
Philipp M. Wagner, BSc

Uniform cubic B-spline fitting

in a class A modeling environment

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Priv.-Doz. Dipl.-Inform. Dr.-Ing. Sven Havemann

Institute of Computer Graphics and Knowledge Visualization

 Master of Science

Supervisor

Faculty of Computer Science and Biomedical Engineering

Graz, May 2018

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

08.05.2018

philipp m . wagner

U N I F O R M C U B I C B - S P L I N E F I T T I N G I N A C L A S S A
M O D E L I N G E N V I R O N M E N T

U N I F O R M C U B I C B - S P L I N E F I T T I N G I N A C L A S S A
M O D E L I N G E N V I R O N M E N T

Philipp M. Wagner, BSc

Diploma Thesis

Supervisor:
Priv.-Doz. Dipl.-Inform. Dr.-Ing. Sven Havemann

Institute of Computer Graphics and Knowledge Visualization
Faculty of Computer Science and Biomedical Engineering

Graz University of Technology

May 2018

Philipp M. Wagner: Uniform cubic B-spline fitting in a class A modeling
environment, Diploma Thesis, c© May 2018

A B S T R A C T

B-splines have been a least common denominator in computer aided
geometric design for a very long time, the uniform cubic type being
particularly popular for its simplicity, fast means of evaluation and
inherent C2 continuity. While most of the existing approaches to B-
spline fitting first and foremost concern themselves with the spatial
error of the fit, automotive design in addition puts a strong emphasis
on curvature quality, which directly relates to the aesthetic quality
of the final product’s shape. In German automotive design the term
class A describes shapes of the highest quality, such as the outer body
of a car. B-splines may be described either by a set of control points,
or by the projections of these control points to the limit shape of
the spline under subdivision, namely limit points or Greville points.
In this work we present a novel approach to distribute limit points
over a discrete input curve, in order to obtain an initial solution for
a B-spline curve which can further be optimized by constrained least
squares techniques. Our approach is driven by the local curvature
estimates of the input data and an error term, and we show that it ob-
tains strong links to B-spline artifact analysis. Although our approach
performs well, it does not yield shapes of class A quality. Further in-
vestigation shows that B-splines obtain inherent traits which make
them hardly applicable to class A design. These deficiencies result in
unexpected and uncontrollable curvature behavior, and while show-
ing most prominently in the cubic case, they exist on all B-spline
degrees. In response we further discuss the specific demands of class
A design on a design curve, and present a viable alternative to classic
B-spline modeling which is based on clothoid segments. It shows that
such a representation can ease the process of class A design in a very
natural way, due to its superior control over curvature.

vii

The current of the flowing river does not cease, and yet the water is not the
same water as before. The foam that floats on stagnant pools, now

vanishing, now forming, never stays the same for long. So, too, it is with
the people and dwellings of the world.

—
Hōjōki by Kamo no Chōmei

A C K N O W L E D G M E N T S

To all people that bore with me during the course of this work with
Zen-like patience. First and foremost my supervisor and my mum.
Then my fellow students. They always believed that we would have
that Chinese celebration dinner some day.

ix

C O N T E N T S

1 introduction 1

2 basic definitions 9

2.1 Parametric curves 9

2.2 Discrete curves: Polygonal curves 9

2.3 Hausdorff distance 10

2.4 Curvature 12

2.5 Continuity classes 16

2.6 B-splines 17

2.6.1 General B-spline curves 17

2.6.2 Uniformity of B-spline knot vectors 21

2.6.3 Uniform cubic B-spline curves 22

2.6.4 Clamping 23

2.6.5 Bicubic uniform B-spline surface 24

2.6.6 Subdivision and limit points 25

2.6.7 Obtaining control points from limit points 27

3 related work 31

4 uniform cubic b-spline fitting in a class a mod-
eling environment 39

4.1 Problem definition 39

4.2 Input data analysis 44

4.3 Input data preprocessing 46

4.3.1 Data normalization 46

4.3.2 Data smoothing 47

4.3.3 Resampling 56

4.4 Curvature calculation from discrete data 58

4.4.1 Method of comparison 58

4.4.2 Signed curvature 59

4.4.3 Curvature from segment angles 59

4.4.4 Curvature from circumcircle 63

4.4.5 Robust three point method 64

4.4.6 Curvature from integral invariants 65

4.4.7 Curvature estimation using line integrals 71

4.5 Smooth curvature estimation by adaptive curve resam-
pling 76

4.6 Choosing the right preprocessing method 80

4.7 The required mesh width: A local measure for limit
point spacing 82

4.8 Connection to subdivision artifact analysis 87

4.9 The accumulated mesh width 92

4.10 Limit point distribution 95

4.11 Optimization 102

5 results and further analysis 109

xi

xii contents

5.1 Results 109

5.2 Class A modeling 113

5.3 Further analysis regarding class A behavior 118

5.4 Piecewise Clothoid Curves: An alternative to B-spline
modeling? 120

5.5 Final thoughts & future research 125

i appendix 127

bibliography 129

1
I N T R O D U C T I O N

(a) Clay model. (b) Final product.

Figure 1: From clay model to automobile.

This thesis evolved as part of the SurfaceReconstruction software
framework, a project cooperation between CGV1 and Volkswagen
AG2. In the automotive industry it is often desired to convert physi-
cal objects to digital 3D models. Such physical objects could be proto-
type designs of a car body made of clay (figure 1), or final car parts
already in production. A laser scanner is most commonly used for
digitization of such objects, generating a point cloud that is further
converted into a 3D triangle mesh consisting of up to several millions
of triangles. A detail of such a triangle mesh is shown in figure 2.

When being used as input to further processing or as a final data
representation for storage, triangle meshes show some severe draw-
backs.

- Regularity: Scanned objects, such as hand-crafted clay models,
usually do not obtain the high surface quality that needs to be
achieved for the final digital model (figure 2b). The laser scan-
ner might introduce additional irregularities due to its limited
spatial accuracy and irregular sampling (figure 2c). This makes
further processing inevitable.

- Controllability: Manipulation of a triangle mesh is a very te-
dious and time consuming task, since every vertex has to be
manipulated completely independent of its neighborhood. It is
easy to imagine that even with only a few hundred vertices it
is nearly impossible to produce a coherent, smooth and regular

1 CGV: Institute of Computer Graphics and Knowledge Visualization, Graz University
of Technology, http://www.cgv.tugraz.at

2 Volkswagen AG, http://www.volkswagen.de

1

http://www.cgv.tugraz.at
http://www.volkswagen.de

2 introduction

(a) Triangle mesh obtained from a scan.

(b) The highlight clearly shows the irregulari-
ties in the triangle mesh.

(c) Inhomogeneous sampling of
the laser scanner.

Figure 2: Triangle mesh details.

result when manually editing a certain mesh region. Also au-
tomation of modeling processes becomes very involved. It is a
very complex spatial representation and thus hard to control.

- Disk space: Triangle meshes devour much disk space, since all
vertex positions and triangle indices have to be stored.

- Refinement: Changing mesh resolution (e.g. needed for level of
detail calculation) is computationally intensive. Further, a trian-
gle mesh is only defined at discrete positions and new positions
on the surface can only be estimated.

Therefore usually a parametric surface representation is desired,
which is defined and can be manipulated via a small set of control
points. The analytic surface definition of such a parametric represen-
tation changes implicitly if one of the control points is varied, thus by
moving only a few points in space whole parts of a 3D model can be
edited without loosing consistency and smoothness. This makes mod-
eling much more efficient and convenient, and enables the creation of
high quality surfaces. A surface now can be defined uniquely by the
control points, which reduces the amount of data needed for storage
drastically. As for the last of the above-mentioned drawbacks, since
being defined analytically, the surface can be evaluated at runtime in

introduction 3

(a) The cube represents the control
mesh of the bronze colored model.

(b) The shape can be manipulated by
moving one of the control meshes’
vertices.

Figure 3: Manipulation of a 3D shape through control points.

as much detail as needed. This often can be done using very efficient
iterative schemes, making resolution changes computationally cheap.
Figure 3 shows how a 3D shape can be edited via its control points.
As we can see, the control points form a sparse mesh on their own,
which we will refer to as the control mesh of the parametric surface.

Figure 4: Curve manipulation using control points. The curve remains con-
sistent and smooth.

Similar to surfaces, we can express many parametric curves via con-
trol points. Figure 4 shows the manipulation of a curve through its
control polygon. Note how whole regions of the curve can be manipu-
lated by moving a single point, without loosing its smoothness and
consistency.

Parametric curves often serve as a basis to generate their parametric
surface equivalent, uniting curves and surfaces in a common mathe-
matical framework. This property makes parametric curves interest-

4 introduction

ing to be studied before generalizing problems to the surface case.

Subsequently we will utilize the term geometric primitive for our
parametric data representation, whenever it is necessary to transcend
dimensional categories such as »curve« and »surface« or specific types
of parametric curves or surfaces in order to discuss common prob-
lems and properties.

In this work we will concern ourselves with the well-known prob-
lem of fitting a parametric design curve to discrete data. This can be
seen as a first step towards the even more complicated task of para-
metric surface fitting. A classic parametric curve used for data fitting
and modeling is the uniform cubic B-spline curve. B-splines have been
a least common denominator in computer aided geometric design
(CAGD) for a very long time, the uniform cubic type being particu-
larly popular for its simplicity, fast means of evaluation and inherent
C2 continuity. The uniform cubic B-spline is thus part of most major
modeling software packages.

Instead of by its control points a B-spline curve may also be defined
by so-called limit points (also called Greville points), which are inter-
polated by the generated spline and correspond uniquely to its set
of control points. For each limit point a corresponding control point
can be obtained and vice versa. Limit points and control points thus
are equivalent representations of the B-spline, and we can change be-
tween these representations without altering the curve.

B-splines and other basic definitions and mathematical foundations
for our work will be treated in chapter 2.

(a) A good configuration? (b) Moving one limit point of a cubic
B-spline curve influences all B-spline
segments.

Figure 5: Fitting a cubic B-spline to a stroke curve using limit point place-
ment.

Given discrete data, it is a very important and interesting question
where to place the control points of a B-spline curve in order to ob-
tain a high quality fit to the data. This still is an unsolved problem
in CAGD, and the broad range of solutions suggested to answer it
(genetic algorithms, neural networks, etc.) shows the complexity of

introduction 5

the task and how much we still lack basic understanding for it.

But why is this task is so challenging? One reason is rooted in
the interdependency of control points, limit points and spline seg-
ments. Moving one control point will influence a certain number of
B-spline segments around it, the number depending on the degree
of the polynomial B-spline curve (four in the cubic case). Instead
of control points we can also place limit points, which has both ad-
vantages and disadvantages, as we will discuss later. Moving a limit
point in contrast influences all segments, each limit point depending
on several control points. In the uniform cubic case a limit point for
instance is a linear combination of three consecutive control points,
which causes a chain of propagation over the whole curve, the effect
dampening with distance to the moved limit point (see figure 5).

This propagation over multiple nearby segments implies that from
an optimization point of view we potentially have to deal with many
local minima, and from a model point of view with quite unintuitive
behavior.

An important question besides where to place the control points is
how many of them to spend in a certain region of the data in order
to obtain a certain quality of the fit. This also attributes to sparseness
of the control polygon or mesh, which is much desired, as we will
explain later on.

The reproduction of the intended curvature profile with the design
primitive - or the generation of an even fairer curvature profile - is
another crucial problem of high quality fitting. An important notion
in this context is the one of class A design, describing surfaces in
automotive design that meet the highest quality standards (e.g. the
body of a car). While not being defined consistently throughout the
industry, it is common opinion that this notion is strongly related to
curvature quality. Flaws in curvature can easily be spotted in the re-
flections of the final product, thus curvature quality is a central factor
in automotive design. This also means that a good distance error of
the fit alone cannot ensure acceptable shape quality.

Finally, an important aspect of high quality design is the quality of
the control mesh itself. It has its own design language and provides
new means of communication as an abstraction of shape. Professional
surface engineers in the automotive industry are able to infer quality
of shape from directly judging the the control mesh itself. It is for
instance understood that regularity and sparsity of the control mesh
most likely will lead to fairer shapes.

6 introduction

These challenges apply to the curve and surface case alike.

Concentrating on the 2D (or planar) case, the problem we want to
solve in this work thus can be summarized as: Given sampled curve
data, place the control points of a uniform cubic B-spline curve such that
the curvature of the data is reproduced in a fair way. Additionally we
demand regularity and sparsity of the control polygon, and that we
have means to influence the accuracy of the fit.

There are many existing approaches to uniform cubic B-spline fit-
ting that focus on minimizing the distance error of the fit, but to our
best knowledge none of them gives proper attention to the impor-
tant aspects of correct curvature reproduction and curvature quality
(chapter 3).

Exploiting the duality of control and limit points, we make use
of a method which has its complement in B-spline artifact analysis
and provides us with a measure for required limit point spacing at a
certain position along the discrete curve. The obtained spacing both
respects a certain distance error tolerance and the local curvature esti-
mate of the discrete data. Using this local curvature-driven approach
an initial set of B-spline limit points can be retrieved by consolidat-
ing all required limit point spacings along the discrete curve. The
limit point distribution is regular and its density depends both on
the demanded accuracy and the desired degree of regularity. The ini-
tial limit points are further optimized globally by using robust con-
strained least squares methods directly on the limit positions. The
control points can always be retrieved from the limit points by mak-
ing use of an iterative procedure.

The algorithm will be described in full detail in chapter 4. In order
to obtain a smooth data basis to interpolate and a reliable curvature
profile we can base our measurements on, we will also inspect and
compare various methods for discrete data smoothing and robust cur-
vature estimation.

Analysis (section 5.1) shows an interesting result, namely that class
A shapes can not be obtained easily with uniform cubic B-splines.
This fundamental problem is rooted in the inherent behavior of the
B-spline itself - to be precise in the curvature it generates and the
difficulty to control it - which makes large scale modeling using cu-
bic B-splines very difficult. Figure 6a clearly emphasizes this. The C2

continuity of the uniform cubic B-spline leads to continuous but not
necessarily smooth curvature, which shows in the strong bends. Fur-
ther, the curvature extrema that are introduced between the segments
cannot be hidden (or even controlled) by regularity of the control
polygon alone. B-spline artifact analysis tells us that the shown cur-
vature artifacts are always present, but can be reduced by spending

introduction 7

(a) B-splines introduce unwanted cur-
vature extrema between their seg-
ments, which makes them hard to
control curvature-wise.

(b) PCC curves as an alternative
to classic spline modeling.
Clothoidal curves always yield
linear curvature change between
their segments.

Figure 6: Are B-spline curves suited for class A design?

more limit points or leveraging the B-spline degree, both options not
necessarily being desirable.

These findings spawn some interesting questions. We will subse-
quently discuss what properties a parametric class A surface or curve
should obtain in our opinion, and what challenges class A design
could pose to automated modeling (section 5.2). We will further dis-
cuss why controlling curvature variation and keeping it to a mini-
mum for us is the key to class A design.

Thus, despite generating regular limit point distributions and re-
producing the discrete input curvature quite accurately, the presented
approach can not ensure shapes which are desired in the high quality
design sector (section 5.3).

In order to emphasize our findings, we we will present an alter-
native to B-spline modeling which makes use of piecewise clothoid
curves (PCCs) in section 5.4. We will show how this change of paradigm
could make modeling more intuitive and reliable in terms of class A
quality (see figure 6b).

Final thoughts will be given in section 5.5.

2
B A S I C D E F I N I T I O N S

In this chapter we will discuss some basic definitions that we will
need later on.

2.1 parametric curves

Most curves used in computer aided design can be expressed as para-
metric curves.

Definition 1 (Parametric curve) Let the interval I ⊂ R be called the parameter interval.
The function

c : I→ Rn

is called a parametric curve in Rn.

In this work we are interested in parametric 2D curves, which for
each parameter value t ∈ I yield a curve position c(t) ∈ R2, or para-
metric space curves c(t) ∈ R3.

A parametric curve is said to have an arc-length parametrization, if
the arc-length between two curve positions p(s0) and p(s1) equals
|s1 − s0|.

2.2 discrete curves : polygonal curves

Rather than having a parametric representation, our input data will
consist of discrete samples.

A polygonal curve in Rn is a discrete curve representation defined
by an ordered sequence of spatial positions.

P : p0, p1, . . . , pm−1, pm m > 1, pi ∈ Rn.

Each pair of consecutive points forms a line segment, its length is
given by

di = ‖pi+1 − pi‖ i = 0, . . . ,m− 1.

A polygonal curve is sometimes also called piecewise linear curve.

Such a discrete representation can be obtained in various ways. We
can evaluate a parametric curve c(t) at several parameter values t

9

10 basic definitions

(a) Part of a polygonal curve consisting of sampled posi-
tions of an analytical curve.

(b) Curve samples taken from a triangle mesh forming a
polygonal curve.

Figure 7: Retrieval of polygonal curves.

(figure 7a), or sample a surface along an arbitrary path (figure 7b). In
our case we intersect a triangle mesh with a plane (which is especially
challenging, as explained in section 4.2).

Throughout this text the term discrete curve will be synonymous
with »represented as a polygonal curve«.

2.3 hausdorff distance

In order to evaluate the quality of our data fit, some error metric has
to be chosen to measure the distance between the resulting paramet-
ric curve and the discrete input curve.

The one-sided Hausdorff distance from X to Y can be defined as

Definition 2 (One-sided Hausdorff distance)

dH1(X, Y) = sup
x∈X

inf
y∈Y

d(x,y),

where X and Y are subsets of a metric space M, and d(x,y) is a
distance metric.

Let now X and Y be the parametric curves p(t) and q(r), M the
Euclidean space of dimension two or three and d(x, y) = ||x − y||

2.3 hausdorff distance 11

(a) Minimum distances to the blue curve for various posi-
tions on the red curve. The supremum of these mini-
mum distances over the whole parameter range equals
the one-sided Hausdorff distance dH1 (shown here in
bold red).

(b) One-sided Hausdorff distance
dH1, p(t) to q(r).

(c) One-sided Hausdorff distance
dH1, q(r) to p(t).

Figure 8: One-sided Hausdorff distance between parametric curves: The
maximum distance which is needed in order for all points of a
curve to reach a point on the other curve.

the Euclidean distance between two curve points. By computing the
minimum Euclidean distance to q(r) for each parameter t of p(t)
and choosing the supremum, we can obtain the one-sided Hausdorff
distance between parametric curves. This is illustrated in figure 8a.
Switching the direction of measurement can result in quite different
results, as illustrated in figures 8bc.

Figure 9: Hausdorff distance dH between two parametric curves p(t) and
q(r). The Hausdorff distance is just the maximum of the one-sided
Hausdorff distances dH1(p, q) and dH1(q, p).

Having defined the one-sided Hausdorff distance, the Hausdorff dis-
tance between X and Y can be computed as

12 basic definitions

Definition 3 (Hausdorff distance)

dH(X, Y) = max

{
sup
x∈X

inf
y∈Y

d(x,y) , sup
y∈Y

inf
x∈X

d(x,y)

}
,

which is the maximum of dH1(X, Y) and dH1(Y,X). The Hausdorff
distance between two parametric curves is illustrated in figure 9.

If the two curves are represented as polygonal curves P and Q, we
can express their discrete Hausdorff distance as follows.

Definition 4 (Hausdorff distance between polygonal curves)

dH(P,Q) = max

{
max
p∈P

min
q∈Q

||p − q|| , max
q∈Q

min
p∈P

||q − p||
}

Figure 10: Ensuring a maximum error bound using Hausdorff distance

The Hausdorff distance assures a true maximum error bound. Pro-
vided a maximum distance threshold dmax, a tube can be imag-
ined around the input curve, inside which the constructed parametric
curve has to lie (see figure 10). It is thus our measure of choice to ex-
press the final spatial error of the parametric data fit. Remember that
the error bound also has to hold vice versa. The input curve equally
has to lie inside a restricted tube of width dmax around the fitted
parametric curve.

2.4 curvature

Although the distance error between the design curve and the dis-
crete data is an important measure, it cannot really capture the visual
quality of the result. We thus need an additional measure of quality
in order to ensure visually pleasing results.

Curvature is maybe the most important and common descriptor of
shape quality. Basically it does exactly what its name tells us, describ-
ing the »curviness« of a geometric object. But the so called curvature
profile - curvature plotted over the parameter space - is above all an
enormously useful and intuitive tool to analyze the behavior of a
shape and to judge its aesthetic qualities. Flaws which may not even
be visible to the eye when inspecting the shape itself, become very

2.4 curvature 13

Figure 11: Shape analysis using a curvature profile. black: Inflection points. blue,
green: Curvature extrema, regions where the shape bends strongly.
orange: Transition behavior between curvature extrema. red: Spon-
taneous variation. The orange section between the two extrema
is smooth and strictly monotonic. This is the behavior one would
expect from a high quality shape. The high frequency red section
may signal a flaw in the model. Except for the red section, this
profile may be called »fair«, with its few clearly defined extrema
and pleasant transitions. One can also see that the curve at least
has to be of continuity class G3, since it joins smoothly at any
curve position.

evident and exposed in the curvature profile. Every feature on the
shape can be identified easily as a curvature extremum and we can
assess amplitude and frequency of such features at a glance. Figure
11 illustrates how a shape can be analyzed by consulting its curvature
profile.

To us curvature is of the utmost importance out of many reasons.

- Curvature directly relates to the reflections on a surface and
thus to surface quality and aesthetics of the final consumer
product. The human visual perception reacts very sensitive to
flaws in surface reflections, thus the reflections on a high qual-
ity surface are investigated thoroughly in automotive design.
So-called reflection lines can be created on a physical object by
projecting multiple parallel light sources onto it, or for a com-
puter model by simulating this process in software. The created
pattern of stripes makes it easy to spot flaws such as curvature
discontinuities on the surface.

- Controlling curvature and its variation for us is the key to high
quality modeling.

- Accordingly, reproducing the intended curvature trend of the
input data and ensuring a certain curvature quality for us is the
key to high quality parametric fitting and automated modeling.

14 basic definitions

- In order to achieve these goals, we are basing our measurements
on the curvature values of the discrete data. We thus rely on
accurate curvature estimation.

Since curvature and its quality are so fundamental to our work, we
will quickly review some important definitions for it. They can be
found e.g. in [8]. In a later chapter we will deal with the problem of
robustly estimating curvature from discrete and noisy data, and dis-
cuss the topic of curvature quality in more detail.

The curvature of an arc-length parametrized curve just equals its
second derivative.

Definition 5 (Curvature of an arc-length parametrized curve)

κ = ‖k ′′(s)‖ =
∥∥∥∥d2k(s)

ds2

∥∥∥∥ =

∥∥∥∥dT(s)
ds

∥∥∥∥ .

Thus we can also interpret curvature as rotation speed of the unit
normal vector T.

In the general case, the curvature of a planar curve k(t) = (x(t),y(t))
is defined as

Definition 6 (Curvature of a planar curve)

κ =
x ′y ′′ − x ′′y ′

(x ′2 + y ′2)3/2
.

The curvature of a graph y = f(x) is defined as

Definition 7 (Curvature of a graph)

κ =
f ′′

(1+ f ′2)3/2
.

The curvature of a general space curve k(t) = (x(t),y(t), z(t)) is
defined as

Definition 8 (Curvature of a space curve)

κ =
‖k ′ × k ′′‖
(k ′k ′)3/2

.

Only absolute curvature values are returned, so the sign has to be
retrieved some other way if needed, e.g. by fixing some convention of
sign externally. In the two-dimensional case the sign is fixed by the
curve’s parametrization.

The curvature of space curves is measured in its Frenet frame, which
is spanned by three vectors at each curve point p.

2.4 curvature 15

Figure 12: The Frenet frame at an arbitrary position of a curve is defined by
the normal N, the tangent T and the binormal B. The curvature
describes how fast N and T rotate around B.

- The unit tangent vector T(p)

- The unit normal vector N(p)

- Their cross-product, the so-called binormal vector B(p)

The three vectors form an orthonormal basis. Similar to the planar
case, curvature measures how fast the tangent vector rotates in the
plane defined by the binormal vector. Figure 12 visualizes the Frenet
frame of a curve.

Figure 13: Constructing the circle of curvature: As q and r move closer to p,
their circumscribed circle more and more resembles the circle of
curvature.

The radius of curvature is in all cases given by

r =
1

|κ|

and defines the radius of a special circle, namely the circle of curva-
ture, that is attached to the curve at the point p the curvature value

16 basic definitions

is measured at. At this point the circle and curve share a common
tangent. The circle of curvature can be visualized by choosing a point
p and two neighbors q and r on a parametric curve. Three points
uniquely define a circle, and when q and r move closer to p, in the
limit the three points will define the circle of curvature. This discrete
definition of the circle of curvature is illustrated in figure 13.

The radius of curvature, being just the inverse of the absolute cur-
vature, also leads to a discrete definition of curvature (section 4.4.4).

2.5 continuity classes

(a) Spline curves connected in a C1 man-
ner. The tangents are equal in direc-
tion and magnitude.

(b) Spline curves connected in a G1

manner. The tangents only equal in
direction, but the curves could be
reparametrized to connect in a C1

manner.

Figure 14: Parametric and geometric continuity.

When describing a parametric curve or surface, one important as-
pect is its degree of continuity over the whole parameter space. The
continuity property is also strongly connected to the parametric prim-
itive’s curvature quality.

For univariate functions the continuity class can be defined as fol-
lows.

Definition 9 (Continuity (differentiability) class)

A function f : R → R is said to be of differentiability class Cn if all derivatives
f ′, . . . , fn exist and are continuous.

This concept can be generalized for multivariate functions.

Definition 10 (Continuity (differentiability) class of multivariate functions)

A multivariate function f : Rn → Rm with component functions f1, . . . , fm is said
to be of continuity class Cn if all partial derivatives f ′i, . . . , f

n
i exist and are continuous.

For parametric curves and surface we distinguish two kinds of con-
tinuity. For ease of explanation only curves are treated.

2.6 b-splines 17

Definition 11 (Parametric continuity)

A curve is said to be of continuity class Cn if d
ns
dtn exists and is continuous through-

out the curve.

For an alternative definition, let p be an arbitrary curve point that
splits the curve into two segments. Parametric continuity Cn states
that the first n derivatives of both segments are equal in both direc-
tion and magnitude at the join p. A curve is said to have Cn continuity
if this property holds for every curve point p.

Definition 12 (Geometric continuity)

A curve is said to be of continuity class Gn if it can be reparametrized to have Cn

continuity.

This means that for every join p a local parametrization must exist
which makes the split curve segments join in a Cn fashion at p.

Parametric continuity means continuity also on the parametriza-
tion, while geometric continuity demands continuity just on the ge-
ometry itself. If we watch an object move, parametric continuity will
assure that the object moves smoothly. Geometric continuity in con-
trast only assumes smoothness of the trace the object leaves behind,
and assures that important geometric properties such as slope (G1)
or curvature (G2) vary continuously.

The difference between parametric and geometric continuity is il-
lustrated in figure 14.

High quality geometries used for industrial applications will at
least be of class G2, in order to ensure curvature continuity.

2.6 b-splines

The parametric design curve we will use throughout this work is the
uniform cubic B-spline curve. We will shortly review its most important
properties, for a good basic introduction to B-spline curves we refer
to [18] or [10].

2.6.1 General B-spline curves

B-spline curves are one of the most broadly used design curves in the
field of CAGD. They are a generalization of Bézier curves and them-
selves generalized by the hugely popular NURBS. Usual drawbacks
of Bézier curve design are:

- Moving one control point influences the whole curve, which
makes the design process very painful (no local support).

18 basic definitions

- Adding one more control point also increases the degree of the
curve by one, which results in higher complexity and computa-
tional costs.

- It is difficult to maintain the continuity of several consecutive
Bézier curves when editing their control points.

(a) n = 2, k = (0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0)

(b) n = 3, k = (0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0)

(c) n = 4, k = (0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0)

Figure 15: B-spline curves with varying degree. The higher the degree n, the
more the curve moves away from the control polygon.

B-Spline curves eliminate these drawbacks. They consist of multi-
ple polynomial curve segments, which connect to each other with
endpoint conditions depending on the curve’s degree. Instead of in-
creasing the total degree of the curve by one, adding an additional
control point just results in one more curve segment of the same de-
gree. The individual curve segments are thus much more decoupled
as in the case of Bézier curves. The B-spline polynomials result from
control points that are weighted by the so called B-spline basis func-
tions.

2.6 b-splines 19

Definition 13 (B-spline Basis Functions) Let l = (t0, t1, · · · , tk−1, tk) be a non-
decreasing sequence of numbers, the knot vector, and n the degree of the B-spline curve.
Then the B-spline basis functions can be defined as

N0i (t) = 1[ti,ti+1](t) (1)

Nni (t) =
t− ti

ti+n − ti
Nn−1i (t) +

ti+n+1 − t

ti+n+1 − ti+1
Nn−1i+1 (t) (2)

with 1[x,y] being

1[x,y](t) =

{
1 if t ∈ [x,y]

0 else

For equal knots we define 00 = 0.

The basis functions thus recursively blend together the parametric
borders defined by the knot vector depending on the relative position
of the parameter t.

The general B-spline curve is then defined as follows.

Definition 14 (B-spline curve) Let l = (t0, t1, · · · , tk−1, tk) be a knot vector and P =

(p0, · · · , pk−n−1) a set of control points called control polygon. Then a B-Spline curve of
degree n is defined by

c(t) =

k−n−1∑
0

piNni (t) t ∈ [tn, tk−n], (3)

where n is bounded by 1 6 n 6 k− 1.

Figure 15 shows B-spline curves of various degrees.

There are basically two ways to modify a B-spline curve. Adjusting
the control points is the method of choice to change the curve’s over-
all shape, while adjusting the knots is more of a fine-tuning operation,
which influences the time spent in each segment (figure 16).

Some well-known and important properties of B-splines are stated
below (see e.g. [10]).

- Local support: Nni (t) is zero outside the interval [ti, ti+n+1].
From this follows the important fact that only n+ 1 successive
control points contribute to a single segment or in other words,
that there are n+ 1 overlapping basis functions in each segment.
In a cubic B-spline, each segment is influenced by four control
points. Conversely, each control point influences four segments
of the curve.

20 basic definitions

(a) n = 4, k = (..., 6.0, 7.0, 8.0, ...)

(b) n = 4, k = (..., 6.0, 6.2, 8.0, ...)

(c) n = 4, k = (..., 6.0, 7.8, 8.0, ...)

Figure 16: Manipulation of a knot. The time spent in a segment can be
changed through the knots. Since this also affects the curves
shape, the knots can be seen as tuning parameters.

- Partition of unity: The intervals [tn, tk−n] are called inner inter-
vals. For a parameter t on the inner intervals the following is
always true:

k−n−1∑
0

Nni (t) = 1 t ∈ [tn, tk−n].

- Strong convex hull: Each segment lies in the convex hull of the
control points that contribute to it.

- Variation diminishing: No straight line intersects a B-spline
curve in the plane more often than it intersects its control poly-
gon. In the case of space curves this is true for planes. The B-
spline curve thus always obtains less variation than its control
polygon.

- Continuity: A B-spline curve is Cn−1 continuous if all knots
differ from each other. With m being the highest number of

2.6 b-splines 21

successive knots that coincide, the continuity reduces to Cn−m.
Such a knot vector is said to have a multiplicity of m. Since knots
define segment borders, having a certain multiplicity at a knot
will result in reducing the continuity at the respective border.

- The B-spline curve never varies more than its control polygon
does.

- Given a degree n and j control points there have to exist n+ j+1
different knots.

2.6.2 Uniformity of B-spline knot vectors

A B-spline with all knots spaced equally is said to be uniform. The
basis functions of such a B-spline are overlapping copies of each other,
shifted in parameter space.

Uniformity usually also brings some disadvantages.

- One will loose the possibility to alter the knot vector, which
takes away a certain degree of freedom and locality.

- Many fitting algorithms rely on fine-tuning the knots, inserting
new ones, removing others and so on.

- Covering the same parameter space between unequally spaced
segment borders may lead to overshooting behavior, resulting
in undesired bends and oscillations.

As for the last point, imagine a B-spline curve of degree n = 3.
The parametric velocity needs to change very abruptly when for in-
stance running from quite long segments into very short ones, abrupt
changes not being possible because of the C2 continuity property.
Usually this effect can be reduced by methods such as chord length
parametrization on the knots, which is not possible in the uniform
case.

Fixing the knot values also has its advantages.

- No strategy has to be implemented to find corresponding knot
values when fitting the curve to some shape.

- For a user knot values are very abstract and unintuitive. Au-
tomatic adjustment of knots on the other hand will represent
some inner magic that is hard to grasp.

- The curve can be expressed, parametrized and evaluated in a
much faster and simpler way.

22 basic definitions

Figure 17: Uniform cubic B-spline curve. A single segment is defined by four
control points (exemplarily colored in blue).

2.6.3 Uniform cubic B-spline curves

As the name suggests, the uniform cubic B-spline curve has a uniform
knot vector and is of degree n = 3.

A good choice for a knot vector is l = (t0, t1, · · · , tk−1, tk) =

(−3,−2,−1, 0, 1, 2, 3, 4). With n = 3 and k = 7 such a B-spline segment
is formed by 4 successive control points and can be conveniently eval-
uated in the interval [0, 1]. Figure 17 shows a uniform cubic B-spline
curve.

c(t) =
3∑
i=0

piN3i (t) t ∈ [0, 1].

Figure 18: Recursive combination of basis functions at different stages of the
uniform cubic case.

The cubic basis functions are shown in figure 18. As one can see
the interval [0, 1] is the only interval where all basis functions con-
tribute. Further, moving a single control point will only influence two

2.6 b-splines 23

neighboring segments in each direction of the curve. The four cubic
polynomials that form the basis functions are listed below.

N30(t) =
1

6
(−t3 + 3t2 − 3t + 1)N03

N31(t) =
1

6
(3t3 − 6t2 + 4)N03

N32(t) =
1

6
(−3t3 + 3t2 + 3t+ 1)N03

N33(t) =
1

6
t3N03

They can be easily retrieved by using recursion 2.

Using these basis functions, a uniform cubic B-spline segment can
be expressed in an efficient matrix form as

c(t) = (p0, p1, p2, p3)
1

6

−1 3 −3 1

3 −6 0 4

−3 3 3 1

1 0 0 0

t3

t2

t1

1

 t ∈ [0, 1]. (4)

2.6.4 Clamping

(a) Interpolating the endpoints using clamping. Since the curves degree is
n = 3, clamping is achieved by having knot multiplicity 4 at both ends.

(b) Interpolating the endpoints by geometrical construction. The new end-
points should be seen as »virtual«, because they are only used to achieve
the interpolation at their successor/predecessor.

Figure 19: B-spline endpoints.

When constructing a B-spline curve there are multiple ways to han-
dle the endpoints. It is often desirable that the curve’s endpoints co-

24 basic definitions

incide with the first and last control point, which is not the case by
default. This can be achieved in two ways:

- Knot multiplicity: Having a knot multiplicity of n + 1 at the
begin and end of the knot vector.

- Constructional solution: Adding two additional virtual control
points in such a way, that both the first and last chords of the
control polygon are prolonged by a new chord of the same
length. Virtual means that the additional control points are just
used for curve construction, they are not really part of the orig-
inal control polygon.

Since knot multiplicity is incompatible with uniform B-splines, the
constructional approach will be the tool of choice for them when
clamping is needed. Both methods are visualized in figure 19.

2.6.5 Bicubic uniform B-spline surface

Although the focus in this text lies on B-spline curves, the connection
between B-spline curves and surfaces is a quite interesting one. We
will quickly introduce the bicubic uniform B-spline surface, in order to
show how easily B-spline curves can be extended to the surface case.
This emphasizes the fact that findings for the curve case can also be
very relevant for the surface case, as generalization is usually not too
painful.

B-spline curves can be extended to B-spline surfaces by using a two
dimensional parameter space (u, v) and combining two basis func-
tions Mm

i (u) and Nnj (v). The combined basis functions are required
to form partitions of unity and to yield only non-negative values.

Lij(u, v) =Mm
i (u) ·Nnj (v)

Such surfaces are called tensor product surfaces.

Definition 15 (Tensor product surface)

s(u, v) =
∑
i

∑
j

pij ·Mm
i (u) ·Nnj (v) =

∑
i

∑
j

pij · Lij(u, v) (5)

Figure 20 illustrates how easily we can construct a B-spline surface
by interconnecting multiple control polygons to form a control mesh.

The surface will inherit the curve’s continuity properties, e.g. in the
case of cubic B-spline curves this means that the resulting bicubic sur-
face will also be C2 continuous.

2.6 b-splines 25

Figure 20: Construction of a B-spline control mesh by interconnection of
multiple control polygons.

The property of simple extension from the curve to the surface case
is extremely useful, uniting curves and surfaces into a common frame-
work with common properties. An especially important implication
is that a set of carefully chosen high quality B-spline curves can be
used to span a high quality B-spline surface.

2.6.6 Subdivision and limit points

In this section we will shortly discuss the Catmull/Clark subdivision
scheme. Although originally introduced for B-spline surfaces it can
easily be applied to B-spline curves. The concept of limit points our
algorithm is based on can be explained via the subdivision process in
a very simple way. Subdivision also enables us to compute the limit
points efficiently from control points. For a deeper explanation we
refer to [18].

The Catmull/Clark subdivision scheme is a generalization of the
uniform cubic B-spline and can be evaluated in a very fast and stable
way for both curves and surfaces. We will focus on the curve case. A
new control polygon is obtained in each step of subdivision, which
yields the same curve but lies closer to it. In the limit the control poly-
gon converges to the curve itself. Two rules are applied to the control
polygon in order to generate the new control vertices.

Definition 16 (Edge point rule) Edge points are generated by two successive control
points (p1, p2) that form an edge.

pE =
1

2
(p1 + p2) (6)

26 basic definitions

Definition 17 (Vertex point rule) Vertex points are generated by three successive control
points (p1, p2, p3) forming a corner.

pV =
1

8
(p1 + 6p2 + p3) (7)

(a) A control polygon. (b) One step of subdivision. The edge
rule (E) is applied 3 times , the ver-
tex rule (V) 2 times.

(c) Two steps. (d) Three steps.

Figure 21: Subdivision of a uniform cubic B-spline segment. One can see
how fast the subdivided points converge to the limit curve.

The number of control vertices thus approximately doubles in each
step of subdivision. Figure 21 illustrates this process.

One important question is: To which curve points do the original
control points converge? This can be answered by applying the vertex
rule multiple times on a control point and its neighbors, in the limit
resulting in the following simple rule.

Definition 18 (Projection to limit position)

pi∞ =
1

6
· (pi−1 + 4pi + pi+1) (8)

This is an especially useful property of subdivision, as it is now
possible to refine curve parts individually, and then project the con-
trol points onto the limit curve to obtain shapes at varying levels of
detail. Figure 22 shows the projection of control vertices onto the limit
curve.

The projection of a control point onto the limit curve is named limit
point or Greville point. It is the boundary of a B-Spline segment corre-
sponding to an inner knot, which can also be nicely seen in figure 22.

2.6 b-splines 27

Figure 22: Limit positions of the inner control vertices of a uniform cubic
B-spline curve. As we can see, the limit positions represent the
borders between the alternately colored B-spline segments.

A B-spline curve can be defined uniquely by either a set of control
points or a set of limit points, and since they have such a unique cor-
respondence to each other, we can say that control and limit points
represent a different basis of the B-spline.

When comparing the control point basis and limit point basis of a
B-spline, a big difference is the area of influence of a single point of
the basis. While moving a control point only affects the curve locally
(local influence), moving a limit point affects the whole curve (global
influence). The local influence of the control point can be explained
by the local support of the B-spline, the global influence of the limit
point by its dependence on multiple control points, which causes a
propagation over all other limits. However, the influence of a limit
point dampens rather quickly with distance.

2.6.7 Obtaining control points from limit points

As discussed in the last section, it is quite easy to obtain the limit
position of a control point under subdivision. What is missing is the
reverse direction - to retrieve the control points from a set of given
limit points.

The desired method solves the following problem: Given n limit
points L = (l0, · · · , ln−1), find a set of n control points P = (p0, · · · , pn−1),
such that pi∞ = li.

The B-spline curve defined by the control points P has to interpo-
late each given limit point by definition.

This can either be done by solving a linear system of equations
(including endpoint conditions, see for example [10]) or by using a
simple iterative method by Lin et al. that can be found in [25]. Because
of its ease of implementation the second method was chosen for our
implementation (the other method supposedly being a little bit faster).
It sums up as follows.

28 basic definitions

Algorithm 1 (Obtain control points from limit points) Starting with a set of limit
points L:

1 Set the initial control points to P = L.

2 Calculate the limit positions L ′ from P using 8.

3 Calculate the offset vectors to the true limit points as di = Li − L ′i.

4 Correct the control points: pi = pi + di.

5 Repeat from 2 unless the error is smaller than some threshold ε.

The algorithm converges very fast and reliably ([25] shows that in
fact it always converges). Also it works for both curves in 2D and 3D,
for surfaces, and for arbitrary subdivision schemes.

If endpoint interpolation is desired, the first and last control point
can be excluded from the iterative process. Regardless of the choice
on endpoint positions, the other points will always adapt to form a
valid control polygon. Another option can be to fixate two points at
each end of the control polygon to form tangential conditions (see
[10]).

Figure 23 shows results for the algorithm at different iterations.

The robust and efficient computation of control points from a set of
limit points allows us to choose the limit positions of a spline first and
compute the corresponding control points afterwards. A major advan-
tage of limit point placement is that limit points are a very »direct«
means of interaction, since they are interpolated by be the generated
shape. It is more intuitive for a user not having to deal with an ab-
stract control polygon, which for higher B-spline degrees will move
more and more away from the shape it generates. A disadvantage of
limit point placement is of course the global influence of limit points
we discussed earlier.

We can even go a step further and choose limit positions directly on
the data to be interpolated by our spline. The input data could e.g. be
a parametric spline or a discrete representation such as a polygonal
curve. In this case a limit point can be parametrized by its paramet-
ric position along the input data, which reduces the search-space in
the 2D curve case from R2 to a certain parameter range in R. This is
very convenient for data fitting and optimization, but the restricted
domain also benefits a user manually editing a B-spline. The bene-
fits are even more evident in the 3D case. We will make use of this
method later on.

An inherent drawback of limit point placement on the input shape
is that interpolation of the shape might not even be desired in the con-
text of fitting. A much better fit maybe could be obtained by choosing
interpolation positions away from the shape. This is true in terms of

2.6 b-splines 29

(a) The given B-spline limit points (red). The original curve (also
in red) and control points (green) are additionally shown as
ground truth.

(b) In the first step the given limit points are directly used as a
control polygon, resulting in a first estimate (blue) with a rather
high error.

(c) In the second step this first guess is corrected by the limit posi-
tion error offsets.

(d) After 20 iterations the difference is negligible.

Figure 23: Reconstructing the control points from given limit points using
an iterative approach.

distance (e.g. for a least squares fit), but also in terms of curvature
quality, since the interpolated shape might itself contain flaws (e.g.
unwanted waves, bends, discretization artifacts). We will try to mit-
igate this fact by computing a more fair version of the input data
first.

3
R E L AT E D W O R K

B-spline fitting and interpolation has been a very well-known and
thoroughly investigated field for a long time now. Basic ideas in B-
spline fitting are of a very general nature. The classical approach to
fit a B-spline curve to given data points is to obtain a least squares
solution in terms of the distance error between the data points and
the curve. The following is described in more detail for instance in
[10].

Imagine P+1 data points p = (p0, . . . , pP) that should be approx-
imated by a B-spline curve of degree N. The degree N of the curve
is most often declared beforehand and very crucial for the result. On
one hand a curve of too low degree may not model the data well
enough, on the other hand a curve of too high degree may be harder
to control and result in overfitting (e.g. capture noise on the data, ob-
tain unwanted oscillations). Another important choice to make is the
number of knots used, which in combination with the degree gives
the number of control points C of the spline curve.

We want the distance of the B-spline curve c(t) to each data point
pi to be as small as possible. For this, a B-spline curve parameter ti
has to be assigned to each data point pi. Let t = [t0, · · · , tP] denote
the vector of all of these assigned parameter values. Now, assumed
that we were able to assign a B-spline parameter value to each data
point, we want to minimize the functional

esqr =

P∑
i=0

||pi − g(ti)||2. (9)

This is a very general expression, which could also be used for e.g.
Bézier curve fitting. It is independent of the notion of a knot vector
and applies to nearly any parametric curve fitting task. The functional
can be further extended in various ways in order to obtain more sat-
isfying results, as will be shown below.

Such a functional is traditionally minimized by solving a set of
linear equations. Much of this is discussed in de Boor’s classic work
[6], and there is also a good introduction given in [10]. When focusing
on B-splines, equation 9 can be rewritten as

esqr =

P∑
i=0

∣∣∣∣∣∣
∣∣∣∣∣∣pi −

C∑
j=0

cjNnj (ti)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (10)

31

32 related work

The key here is to find good choices for the parameter values ti
and the knot vector k, in order to leave the control points to be the
only remaining unknowns. This is not an easy task and the choice
will greatly influence the result of the approximation. By setting the
partial derivatives for each control point cj to zero, we can obtain a
set of so-called normal equations.

C∑
j=0

cj
P∑
i=0

Nnj (ti)N
n
k (ti) =

P∑
i=0

piNnk (ti) , k = 0, · · · ,C (11)

The symmetric coefficient matrix M of the C+ 1 linear equations is
singular only if there exists a knot interval [kj−1,kj+N] that contains
none of the assigned parameter values ti (Schoenberg-Whitney theorem).
It has the form

Mj,k =

P∑
i=0

Nnj (ti)N
n
k (ti). (12)

A stable evaluation of M will not automatically lead to good results.
This is in the very nature of the pure least squares approximation, but
the optimization can be refined in many ways in order to influence the
final result. We often do not want the curve to be nearest to all data
points at all cost, and may thus decide to accept a greater distance
error if we can trade it for more meaningful shapes. This may for
instance be needed to enforce a smooth and oscillation-free curve
shape, to handle stronger noise, or to smoothly fill gaps in the data.
Some approaches to reach these goals are listed below.

energy terms / variational approaches There are various
fairness or energy terms that can be added to equation 9 to enforce
smoother variation of the curve. Often such an energy term is a
quadratic function involving the curve’s first or second derivative,
or of a mix of both. A classic choice is e.g.

Fen =

∫
||g ′′(t)||2dt. (13)

The functional to be minimized then becomes

esqr =

P∑
i=0

||pi − g(ti)||2 + λ · Fen. (14)

Such variational approaches are widely used in curve and surface
fitting, so there exists much literature on them. Energy terms are dis-
cussed e.g. in [16], [34], [42] or [43].

related work 33

linear smoothing terms Additional smoothing terms can be
incorporated into the linear system 11, which typically form linear
constraints on the curves shape, for instance on the angles between
successive control polygon chords. Another often used method is for
instance the so-called cage regularization, where we want a control
point to lie in the mid of its neighboring control positions. This can
be realized as weights [1,−2, 1] on each control point triplet in the
linear system’s matrix. Refer to [10] for a broader explanation of such
methods.

geometric constraints Another way to influence the fitting
result is to add additional geometric constraints to equation 9. Such
constraints could for instance be sets of first or higher order deriva-
tives, specified at the data points p. The curve will then not only
have to adapt to the given positions, but e.g. also to given tangent
directions. Constraints on the endpoints are another example. The
constraints are usually incorporated into 9 by making use of Lagrange
multipliers, as e.g. explained in [32]. For the linear system approach
only such constraints can be incorporated, that can be formed into
linear terms.

A crucial task that remains is the assignment of parameter values
to the data points, and the decision on a knot vector. There are several
techniques for assigning parameter values to the data points. A uni-
form parameterization is usually the most simplistic but also worst
way to do this, since it completely ignores the geometry of the data
points, resulting in overshooting behavior and oscillations. A better
way to do it is chord length parameterization, which relates the distance
in parameter space to the distance of the data points. For data with
sharp bends, even better results can be achieved by centripetal param-
eterization ([23]), which smoothes out the centripetal forces working
on an object that moves along the spline curve. Whatever the cho-
sen method, it is highly unlikely that pi will exactly equal g(ti). In
this case a method called parameter correction (or intrinsic parameteri-
zation, Hoschek [20]) can be used, which corrects the parameters ti
in a way that the new positions g(t ′i) will lie closer to the respective
pi. The curve is then recalculated, and the process is iterated a few
times. Many of these reparameterization schemes operate locally, a
more global strategy can for instance be found in [39]. It can be said
though that there is no optimal strategy for this task, so parameter
assignment remains an uncertainty factor.

The other problem is to choose a good knot vector and, to compli-
cate the matter even more, to decide on the number of knots needed.
There are multiple methods for knot selection, two methods that
achieve a positive definite and well-conditioned matrix M (with at

34 related work

least one ti in every knot span) are presented in [32]. For this we
assume the outer knots to be of the form

k0 = · · · = kN = 0 kK−N = · · · = kK = 1. (15)

This will assure interpolation of the first and last data point. The
first method is called knot averaging and can be used if C = P (which
actually equals an interpolation task).

kj+N =
1

N

j+N−1∑
i=j

ti j = 1, · · · ,P−N

The parameter values distributed over the data points are just lo-
cally averaged. The other method is called knot placement and can be
used if P > C (most often the case).

d =
P+ 1

C−N+ 1
, i = int(j · d) , α = j · d− i

kj+N = (1−α) · ti−1 +α · ti j = 1, · · · ,P−N

Both methods reflect the distribution of parameter values, making
them a much better choice than uniformly distributed knots. In the
case of uniform B-splines the knot values are already fixed though,
leaving only the total number of knots (or equally: the number of
control points) to be chosen.

Summarizing, the classical approach to B-spline fitting includes the
following steps.

1 Distribution of parameter values over the given data points.

2 Calculation of the knot vector.

3 Solving a system of linear equations, optionally by incorporat-
ing additional constraints or smoothing terms.

4 Using parameter correction in order to obtain better (nearer)
curve positions.

5 Repeat from 2 if needed.

There are some approaches that deal with joint optimization of pa-
rameter values, knots and control points. Refer to e.g. [1], [13] or [37].

One approach to handle this complex problem is the technique of
knot removal. For this, the data points are initially interpolated by the
B-spline, each assigned parameter value representing a knot. Then

related work 35

knots are gradually removed, depending on their importance for the
approximation, until a satisfying result has been produced. The ap-
proximation goal can be defined by a user-given error bound, the
least squares error described by 9 being initially zero and growing as
knots are removed. See e.g. [30], [9], [27].

Reversing the problem, there exist a lot of solutions that adaptively
add knots based on heuristic rules stemming from the curve’s local
properties. This includes both adding them iteratively based on some
criteria, or estimating the number of knots and distributing them af-
terward. Razdan ([36]) uses circular arcs and curvature distribution
to place the knots. The total number of knots is thereby estimated by
dividing the curve into circular arc segments. Similar heuristics are
used in [24] or [31] (dominant points).

Methods based on modification of the knot vector are unfortunately
not suitable in the context of this work, since the framework the pre-
sented approach is built upon relies on uniform B-splines.

Some other contributions make use of intermediate curve represen-
tations, which are finally converted into B-splines, such as polynomi-
als ([30]) or Bézier-splines ([7]).

There also exist popular iterative methods which rely on footpoint
computation. The knots remain fixed in all of these methods, which
simplifies the task and makes them perfectly suitable for fitting uni-
form B-splines. The footpoint of a certain data point is its closest point
on the current approximating design curve due to some distance met-
ric. Calculating the footpoints can be formulated as a parameter cor-
rection task as follows.

In each iteration new control points are calculated by minimizing
the error

f =
∑
i

err2i + λ · fs, (16)

where erri is an error metric describing the distance of the ith

data point to the design curve, and fs an energy term for fairing of
the result. There are three well-known optimization methods for this
problem, each having its own error metric.

pdm The point distance minimization incorporates just the distance
to the footpoints into the error metric.

erri = ||g(c, ti) − pi||2

36 related work

This is of course a bad approximation to the true err2i , but PDM
is quite simple and can be used with unorganized data points too. It
converges slowly though, being a variant of steepest descent ([43]).
There are many contributions to curve fitting based on or alike PDM,
such as [14], [20], [33] or [38].

tdm Tangent distance minimization additionally makes use of the
normal vector information ni at each data point.

erri =
[
(g(c, ti) − pi)

T · ni
]2

Here the distance between a data point and an assigned tangent
line is measured, which is a good approximation in low curvature re-
gions, but yields unstable behavior in high curvature ones. Wang et al.
state in [43] that this equals a variant of Gauss-Newton minimization
without step control. TDM is e.g. used to fit B-splines in [5].

sdm Squared distance minimization has been introduced by Wang
et al. in [43]. SDM also incorporates curvature information into the
distance metric.

erri =

{
d
d−r

[
(g(c, ti) − pi)T · ti

]2
+
[
(g(c, ti) − pi)T · ni

]2 if d < 0[
(g(c, ti) − pi)T · ni

]2 if 0 6 d < r

Here d denotes the signed distance between the the data point pi
and the footpoint g(c, ti) on the fitted curve, and r the radius of cur-
vature at the footpoint. The distinction made via the sign assures a
positive semi-definite error metric, which is a second order approxi-
mation to the squared distance function. Wang et al. show that SDM
actually equals a Newton optimization scheme, and that in terms of
convergence it is both more stable and faster than the other methods.
A more detailed explanation of SGM is given in section 4.11.

In all these methods, footpoint and control point calculation are
separate stages that are alternated. Zheng et al. ([47]) deal with the
joint optimization of footpoints (described by their parameter values
ti) and control points, which promises to be even faster than SDM.

It is possible to implement an adaptive scheme based on such itera-
tive algorithms, by inserting new control points where they are most
badly needed, followed by another optimization phase ([44]).

Iterative methods based on footpoints are very effective, but results
strongly depend on the initial control point distribution provided.
With bad initialization, the optimization is likely to end up in a local
minimum. We can imagine the initial B-spline curve to »snap« to the

related work 37

data points.

In the last years many new approaches to the optimization problem
of B-spline fitting emerged, stemming from such fields as computa-
tional biology (genetic algorithms, e.g. [4] or [45]), statistics (Gaussian
mixture models, [46]) or optimal control ([13]). These methods yield
promising results, but they also have disadvantages. They tend to be-
have a little like closed boxes, which makes it hard to comprehend the
results and to influence them accordingly from the outside. However,
controllability and comprehensibility are very important aspects of
high quality modeling. This is one major reason why usually simpler
(lower degree) parametric polynomials are chosen for modeling and
data fitting.

Further, these techniques are very dependent on the formulation
and parametrization of the problem - e.g. as a cost or reward func-
tion - so the problem of asking the right question remains. Methods
based on machine learning seem especially promising, but often need
a lot of training data to capture a problem adequately, which in prac-
tice can be a problem.

Although there exists a broad range of literature, the suggested
solutions mainly concentrate on minimization of the distance error.
What is completely amiss is a special focus on curvature quality and
accurate reproduction of the (intended) input curvature, or at least
an evaluation of results in terms of these aspects. Even if curvature
values are incorporated into the approach, they are used mainly as
a tool to again reach a certain distance error or assure better conver-
gence (e.g. in SDM) - as a means to an end. Most interestingly an
explanation for how curvature values are retrieved from the discrete
data is rarely given, an aspect which in our opinion is essential for
accurate spline fitting.

Thus, techniques focusing on curvature quality are on one hand
badly underrepresented in literature, but on the other hand very
sought-after in high quality CAGD. We will try to fill this gap with
the presented work, and see it as an additional contribution to spawn
a discussion about this extremely important topic.

4
U N I F O R M C U B I C B - S P L I N E F I T T I N G I N A C L A S S A
M O D E L I N G E N V I R O N M E N T

4.1 problem definition

This work builds upon the SurfaceReconstruction toolkit, a collabora-
tive effort between Volkswagen AG and the Institute of Computer
Graphics and Knowledge Visualization at Graz University of Tech-
nology. The software package provides surface engineers with con-
venient modeling tools and assists them with the task of converting
3D scans (triangle meshes) to uniform cubic B-spline patches, a time-
consuming process which for critical car parts is still carried out man-
ually by experienced staff. The goal of the software is the partial - and
ultimately full - automation of the needed workflow.

(a) Pearl chains are discrete curves
sampled along a triangle mesh.
Manipulators (here in red and
green) can be dragged across the
mesh in order to span the chain.

(b) Detail: The small gray pearls rep-
resent the mesh samples the chain
consists of.

Figure 24: SurfaceReconstruction toolkit: Pearl chains

When editing a project manually, the user interacts through so-
called pearl chains that are placed onto a 3D triangle mesh obtained
from a scan. A chain consists of a path sampled along the mesh (vi-
sualized as small grey pearls), and draggable manipulators at its end
points and optionally at discrete positions in-between (visualized by
bigger colored pearls). Since they consist only of mesh samples, the
chains cling to the model and may be dragged along it using the
manipulators. Such a pearl chain is visualized in figure 24.

The path that is spanned between the manipulators of a pearl chain
can be seen as a discrete polygonal curve. There are of course multi-
ple ways to connect two positions on a mesh using a path along its
surface. The software provides two modi operandi here: To follow the

39

40 uniform cubic b-spline fitting in a class a modeling environment

(a) A pearl chain generated via a pla-
nar cut through the manipulator
positions, resulting in a discrete
planar 3D curve.

(b) Each chain represents a uniform
cubic B-spline curve via the limits
that are placed on it, here a total of
five. The distance error of the con-
structed spline curve to the chain
samples is displayed as bars, alter-
nating their color with each seg-
ment (red and green). The error is
zero at the limit positions. A pre-
defined error bound is visualized
as reference (shown to the left and
right of the curve).

(c) Several pearl chains intercon-
nected to a limit point mesh, the
gray intersections representing the
limit points. The uniform cubic
B-spline patch that is defined this
way is shown with its reflection
lines (being partially occluded by
the mesh).

(d) The individual chains (B-spline
curves) that contribute limits to
the limit point mesh are shown
in red in one grid direction and
in blue in the other one. These in-
dividual curves span the uniform
bicubic B-spline patch in the sense
of a tensor product surface.

Figure 25: SurfaceReconstruction toolkit: Forming B-spline curves and
patches using pearl chains

flow of curvature on the surface, resulting in a 3D space curve, or to
make a planar cut through the two positions, resulting in a planar 3D
curve (see figure 25a). Since our algorithm operates on planar curves,
we make use of the second approach.

4.1 problem definition 41

As mentioned before, we can interpret the small pearls as samples
of a polygonal curve. Let us now interpret the bigger manipulator
pearls as the limit positions for a uniform cubic B-spline curve. We
can easily obtain this B-spline curve’s control polygon and generate
the corresponding polynomial curve, which interpolates the mesh at
the limit positions. Subsequently the spatial distance of the spline
curve to the discrete surface samples of the generating pearl chain
can be evaluated. This is demonstrated in figure 25b. We use a dis-
crete Hausdorff distance to measure the distance error.

Furthermore, multiple pearl chains may be interconnected to form
a grid, the intersection points spawning new limit positions. By doing
so we can form a limit point mesh for a Catmull/Clark subdivision
patch (a uniform bicubic B-spline patch), which also interpolates the
mesh at the user-defined limit positions. Figures 25cd show how sev-
eral chains can be combined to form a limit point mesh.

From a user perspective choosing points of interpolation on the
surface is much more intuitive than editing an abstract control poly-
gon in full three dimensions. On one hand this considerably limits
the search space for editing. On the other hand limit points in com-
parison represent more direct means of manipulation, as the control
polygon usually lies away from its generated curve and thus from
the modeled surface. In this setting the distance of the control points
to the surface depends on both the B-spline degree and the variation
of the surface, a planar surface e.g. always forcing the control points
onto it.

Summing up, the central paradigm of the SurfaceReconstruction toolkit
is the construction and interconnection of so-called pearl chains on
a surface, in order to form a limit point mesh for a uniform cubic
B-spline patch, which interpolates the surface at the chosen limit po-
sitions. In a nutshell: Uniform cubic B-spline surface fitting via inter-
polation point placement on the discrete mesh to be modeled.

42 uniform cubic b-spline fitting in a class a modeling environment

(a) An initial chain with adapted limit
positions. The corresponding cur-
vature profile is shown as an over-
lay in orange. As we can see more
points are spent in high curvature
regions.

(b) The chain is prolonged into per-
pendicular direction at the limits.
The assumption that the covered
region is homogeneous enough
must hold.

(c) More vertical chains are added to
obtain an initial patch.

Figure 26: Modeling in homogeneous surface regions extending from an ini-
tial chain.

Let us now make use of the concept of pearl chains, and assume
that the user spans a pearl chain across the mesh. By automatically
finding a suitable distribution of limit positions along this chain, a
B-spline curve fitting algorithm can assist the user in multiple ways.

- It helps the user to obtain some intuition for the geometry of
the surface region that is currently modeled.

- It generates an initial solution for further manual refinement.

- It reduces the time spent on the modification of a single chain.

4.1 problem definition 43

- Assumed that the surface region is homogeneous enough, it can
even provide an initial solution for a B-spline patch, as shown
in figure 26.

In order to obtain a basic understanding for the problem, we will
focus on 2D curves which are obtained via planar cuts through the
endpoints of the provided pearl chain. This way we will not have to
deal with torsion. However, we assume that when having solved the
problem in two dimensions, we can always build upon our results
and deal with torsion later. We further assume that any progress for
the curve fitting case can be of great use for the surface case too, since
B-spline curves and surfaces are so closely tied.

The task to be achieved by the proposed algorithm is stated in a
very general way as follows.

Problem formulation: GivenN ordered 2D curve samples p = [p0, · · · , pN−1],
a set of limit positions for a uniform cubic B-spline curve shall be retrieved
from the discrete curve such that...

- The distance error of the fit is smaller than a specified maximum error
bound.

- As few as possible limit points are used.

- The spacings between limit points vary regularly.

- Similar curves (stemming from similar mesh regions) yield similar
limit point distributions. The algorithm is predictable, the result re-
peatable.

- The curvature of the produced spline is faithful to the curvature of the
discrete input data.

The first condition meets the need of industrial applications, where
exact error bounds are very common. Furthermore the number of
limit points spent will depend on this quantity.

We want the number of limit points to be as low as possible, since
many limit positions are harder to control and consolidate. A high
number of limit points implies that many control points need to be
moved in order to model a certain change of shape later on. Even
worse, these control points have to be changed in a regular and con-
sistent fashion, thus the control points are more tightly coupled and
the effort needed for consolidation is very high. Few control points in
contrast mean that each control point - as a degree of freedom - has a
clear and isolated function. Finally, many limit points complicate the
produced geometry unnecessarily and increase the probability that
undesired oscillations are introduced.

44 uniform cubic b-spline fitting in a class a modeling environment

We also want the mesh widths to vary regularly for reasons stated
in section 2.6.2, uniform parameter intervals leading to overshooting
behavior if the segment lengths are changing too rapidly.

Of course curves in similar surface regions should obtain similar
limit point distributions, in order to make the algorithm predictable
and to generate matching sets of chains in homogeneous regions.

The last point is especially important to us. We want to make sure
that the original design idea is conveyed to our digital model, and
thus that neither an important feature gets lost nor an undesired fea-
ture is introduced into our final shape.

4.2 input data analysis

(a) Missed regions closed by the triangulation process.

(b) Inhomogeneous mesh sampling. (c) Hand-crafted clay models by nature
obtain irregularities.

Figure 27: Data flaws introduced by data source and scanning process.

We now want to analyze the workflow for input data acquisition
regarding flaws which might get introduced into our discrete input
data. For this let a clay model of a car body be the source for a digital
model, which is still common practice in the automotive sector. This
model must be deemed irregular and flawed, as it is a real physical
object - in this case even a hand-crafted prototype - and not fair in a
high quality CAGD sense. This physical object is first captured by a
3D scanner, and converted into a triangle mesh. The resulting mesh
contains various kinds of flaws.

- Flaws introduced by the scanner, such as missed regions (figure
27a).

4.2 input data analysis 45

- Noise generated due to the scanner’s limited spatial accuracy.

- An inhomogeneous or non-optimal sampling rate, which does
not adapt to the local traits of the scanned geometry (figure
27b).

- Irregularities already present in the scanned object (figure 27c).

These factors could be used to model an estimate for the lowest
error bound it makes sense to achieve with the fitting algorithm.

(a) Effect of closely sampled single
precision data on discrete curva-
ture.

(b) Zero curvature when sampling
multiple points from a planar tri-
angle.

(c) Triangle samples can obtain a sub-
stantial discretization error. The
shown sample lies far away from
the true surface the triangle was
obtained from.

(d) Irregularly sampled polygonal
curve obtained by cutting the
mesh with a plane.

Figure 28: Data flaws introduced by curve sampling.

In a next step a discrete curve is sampled from the triangle mesh.
In our case this is done by the user spanning a pearl chain. We can
identify at least three sources for data flaws.

- Noise produced by numerical inaccuracies during sampling.

- A non-optimal sampling rate, which does not adapt to the local
traits of the sampled triangle geometry.

46 uniform cubic b-spline fitting in a class a modeling environment

- Irregular point spacings obtained by cutting the triangles with
a plane.

Numerical inaccuracy depends on the sample rate and the numer-
ical precision that is used for data storage. Even very small perturba-
tions can influence computations such as discrete curvature estima-
tion, as shown in figure 28a.

Non-optimal sampling can be poisonous in several ways. Too high
sampling rates will result in excessive triangle subsampling and in-
troduce zero-values into the discrete curvature profile (figure 28b).
Triangle subsampling further generates curve positions that cannot
be trusted, as triangle samples may lie far away from the true surface
(figure 28c). Too low sampling rates on the other hand may result in
badly sampled or omitted features, which is equally disastrous.

Even when obtaining the curve samples by an exact plane cut
through the mesh, it is possible that triangles will get cut in differ-
ent ways, e.g. near their corners or at their full length. This results in
irregularly sampled polygonal curves (figure 28d).

Because of the various flaws which might have been introduced
into our input data beforehand, we need our algorithm to be robust
against perturbations. This problem is investigated from two different
points of view.

In section 4.3 we discuss methods for preprocessing of the input
data itself, in order to gain higher numerical accuracy for our compu-
tations, and smoother curve samples.

In section 4.4 we investigate and compare methods for robust dis-
crete curvature estimation, in order to obtain a smooth curvature pro-
file which can be trusted.

4.3 input data preprocessing

4.3.1 Data normalization

As a very first step, the input data is normalized before being pro-
cessed further. This enforces good numerical precision and better
conditioning of the algorithm. Figures 29 shows the effect of huge
coordinates on the discrete curvature profile of sampled single preci-
sion data. Although a robust curvature estimator would smooth out
the noise, we want to prevent such artifacts beforehand.

Such a normalization can be achieved in several ways, here a nor-
malization procedure will be utilized that was proposed by Hartley in
[17] for fundamental matrix estimation. The normalization employs
a translation and isotropic scaling, such that:

- The data centroid rests at the origin (0, 0).

4.3 input data preprocessing 47

(a) Test circle, r = 1 (b) Discrete curva-
ture profile, circle
constructed at origin.

(c) Discrete curva-
ture profile, circle
constructed at
(1000, 1000)

Figure 29: Precision errors as curvature noise

- The average distance of a point to the origin is
√
2, which equals

the euclidean norm of a position on the unit circle.

The points are transformed to have zero mean and a standard de-
viation of

√
2 with respect to their distance to the origin. This nor-

malization is similar to a studentization, which normalizes a random
variable to have zero mean and a standard deviation of one.

4.3.2 Data smoothing

When estimating discrete curvature values from noisy samples, one
possibility is to use noise robust curvature estimators like those pre-
sented in the next section. If the amount of noise is substantial, robust
curvature estimators need to operate on a broader spatial scale in or-
der to cancel out the noise. As we will see, this often results in a drop
of amplitude, since a broader neighborhood of the point of interest
has to be incorporated into the estimate. Alternatively we can trans-
form the input data into a smoother representation, which also yields
a smoother curvature profile. Compared to a robust curvature estima-
tor this is an invasive procedure which changes the input data, but
since the input data can only be trusted to a certain degree (section
4.1), it should not be prohibited to move the input samples a little,
as long as they are moved economically and with care. It also makes
sense to fit a smoothed version of the data since we do not want to fit
noise-afflicted positions anyway.

There exist several techniques to obtain a smooth representation
from noisy curve samples. In the next sub-sections some of them will
be inspected.

In all upcoming examples a non-robust curvature estimator (an es-
timator based solely on a sample and its two neighbors) will be used,
in order to highlight the effect of the smoothing algorithm on the cur-

48 uniform cubic b-spline fitting in a class a modeling environment

vature profile, without the influence of a robust curvature estimator’s
inherent smoothing.

4.3.2.1 Laplacian smoothing

The most basic method is Laplacian smoothing.

Definition 19 (Laplacian smoothing)

Qk =
1

2
(Pk−1 + Pk+1)

Each point is simply moved to the centroid of its neighbors. Apply-
ing this rule to one vertex after another may result in long propaga-
tion time and oscillatory behavior, therefore the smoothed positions
are calculated out-of-place. Depending on the smoothing technique
this usually leads to overshooting, since the movement of one ver-
tex does not account for the movements of its neighbors. A damping
factor α is introduced to slow down the movement of vertices.

Definition 20 (Laplacian smoothing with damping)

Qk = (1−α) · Pk +α ·
1

2
· (Pk−1 + Pk+1)

If α is set too high, the smoothing procedure will become unstable,
if set too low, smoothing will be slow. The optimal value will depend
on the respective smoothing algorithm. For Laplacian smoothing a
factor of α = 0.9 proved fine.

Figure 30 shows the effect of Laplacian smoothing on a sine curve
consisting of 300 data points with added Gaussian noise. After only
80 iterations the noise is smoothed out as shown in b) and c). How-
ever, soon the data becomes strongly oversmoothed, as shown in d)
and e). This effect, which is also called shrinking, is better visualized
in f) using a circle. Just like the shape, curvature will successively
shrink and degrade with more iterations.

Laplacian smoothing is very effective, but also aggressive on the
shape of a curve, and thus has to be applied very carefully.

4.3.2.2 Centroid preserving smoothing

A centroid preserving smoothing technique that does inflict less shrink-
ing on the data was introduced by van Overveld in [41] in the context
of mesh smoothing. It is quite easy to adapt it for curve smoothing
purposes.

4.3 input data preprocessing 49

(a) Test sine curve with
added Gaussian
noise, 300 samples.

(b) Curve after 80 itera-
tions.

(c) Curvature after 80 it-
erations.

(d) Curve after 500 itera-
tions.

(e) Curvature after 500 it-
erations.

(f) Shrinking effect on a
circle.

Figure 30: Various results for Laplacian smoothing.

Definition 21 (Centroid preserving smoothing (van Overveld))

P =
1

2
· (Pk−1 + Pk+1)

D = Pk − P

DC = −
2

3
·D

DN =
1

3
·D

Qk−1 = Pk−1 +DN

Qk = Pk +DC

Qk+1 = Pk+1 +DN

Offsets are not only calculated for the current vertex, but also for
its two neighbors. This reveals the following effect.

1

2
· (Qk−1 +Qk+1) =

1

2
· (Pk−1 + Pk+1 +

2

3
·D) =

Pk +
1

2
· (Pk−1 + Pk+1) − Pk +

1

2
· 2
3
·D =

Pk −D+
1

3
·D = Pk −

2

3
·D = Qk

After the smoothing step the point Pk lies in the center of its neigh-
bors, and as a nice side effect, the center of gravity of the three points

50 uniform cubic b-spline fitting in a class a modeling environment

remains the same. This cannot prevent shrinking completely, since
the movement of a point consists of a total of three contributions, but
it will slow the effect down. To make the smoothing step stable for all
points, a damping factor has to be introduced once again. A factor of
α = 2

3 performed well.

(a) Sine curve with
added noise, 300

samples, curvature
after 200 iterations

(b) Sine curve with
added noise, 300

samples, curvature
after 3500 iterations

(c) Sine curve with
added noise, 300

samples, curvature
after 8000 iterations

(d) Circle, r = 1 unit,
10000 iterations

(e) Circle curvature,
10000 iterations

Figure 31: Various results for centroid preserving smoothing.

Figure 31 shows results for the same test data as in the last section.
In a) and b) one can see that compared to Laplacian smoothing it
takes far more iterations to smooth out the noise. Even though the
data becomes smooth soon and the overall shape is preserved quite
well, the algorithm also tends to preserve strong oscillations caused
by the noise. With more iterations it becomes harder and harder to
smooth these unwanted features out, because of the shape preserv-
ing property. This effect can even better be seen in d) and e). After
10000 iterations the circle is smoothed out and on average yields the
expected constant curvature of one, but oscillations unfortunately re-
main.

Centroid preserving smoothing maintains the overall shape of the
object much better, but it may also preserve oscillations that are caused
by the noise itself. Once snapped into a smooth result, it becomes
harder and harder to smooth out these oscillations. If the signal-to-

4.3 input data preprocessing 51

noise ratio is not expected to be as severe as in the discussed exam-
ples, this smoothing technique will perform quite well though.

4.3.2.3 MLS curves

Another interesting option for estimating smooth curve samples from
noisy data is to make use of robust implicit shape representations.

Moving least squares (MLS) surfaces are surface representations
which are implicitly defined by a set of 3D positions. A point is typ-
ically pulled from an initial position to a smooth surface position by
iteratively querying its current neighborhood and computing a new
position from it, which lowers the point’s distance error in the least
squares sense.

Robust implicit MLS surfaces (RIMLS) were introduced by Öztireli
et al. in [29]. They improve former approaches by making use of ro-
bust statistics in order to get better outlier suppression and by in-
troducing a sharpness parameter for better reconstruction of details
and sharp bends. Although introduced for surfaces, it is quite easy to
adapt the method to generate implicit curves. We will shortly review
the cornerstones of the text, for more details refer to [29].

The essence of the problem is to find an approximation to the
signed distance function f(x), which describes the local distance of
a point to the smooth surface. The input to the algorithm is in our
case a polygonal curve. We generate normals for each vertex by using
its neighboring segment directions. Since this estimate yields rather
noisy normals, we use the method described in [29] to smoothen
them. By making use of a local neighborhood an initial normal can
be retrieved as

n0j =

∑
i,i 6=jφi(pj)ni∑
i,i 6=jφi(pj)

, (17)

where

φi(x) =
(
1−
‖x − xi‖
h2i

)4
is a weight function. The spatial radii hi are set to a multiple fs of

the average local point spacing, this factor thus influences the amount
of smoothing.

Smooth normals can then be retrieved iteratively by using

nkj =

∑
iφi(pj)wn(‖n

k−1
j − ni‖)ni∑

iφi(pj)wn(‖n
k−1
j − ni‖)

. (18)

52 uniform cubic b-spline fitting in a class a modeling environment

Here wn is a normal weight function defined as

wn(x) = e
−(x

σn
)
2

.

Using the obtained smooth normals, the iterative RIMLS definition
is

fk(x) = s0 =
∑

nTi (x − xi)φi(x)w(rk−1i)wn(∆nki)∑
φi(x)w(rk−1i)wn(∆nki)

. (19)

The weight functionw(rk−1i) is used for outlier rejection and weights
the residuals

rk−1i = fk−1(x) − (xi − x)Tni.

It is Welsch’s function, which is defined as

w(x) = e
−
(

x
σr·hi

)2
.

The function wn(∆nki) is introduced to reproduce sharp features
more accurately. It penalizes samples whose normals deviate strongly
from the predicted RIMLS gradient. This difference can be expressed
as

∆nki = ‖∇fk(x) − ni‖.

The symmetric weight function φi(x) = φ(‖x − xi‖) gives more
weight to closer samples, and reflects the fact that the approxima-
tions used for this approach are only valid at values near x.

Setting wi = w(rk−1i)wn(∆nki) constant for one projection step as
an approximation leads to the following gradient definition.

∇fk(x) =
∑
wiφi(x)ni +

∑
wi∇φi(x)

(
nTi (x − xi) − fk(x)

)∑
φi(x)w(rk−1i)wn(∆nki)

(20)

Then a simple steepest descent approach can be used to obtain a
smooth position for a given point. Some details important for imple-
mentation are listed below.

- Setting the initial weights to one results in a pure least squares
approach to initialize good starting positions in the first itera-
tion.

4.3 input data preprocessing 53

- For fast dismissal a spatial data-structure should be queried (in
our implementation a quadtree is utilized) in order to retrieve
the neighborhood. This is the bottleneck of the algorithm.

- The choice of σn depends on the desired amount of sharpness,
smaller values yielding sharper results.

(a) Sine curve (b) Sine curve with added noise

Figure 32: Test data for the RIMLS algorithm.

Figure 32 shows synthetic curve data used for validation of the im-
plemented RIMLS code. Normally distributed noise was added to a
sine curve in normal direction.

(a) (b)

Figure 33: Various results for the RIMLS algorithm. h = 10.0, σr = 0.5, σn =

1.5, 40 iterations

Figure 33 shows results for a straight detail and a high-curvature
detail of the curve. As expected the algorithm produces a smooth
curve from the noisy samples. In some part of b) one can see that the
resulting curve slightly deviates from the data, which may indicate
that the spatial scale h has been chosen too big for this curve region.

In figure 34 the spatial radius has been chosen smaller, and the pro-
duced curve now follows the samples more accurately. On the other

54 uniform cubic b-spline fitting in a class a modeling environment

(a) (b)

Figure 34: Various results for the RIMLS algorithm. h = 5.0, σr = 0.5, σn =

1.5, 40 iterations

hand the solution now obtains more oscillations.

(a) Detail, σn = 1.5

(b) Detail, σn = 0.2

Figure 35: RIMLS results for non-synthetic data, detail. h = 10.0, 20 itera-
tions

Figure 35 shows the effect of the sharpness parameter σn on the
S-part of a curve sampled from the scan of a car door. A higher σn
will make the smooth curve deviate from the original data in regions
of strong change, especially if higher spatial scales are needed in the
presence of noise. If we choose a lower σn, the MLS-curve will stick
to the original bend more closely, as shown in 35b, although oscilla-
tions in the guidance points will have a stronger impact on the result.

Since we are very concerned about how our smoothing procedure
alters the curvature of the original data, we again have a look at our
noisy sine curve. Figure 36 shows how the discrete curvature con-
verges to the ground truth curvature of the sine curve with increasing
spatial scale fs. There is no visible shrinking effect in the final result.
We of course only assume pure Gaussian noise, it is expected that
other kinds of noise will not get filtered out as perfectly as in this

4.3 input data preprocessing 55

(a) Noisy curvature profile. (b) fs = 5

(c) fs = 10 (d) fs = 15

Figure 36: Curvature behavior of RIMLS, demonstrated on a sine curve with
added Gaussian noise. Ground truth=blue, MLS-curve=red.

example.

Another advantage of implicit curves is that we are able to retrieve
a smooth representation of our original data in as much detail as we
wish, independent of the initial point density. If our input data is
not sampled very densely, we can always retrieve a denser version by
projecting more points onto the MLS-curve. One could for instance
double the density easily by projecting all vertices and segment mid-
points. In case of initial positions which are far away from the MLS
shape or very densely sampled curves we have to take care of point
ordering though.

One disadvantage with this method is that we cannot guarantee
that one parameter set will always lead to the desired results. The ef-
fect of the spatial scale fs for instance depends on the point density. It
has more impact on a certain shape feature if the feature’s resolution
is low.

Furthermore, we cannot increase fs as much as we want, since more
compact features may get mixed up if they lie very close to each other.

Finally, if the noise on the data is rather low, the MLS-curve is
not given much room to adapt to the given samples. In this case the

56 uniform cubic b-spline fitting in a class a modeling environment

sharpness parameter σn needs to be chosen quite low in order to
force the MLS estimate to follow the input data more closely.

4.3.3 Resampling

Samples obtained from a laser scanner or a photogrammetric setup
will often be distributed in a non-feature-adapted and inhomoge-
neous way, which is not very desirable.

- Low-curvature parts are sampled too densely, introducing un-
necessary noise and oscillations.

- High-curvature parts are sampled too sparsely, diminishing data
support for important features.

We thus want to move higher sample densities away from unimpor-
tant shape regions into important ones (features) and obtain smoothly
varying samples. For this we make use of a curve resampling ap-
proach introduced by Baran et al. in [3]. It enforces smooth, global
compliance to a given guidance function, and allows to choose a de-
sired amount of variation. Any roughly smooth function can act as a
guidance function, which makes the method pretty versatile.

Baran et al. consider a resampling function r(s).

r(s) = min
i

(
|s− si| ·β+

2 · π
γ · κi

)
(21)

The first term enforces smoothness of variation by weighing dis-
tance to surrounding samples against the locally needed spacing. The
second term represents the guidance function, in this case curvature.
It divides the circle of curvature at the ith sample by a factor γ, this
way relating the local point spacing to the local curvature. It is impor-
tant to note that any function yielding sample spacings could act as
a guidance term here.

Using r(s), we can generate a resampled point distribution. Starting
at arc length sj, the next point at sj+1 can be retrieved by running
along the curve as long as the following condition holds.

sj+1 − sj 6 argmin
s∈[sj−1,sj]

r(s) (22)

This way all locally needed spacings are taken into account.

The number of samples produced can be varied in two ways. The
factor γ directly influence the number of samples via the guidance

4.3 input data preprocessing 57

function. The factor β defines the allowed amount of variation in the
produced sample distances. Setting β = 0 spaces the samples equally
using the highest curvature value. Setting β to a high value enables
the samples to vary more freely, resulting in fewer samples needed to
realize a change of density.

In our implementation, a small stepsize ds is used for sub-sample
accuracy. The resampling algorithm can be summarized as follows.

1 Insert a sample at length s = 0.

2 Take a step ds along the polygonal curve and check equation 22

for the current position scur.

3 If equation 22 holds continue; otherwise, insert a sample at
(scur − ds).

4 Alternate 2 and 3 until the curve’s end is reached.

5 Insert a sample at the endpoint if needed.

(a) Input curve, uniform sampling.

(b) Curvature adapted resampling, β = 0.1, γ = 100.

(c) Curvature adapted resampling, β = 0.1, γ = 150.

(d) Curvature adapted resampling, β = 0.6, γ = 100.

Figure 37: Various results for curvature guided resampling.

Figure 37 shows results for the sharp S-part of a curve.

58 uniform cubic b-spline fitting in a class a modeling environment

4.4 curvature calculation from discrete data

In this section we will investigate various methods to calculate cur-
vature profiles from noisy discrete data. It will both cover methods
which are not robust against noise but very fast to calculate, and
methods which are computationally more involved but on the other
hand more robust.

Since our approach to B-spline fitting is curvature-driven, it is im-
portant to extract a curvature profile as accurate and stable as possi-
ble. But this can be problematic for many reasons.

- Curvature calculation - involving the first and second derivative
- is extremely sensitive to noise. This calls for either preliminary
smoothing of the data or robust means of estimation.

- Many robust methods may introduce a smoothing effect that
will lower the curvature profile’s amplitude.

- This results in a tradeoff between robustness and accurate am-
plitude.

- No curvature estimator can fully compensate data-loss which
happened in previous processing stages.

We will analyze each method with respect to the first three points.
As for the last problem, in order to be able to conduct a valid cur-
vature estimation the input data is expected to be sampled densely
enough. However, it is unlikely that we are able to estimate the in-
tended (designed) curvature from our discrete data at all. We will dis-
cuss this issue later on.

4.4.1 Method of comparison

(a) Sinusoidal curve (b) Curvature profile

Figure 38: Signal used to validate the discussed curvature estimation tech-
niques.

4.4 curvature calculation from discrete data 59

At the end of each sub-section results will be presented for both
noise-free and noise-afflicted data. The chosen test data consists of a
sinusoidal signal.

y(t) =
1

4
· sin(2πt) g(t) = (t,y(t)) t ∈ [0, 1]

The curvature of this graph can be calculated as (equation 7)

κ(t) = −
π2 · sin(2πt)(

1+ π2

4 · cos2(2πt)
) 3
2

.

The curvature estimated from the discrete values will be compared
to the ground-truth profile, and we will discuss the influence of noise,
as well as other characteristics of each method. In order to obtain
noisy samples the curve is distorted by noise following a Gaussian
distribution. Figure 38 shows the test signal and its curvature profile.

4.4.2 Signed curvature

Some methods described in this section only yield absolute curvature
values. In order to obtain the sign one must rely on some convention,
e.g. a fixed quantity. In case of a sufficiently planar curve, a reference
normal N can be provided that represents the plane the curve lies
in. For a point triplet the sign of curvature then easily can be chosen
using the following rule.

V1 = pk − pk−1 V2 = pk+1 − pk

S = (V1 ×V2) ·N sign(κ) =

{
−1 if S < 0

1 if S > 0

In the presence of noise it is hard to obtain useful information this
way. The method can be easily extended to be more robust by using
a sphere with radius r at the point of interest p. The sphere intersects
the curve at the positions s1 and s2. Retrieving the sign from the
triplet (s1, p, s2) is more robust, but the ball radius has to be chosen
wisely - feature adapted at best.

4.4.3 Curvature from segment angles

The most basic way to assign curvature values to discrete curve sam-
ples is to look at three consecutive points forming two neighboring
segments. In our discrete curve scenario this configuration is the min-
imal Frenet frame.

60 uniform cubic b-spline fitting in a class a modeling environment

A single curve sample pk and its two neighbors pk−1, pk+1 form
two segments pk−1pk and pkpk+1. A useful relation for arc-length
parametrized discrete curves comes from the field of discrete differ-
ential geometry and can be found e.g. in [40]. By calculating the seg-
ment direction vectors

D1 =
pk − pk−1
||pk − pk−1||

D2 =
pk+1 − pk
||pk+1 − pk||

one can define the curvature normal as follows.

Definition 22 (Curvature normal)

Nc = κ ·N = D1 − D2

The curvature normal Nc describes the length gradient in a discrete
sense and its length yields the discrete mean curvature. It can easily
be calculated as

κ = 2 sin
(α
2

)
,

where α is the angle between D1 and D2 (see figure 39). This for-
mula is scale invariant, since it depends only on the angle between
he segments. The curvature characteristic obtained this way has to
be seen as a distribution of a fixed amount of curvature over the dis-
crete curve. At higher sampling densities the curvature values will
decrease with the segment angles, as the total curvature will be dis-
tributed over more values. For accurately scaled curvature values, one
has to account for the segment lengths l:

κ =
2

l
sin
(α
2

)
.

For very small angles sin(α) becomes approximately α and the for-
mula simplifies to

κ ≈ α
l

.

For curves which are not parametrized by arc-length this formula
changes to (see [22])

κ ≈ 2α

l1 + l2
,

l1 and l2 being the segment lengths which differ in this case.
The calculation of the segment angle α can be a source for nu-

merical problems. A basic way to calculate α is to use the following
well-known relation.

4.4 curvature calculation from discrete data 61

Figure 39: The mean curvature is calculated from the normalized segment
directions.

α = acos(V1 ·V2) V1 =
pk − pk−1
||pk − pk−1||

, V2 =
pk+1 − pk
||pk+1 − pk||

.

The acos operation loses much precision if the angle is near any
multiples of π (including zero), where the derivative of cosine is zero.
This has the counter-intuitive effect that curvature computation with
acos becomes less precise when the sampling density increases. There
is also a chance for bit roundings, resulting in a dot product out of
the interval [0, 1] on which the acos function is defined.

The numerically more stable method uses the atan2 operation.

α = atan2(||V1 ×V2|| , V1 ·V2)

An alternative to trigonometric functions for angles near zero is to
calculate the projection of the point pk+1 on the line given by pk−1pk
(see figure 40). Since the angle is by definition very small, this leads
to the relation

sin(α) =
||pk+1 − pproj||
||pk+1 − pk||

≈ α.

There is a small error within the calculation of pproj, but generally
this operation is very stable.

Figure 40: Angle through projection: pk+1 is projected onto the line defined
by the first segment.

The following table compares the methods proposed for calculation
of the segment angle in terms of precision. The table shows the ab-
solute error of the result (double precision, 30 decimals shown). One

62 uniform cubic b-spline fitting in a class a modeling environment

can see that near zero atan2 has far better precision than acos. Still
better when having very small angles is the projection method, but
the error grows very fast with the angle getting bigger.

Reference angle Error acos Error atan Error projection

10−8 0.000000010000000000000000000000 0.000000000000000000000000333619 0.000000000000000000000000000000

10−7 0.000000000039971880624109754000 0.000000000000000000000005783802 0.000000000000000000000172053567

10−6 0.000000000044449303341964741000 0.000000000000000000000047045897 0.000000000000000000166441974135

10−5 0.000000000000413743512513815510 0.000000000000000000000576544887 0.000000000000000166667284899440

10−4 0.000000000000262206882183264880 0.000000000000000000002474924393 0.000000000000166666661483190480

10−3 0.000000000000007831409132297296 0.000000000000000000013552527156 0.000000000166666658339004180000

10−2 0.000000000000001441555208536727 0.000000000000000000282061971436 0.000000166665833335744030000000

10−1 0.000000000000000555111512312578 0.000000000000000008558420899057 0.000166583353171836920000000000

(a) ng = 0.0 (b) ng = 10−6

(c) ng = 10−5 (d) ng = 10−4

Figure 41: Curvature from angles: Results for a sinusoidal curve at various
noise levels. Reference curvature=blue, calculated curvature=red

Figure 41 shows results for the sinusoidal curve. On the noiseless
curve the true curvature can be retrieved very accurately if the curve
is sampled dense enough. However, with added noise this method
soon becomes unusable, since a noise amplitude as small as 10−4

will distort the curvature profile beyond recognition.

4.4 curvature calculation from discrete data 63

4.4.4 Curvature from circumcircle

Another fast method makes use of the fact that three consecutive
points form a triangle, and that the circumcircle of this triangle ap-
proximates the local circle of curvature. The radius of the circumcircle
through three points a, b, c can be calculated as

r =
a · b · c
4F

a =
∥∥ab

∥∥ ,b =
∥∥bc

∥∥ , c = ‖ac‖ ,

where F is the area of the triangle abc. One can invert the formula
to obtain a measure for the curvature value.

|κ| =
4F

a · b · c
(23)

The area F can be expressed as

F =

∥∥ab× ac
∥∥

2
, (24)

so when inserting into 23 one obtains

|κ| =
2
∥∥ab× ac

∥∥
a · b · c

. (25)

Numerically this expression is remarkably stable, since distances
and the cross product can be evaluated very accurately even at angles
near zero. Only very small segment lengths may introduce stability
issues.

Figure 42: Curvature from circumcircle.

The configuration is visualized in figure 42.
As shown in figure 43 the three point method also suffers from a

strong sensitivity to noise, but its robustness increases nearly in the
order of magnitude compared to the segment angle based method.
An explanation for this could lie in its increased numerical robust-
ness.

64 uniform cubic b-spline fitting in a class a modeling environment

(a) ng = 0.0 (b) ng = 10−5

(c) ng = 10−4 (d) ng = 10−3

Figure 43: Curvature from circumcircle: Results for the sinusoidal curve at
various noise levels ng. Reference curvature=blue, calculated cur-
vature=red

4.4.5 Robust three point method

Figure 44: Robust retrieval of three points for discrete curvature calculation
using spheres of radius r.

Curvature estimation from three consecutive samples is very sensi-
tive to noise. Similar to the robust version of sign computation (see
4.4.2) it can be extended to use a sphere of radius r around the ver-
tex of interest p for retrieval of three more robust positions. This is

4.4 curvature calculation from discrete data 65

shown in figure 44.

There are some downsides to this method.

- The method obtains an inherent smoothing effect.

- Big radii which are not adapted to the local feature geometry
will generate erroneous curvature.

- Properties of the captured curve segment are not taken into ac-
count.

The choice of the correct spatial radius is thus of the utmost impor-
tance, as with all neighborhood-based methods.

(a) ng = 0.0, r = 0.05 (b) ng = 10−3, r = 0.05

Figure 45: Performance of the neighborhood-extended three point method
in terms of smoothing and noise suppression. Reference curva-
ture=blue, calculated curvature=red

Figure 45 shows results for the circumcircle method. In 45a the
smoothing effect is visualized, 45b shows the behavior in presence
of noise. We can see that even substantial amounts of noise can be
suppressed quite successfully, in exchange for a notable loss of ampli-
tude.

4.4.6 Curvature from integral invariants

Extending the three point methods to ball neighborhoods already
achieves a great amount of robustness against noise, but one big prob-
lem is that we just jump back and forth on the curve. We do not re-
ally take into account the geometric properties of the curve segment
which is captured by the ball neighborhood.

Integral invariants were introduced by Manay et al. in [28]. The
original intent was to define unique descriptors for planar curves that
are robust against noise, to be used e.g. for curve matching. Integral

66 uniform cubic b-spline fitting in a class a modeling environment

invariants are obtained by integrating over local neighborhoods of a
shape, which are represented by balls of a certain radius. Compared
to methods from the field of discrete differential geometry, they have
the advantage of not having to change the geometry itself in order to
implement multiscale behavior. Instead the different scales are repre-
sented by the radius of the ball neighborhood involved. The use of
integration introduces an implicit smoothing effect, making integral
invariants less sensitive to noise. Further, they can be described and
visualized in an elegant way.

Inspired by the work of Manay et al., Pottmann et al. studied the
behavior of various integral invariants and their relation to curvature
in [35]. All of the following definitions and explanations can be found
in more detail in their text.

The key concept behind integral invariants can easily be explained
in two dimensions. A curve in the plane splits a planar area into
two parts, one part named the domain D. Around the curve point
of interest p, there is a neighborhood region Br(p) represented by a
disk of radius r (see figure 46). Two important quantities regarding
curvature estimation in 2D are introduced, one being the intersection
of the disk Br(p) with the domain D, which yields a planar area. We
can describe this disk by a unit disk B, scaled by the radius r and
shifted to p.

Ar(p) = Br(p)∩D = (p + rB)∩D (Area invariant)

The other one is the intersection of the disk’s outline Sr(p) (a circle)
with the domain D, represented by a circular arc. Similarly, we can
describe this outline by a unit circle S, scaled by the radius r and
shifted to p.

CAr(p) = Sr(p)∩D = (p + rS)∩D (Arc invariant)

The radius r represents a certain scale of estimation, since features
that are much smaller than r will not have much influence on the
result of the integration. It is important to note that the terms »disk«
and »circle« can always be changed to »ball« and »sphere« when treat-
ing surfaces. In this case the area invariant for instance becomes the
volume invariant.

Pottmann et al. define the indicator function 1D(x) as the function
yielding 1D(x) = 1 if the point x lies in the domain D, and 1D(x) = 0
otherwise. The area invariant of Manay et al. can then be described
by the following integral.

4.4 curvature calculation from discrete data 67

Figure 46: Integral invariants: The disk with radius r intersects the domain
D resulting in the area Ar. The circle with the same radius inter-
secting with D results in CAr, which is the length of a circular
arc.

Definition 23 (Area invariant)

Ar(p) =
∫

p+rB
1D(x)dx

The arc invariant can be described in a similar way.

Definition 24 (Arc invariant)

CAr(p) =
∫

p+rS
1D(x)dx =

d
dr
Ar(p)

Pottmann et al. propose estimates for the two invariants by using
the Taylor expansion

CAr = πr− κr
2 +O(r3), (26)

which can be derived by locally describing the curve by the parabola

y = κ
x2

2
.

By integration the area invariant can be expressed as

Ar =
π

2
r2 −

κ

3
r3 +O(r4). (27)

It is important to note that these estimates only hold for smooth
curves.

Calculating the length CAr of the circular arc (figure 46) can be
achieved easily.

68 uniform cubic b-spline fitting in a class a modeling environment

Figure 47: Polygon used to approximate the area for Ar.

The fast and precise calculation of Ar remains. There exist various
approaches to approximate the area from discrete data. We can for
instance close the curve segment captured by the ball neighborhood
using samples from a circular arc. The discrete curve and the sampled
arc then form a closed polygon (see figure 47), whose area can easily
be calculated as follows.

Definition 25 (Area for simple polygons) Be P a simple 2D polygon with n vertices
p0, . . . , pn−1. The area of this polygon is then given by

A =
1

2

n−1∑
i=0

xiyi+1 − xi+1yi pn = p0

(a) Approximation using bars. (b) Approximation using quadtree
cells.

Figure 48: Methods to approximate the area for Ar.

Assumed the neighborhood is adapted to the captured feature such
that the curve piece inside approximately forms a graph, the area can
be approximated by rectangular bars, as shown in 48a. This should
be feasible for any data which varies reasonably smooth.

For the 3D case Pottmann et al. suggest to discretize the volume
invariant using octree cells. The same can be achieved for 2D curves
using a quadtree (see figure 48b). Further, since the desired integrals
can be obtained by convolution of the indicator function with the re-
spective neighborhood, a grid approach is suggested, which involves

4.4 curvature calculation from discrete data 69

calculation of the FFT. The problem here remains to find a fast ap-
proximation to the indicator function.

Irrespective of the used method a poor estimate will result in a cur-
vature offset, since equation 27 compares the estimate with the area
of a half circle (r2π/2).

For our implementation the polygonal approach and the graph-like
approach have been implemented, and both performed well in our
scenario.

Equations 26 and 27 already produce signed curvature values by
comparing the invariants to half-circle counterparts. If the correct side
of the domain can be identified for all computations, the curvature
signs will be coherent.

(a) r = 0.02 (b) r = 0.05 (c) r = 0.1

Figure 49: Curvature from arc invariants: Influence of scale on the resulting
curvature. Reference curvature=blue, estimated curvature=red

Figure 49 shows curvature values computed from CAr at various
scales of estimation. No noise was added to the test data in order to
visualize the effect of the neighborhood radius on the estimation. The
inherent smoothing effect results in a drop of amplitude, getting big-
ger as the radius widens.

(a) ng = 10−5, r = 0.05 (b) ng = 10−4, r = 0.05 (c) ng = 10−3, r = 0.05

Figure 50: Curvature from arc invariants: Results for a sinusoidal curve
at various noise levels ng with fixed radius. Reference curva-
ture=blue, estimated curvature=red

70 uniform cubic b-spline fitting in a class a modeling environment

For figure 50 we added Gaussian noise to our test data. In terms of
robustness this method is superior to the methods described in the
last sections.

(a) r = 0.02 (b) r = 0.05 (c) r = 0.1

Figure 51: Curvature from area invariants: Influence of scale on the resulting
curvature. Reference curvature=blue, estimated curvature=red

(a) ng = 10−5, r = 0.08 (b) ng = 10−4, r = 0.08 (c) ng = 10−3, r = 0.08

Figure 52: Curvature from area invariants: Results for a sinusoidal curve
at various noise levels ng with fixed radius. Reference curva-
ture=blue, estimated curvature=red

Results for the area invariant are shown in figure 51. We again see
the influence of the spatial scale on the estimated curvature values,
but compared to the arc invariant the smoothing effect here is lower.
This shows that the area invariant describes the local curve shape
more accurately, incorporating more data into the estimate. Figure 52

shows results for the noisy data set.

The area of the intersected domain cannot be calculated exactly for
discrete data, which results in an inherent error in the estimated cur-
vature values. Figure 53 visualizes the effect of this error on the cur-
vature profile. The outline of the intersected domain is sampled with
varying density. Then the area is calculated from the resulting poly-
gon. The error increases as the sampling density gets lower, which
can be seen in 53b and 53c. Since the area of the obtained polygon is
always smaller than the true area of the domain, the error shows as a

4.4 curvature calculation from discrete data 71

(a) r = 0.02, s = 2. With the pre-
cise area calculation the curvature
is pretty accurate.

(b) r = 0.02, s = 1
5 . Here the error

gets bigger, as the area is calcu-
lated less precisely.

(c) r = 0.02, s = 1
8

Figure 53: Curvature from area invariants: Influence of the domain area cal-
culation error on the resulting curvature. The sample rate s of the
constructed polygon is measured in samples/degree. Reference
curvature=blue, estimated curvature=red

constant curvature offset.

Integral invariants are a very elegant framework for estimating cur-
vature from discrete data at various scales. We prefer the area in-
variant over the arc invariant, since it incorporates more data of the
captured local geometry into the estimate, and thus obtains a more
accurate amplitude even for higher spatial radii. Drawbacks are the
more involved computation and the need for an approximation to the
true domain intersection area.

4.4.7 Curvature estimation using line integrals

Another method for discrete curvature estimation is the one pre-
sented by Lin et al. in [26]. Similar to integral invariants it makes
use of a ball neighborhood and integration inside, but the integrals
are approximated instead of being actually carried out, resulting in

72 uniform cubic b-spline fitting in a class a modeling environment

constant complexity. It is thus more similar to the arc invariant than
to the area invariant. The method makes use of principal component
analysis to determine a normalized frame for the estimation.

We look at an arc-length parametrized two dimensional curve c(s).
To calculate the curvature at a curve point p(s0) a local coordinate
system is used for analysis. In this coordinate system the curve’s tan-
gent t(s0) and normal n(s0) coincide with the X and Y axis. In this
frame the curve can be seen as a graph g(x) and its Taylor expansion
at x = 0 written as

g(x) = g(0) + xg ′(0) +
x2

2
g ′′(0) +O(x3).

Since g ′′(0) equals the curvature κ (arc-length parametrization),
this simplifies to the parabolic equation

ga(x) =
κ

2
x2,

a common term to locally approximate a curve using its curvature.
A line integral is an integral over some function f(x,y) along a path

D.

I(f) =

∫
D

f(x,y)dl

In this setting the path D is given as

D =
{
(x,y)|x2 + y2 = r2,y > g(x)

}
,

Figure 54: The local coordinate system at p uses the curve’s tangent t and
normal n. The line integrals are evaluated along the arc D.

which describes the part of the circle B centered at p(s0) which lies
above the curve g(x) (see figure 54).

4.4 curvature calculation from discrete data 73

Using the local curve approximation ga(x) this line integral can
roughly be approximated by

I(f) ≈ Î(f) =
∫
B+

f(x,y)dl−
∫ 1
2κr

2

0

f(r,y)dy−

∫ 1
2κr

2

0

f(−r,y)dy. (28)

Figure 55: The line integral over D is approximated by integrating over the
half circle (blue), and then subtracting the integrals over the two
line segments (red).

The first integral represents the upper half B+ of the circle B. The
two integrals that are subtracted represent the parts of the circle be-
tween y = 0 and g(x). They are approximated by straight vertical line
segments at x = ±r, reaching from the x-axis to g(x) (see figure 55).

In the 2D case the covariance matrix of the path D can be written
as

Σ̂(D) =

[
I(x2) I(xy)

I(xy) I(y2)

]
−

1

l(D)

[
I2(x) I(x)I(y)

I(x)I(y) I2(y)

]
, (29)

l(D) being the length of the path. In this normalized setting the
covariance matrix is a diagonal matrix, and both I(x) and I(xy) evalu-
ate to 0. We are interested in the first pivot element of the covariance
matrix, which gives

I(x2) =
π

2
r3 − κr4.

From this follows an estimate for curvature.

Σ1,1 ≈
π

2
r3 − κr4 → κ ≈ π

2r
−
Σ1,1

r4
. (30)

In order to obtain this information in any coordinate system, Lin et
al. make use of PCA. Figure 56 visualizes the angles φ0 and φ1, which
are the rotation angles of the ball intersections s0 and s1 relative to the

74 uniform cubic b-spline fitting in a class a modeling environment

Figure 56: Curvature calculation: the line integrals can be parameterized by
the angles φ0 and φ1. The coordinate system does not matter,
PCA is used to retrieve it.

normalized coordinate system. Lin et al. express the line integrals of
the covariance matrix using these two angles as follows.

I(x2) =
r3

2
(φ1 −φ0 + sin(φ1)cos(φ1) − sin(φ0)cos(φ0))

I(y2) =
r3

2
(φ1 −φ0 − sin(φ1)cos(φ1) + sin(φ0)cos(φ0))

I(xy) =
r3

2

(
sin2(φ1) − sin

2(φ0)
)

I(x) = r2(sin(φ1) − sin(φ0))

I(y) = −r2(cos(φ1) − cos(φ0))

l(D) = r(φ1 −φ0)

By inserting into 29 and carrying out eigenvalue decomposition on
the corresponding covariance matrix, one can obtain the normalized
coordinate frame that was used earlier. The eigenvectors approximate
the curve’s tangent and normal at p. The eigenvalue corresponding
to the tangent eigenvector can then be inserted into expression 30 to
obtain the curvature value. For the desired tangent eigenvector v the
following rule must hold (which can easily be seen when looking at
56).

sign(−→ps0 · v) 6= sign(−→ps1 · v) (31)

The other eigenvector approximates the curve’s normal and is or-
thogonal to the first one.

For the calculation of eigenvalues and eigenvectors the following
relations are useful. Let M be a 2x2 matrix.

M =

(
a b

c d

)

Then the eigenvalues of M can be calculated as

4.4 curvature calculation from discrete data 75

e0 =
1

2
tr(M) +

√
tr2(M)

1

4
− det(M),

e1 =
1

2
tr(M) −

√
tr2(M)

1

4
− det(M).

The eigenvectors can be calculated from the eigenvalues and M.

(
e0 − d

c

)
,

(
e1 − d

c

)
if c 6= 0(

b

e0 − a

)
,

(
b

e1 − a

)
if b 6= 0(

1

0

)
,

(
0

1

)
if b = 0, c = 0

(a) r = 0.05 (b) r = 0.01

Figure 57: Influence of the radius of estimation. Reference curvature=blue,
calculated curvature=red

(a) ng = 10−5, r = 0.05 (b) ng = 10−4, r = 0.05 (c) ng = 10−3, r = 0.05

Figure 58: Results for the sine curve at various noise levels ng with fixed
radius. Reference curvature=blue, calculated curvature=red

Figure 57 shows the influence of the neighborhood radius, figure
58 the amount of noise suppression. The method introduces an equal

76 uniform cubic b-spline fitting in a class a modeling environment

amount of smoothing as the arc integral invariant method, also noise
suppression is very similar.

4.5 smooth curvature estimation by adaptive curve re-
sampling

We investigate another method for curvature estimation, which is
based on the idea that not all samples need the same amount of data
support when the curve is preprocessed. It represents a mixture of the
last two sections and involves both curvature estimation and curve
smoothing. At the end we obtain a smooth curve and a correspond-
ing curvature profile. This is an advantage, since pure curvature esti-
mation gives us an estimated profile which we cannot validate. After
all we do not obtain the true curvature profile of our discrete input
data, and we cannot generate the curve that is represented by the es-
timated curvature profile easily. With a corresponding smooth curve
at hand we can at least compare the generated curve to the original
samples and see in which way it deviates from them.

In the last sections we analyzed several methods for curve smooth-
ing and curvature estimation regarding their ability to reconstruct
the accurate curvature profile of the input data and their robustness
against noise. The review of robust scale-based curvature estimators
has revealed some important issues. Scale-based curvature estima-
tors obtain an inherent smoothing effect, which already shows at low
scales and gets more severe at bigger ones. On the other hand we
need a certain scale of estimation in order to cancel out enough noise
present in the data. It is very critical to find an optimal spatial scale
radius for the estimator in every curve region, too small radii causing
noisy estimates (variance of the signal), too big ones damping the sig-
nal amplitude (estimator bias) or even mixing up multiple features.

Methods have been suggested to adapt the radius to local curve
properties (see for instance [21] or [26]), but we have the impression
that it is not easy to find a general solution to this problem for a wide
range of scenarios (varying sample densities, noise levels, etc.). Ac-
curate curvature amplitude is not an issue in many applications, but
in our case we want to base metric quantities on it. Thus we rely on
accurate estimation.

Even if a robust curvature estimator is quite elegant in the sense
of not changing the geometry itself, we should ask ourselves if it is a
problem to make changes to the geometry in the first place. As men-
tioned earlier, there exist several sources for flaws (noise, weakly sam-
pled regions, scanning-inaccuracies, etc.) which diminish the trust in
our input samples to some degree.

4.5 smooth curvature estimation by adaptive curve resampling 77

Furthermore, since we want to place limit points onto the discrete
curve, it might be wiser to fit a smooth and balanced version of the
input data.

For an alternative approach we first project the input data onto a
MLS-curve (section 4.3.2.3). For this we use a rather small spatial scale
(representing a multiple of the local point spacing) of fs = 5 in order
to stay true to the original data. We thus on average incorporate 11

samples into our curve estimate, which smooths down a substantial
amount of noise, but is small enough not to let the MLS-curve de-
viate too much from data with less noise. The sharpness parameter
is set to a rather small value of σn = 0.2 in order to make the MLS
estimate adapt more closely to the shape of the input samples. There
is the option to add more samples in weakly sampled regions before
continuing, an advantage of the MLS-definition of our initial curve
estimate. This way we can also mitigate the effect of missing regions.

An upper bound for the noise level dn is estimated by keeping
track of the maximum MLS projection distance, which is the distance
of a noisy curve sample pi to its least squares solution MLS(pi).

dn = max
i

MLS(pi)

Then a curvature profile for the MLS-curve is computed using one
of the robust estimators described in the last sections (the area inte-
gral invariant in the current implementation), adapting the radius of
estimation rκ to either the estimated noise level dn or to the average
point spacing davg.

rκ = fκ ·max(dn,davg)

The curvature scale is set to fκ = 10. Since we only need a first
rough estimate of the true curvature, it does not matter if the gener-
ated profile gets a little oversmoothed or still obtains moderate noise.

Using this first - and possibly still noise-afflicted - curvature es-
timate, we resample the MLS-curve with the curvature-guided ap-
proach of section 4.3.3 and obtain a feature-adapted sample distribu-
tion. The falloff value (rate of change) is set to a rather strict value
of β = 0.1 (10 percent) in order to obtain smoothly changing sam-
ples. This also alleviates potential noise on the guidance function.
The minimum and maximum sample distances produced by the re-
sampling algorithm are furthermore limited to multiples of the aver-
age point spacing davg, in our case smin = 0.7 · davg and smax =

20 · davg. A minimum sample density lower than the average sample
distance of the original curve allows us to push more samples into

78 uniform cubic b-spline fitting in a class a modeling environment

high-curvature regions. The point density parameter γ is chosen as a
design parameter.

We evaluated our default parameters for various sample densities
and noise levels and they proved to work well for our test data.

What did we achieve with this resampling? On one hand we low-
ered variation in low-curvature regions, which should already reduce
a certain amount of noise. On the other hand we pushed data support
from feature-poor regions into feature-rich regions of the curve.

Having achieved better support for strong features, we apply ni
iterations of centroid preserving smoothing (section 4.3.2.2) to the the
resampled curve. Here the density parameter γ of the resampling
algorithm comes into play. As γ decreases, samples first vanish in
feature-less regions. The smoothing step will afflict this regions more
aggressively, since they have lower data support. By tuning the den-
sity of the resampling process we are able to vary between a smoother
curve with less variation (low γ), and a curve which is more faithful
to the original data (high γ).

We finally estimate the resulting curvature profile using one of
the DDG-based methods, which yield more accurate curvature am-
plitude for smooth data.

For the examples below we used a fixed amount of smoothing iter-
ations ni = 30.

We will first inspect results for our sine curve. Figure 59 shows
that even under heavy noise the original curvature can be retrieved.
In 59a we see the curvature-adapted point distribution. The samples
are moved from low-curvature regions into high-curvature regions,
just as expected.

Figure 60 shows results for a B-spline curve with known curva-
ture profile. This is not an easy setup, since there are many rapid
high-curvature regions around the S-part. No noise has been added
in order to show the basic accuracy of the method. In 60b we see that
the algorithm accurately reproduces the ground truth curvature. In
60c γ has been reduced and the curvature profile now obtains much
fewer oscillations while maintaining the overall shape and amplitude.

Figure 61 shows results for the same spline curve, but a substantial
amount of noise has been added. Even though details get distorted a
little, the overall profile stays faithful to the ground truth. The ampli-
tude is successfully maintained as well.

One drawback of the method is that it depends on several parame-
ters. On the other hand it achieves remarkably stable curvature ampli-

4.5 smooth curvature estimation by adaptive curve resampling 79

(a) Input data (red), result curve
(blue), γ = 25

(b) Input data (red), result curve
(blue), γ = 25

(c) Input curvature (blue), result cur-
vature (red), γ = 230

(d) Detail: Input curvature (blue), re-
sult curvature (red), γ = 25

Figure 59: Robust curvature retrieval for artificial data with known ground
truth.

tudes even at substantial noise levels. The most important parameters
to tune are the resampling density γ and the number of smoothing
iterations ni. Even though we adapt the other parameters to both the
noise level and the point density of the input data, a certain depen-
dence of the results on these factors remains.

It is suggested to use parameter sets for different applications. Once
a set of parameters has been chosen, possibly with visual feedback, it
is assumed that this parameter set will achieve good results for a cer-
tain 3D scan or even a certain domain of models. For our metric 3D
scans of car parts we are using rather conservative values of γ = 150

and ni = 50, which proved to yield smooth curvatures and at the
same time preserved important features.

The inherent loss of information that comes with this step of pre-
processing might cause additional concern, but since we reduce infor-
mation in feature-less regions first this is acceptable to us.

80 uniform cubic b-spline fitting in a class a modeling environment

(a) Detail: Input data (red), result curve (blue), γ = 20

(b) Input curvature (blue), result cur-
vature (red), γ = 400

(c) Input curvature (blue), result
curvature (red), γ = 20

Figure 60: Robust curvature retrieval for artificial data with known ground
truth.

(a) Detail: Input data (red), result curve (blue), γ = 20

(b) Input curvature (blue), result cur-
vature (red), γ = 20

Figure 61: Robust curvature retrieval for artificial data with known ground
truth. Gaussian noise added.

4.6 choosing the right preprocessing method

After investigating various approaches to the problems of curve beau-
tification and curvature estimation, we are still concerned about this

4.6 choosing the right preprocessing method 81

initial stages, since the removal of unneeded features (noise, oscilla-
tions, etc.) requires a certain definition of »important feature« and
»unneeded feature«. We will elaborate on this in the results chapter
of this work.

We make use of the resampling-based approach of section 4.5 though,
for reasons stated below.

- It yields results which are faithful to the ground truth curvature
even under substantial noise.

- It is stable at high curvature and preserves curvature amplitude.

- It yields a smooth curvature profile we can measure with.

- It yields a smooth intermediate shape for our limit positions.

- The possibility to get a matching smooth curve and curvature
profile.

Varying sampling densities are no problem for us, since our al-
gorithm interpolates between provided curvature values and more
information is provided in important feature-rich regions.

We decide against robust curvature estimators, because they al-
ready show a bias at lower scales and yield a curvature profile which
geometrically does not fully correspond to the curve that generated it.

(a) Input curve.

(b) Detail S-part from a). Input curve (red), smoothed curve (blue)

Figure 62: Preprocessing result, curve.

Figure 62a shows a curve sampled from the scan of a car door. Fig-
ure 62b compares this input curve to the preprocessed curve in the
S-part. We see that the smooth curve follows the input data quite ac-
curately, but does not obtain the strong dents of the original curve

82 uniform cubic b-spline fitting in a class a modeling environment

(a) Smooth curvature profile of preprocessed
curve.

(b) Detail from a). Input curvature
(blue), smooth curvature (red)

(c) Detail from a). Slightly smoothed in-
put curvature (blue), smooth curva-
ture (red)

Figure 63: Preprocessing result, curvature.

(which stem from missing regions in the scan).

Figure 63 shows results for the curvature of the same test data. In
figure 63a we compare the obtained smooth curvature profile to the
raw curvature of the input data. The input curvature is distorted by
noise, so a true comparison is not easy. In 63b we applied a small
amount of centroid preserving smoothing (50 iterations). This way
we obtain a curvature trend which is easier to compare. As we can
see, our result curvature approximates the oscillations in a smooth
and expected way.

4.7 the required mesh width : a local measure for limit

point spacing

The key principle the presented B-spline fitting technique is based
on, is the spacing of B-spline limit points along a discrete curve to
obtain a satisfying data fit. For a user the manipulation of limit points
is very intuitive and they can be parameterized conveniently by a
vector of (normalized) arc lengths. But where exactly to place the
limit positions?

4.7 the required mesh width : a local measure for limit point spacing 83

(a) Mesh width between two limit
points.

(b) Starting from the blue limit points,
where to put the next ones?

Figure 64: Motivation

A closely related question that this section will try to answer is: If
one limit point was chosen on the curve, where to put the next one? We
could also ask for the adequate local mesh width of the limit point
distribution at some curve position p(t), the mesh width between two
limit points being measured in arc length along the curve (see figure
64a). In order to stay true to the common nomenclature, we will talk
of mesh widths, even though we actually treat polygons rather than
limit meshes. Figure 64b motivates this question by showing two
quite different limit point starting positions and possible positions
for their neighbors. It is by intuition that one would assign a broader
mesh width to the left limit point than to the right one, since more
limit points will surely be needed in high-curvature regions. This al-
ready gives a hint that the limit point distribution should somehow
be related to local curvature. Further, it is also desired to realize as
broad mesh widths as possible in order to obtain sparse limit point
distributions. This reduces the complexity of the produced geome-
try and prevents unnecessary waves on it. We are interested in the
maximum limit point mesh width that can be realized in a certain curve
region. But how can we quantify this local property?

In order to give an answer to this question, we locally approximate
the curve region around a curve position p(t) by the circle of curva-
ture at p(t). Since it is an important quality aspect of the final limit
distribution (section 4.1), we assume that the limit points are regular,
and thus that they so not vary to rapidly in a certain curve region. We
place four equally spaced limit points on this circle of radius r = 1/κ,
such that a uniform cubic B-spline segment g(t) is uniquely defined.
We are interested in the maximum distance error of this B-spline seg-
ment to the circular curve approximant.

The spline segment will not fully resemble our circular approxima-
tion, a fact that will be discussed in section 4.8. Assuming the spline
is parameterized between 0 and 1, its maximum deviation etol from
the circle can easily be retrieved as

84 uniform cubic b-spline fitting in a class a modeling environment

Figure 65: Construction of a cubic uniform B-spline segment on a circle. The
distance etol measures the maximum deviation of the B-spline
segment from the circle.

etol = r− ||g(0.5)||.

This basic construction is depicted in figure 65.

The maximum deviation etol is now fixed at some user defined
value. What is the maximum arc-length stol the limit points can be
spaced along the circle, without causing the error between spline and
circle to exceed etol?

(a) Limit points are sam-
pled along the circle at
distances s.

(b) The limit points are
used as control points
and yield a B-spline
segment gl(t).

(c) The limit points are scaled
to retrieve the control
points, such that the spline
endpoints equal L1 and L2.

Figure 66: Obtaining the control points from limit points sampled along a
circle.

In order to answer this, we first need to parameterize the error
ecur(s) in a convenient way. We will make use of the fraction α of a
full circle instead of the arc-length s, in order to describe our spacing
along the circle. This also frees the resulting terms of specific units.

4.7 the required mesh width : a local measure for limit point spacing 85

α = 1
3 means that we cover the whole circle with four limit points

and will be the maximum spacing. The value α thus lies in the range[
0, 13

]
. An arc-length s can always be retrieved from α via s = 2πrα.

Let us imagine a circle at the origin of the coordinate system and
limit points placed along it. We directly use the limit points L along
the circle as a control polygon for the B-spline curve gl(t). The end-
points of g(t) are supposed to lie on the circle, but the ones of gl(t)
deviate from this position by r− ||gl(0)||. We can use the difference
in scale to correct for this deviation and to obtain the true control
polygon C as

Ci =
r

||gl(0)||
· Li.

The steps to obtain the control points from a given limit configura-
tion are depicted in figure 66.

Figure 67: Limit point distribution for control point scale retrieval.

In order to express ||gl(0)|| in a more convenient way using α, let
us relocate the limit points such that L1 is moved to (0, r) (see figure
67). The B-spline segment endpoint gl(0) now lies somewhere on the
y-axis at (0,h). By using the equation for a uniform cubic B-spline
with four control points (equation 4) and the circle fraction α, we can
express ||gl(0)|| as

86 uniform cubic b-spline fitting in a class a modeling environment

||gl(0)|| = h =
1

6
r cos(2πα)+

2

3
r cos(0)+

1

6
r cos(−2πα) =

2

3
r+

1

3
r cos(2πα).

Having obtained the control points, we can also express the point
of maximum deviation on g(t) using α. For this we will switch back
to the limit point distribution shown in figure 65, such that g(0.5) lies
on the y-axis at (0,k). We can rewrite ||g(0.5)|| as

||g(0.5)|| = k =
1

48
r2 cos(3πα) +

23

48
r2 cos(πα) +

23

48
r2 cos(−πα) +

1

48
r2 cos(−3πα)

=
r2
24

cos(3πα) +
23

24
r2 cos(πα),

where r2 = r2

h .
To obtain the current error ecur(r,α) we can now use the two re-

trieved terms.

ecur(r,α) = r−
r
24 cos(3πα) + 23

24r cos(πα)
2
3 +

1
3 cos(2πα)

The function ecur(r,α) is non-linear and cumbersome to invert to
α(r, ecur). We thus formulate an optimization problem with the fol-
lowing functional to be minimized.

f(α) = |etol − ecur(r,α)| α ∈
[
0,
1

3

]
It converges fast and reliable with simple optimization techniques,

since there is only a single global minimum in the given range. If etol
cannot be realized on the given circle, the reachable minimum will be
at α = 1

3 , as desired.

The spacing stol obtained by this optimization is used to approxi-
mate the local mesh width that is required at a certain curve sample
p(t), required meaning that it must not be exceeded by limit point
mesh widths in this curve region. Equally, it measures how far from
this sample the next limit position can be spaced along the curve at
maximum. It will from now on be referred to as the curve position’s
required mesh with. The required mesh widths depend on the local cur-
vature and the error etol, which the user may vary to influence the
spacing and thus the density of the limit positions.

It is clear that the circle of curvature soon becomes a very inac-
curate estimate for the curve as one moves away too far from the
position p(t), but in terms of local curvature behavior it is at least an
estimate that enforces closer mesh widths.

4.8 connection to subdivision artifact analysis 87

(a) etol = 10−2, r ∈ [0.001, 1] (b) etol = 10−2, r ∈ [0.001, 1000]

(c) etol = 10−3, r ∈ [0.001, 1] (d) etol = 10−3, r ∈ [0.001, 1000]

(e) etol = 10−4, r ∈ [0.001, 1] (f) etol = 10−4, r ∈ [0.001, 1000]

Figure 68: Required mesh width charts. Required mesh width plotted over
log(r) at various error bounds.

Figure 68 shows the required mesh width plotted over the radius
of curvature r for various error bounds etol and parameter ranges.
One can see that the retrieved mesh widths vary pretty similar on all
error levels, but with different absolute scale. Note that the scale itself
does not vary linearly with the error.

4.8 connection to subdivision artifact analysis

The results obtained from this empirical approach can also be related
to the theoretical results of Augsdörfer et al. in [2]. For this let us
shortly discuss a phenomenon which is inherent to B-splines.

When modifying the control points of a uniform cubic B-spline
curve, one can often identify irregularities in the associated curva-
ture profile. These irregularities show as strange bends that are not
strongly visible at one time, and suddenly very present at another,
which is shown in figure 69. This behavior is very unpredictable and
thus not very pleasing for high-quality design. It calls for further anal-
ysis.

88 uniform cubic b-spline fitting in a class a modeling environment

(a) A uniform cubic B-spline curve. (b) Curvature profile: There are sev-
eral parts of the curve that yield
unpleasant bends.

(c) The same curve slightly manipu-
lated at some control points.

(d) Curvature profile: When modify-
ing the curve, new irregularities
are suddenly introduced.

Figure 69: Irregularities in the curvature profile of a B-spline curve.

In order to visualize the phenomenon in a more standardized set-
ting, a closed B-spline curve can be investigated whose control poly-
gon consists of equally spaced points sampled from a circle. What
kind of shape does such a control polygon yield? Intuitively the an-
swer would be a circle, but this is not the case. This can easily be seen
when looking at the curvature profile in figure 70. What should be
a straight horizontal line consists of many ripples with equal am-
plitude, which are the mysterious »bends« mentioned earlier. The
curvature maxima manifest at the segment borders, thus inside a
segment the curvature profile »sags«. The figure also shows empir-
ically that the amplitude of the ripples varies inversely proportional
with the sampling density. The higher sampling density in 70c results
in smaller ripples and thus the curve resembles a circle much more
closely.

In [2] Augsdörfer et al. investigate this behavior from the viewpoint
of subdivision artifact analysis. Artifacts means features of the produced
shape that can not be avoided by the designer by movement of control
(limit) points. One can imagine that such unpredictable »features« in
a shape are counterproductive for high-quality modeling.

Each subdivision process can be represented by a special matrix
called subdivision mask. In one step of subdivision the coefficients

4.8 connection to subdivision artifact analysis 89

(a) Control polygon consisting of cir-
cle samples, n = 6.

(b) The closed curve defined by this
control polygon is not exactly a cir-
cle, since its curvature profile is
not constant, but instead consists
of many ripples.

(c) Control polygon consisting of cir-
cle samples, n = 16.

(d) A higher control point sampling
density lowers the amplitude of
the observed ripples.

Figure 70: B-spline curves do not reproduce circles.

of this mask are used to produce new vertices as a linear combina-
tion of old ones. By splitting up this mask, it can be shown that each
subdivision scheme consists of a sampling stage for refinement and a
subsequent filter stage that smoothes out the refined samples.

The filter stage can be further split up into a convolution of a num-
ber of smoothing matrices and a so called kernel. The number of
smoothing matrices that can be extracted, corresponds to the number
of (1+ z) factors in the z-transform of the mask. The kernel is what
remains after sorting out the smoothing parts.

The mask for our Catmull/Clark curve subdivision scheme takes
the form:

M =
1

8

(
1 4 6 4 1

)
It is easy to spot the two subdivision rules introduced earlier. Imag-

ine three vertices. New points with zero values are inserted on each
edge, then the mask is applied to all positions (which is done by

90 uniform cubic b-spline fitting in a class a modeling environment

centering the mask on a position and using the factors for a linear
combination). At the old vertex positions the inserted zero positions
cancel out the factors with value 4, yielding the vertex rule

1

8

(
1 6 1

)
.

At the newly inserted zero positions all factors but those with value
4 are canceled out, which yields the edge rule

1

2

(
1 1

)
=
1

8

(
4 4

)
.

The z-transform applied to this mask yields

f(z) = (1z−2 + 4z−1 + 6z0 + 4z1 + 1z2)
1

8
= 2

z+ 1

2

4

.

This hints at four smoothing stages. The mask can be split up into

M =
1

2

(
1 1

)
?
1

2

(
1 1

)
?
1

2

(
1 1

)
?
1

2

(
1 1

)
? 1

which reveals the four predicted smoothing terms and a unity ker-
nel.

To sum it up: Each step of subdivision consists of a sampling stage
that refines the geometry by adding points, and a number of stages
that smooth out the new geometry. Further, the number of smoothing
stages is directly related to the degree of the limit curve.

Augsdörfer et al. studied the effects of such subdivision compo-
nents using control meshes laid out in a grid. They identified two
different kinds of artifacts, both originating from the sampling stage.

longitudinal artifacts Artifacts associated with the approx-
imating error introduced in the sampling stage. They occur on direc-
tions aligned with the grid. For the B-spline curves used in this work
only this kind of artifacts is of importance.

lateral artifacts Artifacts that occur when extruding in direc-
tions not aligned with the grid. This type of artifacts is not relevant
for our curves.

Both kinds of artifacts are smoothed out to a certain extend in the
subsequent smoothing stages. Augsdörfer et al. conclude that arti-
facts are indeed always present, but can be reduced in two ways:

4.8 connection to subdivision artifact analysis 91

- Using higher degree curves, which means a change of curve
type and more inherent complexity (e.g. broader support).

- Using a higher sample rate, which means more complex means
of manipulation.

Another option in our opinion might be to »hide« them by making
use of clever control polygon construction, but this is yet subject to
research.

Augsdörfer et al. most notably also present methods to quantify the
artifact errors on the limit curve. In the case of uniform cubic B-spline
curves the amplitude of the artifact error can be quantified as

erra = sin4
(πω
2

)(
1+ 2 sin2

(πω
2

)) 1
3

, (32)

where ω relates to the control point sampling density and is mea-
sured in cycles per point. Using this equation we can now quantify
the ripples on our circle.

We now can use our results from last section to get expressions
for ||gl(0)|| and ||gl(0.5)|| for r = 1 and a certain α. The curve gl(t)
represents the limit curve of our initial control points sampled along
the circle (see figure 66b). The maximum error can then be expressed
as

ecur(α) = (||gl(0)||− ||gl(0.5)||) ·
1

2
(33)

=

(
2

3
+
1

3
cos(2πα) −

1

24
cos(3πα) −

23

24
cos(πα)

)
· 1
2

.

(34)

Note that the error has been halved in the equation, since for the
control point case it is assumed that the error of the generated spline
will be distributed around the true signal.

Equation 32 can be rewritten using

sin4(x) =
1

8
(3− 4 cos(2x) + cos(4x))

sin6(x) =
1

32
(10− 15 cos(2x) + 6 cos(4x) − cos(6x))

in order to obtain the same terms.

erra = sin4
(πω
2

)(
1+ 2 sin2

(πω
2

)) 1
3

(35)

=
1

3
sin4

(πω
2

)
+
2

3
sin6

(πω
2

)
(36)

=

(
2

3
+
1

3
cos(2πα) −

1

24
cos(3πα) −

23

24
cos(πα)

)
· 1
2

(37)

92 uniform cubic b-spline fitting in a class a modeling environment

4.9 the accumulated mesh width

With the required mesh width at hand as a measure, let us consider
again the question of where to put the neighbors of a limit point that
already has been chosen to lie at some curve point p. The curvature
κ(p) can be used together with the user defined error limit etol to
calculate the local maximum limit mesh width stol. It would not suf-
fice just to run along the curve for stol units to find the next limit
point position, since this would most likely violate the required mesh
widths of other positions. We can imagine a curve position of zero
curvature, which would be a free ticket to jump to the curves end, no
matter how many strong features lying inbetween.

Figure 71: The accumulated mesh width: The required mesh width of the
green limit cannot be realized, since the orange limit requires a
smaller mesh width. The mesh width of the blue limit would
agree with the green limit though.

To prevent this, all mesh width requirements that are passed along
the way have to be accounted for when running from one limit posi-
tion to the speculated next one. This can be achieved by not running
farther along the curve than the shortest mesh width that is encoun-
tered, leading to the definition of a more restricted mesh width sacc
at some arc-length parameter s0.

sacc(s0) = max
s1>s0

(s1 − s0) , s1 − s0 6 min
s∈[s0,s1]

w(s) (38)

The function w(s) returns the required mesh width at arc-length
s. The length sacc is the »true« local mesh width that can be spent
at a certain position on the curve, accounting for all other local mesh
widths inside the spanned curve interval. It is named the accumulated
mesh width. Following the accumulated mesh width ensures that no
important feature is ignored - the threshold feature size of course de-
pending on the tolerated error etol - and that all curve positions are
satisfied in terms of their required mesh widths. Figure 71 illustrates
the importance of the accumulated mesh width.

4.9 the accumulated mesh width 93

By using the sample positions as support points, equation 38 can
also be rewritten for a discrete curve setting as

sacc(s0) = max
s1>s0

(s1 − s0) , s1 − s0 6 min
si∈[s0,s1]

w(si), (39)

si being the arc-length at the ith sample. Should it be desired to
use sample positions as limit positions, this equation can be further
be rewritten as

sacc,i = max
j>i

(sj − si) , sj − si 6 min
k∈[i,j]

w(sk). (40)

The accumulated mesh width at a certain curve position can be
calculated in forward and backward direction, usually yielding dif-
ferent results sacc,f and sacc,b. In order to assign one accumulated
mesh width to each sample, we choose the smaller value as the final
accumulated mesh width.

sacc = min(sacc,f, sacc,b) (41)

(a) Result 1

(b) Result 2

(c) Result 3

(d) Result 4

Figure 72: Various results for the accumulated mesh width of a cubic B-
spline curve. etol = 10−5 units, total curve length l = 10.0 units.

Figure 72 shows various results for the accumulated mesh width
on a sampled cubic B-spline curve. Equation 40 has been used to
retrieve the shown neighbor limits in both curve directions. In 72a

94 uniform cubic b-spline fitting in a class a modeling environment

the limit is placed in a low curvature region, thus the required mesh
width stol will be quite high. The distance sacc,b will also be high,
since the whole region is of low curvature and won’t stop the next
limit point from running far along the curve. In fact the limit has to
be stopped at the end of the curve. The next limit point in forward
direction is stopped early by the high curvature S-part. In 72b and 72c
the start limit is placed closer to the S-part. sacc,b is getting shorter
because stol shrinks more and more with the higher curvature. sacc,f

also shrinks because of stol, but is further held back by the first peak
of the high curvature S-part. Image 72d shows that inside the S-part
both accumulated mesh widths are limited by the two high curvature
regions.

The behavior on the other side of the curve can be deduced in a
similar way.

(a) Curvature profile.

(b) Accumulated backward mesh width
sacc,b.

(c) Accumulated forward mesh width
sacc,f.

Figure 73: Characteristics for the curve shown in figure 72. etol = 10−5

units, total curve length l = 10 units.

Figure 73a shows the curvature profile of the same curve. In image
73b and 73c one can see the accumulated mesh widths plotted against
arc-length. Let us consider the accumulated forward mesh width of
73c.

At the start of the curve sacc,f is quite high, but it shrinks as the
curvature increases. At position 1 there is a little bend in the graph,
which indicates a segment border or a change of influence. sacc,f then
shrinks until a minimum is reached near the high curvature peak. Be-
tween 1 and 3 sacc,f first grows a little bit, but soon again drops
because it is limited by the second high curvature peak. After the

4.10 limit point distribution 95

second curvature peak the accumulated mesh width grows until it is
stopped by the end of the curve at 4.

(a) Curvature profile.

(b) etol = 10−5 (c) etol = 10−4 (d) etol = 10−2

Figure 74: Effect of the error bound etol on the accumulated mesh width.
The accumulated mesh widths grow as the error bound is low-
ered.

The effect of the error bound etol on the accumulated mesh width
is visualized in figure 74. The curve contains a high curvature peak
in its middle, as shown in 74a. All required mesh widths stol grow
with a lowered error bound, which influences both how far limits are
suggested to move locally and how strong they are limited by mesh
widths of other regions. This results in the accumulated mesh widths
growing as the error bound is stepwise weakened in 74b, 74c and 74d.

At last, let us have a look at figure 75. This example shows sacc,f

and sacc,b for a position on a uniform cubic B-spline segment with
a high curvature peak in its center. The section we are looking at is
at the right flank of the spline. All required mesh widths w(si) are
plotted along the curve at the respective samples p(si). We can see
how the required mesh widths limit the accumulated mesh width, in
backward direction the first sample with its high curvature, in for-
ward direction the point of interest itself, since curvature declines.

4.10 limit point distribution

The accumulated mesh width introduced in the last section only dic-
tates how far to space the next limit points at a certain position of the
curve at maximum, but a valid overall limit point distribution has yet
to be found. Valid here means that no required mesh width is vio-
lated by too large mesh widths of the distribution.

96 uniform cubic b-spline fitting in a class a modeling environment

(a) Uniform cubic
B-spline.

(b) Curvature profile.

(c) Accumulated mesh width in forward and back-
ward direction. The required meshwidth of
each curve sample is plotted in normal direc-
tion. The two limiting mesh widths are painted
in bold blue.

Figure 75: Accumulated mesh width depending on the required mesh
width.

(a) etol = 10−2

(b) etol = 10−3

(c) etol = 10−4

Figure 76: Valid limit point distributions for changing error bounds.

A first simple approach that yields such a distribution is described
below. Given a curve and an error bound etol:

1 Calculate the curve’s curvature profile.

4.10 limit point distribution 97

2 Start at the beginning of the curve and add a limit position l0
there.

3 At li calculate the accumulated forward mesh width sacc,f as
described in the last section, using etol and the local curvature
values.

4 From li run sacc,f units along the curve to obtain the next limit
position li+1.

5 Alternate 3 and 4 until the end of the curve is reached.

6 If needed insert a limit point at the end of the curve.

Such a limit point distribution will always respect the required
mesh widths. Note that we could also run from the end of the curve
to its beginning, using sacc,b.

Figure 76 shows how the error bound influences the resulting dis-
tributions. When lowering the error bound new limit points will even-
tually pop in and the distribution may change substantially.

Looking at figure 76 we observe that the obtained mesh widths
vary quite rapidly, but the original construction the measure is de-
rived from relies on four equally spaced points and is only valid in
a local homogeneous curve region around the investigated position.
Of course we can’t fully comply to this assumption, since the mesh
widths have to vary between each two of these local estimates, but we
will try to reconcile the limits a little bit, such that the mesh widths
vary more smoothly. This also makes sense regarding our initial re-
quirements for mesh width regularity. For convenience it should also
be possible for the user to choose the allowed amount of variation.

For this we again make use of the approach of Baran et al. intro-
duced in section 4.3.3. Instead of relating the local spacing to a frac-
tion of the local circle of curvature, we will directly make use of the
required mesh width.

In [3] the resampling function r(s) is considered.

r(s) = min
i

(
|s− si| ·β+

2 · π
γ · κi

)
(42)

We adapt the second term to our needs.

r(s) = min
i

(|s− si| ·β+ mw(si)) (43)

98 uniform cubic b-spline fitting in a class a modeling environment

The factor β defines the amount of variation that is allowed on the
generated mesh widths, β = 0 resulting in equally spaced points us-
ing the smallest required mesh width on the curve. Setting β to a high
value enables the limits to move more freely and will result in distri-
butions similar to the ones of our initial solution. The resampling is
then carried out as described in section 4.3.3 in order to obtain a set of
limit points. Note how this approach naturally extends our idea of the
accumulated mesh width by adding additional smoothing functional-
ity. The error bound etol now influences our guidance function, the
required mesh width. But even if etol would allow a rapid change in
mesh width, this mesh width might get further limited by the smooth
variation constraint.

(a) β = 0.8

(b) β = 0.2

(c) β = 0.0

Figure 77: Limit point distributions obtained by the presented algorithm. At
the end of the curve the last interval is cut off. etol = 10−5 units

Figure 77 shows resulting limit point distributions for a fixed error
tolerance etol and varying falloff factor β. In 77a we see a result for
a falloff factor of β = 0.8. The value β actually represents an allowed
rate of change, which here means that the mesh width is allowed to
vary up to 80 percent from segment to segment. As we can see the
mesh widths are given enough room, but they still vary smoothly. In
77b β is reduced, in this case more limit points have to be spent to
realize a certain change of mesh width. In 77c β is set to zero, thus
equal mesh widths are enforced. Since the needs of every required
mesh width have to be satisfied, the smallest mesh width is applied
all over the curve.

Figure 78 shows how the algorithm operates on certain curve con-
figurations. In 78a we see a circle, and independent of the used falloff

4.10 limit point distribution 99

(a) Limit point distribution on a circle,
etol = 10

−3 units, β = 0.8.
(b) Limit point distribution on a circle

segment with attached line, etol =
10−6 units, β = 0.3

(c) Limit point distribution on two attached circle segments,
etol = 10

−5 units, β = 0.2

Figure 78: Limit point distribution on some special curve configurations.

rate β we obtain exactly the spacings dictated by the required mesh
width.

In 78b we see a transition from a circle segment into a straight line.
First the limits are spaced equally along the circle, then at the tran-
sition they speed up into the zero curvature segment. Note that the
realized mesh widths should be restricted in a practical scenario, in
order to prevent too big mesh widths in regions of zero curvature
and too small (practically unrealizable) mesh widths in high curva-
ture regions.

In 78c we see a transition between two circles, the limits varying
smoothly between the two required mesh widths.

On a general curve applying the resampling from begin to end will
likely yield a different result than running vice versa. There is also
the problem that the last segment will be cut off at the curve’s end
(see for instance 78a), destroying the smooth variation property. Two
simple approaches to fix this have been tested.

100 uniform cubic b-spline fitting in a class a modeling environment

(a) Inside the green interval the mesh required widths cannot be violated.

(b) The two chosen points have been replaced by the green »glue point«.

Figure 79: Finding an interval to glue together two limit point distributions
that were produced in different curve directions.

The first approach obtains one result for each resampling direction,
and glues them together at the most suitable position. Forward and a
backward limit point distributions can be described by two sets of arc-
length positions f = (f0, f1, . . . , fk−1, fk) and b = (b0,b1, . . . ,bm−1,bm).
For each forward limit position fi, the nearest backward limit position
bj can be found, such that fi−bj > 0. It is safe to exchange those two
positions by a single new glue point Lnew at a position s ∈ [bj, fi].
This way both involved mesh widths are shortened and no required
mesh width is violated. We are searching for the index pair (i,j) given
by

argmin
i,j

fi − bj , fi > bj.

Then a new unified limit distribution can for instance be obtained
as

fb =

(
f0, . . . , fi−1,

1

2

(
bj + fi

)
,bj+1, . . . ,bm

)
.

Figure 79 visualizes this. In 79a the two chosen points can be re-
placed by a point placed in the green area, without violating the re-
quired mesh widths. In 79b the two distributions glued together at
snew.

Figure 80 shows a result for this strategy. As we can see, the situa-
tion now is much better at the endings, but depending on the chosen
glue-point the glued section may look a little bit unnatural.

Since the glue-point approach can obviously lead to non-optimal
results in some situations, a second approach is discussed. Imagine a
limit point distribution retrieved by the smooth resampling described
above. As already stated, it can happen that the last interval is cut off

4.10 limit point distribution 101

Figure 80: Limit point distribution after the glue-point strategy. β = 0.8,
etol = 10

−5 units

and thus too short. In order to fix this, we can rescale the current
distribution by applying a scale factor gamma to our mesh width
weights in the resampling function.

r(s) = min
i

(|s− si| ·β+ γ ·mw(si)) (44)

The trick is now to find a distribution which delivers the same
number of limit points, but with the last point lying at the curves
end. This can be formulated as an optimization problem with the
free variable γ ∈ [0, 1]. The strategy has been found to converge fast
and very reliably.

Figure 81: Limit point distribution with additional endpoint optimization.
β = 0.8, etol = 10−5 units

Figure 81 shows a result for this endpoint optimization. The result
now looks more natural and varies smoothly over all segments, at
the cost of a little bit smaller mesh widths than actually needed and
higher computation times.

In figure 82 we want to validate the limit point distribution strat-
egy discussed up to this point. Figure 82a shows the test curve and

102 uniform cubic b-spline fitting in a class a modeling environment

(a) Curve with distributed limit positions.

(b) Preprocessed curvature pro-
file.

(c) Accumulated (red) vs. realized (blue) for-
ward mesh widths.

Figure 82: Validation of the limit distribution strategy. β = 0.3, etol = 10−4

units

resulting limit positions, figure 82b the estimated curvature profile.
In 82c we see that the smooth meshwidth-based resampling strategy
produces valid mesh widths. The accumulated mesh width is plot-
ted in red, the mesh widths of the resulting distribution are plotted
at their respective positions as blue peaks. The resampling algorithm
produces smoothly varying mesh widths and at the same time glob-
ally adjusts them to comply to all required mesh widths. The compli-
ance to all required mesh widths clearly shows, as all realized mesh
widths stay below the accumulated mesh width at their respective
positions.

4.11 optimization

As stated earlier, optimizing limit points has its difficulties. Moving a
single limit potentially influences even more neighboring limits than
in the control point case, resulting in a wave-like behavior, in which
the error is pushed along the curve. Figure 83 shows this behavior,
which leads to many local minima for an optimization.

With our algorithm we can now provide an initial limit point dis-
tribution for such an optimization in order to further reduce the dis-
tance error. In fact we can also provide an initial control point distribu-
tion, as control points are easy to obtain. It is clear that a further lim-
it/control point optimization might violate the required mesh widths
of our initial distribution, but further optimization will be needed for
various reasons.

- Our mesh widths are based on curvature estimates, the accuracy
depending on factors such as sample density and noise level.

4.11 optimization 103

(a) Limit point distribution with distance error plotted in normal
direction. Since only the signed distance is computed, the dis-
tances are plotted to both sides of the curve.

(b) As one limit point is moved, the error is pushed into other seg-
ments of the spline.

Figure 83: Limit point movement and non-linear behavior of the distance
error.

- Our mesh widths are further based on local curve estimates,
which will not hold when moving away from the point of inter-
est. The circle of curvature is a tight but also very rough esti-
mate. We can react on a change of mesh widths, but the radial
distribution of limit points will usually not hold.

- We rather provide an estimate for the required number of limits
and distribute them into the curve regions accordingly.

- It is expected that under further optimization the limits will not
move that far from their initial positions, but that the B-spline
will rather »snap« to the data a little closer.

- Our hypothesis is that our initial distribution is precise enough,
such that a further optimization is more a detail operation.

- In order to enforce this, we constrain the distances the limits
are allowed to move to a fraction of their neighboring segment
lengths (e.g. 20 percent).

104 uniform cubic b-spline fitting in a class a modeling environment

Since an optimization solely based on the euclidean distance shows
rather slow convergence and gets stuck in local minima more easily,
we rely on squared distance minimization (SDM) introduced by Wang et
al. in [43]. We will quickly outline the most important steps, for more
details consult [43].

Figure 84: SDM error measure (image from [43]).

The distance of a single discrete position X0 to a footpoint O on the
B-spline approximant is measured as shown in figure 84. The local
frenet frame serves as the coordinate system in which the distance is
measured. The distance d is declared positive if the discrete position
X0 and the center of the circle of curvature at O lie on the same side
of the curve. A second order approximation to the squared distance
function at O can be expressed as

g(x,y) =
d

d− ρ
x2 + y2. (45)

The error term suggested by Wang et al. is

εi =

{
d

d−ri

[
(g(ti) − pi)T ·Ti

]2
+
[
(g(ti) − pi)T ·Ni

]2 if d < 0[
(g(ti) − pi)T ·Ni

]2 if 0 6 d < r
,

where d is defined as described above, pi is a sample of our discrete
curve, and g(ti) is the footpoint (nearest point) of pi on the fitted B-
spline curve g(t). The normal Ni, tangent Ti and radius of curvature
ri of the B-spline curve have to be calculated at the footpoint.

The error to be minimized by the optimization is

εtot =
1

2

∑
i

εi +α · fs, (46)

4.11 optimization 105

where fs is an energy functional to enforce minimum variation,
which in this implementation is chosen as

fs =

∫
||g ′′(t)||2dt. (47)

One step of optimization involves minimizing this error term by
moving the control points accordingly. The footpoint properties ti,
Ni, Ti and ri are not calculated in each iteration of this minimization
step, instead they will be calculated before each step and then fixed
during the iterations. The optimization step itself originally involves
solving a linear system of equations with additional constraints, as
described in chapter 3. This is possible in the control point case.

Figure 85: Explanation of the utilized parameter constraint. A limit point is
allowed to move into a certain percentage δ of its initial neighbour
intervals.

If we want to parameterize the optimization in terms of limit points
rather than control points, we need a different solution. We are us-
ing a constrained multivariate LM optimization, with the normalized
arc-lengths s = (s0, s1, . . . , sk−2, sk−1) of the limit positions as pa-
rameters. The parameters are constrained not to move further than a
certain percentage δ from their original positions into their neighbor-
ing segments. This is visualized in figure 85.

The error function minimized by the LM algorithm then includes
the following steps.

1 Obtain the limit positions by sampling the discrete curve using
the normalized arc-lengths s.

2 Calculate the control points iteratively.

3 Calculate the SDM error term fs.

The runtime obtained for one optimization step is of course much
worse than in the original approach, but SDM will generally converge
pretty fast, good improvements can be obtained for most of our test

106 uniform cubic b-spline fitting in a class a modeling environment

(a) Initial limit point distribution, ε = 0.01127 units. Input spline=red, fitted
spline=blue.

(b) After further optimization, ε = 0.00117 units. Input spline=red, fitted
spline=blue.

(c) Initial distribution curvature. (d) Optimized distribution curvature.

Figure 86: SDM limit point optimization. etol = 10−4 units, β = 0.7, 50

iterations

curves in fewer than 10 iterations.

Figure 86 shows results for limit point SDM. The initial limit point
distribution is obtained by the strategy introduced in the last sections.

4.11 optimization 107

The big spheres show the control points of the test spline curve, the
small ones the generated limit positions. The maximum fitting error
after the optimization is roughly one order of magnitude lower than
before and the resulting curvature also follows the true curvature
more accurately. Looking at the curvature of the initial limit distribu-
tion, we can see that our distribution algorithm alone cannot satisfy
our initial criteria. It still contains many additional oscillations which
are not present in the input spline. Furthermore, the error is still quite
high and does not lie below the provided error tolerance. We will dis-
cuss this in more detail in the next chapter.

5
R E S U LT S A N D F U RT H E R A N A LY S I S

5.1 results

We will now analyze the algorithm introduced in the last chapter re-
garding the curve and curvature quality it generates.

Figure 87: Cross-section of a Golf 7 car door.

The first curve represents the cross-section of a car door of a Volk-
swagen Golf 7. The location of the cross-section is depicted in figure
87, results for our algorithm in figure 88.

It is a difficult curve to fit, as it obtains both long low-curvature
regions and a rapid S-shaped part. The curve has a total length of
1.553 units. What catches the eye is that in order to reach a final fitting
error in the magnitude of 10−4 units we need to spend a lot of limit
points, even in regions of low curvature (figures 88ab). In figure 88c
we identify a dent in the curvature profile that resembles a typical B-
spline artifact. The curvature profile is captured quite nicely though
(figure 88d).

We can also see that our maximum error bound etol = 10−5 units
is not met even after further optimization. We will discuss this issue
in more detail below.

Figure 89 shows another cross-section of the door model. The cur-
vature is generally lower here, but the curve obtains a clear bend at
the characteristic lines of the door. In figures 89abc we see the limit
point distributions for several error boundaries etol. Figures 89def
show the corresponding curvature profiles.

109

110 results and further analysis

(a) Curve with distributed limit positions.

(b) Curve Detail. (c) Curvature detail.

(d) Curvature profile: Curve (red), spline (blue).

Figure 88: Example: Sampled door with S-part. etol : 10−5 units, curve
length: 1.553 units, error after limit distribution: 0.001079 units,
error after further optimization: 0.000283 units

Again the actual fitting errors do not truly meet the specified error
boundary, but they correlate, the fitting error decreasing with lower

5.1 results 111

(a) Curve with distributed limit positions. etol : 10−5 units, final error:
0.000312 units

(b) Curve with distributed limit positions. etol : 10−6 units, final error:
0.000135 units

(c) Curve with distributed limit positions. etol : 10−7 units, final error:
0.000053 units

(d) Curvature profile, curve (red),
spline (blue). etol : 10−5 units

(e) Curvature profile, curve (red), spline
(blue). etol : 10−6 units

(f) Curvature profile, curve (red), spline
(blue). etol : 10−7 units

Figure 89: Example: Sampled door with characteristic line. Curve length: 3.1
units

etol. Further, the curvature profile of the spline converges more and
more to the original curvature as etol gets lower.

In the curvature profiles we marked several regions where the G2

continuity of the cubic B-spline shows clearly, and in which surround-
ings we suspect B-spline artifacts. We can see that even with decreas-
ing error bound new artifacts can not be prevented, although the
curvature profile of the spline fits the profile of the curve better. This

112 results and further analysis

is to be expected, we refer to the verdict of section 4.8 (artifact analy-
sis). The curvature that is produced might suffice for many fields of
application, it remains full of ripples though and will not be please
a surface engineer - and thus not meet the challenges of high quality
automotive design. Nonetheless it could easily serve as an initial so-
lution for further manual refinement.

(a) Curve with distributed limit positions.

(b) Curvature profile, curve (red), spline
(blue).

(c) Curvature detail, curve (red),
spline (blue).

Figure 90: Example: Generic spline curve. etol : 10−5 units, curve length:
1.68 units, final error: 0.000108 units

Figure 90 shows results for a generic spline curve. Here the input
data obtains more noise compared to the last examples, and we can
see that even if some of the noise remains after preprocessing the
algorithm can cope with it quite gracefully.

Furthermore, we can see that the produced number of limits is
far higher than the original set of limits which generated the input
curve. We cannot claim to generate optimally sparse limits, as our
limit point distribution is based on local curve estimates and these
estimates need to be consolidated. We generally want to enforce ho-
mogeneous mesh widths because of the uniformity property of our

5.2 class a modeling 113

B-splines. We further do not make use of any assumption about the
geometry that generated our input samples.

The fact that the spatial error of our fit does not comply to our
provided error bound is also a cause for concern. One explanation
might be that our local curve estimate - the circle of curvature - does
only hold for a very compact region around the point of interest,
and the curve will soon develop away from it. Additionally, even if
we limit the rate of change, the assumption of locally equal mesh
widths in the construction will not hold after consolidating the local
mesh widths. Under the idealized conditions of our local estimate the
error bound holds, but the consolidated mesh widths do not longer
fully resemble these local constructions. Thus the error bound for the
moment can only be seen as a guidance parameter for the final fitting
error.

This issue needs to be analyzed in more detail though and will be
subject to future research.

We identified several issues with our approach, which make it
hardly applicable for industry-grade high quality design tasks. In the
next section we will try to gain more insight into the requirements of
high-quality CAGD, in order to be able to analyze our work in this
context.

5.2 class a modeling

In this section we shortly want to discuss what »fair« means in the
context of design curves and surfaces. This is of course very subjective
and depends on a certain domain of application. Since the resulting
curvature quality does not seem to be controllable by the proposed
design, at least not in a degree that would satisfy surface engineers,
some important questions arise.

- What does a beautiful curvature profile even look like and what
are the means to describe it?

- What does this mean for industry-grade high quality B-spline
fitting?

- What existing CAGD curves (or surfaces) naturally generate fair
curvature?

A first answer is given by evaluating surface quality measures in
the automotive industry, where quality requirements are traditionally
very high. Notice that the following insights are mostly based on a
cooperative project with Volkswagen AG and may not apply to the au-
tomotive industry in general. Exact definitions actually vary strongly

114 results and further analysis

depending on the country or even company.

In German automotive design surfaces are divided into three cate-
gories.

- Class C: Surfaces that are only used temporarily or for tools
that are involved in the production of the higher class surfaces.

- Class B: Surfaces not visible to the customer, like surfaces on
the interior of objects.

- Class A: Surfaces with design intent, which are visible to the
customer, like the chassis of a car.

An important notion is the one of class A design, describing sur-
faces that meet the highest quality standards. While not being de-
fined consistently throughout the industry, it is common opinion that
class A shape quality can be expressed by a certain curvature quality,
depicted in a very compact and intuitive way by a curvature profile.

In our opinion class A quality can be described on spot by two
properties: Sparsity and minimum variation. These properties may
be expressed in several related ways.

- Sparse shape: No unnecessary variation on the shape (ripples,
bends, oscillations, etc.).

- Sparse design geometry: A minimum number of control/limit
points. No use of unnecessary control points which may lead to
additional shape variation. Sparsity is also required for control-
lability.

- Sparse curvature: A minimum number of purposeful curva-
ture extrema (representing strong features on the shape) and
zero crossings (representing points of inflection). A minimum
amount of curvature variation between these extrema.

These categories of course go hand in hand, curvature reflecting
the shape, the used design geometry generating shape and curvature,
and so on. What class A design should achieve in a nutshell: Describ-
ing an object accurately while using a representation which is as simple as
possible, obtaining a minimum set of features placed with care and purpose.

One implication for fair curvature profiles is for instance that we
need continuous curvature. This is why class A quality is also con-
nected to the continuity class of the used geometry. The difference
between class A and class B surfaces is visualized in figure 91a by
making use of highlight analysis. The reflections on a surface im-
mediately reveal curvature-discontinuous areas, therefore in practice
curves and surfaces used for class A design are of continuity class G2

5.2 class a modeling 115

(a) Comparison between class A and class B surfaces. The class B surface
is only tangent continuous. The class A surface is curvature continuous,
which results in a smoother and visually more pleasing look. The differ-
ence can be seen even more clearly via highlight analysis. (Image from
Wikipedia)

(b) Curvature fairness. The graphic depicts
curvature extrema (blue, green), fair tran-
sitions (orange) and spontaneous ripples
(red).

(c) A curvature monotonic C2 curve
that is not fair.

Figure 91: Curvature and class A.

or higher.

Furthermore, the curvature profile needs to vary smooth and strictly
monotonic between a few clearly defined extrema. This is depicted in
figure 91b. Curvature monotonicity alone cannot ensure fair curves,
as shown in 91c. We favor transitions which obtain a minimum amount
of variation, and behave like e.g. lower-degree polynomials.

Many design curves inherently obtain smooth curvature transitions
between their segments, although curvature monotonicity might not
be guaranteed. This results in bends at the segment borders and un-
desired curvature extrema, which most prominently shows in the
case of B-splines (section 4.8). Since undesired curvature extrema ul-
timately result in undesired shape features they need to be prevented
at all cost.

When we look at literature regarding this topic, Farin in [11] for in-
stance states that a curve or surface with fair shape is supposed to have
a curvature characteristic that varies monotonically for the most part. Farin
in this work also discusses another interesting topic. Since the notion
of class A is more widespread in the context of surfaces, literature
more seldom refers to »class A curves«. Farin states that ultimately
feature curves will be used to define surfaces, which is of course true for
B-spline curves (section 2.6.5). He also states that in order to be part
of a class A surface, a curve on the surface has to be class A itself. By

https://de.wikipedia.org/wiki/Class_A

116 results and further analysis

defining class A via continuity classes, curvature monotonicity and
minimum variation, it is safe to say that every curve embedded into
a class A surface needs to be class A itself and has to inherit these
properties. We can also state that a set of class A curves can be used
to span a class A surface.

(a) Uniform cubic B-spline curve. (b) Curvature profile. Artifacts are intro-
duced as bends, in between new max-
ima or minima can form.

(c) B-spline curvature is hard to control, as we also pointed out in [19].

Figure 92: B-spline artifacts might introduce unwanted curvature extrema.

We can now further ask: How can we achieve such fair shapes?
The most simple answer in the context of design curves is: Place the
control points in such way that a fair shape is formed. But this is
not equally easy for all design curves. The artifacts inherent to B-
splines result in unpredictable behavior in terms of curvature, since
new curvature extrema are possibly introduced between the spline
segments during each modification. This behavior is caused by the
pull the spline exerts on its segments, and controlling this peculiarity
of spline curves is a huge additional effort and the bane of B-spline
fitting and optimization when fair curvature is demanded. Examples
are given in figure 92. These deficits are often mitigated by increas-
ing the B-spline degree. Increasing the degree dampens the artifacts,
but cannot hide them completely. In the case of cubic B-splines the
artifacts are just more apparent than on higher degrees.

In state of the art software short Bézier patches are still used to
model high quality shapes, since shape variation in this case is just
easier to control.

5.2 class a modeling 117

For Bézier curves we can again refer to [11], where a simple scheme
for control point placement is introduced, that ensures strictly mono-
tonic curvature variation between the Bézier curve segments. Although
such special rules of construction could be a viable option for curve
design, they also have their disadvantages. For other design curves,
such as B-splines, rules might become much more complex and limit
the domain of possible shape configurations, and ultimately the flex-
ibility of the design curve.

Imagine a design curve which inherently produces monotonic cur-
vature transitions between its segment borders. Analytic curves which
are known for their smooth and monotonic curvature progression are
spirals, such as the logarithmic spiral or the clothoid. A design curve
consisting of spiral segments will be discussed in section 5.4, and it
can be shown that such a curve has many desirable qualities when it
comes to intuitive and fair modeling.

Figure 93: G2 Hermite-like data interpolation: Connecting circles with a
curve. (Image adapted from [15])

In addition to strict curvature monotonicity on the segments and
smooth transitional behavior, we can demand constraints on the seg-
ments endpoints in order to obtain some kind of holy grail for CAGD
design curves. How many of these constraints can be met by a curve
is a matter of its degrees of freedom (DOF). Four DOF are needed
to match given endpoints with a curve. The remaining DOF can for
instance be used to specify tangents or curvature values at the end-
points.

The interpolation of given positions and the first k derivatives at
these positions can be achieved with a polynomial using Gk Hermite
interpolation. If the polynomial curve is required to match given posi-
tions and tangent values, one speaks of G1 Hermite interpolation, G2

Hermite interpolation in addition requires to match given curvature
values. The problem of G2 Hermite interpolation is equal to the task
of joining circles in a G2 manner, since a point on a circle inherently
fixes position, tangent and curvature. This is visualized in figure 93.

118 results and further analysis

A design curve which interpolates endpoints in a G2 Hermite fash-
ion using a single segment would give us total control over curvature
design. Unfortunately the expectations on a design curve are a little
contradictory, since on one hand it should be of low degree and on
the other hand very expressive. Further, some flexibility is usually
taken away when forcing the curve to meet such conditions. Addi-
tional DOF can be spent on a »shape parameter« that influences the
form of the segment transitions (e.g. [15]).

In practice it is often difficult to achieve G2 Hermite-like interpola-
tion with a single design curve segment, as we have to weigh curve
complexity (controllability) against degrees of freedom (expressive-
ness) and flexibility of the approach.

5.3 further analysis regarding class a behavior

Using the insight gained in the last section we can further evaluate
our proposed algorithm for B-spline fitting, but this time from the
viewpoint of class A design.

(a) Curvature profile of a car door cross-
section.

(b) Curvature profile of the fitted uni-
form cubic B-spline (blue). We can
clearly spot several B-spline arti-
facts.

(c) Is this the curvature profile we want
to model?

(d) Or is this curvature profile more de-
sirable?

Figure 94: B-spline fitting curvature quality in the light of class A design.

We again have at look at the curvature profile of the door cross-
section shown in figure 94. In 94b we see the curvature profile of the
uniform cubic B-spline obtained by our fitting approach. Referring
to the last section, it is obvious that neither the input curvature of
94a nor the result curvature of 94b is a desirable curvature profile,

5.3 further analysis regarding class a behavior 119

as they contain too much variation and are not sparse in the class A
curvature sense. We identify several different problems which lead to
this behavior.

b-spline uniformity We already discussed the advantages of
sparse geometry in the context of class A. Homogeneously varying
limit point mesh widths lead to denser limit point distributions, but
on the other hand are very important in the presence of B-spline
uniformity. Thus our locally required mesh width is based on this
assumption (see figure 65), and we further enforce homogeneity dur-
ing the consolidation of all required mesh widths, resulting in glob-
ally smooth mesh width variation. This results in overly complex B-
splines, which might be more prone to oscillatory behavior.

b-spline artifacts B-spline artifacts are always present, they
can be suppressed or - theoretically - hidden by sophisticated con-
struction. In order to suppress them we either need to spend more
control/limit points, or use higher degree splines. Since in our case
the second measure is not an option, a lot of limit points have to be
spent in order to reach a certain level of quality. This again contradicts
limit point sparsity as demanded by class A design.

In fact, even very dense limit point distributions cannot completely
assure acceptable curvature, although we observed a strong improve-
ment. Some of the B-spline artifacts in the curvature plot of 94b are
still clearly visible.

With our presented approach we can enforce artifact suppression by
distributing the right amount of limit points into each curve region
(as confirmed by artifact analysis), but we cannot guarantee fair and
artifact-free curvature.

flawed input data Figure 94a shows an estimated smooth ver-
sion of the true curvature profile of the possibly flawed input data. It
is not fair in the sense of class A modeling though. The question is:
Given noisy and potentially corrupted input data, what is the curva-
ture profile we want to model with our design curve? Is it the cur-
vature of 94c or the curvature of 94d? Which feature is important
to the surface engineer? What does the domain of class A curvature
graphs even look like for a certain sector of CAGD, and how can we
describe it mathematically (e.g. minimum and maximum feature size,
feature frequency, amount of variation, etc.)? What if the input data
is incomplete?

This hints at a complex task on its own, which in our opinion could
prove very fruitful for automated modeling when being investigated
further. We need to obtain a better understanding for the curvature
domain we want to model, in order to obtain class A quality also for
corrupted input data in an automated way.

120 results and further analysis

the required mesh width As the given examples clearly show,
complying to the required mesh widths and enforcing homogeneity
alone cannot assure class A curvature. We base our locally required
mesh width on a local curve estimate, but as we move away from this
estimate, it soon becomes invalid. We mitigate this fact by taking into
account all the required mesh widths for our final limit point distribu-
tion, and by enforcing homogeneity on the mesh widths. Nonetheless
the resulting segments differ from the local estimates. This might also
explain why the maximum distance error bound used in our local es-
timates cannot hold for the final fit.

surface interpolation A final issue with our approach re-
garding class A design is rooted in its initial requirements. Placing
limit points directly on the shape is of course more intuitive for the
user. The downside to this approach is that this way oscillations on
the input shape are easily reproduced by the fitted design curve
or surface. Many well-established software packages thus approxi-
mate the input data instead of interpolating it. We try to mitigate the
negative aspects of limit point placement by obtaining an intermedi-
ate smooth curve representation. Nevertheless, low-frequency oscilla-
tions on the input data might get preserved.

In the next section we will further investigate the topic of inher-
ently curvature monotonic design curves. Being unsatisfied with the
properties of B-splines, we will discuss a special kind of curve which
obtains many properties desirable for class A design.

5.4 piecewise clothoid curves : an alternative to b-spline

modeling?

(a) Clothoid curve. (b) Curvature profile, curvature over arc-
length.

Figure 95: Approximation of a clothoid curve.

5.4 piecewise clothoid curves : an alternative to b-spline modeling? 121

In this section we want to present an alternative to classic B-spline
modeling, which developed in the wake of this work. Unsatisfied
with the properties of B-splines, a more viable alternative for class
A modeling was sought. When looking for an analytical curve that
by nature obtains curvature monotonicity, spiral segments soon come
into mind.

A very well-known and popular spiral curve is the clothoid. It is
broadly used in many fields of engineering like road design or stroke
curve beautification. It is not as widely used for CAGD though. The
clothoid’s key characteristic is that its curvature varies linearly with
its arc-length. Another useful property of the clothoid curve is that
its arc-length varies linearly with its parameter t. Figure 95 shows a
clothoid curve and its curvature profile.

The generalized clothoid curve in the plane obtains 5 DOF. Start-
ing with the normalized clothoid, an arbitrary clothoid curve can be
defined by a translation, rotation and scaling. The starting position
can then be chosen by a fifth DOF, for example a parameter value. A
clothoid segment is defined by 6 DOF, an additional parameter being
needed for the segment’s end point.

Clothoid curves are analytically defined via Fresnel integrals, which
cannot be solved directly, but there exist approximations ([12]). Pa-
rameters for these approximations are not easy to find though.

Havemann et al. in [19] overcome this by using a refinement scheme
which successively adds points to a polygonal line, approximating a
clothoid segment up to an arbitrary small error.

Figure 96: Iterative construction of a PCC.

Starting with a set of user defined control points (or fix points) as
the initial polyline, two steps are alternated.

- New points are inserted between every two neighboring points
of the polyline.

122 results and further analysis

- Each point which is not a control point is optimized on the per-
pendicular bisector of its neighbors, such that its discrete curva-
ture (the curvature defined by the circle through three consecu-
tive points) approximately becomes the arithmetic mean of its
neighboring curvature values.

This leads to a curvature distribution in which each inner curva-
ture value is the arithmetic mean of its neighbors. In addition the
curvature does not obtain discontinuities at the control points, and
the inner points quickly converge to an equal spacing. The whole
polygonal line thus converges to a chain of clothoid segments, which
is named Piecewise Clothoid Curve (short: PCC). Figure 96 shows how
a PCC is iteratively formed.

Figure 97: Basic construction for the optimization of PCC vertices.

Figure 97 visualizes how a PCC vertex C is optimized. The setting is
normalized, such that the neighbors lie at B = (−1, 0) and D = (1, 0).
By using approximations for the discrete curvature and setting |BC|

and |CD| to 1, the angle γ can be calculated as

γ =
β(|BA|+ 1) +α(|DE|+ 1)

2|BA||DE|+ 3(|BA|+ |DE|) + 4
.

The distance along the bisector which optimizes the point then just
equals tanγ.

PCCs obtain many properties which are very desirable for class A
design.

- Curvature extrema can only form at segment borders, which
makes PCCs much more intuitive to edit than splines (figure
98b).

- Three points can be used to form a circle in a completely natural
way (figure 98c).

- Inserting a new control point on the curve neither changes the
curve nor the curvature profile.

5.4 piecewise clothoid curves : an alternative to b-spline modeling? 123

(a) Example PCC. (b) Curvature profile. Each line segment cor-
responds to a PCC segment. Curvature ex-
trema thus only form at segment borders.

(c) PCCs naturally form circles. (d) Changes on the PCC can be mitigated
by using multiple closely spaced control
points.

Figure 98: Advantages of PCCs.

- The curve can be evaluated in as much detail as needed in a
very efficient way, not unlike traditional subdivision schemes.

- Moving a control point will change the whole curve, but the
changes become damped rather quickly with distance. This re-
sembles the global behavior of limit points, but with PCC de-
sign a new control point can always be added to the curve with-
out consequences, in order to »pin down« important areas (fig-
ure 98d).

- The PCC always interpolates its control points, making editing
less abstract compared to B-spline control point editing.

- The scheme is very fast to evaluate.

In a former section we discussed the ability of a design curve to
interpolate endpoints with additional constraints, a property which

124 results and further analysis

is very useful for flexible design. PCCs offer the possibility to spec-
ify either tangent or curvature constraints at the control points. A
tangent constraint will unfortunately destroy the G2 continuity at a
control point, but Havemann et al. provide a way to restore G2 con-
tinuity by inserting an additional control point in an unobtrusive way.

Figure 99: Iterative construction of a clothoid spline.

It might further be desirable to obtain smooth curvature profiles
rather than piecewise linear ones. By inserting new control points in
a special way between each two consecutive ones and then removing
the old control points, a new PCC with attenuated curvature spikes
can be obtained. Repeating this procedure and using the final control
points as a new polygonal curve will in the limit yield a G3 contin-
uous clothoid spline. This process can be achieved with only minor
curve changes and repeated up to a desired accuracy. Figure 99 illus-
trates this process.

The flexibility of PCCs also shows in the fact that it is easy to ap-
proximate a B-spline curve and its curvature artifacts with PCCs. It

5.5 final thoughts & future research 125

Figure 100: B-spline artifacts are hard to control and cannot be completely
avoided. B-spline curves thus cannot approximate PCC curves
well.

is not possible to achieve the inverse case though, as shown in fig-
ure 100. It is very hard to control B-spline curvature artifacts, which
mostly results in curvature profiles simply unacceptable for class A
design. PCCs in contrast are much easier to control in terms of curva-
ture.

With their desirable properties and flexibility PCCs could be a supe-
rior alternative to spline editing in the future, and they could render
class A modeling both easier and more intuitive for manual and auto-
mated processes alike. The missing link here is the generalization of
PCCs to surfaces, which could be a very interesting topic for future
work.

5.5 final thoughts & future research

We presented an approach to fit uniform cubic B-spline curves to
noisy data points using a local curvature-based measure rooted in
B-spline artifact analysis. We used this measure to distribute limit
points over the discrete input curve, in order to further optimize these
limits and suppress B-spline artifacts effectively. We also pointed out
several problems we encountered, most notably the acquisition of a
faithful curvature profile and a smooth input curve from the noisy
input samples.

Our approach does not yield curvature profiles which meet the
high demands of class A automotive design. We identified several is-
sues within our approach, but also discovered that the uncontrollable
curvature behavior of the B-spline is a major issue regarding class A
modeling. We thus investigated the properties of class A curves and
presented a viable alternative to classic B-spline modeling. Design
curves which obtain more intuitive curvature behavior than B-splines
might yield more successful approaches to automated class A conver-

126 results and further analysis

sion in the future.

We gathered several ideas for future research on this topic, which
we shortly want to outline below.

simple schemes for b-spline curvature monotonicity If
replacing B-spline design is not an option, we should at least gather
more insight on their curvature behavior. Even if many spline curves
have already been inspected regarding the conditions needed for cur-
vature monotonicity, these rules are often very complex. We suggest
to further investigate simple schemes for control or limit point place-
ment, in order to achieve curvature-monotonous B-spline curves, sim-
ilar to the typical curves Farin suggested for Bézier design.

the domain of class a shapes In order to be able to model
class A shapes, we need to understand how the domain of class A
shapes can be described through simple rules for a certain sector,
such as automotive design. It could prove fruitful to gather informa-
tion from the experts who manually generate class A shapes at the
moment, namely the surface engineers, and to compile their rich ex-
perience into concrete mathematical rules for the description of class
A shapes and the evaluation of shapes regarding their class A quality.
This could for instance help us to discriminate between desired fea-
tures, undesired features, and flaws, such as missing regions in the
input data.

generalization of pccs to the surface case In order to
become even more useful, the PCC scheme has to be extended to
the surface case. Here fast evaluation even more becomes a major
issue. In our opinion it could also be interesting to investigate if PCC
surfaces could be spanned similar to tensor product surfaces.

Part I

A P P E N D I X

B I B L I O G R A P H Y

[1] M. Alhanaty and M. Bercovier. Curve and surface fitting
and design by optimal control methods. Computer-Aided De-
sign, 33(2):167 – 182, 2001. URL http://dx.doi.org/10.1016/

S0010-4485(00)00089-0.

[2] U.H. Augsdörfer, N.A. Dodgson, and M.A. Sabin. Artifact anal-
ysis on B-splines, box-splines and other surfaces defined by
quadrilateral polyhedra. Computer Aided Geometric Design, 28(3):
177 – 197, 2011. URL http://dx.doi.org/10.1016/j.cagd.2010.

04.002.

[3] Ilya Baran, Jaakko Lehtinen, and Jovan Popovic. Sketching
clothoid splines using shortest paths. Computer Graphics Fo-
rum, 29:655–664, 2010. URL http://dx.doi.org/10.1111/j.

1467-8659.2009.01635.x.

[4] Matthias Bein, Dieter W. Fellner, and André Stork. Genetic
B-spline approximation on combined B-reps. The Visual Com-
puter, 27(6-8):485–494, 2011. URL http://dx.doi.org/10.1007/

s00371-011-0592-9.

[5] Andrew Blake and M. Isard. Active Contours: The application of
techniques from graphics, vision, control theory and statistics to vi-
sual tracking of shapes in motion. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1st edition, 1998. ISBN 3540762175. URL
http:/dx.doi.org/10.1007/978-1-4471-1555-7.

[6] C. Deboor. A practical guide to splines. Springer-Verlag Berlin and
Heidelberg GmbH & Co. K, December 1978. ISBN 3540903569.
URL http://dx.doi.org/10.1002/zamm.19800600129.

[7] Chongyang Deng and Xunnian Yang. A local fitting algorithm
for converting planar curves to B-splines. Computer Aided Geo-
metric Design, 25(9):837 – 849, 2008. URL http://dx.doi.org/10.

1016/j.cagd.2007.11.001.

[8] M.P. do Carmo. Differential geometry of curves and surfaces.
Prentice-Hall, 1976. ISBN 9780132125895. URL https://books.

google.at/books?id=1v0YAQAAIAAJ.

[9] Matthias Eck and Jan Hadenfeld. Knot removal for B-
spline curves. Computer Aided Geometric Design, 12(3):259–282,
May 1995. URL http://dx.doi.org/10.1016/0167-8396(94)

00012-H.

129

http://dx.doi.org/10.1016/S0010-4485(00)00089-0
http://dx.doi.org/10.1016/S0010-4485(00)00089-0
http://dx.doi.org/10.1016/j.cagd.2010.04.002
http://dx.doi.org/10.1016/j.cagd.2010.04.002
http://dx.doi.org/10.1111/j.1467-8659.2009.01635.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01635.x
http://dx.doi.org/10.1007/s00371-011-0592-9
http://dx.doi.org/10.1007/s00371-011-0592-9
http:/dx.doi.org/10.1007/978-1-4471-1555-7
http://dx.doi.org/10.1002/zamm.19800600129
http://dx.doi.org/10.1016/j.cagd.2007.11.001
http://dx.doi.org/10.1016/j.cagd.2007.11.001
https://books.google.at/books?id=1v0YAQAAIAAJ
https://books.google.at/books?id=1v0YAQAAIAAJ
http://dx.doi.org/10.1016/0167-8396(94)00012-H
http://dx.doi.org/10.1016/0167-8396(94)00012-H

130 bibliography

[10] Gerald Farin. Curves and surfaces for CAGD: A practical guide. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edi-
tion, 2002. ISBN 1-55860-737-4.

[11] Gerald Farin. Class A Bézier curves. Computer Aided Geometric
Design, 23(7):573–581, October 2006. URL http://dx.doi.org/

10.1016/j.cagd.2006.03.004.

[12] W.H.J. Fuchs and W.K. Hayman. Rational approximation to the
Fresnel integral. In B. Fuglede, M. Goldstein, W. Haussmann,
W.K. Hayman, and L. Rogge, editors, Approximation by Solutions
of Partial Differential Equations, volume 365 of NATO ASI Series,
pages 69–77. Springer Netherlands, 1992. ISBN 978-94-010-5074-
6. URL http://dx.doi.org/10.1007/978-94-011-2436-2_7.

[13] R. Goldenthal and M. Bercovier. Spline curve approximation
and design by optimal control over the knots. Computing,
72(1-2):53–64, April 2004. URL http://dx.doi.org/10.1007/

s00607-003-0046-y.

[14] A. Ardeshir Goshtasby. Grouping and parameterizing irregu-
larly spaced points for curve fitting. ACM Trans. Graph., 19(3):
185–203, July 2000. URL http://dx.doi.org/10.1145/353981.

353992.

[15] Zulfiqar Habib and Manabu Sakai. G2 Pythagorean hodograph
quintic transition between two circles with shape control. Com-
puter Aided Geometric Design, 24(5):252–266, July 2007. URL
http://dx.doi.org/10.1016/j.cagd.2007.03.004.

[16] H. Hagen and G. Schulze. Variational principles in curve
and surface design. In Hans Hagen and Dieter Roller, edi-
tors, Geometric Modeling, Computer Graphics-Systems and Ap-
plications, pages 161–184. Springer Berlin Heidelberg, 1991.
ISBN 978-3-642-76406-6. URL http://dx.doi.org/10.1007/

978-3-642-76404-2_7.

[17] Richard I. Hartley. In defense of the eight-point algorithm. IEEE
Trans. Pattern Anal. Mach. Intell., 19(6):580–593, June 1997. URL
http://dx.doi.org/10.1109/34.601246.

[18] Sven Havemann. Generative mesh modeling. PhD thesis.

[19] Sven Havemann, Johannes Edelsbrunner, Philipp Wagner, and
Dieter Fellner. Curvature-controlled curve editing using piece-
wise clothoid curves. Computers & Graphics, 37(6):764 – 773, 2013.
URL http://dx.doi.org/10.1016/j.cag.2013.05.017.

[20] J. Hoschek. Intrinsic parametrization for approximation. Com-
puter Aided Geometric Design, 5(1):27 – 31, 1988. URL http:

//dx.doi.org/10.1016/0167-8396(88)90017-9.

http://dx.doi.org/10.1016/j.cagd.2006.03.004
http://dx.doi.org/10.1016/j.cagd.2006.03.004
http://dx.doi.org/10.1007/978-94-011-2436-2_7
http://dx.doi.org/10.1007/s00607-003-0046-y
http://dx.doi.org/10.1007/s00607-003-0046-y
http://dx.doi.org/10.1145/353981.353992
http://dx.doi.org/10.1145/353981.353992
http://dx.doi.org/10.1016/j.cagd.2007.03.004
http://dx.doi.org/10.1007/978-3-642-76404-2_7
http://dx.doi.org/10.1007/978-3-642-76404-2_7
http://dx.doi.org/10.1109/34.601246
http://dx.doi.org/10.1016/j.cag.2013.05.017
http://dx.doi.org/10.1016/0167-8396(88)90017-9
http://dx.doi.org/10.1016/0167-8396(88)90017-9

bibliography 131

[21] Yu-Kun Lai, Shi-Min Hu, and Tong Fang. Robust principal
curvatures using feature adapted integral invariants. In 2009
SIAM/ACM Joint Conference on Geometric and Physical Modeling,
pages 325–330. ACM, 2009. URL http://dx.doi.org/10.1145/

1629255.1629298.

[22] Torsten Langer, Alexander Belyaev, and Hans-Peter Seidel. Anal-
ysis and design of discrete normals and curvatures. 2005. URL
http://hdl.handle.net/11858/00-001M-0000-0014-6837-B.

[23] E.T.Y. Lee. Choosing nodes in parametric curve interpolation.
Computer-Aided Design, 21(6):363 – 370, 1989. ISSN 0010-4485.
URL http://dx.doi.org/10.1016/0010-4485(89)90003-1.

[24] Weishi Li, Shuhong Xu, Gang Zhao, and Li Ping Goh. Adaptive
knot placement in B-spline curve approximation. Computer-Aided
Design, 37(8):791 – 797, 2005. URL http://dx.doi.org/10.1016/

j.cad.2004.09.008.

[25] Hongwei Lin, Guojin Wang, and Chenshi Dong. Constructing it-
erative non-uniform B-spline curve and surface to fit data points.
Science in China Series : Information Sciences, 47:315–331, 2004.
URL http://dx.doi.org/10.1360/02yf0529.

[26] Wei-Yang Lin, Yen-Lin Chiu, Kerry R. Widder, Yu Hen Hu, and
Nigel Boston. Robust and accurate curvature estimation using
adaptive line integrals. EURASIP J. Adv. Signal Process, 2010:25:1–
25:14, February 2010. URL http://dx.doi.org/10.1155/2010/

240309.

[27] Tom Lyche and Knut Mørken. Knot removal for parametric
B-spline curves and surfaces. Computer Aided Geometric De-
sign, 4(3):217 – 230, 1987. URL http://dx.doi.org/10.1016/

0167-8396(87)90013-6.

[28] Siddharth Manay, Byung-Woo Hong, Anthony J. Yezzi, and Ste-
fano Soatto. Integral invariant signatures. In Tomás Pajdla
and Jirí Matas, editors, Computer Vision - ECCV 2004, volume
3024 of Lecture Notes in Computer Science, pages 87–99. Springer
Berlin Heidelberg, 2004. ISBN 978-3-540-21981-1. URL http:

//dx.doi.org/10.1007/978-3-540-24673-2_8.

[29] Cengiz Oztireli, Gaël Guennebaud, and Markus Gross. Fea-
ture preserving point set surfaces based on non-linear kernel
regression. Computer Graphics Forum, 28(2):493–501, 2009. URL
http://dx.doi.org/10.1111/j.1467-8659.2009.01388.x.

[30] Hyungjun Park. An error-bounded approximate method for rep-
resenting planar curves in B-splines. Computer Aided Geometric
Design, 21(5):479–497, May 2004. URL http://dx.doi.org/10.

1016/j.cagd.2004.03.003.

http://dx.doi.org/10.1145/1629255.1629298
http://dx.doi.org/10.1145/1629255.1629298
http://hdl.handle.net/11858/00-001M-0000-0014-6837-B
http://dx.doi.org/10.1016/0010-4485(89)90003-1
http://dx.doi.org/10.1016/j.cad.2004.09.008
http://dx.doi.org/10.1016/j.cad.2004.09.008
http://dx.doi.org/10.1360/02yf0529
http://dx.doi.org/10.1155/2010/240309
http://dx.doi.org/10.1155/2010/240309
http://dx.doi.org/10.1016/0167-8396(87)90013-6
http://dx.doi.org/10.1016/0167-8396(87)90013-6
http://dx.doi.org/10.1007/978-3-540-24673-2_8
http://dx.doi.org/10.1007/978-3-540-24673-2_8
http://dx.doi.org/10.1111/j.1467-8659.2009.01388.x
http://dx.doi.org/10.1016/j.cagd.2004.03.003
http://dx.doi.org/10.1016/j.cagd.2004.03.003

132 bibliography

[31] Hyungjun Park and Joo-Haeng Lee. B-spline curve fitting based
on adaptive curve refinement using dominant points. Computer-
Aided Design, 39(6):439 – 451, 2007. URL http://dx.doi.org/10.

1016/j.cad.2006.12.006.

[32] Les Piegl and Wayne Tiller. The NURBS book. Springer-Verlag,
London, UK, UK, 1995. ISBN 3-540-55069-0.

[33] Michael Plass and Maureen Stone. Curve-fitting with piecewise
parametric cubics. SIGGRAPH Comput. Graph., 17(3):229–239,
July 1983. URL http://dx.doi.org/10.1145/964967.801153.

[34] Helmut Pottmann, Stefan Leopoldseder, and Michael Hofer. Ap-
proximation with active B-spline curves and surfaces. In Pro-
ceedings of the 10th Pacific Conference on Computer Graphics and
Applications, PG ’02, pages 8–25, Washington, DC, USA, 2002.
IEEE Computer Society. ISBN 0-7695-1784-6. URL http://dx.

doi.org/10.1109/PCCGA.2002.1167835.

[35] Helmut Pottmann, Johannes Wallner, Qi-Xing Huang, and Yong-
Liang Yang. Integral invariants for robust geometry processing.
Computer Aided Geometric Design, 26(1):37–60, January 2009. URL
http://dx.doi.org/10.1016/j.cagd.2008.01.002.

[36] Anshuman Razdan. Knot placement for B-spline curve ap-
proximation, 1999. URL https://www.researchgate.net/

publication/2465899_Knot_Placement_for_B-Spline_Curve_

Approximation.

[37] Biplab Sarkar and Chia-Hsiang Menq. Parameter optimization
in approximating curves and surfaces to measurement data.
Computer Aided Geometric Design, 8(4):267 – 290, 1991. URL
http://dx.doi.org/10.1016/0167-8396(91)90016-5.

[38] Eric Saux and Marc Daniel. An improved Hoschek intrinsic
parametrization. Computer Aided Geometric Design, 20(8–9):513–
521, 2003. URL http://dx.doi.org/10.1016/j.cagd.2003.06.

004.

[39] Thomas Speer, Markus Kuppe, and Josef Hoschek. Global
reparametrization for curve approximation. Computer Aided Geo-
metric Design, 15(9):869 – 877, 1998. URL http://dx.doi.org/10.

1016/S0167-8396(98)00024-7.

[40] John M. Sullivan. Curvature measures for discrete surfaces. In
ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, New York, NY,
USA, 2005. ACM. URL http://doi.acm.org/10.1145/1198555.

1198662.

http://dx.doi.org/10.1016/j.cad.2006.12.006
http://dx.doi.org/10.1016/j.cad.2006.12.006
http://dx.doi.org/10.1145/964967.801153
http://dx.doi.org/10.1109/PCCGA.2002.1167835
http://dx.doi.org/10.1109/PCCGA.2002.1167835
http://dx.doi.org/10.1016/j.cagd.2008.01.002
https://www.researchgate.net/publication/2465899_Knot_Placement_for_B-Spline_Curve_Approximation
https://www.researchgate.net/publication/2465899_Knot_Placement_for_B-Spline_Curve_Approximation
https://www.researchgate.net/publication/2465899_Knot_Placement_for_B-Spline_Curve_Approximation
http://dx.doi.org/10.1016/0167-8396(91)90016-5
http://dx.doi.org/10.1016/j.cagd.2003.06.004
http://dx.doi.org/10.1016/j.cagd.2003.06.004
http://dx.doi.org/10.1016/S0167-8396(98)00024-7
http://dx.doi.org/10.1016/S0167-8396(98)00024-7
http://doi.acm.org/10.1145/1198555.1198662
http://doi.acm.org/10.1145/1198555.1198662

bibliography 133

[41] C.W.A.M. van Overveld. Pondering on discrete smoothing and
interpolation. Computer-Aided Design, 27(5):377 – 384, 1995. URL
http://dx.doi.org/10.1016/0010-4485(95)96801-R.

[42] Tzvetomir Ivanov Vassilev. Fair interpolation and approxima-
tion of B-splines by energy minimization and points insertion.
Computer-Aided Design, 28(9):753 – 760, 1996. URL http://dx.

doi.org/10.1016/0010-4485(95)00087-9.

[43] Wenping Wang, Helmut Pottmann, and Yang Liu. Fitting B-
spline curves to point clouds by curvature-based squared dis-
tance minimization. ACM Trans. Graph., 25(2):214–238, April
2006. URL http://doi.acm.org/10.1145/1138450.1138453.

[44] Huaiping Yang, Wenping Wang, and Jiaguang Sun. Control
point adjustment for B-spline curve approximation. Computer-
Aided Design, 36(7):639 – 652, 2004. URL http://dx.doi.org/10.

1016/S0010-4485(03)00140-4.

[45] Fujiichi Yoshimoto, Toshinobu Harada, and Yoshihide Yoshi-
moto. Data fitting with a spline using a real-coded genetic al-
gorithm. Computer-Aided Design, 35(8):751 – 760, 2003. URL
http://dx.doi.org/10.1016/S0010-4485(03)00006-X.

[46] Xiuyang Zhao, Caiming Zhang, Bo Yang, and Pingping Li. Adap-
tive knot placement using a GMM-based continuous optimiza-
tion algorithm in B-spline curve approximation. Computer-Aided
Design, 43(6):598–604, June 2011. URL http://dx.doi.org/10.

1016/j.cad.2011.01.015.

[47] Wenni Zheng, Pengbo Bo, Yang Liu, and Wenping Wang. Fast B-
spline curve fitting by L-BFGS. Computer Aided Geometric Design,
29(7):448 – 462, 2012. URL http://dx.doi.org/10.1016/j.cagd.

2012.03.004.

http://dx.doi.org/10.1016/0010-4485(95)96801-R
http://dx.doi.org/10.1016/0010-4485(95)00087-9
http://dx.doi.org/10.1016/0010-4485(95)00087-9
http://doi.acm.org/10.1145/1138450.1138453
http://dx.doi.org/10.1016/S0010-4485(03)00140-4
http://dx.doi.org/10.1016/S0010-4485(03)00140-4
http://dx.doi.org/10.1016/S0010-4485(03)00006-X
http://dx.doi.org/10.1016/j.cad.2011.01.015
http://dx.doi.org/10.1016/j.cad.2011.01.015
http://dx.doi.org/10.1016/j.cagd.2012.03.004
http://dx.doi.org/10.1016/j.cagd.2012.03.004

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of May 8, 2018 (classicthesis 3.0).

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	2 Basic definitions
	2.1 Parametric curves
	2.2 Discrete curves: Polygonal curves
	2.3 Hausdorff distance
	2.4 Curvature
	2.5 Continuity classes
	2.6 B-splines
	2.6.1 General B-spline curves
	2.6.2 Uniformity of B-spline knot vectors
	2.6.3 Uniform cubic B-spline curves
	2.6.4 Clamping
	2.6.5 Bicubic uniform B-spline surface
	2.6.6 Subdivision and limit points
	2.6.7 Obtaining control points from limit points

	3 Related work
	4 Uniform cubic B-spline fitting in a class A modeling environment
	4.1 Problem definition
	4.2 Input data analysis
	4.3 Input data preprocessing
	4.3.1 Data normalization
	4.3.2 Data smoothing
	4.3.3 Resampling

	4.4 Curvature calculation from discrete data
	4.4.1 Method of comparison
	4.4.2 Signed curvature
	4.4.3 Curvature from segment angles
	4.4.4 Curvature from circumcircle
	4.4.5 Robust three point method
	4.4.6 Curvature from integral invariants
	4.4.7 Curvature estimation using line integrals

	4.5 Smooth curvature estimation by adaptive curve resampling
	4.6 Choosing the right preprocessing method
	4.7 The required mesh width: A local measure for limit point spacing
	4.8 Connection to subdivision artifact analysis
	4.9 The accumulated mesh width
	4.10 Limit point distribution
	4.11 Optimization

	5 Results and further analysis
	5.1 Results
	5.2 Class A modeling
	5.3 Further analysis regarding class A behavior
	5.4 Piecewise Clothoid Curves: An alternative to B-spline modeling?
	5.5 Final thoughts & future research

	Appendix
	Bibliography
	Colophon

