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Abstract

Gene expression analysis is getting better over years and so the amount of data pro-

duced increases. The range of different methods for processing data is also getting bigger

each year. Clustering is an analysis method which deals with large datasets and tries to

group the data with different distance measure methods. This approach leads to a better

overview of the dataset and assists in creating results and drawing conclusions from the

data.

Clustering is a good attempt to deal with big datasets and therefore it is often used in

gene expression analysis. To get the best clustering results it is necessary to have a wide

range of clustering possibilities like Hierarchical Clustering (HC) or k-means (KM) clus-

tering.

In this thesis the clustering application Genesis was expanded by implementing the Ma-

halanobis Distance method, the Ward’s linkage and two new clustering algorithms, Par-

titioning Around Medoids (PAM) and Transitive Clustering (TC).

To ensure correct implementation six data sets were used to check the new functions and

features. Three datasets were taken from the already existing Genesis test files and were

used to compare the clustering results from Hierarchical Clustering with different linkage

measures and Mahalanobis distance measure with R and PAST. The remaining three

datasets were used to validate the new clustering functions PAM and TC. These methods

are using a precalculated similarity matrix to accelerate the clustering.

Comparable Silhouette value and F1-score was yielded with different datasets. Dataset

1 has a Silhouette value of 0.45 for TC and 0.4760 for PAM. The classification of the

Dataset 2 by TC achieves a F1-score of 0,88 compared to 0.93 by ClustEval which is used

as reference. PAM achieves a F1-score of 0.91 by Genesis and 0.92 by ClustEval. The

synthetic Dataset 3 with 16 clusters has a F1-score of 1.00 for TC and 0.76 for PAM. The

MCC for Dataset 3 is 1 for TC and 0.75 for PAM.

Key Words:

clustering, Genesis, Medoids, Transitive, Mahalanobis, Ward’s
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1 Introduction

The amount of data generated dramatically increased in the past years and the processing

is getting more and more difficult. Over years multiple data processing methods like neural

networks, clustering or deep learning developed. Some of these methods need to be trained

and for that, huge amounts of annotated data are needed. If deep learning is applied,

multiple neural networks are trained on classified data under supervision. Clustering can

be done with several methods which does not need annotated training sets. With many

different clustering methods for example hierarchical clustering or k-means clustering big

datasets can be clustered in groups of interest and get analyzed. With the increase of

data, also the complexity of the datasets increases and so multiple methods are needed

to achieve the best clustering result.

1.1 Basic Clustering Approaches

To cluster different types of data, a huge variety of clustering methods has developed.

Algorithms can be classified in five main types: k-means, hierarchical, density-based,

model-based and graph-based [1]. Clustering is a technique which groups data, based

on similarity. The similarity between data points is based on different distance measures

for example the euclidean distance, the mahalanobis distance or the cosine correlation.

All clustering algorithms can be divided in two main groups which are Agglomerative

clustering and Divisive clustering. Hierarchical Clustering is agglomerative because in the

beginning each data point represents a cluster which are merged and Transitive clustering

is divisive because at the beginning the whole dataset is one cluster and then is spitted

in multiple clusters.

The processing starts with calculating the overall similarity matrix for the whole dataset

with n points. The similarity matrix consists of nxn entries with all distances between

all data points. The standard for this distance calculation is the Euclidean distance.

When the distance matrix calculation is finished, the so called clustering, which can also

be done by different algorithms, is processed. Hierarchical and k-means clustering are

the most common methods and can be used for a huge variety of clustering tasks. In

the beginning of the clustering process, the similarity matrix is searched for the two

nearest points and this points are merged into a cluster representing a new point. For

Hierarchical clustering a specific linkage, which calculates the best points to combine, is

used. Common linkage types are Single Linkage, Avarage Linkage, Complete Linkage

and Median Linkage. The last step is to recalculate the similarity matrix with the new

point. This is repeated until the best clustering result is yielded (Figure 1). First the

date is read to provide it for further processing. After this step, distances between the

data points are being calculated and clusters can be created. There are many different
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methods for creating the distances and clusters but these blocks should summarize all

different types of clustering and show just a basic functionality. There are also different

methods for quality measurement which decide whether the clusters are good enough not.

If the quality is good, the data is written or displayed in some way but if the cluster

has a bad quality, the data must be rearranged and the whole clustering algorithm starts

recreating the distances and looping until the cluster quality is declared good enough. In

some cases this can lead to an infinite loop so it is recommended to terminate after a

defined number of iterations although the specified quality is not reached.

Start

Read Data
Calculate
Distances

Create/
Merge

Clusters

Quality?

Rearrange
Data

End
Output
Data

not ok!

ok!

Figure 1: Overall clustering principle with a simple flowchart.

To find the correct clustering method is not easy because there are lots of different ways

to cluster datasets. If we take hierarchical clustering, it is hard to say which way of

calculating the similarity matrix will give the best result. There are many different types

of distance measure algorithms and for each algorithm there are also different linkage

methods to merge clusters. This leads to a huge amount of possibilities in parameter

combination just for hierarchical clustering.

1.2 Clustering in Biomedical Research

The increasing amount of biomedical data is also pushed by the development of new

research methods and the availability of easy accessible databases. Due to the dramatic

increase of biological data and its electronic availability, data mining methods are getting

more and more important over years [2]. Clustering provides a good opportunity to process

this huge amounts of data. The clustered datasets are giving a fast and easy overview of

possible dependencies or similarities. To get the best clustering results, it is necessary to

know the different methods and functionalities of clustering algorithms. The number of

publications with the keywords ”clustering”, ”gene” and ”expression” published in the

last 35 years on PubMed [3] increased exponentially. The dramatic increase since 2000

shows the growing importance of gene expression clustering (Figure 2).
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Figure 2: Increase of Publications with the key-
words ”clustering”, ”gene” and ”expression”
over the last 35 years.

A large number of clustering soft-

ware applications are available.

Popular are PAST [4] which was

originally developed for paleonto-

logical research but is now used for

different data analysis tasks. Clus-

ter 3.0 [5] was developed by Michael

Eisen at Stanford University and is

used for clustering genome-wide ex-

pression data. WebMeV [6] is a

cloud based web application which

supports analysis visualization and

stratification of genomic data. This

means that the data is not pro-

cessed locally but submitted to a

server (cloud) which does the cal-

culation with a high amount of calculating power. TM4 Mev [7] is the stand alone client

for this application. There is also a Python [8] application called Pycluster [9] which

provides similar functionalities like Matlab [10] with the Clustering Toolbox [11] or R [12]

with the cluster package [13]. For Matlab and R there are different packages and tools

which provide clustering functions. ClustEval [14] is a server based application which

compares the output of different clustering algorithms of different datasets and parame-

ters and generates a standardized evaluation for easy comparison. Genesis [15, 16] is a

software package which already supports some major clustering functions like hierarchical

clustering, selforganizing maps, k-means and also some classification methods like princi-

pal component analysis and support vector machines [15]. Every clustering method can

be started with ten different distance measure algorithms which gives a huge amount of

possibilities.

In the context of this thesis, Genesis is extended with two new methods, Partitioning

Around Medoids (PAM) [17] and Transitive Clustering (TC) [18] which are giving good

results on biological data according to Wiwie et all. [14].
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1.3 Aims of the Thesis

The overall goal of this thesis was to extend Genesis with a new distance measure, addi-

tional linkage calculation methods for hierarchical clustering and two clustering methods

which are relevant in biomedical research. Specifically the following should be achieved:

• Implementation

– of Mahalanobis Distance

– of Ward’s Linkage

– of Partitioning Around Medoids clustering

– of Transitive Clustering

• Testing the implemented code by comparison with established applications.

• Creating and uploading a new Genesis release.
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2 Methods

2.1 Gene Expression Data

Gene expression data are generated in general via DNA-Microarrays [19] or RNA-seq

[20]. These methods are used to measure expression levels of a large number of genes

simultaneously and to study cellular responses to extracellular stimuli, for example the

impact of medication.

DNA-Microarrays consist of microscopic DNA spots attached to a surface. Each spot

contains different specific DNA sequences which are used as reporters. These sequences

can be short gene sections or other DNA elements that hybridize with cRNA or cDNA.

The hybridization of reporter and sample is detected and quantified by fluorophore labeled

targets (figure 3) [21].

Isolate
mRNA

Create
cDNA

Lable
cDNA

with Dye

Hybridize
and Wash

Scan with
Laser

Normalize
and

Analyse

Figure 3: Steps in DNA-Microarray analysis (adapted from [22]).

RNA-seq allows a quantitative measure of gene expressions by resolving the sequence

of RNA molecules [23]. The RNA is isolated and transcribed to cDNA and a fragment

library is created. A high throughput sequencing method is used to generate 30bp−300bp

long reads. After aligning this reads to a reference sequence, an analysis can be done

(figure 4) [24, 25].
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RNA
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cDNA

Library
Sequencing

Align
Reads to
reference
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Gene An-
notations

studying
the mech-

anisms
of gene

regulation

differential
gene

expression
analysis

alternative
splicing
analysis

allele-
specific

expression
analysis

Figure 4: Overall RNA-Seq steps [24–28].

2.2 Integrated Development Environment

The IDE Eclipse (v.3.8.1-5-1) [29] with the Build-Management-Tool Maven (M2E v.4.5.2)

[30] and Subclipse (v.1.10.13) were used to implement the extensions of the Genesis

software package. Genesis already has an SVN repository on the Genome majestix server

so it could be easily imported into an Eclipse environment via Subclipse. The IDE is

mainly written in Java and commonly used to develop Java applications.

2.3 Genesis

Genesis is a Java tool which supports different visualizing and analyzing options for gene

expression data. It was published in 2002 by Alexander Sturn [16]. The main function is

to cluster large amounts of data. A specific data format called Stanford flat-file is used as

input and export file for Genesis. The Graphical User Interface is easy to use and after

selecting the preferred clustering method and specifications (Table 1), the clustering can

be started. Genesis provides a number of methods which are used to create the similarity

matrix for every further clustering. The default setting in Genesis and also the most

common method is the Euclidean Distance Measure. The clustering results are shown

as heat map and can be easily exported as a .csv file. Also preprocessing functions like

normalization are implemented.
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Table 1: Different menu points and their options in Genesis.

Menu Options

Analysis Hierarchical Clustering (HCL)

Self Organizing Maps (SOM)

k-means Clustering (KMC)

Support Vector Machines (SVM)

Distance Pearson Correlation

Pearson Uncentered

Pearson squared

Cosine Correlation

Covariance value

Euclidean distance

Average Dot Product

Manhattan Distance

Chebychev Distance

Adjust Log2 Transform

Log10 to Log2

Log10 Transform

Normalize

Divide by RMS

Divide by SD

Divide by Variance

Mean Center

Median Center

Make Digital

Linkage (HCL) Average Linkage (WGPMA)

Complete Linkage

Single Linkage

Centroid Linkage

Median Linkage

2.4 Mahalanobis Distance

Compared to the Euclidean distance the Mahalanobis distance accounts for variation in

different directions and also the covariance between variables. To get the distance d(x,y)

between two data points (x, y) it is necessary to know the points x and y and S−1 the

inverse covariance matrix of the whole dataset. The two points x and y are two vectors,
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representing coordinates of the points x and y, d(x,y) is the distance between these two

points. To calculate the inverse of the covariance matrix S it is necessary to calculate

the determinant which can get zero. If it is zero, the matrix is non invertible and the

calculation of the covariance matrix determines in a zero division.

Equation (1) is used to calculate the starting distances between every data point and

create the similarity matrix. In this equation (x− y)T is the transposed of the difference

between x and y and S−1 is the inverse of S.

d(x,y) =
√

(x− y)TS−1(x− y) (1)

2.5 Ward’s Linkage

Ward’s linkage, also called Ward’s minimum variance, tries to minimizes the total cluster

variance. Ward’s linkage can be calculated according to Equation (2). The variables i

and j are the denote indices of the cluster which are used for calculation, i and j are the

center points of the clusters and d represents the Euclidean distance between the center

points i and j. The ni and nj refers to the number of points in the clusters.

dWard(i,j) =
d2
(i,j)

1
ni

+ 1
nj

(2)

2.6 General Linkage Equation

All commonly used linkage methods can be described by a general linkage Equation (3).

dk(i,j) = αidki + αjdkj + βdij + γ |dki − dkj| (3)

The implementation of these methods is done by setting the variables αi, αj, β and γ

to the values given in Table 2. Equation (3) consists of the calculated distance which is

dk(i,j) and four other values. The factors i and j are the clusters and that means that

there are different α′s for the two clusters which are used for the distance calculation. k

is defining the new cluster and so dk(i,j) is the new distance of k which consists of the

two clusters i and j. Due to the structure of this recursive definition, it was very easy

to include additional algorithms like Median-, Group Average-, Flexible- and Centroid-

linkage.

Cluster creation is done by merging the two clusters with the smallest distance and re-

calculating the similarity matrix for the new cluster [31, 32].

14



Table 2: Parameters used for different distance calculations [31]. α, β and γ are
parameters from equation (3), ni, nj and nk are the numbers of data points in
different clusters. (Group Average = UPGMA, Weighted Average = WPGMA)

Linkage αi αj β γ

Group Average
ni

ni + nj

nj

ni + nj

0 0

Weighted Average 1
2

1
2

0 0

Median 1
2

1
2

−1
4

0

Centroid
ni

ni + nj

nj

ni + nj

−
ninj

(ni + nj)
2 0

Ward’s
ni + nk

ni + nj + nk

nj + nk

ni + nj + nk

−
nk

ni + nj + nk

0

Flexible 1
2
(1− β) 1

2
(1− β) ]−∞,1[ 0

Single 1
2

1
2

0 −1
2

Complete 1
2

1
2

0 1
2

2.7 Hierarchical Clustering

In Hierarchical Clustering (HCL) each point represents a cluster. This method does not

create a specific number of clusters but it creates a hierarchical tree structure which

combines always the two closest clusters to a new cluster. In the first step the distances

for all points are calculated based on a certain distance measure. After this part, a linkage

type which is used for calculating the new cluster distance is chosen. Then the two closest

clusters are merged and a new distance is calculated based on the linkage function. The

new cluster is added to the distance matrix and the next closest points are merged. These

steps are repeated until all points are merged and just a single cluster is left. The created

tree can now be used to cut the branches at a certain distance to form distinct clusters.
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Data: the n ∗ n distance matrix Sx,y

Result: Dendrogram C

U ← {1, . . . , n} ; /* elements not in a cluster */

while U 6= Empty ; /* not assigned elements exist */

do

USmin
= min {Sx,y} ; /* find minimum distance */

USnext = min {Sx,y ∩ USmin
} ; /* find nearest point */

C ← USmin
∪ USnext ; /* create dendrogram */

U ← U \ {USmin
∪ USnext} ; /* remove C from U */

Sx,y ← Sx,y \ {Smin ∪ Snext} ; /* adapt distance matrix */

end
Algorithm 1: Pseudocode for the HCL algorithm

2.8 Partitioning Around Medoids

Partitioning Around Medoids (PAM) [17] is very similar to k-means [17] clustering. Both

algorithms require the expected number of clusters as input information. The main dif-

ference is that PAM does not use the mean value as center but it uses the closest data

point to the mean value as cluster center. At the beginning of the clustering, k number of

cluster centers are randomly initialized (Figure 5b). All points are assigned to the closest

center (Figure 5c). For each point of the cluster a cluster weight is calculated. The point

with the smallest weight is now chosen as new center point (Figure 5d). This is done for

all clusters and if each cluster has his center point set, all data points are again assigned

to the nearest center (Figure 5e). This process is repeated till no center changes occur

(Figure 5f). A maximum number of iterations has to be defined to guarantee termination

in case of a non converging calculation.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Shows the different steps for PAM clustering. (a) 2D Dataset, (b) random selection
of two cluster centers, (c) assign datapoints into two groups according to minimal distance to
center, (d) recalculating new center, (e) reassigned data points, (f) calculating new center
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Data: the number of clusters k and the n ∗ n distances S

Result: Clusters Ck

C ← k ; /* create k cluster centers */

Ck ← U | min{Sx,k} ; /* assign all points to centers */

/* with min distance */

while Ck 6= Cknew ; /* cluster center change */

do

Ck = Cknew ; /* set clusters equal */

Cknew = min
{∑

U∈Ck
Sx,k

}
; /* calculate new center */

/* for each cluster Ck */

Cknew ← U | min{Sx,k} ; /* assign all points to new centers */

/* Cknew with min distance */

end
Algorithm 2: Pseudocode for PAM algorithm.

2.9 Transitive Clustering

Transitive Clustering is a graph based method which tries to create clusters depending on

a threshold [0, 1] that is given as input parameter. The weights are calculated from the

similarity matrix which are normalized to [0, 1] and then inverted so that a low similarity

represents a high weight. Now the similarity matrix can be used to create edges between

all points in the dataset. Each edge between two points is weighted with the similarity

calculated from the distance.

Edges whose weight is lower than the threshold can be deleted (Figure 6a). This leads to

a non transitive graph with missing edges (Figure 6b). The following step tries to build

transitive clusters via adding and removing edges with the minimum change in the sum

of removed or added weights (Figure 6c). The finished clusters are formed by transitive

graphs (Figure 6d). Transitive means that each point is connected with each point of its

cluster.

After removing edges from each point which are below the threshold there is a number of

possibilities to make the clusters transitive again. This is a very time consuming proce-

dure and so the CAST algorithm [18] was used for implementation. This Cluster Affinity

Search Technique (CAST) algorithm is a deterministic procedure which tries to find all

clusters one by one. The pseudo code in algorithm 3 explains the basic function. The

affinity ax of an element x is defined in equation 4. The affinity between two elements is

high if the weight is higher than the threshold t, otherwise it is low. The CAST algorithm

tries to open just one cluster at a time, adds or removes elements until a stable state

is achieved, that means no element can be added or has to be removed. The current

cluster is closed and a new one is opened and all elements without a cluster are processed
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again. With this approach it is not possible to say how many clusters will be created.

The weights in the following equations are referred as S

ax =
∑

y∈Copen

Sx,y (4)

After adding or removing elements, the weights of all points have to be recalculated.

ax =

(∑
y∈Copen

Sx,y

)
± Sx,y (5)

ax = ax ± Sx,y (6)

Note that this scheme is just a simplified example and that the real data processing has

to be done in n dimensions and is far more complex.

(a) (b)

(c) (d)

Figure 6: (a) The similarity matrix interpreted as a bidirectional graph, edge length is inverse
proportional to similarity. (b) All edges for each point under a certain threshold, specified before
execution, are removed. (c) The green nodes already are transitive, removing the red edges is the
cheapest option to create a transitive cluster. (d) After removing the red edges, two transitive
clusters remain.
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Data: An n ∗ n similarity matrix S and a threshold t.

Result: Clusters

C ← 0 ; /* all clusters closed */

U ← {1, . . . , n} ; /* elements not in a cluster */

while U 6= 0 do

Copen ← 0 ; /* create a new cluster */

a(.)← 0 ; /* reset affinity */

Repeat add and remove till no changes occur.

while max{au | u ∈ U}t ≥| Copen | ; /* adding step */

do
take the element u ∈ U with maximum affinity t

Copen ← CopenU{u} ; /* add u into Copen */

U ← U \ {u} ; /* remove u from U */

for all x ∈ U ∪ Copen set ax = ax + Sx,u ; /* update affinity */

end

while min{au | u ∈ Copen}t <| Copen | ; /* removing step */

do
take the element u ∈ U with minimum affinity t

Copen ← Copen \ {u} ; /* remove u from Copen */

U ← U ∪ {u} ; /* add u into U */

for all x ∈ U ∪ Copen set ax = ax − Sx,u ; /* update affinity */

C ← C ∪ {Copen} ; /* close the cluster */

end

end

Algorithm 3: Pseudocode for the CAST algorithm by Ben-dor [18]

2.10 F1 - score

The F1-score is one of the most common measures to test accuracy of clustered data.

To calculate the F1-score a true classification called Gold Standard must be known. It

considers precision and recall to calculate the score and can be interpreted as weighted

average of these two measures [33]. The best F1-score is 1 and the worst is 0, equation 7

shows that the score is a harmonic mean of precision and recall.

F1 = 2 · precision · recall
precision+ recall

(7)

The precision [34] is the amount of true positive values (TP) divided by the number of all

positive results (equation 8). Recall [34] is defined as the amount of true positive values

divided by the number of positive results that should have occur. Table 3 shows the used

values for the precision and recall calculations.
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precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

Table 3: Stating the predicted conditions versus the real conditions [33].

predicted condition

positive negative

real

condition
positive

TP FN

condition
negative

FP TN

TP. . . True Positive, FN. . . False Negative

FP. . . False Positive, TN. . . True Negative

2.11 Matthews Correlation Coefficient

The Matthews Correlation Coefficient (MCC) is calculated taking all true and all false

states into account and is regarded as a balanced measure. This means that it gives good

results also if the clusters are not equally sized [35]. The maximum is 1 which represents a

perfect clustering result, 0 means that the result is not better than a random classification

and -1 represents an result which is the exact opposite of the gold standard.

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(10)

2.12 Silhouette Value

The Silhouette value [36] is a good measure for the quality of a clustering result if no

gold standard is available for comparison. It is based on comparing ”tightness” and

”separation” of clusters and represents an estimate of the cluster quality. Equation 11 is

used to calculate the Silhouette values as proposed by Pablo Jaskowiak et al. [37].

S =
1

n

n∑
i=1

bxi
− axi

max (axi
, bxi

)
(11)
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In this equation axi
represents the average distance of a cluster center x and all the points

from its cluster. bxi
is the mean distance from the previous cluster center x and all

distances to the points of the closest cluster. The range is in the interval [−1, 1] and like

the MCC, 1 means very high dependencies, 0 means very low dependency and a negative

value gives a opposite dependency.

2.13 ClustEval

ClustEval is a free platform for comparing clustering performance developed by Christian

Wiwie et al. [14]. It supports a large variety of clustering methods and also a good library

of test sets and their gold standards. This platform is used to get test sets and reference F1-

scores. The gold standard files were used to evaluate the results from Genesis. A virtual

machine image file was provided by the ClustEval project which can be easily used by

any Virtual Machine. In this thesis V irtualBox [38] version 4.3.36 Ubuntur105129 and

the image file version 1.5 (07.08.2016) [14] was used.

2.14 Tools R & PAST

For the different clustering calculations, R (v.3.3.2) [12] and PAST (v.3.14) [4] were used.

The R Packages are listed in Table 4. This packages were needed for the different distance

calculations and clustering methods but also for the heatmap drawing. The R-script which

calculates the heat maps for comparison is available in the Appendix. The heatmaps in

R were created with the function heatmap.2 and the color settings were changed so that

the output resembles the look of the Genesis heatmap.
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Table 4: Packages, used version including a short description and their reference.

Package Version Description Ref.

gplots 3.0.1 In this package the function heatmap.2 was used to cre-
ate the heatmap, the dendrogram and the whole descrip-
tion.

[39]

cluster 2.0.5 This package was needed because it provided the func-
tion agnes which is necessary to calculate average, sin-
gle, ward, weighted, complete and flexible linkage.

[13]

stats 3.3.2 In this package, the function hclust provided clustering
with median and centroid linkage. It also provided the
possibility to use self calculated distance measures and
so Mahalanobis Distance was implemented with the help
of cor, dist, t and two other functions from the base
package.

[40]

base 3.3.2 This is the main R package which provided most of the
standard functionalities. The functions forwardsolve
and chol were used for calculation of the Mahalanobis
Distance.

[41]

ape 5.1 This package is used for the PH85 tree validation. [42]

To create Figure 2 a csv file from PubMed was downloaded. If a search for specific

keywords is done, this csv can be downloaded easily on the top right corner of the web

page. This csv was used by the LaTeX Function tikzpicture to read the data and create

the diagram.

2.15 Datasets for Validation

Six Datasets were used for validation: Fibroblast red, Fibroblast red ns,

Fibroblast ns, Dataset 1, Dataset 2 and Dataset 3. The fibroblast datasets were used

to verify the MAhalaanobis distance and the linkage methods with PAST [4] and R

[12]. It was based on an example file available in the standard Genesis workspace named

Fibroblast [15, 43]. This dataset shows data from a gene expression experiment and in the

beginning of each line there is a unique ID for each gene. The other entries are showing

a weight an order and the expression rates. In microarray analysis fluorescent intensities

represent the value for the amount of transcripts and for RNA-seq it is the number of

mapped reads. This data are created by a cDNA microarray and show how strong specific

genes are expressed. To be able to create heatmaps with less data points, this dataset

was shortened to 28 data rows and is called Fibroblast red (reduced), the number of data
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points (columns) was not changed and is 22. It has to be mentioned, that the first two

columns contain a unique ID and the name of the transcript. The third column is a weight

and the fourth column gives an order. A second test set was created because the covari-

ance matrix of the original data matrix was singular. By deleting the zero time column,

a new dataset named Fibroblast red ns (not singular) was created. Also a bigger set of

data was used to test the implementations. For this purpose, the original Fibroblast data

set without the zero time column called Fibroblast ns was created.

Table 5: Used datasets and their sizes.

Name
Notice Rows Cols. Clust. Ref.

Fibroblast red reduced Genesis standard exam-
ple file

30 22 3 [15, 43]

Fibroblast red ns reduced Genesis standard exam-
ple file, not singular TP 0 ex-
cluded

30 22 3 [15, 43]

Fibroblast ns original sized Genesis standard
example file, not singular TP 0
excluded

519 22 3 [15, 43]

Dataset 1 NCBI GEO database, shortened
in rows for easier comparison, no
classification given

58 18 - [44, 45]

Dataset 2 ClustEval dataset with given cor-
rect classification

34 999 3 [14, 46]

Dataset 3 completely synthetic created,
true classification is available

1024 32 16 [47]

The used dataset was made available for public by the Broad Institute [46] and consists

of 34 samples of acute leukemia with three different subtypes. Each sample contains

microarray gene expression levels of 999 genes. Also a gold standard is provided to

this dataset so that a quantification of results can be done easily [48]. A part of the

Fibroblast.txt dataset is represented in Table 18 in the Appendix. The datasets were

used to verify the implementation of PAM and TC with ClustEval. Dataset 1 is taken

from NCBI GEO Database [44] and has no gold standard file. This set is reduced to 58

data points and is adapted to the Genesis input format. Table 19 shows a part of the

NCBI GEO [44] data set which is further used for validation. Dataset 2 is taken from

ClustEval [14] and consists of a header entry which specifies format and type, the names

and all expression data in lines, separated by tabs. To use this data in Genesis, slight
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modifications have been made so that this format complies with the Genesis input format

type. Dataset 3 is a fully synthetic dataset with 32 columns and 1024 rows consisting of

16 clusters and a correct classification file is available [47]. The Mahalanobis distance and

all linkage methods were verified with PAST [4] and R [12].

2.16 Current Clustering Design in Genesis

Genesis source code is available in an SVN on the genome server. The project is reachable

over https://majestix/svn/genome/Genesis/trunk/src/at/tugraz/genome/genesis/. In

this SVN folder there is a separate directory for each functionality. All implementations

of clustering algorithms are present in ∼/genome/cluster and have a separate directory

with the clustering name, for example ∼/genome/cluster/HCL for hierarchical clustering

or ∼/genome/cluster/KMC for k-means clustering. There is always a file named like the

directory but with a .java extension for example HCL.java or KMC.java. These class

files contain the main code for the specific clustering algorithm. Different other .java

files my be present which are needed to display output or process the data, they do not

follow any naming convention. Table 6 gives a short overview of the folders and their

main tasks.

Table 6: Source code structure in the src directory with the prefix
at.tugraz.genome.”Name”

Names Short Description

genesis Contains all files which are needed for the clustering algorithms and
also for saving and processing the data. All graphical output for
the processed data and images are also created and stored in this
folders.

go This folder contains all functionalities of the GO function. It is
used for the go mapping utility and has a own folder with images.

test In this folder there is a test function for testing the functionality of
the clustering methods. It is a static example which creates always
the same result.

util This folder contains all important utilities which are necessary for
other files.
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3 Results

All datasets were clustererd with different methods and all results are listed in this section

and also general Informations about speed and memory are given. The Mahalanobis

Distance [49] method was added, it can be used for calculating the starting distances for

data points of all different clustering methods. The implementation of PAM [50] and TC

[34] extends the possibilities of clustering. The results were compared with ClustEval [44]

and some internal cluster measures were calculated to proof the functionality. The results

from the implementations were compared with the outcome of PAST [4] and R [12] to

verify that the added code works properly.

3.1 Mahalanobis Distance

Figure 7: Hierarchical Clusterng menu
with the different linkage types.

The implementation of Mahalanobis Dis-

tance measure [49] was done in the over-

all distance measure menu bar to pro-

vide access for all clustering algorithms

(figure 7). The Mahalanobis distance

measure implementation was added to

the ExpressionMatrix.Java which al-

ready contained all other distance measure

algorithms. The output from PAST and

R was compared with the dendrogram cre-

ated by Genesis (Figure 8). As PAST had

an unsatisfying graphical quality and the

results were the same as in R only the den-

drograms created with R were used. Be-

cause the Mahalanobis Distance measure-

ment is not defined for all data sets it was important to create at least two different test

sets. If the covariance matrix is singular the determinant will be zero and so the inverse

can not be calculated. For this reason the exception was caught and the whole calculation

was aborted and a message explaining the problem was displayed. The dataset which was

used for comparing the results was Fibroblast red ns. Table 7 shows calculation times for

the distance matrix calculation for different distance functions. To compare the created

dendrograms the PH85 method proposed by Robinson et al. [51] from the R package ape

was used. Both trees were entered manually and if the weight of the edges are not taken

into account, the result is 0 which means the the trees are equal.
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Table 7: Times for calculating the distance for different measures, average of
10 measurements on the Fibroblast ns dataset.

Distance Time [ms] SD [ms]

Euclidean 10.50 0.27
Covariance 11.13 0.29
Cosine 16.67 0.31
Mahalanobis 1407.06 16.82
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Figure 8: Heatmap and the resulting dendrogram for the Fibroblast red ns file, with
Mahalanobis distance and Single Linkage clustering, generated by Genesis (a) and
generated with R (b).

3.2 Ward’s Linkage

Figure 9: Hierarchical Clusterng menu with the
different linkage types.

The Ward’s method for calculating

the similarity matrix was implemented

using the recursive formula of Lance

and Williams [52] and was added to

the distance calculating menu for hi-

erarchical clustering (Figure 9). Be-

cause the recursive formula consists of

different variables which can be used

to calculate other linkage values also

Average-, Complete-, Single-, Aver-

age Group-, Centroid-, Median-, and

Flexible- linkage were implemented or

changed. When all factors (Table 2)

are set, the recursive formula is used to calculate the distances. This functions were
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added as selectable option in the hierarchical clustering menu and for flexible linkage, β

was added as an input field in the range ]−∞, 1[. The resulting dendrograms are shown

in Figure 9. The heatmaps with the corresponding dendrogram calculated by Genesis are

depicted on the left side. The right side shows the reference figures calculated with R

for the same clustering algorithm and the same starting distance. The PH85 value was

calculated for the pairs and yielded always 0. These extensions were added to the existing

program classes so that no new classes or structures were required.
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(f)

Figure 9: Heatmaps from clustering of the Fibroblast red ns file with different linkage methods
by Genesis (a,c,e) and R (b,d,f). (a) Ward’s Linkage Genesis, (b) Ward’s Linkage R,(c) Flexible
Linkage β = 0 Genesis, (d) Flexible Linkage β = 0 R, (e) Group Average Linkage Genesis, (f)
Group Average Linkage R
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3.3 Integration of PAM and TC

These two algorithms were implemented due to good clustering results described in the

publication by Wiwie et al. [14]. For the implementation of partitioning around medoids

(PAM) [17] and transitive clustering (TC) [18], new data structures and classes were neces-

sary. Two new folders named PAM and TC were added in at.tugraz.genome.genesis.cluster

containing the main files PAM.java and TC.java, respectively since TC clustering is

graph based, the file structure looks similar to the Hierarchical Clustering files but some

classes were modified. The PAM algorithm is a variation of k-means clustering and so

the already existing structure of KMC was used.

(a)

(b)

Figure 10: The PAM Clustering menu (a) and the TC Clustering menu (b).
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3.4 Results for Dataset 1

Dataset 1 was downloaded from the NCBI GEO database [45] and reduced to 58 rows,

no classification is given. All clustering results with different parameters and spearman’s

rank correlation distance measure are displayed in Table 8, this distance measure is used

due to good F1-score [37].

Table 8: Clustering results for Dataset 1 using TC and PAM with different clus-
tering parameters. The first two settings give two clusters and the second two
settings give three clusters.

Name
TC

T=0.4
PAM
k=2

TC
T=0.5

PAM
K=3

A 16 P00403029 2 2 2 2

A 16 P21621957 1 1 1 3

A 16 P00072385 1 2 2 2

A 16 P59800141 1 1 1 1

A 18 P15785134 1 1 1 1

A 16 P19296953 1 1 1 1

A 16 P59922478 2 2 2 2

A 16 P03462470 1 1 1 1

A 16 P57228325 1 1 1 3

A 16 P03411893 2 2 2 2

A 16 P03096255 1 1 1 3

A 16 P41087272 1 1 1 3

A 16 P01065718 2 2 2 2

A 16 P18388086 1 1 1 1

A 16 P03385907 2 2 2 2

A 16 P16672026 1 1 1 1

A 16 P21424156 1 1 1 1

A 16 P19791432 2 2 2 2

A 16 P20293969 1 1 1 1

A 16 P18653359 1 2 2 3

A 16 P18101626 1 1 1 1

A 16 P18783515 1 2 2 2

A 16 P01721093 1 1 1 3

A 16 P37193919 2 2 2 2

A 18 P15161873 1 2 2 3
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Table 8: Continued

Name
TC

T=0.4
PAM
k=2

TC
T=0.5

PAM
K=3

A 16 P60434836 2 2 2 2

A 16 P38381210 2 2 2 2

A 18 P13634897 1 1 1 1

A 16 P38634204 1 1 1 3

A 16 P18711285 2 2 2 2

A 16 P15059815 1 2 1 2

A 16 P19447663 1 1 1 1

A 16 P56078638 1 1 1 3

A 16 P31322059 1 2 3 3

A 18 P11116317 1 1 1 3

A 16 P36566016 2 2 2 2

A 16 P20072978 2 2 2 2

A 18 P12605410 1 1 1 1

A 16 P15496691 1 1 1 3

A 16 P21098513 1 2 2 2

A 16 P16192764 1 1 1 1

A 16 P19493848 1 1 3 1

A 18 P15756033 2 2 2 2

A 16 P58316227 2 2 2 2

A 16 P02101244 1 1 1 3

A 18 P14664614 1 1 1 1

A 16 P59590588 1 2 2 2

A 18 P14977561 1 2 3 3

A 16 P17103965 1 1 1 1

A 16 P20973757 1 1 1 1

A 16 P18937510 1 1 1 1

A 16 P17423087 2 2 2 2

A 16 P18159690 1 1 1 1

A 16 P00242008 2 2 2 2

A 16 P03790905 1 2 2 2

A 16 P17381660 1 2 3 1

A 16 P40212811 1 2 2 2

A 16 P21320988 1 1 1 1
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(a)

(b)

(c)

Figure 11: This three heatmaps show the graphical result for Dataset 1, PAM Clus-
tering and three clusters which is created by Genesis.
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3.4.1 Silhouette Value

The Silhouette values of the clustering results were calculated using equation 11. Figure

11 shows the graphical result. Table 9 summarizes Silhouette values for different input

parameters for Dataset 1.

Table 9: Silhouette values for Dataset 1 with different cluster parameters.

Clustering
Silhouette value
Genesis

TC (T = 0.4) 0.5828
TC (T = 0.5) 0.4524
PAM (k = 2) 0.5788
PAM (k = 3) 0.4760

Tables 20 to Table 25 in the Appendix section are showing the Silhouette values for

different clustering methods, amount of clusters and test sets calculated from the results

above.

3.5 Results for Dataset 2

This dataset is from the ClustEval project [14, 46] and has a annotation which can be used

for further classification. The same parameter as in ClustEval were used to get comparable

clustering results. Table 10 shows the clustering results for this dataset. Moreover on this

parameters were used to calculate the values in Table 11 with equations 8 and 9. These

values were used to calculate the F1-score and MCC (Table 13).
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Table 10: Cluster assignment of samples from Dataset 2 and two clustering meth-
ods with the parameters which gave the best approach in ClustEval and Spear-
mans Rank Correlation and also for the already implemented methods HCL and
k-means.

Names
Gold - TC PAM

HCL
k-means

Standard T = 0,5050505 k = 3 k = 3

Group 1 ALL 9692 B.cell 1 1 1 1 1

ALL 9692 B.cell 2 1 3 1 3 1

ALL 17281 B.cell 1 1 1 1 2

ALL 17281 B.cell 2 1 1 1 1 2

ALL 20414 B.cell 1 1 1 1 2

ALL 20414 B.cell 2 1 1 1 2 2

ALL 549 B.cell 1 1 1 1 1

ALL 549 B.cell 2 1 1 1 1 1

ALL 20185 B.cell 1 1 1 1 2

ALL 20185 B.cell 2 1 1 1 1 2

ALL 18239 B.cell 1 1 1 1 1

ALL 18239 B.cell 2 1 1 1 1 2

ALL 7092 B.cell 1 3 2 3 1

ALL 7092 B.cell 2 1 1 1 1 1

ALL R23 B.cell 1 1 1 1 1

ALL R23 B.cell 2 1 3 2 2 1

Group 2 ALL 19881 T.cell 2 2 2 2 2

ALL 19881 T.cell 2 2 2 2 2 2

ALL 9723 T.cell 2 2 2 2 2

ALL 9723 T.cell 2 2 2 2 2 2

ALL 14402 T.cell 2 2 2 2 2

ALL 14402 T.cell 2 2 2 2 2 2

ALL 22474 T.cell 2 2 2 2 2

ALL 22474 T.cell 2 2 3 3 3 3

Group 3 AML 13 3 3 3 3 3

AML 13 2 3 3 3 3 3

AML 16 3 3 3 3 3

AML 16 2 3 3 3 3 3

AML 1 3 3 3 3 3

AML 1 2 3 3 3 3 3

AML 3 3 3 3 3 3

AML 3 2 3 3 3 3 3

AML 6 3 3 3 3 1

AML 6 2 3 3 3 3 3
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Table 11: TP, FN, FP and TN values for all results.

TC T = 0.5050505 PAM k = 3

TP FN FP TN TP FN FP TN

Group 1 13 3 0 18 14 2 0 18
Group 2 7 1 0 26 7 1 2 24
Group 3 10 0 4 20 10 0 1 23

Sum 30 4 4 64 31 3 3 65

Table 12: TP, FN, FP and TN values for all results.

HCL k-means k = 3

TP FN FP TN TP FN FP TN

Group 1 12 4 0 18 14 2 9 17
Group 2 7 1 2 24 1 7 4 24
Group 3 10 0 3 21 115 9 3 21

Sum 29 5 5 63 30 18 26 62

Table 13: F1-score and MMC for the two clustering methods, plus HCL and
k-means, and different input parameters for Dataset 2 with Genesis [15] and
ClustEval [14].

Name
F1-score
Genesis

F1-score
ClustEval

MCC
Genesis

MCC
ClustEval

TC (T = 0.5050505) 0.8824 0.933 0.820 0.880
PAM (k = 3) 0.9118 0.921 0.866 0.783
HCL 0.8529 − 0.779 −
k-means (k = 3) 0.7225 − 0.320 −

Table 14: Silhouette values for two clustering methods and different input
parameters with Genesis [15] and ClustEval [14] for Dataset 2.

Clustering
Silhouette value
Genesis

Silhouette value
ClustEval

TC (T = 0.5050505) 0.3549 0.3600
PAM (k = 3) 0.3425 0.3520
HCL 0.3395 −
k-means (k = 3) 0.2980 −

35



3.6 Results for Dataset 3

This dataset is a synthetic one and the largest with a known annotation. Since this

dataset is very large, no graphical results are omitted. Table 15 lists values relevant to

calculate the F1-score and MCC which are depicted in Table 16. Table 15 also states the

values for k-means to have a comparable result.

Table 15: TP, FN, FP and TN values for all results.

TC T = 0.5 PAM k = 16 k-means k = 16

TP FN FP TN TP FN FP TN TP FN FP TN

Group 1 64 0 0 960 64 0 0 960 64 0 0 960
Group 2 64 0 0 960 64 0 0 960 64 0 0 960
Group 3 64 0 0 960 0 64 29 931 64 0 64 761
Group 4 64 0 0 960 56 8 0 960 64 0 0 960
Group 5 64 0 0 960 64 0 0 960 64 0 0 960
Group 6 64 0 0 960 64 0 64 896 64 0 0 960
Group 7 64 0 0 960 0 64 8 952 0 64 2 958
Group 8 64 0 0 960 64 0 0 960 64 0 0 960
Group 9 64 0 0 960 35 29 0 960 64 0 0 960
Group 10 64 0 0 960 54 10 0 960 64 0 0 960
Group 11 64 0 0 960 64 0 128 832 64 0 64 761
Group 12 64 0 0 960 64 0 0 960 64 0 0 960
Group 13 64 0 0 960 0 64 10 950 64 0 0 960
Group 14 64 0 0 960 64 0 0 960 60 4 0 960
Group 15 64 0 0 960 64 0 0 960 64 0 0 960
Group 16 64 0 0 960 64 0 0 960 0 64 2 958

Sum 1024 0 0 15360 785 239 239 15121 892 132 132 14958

Table 16: F1-score and MMC for the thee clustering methods for Dataset 3
with Genesis.

Name
F1-score
Genesis

MCC
Genesis

TC (T = 0.5) 1.000 1.000
PAM (k = 16) 0.766 0.751
k-means (k = 16) 0.871 0.862

3.7 Assessment of Clustering Quality

PAM and TC clustering methods were compared with the ClustEval package to get com-

parable results. The parameters were chosen according to the ClustEval parameters and

so spearman’s rank correlation measure was used [37]. All clustering results are depicted

in Tables 10, 15 and 15. As mentioned in the methods section above, the F1-score and
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the MMC is calculated and shown in tables 13 and 16.

3.8 Runtimes and Memory

The distance matrix was calculated once for each run and the single distance calculation

was done for each comparison step. For Dataset 1 (1024 rows), the similarity matrix re-

quires approximately 100µs for Dataset 2 767µs and for Dataset 3 it takes about 2866µs.

The calculation time for TC in general is longer because it needs more time to calculate

the edge weight. For Dataset 1 the similarity matrix is 1024 · 1024 divided by 2 minus

1042 due to redundancy and the fact that the main diagonal is 1 for each entry. Equation

12 shows the overall calculation for an n rows long dataset. All time and memory results

are given in Table 17

Size =
n · n

2
− n (12)

Table 17: Time and Memory measures for a single distance calculation and
a distance matrix calculation.

PAM TC
Dataset Name Time[µs] SD[µs] Memory Time[µs] SD[µs] Memory

Dataset 1 Distance Calc. 100.46 24.50
1997776 byte

(∼ 1.9MB)
998.27 59.51

1997776 byte
(∼ 1.9MB)

Single Dist. 0.08 4 byte 0.08 4 byte

Dataset 2 Distance Calc. 767.23 103.91
2663528 byte

(∼ 2.5MB)
1399.52 154.5

2663528 byte
(∼ 2.5MB)

Single Dist 0.08 4 byte 0.08 4 byte

Dataset 3 Distance Calc 2866.39 1751.57
2667488 byte

(∼ 2.5MB)
3196.52 269.90

2667488 byte
(∼ 2.5MB)

Single Dist 0.08 4 byte 0.08 4 byte
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4 Discussion

The amount of gene expression data generated with high-throughput microarray or se-

quencing technologies is constantly increasing. Therefore analysis methods like clustering

and classification is getting more and more important. Genesis [15] is a Java software

package which already supports differed clustering algorithms like hierarchical or k-means

clustering. To support a wider range of clustering approaches, some extensions were im-

plemented in the course of this thesis.

The Mahalanobis distance measure algorithm and several linkage variants for hierarchical

clustering were added and the results were compared with PAST [4] and R [12]. The

Partitioning Around Medoids [50] and Transitive Clustering TC[34] methods were added

and the results were crosschecked with ClustEval [14]. Clustering quality was assessed

with the Silhouette value, the Matthews Correlation Coefficient and the F1-score

4.1 Implementation

The Genesis project has an SVN Repository which can be loaded with Subclipse into the

Eclipse IDE [29] to perform changes. The extensions were implemented following the ex-

isting structure. After becoming familiar with the program structure, the implementation

was straight forward and except a few small mistakes, no major problems occurred. New

classes and folders were added for each clustering method. Existing code could not be

reused (e.g. by extending classes), because the algorithms are considerably different from

the already implemented ones. As PAM is quite similar to k-means the structural layout

was used for implementation.

4.2 Distance Measure

The distance measure is used to calculate a similarity matrix which contains pairwise dis-

tances between all data points. This matrix has a redundant half, because it is symmetric

along the main diagonal. Additionally the main diagonal elements are zero because the

distances between the same points are zero. This allows to considerably reduce the mem-

ory, because only the half of this matrix needs to be stored.

Genesis implements a class containing all distance measures, where it calculates the dis-

tances but does not store them. This approach has a memory advantage but also a major

disadvantage because of increased calculation time. When distances are stored the size of

the memory needed is n2

2
− n and n is the number of data points. The k-means method

is able to calculate larger datasets but it is also very slow because the time to calculate

every distance at its needed time is extremely time consuming. As computational time

and memory in general is getting faster and cheaper, the similarity matrix is used for
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cluster calculation. Table 17 shows the time and space which is needed for the whole

matrix construction and for calculating one distance. We experience speed-ups of factor

10 depending on the size of the dataset and the number of iterations.

In Genesis multiple methods can be selected for the distance calculation. This functions

depend on the type of the data which are going to be clustered. In the paper Wiwie et

al. [14] Spearman’s Rank correlation was used for gene expression data because it yielded

the best F1-score. Also Susmita et al. [53] is using Spearman’s Rank correlation on gene

expression data due to good results. For this thesis, also the Spearman’s Rank correlation

was used.

4.3 Mahalanobis Distance

The Mahalanobis Distance is often used to measure distances between points in multidi-

mensional space. It assumes that each dimension has a different variance and it accounts

for the covariances between two data points. Equation (1) describes this distance and is

used to calculate the starting similarity matrix for every clustering method. The imple-

mentation was straight forward, although access to the whole dataset is required because

the covariance matrix has to be calculated. It is important to mention that his calcula-

tion is computationally expensive for large datasets. The time for calculating the distance

matrix with the Mahalanobis function is about two orders of magnitude longer than the

other methods (Table 7).

It can happen that the determinant of the covariance matrix becomes zero and so the

inverse of the matrix cannot be calculated. This case must be addressed in the pro-

gram code to properly inform the user. A java.lang.ArithmeticException: / by zero is

thrown and to handle this case a try block which catches the divide by zero excep-

tion is used and a warning message explaining the error is displayed and the calculation

is canceled. This is faster than calculating the determinant and checking whether it

is zero because it does not have to be calculated and checked, it just calculates and

if there is a zero division, it stops. When comparing the clustering results of Genesis

and R slight differences were encountered in certain tests. Further investigations re-

vealed, that in the case of two identical distances, it is not defined which one should

be chosen for merging. In fact Genesis is using the last smallest distance by default to

create a new cluster and R is using the first smallest distance. It is not possible to

say which way is the correct one. As both approaches are valid, Genesis was modified

to use the first smallest distance from the similarity matrix to get comparable results

with R.

The result created by Genesis (figure 8a) is compared with the clustering software PAST

and the heatmap created in R (figure 8b). The results for these algorithms are identical

except for the order of the rows. A first look might be irritating because the order of the
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elements in this dendrograms is different. Comparing the structure of the tree without

taking the edge lengths into account using the PH85 method yields 0 in all cases. This

means the trees are complete equal (Appendix Figure 10).

4.4 Ward’s Linkage

HCL uses different methods to determine which clusters should be merged. Therefore all

combinations of linkages are calculated and the best one is chosen to create a new clus-

ter. The Ward’s linkage method is also called the minimum variance criterion because

it tries to minimize the total cluster variance. The specific equation (2) shows the Ward

Linkage calculation which can also be calculated by the recursive defined function (3).

This recursive definition allows simple implementation of different linkage methods. The

additional algorithms were Average Group- and Flexible- linkage. Most of these algo-

rithms were already implemented in Genesis but due to structural reasons, all of these

calculations were changed to just use the recursive equation. Table 2 displays the factors

needed for different calculations and equation (3) shows the overall formula for the dis-

tance calculations. With an if request the method is chosen and the values are calculated

as mentioned in table 2. All of these methods were crosschecked for correct results with

PAST or R to ensure no errors were made during the implementation. No significant

change in calculation time was observed after changing the implementation to the general

formula.

4.5 Integration of PAM

Partitioning Around Medoids Clustering (PAM) [14] is highly similar to k-means but is

robust against outliers and also faster. To integrate a whole new clustering algorithm,

a new package was created in the current Genesis source code structure. The structure

within the package is similar to the already existing k-means clustering algorithm but

could not be derived due to major changes in the similarity matrix calculation.

4.6 Integration of TC

As Transitivity Clustering (TC) yielded good results in clustering gene expression data

[14], it was added to the Genesis clustering functions. TC yields clusters as the result and

is similar to hierarchical clustering [1] although it works differently. The structure of the

TC package is similar to the HCL package but the main parts in this classes were changed.
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4.7 Partitioning Around Medoids

This method is highly similar to k-means clustering. The advantage of PAM compared

to k-means is that the selection of an existing point as center instead of the true mean

leads to a robustness against outliers and is computationally slightly cheaper [1]. Figure

5 shows an example of the clustering process on a 2D example dataset. Asyali et al.

[54] describes PAM as an easy to implement and highly transparent clustering method

which has a low computational complexity of O(tkN) just like k-means. N is the number

of elements to cluster, t is the maximum number of iterations and k is the number of

clusters. Compared to k-means, PAM is robust to outliers and it is important to mention

that both methods, PAM and k-means, can’t form arbitrary clusters because the element

affiliation to a cluster center is given by its distance and not by any density dependencies

[1].

4.8 Transitive Clustering

This method is robust against noise and it needs only a threshold as the only input

parameter which determines the number of clusters created. This means that it is im-

possible to tell in advance how many clusters are going to be created. This algorithm

was implemented according to the pseudo code first mentioned by Ben-Dor et al. [18]

(Algorithm 3). Because the Cluster Affinity Search Technique (CAST) is very efficient

computationally and so it was chosen for implementation. The computational complexity

is O(N2 · log(N)) which is much larger than for the PAM method [18] because it has an

quadratic increase over data points N . It is important to mention that despite several

e-mail attempts it was not possible to get exact information about the implementation

method of the TC clustering method in ClustEval [14] and therefore CAST was chosen.

4.9 Datasets and Validation

Six Datasets were used for validation (Table 5). The first three datasets, Fibroblast red,

Fibroblast red ns and Fibroblast ns were taken from Genesis. This test sets are used for

validating the new distance measures. Dataset 1 was downloaded from the NCBI GEO

[44] database and is a randomly chosen gene expression dataset which is clustered and

evaluated. Dataset 2 comes with the ClustEval [14] platform and is a bone marrow gene

expression analysis for leukemia [46]. This dataset has a so called Gold Standard which

is used for classification validation because the correct clustering of the samples is known

and so TP, TF, FN and FP can be calculated. Dataset 3 is a synthetic one and has a

given true classification for comparison [47].

Validation of clustering results in general is not easy because no reference results are avail-

able. Dataset 2 and 3 have a Gold Standard which represents the correct classification,

41



which allows to compare clustering qualities. The F1-score which is a common accuracy

measure and the MCC which takes also the TN into account can be calculated. If the

cluster sizes have a strong variation in size (data points) the MCC gives better infor-

mation about the quality. If no Gold Standard is available, inner cluster measurement

values can be used to calculate cluster quality. The most common validation measure is

the Silhouette value [36]. It uses the distances between points in a cluster and compares

this distances to the distances of the same points to all points of an other cluster. This

leads to a good measure of cluster ”tightness” and ”separation”. A large Silhouette value

means that there is a high similarity between the elements of one cluster. A small value

means there is no similarity according to the element distances.

To crosscheck the results, Dataset 1 was adapted to be used with Genesis. The data is

clustered in two clusters and the Silhouette values are calculated. Then three clusters

are created and the values are again calculated. A slight decrease in the value from two

to three clusters was recognized and so no further clustering was done. For this dataset

the Silhouette values are larger than for the Dataset 2 clusters. This has to do with the

different dataset and the distribution and cluster ”separation” which is different for each

dataset. For the validation, different parameters were used and the Silhouette values were

calculated. Tables 20-25 in the Appendix show Silhouette values from 0.3425 to 0.5828

for each cluster against each cluster. The main diagonals in this tables should always be

smaller than the other values to guarantee a high Silhouette value which in fact is the

case for all tables. The achieved Silhouette values are rather low, suggesting clusters are

not well separated.

Comparing the Silhouette values for Dataset 2 calculated on the Genesis results 0.3549

for TC and 0.3425 for PAM with the results from ClustEval [14] which are 0.360 for TC

and 0.352 for PAM it is easy to see that the values are quiet low, but at least very similar.

If clusters are ”tight” and close to each other, low Silhouette values can be observed,

although the clusters give good F1-score. This is the case with Dataset 2 which has a

very good F1-score of 0.8824 for TC and 0.9118 for PAM but a Silhouette value of 0.3549

for TC and 0.3425 for PAM. This compares well with the results of ClustEval [14]. There

is a slight difference in this values which result from the fact that it was not possible to

reconstruct the exact implementation in ClustEval [14]. Dataset 3 yielded an F1-score of

0.871 for k-means a bit better than PAM with an F1-score of 0.766. This results are also

comparable with the MCC which is 0.816 for k-means and 0.746 for PAM. However TC

reached an F1-score of 1 which means that all samples were correctly classified.
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4.10 Conclusion

One distance measurement, three new linkage methods and two new clustering methods

were added to the Genesis project. The distance and similarity measures were cross-

checked with R and PAST to validate their correct implementation. The validation of

PAM and TC with ClustEval gave good F1-score and similar Silhouette values. In con-

trast to the existing clustering algorithms, where distances are calculated on the fly, for

the new methods, the distance matrix was precalculated, because nowadays memory is

assumed to be ”cheaper” than computational time. The test sets were clustered with

different parameters and a good Silhouette values could be achieved. Overall it is hard to

say if an result is good or bad because it always depends on the type of data as mentioned

by Jaskowiak et al. [37]. The proper implementation of the algorithms was validated and

the results were comparable to the results from ClustEval and the F1-score and MCC

for the datasets were quite good for PAM and very good for TC. The implementation

provides new methods which can be useful in analyzing and validating biomedical data.
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6 Appendix

6.1 Datasets for Validation

Table 18: Example data set from Genesis [15] and described by Eisen M [5]. This format contains a unique ID, a short
Name, a gene weight n gene order and an experiment weight. The remaining entries show the gene expression at different
time points.

UNIQID NAME GWEIGHT GORDER 0HR 15MIN 30MIN 1HR 2HR 4HR 6HR 8HR 12HR 16HR 20HR

EWEIGHT 1 1 1 1 1 1 1 1 1 1 1

361771 EST W95909 1 517 0 -0.47 -3.32 -0.81 0.11 -0.60 -1.36 -1.03 -1.84 -1.00 -0.60

487537
SID487537 H.sapiens
mRNA for selenoprotein
P

1 516 0 0.66 0.07 0.20 0.29 -0.89 -0.45 -0.29 -0.29 -0.15 -0.45

486735

SID486735 Human
peptidyl-prolyl
isomerase and essential
mitotic regulator (PIN1)
mRNA, complete cds

1 515 0 0.14 -0.04 0.00 -0.15 -0.58 -0.30 -0.18 -0.38 -0.49 -0.81

417426
Homo sapiens protein
4.1-G mRNA, complete
cds

1 514 0 -0.04 0.00 -0.23 -0.25 -0.47 -0.60 -0.56 -1.09 -0.71 -0.76

469959
SID469959 EST
AA029909

1 513 0 0.28 0.37 0.11 -0.17 -0.18 -0.60 -0.23 -0.58 -0.79 -0.29

381721
SID381721 EST
AA059077

1 512 0 0.54 0.53 0.16 0.14 0.20 -0.34 -0.38 -0.36 -0.49 -0.58

471855 SID471855 Lumican 1 511 0 0.20 0.14 0.00 0.11 -0.34 -0.03 0.04 -0.76 -0.81 -1.12

486757 EST AA180272 1 510 0 0.40 0.43 0.18 0.00 -0.14 0.29 0.07 -0.79 -0.81 -0.92

417593
Carnitine
palmitoyltransferase I
(CPTI)

1 509 0 0.01 0.46 0.28 -0.34 -0.23 -0.36 -0.45 -0.64 -0.79 -1.22

50922 EST H19324 1 508 0 -0.23 0.04 0.00 -0.30 -0.29 -0.45 -0.97 -2.06 -0.89 -1.22
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Table 19: Example data from NCBI GEO [44] (Dataset 2 ) has a unique ID in the first column. The weights are one but
there is no Order and also no names. The rest of the entries shows log2 ratio of probe set signal intensity in the sample to
the mean in the reference set amount at different times.

ID REF NAME GWEIGHT CP-2 CP-4 CP-5 CP-7 CP-8 CP-9 CP-10 CP-12 CP-13 CP-18 CP-20

EWEIGHT 1 1 1 1 1 1 1 1 1 1 1

A 16 P17103965 1 0.06060 -0.087 -0.12900 -0.01120 -0.16200 -0.02500 -0.06000 -0.09260 -0.10800 -0.02510 -0.05870

A 16 P01721093 1 0.06760 0.129 0.00465 -0.00117 0.03170 -0.00178 0.03260 0.04410 0.13700 0.02480 0.01450

A 16 P15059815 1 0.04590 -0.00557 0.02620 0.03640 0.00118 0.04840 -0.00221 0.07730 0.09960 0.03160 0.02930

A 16 P03096255 1 0.02700 0.0996 0.11800 0.05430 0.12400 0.05350 0.10700 0.10100 0.16700 0.00684 0.08650

A 16 P21424156 1 0.01140 0.0108 0.16700 0.06460 0.10100 0.04790 -0.04080 0.04010 0.07560 0.06310 0.05570

A 16 P59922478 1 -0.00674 0.0233 0.06630 0.02500 0.07190 0.01860 0.01110 0.02260 0.25900 0.01910 0.00090

A 18 P15756033 1 0.00582 -0.125 -0.06040 -0.02360 -0.03630 -0.05650 -0.09070 -0.00490 0.04580 0.07830 -0.06500

A 16 P18783515 1 -0.00656 -0.0194 0.04470 -0.02150 0.12700 -0.01060 0.06420 0.03420 -0.11900 -0.03990 -0.00135

A 16 P00403029 1 0.04670 0.0848 0.01520 0.04430 0.06130 -0.01450 0.03990 0.06050 0.14200 -0.03820 0.10400

A 16 P17423087 1 -0.02260 -0.00998 -0.11100 -0.08010 -0.05600 -0.08480 -0.08820 -0.17600 -0.03320 -0.02720 -0.08800

A 16 P21621957 1 0.01520 0.0942 0.02400 0.01710 0.10600 0.06880 -0.01030 0.08930 0.06270 -0.03170 0.02570

A 16 P38381210 1 0.00112 0.0656 -0.03570 -0.06430 -0.02200 -0.07720 -0.03950 -0.01720 0.23800 -0.06100 -0.05400

A 16 P18159690 1 0.00823 -0.0277 -0.07870 -0.11900 -0.06760 -0.08370 -0.42600 -0.09970 -0.30000 -0.03790 -0.08950

A 16 P03385907 1 -0.16000 -0.0683 0.09710 0.10500 0.08710 0.09280 0.11300 0.12500 0.15200 0.04700 0.07160

A 16 P02101244 1 -0.03460 -0.116 -0.08820 -0.03970 -0.07850 -0.05770 -0.10200 -0.11100 -0.04080 -0.01320 -0.03370

A 16 P19296953 1 0.02020 0.0641 0.13300 0.08190 0.16300 0.07360 0.07390 0.09560 0.15000 -0.00698 0.10100

A 16 P18653359 1 -0.01870 -0.0344 0.11200 0.06050 0.10600 0.05160 0.06660 0.13700 0.02310 0.02130 0.06590

A 16 P20973757 1 0.04380 -0.0653 -0.04300 -0.01140 -0.02410 -0.06120 0.05610 -0.05930 -0.02100 -0.01300 -0.04690

A 16 P20293969 1 -0.02580 -0.0546 0.04070 0.04330 0.11600 0.00393 0.07290 0.12100 0.03930 -0.00632 0.04910

A 16 P31322059 1 0.05060 0.0974 -0.07580 -0.02530 -0.01190 0.01210 -0.07240 -0.04740 0.01960 -0.02300 -0.06110

A 16 P03462470 1 -0.05310 0.0641 0.15200 0.13700 0.16800 0.06390 0.04750 0.31700 0.18400 0.03720 0.13300

A 16 P21098513 1 0.02070 0.057 0.02530 0.01750 0.01460 0.01810 -0.05890 -0.06350 -0.23900 0.01100 0.04710

A 16 P59800141 1 0.00449 0.109 0.04730 -0.00924 0.10900 0.07730 0.02330 0.06460 0.36500 -0.01810 0.04350

A 16 P40212811 1 -0.18400 -0.0899 -0.07160 -0.03010 -0.08290 -0.05210 -0.12600 -0.08950 -0.05780 -0.03930 -0.07850

A 18 P11116317 1 0.05670 0.134 -0.05200 -0.00164 -0.00340 0.01730 -0.09520 -0.06780 -0.02350 -0.05180 0.05940

A 16 P00242008 1 0.03630 -0.0642 -0.08200 0.01180 -0.35600 -0.02170 -0.06800 -0.10000 -0.08560 -0.02110 0.07110

A 16 P58316227 1 -0.00194 -0.0911 -0.13400 -0.04370 0.00869 -0.06690 -0.06350 -0.03070 -0.07790 -0.03900 -0.05970
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6.2 Silhouette Value Calculations

Table 20: Silhouette value and in between cluster distances ai, bi and for all
Clusters against all Clusters. Dataset 1 with Spearman’s rank correlation and
PAM clustering with k = 2.

Cluster 1 Cluster 2

Cluster 1 0.3909 0.7687

Cluster 2 0.8049 0.2743

S2 S1

0.5144 0.6431

Silhouette value

0.5788

Table 21: Silhouette value and in between cluster distances ai, bi and for all
Clusters against all Clusters. Dataset 1 with Spearman’s rank correlation and
TC clustering with T = 0.4.

Cluster 1 Cluster 2

Cluster 1 0.2798 0.8430

Cluster 2 0.7263 0.3786

S2 S1

0.6147 0.5509

Silhouette value

0.5828
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Table 22: Silhouette value and in between cluster distances ai, bi and ci for all
Clusters against all Clusters. Dataset 1 with Spearman’s rank correlation and
PAM clustering with k = 3.

Cluster 1 Cluster 2 Cluster 3

Cluster 1 0.3461 0.7945 0.5350

Cluster 2 0.7726 0.2567 0.5980

Cluster 3 0.7455 0.4336 0.3718

S2 and S3 S1 and S3 S1 and S2

0.5521 0.6769 0.3051

0.5358 0.4080 0.3783

Silhouette value

0.4760

Table 23: Silhouette value and in between cluster distances ai, bi and ci for all
Clusters against all Clusters. Dataset 1 with Spearman’s rank correlation and
TC clustering with T = 0.5.

Cluster 1 Cluster 2 Cluster 3

Cluster 1 0.3466 0.7958 0.6122

Cluster 2 0.8124 0.2741 0.6160

Cluster 3 0.5893 0.6079 0.4535

S2 and S3 S1 and S3 S1 and S2

0.5740 0.6556 0.2592

0.4128 0.5492 0.2637

Silhouette value

0.4524
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Table 24: Silhouette value and in between cluster distances ai, bi and ci for all
Clusters against all Clusters. Dataset 2 with Spearman’s rank correlation and
PAM clustering with k = 3.

Cluster 1 Cluster 2 Cluster 3

Cluster 1 0.3870 0.6575 0.5409

Cluster 2 0.6067 0.3436 0.4591

Cluster 3 0.5783 0.5669 0.3748

S2 and S3 S1 and S3 S1 and S2

0.3622 0.4775 0.1835

0.3309 0.3940 0.3071

Silhouette value

0.3425

Table 25: Silhouette value and in between cluster distances ai, bi and ci for all
Clusters against all Clusters. Dataset 2 with Spearman’s rank correlation and
TC clustering with T = 0.5050505.

Cluster 1 Cluster 2 Cluster 3

Cluster 1 0.3755 0.6455 0.4712

Cluster 2 0.6067 0.3436 0.5409

Cluster 3 0.5745 0.5729 0.3692

S2 and S3 S1 and S3 S1 and S2

0.3812 0.4677 0.2163

0.3465 0.4003 0.3174

Silhouette value

0.3549
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6.3 Linkage Results Genesis and R
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Figure 10: The figures on the left side are showing the heat map result generated by
Genesis and the right side shows a heat map for the same clustering algorithm gener-
ated by R. The heat maps in R are generated with the heatmap.2 function from the
gplots package. All starting distances are euclidean distances and the used clustering
algorithms for the left and the right image are always the same.
(a) Weighted Average WPGMA Genesis, (b)Weighted Average WPGMA R, (c) Me-
dian Linkage Genesis, (d) Median Linkage R, (e) Centroid Linkage Genesis, (f) Cen-
troid Linkage R, (g) Ward’s Linkage Genesis, (h) Ward’s Linkage R, (i) Single Linkage
Genesis, (j) Single Linkage R, (k) Complete Linkage Genesis, (l) Complete Linkage R,
(m) Flexible Linkage β = 0 Genesis, (n) Flexible Linkage β = 0 R, (o) Group Average
Linkage Genesis, (p) Group Average Linkage R

6.4 Script

1 #load Packages

2 install.packages("gplots")

3 library(gplots)

4 install.packages("cluster")

5 library(cluster)

6

7 # Mahalanobis Function

8 ###########################################################################

9

10 cholMaha <− function(X) {
11 dec <− chol( cov(X) )

12 tmp <− forwardsolve(t(dec), t(X) )

13 dist(t(tmp))

14 }
15 distMahal = cholMaha(Fibroblasts);

16

17 # Data Processing

18 ###########################################################################

19

20 #set directory or put file in same folder

21 #setwd(dir = "Documents/Master/Master Projekt/files/")

22
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23 #read Data

24 Fibroblasts <− read.table("Fibroblasts.txt",

25 sep="\t",
26 comment.char="#",

27 header = 1)

28 #save original data

29 data <− Fibroblasts

30

31 # assign labels in column 1 to "rnames"

32 rnames <− data[,1]

33

34 # transform column 2−5 into a matrix

35 matData <− data.matrix(data[,2:ncol(data)])

36

37 # assign row names

38 rownames(matData) <− rnames

39

40 # Color Definition

41 ###########################################################################

42 # create color pattern

43 myPalette <− colorRampPalette(c("green", "black", "red"))(n = 299)

44

45 # define color breaks

46 colBreaks = c(seq(−3,−1,length=100),
47 seq(−0.99,0.99,length=100),
48 seq(1,3,length=100))

49

50

51 # Createing the Heat Map

52 ###########################################################################

53

54 #set b ]−inf,1[ for flexible linkage and create heat map

55 b = 0;

56 heatmap.2(matData,

57 #use distMahal if mahalanobis needed! use median or centroid

58 #hclustfun = function(x) hclust(distMahal,method = ’single’),

59

60 #use if average, single, complete, ward, weighted, or flexible

61 hclustfun = function(x) agnes(matData,

62 diss = FALSE,

63 metric="euclidean",

64 method="flexible",

65 par.method =

66 c((1/2)∗(1−b),(1/2)∗(1−b),b,0)),
67 cellnote = matData,

68 main = "",
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69 notecol="transparent",

70 density.info="none",

71 trace="none",

72 margins =c(10,4),

73 col=myPalette,

74 breaks=colBreaks,

75 dendrogram="row",

76 Colv="NA",

77 sepwidth=c(0.01,0.01),

78 sepcolor="black",

79 colsep=1:ncol(matData),

80 rowsep=1:nrow(matData),

81 cexRow=0.5,

82 cexCol=0.5,

83 srtCol=45,

84 keysize=1,

85 lmat = rbind(3:4,2:1),

86 lwid = c(1,1),

87 lhei = c(1,1),

88 key.par=list(mar=c(4,0,19,4.7)))

Listing 1: R-Scrip used to generate the reference heatmaps
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