutnant et 
al. 2018c). 

site distr. 
goodness-of-fit parameter estimates (standard error) 

LL AD KS rate shape meanlog sdlog scale 

FR 

exp 48.66 29.074 0.442* 5.747 
(0.713) - - - - 

gamma 88.29 2.254 0.186* 1.994 
(0.504) 

0.347 
(0.049) - - - 

lnorm 89.9 0.806 0.099 - - -3.69 
(0.301) 

2.429 
(0.213) - 

weibull 92.05 1.123 0.131 - 0.484 
(0.046) - - 0.077 

(0.021) 

          

HT 

exp -19.64 0.379 0.153 0.797 
(0.199) - - - - 

gamma -19.25 0.394 0.136 1.068 
(0.412) 

1.341 
(0.428) - - - 

lnorm -18.18 0.192 0.128 - - -0.19 
(0.228) 

0.912 
(0.161) - 

weibull -19.46 0.382 0.137 - 1.121 
(0.208) - - 1.316 

(0.312) 

          

PL 

exp 21.69 1.168 0.126 4.356 
(0.642) - - - - 

gamma 22.03 1.279 0.157 5.093 
(1.175) 

1.169 
(0.218) - - - 

lnorm 25.31 0.398 0.116 - - -1.96 
(0.146) 

0.987 
(0.103) - 

weibull 21.72 1.203 0.137 - 1.030 
(0.111) - - 0.233 

(0.035) 

          

RC 

exp 7.91 1.011 0.222 3.833 
(0.799) - - - - 

gamma 8.1 0.681 0.189 3.283 
(1.120) 

0.857 
(0.219) - - - 

lnorm 9.07 0.38 0.131 - - -2.03 
(0.259) 

1.243 
(0.183) - 

weibull 8.23 0.586 0.174 - 0.882 
(0.142) - - 0.244 

(0.061) 
* rejecting H0 
                                            
12 This section is partly composed of paragraphs from Leutnant et al. (2018) 
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Figure 4-5. Site-specific approximation of empirical TSS event load distribution 

functions with lognormal distribution function at all sites (Leutnant et 
al. 2018c). 

Table 4-8 shows results of fitting the lognormal distribution to TSS event load 
distributions grouped by year. Sites FR and PL are considered only as they pro-
vide sufficient samples per group. The goodness-of-fit is given for each individual 
group and compared to the original sample from all years. Additionally, the good-
ness-of-fit is visualised in Figure 4-6. 
 
Table 4-8.  Results of fitting empirical TSS load distribution functions grouped by 

year to lognormal distribution function (FR: Flat Roof, HT: High Traffic 
Street, PL: Parking Lot, LL: LogLikelihood, AD: Anderson-Darling statis-
tic A2, KS: Kolmogorov-Smirnov statistic Dn) (Leutnant et al. 2018c). 

site year n distr. 
goodness-of-fit parameter estimates 

(standard error) 
LL AD KS meanlog sdlog 

FR 

all years 65 lnorm 89.9 0.806 0.099 -3.69 (0.301) 2.429 (0.213) 
2015 25 lnorm 24.54 0.64 0.138 -2.99 (0.359) 1.80 (0.254) 
2014 17 lnorm 41.63 0.288 0.142 -5.04 (0.786) 3.24 (0.556) 
2013 23 lnorm 32.52 0.365 0.12 -3.45 (0.388) 1.86 (0.274) 

         

PL 
all years 46 lnorm 25.31 0.398 0.116 -1.96 (0.146) 0.987 (0.103) 

2014 30 lnorm 23.76 0.616 0.167 -2.08 (0.161) 0.88 (0.114) 
2013 16 lnorm 2.93 0.243 0.105 -1.72 (0.281) 1.12 (0.199) 
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Figure 4-6. Approximation of empirical TSS event load distribution function 

grouped by year with lognormal distribution function at site FR and PL 
(Leutnant et al. 2018c). 

All selected theoretical distribution functions were able to approximate the empir-
ical distribution with statistical significance except for the Exponential and the 
Gamma distribution at site FR (H0 gets rejected). These two functions are not 
able to reflect the initially steep gradient and subsequent moderate gradient of 
the empirical distribution. The Exponential function has the least flexibility among 
the analysed functions because it only provides one parameter to be fitted. This 
explains the poor approximation results. Thus, a statistical significant description 
of TSS event distributions requires at least a two-parameter distribution. 
Using the Weibull distribution which basically extends the Exponential distribution 
function with an additional parameter, clearly improves the fitting. The application 
of Weibull and Gamma distribution lead to comparable results which is indicated 
by similar goodness-of-fit measures. Highest goodness-of-fit is obtained with the 
lognormal distribution that accordingly approximates the underlying dataset best. 
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The goodness-of-fit of the lognormal distribution however, varies between sites. 
On the one hand, this might be caused by insufficient samples, which lead to 
more pronounced steps in the empirical distribution function. On the other hand, 
this also could reflect a site-specific behavior, which is expressed by the shape 
of distribution function. While the monitored small roof catchment has significantly 
more events with low loads, this effect is attenuated for the other catchments. 
The differences in the results of the two-parameter functions are marginal which 
demonstrates the functions are general able to replicate the empirical distribution. 
Comparing the fitted parameters also indicates that distributions of site PL and 
RC are comparable which is confirmed by their empirical distribution functions 
(cf. Figure 4-1). 
 
The results of distribution fitting grouped by year shows that also subsamples can 
be well approximated by lognormal distribution. According to the KS statistic, for 
both sites the year 2013 has been fitted best. Only the AD statistic of the year 
2014 for site FR indicates a slightly better fit which is caused by a relative low 
maximum load in this year (2013: 1.94 gm-2, 2014: 0.8 gm-2, 2015: 1.34 gm-2). 
The optimized parameters of the lognormal distribution for both sites highlight the 
individuality of each year as they strongly vary. This is also expressed by the 
spread of goodness-of-fit values. Consequently, this indicates the sensitivity of 
the sampling characteristics which is induced by the utilized database. In the pre-
sent study the database available does not cover all events of an entire year 
mainly due to measurement issues and predefined rainfall-runoff criteria for event 
selection (Leutnant et al. 2016). However, rainfall-runoff events are affected by 
numerous environmental variables and generally occur randomly in time, space 
and intensity. Therefore, although the event database grouped by year undoubt-
edly is incomplete, the approach reflects natural variability in which the number 
of events per year and their characteristics change. Robust fitting of a theoretical 
distribution function should therefore prioritize sample size over sampling period 
(cf. 4.2.2). 

4.2.2 Minimum sample size  

The results obtained from the Monte-Carlo-based sampling are visualised in Fig-
ure 4-7. It shows the mean (colored solid line) and regions of one and two stand-
ard deviations (grey shaded areas) of Kolmogorov-Smirnov’s statistic as function 
of sample size for site FR and PL. Furthermore, critical values for the 90 % sig-
nificance level are illustrated (black solid line). 
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Figure 4-7. Mean and regions of one and two standard deviations of Kolmogorov-

Smirnov’s statistic as function of sample size from Monte-Carlo-based 
sampling for sites FR and PL. Critical values for 90% confidence are 
indicated as black solid line (Leutnant et al. 2018c). 

The results of the Monte-Carlo analysis show, that the mean of the calculated 
goodness-of-fit values improves with increasing sample size and approximates 
to the value obtained when all samples are taken into account (FR: 0.099, PL: 
0.12). The standard deviation decreases with increasing sampling size by impli-
cation. With respect to critical values for 90% confidence level, accepting the null 
hypothesis H0 (“The data follow the lognormal distribution”) generally requires 
Kolmogorov-Smirnov’s Dn to be approximately below the µ + 2s threshold which 
is satisfied for minimum sample sizes of roughly 40 at site FR and of roughly 30 
at site PL. It can be legitimately assumed that simulated KS statistics follow a 
normal distribution which according to the empirical rule13 consequently implies 
that more than approximately 95 % of samples lead to KS statistics lower than 
0.188 at site FR and 0.211 at site PL. Narrowing the uncertainty range to the 
upper limit of µ + s threshold results in KS statistics of 0.159 at site FR and 0.176 
at site PL (approx. more than 68% of samples are within this range).  
Generally, the simulated dataset confirms that the more samples are taken into 
account, the more precise the estimates get which as a matter of fact is the basic 
assumption for any statistical significance test. In order to determine the minimum 
sample size which leads to accepting the null hypothesis H0 with high probability, 

it is suggested to choose at least the minimum of 40 samples because of i) the 
chance of having a sample which can be statistically represented by the lognor-
mal distribution is high (>95 %) and ii) the mean of KS statistic in this case only 

                                            
13 The empirical rule states that for a normal distribution 99.7% of the data fall 
within three standard deviations, 95% are within two standard deviations and 68 
% fall within one standard deviation (Hedderich and Sachs 2012). 
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slightly differs from the optimal value taking all samples into account (0.131 > 
0.099 at site FR and 0.122 > 0.12 at site PL). However, the choice of criteria 
remains subjective and might be adapted as further data becomes available. Of 
course, using more data to approximate the lognormal distribution may probably 
lead to more appropriate fitting results, but this requires to provide more samples 
which in turn needs more measurement data. The criteria proposed therefore are 
presenting a compromise solution between measurement duration and quality of 
approximation. 

4.3 Distribution-based calibration of SWMM14 

4.3.1 Calibration results 

Calibration results for both sites are shown in Table 4-9. Statistics for both model 
parameters and the Kolmogorov-Smirnov-based objective function are given. 
The best fit parameter sets yielded to an objective function of roughly 0.05 for 
both models. 
 
Table 4-9. Calibrated model parameters and corresponding uncertainty statistics 

(FR: Flat Roof, PL: Parking lot, sd: standard deviation, CoV: Coefficient 
of Variation, KS Dn: Kolmogorov-Smirnov distance) (Leutnant et al. 
2018b). 

  objective 
function parameter 

site statistic KS Dn B0 k a C1 C2 
  - g m-2 g m-2 d-1 - - 

FR 

best fit 0.053 2.713 1.899 0.022 0.017 2.040 
mean 0.056 3.437 1.706 0.024 0.021 2.070 

sd 0.003 0.608 0.201 0.005 0.006 0.054 
CoV 0.053 0.177 0.118 0.212 0.277 0.026 

        

PL 

best fit 0.049 4.545 0.891 0.194 0.472 1.120 
mean 0.050 4.726 0.882 0.204 0.470 1.103 

sd 0.002 0.257 0.053 0.021 0.043 0.070 
CoV 0.032 0.054 0.061 0.105 0.091 0.063 

 
According to the low Kolmogorov-Smirnov statistic Dn of approx. 0.05 for both 
sites (Table 4-9), the best-fit parameter sets obtained by the distribution-based 
calibration approach lead to well-approximated parameterized lognormal distri-
butions. From a statistical perspective which also takes the number of samples 
into account, it can be legitimately assumed that both distributions (lognormal and 
simulated TSS event loads) follow the same distribution. Both KS statistics are 
below the critical values at 90% significance level (0.082 for site FR and 0.118 at 
site PL). 
 

                                            
14 This section is partly composed of paragraphs from Leutnant et al. (2018b)  
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Cumulative distribution functions of simulated TSS event loads are depicted for 
both models in Figure 4-8 (FR) and Figure 4-9 (PL). Simulation results are op-
posed to the parameterized lognormal distribution function used for calibration 
and the original empirical distribution function from observation. Additionally, ab-
solute residuals between observed and simulated TSS event loads are presented 
on the right-hand side of the figures. For site FR, the mean of TSS event loads 
residuals is -0.0087 g m-2 (sd: 0.19; min: -0.41; max: 0.94), at site PL, the mean 
of TSS event loads residuals is 0.065 g m-2 (sd: 0.19; min: -0.27; max: 0.74). 
 

 
Figure 4-8. Cumulative distribution functions of lognormal, observed and simu-

lated TSS event loads (left) and distribution of residuals between ob-
served and simulated event loads (right) at site Flat roof (Leutnant et 
al. 2018b). 

At site FR, the calibrated model replicates the distribution function until the 0.8-
percentile with a high goodness-of-fit (Figure 4-8). Events exceeding this value 
are generally underestimated by the model and lead to lower simulated event 
loads than suggested by the lognormal distribution. Since the KS statistic re-
presents the maximum distance between two cumulative distribution functions, 
maximum 5% of the events with more than the 0.8-percentile of event loads are 
underestimated. 
 
The results for site PL show a similar effect (Figure 4-9). Here, the model shows 
a good fitting of the distribution function until the 0.9-percentile which accordingly 
implies that maximum 5 % of the events with more than the 0.9-percentile of event 
loads are underestimated. 
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Figure 4-9.  Cumulative distribution functions of lognormal, observed and simu-

lated TSS event loads (left) and distribution of residuals between ob-
served and simulated event loads (right) at site Flat roof (Leutnant et 
al. 2018b). 

Both calibrated models tend to underestimate events with high TSS loads which 
indicates that the calibration approach and the objective function applied is heav-
ily influenced by events with low TSS event load which as a matter of fact is the 
case for the majority of events for both sites. Applying an alternative goodness-
of-fit measure as objective function which also emphasize the upper tailing of a 
distribution function could lead to superior model performance. This however re-
mains unclear as the applied pollutant model itself also induces limitations to rep-
licate natural pollutant processes (Bertrand-Krajewski 2007, Sage et al. 2015, 
Shaw et al. 2010). 
 
Table 4-10 compares the total TSS event loads of simulated and observed TSS 
event loads. At site FR, the calibrated model yields to 11.9 gm-2 (+5%), site PL 
gives 7.57 gm-2 (-28%).  
 
Table 4-10. Observed and simulated total TSS event loads (Leutnant et al. 2018b). 

site events 
total TSS event loads (g m-2) 

observed simulated relative  
deviation 

FR 65 11.3 11.9 + 5 % 
PL 46 10.6 7.57 - 28 % 

 
The fact, that events with high TSS event loads are underestimated affects the 
goodness-of-fit concerning the total TSS event load of the events observed (Ta-
ble 4-10). This is especially evident at site PL, where the total TSS event load is 
underestimated by roughly 28 %. Events with more than 0.5 g m-2 are poorly 

lnorm

observed

simulated (observation period)

PL PL

0.00 0.25 0.50 0.75 1.00 1.25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

−0.25 0.00 0.25 0.50 0.75
0

2

4

6

TSS event load (g m-2) residuals (g m-2)

C
D

F 
(−

)

fre
qu

en
cy

 (−
)



Results and discussion 46 

represented (cf. Figure 4-9). At site FR, the relative deviation is only about 5 %. 
This signals that the error is compensated by events whose simulated TSS event 
load is higher than the observed (intersection at approx. 0.1 g m-2, cf. Figure 4-8). 
 
Distributions of simulated and observed TSS event mean concentrations are 
given in Table 4-11. A notably high agreement of mean EMC is obtained for both 
sites (FR: 33 mg L-1, PL: 62 mg L-1). It can also be observed that EMC percentiles 
of simulation for site FR are slightly higher than observed percentiles until the 
0.75-Percentile. Site PL shows the opposite behavior: EMC percentiles of simu-
lation are slightly lower than observed percentiles until the 0.5-Percentile. How-
ever, in both cases, the maximum observed EMC are strongly underestimated 
which again suggests an inappropriate accumulation process model to account 
for random influences (e.g. traffic induced pollutant emissions (Gunawardena et 
al. 2018)). 
 
Table 4-11. Observed (obs) and simulated (sim) TSS event mean concentrations 

(Leutnant et al. 2018b). 

site source N 
TSS event mean concentration (mg L-1) 

Min 0.1-Perc. 0.25-Perc. Median 0.75-Perc 0.9-Perc. Max Mean Sd 

FR 
obs 65 <0.1 1.2 2.8 9.0 35.1 94.0 249.9 33.2 54.6 
sim 65 1.2 5.8 9.6 20.6 35.5 82.6 178.2 33.4 36.5 

            

PL 
obs 46 4.7 13.2 24.4 49.4 80.1 112.4 253.7 60.3 49.3 
sim 46 0.2 4.6 13.9 45.4 98.8 156.6 161.6 62.9 54.7 

 
Observed and simulated MV-Curves are shown in Figure 4-10. Simulated MV-
Curves are calculated for both the stormwater quality observation period and the 
5 years period using all available rainfall data. 
 

 
Figure 4-10.  Comparison of observed and simulated Mass-Volume-Curves for 

sites Flat Roof (left) and Parking Lot (right) (Leutnant et al. 2018b). 

Mass-Volume-Curves (Figure 4-10, left) for site FR reveal, that intra-event pro-
cesses simulated do not reflect the observed dynamics in general. Especially, the 
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prevailing first-flush characteristic is not appropriately replicated. Instead simu-
lated washoff tends to occur proportionally to runoff.  
 
In contrast, statistics of simulated intra-event processes at site PL (Figure 4-10, 
right) correspond well to the data observed. It can be seen that the calibrated 
model also tends to generate wash proportional to runoff. The high agreement of 
observed and simulated MV-Curves at site PL is obtained since observed MV-
Curves already show a more runoff proportional washoff behavior. Although the 
general characteristic at site PL is satisfactorily represented, the results from both 
sites indicate that the observed intra-event dynamic can hardly be deterministi-
cally described by the model for a continuous simulation period. As pointed out 
in previous studies by (Sage et al. 2015, Shaw et al. 2010) pollutant buildup and 
washoff is highly affected by stochastic inputs which consequently limits the 
goodness-of-fit of replicating intra-event dynamics. 
 
Simulated distribution functions from the observation period (calibration) are com-
pared to the results using the 5 years period (validation) in Figure 4-11. Corre-
sponding goodness-of-fit is given in Table 4-12. At site FR, the difference be-
tween both distributions is marginal implying the observation period being highly 
representative. The KS statistic of 0.062 from validation only slightly differs from 
calibration (KS: 0.053) which indicates a successful model validation. In contrast, 
the distribution function from validation at site PL underestimates the assumed 
lognormal distribution constantly. This is also expressed by a higher KS statistic 
of 0.073. The distance between calibration and validation period is slightly higher 
(KS: 0.083) indicating a less successful model validation. However, it is noticea-
ble that the simulated TSS event distribution of observation period falls below the 
lognormal distribution between 0.25 g m-2 and 0.4 g m-2 and exceeds the lognor-
mal distribution for event loads higher 0.5 g m-2. This indicates the observation 
period being less representative as the number of events is significantly lower. 
 

 
Figure 4-11.  Cumulative distribution functions of lognormal and simulated TSS 

event loads for the observation period (calibration) and the 5 years 
period (validation) for sites Flat Roof (left) and Parking Lot (right) 
(Leutnant et al. 2018b). 
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Table 4-12. Goodness-of-fit matrix for observation period (calibration) and 5 years 

period (validation) (FR: Flat Roof, PL: Parking lot, KS Dn: Kolmogorov-
Smirnov distance) (Leutnant et al. 2018b). 

site KS DN 

  lnorm observation pe-
riod 5 years period 

FR 

lnorm -   

observation period 0.053 -  
5 years period 0.062 0.035 - 

PL 

lnorm -   
observation period 0.049 -  

5 years period 0.073 0.083 - 

4.3.2 Annual TSS loads15 

Calibrated and validated models were finally used to estimate annual TSS loads 
(Table 4-13) which is of special interests for practical purposes. In the present 
study, the estimated mean annual TSS loads for site FR is 9.9 g m-2 a-1 (sd: 0.75) 
which according to Dierschke (2014) represents a roof with “low to normal” load 
contribution. Annual TSS loads for site PL was estimated at 13.7 g m-2 a-1 (sd: 
1.17) which is significant lower than reported from measurements by Allen Burton 
and Pitt (2001) (~ 40 g m-2 a-1). As already stated, the model disregards traffic 
related stochastic inputs, which could explain the low annual TSS loads esti-
mated. Consequently, the result must be carefully interpreted. Nevertheless, the 
result highlights the need to especially account for load intensive events either 
through an alternative objective function or modification of the model concept. 
 
Table 4-13.  Simulated annual TSS loads (FR: Flat Roof, PL: Parking lot) (Leutnant 

et al. 2018b). 

site n (moving years within  
5 years period) 

annual TSS loads (g m-2 a-1) 
mean sd 

FR 50 9.9 0.75 
PL 50 13.7 1.17 

 

                                            
15 This section is partly composed of paragraphs from Leutnant et al. (2018b) 
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5 Conclusions and outlook16 
In this thesis, a long-term monitoring campaign was conducted to analyze storm-
water pollutant processes at four common urban catchments. Stormwater quality 
data from i) a flat roof (FR), ii) a parking lot (PL), iii) a residential catchment with 
a separated sewer system (RC) and iv) a high traffic street (HT) were collected. 
Small catchments were especially selected to isolate relevant pollutant processes 
and to reduce interfering influences of catchment size and environment sur-
rounded. With primary focus on the quality parameter total suspended solids 
(TSS), turbidity signals were used as a surrogate to derive continuous TSS time 
series. Regression functions required were site-specifically determined and ap-
plied to convert raw turbidity data. As continuous stormwater quality data of small 
urban environments (< 10 ha) have not been captured in-situ before, this data 
innovatively allows to investigate pollutant processes.  
 
Continuous monitoring data were used to create a site-specific event database. 
Besides rainfall and runoff characteristics, the database contains TSS event 
loads and TSS event mean concentrations for each event. 

5.1 Stormwater quality processes at small sites 

A correlation analysis was conducted to investigate the relationship between me-
teorological attributes and TSS event loads. Using Pearson’s correlation coeffi-
cient, a strong relationship between rainfall intensity and TSS event load for small 
catchments with a high proportion of impervious surfaces was revealed. Contra-
rily, the correlation at site RC was observed to be less significant.  
The antecedent dry weather period was shown to be low correlated which gen-
erally questions its sole application to describe pollutant build-up. 
Intra-event pollutant processes were analyzed by means of Mass-Volume-
Curves (MV-Curves). For the first-time, MV-curves were grouped at runoff quan-
tiles which allows to identify general washoff characteristics.  
This analysis revealed that the washoff process at site FR tends to be source-
limited while sites PL and HT show a transport-limited behavior. Washoff at site 
RC is assumed to be influenced by superposed runoff from multiple subcatch-
ments. 
Nevertheless, a seasonal analysis of site-specific MV-curve distributions high-
lighted the large variability of pollutant processes, even for small catchments. 
Consequently, influences are multifaceted and demand for further probabilistic 
analyses. 
Furthermore, the event database was further used to derive site-specific empiri-
cal distribution functions of TSS event loads. Aiming towards a universal proba-
bilistic description of TSS event load distributions, a set of theoretical distribution 

                                            
16 This chapter is partly composed of paragraphs from Leutnant et al. (2018a, 2016, 2018c, 
2018b) 
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functions were used to describe the empirical data. The goodness-of-fit was eval-
uated by Kolmogorov-Smirnov’s test statistic and the minimum sample size re-
quired to achieve satisfying fittings was investigated. 
From the analysis, it was found that the lognormal distribution function is most 
expressive to approximate empirical TSS event load distributions at all experi-
mental sites. Successfully derived and fitted distribution functions provide a 
closed-form characterization of TSS event loads, consequently allowing to intra- 
and extrapolate of probabilistic event characteristics not observed. The minimum 
sample analysis demonstrated that a robust fitting should generally prioritize 
sample size over sampling period. About 40 events are required to reasonably fit 
the lognormal distribution. Using more samples potentially improves the good-
ness-of-fit but subsequently requires to extend the duration of cost-intensive 
monitoring campaigns. 
When applying the concept of probabilistic description of TSS event loads based 
on theoretical distribution function, the results of this analysis may also support 
the evaluation of stormwater runoff quality monitoring campaigns with respect to 
their duration-to-information ratio. Data from an ongoing monitoring campaign 
may be used to update the parameters of the theoretical distribution function 
which in turn can be analyzed in terms of their relative change. If changes are not 
significant the duration of monitoring might be shortened. However, the minimum 
sample size should be taken into account (cf. section 4.2.2). 
Also, the fitted distribution functions provide an excellent basis to calibrate urban 
stormwater quality models by focusing on probabilistic TSS event load character-
istics. This finding especially led to the development of an innovative calibration 
approach of stormwater quality models, presented in the last part of this thesis. 

5.2 Stormwater quality modelling 

Modelling stormwater quality processes historically showed poor performance 
because of i) unsuitable model concepts for pollutant buildup and washoff and ii) 
lack of calibration data. With respect to more appropriate model concepts, it is 
assumed that pollutant stochasticity needs to be considered. 
The presented calibration approach for existing conceptual stormwater quality 
models primarily aims at replicating TSS event load distributions by using a pa-
rameterized lognormal distribution function as objective function. This implies that 
instead of replicating occurrence and extent with chronologic precision, TSS 
event loads are considered probabilistically. In this way pollutant stochasticity is 
taken into account.  
The approach developed was successfully demonstrated with stormwater quality 
models of site FR and PL for which reliable lognormal distribution functions were 
previously determined. Both models have been successfully calibrated, indicated 
by the low Kolmogorov-Smirnov distance measure. Distribution functions from 
simulation were validated with 5 years rainfall data. The maximum deviation be-
tween lognormal and simulated TSS event load distribution is 5%. A notably high 
agreement of observed and simulated mean of event mean concentrations 



Conclusions and outlook 51 

(µEMC) was achieved for both sites (FR: 33.2 vs. 33.4 mg L-1, PL: 60.3 vs. 62.9 
mg L-1). 
Finally, calibrated stormwater quality models allows to estimate annual TSS 
loads. This is of special interest from a practical point of view as annual TSS loads 
is a key parameter for emission control in several stormwater management guide-
lines. The average annual loads for site FR are 9.9 g m-2 a-1 and 13.7 g m-2 a-1 
for site parking lot. 

5.3 Outlook 

This work focused the quality of urban stormwater runoff being a major source of 
nonpoint pollutants. An in-depth understanding of pollutant processes promotes 
an appropriate design of treatment measures which in turn results in environmen-
tal and economic benefits. 
 
To gain further insights, online measurement techniques were applied to observe 
natural processes. A significant correlation of turbidity and TSS was fundamental 
for this thesis. However, the correlation was initially found to be lower than other 
studies reported (e.g. Al Ali et al. 2017). While this is assumed to be caused by 
the composition of stormwater (stormwater matrix), this clearly highlights the un-
certainty affected to this method. In fact, turbidity is influenced by various param-
eters such as particle distribution, shape and color. Consequently, knowing the 
site-specific stormwater matrix with respect to its particle characteristics would 
allow to improve the correlation. This should also include the proportion of organic 
and mineral contaminants. In this respect UV-Vis spectrometer probes may pro-
vide more information as the adsorbance of multiple frequencies is measured. 
However, this highlights again the importance of sampling which is essential to 
establish the regression function. Sampling from small sites has been found to 
be challenging as runoff is usually low. The applied vacuum sampler occasionally 
stopped sampling under these conditions as inflow was insufficient. In case of 
small sites, a more appropriate sampling strategy designed for low-flow might 
increase the sampling robustness. 
 
More physically-based models to replicate pollutant buildup and washoff pro-
cesses will potentially increase the reliability of model results. While the washoff 
process got recently more attention by international research (Hong et al. 2016a, 
2016b, 2016c, Shaw et al. 2006), this was not observed for pollutant buildup 
(Gunawardena et al. 2018). A systematic analysis, possibly supported by com-
prehensive measurement campaigns and modern data analysis techniques, is 
assumed to be required to improve knowledge on atmospheric deposition and 
traffic related pollution. However, random influences from e.g. construction sites 
will still remain and could hardly be described deterministically. But this can be 
minimized if monitoring sites are carefully chosen. 
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The objective function used for calibration employs the Kolmogorov-Smirnov sta-
tistic. While this goodness-of-fit criterion captivates by its simplicity, it has been 
shown, that events with high TSS event loads tend to be underestimated. A more 
behavioral distance measure which also accounts for events with high loads re-
mains open for future research. Moreover, the calibration approach developed 
still needs to be tested on larger catchments which consists of multiple subcatch-
ments with different land use. Additionally, it could be of interest whether concep-
tual model parameters for pollutant processes are correlated to parameters of the 
theoretical distribution function or catchment characteristics. 
 
Using a theoretical distribution instead of an empirical distribution allows to cali-
brate stormwater quality models even if data is incomplete as the theoretical dis-
tribution is continuously defined. The approach developed is assumed to be gen-
eral applicable and especially powerful if distribution functions get generalizable 
on a catchment-scale. This however requires additional measurement data. In 
this thesis data from four common types of urban catchments were collected and 
used. The transferability of the methods applied and developed has not been 
verified yet. Comparing the parameterized lognormal distributions with data from 
similar catchment would be of high relevance.  
 
The empirical concepts for pollutant buildup and washoff are known to be mostly 
inappropriate. However, in contrast to more physically-based models, its usage 
is simple, fast and only little additional data is required. With the calibration ap-
proach developed, the calibrated model aims to simulate probabilistic TSS event 
loads over long-term condition. Conversely, stormwater quality shows seasonal 
variability (cf. 1.1.2) which is currently not taken into account. Additional research 
on seasonal pollutant distribution might improve the calibration scheme. For ex-
ample, events within a load intensive season might get additional weights. Also, 
model parameters might follow a seasonal pattern. 
 
This thesis used a broad field of methods aiming to observe, understand and 
replicate stormwater quality processes. Methods were linked from topics of online 
monitoring techniques, data management, data analysis and modelling. The re-
quirements are undoubtedly immense and introduce its own complexity. This 
must be taken into account, especially when considering a broader application. 
An appropriate measurement data management system is crucial and strongly 
advised as the amount of data is expected to increase significantly in the next 
years. 
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Abstract: Stormwater runoff quality was measured with online turbidity sensors at four common
types of small urban subcatchments: (i) a flat roof; (ii) a parking lot; (iii) a residential catchment;
and (iv) a high-traffic street. Samples were taken to estimate site-specific correlations between total
suspended solids (TSS) and turbidity. Continuous TSS time series were derived from online turbidity
measurements and were used to estimate event loads and event mean concentrations. Rainfall runoff
event characteristics were subjected to correlation analysis to TSS loads. Significant correlations
were found for rainfall intensities at sites with high imperviousness and decrease with increasing
catchment size. Antecedent dry weather periods are only correlated at the parking lot site. Intra-event
TSS load distributions were studied with M (V)-curves. M (V)-curves are grouped at runoff quantiles
and statistically described with boxplots. All sites show, in general, a more pronounced first-flush
effect. While wash-off of the flat roof tends to be source-limited, the parking lot and high-traffic street
sites show a more transport-limited behavior. Wash-off process of the residential catchment appears
to be influenced by a composition of different subcatchments.

Keywords: stormwater quality; online monitoring; stormwater pollutant processes; micro scale

1. Introduction

Stormwater runoff from urban environments is a significant source of pollutants which impacts the
quality of receiving waters. Effective measures require realistic estimations of stormwater pollutants to
adequately protect the receiving water. Usually, stormwater quality models are applied to support the
implementation of urban drainage strategies. Current stormwater quality model concepts are based
upon empirical equations or simple regression functions to replicate the complex nature of pollutant
accumulation and wash-off. Although, these approaches offer a set of parameters for model calibration,
quality models often show poor performance when simulating long-term conditions [1,2]. As a result,
model outputs are highly uncertain. Improving quality models is therefore crucial to produce more
reliable model results. In this respect, in-depth knowledge of processes is a key requirement which
consequently demands measurement data. In recent years much effort has been spent to investigate
the influence of meteorological influences and catchment characteristics on stormwater quality based
on samples at small sites [3–5]. Additionally, online turbidity measurements have been successfully
used for intra-event analyses in larger catchments [6,7].

With aiming towards new insights of stormwater quality processes this work combines both
approaches by using online turbidity measurements at microscale sites to analyze stormwater
pollutant processes. Results of a long-term monitoring campaign at four common types of urban
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subcatchments—(i) a flat roof; (ii) a parking lot; (iii) a residential catchment; and (iv) a high-traffic
street—are presented. It is believed that monitoring at small urban environments is required to isolate
relevant pollutant processes and to reduce interfering influences of catchment size and environment.

2. Materials and Methods

2.1. Experimental Sites

Stormwater runoff and quality was continuously monitored at four microscale experimental
sites: (i) a 50 m2 flat roof FR; (ii) a parking lot PL with approx. 2350 m2; (iii) a 9.4 ha residential
catchment RC in a suburb of Muenster, Germany (separate sewer system); and (iv) a high-traffic HT
street in the center of Muenster (2.5 ha, 30,000 vehicles per day). The 2% sloped roof is thoroughly
covered with bitumen sheeting. Surfaces of the parking lot are asphalt (55%), porous pavement (40%,
8% thereof being joints) and small vegetated pervious areas (5%) which do not contribute to runoff.
The impervious area has a slope of 2.5%. The residential catchment consists of streets (25%), flat
and steep roofs (25%), and pervious area (50%). At site HT surfaces mainly consist of asphalt (60%),
porous pavement (10%, 8% thereof being joints), flat and steep roofs (25%), and disconnected pervious
area (5%).

2.2. Monitoring and Sampling Setup

Rainfall gauges are located at FR, PL, and RC (Pluvio2, OTT). Rainfall data from FR is also
used for HT, being 2 km off FR. Runoff at FR runs from a downpipe into a horizontal measurement
pipe (63 mm, PVC) in which an electromagnetic flowmeter (Promag50W25, Endress + Hauser) and
quality sensors for turbidity, electrical conductivity, and pH (VisoTurb700IQ, TetraCon700IQ, and
SensoLyt700IQ, WTW) are installed. Samples are taken from the measurement pipe with an automatic
sampler (vacuum sampler ASP Station, Endress + Hauser). Sampling begins if runoff is above 0.03 L/s
and repeats every 10 min. Each sample consists of five subsamples of about 200 mL. The capacity of
the automatic sampler is 12 samples.

The control section at PL is a 300 mm circular concrete pipe (length 55 m, slope 1.8%). Runoff is
calculated from measured water level by the Manning-Strickler-equation because of uniform flow
conditions and no backwater effects. Manning’s roughness coefficient n was experimentally determined
with artificial inflows and ranges between 0.015 and 0.017. At RC and HT runoff is calculated from
mean flow velocity and water level (POA, NIVUS). The control section at RC is a 900 mm circular
concrete pipe (length 46 m, slope 1.8%). Manning’s roughness coefficient n was also identified with
artificial inflows and is about 0.0105. At HT, flow sensors are installed in a 500 mm circular concrete
pipe (length 30 m, slope 0.6%).

In contrast to FR, quality sensors at PL, RC, and HT are integrated in a horizontal measurement
pipe (63 mm, PVC, length: 1.5 m) of an external monitoring station (Figure 1). In case of an event
stormwater is pumped to the measurement pipe by a peristaltic pump (Delasco 2Z3, PCM) through
a hose (20 mm, PVC) whose orifice is fixed in the middle of the stormwater pipe 1.5 cm above the
ground. The suction velocity in the hose is about 1.5 m/s with a corresponding flow of approx. 0.5 L/s.
Stormwater flows with approx. 0.18 m/s through the measurement pipe and is later discharged to
the sewer.

At these sites, the sampling program starts if the water level in the stormwater pipe exceeds 1.5 cm.
Samples of all sites are tested for total suspended solid (TSS) concentrations based on a standard
method given in [8], and fine solids less than 63 µm (TSS63) according to the protocol given in [9].

An online measurement data management system was applied to supervise all monitoring stations
and to reduce data loss [10].
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2.3. Calculation of Continuous TSS Time Series

The turbidity of selected samples was measured to estimate the correlation to TSS. Initially, this has
been conducted in the original sample bottle (PE, squared base, slightly transparent). Due to significant
variance of the measured turbidity, a black cylindrical PE-HD bottle (diameter 10.8 cm, height 18.1 cm)
has been used later. While measuring the turbidity, the sample is homogenized with a magnetic stirrer
at 450 rpm. The five-minute mean of the turbidity is recorded. Calibration of turbidity probes was
conducted with formazine primary standard solutions. TSS concentrations and the corresponding
turbidity values were subjected to correlation analysis. The resulting linear regression equations are
used to create continuous TSS time series from raw turbidity signals. Discussing the uncertainties
through this conversion would exceed the scope of this paper and are therefore not presented here.
The reader is referred to the literature [11–13].

2.4. Data and Analysis

All sensor signals were logged with a 1 min interval. High-resolution online runoff and quality
data is available for approx. 2.5 years (FR and RC), 1.5 years (PL), and 0.5 years (HT), respectively.
Rainfall runoff events were statistically analyzed using rainfall, runoff, and pollutant characteristics.
Events with a minimum rainfall depth of H > 2 mm, maximum rainfall intensity in 60 min of
Imax60 > 2.5 mm/h, and complete runoff/turbidity data are selected, only. Rainfall events below
these criteria usually do not contribute to relevant runoff and are therefore excluded. Based on
continuous runoff and TSS time series data, event volumes, event loads, and event mean concentrations
are calculated according to Equations (1)–(3). Furthermore, event characteristics were subjected to
correlation analysis with special emphasis to TSS loads.

Event volume pm3q : Vol “
n

ÿ

i“1

Qit (1)

Event load pkgq : Load “
n

ÿ

i“1

QiCit (2)

Event mean concentration pmg{lq : EMC “
Load
Vol

(3)
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where i = index of time series, n = number of data points of an event, Qi = runoff at index i, ∆t = time
interval (i.e., 1 min), and Ci = TSS concentration at index i.

The intra-event distribution of TSS loads are examined by means of mass-volume-curves
(M (V)-curves, [14,15]). M (V)-curves describe the proportion of transported mass at a given runoff
volume proportion. This method is usually used to visualize transported mass proportions and to
analyze the first-flush phenomenon. Knowledge of catchment-specific first-flush characteristics is
crucial to designing cost-effective treatment or storage structures. However, M (V)-curves tend to be
site-specific and vary greatly from event to event [6]. Aggregation of similar M (V)-curves is therefore
required to extract relevant information. [16] for example, divide M (V)-curves in three different zones
to classify similar events. Zone A contains curves with a dominant first-flush effect, while curves in
Zone C tend to be more last-flush affected. Curves in Zone B are near the bisecting line and show a
runoff-proportional mass transport.

In this paper, M (V)-curves are also used to characterize the two types of wash-off process, namely
source-limited and transport-limited wash-off [17,18]. Source-limited runoff events have, in general,
sufficient energy to wash off all available particles on the surface. This occurs if either masses on the
surface are rather limited or the kinetic energy of rainfall/runoff is high enough. Transport-limited
events are not able to completely remove available masses. Typically, these events occur either if the
available masses are adequately high or the kinetic energy of runoff is insufficient.

M (V)-curves are calculated for the four study sites and compared. A seasonal differentiation is
included. Instead of using zones, boxplots of the transported mass proportions are created at runoff
volume quantiles to group M (V)-curves. With calculated and visualized interquartile ranges (IQR),
the event variability and main wash-off trends can be observed and characterized.

3. Results

3.1. TSS Sample Statistics

Table 1 summarizes TSS sample statistics at the four study sites. Statistics were also calculated
for the dataset excluding outliers. Due to non-normality of the dataset, outliers are conservatively
considered and defined as points beyond the mean ˘ four times the standard deviation. Mean and
standard deviation are iteratively computed while potential outliers are excluded.

At site FR, 193 samples were analyzed from 40 events. With the 0.75 percentile being 14.2 mg/L,
the flat roof clearly shows low TSS potential and distributions are similar to other findings [19–21].

For site RC, 269 samples of 39 events were taken. The distribution of TSS concentration also
reveals low TSS contribution. Compared to the results of [22], values are lower than TSS concentrations
of a separated sewer system in Germany. The mean value of 114.3 mg/L and the standard deviation of
339 mg/L indicates high variation. However, these statistics are strongly influenced by the maximum
value of 3645 mg/L. The 0.9 percentile being at 205 mg/L confirms this. 140 samples from 38 events
were analyzed for site PL. TSS concentration ranges from 7.3 mg/L to 1842 mg/L, with the median at
170 mg/L. At HT, 92 samples of 17 events were collected. Compared to other studies at high-trafficked
streets [23], the TSS statistics are significantly lower. For example, the median of 77.4 mg/L is less than
half as the median in their study (175 mg/L).
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Table 1. Site-specific TSS sample statistics.

Site Outlier Excluded n Events
TSS (mg/L)

Min 0.1-Perc. 0.25-Perc. Median 0.75-Perc. 0.9-Perc. Max Mean Sd

FR
no 193 40 0.6 2.2 3.7 6.7 14.2 45.5 674.1 22.4 60.2
yes 182 39 0.6 2.2 3.7 6.5 11.7 27.8 85.1 11.8 15.5

RC
no 269 39 1.4 5.6 9.7 21.0 73.0 205.2 3645.7 114.3 339.7
yes 256 39 1.4 5.5 9.4 18.7 63.4 132.7 569.1 55.6 91.5

PL
no 140 38 7.3 19.7 58.6 169.2 335.1 550.5 1842.0 248.3 278.1
yes 139 38 7.3 19.6 58.5 168.4 333.8 546.8 1189.4 236.8 243.7

HT
no 92 17 2.9 26.1 53.3 77.4 98.6 129.2 237.1 79.1 41.2
yes no outliers detected
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3.2. Relationship between TSS and Turbidity

To create continuous TSS data from online turbidity data, correlation functions are determined.
Due to the change of bottle type in which the turbidity was measured, correlation functions were
established with only a subset of all samples presented in Table 2. The range of the sample subset is
within the range of all samples with outliers being excluded. Only the maximum value at site RC is
slightly higher (580.1 mg/L compared to 569.1 mg/L) and therefore still used for analysis. Both linear
and non-linear relationships were tested. Since non-linear functions did not significantly outperform
linear functions, only linear regression coefficients are listed in Table 3. The goodness-of-fit of the linear
regression is visually verified and numerically expressed by r-squared. With the lowest r-squared
being at 0.68, all linear regression models show a good fit of the underlying dataset.

Table 2. Site-specific TSS sample statistics of samples used for turbidity correlation.

Site n Events
TSS (mg/L)

Min 0.1-Perc. 0.25-Perc. Median 0.75-Perc. 0.9-Perc. Max Mean Sd

FR 36 4 1.9 2.8 3.7 5.2 9.4 22.6 43.3 9.0 9.7
RC 60 7 2.3 8.9 17.8 41.6 65.2 150.1 580.1 70.7 107.8
PL 96 33 2.3 6.5 18.2 40.9 97.5 137.2 459.9 67.4 77.3
HT 85 16 0.5 19.0 41.0 67.1 82.1 103.2 140.7 63.7 31.7

Table 3. Linear regression coefficients for correlation of TSS and turbidity (TSS = f (turbidity) = a + b * turbidity).

Site a b R2

FR ´3.52 1.89 0.835
RC ´20.9 3.69 0.823
PL 1.97 0.84 0.683
HT 7.93 0.97 0.681

3.3. Event Database

An overview of the event database with continuous measurement data is given in Table 4.
It contains the number of total observed events and the number of events which are excluded from
further analysis. Events are rejected if either selection criteria are violated or if measurement data
is doubtful. In this respect, sites FR and RC show a high number of events with doubtful data.
This is mainly caused by almost constantly low turbidity values (FNU < 15) in the course of an event.
For site FR this can be justified with few particles in the runoff. At site RC, this is also caused by
pumping difficulties. Gaps due to measurement failures of runoff and quality sensors are rarely
present. Turbidity gaps are only observed if stormwater contained substances which caused intensive
foaming in the measurement pipe. However, in total, 65 events were analyzed at FR, 23 at site RC,
46 at PL, and 16 at HT. Descriptive statistics of selected event characteristics are given in Table 5.

Table 4. Description of event database with continuous monitoring data.

Site Total Observed
Events

Events Violating
Selection Criteria

Events with
Doubtful Data Valid Events Valid Events/Total

Observed Events

FR 415 275 75 65 16%
RC 324 199 102 23 7%
PL 152 87 19 46 37%
HT 40 11 13 16 40%
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Table 5. Descriptive statistic data (min, 0.1-, 0.25-, 0.5-, 0.75-, 0.9-percentiles, max, mean, standard deviation) of site-specific event characteristics; rainfall depth: H,
max. rainfall intensity in 60 minutes (Imax60), max runoff (Qmax), runoff volume (Vol), TSS loads (Loads), and TSS event mean concentrations (EMC).

Site Min 0.1-Perc. 0.25-Perc. Median 0.75-Perc. 0.9-Perc. Max Mean Sd Min 0.1-Perc. 0.25-Perc. Median 0.75-Perc. 0.9-Perc. Max Mean Sd
- H (mm) Imax60 (mm/h)

FR 2.0 2.1 3.1 4.3 7.3 9.6 22.7 5.6 3.8 2.6 2.8 3.3 4.6 8.2 15.2 49.4 7.4 8.1
RC 2.2 3.8 4.3 7.1 13.4 18.9 29.1 9.8 7.2 2.5 2.7 3.0 3.7 5.2 6.6 10.4 4.4 2.1
PL 2.1 2.6 3.1 5.1 10.0 18.8 31.0 8.0 6.9 2.5 2.7 2.9 5.5 10.4 18.7 44.9 8.6 8.2
HT 2.3 3.2 3.6 6.2 8.7 17.5 21.8 8.0 5.9 1.1 * 1.3 1.8 2.3 2.6 4.7 7.5 2.7 1.7

- Vol (m3) Qmax (L/s)
FR 0.02 0.02 0.1 0.2 0.3 0.4 1.2 0.2 0.2 0.01 0.01 0.1 0.1 0.3 0.4 1.6 0.2 0.3
RC 18.2 45.5 65.2 116.3 233.5 428.5 715.8 192.0 191.0 8.9 10.5 15.9 28.8 95.4 148.4 215.7 61.3 66.5
PL 1.4 2.6 3.4 5.7 11.8 29.7 71.2 11.6 13.8 1.0 2.3 4.0 7.8 13.1 23.3 54.9 11.1 11.3
HT 81.2 105.5 121.5 166.3 336.1 581.4 784 268.5 211.4 13.5 16.3 19.8 27.5 52.3 81.8 133.1 40.7 32.9

- Loads (kg/ha) EMC (mg/L)
FR 0.0 0.0 0.1 0.2 1.7 4.9 19.4 1.7 3.6 0 1 3 9 35 94 250 33 55
RC 0.1 0.3 0.6 0.9 3.5 7.4 9.4 2.6 2.9 4 11 18 50 92 152 364 77 94
PL 0.1 0.5 0.9 1.3 2.6 6.3 11.1 2.3 2.6 5 13 24 49 80 112 254 60 49
HT 1.6 3.1 3.6 8.0 13.6 29.2 47.5 12.6 12.7 27 38 54 120 172 242 297 125 84

Note: * Event is considered valid although the Imax60 criteria is violated.
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3.4. Correlation Analysis

Table 6 shows Pearson correlation coefficients for TSS loads and selected variables at the four study
sites. A strong correlation of rainfall intensities and mean/max runoff to TSS loads can be observed at
site FR. This effect is also evident but less intense at sites PL and HT. However, the variable Imean (mean
rainfall intensity) has only a strong influence at FR (0.8). Rainfall depths seem to be strongly correlated
to TSS loads at site HT, only. The overall rainfall duration does not correlate with TSS loads at any site.
Correlation of the variables runoff volume (Vol) and antecedent dry weather periods (ADWP) to TSS
loads can be noticed only at site HT and PL, respectively.

Table 6. Site-specific Pearson correlation coefficients (FR: flat roof, RC: residential catchment,
PL: parking lot, HT: high-traffic street) for TSS loads and selected variables: rainfall depth, duration,
and intensities (H, Dp, Imean:Imax60), runoff characteristics (Qmean, Qmax, volume), and antecedent dry
weather period (ADWP). Bold values indicate correlation coefficients >0.5.

Site

Loads

H DP Imean Imax1 Imax5 Imax60 Qmean Qmax Vol ADWP

FR 0.39 ´0.09 0.80 0.68 0.80 0.82 0.90 0.88 0.37 0.20
RC 0.19 ´0.03 0.40 0.47 0.43 0.26 0.45 0.35 0.29 ´0.06
PL 0.50 0.08 0.48 0.69 0.69 0.63 0.49 0.64 0.38 0.56
HT 0.80 0.30 0.41 0.73 0.74 0.64 0.62 0.59 0.78 ´0.06

3.5. Intra-Event TSS Load Distributions

Intra-event distributions of TSS load are studied with site-specific M (V)-curves (Figure 2).
Clearly, all sites show large variability of intra-event TSS load distribution which confirms findings of
other studies [6,7] also for microscale sites. However, from the four study sites it can be observed that
the more curves are taken into account the variability increases. Therefore, boxplots at runoff volume
quantiles are used to depict the main tendency of wash-off behavior. This enables a visual comparison
between site and season-specific M (V)-curves.
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Figure 2. Site-specific M (V)-curves (FR: flat roof, RC: residential catchment, PL: parking lot,
HT: high-traffic street).

Figure 3 shows boxplots of M (V)-curve distributions at given runoff volume quantiles for each of
the study sites. At site FR, in most cases a large portion of pollution loads tend to be washed-off in
the first period of an event. In addition, distances between the first and third quartile (interquartile
range, IQR) increases until 20% of runoff volume and decreases afterwards. This generally indicates a
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decreasing event variability. In this respect, after 60% of runoff volume, most pollutants are already
washed off. With regard to site PL and RC, the IQR rises until 20% of runoff volume and almost
constantly continues up to 60% of runoff volume. At site HT, the IQR is merely changing in the
first 80% of runoff volume. Although, the number of events taken into account is likely to affect
the interquartile ranges, M (V)-curves from site HT are noticeably closer to the bisecting line than
M (V)-curves from site FR. Similarly, M (V)-curves from PL are closer to the bisecting line compared to
the M (V)-curves from site RC.

3.6. Seasonal Intra-Event TSS Load Distribution

Figure 4 shows M (V)-curve distributions for different seasons. At FR, the M (V)-curves start
steeper in spring, summer, and autumn periods, which indicates a more pronounced first flush.
Contrarily, in winter, the M (V)-curves show a less dominant wash-off behavior at the beginning of
the events. At site PL, the variability is highest during spring and autumn periods. Events during
summer months show similar wash-off behavior, which is indicated by relatively low IQR. The three
events in the winter are characterized by a delayed wash-off, but cannot be statistically interpreted
due to small number of events. M (V)-curve distributions at site RC are comparable to PL with the
highest variability during spring and autumn months. Pollutants tend to be washed-off in the first
periods of an event. For site HT, monitored events are available in the autumn and winter months,
only. Both seasons show comparable wash-off behavior, which is characterized by runoff almost
proportional to washed-off loads, low IQR, and close distance to the bisecting line.Water 2016, 8, 299  10 of 12 
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Figure 3. Site-specific boxplots of M (V)-curve distributions at runoff volume quantiles (FR: flat roof,
RC: residential catchment, PL: parking lot, HT: high-traffic street). Box ranges correspond to the first and
third quartiles. Median is indicated by a solid black horizontal line. Whiskers comprise lowest/highest
value within 1.5 ˆ inter-quartile range. Outliers exceed whiskers’ ends and are indicated by solid
black dots.
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Figure 4. Seasonal- (horizontal) and site- (vertical) specific boxplots of M (V)-curve distributions at
runoff volume quantiles (FR: flat roof, RC: residential catchment, PL: parking lot, HT: high-traffic street).
Box ranges correspond to the first and third quartiles. Median is indicated by a solid black horizontal
line. Whiskers comprise lowest/highest value within 1.5 ˆ inter-quartile range (IQR). Outliers exceed
whiskers’ ends and are indicated by solid black dots.

4. Discussion

From the correlation analysis it is stated, that firstly rainfall intensity (Imax5, Imax60) has a strong
influence on TSS loads at small catchments with a high proportion of impervious surfaces (FR, PL, HT).
Secondly, this effect decreases with increasing catchment size. Thirdly, in residential catchments which
consist of multiple subcatchments (e.g., roofs, streets, parking lots) the correlation between rainfall
event characteristics and TSS loads are strongly attenuated. The low correlation of the antecedent
dry weather period suggests that this parameter is inappropriate to describe the pollutant build-up.
However, in this study, the average antecedent dry weather period is about three days. This means
pollutants are mostly accumulated shortly after an event and therefore exposed to other influential
processes such as wind-driven processes.

Analysis of M (V)-curves suggests, that firstly, microscale sites show, in general, a more
pronounced first-flush effect and only a few events with a delayed wash-off process. Secondly, the
wash-off process at FR seems to be source limited because of the majority of particles are washed-off
after 60% of runoff volume and the IQR is significantly low at the end of the events. Thirdly, in contrast,
PL and HT show a more transport-limited wash-off because the IQR is closer to the bisecting line at the
end of the events. Finally, it is assumed, that RC’s wash-off processes are influenced by a composition
of subcatchments, such as roofs, streets, and parking lots, which is explained by the intermediate
position of RC in comparison to FR, HT, and PL. In fact, runoff from different surfaces is superposed
and therefore pollution transport processes are mixed.

From seasonal M (V)-curves it can be observed, firstly, that M (V)-curve distributions at FR
show the largest variability in the first 50% of runoff volume throughout the seasons except for
spring. The delayed wash-off process during winter months can be caused by a low pollutant
potential on surfaces, coarser particles with high densities, or by events with low rain intensities.
Secondly, variability of M (V)-curve distribution, in general, is largest during autumn, especially
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for sites FR, RC, and PL. It can be assumed that this is mainly caused by high variability of rainfall
intensities in conjunction with varying pollutant masses available at the surface. It must also be noted,
that only few events were monitored during the winter months, which must be taken into account for
further statistical analysis.

5. Conclusions

A long-term monitoring campaign was conducted to analyze stormwater pollutant processes at
microscale sites with online sensors. Rainfall runoff events were statistically analyzed and intra-event
TSS load distributions were site- and season-specifically examined by means of M (V)-curves.
The correlation analysis reveals a strong relationship between rainfall intensity and event loads
for small catchments with a high proportion of impervious surfaces, but not for the larger residential
catchment. Furthermore, grouping M (V)-curves with boxplots at runoff volume quantiles enables the
comparison of wash-off behaviors of different catchments. In general, the wash-off process at site FR
(flat roof) tends to be source-limited. In contrast, sites PL (parking lot) and HT (high-traffic) show a
transport-limited behavior. A seasonal analysis of M (V)-curve distributions demonstrated the large
variability, especially during autumn.

With these results, this paper clearly highlights the need for a spatially more detailed assessment
of stormwater quality runoff. This can be drawn from the subcatchment-specific wash-off behavior.
Consequently, it can be recommended to use different wash-off models for different catchment types
to adequately address transport-limited and source-limited catchments.
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Abstract: Based on the results of a long-term stormwater quality monitoring program, empirical 
TSS event load distributions were derived at four small urban environments (flat roof, parking lot, 
residential catchment, high traffic street). Theoretical distribution functions were fitted and used to 
describe the measurement data. Parameters of the theoretical distribution functions were optimized 
with respect to a likelihood function to get both optimized parameters and standard errors. 
Kolmogorov-Smirnov and Anderson-Darling test statistics were applied to assess the goodness-of-
fit between empirical and theoretical distribution. The lognormal distribution function was found 
to be most expressive to approximate empirical TSS event load distributions at all sites. However, 
the goodness-of-fit of the statistical model strongly depends on the number of events available. 
Results of a Monte-Carlo-based resampling strategy suggest to provide about 40 events. 

Keywords: urban stormwater pollution; probabilistic TSS event loads model; empirical cumulative 
distribution function; lognormal distribution function; stormwater quality monitoring 

 

1. Introduction 

The development of advanced on-line monitoring techniques in the past two decades allows 
both researchers and practitioners to get more insights of stormwater pollutant processes. 
Continuous signals of UV-Vis spectrometers or turbidity sensors are frequently used to study intra-
event pollutant processes and to estimate event loads or event mean concentrations [1–5]. Ideally, 
those measurements are used to support the implementation of urban stormwater management 
strategies. For this, an in depth understanding of pollutant processes is required to design 
appropriate and cost-effective measures. In this respect, intra-event dynamics have been studied and 
analysed by means of Mass-Volume-Curves [1,5–7] to explain environmental, temporal and spatial 
influences on flushing characteristics of e.g. the parameter total suspended solids (TSS). Although the 
studies revealed site-specific tendencies in the proportion of washed-off load during storm events, 
the heterogeneous data presented clearly demonstrate the complex nature of pollutant processes 
which is expressed by significant variability of pollutographs [5]. 

Pollutant processes on surfaces are generally characterised by wash-off and build-up [8]. While 
wash-off is mainly driven by rainfall [9–12], surface type and use [13–15] and pollutant [10,14] 
characteristics, the build-up is assumed to be highly affected by stochastic inputs [16]. Moreover, 
given the fact that rainfall also can be assumed to be a stochastic variable or at least to some extent, 
the entire pollutant process consequently aggregates to a stochastic process and thus can hardly be 
explained deterministically. However, as the pollutant process contains stochastic variables, 
statistical and probabilistic analyses are allowed to be applied. 
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Probabilistic analyses are generally based on records of random events [17] and commonly used 
in hydrology (e.g. hydrologic frequency estimates) and urban hydrology (e.g. storm drainage design). 
However, the concept itself has not been applied in the field of urban stormwater quality in 
particular. Since a deterministic process description is currently not possible though high resolution 
on-line data of stormwater quality is available, a novel opportunity to explore pollutant process 
characteristics is created. 

Several stormwater management design guidelines take pollutant event loads or annual loads 
(e.g. TSS) into account instead of focusing on intra-event processes. This highlights the importance of 
this parameter from a practical point of view.  

The presented work therefore aims to statistically model TSS event loads from small catchments. 
For this, empirical cumulative distribution functions are derived from a given stormwater quality 
event database and used to approximate theoretical distribution functions. Theoretical distribution 
functions with known or estimated parameters offer the possibility to be used as a proxy and provide 
seamless information while an empirical distribution may hold gaps due to limited sampling 
duration or erroneous data. In addition, describing TSS event loads by means of a theoretical 
distribution function allows to compare pollutant processes among different sites. 

Because selecting an appropriate probability model is of particular importance, four commonly 
used theoretical distributions are applied and site-specifically evaluated. Finally, it is analysed how 
many events are required to describe the TSS event loads characteristic with statistical significance. 

2. Materials and Methods 

2.1 Monitoring sites and data 

In this paper, the database of TSS event loads published in [1] is used. In their work, the authors 
installed compact monitoring stations at the outlet of four common types of urban catchments and 
estimated TSS event loads by means of continuous turbidity sensors as a surrogate. Data from a flat 
roof (FR, 50 m2, 65 events), a high traffic street (HT, 2.5 ha, 16 events), a parking lot (PL, 2350 m2, 46 
events) and a residential catchment (RC, 9.4 ha2, 23 events) are available. A summary of descriptive 
statistics is given in Table 1. Furthermore, Figure 1 depicts the distribution of site-specific TSS event 
loads as empirical cumulative distribution functions and box-plots, respectively. 

Table 1. Descriptive statistics (min, 0.1-, 0.25-, 0.5-, 0.75-, 0.9-percentiles, max, mean, standard 
deviation) of site-specific TSS event loads (FR: Flat Roof, HT: High Traffic Street, PL: Parking Lot, RC: 
Residential Catchment) 

site n 
 TSS event loads (g m-2) 

min 0.1-Perc 0.25-Perc 0.5-Perc 0.75-Perc 0.9-Perc max mean sd 
FR 65 0.001 0.002 0.008 0.024 0.169 0.492 1.942 0.174 0.358 
HT 16 0.164 0.313 0.361 0.795 1.357 2.916 4.746 1.255 1.275 
PL 46 0.011 0.046 0.086 0.126 0.257 0.633 1.109 0.230 0.255 
RC 23 0.014 0.027 0.065 0.093 0.349 0.735 0.935 0.261 0.295 
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Figure 1. Empirical cumulative distribution functions and boxplots of site-specific monitored TSS 
event loads (FR: Flat Roof, HT: High Traffic Street, PL: Parking Lot, RC: Residential Catchment) 

2.2 Theoretical distribution functions 

The site-specific distributions of empirical TSS event loads are derived and used to approximate 
theoretical distribution functions given in Table 2. For this purpose, distribution functions of type i) 
Exponential, ii) Gamma, iii) Lognormal and iv) Weibull are selected, as they closely correspond to 
observed distributions. In particular, these functions are only defined for positive values (x > 0) so 
that they inherently reflect one of the main characteristics of the empirical data. Additionally, 
parameters of the theoretical distribution functions are listed in the table. While the Exponential 
distribution has only one parameter, the Gamma, Lognormal and Weibull distributions offer two 
parameters to be estimated. 

Table 2. Theoretical distribution functions  

name (abbreviation) formula parameter 

Exponential (exp) 𝐹(𝑥) = & 0, 𝑥 ≤ 0
1 − 𝑒-./, 𝑥 > 0 a (rate) 

Gamma (gamma) 𝐹(𝑥) = 1
0, 𝑥 ≤ 0

𝑏3

Γ(𝑝) ×
7 𝑡3-9
/

:
𝑒-;<𝑑𝑡	, 𝑥 > 0 p (shape), b (rate) 

Lognormal (lnorm) 𝐹(𝑥) = 1
0, 𝑥 ≤ 0

1
𝜎√2𝜋

×7
1
𝑡 𝑒

-9CD
EF <-	G
H I𝑑𝑡

/

:
, 𝑥 > 0 µ (meanlog), s (sdlog) 

Weibull (weibull) 𝐹(𝑥) = J
0, 𝑥 ≤ 0

1 − 𝑒-./K, 𝑥 > 0
 a (scale), b (shape) 

2.3 Distribution fitting and goodness-of-fit assessment 

To fit theoretical distribution functions to an empirical distribution, distribution parameters 
need to be optimized. In this study, parameters are estimated by maximum likelihood strategy (exact 
standard error model: µ = 0, s = 1) because this also enables to analyse the standard error of estimated 
parameter. The likelihood function in general can be stated as follows (Equation 1): 

ℒ(𝜃) = 𝑓(𝑥9, 𝑥C,… , 𝑥F|	𝜃) = 	Q𝑓(𝑥R|𝜃)
F

RS9

 (1) 
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 with xi the n observation of variable X (i.e., TSS event loads) and f(×|q) the density function of 
the theoretical distribution function used. Parameters to be optimized are denoted by q. 
 
Since computation of likelihoods could result in very small numbers which may cause numerical 
precision problems, the logarithm of likelihoods (LL) is taken instead. Fitting of theoretical 
distribution functions and numerical goodness-of-fit computations were utilized with R [18] and the 
package fitdistrplus [19]. Once optimal parameters are estimated, the goodness-of-fit is evaluated by 
Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) test statistics which are calculated according 
to Table 3. 

Table 3. Goodness-of-fit statistics used to evaluate the fitting (Fn denotes the empirical distribution 
function, F represents the fitted theoretical distribution function, sup abbreviates supremum which 
indicates the least element of x that is greater than or equal to all elements of x (“least upper bound”)). 

statistic (abbreviation) Formula  

Kolmogorov-Smirnov (KS) 𝐷F = 	
𝑠𝑢𝑝
𝑥 	|𝐹F(𝑥) − 𝐹(𝑥)| (2) 

Anderson-Darling (AD) 𝐴C = 𝑛	 7
Y𝐹F(𝑥) − 𝐹(𝑥)Z

C

𝐹(𝑥)Y1 − 𝐹(𝑥)Z

[

-[
𝑑𝐹(𝑥) (3) 

 
In general, both tests are used to test whether a sample follows a specific distribution by 

calculating the maximum distance between empirical and theoretical distribution function. This 
means smaller test statistics indicate a lower numerical distance to the distribution analyzed. The AD 
test refines the KS test and gives more weight to the distribution tails. The tests are applied to decide 
whether the null hypothesis H0 “The sample follows a specified distribution” can be accepted or must 
be rejected at a specified significance level. Alternatively, hypothesis HA is defined as “the sample 
does not follow a specified distribution”. Critical values for the acceptance decision of the KS test are 
calculated according to Equation 4 for sample sizes > 35. For sample sizes below 35, critical values are 
obtained from [20]. 

𝑑. = 	\
-:.^	_`	(ab)

√F
, for n > 35 (4) 

with sampling size n and significance level a.  

2.4 Monte-Carlo resampling strategy 

A Monte-Carlo simulation based resampling strategy without replacement has been conducted 
to analyse the effect of different sample sizes on the quality of distribution fitting. Motivated by the 
idea to determine a minimum sample size required, the computational steps are as follows: 
 
1. Estimating parameters of lognormal distribution function by maximum likelihood taking all 

samples into account. 
2. Sampling k (𝑘 ∈ ℕ, 0	 < 𝑘	 ≤ 𝑛) events from all events n with 1000 repetitions. If less than 1000 

repetitions are possible, all possible combinations are taken into account (Equation 3). 

𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 = 𝑀𝐼𝑁mD
𝑛
𝑘I , 1000n (3) 

with population n and sample size k. 
 
3. Computing of KS distance between empirical cumulative distribution function of sample and 

theoretical distribution function with estimated parameters for all repetitions. 
4. Computing of mean, standard deviations of KS distances for all repetitions. 
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The results are then interpreted and visually compared to the critical values for the Kolmogorov-
Smirnov test statistic at 90 % significance level.  

3. Results 

3.1. Distribution fitting 

Results of fitting theoretical distribution functions to the empirical TSS event load distribution 
are presented in Table 4. It shows site- and distribution-specific goodness-of-fit values and estimated 
parameters. Figure 2 illustrates the approximation with Lognormal distribution function at site FR 
and PL. 

Table 4. Results of fitting empirical TSS load distribution functions to theoretical distribution 
functions (FR: Flat Roof, HT: High Traffic Street, PL: Parking Lot, RC: Residential Catchment, LL: 
LogLikelihood, AD: Anderson-Darling statistic A2, KS: Kolmogorov-Smirnov statistic Dn) 

site distr. 
goodness-of-fit parameter estimates (standard error) 

LL AD  KS rate shape meanlog sdlog scale 

FR 

exp 48.66 29.074 0.442* 5.747 
(0.713) - - - - 

gamma 88.29 2.254 0.186* 1.994 
(0.504) 

0.347 
(0.049) - - - 

lnorm 89.9 0.806 0.099 - - -3.69 
(0.301) 

2.429 
(0.213) - 

weibull 92.05 1.123 0.131 - 
0.484 

(0.046) - - 
0.077 

(0.021) 
          

HT 

exp -19.64 0.379 0.153 0.797 
(0.199) - - - - 

gamma -19.25 0.394 0.136 1.068 
(0.412) 

1.341 
(0.428) - - - 

lnorm -18.18 0.192 0.128 - - -0.19 
(0.228) 

0.912 
(0.161) - 

weibull -19.46 0.382 0.137 - 1.121 
(0.208) - - 1.316 

(0.312) 
          

PL 

exp 21.69 1.168 0.126 
4.356 

(0.642) - - - - 

gamma 22.03 1.279 0.157 5.093 
(1.175) 

1.169 
(0.218) - - - 

lnorm 25.31 0.398 0.116 - - -1.96 
(0.146) 

0.987 
(0.103) - 

weibull 21.72 1.203 0.137 - 1.030 
(0.111) - - 0.233 

(0.035) 
          

RC 

exp 7.91 1.011 0.222 3.833 
(0.799) - - - - 

gamma 8.1 0.681 0.189 
3.283 

(1.120) 
0.857 

(0.219) - - - 

lnorm 9.07 0.38 0.131 - - -2.03 
(0.259) 

1.243 
(0.183) - 

weibull 8.23 0.586 0.174 - 0.882 
(0.142) 

- - 0.244 
(0.061) 

* rejecting H0 
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Table 5 shows results of fitting the Lognormal distribution to TSS event load distributions 
grouped by year. Sites FR and PL are considered only as they provide sufficient samples per group. 
The goodness-of-fit is given for each individual group and compared to the original sample from all 
years. Additionally, the goodness-of-fit is visualised in Figure 2. 

Table 5. Results of fitting empirical TSS load distribution functions grouped by year to lognormal 
distribution function (FR: Flat Roof, HT: High Traffic Street, PL: Parking Lot, LL: LogLikelihood, AD: 
Anderson-Darling statistic A2, KS: Kolmogorov-Smirnov statistic Dn) 

site year n distr. 
goodness-of-fit parameter estimates 

(standard error) 
LL AD  KS meanlog sdlog 

FR 

all years 65 lnorm 89.9 0.806 0.099 -3.69 (0.301) 2.429 (0.213) 
2015 25 lnorm 24.54 0.64 0.138 -2.99 (0.359) 1.80 (0.254) 
2014 17 lnorm 41.63 0.288 0.142 -5.04 (0.786) 3.24 (0.556) 
2013 23 lnorm 32.52 0.365 0.12 -3.45 (0.388) 1.86 (0.274) 

         

PL 
all years 46 lnorm 25.31 0.398 0.116 -1.96 (0.146) 0.987 (0.103) 

2014 30 lnorm 23.76 0.616 0.167 -2.08 (0.161) 0.88 (0.114) 
2013 16 lnorm 2.93 0.243 0.105 -1.72 (0.281) 1.12 (0.199) 

 

 
Figure 2. Approximation of empirical TSS event load distribution function grouped by year with 
lognormal distribution function at site FR and PL 
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3.2. Effect of sample size 

The results obtained from the Monte-Carlo-based sampling are visualised in Figure 3. It shows 
the mean (colored solid line) and regions of one and two standard deviations (grey shaded areas) of 
Kolmogorov-Smirnov’s statistic as function of sample size for site FR and PL. Furthermore, critical 
values for the 90 % significance level are illustrated (black solid line). 

 

 
Figure 3. Mean and regions of one and two standard deviations of Kolmogorov-Smirnov’s statistic as 
function of sample size from Monte-Carlo-based sampling for sites FR and PL. Critical values for 90% 
confidence are indicated as black solid line. 

4. Discussion 

4.1. Distribution fitting 

All selected theoretical distribution functions were able to approximate the empirical 
distribution with statistical significance except for the Exponential and the Gamma distribution at 
site FR (H0 gets rejected). These two functions are not able to reflect the initially steep gradient and 
subsequent moderate gradient of the empirical distribution. The Exponential function has the least 
flexibility among the analysed functions because it only provides one parameter to be fitted. This 
explains the poor approximation results. Thus, a statistical significant description of TSS event 
distributions requires at least a two-parameter distribution. 

Using the Weibull distribution which basically extends the Exponential distribution function 
with an additional parameter, clearly improves the fitting. The application of Weibull and Gamma 
distribution lead to comparable results which is indicated by similar goodness-of-fit measures. 
Highest goodness-of-fit is obtained with the Lognormal distribution that accordingly approximates 
the underlying dataset best. 

The goodness-of-fit of the Lognormal distribution however, varies between sites. On the one 
hand, this might be caused by insufficient samples, which lead to more pronounced steps in the 
empirical distribution function. On the other hand, this also could reflect a site-specific behavior, 
which is expressed by the shape of distribution function. While the monitored small roof catchment 
has significantly more events with low loads, this effect is attenuated for the other catchments. The 
differences in the results of the two-parameter functions are marginal which demonstrates the 
functions are general able to replicate the empirical distribution. 

Comparing the fitted parameters also indicates that distributions of site PL and RC are 
comparable which is confirmed by their empirical distribution functions (Figure 1). 

 
The results of distribution fitting grouped by year shows that also subsamples can be well 

approximated by Lognormal distribution. According to the KS statistic, for both sites the year 2013 
has been fitted best. Only the AD statistic of the year 2014 for site FR indicates a slightly better fit 
which is caused by a relative low maximum load in this year (2013: 1.94 gm-2, 2014: 0.8 gm-2, 2015: 
1.34 gm-2). The optimized parameters of the Lognormal distribution for both sites highlight the 
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individuality of each year as they strongly vary. This is also expressed by the spread of goodness-of-
fit values. Consequently, this indicates the sensitivity of the sampling characteristics which is induced 
by the utilized database. In the present study the database available does not cover all events of an 
entire year mainly due to measurement issues and predefined rainfall-runoff criteria for event 
selection [1]. However, rainfall-runoff events are affected by numerous environmental variables and 
generally occur randomly in time, space and intensity. Therefore, although the event database 
grouped by year undoubtedly is incomplete, the approach reflects natural variability in which the 
number of events per year and their characteristics change. Robust fitting of a theoretical distribution 
function should therefore prioritize sample size over sampling period (c.f. 4.2). 

4.2. Effect of sample size 

The results of the Monte-Carlo analysis show, that the mean of the calculated goodness-of-fit 
values improves with increasing sample size and approximates to the value obtained when all 
samples are taken into account (FR: 0.099, PL: 0.12). The standard deviation decreases with increasing 
sampling size by implication. With respect to critical values for 90% confidence level, accepting the 
null hypothesis H0 (“The data follow the Lognormal distribution”) generally requires Kolmogorov-
Smirnov’s Dn to be approximately below the µ + 2s threshold which is satisfied for minimum sample 
sizes of roughly 40 at site FR and of roughly 30 at site PL. It can be legitimately assumed that 
simulated KS statistics follow a normal distribution which according to the empirical rule 1 
consequently implies that more than approximately 95 % of samples lead to KS statistics lower than 
0.188 at site FR and 0.211 at site PL. Narrowing the uncertainty range to the upper limit of µ + s 
threshold results in KS statistics of 0.159 at site FR and 0.176 at site PL (approx. more than 68% of 
samples are within this range).  

Generally, the simulated dataset confirms that the more samples are taken into account, the more 
precise the estimates get which as a matter of fact is the basic assumption for any statistical 
significance test. In order to determine the minimum sample size which leads to accepting the null 
hypothesis H0 with high probability, it is suggested to choose at least the minimum of 40 samples 
because of i) the chance of having a sample which can be statistically represented by the Lognormal 
distribution is high (>95 %) and ii) the mean of KS statistic in this case only slightly differs from the 
optimal value taking all samples into account (0.131 > 0.099 at site FR and 0.122 > 0.12 at site PL). 
However, the choice of criteria remains subjective and might be adapted as further data becomes 
available. Of course, using more data to approximate the Lognormal distribution may probably lead 
to more appropriate fitting results, but this requires to provide more samples which in turn needs 
more measurement data. The criteria proposed therefore are presenting a compromise solution 
between measurement duration and quality of approximation. 

5. Conclusions 

Empirical TSS event load distributions of four small common types of urban catchments (Flat 
Roof (FR), Parking Lot (PL), Residential Catchment (RC), High Traffic Street (RC)) are successfully 
described by theoretical distribution functions. The goodness-of-fit was evaluated and effects of 
sampling sizes were investigated. From the analysis, it was found that: 
• The Lognormal distribution function is most expressive to approximate empirical TSS event load 

distributions at all experimental sites.  
• Successfully derived and fitted distribution functions provide a closed characterization of TSS 

event load distributions allowing to intra- and extrapolate of probabilistic event characteristics 
not observed. 

• A robust fitting should prioritize sample size over sampling period. 

                                                
1 The empirical rule states that for a normal distribution 99.7% of the data fall within three standard deviations, 
95% are within two standard deviations and 68 % fall within one standard deviation [20]. 



Water 2018, 10, x FOR PEER REVIEW  9 of 11 

 

• Roughly 40 events are required to reasonably fit the Lognormal distribution. Using more 
samples potentially improves the goodness-of-fit but subsequently requires to extend the 
duration of cost-intensive monitoring campaigns. 

 
When applying the concept of probabilistic description of TSS event loads based on theoretical 

distribution function, the results of this study may also support the evaluation of stormwater quality 
runoff monitoring campaigns with respect to their duration/information ratio. Also, the fitted 
distribution functions provide an excellent basis to calibrate urban stormwater quality models by 
focusing on probabilistic TSS event load characteristics. 
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Abstract

The stormwater management model software SWMM of the US EPA is widely
used to analyse, design or optimise urban drainage systems. To perform advanced
analysis and visualisations of model data this short communication introduces
the R package swmmr. It contains functions to read and write SWMM files,
initiate simulations from the R console and to convert SWMM model files to
and from GIS data. Additionally, model data can be transformed to produce
high quality visualisations. In accordance with SWMM’s open source policy the
package can be obtained through github.com or the Comprehensive R Archive
Network (CRAN).
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Software availability

swmmr is available on the Comprehensive R Archive Network (CRAN) at
https://cran.r-project.org/package=swmmr and
GitHub at https://github.com/dleutnant/swmmr
License: GPL-3
System requirements: R (>=3.0.0)
Installation: install.packages("swmmr") or
remotes::install_github("dleutnant/swmmr")

Introduction

Modelling urban drainage systems has become essential to develop and assess
resilient urban stormwater management strategies. Analysing the impact of
different climatic or demographic scenarios on urban water infrastructure or
optimising urban drainage networks are only some of the applications. Various
software products are available to model urban drainage systems. Amongst others,
the stormwater management model SWMM (Rossman 2010) is widely used by
researchers and practitioners to simulate dynamic hydrology-hydraulic water
quality processes. Its source code is released under public domain specification
and online available from the US EPA1. Besides the availability of the open source
engine of SWMM, a pre-compiled software for Microsoft Windows operating
systems is available. The software also provides a graphical user interface (GUI)
to design drainage networks and to assign attributes to elements of the system.
While the open source software facilitates basic analysis and visualisations of
model data, advanced features such as time series data management, parameter
uncertainty analysis or extended statistics are reserved to commercialised versions
of SWMM, only.
In this respect, the free software environment for statistical computing and
graphics R (R Core Team 2017) is frequently used by both scientists and
engineers. It provides a huge variety of add-on packages to address issues related
to urban drainage modeling such as model parameter optimisation (e.g. DEoptim
- Ardia et al. (2016)), visualisation (e.g. dygraphs - Vanderkam et al. (2017);
ggplot2 - Wickham (2016)), time series management (e.g. xts - Ryan and Ulrich
(2017)) or statistical analysis. Moreover, R’s spatial data processing capabilities
have been significantly advanced with the recent development of the simple
features (sf ) package (Pebesma 2018).
Modelling in general involves both pre- and post-processing of different types of
data such as spatial or time series data. Consequently, the availability of these
packages enables an efficient data management and supports modelling with
SWMM.
To bridge the gap between modelling and advanced model analytics, we herein
introduce the freely available R package swmmr which provides functions to

1https://www.epa.gov/water-research/storm-water-management-model-swmm
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interface SWMM. Core functions of the package comprise fast reading and
writing of SWMM files, conversion between GIS data and the SWMM input file
format as well as model data transformation to produce expressive visualisation.
This short communication describes design principles of the swmmr package
and exemplifies its usage. This includes a demonstration of how to produce
high quality figures of model results and model structure enabled by further R
packages. Finally, a conclusion is given and further developments are outlined.

What is the package useful for?

The main purpose of the swmmr package is to assist the modeller during
the modelling process. Typically, this includes processing and visualisation
of measurement and spatial data, which the R ecosystem provides matured
packages for. However, its capabilities of interactively creating and modifying
spatial data are limited and should not yet be compared to a specialised GIS
software, though remarkable progress can be observed (mapview - Appelhans
et al. (2018); mapedit - Appelhans and Russell (2017)). Thus, the package is
especially useful to modellers who use R for model data management and/or
need to perform advanced analysis, visualisation or optimisation tasks of a given
model or model results, respectively.

Package design and core functions

At its core, the package heavily relies on the tidy data concept (Wickham
2014) which is expressed through a set of harmonized packages sharing common
data representation principles (“tidyverse” - Wickham (2017)). Although most
tasks could have been addressed with base R2, packages from the “tidyverse” tend
to simplify both the programming and the data analysis. For example, swmmr
uses tibbles (Müller and Wickham 2017) instead of R’s build-in data.frame
to represent SWMM sections. This becomes apparent in functions which parse
SWMM text files, i.e. read_inp(), read_rpt() and read_lid_rpt() (Table 1).
Generally, these functions take the path to a corresponding SWMM file (*.inp
or *.rpt) and parse its content to a named list of tibbles or a single tibble,
respectively. read_inp() creates an object of class inp, whose list element
names are identical to the names of SWMM input sections available in lower
letters (e.g. options, subcatchments). read_rpt() creates a named list of class
rpt containing summary sections from the report file of SWMM (e.g. subcatch-
ment_runoff_summary). While both of the aforementioned functions maintain
the original SWMM file structure, read_lid_rpt() interprets text files from
specific LID elements. A single tibble or index-based time series data as xts
object is returned accordingly.

2"base R" refers to a set of default packages which R is actually based upon without any
additional packages loaded.
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Reading simulation output data from the binary .out file is supported by
read_out(). Because of the potentially huge size of .out data, the function
design aims for fast data processing, thus C++ code is embedded through Rcpp
(Eddelbuettel and François 2011). Output data per system element and model
variable is always represented as xts object and conveniently stored in a list
environment.

The function write_inp() writes an inp object to disk, which addresses cases
where an inp object has been modified within R and changes need to be saved
back to disk (e.g. model parameter calibration). Thus, it takes an existing inp
object and creates a model file on disk which can be read and run by SWMM.
A SWMM simulation run can be initiated from the R console with run_swmm()
which takes the path to an .inp file and calls the SWMM executable with the
required file paths as arguments.

Moreover, converting SWMM input sections with spatial reference to simple
feature objects is supported with *_to_sf() functions. Based on the conver-
sion of SWMM input sections to simple feature objects, an inp object can be
converted to the popular .shp format with inp_to_files(). Additionally, .txt
files containing simulation settings, storage and pumping curves are returned as
well as files containing SWMM time series data. As a counterpart the function
shp_to_inp() converts spatial data given in .shp files into an inp object. Infor-
mation on simulation settings, rainfall time series etc. can be given in .txt files
to complete the model data. While the conversion to sf objects already enables
common spatial analysis of SWMM model data in R, this also allows using the
plotting interface of ggplot2 through geom_sf().
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Table 1: Functions for the R environment provided by swmmr.
Name Inputs Description
model run
run_swmm() paths of .inp, .rpt and .out

file
Initiate a SWMM run from the R con-
sole

reading files
read_inp() path of .inp file Reads a SWMM model as list of tibbles

(i.e. inp object)
read_out() path of .out file Reads SWMM simulation results (time

series) as list of xts objects
read_rpt() path of .out file Reads SWMM simulation results (sum-

mary) as list of tibbles
read_lid_rpt() path of LID report file Reads a SWMM LID Report File as

tibble or xts object
writing files
write_inp() inp object (optionally mod-

ified) and filename
Writes an inp file to disk which can be
read and run by SWMM

simple feature con-
version
*_to_sf() inp object Converts SWMM objects as tibble with

simple feature geometries (supported ob-
jects are junctions, links, orifices, out-
falls, pumps, raingages, storages, sub-
catchments, weirs)

inp_to_sf() inp object Converts an entire inp object as list of
tibbles with simple feature geometries

.shp file conversion
inp_to_files() inp object, model name

and directory path
Converts .inp to .shp and .txt files

shp_to_inp() s. package manual Converts .shp files as list of tibbles (i.e.
inp object)
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Example Usage

In this short communication, the basic usage of the package is demonstrated
using the model “Example1” which is included in the SWMM software for Mi-
crosoft Windows. The model file usually locates at “C:/Users/. . . /Documents/EPA
SWMM Projects/Examples/Example1.inp”. Alternatively, it is also attached to
the package (cf. Listing 1). In addition, the reader is referred to three package
vignettes which cover topics beyond the scope of this short communication. For
example, instructions how to auto-calibrate a SWMM model with swmmr or
how to convert GIS and SWMM model data with swmmr are given.

Setup and model execution
To install swmmr from CRAN and to add its namespace to R’s search list,

the following commands need to be executed from the R command line (Listing
1). In this example, the model file attached to the package is used and its path is
assigned to the variable inp_path. Subsequently, run_swmm() initiates a model
run.
if (! require("swmmr")) install.packages("swmmr")
library(swmmr)
library(tidyverse)
inp_ path <- system.file("extdata", "Example1.inp", package = "swmmr")
swmm_files <- run_swmm(inp = inp_path ,

rpt = tempfile (),
out = tempfile ())

Listing 1: Installation and model execution.

Analysis of model data
SWMM’s model files (.inp, .rpt and .out) can be accessed from the named list

variable swmm_files. Since the results of both the read_rpt() and read_inp()
function comprises a list of named tibbles (Listings 2 and 3), elements can be
accessed via R’s common extracting mechanism.
inp_object <- read _inp(swmm_files$inp)
summary(inp_object)

#> Length Class Mode
#> title 1 tbl _df list
#> options 2 tbl _df list
#> evaporation 2 tbl _df list
#> raingages 5 tbl _df list
#> subcatchments 9 tbl _df list
#> subareas 8 tbl _df list
#> infiltration 6 tbl _df list
#> junctions 6 tbl _df list
#> outfalls 6 tbl _df list
#> conduits 9 tbl _df list
#> xsections 8 tbl _df list
#> pollutants 11 tbl _df list
#> landuses 4 tbl _df list
#> coverages 3 tbl _df list
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#> buildup 7 tbl _df list
#> washoff 7 tbl _df list
#> timeseries 4 tbl _df list
#> report 2 tbl _df list
#> map 2 tbl _df list
#> coordinates 3 tbl _df list
#> vertices 3 tbl _df list
#> polygons 3 tbl _df list
#> symbols 3 tbl _df list

glimpse(inp_object$subcatchments)

#> Observations : 8
#> Variables : 9
#> $ Name <chr > "1" , "2" , "3" , "4" , "5" , "6" , "7" , "8"
#> $ `Rain Gage ` <chr > " RG1", "RG1 ", " RG1", " RG1 ", " RG1 ", " RG1 ", "RG1 ", "...
#> $ Outlet <chr > "9" , "10" , "13" , "22" , "15" , "23" , "19" , "18"
#> $ Area <int > 10, 10, 5, 5, 15, 12, 4, 10
#> $ Perc _ Imperv <int > 50, 50, 50, 50, 50, 10, 10, 10
#> $ Width <int > 500 , 500 , 500 , 500 , 500 , 500 , 500 , 500
#> $ Perc _ Slope <dbl > 0.01 , 0.01 , 0.01 , 0.01 , 0.01 , 0.01 , 0.01 , 0.01
#> $ CurbLen <int > 0, 0, 0, 0, 0, 0, 0, 0
#> $ Snowpack <lgl > NA , NA , NA , NA , NA , NA , NA , NA

Listing 2: Reading and analysing model data.

rpt_object <- read _rpt(swmm_files$rpt)
summary(rpt_object)

#> Length Class Mode
#> analysis _ options 2 tbl _df list
#> runoff _ quantity _ continuity 3 tbl _df list
#> runoff _ quality _ continuity 3 tbl _df list
#> flow _ routing _ continuity 3 tbl _df list
#> quality _ routing _ continuity 3 tbl _df list
#> highest _ flow _ instability _ indexes 2 tbl _df list
#> routing _ time _ step _ summary 2 tbl _df list
#> subcatchment _ runoff _ summary 9 tbl _df list
#> subcatchment _ washoff _ summary 3 tbl _df list
#> node _ depth _ summary 8 tbl _df list
#> node _ inflow _ summary 9 tbl _df list
#> node _ flooding _ summary 7 tbl _df list
#> outfall _ loading _ summary 7 tbl _df list
#> link _ flow _ summary 8 tbl _df list
#> conduit _ surcharge _ summary 6 tbl _df list
#> link _ pollutant _ load _ summary 3 tbl _df list

Listing 3: Reading report of model results.

Time index-based model results from an .out file are imported as given in
Listing 4. The model variables total runoff (in flow units, vIndex = 4) and total
rainfall (in/hr or mm/hr) from the system (iType = 3) are read. A general
dictionary covering the mapping between variable and number is included in the
package documentation.
sim <- read _out(swmm_files$out , iType = 3, vIndex = c(1,4))
sim$ system _ variable %>%
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invoke(merge , .) %>%
summary

#> Index total _ rainfall total _ runoff
#> Min . :1998 -01 -01 01:00:00 Min . :0.00000 Min . : 0.0000
#> 1st Qu .:1998 -01 -01 09:45:00 1st Qu .:0.00000 1st Qu .: 0.0000
#> Median :1998 -01 -01 18:30:00 Median :0.00000 Median : 0.0000
#> Mean :1998 -01 -01 18:30:00 Mean :0.07361 Mean : 2.1592
#> 3rd Qu .:1998 -01 -02 03:15:00 3rd Qu .:0.00000 3rd Qu .: 0.1033
#> Max . :1998 -01 -02 12:00:00 Max . :0.80000 Max . :24.2530

Listing 4: Reading and statistical analysis of model results.

Convert between GIS and SWMM model data
inp_to_files() utilizes the conversion functions *_to_sf() for all SWMM

sections containing spatial data (Table 1). Sections without spatial information
are returned and saved separately. Thus, sub-folders containing .shp, .txt and .dat
files are created in a specified directory (Listing 5). Information on supported
SWMM sections for both inp_to_files() and shp_to_inp() is given in the
package manual.
out_ dir <- tempdir ()
inp_to_files(x = inp_object , name = "Example1", path _out = out_ dir)

c("dat", "shp", "txt") %>%
map( ~ list.files(file.path(out_dir ,.), pattern = .))

#> [[1]]
#> [1] " Example1 _ timeseries _ TS1. dat"
#>
#> [[2]]
#> [1] " Example1 _ link . shp" " Example1 _ outfall . shp" " Example1 _ point . shp "
#> [4] " Example1 _ polygon . shp"
#>
#> [[3]]
#> [1] " Example1 _ options . txt"

Listing 5: Converting SWMM model data into shape files.

Column names of the .shp file attribute table correlate with the original
SWMM encoding or the abbreviation to 7 characters. shp_to_inp() reads .shp
and .txt files and converts them to an inp object (Listing 6). Missing values
are completed with default values or can be specified separately. The vignette
provides more information of the conversion details.
converted_inp <- shp_to_inp(

path _ options = file.path(out_dir , "txt/Example1_options.txt"),
path _line = file.path(out_dir , "shp/Example1_link.shp"),
path _outfall = file.path(out_dir , "shp/Example1_outfall.shp"),
path _point = file.path(out_dir , "shp/Example1_point.shp"),
path _ polygon = file.path(out_dir , "shp/Example1_polygon.shp"),
path _timeseries = file.path(out_dir ,"dat/Example1_timeseries_TS1.dat")

)
summary(converted_inp)

8



#> Length Class Mode
#> options 2 tbl _df list
#> evaporation 2 tbl _df list
#> raingages 5 tbl _df list
#> subcatchments 9 tbl _df list
#> subareas 8 tbl _df list
#> infiltration 6 tbl _df list
#> junction 6 tbl _df list
#> outfalls 6 tbl _df list
#> conduits 7 tbl _df list
#> xsections 7 tbl _df list
#> pollutants 11 tbl _df list
#> landuses 4 tbl _df list
#> coverages 3 tbl _df list
#> buildup 7 tbl _df list
#> washoff 7 tbl _df list
#> timeseries 1 tbl _df list
#> report 2 tbl _df list
#> coordinates 3 tbl _df list
#> polygons 3 tbl _df list

Listing 6: Converting shape files into SWMM model data.

Usage with other R packages

Visualisation
Modelling involves visualisation of spatial and temporal data. With base

(R Core Team 2017), lattice (Sarkar 2008) and ggplot2 (Wickham 2016), R
currently offers three different plotting systems. Because of ggplot2’s flexibility
and declarative way of constructing graphics, a demonstration of how to create
expressive and customisable figures of model data is given in Listings 7 and 8.
Listing 7 aims to visualise rainfall and simulated runoff data. Temporal data is
read from an .out file and converted to data.frame. Both variables are plotted
as different geometric objects (geom_col(), geom_line()) and separated into
facets. The result is shown in Figure 1.
library(ggplot2) # ggplot2 >= 2.2.1.9000 required
library(broom) # to convert an xts object to data . frame

sim$ system _ variable %>%
invoke(merge , .) %>%
tidy (.) %>%
{

ggplot(mapping = aes(x = index , y = value)) +
geom_ col(data = filter(., series == "total_rainfall")) +
geom_line(data = filter(., series == "total_runoff")) +
scale _x_datetime(date _breaks = "3␣hour", date _ labels = "%H:%M") +
facet_wrap(

~series , ncol = 1, scales = "free_y", strip.position = "left",
labeller = as_labeller(c(

total_rainfall = "total␣rainfall␣(in/hr)",
total_runoff = "total␣runoff␣(CFS)"

))
) +
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theme_light() +
theme(

strip.placement = "outside",
strip.text = element_ text(colour = "black"),
strip.background = element_ rect(fill = "white"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()

) +
labs(

y = NULL , x = NULL ,
subtitle = paste(range (.$ index), collapse = "␣-␣")

)
}

Listing 7: Creation of ggplot2-based visualisation of simulation results.
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Figure 1: Example of ggplot2-based visualisation of simulation results.

Listing 8 is used to visualise the model structure with subcatchments, links,
junctions and raingages. Initially, SWMM objects to be plotted are converted as
sf objects. Coordinates for labelling subcatchments and raingages are calculated
afterwards. Since ggplot2 provides the geometric object geom_sf()3, sf objects
are directly passed to ggplot2 and interpreted accordingly. Figure 2 illustrates
the result.
# initially , SWMM objects to be plotted are converted as sf objects
# here : subcatchments , links , junctions , raingages
sub_sf <- subcatchments_to_sf(inp_object)
lin_sf <- links_to_sf(inp_object)
jun_sf <- junctions_to_sf(inp_object)
rg_sf <- raingages_to_sf(inp_object)

# calculate coordinates for label position of subcatchments
# here : centroid of subcatchment
coord_subc <- sub_sf %>%

3Note that ggplot2 >= 2.2.1.9000 is required
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sf::st_centroid () %>%
sf::st_coordinates () %>%
tibble ::as_tibble ()

# update coordinates to label raingage label
coord_rg <- rg_sf %>%

{sf::st_coordinates (.) + 500} %>% # add offset
tibble ::as_tibble ()

# add coordinates to tibble containing sf geometries
sub_sf <- dplyr::bind_cols(sub_sf, coord_subc)
rg_sf <- dplyr::bind_cols(rg_sf, coord_rg)

# create the plot
ggplot () +

# subcatchments and label
geom_sf(aes(fill = Area), data = sub_sf) +
geom_label(aes(X, Y, label = Name), sub_sf,

alpha = 0.5, size = 3) +
# links
geom_sf(aes(colour = Geom1), lin_sf,

size = 2) +
# junctions
geom_sf(aes(size = Elevation), jun_sf,

colour = "darkgrey") +
# raingage and label
geom_sf(data = rg_sf, shape = 10) +
geom_label(aes(X, Y, label = Name), rg_sf,

alpha = 0.5, size = 3) +
# change scales and theme
scale _fill_viridis_c() +
scale _colour_viridis_c(direction = -1) +
theme_linedraw () +
theme(panel.grid.major = element_line(colour = "white"))

Listing 8: Creation of ggplot2-based visualisation of model structure.
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Figure 2: Example of ggplot2-based visualisation of SWMM Example1 model structure.
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Since simple features are supported by the mapview package, a model struc-
ture converted to simple feature geometries can also be interactively visualised.
Figure 3 shows a screenshot of a browser-based visualisation of the “Example1”
model, obtained by executing Listing 9.
library(mapview)
inp_to_sf(inp_object) %>%

mapview ()

Listing 9: Creation of mapview-based visualisation.

Figure 3: Browser-based interactive visualisation of SWMM Example 1 model structure.

Calibration
Calibration of model parameters is an essential part within the modelling

chain to improve the model quality. During calibration, model parameter values
are systematically modified to optimise an objective function, which numerically
expresses the difference between observed and simulated data.
Because swmmr provides the functions write_inp() to save an inp object to
disk and run_swmm() to potentially run the written model file afterwards, it
especially facilitates autocalibration of model parameters. swmmr, however, does
not depend on particular optimisation packages. The package vignette “How to
autocalibrate a SWMM model with swmmr” exemplifies the application of the
DEoptim package (Ardia et al. 2016) for single objective optimisation.
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Conclusions

A brief introduction of the R package swmmr is given. swmmr interfaces
the stormwater management model SWMM with R and bridges the gap be-
tween modelling and advanced model analytics. It offers functions to represent
SWMM models in R which subsequently can be modified or visualised with
modern technologies. Simulation results are efficiently read with help of Rcpp to
streamline further time series analysis. This facilitates efficient model calibration
and parameter uncertainty analysis. Future developments will integrate generic
functions for plotting and model statistics. The package is freely available and
is especially open to both the SWMM and R community. The authors would
like to promote the open source project and welcome any contribution to the
package through the project page on GitHub.
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Abstract: An innovative calibration approach based on TSS event load distribution is developed 
and applied on stormwater quality models for a flat roof and a parking lot. Exponential functions 
are employed for both TSS buildup and washoff. Model parameters are calibrated by means of an 
evolutionary algorithm to minimize the distance between a parameterized lognormal distribution 
function and the cumulated distribution of simulated TSS event loads. Since TSS event load 
characteristics are probabilistically considered, the approach especially respects the stochasticity of 
TSS buildup and washoff and therefore improves conventional stormwater quality calibration 
concepts which usually focus on event pollutographs. The results show that both experimental 
models were calibrated with high goodness-of-fit (KS: 0.05). However, it is shown that events with 
high TSS event loads (> 0.8 percentile) are generally underestimated. While this leads to a relative 
deviation of -28 % of total TSS loads for the parking lot, the error gets compensated for the flat roof 
(+5 %). Calibrated model parameters generally tend to generate washoff proportional to runoff, 
which is indicated by Mass-Volume-Curves. The approach itself is general applicable and creates 
new opportunity to calibrate stormwater quality models especially when calibration data is 
limited. 

Keywords: stormwater quality modelling; model calibration; probabilistic TSS event loads; SWMM; 
lognormal distribution; annual TSS loads 
 

1. Introduction 

Stormwater quality models are essential tools to support planning of urban water 
infrastructure. Having reliable model outputs is of high relevance since infrastructural stormwater 
measures are cost-intensive and have a long service life. Available stormwater quality models still 
replicate natural pollutant processes in a simplified manner, which in turn lead to uncertain model 
results [1,2]. 

Pollutant processes are commonly differentiated into two conceptional phases i) buildup and ii) 
washoff which both are deterministically described by empirical formula [3]. These model concepts 
assume that the amount of pollutant masses at surface generally increases to a maximum as a 
function of antecedent dry weather periods and decreases in consequence of rainfall/runoff. 

Previous studies however demonstrated the inadequacy of this simplified concept to 
continuously model pollutant concentrations. [4] calibrated a buildup/washoff approach of a 
stormwater quality model to simulate chemical oxygen demand (COD) concentrations in 
stormwater discharges by means of a multi-objective auto-calibration scheme. Results obtained did 
not outperform a model employing a constant stormwater concentration approach. [5] applied a 
bayesian calibration scheme based on Markov chain Monte-Carlo (MCMC) method to assess the 
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build/washoff model performance to replicate continuous total suspended solid (TSS) 
concentrations and event loads. The authors confirmed the poor predictive power of the model 
applied and generally questioned the buildup/washoff approach. 

[6] indicate that pollutant models and its parameters lack of a physical meaning and thus 
represent rather black-box models. In fact, numerous authors propose a modified washoff equation 
to appropriately account for rainfall characteristics. [7] and [8] for example introduce a capacity 
factor to reflect the impact of rainfall intensity and that only a fraction of pollutants are mobilized 
during storm events. Both rainfall intensity and a ratio of sediment mass per unit catchment area to 
rainfall intensity are also considered in a modification suggested by [9]. Besides the sensitivity of 
rainfall intensity on the washoff process, [10] highlights the intra-event variability of rainfall as 
another influential factor. Obviously, washoff is also influenced by particle characteristics and 
environmental variables such as surface type and land use as pointed out by [7] and [11]. 

While a more physical-based description of rainfall induced washoff which also appropriately 
respects environmental conditions would clearly improve representativity of model outputs, both 
pollutant buildup and washoff are significantly affected by stochastic inputs [12] which in turn can 
hardly be predicted. As a consequence, [5] stress the need for an alternative modelling approach, 
which also incorporates effects of stochasticity on pollutant buildup and washoff. This aligns with 
[13] who already claimed to respect stochasticity when using stormwater quality data.  

Calibration of stormwater quality models conventionally aims to minimize the difference 
between observed and simulated pollutographs. While this allows to incorporate intra-event 
variability, pollutant stochasticity is rarely taken into account as goodness-of-fit is calculated 
event-specific. 

Several studies in the past decades respected probabilistic pollutant characteristics. [14] 
applied an autoregressive moving-average modelling approach for both continuously buildup and 
washoff of pollutant concentrations to account for unpredictable environmental impacts. However, 
the approach could not be appropriately calibrated because of lack of data. Motivated by 
unavailable urban storm runoff quality data, [15] analytically derived a frequency distribution to 
predict annual solids washoff from impervious urban areas. His concept takes rainfall 
characteristics and catchment parameters for buildup and washoff into account and is exemplified 
for an artificial industrial catchment. Due to lack of data, the approach could not be validated. A 
probabilistic approach to model TSS loads and dynamics of urban areas has also been proposed by 
[16]. Their concept uses i) a parameterized power function to approximate intra-event TSS 
dynamics with normal distributed exponent ii) log-normal distributed event mean concentrations 
(EMC) to estimate total TSS masses per event and iii) a uniform distributed daily wastewater 
discharge combined with a constant TSS concentration. While the practical benefit of the model is 
clearly highlighted, the authors point out the simplified process description and its limited 
predictive power. [17] introduce a general probability distribution approach in which cumulated 
distribution functions for pollutant loads and event mean concentrations are obtained from 
probabilistic rainfall-runoff transformation. [18] performed Monte-Carlo simulations and used 
corresponding results to assess the effects of stormwater best management practices on water 
quality for six toxic metals. As [16] they also assumed a power law relationship between runoff and 
pollutant concentrations during an event. However, they stochastically considered the exponent of 
the used power equation for the intra-event relationship, which in turn led to a large amount of 
pollutographs to be analyzed. 

A refinement of the exponential washoff equation by incorporating stochastic fluctuations is 
analyzed by [19]. Here, the coefficient dominating the washoff process is assumed to be random 
and consequently addressed by adding gaussian noise. A good agreement to empirical 
distributions for TSS and TN (Total Nitrogen) is reported, which required large amount of data, 
though. [20] obtained frequency distributions of i) event pollutant load, ii) event mean 
concentration and iii) peak concentration of COD from a continuous simulation of an urbanized 
catchment. Exponential equations for buildup and washoff were employed and calibrated with 
regard to continuous COD concentration measurement data using a genetic algorithm. It is 
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however mentioned, that the predictive power is limited because the study site undergoes further 
developments. Annual loads for micropollutants have been estimated based on theoretical 
distribution functions of event mean concentration for three residential catchments by [21]. 

The literature shows various approaches to take stochasticity of pollutant processes into 
account. While early studies primarily used probabilistic methods to overcome scarcity of 
stormwater quality data, recent studies using continuous quality data tend to admit the variability 
of natural pollutant processes by employing stochastic concepts. With regard to continuous 
long-term stormwater quality simulations, alternative modelling approaches presented incorporate 
stochasticity through i) probabilistic description and transformation of model input data 
(rainfall-runoff), ii) modification of empirical pollutant buildup/washoff equations, iii) 
distribution-based parameterization of intra-event dynamics and iv) probabilistic analysis of model 
results after calibration (post-processing). 

It has however not been investigated, whether available stormwater quality models can be 
calibrated towards probabilistic pollutant characteristics. Using a distribution-based calibration 
proposes an additional alternative to incorporate pollutant stochasticity. In contrast to approaches 
already introduced, this method maintains existing model concepts and avoids expensive 
post-processing. 

The present paper reports on the development of an innovative stormwater quality model 
calibration approach using TSS event load distribution. The approach is demonstrated on two 
real-world models. Calibrated models are finally used to estimate annual TSS loads which is a key 
parameter for emission control in several stormwater management guidelines. 

2. Materials and Methods 

2.1 Concept of model calibration 

In this study, stormwater quality models are calibrated using a distribution-based approach. 
Instead of replicating single-event characteristics or pollutographs, the approach aims to minimize 
the difference between observed and simulated TSS event load distribution. Since observed TSS 
event load distributions can be well approximated with theoretical distribution functions [22], the 
calibration uses a parameterized lognormal distribution as reference (cf. 2.3). 

The approach focuses probabilistic event load distribution and puts less emphasize on 
intra-event dynamics. Model results are therefore required to be analyzed by means of 
Mass-Volume-Curves (MV-Curves) [23]. 

2.2 Experimental Sites and Measurement Data 

Stormwater runoff and quality processes of a flat roof (FR, 50 m2) and a parking lot (PL, 2350 
m2,) are considered. At both sites, a long-term online monitoring campaign has been conducted and 
continuous runoff and quality data at the outlet of the catchment was collected [24]. Stormwater 
quality data are available from 2013/03 – 2015/11. Rainfall measurement is still operated. Based on 
site-specific correlation functions for the relationship of TSS and turbidity, continuous TSS time 
series were estimated from online turbidity measurements. Data was subjected to statistical 
analyses which are presented and discussed in [24]. The authors successfully measured 65 
rainfall-runoff events at site FR and 46 events at site PL. The average of all event mean 
concentrations (µEMC) is 33 mgL-1 at site FR and 60 mgL-1 at site PL. Summing up the estimated 
TSS loads of all observed events yields 11.3 gm-2 at site FR and 10.6 gm-2 at site PL. Table 1 shows a 
summary of site and measurement data. 
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Table 1. Characteristics of experimental sites and summary of measurement data obtained 

Parameter flat roof parking lot 
area (m2) 50 2.350 

surface type (-) bitumen 
sheeting (100%) 

asphalt (55%), porous 
pavement (40%), 

vegetated areas (5%) 
slope (%) 2 2.5 

stormwater quality observation period (-) 2013/03 – 2015/11 2013/04 – 2014/10 
valid events observed (-) 65 46 

total TSS loads of valid events (g m-2) 11.3 10.6 
average TSS event mean concentration of 

valid events observed (mg L-1) 33 60 

rainfall (yyyy/mm, mm per period) 

within stormwater quality observation period: 
2013/03 – 2013/12: 475 

2014: 897 
2015/01 – 2015/11: 726 

  

after stormwater quality observation period: 
2015/12: 42 
2016: 700 
2017: 734; 

2018/01-2018/04: 203 

2.3 Theoretical Distribution Function for Site-specific TSS Event Loads 

[22] use TSS event load data from [24] and describe site-specific empirical TSS event load 
distributions by means of theoretical distribution functions. It is demonstrated that the 
two-parameter lognormal distribution approximates the empirical TSS event load distribution well 
and can therefore be used to probabilistically describe TSS event loads. The authors optimized the 
parameters of the lognormal distribution with respect to a likelihood function and evaluated the 
goodness-of-fit by means of Kolmogorov-Smirnov and Anderson-Darling test statistics. Table 2 
shows the general lognormal distribution formula and optimized parameter for µ (meanlog) and s 
(sdlog) for sites FR and PL taken from [22]. 

Table 2. Lognormal distribution function and optimized parameters to describe TSS event load 
distribution for site FR and PL from [22] 

formula 
optimized parameter 

flat roof parking lot 

µ s µ s 

𝐹(𝑥) = &
0, 𝑥 ≤ 0

1
𝜎√2𝜋

×0
1
𝑡 𝑒

3456
78 93	;
< =𝑑𝑡

?

@
, 𝑥 > 0 -3.69 2.429 -1.96 0.987 

2.4 Stormwater Quality Modelling 

In this study pollutant processes for buildup and washoff are modelled with the widely used 
exponential equations implemented in the stormwater management model SWMM5 [25]. Buildup 
B(t) is mathematically described as function of antecedent dry weather days t (Equation 1). 
Pollutant washoff W(t) is expressed as function of current runoff rate q(t) and available masses on 
surface B(t) (Equation 2). Both functions offer two individual parameters to be calibrated. 
Additionally, the initial buildup B0 at the beginning of simulation (t=0) needs to be estimated. 
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Table 3 shows the parameter used for calibration. Corresponding parameter ranges were 
extracted from literature [5,26] and harmonized with authors experience. 
 

𝐵(𝑡) = 𝑘 ∗ (1 − 𝑒3a∗9) (1) 
with buildup coefficient k (g m-2), buildup exponent a (d-1), t denotes number of preceding dry 
weather days. 
 

𝑊(𝑡) = 𝐶4 ∗ 𝑞(𝑡)IJ ∗ 𝐵(𝑡) (2) 
with washoff coefficient C1 (-), washoff exponent C2 (-), runoff rate q (mm h-1), available pollutant 
masses on surface B (g m-2) and time index t. 

Table 3. Quality model parameters and corresponding ranges used for calibration 

parameter description unit range 

B0 masses available at the beginning of  
simulation (t = 0) g m-2 [1; 5] 

k maximum possible buildup g m-2 [0.0001; 2] 
a rate constant of buildup per day d-1 [0.0001; 0.2] 
C1 washoff coefficient - [0.0001; 1] 
C2 washoff exponent - [0.0001; 3] 

2.5 Parameter estimation and goodness-of-fit assessment 

For both sites, model parameters affecting runoff generation and hydrograph characteristics 
are initially calibrated by means of the multi-objective algorithm NSGA-2 [27]. The algorithm 
allows to optimize multiple objectives simultaneously and identifies pareto-optimal solutions from 
which a compromise can be drawn. Here, a single objective is defined as an event-specific 
Nash-Sutcliffe-Efficiency (NSE) [28]. 8 rainfall-runoff events were taken into account which 
consequently yields 8 objectives to be optimized. The compromise solution follows the L2-metric 
[29] which calculates the euclidean distance of all pareto-optimal solutions to an ideal solution. The 
solution with smallest euclidean distance is considered as compromise. Model parameters i) surface 
roughness, ii) depression storage and iii) characteristic width of the overland flow are considered 
for calibration. The calibration yielded an average event-specific NSE of 0.73 for site FR and 0.72 for 
site PL (results of water quantity calibration are not further discussed in this paper). 

Once optimized parameters of runoff calibration are estimated, model parameters for pollutant 
buildup and washoff (cf. Table 3) are optimized. The calibration aim is to fit the simulated TSS 
event loads distribution to the parameterized lognormal distribution. For this purpose, the 
Kolmogorov-Smirnov (KS) statistic Dn which numerically describes the equality of two 
distributions and tests whether a sample follows a specific distribution [30] is used as objective 
function. This means the smaller the KS statistic Dn gets, the higher the goodness-of-fit of the 
calibration. The KS statistic ranges from 0 £ Dn £ 1. As this calibration only considers a single 
objective, a single objective optimization algorithm is used. A differential evolution algorithm [31] 
implemented by [32] is applied. The following computation steps are performed: 

 
1. Simulation with a new set of parameters generated by the optimization algorithm. 
2. Determine and split events from simulation time series which satisfy selection criteria (Table 

4). An event starts when runoff starts and ends if the maximum runoff within a predefined 
window is 0.  

3. Computation of runoff volume and TSS load per event. 
4. Selection of events which exceeds a minimum runoff volume (Table 4). This step is introduced 

because the small size of the catchments leads to a significant number of events with 
numerically low runoff volume which would result in disproportionately weights to these 
events. 
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5. Computation of cumulative TSS event load distribution function for the events remaining. 
6. Computation of Kolmogorov-Smirnov Distance Dn according to Equation 3. 

 
	 	𝐷8 = 	

𝑠𝑢𝑝
𝑥 	O𝐹PQRR(𝑥) − 𝐹7ST8SUVW7(;,<)	(𝑥)O (3) 

with FSWMM being the simulated cumulative TSS event load distribution function and Flognormal 

the site-specific parameterized lognormal distribution function. 
 

7. Repeat steps 1 – 7 to minimize Dn until convergence. 

Table 4. Summary of simulation period and rainfall-runoff event selection criteria 

 flat roof parking lot 
simulation duration (observation period) 2013/03 – 2015/11 2013/04 – 2014/10 

simulation duration (a)  2.7 1.6  
days with rainfall ³ 2 mm d-1 250 137 

event selection criteria   
event window (min) 480 

min. runoff volume (L) 19 (~0.4 percentile) 465 (~0.2 percentile) 
events selected (-) 224 107 

 
The goodness-of-fit of the calibrated stormwater quality model is numerically assessed and 

visually evaluated through a direct comparison of the simulated distribution function and the 
parameterized lognormal distribution function for TSS event loads. Residuals of the simulated 
event loads and observed event loads are computed. Simulated intra-event dynamics are analyzed 
by means of Mass-Volume-Curves (MV-Curves). 

2.6 Concept of model validation 

The calibration uses measurement data from site-specific stormwater quality observation 
period. Estimated parameters are expected to be valid beyond this period. The model validation 
therefore uses all available rainfall data from the 5 years period (2013/03 – 2018/04) (Table 1). 
Equality of simulated TSS event load distributions from the 5 years period and the observation 
period are evaluated using Kolmogorov-Smirnov’s distance KS DN. 

2.7 Model parameter uncertainty analysis 

The differential evolution algorithm applied belongs to the class of genetic algorithms which 
minimize an objective function by evolving a population of candidate solutions through successive 
generations [32]. In this study, the configuration of evolution strategy and mutating operators 
(crossover probability and differential weighting factor) follows the developers recommendation. 
However, the maximum number of iterations is set to 400 and the number of population members 
(i.e. parameter sets per iteration) is set to 100, which result in 40.000 simulation runs per model in 
total. For estimating model parameter uncertainties, simulation results are divided into behavioral 
and non-behavioral groups. Parameter sets which yield to the best 20 % solutions are attributed 
behavioral and subjected to descriptive statistical analysis (mean, standard deviation and coefficient 
of variation). 

2.8 Estimation of annual TSS event loads 

The calibrated stormwater quality models are further used to estimate annual TSS event loads 
and event mean concentrations originated from the study sites. Annual TSS event loads are 
estimated by considering all event loads from a moving window of 12 consecutive months to 
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account for natural rainfall variability. Using the extended rainfall series, the simulation period 
comprises ~5 years with 62 months which yields 50 (62 – 12) moving years. 

3. Results 

Calibration results for both sites are shown in Table 5. Statistics for both model parameters and 
the Kolmogorov-Smirnov-based objective function are given. The best fit parameter sets yielded to 
an objective function of roughly 0.05 for both models. 

Table 5. Calibrated model parameters and corresponding uncertainty statistics (FR: Flat Roof, PL: 
Parking lot, sd: standard deviation, CoV: Coefficient of Variation, KS Dn: Kolmogorov-Smirnov 
distance) 

  objective 
function 

parameter 

site statistic KS Dn B0 k a C1 C2 

  - g m-2 g m-2 d-1 - - 

FR 

best fit 0.053 2.713 1.899 0.022 0.017 2.040 
mean 0.056 3.437 1.706 0.024 0.021 2.070 

sd 0.003 0.608 0.201 0.005 0.006 0.054 
CoV 0.053 0.177 0.118 0.212 0.277 0.026 

        

PL 

best fit 0.049 4.545 0.891 0.194 0.472 1.120 
mean 0.050 4.726 0.882 0.204 0.470 1.103 

sd 0.002 0.257 0.053 0.021 0.043 0.070 
CoV 0.032 0.054 0.061 0.105 0.091 0.063 

 
Table 6 compares the total TSS event loads of simulated and observed TSS event loads. At site 

FR, the calibrated model yields to 11.9 gm-2 (+5%), site PL gives 7.57 gm-2 (-28%). TSS event mean 
concentrations of observed and simulated events are given in Table 7. 

Table 6. Observed and simulated total TSS event loads (observed values are taken from [24]) 

site events 
total TSS event loads (g m-2) 

observed simulated relative deviation 

FR 65 11.3 11.9 + 5 % 

PL 46 10.6 7.57 - 28 % 

Table 7. Observed (obs) and simulated (sim) TSS event mean concentrations (observed values are 
taken from [24]) 

site source n 
TSS event mean concentration (mg L-1) 

Min 0.1-Perc. 0.25-Perc. Median 0.75-Perc 0.9-Perc. Max Mean Sd 

FR 
obs 65 <0.1 1.2 2.8 9.0 35.1 94.0 249.9 33.2 54.6 
sim 65 1.2 5.8 9.6 20.6 35.5 82.6 178.2 33.4 36.5 

            

PL 
obs 46 4.7 13.2 24.4 49.4 80.1 112.4 253.7 60.3 49.3 
sim 46 0.2 4.6 13.9 45.4 98.8 156.6 161.6 62.9 54.7 

 
Cumulative distribution functions of simulated TSS event loads are depicted for both models 

in Figure 1 (FR) and Figure 2 (PL). Simulation results are opposed to the parameterized lognormal 
distribution function used for calibration and the original empirical distribution function from 
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observation. Additionally, absolute residuals between observed and simulated TSS event loads are 
presented on the right-hand side of the figures. For site FR, the mean of TSS event loads residuals is 
-0.0087 g m-2 (sd: 0.19; min: -0.41; max: 0.94), at site PL, the mean of TSS event loads residuals is 
0.065 g m-2 (sd: 0.19; min: -0.27; max: 0.74). 

Observed and simulated MV-Curves are shown in Figure 3. Simulated MV-Curves are 
calculated for both the stormwater quality observation period and the 5 years period using all 
available rainfall data. Simulated distribution functions from the observation period (calibration) 
are compared to the results using the 5 years period (validation) in Figure 4. Corresponding 
goodness-of-fit is given in Table 8. 

Furthermore, based on the calibrated models, annual TSS event loads for moving years of the 5 
years period are site-specifically estimated and presented in Table 9. The mean of all 50 moving 
years is 9.9 g m-2 a-1 (sd: 0.75) for site FR and 13.7 g m-2 a-1 (sd: 1.17) at site PL. 

 
Figure 1. Cumulative distribution functions of lognormal, observed and simulated TSS event loads 
(left) and distribution of residuals between observed and simulated event loads (right) at site Flat 
roof 

 

Figure 2. Cumulative distribution functions of lognormal, observed and simulated TSS event loads 
(left) and distribution of residuals between observed and simulated event loads (right) at site 
Parking Lot. 
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Figure 3. Comparison of observed and simulated Mass-Volume-Curves for sites Flat Roof (left) and 
Parking Lot (right) 

 

Figure 4. Cumulative distribution functions of lognormal and simulated TSS event loads for the 
observation period (calibration) and the 5 years period (validation) for sites Flat Roof (left) and 
Parking Lot (right). 

Table 8. Goodness-of-fit matrix for observation period (calibration) and 5 years period (validation) 
(FR: Flat Roof, PL: Parking lot, KS Dn: Kolmogorov-Smirnov distance). 

site KS DN 

  lnorm  observation period 5 years period 

FR 

lnorm - 
  

observation period 0.053 -  
5 years period 0.062 0.035 - 

PL 

lnorm -   
observation period 0.049 -  

5 years period 0.073 0.083 - 
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Table 9. Simulated annual TSS loads (FR: Flat Roof, PL: Parking lot). 

site 
n (moving years 
within 5 years 

period) 

annual TSS loads (g m-2 a-1) 

mean sd 

FR 50 9.9 0.75 
PL 50 13.7 1.17 

4. Discussion 

According to the low Kolmogorov-Smirnov statistic Dn of approx. 0.05 for both sites (Table 5), 
the best-fit parameter sets obtained by the distribution-based calibration approach lead to 
well-approximated parameterized lognormal distributions. From a statistical perspective which 
also takes the number of samples into account, it can be legitimately assumed that both 
distributions (lognormal and simulated TSS event loads) follow the same distribution. Both KS 
statistics are below the critical values at 90% significance level (0.082 for site FR and 0.118 at site 
PL). 

At site FR, the calibrated model replicates the distribution function until the 0.8-percentile with 
a high goodness-of-fit (Figure 1). Events exceeding this value are generally underestimated by the 
model and lead to lower simulated event loads than suggested by the lognormal distribution. Since 
the KS statistic represents the maximum distance between two cumulative distribution functions, 
maximum 5% of the events with more than the 0.8-percentile of event loads are underestimated. 

The results for site PL show a similar effect (Figure 2). Here, the model shows a good fitting of 
the distribution function until the 0.9-percentile which accordingly implies that maximum 5 % of 
the events with more than the 0.9-percentile of event loads are underestimated. 

Both calibrated models tend to underestimate events with high TSS loads which indicates that 
the calibration approach and the objective function applied is heavily influenced by events with low 
TSS event load which as a matter of fact is the case for the majority of events for both sites. 
Applying an alternative goodness-of-fit measure as objective function which also emphasize the 
upper tailing of a distribution function could lead to superior model performance. This however 
remains unclear as the applied pollutant model itself also induces limitations to replicate natural 
pollutant processes [5,12,33]. 

The fact, that events with high TSS event loads are underestimated affects the goodness-of-fit 
concerning the total TSS event load of the events observed (Table 6). This is especially evident at 
site PL, where the total TSS event load is underestimated by roughly 28 %. Events with more than 
0.5 g m-2 are poorly represented (cf. Figure 2). At site FR, the relative deviation is only about 5 %. 
This signals that the error is compensated by events whose simulated TSS event load is higher than 
the observed (intersection at approx. 0.1 g m-2, cf. Figure 1). 
 

Mass-Volume-Curves (Figure 3) for site FR reveal, that intra-event processes simulated do not 
reflect the observed dynamics in general. Especially, the prevailing first-flush characteristic is not 
appropriately replicated. Instead simulated washoff tends to occur proportionally to runoff.  

In contrast, statistics of simulated intra-event processes at site PL correspond well to the data 
observed. It can be seen that the calibrated model also tends to generate wash proportional to 
runoff. The high agreement of observed and simulated MV-Curves at site PL is obtained since 
observed MV-Curves already show a more runoff proportional washoff behavior. Although the 
general characteristic at site PL is satisfactorily represented, the results from both sites indicate that 
the observed intra-event dynamic can hardly be deterministically described by the model for a 
continuous simulation period. As pointed out in previous studies by [5,12] pollutant buildup and 
washoff is highly affected by stochastic inputs which consequently limits the goodness-of-fit of 
replicating intra-event dynamics. 

Distributions of simulated and observed event mean concentrations (EMC) are compared in 
Table 7. A notably high agreement of mean EMC is obtained for both sites (FR: 33 mg L-1, PL: 62 mg 
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L-1). It can also be observed that EMC percentiles of simulation for site FR are slightly higher than 
observed percentiles until the 0.75-Percentile. Site PL shows the opposite behavior: EMC percentiles 
of simulation are slightly lower than observed percentiles until the 0.5-Percentile. However, in both 
cases, the maximum observed EMC are strongly underestimated which again suggests an 
inappropriate accumulation process model to account for random influences (e.g. traffic induced 
pollutant emissions [34]). 
 

Figure 4 and Table 8 compares results from the calibration and validation period. At site FR, 
the difference between both distributions is marginal implying the observation period being highly 
representative. The KS statistic of 0.062 from validation only slightly differs from calibration (KS: 
0.053) which indicates a successful model validation. In contrast, the distribution function from 
validation at site PL underestimates the assumed lognormal distribution constantly. This is also 
expressed by a higher KS statistic of 0.073. The distance between calibration and validation period 
is slightly higher (KS: 0.083) indicating a less successful model validation. However, it is noticeable 
that the simulated TSS event distribution of observation period falls below the lognormal 
distribution between 0.25 g m-2 and 0.4 g m-2 and exceeds the lognormal distribution for event loads 
higher 0.5 g m-2. This indicates the observation period being less representative as the number of 
events is significantly lower. 
 

The validated models were finally used to estimate annual TSS loads (Table 9) which is of 
special interests for practical purposes. In the present study, the estimated mean annual TSS loads 
for site FR is 9.9 g m-2 a-1 which according to [35] represents a roof with “low to normal” load 
contribution. Annual TSS loads for site PL was estimated at 13.7 g m-2 a-1 which is significant lower 
than reported from measurements by [36] (~ 40 g m-2 a-1). As already stated, the model disregards 
traffic related stochastic inputs, which could explain the low annual TSS loads estimated. 
Consequently, the result must be carefully interpreted. This highlights the need to especially 
account for load intensive events either through an alternative objective function or modification of 
the model concept. 
 

Generally, the distribution-based calibration approach allows to calibrate stormwater quality 
models even if data is incomplete but tends to underestimate events with high TSS loads. However, 
compared to the conventional calibration the approach has clearly two advantages. First, the 
occurrence of events and its corresponding pollutant contribution is probabilistically considered 
which implies stochasticity is taken into account. Second, measurement data of stormwater quality 
processes are rarely completely available for continuous periods which consequently complicates 
the application of a conventional calibration approach and could result in misleading model 
outputs. Theoretical distribution functions are continuously defined.  

5. Conclusions 

An innovative calibration approach for stormwater quality models with respect to TSS event 
load distribution is introduced. The approach was applied on the two experimental sites i) flat roof 
and ii) parking lot for which parameterized lognormal distribution functions were available. From 
this study it can be concluded: 

 
• Both models have been successfully calibrated, indicated by the low Kolmogorov-Smirnov 

distance measure. Distribution functions from simulation were validated with 5 years rainfall 
data. 

• Maximum deviation between lognormal and simulated TSS event load distribution is 5%. 
• A high agreement of observed and simulated mean of event mean concentrations (µEMC) was 

achieved for both sites (FR: 33.2 vs. 33.4 mg L-1, PL: 60.3 vs. 62.9 mg L-1). 
• Using a theoretical distribution for calibration provides continuous probabilities and allows to 

calibrate stormwater quality models even if data is incomplete.  
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• The approach is general applicable and especially powerful if distribution functions get 
generalizable on a catchment-scale. 

• The objective function used for calibration employs the Kolmogorov-Smirnov statistic. Despite 
its simplicity it has been shown, that events with high TSS event loads tend to be 
underestimated. A more behavioral distance measure which also accounts for events with high 
loads remains open for future research. 

• Based on the calibrated models, annual TSS event loads were estimated. 9.9 g m-2 a-1 were 
obtained for site flat roof, 13.7 g m-2 a-1 for site parking lot. 

 
The calibration approach still needs to be tested on larger catchments which consists of 

multiple subcatchments with different land use. Additionally, it could be of interest whether model 
parameters are correlated to parameters of the theoretical distribution function or catchment 
characteristics.  
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