

EIDESSTATTLICHE ERKLÄRUNG Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch. Datum Unterschrift

Danksagung

An dieser Stelle möchte ich mich bei allen Personen bedanken, die mich während meines Studiums an der Technischen Universität Graz einen Teil meines Weges begleitet und dafür gesorgt haben, dass ich meine nicht zu kurz gekommene Studienzeit, trotz der zahlreich gestellten Herausforderungen, unbeschadet überstanden habe und diese in vollen Zügen genießen konnte. Aus einigen Begegnungen sind im Laufe der Zeit tiefe Freundschaften entsprungen, die ich keinesfalls missen möchte. Ein großer Dank gilt meinen lieben Freunden Andreas, David, Hannah, Johannes, Melissa und Markus, die mir auch in schweren Zeiten immer zur Seite gestanden sind und auch ihren Teil dazu beigetragen haben, dass ich nun dieses Kapitel meines Lebens abschließen kann. Außerdem möchte ich mich an dieser Stelle auch ganz herzlich bei meiner geliebten Partnerin Sigrid bedanken, die in jeder Situation die richtigen Worte gefunden und stets an mich geglaubt hat. Nicht zuletzt gilt mein größter Dank meiner geliebten Familie, die mich während all der Jahre tatkräftig physisch, psychisch und finanziell unterstützt und mir schlussendlich eine unbeschwerte Studienzeit ermöglicht hat. Ganz besonders möchte ich mich zum Abschluss bei meinen Eltern Karin und Rudolf bedanken, die mir durch ihre Fürsorge und ihre Liebe, diese schöne Zeit in meinem Leben ermöglicht haben.

Kurzfassung/Abstract

Ziel dieser Arbeit ist es, die Krankheitslast innerhalb der österreichischen Bevölkerung anhand eines Simulationsmodells möglichst genau und detailliert zu modellieren. Durch Simulation geeigneter Szenarien soll es möglich sein, zukünftige Entwicklungen von Krankheits- und Todeshäufigkeiten abschätzen zu können. Hierbei liegt das Hauptaugenmerk zunächst auf der Beschaffung und Analyse geeigneter Statistiken zu Morbiditäts- und Mortalitätskennzahlen für die österreichische Bevölkerung, anhand dieser in weiterer Folge die geschlechter- und altersspezifischen Erkrankungs- und Sterbewahrscheinlichkeiten berechnet werden. Schließlich werden die zukünftig erwarteten Erkrankungs- und Sterbefälle mit Hilfe von unterschiedlichen Prognosemethoden berechnet, welche zu Beginn der Simulation vom Nutzer ausgewählt werden können. Die Simulationsergebnisse ermöglichen somit eine Abschätzung, wie sich die Krankheitslast in Österreich in Zukunft entwickeln wird.

Keywords: Krankheitslast, Österreich, Entwicklung, Morbidität, Mortalität, Bevölkerung

The main goal of this work is the proper and detailed simulation of the disease burden in Austria, with the help of a suitable model. It should be possible, to estimate future changes in disease- and death-frequencies by the use and simulation of different case scenarios. In the beginning the main focus lies on the acquisition and analysis of appropriate statistics in reference to morbidity- and mortality based key data of the Austrian population, which is then used for the further estimation of gender- an age-related probabilities. The calculation of expected disease cases and deaths in the future is accomplished by the use of different forecasting methods, which can be chosen by the user at the beginning of the modeling. Simulation results provide an estimation of future trends of the disease burden in Austria.

Keywords: disease burden, Austria, trend, morbidity, mortality, population

Genderhinweis

An dieser Stelle sei der Leser darauf hingewiesen, dass in dieser Arbeit, aus Gründen der besseren Lesbarkeit, auf die gleichzeitige Verwendung männlicher und weiblicher Sprachformen verzichtet wird. Soweit personenbezogene Bezeichnungen nur in männlicher Form angeführt sind, beziehen sich diese auf Männer und Frauen in gleicher Weise. (vgl. GBKK, 2015)

Abbildungsverzeichnis

Abbildung 1.	Brainstorming für Keywords	7
Abbildung 2.	Benutzeroberfläche STATcube	12
Abbildung 3.	schematisches Paretodiagramm	17
Abbildung 4.	lineare Regression	21
Abbildung 5.	lineare Regression vs. robuste lineare Regression	22
Abbildung 6.	Wirkungsgraph Modul: stationäre Morbidität	29
Abbildung 7.	Wirkungsgraph Modul: Mortalität	31
Abbildung 8.	UML-Klassendiagramm	35
Abbildung 9.	Flussgraph des Modells	67
Abhildung 10	Bevölkerungspyramide Österreich 1.1.2017	71
	Zeitliche Entwicklung der verschiedenen Lebenser-	/ 1
incomating iii.	wartungen 1970-2015	80
Abbildung 12.	Pareto-Diagramme: stationäre Morbidität Männer	83
	Pareto-Diagramme: stationäre Morbidität Frauen	84
	Entwicklung Erkrankungsraten: Männer 45-64 Jahre	~ 7
0 1	(1989-2014)	86
Abbildung 15.	Entwicklung Erkrankungsraten: Männer 65+ Jahre	
0 3	(1989-2014)	87
Abbildung 16.	Entwicklung Erkrankungsraten: Frauen 45-64 Jahre	•
O	(1989-2014)	88
Abbildung 17.	Entwicklung Erkrankungsraten: Frauen 65+ Jahre (1989-	
	2014)	89
Abbildung 18.	Pareto-Diagramme: Mortalität Männer	91
Abbildung 19.	Pareto-Diagramme: Mortalität Frauen	92
Abbildung 20.	Entwicklung Todesfälle (absolut) 1970-2016	94
Abbildung 21.	Entwicklung der Sterberaten: Männer (45-64 Jahre)	
	von 1970-2015	95

Abbildungsverzeichnis

Abbildung 22.	Entwicklung der Sterberaten: Männer (65+ Jahre) von
	1970-2015
Abbildung 23.	Entwicklung der Sterberaten: Frauen (45-64 Jahre) von
	1970-2015
Abbildung 24.	Entwicklung der Sterberaten: Frauen (65+ Jahre) von
	1970-2015
0 5	subjektive Gesundheit der öst. Bevölkerung 101
Abbildung 26.	chronische Krankheiten innerhalb der öst. Bevölkerung 102
Abbildung 27.	Grafische Benutzeroberfläche: Start
	Simulationsergebnisse: Übersicht
Abbildung 29.	Simulationsergebnisse: Bevölkerung
Abbildung 30.	Simulationsergebnisse: Morbidität
	Simulationsergebnisse: Mortalität
Abbildung 32.	Szenario 1: Altersstruktur der Bevölkerung 1996-2050. 118
Abbildung 33.	Szenario 1: Häufigste Diagnosen (absolut) Männer 122
Abbildung 34.	Szenario 1: Häufigste Diagnosen (absolut) Frauen 123
Abbildung 35.	Szenario 1: Häufigste Todesursachen (absolut) Männer 126
Abbildung 36.	Szenario 1: Häufigste Todesursachen (absolut) Frauen 127
Abbildung 37.	Szenario 2: Altersstruktur der Bevölkerung 1996-2050. 128
Abbildung 38.	Szenario 2: Häufigste Diagnosen (absolut) Männer 132
Abbildung 39.	Szenario 2: Häufigste Diagnosen (absolut) Frauen 133
Abbildung 40.	Szenario 2: Häufigste Todesursachen (absolut) Männer 136
Abbildung 41.	Szenario 2: Häufigste Todesursachen (absolut) Frauen 137
Abbildung 42.	Szenario 3: Altersstruktur der Bevölkerung 1996-2050. 138
Abbildung 43.	Szenario 3: Häufigste Diagnosen (absolut) Männer 142
Abbildung 44.	Szenario 3: Häufigste Diagnosen (absolut) Frauen 143
Abbildung 45.	Szenario 3: Häufigste Todesursachen (absolut) Männer 146
Abbildung 46.	Szenario 3: Häufigste Todesursachen (absolut) Frauen 147
Abbildung 47.	Verlauf der Erkrankungsraten von Kreislauferkran-
0 17	kungen
Abbildung 48.	lineare Regression: HKL Männer 65-95+ Jahre 150
0 ,	quadratische Regression: HKL Männer 65-95+ Jahre 151
	kubische Regression: HKL Männer 65-95+ Jahre 152
0 -	Regression 4. Ordnung: HKL Männer 65-95+ Jahre 154

Tabellenverzeichnis

Tabelle 1.	Quellen Literaturrecherche mit Schneeballsystem	6
Tabelle 2.	systematische Literaturrecherche Keywords	8
Tabelle 3.	Verwendete Hauptdatenquellen für Datenrecherche	10
Tabelle 4.	Verwendete Statistiken STATcube	11
Tabelle 5.	Hauptdiagnosegruppen Übersicht	14
Tabelle 6.	Daten für schematische Pareto-Analyse	16
Tabelle 7.	Bevölkerungsmodul: neue Variablen	37
Tabelle 8.	Bevölkerungsmodul: neue Funktionen	38
Tabelle 9.	Bevölkerungsmodul: Events	44
	Modul stationäre Morbidität: Variablen	46
	Modul stationäre Morbidität: Funktionen	46
	Modul stationäre Morbidität: Events	58
	Modul Mortalität: Variablen	60
	Modul Mortalität: Funktionen	60
Tabelle 15.	Modul Mortalität: Events	65
	Struktur der österreichischen Bevölkerung 1981-2100	73
Tabelle 17.	Entwicklung Geburten 1980-2100	74
	Lebenserwartung bei Geburt	76
Tabelle 19.	Fernere Lebenserwartung 60-Jährige	77
	Lebenserwartung in guter Gesundheit	79
Tabelle 21.	Ergebnisse Gesundheitsbefragung - Subjektiver Gesund-	
	heitszustand	00
Tabelle 22.	Morbiditätswahrscheinlichkeiten Herz-Kreislauferkrankung	
	(Männer, 65 Jahre)	04
Tabelle 23.	berechnete Mortalitätswahrscheinlichkeiten Herz-Kreislauf-	
	erkrankung (Frauen, 87-89 Jahre)	
•	Szenario 1: Entwicklung der Gesamtbevölkerung 1	-
Tabelle 25.	Szenario 1: Entwicklung der stationären Morbidität 1	21

Tabellenverzeichnis

Tabelle 26.	Szenario 1: Entwicklung der Mortalität
Tabelle 27.	Szenario 2: Entwicklung der Gesamtbevölkerung 129
Tabelle 28.	Szenario 2: Entwicklung der stationären Morbidität 131
Tabelle 29.	Szenario 2: Entwicklung der Mortalität
Tabelle 30.	Szenario 3: Entwicklung der Gesamtbevölkerung 139
Tabelle 31.	Szenario 3: Entwicklung der stationären Morbidität 141
Tabelle 32.	Szenario 3: Entwicklung der Mortalität
Tabelle 33.	Regressionsmodelle nach Gütekriterien
Tabelle 34.	Bevölkerungsprognose Statistik Austria 190
Tabelle 35.	Szenario 1 vs. Prognose Statistik Austria 191
Tabelle 36.	Szenario 2 vs. Prognose Statistik Austria 192
Tabelle 37.	Szenario 3 vs. Prognose Statistik Austria 193

Inhaltsverzeichnis

Da	anksa	gung		iii
ΑŁ	ostrac	t		iv
Ge	ender	hinweis		v
ΑŁ	bildu	ingsver	zeichnis	vi
Ta	belle	nverzei	chnis	viii
1.	Einle	eitung		1
2.	Aufg	gabenst	tellung	3
3.	Met	hoden		5
	3.1.	Litera	turrecherche	5
	3.2.	Daten	recherche	9
		3.2.1.	Hauptdatenquellen	9
			3.2.1.1. STATcube - Statistik Austria	9
	3.3.	Daten	aufbereitung	13
		3.3.1.	O	
		3.3.2.	Pareto-Analyse	15
		3.3.3.	Berechnungen	
			3.3.3.1. Morbiditätswahrscheinlichkeit	
			3.3.3.2. Mortalitätswahrscheinlichkeit	
		3.3.4.	Trenderkennung und Prognose	20
			3.3.4.1. lineare Regression	
			3.3.4.2. robuste lineare Regression	
			3.3.4.3. Konstante Erkrankungs- und Sterberaten	23

Inhaltsverzeichnis

		3.3.4.4. Mittelwertberechnung vergangener Erkrankungs			S-		
				und Sterberaten			23
			3.3.4.5.	Weitere Prognosemethoden			24
			3.3.4.6.	Gütekriterien von Modellen			24
		3.3.5.	Generie	rung der Daten			26
	3.4.	Mode	llkonzept				28
		3.4.1.		Bevölkerung			28
		3.4.2.		stationäre Morbidität			29
		3.4.3.		Mortalität			30
	3.5.	Imple:		ng in AnyLogic			33
		3.5.1.		l Modellierungstechnik			33
		3.5.2.		ter Zeitraum			34
		3.5.3.	Modulb	eschreibung			35
			3.5.3.1.	Modul: Bevölkerung			36
			3.5.3.2.	Modul: stationäre Morbidität			45
			3.5.3.3.	Modul: Mortalität			59
			3.5.3.4.	Modellflussgraph	•	•	66
4.	Erge	bnisse					68
	_		dheitszus	stand der österreichischen Bevölkerung			68
	•	4.1.1.		afischer Überblick			70
		4.1.2.		rwartung			, 76
		4.1.3.		ire) Morbidität			82
		4.1.4.		ät [´]			90
		4.1.5.		ve Gesundheitswahrnehmung			99
	4.2.	Berech					
	•	4.2.1.		tätswahrscheinlichkeit			
		4.2.2.		ätswahrscheinlichkeit			
	4.3.			tzeroberfläche			
	, ,	4.3.1.		ıngsmöglichkeiten			
		4.3.2.	Ergebnis	sdarstellung			109
	4.4.		ation unte	erschiedlicher Szenarien			117
		4.4.1.		o 1: konstante Raten			•
			4.4.1.1.	Bevölkerungsentwicklung			
							•
			4.4.1.2.	Entwicklung der (stationären) Morbidität			119

Inhaltsverzeichnis

		4.4.2. 4.4.3.	4.4.2.1. 4.4.2.2. 4.4.2.3. Szenario 4.4.3.1.	2: Lineare Regression	. 1; . 1; . 1; . 1;	28 30 34 38 38
5.	Dick	ussian			1	48
Э.		ussion	rlonnun.	g und Prognose		_
	5.1. 5.2.			erwendeten Daten		
	5.2. 5.3.	Simula	an den ve ation unte	rschiedlicher Szenarien	• 1 1	50 58
	3.3.	5.3.1.	_	1: konstante Raten		
		5.3.2.		2: lineare Regression	,	_
		5.3.3.		3: Mittelwertbildung		
			Vergleich	der Szenarien	. 1	71
	5.4.	Möglio	che Verbe	sserungen	. 1	73
				ungen der Daten		
		5.4.2.		rungen des Modells		
				Prognosemöglichkeiten		
			5.4.2.2.	Verschiebung des Startzeitpunktes	. 1	75
6.	Schl	ussfolge	erung		1	76
Lit	eratu	ır			1	78
Α.	R-Sc	ourceco	de		1	83
				degression		
В.	Abbi	ildunge	n		1	85
		_		r stationären Morbidität	. 1	85
				r Mortalität		
C.	Tabe	ellen			1	89
				ierte Sterberaten		_
	C.2.	Progno	ose Statist	ik Austria vs. Szenarien	. 1	89

1. Einleitung

"Es gibt tausend Krankheiten, aber nur eine Gesundheit"

Diese Aussage von Börne (1862) zeigt, welcher Stellenwert der Gesundheit innerhalb der Gesellschaft beigemessen wird. Fast jeder Mensch strebt Zeit seines Lebens danach, sein Dasein so lange wie möglich in größtmöglicher Gesundheit zu verbringen. Da sich die Anforderungen an das Gesundheitssystem im Verlauf der Zeit ständig verändern, ist es von größtem Interesse, zeitnah und angemessen auf die bevorstehenden Entwicklungen reagieren zu können. In verschiedenen wissenschaftlichen Publikationen werden zukünftige Trends (Verläufe) von bestimmten Erkrankungen abgeschätzt und prognostiziert. Die Global Burden of Disease Studie beispielsweise, versucht die Belastung der Bevölkerung durch Krankheit und Verletzung in einem globalen Rahmen zu quantifizieren (siehe Murray, Lopez, WHO et al., 1996). In anderen Arbeiten, wie der Vorausberechnung des Krebsgeschehens und des Herzinfarktgeschehens in Deutschland, wird die Vorhersage von künftigen Entwicklungen einzelner Erkrankungen auf einen (geografisch) regionalen Rahmen begrenzt (siehe Haberland et al., 2006; Wiesner, Grimm und Bittner, 2002). Es liegen nur wenige Arbeiten vor, die ein möglichst großes Spektrum an verschiedenen Erkrankungsentitäten erfassen und die in der Bevölkerung auftretende "Krankheitslast" (und deren zukünftigen Verläufe) darstellen (siehe Peters et al., 2010). Vor allem für vergleichsweise kleine Nationen, wie Osterreich, wurden keine Publikationen gefunden, die sich mit der gesamtheitlichen Erfassung des Krankheitsgeschehens und der Abschätzung zukünftiger Trends beschäftigen. Eine gute Möglichkeit zur Analyse und Prognose von Krankheitsdaten bietet hierbei eine entsprechende Modellierung. Geeignete Modelle erlauben es, die Realität im gewünschten Abstraktionsniveau nachzubilden und risikofrei (d.h. ohne entsprechende Auswirkungen auf die reale Welt), für unterschiedlich wahrscheinliche Szenarien zu simulieren und politischen/wirtschaftlichen In-

1. Einleitung

stitutionen eine fundierte Entscheidungsgrundlage, für angemessene und verantwortungsvolle Maßnahmen zur Verfügung zu stellen. In fast allen westlichen Industrienationen ist in Zukunft eine signifikante Steigerung der Zahl älterer Menschen zu erwarten. Zusammen mit der (weiter) steigenden Lebenserwartung und einem vergleichsweise schwachen Anstieg (oder sogar Rückgang) der absoluten Geburtenzahlen, wird sich künftig ein beachtlicher Anteil der Gesellschaft zu Gunsten der älteren Personengruppen verschieben. Dieser Effekt wird in der Literatur als demografische Alterung oder demografische Verschiebung (auch: Double-Aging-Effekt) bezeichnet. Des Weiteren ist im höheren Alter die Wahrscheinlichkeit an einer oder mehrerer (altersbedingter) Krankheiten zu erkranken wesentlich höher als in jüngeren Jahren und wird in Zukunft, auf Grund der erwarteten demografischen Entwicklung dazu führen, dass Krankheitsfälle innerhalb der Bevölkerung zunehmen werden. (vgl. Nowossadeck, 2012) Diese Arbeit soll in weiterer Folge als Abschätzung dafür dienen, wie sich die verschiedenen Erkrankungen (Hauptdiagnosegruppen lt. ICD-10 Klassifikation) innerhalb der österreichischen Bevölkerung in Zukunft entwickeln werden.

2. Aufgabenstellung

Das Ziel dieser Masterarbeit ist es, die Krankheitslast innerhalb der österreichischen Bevölkerung möglichst genau und detailliert zu modellieren. Mithilfe einer interaktiven Benutzeroberfläche sollen verschiedene Szenarien simuliert und deren Ergebnisse anhand von Diagrammen veranschaulicht werden.

Die Durchführung der Arbeit gliedert sich hierbei grob in 4 Blöcke:

- 1. Einarbeitung
- 2. Konzept und Datenrecherche
- 3. Erstellung des Modells und Simulationen
- 4. schriftliche Ausarbeitung

Zu Beginn der Arbeit soll eine grundlegende Einarbeitung in die zugrundeliegende Thematik erfolgen. Diese Umfasst die Beleuchtung der Strukturen der allgemeinen Gesundheitsversorgung, die zukünftigen Entwicklungen in der Gesundheitsversorgung, die bestehenden Modelle der Gesundheitsversorgung und die demographische Entwicklung. Zum besseren Verständnis der Zusammenhänge sollen bestehende Modelle (Bevölkerungsmodell, Modell des österreichischen Gesundheitswesens) des Instituts für Health Care Engineering mit Europaprüfstelle für Medizinprodukte herangezogen werden. Neben aktuellen Zahlen zu Morbidität und Mortalität soll auch die Anderung der Bevölkerungsentwicklung im Zuge einer Recherche erfasst und in das Modell implementiert werden. Für die Recherche von aktuellen Zahlen wird hierbei unter anderem die STATcube-Umgebung von Statistik Austria verwendet. Anschließend an die Recherche erfolgt die Implementierung des Modells in die Entwicklungsumgebung AnyLogic und eine Simulation unterschiedlicher Szenarien. Hierbei gilt es darauf zu achten, dass das erstellte Modell für eine zukünftige Detaillierung eines Gesamtmodells erweiterbar sein soll und mögliche Schnittstellen zu anderen

2. Aufgabenstellung

Modulen (Bevölkerungsmodell, Inanspruchnahme-Modul) berücksichtigt werden. Die Simulationsergebnisse sollen anhand von geeigneten Diagrammen veranschaulicht und diskutiert werden. Im Anschluss an die Simulation erfolgt eine Verifizierung des Modells anhand von historischen Daten. Die Beschreibung des Modells soll die Darstellung der Zusammenhänge innerhalb des Modells anhand von Wirkungsgraphen, einer Liste aller im Modell verwendeten Variablen inklusive einer Kurzbeschreibung sowie die Veranschaulichung aller Berechnungsschritte und mathematischen Zusammenhänge enthalten.

In diesem Kapitel werden die zur Anwendung gekommenen Methoden zur Lösung der Aufgabenstellung genauer erläutert. Hierbei liegt das Hauptaugenmerk auf der Recherche der zugrundeliegenden Literatur und der Daten, mit denen in weiterer Folge die verschiedenen Modellberechnungen durchgeführt werden, sowie auf der Entwicklung und der Implementierung des Modells in der Entwicklungsumgebung AnyLogic (The AnyLogic Company, North America).

3.1. Literaturrecherche

In diesem Abschnitt wird das methodische Vorgehen zur Gewinnung geeigneter Literatur beschrieben, um die Leitfrage: "Wird die österreichische Bevölkerung immer kränker?" zu beantworten. Im Folgenden wird erläutert, welche Keywords die Grundlage der Suche bildeten, welche Quellen herangezogen wurden und welche Literatur schlussendlich zur Erfüllung der Aufgabenstellung diente.

Literaturrecherche mit "Schneeballsystem"

Zu Beginn der Recherche wurde auf einschlägigen Seiten, welche sich mit der Gesundheitsthematik beschäftigen, ohne spezielle Einschränkungen nach geeigneten Daten und Literatur gesucht. Die einzelnen Quellen für diese erste Sondierung des relevanten Themengebietes sind in Tabelle 1 dargestellt.

Nr.	Quelle	Link
1	Statistik Austria	https://www.statistik.at/
2	Bundesministerium Gesundheit & Frauen	https://www.bmgf.gv.at/
3	Öffentliches Gesundheitsportal Österreich	https://www.gesundheit.gv.at/
4	World Health Organization	http://www.euro.who.int/de
5	Statistisches Amt der EU	http://ec.europa.eu/eurostat/de/home

Tabelle 1.: Verwendete Quellen für Literaturrecherche mit Schneeballsystem

Auf den genannten Seiten aus Tabelle 1 findet sich eine Vielzahl von Informationen zu gesundheitsrelevanten Themen. Auf der Seite von Statistik Austria finden sich unter anderem statistische Jahrbücher zu verschiedensten Themengebieten, die unsere Gesellschaft beeinflussen. Neben Informationen zur Wirtschaft, der Bevölkerung und der Umwelt, erhält man auch detaillierte Statistiken zur Gesundheit in Österreich (siehe Statistik Austria, 2017c). Auch auf der Webpräsenz des Bundesministeriums für Gesundheit und Frauen konnten einige interessante Beiträge zur Bearbeitung der eigenen Aufgabenstellung gewonnen werden (siehe Hofmarcher, 2013). Nach einer ersten groben Durchsicht der erhaltenen Beiträge, wurden auch die Quellen der jeweiligen Beiträge gesichtet um durch ein sogenanntes Schneeballsystem an weiterführende Sekundärliteratur zu gelangen. Bei Verwendung eines solchen Schneeballsystems für die Recherche gilt es zu beachten, die eigentliche Aufgabenstellung nicht aus den Augen zu verlieren und stets den Überblick über die gesammelte Literatur zu behalten. Aus diesem Grund muss jede gesichtete Quelle und jeder Beitrag vom Standpunkt der eigenen Aufgabenstellung aus, auf hinreichende Relevanz zur Erfüllung ebendieser bewertet werden. Anhand dieser Recherchemethode konnten so insgesamt 24 Publikationen gewonnen werden.

Systematische Literaturrecherche

Im ersten Schritt der systematischen Recherche wurde ein Brainstorming durchgeführt um geeignete Keywords zu extrahieren, welche sich mit der zugrundeliegenden Thematik beschäftigen. Abbildung 1 zeigt das durchgeführte Brainstorming, aus welchem in weiterer Folge die für die Suche relevanten Keywords gewonnen wurden.

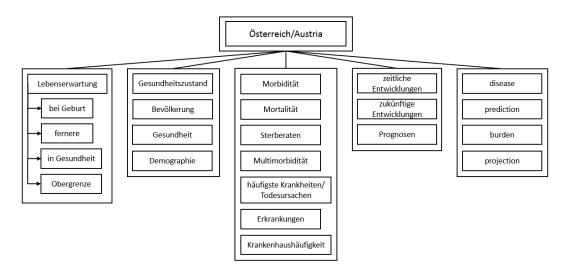


Abbildung 1.: Brainstorming für Keywords

Im nächsten Schritt wurde bestimmt, in welchen Quellen nach geeigneter Literatur gesucht werden sollte. Prinzipiell bieten sich dafür mehrere Suchmaschinen bzw. Datenbanken für eine wissenschaftliche Literaturrecherche an. Aus Gründen der einfachen Handhabung und der Literatur- bzw. Ergebnisverwaltung wurde Google Scholar (Google Inc.) als primäre Quelle für die Suche nach geeigneter Literatur verwendet.

Im weiteren Verlauf der Recherche wurde Google Scholar nach den Keywords durchsucht, welche anhand einer entsprechenden UND-Verknüpfung zur Einschränkung der Ergebnisse führten. Hierbei wurden bei den einzelnen Suchdurchläufen jeweils die ersten 100 Einträge der Suchergebnisse anhand ihres Titels betrachtet. Wenn der Titel des Beitrages vielversprechend war, wurde das Abstract der jeweiligen Abhandlung gelesen bzw.

Nr.	Keywords	Ergebnisse	Beiträge		
1 11.	Reywords	Ligebilisse	gesichtet	davon in Arbeit verwendet	
1	gesundheitszustand bevölkerung österreich	10900	29	2	
2	morbidität mortalität österreich	6240	5	1	
3	multimorbidität österreich	3480	8	-	
4	krankheitslast österreich	863	11	-	
5	lebenserwartung in gesundheit österreich	11400	17	5	
6	lebenserwartung morbidität mortalität entwicklung österreich	2090	13	2	
7	morbiditätsprognosen	143	3	1	
8	disease burden prediction austria	46800	4	-	
9	gesundheit krankheit im alter österreich	32700	7	3	
10	lebenserwartung morbidität mortalität österreich	2270	11	3	
11	bevölkerungsentwicklung österreich	7690	1	1	
12	demografischer wandel deutschland	16800	4	4	
13	entwicklung bevölkerungsstruktur österreich	4460	4	1	
14	entwicklung lebenserwartung österreich	48000	10	4	

Tabelle 2.: systematische Literaturrecherche Keywords

das Inhaltsverzeichnis betrachtet, um grob feststellen zu können, ob der Beitrag zur Bewältigung der Aufgabenstellung verwendet werden konnte. Bei der Anzeige der Suchergebnisse konnte ausgewählt werden, ob diese nach Relevanz oder nach Datum angezeigt werden sollten.

Tabelle 2 veranschaulicht einen Auszug, welche Keywords bei der Suche mit GoogleScholar (Google Inc), zu wie vielen Treffern geführt haben und wie viele wissenschaftliche Beiträge aus der jeweiligen Suche einer näheren Betrachtung unterzogen wurden. Außerdem ist auch die Anzahl der in der Arbeit berücksichtigten Beiträge in der Tabelle angegeben. Die Sortierung der Suchergebnisse erfolgte hierbei nach Relevanz. Hierbei sei noch zu erwähnen, dass sich durch die Suche oftmals Überschneidungen bei der gefundenen Literatur in den Suchergebnissen ergaben. Nach dem Aussortieren etwaiger Duplikate konnten aus der systematischen Literaturrecherche 15 Publikationen für die vorliegende Arbeit herangezogen werden.

3.2. Datenrecherche

Die durchgeführte Datenrecherche und deren Genauigkeit entscheiden in weiterer Folge über das Abstraktionsmaß und somit über die Aussagekraft des Modells. Daher ist es von großer Bedeutung, geeignete Datensätze aus zuverlässigen Quellen zu erhalten. In diesem Abschnitt wird auf die Recherche, die damit verbundenen Daten und die Aufbereitung der entsprechenden Daten genauer eingegangen.

3.2.1. Hauptdatenquellen

Im Zuge der Recherche zeigte sich, dass es schwierig werden würde, an geeignete und aktuelle Datensätze zu kommen. Schlussendlich wurde Statistik Austria als primäre Datenquelle herangezogen, da die benötigten Daten für den intramuralen Bereich in geeignetem Abstraktionsmaß verfügbar waren. Im Zuge der Recherche konnten hierbei nur Daten für den intramuralen Bereich gewonnen werden, da es für den extramuralen (niedergelassenen) Bereich keine flächendeckende Diagnosedokumentation gibt bzw. diese nicht frei zugänglich ist. Als Datenquellen für den intramuralen Bereich stehen die auf Selbstauskünften basierenden Umfragen, die Spitalsentlassungsstatistik, die Krebsstatistik und die Krankenstandsstatistik zur Verfügung (vgl. Bundesministerium für Gesundheit, 2009, S. 11-12). Aufgrund der fehlenden bzw. teilweise unvollständigen und veralteten Diagnosedokumentation konnte der niedergelassene Bereich in dieser Arbeit nicht berücksichtigt werden.

Tabelle 3 zeigt die verwendeten Hauptdatenquellen mit den entsprechenden Links.

3.2.1.1. STATcube - Statistik Austria

Statistik Austria ist ein moderner und qualitativ hochwertiger Informationsdienstleister für die Gesellschaft, Wissenschaft, Wirtschaft, Politik und Verwaltung (vgl. Statistik Austria, 2017e). Mit der von Statistik Austria zur Verfügung gestellten STATcube-Umgebung ist es dem Benutzer möglich,

Nr.	Datenquelle	Link	zuletzt besucht
1	Statistik Austria	http://www.statistik-austria.at	17.05.2017
2	Krankenanstalten in Zahlen	http://www.kaz.bmgf.gv.at/	17.05.2017
3	Bundesministerium für Gesundheit und Frauen	http://www.bmgf.gv.at/	17.05.2017
4	Hauptverband öst. Sozialversicherungsträger	https://www.sozialversicherung.at	17.05.2017
5	Österreichische Ärztekammer	http://www.aerztekammer.at/	17.05.2017
6	Gesundheitsportal Österreich	https://www.gesundheit.gv.at/	17.05.2017
7	World Bank	http://data.worldbank.org/	30.05.2017
8	Eurostat	http://ec.europa.eu/eurostat/de	30.05.2017

Tabelle 3.: Verwendete Hauptdatenquellen für Datenrecherche

Statistiken nach eigenen Bedürfnissen zu erstellen. Im Zuge der Recherche zur Krankheitslast innerhalb der österreichischen Bevölkerung, wurden mit dem Zugang zur STATcube-Software einige "maßgeschneiderte" Datensätze erstellt. Beim Zugriff auf die einzelnen Datenbanken kann man auswählen, welche Dimensionen die erstellten Datensätze aufweisen sollen. Zum Beispiel können die Statistiken nach Alter in Einzeljahren, Geschlecht, Wohnbundesland, einzelne Diagnosen (nach ICD-9 oder ICD-10) etc. aufgeschlüsselt werden. Je nach gewünschter Genauigkeit der Datensätze, können die Daten entweder gratis oder kostenpflichtig (ABO) heruntergeladen werden. Für eine genaue Anleitung zur Benutzung von STATcube siehe STATcube-Benutzerhandbuch (Statistik Austria, 2017f).

Tabelle 4 zeigt die zur Erstellung der benötigten Datensätze zugrundeliegenden Statistiken, welche mit STATcube betrachtet und ausgewertet wurden.

Nr.	Statistik
1	Bevölkerung zu Jahresbeginn ab 1982
2	Gestorbene
3	Spitalsentlassungen

Tabelle 4.: Verwendete Statistiken aus STATcube

Mithilfe der in Tabelle 4 genannten Statistiken, konnten in weiterer Folge die benötigten Datensätze für das Modell generiert werden. Auf die Generierung der für das Modell benötigten Datensätze wird im weiteren Verlauf der Arbeit noch genauer eingegangen (siehe Abschnitt 3.3.5: Generierung der Daten).

Abbildung 2 zeigt den prinzipiellen Aufbau der STATcube Benutzeroberfläche.

Erläuterungen zu den Nummern in Abbildung 2:

- 1. Zeigt die verwendete Datenquelle (zugrundeliegende Statistik).
- 2. Auswahl der verschiedenen Felder (z.B. Geschlecht, Alter, Entlassungsart, Diagnose).
- 3. Wenn das Grundgerüst der Tabelle zusammengesetzt wurde, können mit diesem Button die Daten abgerufen und die Tabelle befüllt werden.
- 4. Löschen des Tabellengrundgerüsts/der fertigen Tabelle.
- 5. Mit diesem Drop-Down-Feld kann ausgewählt werden, wie die Tabelle gespeichert werden soll (z.B. Excel, oder *.csv-Datei).

Abbildung 2.: Benutzeroberfläche STATcube (siehe: http://statcube.at/statistik.at/ext/statcube/jsf/tableView/tableView.xhtml, 19.04.2018)

3.3. Datenaufbereitung

Dieser Abschnitt beschäftigt sich mit der für die Realisierung des Projekts notwendigen Datenaufbereitung. Neben der Festlegung der Detaillierung des Modells (Bestimmung der abgebildeten Erkrankungen im Modell), werden hier auch die erforderlichen Berechnungen erläutert, welche im weiteren Verlauf dazu dienen, Voraussagen über bestimmte Erkrankungs- bzw. Todeshäufigkeiten treffen zu können. Weiters wird auch auf die geeigneten Techniken zur Prognose und Hochrechnung der Daten anhand von verschiedenen Regressionsmodellen eingegangen. Im letzten Teil dieses Kapitels wird noch beschrieben, wie die Datensätze für die weitere Verarbeitung durch das Modell in AnyLogic 8.2.3 (The AnyLogic Company) generiert wurden.

3.3.1. Abstraktionsmaß - Detaillierung der Daten

Mithilfe der Statistiken von Statistik Austria ist es möglich Krankheiten auf sehr hohem Abstraktionsniveau zu erfassen. Das bedeutet, dass Krankheiten anhand der internationalen ICD-Klassifizierung in entsprechende Einzeldiagnosen aufgeschlüsselt werden können. Hierbei kann man auswählen ob die Krankheiten nach der veralteten Klassifikation ICD-9 oder nach der aktuell zur Anwendung kommenden Klassifikation ICD-10 aufgeschlüsselt werden sollen. Die internationale Klassifikation der Krankheiten (Anm.: International Classification for Diseases) ist die Grundlage für die Identifikation von Gesundheitstrends und der internationale Standard um Krankheiten und andere gesundheitsbezogene Zustände zu dokumentieren bzw. zu melden. Sie ist der diagnostische Klassifikationsstandard für alle klinischen Recherchezwecke. ICD definiert Krankheiten, Funktionsstörungen, Verletzungen und andere gesundheitsbezogene Zustände, welche in einer umfassenden, hierarchischen Art aufgelistet werden. (vgl. WHO, 2017)

Für einen genaueren Einblick in die Gliederung der aktuell in Österreich zur Anwendung kommenden ICD-Codes siehe Bundesministerium für Gesundheit und Frauen (2017).

Die Auswahl der Krankheiten, welche einen guten Überblick über die Krankheitslast innerhalb der österreichischen Bevölkerung geben sollen,

wird in dieser Arbeit auf die 20 Hauptdiagnosegruppen gemäß der ICD-10 Klassifizierung beschränkt, da eine genauere Aufschlüsselung mit Einzeldiagnosen nach ICD-10 den Rahmen dieser Arbeit sprengen würde. Bei Bedarf kann das Modell, durch die Verfügbarkeit detaillierterer Daten auf eine noch höhere Abstraktionsstufe erweitert werden. So wäre es beispielsweise möglich, bestimmte Einzeldiagnosen zu modellieren und somit einen noch genaueren Einblick in die einzelnen Erkrankungen der Bevölkerung zu erhalten.

Für eine genaue Aufschlüsselung, welche Hauptdiagnosen am häufigsten gestellt werden bzw. welche Hauptdiagnosen für die meisten Todesfälle verantwortlich sind (Prozentualer Anteil der Hauptdiagnosen an allen Diagnosen/Todesfällen), sei der Leser auf Abschnitt 4.1.3 Morbidität und Abschnitt 4.1.4 Mortalität verwiesen.

Tabelle 5 zeigt die 20 Hauptdiagnosegruppen, nach denen Krankheiten gemäß ICD-10 eingeteilt werden.

Nr.	Hauptdiagnosegruppen ICD-10	Gliederung
1	Bestimmte infektiöse und parasitäre Krankheiten	A00-B99
2	Neubildungen	Coo-D ₄ 8
3	Krankheiten des Blutes, der blutbildenden Organe	D50-D89
4	Endokrine-, Ernährungs-, Stoffwechselkrankheiten	Eoo-E9o
5	Psychische Störungen, Verhaltensstörungen	Foo-F99
6	Krankheiten des Nervensystems	G00-G99
7	Krankheiten des Auges, der Augenanhangsgebilde	H00-H59
8	Krankheiten des Ohres, des Warzenfortsatzes	H60-H95
9	Krankheiten des Kreislaufsystems	I00-I99
10	Krankheiten des Atmungssystems	Joo-J99
11	Krankheiten des Verdauungssystems	Koo-K93
12	Krankheiten der Haut, der Unterhaut	Loo-L99
13	Krankheiten des Muskel-Skelett-Systems, des Bindegewebes	Moo-M99
14	Krankheiten des Urogenitalsystems	Noo-N99
15	Schwangerschaft, Geburt, Wochenbett	O00-O99
16	Bestimmte Zustände mit Ursprung in der Perinatalperiode	Poo-P96
17	Angeborene Fehlbildungen, Deformitäten, Chrom.anomalien	Q00-Q99
18	Andere Symptome, abnorme klininische Laborbefunde	Roo-R99
19	Verletzungen, Vergiftungen, Folgen äußerer Ursachen	Soo-T98
20	Andere Faktoren der Inanspruchnahme des Gesundheitswesens	Zoo-Z99

Tabelle 5.: Übersicht über die 20 Hauptdiagnosegruppen gemäß ICD-10 (siehe Bundesministerium für Gesundheit und Frauen, 2017)

3.3.2. Pareto-Analyse

Um feststellen zu können, welche Hauptdiagnosen bei Männern und Frauen, in verschiedenen Altersgruppen, für die meisten Erkrankungen bzw. Todesfälle verantwortlich waren und in weiterer Folge die zeitliche Entwicklung der Morbiditäts- und Mortalitätsraten der häufigsten Hauptdiagnosegruppen darzustellen, wurde eine Pareto-Analyse der aktuellsten Spitalsentlassungsstatistik und Todesursachenstatistik durchgeführt. Hierbei sollten für die Darstellung der zeitlichen Entwicklung der Krankheiten/Todesursachen, jene Hauptdiagnosen herangezogen werden, die für zumindest 80 % aller Erkrankungs- bzw. Sterbefälle innerhalb der verschiedenen Altersgruppen verantwortlich sind, um die auftretende Krankheitslast innerhalb der Bevölkerung in ausreichendem Maße zu beleuchten. Die Festlegung der Aufteilung der Altersgruppen erfolgte in 4 breite Altersgruppen (0-14, 15-44, 45-64 und 65+ Jahre), wie sie in der medizinischen Standardliteratur bzw. in verschiedenen Statistiken (siehe Statistik Austria) häufiger verwendet werden. Die Pareto-Analyse beruht auf dem Paretoprinzip, nach welchem die meisten Auswirkungen eines Problems (80%), oft nur auf eine kleine Anzahl von Ursachen zurückzuführen sind (20%) (vgl. Vorest AG, 2017). Mit Hilfe der Pareto-Analyse war es also möglich, aus allen Hauptdiagnosen diejenigen herauszufiltern, die den größten Beitrag zu den aufgetretenen Erkrankungs- und Sterbefällen leisteten. Im Folgenden wird die prinzipielle Vorgehensweise bei der Durchführung einer Pareto-Analyse erläutert und die Erstellung eines Paretodiagramms anhand eines schematischen Beispiels verdeutlicht. Die einzelnen Berechnungen und Diagramme wurden mit dem Tabellenkalkulationsprogramm Excel 2013 (Microsoft) erstellt. Die Ergebnisse der durchgeführten Pareto-Analyse sind in den Abschnitten 4.1.3 und 4.1.4 dargestellt.

Vorgehensweise bei der Pareto-Analyse

Der erste Schritt umfasst die Bildung von unterschiedlichen Kategorien für mögliche Ursachen eines Problems. Zusätzlich muss eine Größe bestimmt werden, mit welcher die Auswirkungen, beispielsweise die Häufigkeit des Auftretens eines Problems, verdeutlicht werden können. Im konkreten Fall wurden den jeweiligen Hauptdiagnosegruppen (Ursachen), die einzelnen

krankheits- bzw. sterbebezogenen Fallzahlen (Auswirkungen) zugeordnet. Anschließend wurde der prozentuale Anteil der einzelnen Hauptdiagnosegruppen an der Gesamtheit der aufgetretenen Erkrankungs- und Sterbefälle berechnet.

Der prozentuale Anteil der Hauptdiagnosegruppe an allen Erkrankungsbzw. Sterbefällen berechnet sich zu:

%-Anteil
$$_{HDG} = \frac{\text{Erkrankungs-/Sterbef\"{a}lle in HDG}}{\text{alle Erkrankungs-/Sterbef\"{a}lle}} \cdot 100$$
 (3.1)

Abschließend wurden die einzelnen Hauptdiagnosegruppen absteigend nach Größe geordnet und in einem entsprechenden Balkendiagramm dargestellt. Zusätzlich wurde in einer weiteren Kurve der kumulierte Prozentanteil der einzelnen Hauptdiagnosegruppen an allen Erkrankungs- und Sterbefälle eingezeichnet um abschätzen zu können, welche Hauptdiagnosegruppen, für welchen Prozentanteil an Erkrankungs- bzw. Sterbefällen verantwortlich sind.

Beispiel

Folgendes schematisches Beispiel soll dazu beitragen, die Erstellung eines Paretodiagramms besser zu verstehen. Tabelle 6 zeigt auftretende Krankheiten A-H, deren zugeordnete Fallzahlen, den anhand von Gleichung 3.1 berechneten prozentualen Anteil der entsprechenden Krankheit an allen Krankheitsfällen, sowie den kumulierten (summierten) prozentualen Anteil der einzelnen Krankheiten.

Krankheit	Fälle	%-Anteil	%-Anteil (kum.)
A	2	5,71	5,71
В	8	22,86	28,57
С	1	2,86	31,43
D	7	20,00	51,43
E	3	8,57	60,00
F	9	25,71	85,71
G	1	2,86	88,57
H	4	11,43	100,00

Tabelle 6.: Daten für schematische Pareto-Analyse

Anschließend werden die Werte aus Tabelle 6 anhand ihres Prozentanteils an allen Krankheitsfällen absteigend geordnet und in Form eines Balkendiagramms dargestellt. Des Weiteren wird der kumulierte Prozentanteil der Krankheiten in einer eigenen Kurve im Diagramm eingezeichnet. Hierfür muss eine zweite Y-Achse innerhalb des Diagrammbereichs erstellt werden um eine gleichzeitige Darstellung der absoluten Fallzahlen, sowie der kumulierten Prozentsätze zu ermöglichen. Abbildung 3 zeigt das anhand der Daten aus Tabelle 6 erstellte Paretodiagramm.

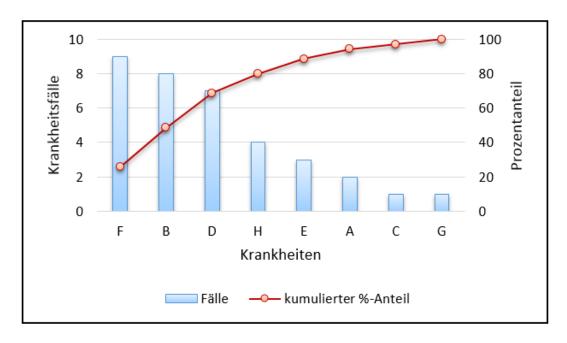


Abbildung 3.: schematisches Paretodiagramm

Anhand von Abbildung 3 lässt sich erkennen, dass sowohl die verschiedenen Krankheiten entsprechend nach Anzahl an Krankheitsfällen geordnet dargestellt werden, als auch der kumulierte Prozentanteil der jeweiligen Erkrankungen in einer eigenen Kurve dargestellt wird. Anhand dieser Darstellung lässt sich einfach bestimmen, welchen Einfluss die einzelnen Erkrankungen auf die Gesamtzahl an Fällen haben. Beispielsweise kann man anhand der roten Kurve erkennen, dass die häufigsten 4 Krankheiten (F, B, D und H) in Summe für 80% aller Krankheitsfälle verantwortlich sind.

3.3.3. Berechnungen

Die Berechnungen der einzelnen Erkrankungs- bzw. Todeswahrscheinlichkeiten wurde aufgrund der enormen Datenmenge und der leichteren Handhabung der einzelnen Datensätze mit Excel 13 (Microsoft) durchgeführt. Hierfür wurden die Formeln für die Morbiditäts- und die Mortalitätswahrscheinlichkeiten direkt in eine Excel-Arbeitsmappe eingegeben und für die gewählten 20 Hauptdiagnosegruppen in allen Altersstufen zwischen 0 und 95+ Jahren geschlechterspezifisch berechnet. Anschließend wurden die Ergebnisse grafisch aufbereitet für die weitere Verwendung mit AnyLogic in Version 8.2.3 (The AnyLogic Company) im geeigneten Dateiformat (*.csv) abgespeichert. Die Berechnungen aus diesem Abschnitt dienen im weiteren Verlauf der Modellbildung der Berechnung der erkrankten bzw. gestorbenen Individuen im simulierten Zeitraum.

3.3.3.1. Morbiditätswahrscheinlichkeit

Um im Modell veranschaulichen zu können, wie viele Personen innerhalb eines bestimmten Zeitraums an einer bestimmten Krankheit leiden, wurden im weiteren Verlauf Morbiditäts- bzw. Erkrankungswahrscheinlichkeiten für die einzelnen Erkrankungen (im gewünschten Abstraktionsmaß - siehe Abschnitt 3.3.1 Abstraktionsmaß - Detaillierung der Daten) geschlechterspezifisch und für die jeweilige Altersgruppe in Einzeljahren (o-95+ Jahre) berechnet.

Die Morbiditätswahrscheinlichkeit für eine bestimmte Erkrankung in einer bestimmten Altersgruppe berechnet sich zu:

$$P_{\text{Morbidität}} = \frac{\text{Anzahl erkrankter Personen in Altersgruppe}}{\text{Anzahl aller Personen in Altersgruppe}}$$
 (3.2)

3.3.3.2. Mortalitätswahrscheinlichkeit

Zur Modellierung der Anzahl der Todesfälle für bestimmte Erkrankungen (siehe Abschnitt 3.3.1 Abstraktionsmaß - Detaillierung der Daten) wurden

zunächst Mortalitäts- bzw. Sterbewahrscheinlichkeiten berechnet. Die Berechnung dieser Wahrscheinlichkeiten erfolgte geschlechterspezifisch für die jeweiligen Altersgruppen in Einzeljahren (o-95+ Jahre).

Die Mortalitätswahrscheinlichkeit berechnet sich zu:

$$P_{Mortalit {a}t} = \frac{Anzahl\ gestorbener\ Personen\ in\ Altersgruppe}}{Anzahl\ aller\ Personen\ in\ Altersgruppe}}$$
 (3.3)

3.3.4. Trenderkennung und Prognose

Zur Erstellung von aussagekräftigen Prognosen war es im weiteren Verlauf von Interesse die berechneten Erkrankungs- und Todeswahrscheinlichkeiten anhand einer geeigneten Methode zu bewerten und anschließend in die Zukunft hochzurechnen. So sollte es möglich sein, anhand der prognostizierten Daten, Vorhersagen darüber treffen zu können, wie viele Leute in der Zukunft, beispielsweise im Jahr 2045, an einer bestimmten Krankheit erkranken oder sterben würden. Die Verarbeitung der Datenmengen erfolgte mit der Open-Source-Programmiersprache R in Version 3.1.1 (The R Foundation), welche für statistische Berechnungen und entsprechende grafische Aufbereitung verwendet wird. Im Folgenden werden die untersuchten Prognosemethoden genauer vorgestellt und beschrieben, welche Überlegungen zur Verwendung der jeweiligen Prognosemethode geführt haben. Des Weiteren wird die Verwendung der jeweiligen Prognosemethoden in der Arbeit diskutiert (siehe Kapitel 5 Diskussion).

3.3.4.1. lineare Regression

Im Verlauf der Arbeit wurden die vorhandenen Erkrankungs- und Sterberaten der einzelnen Altersgruppen für Männer und Frauen mitunter durch lineare Regression prognostiziert. Durch die gewählte lineare Regression ergaben sich gewisse Ungenauigkeiten auf die in Abschnitt 5.1 Trenderkennung und Prognose näher eingegangen wird. Neben der linearen Regression wurden die zukünftigen Erkrankungs- und Sterberaten auch durch andere Regressionsmodelle prognostiziert, jedoch war es anhand dieser weiteren Vorhersagemethoden nicht möglich, realistische Prognosen zu erstellen (siehe Abschnitt 5.1).

Abbildung 4 zeigt die tatsächlichen Erkrankungsraten aufgetragen über die Jahre und die rot eingezeichnete Regressionsgerade für Herz-Kreislauferkrankungen bei Männern in der Altersgruppe von 58 Jahren.

Die Ausreißer im Jahr 1997 und 2005 in Abbildung 4 lassen sich dadurch erklären, dass es in diesen Jahren zu einem leichtem Anstieg der Bevölkerungszahlen innerhalb der Gruppe der 58-jährigen Männer kam.

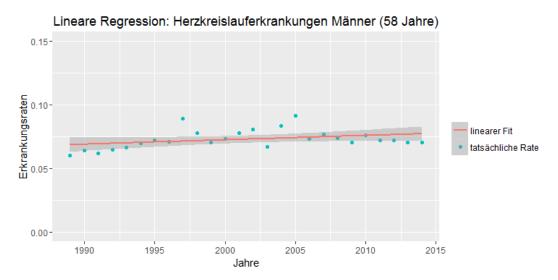


Abbildung 4.: Regressionsgerade und tatsächliche Erkrankungsraten für Herz-Kreislauferkrankungen bei 58-jährigen Männern (Daten zur Berechnung der Erkrankungsraten aus Spitalsentlassungsstatistik und Bevölkerungsstatistik)

3.3.4.2. robuste lineare Regression

Der Nachteil der gewöhnlichen linearen Regression besteht darin, dass diese sehr anfällig gegenüber Ausreißern ist und das Regressionsmodell durch ebensolche verfälscht werden kann. Aus diesem Grund sollte stattdessen die robuste lineare Regression verwendet werden, welche sich dadurch auszeichnet, dass Ausreißer das Modell nicht so stark beeinflussen. Bei der robusten linearen Regression werden die einzelnen Datenpunkte anhand eines M-Schätzers gewichtet und anschließend die Regressionsgerade berechnet. Datenpunkte die aus dem normalen Muster der anderen Punkte herausfallen (= Ausreißer) werden hierbei mit einer geringeren Gewichtung versehen, damit sie später das Ergebnis des linearen Modells nicht so stark beeinflussen. Abbildung 5 zeigt einen schematischen Datensatz mit einem Ausreißer und einen Vergleich der gewöhnlichen linearen Regression mit der robusten linearen Regression.

Wie in Abbildung 5 ersichtlich, beeinflusst der Ausreißer bei der gewöhnlichen linearen Regression die Steigung der Regressionsgeraden. Somit kommt es bei der konventionellen linearen Regression (blaue Regressionsgerade) zu einer Verzerrung der Regressionsgeraden in Richtung des Ausreißers. Bei

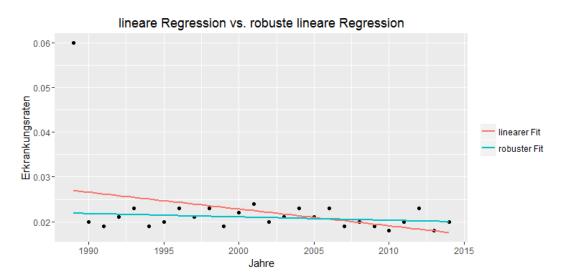


Abbildung 5.: Vergleich von gewöhnlicher linearer Regression und robuster linearer Regression

der robusten linearen Regression (blaue Regressionsgerade) hingegen fällt der Ausreißer nicht so stark ins Gewicht. Durch Verwendung der robusten linearen Regression wurden die Daten im Hinblick auf eventuelle einzelne Störgrößen vor einer Verfälschung des Ergebnisses geschützt.

Abschließend sei noch hinzuzufügen, dass es unter bestimmten Umständen, wie z.B. einem stark fallenden Verlauf vorkommen kann, dass die lineare Regression mit dem Fortschreiten der Simulation einen Wert kleiner o erreicht (lineare Regressionsfunktion schneidet x-Achse). In diesem Fall wäre es für die entsprechende Altersgruppe nicht möglich, ab diesem Zeitpunkt die weiteren Erkrankungs- bzw. Sterberaten zu prognostizieren (da diese \leq o sind). Um eine Fehlfunktion des Modells zu vermeiden wurden nachträglich alle Erkrankungs- und Sterberaten, die durch die lineare Regression ab einem bestimmten Zeitpunkt < o waren, auf einen konstanten Wert von o gesetzt.

3.3.4.3. Konstante Erkrankungs- und Sterberaten

In einigen Publikationen, wie der Arbeit von Peters et al., 2010 oder Nowossadeck, 2012, wurde die Berechnung des zukünftigen Krankheits- und Sterbegeschehens innerhalb der Bevölkerung durch konstante Erkrankungsund Sterberaten realisiert. Hierbei werden die Erkrankungs- bzw. Sterberaten der einzelnen Altersgruppen für die verschiedenen Hauptdiagnosegruppen ab dem letzten bekannten Berichtsjahr (letztes Jahr, für welches Daten für die stationäre Morbidität und Mortalität vorhanden sind) bis zum Ende der Simulation im Jahr 2049, auf dem letzten bekannten Wert, konstant gehalten. Bei dieser Art der Projektion ändert sich also nur die Zusammensetzung der Bevölkerung, während alle anderen Variablen zur Berechnung der Erkrankungs- und Sterbefälle konstant gehalten werden. Diese Art der Projektion berücksichtigt keine möglichen Anderungen in der Morbidität oder Mortalität, beispielsweise durch Senkung der Erkrankungswahrscheinlichkeit aufgrund von entsprechenden Präventionsmaßnahmen und dient eher als grobe Abschätzung, wohin sich das aktuelle Krankheitsgeschehen bei der angenommenen Veränderung der Bevölkerungsstruktur bewegt.

3.3.4.4. Mittelwertberechnung vergangener Erkrankungs- und Sterberaten

Neben der Prognose der Erkrankungs- und Sterbezahlen auf Grund von konstanten Erkrankungs- bzw. Sterberaten und Prognose durch lineare Regression, wurde auch noch eine dritte Möglichkeit implementiert. Hierbei kann der Nutzer zu Beginn der Simulation einen Zeitraum (2-10 Jahre) in der Vergangenheit wählen, für welchen in weiterer Folge der Mittelwert der auftretenden Erkrankungs- und Sterberaten berechnet und anschließend ab dem letzten bekannten Berichtsjahr (2014) konstant gehalten wird. Prinzipiell unterscheidet sich diese weitere Methode zur Prognose nur gering von der Prognosemethode anhand der konstanten Erkrankungs- bzw. Sterberaten, jedoch kann durch die Berechnung des Mittelwertes der entsprechenden Raten angenommen werden, dass der Trend der letzten Jahre hier genauer abgebildet und das Ergebnis dementsprechend weiter verfeinert wird.

3.3.4.5. Weitere Prognosemethoden

Neben den oben beschriebenen Prognosemethoden, wurden in der medizinischen Standardliteratur auch noch weitere Ansätze gefunden mit denen Vorhersagen durchgeführt werden können. Beispielsweise werden Krebsinzidenzen und -mortalitäten in den Arbeiten von Haberland et al., 2006 oder Ferlay et al., 2007 anhand log-linearer Modelle analysiert und prognostiziert. Die Verwendung der log-linearen Modelle verhindert bei fallenden Trends, dass negative Werte vorhergesagt werden. Der größte Nachteil dieser Methode ist, dass Prognosen nur für einen vergleichsweise sehr kurzen Zeitraum (5 Jahre) durchzuführen sind (vgl. Ferlay et al., 2007, S.4). In einer weiteren Arbeit wurde versucht, die Entwicklung des Herzinfarkt-Geschehens in Deutschland anhand von Polynomfunktionen 4. Grades zu berechnen (vgl. Wiesner, Grimm und Bittner, 2002). Ergebnisse hierzu gehen aus Abschnitt 5.1 hervor.

3.3.4.6. Gütekriterien von Modellen

Im Folgenden war es von zentralem Interesse, die erwähnten Modelle im Hinblick auf ihre Güte miteinander zu vergleichen, um in weiterer Folge jenes Modell für die Prognose zu verwenden, welches die zugrundeliegenden Daten am "besten" abbildet. Neben dem Akaike Informationskriterium (AIC) wurde auch das Bayesianische Informationskriterium (BIC) für die Bewertung der einzelnen Modelle verwendet. Die Auswertung der Modellvergleiche wurde mit R in Version 3.1.1 (The R Foundation) durchgeführt und kann Abschnitt 5.1 entnommen werden.

AIC - Akaike Informationskriterium

Der Vergleich der verschiedenen Modelle mit AIC erfolgt anhand des Wertes der log-likelihood-Funktion. Der Wert der von der log-likelihood-Funktion zurückgegeben wird, ist eine Wahrscheinlichkeit zwischen o und 1 und gibt in weiterer Folge an, wie gut ein Modell, die zugrundeliegenden Daten erklären kann. Da der Logarithmus zwischen o und 1 negative Zahlen ergibt,

liefert auch die log-likelihood einen negativen Wert. Die Berechnung des AIC ergibt sich aus Formel 3.4 zu:

$$AIC = n + n \cdot log(2\pi) + n \cdot log(RSS/n) + 2(p+1)$$
(3.4)

Wobei die Variable *n* der Anzahl der Beobachtungen entspricht und *RSS* die Residuenquadratsumme¹ angibt. Des Weiteren steht p für die Anzahl der zu schätzenden Parameter. Während der Modellerstellung ist das primäre Ziel die Abweichung zwischen den realen und den vom Modell prognostizierten Werten so gering wie möglich zu halten. Im besten Fall bildet das Modell die Beobachtungen so exakt ab, dass die Residuenquadratsumme (RSS) gegen einen Wert von o strebt. In weiterer Folge ergibt die Berechnung des Termes $log(RSS/n) = log(o) = -\infty$ (siehe Formel 3.4). Das bedeutet, dass der AIC-Wert immer kleiner wird, umso besser die beobachteten Werte vom Modell vorhergesagt werden. Beim Modellvergleich anhand des AIC ist daher jenes Modell zu bevorzugen, dass den kleinsten AIC-Wert aufweist. Es sei dennoch zu erwähnen, dass das AIC nicht als absolutes Gütemaß verstanden werden darf, da auch jenes Modell, dass im Vergleich zu den weiteren Modellen auf Grund des AIC als bestes ausgewiesen wird, eine schlechte Anpassung an die Daten aufweisen kann. Die Anpassung ist in diesem Fall lediglich besser als in den Alternativmodellen. (vgl. Freie Universität Berlin, 2017; Lukas, 2009; Larget, 2003)

BIC - Bayesianisches Informationskriterium

Das Bayesianische Informationskriterium ist dem AIC sehr ähnlich, da zur Bewertung wieder der Wert der log-likelihood-Funktion herangezogen wird. Die Berechnung des BIC erfolgt anhand von Formel 3.5 zu:

$$BIC = n + n \cdot log(2\pi) + n \cdot log(RSS/n) + log(n)(p+1)$$
 (3.5)

Wobei die Variable *n* die Anzahl der Beobachtungen angibt, *RSS* die Residuenquadratsumme repräsentiert und die Variable *p* für die Anzahl der zu schätzenden Parameter steht. Wie auch beim Akaike Informationskriterium

¹Quadratsumme aus beobachteten und vom Modell vorhergesagten Werten

ist auch hier jenes Modell zu bevorzugen, dass den kleinsten BIC-Wert aufweist. Wie das AIC darf auch dieses Informationskriterium nicht als absolutes Gütemaß verstanden werden und kann nur Auskunft darüber geben, wie gut verschiedene Modelle die zugrundeliegenden Daten im Vergleich zueinander abbilden. (vgl. Freie Universität Berlin, 2017; Lukas, 2009)

3.3.5. Generierung der Daten

Zur Berechnung der Erkrankungs- und Sterbefälle innerhalb der verschiedenen Hauptdiagnosegruppen für Männer und Frauen in den Altersgruppen (o-95+ Jahre), werden zu Beginn der Modellierung dynamisch Datensätze eingelesen, die die Erkrankungs- bzw. Sterbewahrscheinlichkeiten beinhalten. Um in weiterer Folge mit den von Statistik-Austria erhaltenen Datensätzen arbeiten zu können, mussten die einzelnen Daten entsprechend angepasst bzw. aufbereitet werden. In diesem Abschnitt wird das Hauptaugenmerk auf die Erstellung und das Aufbereiten der Datensätze für die spätere Verwendung und Weiterverarbeitung im Modell gelegt.

Zu Beginn erfolgte die Beschaffung der Rohdaten mit Hilfe der, von Statistik Austria zur Verfügung gestellten, Benutzeroberfläche STATcube. Im Rahmen eines kostenpflichtigen Zuganges (Abo) zu den einzelnen Statistiken von Statistik Austria, wurden die entsprechenden Morbiditätsfallzahlen (stationäre Aufnahmen) der verschiedenen Hauptdiagnosegruppen aus der Spitalsentlassungsstatistik und die Todesfälle innerhalb der Hauptdiagnosegruppen aus der Todesursachenstatistik entnommen und entsprechende Tabellen erstellt, die eine geschlechter- und altersspezifische Zuordnung der einzelnen Datensätze ermöglichen. Im weiteren Verlauf wurden mit Hilfe von Excel 2013 (Microsoft) die Erkrankungs- und Sterbewahrscheinlichkeiten für alle Hauptdiagnosegruppen und alle Altersgruppen für die vorhandenen Berichtsjahre (1989-2014) berechnet. Die Berechnung der Morbiditäts- bzw. Mortalitätswahrscheinlichkeit ist hierbei Formel 3.2 bzw. Formel 3.3 aus Abschnitt 3.3.3 zu entnehmen. Nach der Berechnung der Morbiditäts- und Mortalitätswahrscheinlichkeiten innerhalb der 20 Hauptdiagnosegruppen für Männer und Frauen und das Alter in Einzeljahren, wurden die Ergebnisse der Berechnungen in eindeutig zuordenbaren *.csv-Dateien abgespeichert,

um die korrekte weitere Verwendung der Daten gewährleisten zu können. Schlussendlich wurden auf diese Weise 39 Dateien zur Abbildung der stationären Morbidität und 35 Dateien zur Abbildung der Gesamtmortalität erzeugt. Hierbei ist anzumerken, dass innerhalb bestimmter Hauptdiagnosegruppen keine Morbiditäts- oder Mortalitätsfallzahlen auftraten.

Im nächsten Schritt erfolgte die Hochrechnung und Prognose der morbiditäts- und mortalitätsspezifischen Wahrscheinlichkeiten innerhalb der einzelnen Hauptdiagnosegruppen für Männer und Frauen mit dem Alter in Einzeljahren anhand der robusten linearen Regression. Auf Grund der benutzerfreundlichen Gestaltung, wurden sämtliche Prognosen mit dem Statistik-Programm R in Version 3.1.1 (The R-Foundation) erstellt. Mit Hilfe eines Skripts wurden die einzelnen *.csv-Dateien, welche die Erkrankungs- und Sterbewahrscheinlichkeiten der Berichtsjahre 1989-2014 der unterschiedlichen Hauptdiagnosegruppen beinhalten, eingelesen und weiterverarbeitet. Im Anschluss an die Verarbeitung der morbiditäts- und mortalitätsspezifischen Daten und deren entsprechende Prognose mithilfe der robusten linearen Regression, wurden die entsprechenden Datensätze wieder in eindeutig identifizierbare *.csv-Dateien für die entsprechende Weiterverarbeitung durch das Modell abgespeichert. Hierbei sei anzumerken, dass die einzelnen Dateien, sowohl die tatsächlichen Erkrankungsund Sterbewahrscheinlichkeiten im Zeitraum von 1996-2014, als auch die prognostizierten Wahrscheinlichkeiten im Zeitraum von 2015-2050, beinhalten. Anhand dieser Gestalt der Datensätze ist es dem Nutzer möglich, Krankheits- und Sterbedaten, sowohl anhand der linearen Regression (ab 2015), als auch anhand von konstanten aktuellen Morbiditäts- und Mortalitätswahrscheinlichkeiten (ab dem letzten bekannten Berichtsjahr 2014) oder dem konstanten Mittelwert der Wahrscheinlichkeiten (im gewünschten Zeitraum von 2005-2014), zu modellieren.

Der Source-Code des R-Skripts zur Prognose der Morbiditäts- und Mortalitätsraten innerhalb der 20 Hauptdiagnosegruppen für Männer, Frauen und das Alter in Einzeljahren, kann dem Anhang entnommen werden (siehe Anhang: Abschnitt A).

3.4. Modellkonzept

Aufgrund der besseren Übersichtlichkeit wurde das Modell zur Darstellung der Krankheitslast innerhalb der österreichischen Bevölkerung in mehrere Teilmodule unterteilt. Prinzipiell besteht das Modell aus folgenden Modulen:

- 1. Bevölkerungsmodul
- 2. Modul: stationäre Morbidität
- 3. Mortalitätsmodul

Im Folgenden werden die Abläufe innerhalb der einzelnen Module anhand von entsprechenden Wirkungsgraphen genauer veranschaulicht und erläutert.

3.4.1. Modul: Bevölkerung

Dieses Modul simuliert die Entwicklung der österreichischen Bevölkerung über den gewünschten Zeitraum. Da auf dem Institut für Health Care Engineering in der Vergangenheit mehrere wissenschaftliche Arbeiten durchgeführt wurden, die auf eine Modellierung der österreichischen Bevölkerung angewiesen waren, wurde in weiterer Folge auf eine aktuelle Version der bestehenden Bevölkerungsmodellierung zurückgegriffen. Das Bevölkerungsmodul in der jetzigen Form wurde mit allfälligen Änderungen aus der Masterarbeit von Dipl. Ing. Felix Ebner übernommen (siehe Ebner, 2017). Die weiteren Module (stationäre Morbidität und Mortalität) greifen im Rahmen ihrer Berechnungen auf die modellierte Bevölkerungsstruktur zurück. Hierbei ist zu beachten, dass das Bevölkerungsmodell sowohl eine Altersgruppenverteilung in Einzeljahren (von 0-95+ Jahren), als auch eine Altersgruppenverteilung in breiten Altersgruppen (0-14, 15-44, 45-64 und 65-95+ Jahre) liefert.

Die weiteren vorgenommenen Änderungen des Bevölkerungsmoduls sind Abschnitt 3.5.3 Modulbeschreibung zu entnehmen.

3.4.2. Modul: stationäre Morbidität

Innerhalb des Moduls der stationären Morbidität werden die auftretenden Erkrankungsfallzahlen der einzelnen Hauptdiagnosegruppen für Männer und Frauen für das Alter in Einzeljahren (o-95+ Jahre) und das Alter in breiten Altersgruppen (o-14, 15-44, 45-65 und 65-95+ Jahre) berechnet.

Abbildung 6 zeigt den Wirkungsgraphen des Modules der stationären Morbidität.

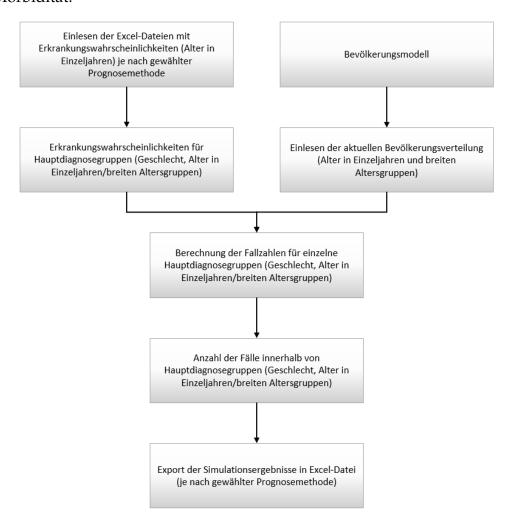


Abbildung 6.: Wirkungsgraph Modul: stationäre Morbidität

Zu Beginn werden die Excel-Dateien, die die Erkrankungswahrscheinlichkeiten für die verschiedenen Hauptdiagnosegruppen für Männer, Frauen und dem Alter in Einzeljahren beinhalten, dynamisch eingelesen und in entsprechenden, eindeutig identifizierbaren Variablen gespeichert. Zur gleichen Zeit findet ein Zugriff auf die aktuell simulierte Bevölkerungsstruktur innerhalb des Bevölkerungsmoduls statt. In weiterer Folge wird die aktuell simulierte Bevölkerungsverteilung (Personen in bestimmter Altersgruppe) mit den entsprechenden Erkrankungswahrscheinlichkeiten multipliziert, um die Fallzahlen innerhalb der verschiedenen Hauptdiagnosegruppen in den simulierten Jahren zu berechnen. Die Berechnung der Fallzahlen erfolgt geschlechterspezifisch und für das Alter in Einzeljahren (0-95+ Jahre) als auch für das Alter in breiten Altersgruppen (0-14, 15-44, 45-64 und 65-95+ Jahre) und ergibt sich aus der Umformung der Formel 3.2 aus Abschnitt 3.3.3.1 zu

Kranke in
$$AG^2 = P_{Morbiditat} \cdot \#$$
 alle Personen in AG (3.6)

Abschließend werden die erhaltenen Simulationsergebnisse (Fallzahlen für bestimmte Hauptdiagnosegruppen) je nach verwendeter Prognosemethode in entsprechende Excel-Dateien exportiert um die weitere Auswertung der Daten zu ermöglichen.

3.4.3. Modul: Mortalität

Im Mortalitätsmodul werden, analog zur Berechnung der Krankheitsfälle im Modul der stationären Morbidität, Sterbefälle innerhalb der verschiedenen Hauptdiagnosegruppen geschlechterspezifisch und für die verschiedenen Altersgruppen (Alter in Einzeljahren und breiten Altersgruppen) berechnet.

² Altersgruppe	

Abbildung 7 zeigt den Wirkungsgraphen des Mortalitätsmoduls.

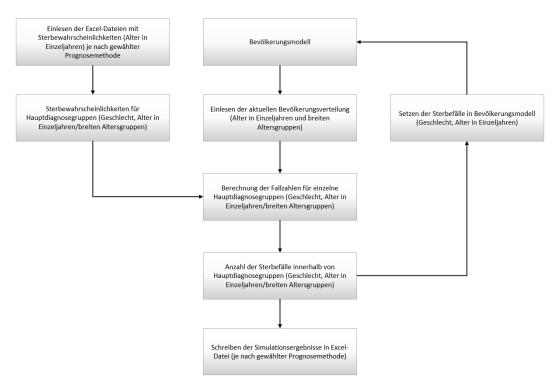


Abbildung 7.: Wirkungsgraph Modul: Mortalität

Auch hier erfolgt zu Beginn der dynamische Datenimport der unterschiedlichen Excel-Dateien, welche die Sterbewahrscheinlichkeiten innerhalb der einzelnen Hauptdiagnosegruppen geschlechterspezifisch und für das Alter in Einzeljahren enthalten. Parallel zum Einlesen und Abspeichern der Sterbewahrscheinlichkeiten in entsprechenden Variablen wird auf die aktuelle Bevölkerungsstruktur (Bevölkerungsmodul) zugegriffen, um weitere Berechnungen zu ermöglichen. Die Berechnung der Sterbefälle in den entsprechenden Altersgruppen erfolgt analog zum Modul der stationären Morbidität. Durch Umformen der Formel 3.3 aus Abschnitt 3.3.3.2 werden die Sterbefälle innerhalb der verschiedenen Hauptdiagnosegruppen folgendermaßen berechnet:

Sterbefälle in AG =
$$P_{Mortalitat} \cdot \#$$
 alle Personen in AG (3.7)

Nach der Berechnung der Sterbefälle innerhalb der verschiedenen Altersgruppen (AG), wird die aktuelle Bevölkerungsstruktur um ebenjene Sterbefälle bereinigt. Dies bedeutet, dass die aufgetretenen Sterbefälle innerhalb der einzelnen Hauptdiagnosegruppen von der Bevölkerung subtrahiert (rückwirkender Einfluss des Mortalitätsmoduls auf das Bevölkerungsmodul) werden. Somit wird sichergestellt, dass sich die Bevölkerung in jedem Jahr unter anderem um die berechnete, gestorbene Bevölkerung ändert. Abschließend werden die Simulationsergebnisse, je nach zu Beginn der Simulation gewählter Prognosemethode, in entsprechende Excel-Dateien exportiert um die weitere Analyse der gewonnenen Daten gewährleisten zu können.

3.5. Implementierung in AnyLogic

Zur Modellierung der Krankheitslast innerhalb der österreichischen Bevölkerung wird das Programm Anylogic (The Anylogic Company) in der aktuellen Version 8.2.3 verwendet. Mit Hilfe der vorliegenden Software ist es möglich, Problemstellungen der realen Welt effizient und sicher zu simulieren und einen genaueren Einblick in komplexe Systeme zu erhalten (vgl. Grigoryev, 2015).

3.5.1. Auswahl Modellierungstechnik

Anhand von Anylogic (The Anylogic Company) können Problemstellungen auf verschieden hohen Abstraktionsebenen modelliert werden. Folgende Modellierungstechniken können hierbei verwendet werden:

- 1. Agent Based Modeling
- 2. Discrete Event Modeling
- 3. System Dynamics Modeling

Agent Based Modeling betrachtet einzelne, aktive Komponenten eines Systems. In der agentenbasierten Simulation werden sogenannte Agenten identifiziert und deren Verhalten definiert. Agenten können hierbei einzelne Personen, Fahrzeuge, Produkte oder Firmen darstellen. Im Vordergrund hierbei steht, das Verhalten einzelner Einheiten, mit deren Hilfe sich das Systemverhalten beschreiben lässt. Aufgrund von agentenbasierter Modellierung lassen sich niedrige und mittlere Abstraktionsniveaus bei der Simulation realisieren. (vgl. Grigoryev, 2015; The Anylogic Company, 2018)

Die diskrete Ereignismodellierung betrachtet einzelne Prozesse eines Systems auf einem niedrigen bis mittleren Abstraktionsniveau. Diese Modellierungstechnik kommt oft zur Anwendung, wenn das zu simulierende System durch eine Abfolge von gewissen Prozessen oder Operationen beschrieben werden kann. (vgl. Grigoryev, 2015; The Anylogic Company, 2018) Da die Krankheitslast innerhalb der österreichischen Bevölkerung auf einem hohen Abstraktionsniveau modelliert werden soll, war diese Modellierungstechnik nicht geeignet.

Die Modellbildung anhand von System Dynamics ermöglicht eine Modellierung auf einer hohen Abstraktionsebene. Hierbei werden die feinen Details eines Systems, wie z.B. die Eigenschaften von einzelnen Personen, Produkten oder Ereignissen vernachlässigt. Diese Art der Modellierung ermöglicht eine Langzeitsimulation von komplexen Systemen. Innerhalb von System Dynamics Modellen werden die verschiedenen Zusammenhänge des Systems mit Hilfe von Stocks (Personen, Geld, etc.) und Flows (Änderungen von Stocks über die Zeit) beschrieben. (vgl. Grigoryev, 2015; The Anylogic Company, 2018)

Da die Krankheitslast der österreichischen Bevölkerung auf einem hohen Abstraktionsniveau modelliert werden sollte und gewisse Parameter des Modells, wie zum Beispiel die Bevölkerung, als Stock realisiert wurden, welcher sich aufgrund verschiedener Flows (z.B. Geburten, Erkrankte, Sterbende, etc.) ändert, wurde das vorliegende Modell mit Hilfe der System Dynamics Modellierungstechnik erstellt.

3.5.2. Simulierter Zeitraum

Da das vom Institut bereitgestellte Bevölkerungsmodell im Jahr 1996 startet, wurde dieser Zeitpunkt auch als ein möglicher Startpunkt für die Simulation der Krankheitslast innerhalb der österreichischen Bevölkerung gewählt. Der Startzeitpunkt des Modells kann gegebenenfalls durch eine Anderung des Bevölkerungsmodells weiter in die Vergangenheit verschoben werden (siehe Abschnitt 5.4 Mögliche Erweiterungen des Modells). Des Weiteren ist es auch möglich das Modell im Jahr 2014 zu starten, da für dieses Jahr die letzten aktuellen Morbiditäts- bzw. Mortalitätsdaten recherchiert werden konnten (letztes aktuelles Berichtsjahr). Es ist anzumerken, dass die dem Modell zugrundeliegenden Berechnungen unabhängig vom gewählten Startpunkt durchgeführt werden. Das Ende der Simulation bildet das Jahr 2050 und wurde deshalb gewählt, da Prognosen darüber hinaus mit großer Wahrscheinlichkeit sehr fehleranfällig und nicht besonders aussagekräftig wären. Je nach Wahl des Startzeitpunktes werden also entweder 54 Jahre (Start im Jahr 1996) oder 36 Jahre (Start im Jahr 2014) simuliert. Hierbei gilt es zu beachten, dass die gesamten Modellberechnungen mit dem Jahr

2049 abgeschlossen sind und das Jahr 2050 nicht mehr in die Modellierung einbezogen wurde.

3.5.3. Modulbeschreibung

Wie in Abschnitt 3.5.3 bereits erwähnt, besteht das Modell aus 3 Hauptkomponenten (Modulen). Basis des Modells stellt das Bevölkerungsmodul dar, welches die für die Berechnung der verschiedenen Parameter (Erkrankungsund Sterbefälle) zugrundeliegende Bevölkerungsverteilung zur Verfügung stellt. In Abbildung 8 sind die verschiedenen Klassen des Modells, mit ihren zugehörigen Variablen und Funktionen, in einem UML-Diagramm dargestellt.

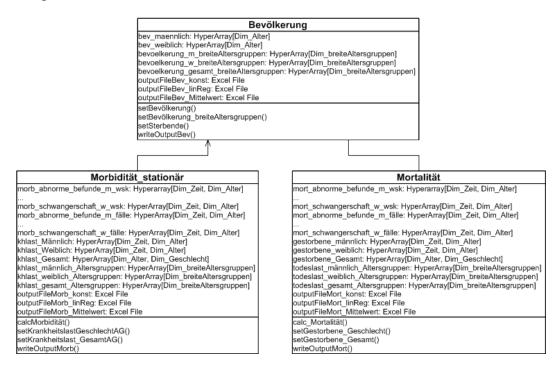


Abbildung 8.: UML-Klassendiagramm des Modells

Bei Betrachtung von Abbildung 8 kann man erkennen, dass die einzelnen Komponenten (Module) des Modells eine eigene Klasse darstellen. Aufgrund dessen, dass das Mortalitätsmodul neben der Berechnung der

aktuellen Todesfälle während dem Fortlaufen der Simulation auch die Bevölkerung beeinflusst (Bevölkerung ändert sich um berechnete Sterbefälle), wurde dieses Modul im Bevölkerungsmodul integriert. So gesehen stellt das Mortalitätsmodul also streng genommen keine eigene Klasse dar, wurde aber aufgrund der besseren Übersichtlichkeit im UML-Klassendiagramm explizit dargestellt. Weiters lassen sich aus dem UML-Diagramm die wichtigsten für die Berechnung erforderlichen Attribute (= Variablen) und Operationen (= Funktionen) herauslesen. Bei der Darstellung der Bevölkerungsklasse im UML-Diagramm wurden hier nur jene Variablen und Funktionen dargestellt, die sich von der grundlegenden, bereitgestellten Version des Bevölkerungsmodells vom Institut für Health Care Engineering mit Europaprüfstelle für Medizinprodukte unterscheiden (iHCE). Im Folgenden werden die genauen Abläufe innerhalb der einzelnen Module erläutert, um das Funktionsprinzip und das Zusammenwirken der einzelnen Komponenten besser zu veranschaulichen.

3.5.3.1. Modul: Bevölkerung

Im Bevölkerungsmodul wird die Entwicklung der Bevölkerung durch Implementierung von Geburten, Sterbefällen sowie Zu- und Abwanderungen simuliert. Wie bereits erwähnt, wurde das Bevölkerungsmodell vom iHCE der Technischen Universität Graz zur Verfügung gestellt und im Rahmen der Modellentwicklung an die modellspezifischen Anforderungen angepasst und dementsprechend verändert. In diesem Abschnitt werden daher nur jene Teile des Moduls besprochen, die sich von der ursprünglichen, bereitgestellten Version unterscheiden.

In der Ursprungsversion des Moduls war es möglich einzelne Parameter wie Sterblichkeit, Fertilitätsrate, Zu- und Abwanderungen durch entsprechende Schieberegler, vor dem Modellstart in einem eigenen Einstellungsfenster zu verändern. Durch die Auswahl der verwendeten Prognosemethoden (konstante Erkrankungs- und Sterberaten, Prognose durch lineare Regression, sowie Prognose durch konstante Mittelwerte der Erkrankungs- bzw. Sterberaten) am Beginn des Modells wurden diese vormals möglichen Modelleinstellungen obsolet. Des Weiteren war es vormals auch möglich die Bevölkerung der Steiermark zu simulieren oder eine selbst definierte Bevölkerungsdatei

einzulesen. Auf Grund der nicht vorhandenen spezifischen Erkrankungsund Sterbezahlen der Steiermark wurden auch diese Einstellungen aus dem Modell entfernt. Nichtsdestotrotz wurden die entsprechenden Variablen für etwaige Nutzereinstellungen zu Beginn des Modells im Programmcode belassen, um eine Reimplementierung dieser Einstellungen im Rahmen einer Weiterentwicklung des Modells zu gewährleisten (siehe Abschnitt 5.4 Mögliche Erweiterungen des Modells).

Die wichtigsten Änderungen des Bevölkerungsmodells lassen sich aus dem Klassendiagramm (siehe Abbildung 8) ablesen und werden im Folgenden genauer erläutert.

Tabelle 7 zeigt die neu eingeführten Variablen im Bevölkerungsmodul inklusive einer kurzen Beschreibung der Funktion.

Neue Variablen	Beschreibung
bev_maennlich	Speichern der aktuellen männlichen Bevölkerung (Alter in Einzeljahren)
bev_weiblich	Speichern der aktuellen weiblichen Bevölkerung (Alter in Einzeljahren)
bevoelkerung_m_breite_Altersgruppen	Speichern der aktuellen männlichen Bevölkerung (Alter in breiten Altersgruppen)
bevoelkerung_w_breite_Altersgruppen	Speichern der aktuellen weiblichen Bevölkerung (Alter in breiten Altersgruppen)
bevoelkerung_gesamt_breite_Altersgruppen	Speichern der aktuellen Gesamtbevölkerung (Alter in breiten Altersgruppen)

Tabelle 7.: Übersicht über die neu eingeführten Variablen im Bevölkerungsmodul

Die Variablen aus Tabelle 7 wurden in erster Linie eingeführt um in weiterer Folge die entsprechenden Berechnungen zur stationären Morbidität (siehe Modul: stationäre Morbidität) und Mortalität (Modul: Mortalität) durchführen zu können.

In weiterer Folge wurden zusätzlich neue Funktionen eingeführt, um die in Tabelle 7 erwähnten Variablen auf die entsprechenden Werte zu setzen. Die neuen Funktionen zum Setzen der entsprechenden Variablen sind in Tabelle 8 mit einer kurzen Beschreibung angegeben.

Neue Funktionen	Beschreibung
setBevölkerung()	Setzen der Variablen bev_maennlich und bev_weiblich auf aktuelle Werte
setBevölkerung_breiteAltersgruppen()	Setzen der Variablen bevoelkerung_m_breite_Altersgruppen, bevoelkerung_w_breite_Altersgruppen und bevoelkerung_gesamt_breite_Altersgruppen auf aktuelle Werte
setSterbende()	Setzen des Flows: <i>Sterbende</i> auf berechnete Sterbezahlen im Mortalitätsmodul
writeOutputBev()	Schreiben der Ergebnisse der Bevölkerungssimulation in entsprechende Excel-Datei(en)

Tabelle 8.: Übersicht der neu eingeführten Funktionen im Bevölkerungsmodul

Funktion setBevölkerung():

```
for(int j=0; j <= 95; j++){
  bev_maennlich.set(Bevoelkerung.get(j,maennlich),j);
  bev_weiblich.set(Bevoelkerung.get(j,weiblich),j);
}</pre>
```

In dieser Funktion werden die Variablen bev_maennlich und bev_weiblich gesetzt. Die Variablen haben den Datentyp HyperArray und besitzen die Dimension Alter um die jeweilige Bevölkerung im Alter von o-95+ Jahren (in Einzeljahren) abzuspeichern. Zum Zugriff auf die aktuelle Bevölkerung wird eine for-Schleife mit den Werten o-95 (Alter in Einzeljahren) durchlaufen und die männliche und weibliche Bevölkerung an der entsprechenden Stelle der Zählvariable j aus dem Bevölkerungsstock extrahiert (get-Befehl) und anschließend in den entsprechenden Variablen bev_maennlich und bev_weiblich gespeichert (set-Befehl).

Funktion setBevölkerung_breiteAltersgruppen():

Zu Beginn der Funktion erfolgt eine Summierung der aktuellen männlichen und weiblichen Bevölkerung in den jeweiligen breiten Altersgruppen (0-14, 15-44, 45-64 und 65-95+ Jahre). Hierfür werden zu Beginn entsprechende Variablen initialisiert, die in weiterer Folge in einer for-Schleife aufsummiert

werden. Der folgende Code zeigt die Berechnung der Altersgruppe von 0-14 Jahren für Männer und Frauen. Die Berechnung der weiteren Altersgruppen (15-44, 45-64 und 65-95 Jahre) erfolgt analog zum veranschaulichten Beispiel-Code (Schleifen Indizes werden angepasst). Da die Modellberechnungen teilweise Dezimalzahlen für die aktuelle Bevölkerung liefern, werden diese mit dem Befehl *ceil()* gerundet.

```
double sum_bev_o_14_m = o;
double sum_bev_o_14_w = o;

for(int i=o; i <= 14; i++){
   sum_bev_o_14_m += ceil(bev_maennlich.get(i));
   sum_bev_o_14_w += ceil(bev_weiblich.get(i));
}</pre>
```

Anschließend an die Berechnung der Anzahl der Personen in breiten Altersgruppen, werden die entsprechenden Variablen bevoelkerung_m_breite_Altersgruppen, bevoelkerung_w_breite_Altersgruppen und bevoelkerung_gesamt_breite_Altersgruppen durch die Funktion gesetzt. Folgendes Code-Beispiel veranschaulicht das Setzen der Variablen bevoelkerung_m_breite_Altersgruppen und bevoelkerung_w_breite_Altersgruppen für die Altersgruppe 0-14 Jahre.

```
bevoelkerung_m_breite_Altersgruppen.set(
    sum_bev_o_14_m,o);
bevoelkerung_w_breite_Altersgruppen.set(
    sum_bev_o_14_w,o);
```

Am Ende der Funktion erfolgt das Setzen der Variable bevoelkerung_gesamt_breite_Altersgruppen:

```
for(int i = 0; i <= 3; i++){
  bevoelkerung_gesamt_breite_Altersgruppen.set(
    (bevoelkerung_m_breite_Altersgruppen.get(i)+
    bevoelkerung_w_breite_Altersgruppen.get(i)),i);
}</pre>
```

Hierfür wird eine for-Schleife mit einer Zählvariablen *i* verwendet, die von 0-3 (entspricht den Indizes für breite Altersgruppen; 0: 0-14 Jahre,

1: 15-44 Jahre, 2: 45-64 Jahre und 3: 65-95 Jahre) geht und nach jedem Schleifendurchlauf erhöht wird. Innerhalb der Schleife werden die einzelnen breiten Altersgruppen von Männern und Frauen summiert und in der Variable an der entsprechenden Stelle *i* gesetzt.

Funktion setSterbende():

In der Funktion set Sterbende() werden die, anhand des Mortalitätsmoduls, berechneten Sterbefälle unter Berücksichtigung des gegebenen Wegzugs von der Gesamtbevölkerung abgezogen.

```
for (int index_Geschlecht = o; index_Geschlecht <= 1;
    index_Geschlecht++)
for (int i = o; i <= 95; i++){
    Sterbende.set(limitMax(gestorbene_Gesamt.get(
        i,index_Geschlecht),Bevoelkerung.get(
        i,index_Geschlecht)-Wegzug.get(
        i,index_Geschlecht)),i,index_Geschlecht);
}</pre>
```

Die Bevölkerung (Stock) enthält die Dimensionen Alter und Geschlecht. Aufgrund dieser Tatsache werden zwei for-Schleifen verwendet um alle Einträge modifizieren zu können. Innerhalb der zweiten for-Schleife wird der Flow *Sterbende* anhand der im Mortalitätsmodul gestorbenen Personen gesetzt. Da für die Berechnung der Gestorbenen und des Wegzugs dieselbe Basis (Stock: Bevölkerung) verwendet wird, wurde mit dem Befehl *limitMax()* verhindert, dass beim Ausführen der Funktion *setSterbende()* mehr Personen sterben, als in der jeweiligen Altersgruppe nach Abzug des Wegzugs vorhanden sind.

Funktion writeOuputBev():

Die Funktion *writeOutputBev()* dient dazu, die Ergebnisse der Bevölkerungssimulation während der Laufzeit, abhängig von der gewählten Prognosemethode, für das Alter in Einzeljahren und das Alter in breiten Altersgruppen

geschlechterspezifisch (für Männer und Frauen) in entsprechende Excel-Dateien zu schreiben um im weiteren Verlauf die Auswertung und Analyse der simulierten Szenarien zu ermöglichen.

Zu Beginn wird das Grundgerüst der Excel-Dateien erstellt:

```
int t = (int)(time());
for (int i = 1; i \le 2; i++)
  if (Simulation . Radio_Prognosemethode == o){
  //Entspricht konstanten Raten
    outputFileBev_konst.setCellValue("Jahr",i,1,1);
    outputFileBev_konst.setCellValue(t+1996,i,t+2,1);
    outputFileBev_konst.setCellValue(
        "o-14 Jahre", i, 1, 2);
    outputFileBev_konst.setCellValue(
        outputFileBev_konst.setCellValue(
        "45–64 Jahre",i,1,4);
    outputFileBev_konst.setCellValue(
        "65-95 Jahre", i, 1, 5);
 if (Simulation . Radio_Prognosemethode == 1){
  //Entspricht linReg
    outputFileBev_linReg.setCellValue("Jahr",i,1,1);
    ... //analoges Vorgehen
  if (Simulation . Radio_Prognosemethode == 2){
  //Entspricht Mittelwertberechnung
    ... //analoges Vorgehen
  }
```

Die Funktion *time()* liefert die Modellzeit, mit deren Hilfe später die Einträge der Bevölkerungsverteilung an der richtigen Stelle in der Excel-Datei positioniert werden können. In der if-Abfrage erfolgt die Überprüfung, welche Prognosemethode am Beginn der Simulation (durch den Nutzer) gewählt wurde. Je nach Auswahl werden die Ergebnisse entweder in die

Datei *outputFileBev_konst* (bei Prognose mit konstanten Raten), *outputFileBev_linReg* (bei Prognose durch lineare Regression) oder in die Datei *outputFileBev_Mittelwerte* (bei Prognose durch Mittelwerte) gespeichert. Durch den Befehl *setCellValue(value, sheetIndex, rowIndex, columnIndex)* kann eine bestimmte Zelle in einem bestimmten Worksheet auf einen Wert (Value) gesetzt werden. Innerhalb der if-Anweisungen wird das Grundgerüst der Excel-Dateien zusammengestellt um später die Ergebnisse zu den jeweiligen Jahren, Altersgruppen und Geschlechtern zuordnen zu können. Im vorliegenden Beispiel werden die Grundgerüste der Excel-Dateien für breite Altersgruppen zusammengestellt. Die Erstellung der Grundgerüste für das Alter in Einzeljahren erfolgte analog und ist dem Source-Code des Programms zu entnehmen.

Das Befüllen der entsprechenden Excel-Dateien mit den Simulationsergebnissen der Bevölkerung ergibt sich aus folgendem Codeauszug:

```
for(int i = 0; i <= 3; i++){
  if(Simulation.Radio_Prognosemethode == 0){
    outputFileBev_konst.setCellValue(
        bevoelkerung_m_breite_Altersgruppen.get(
        i),"Bev_maennlich_breiteAG",t+2,i+2);
  outputFileBev_konst.setCellValue(
        bevoelkerung_w_breite_Altersgruppen.get(
        i), "Bev_weiblich_breiteAG",t+2,i+2);
}
if(Simulation.Radio_Prognosemethode == 1){
        ... //analoges Vorgehen
}
if(Simulation.Radio_Prognosemethode == 2){
        ... //analoges Vorgehen
}
}</pre>
```

In einer for-Schleife, mit der Zählvariablen *i* welche von o bis 3 geht (entspricht 4 breiten Altersgruppen) wird zunächst durch eine if-Anweisung abgefragt, welche Prognosemethode durch den Nutzer gewählt wurde (konstante Raten, lineare Regression oder Mittelwerte). Innerhalb der if-Anweisung werden die Excel-Sheets (Aufruf durch Name: z.B.

"Bev_männlich_breiteAG") an der richtigen Position mit den entsprechenden Ergebnissen der Simulation befüllt. Auch in diesem Teil spielt die Modellzeit (Variable t) eine wichtige Rolle und sorgt dafür, dass die Ergebnisse an der Stelle des richtigen Jahres eingefügt werden. Das Befüllen der Dateien für das Alter in Einzeljahren funktioniert analog und ist dem Source-Code des Modells zu entnehmen.

Events

Events können bei der Modellausführung dazu verwendet werden, bestimmte Abläufe/Aktionen (z.B. Funktionsaufrufe) in einem zyklischen Muster (= wiederkehrend) durchzuführen. Da alle Programmmodule ihre Berechnungen für jedes simulierte Jahr ausführen sollen, werden die oben beschriebenen Funktionen in einem sich wiederholenden Muster (zyklisch) aufgerufen. Die Modellzeit wurde zu Beginn auf Minuten eingestellt, was bedeutet, dass eine Minute im Modell, einem Jahr in der Simulation entspricht. Tabelle 9 zeigt die, im Bevölkerungsmodell zur Anwendung gekommenen Events und gibt an, welche Funktionen zu welchem Zeitpunkt aufgerufen werden.

Eventname	Funktionsaufruf	Zeitpunkt der Ausführung	Modus
Takt_setBevölkerung	setBevölkerung() setBevölkerung_breiteAG()	o Minuten (Rekurrenz: 1)	zyklisch
Takt_Ausführung	setAbwanderung() setZuzug() setSterbende() setGeburten() Alterung()	o.3 Minuten (Rekurrenz: 1)	zyklisch
TaktBevOutput	writeOutputBev()	o.2 Minuten (Rekurrenz: 1)	zyklisch

Tabelle 9.: Übersicht der Events im Bevölkerungsmodul

Durch den zyklischen Modus des Events *Takt setBevölkerung* werden zu Beginn jedes Jahres (jede Minute) die Funktionen *setBevölkerung()* und *setBevölkerung_breiteAltersgruppen()* aufgerufen um die entsprechenden Variablen zur weiteren Berechnung der Erkrankungs- und Sterbefälle zu ermöglichen. Anschließend wird jede Minute mit dem Startzeitpunkt t = 0.2 Minuten das Event *TaktBevOutput* ausgeführt, welches dafür verantwortlich ist, die aktuelle Bevölkerung in die entsprechenden Excel-Dateien zu schreiben. Abschließend werden durch das Event *Takt Ausführung* zum Zeitpunkt t = 0.3 Minuten, weitere Funktionen aufgerufen, um die Abwanderung, den Zuzug, die Sterbenden, die Geburten und die Alterung der Bevölkerung zu berechnen. Die Angabe der Rekurrenz in Tabelle 9 gibt an, zu welchem Zeitpunkt die Events wiederholt werden. Betrachtet man

das Event *Takt_Ausführung* würde dies bedeuten, dass das Event im Jahr o (= 1996) zum ersten Mal zum Zeitpunkt t = 0.3 Minuten ausgeführt wird und anschließend die weitere Ausführung jede Minute wiederholt wird (1: t=1.3; 2: t=2.3, etc.). Das Event *TaktBevOutput* (Funktionsaufruf zum Exportieren der simulierten Bevölkerung in Excel-Sheet) wird vor dem Event *Takt_Ausführung* ausgeführt, da die Änderungen der Bevölkerung (Sterbende, Zuzug, Wegzug und Geburten) im Laufe des aktuell simulierten Jahres wirksam werden und somit die Bevölkerung zu Beginn des darauffolgenden Jahres beeinflussen. Somit stehen in der Ergebnisdatei der Bevölkerung, jene Bevölkerungswerte, die am Anfang des Jahres zu verzeichnen sind.

3.5.3.2. Modul: stationäre Morbidität

Im Modul der stationären Morbidität werden die Erkrankungsfälle von Männern und Frauen für das Alter in Einzeljahren (o-95+ Jahre) und das Alter in breiten Altersgruppen (o-14, 15-44, 45-64 und 65-95+ Jahre) berechnet. Zu Beginn der Simulation werden dynamisch Excel-Dateien eingelesen, welche die Erkrankungsraten bis zum letzten bekannten Berichtsjahr (2014), sowie die prognostizierten Erkrankungsraten durch die durchgeführte lineare Regression bis zum Jahr 2050, für alle Hauptdiagnosegruppen beinhalten. Das Einlesen der Excel-Dateien erfolgt hierbei über den Befehl ExcelFile.readHyperArray(HyperArray array, String cellName, boolean dim1AcrossRows):

```
morb_abnorme_befunde_m_data.readHyperArray(
    morb_abnorme_befunde_m_wsk, "Sheet1!B2", true );
```

In obigem Beispiel wird die Exceldatei morb_abnorme_befunde_m_data eingelesen und in einem entsprechenden Parameter morb_abnorme_befunde_m_wsk mit den Dimensionen Zeit und Alter abgespeichert. Der String Sheet1!B2 gibt hierbei den Zellennamen an, bei dem mit dem Einlesen begonnen werden soll und der boolean dim1AcrossRows (true) gibt an, ob die Daten entsprechend der ersten Dimension über die Reihen eingelesen werden soll. Das Einlesen der Excel-Dateien erfolgt analog für alle Hauptdiagnosegruppen, die im Verlauf der Prognose mit R in Version 3.1.1 (The R Foundation) erstellt wurden und sind dem Source-Code des Modells zu entnehmen.

Tabelle 10 zeigt die wichtigsten Parameter und Variablen des Moduls: stationäre Morbidität inklusive einer kurzen Beschreibung.

Variablenname	Beschreibung
morb_abnorme_befunde_m_wsk morb_schwangerschaft_w_wsk	Parameter, die die eingelesenen Erkrankungs- wahrscheinlichkeiten (Excel-Dateien) aller Hauptdiagnosegruppen beinhalten
morb_abnorme_befunde_m_fälle morb_schwangerschaft_w_fälle	Variablen, welche die berechneten Erkrankungsfälle aller Hauptdiagnosegruppen für Männer und Frauen für das Alter in Einzeljahren beinhalten
khlast_männlich_Altersgruppen	Berechnete Krankheitslast für Männer in breiten Altersgruppen (alle HDG)
khlast_weiblich_Altersgruppen	Berechnete Krankheitslast für Frauen in breiten Altersgruppen (alle HDG)
khlast_gesamt_Altersgruppen	Berechnete Krankheitslast Gesamt in breiten Altersgruppen (alle HDG)

Tabelle 10.: Übersicht der Variablen des Moduls: stationäre Morbidität

Die Funktionen des Modules der stationären Morbidität sind Tabelle 11 inklusive einer kurzen Beschreibung zu entnehmen.

Funktion	Beschreibung
calc_Morbidität()	Berechnung der Morbidität für alle Hauptdiagnosegruppen für Männer und Frauen und das Alter in Einzeljahren (0-95+)
set Krankheits last Geschlecht AG()	Berechnung der Krankheitslast (Summe der Erkrankungsfälle) für Männer und Frauen in breiten Altersgruppen
setKrankheitslastGesamtAG()	Berechnung der Krankheitslast (Summe der Erkrankungsfälle) für Bevölkerung Gesamt in breiten Altersgruppen
writeOutputMorb()	Schreiben der Simulationsergebnisse in Excel-Dateien (abhängig von gewählter Prognosemethode)

Tabelle 11.: Funktionen des Moduls: stationäre Morbidität

Neben den in Tabelle 11 dargestellten Funktionen, gibt es auch noch 2 weitere Funktionen (setKrankheitslastGeschlecht() und setKrankheitslast_Gesamt()), welche die Krankheitslast für Männer und Frauen und für die Gesamtbevölkerung für das Alter in Einzeljahren berechnen und in entsprechende Variablen schreiben. Im vorliegenden Modell wurden diese 2 Funktionen

deaktiviert, da für die Auswertung der Erkrankungsdaten die Krankheitslast in breiten Altersgruppen herangezogen wurde. Diese beiden Funktionen können jedoch bei Bedarf durch einen Funktionsaufruf im entsprechenden Event wieder aktiviert werden.

Funktion calc_Morbidität():

In dieser Funktion werden die Erkrankungsfälle der einzelnen Hauptdiagnosegruppen für Männer und Frauen für das Alter in Einzeljahren für den kompletten Prognosezeitraum, abhängig von der gewählten Prognosemethode und des gewählten Startzeitpunktes (1996 oder 2014) berechnet. Zur Berechnung der Erkrankungsfälle werden die Erkrankungswahrscheinlichkeiten in der jeweiligen Altersgruppe mit der Anzahl, der in der Altersgruppe befindlichen Personen multipliziert (siehe Formel 3.6). Nachfolgender Code-Ausschnitt zeigt die Realisierung der Berechnung der Erkrankungsfälle, wenn konstante Erkrankungsraten ab 2014 angenommen werden:

```
for(int i = 0; i \le 95; i++){
  if (Simulation. Radio_Simulationsbeginn == 0 &
        Simulation. Radio_Prognosemethode == o){
    int t = (int)(time()); //Modellzeit = o (1996)
    if (t <= 18)
                  //Zeit bis 2014
      morb_abnorme_befunde_m_faelle.set(
        ceil (bevoelkerung.bev_maennlich.get (
        i) * morb_abnorme_befunde_m_wsk.get(
        t,i)), t, i);
      morb_schwangerschaft_w_faelle.set(
        ceil (bevoelkerung.bev_weiblich.get (
        i) * morb_schwangerschaft_w_wsk.get(
        t,i)), t, i);
    }else{
           //konstante Rate ab 2014
      morb_abnorme_befunde_m_faelle.set(
        ceil (bevoelkerung.bev_maennlich.get (
        i) * morb_abnorme_befunde_m_wsk.get(
        18, i)), t, i);
      morb_schwangerschaft_w_faelle.set(
        ceil (bevoelkerung.bev_weiblich.get(
        i) * morb_schwangerschaft_w_wsk.get(
        18,i)), t, i);
    }
  }
```

In einer for-Schleife mit der Zählvariablen *i*, die von o-95 geht (Altersgruppen in Einzeljahren) findet zuerst eine Abfrage statt welcher Startzeitpunkt und welche Prognosemethode gewählt wurde. Ist der Wert des Radio-Buttons von der Eingabemaske für den Prognosestart (*Radio_Simulationsbeginn*) gleich o und der Wert der gewählten Prognosemethode (*Radio_Prognosemethode*)

ebenfalls o, entspricht dies einem Simulationsstart im Jahr 1996 mit konstanten Erkrankungsraten ab dem letzten bekannten Berichtsjahr (2014). In weiterer Folge wird mit einer if-Anweisung die momentane Laufzeit des Modells überprüft. So lange die Modellzeit t kleiner gleich 18 (entspricht dem Jahr 2014) ist, werden die Erkrankungsraten innerhalb der Hauptdiagnosegruppen mit den jeweiligen Bevölkerungszahlen für Männer und Frauen multipliziert und die entsprechenden Variablen der Erkrankungsfälle an der richtigen Stelle (t für Jahr und i für Alter) gesetzt. Durch den Befehl ceil() werden die Ergebnisse der Berechnungen auf ganze Zahlen gerundet. Wird die Variable t der Modellzeit größer als 18 (also größer als das entsprechende Jahr 2014) sollen die Erkrankungsfälle bis zum Ende der Simulation mit konstanten Raten des Jahres 2014 berechnet werden. Dies wird durch eine wiederkehrende Multiplikation der veränderten Bevölkerung über die Jahre mit der immer gleichen (konstanten) Erkrankungsrate der jeweiligen Hauptdiagnosegruppe erreicht. In obigem Beispiel ist dies an *morb_abnorme_befunde_m_wsk.get(18,i)* zu erkennen, wobei hier die Erkrankungsrate des Jahres 2014 (= 18) in der entsprechenden Altersgruppe, repräsentiert durch die Schleifenzählvariable i, bis zum Ende der Schleifenausführung verwendet wird.

Innerhalb der gleichen for-Schleife findet eine weitere Abfrage statt um zu überprüfen, ob zu Beginn der Modellstart im Jahr 2014 gewählt wurde und ob die Berechnung der Erkrankungsfälle innerhalb der einzelnen Hauptdiagnosegruppen mit konstanten Erkrankungsraten durchgeführt werden soll.

```
if(Simulation.Radio_Simulationsbeginn == 1 &
    Simulation.Radio_Prognosemethode == 0){
    int t = (int)(time()+18); //Modellzeit = 18 (2014)

    morb_abnorme_befunde_m_faelle.set(
        ceil(bevoelkerung.bev_maennlich.get(
        i) * morb_abnorme_befunde_m_wsk.get(
        18,i)), t, i);
}
```

Sollte die obige Abfrage *true* ergeben wird die Modellzeit *t* auf 18 gesetzt,

was dem Jahr 2014 entspricht. Die weitere Berechnung der Erkrankungsfälle funktioniert dann gleich wie in vorigem Beispiel beschrieben.

In einer weiteren if-Anweisung wird anschließend überprüft, ob als Startzeitpunkt das Jahr 1996 und als Prognosemethode die lineare Regression durch den Nutzer gewählt wurde.

```
if(Simulation.Radio_Simulationsbeginn == 0 &
    Simulation.Radio_Prognosemethode == 1){

int t = (int)(time());  //Modellzeit = 0 (1996)

morb_abnorme_befunde_m_faelle.set(
    ceil(bevoelkerung.bev_maennlich.get(
    i) * morb_abnorme_befunde_m_wsk.get(
    t,i)), t, i);
}
```

Auch hier wird zu Anfang wieder überprüft welche Einstellungen der Benutzer zu Modellstart vorgenommen hat. Wenn die Abfrage *Radio_Simulationsbeginn* == 0 & *Radio_Prognosemethode* == 1, true ergibt bedeutet dies, dass der Startzeitpunkt 1996 mit Berechnung der Erkrankungsfälle durch lineare Regression gewählt wurde. Die Berechnung der Erkrankungsfälle erfolgt dann wieder durch die Multiplikation der Erkrankungswahrscheinlichkeiten innerhalb einer bestimmten Altersgruppe mit den entsprechenden vorhandenen Personen innerhalb derselben Altersgruppe. Auch hier werden die Berechnungsergebnisse wieder mit dem Befehl *ceil()* gerundet.

Im einem weiteren Teil der Funktion wird noch überprüft, ob als Startzeitpunkt das Jahr 2014 und als Prognosemethode die lineare Regression gewählt wurde.

```
if (Simulation . Radio_Simulationsbeginn == 1 &
    Simulation . Radio_Prognosemethode == 1) {
    int t = (int)(time()+18); // Modellzeit = 18 (2014)
        ... // Berechnung der Faelle analog
}
```

Wenn obige if-Anweisung *true* ergibt, wird die Modellzeit wieder auf 18 gesetzt, was dem Jahr 2014 entpsricht. Die Berechnung der Krankheitsfälle erfolgt dann wieder analog zu vorigem Beispiel.

Im letzten Teil der Funktion werden noch die Mittelwerte der Erkrankungsraten der letzten Jahre berechnet und mit der entsprechenden simulierten Bevölkerungsverteilung multipliziert. Hierbei kann zu Beginn der Simulation vom Nutzer bestimmt werden, über welchen Zeitraum die Mittelwerte der Erkrankungsraten berechnet werden sollen. Der wählbare Zeitraum der Berechnung kann von 2 bis 10 Jahren variiert werden. Folgender Code-Ausschnitt veranschaulicht die Berechnung der Mittelwerte der Erkrankungsraten für die Hauptdiagnosegruppe der abnormen Befunde für den Startpunkt im Jahr 1996.

```
if(Simulation.Radio_Simulationsbeginn == o &
 Simulation . Radio_Prognosemethode == 2){
 int t = (int)(time()); //Modellzeit
  if (t \le 18)
    morb_abnorme_befunde_m_faelle.set(ceil(
      bevoelkerung.bev_maennlich.get(i) *
      morb_abnorme_befunde_m_wsk.get(t,i))
      , t, i);
    morb_abnorme_befunde_w_faelle.set(ceil(
      bevoelkerung.bev_weiblich.get(i) *
      morb_abnorme_befunde_w_wsk.get(t,i))
      , t, i);
       //Analog fuer weitere HDG
    double mw_abnorme_bef_m = o;
    double mw_abnorme_bef_w = o;
    for(int count = 18 - Mittelwert_Aenderung + 1;
      count <= 18; count++)
     mw_abnorme_bef_m +=
        morb_abnorme_befunde_m_wsk.get(count,i);
      mw_abnorme_bef_w +=
      morb_abnorme_befunde_w_wsk.get(count,i);
      ... // Analog fuer weitere HDG
```

```
int anzahl_jahre = Mittelwert_Aenderung;

mw_abnorme_bef_m = mw_abnorme_bef_m/anzahl_jahre;
mw_abnorme_bef_w = mw_abnorme_bef_w/anzahl_jahre;
... //Analog fuer weitere HDG

morb_abnorme_befunde_m_faelle.set(ceil(
   bevoelkerung.bev_maennlich.get(i) *
   mw_abnorme_bef_m),t,i);
morb_abnorme_befunde_w_faelle.set(ceil(
   bevoelkerung.bev_weiblich.get(i) *
   mw_abnorme_bef_w),t,i);
... //Analog fuer weitere HDG
}
```

Zu Beginn wird mit einer Abfrage überprüft welcher Startzeitpunkt (1996) und welche Prognosemethode vom Nutzer gewählt wurden. Anschließend wird die Modellzeit in der Variable t abgespeichert und die Krankheitsfälle bis zum Jahr 2014 (if($t \le 18$)) durch die Multiplikation der simulierten Bevölkerungsverteilung mit der tatsächlichen Erkrankungsrate berechnet. Ab dem Jahr 2015 erfolgt die Berechnung der Erkrankungsfälle in den jeweiligen Hauptdiagnosegruppen durch die Multiplikation der Bevölkerung mit den Mittelwerten der Erkrankungsraten im Zeitraum der letzten 2 bis 10 Jahre (ausgehend von 2014). Hierfür wurden für alle Variablen entsprechende Summenvariablen gebildet, die in weiterer Folge in einer for-Schleife aufsummiert werden. Die Zählvariable count der for-Schleife stellt hierbei den Zeitraum (Jahre) des zu berechnenden Mittelwertes dar. Im Anschluss an die Aufsummierung der Erkrankungsraten in der for-Schleife werden die Summen noch durch die Anzahl der Jahre dividiert um auf diese Weise den entsprechenden Mittelwert der Hauptdiagnosegruppen zu berechnen. Abschließend wird die aktuelle Bevölkerungsverteilung mit den Mittelwerten der Hauptdiagnosegruppen der letzten Jahre multipliziert um die Erkrankungsfälle innerhalb der einzelnen Erkrankungen für Männer und Frauen zu berechnen. Hierbei werden die berechneten Mittelwerte, vom Jahr 2015 bis zum Ende der Simulation (2050), konstant gehalten.

Funktion setKrankheitslastGeschlechtAG():

Diese Funktion wird verwendet um die Krankheitsfälle innerhalb der verschiedenen Hauptdiagnosegruppen für Männer und Frauen in breiten Altersgruppen (o-14, 15-44, 45-64, 65-95+ Jahre) zu summieren und in entsprechenden Variablen abzuspeichern. Folgender Code-Ausschnitt veranschaulicht die Funktionsweise der Methode setKrankheitslastGeschlechtAG() für Männer in der Altersgruppe von o-14 Jahren.

```
double sumo_14_m = 0; //Summenvariable
for(int i = 0; i \le 14; i++)
  int t = (int)(time()); //Modellzeit
  sumo_14_m += morb_abnorme_befunde_m_faelle.get(t,i)
   + morb_fehlbildungen_m_faelle.get(t,i)
   + morb_ia_ghw_m_faelle.get(t,i)
   + morb_kh_atmung_m_faelle.get(t,i)
   + morb_kh_auge_m_faelle.get(t,i)
   + morb_kh_blut_m_faelle.get(t,i)
   + morb_kh_haut_m_faelle.get(t,i)
   + morb_kh_infpar_m_faelle.get(t,i)
   + morb_kh_kreislauf_m_faelle.get(t,i)
   + morb_kh_muskel_m_faelle.get(t,i)
   + morb_kh_nerven_m_faelle.get(t,i)
    + morb_kh_ohr_m_faelle.get(t,i)
   + morb_kh_perinatal_m_faelle.get(t,i)
   + morb_kh_psych_m_faelle.get(t,i)
    + morb_kh_stoffwechsel_m_faelle.get(t,i)
   + morb_kh_urogenital_m_faelle.get(t,i)
    + morb_kh_verdauung_m_faelle.get(t,i)
   + morb_neubildungen_m_faelle.get(t,i)
    + morb_verletzungen_m_faelle.get(t,i);
khlast_maennlich_Altersgruppen.set(sumo_14_m,o);
```

Zu Beginn wird eine Summenvariable mit dem Wert o initialisiert (sumo_14_m). Anschließend wird in entsprechenden for-Schleifen die gewünschte Altersgruppe iteriert (in diesem Beispiel zählt die for-Schleife von o-14). Innerhalb der for-Schleife werden die Krankheitsfälle für die verschiedenen Hauptdiagnosegruppen in jedem Schritt zur Variable sum_0_14_m hinzuaddiert. Die Berechnung der restlichen Altersgruppen (15-44, 45-64 und 65-95) erfolgt analog durch Anpassung der Schleifenindizes. Am Ende der Funktion wird die entsprechende Variable im Modell

(khlast_maennlich_Altersgruppen) mit dem Wert der Summenvariablen gesetzt.

Funktion setKrankheitslast_GesamtAG():

In dieser Methode wird die gesamte, auftretende Krankheitslast (Summe von Fällen in jeweiligen Hauptdiagnosegruppen bei Männern und Frauen) in einer entsprechenden Variable in breiten Altersgruppen abgespeichert.

```
for(int i = o; i <= 3; i++){
   khlast_gesamt_Altersgruppen.set((
   khlast_maennlich_Altersgruppen.get(i)+
   khlast_weiblich_Altersgruppen.get(i)),i);
}</pre>
```

Hierfür werden in einer for-Schleife die entsprechenden breiten Altersgruppen iteriert (Indizes o-3 entsprechen den breiten Altersgruppen) und innerhalb der Schleife die Variablen der Krankheitslast der Männer und der Frauen (aufgetretene summierte Krankheitsfälle aller HDG innerhalb des simulierten Zeitraums) addiert und die Variable khlast_gesamt_Altersgruppen gesetzt. Hierbei ist zu beachten, dass die Variable khlast_gesamt_Altersgruppen nur die Dimension der breiten Altersgruppe besitzt und sich somit während der Simulation in jedem Jahr (jede Minute) ändert.

Funktion writeOutputMorb():

Die Methode writeOutputMorb() wird dazu verwendet, die Simulationsergebnisse der Morbidität in geeignete Excel-Dateien zu schreiben, um in weiterer Folge die Auswertung der Datensätze zu ermöglichen. Hierbei werden die Ergebnisdatensätze für Männer und Frauen in breiten Altersgruppen, je nach zu Beginn gewählter Prognosemethode, in verschiedene Excel-Dateien exportiert. Die Zusammenfassung der Ergebnisdatensätze zu breiten Altersgruppen war notwendig, um die Anzahl der später erstellten Diagramme zur Entwicklung der Krankheitslast auf ein überschaubares Maß zu senken (Anmerkung: bei Betrachtung von Erkrankungsraten für 95+ Altersgruppen bräuchte man: 20 Hauptdiagnosegruppen * 2 Geschlechter * 95 Altersgruppen = 3800 Diagramme). Nichtsdestotrotz können die Ergebnisdatensätze für Männer und Frauen, für das Alter in Einzeljahren durch eine Anpassung der Funktion writeOuputMorb() auch in entsprechende Excel-Dateien exportiert werden.

Zu Beginn der Funktion werden verschiedene Summenvariablen (entsprechend der breiten Alters- und Hauptdiagnosegruppe) mit dem Wert o initialisiert und in weiterer Folge in entsprechenden for-Schleifen (je nach gewählter Prognosemethode) aufsummiert. Anschließend werden die erhaltenen Ergebnisse aus der Berechnung in die entsprechenden Ausgabedateien (Excel-Files) geschrieben. Folgender Code-Ausschnitt zeigt die Erzeugung und weitere Behandlung der Summenvariablen für die Hauptdiagnosegruppe der abnormen Befunde bei Männern. Die weiteren Summenvariablen (weitere Hauptdiagnosegruppen und Geschlechter) wurden analog erzeugt und in den entsprechenden for-Schleifen aufsummiert.

```
int t = (int)(time()); //Modellzeit
double sumo_14_abn_befunde_m = o;
double sum15_44_abn_befunde_m = o;
double sum45_64_abn_befunde_m = o;
double sum65_abn_befunde_m = o;
//Analog: Erzeugung weiterer Summenvariablen
//fuer HDG und Geschlechter
for(int i = 0; i \le 14; i++)
//Aufsummierung der Erkrankungszahlen in jeweiliger
//HDG und Altersgruppe (0-14 Jahre)
  sumo_14_abn_befunde_m +=
    morb_abnorme_befunde_m_faelle.get(t,i);
for (int i = 15; i \le 44; i++)
  sum15_44_abn_befunde_m +=
    morb_abnorme_befunde_m_faelle.get(t,i);
for(int i = 45; i \le 64; i++){
  sum45_64_abn_befunde_m +=
    morb_abnorme_befunde_m_faelle.get(t,i);
for(int i = 65; i \le 95; i++){
  sum65_abn_befunde_m +=
    morb_abnorme_befunde_m_faelle.get(t,i);
if (Simulation . Radio_Prognosemethode == o){
//entspricht konstanten Erkrankungsraten
```

```
outputFileMorb_konst.setCellValue(
    sumo_14_abn_befunde_m , "abn_befunde" , t+2, 3);
  outputFileMorb_konst.setCellValue(
    sum15_44_abn_befunde_m , "abn_befunde" , t+2, 4);
  outputFileMorb_konst.setCellValue(
    sum45_64_abn_befunde_m, "abn_befunde", t+2, 5);
  outputFileMorb_konst.setCellValue(
    sum65_abn_befunde_m , "abn_befunde" , t+2, 6);
if (Simulation . Radio_Prognosemethode == 1){
//entspricht linearer Regression
  outputFileMorb_linReg.setCellValue(
    sumo_14_abn_befunde_m , "abn_befunde" , t+2, 3);
  ... //Rest analog!
if (Simulation . Radio_Prognosemethode == 2){
//entspricht Mittelwertbildung
  outputFileMorb_Mittelwert.setCellValue(
    sumo_14_abn_befunde_m , "abn_befunde" , t+2, 3);
  ... //Rest analog!
```

Innerhalb von verschiedenen for-Schleifen (mit Zählvariablen entsprechend der vorgegeben breiten Altersgruppen), werden die Erkrankungsfälle (innerhalb einer Hauptdiagnose- und Altersgruppe) in zu Beginn initialisierten Summenvariablen aufsummiert und anschließend, je nach zu Beginn gewählter Prognosemethode, mit dem Befehl *ExcelFileName.setCellValue(...)* in eine entsprechende Excel-Datei exportiert.

Events

Wie auch im Bevölkerungsmodul, werden im Modul der stationären Morbidität, verschiedene Events zur zeitlich koordinierten Ausführung der verschiedenen Funktionen verwendet. Tabelle 12 veranschaulicht die unterschiedlichen Events des Moduls: stationäre Morbidität.

Eventname	Funktionsaufruf	Zeitpunkt der Ausführung	Modus
Takt_calc_morb	calcMorbidität()	o.1 Minuten (Rekurrenz: 1)	zyklisch
Takt_Krankheitslast	setKrankheitslastGeschlechtAG() setKrankheitslast_GesamtAG()	o.2 Minuten (Rekurrenz: 1)	zyklisch
Takt_MorbOutput	writeOutputMorb()	o.5 Minuten (Rekurrenz: 1)	zyklisch

Tabelle 12.: Übersicht der Events des Moduls: stationäre Morbidität

Innerhalb des Moduls der stationären Morbidität wird das Event Takt_calc_morb zum ersten Mal nach 0.1 Minute ausgeführt und anschließend jede weitere Minute (Rekurrenz: 1 Minute) wiederholt (entspricht einer jährlichen Wiederholung). Beim Ausführen des Events erfolgt der Funktionsaufruf calcMorbidität(), bei dem die Erkrankungsfälle innerhalb der 20 Hauptdiagnosegruppen bei Männern und Frauen für das Alter in Einzeljahren (0-95+ Jahre) berechnet werden. Anschließend wird zum Zeitpunkt t = 0.2 Minuten (mit Rekurrenz: 1 Minute) das Event Takt_Krankheitslast ausgeführt, welches in weiterer Folge für die Funktionsaufrufe setKrankheitslastGeschlechtAG() und setKrankheitslast_GesamtAG() verantwortlich ist. Innerhalb dieser beiden Funktionen wird die, für breite Altersgruppen, summierte Krankheitslast für beide Geschlechter und alle Hauptdiagnosegruppen getrennt und zusammen berechnet und in entsprechenden Variablen gespeichert. Nach der Berechnung der Krankheitslast innerhalb der breiten Altersgruppen, werden die entsprechenden Simulationsergebnisse durch die Ausführung des Events *Takt_MorbOutput* zum Zeitpunkt t = 0.5 Minuten (mit Rekurrenz: 1) mit dem Funktionsaufruf writeOutputMorb() in entsprechende Ergebnisdateien exportiert, um die weitere Auswertung der Simulationsergebnisse zu ermöglichen.

3.5.3.3. Modul: Mortalität

Im Modul der Mortälität werden die, innerhalb der verschiedenen für Todesfälle verantwortlichen Hauptdiagnosegruppen, aufgetretenen Todesfälle der simulierten Jahre (1996-2050) berechnet und anschließend für die weitere Auswertung in entsprechende Excel-Dateien exportiert. Zu Beginn der Simulation werden, analog zu der Vorgehensweise im Modul der stationären Morbidität, die entsprechenden Excel Dateien, welche die berechneten Sterberaten für die Jahre bis zum letzten bekannten Berichtsjahr (=2014) und die prognostizierten (hochgerechneten) Sterberaten bis zum Jahr 2050 enthalten, dynamisch eingelesen und in entsprechenden Parametern gespeichert. Das Einlesen der Excel-Dateien erfolgt hierbei zu Beginn der Simulation mit dem Befehl *ExcelDatei.readHyperArray(...)*, wie in folgendem Code-Beispiel veranschaulicht.

```
mort_abnorme_befunde_m_data.readHyperArray(
mort_abnorme_befunde_m_wsk, "Sheet1!B2", true );
```

Im vorliegenden Beispiel wird die Exceldatei mit dem Namen mort _abnorme_befunde_m_data eingelesen und in einem Parameter mort _abnorme_befunde_m_wsk mit den Dimensionen Dim_Zeit (o-54) und Dim_Alter (o-95) abgespeichert. Das Einlesen der weiteren Excel-Dateien (mit Daten zu weiteren Hauptdiagnosegruppen) erfolgt hierbei analog und ist dem Source-Code des Modells zu entnehmen.

In Tabelle 13 sind die wichtigsten Parameter und Variablen des Moduls der Mortalität inklusive einer kurzen Beschreibung dargestellt.

Variablenname	Beschreibung
mort_abnorme_befunde_m_wsk mort_schwangerschaft_w_wsk	Parameter, die die eingelesenen Sterbewahrscheinlichkeiten (Excel-Dateien) aller Hauptdiagnosegruppen beinhalten
mort_abnorme_befunde_m_fälle	Variablen, welche die berechneten Todesfälle
	aller Hauptdiagnosegruppen für Männer und Frauen
mort_schwangerschaft_w_fälle	für das Alter in Einzeljahren (0-95+) beinhalten
gestorbene_männlich	Variablen, die die (für alle Altersgruppen) summierten
gestorbene_weiblich	Sterbezahlen für die entsprechenden Geschlechter
gestorbene_Gesamt	(Männer, Frauen und Gesamt) beinhalten
todeslast_männlich_Altersgruppen	Variablen, die die aufgetretene Sterbelast bei Männern,
todeslast_weiblich_Altersgruppen	Frauen und Gesamt für die verschiedenen Haupt-
todeslast_gesamt_Altersgruppen	diagnosegruppen in breiten Altersgruppen beinhalten

Tabelle 13.: Übersicht der wichtigsten Variablen des Moduls: Mortalität

Die wichtigsten Funktionen des Moduls: Mortalität, sind in Tabelle 14 inklusive einer kurzen Beschreibung angegeben.

Funktion	Beschreibung
calc_Mortalität()	Berechnung der Sterbefälle für alle Hauptdiagnose- gruppen bei Männern und Frauen in Einzeljahren (0-95+)
setGestorbene_Geschlecht()	Berechnung der summierten Sterbefälle für Männer und Frauen unabhängig von HDG und in breiten Altersgruppen
setGestorbene_Gesamt()	Berechnung der Sterbefälle Gesamt für Alter in Einzeljahren und breiten Altersgruppen
writeOutputMort()	Schreiben der Simulationsergebnisse in Excel-Dateien, abhängig von gewählter Prognosemethode

Tabelle 14.: Übersicht der Funktionen des Mortalitätsmoduls

Funktion calc_Mortalität():

In dieser Funktion werden die auftretenden Sterbefälle innerhalb der, für Todesfälle verantwortlichen Hauptdiagnosegruppen, für Männer und Frauen und dem Alter in Einzeljahren berechnet. Die Berechnung erfolgt hierbei analog wie bei der Funktion *calc_Morbidität()* im Modul der stationären Morbidität (siehe Abschnitt 3.5.3.2). Zur Berechnung der Sterbefälle in der jeweiligen Altersgruppe werden die Sterbewahrscheinlichkeiten in der Altersgruppe mit der Anzahl, der in der Altersgruppe existierenden Personen multipliziert (siehe Formel 3.7). Der weitere Funktionsaufbau unterscheidet sich nur minimal von der, im Modul der stationären Morbidität zur Anwendung kommenden Funktion *calc_Morbidität()* und kann dem Source-Code des Modells entnommen werden.

Funktion setGestorbene_Geschlecht():

Die Funktion setGestorbene_Geschlecht() berechnet zur Laufzeit aufgetrete Sterbefälle bei Männern und Frauen für das Alter in Einzeljahren und breite Altersgruppen. Hierbei werden die Sterbefälle innerhalb der einzelnen Hauptdiagnosegruppen summiert und in entsprechenden Variablen gespeichert. Die Summierung der Sterbefälle für Männer und das Alter in Einzeljahren gestaltet sich wie folgt:

```
for(int i = 0; i \le 95; i++){
 int t = (int)(time()); //aktuelle Modellzeit
 gestorbene_maennlich.set(
    mort_abnorme_befunde_m_faelle.get(t,i)
   + mort_boes_neub_m_faelle.get(t,i)
   + mort_fehlbildungen_m_faelle.get(t,i)
   + mort_kh_atmung_m_faelle.get(t,i)
   + mort_kh_blut_m_faelle.get(t,i)
   + mort_kh_haut_m_faelle.get(t,i)
   + mort_kh_infpar_m_faelle.get(t,i)
   + mort_kh_kreislauf_m_faelle.get(t,i)
   + mort_kh_muskel_m_faelle.get(t,i)
   + mort_kh_nerven_m_faelle.get(t,i)
   + mort_kh_perinatal_m_faelle.get(t,i)
   + mort_kh_psych_m_faelle.get(t,i)
   + mort_kh_stoffwechsel_m_faelle.get(t,i)
   + mort_kh_urogenital_m_faelle.get(t,i)
   + mort_kh_verdauung_m_faelle.get(t,i)
   + mort_neubildungen_m_faelle.get(t,i)
   + mort_verletzungen_m_faelle.get(t,i),t,i);
```

Innerhalb einer for-Schleife die mit einer Zählvariablen *i* alle möglichen Altersgruppen (o-95+ Jahre) durchläuft, werden die aufgetretenen Sterbefälle der einzelnen Hauptdiagnosegruppen summiert und in einer entsprechenden Variable gespeichert. Die Berechnung der summierten Sterbefälle, bei Frauen für das Alter in Einzeljahren, gestaltet sich hierbei analog zu obiger Berechnung der Sterbefälle bei Männern und kann dem Source-Code des Modells entnommen werden.

Die Berechnung der summierten Sterbefälle bei Männern und Frauen in breiten Altersgruppen gestaltet sich ähnlich wie die Berechnung der Krankheitsfälle (siehe Funktion: setKrankheitslastGeschlechtAG() im Modul der stationären Morbidität). Zu Beginn der Funktion werden entsprechende

Summenvariablen mit dem Wert o initialisiert und in weiterer Folge in for-Schleifen (deren Zählindizes die jeweilige Altersgruppe repräsentieren) aufsummiert. Anschließend werden die gebildeten Summen der Todesfälle in den entsprechenden breiten Altersgruppen in geeigneten Variablen gespeichert. Folgender Code-Auschnitt zeigt schematisch den Funktionsablauf für Männer in der Altersgruppe von 0-14 Jahren:

```
double sumo_14_m = o; //Initialisierung der
                      //Summenvariable (Maenner o-14].)
for(int i = 0; i \le 14; i++){
 int t = (int)(time()); //aktuelle Modellzeit
 sumo_14_m += mort_abnorme_befunde_m_faelle.get(t,i)
   + mort_boes_neub_m_faelle.get(t,i)
   + mort_fehlbildungen_m_faelle.get(t,i)
   + mort_kh_atmung_m_faelle.get(t,i)
   + mort_kh_blut_m_faelle.get(t,i)
   + mort_kh_haut_m_faelle.get(t,i)
   + mort_kh_infpar_m_faelle.get(t,i)
   + mort_kh_kreislauf_m_faelle.get(t,i)
   + mort_kh_muskel_m_faelle.get(t,i)
   + mort_kh_nerven_m_faelle.get(t,i)
   + mort_kh_perinatal_m_faelle.get(t,i)
   + mort_kh_psych_m_faelle.get(t,i)
   + mort_kh_stoffwechsel_m_faelle.get(t,i)
   + mort_kh_urogenital_m_faelle.get(t,i)
   + mort_kh_verdauung_m_faelle.get(t,i)
   + mort_neubildungen_m_faelle.get(t,i)
   + mort_verletzungen_m_faelle.get(t,i);
todeslast_maennlich_Altersgruppen.set(sumo_14_m,o);
```

Die Berechnung der summierten Sterbezahlen in den weiteren breiten Altersgruppen (15-44, 45-64, 65-95+) für Männer und Frauen gestaltet sich

analog (Anpassung der Schleifenindizes) und können dem Source-Code des Mortalitätsmoduls entnommen werden.

Funktion setGestorbene_Gesamt():

Innerhalb der Funktion werden entsprechende Variablen gesetzt, die Informationen zur Gesamtzahl der Todesfälle, für Männer und Frauen, für das Alter in Einzeljahren und breiten Altersgruppen beinhalten.

```
for(int i = 0; i <= 95; i++){
//Alter in Einzeljahren
  int t = (int)(time()); //Modellzeit

gestorbene_Gesamt.set(gestorbene_maennlich.get(
    t,i),i,maennlich);
gestorbene_Gesamt.set(gestorbene_weiblich.get(
    t,i),i,weiblich);
}

for(int i = 0; i <= 3; i++){
//breite Altersgruppen
  todeslast_gesamt_Altersgruppen.set(
    (todeslast_maennlich_Altersgruppen.get(i)+todeslast_weiblich_Altersgruppen.get(i)),i);
}</pre>
```

Innerhalb von 2 for-Schleifen (deren Index *i* einmal von 0-95 (Einzeljahre) und einmal von 0-3 (breite Altersgruppen) geht), werden die berechneten summierten Sterbefälle in Variablen gespeichert, um die weitere Auswertung der Ergebnisse gewährleisten zu können.

Funktion writeOutputMort():

Die Funktion *writeOutputMort()* ist in erster Linie, wie die Funktion *writeOutputMorb()* (im Morbiditätsmodul) für die Sicherung der Simulationsergebnisse in externen Excel-Dateien verantwortlich. Die Zusammensetzung der Funktion in den verschiedenen Modulen (stationäre Morbidität und Mortalität) unterscheidet sich im Wesentlichen nur durch Anpassung der Variablennamen und kann dem Quellcode des Morbiditätsmoduls entnommen werden (siehe Abschnitt 3.5.3.2).

Events

Wie auch in den restlichen Modulen, werden Events dafür verwendet um die verschiedenen Funktionsaufrufe innerhalb des Moduls zeitlich zu koordinieren, um einen reibungslosen Ablauf der Berechnungen garantieren zu können. Die im Mortalitätsmodul zur Anwendung kommenden Events sind in Tabelle 15 veranschaulicht.

Eventname	Funktionsaufruf(e)	Zeitpunkt der Ausführung	Modus
Takt_Mort	calc_Mortalität() setGestorbene_Geschlecht() setGestorbene_Gesamt()	o.1 Minute (Rekurrenz: 1)	zyklisch
Takt_MortOutput	writeOutputMort()	o.5 Minuten (Rekurrenz: 1)	zyklisch

Tabelle 15.: Übersicht der Events im Modul der Mortalität

Wie in Tabelle 15 ersichtlich, werden die Events *Takt_Mort* und *Takt_MortOutput* während der Laufzeit zyklisch ausgeführt. Hierbei wird das Event *Takt_Mort*, welches für die Funktionsaufrufe zur Berechnung der mortalitätsspezifischen Ergebnisse verantwortlich ist, zum ersten Mal nach t = 0.1 Minute ausgeführt und anschließend, bis zum Ende der Simulation, jede weitere Minute wiederholt (entspricht jährlicher Wiederholung). Das Event *Takt_MortOutput*, welches für die Sicherung der Simulationsergebnisse in entsprechenden Excel-Dateien verantwortlich ist, wird zum Zeitpunkt t = 0.5 Minuten zum ersten Mal ausgeführt und jede weitere Minute (= jährlich) wiederholt.

3.5.3.4. Modellflussgraph

Wie bereits erwähnt besteht das vorliegende Modell zur Abschätzung der Krankheitslast der österreichischen Bevölkerung aus 3 Hauptkomponenten (Modulen). Innerhalb dieser Module finden die modellspezifischen Berechnungen zur Bevölkerungsentwicklung (Bevölkerungsmodul), Entwicklung der Krankheitslast (Modul: stationäre Morbidität) und Entwicklung der Sterbezahlen (Modul: Mortalität) statt. Innerhalb der einzelnen Module werden Events verwendet, um eine zeitlich koordinierte Ausführung der verschiedenen Funktionen zu ermöglichen. Um das Zusammenwirken der einzelnen Module untereinander besser zu veranschaulichen, wurde ein Modellflussgraph entwickelt, welcher die Zeitpunkte der Ausführung der Events und Funktionsaufrufe enthält. Der Modellflussgraph des gesamten Modells ist Abbildung 9 zu entnehmen.

Nach dem Modellstart zum Zeitpunkt t = 0 werden sequentiell die verschiedenen Events ausgeführt. Im Zuge der Eventausführungen werden die unterschiedlichen, genannten Funktionen aufgerufen, die in weiterer Folge die modellspezifischen Berechnungen für die Bevölkerung, Morbidität und Mortalität ausführen. Diese Abarbeitung erfolgt während der Dauer der Simulation (t = 0-54) in zyklischer Form und wird zum letzten Mal zum Zeitpunkt t = 53 ausgeführt. Dies veranschaulicht warum die Modellberechnungen mit dem Jahr 2049 (entspricht t = 53) abgeschlossen sind.

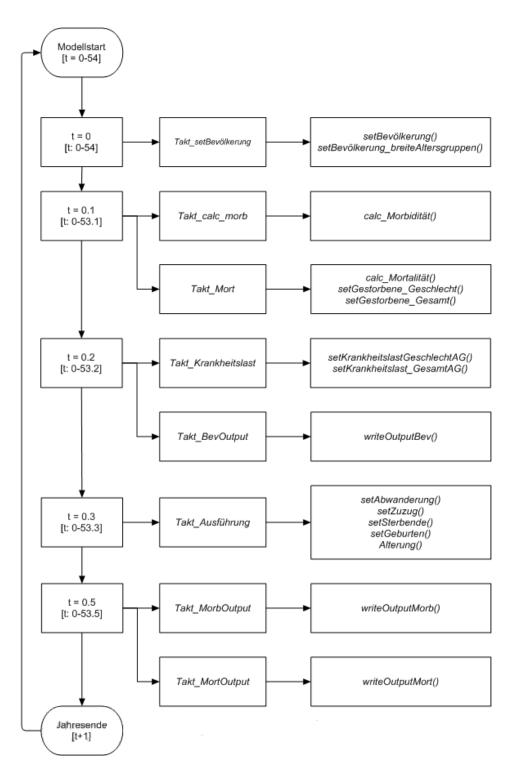


Abbildung 9.: Flussgraph des Modells

4.1. Gesundheitszustand der österreichischen Bevölkerung

Gesundheit ist nicht bloß die Abwesenheit von Krankheit. Diese Aussage spiegelt sich auch in den Gründungsworten der WHO, 1946 wider, in denen die Gesundheit als

"[…] ein Zustand des vollständigen körperlichen, geistigen und sozialen Wohlergehens und nicht nur (als) das Fehlen von Krankheit oder Gebrechen."

definiert ist. Eine ähnliche Definition findet sich unter anderem auch in der Arbeit von Hurrelmann, 2006, in welcher die Gesundheit als

"[…] Zustand des objektiven und subjektiven Befindens einer Person, der gegeben ist, wenn diese Person sich in den physischen, psychischen und sozialen Bereichen ihrer Entwicklung im Einklang mit den eigenen Möglichkeiten und Zielvorstellungen und den jeweils gegebenen äußeren Lebensbedingungen befindet."

definiert ist. Anhand der obigen Definitionen des Gesundheitsbegriffs lässt sich erkennen, dass diese auch auf die Subjektivät der Gesundheit, also der Gesundheit als einem individuellen Erleben, Wert legt. Diesen Anforderungen entsprechend enthalten neuere Gesundheitsmodelle neben krankheitsbezogenen Kriterien, wie beispielsweise Erkrankungs- oder Sterbehäufigkeiten, auch die Aspekte der subjektiven Gesundheit, der Lebenszufriedenheit, des Gesundheitsverhaltens und der sozialen Interaktion (vgl. Böhm et al., 2009, S.13).

Um in weiterer Folge einen Rückschluss auf den Gesundheitszustand der österreichischen Bevölkerung zu ermöglichen, wurden verschiedene Indikatoren untersucht. Neben Parametern zum demografischen Wandel aufgrund von Alterung und der Entwicklung der Geburtenzahlen wurden auch Einflussgrößen wie die Entwicklung der Lebenserwartungen betrachtet. Die Lebenserwartung kann hierbei in mehrere Subgruppen differenziert werden, wobei die einzelnen Untergruppen Aussagen zum Gesundheitszustand der Bevölkerung ermöglichen. So können beispielsweise aus der Lebenserwartung bei Geburt und der ferneren Lebenserwartung (Lebenserwartung im Alter) langfristige und kurzfristige Entwicklungen im Krankheitsgeschehen herausgelesen werden. Ferner gibt die Betrachtung der Lebenserwartung in Gesundheit Auskunft darüber, wie lange ein Individuum in einem bestimmten Alter noch zu leben hat und in welchem Gesundheitszustand die weitere Lebenszeit verbracht wird. (vgl. Menning, 2006) Daraus lassen sich Fragestellungen ableiten ob die gewonnene Lebenszeit eher in Gesundheit oder Krankheit verbracht wird oder ob Altwerden und Altsein automatisch Krankwerden und Kranksein bedeutet. Weiters stellt sich auch die Frage ob es in diesem Zusammenhang zu einer Kompression oder Expansion der Morbidität kommt. Die Kompressionsthese besagt, dass schwere Krankheiten bei steigender Lebenserwartung auf ein höheres Alter verschoben werden. Die gewonnene Lebenszeit wird daher in besserer Gesundheit verbracht und schwere Erkrankungen treten erst kurz vor dem Tod auf. Entgegen dieser Ansicht vertritt die Expansionsthese die Meinung, dass das Alter in dem Krankheiten auftreten nicht verändert werden kann. Eine höhere Lebenserwartung verlängert also die Morbiditätsphase vor dem Tod und insgesamt nimmt die kranke Lebenszeit am gesamten Leben zu, während die gesunde Lebenszeit nicht oder nur wenig ansteigt. (vgl. Eggen und Knotz, 2009) Ferner wurden auch aktuelle Kennzahlen zu Morbidität und Mortalität recherchiert, welche veranschaulichen, wie es um Krankheitsbzw. Sterbehäufigkeiten innerhalb der Bevölkerung bestellt ist. Zu guter Letzt wurde das subjektive Gesundheitsbefinden der Österreicher anhand von regelmäßig durchgeführten Gesundheitsbefragungen recherchiert und bewertet.

Im weiteren Verlauf wurde anhand der erhaltenen Ergebnisse versucht, die aufgeworfenen Fragen anhand von gültigen Kernaussagen zu beantworten und einen umfangreichen Blick auf den Gesundheitszustand der österreichischen Bevölkerung zu ermöglichen.

4.1.1. Demografischer Überblick

Um Aussagen über die Krankheitslast innerhalb einer Bevölkerung treffen zu können, lohnt es sich einen genaueren Blick auf die Bevölkerungsstruktur und deren Entwicklung über eine bestimmte Zeitspanne zu werfen. Die gegenwärtige Bevölkerungsentwicklung kommt durch die Wechselwirkung mehrerer Faktoren zustande. Diese Faktoren umfassen mitunter die aktuelle Bevölkerungsstruktur, aus welcher der Altersaufbau einer Bevölkerung entnommen werden kann. Ferner sind auch die Entwicklungen von Geburten, Sterbefällen und der räumlichen Bevölkerungsbewegungen (Zuund Abwanderung) von Bedeutung (vgl. Schipfer, 2005), wobei letzteren laut der Arbeit von Peters et al., 2010 eher eine untergeordnete Bedeutung zukommt.

Aufgrund der Entwicklungen in den letzten Jahren und Jahrzehnten findet ein Wandel der Altersstruktur innerhalb der Bevölkerung statt, welcher auf sinkende Geburtenzahlen und ein kontinuierliches Ansteigen der Lebenserwartung zurückzuführen ist und als "demografischer Wandel" oder "demografische Alterung" manchmal auch als "Double-Aging Effekt" bezeichnet wird. (vgl. Schipfer, 2005, S.3) Die demografische Alterung beschreibt die Veränderung der Altersstruktur der Bevölkerung zugunsten von höheren Altersgruppen und führt dazu, dass der Anteil an älteren Menschen innerhalb der Gesellschaft ansteigt (vgl. Nowossadeck, 2012; Böhm et al., 2009). Die erwartete starke Zunahme der Anzahl älterer Menschen, hat einen unmittelbaren Einfluss auf die Häufigkeit von altersspezifischen und chronischen Erkrankungen (vgl. Peters et al., 2010, S.2), da die individuellen Krankheits- und Erkrankungsrisiken mit zunehmendem Alter ansteigen (vgl. Nowossadeck, 2012, S.3).

Im Folgenden werden einige wichtige Parameter, die einen Rückschluss auf die Zusammensetzung und die Struktur der österreichischen Bevölkerung zulassen, vorgestellt. Hierzu gehören neben der aktuellen

Bevölkerungsstruktur auch der erwähnte demografische Wandel (bzw. demografische Alterung) und die Entwicklung der Geburtenzahlen und weiterer geburtenspezifischer Parameter, wie die Gesamtfertilitätsrate, das durchschnittliche Fertilitätsalter oder die Geburtenbilanz (Differenz aus absoluten Geburten und Sterbefällen).

Bevölkerung aktuell

Zu Beginn des Jahres 2017 gab es in Österreich eine Gesamtbevölkerung von 8.772.865 Personen (3.570.172 Männer und 3.983.154 Frauen). Bei der Altersverteilung der Bevölkerung kam die Altersgruppe der 0-19 Jährigen auf einen Anteil von 19,6 % an der Gesamtbevölkerung. Die Altersgruppe der 20-64 jährigen Personen verzeichnete hingegen einen Anteil von rund 62 % und die Personen des Lebensalters 65 und darüber hatten einen Anteil von 18,5 % an der Gesamtbevölkerung (Daten aus Statistik Austria, 2017a).

Zur besseren Veranschaulichung der Bevölkerungsstruktur zeigt Abbildung 10 die aktuelle Bevölkerungspyramide aus dem Jahr 2017.

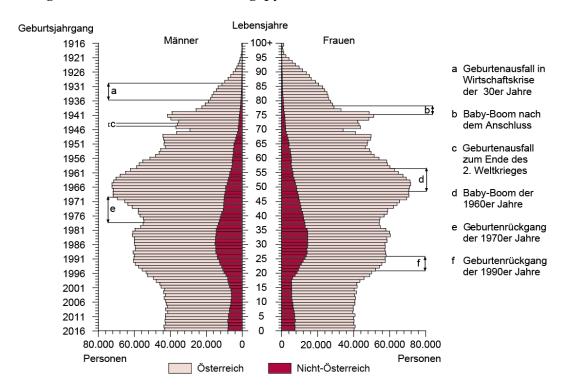


Abbildung 10.: Bevölkerungspyramide am 1.1.2017 nach Staatsangehörigkeit (Quelle: Statistik Austria)

Das Erscheinungsbild von Abbildung 10 lässt sich am besten durch einen Blick auf historische Ereignisse erklären. So kam es beispielsweise trotz der

Bevölkerungsverluste im Zuge des 2. Weltkrieges zu einem Anwachsen der Bevölkerung. Gründe hierfür waren der Baby-Boom nach dem Anschluss und der starke Zuzug von Flüchtlingen aus dem Osten (1938-1945). In späteren Jahren erreichte der Baby-Boom von 1963 mit 135.000 Geburten seinen Höhepunkt und führte zusätzlich mit der Anwerbung ausländischer Arbeitskräfte zu einem starken Anstieg der Einwohnerzahlen. Ab 1965 gingen die Geburtenzahlen wieder zurück, was sich mitunter auf die Zulassung der Anti-Baby-Pille im Jahr 1960 zurückführen lässt. In den 90er Jahren verringerten sich die jährlichen Wanderungsgewinne und führten zusammen mit einem Geburtenrückgang zwischen 1994 und 1998 mit rund +68.000 Personen nur mehr zu einer leichten Steigerung der Bevölkerung. (vgl. Tazi-Preve et al., 1999) Weitere markante historische Ereignisse sind Abbildung 10 zu entnehmen.

Demografischer Wandel

Laut den aktuellen Bevölkerungsprognosen von Statistik Austria kann in Zukunft, wie bereits erwähnt, mit einem Anstieg des Anteils älterer Personen in unserer Bevölkerung gerechnet werden. Neben einem verhältnismäßig, nur leichtem Anstieg der Geburtenrate ist die steigende Lebenserwartung hauptverantwortlich für die demografische Alterung der Gesellschaft. Dieser demografische Wandel hat zur Folge, dass der Bevölkerung im Erwerbsalter, immer mehr ältere Menschen gegenüberstehen (vgl. Peters et al., 2010). Des Weiteren steigt mit zunehmendem Alter das individuelle Erkrankungsrisiko für altersspezifische und chronische Erkrankungen (vgl. Peters et al., 2010; Nowossadeck, 2012). Aufgrund der derzeitigen Entwicklungen innerhalb der Bevölkerungsstrukturen, kann in Zukunft mit einem Anstieg der altersbedingten und chronischen Erkrankungen gerechnet werden (vgl. Bundesministerium für Gesundheit, 2013).

In Tabelle 16 sind sowohl die historischen, demografischen Entwicklungen der österreichischen Bevölkerung, als auch eine Prognose für die nächsten Jahre bis 2100 abgebildet. Die Daten werden zunächst von 1981-2015 in Fünf-Jahresschritten angegeben und anschließend von 2020-2100 in Zehn-Jahresschritten. Tabelle 16 veranschaulicht Bevölkerungszahlen getrennt

nach Geschlecht und Altersstruktur und gibt Auskunft über den prozentualen Anteil von bestimmten (breiten) Altersgruppen an der Bevölkerung. Ferner ist auch die historische und zukünftige berechnete Entwicklung des Durchschnittsalters in der Tabelle angegeben.

	nach Ge	eschlecht	nach Altersgruppen							
Jahr Insgesamt		Männer Frauen		o bis 19 Jahre		20 bis 64 Jahre		65 Jahre und älter		Ø-Alter
		abs.	abs.	abs.	in %	abs.	in %	abs.	in %	Jahre
1981	7.553.326	3.570.172	3.983.154	2.184.224	28,9	4.212.971	55,8	1.156.131	15,3	37,0
1985	7.563.233	3.588.116	3.975.117	2.028.352	26,8	4.465.937	59,0	1.068.944	14,1	37,6
1990	7.644.818	3.654.915	3.989.903	1.862.258	24,4	4.642.719	60,7	1.139.841	14,9	38,1
1995	7.943.489	3.831.200	4.112.289	1.875.112	23,6	4.871.503	61,3	1.196.874	15,1	38,5
2000	8.002.186	3.868.331	4.133.855	1.857.356	23,2	4.911.163	61,4	1.233.667	15,4	39,5
2005	8.201.359	3.984.866	4.216.493	1.809.717	22,1	5.083.697	62,0	1.307.945	15,9	40,4
2010	8.351.643	4.066.201	4.285.442	1.745.880	20,9	5.132.378	61,5	1.473.385	17,6	41,6
2015	8.584.926	4.200.397	4.384.529	1.686.931	19,6	5.314.067	61,9	1.583.928	18,5	42,4
2020	9.010.815	4.435.813	4.575.002	1.745.431	19,4	5.553.706	61,6	1.711.678	19,0	42,8
2030	9.432.086	4.636.440	4.795.646	1.847.458	19,6	5.430.362	57,6	2.154.266	22,8	44,2
2040	9.646.812	4.729.574	4.917.238	1.850.641	19,2	5.289.431	54,8	2.506.740	26,0	45,5
2050	9.771.160	4.782.301	4.988.859	1.825.455	18,7	5.275.328	54,0	2.670.377	27,3	46,5
2060	9.825.196	4.811.211	5.013.985	1.853.361	18,9	5.183.545	52,8	2.788.290	28,4	46,7
2070	9.907.212	4.860.350	5.046.862	1.875.122	18,9	5.174.676	52,2	2.857.414	28,8	47,0
2080	10.010.938	4.915.755	5.095.183	1.877.493	18,8	5.211.608	52,1	2.921.837	29,2	47,3
2090	10.059.279	4.945.779	5.113.500	1.888.332	18,8	5.217.855	51,9	2.953.092	29,4	47,4
2100	10.096.328	4.967.390	5.128.938	1.900.525	18,8	5.226.922	51,8	2.968.881	29,4	47,3

Tabelle 16.: Struktur der österreichischen Bevölkerung nach breiten Altersgruppen (Daten zur Erstellung aus Statistik Austria, 2017a; Statistik Austria, 2016a)

Wie Tabelle 16 zu entnehmen, wird sich der Anteil der über 65-jährigen und älteren Personen in den nächsten Jahrzehnten im Vergleich zu rund 15 % im Jahr 1980, auf nahezu 30 % im Jahr 2100, verdoppeln. Dies bedeutet, dass laut Hochrechnung ab dem Jahr 2080 jede dritte Person 65 Jahre oder älter sein wird. Im Gegensatz dazu wird sich der prozentuale Anteil der 0-19 jährigen Personen von aktuell (2017) 19,54% auf 18,8 % im Jahr 2100 und der Anteil der 20 bis 65 jährigen Personen von 62 % im Jahr 2017 auf rund 52 % im Jahr 2100 verringern. Des Weiteren wird das Durchschnittsalter der Bevölkerung in den nächsten Jahrzehnten bis 2100 auf rund 47,3 Jahre steigen. Dieser Trend ist letzten Endes kein österreich-spezifisches Phänomen, sondern lässt sich mehr oder weniger bei allen hochentwickelten Industrienationen beobachten (vgl. Schipfer, 2005; Bundesministerium für Gesundheit, 2013). Arbeiten von Nowossadeck, 2012, Peters et al., 2010 sowie Böhm et al., 2009 zeigen, dass sich beispielsweise auch Deutschland mit ähnlichen Entwicklungen bei der Altersverteilung konfrontiert sieht.

Geburtenzahlen

In den Jahren von 1961-1971 lag die durchschnittliche Gesamtfertilitätsrate bei 2,6 Kindern pro Frau (geburtenstarke Jahrgänge). Da die Gesamtfertilitätsrate seit 1972 unter einen Wert von 2,1 Kindern (Ersatzniveau) pro Frau fiel, konnte seither eine Generation die nachfolgende, zahlenmäßig nicht mehr vollständig Ersetzen (vgl. Peters et al., 2010). Aufgrund der demografischen Alterung wird es auch immer weniger Frauen im gebärfähigen Alter zwischen 15 und 45 Jahren geben, was in Zukunft nur zu einem verhältnismäßig leichtem Ansteigen der Geburtenzahlen führen wird (siehe Daten Statistik Austria, 2017b; Statistik Austria, 2016a).

Tabelle 17 veranschaulicht die zeitliche Entwicklung geburtenspezifischer Parameter für die Jahre 1980-2100.

		Gebu	Sterbefälle	Differenz ¹		
Jahr	absolut	Gesamt fertilität	Repr. Rate²	Fertilitäts alter (Ø)	absolut	absolut
1980	90.872	1,651	0,784	26,27	92.442	-1.570
1985	87.440	1,474	0,704	26,68	89.578	-2.138
1990	90.454	1,458	0,698	27,21	82.952	7.502
1995	88.669	1,423	0,684	27,66	81.171	7.498
2000	78.268	1,364	0,656	28,22	76.780	1.488
2005	78.190	1,409	0,678	29,02	75.189	3.001
2010	78.742	1,444	0,696	29,83	77.199	1.543
2015	84.381	1,494	0,721	30,57	83.073	1.308
2020	88.850	1,497	0,724	30,73	82.669	6.181
2030	88.193	1,531	0,741	31,41	88.672	-479
2040	85.944	1,555	0,754	31,95	95.115	-9.171
2050	88.616	1,573	0,763	32,39	105.255	-16.639
2060	89.815	1,584	0,769	32,71	109.694	-19.879
2070	89.406	1,591	0,773	32,91	103.247	-13.841
2080	90.255	1,597	0,776	32,99	104.712	-14.457
2090	91.033	1,597	0,776	32,99	111.183	-20.150
2100	91.090	1,597	0,776	32,99	109.761	-18.671

Tabelle 17.: Zeitliche Entwicklung verschiedener geburtenspezifischer Parameter von 1980-2100 (Daten zur Erstellung der Tabelle aus Statistik Austria, 2016a; Statistik Austria, 2017b)

¹Differenz von Geburten absolut und Sterbefällen absolut

²Hier: Netto-Reproduktionsrate

Den Daten aus Tabelle 17 ist zu entnehmen, dass sich die Gesamtfertilität zwischen den Jahren 2015 und 2100 auf einen Wert zwischen rund 1,5 und 1,6 Kinder pro Frau einpendeln wird. Zusätzlich ist ein Anstieg des durchschnittlichen Fertilitätsalters von Frauen zu beobachten (1980: 26 Jahre, 2100: 33 Jahre). Ferner fällt die prognostizierte Geburtenbilanz (= Differenz aus Geburten absolut und Sterbefällen absolut) ab dem Jahr 2030 negativ aus, was bedeutet, dass ab diesem Zeitpunkt mehr Sterbefälle als Geburten zu verzeichnen sind und Zugewinne in der Gesamtbevölkerung nur mehr durch entsprechende Bevölkerungswanderungen (Zuwanderung) realisiert werden können.

4.1.2. Lebenserwartung

Die Lebenserwartung dient als allgemeines Maß zur Beschreibung des Gesundheitszustandes einer Bevölkerung oder einer bestimmten Gruppe und gibt an, wie viele Jahre ein Individuum in einem bestimmten Alter noch zu leben hat, vorausgesetzt die Sterblichkeitsverhältnisse eines Jahres verändern sich in den Folgejahren nicht. Aus der Lebenserwartung kann man langfristige und kurzfristige Entwicklungen des Krankheitsgeschehens, differenziert nach Alter und Geschlecht, herauslesen. Weiters dient die fernere Lebenserwartung als Indikator für die Gesundheit im Alter (vgl. Menning, 2006, S.4) und die Lebenserwartung in guter Gesundheit gibt an, wie viele Jahre ihres Lebens, einzelne Individuen in subjektiv guter Gesundheit verbringen. Im Folgenden werden die zeitlichen Entwicklungen der genannten Lebenserwartungen genauer veranschaulicht und erläutert.

Lebenserwartung bei Geburt

Die Lebenserwartung bei Geburt nahm für Männer und Frauen im Zeitraum von 1970 bis 2015 kontinuierlich zu und kann Tabelle 18 ab dem Jahr 1980 in 5 Jahresschritten entnommen werden.

Geschlecht	Lebenserwartung in Jahren								
	1970	1980	1985	1990	1995	2000	2005	2010	2015
Männer		-					-	77,66	
Frauen	73,38	76,08	77,33	78,89	79,98	81,12	82,20	83,13	83,59
Gesamt ³	69,92	72,55	74,02	75,57	76,76	78,12	79,41	80,40	81,11

Tabelle 18.: Lebenserwartung bei Geburt für gesamte Bevölkerung, Männer und Frauen 1970-2015(Daten aus Statistik Austria, 2017d)

Bei Männern stieg die Lebenserwartung bei Geburt im Zeitraum von 1975 bis 2015 fast um 10 Jahre. Frauen konnten im selben Zeitraum einen Zuwachs von ca. 9 Jahren verbuchen. Bei Frauen betrug der Anstieg der Lebenserwartung im Schnitt 1,11 Jahre pro Fünfjahresperiode und bei Männern war der Anstieg mit 1,37 Jahren pro Fünfjahresperiode sogar noch höher.

³ungewichtetes Mittel zwischen Männern und Frauen

Im Jahr 1980 betrug der Unterschied zwischen den beiden Geschlechtern noch 7 Jahre (Männer: 69, Frauen: 76). Bis ins Jahr 2010 reduzierte sich diese Differenz bis auf 5 Jahre (Männer: 78, Frauen: 83) (vgl. Hofmarcher, 2013, S.10).

Fernere Lebenserwartung

Die fernere Lebenserwartung gibt an, wie viele Jahre ein Individuum einer bestimmten Altersgruppe, unter gegenwärtigen Sterblichkeitsverhältnissen, voraussichtlich noch zu leben hat. Tabelle 19 veranschaulicht die Entwicklung der ferneren Lebenserwartung für 60-jährige Männer und Frauen für die Jahre 1980-2015 in 5-Jahresschritten.

Geschlecht	fernere Lebenserwartung in Jahren								
	1980	1985	1990	1995	2000	2005	2010	2015	
Männer	16,32	16,94	17,81	18,50	19,73	20,74	21,44	21,81	
Frauen	20,30	20,97	22,15	22,86	23,84	24,63	25,30	25,52	
Gesamt ⁴	-	19,06	20,08	20,76	21,85	22,88	23,52	23,77	

Tabelle 19.: Fernere Lebenserwartung für 60-jährige Männer und Frauen von 1980-2015 (Daten aus Statistik Austria, 2017[i])

Den Werten aus Tabelle 19 kann eine allgemeine Steigerung der ferneren Lebenserwartung für Männer und Frauen entnommen werden. Im Zeitraum von 1980-2015 wuchs die fernere Lebenserwartung von 60-jährigen Männern um rund 5,5 Jahre. Im Vergleich dazu stieg die fernere Lebenserwartung von 60-jährigen Frauen um 5,2 Jahre. Unter Berücksichtigung der Bevölkerungsstruktur stieg die fernere Lebenserwartung von 60-jährigen Männern und Frauen zusammen, innerhalb des betrachteten Zeitraumes von 1980-2015, um rund 5 Jahre. Dies bedeutet, dass ein 60-jähriger Mann, unter gegenwärtigen Sterblichkeitsverhältnissen damit rechnen kann, rund 82 Jahre alt zu werden und eine 60-jährige Frau sogar rund 86 Jahre (vgl. Statistik Austria, 2007).

⁴gewichtetes Mittel zwischen Männern und Frauen

Lebenserwartung in guter Gesundheit

Aufgrund des starken Anstiegs der Lebenserwartung in den letzten Jahrzehnten stellt sich die Frage, ob die hinzugewonnenen Lebensjahre eher in guter oder schlechter Gesundheit verbracht werden (Kompression oder Expansion der Morbidität). Zur gleichzeitigen Beschreibung von Sterblichkeit und Gesundheitszustand kann als Maßzahl die Lebenserwartung in Gesundheit - Healthy Life Expectancy (kurz: HLY oder HALE) verwendet werden. Hierbei wird die Lebenserwartung in "gesunde" und "kranke" Jahre eingeteilt, wobei deren Messung üblicherweise mit Hilfe des subjektiven Gesundheitszustandes, manchmal auch in Kombination mit der Häufigkeit chronischer Leiden oder sonstigen gesundheitsbedingten Einschränkungen erfolgt. (vgl. Statistik Austria, 2015a; Statistik Austria, 2017c)

Tabelle 20 zeigt die zeitliche Entwicklung der Lebenserwartung in Gesundheit für Männer und Frauen von 1978-2014 und auch den Unterschied der gesunden Lebenserwartung zwischen Männern und Frauen sowie den prozentualen Anteil der in subjektiv gutem Gesundheitszustand verbrachten Jahre an der gesamten Lebenserwartung.

Betrachtet man die Werte aus Tabelle 20 lässt sich erkennen, dass im Zeitraum von 1978 bis 2014 die in (sehr) guter Gesundheit verbrachten Jahre noch stärker stiegen als die Lebenserwartung. So gab es bei den Männern in diesem Zeitraum einen Zuwachs von 13,5 Jahren in guter Gesundheit und einen Zuwachs der Lebenserwartung von 10,4 Jahren. Bei den Frauen ergab sich bei den in Gesundheit verbrachten Jahren ein Zuwachs von 13,7 Jahren, obwohl die Lebenserwartung im gleichen Zeitraum nur um 8 Jahre stieg. Aus diesem Grund erhöhte sich bei Männern und Frauen auch der prozentuale Anteil der, subjektiv verbrachten, gesunden Jahre an der gesamten Lebenserwartung. In der Gruppe der Männer konnte der prozentuale Anteil der gesunden Jahre von 77% im Jahr 1978 auf 84% im Jahr 2014 gesteigert werden. Für Frauen ergab sich im selben Zeitraum eine Steigerung von 70% (1978) auf 80% (2014). Diese Werte zeigen auch, dass Frauen trotz ihrer höheren Lebenserwartung (2014: 83,7 Jahre), nicht mehr Jahre in subjektiv guter Gesundheit verbringen als Männer. Betrachtet man den Unterschied der Lebenserwartung, in subjektiv guter Gesundheit, zwischen Männern

⁵ungewichtetes Mittel zwischen Männern und Frauen

4. Ergebnisse

	Lebe	Anteil der							
Jahr	Zusammen	davon in	subjektiv gesunden						
		(sehr) guter	sehr) guter mittelmäßiger		Jahre (%)				
		Männei	•						
1978	68,5	52,4	11,9	4,2	77				
2014	78,9	65,9	10,3	2,7	84				
Differenz 2014-1978	10,4	13,5	-1,6	-1,5	7				
Frauen									
1978	75 <i>,</i> 7	52,9	16,7	6,1	70				
2014	83,7	66,6	13,5	3,7	80				
Differenz 2014-1978	8,0	13,7	-3,2	-2,4	10				
Männer und Frauen ⁵									
1978	72,1	52,7	14,3	5,1	73				
2014	81,3	66,3	11,9	3,2	82				
Differenz 2014-1978	9,2	13,6	-2,4	-1,9	9				
Unterschied zwischen Männern und Frauen									
1978	7,2	0,5	4,8	1,9	-7,0				
2014	4,8	0,7	3,2	1,0	-4, 0				
Differenz 2014-1978	-2,4	0,2	-1,6	-0,9	3,0				

Tabelle 20.: Lebenserwartung in guter Gesundheit mit zeitlicher Entwicklung von 1978-2014 (Daten aus Statistik Austria, 2017c, S.24)

und Frauen, fällt auf, dass kaum Geschlechterdifferenzen bestehen. So lag der Wert bei Frauen im Jahr 1978 um 0,5 Jahre und im Jahr 2014 um 0,7 Jahre höher als bei Männern. Im Gegensatz dazu war der prozentuale Anteil der Lebenserwartung, in subjektiv guter Gesundheit, bei Männern sowohl 1978 als auch 2014 höher als bei Frauen (vgl. Statistik Austria, 2017c, S.25).

Zusammenfassung

Allgemein kann im Zeitraum von 1970-2015 ein Anstieg der Lebenserwartung bei Geburt, der ferneren Lebenserwartung für 60-jährige Männer und Frauen und der Lebenserwartung, in subjektiv (sehr) guter Gesundheit, beobachtet werden (siehe Tabellen 18, 19 und 20). Abbildung 11 veranschaulicht die zeitliche Entwicklung der Lebenserwartung bei Geburt, der ferneren Lebenserwartung als auch der Lebenserwartung in subjektiv (sehr) guter Gesundheit für Männer und Frauen im Zeitraum von 1970-2015.

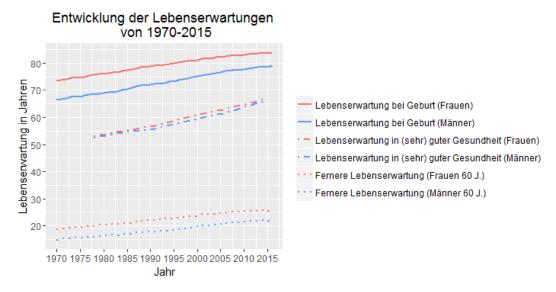


Abbildung 11.: Zeitliche Entwicklung der Lebenserwartung bei Geburt, der ferneren Lebenserwartung für 60 Jährige und der Lebenserwartung in subjektiv (sehr) guter Gesundheit für Männer und Frauen im Zeitraum von 1970-2015 (Daten aus Statistik Austria, 2017[i]; Statistik Austria, 2017[g])

Bei Betrachtung der einzelnen Verläufe der verschiedenen Lebenserwartungen aus Abbildung 11, fällt auf, dass Frauen in allen Bereichen, sei es bei der Lebenserwartung bei Geburt, bei der ferneren Lebenserwartung oder bei der Lebenserwartung in guter Gesundheit, höhere Werte aufweisen als Männer.

Im Allgemeinen ist die höhere Lebenserwartung der Frauen auf ein komplexes Zusammenwirken mehrerer Komponenten zurückzuführen. Neben den

biologischen Faktoren spielen vor allem soziale, kulturelle und ökonomische Aspekte eine Rolle und spiegeln die geschlechterdifferenten Verhaltensweisen und Lebensumstände zwischen Männern und Frauen wider (vgl. Gesundheitsberichterstattung, 2011, S.15). So lässt sich die erhöhte Sterblichkeit bei Männern (siehe Abschnitt 4.1.4) auf mehrere Faktoren zurückführen. Zu erwähnen sind hierbei eine riskantere Lebensweise (z.B. im Straßenverkehr), ungesunde Ernährungsgewohnheiten, Rauchverhalten und Alkoholkonsum (vgl. Stadt Wien, 2003; Menning, 2006; Gesundheitsberichterstattung, 2011).

Ausschlaggebend für die Steigerung der Lebenserwartung bei Geburt in den letzten Jahren und Jahrzehnten, war die signifikante Senkung der Säuglingssterblichkeit bis zur Mitte des 20. Jahrhunderts, sowie die deutliche Verbesserung der medizinischen Versorgung bei gleichzeitiger Senkung der Sterblichkeit im Alter, in der zweiten Hälfte des 20. Jahrhunderts (vgl. Vaupel und Kistowski, 2005; Menning, 2006; Statistik Austria, 2017c). Zusätzlich konnte im betrachteten Zeitraum auch die Lebenserwartung in guter Gesundheit bei Männern und Frauen um einige Jahre gesteigert werden (siehe Tabelle 20). Unter Berücksichtigung der kontinuierlichen Senkung der Sterberaten und des weiteren medizinischen Fortschrittes aufgrund von besserer Versorgung und neuer Untersuchungs- sowie Behandlungsmethoden, die es ermöglichen, Krankheiten früher zu erkennen und mit fortschrittlicheren Methoden effektiver zu behandeln, ist anzunehmen, dass die Lebenserwartungen auch in Zukunft weiterhin steigen werden (vgl. Vaupel und Kistowski, 2005, S.7). Bei der Prognose einer möglichen Obergrenze, oder maximalen Lebenserwartung, gehen die wissenschaftlichen Meinungen auseinander. Wie aus Vaupel und Kistowski, 2005 zu entnehmen, trafen in der Vergangenheit verschiedene Prognosen zu einer möglichen Obergrenze der Lebenserwartung nicht zu und wurden im Durchschnitt 5 Jahre nach ihrer Veröffentlichung, durch eine entsprechende Überschreitung der prognostizierten Obergrenze revidiert.

4.1.3. (stationäre) Morbidität

Laut Menning, 2006, ist die Morbidität ein Maß zur Beschreibung der Krankheitshäufigkeit in einer Bevölkerung oder Bevölkerungsgruppe, zu einem bestimmten Zeitpunkt bzw. einer bestimmten Periode.

Um im weiteren Verlauf grob abschätzen zu können, welche Krankheiten in den verschiedenen Altersgruppen am häufigsten auftreten und welche Hauptdiagnosegruppen die höchsten Erkrankungsraten aufweisen, wurde eine Pareto-Analyse (siehe 3.3.2 Pareto-Analyse) der Spitalsentlassungsstatistik des letzten bekannten Berichtsjahres (2016) durchgeführt. Anhand der Ergebnisse der Pareto-Analyse war es möglich, für jede Altersgruppe, diejenigen Krankheiten auszuwählen, die innerhalb der jeweiligen Altersgruppe, für die größte Krankheitslast verantwortlich sind. Um die Entwicklung der auftretenden Krankheitslast innerhalb der Bevölkerung in ausreichendem Maß darzustellen, wurden jene Hauptdiagnosen genauer untersucht, die bei der im Jahr 2016 durchgeführten Pareto-Analyse, für zumindest 80 % der insgesamt gestellten Diagnosen verantwortlich waren. Dieser Schwellwert wurde mitunter auch deswegen festgelegt, um die Anzahl der Kurven in den verschiedenen Darstellungen der Entwicklung der Erkrankungsraten, innerhalb der unterschiedlichen Altersgruppen, auf ein überschaubares Maß einzugrenzen.

Pareto Analyse der stationären Morbidität

Abbildung 12 zeigt die Pareto-Diagramme zur Bestimmung der Häufigkeitsverteilung der jeweiligen Hauptdiagnosen bei Männern für ber reite Altersgruppen (0-14, 15-44, 45-64 und 65 Jahre und älter) aus dem Jahr 2016.

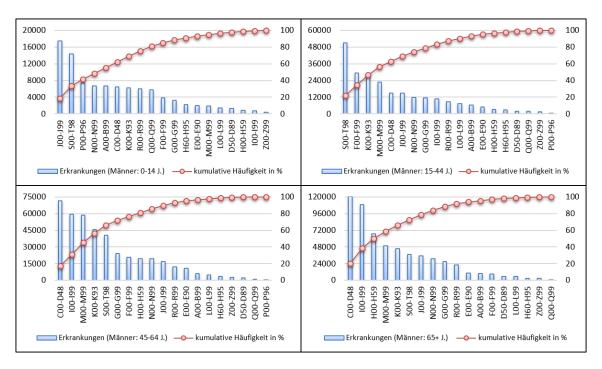


Abbildung 12.: Pareto-Diagramme zur Darstellung der Häufigkeitsverteilung verschiedener Erkrankungen (Hauptdiagnosen) bei Männern in breiten Altersgruppen (Daten zur Berechnung aus Spitalsentlassungsstatistik 2016)

Aus Abbildung 12 kann entnommen werden, dass, in den Altersgruppen der 0-14-jährigen und der 15-44-jährigen Männer, Erkrankungen innerhalb der 9 häufigsten Hauptdiagnosegruppen für rund 80 % aller gestellten Diagnosen verantwortlich sind. Bei den restlichen Altersgruppen (45-64 und 65 und mehr Jahre) sind jeweils die Krankheiten der häufigsten 7 Hauptdiagnosen für rund 80 % der stationären Aufenthalte verantwortlich. Mit einem Anteil von rund 20 % sind Atemwegserkrankungen (Joo-J99), vor Verletzungen und Vergiftungen (Soo-T98) mit 15 % und "bestimmten Zuständen", die ihren Ursprung in der Perinatalperiode haben (Poo-P99), mit rund 8 %, in der Gruppe der 0-14-jährigen Männer, die häufigsten Erkrankungen. Bei den 15-44-jährigen Männern machen Verletzungen und Vergiftungen (Soo-T98) mit knapp 22% den größten Anteil an aufgetretenen Erkrankungen aus. Dahinter folgen mit rund 13 % Erkrankungen aus der Gruppe der psychischen Erkrankungen und Verhaltensstörungen (Foo-F99) und mit 12 % Erkrankungen des Verdauungssystems (Koo-K93). In der

Altersgruppe der 45-64-jährigen und der 65-jährigen und älteren Männer, zählen Erkrankungen aus der Gruppe der Neubildungen (Coo-D48) und der Kreislauferkrankungen (Ioo-I99) zu den am häufigsten diagnostizierten Krankheiten. Bei 45-64-jährigen Männern ist rund jede 3. Diagnose auf eine Kreislauferkrankung (Ioo-I99) oder eine Neubildung (Coo-D48) zurückzuführen. Bei 65-jährigen und älteren Männern machen Erkrankungen dieser beiden Hauptdiagnosegruppen rund 40 % aller Diagnosen aus.

Abbildung 13 zeigt die Pareto-Diagramme zur Bestimmung der Häufigkeitsverteilung der jeweiligen Hauptdiagnosen bei Frauen für breite Altersgruppen (0-14, 15-44, 45-64 und 65 Jahre und älter) aus dem Jahr 2016.

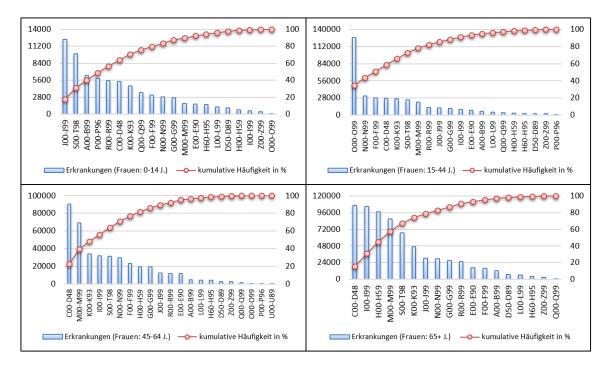


Abbildung 13.: Pareto-Diagramme zur Darstellung der Häufigkeitsverteilung verschiedener Erkrankungen (Hauptdiagnosen) bei Frauen in breiten Altersgruppen (0-14, 15-44, 45-64 und 65+ Jahre) aus dem Jahr 2016

In der Altersgruppe der 0-14-jährigen Frauen sind die Erkrankungen der häufigsten 10 Hauptdiagnosegruppen für rund 80 % aller Diagnosen verantwortlich. Mit einem Anteil von rund 20 % treten hierbei Erkrankungen des Atmungssystems (Joo-J99), dicht gefolgt von Verletzungen und Vergiftungen

(Soo-T98) mit rund 14 % und infektiösen und parasitären Krankheiten mit knapp 9 %, am häufigsten auf. Bei Frauen im Alter von 15-44, werden knapp 80 % der gestellten Diagnosen, durch Erkrankungen der 8 häufigsten Hauptdiagnosegruppen verursacht. Den größten Anteil innerhalb dieser Altersgruppe machen hierbei Erkrankungen in Bezug auf Schwangerschaft, Geburt und Wochenbett (Ooo-O99) aus. Frauen zwischen 45 und 64 Jahren leiden am häufigsten unter Gewebeneubildungen (Coo-D48), Erkrankungen des Muskel-Skelett-Systems und des Bindegewebes (Moo-M99), sowie an Krankheiten des Verdauungssystems (Koo-K930). Bei 65-jährigen und älteren Frauen sind, wie bei Männern in der gleichen Altersgruppe, Neubildungen (Coo-D48) und Kreislauferkrankungen (Ioo-I99), für die meisten diagnostizierten Krankheitsfälle verantwortlich. Zusammen ist in dieser Altersgruppe rund jede 3. Diagnose auf eine Neubildung oder eine Kreislauferkrankung zurückzuführen.

Entwicklung der stationären Morbidität

Die anhand der Pareto-Analyse gewonnenen Daten bildeten im weiteren Verlauf das Auswahlkriterium, welche Krankheiten in der verschiedenen Altersgruppen bei Männern und Frauen näher betrachtet werden sollten. Die Daten zur Berechnung der Erkrankungsraten der verschiedenen Hauptdiagnosegruppen wurden der Spitalsentlassungsstatistik und der Bevölkerungsstatistik von Statistik Austria entnommen. Die Erkrankungsraten, innerhalb der Hauptdiagnosegruppen, wurden anhand der, in Abschnitt 3.3.3.1 beschriebenen, Formel 3.2 mit dem Tabellenkalkulationsprogramm Excel 13 (Microsoft) berechnet. Im Folgenden wird die Entwicklung der häufigsten, für Erkrankungen verantwortlichen, Hauptdiagnosegruppen für Männer und Frauen in den Altersgruppen von 45-64 Jahren und 65 und mehr Jahren genauer veranschaulicht, da in diesen Altersgruppen die Erkrankungsraten teilweise massiv ansteigen und diese Altersgruppen den größten, für die Krankheitslast verantwortlichen, Teil der Bevölkerung darstellen. Die zeitlichen Entwicklungen der Erkrankungen der jüngeren Altersgruppen (0-14 und 15-44 Jahre) sind dem Anhang in Abschnitt B.1 zu entnehmen.

Abbildung 14 zeigt die zeitliche Entwicklung der Erkrankungsraten für die häufigsten Hauptdiagnosegruppen bei Männern in der Altersgruppe von 45-64 Jahren im Zeitraum von 1989-2014.

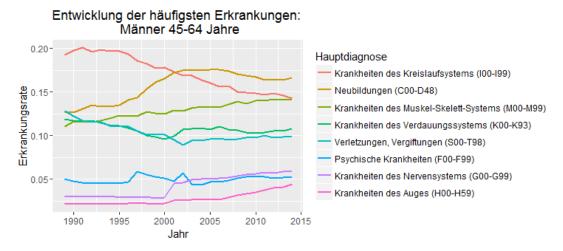


Abbildung 14.: Zeitliche Entwicklung der Erkrankungsraten der häufigsten Hauptdiagnosen bei Männern (45-64 Jahre) von 1989-2014

Aus Abbildung 14 kann man entnehmen, dass Krankheiten des Kreislaufsystems (Ioo-Ioo) neben Neubildungen (Coo-D48) und Krankheiten des Muskel-Skelett-Systems (Moo-M99) in der Altersgruppe der 45-64-jährigen Männer am häufigsten diagnostiziert wurden. Bis zum Jahr 2002 waren Krankheiten des Kreislaufsystems (Ioo-I99), mit Abstand, die am häufigsten diagnostizierten Krankheiten in der entsprechenden Altersgruppe. Ab dem Jahr 2002 wiesen Neubildungen (Coo-D48) die höchsten Erkrankungsraten auf und lösten die Krankheiten des Kreislaufsystems als Spitzenreiter ab. Ferner ist anzumerken, dass Verletzungen und Vergiftungen (Soo-T98) im Jahr 2001 von Krankheiten des Verdauungssystems (K00-K93) überholt wurden. Ab dem Jahr 2000 stiegen die Erkrankungsraten für Krankheiten des Nervensystems (Goo-G99) rasant an und wiesen ab dem Jahr 2003 erstmals einen höheren Wert auf als die Erkrankungsraten bei psychischen Erkrankungen (Foo-F99). Die markanten Anstiege der Erkrankungsraten im und um das Jahr 2001 lassen sich auf die Einführung der ICD-10 Klassifikation im Jahr 2001 zurückführen.

Abbildung 15 zeigt die zeitliche Entwicklung der Erkrankungsraten für die häufigsten Hauptdiagnosegruppen bei Männern in der Altersgruppe von 65 und mehr Jahren im Zeitraum von 1989-2014.

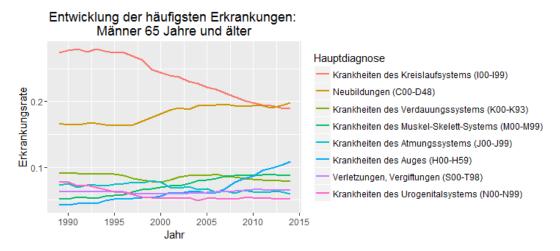


Abbildung 15.: Zeitliche Entwicklung der Erkrankungsraten der häufigsten Hauptdiagnosen bei Männern (65+ Jahre) von 1989-2014

Anhand der Darstellung in Abbildung 15 lässt sich erkennen, dass in der Altersgruppe der 65 jährigen und älteren Männer, Krankheiten des Kreislaufsystems (Ioo-I99) und Neubildungen (Coo-D48), mit Abstand, die höchsten Erkrankungsraten aufweisen. Während die Erkrankungsraten für Krankheiten des Kreislaufsystems seit 1996 kontinuierlich sanken, stiegen die Erkrankungsraten bei Neubildungen ab 1998 stetig an. Im Jahr 1989 war rund jede dritte Diagnose auf eine Kreislauferkrankung und rund jede fünfte Diagnose auf eine Neubildung zurückzuführen. Im Jahr 2013 war die Wahrscheinlichkeit als 65-jähriger Mann an einer Neubildung (Coo-D48) zu erkranken erstmals höher, als die Wahrscheinlichkeit einer Kreislauferkrankung. Auch im Bereich der restlichen Erkrankungen kam es im zeitlichen Verlauf zu Verschiebungen der Krankheitshäufigkeiten. Waren Krankheiten des Verdauungssystems im Jahr 1989 noch die dritthäufigste Diagnose, wurden diese im Lauf der Zeit von Krankheiten des Muskel-Skelett-Systems und Krankheiten des Auges auf den fünften Platz nach hinten verdrängt. Am auffälligsten war die Entwicklung der Erkrankungsraten bei Krankheiten des Auges. Lag die Wahrscheinlichkeit einer Augenerkrankung 1989 bei knapp 4 %, stieg die Erkrankungsrate in den folgenden Jahren, bis 2014, auf rund 10,1 % an und war ab dem Jahr 2011 die dritthäufigste Diagnose.

Abbildung 16 zeigt die zeitliche Entwicklung der Erkrankungsraten für die häufigsten Hauptdiagnosegruppen bei Frauen in der Altersgruppe von 45-64 Jahren im Zeitraum von 1989-2014.

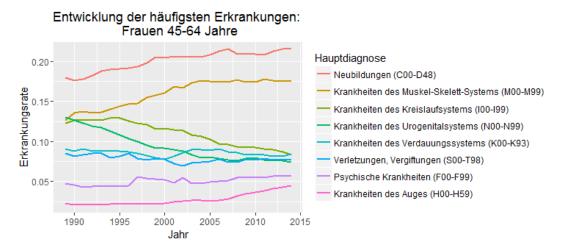


Abbildung 16.: Zeitliche Entwicklung der Erkrankungsraten der häufigsten Hauptdiagnosen bei Frauen (45-64 Jahre) von 1989-2014

Wie Abbildung 16 zu entnehmen weisen Neubildungen innerhalb der Altersgruppe der 45-64-jährigen Frauen die höchste Erkrankungsrate auf. Im Jahr 2014 war rund jede fünfte Diagnose auf eine Neubildung zurückzuführen. Des Weiteren wurden Krankheiten des Muskel-Skelett-Systems, über den gesamten betrachteten Zeitraum, am zweithäufigsten diagnostiziert. Ab dem Jahr 2014 wurden die, bis dato am zweithäufigsten diagnostizierten, Krankheiten des Kreislaufsystems von Krankheiten des Verdauungssystems abgelöst. Krankheiten des Urogenitalsystems, die im ersten Berichtsjahr 1989 noch die zweithäufigste Diagnose darstellten, wurden im Jahr 2003 von Krankheiten des Verdauungssystems auf den vierten und im Jahr 2011 von Verletzungen und Vergiftungen auf den fünften Platz der häufigsten Diagnosen in der entsprechenden Altersgruppe zurückgedrängt. Psychische Krankheiten und Krankheiten des Auges stellten mit den niedrigsten Erkrankungsraten über den gesamten betrachteten Zeitraum die Schlusslichter dar.

Abbildung 17 zeigt die zeitliche Entwicklung der Erkrankungsraten für die häufigsten Hauptdiagnosegruppen bei Frauen in der Altersgruppe von 65 und mehr Jahren im Zeitraum von 1989-2014.

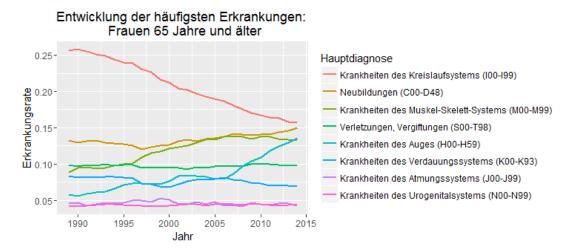


Abbildung 17.: Zeitliche Entwicklung der Erkrankungsraten der häufigsten Hauptdiagnosen bei Frauen (65+ Jahre) von 1989-2014

Anhand von Abbildung 17 lässt sich erkennen, dass innerhalb der Altersgruppe der 65-jährigen und älteren Frauen, Krankheiten des Kreislaufsystems (Ioo-I99) am häufigsten diagnostiziert wurden obwohl die Erkrankungsraten über den betrachteten Zeitraum stetig sanken. War im Jahr 1989 noch jede vierte Diagnose auf eine Erkrankung des Kreislaufsystems zurückzuführen, war es im Jahr 2014 nur noch rund jede siebente. Der stetig steigende Verlauf der Haupdiagnosegruppe der Neubildungen lässt darauf schließen, dass Krankheiten des Kreislaufsystems in den nächsten Jahren auf den zweiten Platz der häufigsten Diagnosen zurückgedrängt werden. Die Erkrankungsraten der Krankheiten des Muskel-Skelett-Systems wurden im Jahr 2014 von Erkrankungsraten der Krankheiten des Auges überholt. Ferner lässt sich aus der Abbildung entnehmen, dass sich die Erkrankungsraten der Krankheiten des Auges vom Jahr 2005 bis zum Jahr 2014 fast verdoppelten. Am unteren Ende der Erkrankungsraten finden sich Krankheiten des Atmungssystems (Joo-J99) und Krankheiten des Urogenitalsystems (Noo-N99), welche sich im gesamten Zeitraum durch einen annähernd linearen Trend auszeichnen.

4.1.4. Mortalität

Die Mortalität dient als Maß, um quantitative Aussagen darüber treffen zu können, wie viele Individuen bestimmten Alters, innerhalb eines bestimmten Zeitraums, an unterschiedlichen Erkrankungen, sterben. Die Betrachtung der Mortalität ermöglicht eine alters- und geschlechterspezifische Darstellung der Sterblichkeitsverhältnisse und ihrer Besonderheiten. (vgl. Menning, 2006)

Neben der Betrachtung der Entwicklung der absoluten Sterbezahlen der Jahre 1970-2015 wurde auch eine Pareto-Analyse der aktuellsten Daten für die Mortalität (vgl. 4.1.3 Morbidität) durchgeführt, um in weiterer Folge den zeitlichen Verlauf der häufigsten, für Todesfälle verantwortlichen, Hauptdiagnosegruppen für Männer und Frauen, in geeigneten Altersgruppen, darzustellen. Die Daten zur Durchführung der Pareto-Analyse wurden aus der Todesursachenstatistik von Statistik Austria aus dem Jahr 2016 entnommen. Hierbei ist anzumerken, dass die vorliegende Todesursachenstatistik des Zeitraumes 1970-2016 die Gesamtmortalität innerhalb der Bevölkerung umfasst. Anhand der Spitalsentlassungsstatistik könnten aus der Gesamttodesstatistik jene Todesfälle herausgerechnet werden, die im Rahmen eines Spitalsaufenthaltes zustande gekommen sind (=stationäre Mortalität). Des Weiteren lässt sich auf Grundlage der vorliegenden Daten bestimmen, welchen Anteil Todesfälle im extramuralen (=niedergelassenen Bereich) und an anderen Orten an allen Todesfällen besitzen. Somit lässt sich eine gute Abschätzung treffen, in welchen Bereichen es zu den meisten Todesfällen kommt und wie die Verteilung innerhalb der einzelnen Bereiche aussieht. Wie auch bei der Darstellung der Morbidität (vgl. 4.1.3) wurden auch hier jene Krankheiten (= Hauptdiagnosegruppen) im zeitlichen Verlauf betrachtet, die in der jeweiligen Altersgruppe, für 80% der dokumentierten Todesfälle verantwortlich waren.

Pareto-Analyse der Mortalität

Dieser Abschnitt veranschaulicht die Ergebnisse der, für das aktuellste Berichtsjahr 2016, durchgeführten Pareto-Analyse für die Mortalität bei Männern und Frauen in breiten Altersgruppen. Hierbei werden die verschiedenen Hauptdiagnosen, sortiert nach ihrer auftretenden Häufigkeit und ihrem Prozentanteil an allen Todesfällen, in den entsprechenden Altersgruppen, für beide Geschlechter getrennt dargestellt und dienten in weiterer Folge als Entscheidungsgrundlage, welche Hauptdiagnosen schlussendlich zur Darstellung der Entwicklung der Mortalität über die Zeit herangezogen wurden.

Abbildung 18 zeigt die Pareto Diagramme zur Bestimmung der Häufigkeitsverteilung der, für die meisten Todesfälle verantwortlichen, Hauptdiagnosen bei Männern in breiten Altersgruppen für das Berichtsjahr 2016.

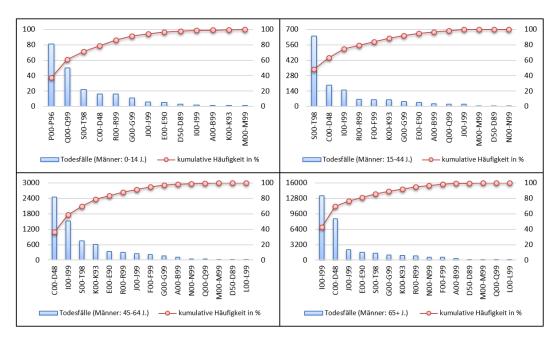


Abbildung 18.: Pareto-Diagramme zur Darstellung der Häufigkeitsverteilung verschiedener Todesursachen (Hauptdiagnosen) bei Männern in breiten Altersgruppen (o-14, 15-44, 45-64 und 65+ Jahre) aus dem Jahr 2016

Anhand von Abbildung 18 kann man erkennen, dass in allen Altersgruppen, die häufigsten 4 Hauptdiagnosen, für rund 80 % aller Todesfälle

bei Männern verantwortlich waren. In der Altersgruppe der o-14-jährigen Männer wiesen bestimmte Zustände die ihren Ursprung in der Perinatalperiode haben (Poo-P96), gefolgt von angeborenen Fehlbildungen, Deformitäten bzw. Chromosomenanomalien (Qoo-Q99) und Verletzungen und Vergiftungen (Soo-T98), die höchsten Sterberaten auf. Bei den 15-44-jährigen Männern führten Verletzungen und Vergiftungen (Soo-T98) zu den meisten Todesfällen. Männer im Alter von 45-64 Jahren starben, mit einem Anteil von fast 60%, an Krankheiten des Kreislaufsystems (Ioo-I99) oder Neubildungen (Coo-D48). In der Altersgruppe der 65-Jährigen und Älteren waren diese beiden Hauptdiagnosen des Weiteren für rund 70 % aller Todesfälle verantwortlich.

Abbildung 19 zeigt die Pareto Diagramme zur Bestimmung der Häufigkeitsverteilung, der für die meisten Todesfälle verantwortlichen Hauptdiagnosen bei Frauen in breiten Altersgruppen für das Berichtsjahr 2016.

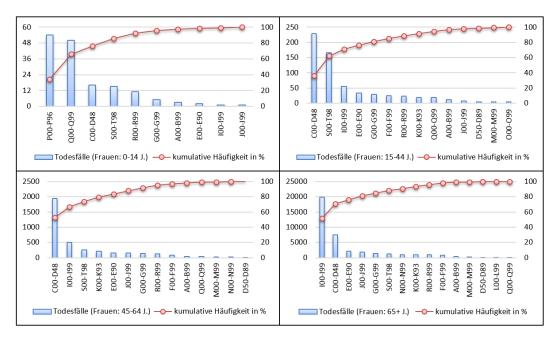


Abbildung 19.: Pareto-Diagramme zur Darstellung der Häufigkeitsverteilung verschiedener Todesursachen (Hauptdiagnosen) bei Frauen in breiten Altersgruppen (0-14, 15-44, 45-64 und 65+ Jahre) aus dem Jahr 2016

Den verschiedenen Pareto-Diagrammen aus Abbildung 19 ist zu entnehmen, dass im betrachteten Jahr 2016, die häufigsten 5, für Todesfälle verantwortlichen, Hauptdiagnosegruppen, rund 80 % aller Todesfälle ausmachten. In der Altersgruppe der 0-14-jährigen Frauen waren alleine die Hauptdiagnosen der bestimmten Zustände aus der Perinatalperiode (Poo-P96) und angeborene Fehlbildungen (Qoo-Q99) für zwei Drittel aller Todesfälle verantwortlich. Frauen im Alter von 15-44 Jahren starben am häufigsten an Neubildungen (36%), Verletzungen und Vergiftungen (26 %) und Krankheiten des Kreislaufsystems (rund 9 %). In der Altersgruppe von 45 bis 64 Jahren waren Neubildungen (Coo-D48), Kreislauferkrankungen (Ioo-I99) und Verletzungen und Vergiftungen (Soo-T98) die häufigsten Todesursachen. Im Jahr 2006 starben 65-jährige und ältere Frauen am häufigsten durch Kreislauferkrankungen, Neubildungen und endokrine, Ernährungs- bzw. Stoffwechselkrankheiten.

Auf Basis der durchgeführten Pareto-Analyse wurden im Folgenden die häufigsten, für Todesfälle verantwortlichen Hauptdiagnosen, anhand ihrer zeitlichen Entwicklung (1970-2015), für Männer und Frauen getrennt und in breiten Altersgruppen, entsprechend grafisch aufbereitet.

Entwicklung der Sterblichkeit

Die Sterblichkeit kann als weiteres Maß zur Beurteilung der Gesundheitszustandes einer Bevölkerung herangezogen werden. Abbildung 20 zeigt die zeitliche Entwicklung der absoluten Todesfälle für Männer und Frauen im Zeitraum von 1970 bis 2016.

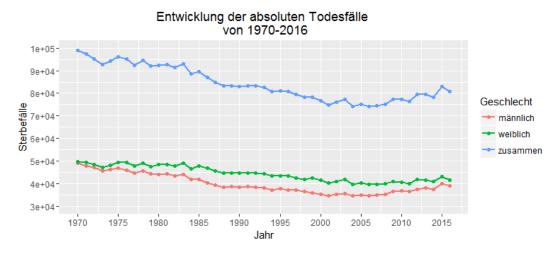


Abbildung 20.: Entwicklung der absoluten Zahl der Todesfälle für Männer und Frauen von 1970-2016 (Daten aus Statistik Austria, 2017[h])

Bei Betrachtung der Werte aus Statistik Austria, 2017(h), kann man erkennen, dass die absoluten Todesfälle seit 1970 nahezu kontinuierlich sanken. Im Jahr 2004 konnte mit 74292 Todesfällen ein neuer Tiefststand erreicht werden. Seither stiegen die Werte aber wieder an, was sich anhand der steigenden Zahl älterer Menschen in unserer Gesellschaft erklären lässt. Eine Tabelle der Entwicklung der altersstandardisierten Sterberaten der häufigsten für Todesfälle verantwortlichen Hauptdiagnosegruppen ist dem Anhang zu entnehmen (siehe Abschnitt C.1).

Im Folgenden sind die zeitlichen Entwicklungen der häufigsten, für Todesfälle verantwortlichen Hauptdiagnosegruppen, welche mithilfe der durchgeführten Pareto-Analyse gewonnen wurden, für Männer und Frauen, in den Altersgruppen 45-64 Jahre und 65 und mehr Jahre dargestellt. Die Darstellungen für die Altersgruppen 0-14 Jahre und 15-44 Jahre sind hierbei dem Anhang zu entnehmen (siehe Abschnitt B.2).

Abbildung 21 zeigt die zeitliche Entwicklung der Sterberaten für die häufigsten Hauptdiagnosegruppen, bei Männern in der Altersgruppe von 45-64 Jahren, im betrachteten Zeitraum von 1970-2015.

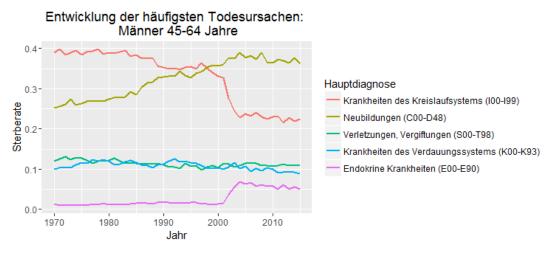


Abbildung 21.: Zeitliche Entwicklung der Sterberaten der häufigsten Hauptdiagnosen bei Männern (45-64 Jahre) von 1970-2015

Anhand der Kurven aus Abbildung 21 ist erkennbar, dass Krankheiten des Kreislaufsystems (Ioo-I99) und Neubildungen (Coo-D48) in der Altersgruppe der 45-64 jährigen Männer die höchsten Sterberaten aufweisen und somit für die meisten Todesfälle in dieser Altersgruppe verantwortlich sind. Während Krankheiten des Kreislaufsystems im gesamten betrachteten Zeitraum von 1970-2015 eher sanken, stiegen Neubildungen stetig an und lösten die Kreislauferkrankungen ab dem Jahr 1998 als häufigste Todesursache in der entsprechenden Altersgruppe ab. An dritter und vierter Stelle der häufigsten Todesursachen standen Verletzungen und Vergiftungen (Soo-T98) und Krankheiten des Verdauungssystems (K00-K93), die sich über den Zeitraum von 1970-2015 immer wieder gegenseitig überholten. Das Schlusslicht in dieser Betrachtung waren Sterberaten der endokrinen-, Ernährungsund Stoffwechselkrankheiten, die aber im Jahr 2002 einen rasanten Anstieg erfuhren. Von 2001 bis 2004 verfünffachte sich die Sterberate der endokrinen Erkrankungen, was sich mitunter auf die Einführung der ICD-10 Klassifizierung zurückführen lässt.

Abbildung 22 zeigt die zeitliche Entwicklung der Sterberaten für die häufigsten, für Todesfälle verantwortlichen Hauptdiagnosegruppen, bei Männern in der Altersgruppe von 65 und mehr Jahren, im betrachteten Zeitraum von 1970-2015.

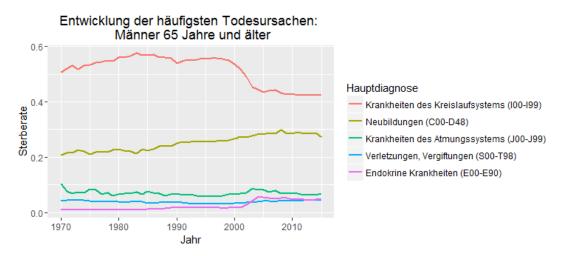


Abbildung 22.: Zeitliche Entwicklung der Sterberaten der häufigsten Hauptdiagnosen bei Frauen (65+ Jahre) von 1970-2015

Bei 65-jährigen und älteren Männern weisen Krankheiten des Kreislaufsystems (Ioo-I99) mit Abstand die höchsten Sterberaten auf. Über den gesamten Zeitraum war im Schnitt jeder zweite Todesfall auf eine Erkrankung des Kreislaufsystems zurückzuführen. Ab dem Jahr 1998 sank die Sterberate der Kreislauferkrankungen und pendelte sich seit dem Jahr 2008 auf einen relativ stabilen Wert zwischen 42 und 43 % ein. Die Sterberaten der Neubildungen (Coo-D48) stiegen zwischen 1970 und 2015 leicht an. Wurde 1970 nur rund jeder fünfte Todesfall durch eine Neubildung verursacht, war es im Jahr 2014 schon rund jeder dritte. An dritter Stelle der häufigsten, für Todesfälle verantwortlichen Hauptdiagnosen, standen Krankheiten des Atmungssystems (Joo-J99), die über den gesamten Zeitraum einen konstanten, annähernd linearen Trend aufwiesen. Die Schlusslichter in dieser Darstellung bildeten die Sterberaten der Verletzungen und Vergiftungen (Soo-T98), sowie der endokrinen-, Ernährungs- und Stoffwechselkrankheiten (Eoo-E90), welche ab dem Jahr 2002 anstiegen und sich seither auf einem relativ konstanten Niveau von 4-5 % bewegen.

Abbildung 23 zeigt die zeitliche Entwicklung der Sterberaten für die häufigsten, für Todesfälle verantwortlichen Hauptdiagnosegruppen, bei Frauen in der Altersgruppe von 45-64 Jahren, im betrachteten Zeitraum von 1970-2015.

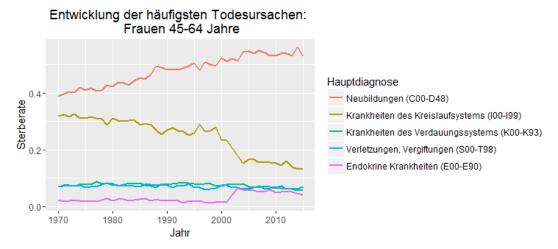


Abbildung 23.: Zeitliche Entwicklung der Sterberaten der häufigsten Hauptdiagnosen bei Frauen (45-64 Jahre) von 1970-2015

Innerhalb der Altersgruppe der 45-64-jährigen Frauen wiesen Neubildungen (Coo-D48), über den Zeitraum von 1970-2015, die höchsten Sterberaten auf und waren im Jahr 2015 für rund jeden zweiten Todesfall verantwortlich. Die Sterberaten der Kreislauferkrankungen (Ioo-I99) halbierten sich seit 1970, von knapp 32 %, auf rund 14 % im Jahr 2015. Wie auch schon in den vorigen Abbildungen, kam es im Jahr 2002 zu einem rasanten Anstieg der Sterberaten aufgrund von endokrinen-, Ernährungs- und Stoffwechselerkrankungen, welcher sich auf die Einführung der ICD-10 Klassifikation zurückführen lässt. Die Sterberaten für Krankheiten des Verdauungssystems (Koo-K93) und Verletzungen und Vergiftungen (Soo-T98) blieben während des gesamten betrachteten Zeitraums konstant und wiesen einen annähernd linearen Trend auf.

Abbildung 24 zeigt die zeitliche Entwicklung der Sterberaten für die häufigsten, für Todesfälle verantwortlichen Hauptdiagnosegruppen, bei Frauen in der Altersgruppe von 65 und mehr Jahren, im betrachteten Zeitraum von 1970-2015.

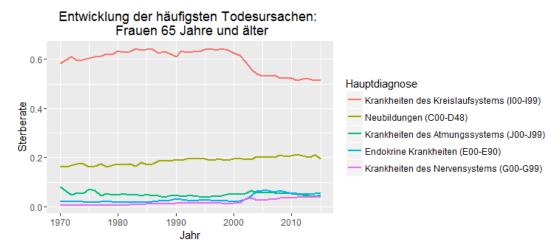


Abbildung 24.: Zeitliche Entwicklung der Sterberaten der häufigsten Hauptdiagnosen bei Frauen (65+ Jahre) von 1970-2015

Vergleicht man die Sterberaten der Kreislauferkrankungen für 65-jährige und ältere Frauen (Abbildung 24) mit denen der Männer in der gleichen Altersgruppe (Abbildung 22) fällt auf, dass diese beiden Kurven einen annähernd identen Verlauf aufweisen. Bei Frauen sank die Sterberate für Kreislauferkrankungen ab dem Jahr 1998 von rund 64 % auf 51 % im Jahr 2015. Im Vergleich dazu sank die Sterberate der 65-jährigen und älteren Männer im gleichen Zeitraum von rund 56 % im Jahr 1998 auf 42 % im Jahr 2015. Neubildungen (Coo-D48) waren von 1970-2015 die zweithäufigste Todesursache in der entsprechenden Altersgruppe und wiesen über den gesamten Zeitraum einen leicht steigenden, linearen Trend auf. Im Jahr 1970 war rund jeder fünfte Todesfall bei 65-jährigen und älteren Frauen auf eine Neubildung zurückzuführen, während es im Jahr 2015 bereits jeder vierte Todesfall war. Die dritthöchsten Sterberaten wurden bis 2004 durch die Hauptdiagnosegruppe der Krankheiten des Atmungssystems (Joo-J99) verursacht. Ab dem Jahr 2004 wurden die Sterberaten der Krankheiten des Atmungssystems durch endokrine-, Ernährungs- und Stoffwechselkrankheiten (Eoo-E90) als dritthäufigste Todesursache von 65-jährigen und älteren Frauen abgelöst. Aus Abbildung 24 ist erkennbar, dass es ab dem Jahr 2001 bzw. 2002 zu einem Anstieg der Erkrankungsraten innerhalb der Hauptdiagnosegruppen der Krankheiten des Atmungssystems, der endokrinen-, Ernährungs- und Stoffwechselkrankheiten sowie der Krankheiten des Nervensystems kam.

4.1.5. Subjektive Gesundheitswahrnehmung

Die subjektive Gesundheitswahrnehmung kann dabei helfen, das allgemeine Wohlbefinden innerhalb der Bevölkerung einzuschätzen. Im Gegensatz zu klinischen Befunden werden bei dieser Art der Befundung auch körperliche, psychische und soziale Aspekte der Gesundheit (mit-)erfasst (vgl. Böhm et al., 2009, S.14).

Aus diesem Grund führte Statistik Austria im Auftrag des Bundesministeriums für Gesundheit sowie der Bundesgesundheitsagentur eine österreichweite Befragung zum Thema Gesundheit durch. Im Zeitraum von Oktober 2013 bis Juni 2015 wurden 15771 Personen (6986 Männer und 8785 Frauen) im Alter von 15 und mehr Jahren anhand von telefonischen Interviews und eines schriftlichen Fragebogens zu ihrem Gesundheitszustand befragt. Anhand der gewonnenen Informationen können Zusammenhänge von Krankheitshäufigkeiten (Morbidität), Gesundheitsverhalten und gesundheitsrelevanten Risikofaktoren analysiert und deren Unterschiede in Bezug auf Alter, Geschlecht und anderen Faktoren besser verstanden werden. Ferner gibt die Gesundheitsbefragung einen Einblick welche Versorgungseinrichtungen in welchem Ausmaß in Anspruch genommen werden. Somit sind die in der Gesundheitsbefragung erhobenen Daten ein wichtiger Indikator für die Politik und Versorgungsstellen, um auf die aktuellen Bedürfnisse der Bevölkerung reagieren zu können (vgl. Statistik Austria, 2015a, S.13-15).

Zur Erfassung des subjektiven Gesundheitszustandes wurde die Frage:"Wie ist Ihre Gesundheit im Allgemeinen?" gestellt. Die Antwortmöglichkeiten waren: "sehr gut", "gut", "mittelmäßig", "schlecht" und "sehr schlecht".

Tabelle 21 zeigt die Ergebnisse der durchgeführten Gesundheitsbefragungen aus den Jahren 2014, 2006/2007, 1999 und 1991.

Betrachtet man die Ergebnisse aus Tabelle 21 für das Jahr 2014, fällt auf, dass rund 80% der Männer und 77% der Frauen ihre eigene Gesundheit mit "sehr gut" oder "gut" bewerten. Insgesamt bewerten nur 4,5% der Bevölkerung ihre Gesundheit als "schlecht" oder "sehr schlecht".

Vergleicht man die Ergebnisse der Gesundheitsbefragung 2014 mit den Ergebnissen aus früheren Befragungen, kann man einen positiven Trend hinsichtlich der subjektiven Gesundheit erkennen. Kompensiert man den

4. Ergebnisse

Jahr/	W	ie ist Ihre (Gesun	dheit im	Allgemeii	nen?
Geschlecht	Insgesamt	sehr gut	gut	mittel	schlecht	sehr schlecht
	in 1.000		alter	sstanda	rdisiert in	%
2014						
Männer	3.518,85	35,9	43,7	16,2	3,6	0,7
Frauen	3.716,57	34,8	42,1	18,2	4,0	0,8
2006/07						
Männer	3.357,25	36,2	38,5	18,8	5,1	1,4
Frauen	3.592,89	35,0	38,1	20,4	5,5	0,9
1999						
Männer	3.157,70	32,9	38,7	21,3	5,6	1,4
Frauen	3.434,30	31,0	39,5	22,7	5,6	1,3
1991						
Männer	2.480,08	30,5	37,8	23,6	6,4	1,7
Frauen	2.764,45	25,8	39,8	26,7	6,2	1,5

Tabelle 21.: Ergebnisse der österreichischen Gesundheitsbefragung aus den Jahren 2014, 2006, 1999 und 1991 (Daten aus Statistik Austria, 2015b)

Einfluss der Alterung der Gesellschaft (durch Altersstandardisierung) statistisch, verstärkt sich dieser Trend. So stieg der Anteil der Männer, welche sich zumindest "gut" fühlen von 68% im Jahr 1991 auf rund 80% im Jahr 2014. Bei den Frauen stieg der Anteil von 66% im Jahr 1991 auf rund 77% im Jahr 2014.

Abbildung 25 zeigt den prozentualen Anteil der Personen mit (sehr) guter Gesundheit nach Alter und Geschlecht aus dem Jahr 2014.

Frauen bewerten sich gesundheitlich etwas schlechter als Männer. Die Unterschiede zwischen den beiden Geschlechtern sind in jüngeren Jahren nicht groß, vergrößern sich allerdings im höheren Lebensalter (75 Jahre und älter) deutlich. Die höhere Lebenserwartung der Frauen (83,59 Jahre vs. Männer: 78,63 Jahre; siehe Tabelle 18) führt zu einem höheren Ausmaß an gesundheitlichen Problemen als bei gleichaltrigen Männern. Mit zunehmendem Alter nimmt der Anteil der Personen mit "sehr guter" und "guter" Gesundheit ab. In der Altersgruppe der 15-29 Jährigen stuften mehr als 90% ihren Gesundheitszustand als "sehr gut" ein (Männer: 95,4%, Frauen: 93,6%). In der

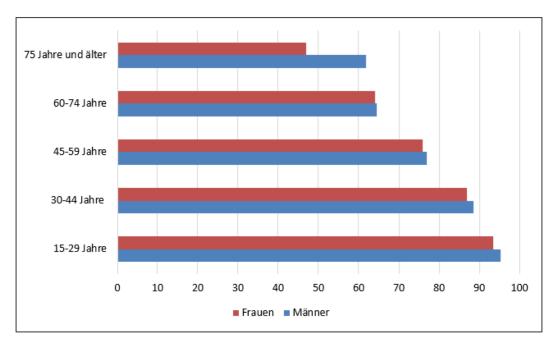


Abbildung 25.: Prozentualer Anteil der Personen mit (sehr) guter Gesundheit nach Alter und Geschlecht aus dem Jahr 2014 (Daten aus Statistik Austria, 2015b)

Altersgruppe der 30 bis unter 45 Jährigen waren es immerhin noch 88,7% bei den Männern und rund 87% bei den Frauen. Bei den 45-60 Jährigen bewerten ca. 3 von 4 Personen (Männer: 76,9%; Frauen: 75,9%) ihre Gesundheit mit zumindest "gut". Bei Männern und Frauen im Alter von 60-74 Jahren sank dieser Wert auf 64,5% (Männer) bzw. 64,2% (Frauen). Bei der Gruppe im Alter von 75 und mehr Jahren waren die geschlechterspezifischen Unterschiede am größten. Der Anteil der Männer in dieser Altersgruppe, die ihren Gesundheitszustand mit "sehr gut" oder "gut" bezeichneten, betrug rund 62% und bei den Frauen sank dieser Wert auf rund 47% (vgl. Statistik Austria, 2015a, S.15-17).

Zur Erfassung der Prävalenz von chronischen Erkrankungen wurde die Frage: "Haben Sie eine dauerhafte Krankheit oder ein chronisches Gesundheitsproblem?" gestellt. Weiters wurde darauf hingewiesen, dass es sich hierbei um Krankheiten handelt, die voraussichtlich 6 Monate andauern bzw. andauern werden. Die möglichen Antworten beschränken sich hierbei auf: "Ja" oder "Nein" (vgl. Statistik Austria, 2015a, S.18).

Abbildung 26 zeigt den prozentualen Anteil der Personen, welche an einer

chronischen Erkrankung leiden, nach Alter und Geschlecht.

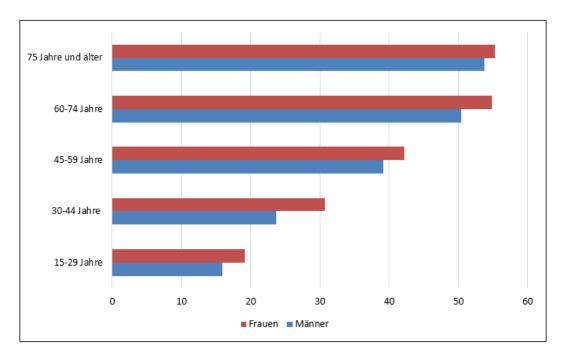


Abbildung 26.: Prozentualer Anteil der Personen, welche an einer chronischen Krankheit leiden, nach Alter und Geschlecht aus dem Jahr 2014 (Daten aus Statistik Austria, 2016b)

Innerhalb der österreichischen Bevölkerung leiden mehr als ein Drittel der Personen (36%) an einer chronischen Erkrankung (dies entspricht insgesamt 2,6 Millionen Personen; 1,2 Mio. Männer, 1,4 Mio. Frauen). Mit steigendem Alter nehmen auch die chronischen Gesundheitsprobleme deutlich zu. Während in der Altersgruppe der 15-29-Jährigen nur jeder sechste Mann (16%) bzw. jede fünfte Frau (19%) an einer chronischen Krankheit leidet, ist in der Altersgruppe der 75-jährigen und älteren Personen rund jeder zweite Mann (54%) und jede zweite Frau (55%) davon betroffen (vgl. Statistik Austria, 2015a, S.18).

4.2. Berechnungen

Folgender Abschnitt soll anhand eines schematischen Beispiels veranschaulichen, wie in weiterer Folge die verschiedenen Berechnungen der Erkrankungsund Sterbewahrscheinlichkeiten für die einzelnen Hauptdiagnosegruppen vorgenommen wurde. Aufgrund der enormen Datenmenge können die relevanten Ergebnisse der Berechnungen bei Interesse den entsprechenden *.csv-Dateien entnommen werden, da eine Darstellung der einzelnen Ergebnisse den Rahmen dieser Arbeit sprengen würde.

4.2.1. Morbiditätswahrscheinlichkeit

Zur besseren Veranschaulichung wird die Berechnung der Morbiditätswahrscheinlichkeit für Herz-Kreislauferkrankungen in diesem Beispiel bei Männern in den Altersgruppen von 65 bis 67 Jahren durchgeführt. Aufgrund des großen Umfangs des Datensatzes wird in folgendem Beispiel nur ein Auszug der Daten zur Veranschaulichung verwendet. Die gesammelten Daten zur berechneten Morbiditätswahrscheinlickeit von Männern und Frauen für das Alter in Einzeljahren ist den entsprechenden *.csv-Dateien zu entnehmen.

Im Jahr 2014 gab es 45345 Männer im Alter von 65 Jahren und 4310 Männer, die wegen einer Herz-Kreislauferkrankung in Behandlung waren. Somit berechnet sich die Morbiditätswahrscheinlichkeit P_{Morb} durch Einsetzen der Werte in die Formel 3.2 für einen 65-jährigen Mann im Jahr 2014 zu:

$$P_{Morb(65)} = \frac{erkrankte\ Personen\ 65\ J.}{alle\ Personen\ 65\ J.} = \frac{4310}{45345} = 0,09504 = 9,5\%$$
 (4.1)

Tabelle 22 zeigt die männliche Bevölkerung im Alter von 65 bis 67 Jahren, die Spitalsentlassungen bzw. aufgetretenen Fälle und die berechnete Morbiditätswahrscheinlichkeiten für Herz-Kreislauferkrankungen in den Altersgruppen 65-67 Jahren im betrachteten Zeitraum von 1989-2016. Die Werte aus Berechnungsbeispiel 4.1 wurden in Tabelle 22 zur leichteren Orientierung grün markiert.

	В	Bevölkerun	g		Fälle			$P_{ m Morbidit\ddot{a}t}$	
Jahr	65 Jahre	66 Jahre	67 Jahre	65 Jahre	66 Jahre	67 Jahre	65 Jahre	66 Jahre	67 Jahre
1989	31134	31213	30205	2852	3066	3031	0,09160	0,09823	0,10035
1990	31182	30355	30359	3221	3291	3334	0,10330	0,10842	0,10982
1991	32119	30370	29510	3274	3306	3351	0,10193	0,10886	0,11355
1992	32529	31269	29511	3267	3462	3337	0,10043	0,11072	0,11308
1993	33627	31718	30418	3660	3534	3586	0,10884	0,11142	0,11789
1994	35240	32788	30931	3695	3769	3680	0,10485	0,11495	0,11897
1995	34961	34365	31954	4035	4102	3835	0,11541	0,11937	0,12002
1996	35517	34180	33393	3785	3934	4077	0,10657	0,11510	0,12209
1997	34058	34642	33254	3913	4167	4283	0,11489	0,12029	0,12880
1998	33413	33240	33743	3595	4125	4305	0,10759	0,12410	0,12758
1999	32021	32639	32439	3460	3703	4017	0,10805	0,11345	0,12383
2000	30905	31355	31937	3379	3678	3810	0,10934	0,11730	0,11930
2001	30701	30316	30711	3508	3616	3933	0,11426	0,11928	0,12806
2002	31357	30169	29782	3436	3749	3873	0,10958	0,12427	0,13004
2003	32033	30741	29511	3857	3581	3502	0,12041	0,11649	0,11867
2004	35211	31459	30094	4824	3946	3580	0,13700	0,12543	0,11896
2005	50689	34603	30858	6008	4891	3819	0,11853	0,14135	0,12376
2006	52368	49886	33977	5386	6275	5137	0,10285	0,12579	0,15119
2007	48532	51527	48999	5006	5817	6346	0,10315	0,11289	0,12951
2008	41947	47682	50603	4486	5400	5768	0,10694	0,11325	0,11399
2009	41653	41213	46836	4570	4556	5251	0,10972	0,11055	0,11211
2010	41591	40962	40509	4044	4818	4563	0,09723	0,11762	0,11264
2011	31997	40907	40230	3347	4197	4824	0,10460	0,10260	0,11991
2012	39333	31405	40162	4433	3665	4149	0,11270	0,11670	0,10331
2013	46584	38675	30806	4653	4663	3768	0,09988	0,12057	0,12231
2014	45345	45788	37998	4310	4631	4815	0,09505	0,10114	0,12672

Tabelle 22.: männliche Bevölkerung mit 65 Jahren, Spitalsentlassungen und berechnete Morbiditätswahrscheinlichkeiten im Zeitraum von 1989-2016

Die einzelnen geschlechterspezifischen Morbiditätsberechnungen für die unterschiedlichen Erkrankungen und einzelnen Altersgruppen (o-95+ Jahre) wurden für die Berichtsjahre 1989-2014 wegen der großen Datenmenge und leichteren Handhabung in Excel 2013 (Microsoft) durchgeführt. Die zugrundeliegenden Statistiken zur Berechnung der Morbiditätswahrscheinlichkeit

sind die Spitalsentlassungsstatistik und die Bevölkerungsstatistik (siehe Tabelle 4) von Statistik Austria.

4.2.2. Mortalitätswahrscheinlichkeit

Um das Ergebnis der Berechnung der Mortalitätswahrscheinlichkeit besser darstellen zu können, wird hier nur ein Auszug der vorgenommenen Berechnungen aufgeführt. Im Beispiel wird die Mortalitätswahrscheinlichkeit für Herz-Kreislauferkrankungen für Frauen in den Altersstufen von 87 bis 89 Jahren für den Zeitraum von 1982 bis 2015 berechnet. Die einzelnen spezifischen Mortalitätsraten der Hauptdiagnosegruppen für Männer und Frauen im Alter von 0-95+ Jahren können den entsprechenden *.csv-Dateien entnommen werden.

Im Jahr 2009 gab es 11054 Frauen im Alter von 89 Jahren und 1225 Todesfälle aufgrund einer Herz-Kreislauferkrankung in der entsprechenden Altersgruppe. Durch Einsetzen der Werte in Formel 3.3 berechnet sich die Mortalitätswahrscheinlichkeit P_{Mort} zu:

$$P_{\text{Mortalität}} = \frac{1225}{11054} = 0,11082 = 11,08\% \tag{4.2}$$

Tabelle 23 zeigt die weibliche Bevölkerung in der Altersgruppe von 87-89 Jahren, die Sterbefälle der entsprechenden Altersgruppe und die berechnete Mortalitätswahrscheinlichkeit für Herz-Kreislauferkrankungen im betrachteten Zeitraum von 1982-2015. Zur besseren Veranschaulichung wurden die Werte des obigen Berechnungsbeispiels 4.2 in Tabelle 23 grün markiert.

Analog zur Berechnung der Morbiditätswahrscheinlichkeiten wurden auch die Mortalitätswahrscheinlichkeiten geschlechtsspezifisch für alle Altersgruppen (0-95+) für die einzelnen Hauptdiagnosen mit Excel 2013 (Microsoft) berechnet.

	В	Bevölkerun	g		Fälle			$P_{ m Mortalit at}$	
Jahr	87 Jahre	88 Jahre	89 Jahre	87 Jahre	88 Jahre	89 Jahre	87 Jahre	88 Jahre	89 Jahre
1982	8202	6433	4747	1.051	951	799	0,12814	0,14783	0,16832
1983	8174	6720	5212	1.181	1.006	837	0,14448	0,14970	0,16059
1984	8500	6596	5435	1.103	962	802	0,12976	0,14585	0,14756
1985	8866	7021	5381	1.099	1.075	857	0,12396	0,15311	0,15926
1986	9297	7337	5660	1.261	1.041	847	0,13564	0,14188	0,14965
1987	9858	7668	6028	1.242	1.035	929	0,12599	0,13498	0,15411
1988	10462	8237	6316	1.226	1.027	964	0,11719	0,12468	0,15263
1989	11033	8877	6830	1.231	1.165	1.012	0,11157	0,13124	0,14817
1990	11133	9247	7342	1.235	1.227	999	0,11093	0,13269	0,13607
1991	11283	9312	7612	1.271	1.177	1.101	0,11265	0,12640	0,14464
1992	11876	9561	7661	1.314	1.255	1.078	0,11064	0,13126	0,14071
1993	11620	9964	7920	1.359	1.185	1.141	0,11695	0,11893	0,14407
1994	13017	9879	8296	1.364	1.248	1.125	0,10479	0,12633	0,13561
1995	13489	11270	8286	1.389	1.404	1.235	0,10297	0,12458	0,14905
1996	13610	11585	9454	1.443	1.458	1.268	0,10602	0,12585	0,13412
1997	14597	11589	9722	1.385	1.374	1.199	0,09488	0,11856	0,12333
1998	15016	12559	9833	1.455	1.360	1.293	0,09690	0,10829	0,13150
1999	14695	13028	10655	1.474	1.450	1.434	0,10031	0,11130	0,13458
2000	15824	12668	10994	1.447	1.393	1.300	0,09144	0,10996	0,11825
2001	15751	13800	10739	1.291	1.359	1.249	0,08196	0,09848	0,11631
2002	15729	13885	12058	1.179	1.265	1.385	0,07496	0,09111	0,11486
2003	11995	13663	11799	845	1.189	1.351	0,07045	0,08702	0,11450
2004	9749	10411	11639	723	805	1.043	0,07416	0,07732	0,08961
2005	9191	8557	9014	678	709	756	0,07377	0,08286	0,08387
2006	9731	8078	7387	840	658	683	0,08632	0,08146	0,09246
2007	14452	8598	7025	1.259	760	635	0,08712	0,08839	0,09039
2008	18632	12732	7519	1.240	1.200	796	0,06655	0,09425	0,10587
2009	19952	16493	11054	1.378	1.301	1.225	0,06907	0,07888	0,11082
2010	20508	17668	14364	1.303	1.399	1.299	0,06354	0,07918	0,09043
2011	20705	18204	15447	1.318	1.251	1.379	0,06366	0,06872	0,08927
2012	20493	18536	15960	1.318	1.410	1.420	0,06431	0,07607	0,08897
2013	20388	18170	16195	1.192	1.339	1.427	0,05847	0,07369	0,08811
2014	19601	18145	15911	1.038	1.223	1.378	0,05296	0,06740	0,08661
2015	18444	17655	16017	1.092	1.275	1.349	0,05921	0,07222	0,08422

Tabelle 23.: weibliche Bevölkerung mit 87-89 Jahren, Sterbefälle aufgrund von Herz-Kreislauferkrankungen und berechnete Mortalitätswahrscheinlichkeiten im Zeitraum von 1982-2015. Die Zahlen zur Berechnung stammen aus der Bevölkerungsstatistik und der Todesursachenstatistik (siehe Tabelle 4)

4.3. Grafische Benutzeroberfläche

4.3.1. Einstellungsmöglichkeiten

Bei der Erstellung der Eingabemaske für den Benutzer wurde darauf geachtet, die möglichen Nutzereinstellungen übersichtlich anzuordnen und auf ein überschaubares Maß zu reduzieren. Im Folgenden werden die verschiedenen Einstellungsmöglichkeiten zu Modellstart genauer erläutert.

- 1. Institutslogo, Institutsname, sowie Logo der Technischen Universität Graz.
- 2. Modelltitel.
- 3. Simulationsstart: entweder im Jahr 1996 oder im Jahr 2014. Kann durch Anklicken des Radio-Buttons durch den Benutzer gewählt werden.
- 4. Prognosemethode: Festlegung des Benutzers ob das Modell Erkrankungs- und Sterbefälle ab dem letzten bekannten Berichtsjahr (2014) mit konstanten Erkrankungs- bzw. Sterberaten, mit linearer Regression, oder mit Mittelwerten der Erkrankungsraten in der Vergangenheit prognostizieren soll.
- 5. Auswahl, ob Modellergebnisse in entsprechenden Excel-Dateien gespeichert werden sollen.
- 6. Start-Button für das Modell: Betätigung führt zur Ergebnisansicht (Simulationsergebnisse: Übersicht) des Modells.
- 7. Hilfefenster für Einstellungen durch Benutzer mit kurzen Erklärungen.
- 8. Autor und Version des Modells.

Abbildung 27 zeigt die zum Modellstart angezeigte Eingabemaske mit den, durch den Benutzer, wählbaren Einstellungen.

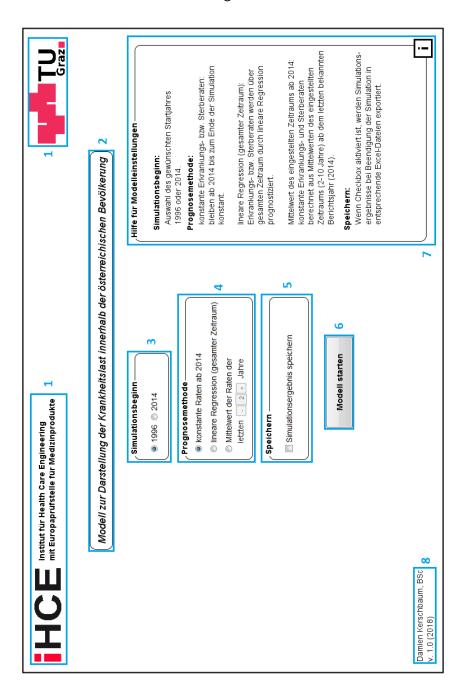


Abbildung 27.: Grafische Benutzeroberfläche: Startbildschirm

4.3.2. Ergebnisdarstellung

Um dem Benutzer des Modells zur Laufzeit eine Übersicht der wichtigsten Parameter zu bieten, wurden die Simulationsergebnisse kurz und prägnant auf einer Seite zusammengefasst. Nach dem Start der Simulation (siehe Abbildung 27) wechselt die Modellansicht auf die erste Seite der Simulationsergebnisse. Abbildung 28 veranschaulicht die Übersicht der Simulationsergebnisse.

Die wichtigsten Elemente der Übersicht der Simulationsergebnisse werden im Folgenden erläutert.

- 1. Titel des momentan geöffneten Fensters.
- Schaltfläche zur Darstellung der einzelnen Module (Bevölkerung, stationäre Morbidität und Mortalität) zur Laufzeit, um die Ausführung der Modellberechnungen überprüfen zu können.
- 3. Momentan simuliertes Jahr (Laufzeitanzeige).
- 4. Navigationspanel mit welchem während der Laufzeit zu den verschiedenen Ergebnisübersichten (Übersicht, Bevölkerung, stationäre Morbidität und Mortalität) gewechselt werden kann.
- 5. Anzeige der momentan simulierten Gesamtbevölkerung.
- Tortendiagramm, welches den momentanen Geschlechteranteil (Männer und Frauen) anzeigt. Die Anteile sind hierbei sowohl in Absolut- als auch in Prozentwerten angegeben.
- 7. Darstellung der momentan, häufigsten Erkrankungen (Hauptdiagnosegruppen) bei Männern anhand eines Tortendiagramms. Neben jeder Erkrankung können sowohl Absolut- als auch Prozentwerte abgelesen werden.
- 8. Darstellung der aktuell, häufigsten Erkrankungen (Hauptdiagnosegruppen) bei Frauen anhand eines Tortendiagramms. Neben jeder Erkrankung können sowohl Absolut- als auch Prozentwerte abgelesen werden.

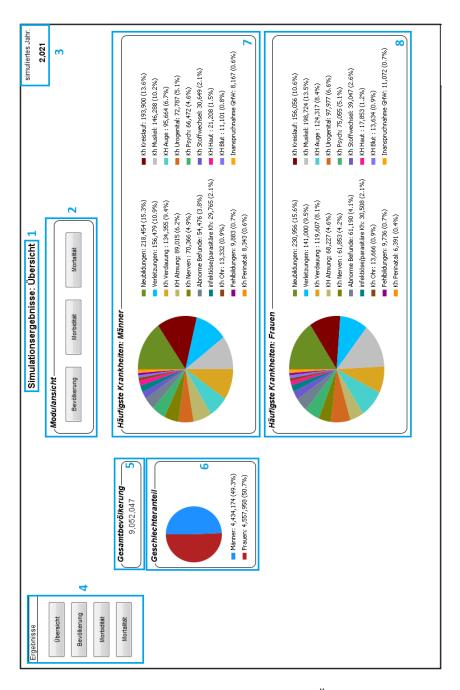


Abbildung 28.: Simulationsergebnisse: Übersicht

Das Fenster mit den Simulationsergebnissen zur Bevölkerung enthält folgende Elemente:

- 1. Titel des momentan betrachteten Fensters.
- 2. Anzeige der simulierten Gesamtbevölkerung.
- 3. Momentan simuliertes Jahr.
- 4. Anzeige von Geburten und Sterbefällen als Balkendiagramm. Außerdem wird die Differenz von Geburten und Sterbefällen in einem zweiten Balkendiagramm dargestellt.
- 5. Anzeige von simulierten Bevölkerungswanderungen als Balkendiagramm. Des Weiteren wird anhand eines zusätzlichen Balkendiagramms auch die Differenz zwischen Zu- und Abwanderung dargestellt.
- 6. Aktuell simulierte Bevölkerungspyramide. Für eine bessere Übersicht erfolgt die Darstellung der beiden Geschlechter getrennt und für das Alter in Einzeljahren. Zusätzlich sind breite Altersgruppen (0-14, 15-44, 45-64 und 65-95+ Jahre) durch unterschiedliche Farben gekennzeichnet.
- 7. Altersstruktur der Bevölkerung: Darstellung der Alterszusammensetzung der Bevölkerung. Anhand des Diagrammes kann bestimmt werden, welchen prozentuellen Anteil jede Altersgruppe (o-14, 15-44, 45-64 und 65-95+ Jahre) an der Gesamtbevölkerung hat. Zusätzlich wird die aktuelle Altersstruktur der Bevölkerung neben dem Diagramm auch als Text in Absolutwerten und als Prozentanteil an der Gesamtbevölkerung angezeigt.
- 8. Navigationspanel um während der Laufzeit zu den verschiedenen Ergebnisansichten wechseln zu können.

Abbildung 29 zeigt die Ergebnisse zur Bevölkerungsentwicklung.



Abbildung 29.: Simulationsergebnisse: Bevölkerung

Abbildung 30 veranschaulicht die schematische Ergebnisdarstellung der Morbidität während der Laufzeit des Programms.

Die wichtigsten Elemente der Simulationsergebnisse der Morbidität sind:

- 1. Titel des aktuellen Fensters.
- 2. Momentan simuliertes Jahr.
- 3. Navigationspanel für das Wechseln zwischen den einzelnen Ergebnisfenstern.
- 4. Darstellung der Entwicklung der Krankheitsfälle normiert auf die Altersgruppe für Männer, Frauen und Gesamt und für breite Altersgruppen (0-14, 15-44, 45-64, 65-95+ Jahre) über die Zeit. Hierbei wurden aufgetretene Krankheitsfälle in den einzelnen Altersgruppen durch die Gesamtzahl an Personen in der Altersgruppe dividiert.
- 5. Darstellung der absolut auftretenden Krankheitsfälle (= stationäre Aufnahmen) für Männer, Frauen und beide Geschlechter zusammen und für breite Altersgruppen.

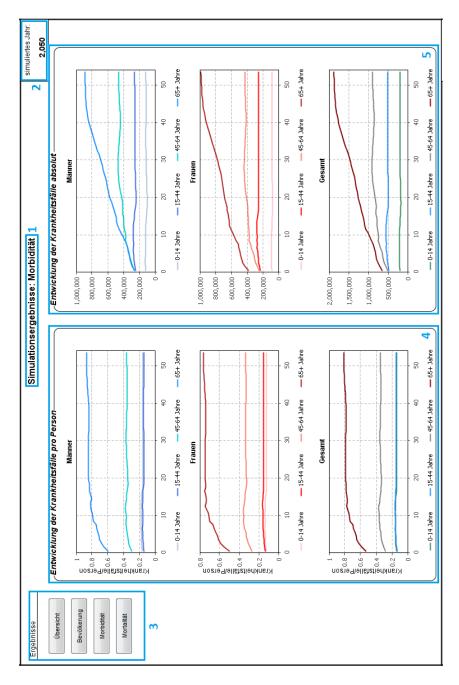


Abbildung 30.: Simulationsergebnisse: Morbidität

Abbildung 31 zeigt die schematische Ergebnisdarstellung der Mortalitätsentwicklung während der Laufzeit des Modells.

Im Folgenden werden die wichtigsten Elemente der mortalitätsbezogenen Simulationsergebnisse näher erläutert.

- 1. Titel des aktuell betrachteten Fensters.
- 2. Momentan simuliertes Jahr.
- 3. Navigationspanel zum Umschalten zwischen den einzelnen Ergebnisfenstern.
- 4. Entwicklung der Todeshäufigkeiten bei Männern, Frauen und beiden Geschlechtern zusammen in breiten Altersgruppen (0-14, 15-44, 45-64 und 65-95+ Jahre). Hierfür wurden die aufgetretenen Todesfälle in den jeweiligen Altersgruppen durch die Gesamtzahl der in der Altersgruppe befindlichen Personen dividiert.
- 5. Darstellung der absoluten Todesfälle bei Männern, Frauen und beiden Geschlechtern zusammen in breiten Altersgruppen.

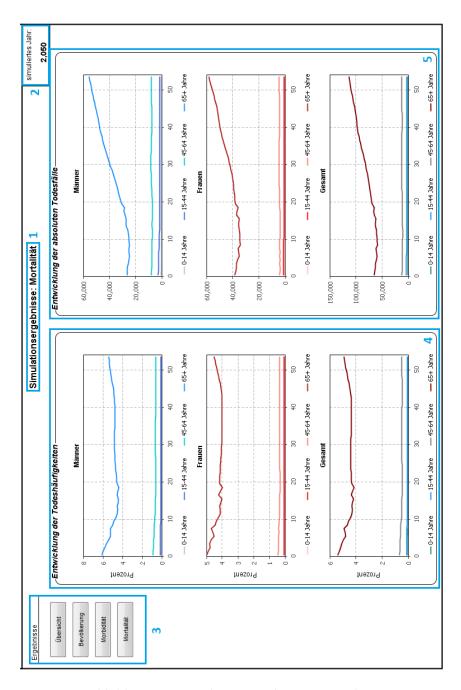


Abbildung 31.: Simulationsergebnisse: Mortalität

4.4. Simulation unterschiedlicher Szenarien

Folgender Abschnitt beschreibt die, durch die Simulation der verschiedenen Szenarien, gewonnenen Ergebnisse des Modells. Hierbei kann grob zwischen 3 verschiedenen Szenarien unterschieden werden:

- 1. Projektion der Krankheits- und Sterbefälle mit konstanten Erkrankungsbzw. Sterberaten ab dem letzten bekannten Berichtsjahr (2014).
- 2. Prognose der Krankheits- und Sterbefälle anhand von linearer Regression im Zeitraum von 2015-2050.
- 3. Prognose der Krankheits- und Sterbefälle durch Mittelwertbildung von Erkrankungs- und Sterberaten über gewünschten Zeitraum ab dem letzten bekannten Berichtsjahr (2014).

4.4.1. Szenario 1: konstante Raten

In diesem Szenario werden die Erkrankungs- und Sterberaten der einzelnen Hauptdiagnosegruppen (in den einzelnen Altersgruppen für Männer und Frauen) des letzten bekannten Berichtsjahres (2014) identifiziert und für die restliche Dauer der Simulation bis 2050 konstant gehalten. Bei dieser Art der Vorhersage (= Projektion) ändert sich also nur die Zusammensetzung der Bevölkerung, während die spezifischen Erkrankungs- und Sterberaten auf einem konstanten Wert gehalten werden.

4.4.1.1. Bevölkerungsentwicklung

Dieser Abschnitt veranschaulicht die Bevölkerungsentwicklung während der Simulation mit konstanten Erkrankungs- und Sterberaten. Neben der Darstellung der Altersstruktur der Bevölkerung (Anteil der jeweiligen breiten Altersgruppen an Gesamtbevölkerung), können auch die Absolutzahlen der Bevölkerung für Männer, Frauen und Gesamt aus einer entsprechenden Tabelle entnommen werden.

Altersstruktur der Bevölkerung

Abbildung 32 veranschaulicht die Entwicklung der Alterstruktur der Bevölkerung für das simulierte Szenario mit konstanten Erkrankungs- und Sterberaten ab dem Jahr 2014.

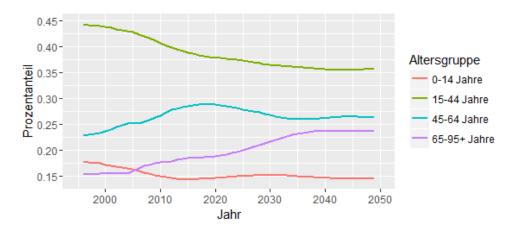


Abbildung 32.: Altersstruktur der Bevölkerung bei Prognose der Erkrankungs- und Sterbefälle durch konstante Raten im Zeitraum von 1996-2050

Wie Abbildung 32 zu entnehmen, stiegen bei diesem Szenario vor allem die Anteile der Bevölkerung in den Altersgruppen 45-64 Jahre und 65-95 Jahre. In der Altersgruppe der 45- bis 64-jährigen stieg der Anteil an der Gesamtbevölkerung von rund 23% im Jahr 1996 auf 26% im Jahr 2049. Ein noch stärkerer Anstieg war in der Altersgruppe der 65- bis 95-Jährigen zu beobachten. Betrug der Anteil der entsprechenden Altersgruppe an der Gesamtbevölkerung im Jahr 1996 noch rund 15%, stieg dieser Wert im Lauf der Simulation auf knapp 24% im Jahr 2049. Innerhalb der größten Bevölkerungsgruppe (15-44 Jahre) sank der Anteil im betrachteten Zeitraum von 44% im Jahr 1996 auf 36% im Jahr 2049. Auch in der jüngsten Altersgruppe (0-15 Jahre) war ein Sinken des Anteils an der Gesamtbevölkerung zu beobachten (1996: 18%, 2049: 14%).

Entwicklung der Gesamtbevölkerung

Tabelle 24 zeigt die absoluten Bevölkerungszahlen für Männer, Frauen und Gesamt im betrachteten Zeitraum von 1996-2050.

Geschlecht				Jahre			
Gesericeric	1996	2000	2010	2020	2030	2040	2050
Männer	3836950		4063093	1151	1 / 1 /	4824281	4885536
Frauen	4116117	4131291	4274516	4558005	4764063	4861216	4894338
Gesamt	7953067	8002545	8337609	8992226	9456552	9685497	9779874

Tabelle 24.: Übersicht über die Entwicklung der Bevölkerung in den Jahren 1996-2050 unter Verwendung von konstanten Erkrankungs- und Sterberaten

Den Daten aus Tabelle 24 kann entnommen werden, dass die absoluten Bevölkerungszahlen in allen betrachteten Gruppen (Männer, Frauen und gesamt) von 1996 bis zum Jahr 2050 ansteigen. Bei Männern gibt es von 1996-2050 einen Zuwachs von rund einer Million Personen. Bei den Frauen gibt es im selben Zeitraum einen Zuwachs von rund 800.000 Personen. Insgesamt steigt die Absolutzahl im vorliegenden Szenario um rund 1,8 Millionen Personen.

4.4.1.2. Entwicklung der (stationären) Morbidität

Tabelle 25 veranschaulicht die Entwicklung der stationären Morbidität für Männer und Frauen innerhalb der breiten Altersgruppen für ausgewählte Jahre in 5-Jahresschritten. Um abschätzen zu können, wie sich die stationäre Morbidität entwickelt, sind neben absoluten Erkrankungsfallzahlen, innerhalb der entsprechenden Altersgruppen, auch die absoluten Bevölkerungszahlen der, innerhalb der jeweiligen Altersgruppe, existierenden Personen angegeben. Des Weiteren wurde auch ein Faktor berechnet, der die Anzahl der absolut auftretenden Krankheitsfälle auf die Bevölkerung, innerhalb der Altersgruppe, normiert. Hierbei wurden die auftretenden Erkrankungsfallzahlen, innerhalb der breiten Altersgruppen, durch die Anzahl der, in der Altersgruppe existierenden, Personen dividiert. Dies ermöglicht in weiterer Folge, Aussagen darüber zu treffen wie

viele Krankheitsfälle innerhalb der jeweiligen Altersgruppen in Bezug auf die Bevölkerung auftreten und diese Werte in entsprechenden Relation zu setzen. Die Daten zur Berechnung der Faktoren wurden aus den Ergebnisdateien der Modellierung entnommen (siehe *outputFileBev_konst* und *outputFileMorb_konst*).

Zur Erstellung der Diagramme zur Entwicklung der Fallzahlen der stationären Morbidität wurden die einzelnen Hauptdiagnosegruppen für die verschiedenen breiten Altersgruppen und für das letzte simulierte Jahr (2049) nach ihrem prozentualen Anteil an allen Krankheitsfällen, innerhalb der Hauptdiagnosegruppen, geordnet und anschließend deren Entwicklung über den gesamten betrachteten Zeitraum von 1996 bis 2049 dargestellt. Zusätzlich sei anzumerken, dass in der Darstellung jene Hauptdiagnosegruppen berücksichtigt wurden, die innerhalb der entsprechenden Altersgruppe, für zumindest 80% der aufgetretenen Erkrankungsfälle verantwortlich waren. Die Daten zur Berechnung der Häufigkeitsverteilung der einzelnen Hauptdiagnosegruppen für Männer und Frauen wurden den Ergebnisdatensätzen der Modellierung entnommen (siehe *outputFile-Morb_konst*).

Zusätzlich wurden mit dem Tabellenkalkulationsprogramm Excel 2013 (Microsoft) auch noch Diagramme erstellt, die die Entwicklung der Fallzahlen der einzelnen Hauptdiagnosegruppen für die breiten Altersgruppen über den simulierten Zeitraum von 1996 bis 2049 veranschaulichen. Diese Darstellungen sind der Datei diagramm_vergleich_morb.xlsx zu entnehmen.

Abbildung 33 veranschaulicht die Entwicklung der absoluten Fallzahlen der häufigsten Erkrankungen bei Männern in breiten Altersgruppen von 1996-2049.

Abbildung 34 zeigt die Entwicklung der absoluten Fallzahlen, innerhalb der häufigsten Hauptdiagnosegruppen, für Frauen in breiten Altersgruppen für und die Jahre 1996 bis 2049.

Männer						Altersgruppe	ruppe					
		0-14 Jahre			15-44 Jahre			45-64 Jahre			65-95+ Jahre	
Jahr	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor
1996	724118	114669	0,1584	1786352	245632	0,1375	889515	261566	0,2941	436965	260894	0,5971
2000	707154	120494	0,1704	1772696	267155	0,1507	929556	324969	0,3496	461848	328483	0,7112
2005	683873	118493	0,1733	1772907	276647	0,1560	1014534	369507	0,3642	514408	406789	8062'0
2010	642597	110006	0,1712	1708846	262876	0,1538	1101797	398105	0,3613	609853	492071	6908'0
2015	634108	97749	0,1542	1694726	241225	0,1423	1221712	419304	0,3432	800929	570290	0,8436
2020	675042	105386	0,1561	1740392	246573	0,1417	1286444	457606	0,3557	732343	621139	0,8482
2025	720769	111581	0,1548	1770891	252299	0,1425	1283489	468646	0,3651	808827	684645	0,8465
2030	751314	114565	0,1525	1774820	253798	0,1430	1259707	456177	0,3621	906648	761029	0,8394
2035	753649	114212	0,1515	1786258	255909	0,1433	1241407	440673	0,3550	988146	832460	0,8424
2040	746085	113394	0,1520	1791120	255771	0,1428	1269595	447885	0,3528	1017481	872448	0,8575
2045	744843	113893	0,1529	1804879	256843	0,1423	1295506	461978	0,3566	1018252	885197	0,8693
2049	752641	115559	0,1535	1818273	258454	0,1421	1291624	463828	0,3591	1022998	888858	6898'0
Franen						Altersgruppe	unppe					
		0-14 Jahre			15-44 Jahre			45-64 Jahre			65-95+ Jahre	
Jahr	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor
1996	690504	85009	0,1231	1732937	228854	0,1321	921624	249260	0,2705	771052	385052	0,4994
2000	992899	88684	0,1327	1731589	257359	0,1486	961154	313071	0,3257	770282	479097	0,6220
2005	643948	86645	0,1346	1733189	270776	0,1562	1045569	367245	0,3512	789851	557374	0,7057
2010	602814	80655	0,1338	1683626	266624	0,1584	1124537	384749	0,3421	863539	635313	0,7357
2015	600623	74350	0,1238	1657584	250853	0,1513	1238120	402184	0,3248	909188	679400	0,7473
2020	632201	78795	0,1246	1666603	251273	0,1508	1302631	431446	0,3312	956570	715355	0,7478
2025	663818	81888	0,1234	1682071	255637	0,1520	1294852	435586	0,3364	1034994	770938	0,7449
2030	682032	83189	0,1220	1671994	255192	0,1526	1269976	425245	0,3348	1140061	841962	0,7385
2035	676811	82292	0,1216	1669221	255191	0,1529	1245639	412925	0,3315	1231208	911147	0,7400
2040	664968	81192	0,1221	1657452	252057	0,1521	1264371	416756	0,3296	1274425	957626	0,7514
2045	659918	81007	0,1228	1658877	251209	0,1514	1285150	427225	0,3324	1281887	249446	0,7627
2049	663934	81748	0,1231	1664614	251896	0,1513	1273392	425187	0,3339	1292398	986075	0,7630

Tabelle 25.: Entwicklung der stationären Morbidität bei Männern und Frauen in breiten Altersgruppen für ausgewählte Jahre (Daten zur Berechnung aus Ergebnisdateien der Modellierung)

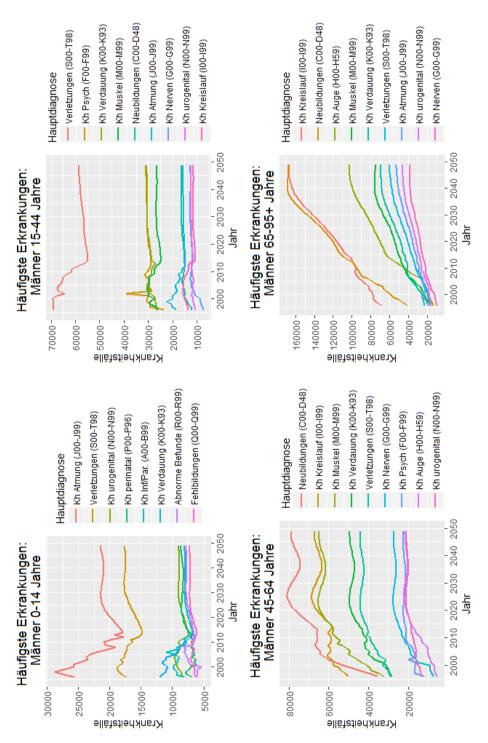


Abbildung 33.: Entwicklung der häufigsten Diagnosen (absolut) bei Männern 1996-2049

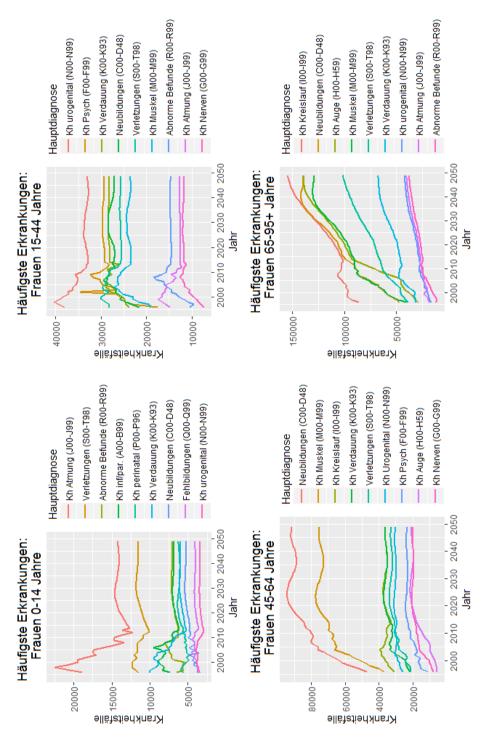


Abbildung 34.: Entwicklung der häufigsten Diagnosen (absolut) bei Frauen 1996-2049

4.4.1.3. Entwicklung der Mortalität

Tabelle 26 veranschaulicht die Entwicklung der Mortalität bei Männern und Frauen in breiten Altersgruppen für ausgewählte Berichtsjahre. Hierbei werden neben der Entwicklung der absoluten Bevölkerungszahlen in den einzelnen Altersgruppen auch die auftretenden Todesfälle dargestellt. Ferner wurden die auftretenden Todesfälle, innerhalb der Altersgruppen, auch auf die Anzahl der, innerhalb der Altersgruppe existierenden, Personen normiert, um diese Werte in Relation zu setzen. Zur Berechnung des Faktors wurden die Todesfälle, innerhalb der entsprechenden Altersgruppe, durch die Anzahl der Personen in der Altersgruppe dividiert. Die Werte zur Berechnung der Faktoren wurden aus den Ausgabedateien der Modellierung entnommen (siehe outputFileBev konst und outputFileMort konst).

Analog zur Darstellung der häufigsten Hauptdiagnosegruppen für die stationäre Morbidität, wurden zur Darstellung der Entwicklung der häufigsten Todesursachen, die Hauptdiagnosegruppen entsprechend ihres prozentuellen Anteils an allen aufgetretenen Todesfällen in den Altersgruppen, für das letzte simulierte Jahr (2049) geordnet und anschließend über den Zeitraum von 1996-2049 dargestellt. Auch in diesem Fall wurden nur jene Hauptdiagnosegruppen in der Darstellung berücksichtigt, die für zumindest 80% aller aufgetretenen Todesfälle, innerhalb der entsprechenden Altersgruppen, verantwortlich waren. Die Daten zur Berechnung der Häufigkeiten der einzelnen Hauptdiagnosegruppen stammen aus den Ergebnisdateien der Modellierung (siehe outputFileMort_konst).

Des Weiteren wurde die Entwicklung der Fallzahlen, innerhalb der einzelnen Hauptdiagnosegruppen, für Männer und Frauen auch noch in einzelnen Diagrammen veranschaulicht. Diese Darstellungen können der Datei diagramm_vergleich_mort.xslx entnommen werden.

Abbildung 35 veranschaulicht die Entwicklung der, für die meisten Todesfälle (absolut) verantwortlichen Hauptdiagnosegruppen bei Männern in breiten Altersgruppen und für den betrachteten Zeitraum von 1996-2049.

Die zeitliche Entwicklung der absoluten Todesfälle innerhalb der verschiedenen Hauptdiagnosegruppen bei Frauen sind in Abbildung 36 nach Häufigkeit sortiert dargestellt.

Männer						Altersg	Altersgruppe					
		0-14 Jahre		[15-44 Jahre		7	45-64 Jahre		Î9	65-95+ Jahre	
Jahr	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor
1996	724118	431	9000'0	1786352	2677	0,0015	889515	8110	0,0091	436965	26526	2090'0
2000	707154	364	0,0005	1772696	2417	0,0014	929556	7551	0,0081	461848	24895	0,0539
2005	683873	319	0,0005	1772907	2026	0,0011	1014534	7415	0,0073	514408	25004	0,0486
2010	642597	282	0,0004	1708846	1695	0,0010	1101797	7286	9900'0	609853	27175	0,0446
2015	634108	246	0,0004	1694726	1445	6000'0	1221712	7045	0,0058	900929	30833	0,0456
2020	675042	277	0,0004	1740392	1450	8000′0	1286444	7841	0,0061	732343	34579	0,0472
2025	720769	280	0,0004	1770891	1476	8000′0	1283489	8231	0,0064	808827	39034	0,0483
2030	751314	279	0,0004	1774820	1504	8000′0	1259707	8036	0,0064	906648	43429	0,0479
2035	753649	277	0,0004	1786258	1530	6000'0	1241407	7628	0,0061	988146	47239	0,0478
2040	746085	277	0,0004	1791120	1551	60000'0	1269595	2992	0900'0	1017481	49937	0,0491
2045	744843	280	0,0004	1804879	1540	6000'0	1295506	2980	0,0062	1018252	53166	0,0522
2049	752641	285	0,0004	1818273	1546	60000'0	1291624	8050	0,0062	1022998	55369	0,0541
Frauen						Altersgruppe	ruppe					
		0-14 Jahre		Ħ	5-44 Jahre		4	45-64 Jahre		9	65-95+ Jahre	
Jahr	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor
1996	690504	360	0,0005	1732937	1087	9000'0	921624	4021	0,0044	771052	38471	0,0499
2000	992899	276	0,0004	1731589	1054	9000'0	961154	3853	0,0040	770282	36164	0,0469
2005	643948	255	0,0004	1733189	906	0,0005	1045569	3870	0,0037	789851	34626	0,0438
2010	602814	217	0,0004	1683626	742	0,0004	1124537	3785	0,0034	863539	35370	0,0410
2015	600623	219	0,0004	1657584	782	0,0005	1238120	3916	0,0032	909188	37752	0,0415
2020	632201	249	0,0004	1666603	764	0,0005	1302631	4296	0,0033	956570	39392	0,0412
2025	663818	250	0,0004	1682071	260	0,0005	1294852	4492	0,0035	1034994	41872	0,0405
2030	682032	246	0,0004	1671994	265	0,0005	1269976	4382	0,0035	1140061	45699	0,0401
2035	676811	244	0,0004	1669221	780	0,0005	1245639	4133	0,0033	1231208	49375	0,0401
2040	664968	244	0,0004	1657452	739	0,0004	1264371	4129	0,0033	1274425	51593	0,0405
2045	659918	246	0,0004	1658877	268	0,0005	1285150	4295	0,0033	1281887	55141	0,0430
2049	663934	249	0,0004	1664614	782	0,0005	1273392	4314	0,0034	1292398	58196	0,0450

Tabelle 26.: Entwicklung der Mortalität für Männer und Frauen in breiten Altersgruppen für ausgewählte Jahre (Daten zur Berechnung aus Ergebnisdateien der Modellierung)

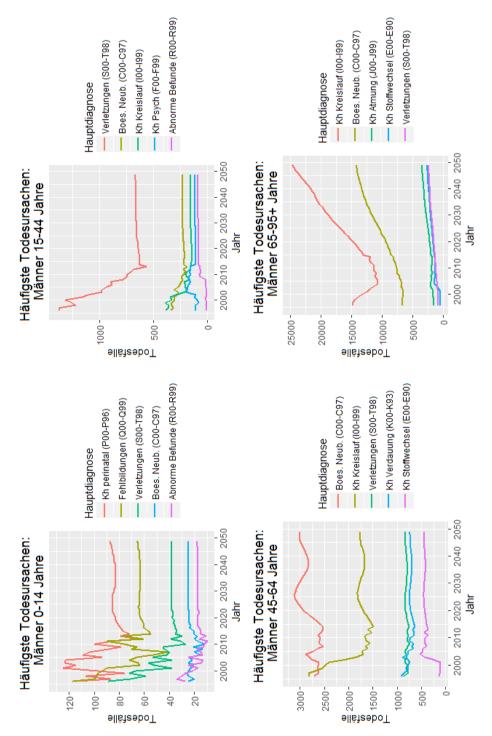


Abbildung 35.: Entwicklung der häufigsten Todesursachen (absolut) bei Männern 1996-2049

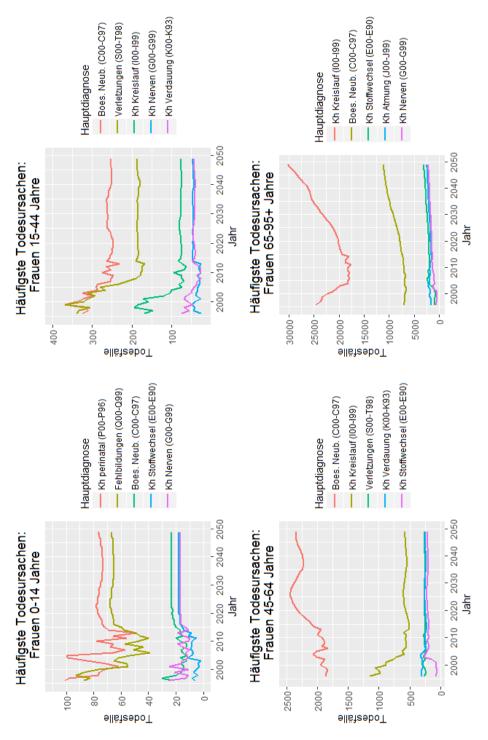


Abbildung 36.: Entwicklung der häufigsten Todesursachen (absolut) bei Frauen 1996-2049

4.4.2. Szenario 2: Lineare Regression

In diesem Szenario werden die Krankheits- und Sterbezahlen durch lineare Regression der Erkrankungs- und Sterberaten, innerhalb der verschiedenen Hauptdiagnosegruppen, für Männer und Frauen, in den entsprechenden breiten Altersgruppen, prognostiziert. Hierbei werden die krankheitsspezifischen Fallzahlen von 1996 bis 2014 mit den aktuellen Erkrankungsbzw. Sterberaten berechnet und von 2015-2049 durch lineare Regression vorhergesagt.

4.4.2.1. Bevölkerungsentwicklung

Altersstruktur der Bevölkerung

Abbildung 37 zeigt die Entwicklung der Altersstruktur unter Verwendung der linearen Regression zur Prognose von Erkrankungs- und Sterbefällen.

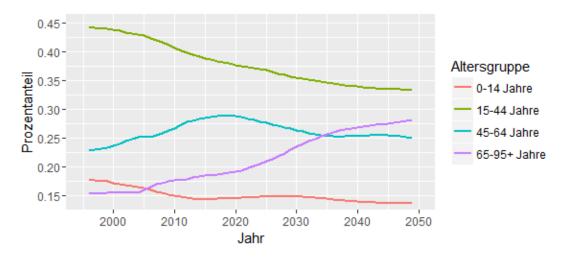


Abbildung 37.: Altersstruktur der Bevölkerung bei Prognose der Erkrankungs- und Sterbefälle durch lineare Regression im Zeitraum von 1996-2050

Den verschiedenen Kurvenverläufen aus Abbildung 37 kann entnommen werden, dass vor allem die Anteile der älteren Personen (45-64 und 65-95+ Jahren) an der Gesamtbevölkerung anstiegen. Der größte Anstieg fand in

der Altersgruppe der 65- bis 95-jährigen Personen statt. Im Jahr 1996 betrug der Anteil der 65-95-jährigen Personen an der Gesamtbevölkerung noch rund 15% und stieg im Verlauf der Simulation des Szenarios auf einen Wert von knapp 28%. In der Altersgruppe der 45-64-Jährigen stieg dieser Anteil nur gering (1996: 23%, 2049: 25%). In den jüngeren Altersgruppen hingegen sanken die Anteile an der Gesamtbevölkerung. So sank beispielsweise der Anteil der 15-44-Jährigen von rund 44% im Jahr 1996 auf knapp 33% im Jahr 2049. Auch in der Altersgruppe der 0- bis 14-jährigen Personen war ein Absinken der Anteile an der Gesamtbevölkerung zu beobachten (1996: 18%, 2049: 14%).

Entwicklung der Gesamtbevölkerung

Tabelle 27 veranschaulicht die Entwicklung der absoluten Bevölkerungszahlen für Männer, Frauen und gesamt für den simulierten Zeitraum von 1996 bis 2050.

Geschlecht				Jahre			
Coscilionia	1996	2000	2010	2020	2030	2040	2050
Männer	3836950	3871254	4063093	4455799	4835865	5108635	5284599
Frauen	4116117	4131291	4274516	4579048	4887848	5090565	5208620
Gesamt	7953067	8002545	8337609	9034847	9723713	10199200	10493219

Tabelle 27.: Entwicklung der Bevölkerung in den Jahren 1996-2050 bei Prognose durch lineare Regression

Den Werten aus Tabelle 27 ist zu entnehmen, dass die Absolutzahlen der Bevölkerung, während des simulierten Zeitraums, bei allen betrachteten Gruppen (Männer, Frauen und gesamt) zunahmen. Im Vergleich zum Jahr 1996 gab es bei Männern bis zum Jahr 2049 einen Zuwachs von rund 1,5 Millionen Personen. Bei Frauen betrug der Zuwachs im selben Zeitraum rund 1,1 Millionen Personen. Die Gesamtbevölkerung stieg im betrachteten Zeitraum von 7,9 Millionen auf 10,5 Millionen Personen, was einem Zuwachs von rund 2,6 Millionen Personen entspricht.

4.4.2.2. Entwicklung der (stationären) Morbidität

Tabelle 28 zeigt die Entwicklung der stationären Morbidität für Männer und Frauen bei Prognose der Erkrankungsfälle durch lineare Regression. Neben den absolut auftretenden Fallzahlen bei Männern und Frauen in breiten Altersgruppen, ist auch noch die aktuelle Bevölkerungsverteilung angegeben. Zusätzlich wurde ein Faktor berechnet, der die Anzahl der Krankheitsfälle auf die Personenanzahl, innerhalb der bestimmten Altersgruppen, normiert. Die Berechnung dieses Faktors ermöglicht es in weiterer Folge, die auftretenden Krankheitsfälle und die momentane Bevölkerung miteinander in Beziehung zu setzen. Die Daten zur Berechnung der Faktoren stammen aus den Ergebnisdateien der Modellierung (siehe *outputFileBev_linReg* und *outputFileMorb_linReg*).

Neben der Darstellung der Entwicklung der Fallzahlen häufigsten Hauptdiagnosen, wurden auch Diagramme erstellt, die die Verläufe der einzelnen Hauptdiagnosegruppen für Männer und Frauen in breiten Altersgruppen veranschaulichen. Die entsprechenden Darstellungen sind der Datei diagramm_vergleich_morb.xslx zu entnehmen.

Zur Darstellung der Entwicklung der häufigsten, für Krankheitsfälle verantwortlichen, Hauptdiagnosegruppen wurden die einzelnen Krankheitsursachen für das letzte simulierte Jahr (2049) nach ihrem prozentualen Anteil an allen Krankheitsfällen innerhalb der breiten Altersgruppe geordnet und anschließend in geeigneten Diagrammen für den Zeitraum von 1996-2049 veranschaulicht. In den verschiedenen Darstellungen wurden jene Hauptdiagnosgruppen betrachtet, die in Summe für zumindest 80% der Krankheitsfälle innerhalb der entsprechenden Altersgruppe verantwortlich waren. Die Daten zur Berechnung der prozentuellen Anteile können den Ergebnisdateien der Modellierung entnommen werden (siehe *outputFile-Morb_linReg*).

Die Abbildungen 38 und 39 veranschaulichen die Entwicklung der auftretenden Fallzahlen der häufigsten, für stationäre Aufnahmen verantwortlichen, Hauptdiagnosegruppen für Männer und Frauen in breiten Altersgruppen für den Zeitraum von 1996-2049.

Männer						Altersgruppe	ruppe					
		o-14 Jahre			15-44 Jahre			45-64 Jahre			65-95+ Jahre	
Jahr	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor
1996	724118	114669	0,1584	1786352	245632	0,1375	889515	261566	0,2941	436965	260894	0,5971
2000	707154	120494	0,1704	1772696	267155	0,1507	929556	324969	0,3496	461848	328483	0,7112
2005	683873	118493	0,1733	1772907	276647	0,1560	1014534	369507	0,3642	514408	406789	8062'0
2010	642597	110006	0,1712	1708846	262876	0,1538	1101797	398105	0,3613	609853	492071	6908'0
2015	634108	110656	0,1745	1694726	260844	0,1539	1221712	474515	0,3884	800929	623111	0,9218
2020	675258	120867	0,1790	1741178	269856	0,1550	1290938	550984	0,4268	748425	758069	1,0129
2025	721833	129372	0,1792	1773530	279983	0,1579	1296347	602271	0,4646	866629	952609	1,0992
2030	753592	134546	0,1785	1779221	285942	0,1607	1280348	622438	0,4861	1022704	1206859	1,1801
2035	226876	136010	0,1797	1792327	293162	0,1636	1268509	633794	0,4996	1166526	1487193	1,2749
2040	749954	137385	0,1832	1798657	297361	0,1653	1303134	677811	0,5201	1256890	1751130	1,3932
2045	749182	141234	0,1885	1813870	302596	0,1668	1334898	736694	0,5519	1316312	0209661	1,5164
2049	757403	146443	0,1933	1828347	307523	0,1682	1333892	769441	0,5768	1364957	2185527	1,6012
Franen						Altersgruppe	nppe					
		0-14 Jahre			15-44 Jahre			45-64 Jahre			65-95+ Jahre	
Jahr	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor
1996	690504	85009	0,1231	1732937	228854	0,1321	921624	249260	0,2705	771052	385052	0,4994
2000	992899	88684	0,1327	1731589	257359	0,1486	961154	313071	0,3257	770282	479097	0,6220
2005	643948	86645	0,1346	1733189	270776	0,1562	1045569	367245	0,3512	789851	557374	0,7057
2010	602814	80655	0,1338	1683626	266624	0,1584	1124537	384749	0,3421	863539	635313	0,7357
2015	600623	82192	0,1368	1657584	269175	0,1624	1238120	462552	0,3736	909188	755265	0,8307
2020	632458	88555	0,1400	1666791	279056	0,1674	1304337	531903	0,4078	975462	894087	0,9166
2025	664670	93228	0,1403	1682819	293405	0,1744	1299514	575853	0,4431	1095729	1096950	1,0011
2030	683613	29096	0,1405	1673218	302786	0,1810	1277947	597649	0,4677	1253070	1356570	1,0826
2035	628739	96921	0,1428	1671029	313479	0,1876	1256801	611078	0,4862	1396565	1635007	1,1707
2040	690299	98168	0,1472	1659906	320639	0,1932	1278971	648865	0,5073	1484619	1892912	1,2750
2045	662348	101246	0,1529	1660265	330326	0,1990	1300962	703821	0,5410	1526451	2124534	1,3918
2049	666456	104873	0,1574	1668762	339719	0,2036	1292943	731052	0,5654	1580459	2307045	1,4597

Tabelle 28.: Entwicklung der stationären Morbidität für Männer und Frauen in breiten Altersgruppen für ausgewählte Jahre (Daten zur Berechnung aus Ergebnisdateien der Modellierung)

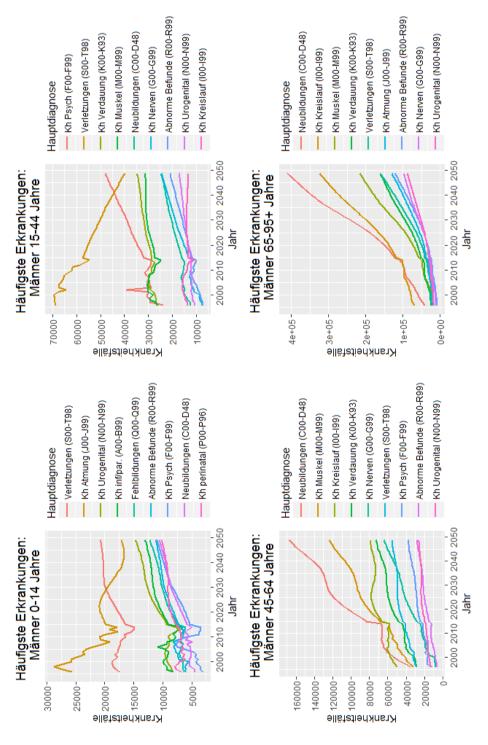


Abbildung 38.: Entwicklung der häufigsten Diagnosen (absolut) bei Männern 1996-2049

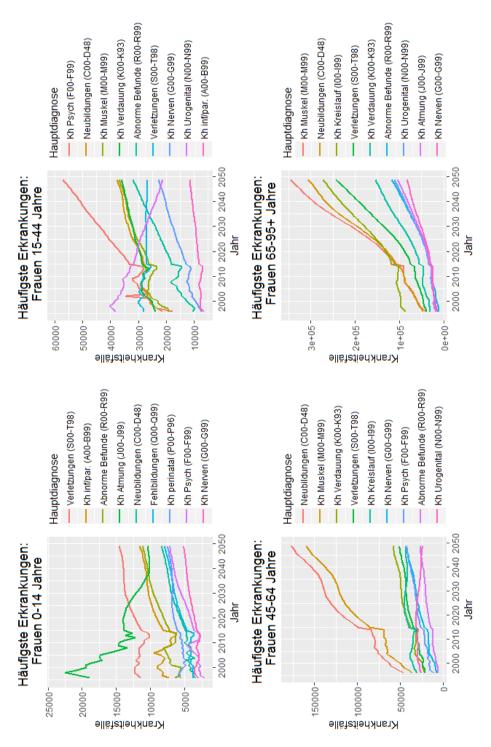


Abbildung 39.: Entwicklung der häufigsten Diagnosen (absolut) bei Frauen 1996-2049

4.4.2.3. Entwicklung der Mortalität

Tabelle 29 veranschaulicht die Entwicklung der Gesamtmortalität bei Männern und Frauen in breiten Altersgruppen für ausgewählte Jahre. Neben der Entwicklung der absoluten Todesfallzahlen bei Männern und Frauen in den entsprechenden Altersgruppen, ist auch die Entwicklung der Bevölkerungsstruktur der jeweiligen Altersgruppen angegeben. Durch Berechnung eines Faktors, der das Verhältnis zwischen auftretenden Todesfällen, in einer bestimmten Altersgruppe, zu Personen in entsprechender Altersgruppe angibt, ist es möglich, Aussagen darüber zu tätigen, wie sich das Sterbegeschehen in Österreich entwickeln wird.

Die Darstellung der Entwicklung der häufigsten Hauptdiagnosegruppen erfolgte durch Berechnung der prozentuellen Anteile der jeweiligen Hauptdiagnosegruppe an allen Todesfällen. Ausgehend vom Jahr 2049 wurden die Hauptdiagnosegruppen entsprechend ihrer auftretenden Häufigkeit geordnet und anschließend deren Entwicklung über den Zeitraum von 1996 bis 2049 grafisch dargestellt. Hierbei wurde darauf geachtet, dass innerhalb der verschiedenen Altersgruppen jene Hauptdiagnosen dargestellt werden, die im letzten simulierten Jahr 2049, für zumindest 80% aller Todesfälle verantwortlich waren. Die Daten zur Berechnung der Häufigkeitsverteilung stammen aus den Ergebnisdateien der Modellierung (siehe *outputFileMort_linReg*).

Weiters wurden Diagramme erstellt, die die Entwicklung der Fallzahlen der einzelnen Hauptdiagnosegruppen bei Männern und Frauen in breiten Altersgruppen veranschaulichen. Diese Darstellungen können der Datei diagramm_vergleich_mort.xslx entnommen werden.

Abbildung 40 und Abbildung 41 veranschaulichen die zeitliche Entwicklung der absoluten Fallzahlen der häufigsten, für Todesfälle verantwortlichen, Hauptdiagnosegruppen für Männer und Frauen in breiten Altersgruppen unter Prognose der Krankheits- und Sterberaten mit linearer Regression.

4. Ergebnisse

Männer						Altersgruppe	ruppe					
		o-14 Jahre			15-44 Jahre		,	45-64 Jahre		i9	65-95+ Jahre	
Jahr	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor
1996	724118	431	09000'0	1786352	2677	0,00150	889515	8110	0,00912	436965	26526	0,06071
2000	707154	364	0,00051	1772696	2417	0,00136	929556	7551	0,00812	461848	24895	0,05390
2005	683873	319	0,00047	1772907	2026	0,00114	1014534	7415	0,00731	514408	25004	0,04861
2010	642597	282	0,00044	1708846	1695	66000′0	1101797	7286	0,00661	609853	27175	0,04456
2015	634108	275	0,00043	1694726	1548	0,00091	1221712	7044	0,00577	800929	31870	0,04714
2020	675258	181	0,00027	1741178	985	0,00057	1290938	5809	0,00450	748425	28579	0,03819
2025	721833	130	0,00018	1773530	712	0,00040	1296347	5175	0,00399	866629	29645	0,03421
2030	753592	104	0,00014	1779221	585	0,00033	1280348	4556	0,00356	1022704	33203	0,03247
2035	756876	86	0,00013	1792327	557	0,00031	1268509	3902	0,00308	1166526	37333	0,03200
2040	749954	95	0,00013	1798657	267	0,00032	1303134	3656	0,00281	1256890	40591	0,03229
2045	749182	92	0,00012	1813870	581	0,00032	1334898	3624	0,00271	1316312	44913	0,03412
2049	757403	68	0,00012	1828347	296	0,00033	1333892	3506	0,00263	1364957	48983	0,03589
Frauen						Altersgruppe	ruppe					
		0-14 Jahre		1	.5-44 Jahre		7	45-64 Jahre		<u>1</u> 9	65-95+ Jahre	
Jahr	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor
1996	690504	360	0,00052	1732937	1087	69000'0	921624	4021	0,00436	771052	38471	0,04989
2000	992899	276	0,00041	1731589	1054	0,00061	961154	3853	0,00401	770282	36164	0,04695
2005	643948	255	0,00040	1733189	906	0,00052	1045569	3870	0,00370	789851	34626	0,04384
2010	602814	217	96000'0	1683626	742	0,00044	1124537	3785	0,00337	863539	35370	0,04096
2015	600623	196	0,00033	1657584	810	0,00049	1238120	3896	0,00315	881606	39128	0,04304
2020	632458	176	0,00028	1629991	622	0,00037	1304337	3428	0,00263	975462	32626	0,03345
2025	664670	137	0,00021	1682819	207	0,00030	1299514	3185	0,00245	1095729	32600	0,02975
2030	683613	115	0,00017	1673218	414	0,00025	1277947	2881	0,00225	1253070	35726	0,02851
2035	628739	104	0,00015	1671029	369	0,00022	1256801	2528	0,00201	1396565	40865	0,02926
2040	690299	96	0,00014	1659906	330	0,00020	1278971	2369	0,00185	1484619	43826	0,02952
2045	662181	87	0,00013	1662141	323	0,00019	1303132	2343	0,00180	1535309	47787	0,03113
2049	666456	83	0,00012	1668762	321	0,00019	1292943	2264	0,00175	1580459	51132	0,03235

Tabelle 29.: Entwicklung der Mortalität für Männer und Frauen in breiten Altersgruppen für ausgewählte Jahre (Daten zur Berechnung aus Ergebnisdateien der Modellierung)

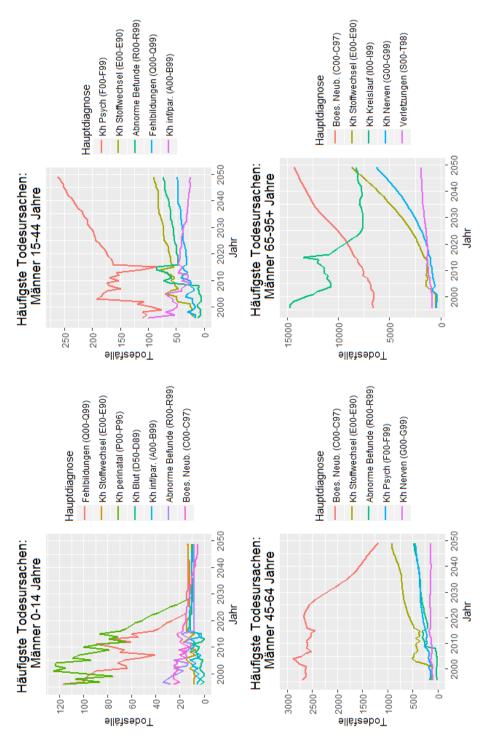


Abbildung 40.: Entwicklung der häufigsten Todesursachen (absolut) bei Männern 1996-2049

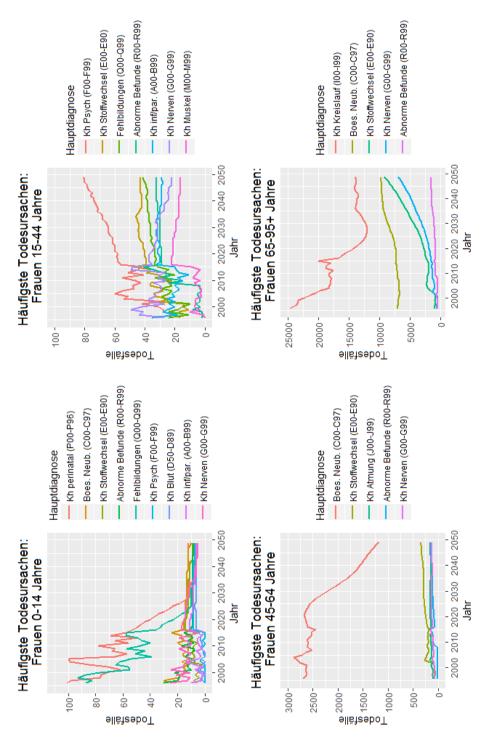


Abbildung 41.: Entwicklung der häufigsten Todesursachen (absolut) bei Frauen 1996-2049

4.4.3. Szenario 3: Mittelwertbildung

Diese Voraussage beruht auf der Berechnung der krankheitsspezifischen Fallzahlen, für Männer und Frauen in breiten Altersgruppen, durch Bildung der Mittelwerte der entsprechenden Krankheits- und Sterberaten über einen gewünschten Zeitraum. Hierbei wurde am Anfang der Simulation der Mittelwert der Erkrankungs- und Sterberaten der letzten 5 Jahre (2010-2014) berechnet. Die weitere Kalkulation der Fallzahlen von 1996-2014 erfolgte hierbei unter Verwendung der tatsächlichen Raten. Im Zeitraum von 2015-2050 wurden zur Berechnung der Erkrankungs- und Sterbefallzahlen die entsprechenden konstanten Mittelwerte verwendet.

4.4.3.1. Bevölkerungsentwicklung

Altersstruktur der Bevölkerung

Abbildung 42 veranschaulicht die Entwicklung der Altersstruktur der Bevölkerung bei Simulation mit konstanten Mittelwerten für Erkrankungsund Sterbewahrscheinlichkeiten ab dem Jahr 2014.

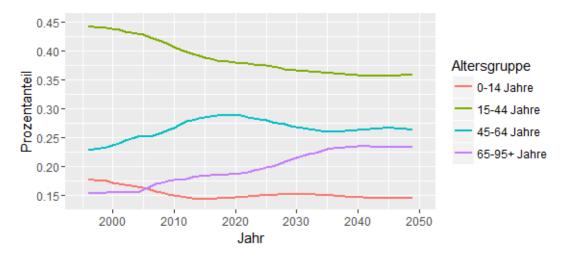


Abbildung 42.: Altersstruktur der Bevölkerung bei Prognose der Erkrankungs- und Sterbefälle durch Mittelwertbildung (2010-2014) im Zeitraum von 1996-2050

Den Kurvenverläufen aus Abbildung 42 ist zu entnehmen, dass es in den Altersgruppen der 45-64-jährigen und 65-95-jährigen Personen, im betrachteten Zeitraum, zu einem Anstieg der Anteile an der Gesamtbevölkerung kam. Hierbei trat der größte Anstieg in der Altersgruppe der 65-95-jährigen und älteren Personen auf. Insgesamt stieg der Anteil in der entsprechenden Altersgruppe von rund 15% im Jahr 1996 auf knapp 24%. In der Altersgruppe der 45-64-Jährigen stieg der Anteil an der Gesamtbevölkerung von 23% (1996) auf rund 26%. Der größte Verlust war in der Altersgruppe der 15-44-jährigen Personen zu verzeichnen. Hier sank der prozentuelle Anteil an der Gesamtbevölkerung im betrachteten Zeitraum um rund 8% (von 44% im Jahr 1996 auf 36% im Jahr 2049). Die Altersgruppe der 0-15-Jährigen sank im Zeitraum von 1996-2049 um rund 4% (1996: 18%, 2049: 14%).

Entwicklung der Gesamtbevölkerung

Die Entwicklung der Absolutzahlen der Bevölkerung bei der Simulation anhand von konstanten Mittelwerten für Krankheits- und Sterberaten ist Tabelle 30 zu entnehmen.

Geschlecht				Jahre			
Geschieen	1996	2000	2010	2020	2030	2040	2050
Männer	3836950	3871254	4063093	4419188	4658659	4777518	4829094
Frauen	4116117	4131291	4274516	4546221	4741078	4830441	4855952
Gesamt	7953067	8002545	8337609	8965409	9399737	9607959	9685046

Tabelle 30.: Entwicklung der Bevölkerung in den Jahren 1996-2050 bei Prognose der Erkrankungs- und Sterbefallzahlen durch Mittelwertbildung

Anhand der Werte aus Tabelle 30 ist erkennbar, dass die Absolutzahlen der Bevölkerung in allen betrachteten Gruppen im Verlauf der Zeit anstiegen. Bei Männern gab es im Zeitraum von 1996 bis 2050 einen Zuwachs von rund einer Million Personen. In der Gruppe der Frauen betrug der Zuwachs im betrachteten Zeitraum rund 700.000 Personen. Insgesamt stieg die Gesamtbevölkerung in den Jahren von 1996 bis 2050 also um rund 1,7 Millionen Personen.

4.4.3.2. Entwicklung der (stationären) Morbidität

Tabelle 31 zeigt die Entwicklung der stationären Morbidität für Männer und Frauen in breiten Altersgruppen, bei Prognose der Erkrankungsfälle durch Mittelwertbildung der Krankheitsraten. Hierbei sind sowohl absolute Fallzahlen innerhalb der breiten Altersgruppen, als auch die Entwicklung der Bevölkerung in den entsprechenden Altersgruppen, angegeben. Zusätzlich wurde noch ein Faktor berechnet, der die auftretenden Krankheitsfallzahlen auf die Bevölkerung in den breiten Altersgruppen normiert. Die Berechnung des Faktors erfolgte analog wie in den Szenarien 1 und 2 (siehe Abschnitt 4.4.1 und 4.4.2). Die Daten zur Berechnung der Faktoren können den Ergebnisdatensätzen der Modellierung entnommen werden (siehe outputFileMorb_Mittelwert und outputFileBev_Mittelwert).

Zur Darstellung der Entwicklung der häufigsten, für Krankheitsfälle verantwortlichen, Hauptdiagnosen wurden auch in diesem Szenario die Krankheitsursachen für das letzte simulierte Jahr 2049, nach ihrer Häufigkeit (Anteil der Diagnose an allen Diagnosen in der Altersgruppe) geordnet und anschließend über einen Zeitraum von 1996-2049 veranschaulicht. Analog zu den vorher genannten Darstellungen der verschiedenen Szenarien, wurde auch hier darauf geachtet, jene Hauptdiagnosegruppen in den Diagrammen zu berücksichtigen, die für zumindest 80% aller auftretenden Erkrankungsfälle verantwortlich waren. Die Daten zur Berechnung der Häufigkeiten der verschiedenen Hauptdiagnosegruppen können den Ergebnisdateien der Modellierung entnommen werden (siehe *outputFile-Mort_Mittelwerte*).

Neben der Darstellung der häufigsten, für Krankheitsfälle verantwortlichen Hauptdiagnosegruppen, wurden auch entsprechende Diagramme erstellt, die die zeitliche Entwicklung der einzelnen Hauptdiagnosen für Männer und Frauen in breiten Altersgruppen veranschaulichen. Diese Darstellungen sind hierbei der Datei diagramm_vergleich_morb.xslx zu entnehmen.

Abbildung 43 und Abbildung 44 geben Auskunft über die zeitliche Entwicklung der absoluten Fallzahlen (stationäre Aufnahmen) der häufigsten, für Krankheitsfälle verantwortlichen, Hauptdiagnosegruppen für Männer und Frauen im betrachteten Zeitraum von 1996-2049.

Männer						Altersgruppe	ruppe					
		o-14 Jahre			15-44 Jahre			45-64 Jahre			65-95+ Jahre	
Jahr	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor
1996	724118	114669	0,1584	1786352	245632	0,1375	889515	261566	0,2941	436965	260894	0,5971
2000	707154	120494	0,1704	1772696	267155	0,1507	929556	324969	0,3496	461848	328483	0,7112
2005	683873	118493	0,1733	1772907	276647	0,1560	1014534	369507	0,3642	514408	406789	8062'0
2010	642597	110006	0,1712	1708846	262876	0,1538	1101797	398105	0,3613	609853	492071	6908'0
2015	633777	103669	0,1636	1694543	250905	0,1481	1221152	432367	0,3541	674277	565123	0,8381
2020	672993	111612	0,1658	1738958	256040	0,1472	1283351	470131	6996'0	723886	610277	0,8431
2025	216907	117952	0,1645	1768407	261693	0,1480	1278468	480145	0,3756	794739	202899	0,8414
2030	746118	120882	0,1620	1770828	263034	0,1485	1253776	467281	0,3727	887937	740796	0,8343
2035	747947	120367	0,1609	1780234	265093	0,1489	1235145	451759	0,3658	965193	807742	6983'0
2040	739965	119401	0,1614	1783335	264863	0,1485	1262682	458815	0,3634	961236	844140	0,8513
2045	738176	119878	0,1624	1795680	265829	0,1480	1287773	472894	0,3672	986686	854011	0,8632
2049	745374	121558	0,1631	1808010	267311	0,1478	1283446	474419	9698'0	992264	856826	0,8635
Frauen						Altersgruppe	unppe					
		0-14 Jahre			15-44 Jahre			45-64 Jahre			65-95+ Jahre	
Jahr	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor	Personen	Krankheitsfälle	Faktor
1996	690504	85009	0,1231	1732937	228854	0,1321	921624	249260	0,2705	771052	385052	0,4994
2000	992899	88684	0,1327	1731589	257359	0,1486	961154	313071	0,3257	770282	479097	0,6220
2005	643948	86645	0,1346	1733189	270776	0,1562	1045569	367245	0,3512	789851	557374	0,7057
2010	602814	80655	0,1338	1683626	266624	0,1584	1124537	384749	0,3421	863539	635313	0,7357
2015	666009	76942	0,1282	1657490	254414	0,1535	1237918	413047	0,3337	907117	677148	0,7465
2020	630911	81482	0,1291	1665902	254741	0,1529	1301152	442868	0,3404	948256	707833	0,7465
2025	661490	84615	0,1279	1680881	259080	0,1541	1292161	446914	0,3459	1023215	760214	0,7430
2030	679003	85826	0,1264	1669902	258448	0,1548	1266673	436216	0,3444	1125500	830440	0,7378
2035	673524	84813	0,1259	1665722	258255	0,1550	1242072	423313	0,3408	1214069	896920	0,7388
2040	96£199	83629	0,1264	1652717	254911	0,1542	1260564	426987	0,3387	1255764	941658	0,7499
2045	655967	83412	0,1272	1653127	253870	0,1536	1281016	437723	0,3417	1260727	959291	6092'0
2049	659601	84140	0,1276	1658301	254512	0,1535	1268883	435539	0,3432	1269167	966641	0,7616

Tabelle 31.: Entwicklung der stationären Morbidität für Männer und Frauen in breiten Altersgruppen für ausgewählte Jahre (Daten zur Berechnung aus Ergebnisdateien der Modellierung)

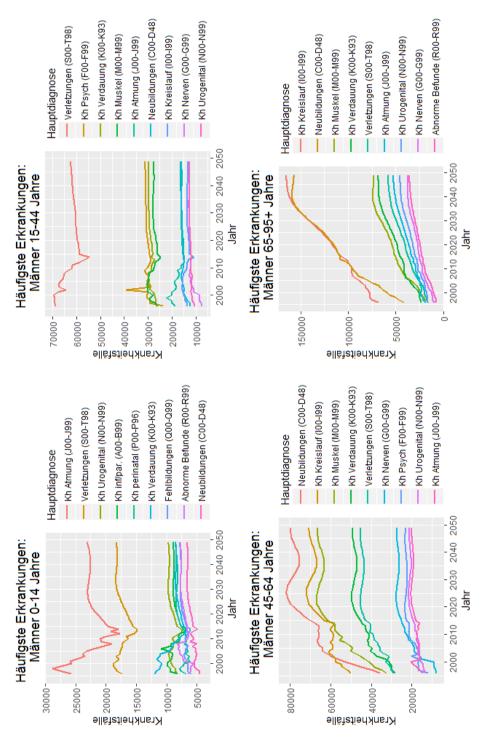


Abbildung 43.: Entwicklung der häufigsten Diagnosen (absolut) bei Männern 1996-2049

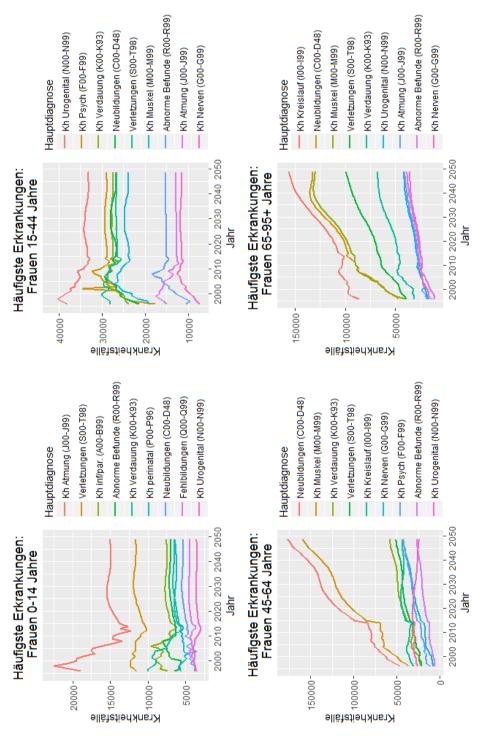


Abbildung 44.: Entwicklung der häufigsten Diagnosen (absolut) bei Frauen 1996-2049

4.4.3.3. Entwicklung der Mortalität

Die Entwicklung der absoluten Todesfallzahlen, inklusive der Bevölkerungsentwicklung bei Männern und Frauen in breiten Altersgruppen, kann den Daten aus Tabelle 32 entnommen werden. Die Daten stellen einen Auszug der Ergebnisdatensatzes dar und werden in 5 Jahresschritten angegeben. Auch hier wurde das Verhältnis von absoluten Todesfällen innerhalb der Altersgruppen zu Bevölkerung in Altersgruppen gebildet, um die auftretenden Todesfälle auf die entsprechende Bevölkerung zu normieren. Die Daten zur Berechnung dieses Faktors stammen aus den Ergebnisdateien der Modellierung (siehe outputFileMorb_Mittelwert und outputFileBev_Mittelwert).

Um die häufigsten, für Todesfälle verantwortlichen, Hauptdiagnosegruppen aus den bestehenden Hauptdiagnosen herauszufiltern, wurden zunächst alle Hauptdiagnosegruppen für das letzte simulierte Jahr (2049) nach ihrer Häufigkeit (Anteil der HDG an allen Todesfällen) sortiert und anschließend, über den zeitlichen Verlauf, von 1996-2049 dargestellt. Hierbei wurden jene Hauptdiagnosegruppen veranschaulicht, die für zumindest 80% aller Todesfälle, innerhalb der entsprechenden Altersgruppe, verantwortlich waren. Die Daten zur Berechnung der Häufigkeiten können den Ergebnisdateien der Modellierung entnommen werden (siehe outputFileMort_Mittelwerte).

Zusätzlich wurde die zeitliche Entwicklung der einzelnen Hauptdiagnosegruppen für Männer und Frauen in breiten Altersgruppen in entsprechenden Diagrammen veranschaulicht. Die genannten Darstellungen sind hierbei der Datei diagramm_vergleich_mort.xslx zu entnehmen.

Die Entwicklungen der absolut auftretenden Todesfälle im betrachteten Zeitraum von 1996-2049 für Männer und Frauen in breiten Altersgruppen sind den Abbildungen 45 und 46 zu entnehmen.

4. Ergebnisse

condition 15-44 Jahre 15-45 Jahre	Männer						Altersgruppe	'ruppe					
Personen Todesfalle Faktor Personen Todesfalle Paktor Personen Personen Todesfalle Paktor Personen			o-14 Jahre			15-44 Jahre			45-64 Jahre		i9	5-95+ Jahre	
724118 431 0,00006 1786352 2677 0,00150 889515 8110 0,00912 43695 2551 0,00912 43695 2551 0,00912 44895 688373 411408 24895 2626 0,00041 1772690 2021 0,00047 1772690 2020 0,00047 1772690 2020 0,00047 1772690 2020 0,00047 1772690 2020 0,00047 1772690 2020 0,00047 1772690 2020 0,00047 1772690 2020 0,00047 1772690 2020 0,00047 1772690 2020 0,00047 1772690 2020 0,00047 1772690 2020 0,00047 1772690 2020 0,00047 1772690 2020 0,00047 1772690 2020 0,00047 1772690 2020 0,00047 1772690 2020 0,00047 17727468 8864 0,00047 1772490 8877 0,00047 1772490 8877 0,00047 1772490 8877 0,00047 1772490	Jahr	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor
797154 364 0,00051 1772696 2417 0,0014 1772696 7571 0,0013 4,0183 7551 0,00081 2,6184 2,6184 2,6184 2,6184 2,6184 2,6184 2,6184 2,6184 2,6184 2,6184 2,6184 2,6184 2,6184 2,6184 2,6184 2,6184 2,6184 2,6184 2,6184 2,6084 2,7175 3,6184 2,6184 2,6184 2,6184 2,6184 2,6184 2,6084 3,6184 3,6184 3,6184 3,6184 3,6184 3,6184 3,6184 3,6184 3,6184 3,6184 3,6006 3,4171 3,6184 3,6184 3,6006 3,4171 3,6184 3,6184 3,6006 3,4171 3,6184 3,6184 3,6184 3,6006 3,4171 3,6184	1996	724118	431	09000'0	1786352	2677	0,00150	889515	8110	0,00912	436965	26526	0,06071
683873 319 0,00047 1779907 2026 0,00114 1014534 7415 0,00731 514408 25044 643597 312 0,00044 1796846 1659 0,00093 1101797 7786 0,00026 674373 32044 672993 322 0,00044 1780846 1650 0,00094 1283351 8438 0,0069 74717 746907 332 0,00046 176840 0,00096 1278468 8865 0,0069 35415 74734 3741	2000	707154	364	0,00051	1772696	2417	0,00136	929556	7551	0,00812	461848	24895	0,05390
642597 282 0,00044 1708846 1695 0,00099 1101797 7286 0,00661 609853 27175 32084 (672993 327 0,00049 1694543 1610 0,00099 1221152 7757 0,00662 674277 32084 (776907 332 0,00046 1708407 1678 0,00099 1278408 8865 0,00697 723886 39460 746118 332 0,00044 170828 1694 0,00099 1253476 8849 0,00699 887937 43712 739965 331 0,000044 170828 1694 0,00099 1253476 8849 0,00699 887937 43712 1739965 331 0,000044 1795800 1683 0,00094 1283446 8650 0,00678 995986 39490 17391404 1795800 1683 0,00094 1283446 8650 0,00673 991386 500994 1745374 340 0,00044 1795800 1683 0,00094 1283446 8650 0,00673 991386 500994 1745374 340 0,00045 1795800 1683 0,00094 1283446 8650 0,00673 991386 500994 17453418 174534 1	2005	683873	319	0,00047	1772907	2026	0,00114	1014534	7415	0,00731	514408	25004	0,04861
633777 311 0,00049 1694543 1610 0,00095 121152 7571 0,000620 72,3864 35445 672277 32084 672293 332 0,00049 173958 1633 0,00094 173958 1634 0,00096 1233776 8438 0,00695 874739	2010	642597	282	0,00044	1708846	1695	66000'0	1101797	7286	0,00661	609853	27175	0,04456
672993 327 0,00044 1738958 1633 0,00094 1283351 8438 0,00057 723886 35415 3460 34	2015	633777	311	0,00049	1694543	1610	0,00095	1221152	7571	0,00620	674277	32084	0,04758
716907 332 0,00046 1768407 1678 0,00095 1273468 8865 0,00693 794739 39460 746118 332 0,00044 1776824 1694 0,00096 1253776 8649 0,00696 887937 43712 739965 331 0,00044 1778284 1694 0,00096 1253776 8649 0,00696 887937 47717 739965 331 0,00046 1796300 1683 0,00094 1287773 8577 0,00666 989386 53098 745374 340 0,00046 1796301 1683 0,00094 1287773 8577 0,00667 991364 53135 745374 340 0,00046 1796801 1683 0,00094 1287773 8577 0,00667 991366 53098 A453746 340 0,00067 17084 0,00064 1287446 8650 0,00064 138746 8670 0,00067 15135 171052 15135 171052 <td>2020</td> <td>672993</td> <td>327</td> <td>0,00049</td> <td>1738958</td> <td>1633</td> <td>0,00094</td> <td>1283351</td> <td>8438</td> <td>0,00657</td> <td>723886</td> <td>35415</td> <td>0,04892</td>	2020	672993	327	0,00049	1738958	1633	0,00094	1283351	8438	0,00657	723886	35415	0,04892
746118 332 0,00044 1770828 1694 0,00096 1253776 8649 0,00690 887937 43712 747047 330 0,00044 1770828 1667 0,00096 1235145 8211 0,00666 965193 41771 738176 331 0,00044 178333 1687 0,00094 1285465 8247 0,00666 965193 41771 en 745374 340 0,00046 179580 1683 0,00094 1283466 8650 0,00666 989386 53059 en 745374 340 0,00046 1808010 1683 0,00094 1283468 8650 0,00666 53036 53135 en -1.4 Jahre 1680810 16648 0,00044 1283468 8650 167-95+ Jahre 66954 4021 0,00496 53135 4171 en -1.4 Jahre 168081 1684 1054 0,0064 16744 17052 17052 1414 1714	2025	716907	332	0,00046	1768407	1678	0,00095	1278468	8865	66900'0	794739	39460	0,04965
Table Tabl	2030	746118	332	0,00044	1770828	1694	96000'0	1253776	8649	06900'0	887937	43712	0,04923
Table Tabl	2035	747947	330	0,00044	1780234	1706	96000'0	1235145	8211	0,00665	965193	47171	0,04887
738176 334 0,00045 1795680 1683 0,00094 1287773 8577 0,00666 989386 53098 en 745374 340 0,00046 1698 0,00094 1283446 8650 0,00674 992264 55135 en	2040	739965	331	0,00045	1783335	1687	0,00095	1262682	8247	0,00653	991536	50079	0,05051
en - Altersgruppe Altersgruppe Fig. 39244 992264 55135 en - Altersgruppe Altersgruppe<	2045	738176	334	0,00045	1795680	1683	0,00094	1287773	8577	99900'0	986386	53098	0,05367
en -14 Jahre Altersgruppe Altersgruppe Altersgruppe Altersgruppe Altersgruppe Altersgruppe Altersgruppe Apple Apple Baktor Apple Apple Apple Baktor Apple Ap	2049	745374	340	0,00046	1808010	1698	0,00094	1283446	8650	0,00674	992264	55135	0,05556
Personen Todesfälle Faktor Todesfälle	Frauen						Altersg	ruppe					
Personen Todesfälle Faktor Todesfälle Todesfälle 690504 360 0,000041 1731589 1054 0,00064 3853 0,00040 770282 36164 643948 255 0,00040 173189 906 0,00054 124537 3785 0,0037 789851 34626 602814 217 0,00040 1683626 742 0,00054 1124537 3785 0,0037 789851 34626 600399 257 0,00043 1657490 83 0,00056 123116 4450 0,00346 40017 39266 650911 270 0,00041 166902 853 0,00057 1242072 4450 0,00346 124069 4603 679003 250 0,00041 1665722			0-14 Jahre		1	15-44 Jahre		7	45-64 Jahre		ĵ9	5-95+ Jahre	
690504 360 0,00052 1732937 1087 0,00063 921624 4021 0,00436 771052 38471 668266 276 0,00041 1731589 1054 0,00061 961154 3853 0,00401 770282 36164 643948 255 0,00041 1733189 906 0,00052 1045599 3870 0,00370 789851 36164 602814 217 0,00043 1683626 742 0,00044 1124537 3785 0,00370 789851 34626 600399 257 0,00043 1657490 833 0,00050 1237918 4041 0,00346 948256 40081 661490 274 0,00041 168902 826 0,00050 1292161 4643 0,00342 948256 40081 679003 270 0,00041 166902 853 0,00051 1242072 4330 0,00349 1214069 46030 67354 269 0,00041 16	Jahr	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor	Personen	Todesfälle	Faktor
668266 276 0,00041 1731589 1054 0,00061 961154 3853 0,00401 770282 36164 643948 255 0,00040 1733189 906 0,00052 1045599 3870 0,00370 789851 34626 602814 217 0,00040 1683626 742 0,00044 1124537 3785 0,00376 789851 34626 600399 257 0,00043 1657490 83 0,00050 1301152 4450 0,00342 948256 40081 601490 274 0,00041 1680881 848 0,00050 1301152 4450 0,00342 948256 40081 679003 274 0,00041 1680881 848 0,00050 1292161 4643 0,00342 948256 40081 679003 270 0,00040 1669902 853 0,00051 1242072 4330 0,00349 1214069 49336 661396 269 0,00041	1996	690504	360	0,00052	1732937	1087	69000'0	921624	4021	0,00436	771052	38471	0,04989
643948 255 0,00040 1733189 906 0,00052 1045569 3870 0,00370 789851 34626 602814 217 0,00036 1683626 742 0,00044 1124537 3785 0,00376 789851 34626 600399 257 0,00043 1657490 83 0,00050 1237918 4041 0,00342 948256 40081 601490 274 0,00041 1680881 848 0,00050 1301152 4450 0,00342 948256 40081 679003 274 0,00041 1669902 853 0,00051 126673 4551 0,00359 112500 46030 673244 267 0,00040 1665722 853 0,00051 1242072 4330 0,00341 1255764 51894 661396 269 0,00041 1652717 833 0,00050 1281016 4465 0,00341 1255764 51894 655967 269 0,00041	2000	992899	276	0,00041	1731589	1054	0,00061	961154	3853	0,00401	770282	36164	0,04695
602814 217 0,00036 1683626 742 0,00044 1124537 3785 0,00337 863539 35370 600399 257 0,00043 1657490 83 0,00050 1237918 4041 0,00342 907117 39266 630911 271 0,00043 1665902 826 0,00050 1301152 4450 0,00342 948256 40081 661490 274 0,00041 166902 853 0,00051 126673 4551 0,00359 112550 46030 673524 267 0,00040 1665722 853 0,00051 1260564 4300 0,00341 1255764 51894 661396 268 0,00041 1652717 83 0,00050 1281016 4465 0,00341 1255764 51894 655967 269 0,00041 165301 83 0,00050 1281016 4465 0,00349 1269167 55432 659601 272 0,00041 165	2005	643948	255	0,00040	1733189	906	0,00052	1045569	3870	0,00370	789851	34626	0,04384
600399 257 0,00043 1657490 833 0,00050 1237918 4041 0,00326 907117 39266 630911 271 0,00043 1665902 826 0,00050 1301152 4450 0,00342 948256 40081 661490 274 0,00041 1680881 848 0,00050 1292161 4643 0,00359 1023215 42208 679003 270 0,00040 1669902 853 0,00051 1242072 4330 0,00349 1214069 49336 661396 268 0,00040 166572 853 0,00050 126054 4300 0,00341 1255764 51894 652967 269 0,00041 1653127 833 0,00050 1281016 4465 0,00349 1260727 55432 659601 272 0,00041 1658301 832 0,00050 1260883 4483 0,00353 1269167 58478	2010	602814	217	96000'0	1683626	742	0,00044	1124537	3785	0,00337	863539	35370	0,04096
630911 271 0,00043 1665902 826 0,00050 1301152 4450 0,00342 948256 40081 661490 274 0,00041 1680881 848 0,00050 1292161 4643 0,00359 1023215 42208 679003 270 0,00040 1669902 853 0,00051 1266673 4551 0,00359 1125500 46030 673524 267 0,00040 1665722 853 0,00051 1242072 4330 0,00349 1214069 49336 661396 268 0,00041 1652717 833 0,00050 1260564 4300 0,00341 1255764 51894 655967 269 0,00041 1653127 833 0,00050 1281016 4465 0,00349 1260727 55432 659601 272 0,00041 1658301 832 0,00050 1268883 4483 0,00353 1269167 58478	2015	666009	257	0,00043	1657490	833	0,00050	1237918	4041	0,00326	907117	39266	0,04329
661490 274 0,00041 1680881 848 0,00050 1292161 4643 0,00359 1023215 42208 679003 270 0,00040 1669902 853 0,00051 1266673 4551 0,00359 1125500 46030 673524 267 0,00040 1665722 853 0,00051 1242072 4330 0,00349 1214069 49336 661396 268 0,00041 1652717 833 0,00050 1281016 4465 0,00349 1265764 51894 655967 269 0,00041 1653127 833 0,00050 1281016 4465 0,00349 1260727 55432 659601 272 0,00041 1658301 832 0,00050 1268883 4483 0,00353 1269167 58478	2020	630911	271	0,00043	1665902	826	0,00050	1301152	4450	0,00342	948256	40081	0,04227
679003 270 0,00040 1669902 853 0,00051 1266673 4551 0,00359 1125500 46030 673524 267 0,00040 1665722 853 0,00051 1242072 4330 0,00349 1214069 49336 661396 268 0,00041 1652717 833 0,00050 1260564 4300 0,00341 1255764 51894 655967 269 0,00041 1653127 833 0,00050 1281016 4465 0,00349 1260727 55432 659601 272 0,00041 1658301 832 0,00050 1268883 4483 0,00353 1269167 58478	2025	661490	274	0,00041	1680881	848	0,00050	1292161	4643	0,00359	1023215	42208	0,04125
673524 267 0,00040 1665722 853 0,00051 1242072 4330 0,00349 1214069 49336 661396 268 0,00041 1652717 833 0,00050 1260564 4300 0,00341 1255764 51894 655967 269 0,00041 1653127 833 0,00050 1281016 4465 0,00349 1260727 55432 659601 272 0,00041 1658301 832 0,00050 1268883 4483 0,00353 1269167 58478	2030	626003	270	0,00040	1669902	853	0,00051	1266673	4551	0,00359	1125500	46030	0,04090
661396 268 0,00041 1652717 833 0,00050 1260564 4300 0,00341 1255764 51894 655967 269 0,00041 1653127 833 0,00050 1281016 4465 0,00349 1260727 55432 659601 272 0,00041 1658301 832 0,00050 1268883 4483 0,00353 1269167 58478	2035	673524	267	0,00040	1665722	853	0,00051	1242072	4330	0,00349	1214069	49336	0,04064
655967 269 0,00041 1653127 833 0,00050 1281016 4465 0,00349 1260727 55432 659601 272 0,00041 1658301 832 0,00050 1268883 4483 0,00353 1269167 58478	2040	961396	268	0,00041	1652717	833	0,00050	1260564	4300	0,00341	1255764	51894	0,04132
659601 272 0,00041 1658301 832 0,00050 1268883 4483 0,00353 1269167 58478	2045	655967	569	0,00041	1653127	833	0,00050	1281016	4465	0,00349	1260727	55432	0,04397
	2049	659601	272	0,00041	1658301	832	0,00050	1268883	4483	0,00353	1269167	58478	0,04608

Tabelle 32.: Entwicklung der Mortalität für Männer und Frauen in breiten Altersgruppen für ausgewählte Jahre (Daten zur Berechnung aus Ergebnisdateien der Modellierung

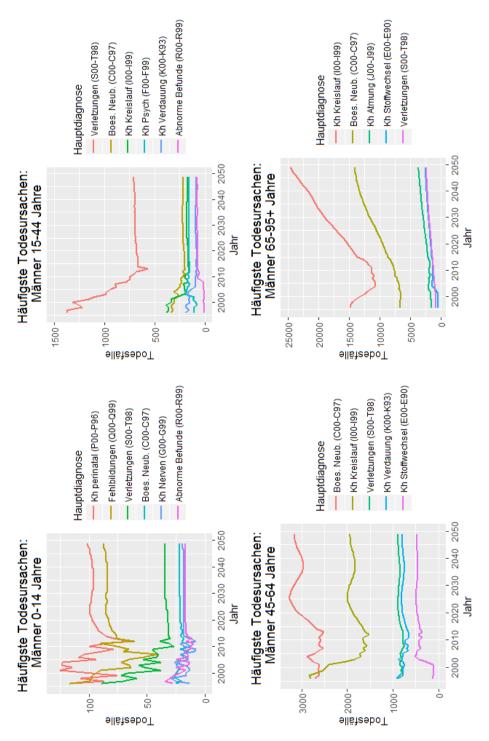


Abbildung 45.: Entwicklung der häufigsten Todesursachen (absolut) bei Männern 1996-2049

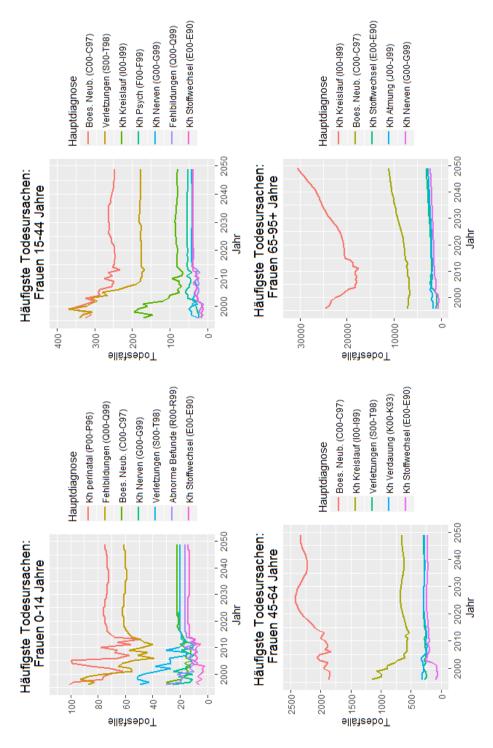


Abbildung 46.: Entwicklung der häufigsten Todesursachen (absolut) bei Frauen 1996-2049

5.1. Trenderkennung und Prognose

Wie bereits in Abschnitt 3.3.4 Trenderkennung und Prognose erwähnt, wurden in der vorliegenden Arbeit die Krankheits- und Sterbewahrscheinlichkeiten anhand von 3 verschiedenen Methoden (3 Szenarien) prognostiziert. Neben der Vorhersage von Erkrankungs- und Sterbefällen durch Annahme von konstanten Erkrankungs- und Sterberaten in der Zukunft und der Mittelwertbildung von vergangenen Erkrankungs- und Sterberaten in einem gewünschten Zeitraum, wurden Erkrankungs- und Sterbefälle innerhalb der einzelnen Hauptdiagnosegruppen auch durch die Verwendung von geeigneten Regressionsmodellen vorhergesagt.

Bei der Verwendung von Regressionsmodellen lag das Hauptaugenmerk darauf, die vorliegenden Verläufe von Erkrankungs- und Sterberaten innerhalb der verschiedenen Hauptdiagnosegruppen für Männer und Frauen in den entsprechenden Altersgruppen möglichst genau nachzubilden, um eine sinnvolle und aussagekräftige Vorhersage der Fallzahlen für Morbidität und Mortalität in der Zukunft zu ermöglichen. Das Ziel war es also, für die verschiedenen Verläufe der Erkrankungs- und Sterberaten, jene Funktion zu finden, die die vorliegenden Daten am besten abbildet (Best-Fit). Anhand der Hauptdiagnosegruppe der Krankheiten des Kreislaufsystems (Ioo-I99) soll hierbei veranschaulicht werden, welche Überlegungen zur Wahl der linearen Regression zur Prognose zukünftiger Erkrankungs- und Sterberaten geführt haben.

Im ersten Schritt wurden die Verläufe der Erkrankungsraten bei Herz-Kreislauferkrankungen (Ioo-I99) für Männer und Frauen in den verschiedenen Altersgruppen (0-14, 15-44, 45-64 und 65-95+ Jahre), die Gesamtverläufe der einzelnen Geschlechter und auch die Summe der Erkrankungsraten

für beide Geschlechter anhand von entsprechenden Darstellungen visualisiert. Abbildung 47 veranschaulicht exemplarisch den Verlauf der Erkrankungsraten von Kreislauferkrankungen bei Männern und Frauen in der Altersgruppe von 65-95+ Jahren für den betrachteten Zeitraum von 1989-2014. Die restlichen Darstellungen der Erkrankungsraten für Herz-Kreislauf-Erkrankungen bei Männern und Frauen in den weiteren Altersgruppen (0-14, 15-44 und 45-64 Jahre) sind der Datei hkl_männer_frauen_morb_raten.xlsx zu entnehmen.

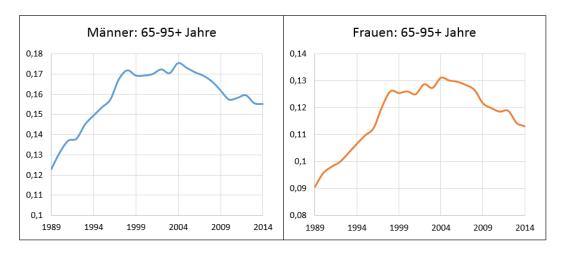


Abbildung 47.: Verlauf Erkrankungsraten von Herz-Kreislauferkrankungen (Ioo-I99) bei Männern und Frauen im Alter von 65-95+ Jahren

Anhand der Darstellung der Erkrankungsraten für Herz-Kreislauf-Erkrankungen in Abbildung 47 kann man erkennen, dass sich die Verläufe der Krankheitsraten für beide Geschlechter in der entsprechenden Altersgruppe (65-95+ Jahre) ähneln. Auch in den anderen Altersgruppen zeichnen sich die Verläufe der Raten für Kreislauferkrankungen bei Männer und Frauen durch einen analogen Trend aus.

Lineare Regression

Die erste Prognose der Erkrankungsraten für Kreislauferkrankungen bei Männern in der Altersgruppe von 65-95+ Jahren wurde anhand der linearen

Regression durchgeführt. Abbildung 48 stellt die aktuellen Erkrankungsraten der Jahre 1989-2014, sowie die, durch lineare Regression, prognostizierten Erkrankungsraten der Jahre 2015-2050, bei Männern im Alter von 65-95+ Jahren gegenüber.

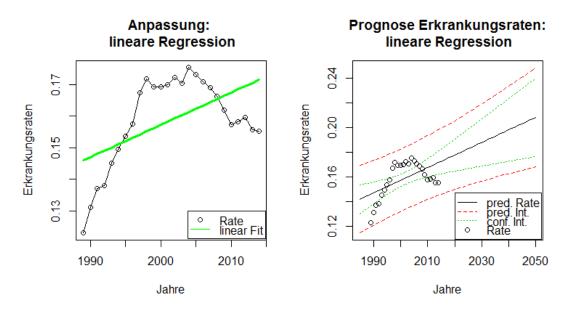


Abbildung 48.: lineare Regression für Erkrankungsraten bei Kreislauferkrankungen bei Männern im Alter von 65-95+ Jahre

Anhand der linken Darstellung in Abbildung 48 kann man erkennen, dass die lineare Regression rein "optisch", keine gute Anpassung an die vorliegende Funktion der Erkrankungsraten darstellt. Ein Qualitätskriterium zur Abschätzung der Güte eines Modells ist das sogenannte Akaike Informationskriterium oder kurz: AIC (siehe Abschnitt 3.3.4.6). Anhand des Statistik-Programms R in Version 3.1.1 (The R-Foundation) können die verschiedenen, getesteten Regressionsmodelle einfach auf ihre Güte überprüft werden. Je geringer der AIC-Wert des betrachteten Regressionsmodells ausfällt, umso besser beschreibt das vorliegende Modell die zugrundeliegenden Daten. In diesem Fall wies das verwendete lineare Regressionsmodell einen AIC von -152.2339 auf. Durch die Prognose der Erkrankungsraten anhand der linearen Regression, steigen die Erkrankungsraten bei 65-95jährigen und älteren Männern im betrachteten Zeitraum von 1989-2050 (rechte Darstellung).

quadratische Regression

Im nächsten Schritt wurde die quadratische Regression verwendet um die Anpassung an die vorgegebenen Erkrankungsraten und die anschließende Prognose der Raten in der Zukunft zu veranschaulichen. Abbildung 49 zeigt die Gegenüberstellung der Anpassung der quadratischen Regressionsfunktion und der Prognose der zukünftigen Erkrankungsraten anhand der verwendeten quadratischen Regression.

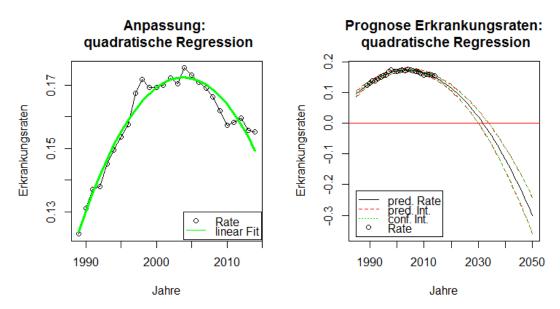


Abbildung 49.: quadratische Regression für Erkrankungsraten bei Kreislauferkrankungen bei Männern im Alter von 65-95+ Jahre

Anhand der linken Darstellung in Abbildung 49 kann man erkennen, dass die Verwendung der quadratischen Regression "optisch" zu einer besseren Anpassung an die tatsächliche Funktion der Erkrankungsraten führt, als beispielsweise die lineare Regression. Der AIC-Wert der quadratischen Regression beläuft sich hierbei auf -220.3366, was bedeutet, dass die quadratische Modellierung die vorgegebenen Erkrankungsraten besser beschreibt als die lineare Regression. Aus der rechten Abbildung lässt sich entnehmen, dass die Erkrankungsraten gemäß der quadratischen Funktion einen fallenden Trend aufweisen und die Erkrankungsrate ab dem Jahr 2031 unter den Wert von o fällt. Dies würde bedeuten, dass, innerhalb der Altersgruppe der 65-95-jährigen und älteren Männer, ab dem Jahr 2031 keine Erkrankungsfälle durch Herz-Kreislauferkrankungen auftreten. Trotz der guten Anpassung

der gewählten Regression an die vorliegende Funktion der Erkrankungsraten, wäre eine solche Entwicklung in der Zukunft nicht realistisch, da es vor allem in höheren Altersgruppen zu Erkrankungen des Kreislaufsystems kommt und ein Fallen der Erkrankungswahrscheinlichkeiten in der betrachteten Altersgruppe auf einen Wert von o% nicht anzunehmen ist.

kubische Regression

Im weiteren Verlauf wurde versucht die vorhandenen Erkrankungsraten für Krankheiten des Kreislaufsystems bei Männern in der Altersgruppe von 65-95+ Jahren durch ein kubisches Regressionsmodell (Grad 3) zu prognostizieren. Abbildung 50 veranschaulicht sowohl die Anpassung des kubischen Modells an die vorliegende Funktion der Erkrankungsraten, als auch die prognostizierten Erkrankungsraten für den zukünftigen Verlauf.

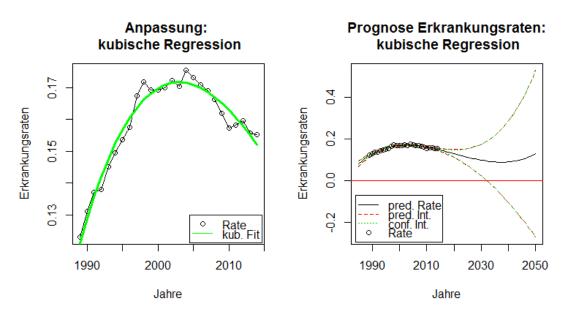


Abbildung 50.: quadratische Regression für Erkrankungsraten bei Kreislauferkrankungen bei Männern im Alter von 65-95+ Jahre

Anhand der linken Darstellung in Abbildung 50 lässt sich erkennen, dass auch die kubische Regression zu einer besseren Anpassung an die vorliegende Funktion der Erkrankungsraten für Krankheiten des Kreislaufsystems führt, als die lineare Regression. Bei Verwendung der kubischen Regression

beläuft sich das AIC auf einen Wert von -223.7326, was mitunter bedeutet, dass die kubische Regression die vorliegenden Datenpunkte der Erkrankungsraten besser erklärt als das Modell der linearen oder der quadratischen Regression. Aufgrund der Tatsache, dass hier ein Polynom 3. Grades als Funktion verwendet wird, kommt es bei der Prognose der zukünftigen Erkrankungsraten (rechte Darstellung) zu einem Wendepunkt. Im Gegensatz zur Prognose der Erkrankungsraten durch quadratische Regression, kommt es in dieser Darstellung nicht zum einem Absinken der Erkrankungsraten auf einen Wert unter o. Auf Grund des Wendepunktes der Regressionsfunktion ist eine sinnvolle und aussagekräftige Prognose durch Anwendung der kubischen Regression nicht möglich.

Regressionen höherer Ordnung

Im letzten Schritt wurden noch verschiedene Regressionsmodelle höheren Grades zur Anpassung an die vorliegenden Erkrankungsraten und zur Prognose der zukünftigen Raten auf ihre Tauglichkeit getestet. Abbildung 51 veranschaulicht die Gegenüberstellung der Anpassung der Regression 4. Ordnung an die vorliegende Funktion der Erkrankungsraten für Krankheiten des Kreislaufsystems bei Männern in der Altersgruppe von 65-95+Jahren, sowie die Prognose der entsprechenden Raten in der Zukunft.

Der linken Darstellung aus Abbildung 51 ist zu entnehmen, dass die vorgenommenen Regression 4. Ordnung eine relativ gute Anpassung an die Funktion der Erkrankungsraten im Zeitraum von 1989-2014 besitzt. Der AIC-Wert dieser Regression beläuft sich auf -233.9834, was einer besseren Anpassung an die vorliegenden Erkrankungsraten, als bei den anderen Modellen entspricht. Anhand der linken Abbildung ist erkennbar, dass eine aussagekräftige Prognose der Erkrankungsraten für die Zukunft nicht möglich ist. So steigen die Erkrankungsraten im Verlauf des betrachteten Zeitraumes (1989-2014) auf Werte über 4. Dies würde bedeuten, dass innerhalb der Altersgruppe der 65-95-jährigen Männer, jedes Individuum an 4 Krankheiten des Kreislaufsystems leiden würde. Diese Entwicklungen stellen keinen realistischen Sachverhalt dar und folglich kann diese Art der Regression für die Prognose der Erkrankungsraten in der Zukunft nicht verwendet werden.

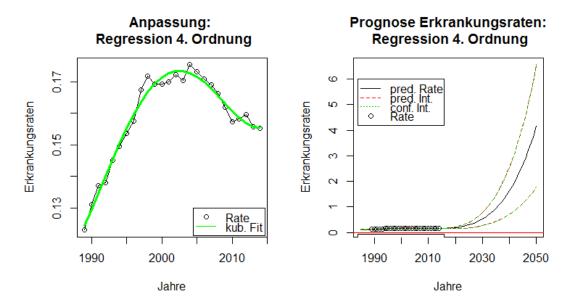


Abbildung 51.: Regression 4. Ordnung für Erkrankungsraten bei Kreislauferkrankungen bei Männern im Alter von 65-95+ Jahre

Zusätzlich wurden auch noch weitere Regressionen höherer Ordnung auf ihre Verwendbarkeit zur Prognose der Erkrankungsraten getestet. Wie angenommen, stieg mit Zunahme der Ordnung die Anpassung an die vorliegende Funktion der Erkrankungsraten immer weiter an. Demzufolge wurde auch der AIC-Wert der Regressionsmodelle höherer Ordnung immer besser (kleiner), jedoch waren vernünftige Prognosen der zukünftigen Erkrankungsraten nicht mehr durchführbar.

Tabelle 33 veranschaulicht die Gegenüberstellung der verschiedenen getesteten Regressionsmodelle, inklusive der Gütebewertung anhand des Akaike Informationskriteriums und des Baye'schen Informationskriteriums.

Wie bereits erwähnt, steigt die Güte von Modellen, mit fallenden AIC- und BIC-Werten. Den Daten aus Tabelle 33 kann entnommen werden, dass sowohl die AIC- als auch die BIC-Werte durch Verwendung von Regressionen höherer Ordnung sinken, was bedeutet, dass Modelle höherer Ordnung die vorgegebenen Erkrankungsraten (zugrundeliegende Datensätze) besser abbilden. Diese Behauptung lässt sich auch leicht grafisch verdeutlichen. In den linken Darstellungen der Abbildungen 48, 49, 50 und 51 zeigt sich,

Regression	Gütekı	riterien	Beschreibung
negressien	AIC	BIC	
linear	-152.23	-148.46	schlechte Anpassung; Prognose möglich
quadratisch	-220.34	-215.30	bessere Anpassung als linear; Prognose nicht realistisch
kubisch	-223.73	-217.44	bessere Anpassung als quadratisch; Prognose nicht realistisch
4. Ordnung	-233.98	-226.43	bessere Anpassung als kubisch; Prognose nicht realistisch
15. Ordnung	-255.01	-233.62	bessere Anpassung als 4. O.; Prognose nicht realistisch

Tabelle 33.: Verwendete Regressionsmodelle inklusive der vorgenommenen Gütebewertung und einer kurzen Beschreibung

dass die Anpassung der Regressionsfunktion an die tatsächliche Funktion der Erkrankungsraten mit der Wahl einer höheren Ordnung (rein "optisch") deutlich besser (genauer) wird. Jedoch ermöglichen Regressionsmodelle höherer Ordnung keine aussagekräftigen Prognosen über zukünftige Entwicklungen der Erkrankungsraten mehr. Dieser Sachverhalt lässt sich mitunter dadurch erklären, da bei der Analyse nur sehr begrenzte Datenmengen betrachtet werden (Jahre 1989-2014 = 25 Datenpunkte) und die einzelnen Regressionsfunktionen höherer Ordnung zusätzlich eine hohe Empfindlichkeit gegenüber Ausreißern besitzen (die lineare Regression wurde entsprechend gegen Ausreißer geschützt). Durch entsprechende Ausweitung der zugrundeliegenden Daten, könnten unter Verwendung von Regressionsfunktionen höherer Ordnung auch realistische Prognosen erstellt werden. Da die betrachteten Datensätze zurzeit, auf Grund der mangelnden Verfügbarkeit, nicht erweitert werden können, wurden die Erkrankungs- und Sterberaten der jeweiligen Hauptdiagnosegruppen für Männer und Frauen in weiterer Folge durch die (robuste) lineare Regression prognostiziert.

Es sei noch anzumerken, dass es bei der Prognose der Erkrankungs- und Sterberaten durch lineare Regression in einigen Altersgruppen innerhalb der Hauptdiagnosegruppen, wie auch bei der Anwendung der quadratischen Regression dazu kam, dass die entsprechenden Erkrankungs- und Sterberaten ab einem gewissen Zeitpunkt einen Wert \leq o aufwiesen. Dies ist darauf zurückzuführen, dass alle vorliegenden Datenpunkte zur Berechnung der Regressionsgeraden verwendet wurden. Weist nun die Regressionsgerade, durch z.B. einen stark fallenden Verlauf der tatsächlichen Raten, eine negative Steigung auf, kann es passieren, dass die Werte der entsprechenden Raten ab einem bestimmten Jahr unter o fallen (Regressionsgerade schneidet

x-Achse). In diesen Fällen liefert die mit R in Version 3.1.1 (The R Foundation) durchgeführte lineare Regression dementsprechende Warnings. In den wenigen Fällen, in denen die Wahrscheinlichkeiten in bestimmten Altersgruppen ab einem bestimmten Jahr unter einen Wert von o fielen, wurden diese Raten im Nachhinein auf o gesetzt, um eine reibungslose Funktion des Modells gewährleisten zu können. Das Absinken der Erkrankungsund Sterberaten in gewissen Altersgruppen könnte durch einen eventuellen medizinischen Fortschritt in der Zukunft zustandekommen. Jedoch ist es unwahrscheinlich, dass Erkrankungs- und Sterberaten auf den Wert o sinken. Eher wird sich der Wert der spezifischen Erkrankungs- und Sterbewahrscheinlichkeiten in Zukunft auf einem bestimmten Niveau einpendeln und das Krankheits- und Sterbegeschehen innerhalb der österreichischen Bevölkerung weiter beeinflussen. Um beurteilen zu können, wie realistisch ein Absinken der Erkrankungs- bzw. Sterberaten in bestimmten Altersgruppen und für bestimmte Hauptdiagnosegruppen wirklich ist, bedarf es einer gesonderten Betrachtung der einzelnen Entwicklungen der Erkrankungsund Sterberaten innerhalb der jeweiligen Hauptdiagnosegruppe.

5.2. Kritik an den verwendeten Daten

Im Verlauf der Datenrecherche zu aktuellen Morbiditäts- und Mortalitätsfallzahlen der einzelnen 20 Hauptdiagnosegruppen, stellte sich heraus, dass es auf Grund der bestehenden Datenlage nicht möglich war, Morbiditätsdaten im geeigneten Abstraktionsmaß (für beide Geschlechter und dem Alter in Einzeljahren) sowohl für den intra- (stationären) als auch den extramuralen (niedergelassenen) Bereich zu recherchieren. Hierbei gilt es zu betonen, dass die Spitalsentlassungsstatistik einen fallbezogenen Datensatz darstellt, was bedeutet, dass beispielsweise Personen, die wegen ein und derselben Erkrankung mehrmals stationär behandelt wurden, auch mehrmals in der Statistik aufscheinen. Aus diesem Grund wäre es in weiterführenden Arbeiten sicher von Vorteil, die auftretenden Fallzahlen auf die tatsächliche Patientenanzahl umzurechnen und entsprechende Mehrfachaufnahmen derselben Personen in der Betrachtung der Morbidität zu berücksichtigen. Da eine reine Betrachtung des stationären Bereichs nur eine teilweise Abbildung der gesamten, in Österreich auftretenden, Morbidität ermöglicht und mitunter zu einer

Verzerrung des tatsächlich auftretenden Krankheitsgeschehens führt, sollten in aufbauenden Arbeiten auch Daten des extramuralen (niedergelassenen) Bereichs betrachtet und analysiert werden, sofern diese in ausreichendem Abstraktionsmaß vorhanden sind.

Bei der Recherche der Mortalitätsdaten wurde auf die Todesursachenstatistik der Jahre 1970-2015 von Statistik Austria zurückgegriffen. Innerhalb dieser Statistik sind alle, in Österreich auftretenden, Todesfälle dokumentiert. Auch hier wurden die Daten im gewünschten Abstraktionsmaß (Hauptdiagnosegruppen für Männer und Frauen und Alter in Einzeljahren) aus den bestehenden Statistiken extrahiert. Die recherchierten Daten liefern einen guten Überblick über die gesamte, in Österreich, auftretende Mortalität innerhalb der verschiedenen Hauptdiagnosegruppen gemäß ICD-10. Im Gegensatz zur Morbidität war es in diesem Bereich also möglich, die gesamte Mortalität im entsprechenden Abstraktionsmaß im gewünschten Zeitraum zu betrachten.

5.3. Simulation unterschiedlicher Szenarien

Wie bereits erwähnt, sollten anhand des erstellten Modells verschiedene Szenarien simuliert werden. Folgender Abschnitt liefert die kritische Beleuchtung der Ergebnisse der einzelnen simulierten Szenarien und soll Aufschluss darüber geben, wie realistisch die erhaltenen Ergebnisse in Bezug auf Morbiditäts- bzw. Mortalitätsentwicklungen innerhalb der österreichischen Bevölkerung sind.

5.3.1. Szenario 1: konstante Raten

In diesem Szenario wurden die Erkrankungs- und Sterbefälle anhand von konstanten Erkrankungs- und Sterberaten ab dem letzten bekannten Berichtsjahr (2014) berechnet. Innerhalb dieses Szenarios änderte sich also nur die Bevölkerung, während die, zu den Hauptdiagnosegruppen zugeordneten, Morbiditäts- und Mortalitätswahrscheinlichkeiten für Männer und Frauen und das Alter in Einzeljahren bis zum Ende der Simulation auf einem konstanten Wert (letzter bekannter Wert aus Statistik) gehalten wurden. Streng genommen stellt diese Art der Vorhersage eher eine Projektion als eine Prognose dar und kann als Abschätzung herangezogen werden, wie sich die Krankheits- und Sterbezahlen anhand der sich ändernden Bevölkerung entwickeln.

Bevölkerungsentwicklung

Anhand der Ergebnisse aus Abschnitt 4.4.1 kann man erkennen, dass es vor allem in der Altersgruppe der 65-95+ zu einem starken Anstieg des Anteils älter Personen an der Gesamtbevölkerung kommen wird (siehe Abbildung 32). Dieser Sachverhalt deckte sich auch mit den verschiedenen Bevölkerungsprognosen aus der betrachteten Literatur (siehe Abschnitt 4.1.1). Laut Simulation war am Ende des Jahres 2049 jede 4. Person der österreichischen Bevölkerung über 65 Jahre alt. Im ersten Jahr der Simulation lag dieser Anteil noch bei rund 15% was bedeutet, dass jede 7. Person

der Altersgruppe der 65-jährigen und älteren Personen angehörte. Diese Entwicklung ist dahingehend von Bedeutung, da laut verschiedenen erwähnten Publikationen die Erkrankungswahrscheinlichkeit für bestimmte Krankheiten im höheren Alter deutlich ansteigt. Weiters ist den Ergebnissen zu entnehmen, dass sich die Anteile der Bevölkerung in den restlichen breiten Altersgruppen nur gering änderten. Aus diesem Grund liegt das Hauptaugenmerk dieser Diskussion auf der Altersgruppe der 65- bis 95-jährigen Personen. Beim Vergleich der Modellergebnisse mit der, von Statistik Austria, durchgeführten Vorausberechnung der Bevölkerungsstruktur in der Hauptvariante, konnte festgestellt werden, dass die Modellergebnisse des simulierten Szenarios mit konstanten Erkrankungs- und Sterberaten nur gering von den Bevölkerungsprognosen von Statistik Austria abwichen. Laut den Vorausberechnungen von Statistik Austria steigt beispielsweise der Prozentanteil der 65-Jährigen und Alteren bis zum Jahr 2049 auf einen Wert von rund 27% (Abweichung zu Modellberechnung: rund 3,5 %, siehe Tabelle 35 im Anhang). Neben der Verschiebung des Anteils der Altersstruktur der Bevölkerung zugunsten der höheren Altersgruppen (demografische Alterung) kam es auch zu einem Anstieg der absoluten Gesamtbevölkerung. Vor allem bei Männern war im betrachteten Zeitraum ein deutlicher Zuwachs der absoluten Bevölkerungszahlen zu beobachten (vgl. Werte aus Tabelle 24). Ahnliche Entwicklungen lassen sich auch anhand der Daten aus der Vorausberechnung der österreichischen Bevölkerung von Statistik Austria erkennen (vgl. Statistik Austria, 2016a).

stationäre Morbidität

Anhand der Daten aus Tabelle 25 ist erkennbar, dass es sowohl bei Männern als auch bei Frauen, vor allem in den höheren Altersgruppen, von 45-65 und 65-95+ Jahren, im betrachteten Zeitraum, zu einem massiven Anstieg der Krankheitsfälle kam. Bei Männern in der Altersgruppe von 65-95+ Jahren, kam es im genannten Zeitraum, von 1996-2049, zu einer Verdreifachung der Krankheitsfälle (1996: 261000, 2049: 890000). Bei Frauen im Alter von 65 und mehr Jahren stiegen die Krankheitsfälle im gleichen Zeitraum um das 2,5-fache an (1996: 38500, 2049: 98600). Neben den absolut auftretenden Krankheitsfällen bei Männern und Frauen wurde auch ein Faktor berechnet, der die auftretenden Krankheitsfälle innerhalb der Altersgruppen mit der

momentan simulierten Bevölkerung der entsprechenden breiten Altersgruppe ins Verhältnis setzte, um zu verdeutlichen, wie sich die Krankheitsfälle im Vergleich zur Bevölkerung entwickelten. Laut den Modellberechnungen stiegt dieses Verhältnis bei Männern und Frauen im modellierten Zeitraum vor allem in der Altersgruppe der 65-95+ Jährigen stark an. Aufgrund der Möglichkeit, dass ein und dieselbe Person im betrachteten Zeitraum an mehreren Krankheiten erkrankt (Multimorbidität), bedeuten diese Ergebnisse nicht, dass beispielsweise im Jahr 2049 knapp 87% der männlichen Bevölkerung im Alter von 65-95+ krank sind, sondern vielmehr, dass auf 1022998 Individuen, 888858 Krankheitsfälle entfallen. Dieser Anstieg der Krankheitsfälle im Verhältnis zur absoluten Bevölkerung lässt sich, über den betrachteten Zeitraum, analog auch bei Frauen in den höheren Altersgruppen beobachten. Aufgrund der Modellergebnisse, in denen die Krankheitsfälle durch konstante Erkrankungsraten berechnet wurden, lässt sich darauf schließen, dass die Krankheitslast innerhalb der Bevölkerung in den nächsten Jahren ansteigen wird.

Neben altersbedingten Erkrankungen wie Krankheiten des Kreislaufsystems (Ioo-I99) stiegen vor allem auch die Fallzahlen der Neubildungen (Coo-D48), der Krankheiten des Auges (Hoo-H59), sowie der Krankheiten des Muskelund Skelettsystems (Moo-M99) bei Männern und Frauen, in der Altersgruppe von 65-95+ Jahren, an und führten laut durchgeführter Projektion in Zukunft zu den meisten stationären Behandlungen (vgl. Abbildung 33 und 34).

Mortalität

Bei Betrachtung der Mortalitätsfallzahlen im simulierten Zeitraum (siehe Tabelle 26), fiel auf, dass es innerhalb der Altersgruppe der 65-95-jährigen Männer und Frauen zu einem Anstieg der Todesfälle kam. Besonders auffallend hierbei war, dass der Faktor, der das Verhältnis von Todesfällen innerhalb der Altersgruppe zu Bevölkerung innerhalb der Altersgruppe angibt, in der Altersgruppe der 65-95-Jährigen leicht sank. Dies lässt darauf schließen, dass in der entsprechenden Altersgruppe die Todeslast (also die Todesfälle bezogen auf die Bevölkerung) sinkt. Während die Anzahl der Todesfälle im betrachten Zeitraum kontinuierlich anstieg, ist auch bei der

Bevölkerung ein dementsprechend starker Anstieg (der absoluten Zahlen) zu beobachten. Dies führte in weiterer Folge dazu, dass das Verhältnis von Todesfällen in der Altersgruppe zu Bevölkerung in der Altersgruppe leicht sank. Auch in den weiteren Altersgruppen war eine Senkung der Sterblichkeit zu beobachten. Im Vergleich zur berechneten Bevölkerungsprognose von Statistik Austria traten bei dieser Variante mehr absolute Todesfälle auf. Die Abweichungen der absoluten Todesfälle reichten von rund +3% im Jahr 2016 bis +19,7% im Jahr 2049 (siehe Tabelle 34 und 35 im Anhang).

Bei Männern und Frauen im Alter von 65-95+ Jahren war im Zeitraum von 1996-2049 vor allem bei Krankheiten des Kreislaufsystems (Ioo-I99) und bei bösartigen Neubildungen (Coo-C97) ein Anstieg der absoluten Todesfälle zu beobachten. Im simulierten Zeitraum verdoppelten sich bei Männern die absoluten Todesfälle innerhalb der bösartigen Neubildungen von rund 7000 Todesfällen im Jahr 1996 auf rund 14000 Todesfälle im Jahr 2049, während die Sterbefälle bei Frauen um das 1,5-fache anstiegen (1996: 7000, 2049: 11200 Todesfälle). Bei den Krankheiten des Herz Kreislaufsystems stiegen die Todesfälle bei Männern im Alter von 65-95+ Jahren um knapp +68% von 14700 Todesfällen im Jahr 1996 auf 24700 Todesfälle im Jahr 2049. Bei den Frauen in der entsprechenden Altersgruppe war für Herz-Kreislauferkrankungen ein geringerer Anstieg als bei Männern zu beobachten. Hier gab es im simulierten Zeitraum eine Steigerung von rund 23% (1996: 24600, 2049: 30280 Todesfälle). Die weiteren veranschaulichten Todesursachen aus den Abbildungen 35 und 36 stiegen im betrachteten Zeitraum leicht linear an.

5.3.2. Szenario 2: lineare Regression

Dieses Szenario berechnete die Erkrankungs- und Sterbefälle im betrachteten Zeitraum anhand der, mit linearer Regression berechneten, Erkrankungs- und Sterberaten. Bei der Simulation des Szenarios änderte sich sowohl die Bevölkerungsverteilung als auch die Erkrankungs- und Sterbewahrscheinlichkeit der einzelnen Hauptdiagnosegruppen für Männer und Frauen mit dem Alter in Einzeljahren.

Bevölkerungsentwicklung

Den Ergebnissen der Modellierung aus Abschnitt 4.4.2 sind zu entnehmen, dass der Anteil der älteren Bevölkerung im Verlauf der simulierten Jahre stark anstieg. Im betrachteten Zeitraum war eine Steigerung des Anteil der 65-Jährigen und Älteren an der Gesamtbevölkerung von rund 15% im Jahr 1996 auf knapp 28% zu beobachten. Ab dem Jahr 2036 stellte die Altersgruppe der 65+-jährigen Personen, hinter der Altersgruppe der 14-44-Jährigen die zweitgrößte Bevölkerungsgruppe dar und verdrängte die Gruppe der 44-64-Jährigen an die dritte Stelle (vgl. Abbildung 37). Beim Vergleich der simulierten Bevölkerungsentwicklung mit der berechneten voraussichtlichen Bevölkerung von Statistik Austria fiel auf, dass die Abweichungen der beiden Berechnungen sehr gering ausfielen. Im Jahr 2016 ergab sich für den berechneten Anteil der Bevölkerung im Alter von 65-95+ Jahren eine Abweichung von -0,1% (Modellwert - Wert von Statistik Austria), die sich im Verlauf der Simulation bis zum Jahr 2049 auf -3,8% steigerte (vgl. Tabelle 34 und 36 aus dem Anhang). Neben der Verschiebung der Altersstruktur der Bevölkerung zugunsten der älteren Altersgruppen, kam es auch in diesem Szenario zu einem Ansteigen der absoluten Bevölkerung. Die Abweichungen der simulierten, absoluten Gesamtbevölkerung im Vergleich zur vorausberechneten Bevölkerung von Statistik Austria bewegte sich während des gesamten simulierten Zeitraums im einstelligen Prozentbereich (vgl. Werte aus Tabelle 36 aus dem Anhang).

stationäre Morbidität

Die Betrachtung der Entwicklung der stationären Fälle innerhalb der Altersgruppe der 65-95-jährigen Männer und Frauen zeigte einen starken Anstieg der stationären Fälle. Laut den Modellberechnungen verachtfachten sich die absoluten stationären Krankheitsfälle bei Männern im Alter von 65-95 Jahren im betrachteten Zeitraum von 1996-2049. Bei den Frauen in der entsprechenden Gruppe war eine ähnliche Entwicklung festzustellen. Bei 65-jährigen und älteren Frauen versechsfachten sich die absoluten Zahlen der stationären Aufnahmen im betrachteten Zeitraum. Dieser massive Anstieg der Erkrankungsfallzahlen war letztendlich auf die lineare Regression der Erkrankungsraten der einzelnen Hauptdiagnosegruppen zurückzuführen. In

vielen Fällen führte die lineare Regression, vor allem bei Personen höheren Alters zu steigenden Erkrankungsraten für zukünftige Jahre. Dieser Sachverhalt führte in weiterer Folge in Kombination mit dem stark steigenden Anteil älterer Personen zu einer außergewöhnlichen Erhöhung der absoluten Krankheitszahlen in den erwähnten Altersgruppen. Des Weiteren war auch in der Altersgruppe der 45-64-jährigen Männer und Frauen ein Anstieg der absoluten Krankheitsfälle im stationären Bereich zu beobachten. Neben den absolut auftretenden Krankheitsfällen wurde auch ein Faktor berechnet, der die Anzahl der Krankheitsfälle auf die Bevölkerung der Altersgruppen normierte. Dieser Faktor berechnete sich als Verhältnis der auftretenden Krankheitsfälle innerhalb der Altersgruppe zur Bevölkerung in der entsprechenden Altersgruppe. Anhand der Ergebnisse des durchgeführten Szenarios ließ sich erkennen, dass dieser Faktor vor allem in der Gruppe der 45-64- und der Gruppe der 65-95-jährigen Männer und Frauen massiv anstieg. Den Daten aus Tabelle 28 kann entnommen werden, dass das Verhältnis von auftretenden Fällen zu Personen in den höheren Altersgruppen bei Männern und Frauen über den simulierten Zeitraum stark anstieg. Bei Männern im Alter von 65-95 Jahren stieg dieser Faktor von 0,6 im Jahr 1996 auf rund 1,6 im Jahr 2049, was bedeutet, dass es im Jahr 2049 im Vergleich 1,6 mal soviele Krankheitsfälle gab, als Personen in der entsprechenden Altersgruppe. Bei Frauen in der höchsten Altersgruppe ließ sich eine ähnliche Entwicklung beobachten. So stiegen die Krankheitszahlen im Verhältnis zur Personenanzahl in dieser Gruppe von rund 0,5 im Jahr 1996 auf 1,5 im Jahr 2049, was zeigt, dass im letzten Berichtsjahr 2049 1,5 mal mehr Krankheitsfälle auftraten, als Personen in der entsprechenden Altersgruppe vorhanden waren. Diese deutliche Zunahme der Erkrankungsfallzahlen der stationären Morbidität lässt darauf schließen, dass die insgesamte Krankheitslast (Verhältnis kranke Individuen in der Altersgruppe zu Personen insgesamt in Altersgruppe) laut durchgeführtem Szenario im Verlauf der Simulation massiv ansteigt. Trotzdem bedarf es einer kritischen Beurteilung der Simulationsergebnisse, die aufgrund der gewählten Prognosemethode zustande gekommen sind. So ist es nicht realistisch, dass die Erkrankungsfallzahlen vor allem in den älteren Personengruppen eine derartig hohe Steigerung erfahren. Eher werden sich die Erkrankungswahrscheinlichkeiten, sofern es keine eklatanten medizinischen Fortschritte gibt, auf einem stabilen Niveau einpendeln. Auf Grund der genannten Tatsachen ist dieses Szenario als Worst-Case-Szenario zu bezeich-

nen und soll als Abschätzung für den schlimmsten, anzunehmenden Fall dienen.

Betrachtet man nun die Verläufe der häufigsten, für Krankheitsfälle verantwortlichen Hauptdiagnosegruppen in Abbildung 38 und 39 für Männer und Frauen, lässt sich erkennen, dass es in höheren Altersgruppen vor allem bei altersbedingten Erkrankungen, wie Krankheiten der Herz-Kreislaufsystems (Ioo-I99) und Neubildungen (Coo-D48), zu einem sehr starken Anstieg der Fallzahlen im betrachteten Zeitraum kam. Bei Männern im höheren Alter stiegen die Erkrankungsfälle aufgrund von Krankheiten des Kreislaufsystems von rund 70000 im Jahr 1996 auf 324000 im Jahr 2049, was einer Verfünffachung der Fallzahlen gleichkommt. Bei Frauen stiegen die Fallzahlen dieser Hauptdiagnosegruppe von rund 87000 Fällen im Jahr 1996 auf 272400 Fälle im Jahr 2049, was bedeutet, dass sich die stationären Aufnahmen innerhalb dieses Zeitraumes verdreifachten. Bei der Gruppe der Neubildungen, die gutartige sowie bösartige Neubildungen miteinschließen, kam es bei Männern im höheren Alter zu einer Verzehnfachung der stationär behandelten Erkrankungsfälle (1996: 41770, 2049: 411659 Fälle). Bei Frauen in der entsprechenden Altersgruppe, war im gleichen Zeitraum eine Versechsfachung der Krankheitsfallzahlen für Neubildungen (Coo-D48) zu beobachten (1996: 47605, 2049: 306568). Eine weitere interessante Entwicklung war bei den Frauen in der höchsten Altersgruppe zu erkennen. Hier wurden die häufigsten Erkrankungen der Vergangenheit (Neubildungen und Krankheiten des Kreislaufsystems) im Verlauf der Simulation von Krankheiten des Muskel- und Skelettsystems (Moo-M99) abgelöst und auf den zweiten bzw. dritten Platz zurückverwiesen. Bei Männern lösten die Neubildungen (Coo-D48) im Verlauf der Simulation die Krankheiten des Kreislaufsystems (Ioo-I99) ab und stellten am Ende der Simulation die Krankheitsgruppe mit den höchsten Fallzahlen dar. Wie bereits erwähnt, muss eine solche außergewöhnliche Steigerung der Krankheitsfallzahlen kritisch betrachtet werden, da davon auszugehen ist, dass die Erkrankungsraten im Verlauf der nächsten Jahre nicht so stark ansteigen werden, wie es die Prognose durch lineare Regression der Erkrankungsraten vermuten lässt. Im Bereich der Präventionsmaßnahmen für verschiedene Erkrankungen sind dementsprechende Potenziale zur Verbesserung vorhanden, was die Annahme zulässt, dass es in der Zukunft zu einer dementsprechenden Senkung der Erkrankungsraten kommen kann. Bei gleichbleibenden

Erkrankungswahrscheinlichkeiten ist aber allein aufgrund der prognostizierten Bevölkerungsentwicklung davon auszugehen, dass die stationären Aufnahmen in Zukunft ansteigen werden.

Mortalität

Den Daten aus Tabelle 29 ist zu entnehmen, dass es in den älteren Personengruppen zu einem Ansteigen der absoluten Todesfälle kam, während die Sterbefälle in den jüngeren Altersgruppen sanken. Besonders fiel auf, dass in allen betrachteten Altersgruppen das Verhältnis zwischen aufgetreten Todesfällen zur Personenanzahl des jeweiligen Alters über den Zeitraum von 1996-2049 sank. Dies ist darauf zurückzuführen, da neben der beobachteten Steigerung der Todesfälle in den höheren Altersgruppen auch die Bevölkerung dementsprechend stark anstieg. Beim Vergleich der Ausgabedatei des simulierten Szenarios (siehe outputFileMort_linReg und der Prognose von Statistik Austria (siehe Statistik Austria, 2016a) konnte festgestellt werden, dass die absoluten Todesfälle (Summe von Männer und Frauen) bei den Modellberechnungen nur geringe Abweichungen gegenüber der, von Statistik Austria durchgeführten Prognose, aufwies. Die höchste Abweichung für die absoluten Sterbefälle ergab sich im Jahr 2024, wo sich die Modellberechnung um -17,5% von der Prognose von Statistik Austria unterschied. Bis zum Ende der Simulation sank diese Abweichung auf +3,3 % (siehe Werte von Tabelle 36 aus dem Anhang).

Bei Betrachtung der Abbildungen 40 und 41 ist erkennbar, dass in der Altersgruppe der 65-jährigen und älteren Personen, bösartige Neubildungen (Coo-C97), Krankheiten des Kreislaufsystems (Ioo-I99), Stoffwechselerkrankungen (Eoo-E90) und Krankheiten des Nervensystems (Goo-G99) für die meisten Todesfälle verantwortlich sind. Hierbei konnte bei Männern und Frauen in der Gruppe der 65-95-Jährigen, ein Rückgang der absoluten Sterbefälle aufgrund von Kreislauferkrankungen (Ioo-I99) beobachtet werden. Bei Männern überholen die Todesfälle aufgrund von Stoffwechselerkrankungen (Goo-G99) am Ende der Modellierung die Kreislauferkrankungen und sind somit hinter den bösartigen Neubildungen (Coo-C97) die zweithäufigste Todesursache. Des Weiteren konnte festgestellt werden, dass im Verlauf der Simulation bei älteren Männern die Sterbefälle aufgrund bösartiger Neubildungen für den

stärksten Anstieg verantwortlich sind. Bei Frauen in der selben Altersgruppe hingegen ist für bösartige Neubildungen ein moderater, steigender Verlauf festzustellen.

Der insgesamte Rückgang der absoluten Todesfälle in Bezug auf die Bevölkerungsentwicklung lässt sich auf die Prognose der Erkrankungsraten durch die lineare Regression zurückführen. Vor allem bei älteren Personengruppen sanken beispielsweise die Sterbewahrscheinlichkeiten an gewissen Erkrankungen (siehe Erkrankungen des Kreislaufsystems). Diese Beobachtungen lassen den Schluss zu, dass es im stationären Bereich bei der Morbidität zwar zu einem massiven Anstieg der Krankheitsfälle kommt, jedoch viele der erkrankten Personen erfolgreich behandelt werden können. Ein solcher Verlauf könnte sich in Zukunft durch verbesserte medizinische Versorgung im Akutbereich (Interventionen) ergeben und dazu führen, dass zwar mehr Menschen (aufgrund der höheren Gesamtbevölkerung und der entsprechenden Altersstruktur) an gewissen Krankheiten erkranken, diese jedoch aufgrund der gesetzten Maßnahmen aber auch eher überleben. Trotz der durchaus positiven Prognosen in Bezug auf die Mortalität ist jedoch realistischerweise zurzeit nicht damit zu rechnen, dass sich die Sterbewahrscheinlichkeiten in älteren Personengruppen für bestimmte Erkrankungen (siehe Herz-Kreislauferkrankungen) derart senken werden. Eher ist zu erwarten, dass sich die entsprechenden Raten in der nahen Zukunft auf einem relativ konstanten Niveau einpendeln werden.

5.3.3. Szenario 3: Mittelwertbildung

In diesem Szenario wurden die berechneten Mittelwerte der Erkrankungsund Sterberaten innerhalb der einzelnen Hauptdiagnosegruppen ab dem letzten bekannten Berichtsjahr (2014) bis zum Ende der Simulation im Jahr 2050 konstant gehalten. Der Zeitraum für den die Mittelwerte der Raten berechnet werden können, ist hierbei vom Nutzer frei wählbar und reicht vom Mittelwert der letzten 2 bekannten Berichtsjahre (2014 und 2013) bis zum Mittelwert der letzten 10 Berichtsjahre (2005-2014). Bei der Durchführung dieses Szenarios wurde der Mittelwert der Morbiditäts- und Mortalitätswahrscheinlichkeiten der letzten 5 Jahre (2009-2014), für Männer

und Frauen in den entsprechenden Altersgruppen (Einzeljahren) berechnet.

Bevölkerungsentwicklung

Den Ergebnissen aus Abschnitt 4.4.3 ist zu entnehmen, dass der Anteil der älteren Bevölkerung (44-64 und 65-95+ Jahre) im Verlauf der Simulation ansteigt. Hierbei steigt der Anteil 44-64-jähriger Personen an der Gesamtbevölkerung von rund 22% im Jahr 1996 auf 26% im Jahr 2049. Innerhalb der Altersgrupe der 65-95-Jährigen steigt der Anteil an der Gesamtbevölkerung von 15% im Jahr 1996 auf 23% im Jahr 2049. In den jüngeren Altersgruppen sind sinkende Anteile zu beobachten (siehe Abildung 42).

Beim Vergleich der Bevölkerungsentwicklung mit den Vorausberechnungen von Statistik Austria zeigt sich, dass sich die modellbedingte Bevölkerungsentwicklung (Anteile der Altersgruppen an Gesamtbevölkerung) nur im geringen Ausmaß von der Vorausberechnung der Bevölkerungsentwicklung von Statistik Austria unterscheidet (siehe Tabellen in Abschnitt C.2). Die größte Abweichung ergibt sich in der Altersgruppe der 65+-Jährigen. Hierbei liegt der Anteil der Gruppe an der Gesamtbevölkerung laut Modellberechnungen im Jahr 2049 bei rund 23%. Bei der Berechnung von Statistik Austria liegt der Anteil dieser Bevölkerungsgruppe bei rund 27%. Somit ergibt sich also eine Abweichung von rund 4% für dieses letzte Berichtsjahr (vgl. Werte aus Tabelle 37).

Bei der Entwicklung der Gesamtbevölkerung ist sowohl bei Männern als auch bei Frauen ein Anstieg der absoluten Bevölkerungszahlen zu beobachten. Im simulierten Zeitraum steigt die männliche Bevölkerung von 3,8 Millionen im Jahr 1996 auf 4,8 Millionen im Jahr 2049. Die weibliche Bevölkerung erfährt im selben Zeitraum einen Anstieg von rund 700.000 Personen. Die Gesamtbevölkerung steigt im Zeitraum von 1996-2049 um 1,7 Millionen Personen (siehe Tabelle 30). Die Abweichungen zwischen der Entwicklung der absoluten Bevölkerungszahlen der Modellierung zu der vorausberechneten absoluten Bevölkerungszahlen von Statistik Austria (Modellwerte - Werte von Statistik Austria) sind hierbei sehr gering und bewegen sich während der gesamten Simulationsdauer im unteren einstelligen Prozentbereich (vgl. Tabellen 34 und 37 im Anhang).

stationäre Morbidität

Bei Betrachtung der Werte aus Tabelle 31 fällt auf, dass es im Verlauf der Simulation vor allem in den höheren Altersgruppen zu einem massiven Anstieg der Krankheitsfallzahlen kommt, während sich die Erkrankungsfälle in den jüngeren Altersgruppen nur im geringen Maß steigern. In der Altersgruppe der 44-64-jährigen Männer kommt es innerhalb des simulierten Zeitraums zu einer annähernden Verdoppelung der Fallzahlen. Bei Frauen in derselben Altersgruppe steigen die Erkrankungsfälle um den Faktor 1,7 von rund 250000 Fällen 1996 auf 436000 im Jahr 2049. In der ältesten Gruppe steigen die Fallzahlen bei Männern von 1996-2049 um den Faktor 3,2 von 261000 stationären Aufnahmen 1996 auf rund 857000 im Jahr 2049. Bei Frauen in der höchsten Altersgruppe ist über den Zeitverlauf eine ähnliche Entwicklung zu beobachten. Hier steigen die Erkrankungsfallzahlen der stationären Morbidität im betrachteten Zeitraum um den Faktor 2,5 (1996: 385000 Fälle, 2049: 967000 Fälle). Des Weiteren wurde ein Faktor berechnet der angibt wie sich die absoluten Krankheitsfälle innerhalb der jeweiligen Altersgruppe im Verhältnis zur Bevölkerung der jeweiligen Altersgruppe entwickeln. Anhand der Daten aus Tabelle 31 lässt sich erkennen, dass der Faktor bei 65-95-jährigen Männern von rund 0,6 im Jahr 1996 auf 0,86 im Jahr 2049 steigt, was bedeutet, dass im Jahr 2049, innerhalb dieser Altersgruppe, die 992264 Personen umfasst, 856826 Krankheitsfälle auftreten. Auch bei Frauen in der ältesten Altersgruppe ist eine ähnliche Entwicklung zu beobachten. In dieser Personengruppe steigt der Faktor von 0,5 im Jahr 1996 auf 0,76 im Jahr 2049. Dies bedeutet, dass 2049, innerhalb der 1269167 Personen umfassenden Gruppe der 65-jährigen und älteren Frauen, 966641 Krankheitsfälle auftreten. Aufgrund dieser oben genannten Entwicklungen ist davon auszugehen, dass die Krankheitslast innerhalb der Bevölkerung auch in diesem Szenario ansteigt.

Bei Betrachtung der Verläufe, der häufigsten, für Krankheitsfälle verantwortlichen Hauptdiagnosegruppen aus den Abbildungen 43 und 44 fällt auf, dass es in den älteren Gruppen zu einem massiven Anstieg der Fallzahlen aufgrund altersbedingter Erkrankungen kommt. In der Altersgruppe der 65-jährigen und älteren Männer sind Krankheiten des Kreislaufsystems (Ioo-I99) und Neubildungen (Coo-D48) mit Abstand für die meisten stationären Aufnahmen verantwortlich. Im Verlauf der Simulation steigen die Fallzahlen

für Kreislauferkrankungen von rund 68800 Fällen im Jahr 1996 auf rund 165000 Fälle im Jahr 2049. Bei Neubildungen ist ein noch größerer Anstieg der absoluten Fallzahlen erkennbar. So steigen diese bei Männern von 41800 auf rund 157000 Fälle im letzten Simulationsjahr 2049. Die weiteren Erkrankungen bei Männern weisen leicht steigende lineare Verläufe auf. Neben Krankheiten des Verdauungssystems (Koo-K93), Verletzungen und Vergiftungen (Soo-T98) und Krankheiten des Atmungssystems (Joo-J99), zählen auch Krankheiten des Urogenitalsystems und Krankheiten des Nervensystems zu den, am häufigsten auftretenden Hauptdiagnosegruppen innerhalb der Altersgruppe der 65-95-Jährigen. Bei Frauen in der Altersgruppe von 65-95+ Jahren treten neben Kreislauferkrankungen und Neubildungen auch Krankheiten des Muskel- und Skelettsystems am häufigsten auf. Innerhalb der Krankheiten des Kreislaufsystems (Ioo-I99) steigern sich die absoluten Aufnahmen für Frauen im betrachteten Zeitraum um den Faktor 1,8 (1996: 87000 Fälle, 2049:156000 Fälle). Bei Neubildungen kommt es annähernd zu einer Verdreifachung der stationären Aufnahmen (1996: 48000 Fälle, 2049: 132200 Fälle). Die häufigsten weiteren Erkrankungen bei Frauen sind, ähnlich wie bei Männern in der gleichen Altersgruppe, neben Verletzungen und Vergiftungen (Soo-T98), Krankheiten des Urogenitalsystems (Noo-N99) und Krankheiten des Atmungssystems (Joo-J99).

Aufgrund dessen, dass die Zahlen zur stationären Morbidität anhand konstanter Mittelwerte der Erkrankungsraten über einen bestimmten Zeitraum (hier 5 Jahre) berechnet wurden und die absolute Bevölkerung im Verlauf der Simulation anwächst, war schon im Vorfeld mit steigenden Fallzahlen im Bereich der stationären Morbidität zu rechnen. Durch die Ergebnisse der Simulation konnten diese Annahmen verifiziert werden.

Mortalität

Den Daten aus Tabelle 32 kann entnommen werden, dass in den jüngeren Altersgruppen (o-14 und 15-44 Jahre) die absolut auftretenden Sterbefälle über den Verlauf der Simulation sinken. In den älteren Altersgruppen kommt es zu einem leichten Anstieg der Todesfälle. Bei Männern in der Altersgruppe von 65-95+ Jahren verdoppeln sich die absoluten Todesfälle von 26500 im

Jahr 1996 auf 55100 im Jahr 2049. Bei Frauen steigen die absoluten Sterbefälle im selben Zeitraum um das 1,5-fache von 38500 im Jahr 1996 auf rund 58500 Todesfälle im Jahr 2049. Weiters fällt auf, dass in allen Altersgruppen das Verhältnis von aufgetretenen Todesfällen zu Personen in der Altersgruppe sinkt. In der ältesten Personengruppe ist dieser Sachverhalt dadurch zu erklären, da gleichzeitig zum Anstieg der absolut auftretenden Sterbefälle auch die Bevölkerung dieser Altersgruppe entsprechend stark ansteigt. Diese sinkenden Faktoren (siehe Tabelle 32) lassen darauf schließen, dass die Todeslast (auftretende Todesfälle zu Bevölkerung) innerhalb der österreichischen Bevölkerung unter den getroffenen Annahmen des durchgeführten Szenarios in der Zukunft zurückgehen wird. Beim Vergleich der im Zuge der Simulation auftretenden Todesfälle mit den Sterbeziffern der Vorausberechnung der Bevölkerungsstruktur von Statistik Austria fällt auf, dass die Werte der Simulation nur im geringen Maß von den Werten der Prognose von Statistik Austria abweichen. Die größte Abweichung ergibt sich demnach im Jahr 2044 wobei hier laut Modell 123.268 Todesfälle und laut Prognose von Statistik Austria 97.633 Sterbefälle auftreten. Dies entspricht einer Abweichung von 20,8 % (vgl. Werte aus Tabelle 37). In den anderen Jahren bewegen sich die Abweichungen im ein- bis zweistelligen Prozentbereich, was zumindest im Bereich der prognostizierten Sterbefälle für eine aussagekräftige Prognose spricht. Hierbei sei noch zu erwähnen, dass die Prognose von Statistik Austria in der Hauptvariante jene Variante darstellt, die aufgrund der einbezogenen Parameter am wahrscheinlichsten eintreten wird. Aufgrund der geringen Abweichungen von Modellvorhersagen und der Prognose von Statistik Austria kann davon ausgegangen werden, dass die simulierten Todesfälle eine gute Abschätzung für die wahrscheinlichste zukünftige Entwicklung darstellen. Trotzdem müssen Prognosen zukünftiger Entwicklung immer mit Vorsicht betrachtet werden.

Bei Betrachtung der Verläufe der häufigsten, für Todesfälle verantwortlichen Hauptdiagnosegruppen aus den Abbildungen 45 und 46 kann man erkennen, dass es in der ältesten Personengruppe vor allem bei altersbedingten Erkrankungen, wie Krankheiten des Kreislaufsystems (Ioo-I99) oder bösartigen Neubildungen (Coo-C97) zu einem Anstieg der Todesfälle kommt. Sowohl bei Männer als auch bei Frauen sind Herz-Kreislauferkrankungen mit Abstand für die meisten absoluten Sterbefälle verantwortlich. Im Jahr 2049 werden bei Männern rund 40% und bei Frauen rund die Hälfte aller

Todesfälle durch Krankheiten des Kreislaufsystems verursacht. Bösartige Neubildungen sind bei Männern im Jahr 2049 für rund ein Viertel und bei Frauen für rund ein Fünftel aller Todesfälle verantwortlich. Zusammen machen diese beiden Hauptdiagnosegruppen also zwei Drittel aller Todesfälle im Jahr 2049 aus. Die anderen Hauptdiagnosegruppen weisen in der Altersgruppe der 65-95-Jährigen einen leicht steigenden, linearen Verlauf auf, der auf die konstanten Sterbewahrscheinlichkeiten ab dem Jahr 2015 zurückzuführen ist.

5.3.4. Vergleich der Szenarien

Durch die Verwendung verschiedener Prognosemethoden kam es bei den Simulationen der einzelnen Szenarien zu Unterschieden, auf die im Folgenden näher eingegangen wird. Allen Szenarien gemeinsam kann man einen unterschiedlich starken Anstieg des Anteils älterer Menschen an der Gesamtbevölkerung entnehmen. So steigt der Anteil der 65-95-jährigen Männer und Frauen in den Szenarien 1 und 3 (konstante Raten bzw. konstante Mittelwerte) auf rund 23%, was knapp einem Viertel der Gesamtbevölkerung entspricht. Im Szenario 2, bei welchem die Erkrankungsraten bzw. Sterberaten durch lineare Regression prognostiziert wurden, ist ein noch stärkerer Anstieg des Anteils der älteren Bevölkerungsgruppe (65-95+ Jahre) zu beobachten, was auf die gewählte Prognosemethode zurückzuführen ist. In diesem Szenario steigt der prozentuelle Anteil bis zum Jahr 2049 auf rund 28% (siehe Tabelle 37 im Anhang). Des Weiteren wurde durch die durchgeführte Literatur- und entsprechende Datenrecherche auch festgestellt, dass mit steigendem Alter auch das Risiko an bestimmten Krankheiten zu erkranken, massiv ansteigt. In Bezug auf die Simulation der Bevölkerungsentwicklung sei noch anzumerken, dass Voraussagen über Wanderungsgewinne oder -verluste starken Schwankungen unterliegen. Aufgrund verschiedenster Ereignisse (wirtschaftliche oder politische Veränderungen) können sich diese kurzfristig verändern und sind daher nur bedingt vorherzusagen. Grundsätzlich kann man den Ergebnissen aus den Abschnitten 4.4.1, 4.4.2 und 4.4.3 entnehmen, dass die Krankheitslast innerhalb der österreichischen Bevölkerung in den nächsten Jahren unterschiedlich stark ansteigen wird. Aufgrund der Verschiebung der Altersstruktur der Bevölkerung zu Guns-

ten der älteren Personengruppen, steigen die stationären Aufnahmen für altersbedingte Erkrankungen, wie Krankheiten des Kreislaufsystems (Ioo-I99) oder Neubildungen (Coo-D48) im Verlauf der Simulation teilweise massiv an. Für alle durchgeführten Szenarien ist ein mehr oder weniger ausgeprägtes Ansteigen der Bevölkerungsanteile der älteren Personen zu beobachten, was sich auch mit den Prognosen und Annahmen der betrachteten Literatur deckt (siehe Abschnitt 4.1.1 Demografischer Überblick). Bei Vergleich der Szenarien 1 und 3 in denen die Krankheits- und Sterbefälle aufgrund der konstanten Raten ab dem letzten bekannten Berichtsjahr (2014) und der Mittelwerte der Raten aus einem gewünschten Zeitraum (5 Jahre) berechnet werden, ist erkennbar, dass sich die Ergebnisse der Szenarien, wie zu erwarten, nur im geringen Maß voneinander unterscheiden. Anhand der Ergebnisse aus Szenario 2, in welchem die zukünftigen Erkrankungs- und Sterberaten anhand der linearen Regression berechnet werden, kann man erkennen, dass dieses Szenario ein deutlich schlechteres Bild bezüglich der Entwicklung der stationären Morbidität liefert. Hier kommt es im Verlauf der Modellierung zu einer förmlichen "Explosion" der Erkrankungsfallzahlen im stationären Bereich. Vor allem in der ältesten Personengruppe (65-95+) ist eine Verachtfachung der absoluten Fälle bei Männern, sowie eine Versechsfachung der stationären Aufnahmen bei Frauen zu beobachten. Aufgrund der in Abschnitt 5.3.2 beschriebenen Ungenauigkeiten bezüglich der Prognose der Erkrankungsfallzahlen und Sterbezahlen durch lineare Regression, kann angenommen werden, dass die Entwicklung der Krankheitslast einen weniger drastischen Verlauf annehmen wird, als in den Ergebnissen suggeriert wurde. In Bezug auf die prognostizierten Sterbefälle konnte bei allen Altersgruppen ein Rückgang des Verhältnisses von Sterbefällen zu Personen in entsprechender Altersgruppe beobachtet werden (siehe Faktor in Tabellen 26, 29 und 32), da gleichzeitig zum Anstieg der absoluten Todesfälle auch die Bevölkerung in den Altersgruppen dementsprechend stark ansteigt. Diese Entwicklungen zeigen, dass laut den unterschiedlichen Szenarien in Zukunft zwar mehr Menschen an gewissen Erkrankungen leiden, diese aber erfolgreich behandelt werden. Dies würde aber gleichzeitig auch bedeuten, dass die gewonnene zusätzliche Lebenszeit eher in Krankheit verbracht wird als in Gesundheit. In der Literatur wird dieser Effekt als Expansion der Morbidität bezeichnet. Im Gegensatz zur Expansion der Morbidität kommt es bei der Kompression der Morbidität bei steigender Lebenserwartung zu einer Verdichtung von Krankheit und Behinderung in ein Zeitfenster kurz

vor dem Tod. Hierbei gilt für chronische Erkrankungen eher die Expansionstheorie und für akute, schnell zum Tod führende Krankheiten eher die Kompressionstheorie (vgl. Peters et al., 2010). Die Berücksichtigung beider Theorien zur Vorhersage von Erkrankungshäufigkeiten stellt sich als sehr komplex dar und sollte in weiterführenden Arbeiten für die einzelnen Hauptdiagnosegruppen getrennt betrachtet werden um zuverlässige bzw. aussagekräftige Vorhersagen bezüglich der zutreffenden Theorien zu ermöglichen.

5.4. Mögliche Verbesserungen

Im Verlauf der Durchführung der Arbeit ergaben sich Ideen für verschiedene Verbesserungen, auf die im Folgenden genauer eingegangen wird. Neben möglichen Erweiterungen bezüglich der verwendeten Daten, werden auch etwaige Verbesserungen in Bezug auf die Modellierung erwähnt.

5.4.1. Erweiterungen der Daten

Wie bereits in Abschnitt 5.2 Kritik an den verwendeten Daten erwähnt, kann das Modell (sofern vorhanden) um die Daten des extramuralen (niedergelassenen) Bereichs ergänzt werden, um eine Betrachtung des gesamten Krankheitsgeschehens innerhalb der österreichischen Bevölkerung zu ermöglichen. Auf Grund der aktuellen Datenlage war es in dieser Arbeit nicht möglich die entsprechenden Datensätze für den niedergelassenen Bereich zu beschaffen. Dies ist mitunter auf die nicht verpflichtende und teilweise veraltete Diagnosdokumentation des niedergelassenen Bereichs zurückzuführen. Bei Einführung einer verpflichtenden und einheitlichen Diagnosedokumentation (z.B. nach ICD-10 Klassifizierung), könnten die Morbiditätsdaten, die momentan nur aus der Spitalsentlassungstatistik extrahiert wurden, um Daten des niedergelassenen Bereichs erweitert werden um eine gesamtheitliche Betrachtung der Morbidität zu realisieren. Des Weiteren wäre es auch vorstellbar, die verwendeten Hauptdiagnosegruppen gemäß der ICD-10 Klassifizierung noch feiner aufzuschlüsseln (Einzeldiagnosen) und anschließend die Entwicklungen der einzelnen Diagnosen

für Männer und Frauen mit dem Alter in Einzeljahren zu betrachten bzw. zu prognostizieren. Im stationären Bereich wäre eine Detaillierung dieser Art aufgrund der Verfügbarkeit entsprechender Daten auf der Seite von Statistik Austria (STATcube) zum jetzigen Zeitpunkt durchführbar. Wie bereits erwähnt, werden eventuelle Mehrfachaufnahmen eines Patienten in den vorhandenen Statistiken nicht berücksichtigt. Aus diesem Grund kann es in der vorliegenden Arbeit vorkommen, dass ein und derselbe Patient, aufgrund verschiedener Diagnosen, mehrmals in der Statistik aufscheint. In zukünftigen, weiterführenden Arbeiten wäre es von zentralem Interesse die auftretenden Fallzahlen auf die tatsächliche Patientenanzahl umzurechnen und entsprechende Mehrfachaufnahmen derselben Personen in der Betrachtung der Morbidität zu berücksichtigen sofern diese Daten verfügbar sind. Dies würde die Genauigkeit der Voraussagen, bezüglich der innerhalb der Bevölkerung auftretenden Morbidität, mit Sicherheit verbessern und noch weiter verfeinern. Des Weiteren könnte die Berechnung der Morbiditätsund Mortalitätsfallzahlen auch noch auf Bundesländerebene durchgeführt werden. Entsprechende Daten zur stationären Morbidität und Mortalität sind auf der Seite von Statistik Austria (STATcube) für alle Bundesländer vorhanden. Diese bundesländerspezifische Betrachtung könnte in weiterer Folge dazu genutzt werden, um drohende Trends für gewisse Bundesländer frühzeitig erkennen und dementsprechend darauf reagieren zu können.

5.4.2. Verbesserungen des Modells

5.4.2.1. Prognosemöglichkeiten

Hinsichtlich der Prognose der Morbidität und Mortalität der österreichischen Bevölkerung wurden in der vorliegenden Arbeit drei verschiedene Methoden angewandt. Neben der Berechnung der spezifischen Fallzahlen zu Morbidität und Mortalität aufgrund von konstanten Erkrankungs- und Sterberaten, sowie der Prognose der Fallzahlen durch lineare Regression der entsprechenden Erkrankungs- und Sterbewahrscheinlichkeiten, wurde auch der Mittelwert vergangener Erkrankungs- und Sterberaten zur Prognose zukünftiger Krankheits- und Sterbefälle innerhalb der verschiedenen Hauptdiagnosegruppen herangezogen. Die Prognose der zukünftigen

Erkrankungs- und Sterbefallzahlen aufgrund von konstanten Raten bzw. konstanten Mittelwerten der Raten liefern eine gute Abschätzung dafür, wie sich die entsprechenden Erkrankungen (Hauptdiagnosegruppen) in Zukunft entwickeln könnten. Die Prognose der Fallzahlen durch lineare Regression liefert, wie erwähnt, nur bedingt aussagekräftige Ergebnisse, welche teilweise ein unrealistisches Bild in Bezug auf die Entwicklung der Morbidität und Mortalität zeichnen. Auf Grund dessen, dass viele der betrachteten Erkrankungen (Hauptdiagnosegruppen) altersspezifische Verläufe aufweisen, bedarf es einer noch genaueren Betrachtung der Verläufe der einzelnen Erkrankungen, um die Genauigkeit der Prognose noch weiter zu steigern. Demnach könnten auch weitere Faktoren, wie das Gesundheitsverhalten (BMI, Rauchen, Alkoholkonsum) in die Arbeit miteinfließen und untersucht werden, wie sich die einzelnen Parameter auf die Verläufe der Morbidität und Mortalität auswirken.

5.4.2.2. Verschiebung des Startzeitpunktes

Im vorliegenden Modell starten die Berechnungen zur Entwicklung der Morbidität und Mortalität innerhalb der österreichischen Bevölkerung im Jahr 1996. Durch Anpassung der Modellparameter könnte der Startzeitpunkt des Modells noch weiter in die Vergangenheit verschoben werden. Hierfür müssten entsprechende Daten zu Bevölkerungswanderungen (Zu- und Abwanderung), Geburten und auch von Morbidität und Mortalität recherchiert und in das bestehende Modell eingepflegt werden. Die Aufzeichnungen der stationären Morbidität beginnen im Jahr 1989, was bedeutet, dass die Modellberechnungen prinzipiell auch von diesem Jahr gestartet werden könnten. Durch Verlegung des Startzeitpunktes in die fernere Vergangenheit könnte das Modell durch Vergleich von berechneten Modellergebnissen mit tatsächlich aufgetretenen Bedingungen entsprechend abgeglichen und verifiziert werden.

6. Schlussfolgerung

Anhand der vorliegenden Arbeit sollte gezeigt werden, wie sich Morbidität und Mortalität innerhalb der österreichischen Bevölkerung in den nächsten Jahren voraussichtlich entwickeln werden. Durch die Wahl geeigneter Prognosemethoden sollte es möglich sein, Aussagen über die Entwicklung der Krankheitslast (Auftretende Krankheitsfälle in Bevölkerung) zu tätigen. Zunächst lag das Hauptaugenmerk der Arbeit in der Recherche von geeigneten Daten zur Morbidität und Mortalität. Gleichzeitig wurde im Zuge einer Literaturrecherche auch geeignete Literatur recherchiert, die sich mit der Entwicklung der Bevölkerung und des Krankheitsgeschehens beschäftigt. In weiterer Folge sollten auf Grund der Ergebnisse und der angenommenen Entwicklungen des Krankheitsgeschehens auch Rückschlüsse darüber gezogen werden, wie wahrscheinlich das tatsächliche Eintreffen eines der simulierten Szenarien ist. Anhand der Ergebnisse der Simulation konnte gezeigt werden, dass der Anteil der älteren Bevölkerung in den nächsten Jahren stark ansteigen wird. Die geburtenstarken Jahrgänge der Baby-Boomer Generation zwischen 1960 und 1970, werden in den kommenden Jahren dafür sorgen, dass der Anteil der 65-95-jährigen Personen innerhalb der Gesamtbevölkerung massiv ansteigt. Dieser Sachverhalt konnte sowohl durch die Literaturrecherche als auch die Durchführung der verschiedenen Szenarien dargelegt werden. Des Weiteren steigen in allen 3 simulierten Szenarien vor allem die absoluten Fallzahlen für die stationäre Morbidität. Bei Betrachtung der zu erwartenden Mortalität innerhalb der Bevölkerung konnte festgestellt werden, dass die Gesamtsterblichkeit, wie in den letzten Jahren, trotz steigender absoluter Sterbefälle in Zukunft weiter sinken wird. Dies ist darauf zurückzuführen, dass gleichzeitig zum Anstieg der absoluten Todesfälle auch die Gesamtbevölkerung dementsprechend stark ansteigt. Die Ergebnisse der Arbeit haben gezeigt, dass die Krankheitslast innerhalb der Bevölkerung, laut den vorgenommenen Simulationen ansteigen wird. Hierauf aufbauend ist nun zu diskutieren, ob dieser Anstieg auch

6. Schlussfolgerung

bedeutet, dass die ältere Bevölkerung in Zukunft auch mehrere Jahre ihrer Lebenszeit in Krankheit verbringen wird. Daher bedarf es einer verantwortungsvollen, langfristig wirkenden Weichenstellung von politischen und wirtschaftlichen Entscheidungsträgern, um den reibungslosen Ablauf des Gesundheitswesens auch in Zukunft sicherstellen zu können.

- Böhm, Karin et al. (2009). »Gesundheit und Krankheit im Alter«. In: (Siehe S. 68, 70, 73, 99).
- Börne, Ludwig (1862). *Gesammelte Schriften: Bd. Fragmente und Aphorismen* 1-308. Verlag Hoffman Campe (siehe S. 1).
- Bundesministerium für Gesundheit (2009). Gesundheit und Krankheit in Österreich Gesundheitsbericht 2009. URL: https://www.bmgf.gv.at/cms/home/attachments/9/8/0/CH1066/CMS1288362276132/gboe_09.pdf (besucht am 12.10.2017) (siehe S. 9).
- Bundesministerium für Gesundheit (2013). Das österreichische Gesundheitssystem Zahlen Daten Fakten. URL: https://www.google.at/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=OahUKEwjS1reOiqXXAhULcBoKHaSdDCsQFggrMAE&url=https%3A%2F%2Fwww.bmgf.gv.at%2Fcms%2Fhome%2Fattachments%2F3%2F4%2F4%2FCH1066%2FCMS1291414949078%2Fgesundheitssystem-zahlen-daten-2013.pdf&usg=AOvVaw2XA2w1WJYahn2m1Org6TBa (besucht am 04.11.2017) (siehe S. 72, 73).
- Bundesministerium für Gesundheit und Frauen (2017). Internationale statistische Klassifikation der Krankheiten und verwandter Gesundheitsprobleme 10. Revision –BMG-Version 2014. URL: https://www.bmgf.gv.at/cms/home/attachments/8/6/4/CH1166/CMS1128332460003/icd-10_bmg_2014_-_systematisches_verzeichnis.pdf (besucht am 14.05.2017) (siehe S. 13, 14).
- Ebner, Felix (2017). »Simulationsmodell zur Abschätzung der Implantationen von Hüft- und Knieendoprothesen«. In: (Siehe S. 28).
- Eggen, Bernd und Carlo Knotz (2009). »Wir leben länger! Aber auch länger gesund?: Aspekte zur Lebenserwartung und Gesundheit älterer Menschen«. In: *Statistisches Monatsheft Baden-Württemberg* 7, S. 9–15 (siehe S. 69).

- Ferlay, J et al. (2007). »Estimates of the cancer incidence and mortality in Europe in 2006«. In: *Annals of oncology* 18.3, S. 581–592 (siehe S. 24).
- Freie Universität Berlin (2017). Modellselektion (AIC, BIC, Pseudo R^2 ...). URL: https://wikis.fu-berlin.de/pages/viewpage.action?pageId=736857812 (besucht am 23.04.2018) (siehe S. 25, 26).
- GBKK (2015). Geschlechtsspezifische Formulierung. URL: http://www.bgkk.at/portal27/bgkkportal/content?contentid=10007.748850&viewmode=content (besucht am 23.04.2018) (siehe S. v).
- Gesundheitsberichterstattung, des Bundes (2011). »Sterblichkeit, Todesursachen und regionale Unterschiede«. In: *Robert-Koch-Institute, Berlin Google Scholar* (siehe S. 81).
- Grigoryev, Ilya (2015). »AnyLogic 7 in three days«. In: *A quick course in simulation modeling* 2 (siehe S. 33, 34).
- Haberland, Jörg et al. (2006). »Die zukünftige Entwicklung des Krebsgeschehens in Deutschland«. In: *Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz* 49.5, S. 459–467 (siehe S. 1, 24).
- Hofmarcher, Maria M (2013). *Das österreichische Gesundheitssystem: Akteure, Daten, Analysen*. Medizinisch Wissenschaftliche Verlagsgesellschaft (siehe S. 6, 77).
- Hurrelmann, Klaus (2006). *Gesundheitssoziologie: eine Einführung in sozialwissenschaftliche Theorien von Krankheitsprävention und Gesundheitsförderung.* Beltz Juventa (siehe S. 68).
- Larget, Bret (2003). Statistics 333. URL: http://www.stat.wisc.edu/courses/st333-larget/aic.pdf (besucht am 04.05.2018) (siehe S. 25).
- Lukas, Gernand (2009). *Understanding AIC and BIC in Model selection*. URL: http://homepage.univie.ac.at/florian.frommlet/SS2010/Multi/GERNAND-Handout.pdf (besucht am 23.04.2018) (siehe S. 25, 26).
- Menning, Sonja (2006). »Lebenserwartung, Mortalität und Morbidität im Alter«. In: (Siehe S. 69, 76, 81, 82, 90).
- Murray, Christopher JL, Alan D Lopez, WHO et al. (1996). »The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020: summary«. In: (Siehe S. 1).
- Nowossadeck, Enno (2012). »Demografische Alterung und Folgen für das Gesundheitswesen«. In: (Siehe S. 2, 23, 70, 72, 73).

- Peters, E et al. (2010). »Demografischer wandel und krankheitshäufigkeiten«. In: *Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz* 53.5, S. 417–426 (siehe S. 1, 23, 70, 72–74, 173).
- Schipfer, Rudolf Karl (2005). »Der Wandel der Bevölkerungsstruktur in Österreich«. In: Auswirkungen auf Regionen und Kommunen. Österreichisches Institut für Familienforschung 51 (siehe S. 70, 73).
- Stadt Wien (2003). »Lebenserwartung und Mortalität in Wien«. In: *Magistrat der Stadt Wien, Bereichsleitung für Gesundheitsplanung und Finanzmanagement, Gesundheitsberichterstattung, Wien* (siehe S. 81).
- Statistik Austria (2007). »Österreichischer Todesursachenatlas 1998-2004«. In: *Vienna: Statistik Austria* (siehe S. 77).
- Statistik Austria (2015a). »Österreichische Gesundheitsbefragung 2014«. In: Hauptergebnisse des Austrian Health Interview Survey (ATHIS) und methodische Dokumentation, Wien. URL: http://www.statistik-austria.at/wcm/idc/idcplg?IdcService=GET_PDF_FILE&RevisionSelectionMethod=LatestReleased&dDocName=111025 (besucht am 16.05.2017) (siehe S. 78, 99, 101, 102).
- Statistik Austria (2015b). Österreichischen Gesundheitsbefragung 2014 Subjektiver Gesundheitszustand. URL: https://www.statistik.at/wcm/idc/idcplg?IdcService=GET_NATIVE_FILE&RevisionSelectionMethod=LatestReleased&dDocName=025417 (besucht am 08.06.2017) (siehe S. 100, 101).
- Statistik Austria (2016a). Bevölkerungsprognose 2015-2100 für Österreich. URL: https://www.statistik.at/wcm/idc/idcplg?IdcService=GET_NATIVE_FILE&RevisionSelectionMethod=LatestReleased&dDocName=027318 (besucht am 29.10.2017) (siehe S. 73, 74, 159, 165, 190-193).
- Statistik Austria (2016b). Chronische Krankheit oder chronisches Gesundheitsproblem 2006/07 und 2014. URL: https://www.statistik.at/wcm/idc/ idcplg?IdcService=GET_NATIVE_FILE&RevisionSelectionMethod= LatestReleased&dDocName=022227 (besucht am 13.06.2017) (siehe S. 102).
- Statistik Austria (2017a). Bevölkerung zu Jahresbeginn seit 1981 nach Staatsangehörigkeit, Geschlecht und breiten Altersgruppen. URL: https://www. statistik.at/wcm/idc/idcplg?IdcService=GET_PDF_FILE&RevisionS% 20electionMethod = LatestReleased & dDocName = 023451 (besucht am 29. 10. 2017) (siehe S. 71, 73).
- Statistik Austria (2017b). Demographische Indikatoren erweiterte Zeitreihen ab 1961 für Österreich. URL: https://www.statistik.at/wcm/idc/

- idcplg?IdcService=GET_NATIVE_FILE&RevisionSelectionMethod= LatestReleased&dDocName=068726 (besucht am 29. 10. 2017) (siehe S. 74).
- Statistik Austria (2017c). »Jahrbuch der Gesundheitsstatistik 2015«. In: URL: http://www.statistik.at/wcm/idc/idcplg?IdcService=GET_NATIVE_FILE&RevisionSelectionMethod=LatestReleased&dDocName=111556 (besucht am 11.10.2017) (siehe S. 6, 78, 79, 81).
- Statistik Austria (2017d). Lebenserwartung bei der Geburt 1970 bis 2015 nach Bundesländern und Geschlecht. URL: https://www.statistik.at/wcm/idc/idcplg?IdcService=GET_PDF_FILE&RevisionSelectionMethod=LatestReleased&dDocName=022522 (besucht am 30.05.2017) (siehe S. 76, 80).
- Statistik Austria (2017e). Leitbild. URL: http://www.statistik-austria.at/web_de/ueber_uns/aufgaben_und_grundsaetze/leitbild_der_statistik_austria/index.html (besucht am 14.05.2017) (siehe S. 9).
- Statistik Austria (2017f). Statcube Benutzerhandbuch. URL: http://www.statistik.at/wcm/idc/idcplg?IdcService=GET_PDF_FILE&dDocName= 105692 (besucht am 14.05.2017) (siehe S. 10).
- Statistik Austria (2017[g]). Ergebnisse im Überblick: Lebenserwartung nach subjektivem Gesundheitszustand. URL: https://www.statistik.at/wcm/idc/idcplg?IdcService=GET_PDF_FILE&RevisionSelectionMethod=LatestReleased&dDocName=041863 (besucht am 19. 10. 2017) (siehe S. 80).
- Statistik Austria (2017[h]). Gestorbene in Österreich ab 1970 nach Todesursachen und Geschlecht. URL: http://www.statistik.at/wcm/idc/idcplg?IdcService=GET_NATIVE_FILE&RevisionSelectionMethod=LatestReleased&dDocName=021988 (besucht am 14.10.2017) (siehe S. 94).
- Statistik Austria (2017[i]). Jährliche Sterbetafeln 1947 bis 2016 für Österreich. URL: https://www.statistik.at/wcm/idc/idcplg?IdcService=GET_NATIVE_FILE&RevisionSelectionMethod=LatestReleased&dDocName=022707 (besucht am 16.10.2017) (siehe S. 77, 80).
- Statistisches Amt der EU (2017). Todesursachen standardisierte Sterbeziffer je 100 000 Einwohner. URL: http://ec.europa.eu/eurostat/data/database# (besucht am 14.10.2017) (siehe S. 189).
- Tazi-Preve, Irene M et al. (1999). »Bevölkerung in Österreich«. In: *Demogra*phische Trends, politische Rahmenbedingungen, entwicklungspolitische Aspekte. Vienna: Schriften des Instituts für Demographie der Österreichischen Akademie der Wissenschaften 12 (siehe S. 72).

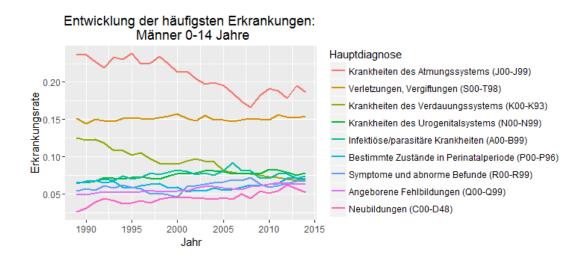
- The Anylogic Company (2018). Simulation Modeling. URL: https://www.anylogic.com/use-of-simulation/ (besucht am 19.02.2018) (siehe S. 33, 34).
- Vaupel, James W und KG v Kistowski (2005). »Der bemerkenswerte Anstieg der Lebenserwartung und sein Einfluss auf die Medizin«. In: *Bundesgesundheitsblatt Gesundheitsforsch. Gesundheitsschutz* 48.5, S. 586–592 (siehe S. 81).
- Vorest AG (2017). Das Pareto Prinzip inkl. der ABC Analyse im Fokus. URL: http://kvp.me/kvp_methoden_werkzeuge/pareto_prinzip_abc-analyse/(besucht am 15.12.2017) (siehe S. 15).
- WHO (1946). »Verfassung der WHO«. In: (Siehe S. 68).
- WHO (2017). *ICD purposes and uses*. URL: http://www.who.int/classifications/icd/en/ (besucht am 14.05.2017) (siehe S. 13).
- Wiesner, Gerd, J Grimm und Edelgard Bittner (2002). »Vorausberechnungen des Herzinfarktgeschehens in Deutschland Zur Entwicklung von Inzidenz und Prävalenz bis zum Jahre 2050«. In: *Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz* 45.5, S. 438–445 (siehe S. 1, 24).

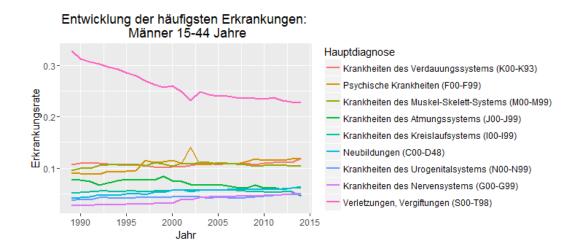
Anhang A.

R-Sourcecode

A.1. Skript: lineare Regression

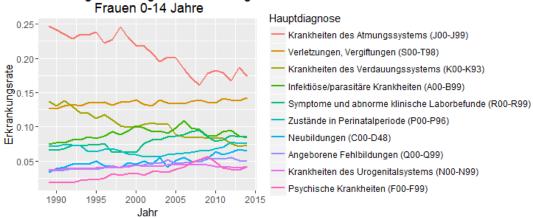
```
dateiNamen_morb <- dir(path=
  "I:/Masterarbeit/Work/R_Krankheitslast/",
 pattern="morb", all.files=T)
dateiNamen_mort <- dir(path=
  "I:/Masterarbeit/Work/R_Krankheitslast/",
  pattern="mort", all.files=T)
#prognostizierter Zeitraum Morb/Mort
pred_Jahr_morb <- 2015:2050
pred_Jahr_mort <- 2016:2050
Auswertung_morb <- function(Dateiname){
  #Einlesen der Dateien
  test <- read.csv(Dateiname, header=T, sep=";", dec=",")
  #Funktion robuste lineare Regression: Morb
  pred _morb <- function(test, predJ){</pre>
   m <- rlm(test ~ Jahr, data=data.frame(test=test,
      Jahr = 1989:2014))
    predict(m, newdata=data.frame(Jahr=predJ))
  predictedData_morb <- sapply(test[-1],pred_morb,</pre>
    predJ=pred_Jahr_morb)
  #Zusammenstellung des Ausgabedateinamens
  Ausgabedatei <- paste ("I:/Masterarbeit/Work/
```

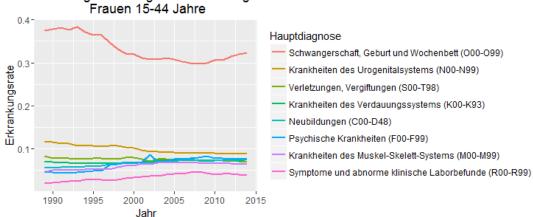

Anhang A. R-Sourcecode


```
___R_Krankheitslast/Prognose_Morbiditaet/",
    "output_", Dateiname, sep="")
  #Schreiben der .csv-Dateien
  write.csv(rbind(test,cbind(Jahr=pred_Jahr_morb,
    predictedData_morb)), file=Ausgabedatei,
    row.names=F, col.names=T)
Auswertung_mort <- function(Dateiname){
  #Einlesen der Dateien
  test <- read.csv(Dateiname, header=T, sep=";", dec=",")
  pred_mort <- function(test, predJ){</pre>
   m <- rlm(test ~ Jahr, data=data.frame(test=test,</pre>
      Jahr = 1982:2015)
    predict(m, newdata=data.frame(Jahr=predJ))
  predictedData_mort <- sapply(test[-1],pred_mort,</pre>
    predJ=pred_Jahr_mort)
  #Zusammenstellung des Ausgabedateinamens
  Ausgabedatei <- paste ("I:/Masterarbeit/Work/
___R_Krankheitslast/Prognose_Mortalitaet/",
    "output_", Dateiname, sep="")
  #Schreiben der .csv-Dateien
  write.csv(rbind(test,cbind(Jahr=pred_Jahr_mort,
    predictedData_mort)), file=Ausgabedatei,
    row.names=F, col.names=T)
}
#Funktionsaufruf
lapply (dateiNamen_morb, Auswertung_morb)
lapply (dateiNamen_mort, Auswertung_mort)
```

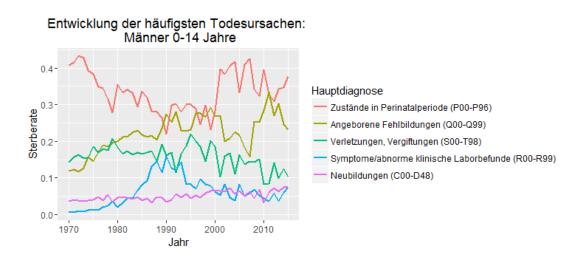
Anhang B.

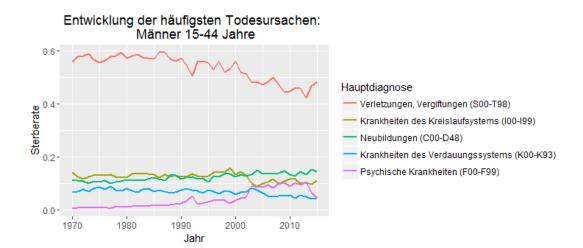
Abbildungen


B.1. Entwicklung der stationären Morbidität

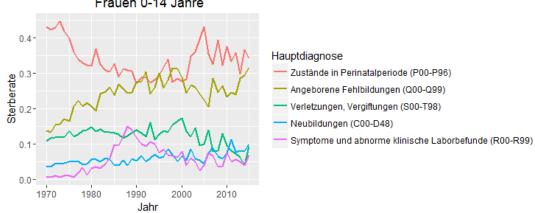


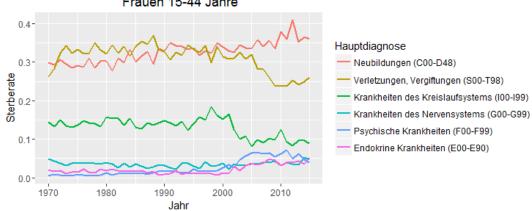
Anhang B. Abbildungen


Entwicklung der häufigsten Erkrankungen:



Entwicklung der häufigsten Erkrankungen:


B.2. Entwicklung der Mortalität



Anhang B. Abbildungen

Entwicklung der häufigsten Todesursachen: Frauen 0-14 Jahre

Entwicklung der häufigsten Todesursachen: Frauen 15-44 Jahre

Anhang C.

Tabellen

C.1. altersstandardisierte Sterberaten

Altersstandardisierte Sterberaten für die häufigsten für Todesfälle verantwortlichen Krankheiten gemäß ICD-10 Klassifikation je 100.000 Einwohner (Daten aus Statistisches Amt der EU, 2017).

Hauptdiagnose	Geschlecht	Verstor	bene je 10	00.000 Ein	wohner u	nd Jahr	1995-2014
ICD-10	Gesc	1995	2000	2005	2010	2014	%
Alle Todesursachen	Z	1348,80	1212,80	1119,30	999,90	957,15	-29,04
	M	1750,20	1536,30	1396,20	1251,00	1182,00	-32,46
(Aoo-Y89)	F	1105,80	1005,40	931,70	820,20	795,69	-28,04
Krankheiten des Herz-Kreislaufsystems	Z	748,50	653,70	507,20	433,20	418,07	-44,15
(Ioo-Igg)	M	915,20	781,00	584,40	510,50	492,71	-46,16
(100-199)	F	646,90	569,60	450,60	376,70	362,70	-43,93
Bösartige Neubildungen	Z	310,10	287,80	272,00	255,50	249,28	-19,61
(Coo-C97)	M	428,40	389,60	366,10	336,00	320,71	-25,14
(C00-C97)	F	247,30	230,20	215,60	203,60	202,41	-18,15
Endelwine Emähmines und	Z	31,20	23,10	66,20	52,00	48,70	56,09
Endokrine, Ernährungs- und Stoffwechselkrankheiten (Eoo-E90)	M	32,30	25,60	75,10	59,80	56,22	74,06
Stoffwechseikrafikheiten (E00-E90)	F	29,70	21,10	58,50	44,80	42,07	41,65
Vyankhaitan day Atmunasayana	Z	58,50	66,10	71,30	55,10	46,63	-20,29
Krankheiten der Atmungsorgane	M	96,50	96,60	105,80	79,20	68,91	-28,59
(Joo-J99)	F	40,10	49,80	53,10	40,80	33,68	-16,01
Vorletzungen und Vereiftungen	Z	67,90	60,00	59,80	52,00	2,99	-23,52
Verletzungen und Vergiftungen	M	103,70	91,60	90,70	78,50	3,66	-26,80
(Vo1-Y89)	F	38,50	34,90	35,80	31,20	2,29	-14,86

C.2. Prognose Statistik Austria vs. Szenarien

Anhang C. Tabellen

Jahre	Gesamtbevölkerung	Anteil 0-14 J.	Anteil 15-44 J.	Anteil 45-64 J.	Anteil 65-95+ J.	Sterbefälle
juine	absolut	in %	in %	in %	in %	absolut
2016	8.739.806	14,36	38,45	28,70	18,50	80.669
2017	8.797.498	14,42	38,17	28,81	18,60	81.799
2018	8.846.402	14,46	37,94	28,85	18,75	82.031
2019	8.894.637	14,50	37,75	28,83	18,91	82.349
2020	8.941.643	14,55	37,57	28,77	19,12	82.662
2021	8.987.404	14,59	37,42	28,61	19,38	82.971
2022	9.032.380	14,65	37,28	28,39	19,68	83.323
2023	9.075.947	14,70	37,14	28,16	19,99	83.728
2024	9.117.962	14,75	36,99	27,92	20,34	84.204
2025	9.158.260	14,79	36,81	27,69	20,72	84.747
2026	9.196.871	14,81	36,59	27,46	21,14	85.352
2027	9.233.517	14,83	36,36	27,22	21,59	86.048
2028	9.268.203	14,85	36,14	26,95	22,06	86.791
2029	9.300.802	14,84	35,96	26,67	22,53	87.571
2030	9.331.401	14,82	35,79	26,39	23,00	88.334
2031	9.360.164	14,79	35,64	26,13	23,44	89.080
2032	9.387.003	14,74	35,51	25,89	23,86	89.767
2033	9.412.437	14,67	35,38	25,67	24,28	90.388
2034	9.436.988	14,60	35,25	25,48	24,67	90.970
2035	9.460.827	14,53	35,12	25,35	25,01	91.513
2036	9.483.447	14,45	34,98	25,28	25,29	92.023
2037	9.504.812	14,38	34,85	25,24	25,53	92.578
2038	9.524.957	14,30	34,72	25,24	25,73	93.359
2039	9.543.767	14,24	34,61	25,26	25,89	94.020
2040	9.561.947	14,17	34,51	25,27	26,04	94.602
2041	9.579.520	14,11	34,42	25,30	26,17	95.176
2042	9.596.466	14,06	34,34	25,34	26,26	95.933
2043	9.612.736	14,02	34,27	25,35	26,36	96.819
2044	9.628.293	13,98	34,22	25,34	26,46	97.633
2045	9.643.039	13,95	34,18	25,29	26,58	98.762
2046	9.656.807	13,93	34,15	25,19	26,73	100.033
2047	9.669.598	13,92	34,12	25,08	26,88	101.212
2048	9.681.483	13,92	34,08	24,98	27,02	102.337
2049	9.692.525	13,92	34,05	24,88	27,14	103.454

Tabelle 34.: Bevölkerungsvorausberechnung Statistik Austria - Hauptvariante (Daten aus: Statistik Austria, 2016a)

ı	_ မ်	ı											Δ	۱n	ha	n٤	g (Ξ.	T	ab	el	lei	n													1
Sterbefälle	Abweichung	% ui	3,51	3,63	4,82	5,94	96′9	7,95	9,13	10,22	11,17	12,11	12,91	13,54	14,18	14,78	15,34	15,82	16,30	16,83	17,37	17,71	17,97	18,12	18,06	18,25	18,54	18,99	19,43	19,70	19,98	19,98	19,86	19,80	19,76	19,67
Ster	Modell	absolut	83.605	84.879	86.188	87.545	88.848	90.138	91.697	93.264	94.793	96.425	98.007	99.523	101.132	102.756	104.340	105.817	107.245	108.673	110.099	111.206	112.182	113.066	113.933	115.011	116.137	117.485	119.065	120.571	122.005	123.416	124.816	126.195	127.543	128.791
Anteil 65-95+ Jahre	Abweichung	, ui	-0,05	-0,11	-0,17	-0,24	-0,33	-0,44	-0,51	09'0-	02'0-	-0,81	-0,92	-1,03	-1,14	-1,25	-1,35	-1,46	-1,57	-1,68	-1,78	-1,87	-1,98	-2,08	-2,16	-2,28	-2,38	-2,48	-2,60	-2,72	-2,84	-2,99	-3,12	-3,24	-3,35	-3,46
Anteil	Modell	% ui	18,45	18,50	18,58	18,67	18,78	18,94	19,17	19,40	19,63	16,61	20,22	20,56	20,91	21,28	21,64	21,98	22,30	22,60	22,89	23,14	23,31	23,46	23,57	23,62	23,66	23,68	23,67	23,64	23,61	23,59	23,61	23,64	23,67	23,68
Anteil 45-64 J.	Abweichung	in %	90'0-	-0,04	-0,01	-0,01	0,02	80′0	0,10	0,12	0,15	0,16	0,19	0,23	0,28	0,32	96'0	0,40	0,45	0,50	0,55	0,58	69′0	69′0	0,74	0,82	68'0	0,94	1,00	1,05	1,12	1,18	1,25	1,28	1,32	1,34
Ante	Modell	, ui	28,63	28,78	28,84	28,82	28,79	28,69	28,49	28,28	28,07	27,84	22,65	27,45	27,24	56,98	26,75	26,53	26,34	26,17	26,03	25,93	25,91	25,93	25,98	26,08	26,16	26,24	26,33	26,41	26,46	26,47	26,44	26,36	26,29	26,23
Anteil 15-44 J.	Abweichung	, ui	0,15	0,19	0,23	0,28	0,32	0,34	0,37	66,0	0,44	0,48	0,54	0,57	09'0	0,61	99′0	0,72	92'0	0,81	98′0	0,91	0,95	1,00	1,03	1,06	1,09	1,14	1,18	1,23	1,29	1,35	1,40	1,46	1,50	1,56
Ante	Modell	, ui	38,60	38,36	38,17	38,03	37,89	32,76	32,65	37,54	37,43	37,29	37,13	36,93	36,74	36,56	36,45	36,36	36,27	36,19	36,11	36,02	35,93	35,84	32,76	35,67	35,61	35,56	35,52	35,51	35,51	35,53	35,54	35,57	35,58	35,61
Anteil 0-14 J.	Abweichung	" ui	-0,04	-0,05	-0,05	-0,02	-0,01	0,02	0,04	60'0	0,12	0,17	0,20	0,23	0,27	0,32	0,33	0,34	0,35	96'0	0,38	0,38	0,39	66'0	66'0	66'0	0,40	0,41	0,42	0,43	0,44	0,46	0,48	0,50	0,53	0,56
Ant	Modell	" ui	14,32	14,37	14,41	14,48	14,54	14,61	14,69	14,79	14,87	14,95	15,01	15,06	15,11	15,17	15,16	15,13	15,09	15,03	14,98	14,91	14,84	14,77	14,70	14,63	14,57	14,52	14,48	14,44	14,42	14,41	14,41	14,43	14,45	14,48
Gesamtbevölkerung	Abweichung	m %	806,0-	-0,105	0,156	0,376	0,563	0,715	0,836	0,942	1,025	1,096	1,152	1,197	1,247	1,286	1,323	1,348	1,361	1,370	1,376	1,371	1,354	1,338	1,314	1,294	1,276	1,252	1,221	1,183	1,139	1,090	1,039	6660	0,945	0,893
Gesamtk	Modell	absolut	8.712.963	8.788.260	8.860.228	8.928.238	8.992.226	9.052.149	9.108.503	9.162.293	9.212.397	9.259.711	9.304.040	9.345.339	9.385.221	9.421.968	9.456.552	9.488.040	9.516.559	9.543.222	9.568.651	9.592.339	9.613.643	9.633.749	9.651.816	9.668.918	9.685.497	9.700.950	9.715.121	9.727.829	9.739.195	9.749.312	9.758.241	6.766.599	9.773.805	9.779.874
	Jahr		2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049

Tabelle 35.: Szenario 1 (konstante Raten) vs. Bevölkerungsprognose Statistik Austria (Daten zur Berechnung aus Statistik Austria, 2016a und Ausgabedateien des Modells)

	_ <u>6</u> 0.	ı	I										A	٩n	ha	n	g (C.	٦	Tal	эe	lle	n													ı
Sterbefälle	Abweichung	% ui	-7,11	-9,65	-11,06	-12,61	-14,16	-15,48	-16,48	-17,28	-17,56	-17,56	-17,36	-16,89	-16,17	-15,12	-13,86	-12,60	-11,23	84′6-	-8,49	-6,71	-5,63	-4,98	-4,88	-4,38	-3,36	-2,89	-1,75	-0,34	0,64	66'0	1,22	1,63	2,43	3,29
Ster	Modell	absolut	75 316	74 602	73 863	73 130	72 406	71 850	71 535	71 394		72 091	72 728	73 612	74 710	76 072	77 584	79 113	80 701	82 335	83 851	85 756	87 121	88 187	89 015	90 073	91 530	92 501	94 286	96 495	98 258	99 750	101 271	102 888	104 881	106 974
Anteil 65-95+ Jahre	Abweichung	% ui	70,0-	40'0-	90′0-	-0,05	-0,04	-0,03	0,02	20'0	0,11	0,15	0,20	0,25	0,29	0,35	0,41	0,46	0,51	0,55	0,59	99′0	69′0	0,73	0,78	0%'0	0,84	0,87	68'0	0,91	0,91	06'0	06'0	06'0	0,92	0,93
Anteil	Modell	% ui	18,42	18,53	18,69	18,87	19,08	19,35	19,70	20,06	20,45	20,87	21,34	21,84	22,35	22,88	23,40	23,90	24,38	24,83	25,27	25,66	25,98	26,26	26,51	26,70	26,88	27,04	27,16	27,27	27,37	27,48	27,63	27,78	27,94	28,07
Anteil 45-64 J.	Abweichung	% ui	90'0-	-0,04	-0,04	-0,05	-0,04	-0,01	-0,02	-0,04	-0,04	-0,07	80,0-	60'0-	80′0-	80′0-	80′0-	80,0-	-0,07	90'0-	-0,05	90'0-	-0,05	-0,03	-0,02	0,02	0,05	0,05	20'0	80,0	0,11	0,13	0,16	0,16	0,16	0,15
Antei	Modell	% ui	28,64	28,77	28,81	28,78	28,73	28,60	28,37	28,12	27,88	27,61	27,38	27,13	26,88	26,59	26,31	26,05	25,82	25,61	25,43	25,29	25,23	25,21	25,22	25,28	25,32	25,35	25,40	25,44	25,45	25,42	25,35	25,24	25,13	25,03
Anteil 15-44 J.	Abweichung	% ui	0,16	0,16	0,17	0,16	0,15	0,11	20'0	600	-0,01	-0,04	-0,07	-0,12	-0,18	-0,25	-0,29	-0,31	-0,35	-0,38	-0,41	-0,44	-0,47	-0,49	-0,53	-0,56	-0,60	-0,62	-0,65	-0,67	-0,68	-0,68	-0,70	-0,70	-0,72	-0,73
Ante	Modell	% ui	38,61	38,33	38,11	37,91	37,72	37,53	37,35	37,17	36,98	36,77	36,52	36,24	35,97	35,71	35,51	35,33	35,16	35,00	34,84	34,68	34,51	34,35	34,20	34,05	33,91	33,80	33,69	33,61	33,54	33,50	33,45	33,41	33,36	33,33
Anteil 0-14 J.	Abweichung	% ui	-0,04	90'0-	-o'o <u>-</u>	-0,07	-0,07	-0,07	-o'o <u>-</u>	-0,05	-0,05	-0,04	-0,04	-0,04	-0,04	-0,02	-0,04	-0,07	60'0-	-0,11	-0,13	-0,15	-0,17	-0,20	-0,23	-0,26	-0,28	-0,30	-0,31	-0,33	-0,34	-0,35	-0,36	-0,36	-0,35	-0,36
Ante	Modell	% ui	14,32	14,36	14,39	14,44	14,47	14,52	14,58	14,65	14,69	14,75	14,77	14,79	14,80	14,82	14,78	14,72	14,64	14,56	14,47	14,37	14,28	14,18	14,08	13,98	13,89	13,82	13,75	13,69	13,64	13,60	13,57	13,56	13,56	13,57
Gesamtbevölkerung	Abweichung	, ni %	-0,34	-0,04	0,34	69'0	1,03	1,36	1,67	1,98	2,28	2,58	2,88	3,17	3,46	3,75	4,03	4,30	4,56	4,81	5,05	5,27	5,48	2,68	5,87	90′9	6,25	6,43	6,61	6,77	6,93	20'2	7,22	2,36	7,50	2,63
Gesamtb	Modell	absolut	8 710 438	8 794 028	8 876 247	8 956 537	9 034 847	9 111 080	9 185 539	9 259 269	9 330 955	9 401 071	9 469 300	9 535 387	9 600 617	9 663 157	9 723 713	9 781 166	9 835 529	082 288 6	9 938 535	9 987 372	10 032 957	10 076 871	10 118 502	10 159 136	10 199 200	10 237 742	10 275 324	10 311 174	10 344 915	10 377 025	10 407 802	10 437 829	10 466 442	10 493 219
	Jahr		2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		2033			2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049

Tabelle 36.: Szenario 2 (lineare Regression) vs. Bevölkerungsprognose Statistik Austria (Daten zur Berechnung aus Statistik Austria, 2016a und Ausgabedateien des Modells)

l	_g _L	I	l										A	۱n	ha	n٤	g (<u>.</u>	T	ab	el	lei	n													ı
Sterbefälle	Abweichung	% ui	7,40	7,21	8,02	8,79	09′6	10,49	11,43	12,27	13,07	13,79	14,47	15,05	15,62	16,18	16,74	17,19	17,59	17,88	18,13	18,44	18,66	18,86	18,92	19,17	19,58	19,97	20,27	20,54	20,80	20,79	20,67	20,60	20,52	20,35
Ster	Modell	absolut	87.113	88.153	89.181	90.285	91.441	95.695	94.073	95.442	96.864	98.308	682.66	101.290	102.859	104.470	106.091	107.566	108.927	110.070	111.118	112.204	113.136	114.092	115.145	116.320	117.639	118.929	120.328	121.847	123.268	124.691	126.102	127.467	128.752	129.888
Anteil 65-95+ Jahre	Abweichung	in %	-0,11	-0,19	-0,27	-0,36	-0,46	-0,58	-0,67	-0,77	88′0-	66'0-	-1,11	-1,23	-1,35	-1,47	-1,58	-1,69	-1,80	-1,93	-2,04	-2,13	-2,23	-2,34	-2,43	-2,54	-2,65	-2,76	-2,88	-3,01	-3,14	-3,29	-3,43	-3,56	-3,67	-3,79
Anteil (Modell	in %	18,39	18,42	18,48	18,55	18,65	18,80	19,01	19,23	19,46	19,73	20,02	20,36	20,70	21,07	21,42	21,75	22,06	22,35	22,64	22,88	23,05	23,20	23,30	23,35	23,39	23,40	23,38	23,35	23,31	23,29	23,30	23,32	23,35	23,35
Anteil 45-64 J.	Abweichung	in %	-0,05	-0,01	0,01	0,02	90′0	0,12	0,14	0,16	0,19	0,21	0,24	0,28	0,34	0,38	0,42	0,47	0,52	0,58	69′0	99′0	0,72	92′0	0,83	0,92	66'0	1,04	1,10	1,17	1,23	1,30	1,37	1,40	1,44	1,47
Antei	Modell	in %	28,65	28,80	28,86	28,86	28,83	28,73	28,53	28,32	28,12	27,89	27,70	27,50	27,29	27,05	26,81	26,60	26,41	26,25	26,11	26,01	26,00	26,02	26,08	26,18	26,26	26,34	26,44	26,52	26,57	26,59	26,56	26,48	26,42	26,35
Anteil 15-44 J.	Abweichung	in %	0,19	0,24	0,30	96'0	0,41	0,44	0,48	0,51	0,56	0,62	89′0	0,72	0,75	92'0	0,81	0,87	0,92	26'0	1,02	1,07	1,11	1,15	1,19	1,22	1,25	1,30	1,34	1,40	1,45	1,51	1,57	1,63	1,68	1,74
Ante	Modell	, ui	38,64	38,41	38,24	38,10	32,98	32,86	32,76	32,66	32,56	37,43	37,27	32,08	36,89	36,72	36,60	36,52	36,43	36,35	36,27	36,18	36,09	36,00	35,91	35,83	32,76	35,72	35,68	35,67	35,67	35,70	35,71	35,74	32,76	35,79
Anteil 0-14 J.	Abweichung	in %	-0,04	-0,04	-0,04	-0,02	00'0	0,02	0,05	60'0	0,12	0,17	0,20	0,23	0,26	0,32	0,34	0,34	96'0	0,37	0,39	0,40	0,41	0,41	0,41	0,41	0,41	0,42	0,44	0,45	0,46	0,48	0,50	0,53	0,56	0,58
Ant	Modell	% ui	14,32	14,38	14,42	14,49	14,54	14,62	14,70	14,79	14,87	14,96	15,01	15,06	15,11	15,17	15,16	15,13	15,10	15,05	14,99	14,93	14,86	14,78	14,71	14,64	14,59	14,54	14,50	14,46	14,44	14,43	14,43	14,45	14,48	14,51
Gesamtbevölkerung	Abweichung	in %	-0,43	-0,27	90'0-	0,12	0,27	0,38	0,46	0,54	0,59	69′0	99′0	89′0	04,70	0,71	0,73	0,73	0,71	02'0	89′0	99′0	69′0	09′0	95'0	0,52	0,48	0,43	0,38	0,33	0,26	0,19	0,13	90'0	-0,01	80'0-
Gesamtk	Modell	absolut	8.702.773	8.773.517	8.841.184	8.905.171	8.965.409	9.021.738	9.074.556	9.124.997	696.121.6	9.216.268	9.257.767	9.296.370	9.333.575	9.367.720	9.399.737	9.428.634	9.454.569	9.478.741	9.501.992	9.523.906	9.543.467	9.561.881	9.578.189	9.593.382	6.607.959	9.621.258	9.633.358	9.644.150	9.653.615	9.661.852	9.668.902	9.675.394	9.680.737	9.685.046
	Jahr		2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049

Tabelle 37:: Szenario 3 (Mittelwerte) vs. Bevölkerungsprognose Statistik Austria (Daten zur Berechnung aus Statistik Austria, 2016a und Ausgabedateien des Modells)