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Abstract  

Sensomics is a stepwise approach for determining the compounds responsible for 

food odour. In this work, meta-analysis was carried out on a selection of sensomics 

publications and previously unpublished research, identifying two steps with scope for 

improvement. Firstly, it was found that Flavour Dilution (FD) factors, as calculated for 

odourants using Gas Chromatography – Olfactometry (GC-O), are very poor predictors 

of an odorants’ Odour Activity Value (OAV). FD factors are used to prioritize odorants 

for quantitation and, following this work, it is recommended that all odorants are 

quantitated, regardless of FD factor, or other measures are considered in odorant 

prioritization. Secondly, from the statistical information available, it was found that 

Flavor Profiling®, used to compare the odour simulation to original material (OM), is able 

to test for significant difference in specific odour attributes but not overall odour.  It is 

therefore recommended that simulations are assessed by additional methods such as 

Napping®. All sensory methods should be powered to meet the criteria of the statistical 

testing to be performed. 

Introduction 

Sensomics is an accepted approach to identify the key odorants in food with more 

than 100 publications determining odorants in over 200 different foods [1]. Sensomics is 

an established technique, however there is limited literature available for its validation. 

The sensomics approach to odour analysis is stepwise, combining: (1) The bioactivity 

guided detection of key odorants using GC-O, where the method of Aroma Extract 

Dilution Analysis generates FD factors, which are used to prioritise odorants for 

quantitation. (2) Accurate quantitation, which is used to calculate an odorants’ Odour 

Activity Value (OAV), the ratio of the concentration of an odorant in the food and its 

odour detection threshold in a suitable matrix. OAV is assumed to relate to an odorants’ 

overall importance in a food. (3) Accurate reconstitution, using odorants with OAV > 1, 

to create an odour simulation. This simulation is then validated by comparison to the 

original material (OM) using the human sensory method of Flavour Profiling®. (4) 

Sensory omission studies to reduce the simulation to the smallest number of odorants. 

There is a wealth of literature validating methods for the quantitation of odorants [2] 

and odour detection thresholds [3]. There are previous publications on the applicability 

of sensory omission studies [4]. However, there is limited information on the ability of 

FD factors to determine and prioritise importance of odorants and the ability of Flavour 

Profiling® to validate odour simulations. Here, a meta-analysis is conducted on results 

from a sample of sensomics publications focusing on the prediction of an odorant’s OAV 

from the FD factor, and the use of Flavour Profiling® to compare odour simulations to the 

OM. 

Experimental 

Meta-analysis was conducted on a selection of sensomics publications [5-19]. 

Covering a period from 1993 to 2017, the selection included analysis of fish, meat, coffee, 
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nuts and fruit, using the sample preparation techniques of Solvent Assisted Flavour 

Evaporation, High Vacuum Distillation and Static Headspace. For each publication the 

odorant data was tabulated with other available information on the odorant and food 

product [20-22]. Statistical analysis was carried out using R version 3.3.3 and the ranger 

library. 

Two statistical modelling methods were used to assess the ability of FD factors to 

predict OAV. The first was a simple linear model with OAV as response and FD factor 

as fixed effect, both on the log10 scale. The second was a random forest approach, with 

200 trees and 4 variables selected per tree. Additional predictors (variables) were used for 

the random forest model, including odorants’ vapour pressure (VP), air/water partition 

coefficient (Kaw) and odour detection threshold. The models were fitted to 70% of the 

data. The remaining data was then predicted, and used to calculate root mean square error 

(RMSE), as a measure of fit. Within the reviewed publications there was little statistical 

information (e.g. variance) available for the comparison of the odour simulation to the 

OM. Therefore, the data used to first assess Flavour Profiling® and then investigate an 

alternative approach, Napping®, is from unpublished work on liver and tuna. 

Results and discussion 

Results for the prediction of OAV from FD factor using a simple linear model are 

displayed in Fig. 1A. The figure shows that prediction of OAV from FD factor alone is 

very poor, RMSE 1.14. It is therefore recommended that FD factors alone are not used to 

select or prioritise odorants for quantitation. Previous publications have noted that there 

are differences between FD factors and OAVs. The reasoning was two-fold. Firstly, that 

FD factors are not corrected for losses in sample preparation [23]. Secondly, that in GC-

O the whole aroma extract is vaporised, whereas OAVs are calculated using odour 

thresholds in a matrix, i.e. considering only the amount of an odorant in the headspace. 

The example given is that polar compounds are often overestimated by AEDA, because 

they are quite soluble in water, and thus their vapour pressure is comparatively low [11]. 

  

Figure 1: A, left, prediction of OAV from FD factor alone, using a simple linear model. B, right, prediction of 
OAV from FD factor along with additional measures 

Results for the prediction of OAV from FD factor and additional variables, using the 

machine learning model, is shown in Fig. 1B. The figure shows a great improvement in 

prediction, RMSE 0.58, showing that by incorporating other variables odorants can be 

selected or prioritised for quantitation. The variables that have highest importance in the 



 

 

Scope for improvement in the sensomics approach 497 

model are displayed in Table 1. Additional variables with their importance were: the 

amount of water (19.7), protein (15.8), fat (14.8) in the food matrix; the physical chemical 

constants, VP (23.0), LogP (14.1), exact mass (12.1); Linear Retention Index (LRI) on a 

standard non-polar column (21.0); the percentage abundance of the odorant in studied 

food (12.8) as defined by Dunkel et al [1]; FD factor (23.3). The results show that within 

the model, FD factor is not the best predictor of OAV, even when normalised by taking 

into account the amount of food used for sample preparation. In fact, LRI on a normal 

polar column is the best single predictor of OAV. A possible explanation is that LRI is a 

good correlator of odour release from foods. Whereas, VP and Kaw are calculated within 

systems at equilibria, LRI is calculated within a dynamic system, as is odour release. GC-

O can identify odorants, but multiple additional measures are required to predict an 

odorant’s importance. 

Table 1: Highest importance score of variables used with the machine learnt random forest model. 

Variable Importance  

LRI Standard Polar Column  52.3 

Kaw 39.8 

Carbohydrate (% wt.) 37.6 

Normalised FD factor (g-1) 34.17 

Odour Detection Threshold (mg /L ) 33.05 

LRI Semi-Standard Non-Polar Column 24.57 

In the absence of statistical data from published work using Flavour Profiling®, the 

data reviewed is from previously unpublished work on liver (Fig. 2a). In statistical testing, 

by analysis of variance (ANOVA), there was no significant difference between simulation 

and OM for each odour attribute. Power analysis of the data showed that, for each 

attribute, a difference of 0.5 would be detected 80% of the time (if present), at a 

significance level of 5% with 25 assessors. The results therefore show that Flavour 

Profiling® is able to test odour attribute differences of 0.5 between the simulation and 

OM. Within Flavour Profiling® this is equivalent to half way between a moderate to 

strong odour attribute. But what about differences in overall odour? Using a sensory 

discrimination test, Triangle testing, a significant difference in overall odour was 

observed (p<0.01) with 60 participants. In sensomics publications simulations are 

described as characteristic (and not similar) to the overall odour of the OM. Indeed, a 

previous review commented that there are difficulties in producing flavour simulations 

for solid foods as it is not possible to recreate the composition and distribution on the 

non-volatiles components in a suitable odourless matrix [23]. In effect, the simulation 

matrix causes a difference. Since Flavour Profiling® does not assess overall odour the 

assessment of the overall odour of a canned skipjack tuna odour simulation was carried 

out by the human sensory method of Napping®. The odour simulation was compared to 

the OM (Skipjack 1) and other tuna samples of different species (Albacore), manufacturer 

(Skipjack 2) and samples that had been opened and left in a fridge for 24 h (Aged). The 

results show that the overall odour of the simulation clusters with tuna samples from the 

same manufacturer and tuna species. The overall odour is characteristic of a specific 

manufacturer’s canned skipjack tuna product. However, the overall odour is not similar 

as Triangle testing showed a significant difference (p<0.01). In addition to the previous 

explanation on why simulations are not similar, the Napping® shows that the overall 

odour of canned tuna changes over time from opening. Food does not have a constant 
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stable odour. Reviewing the results, it is recommended that for odour simulation 

assessment Flavour Profiling®, with additional methods such as Napping®, are used. All 

sensory methods should be powered to meet the criteria of the statistical testing to be 

performed. 

  

Figure 2: A, left, radar plot showing Flavour Profiling® comparison of odour attributes for liver (black) to liver 

odour simulation (grey). Solid line represent mean, dashed lines 95% confidence limits, n = 20, p-value from 

testing significant difference between each odour attribute for liver and liver odour simulation. B, right, PCA 
of Napping® result for the comparison of a canned skipjack tuna odour simulation to skipjack tuna from different 

manufacturer and species (albacore). All tuna samples were analysed freshly opened and after aging in a fridge 

for 24 hours. n= 10, ellipsoids represent 95% confidence intervals, line style represents clustering determined 
by hierarchical cluster analysis: solid black cluster 1, dotted grey cluster 2, dashed cluster 3. 
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