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Abstract

This thesis was originally motivated by the CVPR’17 Velocity Estimation Challenge,
the goal of which was to estimate the relative velocity of vehicles with respect to a
reference vehicle equipped with a monocular camera in freeway traffic. Our initial
method, which consists of first extracting tracks, dense depth maps and dense optical
flow, and then estimating velocities from these features using a neural network,
has won the challenge. Yet, a lot of questions remained unanswered at the point of
submission, most notably how useful the features employed in the initial method
are for the task and if there are other features or even other methods that are more
powerful.

This thesis aims at answering those questions by conducting a thorough ablation study
over the different features and neural network architectures used and also adding
an object detection stage for bounding box tracking and semantic segmentation
as an additional feature. The ablation study investigates the velocity estimation
performance for all individual input features as well as combinations of various
features. Furthermore, I introduce two velocity estimation methods based on simple
geometry that serve as a baseline to compare the learning based methods to.

My results demonstrate that tracking is the most useful feature for vehicle velocity
estimation and that features generated by convolutional neural networks are only
reliable for vehicles in close ranges of the reference vehicle. The learning based
methods are performing generally well, however they are not able to outperform ge-
ometry based baseline methods for vehicles at certain ranges. Using a tracking based
approach, a computationally lightweight and efficient system for vehicle velocity
estimation can be developed, which is crucial in autonomous driving scenarios.



Kurzfassung

Die urspriingliche Motivation dieser Arbeit stammt von der CVPR’17 Velocity Esti-
mation Challenge, deren Aufgabenstellung darin bestand, die relative Geschwin-
digkeit von Fahrzeugen auf Autobahnen aus der Sicht eines Referenzfahrzeuges,
welches mit einer einzelnen Kamera ausgestattet ist, zu schitzen. Mit unserer Metho-
de konnten wir die Challenge gewinnen. Diese Methode bestand daraus zuerst fiir
die Geschwindigkeitsschidtzung relevante Parameter, namlich Tracks, monokulare
Disparitidten und optischen Fluss, zu extrahieren und dann Geschwindigkeiten unter
Verwendung von kiinstlichen neuronalen Netzen zu schitzen. Zum Zeitpunkt der
Einreichfrist fiir die Challenge blieben jedoch einige Fragen unbeantwortet, allem
voran wie sinnvoll die genutzten Parameter fiir die Aufgabe sind und ob bessere
Parameter oder gar Methoden entwickelt werden konnen.

Diese Arbeit versucht diese Fragen zu beantworten, indem eine umfassende Studie
durchgefiihrt wird, die den Einfluss der einzelnen Parameter und unterschiedlicher
Architekturen auf die Qualitéit der Geschwindigkeitsschitzungen untersucht. Wei-
ters wird ein Objekterkennungsalgorithmus hinzugefiigt mit dem sowohl Tracks
als auch Segmentierungsmasken erzeugt werden konnen. In der Studie werden so-
wohl alle Parameter einzeln als auch unterschiedliche Kombinationen betrachtet
und deren Niitzlichkeit evaluiert. Um die auf neuronalen Netzwerken basierenden
Methoden besser vergleichen zu kdnnen werden auch geometriebasierte Methoden
zur Geschwindigkeitsschitzung entwickelt.

Die Ergebnisse zeigen, dass Tracks eindeutig den hochsten Informationsgehalt fiir
die Geschwindigkeitsschiatzung haben und dass Methoden die auf Convolutional
Neural Networks basieren nur fiir Schidtzungen geeignet sind, wenn die betreffenden
Fahrzeuge nahe an der Kamera sind. Neuronale Netzwerke erzielen generell sehr
zufriedenstellende Ergebnisse, wobei sie nicht in der Lage sind fiir Fahrzeuge in
mittleren Distanzen genauere Schitzungen zu erzielen als geometriebasierte Metho-
den. Unter der Verwendung von Methoden, die auf Tracks basieren, konnen sehr
effiziente Systeme fiir die Geschwindigkeitsschidtzung mit geringem Rechenaufwand
entwickelt werden, was fiir autonomes Fahren eine entscheidende Rolle spielt.
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1 Introduction

Autonomous driving is without a doubt one of the hottest topics in automotive re-
search, which poses great challenges in many different fields. It requires low-cost,
low-power and real-time capable solutions for joint sensing and control. Current
vehicles used for autonomous driving benchmarks are often equipped with a multi-
tude of sensors, like for example two color and two grayscale video cameras, a laser
scanner and GPS/IMU localization units (Geiger et al., 2012). In this work, the focus
lies on vision based sensing using only a single camera.

v —

Figure 1.1: A sample image with annotations from a training sequence. Velocity and position ground
truth are provided for the vehicles surrounded by the green bounding boxes in both
longitudinal (X) and lateral (Y) directions (see Figure 2.1).



1 Introduction

Camera sensors provide an inexpensive yet powerful alternative to range sensors
based on LiDAR or radar. While LiDAR systems can provide very accurate measure-
ments, they may also malfunction under adverse environmental conditions such as
fog, snow, rain or even exhaust gas fumes (Rasshofer et al., 2011; Hasirlioglu et al.,
2017). Arguably, vision based sensing is more closely related to how humans engage
in driving situations and it should thus be possible to solve any task in autonomous
driving based on visual input.

This work addresses monocular vehicle velocity estimation, an emerging task in
autonomous driving which has not yet been thoroughly explored. The specific
task, which forms the base for this work, was introduced as the Velocity Estimation
Challenge' at the CVPR2017 Autonomous Driving Workshop. The goal is to estimate
the relative velocity of a specific vehicle from a sequence of monocular RGB images
to aid autonomous driving algorithms such as for example collision avoidance
(Aufrere et al., 2003) or adaptive cruise control (Jurgen, 2006). Figure 1.1 shows an
example image from the data.

Vehicle velocity estimation as such is not a new subject of interest, since it is
extensively studied in the context of traffic surveillance (Hsieh et al., 2006; Coifman
et al., 1998), where, however, a stationary camera is employed. Under the restriction
of a fixed camera pose, the problem becomes significantly less complex, since
with a calibrated camera system angular measurements can be obtained and from
these measurements velocity estimates can readily be established. In contrast, in our
case the observer resides on a moving platform and inferring velocity in a similar
fashion would require additional information such as camera pose, ego-motion and
foreground-background segmentation. Very recent research (Zhou et al., 2017) shows
that estimating ego-motion as well as disparity maps from monocular camera images
by means of structure from motion is indeed possible, but still limited. Semantic
segmentation of scenes, which is a fundamental problem in computer vision, has
also more recently been tackled using deep neural networks (Dai et al., 2016; Li
et al., 2016).

In a more general sense, the given task can be seen as a lightweight version of object
scene flow as for example provided in the KITTI benchmark (Geiger et al., 2012;
Menze and Geiger, 2015). Object scene flow aims at estimating dense 3D motion
fields, which in their temporal evolution carry highly valuable information about
the geometric constellation of a given scene. Recent approaches (Vogel, Schindler,

mttp://benchmark.tusimple.ai/#/t/2
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et al., 2013; Vogel, Roth, et al., 2014) yield impressive results, but they rely on the
availability of stereo image data. Furthermore, they come at the price of very high
computational cost, such that the estimation for a temporal frame pair might take
5-10 minutes on a single CPU core. In autonomous driving scenarios, computational
resources are in general highly limited (Grzywaczewski, 2017), which makes object
scene flow currently not practically feasible.

In this work, we adopt recent deep learning architectures (Ilg et al., 2017; Godard
et al., 2017) for depth and motion estimation to leverage a mapping of the video input
into a beneficial feature space for learning from the few training samples provided.
Our approach employs a two-stage process for monocular velocity estimation. In a
first step we extract vehicle tracks as well as dense depth and optical flow information,
followed by locally aggregating these depth and motion cues at the tracked vehicle
locations and concatenating over the temporal dimension. After this feature extraction
procedure we use the spatiotemporal depth, flow and location features to train a fully
connected regression network for velocity estimation of the respective vehicles.

Further on, we conduct an extensive ablation study to investigate the impact of the
individual features and combinations thereof on the regression performance as well
as on the runtime of the estimation. We show that a light weight implementation can
achieve excellent results, and that leveraging deep motion and depth cues does not
necessarily improve performance for this task on the given data.

Problem Statement

The problem tackled in this thesis was originally posed as the CVPR’17 Velocity
Estimation Challenge. Vehicle velocity estimation aims at inferring the relative
velocity of cars as seen from a reference car equipped with a single camera.
For the estimation short video snippets with annotated velocity and position
ground truth are available (see Chapter 2 for more details). Figure 1.1 shows an
example from the dataset, with three annotated vehicles at different ranges and
their ground truth velocities and positions. Note that for each video sequence a
single velocity value is annotated per car and a single value has to be inferred,
i.e. not every frame and every vehicle is annotated, but a single velocity value
is representative for the whole sequence. For inference, the initial location of
the car of which the velocity should be estimated is given, thus no detection is
necessary.
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Within my work on this Master’s Thesis, two scientific contributions have been
achieved:

* Winner of the CVPR’17 Velocity Estimation Challenge.
* Conference paper (Kampelmiihler et al., 2018) that has won the best student
paper award at CVWW’18.



2 The CVPR’17 Velocity
Estimation Challenge Dataset

The provided training dataset includes 1074 short driving sequences in freeway
traffic, recorded by a single HD (1280x720p) camera. Each of those sequences spans
40 frames over a 2 second time frame, resulting in a 20 frames per second framerate.
Additionally the intrinsic camera calibration parameters (K matrix) as well as the
height H above ground of the camera, are provided as supplementary information.
For each sequence, only specific vehicles are annotated.

An annotation is provided for the last frame of each sequence only and consists of a
bounding box (pixel coordinates) as well as position (in m) and velocity (in m/s) in
both X and Y coordinates, where Y refers to the point of the vehicle closest to the
camera. Spatially, the vehicle coordinate system is oriented as schematically shown
in Figure 2.1; X is in line with the optical axis and Y is perpendicular to X, pointing
towards the vehicle’s right. The challenge organizers have acquired ground truth
velocity and position data using a fusion of LiDAR, radar and stereo vision. They
have communicated a ground truth accuracy of 0.5 r;‘—; velocity MSE (see Section 5.2
for details).

A bounding box annotation is a list consisting of four characteristic coordinates
[left, right, top, bottom] specifying the border coordinates of the bound-
ing box in pixels. An example annotation for the vehicle framed by a light green
bounding box in Figure 2.1 is given in Table 2.1. This annotation tells us that the
vehicle is 22 m in front of our car, 6 m off to our right side and moving at approxi-
mately 2 m/s slower than our car in approximately the same direction, slowly closing
in from the right side.



2 The CVPR’17 Velocity Estimation Challenge Dataset

Figure 2.1: A sample from the dataset with coordinate axes X and Y indicated

velocity position
X Y X Y
-2.07m/s | -0.26 m/s | 22.14m | 597 m
bounding box
left right top bottom
859 px 965 px | 323 px | 389 px

Table 2.1: Annotation example for Figure 2.1

For each training sequence, up to 4 vehicles are annotated which in total gives 1442,
vehicle annotations to work with, an average of 1.34 per sequence. For evaluation the
individual vehicles are classified into three clusters according to their ground truth
relative distance dg; in the last frame. d < 20 m is considered near range (~ 12% of
samples), 20 m > d > 45 m medium range (~ 65% of samples) and d > 45 m far
range (~ 23% of samples). Figure 2.2 shows the distribution of annotated vehicles
with respect to their relative distance. Clearly, most vehicles belong to medium range,
which makes sense considering that a 2 s safety distance (approx. 44 m at 80 km/h)
is mandatory.



2 The CVPR’17 Velocity Estimation Challenge Dataset

For each of the aforementioned ranges, different difficulties arise in the estimation.
In near range examples the perspective on vehicles can shift drastically in between
instances and over time for individual samples. For far range samples the pixel
resolution of the data limits the estimation capabilities. Both of the ‘extreme’ ranges
come with the additional difficulty of few training samples.

number of vehicles

0 20 40 60 80 100
yt

Figure 2.2: Histogram of ground truth distances of annotated vehicles in last frame. The vertical lines
indicate the borders between near, medium and far ranges.

In addition to the training data, a supplementary set is available, which can be used to
train a car detector. The supplementary data includes 5067 frames, for which 29115
bounding boxes are annotated. Since I do not train a car detector for my approach, I
have not used this data.

The evaluation for the challenge leaderboard is carried out on a separate test set, with
unknown position and velocity annotations. Here, the organizers of the challenge
provide only a bounding box, again for the last frame. This set comprises 269 clips
with 375 annotated vehicles.



3 Related work

For my solution to the problem posed as the CVPR’17 Velocity Estimation Challenge,
I employ a variety of different methods that emerged from past computer vision
research. Hence, this section gives an overview of related work on the methods used,
namely Tracking, Monocular Depth estimation, Optical flow estimation as well as
Object Detection and Segmentation (Sections 3.1-3.4). Additionally, Section 3.5
presents alternative solutions to the CVPR’17 Velocity Estimation Challenge as
submitted by other contestants.

3.1 Tracking

Z

Figure 3.1: Basic concept of object tracking. The highlighted car on the left has to be found in the
picture on the right.

Object tracking is one of the fundamental problems in computer vision and has been
extensively studied (Yilmaz et al., 2006) and applied in many different tasks such as
traffic surveillance. The aim of tracking is to preserve the identity of one or more
objects or points of interest over time. Hence, the basic problem is formulated as
follows: Given two frames, frame A and frame B, and a reference area in frame A,
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decide whether the object included in the reference area is also present in frame B
and if so where it is located. An example is given in Figure 3.1, where the location
of the vehicle denoted by a bounding box in the left frame is unknown in the right
frame. Some of the main challenges in tracking tasks are posed by occlusions, large
displacements, changes in appearance of non rigid objects and long term preservation
of identity (Lukezi€ et al., 2017).

One widely used method that I also use in this thesis is Median Flow (Kalal et al.,
2010). Median Flow is an approach building on top of the Lucas-Kanade (Lucas and
Kanade, 1981) method, which is an early optical flow algorithm operating on local
intensity changes. This method is extended by a Forward-Backward error, which
denotes the deviation between the trajectories obtained by tracking from I; 1 — I;
and Iy — I; 1 (i.e. forward and backward through time). Good points to track are
identified by evaluating the forward backward error for every tracked point and
keeping the ones that can be tracked reliably. For bounding box tracking, this is done
for points within the reference bounding box. Forward-Backward error is thus able
to detect tracking failures caused by e.g. occlusions. Another common approach is
the so called Multiple Instance Learning or short MIL tracker (Babenko et al., 2009).
This method first transforms the image into an appropriate feature space, and uses
a classifier as well as a motion model to determine the presence of an object in a
frame, which falls into the category of ‘tracking by detection’ approaches.

More recent methods like (Held et al., 2016) employ convolutional neural networks
to learn motion and appearance of objects. The feature maps of higher convolutional
layers provide robust and accurate appearance representations, but lack spatial
resolution. Lower layers on the other hand provide higher spatial resolution and less
refined appearance representations. This hierarchical structure is used in (Ma et al.,
2015) by inferring responses of correlation filters on each corresponding layer pair.
Other neural network based approaches employ recurrent structures such as LSTMs
to tackle long term tracking (Sadeghian et al., 2017).

3.2 Monocular Depth Estimation

Monocular Depth Estimation aims at inferring the depth of a scene, i.e. how far each
pixel of an image is away from the camera. Traditionally, estimation of depth is
handled by employing LiDAR sensors (laser scanners) or stereo camera rigs. LIDAR
sensors are expensive to acquire and operate and high definition stereo video elicits
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a large flow of data. In autonomous driving scenarios, real time capability with very
limited computational resources is crucial, which is why operation on monocular
images, i.e. images taken with a single camera, is often used (e.g. Mobileye®!).
Estimating the depth information of a scene seen from a given angle using only a
single camera is not a well-posed problem. Most of the methods that are currently
used to work on this problem are based on deep convolutional neural networks with
large amounts of training data, since depth information can be inferred from single
views by appearance which requires ample experience.

Figure 3.2: Sample image with LiDAR points projected into the image. A limited amount of high
precision depth measurements is acquired per frame.

Some of the recent methods tackling this problem (Saxena et al., 2006; Xu et al.,
2017) apply supervised learning regimes requiring ground truth depth data. The
acquisition of such ground truth data is generally not a simple task either and is
most often performed by a fusion of stereo vision and LiDAR point clouds. It
requires the synchronization of cameras and rotating laser scanner, stereo inference,
mapping of the sparse LiDAR point cloud into the stereo depth image and subsequent
interpolation. An example of a sparse laser scanner point cloud projected into an
image is given in Figure 3.2; the RGB image and LiDAR data are taken from the
KITTI dataset (Geiger et al., 2012). While LiDAR sensors are very accurate (~2 cm
position accuracy, Velodyne HDL-64E), they only provide sparse point clouds of
around 120k points around the vehicle, out of which only a fraction overlaps with
the frames recorded by the camera; e.g. in Figure 3.2 18033 LiDAR measurement
points fall into the frame of 1241 x 376 = 466616 px. Due to the effort associated
with obtaining high quality dense depth ground truth, its availability is very limited.

Mttps://www.mobileye.com/
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Hence several methods are being developed that require little to no supervision.

(Kuznietsov et al., 2017) describe a semi-supervised approach that provides a fusion
of using sparse ground truth data from a LiDAR sensor and stereo view synthesis.
The idea behind stereo view synthesis is to estimate one image in a stereo pair from
the other. Being able to estimate synthetic stereo images also enables one to infer
stereo disparities and thus depth maps. Other similar approaches (Godard et al., 2017;
J. Xie et al., 2016) in turn rely solely on stereo view synthesis with stereo image pairs
as a supervision signal, which comes with the inherent benefit of easily available
or obtainable data as well as the independence of LiDAR systems. Note that deep
learning approaches in general benefit from large datasets with high variability.

Some recent work (Zhou et al., 2017; Garg et al., 2016) shows that deep learning
frameworks are capable of inferring single image depth from monocular video as
sole supervision signal. They achieve this by leveraging a learning enabled structure
from motion type approach. The (mostly small) temporal motion of the camera and
its thus changing pose provides multiple views of a given scene. Via novel view
synthesis the future camera frames can be predicted and the actual future frames can
be used as a supervisory signal. The mapping thus learned again implicitly carries
information about the 3D scene geometry. Comparing to the approaches using stereo
image pairs for training, this method exploits the temporal rather than the spatial
dimension.

3.3 Optical Flow Estimation

Optical flow is another key research area in computer vision, e.g. for video object
detection (Zhu et al., 2017), to quantify pixel-wise motion in between frames of a
moving scene. In other words, optical flow can be referred to as dense pixel level
tracking, with the key difference to object tracking being that it does not make
considerations about the object appearance. The goal is to assign a motion vector
(u,v) to each pixel to encode its displacement from one frame to the other. For
the purpose of visualization, usually the HSV colorspace is used, where the hue
represents the direction and the value represents the magnitude of the movement
vector. This is called the ‘Middlebury encoding’ scheme (Baker et al., 2011). A result
of such a visualization is shown in Figure 3.3, where the relation of the different
angles to the hue can clearly be seen.

11
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Figure 3.3: Two consecutive frames (left) with optical flow (right) in Middlebury (Baker et al., 2011)
encoding.

Traditional methods (Horn and Schunck, 1981; Deriche et al., 1995) employ vari-
ational motion estimation approaches that regard the estimation of pixel level cor-
respondences between frames as an optimization problem; e.g. Horn and Schunck,
1981 calculate optical flow components u and v locally from brightness gradients un-
der the constraint of quadratic smoothness. The smoothing is required to counteract
discontinuities in the dense optical flow field.

With the growing interest in deep learning, optical flow estimation is now most often
also successfully treated as a supervised learning problem (Dosovitskiy, Fischer, Ilg,
Hausser, et al., 2015). This is achieved by employing encoder-decoder structures that
use a convolutional neural network for feature extraction and aggregation, followed
by an ‘upconvolutional’ network. The ‘upconvolutional’ network concatenates the
feature maps from the corresponding convolutional layers and jointly applies frac-
tionally strided convolution to increase spatial resolution back to input size of the
feature extraction network. Further improvements on this approach have since been
made (Ilg et al., 2017) that provide improved performance, robustness as well as
scalability. Those improvements consist of efficient dataset schedules for learning,
stacking of multiple dedicated FlowNets (with and without correlation layers) and
combining architectures for small and large displacements.

12



3 Related work

3.4 Object detection and segmentation

The goal of object detection in computer vision is to detect the presence and location
of one or more diverse categories of objects (e.g. whale, bicycle, hair brush etc.) in
an image. For each possible category, a set of bounding boxes and detection confi-
dences should be found. A sample image taken from the Imagenet large scale visual
recognition (ILSVRC) 2013 detection challenge (Russakovsky et al., 2015) training
set is shown in Figure 3.4; the squirrel class is one of 200 classes in this Imagenet
challenge track, a subset of the 1000 classes found in the Imagenet recognition
challenge.

™

- - .
M SqQuIr
i *

Figure 3.4: Sample object detection output with bounding box, class label and confidence.

Before the deep learning boom, or rather the renaissance of convolutional neural
networks (CNNs), around 2012 most object detection methods built upon a two
stage approach in which first low level features like Histogram of oriented gradients
(HOG) (Dalal and Triggs, 2005) or Scale Invariant Feature Transform (SIFT) (Lowe,
2004) were extracted and then classified by e.g. a linear SVM. While those methods
performed reasonably well, they involved a lot of hand crafting and their performance
gains plateaued.

13
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When Krizhevsky et al., 2012 proposed CNNs for Imagenet classification, they
achieved a leap in classification performance: Top-1 error of 37.5% vs. 45.2%
previously achieved as best result on the ILSVRC 2010 test set using SIFT features.
Before that, most improvements were rather incremental in the 1-2% range. It was
this massive improvement that sparked enormous interest in CNNs for almost any
task in computer vision ever since. Object detection is certainly one of them and there
are two different major streams of methods that have evolved up to this point. One
stream of methods is based on first extracting possible candidate regions for objects
and processing each region individually (R-CNN, Girshick et al., 2014), whereas
others implement a single shot approach without region based processing (Liu et al.,
2016; Redmon et al., 2016). Here, I want to quickly introduce the evolution of region
based approaches which were consecutively published in major conference papers:
R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren
et al., 2015) and Mask R-CNN (He et al., 2017), because I apply Mask R-CNN in
my own approach (see Section 4.2.2).

The original R-CNN approach extracts candidate regions using selective search
(Uijlings et al., 2013). Those regions of interest (Rols) are any areas of an image that
might contain an object, i.e., foreground areas. Thus, any region proposal method is
usually class agnostic. For each of the Rols, R-CNN extracts a feature map using
a CNN backbone and then assigns a class label using linear SVM. Since a CNN
forward pass is needed for any of the (e.g. 2000) Rols, this approach is rather
inefficient and was thus later replaced by Fast R-CNN (Girshick, 2015).

The major contributions of Fast R-CNN are the Rol Pooling layer and shared com-
putation of the convolutional feature maps. For each image, only one forward pass
of the backbone network is necessary to compute a single global feature map for the
whole image. Afterwards, the Rol Pooling layer locally aggregates the features from
the global feature map within each Rol. Finally, for each Rol a softmax classifier is
used for class labelling and a bounding box regression network refines the bounding
box borders of the Rol. Both of those networks are lightweight fully connected
architectures. Due to the shared computation and joint training, this architecture is
significantly faster (up to 213 x for inference and 18 x for training) and also more
accurate (+3% mAP on VOC 2012 (Everingham et al., 2012)).

Faster R-CNN (Ren et al., 2015) seeks to remedy one of the major downfalls of Fast
R-CNN which is that it still uses pre-computed Rols, which have to be stored to
disk and loaded for training and testing. To achieve this, they introduced Region
Proposal Networks (RPNs), which are light weight convolutional architectures that

14
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also operate on the feature map obtained from the backbone network. RPNs use a
sliding window approach, where a small spatial window is slid over the feature map
and for each window bounding boxes and objectness scores are regressed. Thus,
more computation is shared, since the Rol proposals are calculated from the same
feature map that is used for the detection itself (i.e. the Fast R-CNN head). The
authors report an increase in performance by +2% mAP on VOC 2012 and a speedup
of up to 34 x. R-FCN (Dai et al., 2016) achieves similar performance with another
2.5 —20x speedup using a fully convolutional architecture and hence more shared
computations.

Figure 3.5: Sample instance segmentation output with bounding box, class label, confidence and
segmentation mask.

Finally, the most recent Mask R-CNN (MRCNN) (He et al., 2017) extends the
previous R-CNN based object detection approaches by instance aware semantic
segmentation. In semantic segmentation the aim is to provide a binary segmentation
mask in addition to a bounding box for each instance of each category. The binary
segmentation mask encodes which pixels represent the object and which do not.
Fundamentally, MRCNN replaces Rol Pooling with RolAlign and adds a mask
regression head to Faster R-CNN. RolAlign avoids quantization of Rol boundaries
by avoiding rounding operations when mapping Rols to feature map coordinates
and subdividing Rols into a regularized grid. This is achieved by the use of bilinear
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interpolation instead of a rounding operation, which in the end results in higher
alignment accuracy. The mask head is a fully convolutional neural network that
outputs one binary segmentation mask for each class and each Rol and is trained on
an average binary cross-entropy loss. He et al., 2017 report relative improvements
of ~ 30 — 50% on the Microsoft COCO (Lin, Maire, et al., 2014) test and val sets
compared to the winners of the COCO 2015 and 2016 segmentation challenges.

3.5 Alternative solutions to the CVPR’17
Velocity Estimation Challenge

Out of the contestants in the CVPR’17 Velocity Estimation Challenge, only the
top 3 performing teams were asked to submit details on the method they used to
tackle the challenge, and the winner was invited to give an oral presentation at the
Autonomous Driving Workshop at CVPR’17. The challenge leaderboard top 3 is
shown in Table 3.1. Our approach outperformed the second placed entry by 15%
and a post deadline submission using only tracking features, but more careful model
selection, increased the margin to 26%. For the entry that placed third, no further
information on the methods used is available, but the methods that achieved second

place are known 2.

Ev EV,near EV,med EV,far
Ours tracking® | 1.25 | 0.12 0.54 | 3.11

Ours 1.30 | 0.18 0.66 | 3.07
Rank2 team 1.50 | 0.25 0.75 3.50
Rank3 team 290 | 0.55 2.21 5.94

Table 3.1: Challenge leaderbord top 3, ranked by overall velocity mean squared error Ey given in I;l—;
(see Section 5.2 for details). *submitted post deadline

Second place approach The second place entry, submitted by Thomasz Wrona,
employs a two-stage method that relies on first extracting the tracks for all vehicles
and then regressing velocity values for each sequence of bounding boxes. As a

’http://benchmark.tusimple.ai/static/files/poster_velocity_2.
pdf
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tracker he uses Median Flow (Kalal et al., 2010), which is the same method as used
in this thesis. In contrast to our approach, Wrona does not mention any substitutions
necessary for failed tracks, whereas we substitute missing tracks with bounding boxes
obtained by an MIL tracker (Babenko et al., 2009). Additionally, Thomasz Wrona
applies a data augmentation scheme, where he horizontally flips bounding boxes
and reverses sequences. For the training of the regression stage, he uses a shallow 2
hidden layer (64 and 16 units) feed forward neural network with tanh activations that
is trained for 5000 iterations on a velocity mean squared error (MSE) using ADAM
(Kingma and Ba, 2014) and Adagrad (Duchi et al., 2011) optimizers. Wrona finds
that using all 40 frames performs better than skipping all but 5 key frames. While the
general idea of employing a two-stage feature extraction and regression approach
is basically identical to our method, some implementation details vary, such as the
trackers used and the neural network setup as well as training regime.
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4 Vehicle Velocity Estimation

This chapter presents the methods I developed and employed to tackle the CVPR’17
Velocity Estimation Challenge. The objective of the task given is to estimate the
relative velocity as well as the position of given vehicles seen in short dashcam video
snippets.

First, I establish a baseline to compare the approach to. I describe the original
baseline provided for the challenge and I introduce an own baseline using only
simple geometry.

Second, I introduce the full approach, which aims to leverage the power of cur-
rent machine learning techniques in two separate stages. In the feature extraction
stage, features beneficial to the task are extracted and fed forward to a light-weight
Multilayer Perceptron (MLP) regression stage, working on these features to regress
velocities and positions of vehicle instances.

4.1 Establishing a baseline

In order to evaluate the meaningfulness of the approach and to benchmark its per-
formance, it is necessary to first set a baseline performance. The first approach was
provided by the challenge organizers and is a naive baseline assuming 0 m/s velocity
for all vehicles. The other baseline approaches exploit triangle similarities by means
of simple geometry.

4.1.1 Challenge baseline

The original challenge baseline is the trivial solution to the problem, which simply
assumes 0 m/s relative velocity for each vehicle. While this might sound irrational
at first, it actually makes sense considering freeway traffic scenarios. On highways
and freeways the traffic flow is generally assumed to be most efficient and safe in the
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case that all vehicles keep a constant distance to other vehicles. This also implies
a constant relative velocity, at least within the same lane as the reference vehicle.
A difference in relative velocity will most often occur in the course of passing
maneuvers, although the differences in relative velocity can still be assumed to be
small. Consequently, the assumption of O m/s relative velocity of all surrounding
vehicles is reasonable yet leaves room for improvement.

4.1.2 Geometry-based estimation

As mentioned in Chapter 2, in addition to the RGB, velocity and position data, the
dataset also includes camera calibration parameters. One of the known values is the
intrinsic matrix in the form

fe 0 o 71415 0  675.58
K= {0 f, ¢| =| 0 71037 376.26| px, 4.1)
0 0 1 0 0 1

where £, and fy are the horizontal and vertical focal lengths and ¢y and Cy are the
coordinates of the principal point. Note that the calibration matrix is given in image
coordinates and thus the unit is pixels. The other known calibration parameter is the
height above ground of the camera H = 1.80m. A calibrated camera can be used to
measure the angle between two lines of sight. This allows for the distance between
the vehicle and the camera to be measured by exploiting simple triangle similarities.
The temporal evolution of the distance gives a vehicle’s velocity. In the distance from
width approach an average vehicle width has to be assumed, while in the distance
from height approach the knowledge of the camera height is employed.

Distance from width

This method assumes that all vehicles are of exactly the same width, which is a
constant that needs to be chosen with care. Additionally, to achieve valid results, tight
bounding boxes that only include the rear of the vehicle are necessary; if a vehicle
is not directly in front of the camera, some of the side is visible as well. Figure 4.1
depicts the fundamental idea of this approach which relies on similarity between
the green and blue triangles. The blue triangle consists of the width of the vehicle
W as well as the distance from vehicle to camera along the driving direction dx,
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both in vehicle coordinates (meters). The green triangle consists of the horizontal
focal length f, and the width of the vehicle w in the image plane I, both in image
coordinates (pixels). Since the width of vehicles W in the dataset is not known, an
assumption of an average width is required. W is chosen such that it minimizes the
velocity estimation error, which results in W=1.82 m for tracked bounding boxes
and W=1.27 m for MRCNN bounding boxes (see Section 5.3.2 for details). w is the
width of the vehicle’s bounding box and fy is known from the calibration matrix K
from (4.1).

I

Figure 4.1: Schematic depiction of inferring distance dx from vehicle width. Assuming a fixed width
w the distance dx can be calculated from triangle similarities.

Since the angle ¢ is the same for both triangles,

dx _ fx
W (4.2)

holds which in turn gives the desired distance dx:
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4.3)

Distance from height

In contrast to the previously described approach, the following in theory does not
rely on any assumptions, given that the optical axis is parallel to the ground. How-
ever, the pitch of the camera is undisclosed and thus an approximation is necessary.
The approximation consists of shifting the principal point ¢y such that the velocity

estimation error is minimized, which results in Cg, = 329 px for tracked bounding

boxes and cg, = 327 px for MRCNN bounding boxes (see Section 5.3.3 for more
details). Figure 4.2 shows the basic geometric constellation which is used for cal-
culating the distance dx. Again the blue triangle, which is in this case spanned by
the distance dx and the height of the camera H, is given in vehicle coordinates. The
green triangle, spanned by the vertical focal length f and the distance from camera
center to the lower bounding box border h = |p — c’y , both in pixels. fy and h are
known parameters from the calibration, as described in Chapter 2. cg, is the ‘virtual
horizon’. This value indicates the average location of the horizon within the camera
image, which depends on the angle of the camera and any variations thereof.

a5 S
=

Figure 4.2: Schematic depiction of inferring distance dx from y coordinates in the image. The known
height above ground of the camera is used to establish a triangle similarity for calculating
dx.
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Both triangles are similar since they are rectangular and share the same common
angle ¢. Hence

=

dx

y
- = 4.4
g~ (4.4)
holds and dx can be computed:
dy = 21 4.5
X= 5 (4.5)

While this approach on the one hand comes with the benefit of theoretically being
well defined, on the other hand it comes with the downside of being potentially
unstable. This is caused by the distance h which can approach zero, in which case
(4.5) diverges. Any deviation of the horizon from the ‘virtual horizon’ will cause this
behavior. Apart from carefully choosing cg, (see Section 5.3.3) another constraint
imposed is clamping any values of dy < 0.1 to dx = 0.1. Practically speaking, h
depends on the angle of the camera and the surface geometry of the road. The angle
of the camera is influenced by the general road condition, since any bumps will
temporarily alter the pitch of the vehicle, and thus the angle (or pitch) of the camera.
This problem could be alleviated by stabilizing the camera image in either software
or better yet hardware with e.g. a gimbal. Furthermore, any curvature in the incline
of the road will shift the horizon, and will in turn cause a variation of h that is not
only unrelated to the distance but might also cause an instability in the estimate.

Lateral distance

Both approaches have thus far only considered longitudinal distances. While they
differ in their method of calculating the distance dy, they share the calculation of the
lateral displacement dy. With the distance dx given, the lateral displacement dy can
be computed following the same method of finding triangle similarities as before,
which is shown in Figure 4.3. The blue triangle in vehicle coordinates is spanned by
the longitudinal and lateral distances dx and dy respectively. The green triangle in
image coordinates is spanned by fy and dy = p — c.., where ¢, represents the origin
of the vehicle coordinate y = 0 in image coordinates and is not to be confused with
the principal point coordinate cy.
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Figure 4.3: Schematic depiction of inferring lateral displacement dy from known longitudinal dx
distance. dy is obtained using triangle similarities.

Again triangle similarities can be exploited since the angle ¢ is the same in both
triangles.

= _ Ty 4.
T (4.6)
holds and thus follows
d, d
dy = Yf X 4.7)
X
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Derivation of ¢,

So far, the derivation of ¢/ has not been mentioned. A derivation of ¢/ is necessary
because the camera is apparently not mounted centrally on the vehicle, which
results in an offset between the principal point cx and the origin of the vehicle
coordinate system (Y = 0). This offset is visible in Figure 4.4, where the red vertical
line represents the cyx and the vehicle enclosed by the green bounding box is at
dy = 0.05 m (i.e. approximately in the center). Since the baseline methods require
the world coordinate Y = 0 to be in line with the principal point, the principal point
has to be shifted to c,.

Figure 4.4: x=c4 (red line) and a vehicle at dy = 0.05 m (green bounding box). The vehicle coordi-
nate center is not in line with the principal point, since the camera is not mounted centrally
on the vehicle or panned accordingly.

The ground truth position data (dx and dy) can be used to calculate an average for
/ .
Cy using

dy(n) fy
dypx(n) = % , (4.8)
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where n is a single vehicle. dy px is the lateral displacement equivalent to dy in
pixels. Since the ground truth position is given relative to the point of each vehicle
which is closest to the observer, two separate cases need to be distinguished:

X d , d <0
¢ (n) = max (1) + dx,px (1) y(n) (4.9)
Xmin(n) + dx,px(n)/ dy(l’l) >0
An average over the number of vehicles N yields the final result
/ 1 N /
=N ) ¢ (n) =713.85 px. (4.10)

n=1

Velocity

With known distances at different timesteps, the velocity of the vehicle is defined as

v(t) = 5 (4.11)

where v and d are two dimensional in vehicle coordinates X,Y and

Ad = d(tz) — d(tl). 4.12)

At depends on how many frames are skipped between t; and t,. Let k be the number
of frames skipped and T be the interval between two consecutive frames (in this case
T = 2/40 s — 40 frames in 2 seconds, see Chapter 2), then

At =k T. (4.13)

Substituting (4.12) and (4.13) into (4.11) yields

v(t) = w : (4.14)

Note that as a bound for added stability, the calculated relative velocities are clipped
at 25 m/s.
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A certain frame skip always considers all possible combinations within the 40
available frames. For example, assuming a frame skip of k = 5, the pairs of frames
that would be used for calculation are

{[1,6], [2,7], [3,8] ... [33,38], [34,39], [35,40]},

and thus all of the available data is used. For each of the individual pairs a velocity
error (see Section 5.2) is calculated and the median of the intermediate results yields
the final result.

The geometry based estimation methods are evaluated in Sections 5.3.2 and 5.3.3.

4.2 Neural network based approach

The original idea for the entry in the CVPR’17 Velocity Estimation Challenge was to
extract features that might be beneficial inputs for a regression algorithm that should
learn to estimate velocities based on those high level features. An overview of the
overall idea is given in Figure 4.5. First, vehicles are tracked through the unannotated
frames. Next, optical flow and disparities are calculated at the vehicle positions.
Those features are then stacked to a single input vector for a multilayer perceptron
that is trained to output velocity and position values.

Since the only available input data are RGB frames, an extraction of meaningful
representations is essential. Theoretically, a regression of vehicle velocities directly
from RGB frames is conceivable; however, it would require training of a large
convolutional neural network which in turn requires a considerable amount of labeled
training data (i.e. orders of magnitude larger than available in this case).
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Figure 4.5: Overview of the overall architecture for the neural network based approach. First a feature
extraction stage calculates features from RGB frames that are locally aggregated and
stacked as input for a fully connected regression stage that outputs velocity and position
vectors.

To estimate vehicle velocity, the raw RGB video data is first transformed into a feature
space that benefits the task. I decided upon three types of complementary features
that theoretically allow a well defined solution of the problem. First, tracks (i.e.
trajectories of the 2D object bounding box and segmentation mask over time) serve as
a basis to preserve the location and identity of vehicle across each sequence. Second,
depth (i.e. disparity estimates from monocular images) gives information on how far
each pixel is away from the camera. Third, motion (i.e. optical flow estimates between
consecutive frames) yields pixel-level displacement vectors between temporally
adherent frames. The temporal evolution of depth and motion together encodes the
3D motion of the scene, and consequently allows to estimate the velocity vector
of each vehicle using the tracked bounding boxes. The remainder of this section
describes how each one of these features is extracted.

4.2.1 Tracking

For a given vehicle defined by a bounding box in a single frame (i.e. the last frame of
each sequence), tracking over the temporal extent of the input subserves all further
processing steps. Since the vehicles are labeled solely in the last frame, tracking
needs to go backwards in time. Figure 4.6 gives an example, where the vehicle
enclosed by the green bounding box is tracked backwards through time (right to
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left); the blue bounding boxes are obtained by the tracker. The tracking task as such
does not pose any major difficulties on this dataset, since there is little movement in
between frames, occlusions only rarely occur, and all annotated vehicles are visible
throughout the sequence (i.e. they do not leave the frame).

Figure 4.6: Tracking the vehicle in the rightmost frame (green bounding box, known) backwards
through time (blue bounding boxes are calculated).

A variety of well established tracking algorithms are readily available in literature.
According to the relatively low inherent difficulty of the tracking task, a relatively
lightweight architecture can be employed. Still, the baseline methods as well as the
neural network approach rely on tight bounding boxes (i.e. the outline around the
object should not leave any large margins). Thus, my first choice is the Median Flow
(Kalal et al., 2010) tracker, since it is able to resize the bounding box throughout the
sequence and therefore can account for changes in apparent size of objects. In some
cases, however, Median Flow tracks fail due to occlusions, in which case bounding
boxes obtained with an MIL (Babenko et al., 2009) tracker are substituted. The MIL
method is more robust, but does not track tightly. I use implementations of both
algorithms from the OpenCV library (Bradski, 2000), with all default settings. Both
perform well out of the box with no further adjustments required.
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Figure 4.7: Example of an imprecisely annotated bounding box. The ground truth bounding box does
not tightly enclose the vehicle.

On a final note, it should be mentioned that some of the ground truth annotations
are neither very accurate, nor tight. In order to obtain tight tracks with the tracking
algorithms used, a tight reference bounding box in the starting frame is crucial. An
example of an inaccurate annotation is shown in Figure 4.7. Clearly the vehicle is not
tightly enclosed by the bounding box on the left, right and top borders. In addition
to complicating the tracking task with respect to tightness, this problem could also
potentially lead to tracking confusions in case of partial occlusions. Cases as the one
in Figure 4.7 are rare, but can not be ruled out, especially in near range.

4.2.2 Mask R-CNN tracking and segmentation masks

Mask R-CNN (He et al., 2017), or MRCNN, is a simple yet powerful framework that
simultaneously computes object bounding boxes and instance aware segmentation
masks. Conceptually MRCNN is a derivative of Faster R-CNN (Ren et al., 2015),
which replaces RolPool (Girshick, 2015) with RolAlign and adds a mask head to
the second stage of Faster R-CNN (see Section 3.4 for details). MRCNN, originally
trained on the Microsoft COCO (Lin, Maire, et al., 2014) dataset, is capable of
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producing output on the velocity estimation dataset as shown in Figure 4.8 without
any further in-domain optimization. The segmentation masks inferred by MRCNN
are surprisingly accurate for near to medium ranges. Note how e.g. the hood of the
observer car is accurately segmented and labeled as a car with 99% confidence.

Figure 4.8: Sample output of MRCNN segmentation masks, class labels and confidences.

MRCNN masks and bounding boxes are obtained using the model configuration
denoted X-101-64x4d-FPN in He et al., 2017, which uses a 101 layer ResNeXt
(S. Xie et al., 2017) backbone architecture with 64 groups of width 4 and a Feature
Pyramid Network (Lin, Dollér, et al., 2017). This is an architecture with high
predictive power at various scales. It is trained on the Microsoft COCO (Lin, Maire,
et al., 2014) dataset, which provides over 120k images with over 880k instance
annotations for 80 different classes.

Segmentation masks come with the benefit of pixel level accuracy and thus with
implicitly tight bounding boxes; the bounding boxes are chosen such that the seg-
mentation mask is tightly included within the box. While the segmentation masks
are instance aware, which means that they distinguish between separate vehicles
rather than providing one mask for all vehicles, the identity of instances is not pre-
served over the temporal extent. To track masks and their bounding boxes backwards
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through the frames like in Section 4.2.1, a simple scheme based on Intersection over
Union (IoU) is used:

A(box, Nboxy,)

IoU =
© A(box, Uboxy,)

(4.15)

IoU is the area of intersection over the area of union of two bounding boxes and it
gives a measure of congruence, where IoU=1 means full overlap and IoU=0 is no
overlap. An example of two squares with [oU=0.4 is given in Figure 4.9.

Figure 4.9: Two squares with IoU=0.4 .

For the tracking task, IoUs for bounding boxes of vehicles in consecutive frames
starting in the last frame are calculated. All vehicle bounding boxes (i.e. COCO car,
bus and truck categories) with a confidence above 40% and an IoU above 0.4 are
counted as a valid track. Choosing both the confidence and IoU thresholds rather
conservatively is a compromise that is necessary because the accuracy of far range
samples is limited and larger displacements between frames need to be accounted
for. The problem with vehicles at larger distances is that the pixel level segmenta-
tion accuracy and detection confidence stagnates due to smaller spatial scales. The
detection based tracking employed here also suffers from jitter of bounding boxes
between frames since there is no smoothing employed over the temporal dimension
by methods such as Kalman filtering, which leaves room for potential improvement.
Whenever this tracking regime still fails due to one of the reasons above, the tracks
from Section 4.2.1 are substituted as a fallback.
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4.2.3 Dense depth map prediction

Depth is undoubtedly an instrumental feature for the task, since a reliable depth
map readily provides the solution for velocity in the X direction. Unfortunately,
for monocular imagery, depth map prediction is an ill-posed problem, which is not
as easily solved as in the case of stereo image pairs. Even for humans it is quite
challenging to estimate distances with one eye covered, but still they are able to
perform reasonably well, which requires experience. This is where recent deep
learning architectures can show their strengths, since through thorough training they
are able to acquire a similar grade of experience by learning from a multitude of
samples.

Figure 4.10: Sample frame with dense depth map overlay. Brighter/warmer tones indicate smaller
distance. The approach clearly separates the vehicle from the background.

A recently described deep architecture (Godard et al., 2017) that learns monocular
depth map prediction via novel view synthesis in a stereo environment serves to
predict dense depth maps. This is achieved by synthesizing the image from one
camera from the other (e.g. left from right), where one of the images is used as
a supervision signal. The warping operation that is thus learned implicitly carries
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information on the disparities in the source image. At the time of implementation,
this was the most powerful architecture for the task that was publicly available.

The model employed here is pre-trained on KITTI (Geiger et al., 2012) and Cityscapes
(Cordts et al., 2016) stereo images for predicting the dense disparity maps (note
that this model is trained without disparity ground-truth). The model is provided
by the authors and publicly available on github!. The model used here is called
model_city2kitti, which is pre-trained on Cityscapes and fine-tuned on KITTI.
It was found to generalize best by the authors, which is why I decided to employ this
model as well.

A sample output on a frame of the velocity estimation dataset is shown in Figure 4.10.
Visually, the results obtained appear valid, at least for close range, where the vehicle
depicted by the green bounding box is clearly separated from the more distant
background. Note that larger distances correspond to darker/colder tones in the color
coding used. For farther distances, the capabilities of the algorithm are limited by
the small sizes of objects. Since the models are trained on inputs of size 512x256px,
the input RGB images need to be resized before inference for optimal performance
and also faster inference times. Moreover, the dense depth maps are spatially pooled
in a later stage, which is why a high pixel level resolution is of no real benefit to the
approach.

4.2.4 Dense motion prediction

Another state-of-the-art neural network architecture, FlowNet2 (Ilg et al., 2017), is
used to retrieve motion information by extracting dense optical flow maps. FlowNet2
treats optical flow estimation as a supervised learning problem, where a convolutional
neural network is trained on a volume of two stacked input frames with ground truth
optical flow as a supervision signal. Since recovering ground truth optical flow
data poses a major difficulty in the case of real world data, synthetic data is used
most often. [ employ a FlowNet2 architecture trained on the synthetic FlyingChairs
(Dosovitskiy, Fischer, Ilg, Hiusser, et al., 2015) and FlyingThings3D (Mayer et al.,
2016) datasets. The framework yields 39 dense u, v flow maps from 512x256px
input images (analogous to the input size used for the depth estimation). The output
is 39 flow maps, as opposed to the input of 40 frames, since optical flow always has
to be calculated between a current frame and a reference frame, which leaves 39
unique pairs within 40 frames.

https://github.com/mrharicot/monodepth
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Figure 4.11: Sample frame with optical flow prediction overlay. Middlebury (Baker et al., 2011) like
flow encoding; hue indicates different directions and intensity different magnitudes of
movement.

The code? used for inference has been made publicly available by the authors. Note
that at the time of my implementation the only publicly available models were ones
trained on FlyingChairs and FlyingThings3D. In the meantime models trained on
the KITTI and sintel (Butler et al., 2012) datasets have been released additionally.
Using models trained on KITTI might further increase performance due to in domain
knowledge acquired by the architecture, which remains left for investigation in future
work.

FlowNet2, which is the full and best performing architecture described in Ilg
et al., 2017, is used. A sample of an extracted optical flow feature map is shown in
Figure 4.11. Again the architecture infers a visually sound representation limited to
close distances. For larger distances, foreground pixels are no longer separated from
background and the estimation becomes inaccurate. Here again the convolutional
neural network architecture is limited by small pixel displacements between frames.
A larger temporal stride could potentially improve this shortcoming, but lies beyond
the scope of this thesis.

’https://github.com/lmb-freiburg/flownet2
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4.2.5 Transformation into feature space

An MLP architecture expects a fixed size input vector and thus the extracted features
need to be pre-processed before they can be fed forward to the regression stage.
The depth and motion cues are computed globally as dense per pixel features and
further processed by locally aggregating the dense predictions within the bounding
boxes established by the tracking stage. Note that first the bounding boxes have to be
resized from the native 1280x720px size to the input/output size of the deep feature
extraction stages of 512x256px. The local aggregation consists of first shrinking the
box by 10% in width and height and then average pooling over the dense feature
maps within each re-scaled tracked bounding box. Shrinking the bounding box
reduces the variance of the average, since flow and depth cues tend to be inaccurate
at the object boundaries and less or no background lies within the smaller bounding
boxes. Subsequently, the aggregated feature vectors are temporally smoothed using
a Gaussian kernel of width 02 = 5, which is chosen in correspondence to the frame
skip of 5 in the learning stage (see Section 4.2.7). For optical flow, this procedure
is carried out individually for both the horizontal and vertical component x, y. The
temporal smoothing provides robustness to short-term deviations of the camera
orientation, that could be caused by movement of the vehicle due to road bumps and
suspension wobble.

This local aggregation allows for a single float value for depth and two single float
values for motion per vehicle and frame, drastically reducing the amount of data
produced in the future extraction stage. The temporal axis, i.e. the sequence of
features for each frame, is simply flattened to a single vector serving as input for the
regression stage.

The pre-computed features allow for the use of relatively shallow fully-connected
neural networks (Multilayer Perceptrons, or MLPs in short). This is especially
advantageous for the task at hand, in which the number of given training examples is
relatively small and learning can take advantage of high level abstract features. A
comparatively simple, rather small and thus efficient 4-layer MLP architecture is
sufficient for regression from feature space to vehicle velocities.
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4.2.6 Range Split

The relationship of the pre-computed features to the learning output is highly non-
linear. Consider, for instance, the size of bounding boxes around other vehicles: it
rapidly changes when the vehicle is accelerating or decelerating close to the camera,
while remaining more or less constant if the vehicle is far away regardless of the
velocity. To facilitate learning under those varying conditions, the idea is to split
the dataset into three disjoint parts. The split criterion is the distance from the ob-
server (near/medium/far), which are the same ranges as introduced in Chapter 2.
Subsequently, a separate model for each of the distances is trained, with potentially
varying parameters and topologies.
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Figure 4.12: Split of ranges by bounding box area. The horizontal axis depicts the ground truth

distance of each vehicle and the vertical axis is the corresponding area of the ground

truth bounding box. Different classes represent the split into the three ranges using
bounding box area.
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Two different methods shall be compared here. The first method sets empirical
boundaries to the area of vehicle bounding boxes. Anything above a bounding
box area of 900 px? is considered near range, any area below 130 px? far range
and all areas in between are medium range. This is the method originally used in
our submission to the CVPR’17 Velocity Estimation Challenge. Figure 4.12 shows
the split thus obtained, where the colors represent the predicted distance, and the
boundaries of the actual ranges are represented by the dotted vertical lines. The plot
is cropped for better visibility.
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Figure 4.13: Confusion matrix of bounding box area range split. Near and medium ranges can be
separated with little overlap, whereas for far range the overlap with the medium class is
large (21% of far range samples fall into the medium category).

This method is clearly able to separate out the different ranges, but elicits some over-
lap in between them. This is also depicted in Figure 4.13, which is a visualization of
the normalized confusion matrix of this simple hard decision boundary classification
approach. In an ideal classifier, all elements on the main diagonal would be 1, and
all other elements 0. Each row corresponds to the actual label of the class and each
column to the predicted label. Hence, this approach is quite well suited for separating
medium and close range samples. However, far range suffers from a higher overlap
with the neighboring medium range class.
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Figure 4.14: Confusion matrix of bounding box bottom coordinate range split. Compared to Fig-
ure 4.13 the overlap of near and especially far classes with the medium class is reduced.

A slight increase in classification performance can be achieved by considering the
bounding box bottom coordinate instead of the area. This idea is similar to the
distance from height baseline method introduced in Section 4.1.2. Here any bottom
coordinate above 400.6 px is classified near range, any coordinate below 367.7
px far range and the rest medium range. Again, those are empirically chosen hard
boundaries. The confusion matrix for this approach, shown in Figure 4.14, indicates
a slight improvement in classification accuracy for the far and near classes. This is
significant since those two classes are considerably smaller than the medium range
class (see Chapter 2).

While both of these methods leave room for improvement, they are sufficiently
accurate for the task at hand. Note that the range splits used in the ablation study in
Section 5.4 use the available ground truth data for accurate splits. The range split
described here only has to employed when no ground truth data is available, i.e.
when inferring on unannotated test data.
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4.2.7 Network Architecture

The regression stage is a simple, lightweight MLP architecture, the basic structure
of which is shown in Figure 4.15. The number of inputs varies with the amount and
types of input features, as well as the temporal stride that is used. The temporal stride
was chosen to be k=5 in validation experiments. This means that only every kth
frame is used for estimation. Notably, recycling the frames dropped by the temporal
stride by stacking them into additional input vectors as separate samples did not
improve performance. For example, when using all features, 8 values serve as input
for a single frame. With a temporal stride of k=5 frames, this results in 64 input
units. The inputs are fed to 3 or 4 hidden layers, each with 40, 60 or 70 neurons.
The number of units per layer is a parameter that is examined in the ablation study
in Section 5.4. For the challenge entry the following topologies (number of hidden
layers X number of units per layer) were used for the individual ranges: 3 x 40
(near), 4 x 60 (medium), and 4 x 70 (far). The final output vector is of length 4 and
consists of velocity and position values for both X and Y directions. It is generated
by a linear output layer, as is common practice for regression tasks.

3/4 Hidden

Figure 4.15: MLP structure used for velocity and position regression. A variable size input layer
(dependent on the number of features and frames used) feeds 3-4 fixed size hidden layers
and a 4 unit linear output layer provides velocity and position values.

The effect of various activation functions on the different subnetworks is investigated
in Section 5.4. Originally, for the entry in the CVPR’17 Velocity Estimation Chal-
lenge concatenated rectified linear units (CReLU, Shang et al., 2016) were used as
hidden units.
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4.2.8 Network Training

Each individual network is trained on the MSE between network output and ground
truth annotations for 2000 epochs using a minibatch size of 50. Notably, the training
is carried out on velocity and position data, although evaluation only takes velocity
estimation performance into account. Ground truth position values serve as an
auxiliary learning target for the MLP regressor. For regularization, weight decay
(I regularization) of 10~° and Dropout (Srivastava et al., 2014) of 0.2 are used.
Also ADAM (Kingma and Ba, 2014) proved to be the most feasible optimization
algorithm for the task at hand.

A partitioning scheme similar to k-fold cross-validation is used to exploit all of the
available training samples. For each of the individual ranges, the samples are split
into 5 partitions, where one is used for validation and the rest for training. After
training for 2000 epochs on each separate combination of partitions the model with
the lowest validation error is saved. In the end, this results in 3 X 5 models for the
entire dataset. While this approach yields separate models specialized for each range,
the number of examples per neural network is quite small (especially for near and far
range), so care has to be taken with respect to overfitting. To counteract overfitting,
in addition to Dropout and I, regularization, training is also stopped early, if the
validation error does not improve after 500 epochs.

At inference time, a single output for every sample of each range is obtained by
aggregating the feed forward outputs of each of the 3 X 5 models and averaging
them. To split the samples into ranges with unknown ground truth, the split strategy
introduced in Section 4.2.6 is used.
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This chapter gives an insight into the experiments that were conducted as well as
the corresponding results. First, a split of the original training set (see Chapter 2) is
established, that serves as a basis for experimental evaluation. Then, the baseline
approaches (introduced in Section 4.1) are investigated and finally an ablation
study on the various input features for the machine learning regression approach is
presented.

5.1 Validation split

In order to be able to evaluate the performance of the different approaches, it is
necessary to first split the available training data into a custom fixed training and
validation set. This step is required since the original test set annotations are undis-
closed. Instead of simply using a random split, I decided to take a more deterministic
approach, taking into account the distribution of vehicles in near, mid and far range
as well as the appearance of the individual samples. Here, appearance refers to the
individual drives that the video snippets of the dataset are taken from. The problem
here is that some of the samples in the training set are temporally consecutive and
correlation in between such examples is very high. For a meaningful evaluation, the
aim is to separate training and validation set for the upcoming experiments as clearly
as possible.

This is achieved by first computing the 4096 dimensional VGGNet fc2 feature vector
(Simonyan and Zisserman, 2014). VGGNet is a convolutional neural network used for
large scale image recognition, that has won the ImageNet (Russakovsky et al., 2015)
2014 challenge localization track. The network consists of a 16 layer convolutional
block followed by a 3 layer fully connected head, adding up to 19 trainable layers
with 144 million tunable parameters. The task of the convolutional block is to
transform an input RGB image into a feature space that allows for classification
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into one of 1000 classes by the subsequent fully connected classification head. The
fc2 features are the output of the last ‘class agnostic’ stage and provide a high level
abstract encoding of the appearance of an image. The 1000 dimensional fc3 layer is
already corresponding to the 1000 output classes.

t-sne transformed k-means clustered

60 60

40 40

204 201

Dy
Dy

—20 —20

—401 —40-

—60 —60

—801 —801

Figure 5.1: left: t-sne reduced 4096 dimensional fc2 feature vectors, right: k-means clustering of
reduced data

Further, 7-sne (Maaten and Hinton, 2008) is used to reduce the dimensionality of
the feature vector down to 2 dimensions. The aim of t-sne is to place samples
with large distance in the high dimensional space in large distance in the lower
dimensional space as well. This step not only allows for the visualization of the
data in 2 dimensions, but also for clustering the resulting features into 7 clusters
using k-means later on. On the left of Figure 5.1, the t-sne reduced 4096 dimensional
VGGNet fc2 feature vectors are shown, one vector for each training video — only
one frame per video was used for this step. Clearly, there are some clusters visible
in the reduced data; on the right in Figure 5.1 the 7 clusters found by k-means are
shown in separate colors.

Figure 5.2 shows samples drawn from two different clusters that were obtained as
described. They are visually distinguishable and mostly appear to be belonging to
different scenarios. While, e.g., in the left cluster there is mostly clear blue skies, in
the right conditions are overcast, indicating that the drives that these samples belong
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to were recorded in different locations or at different times. Note that there are some
outliers in each of the clusters, but for the purpose of the task this split is sufficiently
accurate.

T R W TR T —
7~

Figure 5.2: Visualization of samples drawn from 2 of the clusters

Finally, to take into account the distribution of different vehicle ranges, one of the
clusters consisting of 10% of the total training samples with a (14/63/21%) near,
medium, far range distribution is selected as validation set. The remaining data is
used for training after defining a fixed 5-fold split for cross validation.

5.2 Evaluation metric

As an evaluation metric for all the experiments, I adopt the evaluation metric that was
used for the velocity estimation challenge. For the challenge individual entries are
ranked by overall average velocity mean squared error. For each given set of samples
C, in this case the ranges near, medium and far, the error is evaluated according to
(5.1) and then simply averaged (5.2).

1 .

Eve= =Y [lve =¥ (5.1)
|C| ceC

. EV,neur + EV,med + EV,far

Ey = 3 (5.2)
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Here, v, and V. denote the ground truth velocity and the estimated velocity of a
single vehicle. This metric serves as a solid basis for evaluation, although it is biased
towards the smaller partitions C, since if \C , i.e. the number of samples in a cluster,
is low the average provides less smoothing for extreme values. Hence, in addition to
Ev, Evnear» Evmed and Ey ¢, are used for evaluation in each experiment.

5.3 Analysis of baseline methods

This section deals with establishing a baseline performance for the task using the
methods introduced in Section 4.1.

5.3.1 Challenge baseline

The challenge baseline is the simplest to evaluate, since it consists of all zero input.
Evaluating on the validation split derived earlier in Section 5.1 yields the results
shown in Table 5.1. Those results serve as the absolute minimum requirement in
performance. Any performance worse than this baseline indicates that the method
used is basically invalid.

EV EV,near EV,med EV,far
7.09 | 3.54 7.04 10.70

Table 5.1: Evaluation results of the challenge baseline on the custom validation split. Errors are given
2
in &
S

5.3.2 Distance from width baseline

For this baseline approach, which is based on geometry (see Section 4.1.2), bounding
boxes are required as input. Both methods of bounding box tracking (see Sections
4.2.1 and 4.2.2) shall be investigated in relation to this baseline approach.

First, the parameters required for this method need to be established, which are the
frameskip i.e. how far apart frames for the estimation are chosen and the assumed
vehicle width to be used. The values for these parameters are chosen by sweeping
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through both of them simultaneously and obtaining a velocity estimation evaluation
result for each combination. For the frame skip, values in the range [1, 39] frames
and for the assumed average vehicle width w values within [1.0, 2.2] m in 0.01 m
increments are observed. The data for the estimation consists of the combination
of training and test data, while leaving out the validation split for evaluation of the
method with the parameters thus derived.

Varying frameskip k

2_
1 .
0_ T T T T T T T T T
0 5 10 15 20 25 30 35 40
k
— EV —— EVmed
EVnear —— EVfar

Figure 5.3: Velocity errors over frames skipped for distance from width method using tracked bound-
ing boxes.
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The first parameter to be evaluated is the number of frames skipped k in between
frames used for estimation. Figure 5.3 shows the evolution of the velocity MSEs for
the individual ranges over varying k, when using tracked bounding boxes as features.
Here apparently a smaller skip of frames is beneficial, since there is better smoothing
provided by the median filter (see Section 4.1.2 for details). Qualitatively, there is

little difference between the errors for the different ranges. The minimum for Ey lies
atk = 3.

(m/s)?

\4- K/_W—/\/\/\
=
m
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0 5 10 15 20 25 30 35 40
k
— EV —— EVmed
EVnear —— EVfar

Figure 5.4: Velocity errors over frames skipped for distance from width method using MRCNN.

Figure 5.4 shows the results for the same experiment using MRCNN bounding boxes.
The minimum for Ey lies at k = 12. Here, interestingly, the errors increase for
small values of k, which can be explained by the jitter in the MRCNN tracks. Using
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Medianflow and MIL trackers generally yields smoother trajectories. This noise in
between frames introduced by the object detection stage makes estimation more
stable for larger values of k.

Varying assumed vehicle width w

4.0

3.5

3.01

2.01

MSE / (m/s)?

1.5

1.0

0.5 1

0-0 T T T T T T T
1.0 1.2 1.4 1.6 1.8 2.0 2.2

w / m

—— EV, min: 1.24 at w=1.82 m —— EVmed, min: 0.61 at w=1.89 m
EVnear, min: 0.19 at w=2.16 m —— EVfar, min: 2.84 at w=1.71 m

Figure 5.5: Velocity errors over assumed vehicle width for distance from width method using tracked
bounding boxes; k = 3.

Next, the evolution of velocity MSEs is evaluated with fixed k for varying w; again
for both modes of bounding box extraction. k is chosen such that it corresponds
to the minimum of Ey evaluated earlier. The evolution of the velocity MSEs for
the individual ranges over varying w using tracked bounding boxes are shown
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in Figure 5.5. The overall minimum for Ey lies at w = 1.82 m, which is valid
considering the average vehicle’s width. Notably the minimum for close range is at a
larger w of 2.16 m, which is due to the shift in perspective for closer range vehicles,
where a vehicle that is off to the side is not only seen from the rear, but also from the
side. Since the bounding box includes the whole vehicle, the apparent width of the
vehicle thus becomes larger. On the contrary, for far range, a slightly smaller width
yields smaller velocity estimation errors. Due to the overall smaller appearance at

larger range and pixel level errors in the bounding box tracking a, smaller width is
justified.

101

1.0 1.2 1.4 1.6 1.8 2.0 2.2
w / m

—— EV, min: 1.64 at w=1.27 m —— EVmed, min: 0.74 at w=1.55 m
EVnear, min: 0.24 at w=1.94 m —— EVfar, min: 3.39 at w=1.10 m

Figure 5.6: Velocity errors over assumed vehicle width for distance from width method using MR-
CNN; k = 12.
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For bounding boxes obtained with MRCNN (see Figure 5.6), the minimum of Ey
lies at w = 1.27 m, and also the minima for the other ranges are at significantly
smaller widths, when compared to using tracked bounding boxes. This behavior
most likely has its roots in the considerably tighter bounding boxes that result
from MRCNN. Figure 5.7 shows an example from the training data with bounding
boxes for both MRCNN (green) and tracked bounding boxes (red). Besides, for
both methods a considerable error in assumed width compared to actual width is
inevitable. Considering e.g. a distance of 20 m, a difference of just one pixel results
in a displacement of 2.8 cm. Assuming that the bounding boxes are true to within a
pixel, which would be optimal performance, the estimation of position is still limited
by pixel resolution, introducing an error of 5.4 cm. This error further increases to 14
cm at a distance of 50 m.

Figure 5.7: Sample from training data showing MRCNN bounding box (green), MRCNN mask (blue)
and tracked bounding box (red).
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Results on the validation set

The parameters derived earlier for both bounding box generation methods are
summed up in Table 5.2.

bounding box method | k w
tracked bounding boxes | 3 | 1.82 m
MRCNN 12 |1 1.27m

Table 5.2: Parameters derived for distance from width baseline method.

On the validation set, the distance from width approach achieves the results depicted
in Table 5.3. Across all ranges, this baseline outperforms the challenge baseline,
although only barely for far range. Far ranges impose the difficulty of little to
no variation in bounding box width across the frames, which greatly impairs the
estimation performance. The bounding boxes calculated by the MRCNN approach
provide a solid base feature for estimation in close ranges, where regular tracking
is less accurate due to changes in appearance, perspective and also size. In medium
range, the jitter, characteristic for detection based approaches, gives the tracked
bounding boxes the benefit over MRCNN.

Figure 5.8: Sample of a tracking failure (621 from the training data). Mask (blue) and MRCNN
bounding boxes (green) are shown.

The entries in Table 5.3 marked with an asterisk are calculated leaving out one
sample from the validation data (sample 621). In this sequence the target vehicle
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is occluded for part of the sequence, causing a failure in tracking and detection
that has a large impact on overall estimation performance of this baseline approach.
Figure 5.8 shows some evenly spaced frames from this sequence. Remember that
the tracking is running backwards through time, such that the last frame (number
6 in Figure 5.8) is actually the first frame of the sequence seen from the tracker’s
perspective. About halfway through the sequence, the mask is no longer detected
correctly and consequently the IoU is too small, such that the track is substituted with
the Medianflow/MIL tracks, which fail in this case due to the occlusion. Leaving this
sample out allows a more meaningful assessment of estimation performance in case
of stable bounding box tracks. However, this case also highlights that this approach
strongly relies on valid inputs, which further implies that it is not robust towards
outliers.

bounding box method Ev | Evnear | Evmed | Eviar
tracked bounding boxes | 17.09 | 1.20 0.61 | 49.45

MRCNN 9.60 | 0.63 1.03 | 27.15
tracked bounding boxes* | 3.89 1.20 0.61 9.86
MRCNN* 3.89 | 0.63 1.03 | 10.00

Table 5.3: Evaluation of the distance from width baseline on the validation set. Entries marked with
an asterisk are evaluated with sequence 621 left out.

5.3.3 Distance from height baseline

Analogous to the previous approach, this one too relies on bounding boxes, more
specifically the bottom coordinate, denoted p in Figure 4.2. Hence, again MRCNN as
well as tracked bounding boxes are considered as base features. While the distance
from width approach relies on the assumption of a fixed vehicle width, this approach
is free from any such assumptions. Nonetheless, a parameter that has to be set in
addition to the frameskip k is the ‘virtual horizon’ cg,, i.e. the average location of the
horizon within the frame. The experiments necessary to choose the parameters are
similar to the ones conducted in Section 5.3.2.
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Varying frameskip k
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Figure 5.9: Velocity errors over frames skipped for distance from height method using tracked
bounding boxes.

Figures 5.9 and 5.10 show the effect that a variation of k has on the velocity MSEs
in the individual ranges for tracked as well as MRCNN bounding boxes. Compared
to the distance from width method the difference between the two bounding box
extraction methods is less pronounced. Qualitative assessment has shown that the
bounding box bottom lines for both approaches show very little differences. The
bigger deviations lie in the width of the bounding boxes as well as the top border,
where especially MRCNN is prone to some noise/jitter over time.
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0 :
0 5 10 15 20 25 30 35 40
k
— EV —— EVmed
——— EVnear —— EVfar

Figure 5.10: Velocity errors over frames skipped for distance from height method using MRCNN.

For both methods, the bottom coordinate of the bounding box is also relatively
smooth over time, which results in a quasi constant behavior of Ey over different
values of k. The minimum for Ey lies at k = 11 for tracked and MRCNN bounding
boxes, which highlights the similarity of the two bounding box extraction methods.
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Varying assumed ‘virtual horizon’ cg,
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Figure 5.11: Velocity errors over assumed ’virtual horizon’ for distance from height method using
tracked bounding boxes; k = 11.

A variation of the assumed ‘virtual horizon’ cg, also impacts velocity estimation
performance. It is especially crucial that cg, is not chosen to be around a critical point.
According to (4.5), this critical point is reached any time the bottom bounding box
coordinate coincides with the assumed virtual horizon, which evaluates to a distance
of dy = oo. The approach to this critical point is observable in Figures 5.11 and 5.12
for Cg, > 333. In the range where Cg, < 333 holds there is only a slight increase in
MSE towards smaller cg,. For velocity estimation only relative changes in distance
are required, i.e. the absolute values of distances are insignificant as long as the
relative distances are preserced. Hence, it is important to choose Cg, small enough
such that [p — ¢y > 0 holds.

54



5 Experiments

601
Z
E 401
~
€2}
%
2
201
0_
315 320 325 330 335 340 345
c / px
—— EV, min: 2.66 at ¢;=327.0 px —— EVmed, min: 1.57 at ¢/=331.0 px
— EVnear, min: 0.32 at c;,=336.0 pX — EVfar, min: 5.89 at c§,=326.0 px

Figure 5.12: Velocity errors over assumed ’virtual horizon’ for distance from height method using
MRCNN; k = 11.

Similar to the variation of k earlier, both MRCNN and tracked bounding boxes yield
similar behavior of velocity MSEs over varying cg,. Since the bounding box bottom
borders are most likely close to the horizon for far range samples, those samples
dictate the choice of cg, predominantly. Overall, the influence of the ranges on the
choice of cg, is comparatively small. Still c’y has to be chosen carefully to avoid
divergence of the estimation. Ey reaches a minimum at cg, = 329 px for tracked and
¢, = 327 px for MRCNN bounding boxes.
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Results on the validation set

The parameters derived earlier for both bounding box generation methods are
summed up in Table 5.4.

bounding box method | k cy

tracked bounding boxes | 11 | 329 px
MRCNN 11 | 327 px

Table 5.4: Parameters derived for distance from height baseline method.

In Table 5.5 the velocity estimation results on the validation set are shown. This
approach clearly outperforms the challenge baseline in all ranges, while being on
par with the distance from width method in overall performance. It has a slight
advantage in far ranges, since the variation in bounding box bottom coordinates is
more pronounced than the changes in width. Interestingly it is not performing as
strongly as the distance from width approach in medium ranges.

Additionally, the difference between running estimation on all samples versus leaving
sample 621 out as before is insignificant, which implies that this approach is more
robust towards occlusions, as long as the correct bounding box bottom coordinate p
of the tracked vehicle is preserved.

Again, MRCNN is performing well in closer ranges, while struggling in father ranges.
On the whole, the difference between the two bounding box extraction methods is
not substantial for the distance from height approach.

bounding box method Ev | Evnear | Evimed | Eviar
tracked bounding boxes | 3.65 | 1.32 1.78 | 7.84

MRCNN 399 | 0.62 1.50 | 9.83
tracked bounding boxes* | 3.66 | 1.32 1.78 | 7.87
MRCNN* 392 | 0.62 1.50 | 9.63

Table 5.5: Evaluation of the distance from height baseline on the validation set. Entries marked with
an asterisk are evaluated with sequence 621 left out.
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5.4 Ablation study

Section 4.2 introduced several features extracted from the raw RGB frames provided
in the dataset as a basis for vehicle velocity estimation. As submission for the
CVPR’17 Velocity Estimation Challenge, we originally submitted an approach that
combined disparity, optical flow and tracking. To the point of submission, we have
not conducted any investigations on the different features and how useful any single
feature or combination of several features is for the task. This section is dedicated
to shedding light onto this previously unconsidered subject. The pages to follow
present an ablation study on the various features and neural network parameters.
ReLu, CReLu, ELu, tanh, logistic sigmoid, softplus and softsign activation functions
as well as hidden layers with 40 or 70 units are evaluated.

5.4.1 Training

The data split introduced in Section 5.1 serves as a basis for comparison of the
different ablations. Since the dataset is relatively small, estimation results can be
noisy which results in a large variance in error between training runs. To keep
the results statistically relevant, 10 randomly initialized models for each of the 5
partitions and each ablation are trained, resulting in 50 models over which the error
is averaged. All of the models trained share the same dropout of 0.2 and the same
I, regularization of 10~°. Training is stopped early after 500 epochs if the MSE on
the validation data does not improve. Also a distinction between training separate
models for near, medium and far ranges and training single models for all ranges
combined is made.

The following paragraphs first show results for each single feature and later for the
best performing combinations of input features.

5.4.2 Tracking

Table 5.6 shows the results obtained when only bounding box tracks (see Sec-
tion 4.2.1) are used as input for the regression stage. It turns out that tracking
comparatively is the single most powerful feature on its own. Apart from near range,
training on separated ranges did not prove to be beneficial, which appears valid since
for medium and far range there is generally little shift in perspective on the observed
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vehicle. Thus medium and far range, as well as overall performance is best when
training on all of the data, simply because there is more training data available.

In general, the activation function used did not prove to be a crucial choice apart
from medium range, where, interestingly, tanh is not a good performer, and networks

employing tanh are about 0.2 r;‘—; higher in Ey ,eq. CReLu and softplus perform
equally well for medium range.

range | activation | units/hidden layer | Ev | Evnear | Evimed | Evifar
all tanh 40 1.86 | 1.13 1.00 | 3.45

near relu 70 8.83 | 0.93 5.47 | 20.09
all softplus 40 3.04 | 3.12 0.76 | 5.25
all softsign 40 1.97 | 1.28 1.20 | 3.43

Table 5.6: Best models found with only tracked bounding boxes as regression input. Models using

. .. . . m2
tracking cues perform surprisingly well across all ranges. Errors are given in r:—z, the
leftmost column depicts the range of the samples a given approach was trained on. Each
row represents the best model in each Evy, Ey near, Evmed and Evy gay.

5.4.3 Motion

It was to be expected that optical flow alone is not enough to provide robust estimates
of vehicle velocities. Table 5.7 shows that, apart from near range, optical flow is
not very useful. As optical flow estimates depend on pixel level changes, which are
generally very subtle for objects that are farther away from the camera, a decrease in
performance with increasing range is inevitable. Opposing to the tracking models
above, the models based on motion cues benefit more from training on the individual
ranges. Interestingly, the best performing overall model is trained on only far range
samples. Since the variance in MSE over different runs is rather large for motion
based estimation, this can be coincidental. Overall, the estimates based on optical
flow are not usable on their own; while they outperform the challenge baseline, they
are inferior to other features both in performance and computational cost. Variation
of the activation function again did not have a major impact, although a careful
choice can give a slight improvement of performance.
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range | activation | units/hidden layer | Ev | Evnear | Evimed | Evifar
far logsig 40 4.68 | 1.95 5.06 | 7.02
near | softsign 40 499 | 1.42 5.41 8.14
med tanh 70 483 | 2.23 484 | 742
far logsig 40 5.06 | 2.82 549 | 6.87

Table 5.7: Best models found with only motion cues as regression input. Estimation based solely

. . . .2
on motion cues is inaccurate compared to other features. Errors are given in ‘;‘—2, the
leftmost column depicts the range of the samples a given approach was trained on. Each
row represents the best model in each Evy, Evnears Evmeq and Evy g,y

5.4.4 Depth

The results when using only depth as a feature do only slightly deviate from those
using only motion cues. As shown in Table 5.8, the only major difference is a decrease
in error for near range. Apparently the depth estimation is more accurate in close
range, where it provides distances in X with relatively high precision. Additionally,
the depth cues seem to be rather consistent across all ranges. With the exception
of medium range, training on the specific range alone does not provide any benefit.
Compare for example rows 3 and 4 in Table 5.8, where the model in row 3 is trained
on medium data only and the model in row 4 is trained on the whole data. The

difference in performance between the two models is negligibly small.

range | activation | units/hidden layer | Ev | Evnear | Evmed | Evifar
all tanh 40 4.59 | 0.97 494 | 7.84
all logsig 40 4.83 | 0.87 5.31 8.30
med relu 40 5.61 | 251 488 | 9.45
all crelu 40 4.69 | 1.38 496 | 7.72

Table 5.8: Best models found with only depth cues as regression input. The results are comparable

. . . . . m2
to using motion cues, although better in near range. Errors are given in r;—z, the leftmost
column depicts the range of the samples a given approach was trained on. Each row

represents the best model in each Ey, Eynear» Evmed and Ey ;.
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5.4.5 MRCNN tracking

Similar to the other approaches that build on top of convolutional neural networks,
MRCNN yields very competitive results for objects that are close to the camera. On
the contrary, smaller object scales impose greater difficulties for CNNs, which is
also visible across the results for MRCNN based tracking as input feature for the
velocity regression in Table 5.9. In close range, the MRCNN tracks perform superior
to all other approaches, which is due to the high pixel-level precision that MRCNN
elicits especially for large scale objects. In medium ranges, the MRCNN tracks are
slightly inferior to the box level tracking, since the MRCNN bounding boxes in this
range are subject to more jitter, which in turn impairs the quality of the estimates. In
far range, the difference is less pronounced compared to tracked bounding boxes,
while the MRCNN features are superior in MSE to all other features. Here, softsign
and softplus certainly are the most effective unit activations.

Interestingly, the best performing models for all ranges combined and far range are
all trained on medium range samples. I reckon that this behavior stems from the
similarity between medium and far range, as well as the high amount of jitter in the
bounding boxes for far range. Furthermore, medium range includes considerably
more samples than far range, which can provide additional stability for the regressor.

range | activation | units/hidden layer | Ev | Evnear | Evimed | Evifar
med logsig 40 191 | 043 1.22 | 4.07
near | softplus 70 5.05| 0.18 3.08 | 11.90
med | softplus 40 3.04 | 1.66 1.06 | 6.41
med | softsign 40 1.94 | 0.69 1.38 3.77

Table 5.9: Best models found with only MRCNN tracked bounding boxes as regression input. MR-

L . . . . m?
CNN tracking is superior to other features in near range. Errors are given in I;‘—z, the
leftmost column depicts the range of the samples a given approach was trained on. Each
row represents the best model in each Ev, Evpear, Evmeq and Ey gy,

5.4.6 Segmentation masks

Another input feature tested are the areas of the segmentation masks provided by
MRCNN. The change in area certainly contains similar information as bounding
box coordinates; however, no information of the position in the frame is preserved.
This definitely limits the ability to estimate lateral velocities, but does not have a
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large impact on the errors for this dataset since lateral velocities are generally low.
Other than in near range, segmentation masks alone do not serve as a sufficient basis
for estimating vehicle velocities. The limited performance for farther ranges implies
that position in the frame is a beneficial parameter for these ranges, while being less
influential in near range. Statistically, vehicles are less likely to exhibit any lateral
velocity in closer ranges, since lane changes technically require a safety distance.

Models trained on near and medium ranges perform equally well across all ranges,
which might connote that the difference in the temporal evolution of segmentation
mask areas between ranges is small and that additionally a relatively simple model is
sufficiently accurate in all ranges. This theory is further confirmed by 40 unit models
being the best performers across the board, similar to depth as an input feature. Far
range segmentation masks are again less useful due to lower SNR across multiple
frames caused by inaccuracies of MRCNN.

range | activation | units/hidden layer | Ev | Evnear | Evimed | Evifar
med logsig 40 271 | 048 239 | 5.26
near logsig 40 4.01 | 0.23 3.12 | 8.67
near elu 40 3.37 | 0.31 2.15 7.64
med | softsign 40 334 | 212 299 | 4.92

Table 5.10: Best models found with only MRCNN segmentation masks as regression input. Segmen-
tation masks perform well in near range, but do not outperform any other input feature.

. . m? . .
Errors are given in =, the leftmost column depicts the range of the samples a given
approach was trained on. Each row represents the best model in each Ey, Ey near» Evmed
and Ey ;.

5.4.7 Best performing methods

The sections thus far have shown how individual input features perform on the task
and whether they are of any benefit. This section serves to evaluate the best perform-
ing methods including single feature, multiple feature and baseline methods. For the
sake of brevity, the three best performing models for each range are summarized in
Table 5.11, with the features used indicated.
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features used range f(x) units | E
track | track* | depth | flow | mask & v
all ranges combined

v - v - - all tanh 40 | 1.83

v - - - - all tanh 40 | 1.86

v - v v - all tanh 40 | 1.86
near range

v - - v near | softplus | 70 | 0.17

- v - - - near | softplus | 70 | 0.18

- v v v v near | logsig | 70 | 0.22

medium range

v - - - - width baseline 0.62

v - - - - all | softplus | 40 | 0.76

v - v - - all crelu 40 | 0.86
far range

v - v v - all | softsign | 40 | 3.06

v - v - - all | softsign | 40 |3.23

v - v - all | softsign | 40 | 3.24

Table 5.11: Summary of the best performing approaches. For each separate range the top 3 methods
ranked by MSE (Ey) are listed. The first 5 columns from the left indicate the features used

in the approach. track refers to tracked bounding boxes and track* to bounding boxes
2

from MRCNN. [Ey] = 7.

Undoubtedly, tracking is the most useful feature, since it is used in one form or the
other in each of the best performing methods (note that track refers to bounding
box tracking, and track* to MRCNN tracking). The best performing method over all
ranges uses tracking and disparity cues, although the second and third best methods
perform just as well. Notably, the second best method relies solely on tracking, which
underlines that tracking is an essential feature for the task. The third best approach,
which uses all of the features, except for segmentation masks is on par with the
second best performance-wise. This is also the full approach that was used for the
entry in the CVPR’17 Velocity Estimation Challenge. Hence, the ablation study
confirms that this is one of the best performing methods, however, a lighter weight
and simpler approach would have performed equally well. Intuitively, one would
think that combining all of the generally complementary features would yield the best
results. I believe that, however, the limited smoothness and consistency of the CNN
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based features in between frames and the limited accuracy for farther ranges cause a
decrease in estimation performance for approaches with all features combined. All of
the best performing approaches on all ranges combined are trained on data from all
ranges combined, use tanh as activation function and 40 unit layers. A combination

of the best models for each range would result in a theoretical Ey = 1.28‘;1—22, which

is a significant improvement over the best overall model with Ey = 1.83?—22. Note
that the organizers of the CVPR’17 Velocity Estimation Challenge communicated a
ground truth accuracy of Ey = 0.71?—22 which is achieved using LiDAR, radar and
stereo cameras.

In near range, MRCNN is clearly superior to all other approaches. The high pixel
level accuracy of MRCNN is its largest benefit, in addition to the robustness to
shifts in perspective and appearance, which can be quite dominant in close range.
Especially, the other tracking regimes are sometimes too inert to follow the relatively
large variation in bounding box size over time. The best performance is achieved
when using a combination of the bounding boxes and masks generated by MRCNN,
just slightly outperforming an approach using only bounding boxes. Interestingly,
the third best approach is the full approach using all features. Apparently, the depth
and flow cues cause more confusion than they support a more robust estimate. In
contrast, when not using MRCNN, the combination of optical flow and disparities

as input features is the best performer at Ey = 0.66?—22. All of the MRCNN based
methods are the only ones that benefit from the larger 70 unit layer size and they
predominantly employ softplus activations. Additionally, all of the top three near
range approaches are trained solely on near range, which makes sense considering
the inherent difference to medium and far range examples.

For medium range, the geometry based distance from width baseline method achieves
a clear lead over the machine learning based approaches. It relies on tracked bounding
boxes which are generally very stable at medium range; while MRCNN bounding
boxes might be more accurate, they are more prone to jitter especially at medium and
far ranges. The second best approach also relies solely on tracking cues, while the
third best also incorporates depth values. Again, the additional depth feature seems to
be contrary to the tracking rather than complementary and thus has a negative impact
on performance. Both of the machine learning based methods are trained on the
whole training data and layers with 40 units work best. They employ softplus as well
as crelu activations, which are only mild nonlinearities. The high performance of the
baseline approach in medium range results from the linear nature of the estimation
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problem in this range, where the nonlinearities of the MLP do not provide any better
representation. Additionally, the explicit formulation of the baseline benefits from
the knowledge of camera calibration parameters, which the implicitly formulated
machine learning based approach lacks.

The biggest challenge for far range samples is the small scale of vehicles and thus the
limited pixel level accuracy. At father ranges, a single pixel of difference translates to
a comparatively large spatial displacement, which can only be countered by a higher
resolution sensor. Counterintuitively, the best performing approach for far range
employs both depth and flow in addition to tracking and also the second and third
placed methods incorporate either depth, flow or both. For most far range samples,
the optical flow estimates are rather noisy. In contrast, the depth estimates, while not
being pixel level accurate, still provide an approximate information on the relative
distance. The best method based solely on tracking achieves Ey = 3.432‘—22, which is
not too far behind. What it is exactly that the depth and flow cues contribute to the
improved estimation capability remains open for further research. Similar to medium
range, all far range methods are trained on all of the training data. Additionally, they
all use softsign activations with 40 unit hidden layers.

Compared to the best performing baseline approaches the machine learning based
approaches achieve an improvement in MSE of 106% for all ranges combined, 135%
for near range and 182% for far range. However, in medium range no improvement
was achieved, here the distance from width baseline using tracked bounding boxes
outperforms all neural network methods by 23%. Furthermore, the most important
input feature for all machine learning based approaches is bounding box tracking,
which performs reasonably well on its own across all ranges. The tracked bounding
boxes are certainly the most consistent of all of the features. While they do not
provide low level motion and depth information, they provide relatively smooth and
accurate relative changes in both position in the frame and 2D size of the object.
In order for the CNN based methods to achieve better performance, an increase in
accuracy, consistency and smoothness needs to be achieved.

| Motion | MRCNN | Depth | Tracking | MLP | Baseline
GPU | GPU | GPU | CPU |GPU| CPU
344ms | 229 ms | 69 ms 7 ms 3ms | 0.06 ms

Hardware
Timing

Table 5.12: Per frame/vehicle inference time for feature extraction and inference on Intel® Core™
17-5930K, 32GB, NVIDIA®Titan X/1080Ti.
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For any autonomous driving application, real time capabilities on limited computa-
tional resources are essential. To properly react to events in traffic, fast computation
is required, but due to limited space and available power in vehicles — especially
also considering electric vehicles — efficiency with respect to computational re-
sources is crucial. Table 5.12 gives the approximate runtimes for each of the feature
extraction stages as well as the inference time using the MLP and baseline methods.
Clearly, inference is fast, which is also true for tracking. The feature extraction
stages based on CNNs are obviously slower, where monocular depth estimation is
the most efficient. MRCNN is rather slow at ~ 4 fps, but comes with the advantage
that it provides detection and tracking basically for free. Also a more lightweight
MRCNN architecture could be employed; the authors (He et al., 2017) report per
image inference times of 117 ms for the R-50-FPN approach using a ResNet50
backbone with FPN (see details about MRCNN in Section 4.2.2), which is close to
real time. Dense optical flow estimation is the slowest to conduct, although again
the most powerful architecture was used. Ilg et al., 2017 report lighter weight archi-
tectures with real time capability. From the efficiency perspective, the only CNN
based approach that makes sense is MRCNN, if only in near range. For anything
else, tracking with an MLP or even simple geometry based estimation method is
sufficient and considerably faster. Since the primary goal of this work was to provide
an approach with best possible performance w.r.t. velocity MSE, the evaluation of
more efficient methods is left for potential future work.
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This thesis elaborated on the winning approach of the CVPR’17 Velocity Estimation
Challenge and questioned the efficiency of the original approach. The usefulness of
various base features for the task of vehicle velocity estimation was investigated and
it was found that bounding box tracks are overall the most useful features. Not only
do they serve as a basis for extraction of all other features, but they also allow for
accurate velocity estimates when used on their own. Bounding boxes alone preserve
sufficient geometric information for the task. Features extracted by convolutional
neural networks suffer from limited accuracy at small scales. It turned out that all
CNN based methods are only reasonably beneficial to estimation performance in
near ranges. Notably, methods based on Mask R-CNN (He et al., 2017) outperformed
all other methods by a margin and Mask R-CNN is the only method that is able to
detect vehicles in RGB frames, which is a shortcoming of all other methods.

In addition to neural network based methods, methods based solely on tracked
bounding boxes and simple geometry were developed. In medium ranges, which
include a majority of the annotated vehicles in the dataset, the geometry based
methods were not outperformed by any of the neural network based methods. Since
tracking comes at comparatively low computational cost, it provides an efficient basis
for vehicle velocity estimation in critical real-time applications like autonomous
driving scenarios.

Up to the point of this work, the problem of vehicle velocity estimation was not
previously tackled, which leaves very limited possibilities for comparison of the
developed method to other methods. Nonetheless, the machine learning based method
introduced in this thesis has won the CVPR’17 Velocity Estimation Challenge,
outperforming the second placed approach, which employs a similar strategy based
on tracking only, by 15%. Through more careful model selection, a submission post
deadline outperformed the second placed approach by 26%; this time also using only
tracking. This highlights the importance of tracking features for the task and indicates
that further research could focus on improving the vehicle tracks in different ranges.

66



6 Conclusion

Unfortunately, no other dataset than the one provided for the CVPR’17 Velocity
Estimation Challenge readily provides annotations for other vehicle’s velocities
and position and the acquisition of such ground truth is costly since it requires
human annotators. The dataset at hand is rather small, limited to freeway traffic
and does not include a large variety of scenarios. Further research would largely
benefit from a dataset recorded under numerous different conditions (e.g. weather,
geographic location) and driving situations (e.g. intersections, city traffic), that
provides annotations for as many vehicles in the frame as possible.

In the end this thesis proposed an efficient and cheap to implement method for
vehicle velocity estimation with close to ground truth accuracy, which is achieved by
using a single camera, as opposed to a fusion of stereo cameras, LiDAR and radar.
While the method was evaluated on a dataset limited to freeway traffic, an extension
to other traffic circumstances is certainly possible and open for future work.
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